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Abstract

Multiple hypotheses/models have been put forward regarding the cool-
ing history of the Earth. The search for life beyond Earth has brought
these models into a new light as they connect to one of the two energy
sources life can tap. The ability to discriminate between different Earth
cooling models, and the utility of adopting such models to aid in the
assessment of planetary habitability, has been hampered by a lack of un-
certainty analysis. This motivates a layered uncertainty analysis for a
range of thermal history models that have been applied to the Earth. The
analysis evaluates coupled model input, initial condition, and structural
uncertainty. Layered model uncertainty, together with data uncertainty
and multiple working hypotheses (another form of uncertainty), means
that results must be evaluated in a probabilistic sense even if the models
are deterministic. For the Earth’s cooling history uncertainty leads to
ambiguity - multiple models, based on different hypotheses, can match
data constraints. This has implications for using such models to forecast
conditions for exoplanets that share Earth characteristics but are older
than the Earth, i.e., it has implications for modeling the long-term life
potential of terrestrial planets. Even for the most Earth-like planet we
know of, the Earth itself, model uncertainty and ambiguity leads to large
forecast spreads. Given that this comes from the planet with the most
data constraints we should expect larger spreads for models of terrestrial
planets in general. The layered uncertainty approach can be expanded by
coupling planetary cooling models to climate models and propagating un-
certainty between them to assess habitability from a probabilistic versus
a binary view.

1 Introduction

The surface conditions of the Earth have evolved over our planet’s history in
response to two energy sources: solar energy and internal energy. Both energy
sources have, themselves, evolved and continue to do so. Stellar models pro-

vide insights into the Sun’s energetic evolution [Feulner, [2012]. Thermal history



models provide insights into the cooling of the Earth’s interior
[Schubert et all [1980]. Earth’s internal energy comes from the decay of radioac-
tive isotopes within its rocky interior and from heat retained from planetary
formation and early differentiation. This internal energy drives volcanic and
tectonic activity, both of which influence the cycling of life-essential elements
and volatile elements, such as greenhouse gasses, between the Earth’s interior
and surface reservoirs (atmosphere, hydrosphere, biosphere). That connection
to elemental cycling, along with the discovery of life that can tap into the Earth’s
internal energy and an expanding search for life beyond Earth, has rejuvenated
interest in the cooling history of the Earth and, by association, thermal history
models. This renaissance has moved thermal history modeling from the realm
of geosciences into the realm of astronomy and astrophysics [Kite et al., [2009]
[Schaefer and Sasselov], [2015], [Komacek and Abbot|, [2016], [Foleyl, [2015], [Foley and]
Driscolll, 2016}, [Tosi et al. 2017, [Foley and Smyel 2018 [Rushby et al] [2018]
Barnes et al., 2019].

When a modeling methodology moves from one discipline to another there
is the potential for synergies and for misconceptions. The Earth has the largest
observational data set that can constrain planetary models. This does not mean
that model uncertainty has been minimized. This has not been communicated as
well as it could be across communities. Even within the geosciences community
itself the role of uncertainty and ambiguity for thermal history models has not
received the level of attention it is given in other modeling endeavors (e.g.,
water resources, climate modelling [Loucks et al., 2005 |Curry and Webster,
2011]). This provides the two-pronged motivation for this paper: 1) Given data
and model uncertainties, what is the confidence level we can give to different
hypotheses regarding the Earth’s thermal evolution and, by association, are
multiple hypotheses viable?; 2) What implications does uncertainty regarding
the Earth’s thermal history carry for modeling the habitability of terrestrial
planets?

The cooling history of a planet depends on its tectonic mode 2018].
The Earth’s present mode is plate tectonics, with cold tectonic plates subducting
back into its rocky and warmer interior. The simplest assumption is that this
mode has operated over the Earth’s geologic history. To date, the majority of
Earth thermal history models have followed this path. To explore the effects of
model uncertainties we will follow it as well. With knowledge of our conclusions
we can say that observational data used to constrain the Earth’s cooling cannot
rule out this possibility. Models that allow for tectonic transitions may also be
able to match data constraints, but that will only increase the effects of model
uncertainty. By assuming a single tectonic mode we will not only follow an
Occam’s razor approach, but we will also be conservative in assessing model
uncertainty.

