Exomoons in the habitable zones of M dwarfs

Héctor Martínez-Rodríguez,
¹ José Antonio Caballero,² Carlos Cifuentes,² Anthony L. Piro,³ and Rory
 ${\rm Barnes}^{4,5}$

¹Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O'Hara Street, Pittsburgh, PA 15260, USA

²Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo, E-28691 Villanueva de la Cañada, Madrid, Spain

³Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

⁴Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, USA

⁵NASA Virtual Planetary Laboratory Lead Team, USA

(Received December 30, 2019; Revised; Accepted)

ABSTRACT

M dwarfs host most of the exoplanets in the local Milky Way. Some of these planets, ranging from sub-Earths to super-Jupiters, orbit in their stars' habitable zones (HZs), although many likely possess surface environments that preclude habitability. Moreover, exomoons around these planets could harbor life for long timescales and thus may also be targets for biosignature surveys. Here we investigate the potential habitability, stability, and detectability of exomoons around exoplanets orbiting M dwarfs. We first compile an updated list of known M-dwarf exoplanet hosts, comprising 109 stars and 205 planets. For each M dwarf, we compute and update precise luminosities with the Virtual Observatory spectral energy distribution Analyzer and *Gaia* DR2 parallaxes to determine inner and outer boundaries of their HZs. For each planet, we retrieve (or, when necessary, homogeneously estimate) their masses and radii, calculate the long-term dynamical stability of hypothetical moons, and identify those planets that can support habitable moons. We find that 33 exoplanet candidates are located in the habitable zones of their host stars and that four of them could host Moon- to Titan-mass exomoons for timescales longer than the Hubble time.

Keywords: astrobiology – planets and satellites: dynamical evolution and stability – stars: late-type – stars: planetary systems

1. INTRODUCTION

M dwarfs constitute only about one-third of the stellar mass of the Galaxy (Chabrier 2003), but about two-thirds of all its stars (Gould et al. 1996; Reid & Gizis 1997; Henry et al. 2006; Bochanski et al. 2010). Similarly to their more massive stellar counterparts, M dwarfs also host exoplanets (Delfosse et al. 1998; Marcy et al. 1998; Butler et al. 2004; Bonfils et al. 2005, 2007, 2013a; Johnson et al. 2007; Udry et al. 2007; Dressing & Charbonneau 2015, among many others). Some of them orbit in the M-dwarf habitable zone (HZ), the circumstellar region where they can sustain liquid water on their surfaces (Hart 1979; Kasting et al. 1993; Scalo et al.

Corresponding author: Héctor Martínez-Rodríguez hector.mr@pitt.edu 2007; Tarter et al. 2007; Ramírez 2018). The discoveries of such exoplanet candidates in temperate regions around their stars (e.g. Udry et al. 2007; Vogt et al. 2010, 2012; Anglada-Escudé et al. 2013, 2016; Tuomi et al. 2013; Dittmann et al. 2017; Gillon et al. 2017; Reiners et al. 2018) have come alongside with theoretical calculations of HZs (Underwood et al. 2003; Selsis et al. 2007; Kopparapu et al. 2013; Zsom et al. 2013; Kopparapu et al. 2014; Barnes et al. 2015; Johns et al. 2018) and observational projects that aim to either discover Earth-like planets smaller than $1 M_{\oplus}$ (e.g. Nutzman & Charbonneau 2008; Zechmeister et al. 2009; Bonfils et al. 2013a; Artigau et al. 2014; Quirrenbach et al. 2014; Ricker et al. 2015; Sullivan et al. 2015) or characterize their atmospheres (Wunderlich et al. 2019).

The M dwarfs' ubiquity and long main-sequence lifetime may favor their planets to host biological organisms (Segura et al. 2005; Loeb et al. 2016; Mullan &

Bais 2018). However, given the low luminosities of M dwarfs (Delfosse et al. 2000; Reid & Hawley 2005; Benedict et al. 2016; Schweitzer et al. 2019), Earthlike planets in their HZs are located at short orbital separation to their stars, which enhances the probability to detect transits or induced radial velocity (RV) signals, translates into synchronous rotation, and consequently into tidal locking (Dole 1964; Peale 1977a,b; Joshi et al. 1997; Murray & Dermott 1999; Tarter et al. 2007; Kite et al. 2011; Barnes 2017). This induced synchronous rotation has strong implications on the habitability of M-dwarf hosted planets because a hemisphere always faces the star and the other remains in complete darkness, introducing a spatially dependent incoming radiation and a temperature gradient between both hemispheres. Models of atmospheric circulation in dry, tidally locked, rocky exoplanets have shown that this circulation acts as a global engine that constrains largescale wind speeds (Heng et al. 2011; Showman & Polvani 2011; Yang et al. 2013; Koll & Abbot 2016). Besides, in exoplanets that orbit close to their host stars, tidal interaction can affect climate stability, apart from spin and orbital properties (Kasting et al. 1993; Barnes et al. 2008; Heller et al. 2011b,a; Shoji & Kurita 2014). In addition, flaring activity, which is frequent in M dwarfs (Jeffers et al. 2018; Loyd et al. 2018, and references therein), can cause strong atmospheric erosion in their exoplanets, with greater incidence on those that have no, or weak, magnetic moments (Buccino et al. 2006; Chossen et al. 2007; Lammer et al. 2007; Segura et al. 2010; Vidotto et al. 2013; Shoji & Kurita 2014; France et al. 2018; Howard et al. 2018; Rodríguez et al. 2018). On the other hand, Driscoll & Barnes (2015a) showed that core convection could still drive a strong geodynamo for gigayears on tidally locked worlds. Our knowledge of the atmospheres of Earth-like (and super-Earth) planets with one hemisphere under constant, strong irradiation is still incomplete, but the presence of a thick atmosphere or an ocean might help distribute the heat across the planet (Joshi et al. 1997; Joshi 2003; Scalo et al. 2007; Tarter et al. 2007; Selsis et al. 2011; Heng & Kopparla 2012; Showman & Kaspi 2013; Kopparapu et al. 2014; Yang et al. 2014; Wordsworth 2015; Turbet et al. 2016; Way et al. 2018, see also Pierrehumbert & Gaidos 2011 for H_2 -rich atmospheres).

One way to analyze the synchronous-rotation habitability problem of M-dwarf exoplanets is to introduce the presence of one or more hypothetical exomoons. Contrary to their host planets, exomoons would not become tidally locked to the star, but more likely to the planet itself (Hinkel & Kane 2013 – see also Goldreich & Soter 1966 and Reynolds et al. 1987 for spin-orbit coupling of moons in our solar system). As a result, both exomoon hemispheres would receive the same amount of energy. The presence of an exomoon would also alleviate a second habitability problem: except for a few cases, the best characterized M-dwarf hosted exoplanets are super-Earths or mini-Neptunes with masses greater than 4–5 M_{\oplus} , which could be oceanic or gaseous worlds without any rocky surface, rather than Earth-like planets (Léger et al. 2004; Raymond et al. 2004; Lammer et al. 2009; Hill et al. 2018). In this picture, exomoons of about the mass of the Earth (with masses large enough to have a carbon–silicate cycle) would be habitable in the anthropocentric view, as opposed to their more massive planet hosts.

Exomoons could also have effects on the habitability of their host exoplanets. For instance, the Moon contributes to steady the Earth's obliquity, which might have allowed life to develop in stable conditions for a sufficiently long time (Laskar et al. 1993, 2004; Lourens et al. 2001; although see Armstrong et al. 2014; Deitrick et al. 2018). It is considered that moons are more stable and have longer lifetimes when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter (Barnes & O'Brien 2002; Sasaki et al. 2012; Sasaki & Barnes 2014). In addition to the flux received by the host star, a moon's climate and, thus, its habitability, can also be affected by planetary insolation and thermal emission, by periodic stellar eclipses, and by tidal heating (Zollinger et al. 2017). Tidal interactions between exoplanet and exomoon are a source of heating that is more relevant for the latter, such as in the inner Galilean moons (Yoder 1979; Peters & Turner 2013; Makarov & Efroimsky 2014; Clausen & Tilgner 2015; Tyler et al. 2015; Renaud & Henning 2018). Moderate tidal heating may help sustain tectonic activity, possibly a carbon-silicate cycle, and may also provide energy for biochemical reactions (Campanella 2009; Kaltenegger 2010; Heller 2012; Heller & Barnes 2013; Hinkel & Kane 2013; Heller et al. 2014; Forgan & Dobos 2016; Zollinger et al. 2017).

Exomoons are yet to be discovered (Kipping et al. 2013, 2015 – but see the three *Kepler* candidates reported by Szabó et al. 2013, and especially Kepler-1625 b – Teachey et al. 2018; Teachey & Kipping 2018; Heller et al. 2019; Kreidberg et al. 2019). Most planet detection techniques are not applicable to that of exomoons due to the small relative sizes in comparison with their host planets. One of the most relevant techniques is the transits method, but it relies upon favorable geometric conditions and high photometric precision (Kipping et al. 2009, 2012). For the majority of exoplanet–exomoon phase curves, the lunar component is undetectable to

the current technology of transits observations, and future surveys would require a photometric precision of a few parts per million (Forgan 2017, but see again Teachey & Kipping 2018). Nevertheless, the detectability of exomoons has been proposed feasible with current or near-future technology and a variety of methods: microlensing (Han & Han 2002), photocentric transit timing variation (Simon et al. 2007, 2015), modulation of planetary radio emissions (Noyola et al. 2014), spectroastrometry (Agol et al. 2015), polarization of transits (Berzosa Molina et al. 2018), radial velocity (Vanderburg et al. 2018), and transits of the plasma torus produced by a satellite (Ben-Jaffel & Ballester 2014; see the reviews by Cabrera & Schneider 2007, Perryman 2018, and Heller 2018). In particular, the European Space Agency (ESA) mission CHaraterising ExOPlanet Satel*lite* (CHEOPS) could detect Earth-sized exomoons with the transit method (Simon et al. 2015).

Here, we explore the potential habitability of exomoons around known M-dwarf's exoplanets. We compile a state-of-the-art list of M-dwarf exoplanetary systems, derive precise stellar luminosities from multiwavelength photometry and *Gaia* DR2 parallaxes, apply conservatively the radiative transfer equilibrium equation, identify exoplanets in HZ that can be orbited by exomoons, discuss on their detectability, and investigate their long-term dynamical stability based on the latest models by Piro (2018), who modeled exoplanets torqued by the combined tides of an exomoon and a host star in order to find timescales for the gravitational loss/destruction of the exomoon.

2. ANALYSIS

2.1. Stellar and exoplanet sample

As of 2019 March 19, the Extrasolar Planets Encyclopaedia¹ had reported a total of 4011 exoplanets with the label "confirmed" (Schneider et al. 2011). In our analysis, firstly, we discarded the 258 planets detected by direct imaging (123), microlensing (88), pulsar timing (33), transit timing variation (8), and astrometry (6), many of which are located at large distances from the solar system and orbital separations, suffer from strong high-energy radiation, are difficult to characterize, or even are bona fide brown dwarfs (Caballero 2018).

Of the remaining 3734 planets, 205 orbit 109 systems with M-dwarf hosts detected via transit and/or radial velocity. To identify them, we selected all planets orbiting stars with M spectral type in the Extrasolar Planets Encyclopaedia except for nine giants and subgiants (HD 208527, HD 220074), pre-main-sequence stars (CVSO 30, V830 Tau), and spectroscopic, eclipsing, and close binaries (DW UMa, HD 41004 B, Kepler-64, KIC 5095269 AB, NLTT 41135). Besides, we selected all planets orbiting stars without spectral type in the Encyclopaedia, but with masses lower than $0.71 M_{\odot}$. which is the largest mass of an M dwarf in the Encyclopaedia, and that have M spectral type in the NASA Exoplanet Archive². Among the 205 exoplanets, we also included the planets orbiting the trio of stars BD-21 784, BD-06 1339, and Kepler-155 (Lo Curto et al. 2013; Rowe et al. 2014; Tuomi et al. 2014), which have been spectroscopically classified as stars at the K–M boundary (Upgren et al. 1972; Stephenson 1986; Zechmeister et al. 2009; Muirhead et al. 2012a; Gaidos et al. 2013; Tuomi et al. 2014), and LP 834-042 c, which is listed in the Encyclopaedia as detection_type = Other but has a radial velocity confirmation (Astudillo-Defru et al. 2017a).

The 109 M dwarfs and 205 exoplanets are listed in Tables A1 and A2. For the stars, we tabulate common/discovery and alternative names³, equatorial coordinates and parallactic distances from Gaia DR2 (Gaia Collaboration et al. 2018), except for Luyten's star and Lalande 21185, for which we used Hipparcos parallactic distances (van Leeuwen 2007). Distances range from merely 1.30 pc (Proxima Centauri; Anglada-Escudé et al. 2016) to about 430 pc (Kepler–235; Borucki et al. 2011). All stars further than 30 pc have been discovered by Kepler (and K2) except for NGTS-1 and HATS-6 (Hartman et al. 2015; Bayliss et al. 2018). Besides, most of them are field M dwarfs, but at least four belong to stellar cluster members or associations (namely K2–25 in the Hyades –Mann et al. 2016a–, K2– 33 in Upper Scorpius -Mann et al. 2016b-, K2-95 and K2–264 in the Praesepe –Pepper et al. 2017; Livingston et al. 2019-).

For the planets, we tabulate their names, letters, main orbital parameters (semi-major axes *a* and orbital periods $P_{\rm orb}$), and corresponding references. For the 43 planets without a published semi-major axis (e.g., Rowe et al. 2014; Muirhead et al. 2015; Sahlmann et al. 2016), we derived them from their known periods and our estimated stellar masses, using Kepler's Third Law. For the 89 planets discovered with the RV method and without

² https://exoplanetarchive.ipac.caltech.edu/

¹ http://exoplanet.eu/

³ We follow this naming priority order: common (e.g. Proxima, Luyten's star), Bayer (e.g. α Cen C), Flamsteed/variable (e.g. 3 Lyr, IL Aqr, V1428 Aql), Lalande, Henry Draper, Bonner/Córdoba Durchmusterung, Wolf, Ross, Gliese-Jahreiss (but GJ number is always given), Luyten Palomar or equivalent, and discovery names (e.g. MCC, PM, 2MUCD, *Kepler, K2*, KOI, EPIC).

Table 1. Exoplanets with true masses and radii.

Star	Planet	Transit References ^a	RV References ^a
HATS-6	b	Har15	Har15
PM J11302+0735	b	Clo17	Sar18
Kepler 45	b	Jon12	Jon12
LHS 1140	b	Dit17	Dit17
	с	Men19	Men19
LHS 3275	b	Har13	Cha09
LP 424–4	b	Bon12	Bon12
LTT 3758	b	Sou17	Bon18
PM J11293-0127	b	Sin16	Alm15
	с	Sin16	Alm15
	d	Sin16	Alm15
Ross 905	b	Mac14	Tri18
USco J161014.7-191909	b	Man16b	Man16b

^a Alm15: Almenara et al. (2015); Bon12: Bonfils et al. (2012); Bon18b: Bonfils et al. (2018a); Cha09:
 Charbonneau et al. (2009); Clo17: Cloutier et al. (2017);

Dit17: Dittmann et al. (2017); Har13: Harpsøe et al. (2013); Har15: Hartman et al. (2015); Jon12: Johnson et al. (2012); Mac14: Maciejewski et al. (2014); Man16b: Mann et al. (2016b); Men19: Ment et al. (2019); Sar18: Sarkis et al. (2018); Sin16: Sinukoff et al. (2016); Sou17: Southworth et al. (2017); Tri18: Trifonov et al. (2018).

measured transits, we tabulate their minimum masses, $M_2 \sin i$ (marked with '>'), while for the 103 planets discovered with the transit method and without RV follow-up, we tabulate their radii. We have true masses and radii for 13 transiting planets with RV follow-up in 10 systems (see Table 1).

2.2. Planetary masses and radii

Radial-velocity (RV) measurements only yield the minimum mass of an exoplanet, whereas transit measurements only yield the radius. For our habitability analysis, we used planet masses and radii. However, only 13 planets have both RV and transit measurements, i.e. true masses and radii (see above). As a result, for the other 192 planets, we derived planetary radii and masses. Among the multiple mass-radius relations available in the literature for different planetary compositions (e.g., Fortney et al. 2007; Seager et al. 2007; Sotin et al. 2007; Lissauer et al. 2011; Barnes et al. 2013; Wu & Lithwick 2013; Weiss & Marcy 2014; Barnes et al. 2015; Rogers 2015; Wolfgang et al. 2016; Chen & Kipping 2017; Kanodia et al. 2019), we chose that of Chen & Kipping (2017), as it covers a broad range of planetary sizes.

The largest planet transiting an M dwarf is NGTS–1 b, with $R \sim 1.33 R_{\text{Jup}}$ (Bayliss et al. 2018). On the other side of the relation, the smallest planets transit the stars Kepler 138 b, LSPM J1928+4437 (b, c, and d), Kepler– 125 c, and 2MUCD 12171 (now universally known as TRAPPIST-1; d and h), and have masses and radii in the intervals $0.10-0.39 M_{\oplus}$ and $0.52-0.78 R_{\oplus}$, close to the values of Mars $(0.107 M_{\oplus}, 0.343 R_{\oplus})$. However, the distributions of masses and radii of the whole planet sample peak around $5-10 M_{\oplus}$ and $1-3 R_{\oplus}$, respectively.

2.3. Stellar luminosities and masses

First of all, we compiled Gaia DR2 equatorial coordinates (in J2015.5 epoch and J2000.0 equinox) with VizieR (Ochsenbein et al. 2000) for 107 of our stars. For the other two, Lalande 21185 and Luyten's star, without a Gaia DR2 entry, we retrieved the equatorial coordinates from Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), which were separated by less than two months from the J2000 epoch. Next, we collected multiband broadband photometry from the ultraviolet to the mid-infrared from the literature: GALEX DR5 (FUV, NUV; Bianchi et al. 2011), SDSS DR9 (ugri; Ahn et al. 2012), UCAC4 (BV, gri,; Zacharias et al. 2013), Pan-STARRS1 DR1 (qri; Tonry et al. 2012; Chambers et al. 2016), Tycho-2 $(B_T, V_T; Høg et al. 2000)$ APASS9 (BV, gri; Henden et al. 2016), 2MASS $(JHK_s;$ Skrutskie et al. 2006), Gaia DR2 ($G_{BP} G G_{RP}$; Gaia Collaboration et al. 2016, 2018), WISE (W1W2W3W4; Cutri & et al. 2012), and allWISE (W1W2W3W4; Cutri & et al. 2014).

For that, we used the Upload X-Match tool of the interactive graphical viewer and editor for tabular data TOPCAT (Ochsenbein et al. 2000) with a search radius of 5 arcsec and the "Best" find mode option. We made sure that the automatic cross-match was right by carrying out an inspection of each individual target and datum using the Aladin interactive sky atlas (Bonnarel et al. 2000), which provides simultaneous access to digitized images of the sky, astronomical catalogs, and databases. Eventually, for the 109 stars we compiled 1682 individual magnitudes along with their uncertainties.

We homogeneously derived the bolometric luminosity and effective temperature for each star with the compiled photometric data and the Virtual Observatory Spectral Energy Distribution Analyzer⁴ (VOSA; Bayo et al. 2008). We selected the best fit between

⁴ http://svo2.cab.inta-csic.es/theory/vosa/

a grid of BT-Settl-CIFIST theoretical spectral models (Baraffe et al. 2015) and our empirical data under the constraints $\log g = 4.5$, 2000 K $< T_{\rm eff} < 4500$ K, and [Fe/H] = 0.0. The VOSA fits are acceptable in all cases, except for the extremely young star K2-33 in the Upper Scorpius association (David et al. 2016; Mann et al. 2016b; Schweitzer et al. 2019) and the metal-poor star K2–155 (Díez Alonso et al. 2018a; Hirano et al. 2018). Further details on the luminosity calculation will be described by C. Cifuentes et al. (in preparation).

