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ABSTRACT
The study of the cosmic Dark Ages, Cosmic Dawn, and Epoch of Reionization (EoR)
using the all-sky averaged redshifted HI 21cm signal, are some of the key science goals
of most of the ongoing or upcoming experiments, for example, EDGES, SARAS, and
the SKA. This signal can be detected by averaging over the entire sky, using a single
radio telescope, in the form of a Global signal as a function of only redshifted HI
21cm frequencies. One of the major challenges faced while detecting this signal is
the dominating, bright foreground. The success of such detection lies in the accuracy
of the foreground removal. The presence of instrumental gain fluctuations, chromatic
primary beam, radio frequency interference (RFI) and the Earth’s ionosphere corrupts
any observation of radio signals from the Earth. Here, we propose the use of Artificial
Neural Networks (ANN) to extract the faint redshifted 21cm Global signal buried in a
sea of bright Galactic foregrounds and contaminated by different instrumental models.
The most striking advantage of using ANN is the fact that, when the corrupted signal
is fed into a trained network, we can simultaneously extract the signal as well as
foreground parameters very accurately. Our results show that ANN can detect the
Global signal with & 92% accuracy even in cases of mock observations where the
instrument has some residual time-varying gain across the spectrum.

Key words: cosmology:dark ages, reionization, first stars, cosmology:observations,
methods: statistical, cosmology: theory

1 INTRODUCTION

The redshifted 21cm line of neutral hydrogen presents a
unique probe of the evolution of the neutral intergalactic
medium (IGM), from the Cosmic Dark Ages through Cos-
mic Dawn and Cosmic Reionization (Furlanetto et al. 2006;
Morales & Wyithe 2010; Pritchard & Loeb 2012). The inter-
play between the CMB temperature, the kinetic temperature
and the spin temperature, along with radiative transfer, lead
to very interesting physics of the 21cm signal evolving over
a redshift range. The 21cm line does not saturate, like the
Lyα, as at these high redshifts, (Fan et al. 2002, 2006; Mort-
lock et al. 2011), the IGM remains somewhat translucent at
large neutral fractions (Barkana & Loeb 2005a) due to the
Gunn-Peterson effect. The HI 21cm observations can be used
to study evolution of cosmic structure from the linear regime
at high redshift (i.e., density-only evolution), and through
the non-linear regime associated with luminous source for-
mation. The 21cm line as a probe, promises to be the richest
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of all cosmological datasets: HI measurements are sensitive
to structures ranging from very large scales down to the
source scale set by the cosmological Jeans mass(Barkana &
Loeb 2005b).
The 21cm cosmological signal is hidden in a bright sea of
foregrounds, which are ∼ 104 times higher in magnitude. The
foreground needs to be characterised and removed, in order
to be able to detect this faint signal. In addition to the strong
foregrounds, we have ionospheric distortion, RFI and also
the frequency response of instrument which cause the sky as
seen by the antenna to vary with time and other factors. All
these factors, make extracting of the 21cm Global signal,
extremely challenging. The most traditional procedure for
extracting the faint cosmological signal is by assuming that
the spectrally smooth foreground is well characterized and
can be removed from the total signal. What is left as the
residual would contain the signatures from the early phases
of the formation of the Universe. There are theoretical mod-
els which explain the evolution of the Global signature with
redshift, which essentially depends on the interplay of several
crucial parameters. The detection of the 21cm Global Signal
would in many ways complement the detection of the 21cm
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power spectrum, and provide meaningful insight about the
physical parameters for the evolution of the IGM. Several
upcoming experiments plan to observe the sky-averaged sig-
nal: examples are, the Shaped Antenna measurement of the
background RAdio Spectrum, SARAS, (Patra et al. 2013;
Singh et al. 2017), the Large-Aperture Experiment to De-
tect the Dark Ages, LEDA (Greenhill & Bernardi 2012;
Price et al. 2018), SCI-HI (Voytek et al. 2014), the Broad-
band Instrument for Global Hydrogen Reionisation Signal,
BIGHORNS (Sokolowski et al. 2015). As there is a consid-
erable amount of contamination of the signal by man-made
sources (RFI) and ionosphere for all terrestrial observations,
there have been some proposals to go to the far side of the
moon, Dark Ages Radio Explorer (DARE) (Burns et al.
2012; Burns et al. 2017). There has been a recent report
of detection of a flattened and deep absorption trough at
78MHz, of the sky-averaged radio spectrum by EDGES, Ex-
periment to Detect the Global Epoch of Reionization Signa-
ture (Bowman et al. 2018). The reported absorption ampli-
tude is 0.5K, which is exceedingly high, as compared to the
expected amplitude of 150-200 mK. If confirmed, this will
give us new insight to the existing physics of the evolution of
our Universe. Following this detection, Fialkov et al. (2018)
have explored a wider range of various possible 21cm sig-
nals, varying the properties of the dark matter particles, in
addition to varying the astrophysical parameters. In Ewall-
Wice et al. (2018), models which produce an excess radio
background, explaining the large amplitude of the absorp-
tion feature in the EDGES detection, have been explored.
The 21cm Global signal can be parametrized and the pa-
rameters can be associated with the physical processes as
the Universe evolved. The already existing techniques of pa-
rameter estimation, (e.g. Harker et al. (2012)) relies, to a
large extent, on the choice of the statistical prior distribution
and does not consider realistic scenarios. However, in the
later works of Harker (2015); Harker et al. (2016); Mirocha
et al. (2015), they have used broad uninformative priors,
and were able to recover the signal from synthetic datasets,
assuming a perfect instrument and simple foregrounds. In
the work by Tauscher et al. (2017); Tauscher et al. (2018)
another technique has been introduced which uses Singular
Value Decomposition (SVD) and produce systematics basis
functions specifically suited to different observations of the
Global signal. Bernardi et al. (2016) have used a completely
Bayesian formalism, HIBayes, in which the signal is mod-
elled as a Gaussian and the foreground is parametrized as
a 7th order polynomial. All these, motivate us to search for
another technique for parameter extraction from this con-
taminated spectrum. Implementation of machine learning
algorithms, have shown some encouraging results recently,
as demonstrated in Shimabukuro & Semelin (2017), Schmit
& Pritchard (2018) for 21cm power spectrum analyses. In
Hewitt et al. (2016) they have used Fisher formalism to de-
rive predictions of the constraints that 21cm power spectrum
measurements would place on the characteristics of the X-
ray sources that heated the IGM at high redshifts.
In this paper, we have explored Artificial Neural Networks
(ANNs), as an alternate technique for parameter extraction
for the 21cm Global signal. We produce the cosmological sig-
nal using tanh parameterization and the Accelerated Reion-
ization Era Simulations(ARES) (Mirocha et al. 2012). We
then choose a suitable foreground model to represent the

