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Preface

Supersymmetry is one of the boldest, most original and most fruitful ideas
to appear in physics in a very long time. In common with nonabelian
gauge theories and spontaneous symmetry breaking, it has great depth,
and just like those ideas it has travelled quite a way on its own momentum,
without carving out for itself a rockbed of supporting experimental
evidence. Guided by these analogies, nobody doubts that when discarding
some blinding prejudices, or coming by some new data, supersymmetry
will come into its own, experimentally as well.

Unlike nonabelian gauge theories and spontaneous symmetry breaking,
supersymmetry does not build on well-understood mathematics. Rather,
it has created its own, rich, truly new mathematics. Yes, we are faced here
with one of those rare instances, when the mathematicians, in all their
wisdom, have overlooked a beautiful and most useful structure, and come
to appreciate it only at the demand of physicists. We are living in an era
in which the contacts between mathematicians and physicists are being
vigorously renewed (particularly through work in supersymmetry and
gauge theories). This is a good omen, since such contacts have historically
always led to great advances both in mathematics and physics.

Supersymmetry is now over a decade old, and excellent monographs
and reviews on the subject are available. While teaching a course on
supersymmetry at the University of Chicago, it became clear to me that
there still was ample space left for a brief introductory text, willing to
sacrifice completeness and rigour, in order to achieve a freely flowing
exposition of the basic ideas and techniques without all the ‘Grassmann
clutter’. I have therefore aimed, first of all, at making the mathematics
(superspace included) as simple and clear as possible. On the other hand
the construction of supersymmetric action principles and the discussion
of many of the relevant physical ideas has deliberately been made in low
space-dimensionalities where the formulae do not crowd out the concepts.
In the process I was forced into some glaring omissions. I said virtually
nothing on supersymmetric grand unification, supergraphs, very little on
nonrenormalization theorems and on so many more things. As a conso-
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lation, the reader will find these topics well presented elsewhere. For what
it is worth I included my own assessment of the present status of super-
symmetry, of where the field seems to be heading. The table of contents
gives an accurate idea of what is — and by implication of what is not —
covered in this book.

I have immensely benefited from discussions with Irving Kaplansky,
Yoichiro Nambu, Reinhard Oehme, Bruno Zumino, Hermann Nicolai,
Tom Curtright, Jeff Rabin, Peter van Nieuwenhuizen, Feza Giirsey, Mike
Duff, John Schwarz, Kelly Stelle, Peter West and many others. Phillial
Oh and James Wheeler have read the manuscript and made valuable
remarks. By thanking my teacher Walter Thirring for his interest in and
comments on this book, I can but acquit myself of an infinitesimal fraction
of the gratitude I feel towards him.

The writing of this book coincided with a period of deep personal
turmoil. The support I received throughout this period from the physics
community as a whole, has made me appreciate my good fortune at being
one of its members. I was also privileged to enjoy the giving friendship

of John and Barbara Ryden, Reinhard and Mafalda Oehme, Elsa |

Charlston, Stephen Ellis, Subrahmanyan and Lalitha Chandrasekhar,
Valentine and Lia Telegdi, Frangine Joseph and Joseph Kitagawa. They all
command my admiration, respect and gratitude.

Parts of this book were completed during my stays at the Aspen Center
for Physics, the Institute for Theoretical Physics at Santa Barbara, and the

California Institute of Technology. Their hospitality is gratefully acknow- ,

ledged, as is the support of the US National Science Foundation.
Lois Cox deserves the ultimate thanks for her technical help, understand-
ing, patience and moral support.

Pasadena, 1985 Peter G. O. Freund

Part I

Supersymmetry: the physical and
mathematical foundations



1

From symmetry to supersymmetry

A dynamical system, as studied in physics, is identified by its action integral.
In classical physics one extremises this action to find the ‘classical paths’.
In quantum physics one sums over all possible — not only classical - paths,
each term weighted by a phase factor exp(iS(path)/h), with S(path) the
action evaluated at the corresponding path and # = h/2n Planck’s constant.

In a d-dimensional local field theory the action S is the space—time
integral of a local lagrangian density £(x)

S= Jd"'xﬁé’(x)

with & a function of the fields and their first space—time derivatives.
Theories of point particles are then also covered, since they can be viewed
as field theories in a space—time with one time and zero space dimensions,
the coordinates of the point particles playing the role of fields. For con-
creteness let us consider an example.