The luminosities of the 109 planet-host stars are displayed in Table A1. As expected, the most luminous stars are at the K–M boundary, with $L \sim 0.14$ –0.17 L_{\odot} . In particular, the most luminous stars, Kepler–155 and Kepler–252, have VOSA-derived $T_{\rm eff} = 4300$ –4400 K, which are actually warmer than the hottest known M dwarfs (thus, their spectral types should be revised). On the other side, the least luminous stars, with $L = (5-15) \times 10^{-4} L_{\odot}$, are the latest and coolest ones, which in our case are 2MUCD 12171 and Proxima Centauri, which have M8.0 V and M5.5 V spectral types, respectively.

Finally, we computed stellar masses from K_s magnitude and distance using the relations of Mann et al. (2019). We display them in the last column of Table A1. The lowest masses, $M_* = 0.09-0.12 M_{\odot}$, are found again for 2MUCD 12171 and Proxima Centauri, and the highest ones, $M_* = 0.67 - 0.70 M_{\odot}$, correspond to the likely late-K dwarfs Kepler-155 and Kepler-252, K2-33 (actually incorrect, due to its extreme youth), and K2–155 (probably due to a metallicity effect). For comparison, we compiled published luminosities for 26 stars from the following works: Leggett et al. (2001); Howard et al. (2010); Boyajian et al. (2012); Gaidos & Mann (2014); Quintana et al. (2014); Hartman et al. (2015); Schlieder et al. (2016); Dittmann et al. (2017); Gillon et al. (2017); Maldonado et al. (2017); Bakos et al. (2018); Hirano et al. (2018); Ribas et al. (2018); Smith et al. (2018); Affer et al. (2019); Díez Alonso et al. (2019); Feinstein et al. (2019); Günther et al. (2019); Hobson et al. (2019); Perger et al. (2019). The luminosities derived in this work are in good agreement with the values given in the literature (see Figure 1). Only five stars deviate more than 20% of the 1:1 ratio, but only one deviates significantly from our measurement. For BD-17 400, we calculated $L = (835 \pm 13) \times 10^{-4} L_{\odot}$, but Leggett et al. (2001) tabulated $L = (450\pm70) \times 10^{-4} L_{\odot}$ with pre-Gaia data. The other four stars have luminosities consistent within error bars with our measurements (LP $656-38^5$, Leggett

 5 Leggett et al. (2001) tabulated $L = (27\pm66)\,10^{-4}\,{\rm L}_{\odot}$ for LP 656–38.

Figure 1. Comparison between our luminosities (top) and masses (bottom) and those available in the literature. The dashed lines indicate the 1:1 ratio and 20% variations with respect to it.

et al. 2001; GJ 96, Gaidos & Mann 2014; Kepler–186, Quintana et al. 2014; K2–149, Hirano et al. 2018).

3. RESULTS AND DISCUSSION

3.1. Exoplanet habitability

We calculated an HZ for each host star using the one-dimensional climate models from Kopparapu et al. (2014). We chose their "recent Venus" and "maximum greenhouse" estimates for the inner and outer HZ, respectively. The exoplanets' oceans might begin to evaporate and condense in the stratosphere at planetary equilibrium temperatures $\approx 320-340$ K ("moist-greenhouse," Kasting et al. 1993; Kopparapu et al. 2013, 2014). However, between this process and the complete oceanic evaporation (runaway greenhouse limit, Kasting et al. 1993; Kopparapu et al. 2013, 2014), the exoplanets could still have surface temperatures adequate for habitability ("continuosly habitable zone," Hart 1978; Kasting et al. 1993).

Figure 2. Conservative HZ for all the M dwarfs in our sample (inner HZ, "recent Venus," in red; outer HZ, "maximum greenhouse," in blue). Their hosted exoplanets are depicted with sizes proportional to their masses in logarithmic scale, with filled circles if they have been detected by transit and with open circles if they have been detected by RV measurements. Exoplanets closer than the inner HZ, in the HZ, and beyond the outer HZ are shown in red, green, and blue, respectively. The dashed, gray line is the Roche limit for an Earth-like planet (Aggarwal & Oberbeck 1974). The dashed, black line represents a "constant-time-lag" tidal locking model for a 10 M_{\oplus} -planet with rapid initial rotation after 1 Gyr (Barnes 2017). The eight solar system planets are depicted in the upper part of the plot.

Figure 2 illustrates the HZ computation for our compiled exoplanet-host M dwarfs. The exoplanet candidates are depicted in three different colors, depending on whether they lie between their host stars and the inner HZ boundary (146), whether they lie between the inner and outer HZ boundary (33), or whether they lie beyond the outer HZ boundary (26). The 33 potentially habitable exoplanets are marked with the string "Yes" in column "Potentially HZ" from Table A2. Of the 33 planet candidates, 10 have masses or minimum masses above $10 M_{\oplus}$ and 9 between 5 and $10 M_{\oplus}$. Not counting the inclination angle effect in the RV planets, which translates into larger actual masses, most if not all of these 19 planets are mini-Neptunes and can hardly sustain liquid water on a rocky surface (Fortney et al. 2007; Miller-Ricci et al. 2009; Dorn et al. 2017). In other words, these 19 planets lie within the HZ of their stars, but they are unlikely to be habitable. However, their Earth-sized moons could actually be habitable.

As illustrated by Figure 2, three habitable planets are beyond the approximate 1 Gyr-tidal locking boundary: BD-06 1339 c (Lo Curto et al. 2013), Kepler-186 f (Torres et al. 2015), and HD 147379 b (Reiners et al. 2018). Of them, two are Neptune-like planets and one, Kepler-186 f, has a mass of only about $1.8 M_{\oplus}$. However, following Barnes (2017), they will likely be tidally locked after 4.6 Gyr, the solar system age (see Section 3.2 for an individualized computation of planet locking times).

3.2. Exomoons around Potentially Habitable Exoplanets

We focused on the 33 exoplanets orbiting the HZ of their host stars and analyzed whether or not they could host exomoons on reasonable time scales. For that, we followed the work of Piro (2018), who considered null exomoon eccentricity and obliquity for simplicity. If an exoplanet hosting an exomoon is close enough to its host star, the star's gravity strips the exomoon away. This critical distance, namely the radius of the Hill sphere, is given by:

$$a_{\text{crit},m} = f_{\text{crit}} \left(\frac{M_p}{3M_*}\right)^{1/3},\qquad(1)$$

where M_p and M_* are the exoplanet and star masses, and $f_{\rm crit} = 0.49$, a critical factor that assumes a prograde orbit (Domingos et al. 2006; Piro 2018). Eventually, the exomoon will be stripped away by the host star if $a_m > a_{\rm crit,m}$, or fall back into the planet if $a_m < a_{\rm crit,m}$, where a_m is the moon semimajor axis around the exoplanet.

If an exomoon gets too close to its host exoplanet, it will be tidally disrupted upon reaching the Roche limit, i.e., the point where the exomoon can no longer bind its material by gravitational forces. This condition is given by (Piro 2018):

$$a_{\rm Roche} \approx 1.34 \left(\frac{M_p}{\rho_m}\right)^{1/3},$$
 (2)

where ρ_m is the exomoon's density (see also Aggarwal & Oberbeck 1974). Under the assumption that all the initial angular momentum of an exoplanet eventually goes into its exomoon, the exomoon's semimajor axis can be written as:

$$a_m = \frac{4\pi^2 \lambda^2 M_p R_p^4}{G M_m^2 P_0^2},$$
 (3)

where λ ($\lambda_{\oplus} = 0.33$, Williams 1994) is the exoplanet's radius of gyration ($I_p/M_pR_p^2$, see Piro 2018), M_m is the exomoon mass, I_p is the planet moment of inertia, R_p is the planet radius, and P_0 is the planet initial spin period. To estimate the exomoon migration timescale, namely, the e-folding timescale for the change in the exoplanet–exomoon distance, we used Eq. 25 from Piro (2018), which can be rewritten as:

$$\tau_{\mathrm{mig},m} = t_k \left(\frac{k_{2,\oplus}}{k_2}\right) \left(\frac{\tau_{\mathrm{lag},\oplus}}{\tau_{\mathrm{lag}}}\right) \left(\frac{a_m^8}{M_m R_p^5}\right), \quad (4)$$

where $t_k = 250 \text{ Gyr}$, and a_m , M_m , and R_p are the exoplanet-exomoon separation, exomoon mass, and planetary radius in units of Earth-Moon separation,

Closer than inner HZ In the HZ Beyond the outer HZ Counts 30 20 10 50 100 200 0.20.5 1 2 510 20 $500 \ 1e3 \ 2e3$ 5e3 1e4 $P_{\rm orb}\left[d\right]$

Figure 3. Orbital periods for the exoplanets in our sample. The colors are the same as those in Figure 2. The dashed, vertical lines show the median period for each subgroup.

Moon mass, and Earth radius, respectively⁶. Here, k_2 is a Love number of degree 2 ($k_{2,\oplus} = 0.3$) and τ_{lag} is the time lag between the passage of the perturber and the tidal bulge (Barnes 2017; Green et al. 2017; Piro 2018). For the Earth, $\tau_{\text{lag},\oplus} = 638$ s (Lambeck 1977; Neron de Surgy & Laskar 1997). The time lag τ_{lag} is related with the tidal quality factor Q via (Henning et al. 2009; Matsumura et al. 2010; Barnes et al. 2013):

$$Q^{-1} \approx n \tau_{\text{lag}},$$
 (5)

where n is the mean motion, which implies that

$$\frac{\tau_{\text{lag},\oplus}}{\tau_{\text{lag}}} = \frac{Q}{Q_{\oplus}},\tag{6}$$

where $Q_{\oplus} = 12$ (Williams et al. 1978). Therefore, combining Eqs. 3, 4 and 6,

$$\tau_{\text{mig},m} \propto Q \frac{R_p^{27} M_p^8}{P_0^{16} M_m^{17}}.$$
(7)

Table 2 summarizes the used values of k_2 , Q and λ for four representative planetary types. These parameters are reasonable extrapolations of k_2 , Q, and λ from models of exoplanets and actual measurements of planets of different sizes and compositions (Dickey et al. 1994; Yoder 1995; Aksnes & Franklin 2001; Zhang & Hamilton 2006; Henning et al. 2009). For planets with sizes between $R_p = 1.50 R_{\oplus}$ (small, rocky worlds) and $R_p =$ $3.88 R_{\oplus}$ (Neptune), we fitted a linear function to k_2 :

$$k_2 = k_{2,0} + \gamma \ R_{\rm p}. \tag{8}$$

 6 $\rm a_{Moon}=3.84399\times 10^8\,m,~M_{Moon}=7.346\times 10^{22}\,\rm kg,$ and $R_{\oplus}=6.3781366\times 10^6\,\rm m.$

Table 2. Love number, tidal quality factor, and radius of gyration for different planetary types.

Planet	k_2	Q	λ
type			
Dry telluric	0.5	100	0.370
Terran	0.3	12	0.330
Icy neptunian	1.5	10^4	0.230
Gaseous jovian	1.5	10^{6}	0.254

For Q and λ , we fitted, respectively, two power laws and two linear functions, between $R_{\rm p} = 1.50 R_{\oplus}$ and $R_{\rm p} = 3.88 R_{\oplus}$, and between $R_{\rm p} = 3.88 R_{\oplus}$ and $R_{\rm p} = 10.97 R_{\oplus}$ (Jupiter):

$$Q = Q_0 R_{\rm p} ^{\delta} \tag{9}$$

and

$$\lambda = \lambda_0 + \epsilon \ R_{\rm p}.\tag{10}$$

The values resulting from these fittings are listed in Table 3. Next, we computed the parameters a_{Roche}, a_m , and $\tau_{\text{mig},m}$ for the 33 exoplanets in HZ with a hypothetical exomoon. In our calculations, we set $M_m = M_{Moon}$ and $\rho_m = 2500 \,\mathrm{kg}\,\mathrm{m}^{-3}$, which is a density intermediate between those of Io and Ganymede, but slightly lower than that of the Moon (that has a small iron core formed after the collision between Theia and the proto-Earth). The Roche limit, a_{Roche} , smoothly depends on ρ_m (Eq. 2). For example, assuming the Earth density $\rho_{\oplus} =$ 5513 kg m^{-3} , a_{Roche} would only be increased by 23%. Next, we set $a_m = a_{\text{crit},m}$ in Eq. 4 when the exomoon is stripped $(a_m > a_{crit,m})$ and used the value given by Eq. 3 when it falls back $(a_m < a_{crit,m})$. We did not calculate $\tau_{\text{mig},m}$ if $a_m < a_{\text{Roche}}$. We remark that, for multiplanetary systems, these estimates may not be entirely accurate because of the impact of the other planets.

The initial planetary spin P_0 is one of the greatest unknowns in such estimates. It is the orbital period, as opposed to the initial rotation period, which would be set by the last major impact. Figure 3 shows the orbital periods for all the exoplanets in our sample. Minimum and maximum $P_{\rm orb}$ range from 4.3 h (K2–137 b; Smith et al. 2018) to 24 yr (BD–05 5715 c; Montet et al. 2014), but they concentrate between 1 and 50 days. The range of $P_{\rm orb}$ for the exoplanets in HZ is narrower, from 4 to 130 days, with a median value of 31 days. For completeness, the median $P_{\rm orb}$ for inner and outer HZ planets are 7 days and 502 days, respectively.

Figure 4 depicts $a_{\text{crit},m}$ vs. a_{Roche} for the 33 potentially habitable planets in our sample. It shows the two

Table 3. Parameters for deriving k_2 (Eq. 8), Q (Eq. 9), and λ (Eq. 10).

$R_{\rm p}$	$k_{2,0}$	γ	Q_0	δ	λ_0	ϵ
		$[R_\oplus^{-1}]$	$[R_\oplus^{-\delta}]$			$[R_\oplus^{-1}]$
≤ 1.50	0.3	0	10^{2}	0	0.37	0
1.50 - 3.88	-0.456	0.504	14.019	4.846	0.458	-0.059
3.88 - 10.97	1.5	0	24.600	4.431	0.217	0.003
10.97 - 26	1.5	0	10^{6}	0	0.254	0

most extreme cases: $P_{0,1} = P_{orb}$ and $P_{0,2} = 3.0$ h. On the one hand, $P_{0,1}=P_{\rm orb}~(\tau_{{\rm mig},m}\,\propto\,Q~R_p^{27}M_p^8P_0^{-16})$ is the longest allowed value of P_0 because the exoplanet is tidally locked to its star. It is probably the most realistic case, as the habitable exoplanets in our sample orbit their stars under synchronous rotation. In particular, we computed the tidal locking time t_{lock} with "constantphase lag" (CPL, where the phase between the perturber and the tidal bulge is constant and insensitive to orbital and rotational frequencies) and "constant-time lag" (CTL, where the time interval between the perturber's passage and the tidal bulge is constant) models, using the publicly available EqTide⁷ code and the Proxima Centauri b system as a template (Barnes et al. 2016; Barnes 2017). We assumed zero eccentricity and obliquity, an initial planetary spin period of 3.0 h, a stellar Love number $k_{2,*} = 1.5$, a stellar gyration radius $\lambda_* = 0.1 \ (\lambda_{\odot} = 0.061, \text{ Bouvier 2013}), \text{ and the planetary}$ parameters k_2, Q, λ varying accordingly with R_p . We chose the minimum t_{lock} between the calculations from the CPL and the CTL models.

We found that only four habitable planets have t_{lock} between 0.1 Gyr and 1 Gyr, namely LP 834–042 d (Astudillo-Defru et al. 2017a), PM J11293-0127 d (Almenara et al. 2015; Sinukoff et al. 2016), HD 156384 C e (Anglada-Escudé et al. 2013), and CD–44 11909 c (Tuomi et al. 2014), and 9 greater than 1 Gyr, GJ 96 b (Hobson et al. 2018), CD–23 1056 b (Forveille et al. 2011), BD–06 1339 c (Lo Curto et al. 2013), Ross 1003 b (Trifonov et al. 2018), HD 147379 b (Reiners et al. 2018), V1428 Aql b (Kaminski et al. 2018), Kepler–186 f (Torres et al. 2015), and IL Aqr b and c (Trifonov et al. 2018). In this situation, all of them could host exomoons beyond the Roche limit after all the material in the protoplanetary disk is dissipated (10–30 Myr, Bertout 1989; Hartmann et al. 1998; Calvet et al. 2002).

⁷ https://github.com/RoryBarnes/EqTide

Figure 4. $a_{\text{crit},m}$ vs. a_{Roche} for the modeled exomoons around all the potentially habitable exoplanets in our sample. The circles and the squares (filled for primary transit exoplanet detection, empty for RV exoplanet detection) represent an exomoon being stripped away by the host star or falling back into the exoplanet, respectively. They are depicted with sizes proportional to their exoplanet hosts' masses in logarithmic scale. The black, dashed line corresponds to the exomoon tidal disruption limit, so no exomoon can exist below it. Top: $P_0 = P_{\text{orb}}$ for each planet. Bottom: $P_0 = 3.0$ h.

All other habitable planets get tidally locked in less than 90 Myr.

However, the moon migration timescales are too low. In this scenario, only for six habitable exoplanets the condition $a_m > a_{\rm Roche}$ holds. The migration timescales are greater than $t_{\rm H}$, being $t_{\rm H} = 14.4$ Gyr the Hubble time (which is slightly longer than the universe age at 13.8 Gyr), for four exoplanets (CD–23 1056 b, Forveille et al. 2011; Ross 1003 b, Haghighipour et al. 2010; Trifonov et al. 2018; IL Aqr b and c, Trifonov et al. 2018), whose properties are shown in the top part of Table 4 and discussed in Section 3.3. The four of them have $a_m > a_{\rm crit,m} > a_{\rm Roche}$, the largest planetary radii in the HZ $(R_p = 12-14 R_{\oplus})$, and $\tau_{\rm mig} \gg 0.8$ Gyr, which was the Earth's Late Heavy Bombardment duration (Fassett & Minton 2013; Norman & Nemchin 2014). In this $P_{0,1} = P_{\rm orb}$ scenario, the hypothetical moons around the other 29 planets would fall onto them on time scales much shorter than protoplanetary disk dissipation times under the EqTide layout, not counting potential viscosity in the protomoon disk (Lin & Papaloizou 1986; Pollack et al. 1996; Montmerle et al. 2006; Sasaki et al. 2010). The fifth and sixth habitable exoplanets for which $a_m > a_{\rm Roche}$, LP 834–042 b and BD–06 1339 c, have short $\tau_{\rm mig}$ of about 50 and 18 Myr, respectively, which are comparable to the typical protoplanetary disk dissipation time (Ida & Lin 2004; Hernández et al. 2007; Lambrechts & Johansen 2012).