Models that couple interior planet cooling to climate evolution, seeking to
address long term habitability of terrestrial planets, consider the potential of
different tectonic modes, with one example being a plate-tectonic cooling model
[Driscoll and Bercovicil, 2013| [Foley and Driscoll, [2016]. A misconception that
can follow is that there is a singular, agreed upon, plate tectonic cooling model.




That is not correct.

The range of proposed plate tectonic cooling models for the Earth differ sig-
nificantly in terms of physical assumptions. The cooling rate associated with the
convective overturn of tectonic plates depends on driving and resisting forces to
plate motion. The earliest plate tectonic cooling models assumed that the dom-
inant resistance to plate motions comes from the viscosity of the Earth’s mantle
- the rocky interior plates move over and subduct into |Tozer) 1972, |Schubert,
et all (1979, |1980|. Later models argued that the strength of plates needed to
be considered as plate deformation and deformation at plate boundaries pro-
vided significant energy dissipation [Conrad and Hager| [1999alb]. Those models
assumed that plate strength would decrease under hotter conditions, i.e., in
the Earth’s past, or remain constant. That assumption was challenged by an-
other plate tectonic cooling model that assumed plate strength increased in the
Earth’s past |[Korenagal, 2003, [2006]. All of these models remain argued for to
this day. Different authors argue with variable degrees of ’argumentative force’
but the fact that debate remains is a sign that there is no singular, agreed upon,
plate tectonic cooling model.

How different are proposed plate tectonic cooling models in effect? That is,
are the differences in terms of model outputs small relative to data uncertainty?
Over the full range of the models that have been proposed to date, they are
not. This is clearly demonstrated in the fact that the sign of the dominant
feedback for planetary cooling varies from negative to positive over the full
range of proposed models [Moore and Lenardic| [2015, [Seales et al.| [2019]. The
implications for extrapolating Earth cooling models to ”Earth-like” terrestrial
planets is significant [Tozer} |1972, Korenagal, 2016].

To data, no study has systematically compared model outputs for the range
of proposed plate tectonic thermal history models to observational data in light
of uncertainty. The bulk of this paper sets out to provide such a comparison.
First, the comparison is carried out for model evolutions over the Earth’s geo-
logic age. That exercise will isolate models that are consistent with Earth data
constraints, within model and data uncertainties. From there, we will project
this range of “successful” models forward in time to model Earth-like planets
older than the Earth. This will provide insights into the level of certainty that
exists for making statements regarding the thermal state of terrestrial planets
assumed to operate in a plate tectonic cooling mode, an issue of interest to the
planetary habitability community.

2 Methods

Uncertainties for thermal history models are of different types: 1) Uncertainty
in initial conditions; 2) Uncertainty in model input values (e.g., internal heat
production); 3) Model selection uncertainty (i.e. different models based on
physically different assumptions); 4) Structural uncertainty (how sensitive are
model results to unmodeled factors); 5) Uncertainty in the way uncertainty is
evaluated. All of these will be considered in our layered uncertainty analysis.



In principle thermal history models can be formulated to solve for the full
three dimensional evolution of a planetary interior over time [e.g., Zhong et al.|
2000]. In practice such formulations (run over the Earth’s full geological history)
remain computationally expensive which limits the degree to which model space
can be explored. For this reason, thermal history models of the Earth have been
formulated to track the average internal temperature of the Earth’s and the
majority of thermal history models presented for the Earth are of this variety.

Thermal history models that track average internal temperatures are also re-
ferred to as parameterized thermal history models. Different parameterizations
reflect different assumptions regarding the operation of plate tectonics (discussed
more fully below). That difference being noted, thermal history models share
a common underpinning: The average internal temperature of the Earth’s up-
per mantle (T,) evolves over time based on the balance between heat produced
within (H) and lost from (Q) the mantle according to

CT, = H - Q. (1)

Heat is produced within the mantle by the radiogenic decay of 233U, 235U,
232Th and YK, and heat production over time is given by

4
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where Hj is a reference heat production, h,, is the amount of heat produced by
a given isotope, and t is time. We calculate relative isotopic concentrations by
assuming present day proportions of U : Th: K =1:4: (1.27210* and normal-
izing by total U |Turcotte and Schubert, |2002]. The values used in equation
are listed in Table [Il

(2)

