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Abstract

A numerical model of spontaneous decay continuously monitored by a distant de-
tector of emitted particles is constructed. It is shown that there is no quantum Zeno
effect in such quantum measurement if the interaction between emitted particle and
detector is short-range and the mass of emitted particle is not zero.
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1 Introduction

The Quantum Zeno Paradox (QZP) is a proposition that evolution of a quantum system is
stopped if the state of system is continuously measured by a macroscopic device to check
whether the system is still in its initial state [1, 2]. QZP is a consequence of formal ap-
plication of von Neumann’s projection postulate to represent a continuous measurement
as a sequence of infinitely frequent instantaneous collapses of system’s wave function. It
was shown theoretically [3] and experimentally [4] that sufficiently frequent discrete active
measurements of system’s state really inhibit quantum evolution. This phenomenon was
named ‘Quantum Zeno Effect’ (QZE). But the question about possibility of QZE during
true continuous observations is not quite clear up to now.

A true continuous measurement of quantum system’s state takes place during observation
of spontaneous decay by distant detector of emitted particles (another examples of continuous
measurement of decay are presented in papers [5, 6, 7, 8, 9]). Let us consider a metastable
exited atom surrounded for detectors to register an emitted photon (or electron) when the
exited state of atom decays to the ground state. While the detectors are not discharged, the
information that the atom is in its exited state is being obtained permanently, therefore the
system’s state is being measured continuously. Could the presence of detectors influence on
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the decay constant of exited atom? If so, this would be the QZE in true continuous passive
measurement.

It is impossible to describe this kind of continuous measurement by a sequence of discrete
wave function collapses as was proposed in seminal works [1, 2]. Such approach leads to
the explicit quantum Zeno paradox, not effect. Instead, a dynamical description of such
measurements was elaborated in the number of works [10, 11, 12, 13]. In this approach object
system (atom), radiation field (or emitted particle), and device (detector of particle) are
considered as subsystems of one compound quantum system. The results of papers [10, 11]
were mainly qualitative. The explicit expression for decay constant perturbed by given
interaction W of emitted particles with detector was obtained in [12, 13]. This expression is

Γ = 2π
∫

dωM(ω)∆(ω − E0). (1)

In Eq. (1) M(ω) is the sum of all transition matrix element squares related to the same energy
of emitted particle ω; E0 is the expectation value of final energy of emitted particle. The
function ∆(ω − E0) describes the influence of observation on the decay constant. Without
detector, i. e. W = 0, the function ∆(ω −E0) transforms to Dirac’s delta-function δ(ω −E0)
and Eq. (1) transforms to the Golden Rule [12, 13]. It was supposed [12] that the meaning of
∆(ω −E0) is an energy spreading of the final states of decay due to time-energy uncertainty
relation and finite time-life of emitted particle until scattering on the detector1. Then one
can suggest that observation influences on decay in accordance with the following sequence:
The faster detector, the shorter emitted particle time-life, the wider ∆(ω −E0), the stronger
perturbation of decay constant.

It is clear that strong interactions W is needed to obtain QZE. Hence, W is essentially
nonperturbative in this problem. This feature determines the main difficulty of calculations
of function ∆(ω − E0) in Eq. (1) and, consequently, the perturbed value of decay constant.
Particularly, in paper [12] we supposed that QZE explains strong inhibition of 76 eV-nuclear
uranium-235 isomer decay in matrix of silver [14]. However, we had to restrict the consider-
ation only by a qualitative analysis of Eq. (1) for this case because of difficulties of function
∆(ω − E0) calculations.

Since it is difficult to study realistic physical systems, it is reasonable to start with
some simplified models to calculate the function ∆. The aim of the present paper is strict
and complete numerical investigation of Eq. (1) for a simple but not oversimplified model
system. We derive Eq. (1), then introduce one-dimensional three-particle model of continuous
observation of decay, then describe the numerical computation scheme for this model, and
finally discuss results of calculations.

2 General considerations

In this section a derivation of Eq. (1) and other formulae to construct our numerical model
are presented. Derivation of Eq. (1) is simplified in comparison with our previous papers
[12, 13].

1This supposition was confirmed in a case of problem of decay onto an unstable atomic state [13]. This
problem is close to problem of observation of decay by distant detector.
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Figure 1: The compound system S = X ⊗ Y ⊗ Z is the model of continuous observation of
exited state |Xe〉 decay.