On the other hand, $P_{0,2} = 3.0 \,\mathrm{h} \,(\tau_{\mathrm{mig},m} \propto Q \,R_p^{27} M_p^8)$ is the smallest value used by Piro (2018), similar to the shortest $P_{\rm orb}$ in our sample $(P_{0,2} \approx 4.13 \,\mathrm{h}, \,\mathrm{K2-137 \,b}),$ which is close to its star and far from the HZ boundary, and probably near the shortest allowed value of P_0 (see below). The value of 3.0 h is also lower than the sidereal rotation periods of Jupiter and Saturn (9.925 and $10.55 \,\mathrm{h}$, respectively), and might be unrealistic in the context of this work. Contrary to the $P_{0,1} = P_{orb}$ scenario, all moons are stripped away (which means that $\tau_{\rm mig,m} \propto Q R_p^{-5} M_p^{8/3} M_*^{-8/3}$), but with migration time scales greater than 0.8 Gyr for 26 planet-moon systems, including the four systems in Table 4. Of them, 15 planet-moon systems have $\tau_{\rm mig} > t_{\rm H}$. They are GJ 96 b (Hobson et al. 2018), CD-23 1056 b (Stassun et al. 2017), LP 834-042 b (Astudillo-Defru et al. 2017a), LP 834-042 d (Astudillo-Defru et al. 2017a), Kapteyn's starb (Anglada-Escudé et al. 2014), BD–06 1339 c (Lo Curto et al. 2013), PM J11293-0127 d (Almenara et al. 2015; Sinukoff et al. 2016), Ross 1003 b (Trifonov et al. 2018), HD 147379b (Reiners et al. 2018), HD 156384 Ce (Anglada-Escudé et al. 2013), CD-44 11909 c (Tuomi et al. 2014), V1428 Aql b (Kaminski et al. 2018), Kepler-186 f (Torres et al. 2015), and IL Agr b and c (Trifonov et al. 2018). However, except for nine cases, GJ 96b, CD-23 1056 b, BD-06 1339 c, Ross 1003 b, HD 147379 b, V1428 Aql b, Kepler–186 f, and IL Aqr b and c, all tidal locking times are shorter than $0.8 \,\mathrm{Gyr} \ (t_{\mathrm{lock}} \ll \tau_{\mathrm{mig},m})$, which actually transforms this scenario into the previous one, $P_{0,1} = P_{orb}$. For the four planets listed in Table 4, the migration time scales remain unscathed, as $a_m > a_{\operatorname{crit},m}$.

To better understand the values of the exomoon migration time scales, we calculated the maximum and minimum allowed $\tau_{\text{mig},m}$, i.e., we substituted $a_m = a_{\text{crit},m}$ and $a_m = a_{\text{Roche}}$ in Eq. 4, respectively. Figure 5 shows the range of $\tau_{\text{mig},m}$ for the potentially habitable

Figure 5. Maximum vs. minimum allowed values of exomoon migration time scales for the potentially habitable exoplanets in our sample. The points are depicted with sizes proportional to the exoplanets' masses in logarithmic scale. The black, dashed line corresponds to the most extreme case, $a_{\text{crit},m} = a_{\text{Roche}}$. The black, dotted, horizontal line shows the 0.8 Gyr boundary mentioned in the text (the Earth's Late Heavy Bombardment).

exoplanets in our sample. In principle, all the 24 exoplanets above the Earth's Late Heavy Bombardment line might host exomoons. However, the parameter space is only broad enough for the five exoplanets on the upper right side of Figure 5, which are the four planets listed in Table 4 and BD-06 1339 c. We compared our migration timescales for these five most extreme cases with the values resulting from applying the numerical technique of Piro (2018) by varying the planet-moon separation over an allowable range and the spin of the planet, and found that our values are slightly longer than, but comparable to, these. We kept our values for consistency.

3.3. Potentially habitable exomoons

As presented in Section 3.2, only four potentially habitable exoplanets might be able to host exomoons for time scales above 0.8 Gyr under the $P_0 = P_{\rm orb}$ scenario: CD–23 1056 b (a giant exoplanet around an active, metal-rich, M0.0 V star in Eridanus – Forveille et al. 2011), IL Aqr b,c (two giant exoplanets around a nearby M4.0 V star with a four-planet system – Delfosse et al. 1998; Marcy et al. 1998, 2001; Trifonov et al. 2018), and Ross 1003 b (an eccentric, Saturn-mass planet around a nearby M4.0 V star with a multiplanetary system⁸ – Haghighipour et al. 2010, Trifonov et al. 2018). The four planets are relatively large and have minimum masses between 0.30 and 2.39 M_{Jup} (i.e., between 97 and 761 M_{\oplus}).

We analyzed the effects of tidal heating Q_{tidal} (e.g. Barnes et al. 2008; Jackson et al. 2008a,b,c) on the four exomoons to assess if their mantles would melt, which, for a rocky body, occurs if $Q_{\rm tidal} \gtrsim 100 \,{\rm TW}$ (Moore et al. 2007; Lainey et al. 2009; Veeder et al. 2012: Driscoll & Barnes 2015b). Barnes & Heller (2013) defined four categories of Earth-mass exoplanets in the HZ depending on the tidal heating that they experience: "Earth twins" ($Q_{\text{tidal}} < 20 \text{ TW}$), "Tidal Earths" $(20 \,\mathrm{TW} < \mathrm{Q_{tidal}} < 1020 \,\mathrm{TW}),$ "Super-Ios" (1020 TW < $Q_{tidal} < 134000 \text{ TW}$), and "Tidal Venuses" ($Q_{tidal} >$ 134000 TW). We estimated Q_{tidal} for each exoplanetexomoon system by means of the publicly available VPLanet⁹ code (Barnes et al. 2016, 2018, 2019), modifying the example IoHeat. So far, we had assumed zero eccentricity and obliquity, as in Piro (2018), in which case tidal heating can only come from rotation, assuming that it is not synchronous. Hence, we relaxed this condition and set a small value for the eccentricity e = 0.01. We also assumed that the exomoon is tidally locked to the exoplanet. As Q_{tidal} is directly proportional to the moon's size, we took a Ganymede-like exomoon to estimate an upper limit for the tidal heating (Ganymede is the biggest solar system moon)¹⁰. We set the exomoon's semimajor axis a_m to the mean distance between the Roche limit and the Hill radius from Table 4. We let each system evolve for $t = 10^4$ years and found that only a potential exomoon around IL Agr c might reach the mantle melting threshold. We report the upper limit for Q_{tidal} in Table 4.

Some of these moons might be detected with current and near-future technology. The detectability of moons by the transit method (or, more likely, photocentric transit timing variation) has been extensively and intensively discussed in the literature (Sartoretti & Schneider 1999; Barnes & O'Brien 2002; Szabó et al. 2006; Pont et al. 2007; Kipping 2009; Kipping et al. 2014; Hippke & Angerhausen 2015; Simon et al. 2015; Perryman 2018). The ESA space mission (CHEOPS; Fortier et al. 2014) might discover moons with the transit method around the brightest M dwarfs, while, if the moons were massive and dense enough, ESPRESSO at the Very Large Telescope (Pepe et al. 2010) could also detect the modification of the amplitude and signature of the Rossiter–McLaughlin effect as in Zhuang et al. (2012). Unfortunately, none of the four planets in the

⁸ In the last stages of revision of this paper, we became aware of an independent study of the exomoon hypothesis around Ross 1003, by T. Trifonov et al. (in preparation).

 $^{^9}$ https://github.com/VirtualPlanetaryLaboratory/vplanet $^{10}~M_{\rm Gan}=1.48\,\times\,10^{23}\,\rm kg;~R_{\rm Gan}=2.6341\,\times\,10^6\,\rm m$

Planet	GJ	a	$P_{\rm orb}$	M_*	$M_{\rm p}$	$R_{\rm p}$	a_m	$a_{\rm Roche}$	$a_{\operatorname{crit},m}$	$\tau_{\mathrm{mig},m}$	$P_{\mathrm{orb},m}$	$Q_{\rm tidal}$
		[au]	[days]	$[M_\odot]$	$[M_\oplus]$	$[R_\oplus]$	$[a_{\mathrm{M}}]$	$[a_{\mathrm{M}}]$	$[a_{\mathrm{M}}]$	[Gyr]	[days]	[TW]
CD-23 1056 b		0.25	53.435	0.62	> 114.0	(> 13.2)	2.72	0.23	2.72	$> t_{\rm H}$	≤ 11.0	$\lesssim 7$
Ross 1003 b $$	1148	0.17	41.38	0.35	> 96.7	(> 12.0)	2.08	0.21	2.08	$> t_{\rm H}$	≤ 8.0	$\lesssim 32$
IL Aqr b	876	0.21	61.082	0.34	> 760.9	(> 13.3)	5.36	0.43	5.36	$> t_{\rm H}$	≤ 11.8	$\lesssim 5$
IL Aqr c	876	0.13	30.126	0.34	> 241.5	(> 14.0)	2.29	0.29	2.29	$> t_{\rm H}$	≤ 5.9	$\lesssim 126$

Table 4. Potentially habitable exoplanets that can host exomoons.

stars' HZ with long moon migration times transits. If the NASA space mission *TESS*, currently in operation (Ricker et al. 2014), discovered additional M-dwarf planets in this class, but transiting, they should be a high priority target for ESPRESSO or any other ultra-stable spectrograph with cm s⁻¹ accuracy at a large telescope.

Regarding the potential habitability of these Moonmass exomoons, they may not retain an atmosphere at 300 K due to their low gravities. As Titan is less than twice as massive $(1.83 M_{\rm M})$, increasing the exomoon mass to Titan's would not significantly affect our results; the condition $a_m > a_{crit,m}$ for the four systems in Table 4 would still be met. The minimum mass to hold onto an atmosphere in the habitable zone of a star is not known, but is probably close to Mars' $(8.71 M_{\rm M})$ Pollack et al. 1987; Selsis et al. 2007). If we increased the masses of our putative exomoons to Mars' mass, then, for the four systems in Table 4, $\tau_{\text{mig},m}$ would be of the order of 5 million years for CD-23 1056 b and Ross 1003 b, and would lie above the Hubble time for IL Agr b anc c. These four systems would remain near the upper right corner of Figure 5, indicating that their $\tau_{\text{mig},m}$ values are sufficiently long to still permit a long lifetime.

4. CONCLUSIONS

First of all, we compiled orbital, astrometric, photometric, and basic astrophysical parameters of a comprehensive list of 205 exoplanets around 109 M dwarfs discovered with the radial velocity or transit methods. We calculated the most probable masses and radii of 192 planets using the models of Chen & Kipping (2017), and assumed literature values for the other 13 planets with both radial velocity and transit measurements. For all 109 host stars, we derived luminosities, effective temperatures, and masses from public photometric catalogs, BT-Settl CIFIST models of the Lyon group, the Virtual Observatory Spectral energy distribution Analyzer, a near-infrared absolute magnitude-mass relation, and, except for only two cases, *Gaia* parallaxes.

With the available data, for every star we outlined the inner and outer HZ boundaries from a one-dimensional climate model. There are 33 known planets that orbit within the HZ limits of M dwarfs. Despite being tidally locked to their (active) host stars in most cases, it may still be possible for these planets to retain the conditions for habitability. In this scenario, even if most of the planets in the HZ might not host liquid water, because they are icy Neptunians, some of their hypothetical exomoons could instead.

For each of the 33 planets, we modeled noneccentric, nonobliquous moons, and computed moon migration timescales for two different scenarios: strip-away from the planet, and fall-back onto the planet. We also considered two extreme cases for the initial planetary spin: a maximum value corresponding to the orbital period (i.e. the planet is tidally locked), and a minimum value of 3 h. In the $P_0 = P_{orb}$ scenario, all hypothetical moons fall back onto their planets after short time scales, except for four planets whose migration time scales are longer than the Hubble time (Ross 1003b, IL Aqrb and c, and CD-23 1056 b). Only for these cases a hypothetical moon could be stable for time scales longer than protoplanetary disk dissipation times. We also explored the effects of tidal heating in the exomoons, in particular, if their mantles would partially melt, similar to Io in the solar system. All our code is publicly available in a GitHub repository¹¹.

Our planet compilation dates back to 2019 March 19. As a future work, a new M-dwarf exoplanet list should be updated with recent discoveries, such as Teegarden's b and c (Zechmeister et al. 2019) and, especially, the transiting warm Earth-mass planet GJ 357 b (Luque et al. 2019). Besides, the stellar mass determination could be improved with the new luminosityradius-mass relation of Schweitzer et al. (2019) or, more interestingly, for studying the long-term stability of hypothetical moons, direct N-body analyses could be carried out.

H.M.-R. acknowledges support from a PITT PACC, a Zaccheus Daniel and a Kenneth P. Dietrich School of Arts & Sciences Predoctoral Fellowship from the Department of Physics and Astronomy at the University

¹¹ https://github.com/hector-mr/Exomoons_HZ_Mdwarfs/

of Pittsburgh. J.A.C. and C.C. acknowledge financial support from the Agencia Estatal de Investigación of the Ministerio de Ciencia, Innovación y Universidades and the European FEDER/ERF funds through projects AYA2016-79425-C3-2-P,BES-2017-080769, and MDM-2017-0737. R.B. was supported by the NASA Virtual Planetary Laboratory Team through Grant No. 80NSSC18K0829. This work also benefited from participation in the NASA Nexus for Exoplanet Systems Science research coordination network. This research has made use of NASA's Astrophysics Data System Bibliographic Services, the VizieR catalog access tool, VOSA,

- Affer, L., Micela, G., Damasso, M., et al. 2016, A&A, 593, A117
- Affer, L., Damasso, M., Micela, G., et al. 2019, A&A, 622, A193
- Aggarwal, H. R., & Oberbeck, V. R. 1974, ApJ, 191, 577
- Agol, E., Jansen, T., Lacy, B., Robinson, T. D., & Meadows, V. 2015, ApJ, 812, 5
- Ahn, C. P., Alexandroff, R., Allende Prieto, C., et al. 2012, ApJS, 203, 21
- Aksnes, K., & Franklin, F. A. 2001, AJ, 122, 2734
- Almenara, J. M., Astudillo-Defru, N., Bonfils, X., et al. 2015, A&A, 581, L7
- Angelo, I., Rowe, J. F., Howell, S. B., et al. 2017, AJ, 153, 162
- Anglada-Escudé, G., Boss, A. P., Weinberger, A. J., et al. 2012, ApJ, 746, 37
- Anglada-Escudé, G., Tuomi, M., Gerlach, E., et al. 2013, A&A, 556, A126
- Anglada-Escudé, G., Arriagada, P., Tuomi, M., et al. 2014, MNRAS, 443, L89
- Anglada-Escudé, G., Amado, P. J., Barnes, J., et al. 2016, Nature, 536, 437
- Apps, K., Clubb, K. I., Fischer, D. A., et al. 2010, PASP, 122, 156
- Armstrong, J. C., Barnes, R., Domagal-Goldman, S., et al. 2014, Astrobiology, 14, 277
- Artigau, É., Kouach, D., Donati, J.-F., et al. 2014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, SPIRou: the near-infrared spectropolarimeter/high-precision velocimeter for the Canada-France-Hawaii telescope, 914715
- Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
- Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M., et al. 2018, AJ, 156, 123

which is developed under the Spanish Virtual Observatory project supported from the Spanish MINECO through grant AYA2017-84089, and the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Software: SciPy (Virtanen et al. 2019), Matplotlib (Hunter 2007), IPython (Perez & Granger 2007), Numpy (van der Waltet al. 2011), Astropy (Astropy Collaboration et al. 2013, 2018), EqTide (Barnes et al. 2016; Barnes 2017), VPLanet (Barnes et al. 2016, 2018, 2019).

REFERENCES

- Astudillo-Defru, N., Forveille, T., Bonfils, X., et al. 2017a, A&A, 602, A88
- Astudillo-Defru, N., Díaz, R. F., Bonfils, X., et al. 2017b, A&A, 605, L11
- Bakos, G. Á., Bayliss, D., Bento, J., et al. 2018, arXiv e-prints, arXiv:1812.09406
- Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42
- Barnes, J. W., & O'Brien, D. P. 2002, ApJ, 575, 1087
- Barnes, R. 2017, Celestial Mechanics and Dynamical Astronomy, 129, 509
- Barnes, R., & Heller, R. 2013, Astrobiology, 13, 279
- Barnes, R., Meadows, V. S., & Evans, N. 2015, ApJ, 814, 91
- Barnes, R., Mullins, K., Goldblatt, C., et al. 2013, Astrobiology, 13, 225
- Barnes, R., Raymond, S. N., Jackson, B., & Greenberg, R. 2008, Astrobiology, 8, 557
- Barnes, R., Deitrick, R., Luger, R., et al. 2016, ArXiv e-prints, arXiv:1608.06919
- Barnes, R., Luger, R., Deitrick, R., et al. 2018, in AAS/Division for Planetary Sciences Meeting Abstracts, Vol. 50, AAS/Division for Planetary Sciences Meeting Abstracts #50, 413.03
- Barnes, R., Luger, R., Deitrick, R., et al. 2019, ArXiv e-prints, arXiv:1905.06367
- Bayliss, D., Gillen, E., Eigmüller, P., et al. 2018, MNRAS, 475, 4467
- Bayo, A., Rodrigo, C., Barrado y Navascués, D., et al. 2008, A&A, 492, 277
- Ben-Jaffel, L., & Ballester, G. E. 2014, ApJL, 785, L30
- Benedict, G. F., Henry, T. J., Franz, O. G., et al. 2016, AJ, 152, 141
- Bertout, C. 1989, ARA&A, 27, 351

Astudillo-Defru, N., Bonfils, X., Delfosse, X., et al. 2015, A&A, 575, A119

- Berzosa Molina, J., Rossi, L., & Stam, D. M. 2018, A&A, 618, A162
- Bianchi, L., Herald, J., Efremova, B., et al. 2011, Ap&SS, 335, 161
- Biddle, L. I., Pearson, K. A., Crossfield, I. J. M., et al. 2014, MNRAS, 443, 1810
- Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, AJ, 139, 2679
- Bonfils, X., Forveille, T., Delfosse, X., et al. 2005, A&A, 443, L15
- Bonfils, X., Mayor, M., Delfosse, X., et al. 2007, A&A, 474, 293
- Bonfils, X., Gillon, M., Forveille, T., et al. 2011, A&A, 528, A111
- Bonfils, X., Gillon, M., Udry, S., et al. 2012, A&A, 546, A27
- Bonfils, X., Delfosse, X., Udry, S., et al. 2013a, A&A, 549, A109
- Bonfils, X., Lo Curto, G., Correia, A. C. M., et al. 2013b, A&A, 556, A110
- Bonfils, X., Almenara, J.-M., Cloutier, R., et al. 2018a, A&A, 618, A142
- Bonfils, X., Astudillo-Defru, N., Díaz, R., et al. 2018b, A&A, 613, A25
- —. 2018c, A&A, 613, A25
- Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&AS, 143, 33
- Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 728, 117
- Bouvier, J. 2013, in EAS Publications Series, Vol. 62, EAS Publications Series, ed. P. Hennebelle & C. Charbonnel, 143–168
- Boyajian, T. S., von Braun, K., van Belle, G., et al. 2012, ApJ, 757, 112
- Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2006, Icarus, 183, 491
- Butler, R. P., Vogt, S. S., Marcy, G. W., et al. 2004, ApJ, 617, 580
- Butler, R. P., Vogt, S. S., Laughlin, G., et al. 2017, AJ, 153, 208
- Caballero, J. A. 2018, Geosciences, 8, 362
- Cabrera, J., & Schneider, J. 2007, Astronomical Society of the Pacific Conference Series, Vol. 366, Detecting Exomoons, ed. C. Afonso, D. Weldrake, & T. Henning, 242
- Calvet, N., D'Alessio, P., Hartmann, L., et al. 2002, ApJ, 568, 1008
- Campanella, G. 2009, arXiv e-prints, arXiv:0910.0484
- Chabrier, G. 2003, PASP, 115, 763
- Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, ArXiv e-prints, arXiv:1612.05560