Figure 1. The signal constructed using the tanh model and the
ARES signal.The points B,C,D mark the turning points of the

turning point model. Note that the signal using the turning point

model is not plotted here.

bright, dominant foregrounds and create a training dataset
for the ANN. This plays a role similar to that of the priors,
with the additional advantage of taking into consideration
realistic datasets. This technique, might enable us to look
for more complicated signals and search for a higher dimen-
sional parameter space where parameter estimation becomes
computationally costly. To the best of our knowledge, ANN
is computationally cheaper and faster than MCMC for pa-
rameter extraction for large parameter spaces.

We begin with a brief review of the physical processes
involved in reionization in §2. Previous reviews that dis-
cuss the HI 21cm signal from cosmic reionization in detail,
include Barkana & Loeb (2001); Loeb & Barkana (2001);
Furlanetto et al. (2006) and in the context of the Square
Kilometer Array (SKA), Carilli et al. (2004); Koopmans
et al. (2015), Furlanetto & Briggs (2004). In §3, we discuss
how the 21cm Global signal can be simulated. We also give
a short overview of the parameterization of the 21cm Global
signal and the previous techniques of signal extraction. In
§4 and §5, we describe the foregrounds concerned and the
instrument dealt with in such experiments, respectively. We
then explain in detail, the concept of Artificial Neural Net-
works, abbreviated as ANN, in §6 followed by a detailed
discussion on the application of ANN in extracting the faint
cosmological signal from very bright foregrounds in §7 and
§8. In §9, we present the results obtained by our method.
Lastly, we will discuss the advantages of using ANNs as an
alternative to the traditional fitting techniques in detail in
§10.

2 THE COSMOLOGICAL 21CM SIGNAL

The hyperfine transition line of atomic hydrogen (in the
ground state) arises due to the interaction between the elec-
tron and proton spins. The quantity that we measure is the
brightness temperature or more accurately called the differ-
ential brightness temperature, δTb, measured relative to the
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CMB (Pritchard et al. 2015),

δTb ≡ Tb − Tγ (1)

δTb(ν) =
Ts − Tγ
1 + z

(1 − exp−τν0 )

≈ 27xHI (1 + δb)
(
Ωbh2

0.023

) (
0.15
Ωm,0h2

1 + z
10

)1/2

(
1 −

Tγ(z)
Ts

) [ ∂r vr
(1 + z)H(z)

]−1

(2)

where, xHI denotes the neutral fraction of hydrogen, δb is
the fractional over-density of baryons, Ωb and ΩM are the
baryon and total matter density respectively, in units of the
critical density, H(z) is the Hubble parameter and Tγ(z) is
the CMB temperature at redshift z, Ts is the spin temper-
ature of neutral hydrogen, and ∂r vr is the velocity gradient
along the line of sight. The 21cm Global signal is the sky av-
eraged signal, whose characteristic shape contains informa-
tion about global cosmic events. The differential brightness
temperature can tell us about the ionizing radiation, which
destroys neutral hydrogen, the X-rays, which can heat the
gas and raise Tk , and Ly−α, which causes Wouthuysen-Field
coupling (Wouthuysen 1952; Field 1959). Fig. 1 shows the
typical evolution of the signal with frequency. In our calcula-
tions, we neglect the peculiar velocity term and the density
fluctuation term in the Global signal (Eqn. 2), as it averages
out to a linear order and adds to a very small correction. So,
the shape of the Global signal broadly depends on the den-
sity, neutral fraction and the spin temperature.

δTb ≈ 27(1 − xi)
(
Ωb,0h2

0.023

) (
0.15
Ωm,0h2

1 + z
10

)1/2 (
1 −

Tγ
Ts

)
(3)

This equation is primarily used to construct the Global sig-
nal and would be the working equation for our work through-
out the paper. The important epochs in the evolution of the
signal are labelled in Fig. 1.

The most interesting quantity in the expression for the
differential brightness temperature is the spin temperature,
Ts, which primarily determines the intensity of the 21cm
radiation [See Eqn. 3]. There are three competing processes
that determine Ts. They are: (1) absorption of CMB photons
(as well as stimulated emission); (2) collisions with other
hydrogen atoms, free electrons, and protons; and (3) scat-
tering of Lyman alpha photons through excitation and de-
excitation. The spin temperature is defined as (Field 1959;
Pritchard & Loeb 2012):

T−1
s =

T−1
γ + xkT−1

k
+ xαT−1

α

1 + xk + xα
, (4)

where, Tγ is the CMB temperature, Tk is the kinetic gas tem-
perature, Tα is the temperature related to the existence of
ambient Lyman-alpha (Lyα) photons and xc, xα are respec-
tively the collisional coupling and the Lyα coupling terms. In
Barkana & Loeb (2005a), the evolution of the Global 21cm
signal is discussed in great detail. We briefly explain the evo-
lution of the Global 21cm signal in the following paragraph.
At redshifts z > 200, free electrons couple Tγ and Tk through
Thomson scattering and gas collisions, while the density is
high enough to keep Tk and Ts in equilibrium. Here, Ts = Tγ

and there is no 21cm signal. This period is called the Dark
Ages. At z ≈ 30 − 200, the ionization fraction and density
is too low to couple Tk to Tγ. Thus, the gas cools adiabati-