Table 1: Radiogenic Heat Production

Isotope P, (W/kg) Cn han, An (1/Ga)
28U 937x107° 0.9927 0.372 0.155
257 569 x10~*  0.0072 0.0164 0.985
22Th  269x107° 4.0 0.430 0.0495
WO 279%x107° 1.6256 0.181 0.555

Heat is lost from the interior by convective cooling. This cooling is parame-
terized according to the Nusselt-Rayleigh scaling law given by

Nu ~ Ra’. (3)

The Nusselt number Nu is a nondimensional heat flux calculated as the ratio
of convective (@) to conductive (¢) heat flux across the convecting layer. Con-
ductive heat flux is given by: ¢ = MTT7 where k, D and AT are the thermal
conductivity, convecting layer thickness and temperature drop across the con-
vecting layer, respectively. To change this scaling to an equivalency requires a



constant a be added to the right hand side of equation . The value of a is de-
pendent on the geometry of the convecting system and the average aspect ratio
of convection cells. To test the widest range of models, we follow
[1985] and Korenagal [2003] and formulate the convective heat flux as

Q=0Q (Tp) Hﬁ (”(T@)B (4)
Ty U(Tp) ’
which has two free parameters Qg and Ty, a reference heat flux and reference

mantle temperature, respectively. Equation (4] is also dependent on viscosity
(n(T)) which is defined as

n(Tp) = 1o exp (;;p) (5)

where A, R and 7 are the activation energy, universal gas constant and scaling
constant [Karato and Wul [1993], respectively. For comparison to previous work,
we set 7o so that the upper mantle has a viscosity of 10' Pa- s at 1350 °C.
Combining equations and using the definition of Nu leads to the governing
equation

CT, = Hy 24: hneap (—Ant) — Qo (%) o (Zgi;)ﬂ . (6)

The value used for 3 in equation [6] relates to different assumptions regard-
ing the dynamics of plate tectonics. The earliest thermal history models used
a value of 0.33 [Schubert et all 1980, [Spohn and Schubert|, [1982 [Jackson and|
[1984]. This assumes that the dominant resistance to convective motion
comes from mantle viscosity [1972]. Later models, that more directly
incorporated model analogues to tectonic plates, showed that this scaling would
be recovered provided that plate boundaries zones were very weak [e.g., |Gurnis|
. The next generation of models argued that S should be less than the clas-
sic value because plate margins offer resistance to plate motion — they are not
so weak that energy dissipation can be neglected — and there is an added com-
ponent of dissipation associated with the strength of plates themselves |Chris-
{tensen), [1985] |Giannandrea and Christensen| 1993, [Conrad and Hager, [1999blla)
Hoink et al 2013]. These models argued for 3 values between 0.15 and zero.
An argument for 8 < 0 has also been made . The physical ba-
sis for this last class of models is that at hotter mantle temperatures enhanced
melting would generate a thicker dehydrated layer below oceanic crust. This
layer would be responsible for the bulk of plate strength. As temperatures are
hotter in the Earth’s past, this layer would have been thicker, plates would
have been stronger, plate velocities would have been slower and, thus, mantle
cooling rates would have been lower. Given that different § values represent
different assumptions as to the physics of plate tectonics, uncertainties in 3 fall
under model selection uncertainties. Different values of 3 represent different hy-
potheses. As such, they are not the same as uncertainties in other model input

n=0




values (e.g., mantle heat production) which do not imply different fundamental
assumptions as to the workings of the process being modeled. For assessing
model selection uncertainty we will allow for 3 values between of -0.15 and 0.3.
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Figure 1: Ensemble model runs for a single thermal history model (a) and an
uncertainty measure for a single ensemble (b). An ensemble of 100 perturbed
paths (gray lines) is plotted in (a), along with the ensemble mean (blue line)
and ensemble two standard deviation limits (red lines). In (b) a present day
time slice is taken through the ensemble evolution. This ensemble has an ap-
proximately 50% probability of satisfying present day constraints, which are
temperature (1300°C-1400°C) and a Urey ratio between 0.2 and 0.5. Urey ra-
tios are listed are labeled for the the mean, uncertainty limit and acceptable
bound solutions.