- Charbonneau, D., Berta, Z. K., Irwin, J., et al. 2009, Nature, 462, 891
- Chen, J., & Kipping, D. 2017, ApJ, 834, 17
- Clausen, N., & Tilgner, A. 2015, A&A, 584, A60
- Cloutier, R., Astudillo-Defru, N., Doyon, R., et al. 2017, A&A, 608, A35
- Cnossen, I., Sanz-Forcada, J., Favata, F., et al. 2007, Journal of Geophysical Research (Planets), 112, E02008
- Cutri, R. M., & et al. 2012, VizieR Online Data Catalog, 2311
- —. 2014, VizieR Online Data Catalog, 2328
- David, T. J., Hillenbrand, L. A., Petigura, E. A., et al. 2016, Nature, 534, 658
- Deitrick, R., Barnes, R., Bitz, C., et al. 2018, AJ, 155, 266
- Delfosse, X., Forveille, T., Mayor, M., et al. 1998, A&A, 338, L67
- Delfosse, X., Forveille, T., Ségransan, D., et al. 2000, A&A, 364, 217
- Delfosse, X., Bonfils, X., Forveille, T., et al. 2013, A&A, 553, A8
- Dickey, J. O., Marcus, S. L., Hide, R., Eubanks, T. M., & Boggs, D. H. 1994, J. Geophys. Res., 99, 23
- Díez Alonso, E., Suárez Gómez, S. L., González Hernández, J. I., et al. 2018a, MNRAS, 476, L50
- Díez Alonso, E., González Hernández, J. I., Suárez Gómez, S. L., et al. 2018b, MNRAS, 480, L1
- Díez Alonso, E., Caballero, J. A., Montes, D., et al. 2019, A&A, 621, A126
- Dittmann, J. A., Irwin, J. M., Charbonneau, D., et al. 2017, Nature, 544, 333
- Dole, S. H. 1964, Habitable planets for man, New York, Blaisdell Pub. Co. 1st ed.
- Domingos, R. C., Winter, O. C., & Yokoyama, T. 2006, MNRAS, 373, 1227
- Dorn, C., Venturini, J., Khan, A., et al. 2017, A&A, 597, A37
- Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45
- Dressing, C. D., Vanderburg, A., Schlieder, J. E., et al. 2017, AJ, 154, 207
- Driscoll, P. E., & Barnes, R. 2015a, Astrobiology, 15, 739
 —. 2015b, Astrobiology, 15, 739
- Fabrycky, D. C., Ford, E. B., Steffen, J. H., et al. 2012, ApJ, 750, 114
- Fassett, C. I., & Minton, D. A. 2013, Nature Geoscience, 6, 520
- Feinstein, A. D., Schlieder, J. E., Livingston, J. H., et al. 2019, AJ, 157, 40
- Forgan, D., & Dobos, V. 2016, MNRAS, 457, 1233
- Forgan, D. H. 2017, MNRAS, 470, 416

- Fortier, A., Beck, T., Benz, W., et al. 2014, in Proc. SPIE, Vol. 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, 91432J
- Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661
- Forveille, T., Bonfils, X., Lo Curto, G., et al. 2011, A&A, 526, A141
- France, K., Arulanantham, N., Fossati, L., et al. 2018, ApJS, 239, 16
- Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1
- Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
- Gaidos, E., Fischer, D. A., Mann, A. W., & Howard, A. W. 2013, ApJ, 771, 18
- Gaidos, E., & Mann, A. W. 2014, ApJ, 791, 54
- Gillon, M., Triaud, A. H. M. J., Demory, B.-O., et al. 2017, Nature, 542, 456
- Goldreich, P., & Soter, S. 1966, Icarus, 5, 375
- Gould, A., Bahcall, J. N., & Flynn, C. 1996, ApJ, 465, 759
- Green, J. A. M., Huber, M., Waltham, D., Buzan, J., & Wells, M. 2017, Earth and Planetary Science Letters, 461, 46
- Günther, M. N., Pozuelos, F. J., Dittmann, J. A., et al. 2019, Nature Astronomy, 3, 1157
- Haghighipour, N., Vogt, S. S., Butler, R. P., et al. 2010, ApJ, 715, 271
- Han, C., & Han, W. 2002, ApJ, 580, 490
- Harpsøe, K. B. W., Hardis, S., Hinse, T. C., et al. 2013, A&A, 549, A10
- Hart, M. H. 1978, Icarus, 33, 23
- —. 1979, Icarus, 37, 351
- Hartman, J. D., Bayliss, D., Brahm, R., et al. 2015, AJ, 149, 166
- Hartmann, L., Calvet, N., Gullbring, E., & D'Alessio, P. 1998, ApJ, 495, 385
- Heller, R. 2012, A&A, 545, L8

 2018, Detecting and Characterizing Exomoons and Exorings. Handbook of Exoplanets, Springer International Publishing AG, part of Springer Nature, 2018, id.35, 35

- Heller, R., & Barnes, R. 2013, Astrobiology, 13, 18
- Heller, R., Barnes, R., & Leconte, J. 2011a, Origins of Life and Evolution of the Biosphere, 41, 539
- Heller, R., Leconte, J., & Barnes, R. 2011b, A&A, 528, A27
- Heller, R., Rodenbeck, K., & Bruno, G. 2019, A&A, 624, A95
- Heller, R., Williams, D., Kipping, D., et al. 2014, Astrobiology, 14, 798

- Henden, A. A., Templeton, M., Terrell, D., et al. 2016, VizieR Online Data Catalog, 2336
- Heng, K., & Kopparla, P. 2012, ApJ, 754, 60
- Heng, K., Menou, K., & Phillipps, P. J. 2011, MNRAS, 413, 2380
- Henning, W. G., O'Connell, R. J., & Sasselov, D. D. 2009, ApJ, 707, 1000
- Henry, T. J., Jao, W.-C., Subasavage, J. P., et al. 2006, AJ, 132, 2360
- Hernández, J., Hartmann, L., Megeath, T., et al. 2007, ApJ, 662, 1067
- Hill, M. L., Kane, S. R., Seperuelo Duarte, E., et al. 2018, ApJ, 860, 67
- Hinkel, N. R., & Kane, S. R. 2013, ApJ, 774, 27
- Hippke, M., & Angerhausen, D. 2015, ApJ, 810, 29
- Hirano, T., Fukui, A., Mann, A. W., et al. 2016, ApJ, 820, 41
- Hirano, T., Dai, F., Gandolfi, D., et al. 2018, AJ, 155, 127
- Hobson, M. J., Díaz, R. F., Delfosse, X., et al. 2018, A&A, 618, A103
- Hobson, M. J., Delfosse, X., Astudillo-Defru, N., et al. 2019, A&A, 625, A18
- Høg, E., Fabricius, C., Makarov, V. V., et al. 2000, A&A, 355, L27
- Howard, A. W., Johnson, J. A., Marcy, G. W., et al. 2010, ApJ, 721, 1467
- Howard, W. S., Tilley, M. A., Corbett, H., et al. 2018, ApJL, 860, L30
- Hunter, J. D. 2007, Computing in Science and Engineering, 9, 90
- Ida, S., & Lin, D. N. C. 2004, ApJ, 604, 388
- Jackson, B., Barnes, R., & Greenberg, R. 2008a, MNRAS, 391, 237
- Jackson, B., Greenberg, R., & Barnes, R. 2008b, ApJ, 678, 1396
- —. 2008c, ApJ, 681, 1631
- Jeffers, S. V., Schöfer, P., Lamert, A., et al. 2018, A&A, 614, A76
- Johns, D., Marti, C., Huff, M., et al. 2018, ApJS, 239, 14
- Johnson, J. A., Butler, R. P., Marcy, G. W., et al. 2007, ApJ, 670, 833
- Johnson, J. A., Howard, A. W., Marcy, G. W., et al. 2010, PASP, 122, 149
- Johnson, J. A., Gazak, J. Z., Apps, K., et al. 2012, AJ, 143, 111
- Jontof-Hutter, D., Rowe, J. F., Lissauer, J. J., Fabrycky, D. C., & Ford, E. B. 2015, Nature, 522, 321
- Joshi, M. 2003, Astrobiology, 3, 415
- Joshi, M. M., Haberle, R. M., & Reynolds, R. T. 1997, Icarus, 129, 450

- Kaltenegger, L. 2010, ApJL, 712, L125
- Kaminski, A., Trifonov, T., Caballero, J. A., et al. 2018, A&A, 618, A115
- Kanodia, S., Wolfgang, A., Stefansson, G. K., Ning, B., & Mahadevan, S. 2019, ApJ, 882, 38
- Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108
- Kipping, D. M. 2009, MNRAS, 392, 181
- Kipping, D. M., Bakos, G. Á., Buchhave, L., Nesvorný, D., & Schmitt, A. 2012, ApJ, 750, 115
- Kipping, D. M., Fossey, S. J., & Campanella, G. 2009, MNRAS, 400, 398
- Kipping, D. M., Hartman, J., Buchhave, L. A., et al. 2013, ApJ, 770, 101
- Kipping, D. M., Nesvorný, D., Buchhave, L. A., et al. 2014, ApJ, 784, 28
- Kipping, D. M., Schmitt, A. R., Huang, X., et al. 2015, ApJ, 813, 14
- Kite, E. S., Gaidos, E., & Manga, M. 2011, ApJ, 743, 41
- Koll, D. D. B., & Abbot, D. S. 2016, ApJ, 825, 99
- Kopparapu, R. K., Ramirez, R. M., Schottelkotte, J., et al. 2014, ApJL, 787, L29
- Kopparapu, R. K., Ramirez, R., Kasting, J. F., et al. 2013, ApJ, 765, 131
- Kreidberg, L., Luger, R., & Bedell, M. 2019, ApJL, 877, L15
- Lainey, V., Arlot, J.-E., Karatekin, Ö., & van Hoolst, T. 2009, Nature, 459, 957
- Lambeck, K. 1977, Philosophical Transactions of the Royal Society of London Series A, 287, 545
- Lambrechts, M., & Johansen, A. 2012, A&A, 544, A32
- Lammer, H., Lichtenegger, H. I. M., Kulikov, Y. N., et al. 2007, Astrobiology, 7, 185
- Lammer, H., Bredehöft, J. H., Coustenis, A., et al. 2009, A&A Rv, 17, 181
- Laskar, J., Joutel, F., & Robutel, P. 1993, Nature, 361, 615
- Laskar, J., Robutel, P., Joutel, F., et al. 2004, A&A, 428, 261
- Léger, A., Selsis, F., Sotin, C., et al. 2004, Icarus, 169, 499
- Leggett, S. K., Allard, F., Geballe, T. R., Hauschildt, P. H., & Schweitzer, A. 2001, ApJ, 548, 908
- Lin, D. N. C., & Papaloizou, J. 1986, ApJ, 309, 846
- Lissauer, J. J., Fabrycky, D. C., Ford, E. B., et al. 2011, Nature, 470, 53
- Livingston, J. H., Dai, F., Hirano, T., et al. 2019, MNRAS, 484, 8
- Lo Curto, G., Mayor, M., Benz, W., et al. 2013, A&A, 551, A59
- Loeb, A., Batista, R. A., & Sloan, D. 2016, JCAP, 8, 040

- Lourens, L. J., Wehausen, R., & Brumsack, H. J. 2001, Nature, 409, 1029
- Loyd, R. O. P., France, K., Youngblood, A., et al. 2018, ApJ, 867, 71
- Luger, R., Sestovic, M., Kruse, E., et al. 2017, Nature Astronomy, 1, 0129
- Luque, R., Nowak, G., Pallé, E., et al. 2018, A&A, 620, A171
- Luque, R., Pallé, E., Kossakowski, D., et al. 2019, Astronomy and Astrophysics, 628, A39
- Maciejewski, G., Niedzielski, A., Nowak, G., et al. 2014, AcA, 64, 323
- Makarov, V. V., & Efroimsky, M. 2014, ApJ, 795, 7
- Maldonado, J., Scandariato, G., Stelzer, B., et al. 2017, A&A, 598, A27
- Mann, A. W., Gaidos, E., Mace, G. N., et al. 2016a, ApJ, 818, 46
- Mann, A. W., Newton, E. R., Rizzuto, A. C., et al. 2016b, AJ, 152, 61
- Mann, A. W., Dupuy, T., Kraus, A. L., et al. 2019, ApJ, 871, 63
- Marcy, G. W., Butler, R. P., Fischer, D., et al. 2001, ApJ, 556, 296
- Marcy, G. W., Butler, R. P., Vogt, S. S., Fischer, D., & Lissauer, J. J. 1998, ApJ, 505, L147
- Matsumura, S., Peale, S. J., & Rasio, F. A. 2010, ApJ, 725, 1995
- Ment, K., Dittmann, J. A., Astudillo-Defru, N., et al. 2019, AJ, 157, 32
- Miller-Ricci, E., Seager, S., & Sasselov, D. 2009, ApJ, 690, 1056
- Montet, B. T., Crepp, J. R., Johnson, J. A., Howard, A. W., & Marcy, G. W. 2014, ApJ, 781, 28
- Montmerle, T., Augereau, J.-C., Chaussidon, M., et al. 2006, Earth Moon and Planets, 98, 39
- Moore, W. B., Schubert, G., Anderson, J. D., & Spencer, J. R. 2007, The interior of Io, ed. R. M. C. Lopes & J. R. Spencer, 89
- Morton, T. D., Bryson, S. T., Coughlin, J. L., et al. 2016, ApJ, 822, 86
- Muirhead, P. S., Hamren, K., Schlawin, E., et al. 2012a, ApJL, 750, L37
- Muirhead, P. S., Johnson, J. A., Apps, K., et al. 2012b, ApJ, 747, 144
- Muirhead, P. S., Mann, A. W., Vanderburg, A., et al. 2015, ApJ, 801, 18
- Mullan, D. J., & Bais, H. P. 2018, ApJ, 865, 101
- Murray, C. D., & Dermott, S. F. 1999, Solar System dynamics
- Neron de Surgy, O., & Laskar, J. 1997, A&A, 318, 975

- Norman, M. D., & Nemchin, A. A. 2014, Earth and Planetary Science Letters, 388, 387
- Noyola, J. P., Satyal, S., & Musielak, Z. E. 2014, ApJ, 791, 25
- Nutzman, P., & Charbonneau, D. 2008, PASP, 120, 317
- Obermeier, C., Henning, T., Schlieder, J. E., et al. 2016, AJ, 152, 223
- Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23
- Peale, S. J. 1977a, in Proceedings of IAU Colloq. 28, held in Ithaca, NY, August 1974. University of Arizona Press, p.87, ed. J. A. Burns, 87–111
- Peale, S. J. 1977b, Annales de Geophysique, 33, 23
- Pepe, F. A., Cristiani, S., Rebolo Lopez, R., et al. 2010, in Proc. SPIE, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 77350F
- Pepper, J., Gillen, E., Parviainen, H., et al. 2017, AJ, 153, 177
- Perez, F., & Granger, B. E. 2007, Computing in Science and Engineering, 9, 21
- Perger, M., Ribas, I., Damasso, M., et al. 2017, A&A, 608, A63
- Perger, M., Scandariato, G., Ribas, I., et al. 2019, A&A, 624, A123
- Perryman, M. 2018, The Exoplanet Handbook, 2nd Edition, Cambridge University Press
- Peters, M. A., & Turner, E. L. 2013, ApJ, 769, 98
- Pierrehumbert, R., & Gaidos, E. 2011, ApJL, 734, L13
- Pinamonti, M., Damasso, M., Marzari, F., et al. 2018, A&A, 617, A104
- Piro, A. L. 2018, AJ, 156, 54
- Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
- Pollack, J. B., Kasting, J. F., Richardson, S. M., & Poliakoff, K. 1987, Icarus, 71, 203
- Pont, F., Gilliland, R. L., Moutou, C., et al. 2007, A&A, 476, 1347
- Quintana, E. V., Barclay, T., Raymond, S. N., et al. 2014, Science, 344, 277
- Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2014, in Proc. SPIE, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, 91471F
- Ramírez, R. M. 2018, Geosciences, 8, 280
- Raymond, S. N., Quinn, T., & Lunine, J. I. 2004, Icarus, 168, 1
- Reid, I. N., & Gizis, J. E. 1997, AJ, 113, 2246
- Reid, I. N., & Hawley, S. L. 2005, New Light on Dark Stars Red Dwarfs, Low-Mass Stars, Brown Stars. Praxis Publishing Ltd, doi:10.1007/3-540-27610-6

- Reiners, A., Ribas, I., Zechmeister, M., et al. 2018, A&A, 609, L5
- Renaud, J. P., & Henning, W. G. 2018, ApJ, 857, 98
- Reynolds, R. T., McKay, C. P., & Kasting, J. F. 1987, Advances in Space Research, 7, 125
- Ribas, I., Tuomi, M., Reiners, A., et al. 2018, Nature, 563, 365
- Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Proc. SPIE, 914320
- Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Telescopes, Instruments, and Systems, 1, 014003
- Robertson, P., Endl, M., Cochran, W. D., MacQueen, P. J., & Boss, A. P. 2013, ApJ, 774, 147
- Rodríguez, R., Schmidt, S. J., Jayasinghe, T., et al. 2018, Research Notes of the American Astronomical Society, 2, 8
- Rogers, L. A. 2015, ApJ, 801, 41
- Rowe, J. F., Bryson, S. T., Marcy, G. W., et al. 2014, ApJ, 784, 45
- Sahlmann, J., Lazorenko, P. F., Ségransan, D., et al. 2016, A&A, 595, A77
- Sanchís-Ojeda, R., Rappaport, S., Pallè, E., et al. 2015, ApJ, 812, 112
- Sarkis, P., Henning, T., Kürster, M., et al. 2018, AJ, 155, 257
- Sartoretti, P., & Schneider, J. 1999, A&AS, 134, 553
- Sasaki, T., & Barnes, J. W. 2014, International Journal of Astrobiology, 13, 324
- Sasaki, T., Barnes, J. W., & O'Brien, D. P. 2012, ApJ, 754, 51
- Sasaki, T., Stewart, G. R., & Ida, S. 2010, ApJ, 714, 1052
- Scalo, J., Kaltenegger, L., Segura, A. G., et al. 2007, Astrobiology, 7, 85
- Schlieder, J. E., Crossfield, I. J. M., Petigura, E. A., et al. 2016, ApJ, 818, 87
- Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., & Zolotukhin, I. 2011, A&A, 532, A79
- Schweitzer, A., Passegger, V. M., Cifuentes, C., et al. 2019, A&A, 625, A68
- Seager, S., Kuchner, M., Hier-Majumder, C. A., & Militzer, B. 2007, ApJ, 669, 1279
- Segura, A., Kasting, J. F., Meadows, V., et al. 2005, Astrobiology, 5, 706
- Segura, A., Walkowicz, L. M., Meadows, V., Kasting, J., & Hawley, S. 2010, Astrobiology, 10, 751
- Selsis, F., Kasting, J. F., Levrard, B., et al. 2007, A&A, 476, 1373

- Selsis, F., Wordsworth, R. D., & Forget, F. 2011, A&A, 532, A1
- Shoji, D., & Kurita, K. 2014, ApJ, 789, 3
- Showman, A. P., & Kaspi, Y. 2013, ApJ, 776, 85
- Showman, A. P., & Polvani, L. M. 2011, ApJ, 738, 71
- Simon, A., Szatmáry, K., & Szabó, G. M. 2007, A&A, 470, 727
- Simon, A. E., Szabó, G. M., Kiss, L. L., Fortier, A., & Benz, W. 2015, PASP, 127, 1084
- Sinukoff, E., Howard, A. W., Petigura, E. A., et al. 2016, ApJ, 827, 78
- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
- Smith, A. M. S., Cabrera, J., Csizmadia, S., et al. 2018, MNRAS, 474, 5523
- Sotin, C., Grasset, O., & Mocquet, A. 2007, Icarus, 191, 337
- Southworth, J., Mancini, L., Madhusudhan, N., et al. 2017, AJ, 153, 191
- Stassun, K. G., Collins, K. A., & Gaudi, B. S. 2017, AJ, 153, 136
- Stephenson, C. B. 1986, AJ, 91, 144
- Suárez Mascareño, A., González Hernández, J. I., Rebolo, R., et al. 2017, A&A, 605, A92
- Sullivan, P. W., Winn, J. N., Berta-Thompson, Z. K., et al. 2015, ApJ, 809, 77
- Szabó, G. M., Szatmáry, K., Divéki, Z., & Simon, A. 2006, A&A, 450, 395
- Szabó, R., Szabó, G. M., Dálya, G., et al. 2013, A&A, 553, A17
- Tarter, J. C., Backus, P. R., Mancinelli, R. L., et al. 2007, Astrobiology, 7, 30
- Teachey, A., & Kipping, D. M. 2018, Science Advances, 4, eaav1784
- Teachey, A., Kipping, D. M., & Schmitt, A. R. 2018, AJ, 155, 36
- Tonry, J. L., Stubbs, C. W., Lykke, K. R., et al. 2012, ApJ, 750, 99
- Torres, G., Kipping, D. M., Fressin, F., et al. 2015, ApJ, 800, 99
- Trifonov, T., Kürster, M., Zechmeister, M., et al. 2018, A&A, 609, A117
- Tuomi, M., Jones, H. R. A., Barnes, J. R., Anglada-Escudé, G., & Jenkins, J. S. 2014, MNRAS, 441, 1545
- Tuomi, M., Jones, H. R. A., Jenkins, J. S., et al. 2013, A&A, 551, A79
- Turbet, M., Leconte, J., Selsis, F., et al. 2016, A&A, 596, A112
- Tyler, R. H., Henning, W. G., & Hamilton, C. W. 2015, ApJS, 218, 22