cally, with the temperature falling as (1+ z)2, which is faster
than the rate at which the CMB temperature falls, i.e, as
(1 + z). Thus the gas becomes colder than the CMB but
the mean density is still high enough to provide coupling
between Ts and Tk through collisions. Around this redshift
range, the 21cm signal might be seen in absorption against
the CMB. At z ≈ 20−30, collisions can no longer couple Tk to
Ts, and thus Ts begins to approach CMB. We might expect
the first luminous structures near the end of this redshift
range. This period is called the Cosmic Dawn : the birth
of the first luminous sources in the Universe. The Lyα pho-
tons from these objects would induce local coupling of Tk
and Ts, which might lead to some absorption regions of the
21cm signal. These photons, as well as X-rays from the first
luminous sources, could lead to warming of the IGM above
the CMB temperature, well before reionization. Hence, one
might expect some patches of regions with no signal, ab-
sorption and maybe emission,in the 21cm line. At z ≈ 6− 20
more physical processes come into play. The scattering of
the Lyα photons, X-rays from the first galaxies and black
holes and weak shocks associated with structure formation
warms up the IGM, so that Tk is larger than Tγ (Furlanetto
et al. 2004). These objects are reionizing the Universe, from
the evolution of large scale structure, to a bubble dominated
era of HII regions. In this regime, the expected 21cm signal
is rich. After reionization, i.e., z ≈ 6, IGM is completely ion-
ized and the 21cm signal is gone again.
There are several experiments either proposed or already
operational which are designed to detect this Global 21cm
signal either in some specific redshift ranges or over the en-
tire range of redshifts ranging from the cosmic Dark Ages
through Cosmic Dawn to Epoch of Reionization. In this pa-
per, we consider a large range of redshifts covering most of
these three important epochs.

3 SIMULATING THE GLOBAL SIGNAL

Based on several theoretical models the cosmological Global
21cm signal changes its shape and amplitude as a function
of redshifted frequencies. Fialkov et al. (2014, 2015); Cohen
et al. (2017) have used a semi-numerical approach to model
possible 21cm Global signals in the redshift range, z ∼ 6−40,
and is flexible to explore the large dynamical range of astro-
physical parameters. Parameterization of the cosmological
signal has been done using physical parameters which are di-
rectly related to the IGM properties, from which we can infer
the physics of the earliest sources. Pritchard & Loeb (2010)
proposed a turning point model, where the parameters of
the model are the positions of the turning points (marked
by points B, C, D in Fig. 1) - these are positions in redshift
or frequency, and in brightness temperature. The signal be-
tween these turning points is modelled as a cubic spline.
This parameterization is very flexible and can describe a
wide range of 21cm signals, but the turning point positions
require further interpretation in order to relate them to the
physics of the first sources (Mirocha et al. 2013). The tanh
parameterization (Harker 2015; Mirocha et al. 2015), uses a
set of tanh functions to model the Global signal. In Bernardi
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Figure 2. The set of 21cm Global signals generated to construct
the training datasets, by varying the signal parameters.

et al. (2015, 2016), the absorption feature is modelled as a
Gaussian.
In this paper, we have used tanh parameterization to simulate
the Global 21cm signal as proposed in Mirocha et al. (2015).
This method employs modelling the Lyα background, IGM
temperature and ionization fraction as simple tanh functions
(Harker et al. 2016). The Lyα background determines the
strength of Wouthuysen-Field coupling, T the temperature
of the IGM, and the X is the ionized fraction of hydrogen.
We let each quantity evolve as a tanh function (Mirocha et al.
2015) given by:

A(z) = Aref
2
{1 + tanh[(z0 − z)/∆z]}, (5)

where A(z) represents the parameters Jα(z), T(z) and X i(z).
The free parameters of the tanh model are the step height,
Are f , pivot redshift, z0 and a width or duration, ∆z.
Jα(z) represents the Lyα background which determines the
strength of the Wouthuysen-Field coupling. T(z) represents
the temperature of the IGM and X i is the ionization frac-
tion. These parameters are directly linked with IGM proper-
ties but not to the source properties. So, in some sense this
is an intermediate between the physical modeling and phe-
nomenological models, like the spline or Gaussian models.
In this paper, we have used three tanh functions represent-

ing the parameters Jα(z), T(z) and X i(z) which in turn are
functions of three parameters each as listed below:

J(z) = Jref
2
{1 + tanh[(Jz0 − z)/Jdz ]}

Xi(z) =
Xref
2
{1 + tanh[(Xz0 − z)/Xdz ]}

T(z) = Tref
2
{1 + tanh[(Tz0 − z)/Tdz ]}

(6)

The normalization Aref , (Eqn. 5) of the tanh function
corresponding to the Lyα flux is Jref , in the units of
10−21 erg s−1 cm−2 Hz−1 sr−1. The redshift interval (∆z) and
the central redshift (z0) over which the Lyα background
turns on, are represented by Jdz and Jz0 respectively. For
X-ray heating, T(z) is in units of K, ∆z and z0 are denoted
by Tdz and Tz0 . The step height corresponding to T(z), i.e.,

Figure 3. Here we have plotted the instrument response rep-
resented by G(ν) = 1 − |Γ |2, where Γ(ν)is the antenna reflection

coefficient for a simple instrument and a moderate instrument.

The parameters were chosen so that G(ν) would resemble a band-
shape.

Tref is fixed at 1000 K. As the signal saturates at low red-
shifts, so the precise height of the step is not important.
The step height corresponding to the ionization fraction, X i

is fixed to unity, since it represents a fraction. So, we have
7 signal parameters to construct the signal using the tanh
parameterization. We compute the coupling coefficients us-
ing ARES, and plug in the values of the parameters into
Eqn. 2 to obtain the simulated Global 21cm signal. Hence,
our parametrized Global 21cm signal depends on total 7 pa-
rameters (with 2 parameters, Xref = 1.0,Tre f = 1e3, fixed).
We take the inferred values of these parameters from Harker
(2015): Jref = 11.69, Jz0 = 18.54, Xz0 = 8.68,Tz0 = 9.77, Jdz =
3.31,Tdz = 2.82, Xdz = 2.83. Each of these parameters are
varied by ±50% to generate our training sets. The parame-
ter range explored here is sufficient to represent a wide range
of shapes of the Global signal. A typical set of such signals
generated for this work is shown in Fig: 2. The reason why
we choose the tanh model is because, it can mimic the shape
of the Global 21cm signal very well, and can be related to the
physical properties of the IGM to a great extent. The tanh
parameters are directly related to the IGM properties, but
cannot give us information about the source properties di-
rectly. Thus, it can be considered to be somewhere between
the ‘turning point’ model, which is completely phenomeno-
logical and other entirely physical models.