Another form of uncertainty is intrinsic/structural. It is the uncertainty
associated with unmodeled factors (i.e., factors assumed to have relatively low
effects on model outputs). [Seales et al.| [2019] show that this uncertainty cor-
relates with the sign and strength of the dominant model feedback. A model
with a strong negative feedback (the most positive 8 values) will have smaller
structural uncertainties. These models can damp perturbations/fluctuations
associated with physical factors not directly incorporated into them. Reduc-
ing the strength of the negative feedback (reducing 5 towards zero) increases
the damping time, which increases structural uncertainty. A positive feedback
(8 < 0) allows models to amplify perturbations/fluctuations. If the positive
feedback becomes strong enough, a model can become structurally unstable.
One method to quantify this structural uncertainty is via a perturbed physics
approach. During integration of equation@the solution is perturbed (see|Seales
et al.| [2019) for full details). The perturbation is randomly drawn from a nor-
mally distributed set. By fixing initial conditions and parameter values and
integrating equation [6] many times we get output distribution of potential cool-
ing paths (henceforth called an ensemble) as shown in Figure 1a. At a time slice



of the evolution, such as the present day, the T, ensemble (Figure 1b) can be
characterized by a mean and a two standard deviation (20) uncertainty bound.
In performing this analysis, we found that increasing the standard deviation of
the perturbation set did not significantly effect the accumulation of uncertainty
(Figure 2) - an assessment of the uncertainty associated with the particular
uncertainty metric itself.

Temporal Model Error

Two Standard Deviations (°C)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (Myr)

Figure 2: As larger perturbations were tested to evaluate structural uncertainty,
model error tended to saturate (thicker lines indicate larger allowable maximum
perturbations). This provides a measure of the uncertainty associated with our
perturbed physics approach (i.e., the uncertainty associated with a particular
structural uncertainty metric).

The ensemble in Figure 1 is for a unique combination of model inputs and
initial conditions, which introduce further uncertainty as their values are not
perfectly known. Equation [0 has a total of three free parameters for any choice
of B: Hy, Qo and Ty. A set of values for these parameters will be tested (see
Table. The success or failure of an ensemble will be determined by comparing
it to paleo and present day constraints. |Ganne and Feng| [2017] suggest man-
tle potential temperatures were between 1428 °C and 1666 °C at 3.5 Ga and
between 1321 °C' and 1553 °C at 100 Ma. We use their results to set our pa-
leo constraints. At present, the mantle potential temperature is approximately
1350 °C £50 °C' |[Herzberg and Asimow}, 2008]. A second present day constraint
is the mantle Urey ratio, Ur, which is the the ratio of H to Q.
estimate it to be between 0.3 and 0.5. Allowing for continents, the Ur
upper bound extends to 0.7 |Grigné and Labrosse, 2001, Lenardic et al., 2011].




We assume both present day constraints are of equal importance. Using these
present day constraints, we define the ensemble probability for successful mod-
els. This involves identifying the upper and lower most bound on the ensemble
probability distribution that fall within constraints and calculating the proba-
bility that an ensemble member falls between these two points. For example,
in Figure 1b the mean of the ensemble distribution is ~1380 °C. The upper
temperature bound occurs at 1400 °C, where the present day Ur is 0.45, within
present day constraints. The lower temperature bound is not set to 1300 °C'
because at this temperature Ur is greater than 0.5. An Ur value of 0.5 occurs
at 1365 °C'. Therefore, for this ensemble, any output temperature between 1365
and 1400 °C satisfies present day constraints with a probability of 0.5.

Table 2: Model Parameters

Parameter Values Units Description
T; 1000, 1250, 1500, 1750, 2000 °C Initial Temperature
To 1300, 1350, 1400 °C Scaling Temperature
Qo 3.0el3, 3.5el13, 4.0el3 ™ Scaling Heat Flow
Hy 2.19e13, 2.55e13, 2.92e13, 4.38e13, 5.12e13, ™ Initial Radiogenics

5.84el3, 6.57el3, 7.66el3, 8.76el13, 1.02e14,
1.09e14, 1.17el4, 1.28e14, 1.46e14

Mo 2.21e9 Pa-s Viscosity constant

A 300 kJ mol~! Activation Energy

R 8.314 J / (mol-'K)  Universal Gas Constant
3 Results

Figure 3 shows mean cooling paths for models with different 8 values, input
values, and initial conditions. We leave off the structural uncertainty bounds
for clarity but they were calculated for all the paths plotted. The mean paths
that satisfy the present day T}, constraints are shown as red lines. Mean paths
that fall outside the constraint but are associated with models that can match
the constraint within structural uncertainty bounds are shown as light red lines.
Solutions that do match the constraint even allowing for structural uncertainty
bounds are shown as grey lines. A model with 8 < 0 is very initial condition
and input value dependent. This leads to a wide model solution space. Models
with 8 > 0 had weaker initial condition and input value dependencies, resulting
in a more concentrated solution space.