The action

S=— Jd“x[audﬂ@“(p +m*¢'o + M@ P)*] (1.1)

specifies a self-interacting complex scalar field ¢ in four-dimensional
Minkowski space—time. This action is invariant under the group of
Poincaré transformations and under the U(1) group of phase trans-
formation ¢ — e“d(x = constant). According to a theorem of Emmy
Noether, to each parameter of the action’s symmetry group there corre-
sponds a conserved current (Ramond 1981). From the Poincaré group
parameters one gets the energy-momentum tensor and the Lorentz-boost-
angular-momentum—density tensor as conserved currents. For the phase
transformations, the Noether current is

ju=i¢"0,6=i1(0'9,~0,4"9 (12)
and the conservation law is

0,j* =0, (1.3)
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or in integral form
0=0 with Q= j d3xj°. (1.4)
x0=consl
Now in the action (1.1) imagine that ¢ stands not for one complex scalar

field but for a column matrix of N such fields

d)l
o=|%| o' =101
d;N
In this case the rephasing group is enlarged to U(N) and there are
correspondingly N 2 conserved charges

0:= ij d3x¢'2,00
x0=const

with 4, i=1,....N 2 a basis of hermitean N x N matrices. So, the more
scalar fields in the action, the higher the symmetry. These extra symmetries
can be observed both in the free field (A= 0) and interacting (A # 0) cases.
Were one to achieve the proliferation of fields not by adding ever more
scalar fields, but by adding higher spin fields (e.g., vector fields) instead,
one could still enlarge the symmetry in the free field case. Thus for one
free real scalar field ¢ and one free real vector field A, both of the same
mass m, the tensor current

= 0,4, (1.50)
obeys the conservation law
*j=00A, — O¢A, =(m? —m*)pA,=0. (1.5b)

The tensor J,,, is but one out of an infinity of such conserved currents of the
form

$3,,...0,9 (1=2,46,.), $d,,.. 0,4, (1=1,23,..0),....

Just as the charge Q obtained from the vector current was a Lorentz |

scalar, so the charge Q, = { 0= const jo,d3x obtained from j,, is a Lorentz
vectot, as is §x0=60n5‘¢505v¢d3x, whereas the (integral) charges obtained
from the remaining currents (1.6) have ever higher tensorial rank. By
analogy with the vector current above, one may ask whether these extra
conservation laws can also be extended to the interacting case.

1 From symmetry to supersymmetry 5

In dimension d > 2 the answer to this question (Coleman & Mandula
1967, Witten 1981) turns out to be an emphatic no! Specifically, in
dimension d > 2, consider a relativistic quantum theory with a discrete
spectrum of massive (but no massless) one-particle states, and with some
nonzero scattering amplitudes. In any such theory, as we shall argue below,
the only conserved tensorial charges that are not Lorentz scalars, are the
energy-momentum vector P, and the angular-momentum-Lorentz-boost
tensor M, which span the Poincaré algebra 2. All other conserved
charges in such a theory must be Lorentz scalars. As a rule they span a
compact ‘internal symmetry’ Lie algebra (which thus commutes with 2).
The total symmetry algebra is thus always of the form

g-{—y.

In the totally massless case, 2 can be extended to the conformal algebra
A (see Mack & Salam 1969). To see how this result comes about,
consider a forbidden tensorial charge, say a conserved second rank
(hermitean) tensor charge Q,, which for simplicity we shall assume traceless
02=0. Assume a scalar particle of mass m, carrying the charge Qg
appears in the theory. Let [p> be a corresponding one-particle state,
p? = —m? Then the expectation value {p|Q,lp) is of the form (Nap=
diag(—1,+1,+1,..., + )isthe d-dimensional Minkowski metric tensor)

(pIQulp =(p¢p,—1n,,,p2>c,

d
where C #0 is a real number. Consider now the process whereby two
such incoming particles of momenta p,, p, scatter and then go out with
final momenta p, and p5. The conservation law of Q,, applied between
asymptotic incoming and outgoing states requires