4 FOREGROUNDS

The faint Global 21cm signal from Cosmic Dawn/Epoch of
Reionization has to be detected in presence of bright fore-
ground sources in the sky and instrumental/atmospheric
corruptions. Radio emission from our Galaxy and other ex-
tragalactic sources are many orders of magnitude brighter
than the cosmological signal of interest. The expected Global
21cm signal is about 10−4 times weaker than the foreground
emission. The bright foregrounds, Radio Frequency Inter-
ference (RFI), instrumental calibration errors poise signifi-
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cant challenges to Global 21cm experiments. Hence, several
sophisticated simulations are necessary to understand the
effect of these corruption terms on the possible signal ex-
traction method. That makes it critical to have an accurate
model for the foregrounds at these radio frequencies.

Following Pritchard & Loeb (2010); Bernardi et al.
(2015), the foreground spectrum can be modelled as a poly-
nomial in log(ν)-log(T). While Harker (2015) showed that
use of 3rd or 4th order polynomial is sufficient to represent
the sky spectrum, Bernardi et al. (2015) showed that a 7th
order polynomial is necessary when incorporating the chro-
matic primary beam of the antenna. In our case, we restrict
our foreground model to 3rd order polynomial in ln(T)-ln(ν)
(Harker 2015), representing diffuse foregrounds:

ln TFG =
n∑
i=0

ai[ln (ν/ν0)]i, (7)

where, ν0 is taken to be 80MHz, which is an arbitrary refer-
ence frequency and T0, a1, a2, ...an are the parameters of the
model, where a0 = lnT0, as the zeroeth order coefficient has
units of temperature. Increasing n implies more complex,
less smooth foregrounds. Here we haven taken the values of
{T0, a1, a2, a3} = {2039.611,−2.42096,−0.08062, 0.02898}
(Harker 2015; de Oliveira-Costa et al. 2008). For the simu-
lations, we varied them as {15%, 10%, 1%, 1%} respectively.
As the foregrounds are spectrally smooth as compared to
the cosmological signal, this feature is taken advantage of
in signal extraction.

5 THE INSTRUMENT

In this section, we introduce the model for the instrument or
the radio telescope using which the detection of the cosmo-
logical signal can be attempted. Although it appears to be
a very simple case to observe with a total power radiome-
ter, it is actually quite complex to expect the stability of
the instrument over such a large bandwidth of frequencies
and over large hours of observing time (Burns et al. 2012;
Burns et al. 2017). The calibration of such an instrument
becomes quite a challenge as any residual calibration error
might mimic the cosmological signal. Hence, understanding
of the instrument stability and robustness of our proposed
signal extraction technique with instrumental calibration er-
ror is critical.

In Harker et al. (2012); Harker (2015) or other re-
lated works, the analyses mostly consider a perfect instru-
ment, with no residual calibration error or impact on the
foreground removal. Frequency and angular dependence of
real antenna response complicates the foreground modelling,
commonly based on the assumption of spectral smoothness.
The coupling between the foregrounds and antenna gain pat-
tern generates spectral structure in the foregrounds that is
required to be represented by additional higher order terms
in the foreground.

Here, we have followed a model of the instrument as
described for DARE (Dark Ages Radio explorer) (Bradley
2012; Burns et al. 2017), where a set of sinusoids is fitted to

the modeled antenna reflection coefficient, Γ(ν);

Γ(ν) = c0 + c1 sin(ω1ν + p1) + c2 sin(ω2ν + p2)
+c3 sin(ω3ν + p3) + c4 sin(ω4ν + p4)

(8)

And the instrument response or the gain function is repre-
sented by,

G(ν) = 1 − |Γ(ν)|2 (9)

We have considered two cases for the instrument: (a) simple
and (b) moderate. We call the (a) simple instrument case,
where Γ is represented by a single sinusoid only. We chose the
parameters of Γ such that, the response mimics a bandpass
shape. We have chosen, c0 = 0.4; c1 = 0.5;w1 = 0.044; p1 = 0.7
[See Fig. 3].

Γ(ν) = c0 + c1 sin(ω1ν + p1) (10)

We call the other one as (b) moderate instrument, where
we have assumed that the instrument response can be repre-
sented as a sum of two sinusoids-one with a large amplitude
and a low frequency and another with a very small ampli-
tude and a high frequency .

Γ(ν) = c0 + c1 sin(ω1ν + p1) + c2 sin(ω2ν) (11)

The chosen value of the parameters for this case were: c0 =
0.4, c1 = 0.5, ω1 = 0.044, p1 = 0.7, c2 = −0.05, ω2 = 0.25 [See
Fig. 3]. We have varied each of the instrument parameters
by ∼ 5% for all our simulations in this work.

6 ARTIFICIAL NEURAL NETWORKS

6.1 Introduction: Basic architecture

Artificial Neural Networks are information processing sys-
tems, whose performance characteristics are inspired by the
structure and functioning of the human brain and the ner-
vous system. ANNs simulate the learning process from ex-
amples mimicking the way humans tend to learn. There can
be different kinds of supervised and unsupervised learning
algorithms, which can be implemented to suitably teach and
train a network as per requirement.
The basic building blocks of the ANNs are the neurons. The
most simple ANN usually is a three-layer network compris-
ing of the input layer, a hidden layer and the output layer
[see Fig. 4]. The number of neurons in the hidden layers
decide how wide the network is and the number of hidden
layers decide how deep the network is. The final structure of
the network is decided after taking into consideration sev-
eral factors, which will be dealt in detail in the following
sections. As briefly outlined in Choudhury & Datta (2017),
in this section, we introduce in detail how a neural network
works. ANNs construct functions, which associate the input
with the output data. The basic neural network model can
be described as a series of functional transformations. The
input layer, is the first layer of the network. We consider
that there are D inputs, (x1, x2, ..., xD). Each neuron in the
input layer (which will be denoted by an index i) is con-
nected to each neuron in the next layer, which is the hidden
layer (denoted by an index j). A weight wji and a bias wj0
are associated with each connection. The input to a single
neuron in the hidden layer is a linear combination of the

MNRAS 000, 1–15 (2017)



6 M. Choudhury et al

Figure 4. Schematic representation of a typical neural network.