The number of cases that satisfy the present day 7}, constraint for variable 3
are shown in Figure 4. The number of cases where the mean matches the present
day constraint (dark green) is small at the most negative S endmember. The
number of mean paths remained below 10% until the positive feedback was re-
moved by switching 3 to positive values. Once a negative feedback was present,
the number of successful cases began to grow. At a S value near 0.2 the number
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Figure 3: Probability distribution for models that satisfy all observational con-
straints (a). In (b we tabulate the total fraction of models that match all
constraints by calculating the probability of success of each ensemble as shown
in Figure 1.

of successful cases plateaued around 30%. Accounting for intrinsic/structural
uncertainty increases the number of successful cases for all § values (lighter
green). The rise in successful cases occurred while 8 was still negative, around
B = —0.1, and plateaued at a 3 slightly greater than 0.1.

The number of cases matching present day Ur are shown in Figure 5. The
color scheme is the same as Figure 4 with mean solutions in green and those that
include structural uncertainty in lighter green. Results are shown for cases that
match present day Ur without accounting for the effect of present day continen-
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Figure 4: Probability distribution for models that satisfy the present day tem-
perature constraint.

tal distribution (mid-green) and for cases in which the effect of continents, on
the present day Urey ratio [Grigné and Labrosse) 2001} Lenardic et al., 2011],
is accounted for (lightest-green). The distribution of successful cases peaked
around 60% for 8 = 0.05. Accounting for structural uncertainty had little ef-
fect for the Ur constraint. Accounting for continents increased the number of
successful cases. At its peak, near § = 0.1, the number of successful matches
was greater than 90%. Including continents disproportionately benefited more
positive [ values.
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Figure 5: Probability distribution for models that satisfy the present day Urey
ratio constraint.
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Figure 6 shows the number of successful cases when assigning equal weight
to the present day T}, and Ur constraints. The distribution is non-normal. Mean
paths resulted in less than 10% of successful cases across the board. The peak
for the mean solutions is at a 8 value slightly less than 0.1. Below this value
successful models fall to nearly zero before increasing slightly when values of
B < 0 were considered. Increasing the upper Ur bound to 0.7, to account for
the potential effect of continents, shifted the peak g value to be greater than
0.1 and increased the number of successful cases to nearly 60% at the peak.
Considering intrinsic/structural uncertainty preferentially benefited the lower
half of the tested 8 space. A very low percentage of models could match both
constraints for § values greater than 0.2 unless the effects of continents were
considered (and it should be kept in mind that doing so adds its own layer
of uncertainty as the continental correction comes from models [Grigné and
Labrosse, 2001}, Lenardic et al.| [2011]).
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Figure 6: Probability distribution for models that satisfy the present day tem-
perature and Urey ratio constraint.

The distributions that resulted from using only paleo temperature con-
straints are shown in Figure 7. The trends are similar to those in Figure 3. One
difference is the uniform decrease in the fraction of ensembles able to match the
paleo constraints. This intuitively makes sense in that to be successful an en-
semble must stay within a temperature window over 2.5 Gyr of evolution rather
than match a value at a single time. A subtle, but noteworthy difference between
Figure 3 and Figure 7 is that the fraction of successful ensembles matching the
paleo constraints increased to a greater degree as 8 was increased. Positive 8
models tend to lessen initial condition dependence. Nearer to the model start
time there is less time to eliminate the influence of the initial condition. As a
result, some models that converge to present day temperatures were too hot or
too cold at 2.5 Gyr and thus considered unsuccessful. Even with this change in
slope, the distribution peaked around 0.2.
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Figure 7: Probability distribution for models that satisfy the paleo temperature
constraints.