1
C[Plapw + P2.P2g t Erlaﬂ(mz + mz)]

J U / U 1
= Cl:plaplﬂ + P2.P2gt+ E'Iap(mz + mz)]’

where o, f=1,...,d. If C #0, these equations imply that the scattering
must proceed either in the forward or backward direction; (e.g., the « =0,
B =0 equation requires the sums of the squares of the particle energies
to be the same in the initial and final states) whereas in all other directions
there can be no scattering. This conflicts with the known analyticity
Properties of scattering amplitudes (in dimension d > 2!) and thus excludes
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C # 0, so that no interacting scalar particle can carry this charge. Similar
arguments when the nonvanishing amplitudes involve other than identical
scalar particles can then be used to rigorously prove this ‘no-go theorem’.
In two dimensions this type of argument does not apply, since forward
and backward scattering is all one can have there. Indeed, nontrivial
completely integrable quantum systems in two dimensions are known, in
which infinite towers of charges of ever higher tensorial rank are all
conserved (see for example, Berg, Karowski & Thun, 1976).

These arguments establish the impossibility of nontrivial symmetries
that connect particles of different spins, if all these particles have integer
spin, or if all have half-odd-integer spin. Were the symmetry to connect
particles of integer spin with particles of half-odd-integer spin, then some
of the charges would turn out to be spinorial and the ‘no-go theorem’
would not apply. The change is quite drastic. Indeed, tensorial charges
are space integrals of tensorial local fields (see for example, equation (1.4)
for the charge Q). Spinorial charges should then also be given as space
integrals of spinorial local fields. But the famous spin—statistics connection
of quantum field theory (Streater & Wightman, 1964) instructs us that at
space-like distances, local spinor fields cannot commute, rather they must
anticommute. This leads us to expect that the commutator of two spinorial
charges will not be determined, so that these charges along with the
tensorial charges cannot span an ordinary Lie algebra. For two spinorial
charges the spin—statistics connection dictates that the anticommutator be
determined, and thus one is led to invent a new type of Lie-like algebra
in which the bracket [,] is not always an antisymmetric operation (like
a commutator) but ‘occasionally’ a symmetric operation (like an anti-
commutator). Such algebras are called Lie superalgebras and will be
described and classified in the next chapter.

2

Lie superalgebras

An ordinary Lie algebra g over the field of complex numbers C is specified
by the following three axioms (Humphreys 1972):

(i) ¢ is a vector space over C.

(ii) ¢ is endowed with a binary operation, the bracket [,], which is
bilinear and anticommutative.

In detail, to any two elements A and B of g is attached the bracket
[A4, B} such that

[aA+dA',B]=a[A,B]+ad[A,B] foraandadeC
and
[Aa B] == [B9 A]'

(1) The bracket operation obeys the Jacobi identity
[4,[B,C]]1+[B,[C,A11+[C,[4,B]]=0.

To get to a Lie superalgebra’ we have to deal with a vector space which
has two types of elements: Bose and Fermi. Thus we use a graded vector
space such that each of its vectors has a grade defined mod 2. We call
Bose the even, or grade 0 elements, and Fermi the odd, or grade 1 elements
of this graded vector space. The set °V(* V) of all Bose (Fermi) vectors is
a vector space itself. °V and 'V have only one element in common: the
null element. Now the problem arises what grade is one to give to a linear
combination of a Bose with a Fermi element. In physics it is known that
superselection rules (Wick, Wightman & Wigner 1952) forbid the consi-
deration of such combinations. Mathematically we express this by
requiring the total vector space ¥ to be the set-theoretic union of °V and
'V: V=Y UV, rather than their direct sum °V+ 'V. The axioms of a
Lie superalgebra s are then
(i) o is a mod 2 graded vector space over C.

' We refrain from the use of the term graded Lie aigebra (GLA) encountered in the early
literature, since ordinary Lie algebras can also be graded and confusion can arise.
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(ii) o is endowed with a binary operation, the bracket, which is bilinear,
superanticommutative and mod 2 grade additive.

In detail this means that to any pair 4, B of elements of s we associate
the bracket [4, B] which while still bilinear as in the ordinary case, is no
longer anticommutative. Rather [4,B] = —[B, A] in all cases but one,
namely when both A and B are Fermi in which case [4,B] = + [B,A]
Let us denote by a, b, c,... the grades, valued in the set (0,1), of the
elements A, B, C,... of s. Mod 2 grade additivity means [4,B]=C—
a + b= c(mod 2). Thus the bracket of two Bose or of two Fermi elements
is Bose, whereas the bracket of a Bose and a Fermi element is Fermi, as
expected.