Let a compound system S = X ⊗ Y ⊗ Z consists of three subsystems X, Y , and Z
(Fig. 1)2. The system X (“atom”) decays spontaneously from the initial exited state |Xe〉
to the ground state |Xg〉 emitting a particle Y (“electron”) due to interaction V between
systems X and Y . This process is similar to autoionization decay of excited atomic state,
but it is possible to suppose another nature of systems and interactions. The particle Y
is initially at the ground state |Y0〉 (electron is on the bounded state in atom) and then
transits to continuum |Y (η, EY )〉. Here EY is the energy of the state in the continuum and
η represents all other quantum numbers. Particle Y inelastically scatters on third system
Z (“distant detector”) due to interaction W between Y and Z. As a result, the system Z
transits from the initial ground state |Z0〉 to the continuum |Z(ζ, EZ)〉. This transition is
considered to be a registration of decay. We consider that the interaction V does not effect
on system Z, the interaction W does not effect on system X and the systems Y and Z don’t
interact in their ground states. Therefore, we have

V = VXY ⊗ IZ ; W = IX ⊗ WY Z ; WY Z |Y0Z0〉 = 0, (2)

where IX and IZ are unit operators in the Hilbert spaces of corresponding systems. The
Hamiltonian of whole system is

H = H0 + V + W, (3)

where
H0 = H0

X ⊗ IY Z + H0
Y ⊗ IXZ + H0

Z ⊗ IY X

with obvious notations.

2S = X⊗Y ⊗Z means that the Hilbert space of system S is a direct product of spaces of systems X, Y, Z.
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The initial state of system S at the initial moment of time T = 0 is

|Ψ0〉 = |Xe〉 ⊗ |Y0〉 ⊗ |Z0〉 ≡ |XeY0Z0〉.

Let us introduce the first order correction to the eigenenergy of state |Ψ0〉 due to interaction
V :

δV0 = 〈Ψ0|V |Ψ0〉

and renormalized unperturbed Hamiltonian H0 and renormalized interaction V :

H ′

0 = H0 + δV0|Ψ0〉〈Ψ0|; V ′ = V − δV0|Ψ0〉〈Ψ0|.

Then the Hamiltonian Eq. (3) may be rewritten as

H = H ′

0 + V ′ + W.

The initial state |Ψ0〉 is an eigenstate of the Hamiltonian H ′

0 with the eigenenergy

E ′

0 = Ee
X + E0

Y + E0
Z + δV0.

The interaction V is considered to be a small perturbation, but interaction W is not
small. To obtain the decay constant of the exited state |Xe〉 it is necessary to solve the
Shrödinger equation for the whole system S. It is impossible to construct the perturbation
theory for W , but it is possible for V . Therefore, let us introduce the interaction picture as
(h̄ = 1):

|ΨI(T )〉 = ei(H′

0
+W )T |Ψ(T )〉, |ΨI(0)〉 = |Ψ0〉 (4)

V ′

I (T ) = ei(H′

0
+W )T V ′e−i(H′

0
+W )T .

Then the Shrödinger equation reads as

|ΨI(T ) = |Ψ0〉 − i
∫ T

0
V ′

I (t)|ΨI(t)〉dt. (5)

The solution of Eq. (5) in the second order of perturbation theory with respect to V is

|ΨI(T )〉 = |Ψ0〉 − i
∫ T

0
V ′

I (t)|Ψ0〉dt −
∫ T

0
dt1

∫ t1

0
dt2V

′

I (t1)V
′

I (t2)|Ψ0〉. (6)

Let F (T ) be no-decay amplitude

F (T ) = eiE ′

0
T 〈Ψ0|Ψ(T )〉.

It follows from Eq. (4) and Eq. (6) that

F (T ) = 1 −
∫ T

0
dt1

∫ t1

0
dt2〈Ψ0|V

′

I (t1)V
′

I (t2)|Ψ0〉. (7)

For the initial region of exponential decay curve (time is not very small, not large) we assume

F (T ) = exp(−γT ) ∼= 1 − γT, γ = const. (8)
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Then the quantity Γ = 2Re γ is the probability of decay per unit of time (decay constant).
Using Eq. (7) and Eq. (8), we obtain

Γ = 2Re
∫

∞

0
〈Ψ0|V

′e−i(H′

0
+W )tV ′|Ψ0〉e

iE ′

0
tdt. (9)

By v(η, EY ) denote the matrix elements of V which cause the decay of state |Xe〉 and emitting
of particle Y :

v(η, EY ) = 〈XgY (η, EY )|V ′

XY |XeY0〉. (10)