- Udry, S., Bonfils, X., Delfosse, X., et al. 2007, A&A, 469, L43
- Underwood, D. R., Jones, B. W., & Sleep, P. N. 2003, International Journal of Astrobiology, 2, 289
- Upgren, A. R., Grossenbacher, R., Penhallow, W. S., MacConnell, D. J., & Frye, R. L. 1972, AJ, 77, 486
- van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Computing in Science and Engineering, 13, 22
- van Leeuwen, F. 2007, A&A, 474, 653
- Vanderburg, A., Rappaport, S. A., & Mayo, A. W. 2018, AJ, 156, 184
- Vanderspek, R., Huang, C. X., Vanderburg, A., et al. 2019, ApJL, 871, L24
- Veeder, G. J., Davies, A. G., Matson, D. L., et al. 2012, Icarus, 219, 701
- Vidotto, A. A., Jardine, M., Morin, J., et al. 2013, A&A, 557, A67
- Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2019, arXiv e-prints, arXiv:1907.10121
- Vogt, S. S., Butler, R. P., & Haghighipour, N. 2012, Astronomische Nachrichten, 333, 561
- Vogt, S. S., Butler, R. P., Rivera, E. J., et al. 2010, ApJ, 723, 954
- Way, M. J., Del Genio, A. D., Aleinov, I., et al. 2018, ApJS, 239, 24
- Weiss, L. M., & Marcy, G. W. 2014, ApJL, 783, L6
- Wells, R., Poppenhaeger, K., & Watson, C. A. 2018, MNRAS, 473, L131
- Williams, J. G. 1994, AJ, 108, 711
- Williams, J. G., Sinclair, W. S., & Yoder, C. F. 1978, Geophys. Res. Lett., 5, 943
- Wittenmyer, R. A., Tuomi, M., Butler, R. P., et al. 2014, ApJ, 791, 114
- Wolfgang, A., Rogers, L. A., & Ford, E. B. 2016, ApJ, 825, 19
- Wordsworth, R. 2015, ApJ, 806, 180
- Wu, Y., & Lithwick, Y. 2013, ApJ, 772, 74
- Wunderlich, F., Godolt, M., Grenfell, J. L., et al. 2019, A&A, 624, A49
- Yang, J., Cowan, N. B., & Abbot, D. S. 2013, ApJL, 771, L45
- Yang, J., Liu, Y., Hu, Y., & Abbot, D. S. 2014, ApJL, 796, L22
- Yoder, C. F. 1979, Nature, 279, 767
- Yoder, C. F. 1995, in Global Earth Physics: A Handbook of Physical Constants, ed. T. J. Ahrens
- Zacharias, N., Finch, C. T., Girard, T. M., et al. 2013, AJ, 145, 44
- Zechmeister, M., Kürster, M., & Endl, M. 2009, A&A, 505, 859

- Zechmeister, M., Dreizler, S., Ribas, I., et al. 2019, Astronomy and Astrophysics, 627, A49
- Zhang, K., & Hamilton, D. P. 2006, in Bulletin of the American Astronomical Society, Vol. 38, AAS/Division for Planetary Sciences Meeting Abstracts #38, 482
- Zhuang, Q., Gao, X., & Yu, Q. 2012, ApJ, 758, 111
- Zollinger, R. R., Armstrong, J. C., & Heller, R. 2017, MNRAS, 472, 8
- Zsom, A., Seager, S., de Wit, J., & Stamenković, V. 2013, ApJ, 778, 109

APPENDIX

A. LONG TABLES

Table A1 reproduces the basic properties of planet-host M dwarfs. Table A2 reproduces the basic properties of M-dwarf hosted exoplanets.

Name	Alternative	$lpha^{\mathrm{a}}$	δ^{a}	d^{b}	Sp.	$T_{\rm eff}{}^{\rm c}$	L^{c}	M_*^{d}
	Names			[pc]	type	[K]	$[10~^{-4}L_\odot]$	$[M_{\odot}]$
GX And	GJ 15A	00:18:27.04	+44:01:29.0	3.563 ± 0.001	M1.0 V	3600	253.6 ± 4.0	0.40
K2-149	EPIC 220522664	00:39:17.22	+07:16:37.2	124.1 ± 0.5	M1 V	3700	677 ± 17	0.59
CD-44 170	GJ 27.1	00:39:59.52	-44:15:15.0	23.62 ± 0.03	M0.5 V	3700	459.7 ± 8.7	0.52
LHS 1140	GJ 3053	00:44:59.67	-15:16:26.8	14.99 ± 0.02	M4.5 V	3100	44.25 ± 0.55	0.18
2MASS J01021226-6145216	HATS-71	01:02:12.45	-61:45:22.1	140.79 ± 0.86	M3.0 V	3300	251.9 ± 5.5	0.45
BD+61 195	GJ 49	01:02:40.50	+62:20:43.6	9.856 ± 0.003	M1.5 V	3600	452.4 ± 9.5	0.54
YZ Cet	GJ 54.1	01:12:31.94	-16:59:46.5	3.712 ± 0.001	M4.5 V	3100	22.00 ± 0.35	0.14
K2-150	EPIC 220598331	01:13:22.65	+08:59:14.8	102.8 ± 0.8	M2.5 V	3400	224.3 ± 5.5	0.41
K2-151	EPIC 220621087	01:17:13.15	+09:30:04.6	69.6 ± 0.2	M1.5 V	3700	326.2 ± 4.6	0.46
BD-17 400	GJ 3138	02:09:11.46	-16:20:21.3	28.49 ± 0.03	M0 V	3900	835 ± 13	0.61
GJ 96	G 173-53	02:22:14.98	+47:52:48.8	11.936 ± 0.009	M0 V	3900	638.6 ± 9.4	0.58
CD-23 1056	LTT 1349	02:46:43.22	-23:05:09.6	23.39 ± 0.02	M0 V	4000	908 ± 13	0.62
LP 413-32 B	K2-288 B	03:41:46.63	+18:16:06.6	65.72 ± 0.87	M3.0 V	3200	364 ± 18	0.50
BD-21 784	GJ 160.2	04:06:34.90	-20:51:23.3	25.88 ± 0.04	m K7~V	4300	1372 ± 22	0.65
LPM 178	GJ 163	04:09:17.48	-53:22:16.2	15.135 ± 0.007	M3.5 V	3400	217.0 ± 3.7	0.41
Melotte 25 VA 50	K2-25	04:13:05.74	+15:14:51.7	45.0 ± 0.2	M4.5 V	3200	77.6 ± 1.3	0.27
HG 8-15	K2-155	04:21:52.48	+21:21:12.9	73.0 ± 0.3	M0.0 V	3500	998 ± 15	0.66
LP 834-042	GJ 3293	04:28:35.63	-25:10:16.8	20.20 ± 0.02	M2.5 V	3500	275.8 ± 3.9	0.45
LEHPM 3808	TOI-270	04:33:39.86	-51:57:26.6	22.49 ± 0.01	M3.0 V	3500	167.6 ± 2.8	0.36
LP 358-499	K2-133	04:40:35.85	+25:00:35.3	75.3 ± 0.2	M1 V	3800	351.3 ± 4.2	0.46
HD 285968	GJ 176	04:42:56.49	+18:57:12.1	9.473 ± 0.006	M2.0 V	3500	364.8 ± 7.3	0.49
Wolf 1539	GJ 179	04:52:05.89	+06:28:30.8	12.360 ± 0.009	M3.5 V	3300	157.6 ± 3.0	0.37
LPM 198	GJ 180	04:53:50.42	-17:46:34.3	11.945 ± 0.004	M2.0 V	3500	242.7 ± 3.6	0.41
LP 656-38	GJ 3323	05:01:56.85	-06:56:54.6	5.376 ± 0.002	M4 V	3100	36.54 ± 0.53	0.17
Kapteyn's	GJ 191	05:11:50.08	-45:02:34.9	3.9335 ± 0.0004	M0 V	3700	128.1 ± 3.5	0.38
LP 892-26	GJ 3341	05:15:47.31	-31:17:41.4	23.64 ± 0.03	M2.5 V	3500	321.5 ± 5.1	0.47
NGTS-1		05:30:51.41	-36:37:51.5	219.5 ± 1.0	M0.5 V	3900	679 ± 14	0.57
HATS-6		05:52:35.23	-19:01:53.9	170.1 ± 1.1	M1 V	3800	702 ± 15	0.59

 Table A1. Basic properties of planet-host M dwarfs.

H. Martínez-Rodríguez et al.

Table A1 (continued)

Name	Alternative	α^{a}	δ^{a}	d^{b}	Sp.	$T_{\rm eff}^{\rm c}$	Lc	M_*^{d}
	Names			[pc]	type	[K]	$[10^{-4} L_{\odot}]$	$[M_{\odot}]$
BD-06 1339	GJ 221	05:52:59.70	-05:59:49.0	20.28 ± 0.02	K7 V	4100	1039 ± 24	0.63
HD 42581	GJ 229A	06:10:34.46	-21:52:03.8	5.757 ± 0.002	M0.5 V	3700	542 ± 28	0.55
PM J06168+2435	K2-26	06:16:49.54	+24:35:45.0	99.3 ± 0.5	M1 V	3700	443.5 ± 9.0	0.52
Luyten's star	GJ 273	07:27:25.09	+05:12:35.6	3.80 ± 0.02	M3.5 V	3200	99.0 ± 3.5	0.29
LP 424-4	GJ 3470	07:59:05.64	+15:23:28.4	29.45 ± 0.05	M1.5 V	3500	400.5 ± 4.9	0.50
NGC 2632 JS 183	K2-95	08:37:27.02	+18:58:35.8	180.7 ± 4.0	M3 V	3400	219 ± 11	0.41
K2-146	EPIC 211924657	08:40:06.41	+19:05:32.4	79.5 ± 0.5	M3 V	3300	123.6 ± 2.7	0.31
LP 844-8	GJ 317	08:40:58.69	-23:27:10.1	15.203 ± 0.013	M3.5	3300	224.1 ± 3.8	0.42
NGC 2632 JS 597	EPIC 211964830	08:45:26.00	+19:41:54.2	186.6 ± 2.1	M2 V	3500	317.1 ± 9.5	0.47
BD+02 2098	GJ 328	08:55:07.67	+01:32:31.2	20.54 ± 0.02	M0.0 V	3900	995 ± 12	0.63
K2-117	EPIC 211331236	08:55:25.38	+10:28:09.2	101.9 ± 0.4	M1.0 V	3700	444.4 ± 9.4	0.52
BD+48 1829	GJ 378	10:02:20.77	+48:04:56.8	14.96 ± 0.01	M1.0 V	3700	577 ± 10	0.56
LTT 3758	GJ 1132	10:14:50.18	-47:09:17.8	12.618 ± 0.007	M4.5~V	3200	46.53 ± 0.58	0.19
K2-239	EPIC 248545986	10:42:22.59	+04:26:28.9	31.11 ± 0.08	M3.0 V	3400	71.90 ± 0.94	0.23
LP 905-36	GJ 3634	10:58:34.40	-31:08:39.6	20.39 ± 0.03	M2.5 V	3500	288.4 ± 4.5	0.46
Lalande 21185	GJ 411	11:03:20.19	+35:58:11.6	2.547 ± 0.004	M1.5~V	3400	185 ± 13	0.41
Innes' star	GJ 422	11:15:55.45	-57:32:33.2	12.668 ± 0.007	M3.5~V	3400	179.0 ± 2.5	0.36
K2-22	EPIC 201637175	11:17:55.85	+02:37:08.5	245.5 ± 2.8	M0 V	3900	810 ± 30	0.61
PM J11293-0127	K2-3	11:29:20.49	-01:27:18.5	44.1 ± 0.1	M0 V	3900	603 ± 12	0.55
PM J11302+0735	K2-18	11:30:14.43	+07:35:16.2	38.07 ± 0.08	$\mathrm{M2.5~V}$	3500	264.0 ± 4.2	0.44
CD-31 9113	GJ 433	11:35:26.86	-32:32:37.1	9.067 ± 0.004	M1.5~V	3600	339.5 ± 5.2	0.47
Ross 1003	GJ 1148	11:41:43.83	+42:45:05.7	11.018 ± 0.006	M4 V	3200	149.9 ± 1.7	0.35
Ross 905	GJ 436	11:42:12.13	+26:42:11.0	9.756 ± 0.009	M2.5 V	3300	238.9 ± 3.5	0.42
LP 613-39	K2-9	11:45:03.29	+00:00:19.5	83.2 ± 0.4	M2.5 V	3500	121.7 ± 2.0	0.30
FI Vir	GJ 447	11:47:45.02	+00:47:57.4	3.375 ± 0.001	M4 V	3100	38.27 ± 0.56	0.18
K2-152	EPIC 201128338	12:06:31.78	-05:49:38.8	108.8 ± 0.4	M0 V	3900	886 ± 16	0.61
K2-153	EPIC 201598502	12:15:14.13	+02:01:15.2	143.7 ± 0.9	M3.0~V	3800	535 ± 12	0.54
K2-137	EPIC 228813918	12:27:28.90	-06:11:42.8	99.2 ± 0.6	M3 V	3500	283.0 ± 6.1	0.46
K2-154	EPIC 228934525	12:36:00.36	-02:40:10.6	129.8 ± 0.4	M0 V	3900	983 ± 16	0.63
Ross 1020	GJ 3779	13:22:56.05	$+24{:}27{:}50.2$	13.749 ± 0.012	$\mathrm{M4.0~V}$	3300	82.2 ± 1.0	0.25
HD 122303	GJ 536	14:01:02.33	-02:39:08.2	10.412 ± 0.009	M1 V	3700	433.5 ± 7.2	0.51
Proxima Centauri	GJ 551	14:29:34.43	-62:40:34.3	1.3012 ± 0.0003	$\rm M5.5~V$	2800	15.37 ± 0.39	0.12
K2-240	EPIC 249801827	15:11:23.85	-17:52:31.6	73.1 ± 0.5	M0.5 V	3800	628 ± 15	0.57
HO Lib	GJ 581	15:19:25.55	-07:43:21.7	6.299 ± 0.002	M3 V	3400	120.0 ± 1.7	0.31
K2-286	EPIC 249889081	15:33:28.76	-16:46:25.4	76.32 ± 0.23	M0 V	4000	904 ± 12	0.62

Table A1 (continued)

Name	Alternative	α^{a}	δ^{a}	d^{b}	Sp.	$T_{\rm eff}^{\rm c}$	Lc	M_*^{d}
	Names			[pc]	type	[K]	$[10^{-4} L_{\odot}]$	$[M_{\odot}]$
MCC 759	GJ 3942	16:09:03.49	+52:56:38.9	16.937 ± 0.006	M0 V	3800	646.2 ± 7.3	0.57
USco J161014.7-191909	K2-33	16:10:14.73	-19:19:09.8	139.8 ± 1.5	M3 V	3100	1019 ± 32	0.70
LP 804-27	HIP 79431	16:12:41.82	-18:52:35.1	14.54 ± 0.03	M3 V	3400	301.8 ± 5.9	0.48
HD 147379	GJ 617A	16:16:41.42	+67:14:21.1	10.768 ± 0.004	M0.0 V	3900	978 ± 23	0.63
MCC 767	GJ 625	16:25:25.39	+54:18:12.1	6.474 ± 0.001	M2.0 V	3500	148.1 ± 2.1	0.32
V2306 Oph	GJ 628	16:30:17.96	-12:40:03.7	4.306 ± 0.001	M3.5 V	3300	108.2 ± 1.6	0.30
BD+25 3173	GJ 649	16:58:08.72	+25:44:31.1	10.383 ± 0.003	M1.5 V	3700	434.4 ± 4.6	0.52
LHS 3275	GJ 1214	17:15:19.54	+04:57:38.4	14.65 ± 0.04	M4.5 V	3000	38.85 ± 0.50	0.18
BD+11 3149	GJ 3998	17:16:00.49	+11:03:22.2	18.16 ± 0.02	M1.0 V	3700	467 ± 12	0.52
HD 156384 C	GJ 667 C	17:19:00.25	-34:59:52.0	7.245 ± 0.005	M1.5 V	3500	149.5 ± 2.3	0.33
CD-46 11540	GJ 674	17:28:40.81	-46:53:56.3	4.550 ± 0.001	M2.5 V	3400	167.4 ± 3.0	0.35
CD-51 10924	GJ 676A	17:30:10.77	-51:38:16.0	16.035 ± 0.010	M0 V	3900	900 ± 16	0.63
BD+68 946	GJ 687	17:36:25.00	+68:20:01.2	4.550 ± 0.001	M3.0 V	3400	221.1 ± 4.9	0.40
CD-44 11909	GJ 682	17:37:02.65	-44:19:23.7	5.007 ± 0.002	M3.5 V	3200	81.18 ± 0.77	0.27
BD+18 3421	GJ 686	17:37:54.36	+18:35:45.4	8.159 ± 0.002	M1.5 V	3700	277 ± 18	0.44
Barnard's star	V2500 Oph	17:57:48.49	$+04{:}41{:}40.5$	1.827 ± 0.001	M3.5 V	3200	35.58 ± 0.72	0.16
Kepler-83	KOI-898	18:48:55.80	+43:39:56.0	405.0 ± 5.2	M0 V	4100	919 ± 30	0.61
Kepler-446	KOI-2842	18:49:00.03	+44:55:15.6	96.6 ± 0.5	M4 V	3400	49.74 ± 0.98	0.19
Kepler-303	KOI-1515	18:52:32.51	+43:39:24.1	211.0 ± 0.9	M0 V	4100	876 ± 18	0.61
Kepler-617	KOI-596	18:54:57.77	+47:30:58.1	174.2 ± 1.0	M1 V	3700	512.3 ± 9.2	0.55
Kepler-236	KOI-817	18:55:27.94	$+39{:}53{:}53{.}5$	291.2 ± 2.3	M1 V	3900	755 ± 18	0.60
Kepler-235	KOI-812	19:04:18.98	$+39{:}16{:}41.7$	433.2 ± 6.7	M0 V	4100	880 ± 34	0.61
Kepler-52	KOI-775	19:06:57.12	+49:58:32.7	324.5 ± 2.4	M0 V	4200	1053 ± 25	0.63
Kepler-155	KOI-438	19:13:58.99	+51:04:54.9	296.0 ± 2.3	m K7~V	4400	1726 ± 58	0.68
V1428 Aql	GJ 752 A	19:16:54.66	+05:09:47.4	5.912 ± 0.002	M2.5 V	3500	325.8 ± 4.0	0.47
Kepler-138	KOI-314	19:21:31.54	+43:17:35.0	67.0 ± 0.1	M1 V	3900	575.7 ± 7.5	0.54
LSPM J1928+4437	Kepler-42	19:28:52.70	+44:37:02.5	40.11 ± 0.06	M4 V	3400	29.01 ± 0.36	0.14
Kepler-49	KOI-248	19:29:10.68	+40:35:30.5	314.0 ± 2.5	M1 V	4000	946 ± 23	0.62
LSPM J1930+4149	Kepler-1649	19:30:00.71	+41:49:48.0	92.4 ± 0.5	M4: V	3300	52.4 ± 1.0	0.20
Kepler-45	KOI-254	19:31:29.50	+41:03:51.0	386.0 ± 6.5	M1 V	3800	807 ± 34	0.61
Kepler-231	KOI-784	19:35:53.61	+50:31:54.7	319.5 ± 3.3	M1 V	4100	818 ± 26	0.59
Kepler-54	KOI-886	19:39:05.74	+43:03:22.3	273.8 ± 2.9	M1 V	3800	480 ± 14	0.53
Kepler-252	KOI-912	19:42:19.04	+44:32:45.3	383.6 ± 3.5	M0 V	4300	1421 ± 42	0.67
Kepler-32	KOI-952	19:51:22.15	+46:34:27.7	326.9 ± 3.4	M1 V	3900	650 ± 19	0.57
Kepler-125	KOI-251	19:53:01.95	+47:36:18.0	184.3 ± 1.0	M1 V	3800	558.7 ± 9.6	0.55