(iti)y The bracket operation obeys the super-Jacobi identity

(— 1)[4,[B,C]1+ (— )*[B,[C, A1] + (— I"[C,[4, B]] =0

This reduces to the ordinary Jacobi identity in all cases but one: when
any two of the elements A, B, C are Fermi and the third one is Bose in
which case one of the three usual Jacobi terms has its sign flipped.

Important notation. On account of its superanticommutativity, the
bracket of a Lie superalgebra if realized as a commutator when one or
both bracketed elements are Bose, becomes an anticommutator when both
bracketed elements are Fermi. The standard notation for these operations
is [,] and {,}. We shall nevertheless use a common notation [,] for all
these cases, since given the elements to be bracketed, their grades un-
ambiguously specify the nature of the bracket (commutative, or anti-
commutative). On rare occasions, to emphasize the commutativity
properties of a particular bracket under consideration, we will, redun-
dantly, use the notations [,]+, [,]J- for anticommutators and
commutators respectively. Many other notational systems are to be found
in the literature, all the way from spelling things out case by case and
using ordinary [,], {,} notation, to using the —in my opinion, weird —
notation [,} for a superanticommutative bracket.

For ordinary Lie algebras the ‘building blocks’ are the simple ones fully
classified by Cartan and Killing (Humphreys 1972). For Lie superalgebras,
although they had occurred in various mathematical contexts (Frohlicher
& Nijenhuis 1956, Gerstenhaber 1963, 1964, Milnor & Moore 1965), the
classification problem (of the simple ones) was not addressed until after
their appearance in physics. A Lie superalgebra o is simple if it has no
nontrivial ideals (in other words, any subsuperalgebra ¢ of s, such that
Le¢ and Aes always implies [L, A]e/, is trivial, ie,, either £/ =0o0r £ =3s).

The simple finite-dimensional Lie superalgebras over C are now fully

2 Lie superalgebras 9

classified (Kac 1975, 1977; Freund & Kaplansky 1976; Nahm & Scheunert
1976; Scheunert 1979; Kaplansky 1980). There are eight infinite families
st(m|n), oaf(m|n), P(n), Q(n), W(n), S(n+2), S(n+2), H(n +3), a conti-
nuum D(2|1;a) of 17-dimensional exceptional superalgebras,’and one
exceptional superalgebra each in dimensions 31 and 40 (G(3) and F(4)
respectively). We shall now describe these superalgebras although for

physics the relevant ones are, above all, the special linear and the ortho-
symplectic ones.

. The special linear superalgebras s/ (m|n)
Consider a mod 2 graded vector space V(m|n) over C with m Bose (or
even) and n Fermi (or odd) dimensions. Represent a vector in V(m|n) as
a column ma.trix with m + n rows. A Bose (Fermi) element will thus have
nonzero eptrles in the top m (bottom n) entries of this column matrix.
Now consider the complex linear transformations on V(m|n). The grading
of V(mln') induces an obvious grading of these linear transformations. In
the matrix representation a Bose linear transformation (that carries Bose

v.ectors into Bose vectors and Fermi vectors into Fermi vectors) is block
diagonal

m n
m |

7

7 0
n 0

7

whereas a Fermi transformation is block off-diagonal

m

m 0

n /A 0

In the matrix representation the bracket is the usual commutator in all
Cas.es but one, namely when both bracketed transformations are Fermi in
Which case it is an anticommutator. It is obvious that one obtains a Lie
lelperalgebra in t.his way, but, like in the ordinary case, this general linear
geb‘ra #¢(m|n) is not simple. In the ordinary case one achieves simplicity
Y imposing the tracelessness condition, the ordinary bracket
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(commutator) of any (finite-dimensional) matrices being always traceless.
For two Fermi transformations in g#(m|n) the bracket is now an anti-
commutator, and even though the individual Fermi transformations are
traceless (in the ordinary sense) their anticommutator, in general, is not.
We therefore have to invent a new concept of trace, call it supertrace,
such, that it identically vanishes for the superalgebra bracketing of two
matrices. It is readily checked that for a matrix

m n

mM-"(AlB
n\C1ID

The supertrace is given by
sttM=trA—trD (2.1

which differs from the ordinary trace by the relative sign of the two terms.

To achieve simplicity we restrict ourselves to the supertraceless elements
of g£(m|n). For m#n the supertraceless (m + n) x (m + n) matrices form
a simple ((m+ n)®>— 1)-dimensional superalgebra of(m|n) under the
bracketing described above.