All other matrix elements don’t effect on the decay constant. Let us introduce the vector

|Ỹ 〉 =
∫

dηdEY |Y (η, EY )〉v(η, EY ). (11)

Then, after simple algebraic transformations, Eq. (9) may be rewritten as

Γ = 2π
∫

∞

0
M(EY )∆

(
EY − Efin

Y

)
dEY , (12)

where

Efin
Y = E0

Y + ω0 + δV0, ω0 = Ee
X − Eg

X ,

M(EY ) =
∫

dη |v(η, EY )|2 ,

∆(E) =
1

π
Re

∫
∞

0
D(t)e−iEtdt, (13)

D(t) =
〈Ỹ Z0

∣∣∣e−i(H0

Y Z
+WY Z)t

∣∣∣ Ỹ Z0〉

〈Ỹ Z0

∣∣∣e−iH0

Y Z
t
∣∣∣ Ỹ Z0〉

, (14)

H0
Y Z = H0

Y ⊗ IZ + H0
Z ⊗ IY .

It is easily shown that
∫

∆(E)dE = 1. We can not obtain an explicit analytical expression
for Γ with respect to the matrix elements of interaction W due to nonperturbative character
of this interaction. However, it is possible to derive an interesting qualitative conclusion on
the shape of function ∆(E) (which is essentially used to calculate Γ) without calculations.
For simplicity we suppose M(EY ) to be a step-like function with the jump at energy Ethr

Y .
Suppose the energy-spreading function ∆(E) be a bell-like and nearly symmetric with the
maximum at E = 0. Consider the case Efin

Y < Ethr
Y (Fig. 2). Then the transition |Xe〉 → |Xg〉

with emitting of particle Y is strictly forbidden by the Energy Conservation Law. For
example, the binding energy of atomic electron is greater than the transition energy ω0 and
the electron can not be ionized during this transition. But the functions ∆(EY − Efin

Y ) and
M(EY ) may have no-zero overlap integral Eq. (12) as is shown on Fig. 2. Hence Γ > 0 and the
transition |Xe〉 → |Xg〉 is possible. Thus, we come to a contradiction. This contradiction
means that the suggestion about shape of function ∆(E) was wrong. The contradiction
could be eliminated if whole no-zero part of function ∆(E) locates at the left-hand side of
point E = 0. Therefore, we conclude, that our formalisms predict this special shape for
the function ∆(E). Another prediction is the following. Let Efin

Y − Ethr
Y > 0 but the value

5
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Figure 2: No-zero probability of decay forbidden by the Energy Conservation Law.

Efin
Y −Ethr

Y is of the order of function ∆(E) width or less. Then the transition |Xe〉 → |Xg〉

is permitted, but a considerable part of function ∆(EY − Efin
Y ) is located at the left-hand

side of point Ethr
Y , so Γ < Γ0. Here Γ0 is the decay constant not perturbed by the interaction

of particle Y with the device Z. This is QZE. In the following sections we will verify both
predictions by direct calculations with a simple numerical model.

3 Numerical model

We consider one-dimensional three-particle model (Fig. 3) in this section and hereafter in
present paper. The systems X, Y , Z are one-dimensional rectangular potential wells. There
is a single particle in each well in the initial state of system X ⊗ Y ⊗ Z. The masses of
particles and the geometry of potential wells are clear from Fig. 3. We use the units such
that mY = 1, aY = 1, h̄ = 1. The coordinates of particles X, Y , Z are denoted by
x, y, z, respectively. There is infinitely high potential wall for all particles at the point
x = y = z = 0, consequently all particle eigenstates are no-degenerated. We consider that
each particle X, Y , Z governs only by its own potential well UX(x), UY (y), UZ(z) respectively
and by interparticle interactions.

The potential well UX(x) is a potential box with solid walls. The potential wells UY (y) and
UZ(z) are such that they contain only one bounded state for particles Y and Z, respectively.
The particles X and Y interact by repulsive δ-like potential

VXY (y − x) = v0δ(y − x), v0 > 0. (15)

This interaction causes transition of particle X from the initial state |Xe〉 to the ground
state |Xg〉 and simultaneously excitation of particle Y from the bounded state |Y0〉 to the
continuum |Ye(EY )〉. Since all states are no-degenerated, the degeneration index η may be
omitted. The threshold energy for particle Y to be ionized is Ethr

Y = 0. The particles Y and

6
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Figure 3: The one-dimensional three-particle model of spontaneous decay with continuous
observation of decay particle by distant detector.