Each coloured circle represents a neuron, which form the basic

units of an ANN. The lines represent the connections from neu-
rons of one layer to the next. The blue, green and the orange layers

represent the input, hidden and the output layers of the network.

It should be noted that there can be more than one hidden layer
in an ANN.

input neurons with their respective weights and biases, and
is written as:

aH
j =

D∑
i=1

wI→H
ji xi + wI→H

j0 (12)

where, wji
′s are the weights and wj0

′s are the biases as-
sociated with each connection between the neurons of the
input and hidden layer respectively, denoted by the super-
scipt I→ H. These a′j s, are known as activation [Fig. 5] and

the superscript H represents a hidden layer neuron. In the
hidden layer, each of the activations is transformed using a
non-linear activation function h, such that,

zj = h(aH
j ) (13)

These quantities z′j s correspond to the outputs of each

neuron in the hidden layer. These activation functions are
very interesting and can be chosen to be non-linear func-
tions, such as the logistic sigmoid function or tanh func-
tion. These functions are smooth and differentiable, and
it saturates and returns a constant output when the ab-
solute value of the input is sufficiently large. It is because of
the activation function that a non-linearity is introduced in
the network and the trained ANN performs appropriately.
Otherwise, the entire algorithm would just be solving some
linear set of functional transformations. These values (z′j s)
are again linearly combined along with the corresponding
weights and biases associated with the respective connec-
tions to give the inputs to each neuron in the output layer,
denoted by the index k. These are also called the output

unit activations, aO
k

, given by:

aO
k =

M∑
j=1

wH→O
k j zj + wH→O

k0 (14)

here, wk j ’s and the wk0’s are the weights and biases respec-
tively, connecting the hidden and the output layer, denoted
by the superscript H→ O. The output unit activations are
then transformed using an appropriate activation function,
to give a a set of network outputs yk . [See Fig. 5]

yk = h(aO
k ) (15)

These y′
k

s are the end outputs of the feed-forward pro-
cess and h is the activation function. It must be noted that
the activation function is usually not applied to the output
layer, or in most cases it is a linear function. So far, we
have given a input vector X, of dimension D and obtained
an output vector Y, of our desired dimension, chosen as per
requirement.

6.2 The Training Process

ANNs are viewed as a general class of parametric non-linear
functions from an input variables vector X to a vector Y of
output variables. The parameters in question are the respec-
tive weights and biases. These parameters are determined
usually by minimizing a sum-of-squares error function. We
denote this error function by E(w). Error functions for a set
of independent observations comprise of sum of terms, one
for each data point,

E(w) =
N∑
n=1

En(w) (16)

This is the total error function or the total cost function.
The goal is to find a suitable weight vector W which min-
imizes the chosen function E(w). A very small step in the
weight space from w to w+δw, changes the error function by
a quantity, δE ' δwT∇E(w), where the vector ∇E(w) points
in the direction of the greatest rate of increase in the error
function. As the error E(w) is a smooth continuous function
of w, its smallest value will occur at a point in the weight
space such that the gradient of the error function vanishes,
so that ∇E(w) = 0. Else, we could make a small step in
the direction of −∇E(w) and further reduce the error. The
error function typically has a nonlinear dependence on the
weights and bias parameters, so there will be many points
where the gradient vanishes or becomes very small. As we
cannot directly find the solution to the equation ∇E(w) = 0,
numerical procedures are used to find the solution. Some ini-
tial value, w(0) is chosen for the weight vector and then we
move through the weight space in succession of small steps
till error function is minimized. This optimizing is done using
a stochastic gradient decent, or adam (Kingma & Ba 2014).
Adam deals with outliers very well and has been proven to
be a better optimizer than the standard stochastic gradient
descent, which is discussed in detail in Kingma & Ba (2014).
So, the outputs obtained are compared with the inputs with
which the network was fed and an error function is com-
puted. We find out an optimum set of weights and biases,
that ensures that the output produced by the network is
sufficiently close to the desired output values.
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Figure 5. Typical neuron structures explaining what exactly happens inside the neurons of the hidden layer (left) and the output layer

(right). Each neuron receives the input from all the neurons in the previous layer, along with their respective weights and biases.

6.3 Back-propagation

The error function E is a function of the weights. The error
computed at the end of the output layer, at each node (out-
put of the neurons) is the difference between the target and
the actual value obtained. The node error can be defined as:

ek = tk − ok (17)

where, tk is the target and ok is the output obtained at node
k, in the output layer.

The back-propagation algorithm, is referred to as back-
prop or BPP. The errors are ‘back-propagated’ to adjust the
weights such that the error function is minimized. The total
error is proportionately propagated backwards. The higher
weights are considered to be more responsible for the errors,
thus are proportionately split to the connected links [See
Fig. 6].

The errors associated with the internal links are not so
straight-forward. The output layer errors are split in pro-
portion to the connection weights and recombine the bits of
error at each node in the hidden layer. The slope of the error
function is calculated, so that the weights can be accordingly
adjusted.

∂E

∂wH→O
k j

= −(ek )h
©«
∑
j

wH→O
k j .oj

ª®¬ ·
1 − h ©«

∑
j

wH→O
k j .oj

ª®¬
 .oj

(18)

Here, h is the activation function and the superscripts rep-
resents the connections to which the weights are associated.
Similarly, the weights wji are adjusted as,

∂E

∂wI→H
ji

= −(ej )h
(∑

i

wI→H
ji .oi

)
·
[
1 − h

(∑
i

wI→H
ji .oi

)]
.oi (19)

Here, ej is the recombined back-propagated error from the
hidden nodes [See Fig. 6].