Figure 8 shows models that can match paleo and present day constraints.
Figure 8a shows the fraction of models for each 8 that have some portion of the
ensemble that satisfies all three constraints. Distributions are bi-modal, having
one peak in the negative 8 domain and one peak in the positive domain. Ac-
counting for intrinsic/structural uncertainty increased the fraction of successful
solutions across the board and produced nearly identical peaks in both the pos-
itive and negative domains. Allowing for continental effects shifted the largest
peak close to a 8 value of 0.2, but a peak just less than zero remained. A rep-
resentation of the total probability is shown in Figure 8b. For each 3, the total
probability is the sum of each ensemble probability divided by the total number
of initial conditions and model input combinations assessed. For a constraint
on present day Ur that does not account for continents, a peak probability of
approximately 10% occurred at a 8 value of 0.1. This distribution has a single
peak with a heavy left tail, which is caused by the hard upper Ur limit of 0.5,
which cast out a large portion of the more positive 8 ensembles. Relaxing this
constraint resulted in more normal distribution peaked around 0.15. This is
close to the value argued for by |Conrad and Hager| [1999a]. We have given all
data constraints equal weight. If one of the constraints is found to be more
reliable than the others, then distribution peak will shift towards the S values
that coincide with matching that constraint.

Using only the paths that matched paleo and present day constraints, we pro-
jected mantle potential temperature out to 10 Gyr (Figure 9). Figure 9a projects
only those mean paths that matched Earth constraints (dark green models in
Figure 7a). The differing feedbacks within the models becomes apparent as
time evolves with negative S models reaching far cooler mantle temperatures.
These models lead to cooling runaways and once temperatures drop too low
the models are cut off as they have lost structural stability [Seales et al. |2019].
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Figure 8: Probability distribution for models that satisfy all observational con-
straints (a). In (b we tabulate the total fraction of models that match all
constraints by calculating the probability of success of each ensemble as shown
in Figure 1.

Models with 8 > 0.1 cooled more slowly, maintaining temperatures above 1000
°C throughout. Figure 9b shows the projected models that match paleo and
present day constraints with intrinsic/structural uncertainty now accounted for.
Projections were limited to those models that matched Ur values between 0.3
and 0.5. Including structural uncertainties allowed for run away cooling behav-
ior to occur nearly one billion years nearer to present day for models with the
most negative [ values. If we take into account the total probabilities, which
peak between [ values of 0.1 and 0.2, and only use those cases, then projected
temperature vary between 1000 and 1200 ¢ C at 10 Gyr of model evolution.
However, as each of the model paths plotted match Earth constraints, they all
remain possible. Stated another way, there is no reason why the evolution path
of a particular planet, the Earth, needs to follow a most probable path within
a model solutions space.

4 Discussion

Ours is not the first thermal history study to consider uncertainty. For exam-
ple, [Korenaga, [2011] performed a parameter estimation analysis for one unique
thermal history model, whereas McNamara and Van Keken| [2000] performed a
model selection study. Our analysis is unique in that we considered a layered un-
certainty analysis, for a range of models, to assess the probability that any given
model fits Earth constraints. Any model with a probability greater than zero is
capable of explaining Farth’s thermal history. One model being less probable

13



2000 030 2000
1800 025 1800
1600 1600
1400 1400

IS S
1200 1200

1000 0.00 1000

800 —0.05 800

600 600

Time (Gyr) Time (Gyr)

Figure 9: Forward in time projections for successful models. In (a) only suc-
cessful mean solution paths are plotted (i.e., model structural uncertainty is not
accounted for). In (b) successful ensemble paths are plotted (i.e., this accounts
for structural uncertainty).

than another, in model solution space, does not eliminate the possibility that
the lower probability model captures the essential physics of plate tectonics, as
related to planetary cooling. Having said that, we can also weigh probabilities
to assess which models can match Earth constraints over the widest range of
uncertainties. Figure 8b indicates models with 8 between 0.1 and 0.2 fall into
this category. High S models can match present day temperature over a wide
input range but struggle to match the lower Ur constraint. Lower 8 models can
match the Ur constraint but struggle with present day temperature constraints
if 5 drops too low as they then run hot [McNamara and Van Keken| [2000]. That
a "sweet spot” could exist between the two end-members is not, in hindsight,
qualitatively surprising.

Uncertainties in the data constraints we used influenced the calculated prob-
ability of successful models. We assumed equal weighting for each constraint.
Of the two present day constraints, the present day mantle temperature is a
harder constraint. This is because there is less uncertainty in estimating its
value than there is in estimating the Urey ratio |Jaupart et al|[2007]. The
difficulty of considering different weightings is that, although the distribution
of uncertainties associated with temperature data has been calculated
let al.| [2016| |Ganne and Feng, 2017], the same is not true for the Urey ratio (to
date, the implicit assumption has been a boxcar distribution). At this stage,
we did not consider it warranted to apply different weightings but this could be
done in the future.