Z interacts by Gaussian repulsive potential

WY Z(z − y) = P ′

0 w0 exp

[
−

(z − y)2

2σ2
W

]
P ′

0, w0 > 0; (16)

P ′

0 = (IY Z − |Y0Z0〉〈Y0Z0|).

The potential WY Z always fulfills the condition Eq. (2) due to the artificial factors P ′
0. We

discuss these factors in the last section of paper. The Hamiltonian of joint system X⊗Y ⊗Z
is

H =

[
−

1

2mx

∂2

∂x2
+ UX(x)

]
⊗ IY Z +

[
−

1

2my

∂2

∂y2
+ UY (y)

]
⊗ IXZ +

[
−

1

2mz

∂2

∂z2
+ UZ(z)

]
⊗ IXY + VXY (y − x) ⊗ IZ + WY Z(z − y) ⊗ IX .

General expressions for v(η, EY ), |Ỹ 〉, and Γ (Eqs. (10,11,12) respectively) now become

v(EY ) = 〈XgY (EY )|VXY |XeY0〉, (17)

|Ỹ 〉 =
∫

|Y (EY )〉v(EY )dEY , (18)

7



Γ = 2π
∫

|v(EY )|2∆(EY − Efin
Y )dEY . (19)

The expressions for ∆(E) and D(t) (Eqs. (13,14) respectively) are remain unchanged.
To calculate Γ we should calculate D(t). To calculate D(t) we should calculate two

functions

q(t) = 〈Ỹ Z0|e
−i(H0

Y Z
+WY Z)t|Ỹ Z0〉, (20)

q0(t) = 〈Ỹ Z0|e
−iH0

Y Z
t|Ỹ Z0〉 (21)

and then find D(t) = q(t)/q0(t). In this paper we calculate q(t) numerically.
To calculate q(t) the Shrödinger equation may be solved:

i
∂Ψ̃(y, z, t)

∂t
= (H0

Y Z + WY Z)Ψ̃(y, z, t) (22)

Ψ̃(y, z, 0) = Ỹ (y)Z0(z) (23)

and then the inner product q(t) = 〈Ỹ Z0|Ψ̃(y, z, t)〉 may be obtained. It follows from
Eqs. (15), (17), and (18) that Ỹ (y) may be represented through functions Xe, Xg, and
Y0 as

Ỹ (y) = NY0(y)
[
X∗

g (y)Xe(y) −
∫
|Y0(y

′)|2X∗

g (y′)Xe(y
′)dy′

]
, (24)

where N is a normalization factor. Since the functions Xe(x), Xg(x), Y0(y), and Z0(z) are
well known eigenfunctions of one-dimensional rectangular well, it is easy to calculate the
initial state Eq. (23) analytically. Note that it follows from Eq. (24) that Ỹ (y) is a compact
wave packet near the origin of axis y. The physical meaning of this wave packet is that it is
the particle Y state that arises virtually just after the particle excitation [12].

Eq. (22) was solved numerically. The state of the system Y ⊗ Z was represented by
a grid wave function with zero margin conditions defined on two-dimensional equidistant
rectangular grid with the same steps along y- and z-axis. Both dimensions LY and LZ of
calculation area were much greater than distance z0 from the center of device Z to the origin
of coordinate system. The scheme of calculation was as follows. Let the grid wave function
at the time t be {Ψ̃kl(t)} where k = 0, . . . , NY ; l = 0, . . . , NZ . Then the wave function at
the time t + ∆t is calculated through successive four steps (a), (b), (c), (d):
(a) Calculation of sin-Fourier transform of the grid function {Ψ̃kl(t)}:

Fmn(t) =
4

NY NZ

NY −1∑

k=1

NZ−1∑

l=1

Ψ̃kl(t) sin
(

mπ

NY

k
)

sin
(

nπ

NZ

l
)

.

(b) Calculation of free evolution of Fourier coefficients:

Fmn(t + ∆t) = Fmn(t) exp

{
−i

[
1

2mY

(
mπ

LY

)2

+
1

2mZ

(
nπ

LZ

)2
]

∆t

}
.