The weights are updated using the above relations. It
is to be noted that the weights are changed in a direction
opposite to the gradient. A quantity α is introduced which

Figure 6. The back propagation algorithm schematically ex-
plained. The coloured arrows show how the error is propagated

backwards, while the solid black arrows demonstrate the feed for-

ward process.

is called the learning rate.

new wH→O
kj = old wH→O

kj − α. ∂E
∂wH→O

kj
(20)

After each update the gradient is re-evaluated for the
new weight vector and this process is repeated. An impor-
tant point to be noted is that the error function is defined
with respect to a training set, and the entire training set
is processed at each step, in order to compute the gradi-
ent. Such techniques which use the entire dataset at once
are called batch methods. At each step the weight vector is
moved in the direction of the greatest rate of decrease of the
error function. This update is repeated by cycling through
the data either in sequence or by selecting points at random
with replacement.
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7 ARTIFICIAL NEURAL NETWORKS -
ANOTHER TECHNIQUE TO EXTRACT
THE GLOBAL 21CM SIGNAL

The technique of ANN can be implemented to extract
a faint cosmological signal from a significantly bright,
dominant foreground. The most important requirement for
a good model for predicting the parameters is a rich training
dataset, which would contain several possible realizations
of the Global signal, along with foreground added to it. We
can build a good network by training, testing and validating
it, the process has been described in detail in the above
section. Here we have built an ANN which would estimate
the signal and the foreground parameters. In the following
sections we will describe in detail how we have formulated
the problem and built the network.

8 SIMULATION

8.1 Constructing the training dataset

Our training dataset consists of 270 samples. Each sample in
this training dataset is a total signal (Ttot), which contains
one realization of the cosmological signal that has been gen-
erated using the tanh parameterization (§3) T21, along with
the foreground, which is generated by the log-polynomial
model (§4) TFG . This constitutes the training dataset, in
the simplest case.

Ttrain(ν) = T21(ν) + TFG(ν) (21)

In the cases where we add the instrument response G(ν), the
training dataset is constructed as:

Ttrain(ν) = (T21(ν) + TFG(ν)) · G(ν) (22)

A block diagram illustrating the entire process is shown in
Fig. 7.

We use a feed-forward network, with two hidden lay-
ers. We have 1024 neurons in the input layer, corresponding
to the 1024 frequency channels we choose to work with, for
a bandwidth of 20 − 160 MHz, and 18 neurons in the first
hidden layer, which is connected to the next hidden layer
with 14 neurons. The choice of the number of neurons in
the hidden layer is determined after checking how the er-
ror is evolving. We begin with an initial guess, and vary
the number of neurons in the hidden layers and the number
of hidden layers, and note the numbers around which the
RMSE is the least. We then decide upon the final structure
of the network. Then, we vary the number of iterations to
look at how the RMSE of the predicted parameters would
change (see Fig: 8). We also look at the model loss, for those
number of neurons, which should ideally decrease with in-
creasing number of iterations and saturate after a certain
point (see Fig. 9). Taking all these into consideration, we
decide upon a number. The hidden layer neurons are acti-
vated by a sigmoid function. The number of neurons in the
output layer is easy to choose. We have 11 output neurons
corresponding to each parameter we are interested to find
out, i.e, 7 signal parameters and 4 foreground parameters.

Our main aim is to extract the signal parameters and recon-
struct the 21cm signal. For each case that we have studied,
we trained and used different networks to predict the pa-
rameters. We have used packages scikitlearn (Pedregosa
et al. 2011) and keras to build simple neural networks. We
construct a simple neural network with two Dense-layers,
using the Sequential model available in keras.

8.2 Training, validation and testing the network

The training process is an iterative procedure that begins
by collecting the data and preprocessing it to make training
more efficient. This stage involves normalizing the data,
and dividing it into training, validation and testing sets. In
this type of network, the information flow is unidirectional
that takes place with the help of an activation function
between each layer. In our network, the data is normalized
using min-max normalization. The entire dataset is split
into 2 parts: training and the testing set, in a 7:3 ratio. The
training set is further split into chunks of validation sets,
iteratively, during the training process. Once the training is
complete, the network is tested on the testing set.

The network uses back-propagation [see Fig. 6] as the
learning technique. We choose the mean-squared error
as the error-function. After repeating this process for a
sufficiently large number of training cycles, the network
will usually converge to some state where the error function
is the minimum. In this case, one would say that the
network has learned a certain target function. To adjust
weights properly, we use the ‘adam’ (Adaptive Moment
Estimation) optimizer for non-linear optimization. The
main advantage of choosing adam over the commonly used
stochastic gradient descent is that, it uses the combined
averages of previous gradients at different moments to give
it more expressive power to better update the parameters,
in a more adaptive manner.
After training the network, we analyse the performance of
the network. This analysis may lead us to discover problems
with the data, network architecture, or the training algo-
rithm. The entire procedure is repeated until the network
performance is satisfactory. As we run a particular model
for training, at each step we get a validation score, in the
form of validation accuracy and model loss. In our models
we had obtained a validation accuracy of around 80 percent.

8.3 Constructing the prediction datasets

The prediction set consists of samples which are unknown
to the network and are used to test the robustness of
our ”trained network”. In order to construct the prediction
dataset, we use the models of 21cm signal and foreground,
and add instrumental thermal noise to these datasets. We
have produced a set of 90 prediction datasets following the
equation:

Tpred(ν) = T21(ν) + TFG(ν) + n(ν) (23)

MNRAS 000, 1–15 (2017)
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Figure 7. This shows how we have constructed the training datasets and built the network. Once the network is ready, we have fed the

network with the prediction datasets, unknown to the network.

Figure 8. The RMSE calculated for the different parameters were

plotted for different networks with varying number of epochs. One

epoch is one complete pass of all the training samples, while an
iteration is the total number of passes. Say, if we have 500 training

samples, and a batch size of 100, then it will take 5 iterations to

complete one epoch. We can see that for number of epochs greater
than 50, all the parameters have a sufficiently low RMSE, which

almost saturates.