H. MARTÍNEZ-RODRÍGUEZ ET AL.

Table A1 (continued)

Name	Alternative	α^{a}	δ^{a}	d^{b}	Sp.	$T_{\rm eff}^{\rm c}$	Lc	M_*^{d}
	Names			[pc]	type	[K]	$[10^{-4} L_{\odot}]$	$[M_{\odot}]$
Kepler-186	KOI-571	19:54:36.66	+43:57:18.0	178.5 ± 0.8	M1 V	3900	571 ± 14	0.55
Kepler-445	KOI-2704	19:54:56.72	+46:29:56.8	127.7 ± 1.0	M4 V	3200	77.6 ± 2.1	0.28
Kepler-267	KOI-1078	19:59:19.34	+47:09:27.3	267.0 ± 2.5	M1 V	3900	584 ± 16	0.55
HD 204961	GJ 832	21:33:33.90	-49:00:45.1	4.965 ± 0.001	M1.5 V	3600	292 ± 11	0.44
BD-05 5715	GJ 849	22:09:41.52	-04:38:27.0	8.803 ± 0.004	M3.5 V	3400	282.5 ± 4.2	0.47
LP 819-052	GJ 1265	22:13:43.79	-17:41:13.4	10.255 ± 0.007	M4.5 V	3100	36.35 ± 0.46	0.17
LP 700-6	K2-28	22:22:29.60	-07:57:22.9	63.1 ± 0.3	M4 V	3200	116.8 ± 2.3	0.33
K2-21	EPIC 206011691	22:41:12.91	-14:29:21.6	83.8 ± 0.3	M0 V	4100	978 ± 14	0.63
LHS $3844^{\rm e}$	LEHPM 5027	22:41:59.09	-69:10:19.6	14.891 ± 0.011	m4:	3000	27.10 ± 0.29	0.16
IL Aqr	GJ 876	22:53:17.75	-14:15:59.7	4.676 ± 0.002	M4.0 V	3200	129.3 ± 3.0	0.34
2MUCD 12171	TRAPPIST-1	23:06:30.33	-05:02:36.5	12.43 ± 0.02	M8.0 V	2500	5.38 ± 0.06	0.09

^a All equatorial coordinates are given in the epoch of *Gaia* DR2 (J2015.5) (Gaia Collaboration et al. 2016), except for Luyten's star and Lalande 21185, with equatorial coordinates given in the epoch of 2MASS (J2000) (Skrutskie et al. 2006).

^b All distances calculated using parallaxes from *Gaia* DR2 (Gaia Collaboration et al. 2016, 2018), except for Luyten's star and Lalande 21185, calculated using parallaxes from *Hipparcos* (van Leeuwen 2007).

^C L and T_{eff} computed with VOSA (Bayo et al. 2008) from our compiled photometry. The uncertainties in the effective temperatures are $\delta T_{\text{eff}} = 50 K$ in all cases.

^d Stellar masses calculated from K_s apparent magnitudes, tabulated distances, and the relations of Mann et al. (2019), as in Schweitzer et al. (2019).

^e Spectral type of LHS 3844 estimated from its photometric data.

Name	Planet	a	$P_{ m orb}$	$M_{\rm p}{}^{\rm a}$	$R_{ m p}{}^{ m a}$	References ^b	$S_{ m eff}$	$T_{\rm eq,p}$	Potentially
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ZH
GX And	q	$0.072\substack{+0.003\\-0.004}$	$11.4407\substack{+0.0017\\-0.0016}$	$> 3.03^{+0.46}_{-0.44}$	(> 1.53)	Pin18	4.89 ± 0.10	413.9 ± 8.7	
K2-149	р	$0.083^{+0.027}_{-0.027}$	$11.332^{\pm 0.0013}_{-0.0013}$	(3.85)	$1.64\substack{+0.20\\-0.18}$	Hir18	9.82 ± 0.25	493 ± 13	
CD-44 170	р	$0.101\substack{+0.009\\-0.013}$	$15.8190\substack{+0.0049\\-0.0026}$	$> 13^{+4.1}_{-6.6}$	(> 3.63)	Tuo 14	4.51 ± 0.35	406 ± 32	
LHS 1140	р	$0.0875^{+0.0041}_{-0.0041}$	$24.73712_{-0.00025}^{+0.00025}$	$6.65^{+1.82}_{-1.82}$	$1.43\substack{+0.10\\-0.10}$	Dit17	0.5780 ± 0.0072	242.7 ± 3.0	Yes
	С	$0.02675^{+0.00070}_{-0.00070}$	$3.777931^{+0.000006}_{-0.000006}$	$1.81\substack{+0.39\\-0.39}$	$1.282\substack{+0.024\\-0.024}$	Men19	6.184 ± 0.077	438.9 ± 5.4	
2MASS J01021226-6145216	р	$0.03946\substack{+0.00095\\-0.00168}$	$3.7955213_{-0.0000011}^{+0.0000011}$	(1750)	$12.106\substack{+0.179\\-0.179}$	Bak18	16.18 ± 1.14	558 ± 39	
$BD+61\ 195$	р	$0.0905^{+0.0011}_{-0.0011}$	$13.8508\substack{+0.0053\\-0.0051}$	$> 5.63^{+0.67}_{-0.68}$	(> 2.25)	$\operatorname{Per19}$	5.52 ± 0.12	426.7 ± 9.0	
YZ Cet	р	$0.01557_{-0.00052}^{+0.00052}$	$1.96876^{+0.00021}_{-0.00021}$	$> 0.75^{+0.13}_{-0.13}$	(> 0.93)	Ast17b	9.08 ± 0.14	483.1 ± 7.6	
	С	$0.0209^{+0.0007}_{-0.0007}$	$3.06008\substack{+0.00022\\-0.00022}$	$> 0.98^{+0.14}_{-0.14}$	(> 1.00)	Ast17b	5.037 ± 0.079	417.0 ± 6.5	
	р	$0.02764_{-0.00093}^{+0.00093}$	$4.65627^{+0.00042}_{-0.00042}$	$> 1.14^{+0.17}_{-0.17}$	(> 1.05)	Ast17b	2.880 ± 0.045	362.6 ± 5.7	
K2-150	р	$0.0727_{-0.0027}^{\pm 0.0027}$	$10.59357\substack{+0.00084\\-0.00084}$	(5.26)	$2.00^{\pm 0.27}_{-0.21}$	Hir18	4.24 ± 0.10	399.5 ± 9.8	
K2-151	р	$0.0365_{-0.0014}^{+0.0014}$	$3.835592^{+0.000023}_{-0.000023}$	(2.44)	$1.35\substack{+0.16\\-0.14}$	Hir18	24.48 ± 0.34	619.1 ± 8.7	
BD-17 400	р	$0.0197\substack{+0.0005\\-0.0005}$	$1.22003\substack{+0.00006\\-0.00004}$	$> 1.78^{+0.34}_{-0.33}$	(> 1.20)	Ast17a	215.2 ± 3.4	1066 ± 17	
	c	$0.057_{-0.001}^{+0.001}$	$5.974\substack{+0.001\\-0.001}$	$> 4.18^{+0.61}_{-0.59}$	(> 1.88)	Ast17a	25.70 ± 0.41	626.7 ± 9.9	
	q	$0.698_{-0.019}^{+0.018}$	$257.8^{+3.6}_{-3.5}$	$> 10.5^{+2.3}_{-2.1}$	(> 3.21)	Ast17a	0.1714 ± 0.0027	179.1 ± 2.8	
GJ 96	р	$0.291^{+0.005}_{-0.005}$	$73.94_{-0.38}^{+0.33}$	$> 19.66^{+2.20}_{-2.30}$	(> 4.74)	Hob18	0.754 ± 0.011	259.4 ± 3.8	Yes
CD-23 1056	p	$0.25_{-0.01}^{+0.01}$	$53.435_{-0.042}^{+0.042}$	$> 114^{+22}_{-22}$	(> 13.1)	Stal7	1.45 ± 0.12	306 ± 25	Yes
LP 413-32 B	р	$0.164_{-0.03}^{+0.03}$	$31.393463_{-0.000067}^{+0.000067}$	(4.01)	$1.70_{-0.36}^{+0.36}$	Fei19	1.354 ± 0.066	300 ± 15	Yes
BD-21 784	р	$0.053_{-0.007}^{+0.004}$	$5.2354_{-0.0065}^{+0.0027}$	$> 10.2^{+7.2}_{-4.1}$	(> 3.10)	Tuo14	48.8 ± 2.9	736 ± 43	
LPM 178	р	$0.06070^{+0.00001}_{-0.00001}$	$8.63300^{+0.00155}_{-0.00155}$	$> 10.60^{+0.06}_{-0.06}$	(> 3.29)	Bon13b	5.89 ± 0.10	433.6 ± 7.5	
	c	$0.1254_{-0.0001}^{+0.0001}$	$25.6450\substack{+0.0235\\-0.0235}$	$> 6.8^{+0.9}_{-0.9}$	(> 2.52)	Bon13b	1.380 ± 0.024	301.6 ± 5.2	Yes
	q	$1.0304\substack{+0.0086\\-0.0086}$	$660.89 \frac{7.56}{-7.56}$	$> 29.4^{+2.9}_{-2.9}$	(> 5.91)	Bon13b	0.02044 ± 0.00035	105.2 ± 1.8	
Melotte 25 VA 50	p	$0.0299^{\pm 0.0005}_{-0.0005}$	$3.484552_{-0.000037}^{+0.000031}$	(11.6)	$3.43_{-0.31}^{+0.95}$	Man16a	8.68 ± 0.15	477.7 ± 8.1	
HG 8-15	р	$0.0562\substack{+0.0013\\-0.0014}$	$6.342^{+0.002}_{-0.002}$	$4.7^{\pm 0.5}_{-0.3}$	$1.8_{-0.1}^{+0.2}$	Die18	31.61 ± 0.49	660 ± 10	
	С	$0.0946^{\pm 0.0031}_{-0.0030}$	$13.850\substack{+0.006\\-0.006}$	$6.5^{+1.5}_{-0.5}$	$2.6^{\pm 0.7}_{-0.2}$	Die18	11.16 ± 0.17	509 ± 7.8	
	р	$0.1937\substack{+0.0064\\-0.0059}$	$40.718\substack{+0.005\\-0.005}$	$4.9^{\pm 1.7}_{-0.6}$	$1.9_{-0.2}^{+0.7}$	Die18	22.661 ± 0.041	355.5 ± 5.5	
LP 834-042	р	$0.14339^{+0.00003}_{-0.00003}$	$30.5987^{\pm 0.0083}_{-0.0084}$	$> 23.54^{+0.88}_{-0.89}$	(> 5.14)	Ast17a	1.341 ± 0.019	299.5 ± 4.2	Yes
	c	$0.36175\substack{+0.00048\\-0.00047}$	$122.6196\substack{+0.2429\\-0.2371}$	$> 21.09^{\pm 1.24}_{-1.26}$	(> 4.88)	Ast17a	0.2108 ± 0.0030	188.6 ± 2.7	
	q	$0.19394^{+0.00017}_{-0.00018}$	$48.1345\substack{+0.0628\\-0.0661}$	$> 7.60^{+1.05}_{-1.05}$	(> 2.63)	Ast17a	0.733 ± 0.010	257.5 ± 3.7	Yes
	е	$0.08208^{+0.00003}_{-0.00004}$	$13.2543\substack{+0.0078\\-0.0104}$	$> 3.28^{+0.64}_{-0.64}$	(> 1.62)	Ast17a	4.094 ± 0.058	395.9 ± 5.6	
LEHPM 3808	р	$0.0306^{+0.0033}_{-0.0057}$	$3.360080\substack{+0.000065\\-0.000070}$	(1.98)	$1.247\substack{+0.089\\-0.083}$	Gun19	17.89 ± 1.44	572 ± 46	
	С	$0.0472^{+0.0030}_{-0.0033}$	$5.660172_{-0.000035}^{+0.000035}$	(6.88)	$2.42\substack{+0.13\\-0.13}$	Gun19	7.52 ± 0.14	460.9 ± 8.3	
	р	$0.0733_{-0.0042}^{+0.0042}$	$11.38014\substack{+0.00011\\-0.00010}$	(5.48)	$2.13\substack{+0.12\\-0.12}$	Gun19	3.119 ± 0.052	369.9 ± 6.2	
LP 358-499	р	$0.033^{\pm 0.002}_{-0.002}$	$3.0712\substack{+0.0001\\-0.0001}$	(2.29)	$1.31\substack{+0.08\\-0.08}$	Wel17	32.26 ± 0.39	663.3 ± 8.0	
	υ	$0.045_{-0.003}^{+0.003}$	$4.8682^{\pm 0.0001}_{-0.0003}$	(3.07)	$1.48\substack{+0.09\\-0.09}$	Wel17	17.35 ± 0.21	568.0 ± 6.8	

Exomoons in the habitable zones of ${\rm M}$ dwarfs

(continued)	
$\mathbf{A2}$	
Table	

Name	Planet	a	$P_{ m orb}$	$M_{\mathrm{p}}{}^{\mathrm{a}}$	$R_{\rm p}{}^{\rm a}$	${ m References}^{ m b}$	$S_{ m eff}$	$T_{ m eq,p}$	Potentially
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ZH
	7	0.077+0.005	11 0004+0.0008	(E 1E)	9 00+0.13	711-71	E 09E ± 0.071	0 2 T 0 7 6 7	
	J.	0.001 -0.005	· · · · · · · · · · · · · · · · · · ·	(01.0)	4.04-0.13		T10:0 T 070:0		
HD 285968	Q	0.066 - 0.001	8.776 -0.002	$> 9.00^{-0.70}_{-0.70}$	(> 2.87)	SLITT.	8.37 ± 0.17	$4.73.5 \pm 9.5$	
Wolf 1539	q	$2.41_{-0.04}^{+0.04}$	2288_{-59}^{+59}	$> 260.61^{+22.25}_{-22.25}$	(> 13.9)	How10	0.002714 ± 0.000052	63.5 ± 1.2	
LPM 198	q	$0.103\substack{+0.006\\-0.014}$	$17.380^{\pm0.018}_{-0.020}$	$> 8.3^{+3.5}_{-5.3}$	(> 2.81)	Tuo 14	2.29 ± 0.18	342.3 ± 27.1	\mathbf{Yes}
	С	$0.1290^{+0.0070}_{-0.0017}$	$24.329^{\pm 0.052}_{-0.066}$	$> 6.4^{+3.7}_{-4.1}$	(> 2.43)	Tuo14	1.459 ± 0.064	306 ± 13	
LP 656-38	q	$0.03282\substack{+0.00054\\-0.00056}$	$5.3636_{-0.0007}^{+0.0007}$	$> 2.02^{+0.26}_{-0.25}$	(> 1.23)	Ast17a	3.392 ± 0.049	377.7 ± 5.5	
	c	$0.1264\substack{+0.0021\\-0.0022}$	$40.54\substack{+0.21\\-0.19}$	$> 2.31^{+0.50}_{-0.49}$	(> 1.32)	Ast17a	0.2287 ± 0.0033	192.5 ± 2.8	
Kapteyn's	р	$0.168\substack{+0.006\\-0.008}$	$48.616\substack{+0.036\\-0.036}$	$> 4.8^{+0.9}_{-1.0}$	(> 1.98)	$\operatorname{Ang14}$	0.454 ± 0.014	228.4 ± 6.9	Yes
	С	$0.311_{-0.014}^{+0.038}$	$121.54\substack{+0.25\\-0.25}$	$> 7.0^{+1.2}_{-1.0}$	(> 2.54)	Ang14	0.132 ± 0.012	167.9 ± 13.8	
LP 892-26	р	0.089	$14.207\substack{+0.007\\-0.007}$	$> 6.60^{+0.01}_{-0.01}$	(> 2.43)	Ast15	4.1	395	
NGTS-1	q	$0.0326_{-0.0045}^{+0.0047}$	$2.647298\substack{+0.000020\\-0.000020}$	$258.1^{+20.9}_{-23.8}$	$14.91\substack{+6.84\\-3.70}$	Bay 18	63.9 ± 1.4	786.8 ± 16.9	
HATS-6	р	$0.03623^{+0.00042}_{-0.00057}$	$3.3252725_{-0.0000021}^{+0.0000021}$	$101.4^{+22.2}_{-22.2}$	$11.19\substack{+0.21\\-0.21}$	Har15	53.5 ± 1.2	752.7 ± 16.8	
BD-06 1339	q	$0.0428_{-0.0007}^{+0.0007}$	$3.8728_{-0.0004}^{+0.0004}$	$> 8.5^{+1.3}_{-1.3}$	(> 2.81)	LoC13	56.7 ± 1.3	763.9 ± 17.8	
	С	$0.457_{-0.007}^{+0.007}$	$125.95\substack{+0.44\\-0.44}$	$> 53^{+8}_{-8}$	(> 8.42)	LoC13	0.498 ± 0.012	233.8 ± 5.4	Yes
HD 42581	р	$0.97^{+0.12}_{-0.09}$	471^{+22}_{-12}	$> 32^{+17}_{-16}$	(> 6.21)	Tuo14	0.0576 ± 0.0035	136.3 ± 8.3	
PM J06168+2435	р	$0.0962\substack{+0.0054\\-0.0061}$	$14.5665\substack{+0.0016\\-0.0020}$	(7.64)	$2.67\substack{+0.46\\-0.42}$	Sch16	4.79 ± 0.10	411.8 ± 8.9	
Luyten's star	q	$0.091101^{+0.000019}_{-0.000017}$	$18.6498^{+0.0059}_{-0.0052}$	$> 2.89^{+0.27}_{-0.26}$	(> 1.45)	Ast17a	1.193 ± 0.042	291 ± 10	Yes
	С	$0.036467^{+0.000002}_{-0.000002}$	$4.7234\substack{+0.0004\\-0.0004}$	$> 1.18^{+0.16}_{-0.16}$	(> 1.06)	Ast17a	7.44 ± 0.26	460 ± 16	
LP 424-4	р	$0.0348_{-0.0014}^{+0.0014}$	$3.33714_{-0.00017}^{+0.00017}$	$14.0^{\pm1.7}_{-1.7}$	$4.2^{\pm 0.6}_{-0.6}$	Bon12	33.07 ± 0.41	667.4 ± 8.2	
NGC 2632 JS 183	q	$0.0653^{+0.0039}_{-0.0045}$	$10.13389^{+0.00068}_{-0.00077}$	$0.361\substack{+0.069\\-0.069}$	$3.47_{-0.53}^{+0.78}$	Obe16	5.13 ± 0.27	419 ± 22	
K2-146	р	$0.0266_{-0.0010}^{+0.0010}$	$2.644646_{-0.000043}^{+0.000043}$	(5.48)	$2.2^{\pm 0.23}_{-0.23}$	Hir18	17.47 ± 0.38	569 ± 13	
LP 844-8	q	$1.15\substack{+0.05\\-0.05}$	692^{+2}_{-2}	$> 572.07^{+15.89}_{-15.89}$	(> 13.3)	Ang12	0.01695 ± 0.00029	100.4 ± 8.9	
	С	5.5	7100^{+8000}_{-1500}	509	(> 13.5)	Ang12	0.00074	45	
NGC 2632 JS 597	q	$0.05023^{+0.00042}_{-0.00043}$	$5.840002^{+0.000676}_{-0.000602}$	(5.83)	$2.231\substack{+0.151\\-0.145}$	Liv19	12.57 ± 0.38	524 ± 16	
	С	$0.11283^{+0.00095}_{-0.00097}$	$19.660302_{-0.003337}^{+0.003496}$	(7.64)	$2.668^{\pm 0.201}_{-0.194}$	Liv19	2.490 ± 0.075	350 ± 11	
$BD+02\ 2098$	q	$4.5_{-0.2}^{+0.2}$	4100^{+300}_{-300}	$> 2.30^{+0.13}_{-0.13}$	(> 1.32)	Rob13	0.004911 ± 0.000060	73.68 ± 0.90	
K2-117	q	$0.019^{+0.001}_{-0.001}$	$1.291505\substack{+0.000040\\-0.000040}$	(4.84)	$1.96\substack{+0.12\\-0.12}$	Dre17	123.1 ± 2.6	927 ± 20	
	c	$0.051_{-0.002}^{+0.002}$	$5.444820^{+0.000397}_{-0.000417}$	(5.26)	$2.03\substack{+0.13\\-0.13}$	Dre17	17.09 ± 0.36	565 ± 12	
$BD+48\ 1829$	q	$0.039435_{-0.00023}^{+0.00023}$	$3.822^{\pm 0.001}_{-0.001}$	$> 13.02^{+2.03}_{-2.01}$	(> 3.62)	Hob19	37.08 ± 0.67	687 ± 13	
LTT 3758	q	$0.0153_{-0.0005}^{+0.0005}$	$1.628931\substack{+0.000027\\-0.000027}$	$1.66\substack{+0.23\\-0.23}$	$1.43\substack{+0.16\\-0.16}$	Sou17, Bon18b	19.88 ± 0.25	587.7 ± 7.3	
	c	$0.0476_{-0.0017}^{+0.0017}$	$8.929^{+0.010}_{-0.010}$	$> 2.64^{+0.44}_{-0.44}$	(> 1.40)	Bon18b	2.054 ± 0.026	333.2 ± 4.2	
K2-239	р	$0.0441^{\pm 0.0008}_{-0.0008}$	$5.240\substack{+0.001\-0.001}$	$1.4 \substack{+0.4 \\ -0.4}$	$1.1^{\pm 0.1}_{-0.1}$	Die18	3.697 ± 0.048	385.9 ± 5.0	
	c	$0.0576_{-0.0009}^{+0.0009}$	$7.775_{-0.001}^{+0.001}$	$0.9^{\pm 0.3}_{-0.3}$	$1.1^{\pm 0.1}_{-0.1}$	Die18	2.167 ± 0.026	337.7 ± 4.4	
	р	$0.0685^{+0.0012}_{-0.0012}$	$10.115_{-0.001}^{+0.001}$	$1.3^{\pm 0.4}_{-0.4}$	$1.1^{\pm 0.1}_{-0.1}$	Die18	1.532 ± 0.048	309.7 ± 4.0	
LP 905-36	q	$0.0287\substack{+0.0010\\-0.0011}$	$2.64561\substack{+0.00066\\-0.00066}$	$7.0^{+0.9c}_{-0.8}$	(> 2.54)	Bon11	35.02 ± 0.56	677.0 ± 10.7	
Lalande 21185	q	0.0695	$9.8693_{-0.0016}^{+0.0016}$	3.8	(> 1.75)	But17	3.84 ± 0.27	390 ± 27	
Innes' star	q	$0.119\substack{+0.014\\-0.009}$	$26.161\substack{+0.082\\-0.098}$	$> 9.9^{+5.6}_{-4.0}$	(> 3.13)	Tuo14	1.264 ± 0.056	295 ± 13	Yes