(c) Calculation of back sin-Fourier transform that produces the free evolution of system
Y ⊗ Z without potentials UY , UZ , and WY Z during time interval ∆t:

Ψ̃′

kl(t + ∆t) =
NY −1∑

k=1

NZ−1∑

l=1

Fmn(t + ∆t) sin
(

mπ

NY

k
)

sin
(

nπ

NZ

l
)

.
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Table 1: The parameters of problem for the models “Wide W” and “Narrow W”. Here U0
Y

and U0
Z are the depths of wells UY and UZ .

Parameter Wide W Narrow W
aX 0.6 0.6
mY 1.0 1.0
aY 1.0 1.0
U0

Y −5.552 −5.552
E0

Y −2.776 −2.776
z0 4.0 4.0

2aZ 1.0 1.0
mZ 0.9 0.9
U0

Z −2.210 −2.210
E0

Z −1.0 −1.0
σW 2.548 0.2
w0 789.2 20000

(d) Calculation of contribution of all interactions to the evolution during time interval ∆t:

Ψ̃kl(t + ∆t) = Ψ̃′

kl exp{−i[UY (yk) + UZ(zl) + W (zl − yk)]∆t}.

The zero margin conditions is fulfilled because of representation of {Ψ̃kl} by sin-Fourier
series.

The calculation of function q0(t) Eq. (21) is not difficult. This calculation may be carried
out analytically or numerically by the same way as the calculation of function q(t) but for
WY Z = 0. To verify our calculation schemes both ways was tested (the results was identical).

To calculate the function ∆(E) through D(t) one should calculate the Fourier transform
Eq. (13). To do this we used the cubic spline approximation of the numerical function D(t).

4 Results of calculations and discussion

We present the results of calculations for two sets of parameters of problem (Table 1). All
parameters were the same for both calculations except the parameters of interaction W . The
first variant was the “Wide W”. For this variant W was wide enough for particle Z in its
ground state |Z0〉 to feel the appearance of the particle Y in the continuum spectrum near
the origin of coordinate system. Also, W was strong enough to ionize the particle Z from
its ground state. The second variant was the “Narrow W”. For this case W was narrow
enough that the particle Z does not feel the particle Y near the origin of coordinate system.
Also, W was strong enough for particle Y could not be tunnelled through particle Z and the
energy of transition ω0 was high enough to ionize Z.

The results of “Wide W” calculation is presented on Fig. 4. One can see from Fig. 4a
that the function q(t) drops down faster then the function q0(t). This is a result of detector

9
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Figure 4: The calculations for “Wide W”. (a): solid line—|q(t)|, dashed line—|q0(t)|; (b):
solid line—|D(t)|, dashed line—Re D(t), dotted line—Im D(t); (c): ∆(E); (d): solid line—
dependency of unperturbed value of decay constant Γ0 on final energy Efin

Y , dashed line—
dependency of perturbed value Γ on Efin

Y . Γ(Efin
Y ) ≈ 0 for 0 < Efin

Y < 100 (Zeno effect).

Z excitation due to the interaction WY Z between the particle Y and the detector Z (see
Eqs. (20,21)). As a result, the absolute value of function D(t) = q0(t)/q(t) drops down from
the initial value 1.0 to zero (Fig. 4b). At the same time the imaginary and real parts of D(t)
oscillate. The function ∆(E) (Fig. 4c) is a Fourier transform of D(t) (Eq. (13)), therefore this
function is bell-like due to dropping of function D(t) and has left-side shift due to oscillations
of real and imaginary part of D(t). Moreover, it is seen from Fig. 4c that ∆(E) ≈ 0 for E > 0,
as it was predicted on the base of Energy Conservation Law in Section 2.

One can change the transition energy ω0 of system X by altering the particle mass mX .
Then the final energy Efin

Y ≈ ω0 − |E0
Y | of particle Y is changed simultaneously. Therefore,

it is possible to consider the dependency of decay constants on Efin
Y . The dependency of

unperturbed decay constant Γ0 (i. e. for WY Z = 0) on Efin
Y is shown on Fig. 4d by solid

line. The complicated shape of this function is a consequence of particle Y reflection from
the sharp margins of UY potential well. The dependency of decay constant Γ perturbed
by interaction WY Z on Efin

Y is shown on Fig. 4d by dashed line. It is seen that Γ(Efin
Y ) is

strongly inhibited in comparison with Γ0 for values of Efin
Y which are less then approximately

100. This is the predicted in Section 2 Zeno effect. Zeno effect in spontaneous decay takes

10
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Figure 5: The calculations for “Narrow W”. Solid line—D(t); dashed line—Psur(t).

place for low energies of decay particles, near the threshold of decay, if this effect is presented
at all.