In the cases where we have added the effect of the instru-
ment, Eqn: 23 modifies as,

Tpred(ν) = (T21(ν) + TFG(ν)) · G(ν) + n(ν) (24)

We use T ′sig(ν) to represent the prediction datasets in the

following sections. We introduce the instrumental thermal
noise corresponding to a certain hours of observations (Nt)
to the prediction dataset.
From the ideal radiometer equation, the noise, n(ν), in the

Figure 9. This is the model loss function for the perfect instru-

ment case. We observe that for this case, the model loss saturates
after around 50 epochs.

observed spectrum can be written as:

n(ν) ≈
Tsys(ν)
√
∆ν · τ

(25)

where, ∆ν is the bandwidth of the observation and τ is the
observation time. At these low radio frequencies, Tsys is dom-
inated by the brightness temperature due to the foregrounds.
Hence, the above equation can be re-written as:

n(ν) = TFG(ν)√
∆ν · 106 · 3600 · Nt

(26)

where, bandwidth ∆ν is in MHz and Nt is in hours. The fac-
tors 106 and 3600 are the respective conversion factors to
the standard units.
Here, we are dealing with mock observations which are in
turn simulated using some assumed instrument response and
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Figure 10. Training dataset for the perfect instrument (Case 1).

Note how the signal is entirely dominated by the foregrounds.

observational strategy. In future, similar network will be
used for real observations to predict the redshifted Global
21cm signal. For real observations, the prediction data will
be replaced by the actual data. The error estimation in case
of real observations will then be computed from the error
we get during training the network for ‘test’ dataset.

9 RESULTS

In this section, we will discuss results from simulations de-
picting different signal extraction scenarios: no instrumental
effect, time independent instrumental effect and time depen-
dant instrumental effect.

9.1 Case 1: A Perfect Instrument

For the simplest case, we take the 21cm signal along with the
model foreground, assuming that the instrument is perfect.
This is an ideal case where the instrument does not modify
the signal in any way. The training dataset is constructed
using the following relation:

Tsig(ν) = T21(ν) + TFG(ν) (27)

where, T21 is the Global 21cm signal and TFG is the model
foreground (Eqn: 7) as described in §4. In Fig. 10 we show
the training dataset, which is the total signal, Tsig in mK
units, including the cosmological signal and the foreground.
The network is trained using this dataset and saved. We
construct a prediction dataset containing 90 samples, using
the following equation:

T ′sig(ν) = T21(ν) + TFG(ν) + n(ν) (28)

where, n(ν) is given by Eqn: 26. We use the saved network to
predict the parameters from the prediction dataset. So we
obtain 90 sets of predictions, for each sample in the predic-
tion dataset. Following Shimabukuro & Semelin (2017), we
calculate a normalized RMSE for the predictions:

RMSE =

√√√√
1

Npred

Npred∑
i=1

(Yori − Ypred
Yori

)2
(29)

where, Yori and Ypred are the original and predicted
values respectively, of one of the parameters, Y ∈
[Jre f , Jz0, Jdz, Xz0, Xdz,Tz0,Tdz ]. Npred denotes the total num-
ber of samples in the prediction dataset. The original and
the predicted values of each of the parameters, along with
their RMSE are plotted in Fig. 11. Lower value of RMSE
implies more accurate prediction of the parameters. When
the instrument is considered to be perfect, we can see that
all the parameters are predicted with RMSE ≈ 0.02 [See
Fig: 11].
In order to check the effect of the instrumental thermal noise
on detection of Global 21cm signal, we have taken one sam-
ple 21cm Global signal and have varied the thermal noise, for
observation times, Nt ∈ (100, 500, 1000) hours [see Eqn: 26].
We have computed the corresponding residuals, which is the
difference between the input signal and the reconstructed
signals, and plotted them in Fig. 12. The reconstructed sig-
nal appears to have overlapped for all the Nt . But in the
zoomed section, it can be clearly seen that the residual is
least for the signal with 1000 hours of observation (blue
curve, see Fig. 12).

9.2 Case 2: Imperfect instrument (fixed response)

The instrument response modifies the signal considerably.
By a fixed instrument response we mean that the exact
behaviour of the instrument is known, it is very well cali-
brated, and it does not vary with changes in the surround-
ings, through the observation time.

9.2.1 Simple instrument, fixed response

We have introduced the effect of an instrument response in
§5 (Eqn. 9), where the antenna reflection coefficient (Γ) is
represented by a set of sinusoidal harmonic basis functions.
For a simple instrument, we consider only one sinusoidal
term.

Γ(ν) = c0 + c1 sin(ω1ν) (30)

The training dataset is constructed following the relation:

Tsig(ν) = (T21(ν) + TFG(ν)) · G(ν, c0, c1, ω1) (31)

Here, the function G(ν) is the instrument response and
c0, c1, ω1 are the parameters for the simple fixed instrument
model. The network is trained with this dataset (see Fig. 13)
and saved. The prediction dataset consists of a noisy data,
which we feed into the network. The plots of the original ver-
sus the predicted values of the parameters, for the prediction
dataset are shown in Fig. 14. The RMSE for the parameters
in this case is . 7%, and has clearly deteriorated as com-
pared to the perfect instrument case.
We then take a fixed signal and vary the total observation
time, to see how the percentage error varies with increasing
Nt . The reconstructed signals from the predicted parameters
are shown in Fig. 15. From the plot of the residual signal,
it is observed that the residual is least for the observation
time, Nt = 1000 hours shown by the green curve.

9.2.2 Moderate instrument(fixed response)

We train the network with a slightly more sophisticated in-
strument model, which we call a moderate instrument. We
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Figure 11. Case 1-Perfect Instrument. The true values vs predicted values of the signal parameters are plotted. The dashed straight

line in each plot represents the true values of the parameters.

Figure 12. Case 1: Reconstructed signal for the different Nt

assuming a perfect instrument (top panel). The residual signal, is
plotted in the bottom panel,for increasing observation time, Nt .
The zoomed section shows clearly how the residual decreases with

increasing observation time.

introduce an instrument response, whose Γ consists of a com-
bination of two sinusoids.

Γ(ν) = c0 + c1 sin(ω1ν) + c2 sin(ω2ν) (32)

Figure 13. Case 2A: Training dataset for a simple instrument
with a fixed response whose Γ is represented by one sinusoid. Note

how the total signal is entirely dominated by the foregrounds and
contaminated by the instrument effect.