24

H. Martínez-Rodríguez et al.

(continued)
$\mathbf{A2}$
Table

Name	Planet		P	M_a	B_{-}^{a}	Beferences ^b	2. 2. 2.	T	Potentially
		3	4 OID	d	d		IIa~	- eq.p	(TIMO TO O
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ZH
K9-92	4	0.009	0.381078 ± 0.00003	(30.3)	4.75 ± 0.35	Dre17	1000	1565	
PM J11293-0127	Ļ	$0.0769^{+0.0039}$	10.05449 ± 0.00026	8.4+2.1	2.18 ± 0.3	Alm15, Sin16	10.20 + 0.20	497.4 + 9.9	
	. U	$0.1399^{+0.0039}_{-0.0070}$	24.64354 ± 0.00117	$2.1^{+2.1}$	$1.85^{+0.27}_{-0.37}$	Alm15, Sin16	3.083 ± 0.062	368.8 ± 7.4	
	q	$0.2076_{-0.0104}^{-0.0104}$	$44.55983_{-0.00590}^{-0.00117}$	$11.1^{+3.5}_{-3.5}$	$1.51_{-0.23}^{+0.23}$	Alm15, Sin16	1.400 ± 0.028	302.8 ± 6.0	Yes
PM J11302+0735	q	$0.1429_{-0.0065}^{+0.0060}$	$32.939614_{-0.000084}^{+0.000101}$	$8.43^{+1.44}_{-1.35}$	$2.38_{-0.22}^{+0.22}$	Clo17, Sar18	1.293 ± 0.021	296.8 ± 4.8	Yes
	J	$0.060^{+0.003}_{-0.003}$	$8.962_{-0.008}^{+0.008}$	$> 7.51^{+1.33}_{-1.33}$	(> 2.66)	Clo17	7.33 ± 0.12	458.0 ± 7.3	
CD-31 9113	q	$0.060^{+0.004}_{-0.008}$	$7.3697\substack{+0.0034\\-0.0036}$	$> 5.3^{+2.0}_{-1.9}$	(> 2.19)	Tuo14	9.43 ± 0.65	487.7 ± 33.4	
	С	3.6	3693^{+253}_{-253}	44.6	(> 7.73)	Del13	0.0026	63	
Ross 1003	р	$0.166\substack{+0.001\\-0.001}$	$41.380\substack{+0.002\\-0.001}$	$> 96.70^{+1.41}_{-1.02}$	(> 11.9)	Tri18	0.5440 ± 0.0061	239.0 ± 2.7	Yes
	С	$0.912\substack{+0.005\\-0.002}$	$532.58_{-2.52}^{+4.14}$	$> 68.06^{+4.91}_{-2.19}$	(> 9.40)	Tri18	0.01802 ± 0.00021	102.0 ± 1.2	
Ross 905	р	$0.028\substack{+0.001\\-0.001}$	$2.644\substack{+0.001\\-0.001}$	$> 21.36^{+0.20}_{-0.21}$	$4.170\substack{+0.168\\-0.168}$	Mac14, Tri18	30.48 ± 0.45	653.9 ± 9.7	
LP 613-39	р	$0.0910^{+0.0130}_{-0.0160}$	$18.4498\substack{+0.0015\\-0.0015}$	(5.83)	$2.25\substack{+0.53\\-0.96}$	Sch16	1.470 ± 0.054	306.4 ± 11.3	\mathbf{Yes}
FI Vir	р	$0.0496^{+0.0017}_{-0.0017}$	$9.8658_{-0.0070}^{+0.0070}$	$> 1.4^{+0.21}_{-0.21}$	(> 1.11)	Bon18b	1.556 ± 0.023	310.8 ± 4.5	
K2-152	р	$0.1735\substack{+0.0054\\-0.0054}$	$32.6527_{-0.0035}^{+0.0035}$	(8.30)	$2.81\substack{+0.34 \\ -0.30}$	Hir18	2.944 ± 0.054	364.6 ± 6.6	
K2-153	р	$0.0601^{\pm 0.0021}_{-0.0021}$	$7.51554^{+0.00098}_{-0.00098}$	(4.89)	$2.00^{+0.26}_{-0.22}$	Hir18	14.82 ± 0.33	546 ± 12	
K2-137	р	$0.0058_{-0.0006}^{+0.0006}$	$0.179715_{-0.000006}^{+0.000006}$	(0.65)	$0.89_{-0.09}^{+0.09}$	Smi18	841 ± 18	1499 ± 33	
K2-154	р	$0.0408\substack{+0.0012\\-0.0012}$	$3.67635_{-0.00017}^{+0.00017}$	(6.08)	$2.23\substack{+0.37\\-0.24}$	Hir18	59.04 ± 0.96	772 ± 13	
	С	$0.0683^{+0.0021}_{-0.0021}$	$7.95478_{-0.00063}^{+0.00063}$	(5.48)	$2.10\substack{+0.25\\-0.23}$	$\operatorname{Hir}18$	21.07 ± 0.34	596.3 ± 9.7	
Ross 1020	р	$0.026\substack{+0.001\\-0.001}$	$3.023^{+0.001}_{-0.001}$	$> 7.0^{+0.5}_{-0.5}$	(> 2.54)	Luq18	12.16 ± 0.16	519.7 ± 6.6	
HD 122303	q	$0.067\substack{+0.001\\-0.001}$	$8.708_{-0.001}^{+0.002}$	$> 6.51^{+0.69}_{-0.40}$	(> 2.42)	Tri18	9.66 ± 0.16	490.6 ± 8.2	
Proxima Cen	q	$0.0485^{+0.0041}_{-0.0041}$	$11.186\substack{+0.001\\-0.001}$	$> 1.27^{+0.19}_{-0.17}$	(> 1.07)	Ang16	0.653 ± 0.017	250.2 ± 6.4	Yes
K2-240	q	$0.0513_{-0.0009}^{+0.0009}$	$6.034\substack{+0.001\\-0.001}$	$5.0^{\pm 0.5}_{-0.2}$	$2.0\substack{+0.2\\-0.1}$	Die18	23.88 ± 0.58	615 ± 15	
	C	$0.1159_{-0.0020}^{+0.0020}$	$20.523^{\pm 0.001}_{-0.001}$	$4.6_{-0.3}^{+0.7}$	$1.8\substack{+0.3\\-0.1}$	Die18	4.68 ± 0.11	409 ± 10	
HO Lib	q	$0.041\substack{+0.001\\-0.001}$	$5.368\substack{+0.001\\-0.001}$	$> 15.20^{+0.22}_{-0.27}$	(> 4.03)	Tri18	7.14 ± 0.10	455.0 ± 6.4	
	c	$0.074\substack{+0.001\\-0.001}$	$12.919\substack{+0.003\\-0.002}$	$> 5.652^{+0.386}_{-0.239}$	(> 2.20)	Tri18	2.192 ± 0.031	338.6 ± 4.7	
	q	$0.029\substack{+0.001\\-0.001}$	$3.153_{-0.006}^{+0.001}$	$> 1.657^{+0.240}_{-0.161}$	(> 1.18)	Tri18	14.27 ± 0.20	541.0 ± 7.6	
K2-286	q	$0.1768\substack{+0.0175\\-0.0205}$	$27.359\substack{+0.005\\-0.005}$	(5.26)	$2.1\substack{+0.2\\-0.2}$	Die19	2.891 ± 0.063	362.9 ± 7.9	
MCC 759	q	$0.0608_{-0.0068}^{+0.0068}$	$6.905^{+0.040}_{-0.040}$	$> 7.14^{+0.59}_{-0.59}$	(> 2.67)	Per17	17.5 ± 0.2	569.1 ± 6.4	
USco J161014.7-191909	q	$0.0409^{+0.0021}_{-0.0023}$	$5.424865\substack{+0.000035\\-0.000031}$	< 11.76	$5.04\substack{+0.34\\-0.37}$	Dav16, Man16b	60.9 ± 1.9	778 ± 25	
LP 804-27	q	0.36	$111.7^{\pm 0.7}_{-0.7}$	> 667.415	(> 13.2)	App10	0.23	193	
HD 147379	q	$0.3193^{+0.0002}_{-0.0002}$	$86.54_{-0.06}^{+0.07}$	$> 24.7^{+1.8}_{-2.4}$	(> 5.28)	Rei18	0.959 ± 0.023	275.4 ± 6.5	Yes
MCC 767	р	$0.078361\substack{+0.000044\\-0.000046}$	$14.628\substack{+0.012\\-0.013}$	$> 2.82^{+0.51}_{-0.51}$	(> 1.45)	Sua17	2.412 ± 0.033	346.8 ± 4.8	
V2306 Oph	q	$0.0375_{-0.0013}^{+0.0012}$	$4.8869\substack{+0.0005\\-0.0005}$	$> 1.91^{+0.26}_{-0.25}$	(> 1.23)	Ast17a	7.70 ± 0.12	463.6 ± 7.1	
	c	$0.0890^{+0.0029}_{-0.0031}$	$17.8719\substack{+0.0059\\-0.0059}$	$> 3.41^{+0.43}_{-0.41}$	(> 1.66)	Ast17a	1.366 ± 0.021	300.9 ± 4.6	Yes
	q	$0.470\substack{+0.015\\-0.017}$	$217.21_{-0.52}^{+0.55}$	$> 7.70^{+1.12}_{-1.06}$	(> 2.66)	Ast17a	0.04899 ± 0.00077	130.9 ± 2.1	
$BD+25\ 3173$	q	$1.135_{-0.035}^{+0.035}$	$598.3^{+4.2}_{-4.2}$	$> 104.244^{+10.170}_{-10.170}$	(> 12.5)	Jon10	0.03372 ± 0.00036	119.3 ± 1.3	
LHS 3275	q	$0.01411\substack{+0.00032\\-0.00032}$	$1.58040456\substack{+0.00000016\\-0.00000016}$	$6.55_{-0.98}^{+0.98}$	$2.85\substack{+0.20\\-0.20}$	Cha09, Har13	19.51 ± 0.25	584.9 ± 7.6	

Exomoons in the habitable zones of ${\rm M}$ dwarfs

Name	Planet	a	$P_{ m orb}$	$M_{ m p}{}^{ m a}$	${R_{ m p}}^{ m a}$	References ^b	$S_{ m eff}$	$T_{ m eq,p}$	Potentially
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ΗZ
BD+11 3149	b c	$\begin{array}{c} 0.029\substack{+0.001\\-0.001}\\ 0.089\substack{+0.003\\-0.003}\\ \end{array}$	$\begin{array}{c} 2.64977\substack{+0.00081\\-0.00077\\13.740\substack{+0.016\\-0.016\end{array}}\end{array}$	$> 2.47^{+0.27}_{-0.27}$ $> 6.26^{+0.79}_{-0.76}$	(> 1.36) (> 2.36)	Aff16 Aff16	55.6 ± 1.5 5.90 ± 0.16	760 ± 20 434 ± 11	
HD 156384C	ററ	$\begin{array}{c} 0.0505 \substack{+0.0053\\-0.0044}\\ 0.125 \substack{+0.012\\-0.012\end{array} \end{array}$	$7.2004^{+0.0017}_{-0.0017}$ $28.14^{+0.03}_{-0.003}$	$> 5.6^{+1.4}_{-1.3}$ $> 3.8^{+1.5}_{-1.5}$	(> 2.23) (> 1.78)	Ang13 Ang13	5.86 ± 0.14 0.956 ± 0.016	433 ± 10 275.2 ± 4.7	Yes
	р	$0.276^{+0.024}_{-0.030}$	$91.61_{-0.89}^{-0.03}$	$> 5.1^{+1.8}_{-1.7}$	(> 2.08)	Ang13	0.1962 ± 0.0052	185.2 ± 4.9	
	e f	$0.213^{+0.020}_{-0.020}$ $0.156^{+0.014}_{-0.14}$	$62.24_{-0.55}^{+0.55}$ $39.026_{-0.194}^{+0.194}$	$> 2.7^{+1.6}_{-1.4} > 2.7^{+1.4}_{-1.4}$	(> 1.47) (> 1.42)	Ang13 Ang13	$\begin{array}{c} 0.3294 \pm 0.0050 \\ 0.614 \pm 0.015 \end{array}$	210.9 ± 3.2 246.4 ± 6.0	Yes Yes
	, b0	$0.549_{-0.058}^{+0.052}$	$256.2^{+13.8}_{-7.9}$	$> 4.6^{+2.6}_{-2.3}$	(> 1.98)	Ang13	0.04958 ± 0.00092	131.3 ± 2.4	
CD-46 11540	q	0.039	$4.6938\substack{+0.0070\\-0.0070}$	> 11.09	(> 3.32)	Bon07	11	507	
CD-51 10924	р	$1.8049\substack{+0.0302\\-0.0302}$	$1051.1\substack{+0.5\\-0.5}$	$> 1497.9^{+2.9}_{-2.9}$	(> 12.8)	Sah16	0.02763 ± 0.00050	113.5 ± 2.0	
	0 7	$6.6675^{+0.4684}_{-0.4684}$	$7462.9^{+105.4}_{-101.4}$ 3 $_{e005}^{+0.0002}$	$> 2190^{+32}_{-32}$ $> 4.4^{+0.3}$	(> 12.6)	$\operatorname{Sah16}_{\operatorname{Sah16}}$	0.002024 ± 0.000037	59.0 ± 1.1	
	т e	$0.1882^{+0.0032}_{-0.0032}$	$35.39_{-0.003}^{+0.03}$	$> 4.4_{-0.3}$ $> 8.1_{-0.7}^{+0.7}$	(> 1.94) (> 2.71)	Sah16 Sah16	33.30 ± 0.30 2.541 ± 0.046	351.4 ± 6.3	
$BD+68\ 946$	р	$0.71^{+0.01}_{-0.01}$	$38.140^{+0.015}_{-0.015}$	$> 19^{+3}_{-3}$	(> 4.57)	Stal7	0.0439 ± 0.0010	127.4 ± 2.8	
CD-44 11909	р	$0.08^{+0.014}_{-0.004}$	$17.478\substack{+0.062\\-0.040}$	$> 4.4^{+3.7}_{-2.4}$	(> 1.92)	Tuo14	1.268 ± 0.159	295 ± 37	Yes
	С	$0.176\substack{+0.030\\-0.009}$	$57.32^{\pm 0.45}_{-0.48}$	$> 8.7^{+5.8}_{-4.6}$	(> 2.81)	Tuo14	0.262 ± 0.031	199 ± 24	Yes
$BD+18\ 3421$	q	$0.091\substack{+0.004\\-0.004}$	$15.53209_{-0.00167}^{+0.00166}$	$> 7.1^{+0.9}_{-0.9}$	(> 2.58)	Aff19	3.34 ± 0.22	376 ± 25	
Barnard's star	q	$0.404\substack{+0.018\\-0.018}$	$232.80\substack{+0.38\\-0.41}$	$> 3.23^{+0.44}_{-0.44}$	(> 1.58)	Rib18	0.02180 ± 0.00044	106.9 ± 2.2	
Kepler-83	q	0.0785	$9.770469^{+0.000022}_{-0.000022}$	(7.03)	$2.53\substack{+0.16\\-0.16}$	Row14	15	547	
	c	0.0514	$5.169796\substack{+0.000016\\-0.000016}$	(4.74)	$1.94\substack{+0.13\\-0.13}$	Row14	35	676	
	q	0.1270	$20.090227^{+0.000102}_{-0.000102}$	(6.08)	$2.30^{+0.35}_{-0.35}$	Row14	5.7	430	
Kepler-446	q	$0.0159^{+0.0007}_{-0.0007}$	$1.5654090^{+0.0000033}_{-0.0000033}$	$4.5_{-0.5}^{+0.5}$	$1.50\substack{+0.25\\-0.25}$	Mui15	19.61 ± 0.39	586 ± 12	
	с С	$0.0248\substack{+0.0011\\-0.0011}$	$3.0361790^{+0.0000055}_{-0.0000055}$	3^{+1}_{-1}	$1.11\substack{+0.18\\-0.18}$	Mui15	8.11 ± 0.16	469.6 ± 9.3	
	q	$0.0352\substack{+0.0016\\-0.0016}$	$5.148921^{\pm 0.000022}_{-0.000022}$	4^{+1}_{-1}	$1.35_{-0.22}^{+0.22}$	Mui15	4.008 ± 0.079	393.8 ± 7.8	
Kepler-303	р	0.0265	$1.937055 \substack{+0.000004 \\ -0.000004}$	(0.66)	$0.89_{-0.05}^{+0.05}$	Row14	125	930	
	C	0.0628	$7.061149^{\pm 0.000019}_{-0.000019}$	(1.55)	$1.14\substack{+0.09\\-0.09}$	Row14	22	604	
Kepler-617	q	0.0233	$1.682696148_{-0.000001112}^{+0.000001112}$	(2.32)	$1.32_{-0.07}^{+0.07}$	Mor 16	94	867	
Kepler-236	q	0.0698	$8.295611^{\pm 0.000032}_{-0.000032}$	(3.40)	$1.57\substack{+0.12\\-0.12}$	Row14	15	552	
	С	0.1416	$23.968127\substack{+0.000174\\-0.000174}$	(4.94)	$2.00^{\pm 0.17}_{-0.17}$	Row14	3.8	388	
Kepler-235	р	0.035	$3.340222\substack{+0.000005\\-0.000005}$	(5.83)	$2.23\substack{+0.10\\-0.10}$	Row14	71	810	
	С	0.037	$7.824904\substack{+0.000055\\-0.000055}$	(2.02)	$1.28\substack{+0.08\\-0.08}$	Row14	64	788	
	q	0.122	$20.060548_{-0.000099}^{+0.000099}$	(5.26)	$2.05\substack{+0.10\\-0.10}$	Row14	5.9	434	
	е	0.213	$46.183669\substack{+0.000425\\-0.000425}$	(5.95)	$2.22\substack{+0.29\\-0.29}$	Row14	1.9	328	
Kepler-52	q	:	$7.877407^{+0.000020}_{-0.000020}$	(6.08)	$2.34_{-0.22}^{+0.22}$	Row14	22	604	
	с С	:	$16.384888^{+0.00080}_{-0.00080}$	(4.01)	$1.71\substack{+0.08\\-0.08}$	Row14	8.4	474	
	q	:	$36.445171_{-0.000253}^{+0.000253}$	(4.74)	$1.95\substack{+0.21\\-0.21}$	Row14	2.9	363	
Kepler-155	q	0.056	$5.931194_{-0.00008}^{+0.00008}$	(5.26)	$2.09\substack{+0.21\-0.21}$	Row14	55	758	