The model with “Wide W” interaction does not contradict any fundamental principles
of quantum theory, but this model is quite unrealistic practically. The long distance inter-
action between Y and Z must couple the ground states |Y0〉 and |Z0〉 of systems Y and Z
inevitably. To obtain WY Z |Y0Z0〉 = 0 we inserted the artificial factors (IY Z − |Y0Z0〉〈Y0Z0|)
into the interaction WY Z in Eq. (16). It would be more realistic to consider sufficiently
narrow interaction WY Z to obtain by natural way

w0 exp

[
−

(z − y)2

2σ2
W

]
Y0(y)Z0(z) ≈ 0.

Then the factors (IY Z − |Y0Z0〉〈Y0Z0|) may be omitted, they do not play a role any more.
To consider this realistic situation we studied the model of “Narrow W” with σW = 0.2. It
is seen that σW ≪ z0. The results of calculation with “Narrow W” was quite different from
“Wide W” ones. The function q(t) occurred to be almost the same as function q0(t). The
resulting function D(t) is shown on Fig. 5 by solid line. It is seen that D(t) does not show
a drop-down behavior, but rather shows some oscillations at long times. It is impossible
to calculate the function ∆(E) numerically in this situation, because the integral Eq. (13)
diverges, but it is clear that ∆(E) will be δ-like, not spreaded bell-like function. Thus, Γ
and Γ0 are almost equal each other and Zeno effect is absent in “Narrow W” model.

We mentioned that it would be reasonably to consider the function ∆(EY − Efin
Y ) in

Eq. (12) as an energy spreading of final state of decay due to a finite time life of particle
Y until inelastic scattering on detector Z. Then the sense of function D(t) is the effective
“decay curve” of the final state of decay in the analogy with the decay onto an unstable level
[13]. But it is clearly seen that it is not the case for the model of “Narrow W”. Survival
probability of the state |Z0〉 after decay of the system X was occur, may be written as

Psur(t) = Tr [|Z0〉〈Z0|ρZ(t)] =
∫

dy
∣∣∣∣
∫

dzΨ̃(y, z, t)Z∗

0(z)
∣∣∣∣
2

,

11



where Ψ̃(y, z, t) is the solution of Eq. (20) and ρZ(t) is the reduced density matrix of the
system Z. The curve Psur(t) is shown on Fig. 5 by dashed line. It is seen that the survival
probability decreases with time (as could be expected) and that Psur(t) is quite different
from the function D(t).

A general cause of the found D(t) behavior is the following. Note that for the model of
“Wide W” the cause of D(t) dropping down is excitation of system Z. We would expect
that the same reason may lead to dropping of D(t) in the model of “Narrow W” as well.
Now consider the right hand side (RHS) term in Eq. (20). The function Ỹ (y) is a compact
wave packet near the origin of coordinate system. This packet contains both low-energy and
high-energy components. Hence, the wave packet Ỹ (y) does not drive with time from the
left to the right along the y-axis, but spreaded out by the manner that the lowest energy
part retains near the origin of coordinate system forever. This is a consequence of mY > 0.
Namely this lowest energy part of wave packet determines the value of inner product in
the RHS of Eq. (20) and, consequently, behavior of D(t). But this lowest energy part of
wave packet can not influence on the state of system Z due to a short range of interaction
WY Z(z−y) and large length of distance z0 (Fig. 3). As a result there is no influence of system
Z excitation to the behavior of function D(t). Oscillations of D(t) (Fig. 5) is appeared to be
a result of elastic reflection of particle Y from the particle Z in its ground state |Z0〉.

Thus, our conclusions are as follows. Firstly, the functions ∆(E) and D(t) in Eqs. (12,13)
have no any simple physical sense in the context of problem of continuous observation of decay
by distant detector. Generally, the function D(t) does not mean the survival of the final state
of decay with time generally, and the function ∆(E) does not mean the energy spreading
of decay final states. Secondly, there is no quantum Zeno effect during the continuous
observation of spontaneous decay by distant detector if interaction between emitted particle
and detector is short-range and the emitted particle has no-zero mass. Thirdly, Zeno effect
in the context of the same problem takes place if the interaction between emitted particle
and detector is long-range, but this situation is considered as unrealistic. Finally, we did not
consider the case of “spreaded” detector, when the detector is represented by some medium
which contains a decay system and we did not consider the case of massless emitted particles.
The existence of Zeno effect in these situations is meanwhile an open question.
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