Our analysis explored a slice of potential model space. A more extensive
exploration would change quantitative results but key qualitative results are
likely to be robust. The qualitative differences between positive and negative 8
models comes from the fact that the former is dominated by a negative system
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feedback and the latter by a positive feedback [Moore and Lenardicl 2015]. More
sophisticated models can be constructed (e.g., fully 3-D models) but the domi-
nant feedback will still dictate end-member behavior and uncertainty structure.
Uncertainties will be smaller in models dominated by negative feedbacks as will
model solution space. The latter means that model cases may be less likely
to match any given data constraints but if they can match constraints, then
a narrow solution space will lead to a larger percentage of model paths being
successful. Models with high positive feedbacks will have greater uncertainty
and an associated larger solution space. A large solution space increases the
potential that at least some cases can match a given data constraint and, at
the same time, it favors a smaller percentage of potential model paths being
successful.

The connection between uncertainty and successful models relates to another
conclusion we argue is robust: Models based on different hypotheses, regarding
the dynamics of plate tectonics, are consistent with constraints on the Earth’s
thermal history, i.e., competing hypotheses remain viable. Phrased another way,
model and data uncertainties lead to ambiguity - more that one model is viable.
Considering more sophisticated (complex) models will not, we argue, change
this conclusion, provided full model uncertainties are assessed. Increasing com-
plexity can increase model uncertainty and model solution space [Saltelli, 2019].
With a larger solution space, the potential that some combinations of model in-
puts, initial conditions, and ensemble paths will match constraints will increase,
as will the computational time needed to find them. It is possible that new
and/or more certain data constraints could bridle this to a degree, though his-
torical data from the Earth will always have uncertainty. As such, we argue that
multiple hypotheses will likely remain viable into the near future, particularly
if there is a trend toward developing more complex models.

Although, to the best of our knowledge, model ambiguity has not previ-
ously been laid out explicitly for thermal history models, ambiguity for Earth
models in general is not new [e.g., Richards and Lenardic, [2018]. Hypotheses
discrimination can continue, but it must proceed in a statistical manner. This,
we argue, is another robust conclusion. We can ask which models come with
higher probabilities of success in light of uncertainties. This is the utility of
Figure 8. The degree to which one is willing to push this further depends on
a question that cannot be scientifically answered at present: of all the possible
evolution paths, consistent with physical and chemical principles, did a single
planet, the Earth, follow what is the most likely path in that potentiality space?
The conservative stance is to say "We don’t know,” which means we consider all
models with greater than zero probability as viable.

The question above relates to the extension of thermal history studies from
Earth to planetary application, habitability in particular [Kite et all {2009,
Schaefer and Sasselov], 2015, [Komacek and Abbot| [2016] [Foleyl [2015] [Foley:
and Driscolll 2016} Tosi et al., [2017, [Foley and Smye| 2018, Barnes et al.l [2019].
Thermal history models applied to the Earth are postdictive: they set out to
match historical data. In the context of habitability studies, thermal history
models are used in a predictive mode to determine whether liquid water may be
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present on the surface of terrestrial planets with variable planetary and orbital
properties. Using models in this mode increases the potentiality space of model
outputs. With the thought of limiting the vastness of this space, many stud-
ies have focused on planets commensurate with Earth as a starting point [e.g.,
Foley, 2015} [Foley and Driscoll| 2016, [Rushby et al.| 2018]. Implicit to this is
the thought that uncertainties will be lowest for modeling this subset of plan-
ets. Our analysis suggests that even if we consider the most Earth-like planet
possible, with the most observational data (the Earth), significant uncertainty
remains [Fig. 9].

The above leads to a few suggestions on moving forward. First, even if
we focus on a plate tectonic mode of planetary cooling, we should consider all
viable models [Figure 8]. To date, habitability models have considered a single
plate tectonic model [e.g., Driscoll and Bercovici, [2013|, [Foley|, 2015|, [Foley and
Driscoll, 2016, Rushby et al) |2018|. The particular model adopted (a classic
high 8 model) is not the most probable model for matching Earth data. This
is not damning but it is inconsistent with the idea that many of the studies
are based on: given a large model space, let’s start with models that best
account for Earth data. It also bypasses model selection uncertainty. Second,
all models should be subjected to a layered uncertainty analysis. Typically
only a range of initial conditions and input values are tested. An ensemble
approach is generally not employed, which leaves out structural uncertainty.
One uncertainty measure is not a substitute for another and all need to be
evaluated before model implications can be assessed and/or before a model can
be validated. A corollary is that model implications need to be viewed in a
probabilistic manner by presenting results as probability distributions. This
becomes particularly important for models used to make forecasts.