Table A2 continued

 Table A2 (continued)

26

H. Martínez-Rodríguez et al.

(continued	
$\mathbf{A2}$	
Table	

 \sim

Name	Planet	a	$P_{ m orb}$	$M_{\rm p}{}^{\rm a}$	$R_{\rm p}{}^{\rm a}$	References ^b	$S_{ m eff}$	$T_{\rm eq,p}$	Potentially
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ZH
		0100	ro con 200-000236	(00)	0.04+0.15		c	L C C	
	v	0.242	52.001793 -0.000236	(5.83)	$2.24_{-0.15}$	Row14	2.9	305	
V1428 Aql	q	$0.3357_{-0.0100}^{+0.0099}$	$105.90^{+0.09}_{-0.10}$	$> 12.2^{+1.0}_{-1.4}$	(> 3.40)	$\operatorname{Kam}18$	0.2891 ± 0.0035	204.1 ± 2.5	Yes
Kepler-138	q	$0.0746\substack{+0.0021\\-0.0021}$	$10.3126\substack{+0.0004\\-0.0006}$	$0.066_{-0.037}^{+0.059}$	$0.522^{\pm 0.032}_{-0.032}$	Jhu15	10.34 ± 0.14	499.1 ± 6.5	
	С	$0.0905^{+0.0026}_{-0.0026}$	$13.7813\substack{+0.0001\\-0.0001}$	$1.970^{+1.912}_{-1.120}$	$1.197\substack{+0.070\\-0.070}$	Jhu15	7.026 ± 0.092	453.1 ± 5.9	
	р	$0.1277^{+0.0036}_{-0.0036}$	$23.0881\substack{+0.0009\\-0.0008}$	$0.640^{+0.674}_{-0.387}$	$2.1^{+2.2}_{-1.2}$	Jhu15	3.531 ± 0.046	381.5 ± 5.0	
LSPM J1928+4437	q	0.0116	$1.2137672\substack{+0.0000046\\-0.0000046}$	(0.39)	$0.78_{-0.22}^{+0.22}$	Mui12b	22	600	
	U	0.006	$0.45328509^{+0.00000097}_{-0.0000007}$	(0.33)	$0.73\substack{+0.20\\-0.20}$	Mui12b	81	834	
	р	0.0154	$1.865169\substack{+0.000014\\-0.000014}$	(0.13)	$0.57\substack{+0.18\\-0.18}$	Mui12b	12	521	
Kepler-49	р	0.0642	$7.203871^{+0.000008}_{-0.000008}$	(6.21)	$2.35_{-0.09}^{+0.09}$	Row14	23	609	
	c	0.0847	$10.912732^{+0.000021}_{-0.000021}$	(5.10)	$2.06\substack{+0.09\\-0.09}$	Row14	13	530	
	р	0.0323	$2.576549^{\pm 0.000003}_{-0.000003}$	(3.55)	$1.60\substack{+0.07\\-0.07}$	Row14	90	858	
	e	0.1208	$18.596108\substack{+0.000079\\-0.000079}$	(3.33)	$1.56\substack{+0.08\\-0.08}$	Row14	6.5	444	
LSPM $J1930+4149$	р	$0.0514\substack{+0.0028\\-0.0028}$	$8.689090^{+0.000024}_{-0.000024}$	(1.28)	$1.08\substack{+0.15\\-0.15}$	Age17	1.982 ± 0.039	330.2 ± 6.6	
Kepler-45	р	0.03	$2.455239^{\pm 0.000004}_{-0.000004}$	$160.497^{+28.604}_{-28.604}$	$10.76^{\pm 1.23}_{-1.23}$	Jon 12	06	856	
Kepler-231	q	0.0788	$10.065275_{-0.000027}^{+0.000027}$	(4.10)	$1.73_{-0.12}^{+0.12}$	Row14	13	530	
	c	0.1215	$19.271566\substack{+0.000099\\-0.000099}$	(4.74)	$1.93\substack{+0.19\\-0.19}$	Row14	5.5	427	
Kepler-54	q	0.0655	$8.010260^{+0.000030}_{-0.000030}$	(5.15)	$2.07\substack{+0.12\\-0.12}$	Row14	11	509	
	c	0.0862	$12.072389\substack{+0.000100\\-0.000100}$	(4.23)	$1.75_{-0.12}^{+0.12}$	Row14	6.5	444	
	q	0.1246	$20.995694^{+0.000143}_{-0.000143}$	(3.26)	$1.53\substack{+0.08\\-0.08}$	Row14	3.1	369	
Kepler-252	q	0.0631	$6.668391^{+0.000031}_{-0.000031}$	(1.90)	$1.23\substack{+0.12\\-0.12}$	Row14	36	680	
	c	0.0873	$10.848463\substack{+0.000015\\-0.000015}$	(5.37)	$2.15_{-0.13}^{+0.13}$	Row14	19	578	
Kepler-32	q	0.05	$5.90124\substack{+0.00010\\-0.00010}$	(5.89)	$2.2\substack{+0.2\\-0.2}$	$\operatorname{Fab}12$	26	629	
	с	0.09	$8.7522_{-0.0003}^{+0.0003}$	(4.94)	$2.0^{\pm 0.2}_{-0.2}$	Fab12	8.0	469	
	q	0.13	$22.7802\substack{+0.0005\\-0.0005}$	(26.2)	$2.7\substack{+0.2\\-0.2}$	Fab12	3.9	390	
	е	0.033	$2.8960^{\pm 0.0003}_{-0.0003}$	(4.36)	$1.85\substack{+0.01\\-0.01}$	Fab12	60	7734	
	f	0.013	$0.74296\substack{+0.00007\\-0.00007}$	(0.47)	$0.82\substack{+0.07\\-0.07}$	Fab12	385	1233	
Kepler-125	q	0.0427	$4.164389^{+0.000003}_{-0.000003}$	(6.34)	$2.37\substack{+0.10\\-0.10}$	Row14	31	655	
	с	0.0531	$5.774464^{+0.000047}_{-0.000047}$	(0.32)	$0.74\substack{+0.05\\-0.05}$	Row14	20	587	
Kepler-186	q	$0.0343^{+0.0046}_{-0.0046}$	$3.8867907_{-0.0000063}^{+0.0000062}$	(1.21)	$1.07\substack{+0.12\\-0.12}$	Qui14	48.6 ± 1.2	735 ± 19	
	c	$0.0451_{-0.0070}^{+0.0070}$	$7.267302_{-0.000011}^{+0.000012}$	(2.02)	$1.25_{-0.14}^{+0.14}$	Qui14	28.09 ± 0.71	641 ± 16	
	р	$0.0781^{+0.0100}_{-0.0100}$	$13.342996\substack{+0.000025\\-0.000024}$	(2.65)	$1.40\substack{+0.16\\-0.16}$	Qui14	9.37 ± 0.24	487 ± 12	
	е	$0.110\substack{+0.015\\-0.015}$	$22.407704\substack{+0.000074\\-0.000072}$	(2.05)	$1.27\substack{+0.15\\-0.14}$	Qui14	4.72 ± 0.12	410 ± 10	
	f	$0.432\substack{+0.171\\-0.053}$	$129.9441_{-0.0012}^{+0.0013}$	(1.65)	$1.17\substack{+0.08\\-0.08}$	Tor 15	0.306 ± 0.084	207 ± 57	Yes
Kepler-445	q	$0.0229^{+0.0010}_{-0.0010}$	$2.984151\substack{+0.000011\\-0.000011}$	(3.55)	$1.58\substack{+0.23\\-0.23}$	Mui15	14.79 ± 0.40	546 ± 15	
	c	$0.0318_{-0.0013}^{+0.0013}$	$4.871229^{\pm 0.000011}_{-0.000011}$	(6.74)	$2.51\substack{+0.36\\-0.36}$	Mui15	7.70 ± 0.21	464 ± 13	
	q	$0.0448^{+0.0019}_{-0.0019}$	$8.15275_{-0.00040}^{+0.00040}$	(1.86)	$1.25_{-0.19}^{+0.19}$	Mui15	3.87 ± 0.11	390 ± 11	
Kepler-267	р	0.0370	$3.353728_{-0.00007}^{+0.000007}$	(5.04)	$1.98\substack{+0.09\\-0.09}$	Row14	43	712	

Exomoons in the habitable zones of ${\rm M}$ dwarfs

Name	Planet	a	P_{orb}	$M_{\rm p}{}^{\rm a}$	$R_{\rm p}{}^{\rm a}$	References ^b	$S_{ m eff}$	$T_{\rm eq,p}$	Potentially
		[au]	[days]	$[\oplus M]$	$[R_\oplus]$		$[S_{\odot}]$	[K]	ZH
	c	0.0597	$6.877450^{+0.000016}_{-0.000016}$	(5.59)	$2.13\substack{+0.11\\-0.11}$	Row14	16	560	
	q	0.1539	$28.464515\substack{+0.000180\\-0.000180}$	(5.71)	$2.27\substack{+0.12\\-0.12}$	Row14	2.5	349	
HD 204961	р	$3.56\substack{+0.28\\-0.28}$	3657^{+104}_{-104}	$> 216^{+29}_{-28}$	(> 13.8)	Wit14	0.002304 ± 0.000088	61.0 ± 2.3	
	С	$0.163\substack{+0.006\\-0.006}$	$35.68\substack{+0.03\\-0.03}$	$> 5.40^{+0.95}_{-0.95}$	(> 2.16)	Wit14	1.099 ± 0.042	285 ± 11	\mathbf{Yes}
BD-05 5715	q	$2.35_{-0.22}^{+0.22}$	$1882\substack{+250\\-250}$	$> 318^{+99}_{-99}$	(> 13.5)	Stal7	0.005115 ± 0.000077	74.4 ± 1.1	
	С	6.5640	8775	> 245.7	(> 13.9)	Mon14	0.00066	45	
LP 819-052	р	$0.026\substack{+0.001\\-0.001}$	$3.651_{-0.001}^{+0.001}$	$> 6.4^{+0.5}_{-0.5}$	(> 2.36)	Luq18	5.378 ± 0.068	423.8 ± 5.4	
LP 700-6	р	$0.0214\substack{+0.0013\\-0.0013}$	$2.260455^{+0.000041}_{-0.000041}$	(6.08)	$2.32\substack{+0.24\\-0.24}$	Hir16	25.50 ± 0.50	625 ± 12	
K2-21	р	$0.076\substack{+0.002\\-0.003}$	$9.325038_{-0.000403}^{+0.000379}$	(4.45)	$1.84\substack{+0.10\\-0.10}$	Dre17	16.93 ± 0.32	565 ± 11	
	С	$0.107\substack{+0.003\\-0.004}$	$15.50192^{\pm 0.00092}_{-0.00093}$	(7.18)	$2.49\substack{+0.17\\-0.19}$	Dre17	8.54 ± 0.14	475.8 ± 8.0	
LHS 3844	q	$0.00623^{+0.00015}_{-0.00015}$	$0.46292792_{-0.0000016}^{+0.0000016}$	(2.25)	$1.32\substack{+0.02\\-0.02}$	Van18	69.82 ± 0.74	804.5 ± 8.6	
IL Aqr	р	$0.214\substack{+0.001\\-0.001}$	$61.082\substack{+0.006\\-0.010}$	$> 760.9^{+1.0}_{-1.0}$	(> 13.1)	Tri18	0.2823 ± 0.0066	202.9 ± 4.8	\mathbf{Yes}
	c	$0.134\substack{+0.001\\-0.001}$	$30.126\substack{+0.011\\-0.003}$	$> 241.5^{+0.7}_{-0.6}$	(> 13.7)	Tri18	0.720 ± 0.017	256.4 ± 6.0	\mathbf{Yes}
	q	$0.021\substack{+0.001\\-0.001}$	$1.938_{-0.001}^{+0.001}$	$> 6.910^{+0.220}_{-0.270}$	(> 2.54)	Tri18	29.31 ± 0.68	648 ± 15	
	e	$0.345^{+0.001}_{-0.001}$	$124.4\substack{+0.3\\-0.7}$	$> 15.43^{+1.29}_{-1.27}$	(> 3.92)	Tri18	0.1086 ± 0.0025	159.8 ± 3.7	
2MUCD 12171	q	$0.01111_{-0.00034}^{+0.00034}$	$1.51087081\substack{+0.00000060\\-0.00000060}$	$0.85_{-0.72}^{+0.72}$	$1.086\substack{+0.035\\-0.035}$	Gil17	4.357 ± 0.046	402.1 ± 4.3	
	с С	$0.01521_{-0.00047}^{+0.00047}$	$2.4218233^{+0.0000017}_{-0.0000017}$	$1.38\substack{+0.61\\-0.61}$	$1.056\substack{+0.035\\-0.035}$	Gil17	2.325 ± 0.025	343.7 ± 3.7	
	q	$0.02144_{-0.00063}^{+0.00066}$	$4.049610^{+0.000063}_{-0.000063}$	$0.41\substack{+0.27\\-0.27}$	$0.772_{-0.030}^{+0.030}$	Gil17	1.170 ± 0.013	289.5 ± 3.1	Yes
	e	$0.02817^{+0.00083}_{-0.00087}$	$6.099615^{+0.000011}_{-0.000011}$	$0.62\substack{+0.58\\-0.58}$	$0.918_{-0.039}^{+0.039}$	Gil17	0.6777 ± 0.0073	252.5 ± 2.7	Yes
	f	$0.0371^{+0.0011}_{-0.0011}$	$9.206690^{+0.000015}_{-0.000015}$	$0.68_{-0.18}^{+0.18}$	$1.045\substack{+0.038\\-0.038}$	Gil17	0.3907 ± 0.0042	220.0 ± 2.3	Yes
	60	$0.0451_{-0.0014}^{+0.0014}$	$12.35294\substack{+0.00012\\-0.00012}$	$1.34\substack{+0.88\\-0.88}$	$1.127\substack{+0.041\\-0.041}$	Gil17	0.2644 ± 0.0028	199.6 ± 2.1	Yes
	Ч	$0.063^{+0.027}_{-0.013}$	$18.767\substack{+0.004\\-0.003}$	(0.39)	$0.752^{+0.032}_{-0.031}$	Gil17, Lug17	0.136 ± 0.030	169 ± 38	

^a The planetary masses and radii shown in parentheses correspond to our adopted mass-radius relation.

Charloneau et al. (2009); Clorf: Cloutier et al. (2017); David et al. (2016); Dellis: Dellosse et al. (2013); Dielsa: (Diez Alonso et al. 2019); Diel B: (Diez Alonso et al. (2017); Fei19: Feinstein et al. (2017); David et al. (2016); Dit17: Dittaman et al. (2017); Davids et al. (2017); Fab12: Fabrycky et al. (2012); Fei19: Feinstein et al. (2019); Gil17: Gillon et al. (2017); Gun19: Günther et al. (2017); Fab12: Fabrycky et al. (2012); Fai19: Feinstein et al. (2015); Hirlis: Hirano et al. (2017); Gillon et al. (2017); Gun19: Günther et al. (2018); Harl3: Fabrycky et al. (2012); Fab13: Harbso et al. (2019); Hirlis: Hirano et al. (2015); Hirlis: Hirano et al. (2018); Hirlis: Hirano et al. (2018); Horbson et al. (2019); Horbson et al. (2019); Horbson et al. (2018); Horbson et al. (2019); Horbson et al. (2018); Horbson et al. (2018); Horbson et al. (2018); Horbson et al. (2018); Horbson et al. (2019); Horbson et al. (2018); Horbson et al. (2019); Horbson et al. (2018); Horbson et al. (2019); Horbson et al. (2018); Montson et al. (2018); Montson et al. (2019); Horbson et al. (2019); Montson et al. (2019); Horbson et al. (2019); Horbson et al. (2019); Horbson et al. (2019); Horbson et al. (2019); Montson et al. (2019); Montson et al. (2019); Montson et al. (2019); Multson et al. (2019); Multson et al. (2016); Ment et al. (2019); Montson et al. (2019); Montson et al. (2016); Ment et al. (2016); Ment et al. (2016); Ment et al. (2017); Luquson et al. (2013); Luquson et al. (2013); San18; Santson et al. (2017); San18; Santof, Santof, Santson et al. (2017); San18 Aff16: Affer et al. (2016); Aff19: Affer et al. (2019); Age17: Angelo et al. (2017); Alm15: Almenara et al. (2015); Ang12: Anglada-Escudé et al. (2012); Ang13: Anglada-Escudé et al. (2013); Ang14: Anglada-Escudé et al. (2014); Ang16: Anglada-Escudé et al. (2016); App10: App8 et al. (2010); Ast15: Astudillo-Defru et al. (2015); Ast17a: Astudillo-Defru et al. (2017a); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2017b); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2017b); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2017b); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2017b); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18: Bakos et al. (2010); Ast17b: Astudillo-Defru et al. (2017b); Bak18; Bakos et al. (2010); Ast17b; Astudillo-Defru et al. (2017b); Bak18; Astudillo-Defru et al. (2017b); Astudillo-Defru et al. (2018); Bay18: Bay18: Bayliss et al. (2018); Bid14: Biddle et al. (2014); Bon07: Bonfils et al. (2007); Bon11: Bonfils et al. (2011); Bon13b: Bonfils et al. (2013b); Bon17: Bonfils et al. (2018b); Bon18a: Bonfils et al. (2018b; Bonfils et al. (2017); Cha009: ٩

28

^c Bonfils et al. (2011) gave true mass for LP 905-36 b calculated with a Markov chain analysis, $M_p = 8.4^{+4.0}_{-1.5} M_{\oplus}$, but we adopt the minimum mass, $M_2 \sin i$, for consistency.