The training dataset (see Fig. 16) is constructed as:

Tsig(ν) = (T21(ν) + TFG(ν)) · G(ν, c0, c1, c2, ω1, ω2) (33)

Here, c0, c1, c2, ω1, ω2 are the parameters of the antenna re-
flection coefficient, and G has it’s usual meaning. The noisy

MNRAS 000, 1–15 (2017)
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Figure 14. Case 2A: Fixed response, simple instrument.The dashed straight

line in each plot represents the true values of the parameters, the dots represent the predicted values.

Figure 15. Case 2A: The reconstructed signal (top panel) and
the residual signal, with increasing observation time, Nt . The

residual signal gives an idea of the quality of the reconstructed

Global 21cm signal with the change in integration time.

prediction dataset is then fed into the network.

T′sig(ν) = (T21(ν) + TFG(ν)) · G(ν) + n(ν) (34)

where, noise, n is given by Eqn. 26.
The plots of the input versus the predicted values are shown

Figure 16. Case 2B: Fixed response, moderate instrument (Γ
consists of 2 sinusoids): Training dataset for the network

in Fig. 17. The reconstructed signals from the predicted pa-
rameters and the residuals are shown in Fig. 18. The RMSEs
for the parameters in this case is . 6%, and has also deteri-
orated as compared to the perfect instrument case.
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Figure 17. Case 2B:Fixed response, moderate instrument.The true values vs predicted values of parameters are plotted. The dashed

straight line in each plot represents the true values of the parameters.

Figure 18. Case 2B: The reconstructed signal (top panel) and the
residual signal(bottom panel), with increasing observation time,

Nt . The residual signal gives an idea of the quality of the recon-
structed Global 21cm signal with the change in integration time.

10 SUMMARY AND DISCUSSIONS

We have presented the detailed results obtained by using
ANN to extract the cosmological Global signal, from a
combined spectrum, which included bright dominant fore-

grounds, model instrumental effects, and thermal noise. We
have considered two types of instrument models for this
- a simple and a moderate instrument [see §5]. We have
demonstrated how a simple ANN can easily handle up to 16
parameters (7 signal parameters, 4 foreground parameters,
5 instrument parameters, in the most complicated scenario
which we have considered). The number of neurons in the
hidden layer was optimized for each case for the best re-
sults. We summarize the calculated normalized RMSE, for
each parameter, in each of the cases studied, in Table: 1.
If we look at the RMSE’s in Table: 1, we see the effect of

increasing the complexity of the input data on the accuracy
levels. If the network is trained sufficiently well, then the
accuracy levels continue to be high. All errors are less than
10%, the worst prediction being around ∼ 8%. The accuracy
levels obtained are between ∼ 92−98% for the signal param-
eters. The RMSEs for the cases which includes the fixed re-
sponse (2A & 2B), for the simple and moderate instruments,
are not very different. This is because we are considering
simple instrument models, where the moderate instrument
model just has an additional sinusoidal term. However, if we
compare to the perfect instrument case, we can see that the
contamination affects the errors in predictions.
To the best of our knowledge, most authors have used
MCMC, nested sampling or similar methods to sample the
parameter space. We cannot directly compare the speed of
ANN with an efficient MCMC approach, as the methodolo-
gies are different. But, we bypass the task of computing the
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Parameters Perfect Fixed(simple) Fixed(moderate)

Instrument Instrument Instrument

Case 1 Case 2A Case 2B

Jref 0.0245 0.0705 0.0616

dzJ 0.0209 0.0575 0.0502
dzT 0.0230 0.0668 0.0531

dzX 0.0207 0.0709 0.0614

z0J 0.0216 0.0550 0.0607
z0T 0.0194 0.0650 0.0535

z0X 0.0278 0.0739 0.0556

Table 1. The RMSE values for the signal parameters, computed for the prediction dataset for each of the cases studied, are summarized

here. Considering the perfect instrument case to be the reference, we can see how the errors increase in the cases where the instrument

effect is considered.

likelihood function, a large number of times, to arrive at
the inferred values of the parameters, while using ANN. So,
when dealing with a higher dimensional parameter space,
ANN is faster and computationally more efficient. In the
case of neural networks, we can think of the training sets as
a more realistic equivalent to the prior in MCMC.
In Harker et al. (2016), Gaussian priors for the foreground
and uniform priors for the signal parameters have been used.
The authors have inferred tanh parameters from a fit to
the reference ARES model. They have constructed synthetic
datasets, by assuming an ideal instrument and observing
four different sky regions. In later works, (Mirocha et al.
2015) have used broad, uninformative priors, but with simple
foregrounds and ideal instruments. Bernardi et al. (2016),
used uniform priors on all parameters. We have not made
any such assumptions in our work, and have predicted the
signal parameters with good accuracy. We do not require
any specific model for fitting, neither do we require exten-
sive prior information. So, we can consider this technique
of signal extraction using ANN to be an alternative to the
already existing techniques like MCMC explorations.
Our simple network has been able to detect the Global sig-
nal with an accuracy & 92%, in cases of mock observations
where the instrument has some residual time-varying gain
across the spectrum. This is just a proof of concept paper,
and we will deal with more complex scenarios in future work.
The computations and results presented in this work has
been performed on a personal computer (Macbook Air, 8GB
RAM) only and does not require too much computational
power. This shows how conveniently these algorithms can
be used on any PC. However, in order to establish the ro-
bustness of the ANN framework for the Global 21cm signal
extraction, we need to test this algorithm for more realistic
instrument responses like that of EDGES, SARAS, etc. We
also plan to address the issue of effect of chromatic primary
beam and changes in the foreground model spectrum due to
the same. In future, we would like to use ionospheric models
to corrupt the datasets and extract 21cm signal in presence
of the atmosphere. Moreoever, the 21cm signal model is now
dependent on ‘tanh’ parametrization. But ANN can handle
an non-parametrized 21cm signal. This will be used in future
publications. At the end, we wish to apply the developed
ANN framework on some real data for validation.
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