All of the projections in Figure 9b should, we argue, be considered as po-
tentialities. In that view, they are all counterfactuals [Taleb] [2012] with very
different implications if used as forecasts. For example, a family of paths imply
that plate tectonics could end in about 1.5 billion years as the mantle becomes
too cold. This family of paths is consistent with a study that did forecast the
end of plate tectonics in 1.45 billion years [Cheng), |2018]. Such a forecast has
implications for life beyond Earth, and, given that, it’s no surprise that popular
science media latched on [Nace) [2018|. The fact that some of our projections
are in line with the study of |Cheng| [2018] speaks to model reproducibility,
as that study used a negative 5 model, which is also the one we found leads
to cold runaways. However, it is the negative 8 models that are associated
with the largest uncertainty and are prone to structural instability [Seales et al.
[2019]. Not being clear about uncertainty, especially for a provocative con-
clusion, only invites misinformation (e.g., presenting a highly uncertain model
forecast as a singular "result”). We would suggest that if full uncertainty anal-
ysis was as strong a component of planetary modeling studies as, for example, a
methods section, then the odds of unintentionally making conclusions that can
send misinformation would be reduced. We will add a corollary, the greater a
modeling study moves toward the prediction end of the postdiction/description-
prediction/forecast spectrum, the greater the responsibility of the modelers to
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present a full uncertainty analysis. That corollary applies to essentially all mod-
eling studies of terrestrial exoplanets. Adhering to it could, we argue, prevent
red-herring debates of the type that have surfaced in the past [e.g., |(Chorost)
2013].

In the exoplanet modeling field, thermal history models are being coupled
to other models to explore how interior planet evolution co-evolves with other
systems — stellar, orbital, volatile cycling, climate, weathering and life [Barnes
et all 2019]. Each system sub-model is subject to the types of uncertainty we
have presented for thermal history models. This can make a grid search ap-
proach, to map out the coupled model solution space in light of uncertainties,
intractable. However, the full model potentiality space is often not of primary
interest. A more primary driver behind the coupled models is mapping the sub-
space that allows water to exist at the surface of a planet over geologic time (this
connects the models to the search for life beyond Earth — life as we know it relies
on water). Having a search target, within model potentiality space, can reduce
the computational work load, but a grid search, akin to that of this paper, would
still be impractical given the large dimensionality of the problem. More efficient
computational methods can bring the modeling back to a tractable level (e.g.,
machine learning based methods [P. Fleming and VanderPlas| 2018]). This will
introduce another layer of uncertainty that will need to be evaluated — the uncer-
tainty associated with the particular search method. All of this will increase the
workload and the move toward a probabilistic framework. Such a framework, in
turn, would move the field beyond a binary assessment habitability and towards
assessing the potential of a planet to host life that requires a particular type
of environment. Given that all of this is being done in the prediction/forecast
mode, uncertainty analysis will need to play a larger role than it has to date.

5 Conclusions

We applied a layered uncertainty analysis to solid Earth cooling models. The
analysis accounted for the combined effects of: 1) Model selection uncertainty;
2) Model structural uncertainty; 3) Uncertainty in initial conditions; 4) Uncer-
tainty in model input values. Accounting for model and observational uncertain-
ties allows for model validation (testing the degree to which model outputs can
match data constraints). Validation, once full uncertainty measures are evalu-
ated, requires a probabilistic approach and results are presented as probability
distributions. Given we only have one planet evolutionary path, the Earth, we
have argued that any models that maintain finite probabilities of accounting
for observational data, over model potentiality space and in light of uncertain-
ties, remain viable. For the thermal history models we examined this leads to
ambiguity (multiple hypotheses remain viable for the Earth’s thermal history).
When thermal history models move from a postdictive mode (accounting for
existing Earth data) into a predictive mode designed to constrain conditions
that allow for clement surface environments on terrestrial planets, the role of a
layered uncertainty analysis becomes more critical.
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