In the ‘balanced’ case when m = n, the unit matrix is supertraceless, so
that even after the imposition of supertracelessness the superalgebra
s¢(m|m) still has a one-dimensional center (the unit matrix commutes with
all elements of s¢(m|m)) which has to be divided out. In this case the
simple superalgebra #af(m|m) with m>2 has dimension 4m?—2
(224£(1]1) is nilpotent).

The Bose (even) sectors %s of a Lie Superalgebra s is an ordinary Lie
algebra. In general, this ordinary Lie algebra will not be simple but will
contain a piece that shuffles only the bosons, a piece that shuffles only
the fermions, and a piece that shuffles the bosons among themselves and
the fermions among themselves, but in a correlated manner. Thus

ng(mln) = g/(m) + gf(n)
O5t(m|n)l,,., = of(m) + of(n) + one-dimensional abelian piece
0P s (m|m) = of (m) + of (m)
We thus recognize the Bose parts of gf(m|n), ot (m|n)|pysn Pot(m|m) to

have dimensions m2+n?, m*+n*—1, 2m*—2, respectively. The
dimension of the corresponding Fermi parts are then 2mn, 2mn, 2m?*.

2 Lie superalgebras 11

The orthosymplectic superalgebras o4 £(m|n)

Choose n even and endow the graded vector space V(m|n) with a bilinear
form

(x,y)=x"Gy

which is symmetric (antisymmetric) on the Bose (Fermi) sector of
V(m|n)

m n

Now consider those complex linear transformations U on V(m|n) on which

we impose a ‘superantisymmetry’ condition. Naively one could choose this
condition as

(x,Uy)+(Ux,y) =0,

but, on account of the different ordering of U and x in the two terms,
one has to correct with a minus sign in the Fermi~Fermi case. To define

oaf(m|n) we thus impose (u, x in the exponent are the grades of U, x, as
defined above)

(x5 Uy)+ (= 1)*(Ux,y) =0

The Bose sector of oap(m|n) is then obviously o(m)+ o 4(n) (n = even!),
and 2'15 such has dimension im(m—1)+in(n+1). To determine the
Fermi sector we choose a Bose vector be V(m|n), a Fermi vector feV(m|n)

and a Ff:rmi Ueoap(m|n). For x=>b, y=f, and such a Fermi U, the
Superantisymmetry condition reduces to

BTGUf+bTUTGf=0
which determines
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For x=f and y=>b one obtains the transpose of the same condition.
Thus the lower half of the Fermi matrix U determines its upper half (or vice
versa). There are thus only mn fermionic generators to oa(m|n) (not 2mn
as for sf(m|n)). The total dimension of os4(m|n) is 3[(n + m):+n— m].
Had we chosen G symmetric in both the Fermi and Bose sectors Of
antisymmetric in both, the Fermi sectors of the resulting algebras woul'd
have been empty and we would have ‘rediscovered’ the ordinary Ln.e
algebras o(m + n), s £(m + n). If for m even we had chosen G anti-symmetric
over the Bose sector and symmetric over the Fermi sector we would have
obtained o4 z(n|m). So, we only find something new fora G that has both
a symmetric and an antisymmetric part, though it is mathematically irrele-
vant over which of the two sectors of V(m|n) we impose which symmetry
of the metric.

The superalgebras P(n)
P(n) is the subsuperalgebra of s¢(n + 1|n+ 1) defined by the matrices of
the form

(" b T) with tra=0,b=bT,c= —c"
¢ —a

The dimension of P(n) is 2(n + 1)> — 1. These superalgebras have been first
considered by Gell-Mann (see Gell-Mann & Ne’eman, 1964) and by Michel
and Radicati (see Michel, 1969 and also Corwin, Ne’eman & Sternberg,
1975).

The superalgebras Q(n)
Q(n) is the [2(n + 1)* — 2]-dimensional subsuperalgebra of s¢(n + 1{n + 1)

a b ..
defined by the matrices of the form <b a) after one divides out the

center corresponding to the unit matrix and imposes trb=0.

Exceptional Lie superalgebras
Just as in the ordinary case, there are some superalgebras which only exist
for a particular dimensionality. They are called exceptional. The lqwest
exceptional superalgebra is a continuously infinite set of 17-dimensional
algebras D(2|1; «) labeled by aeR. They all have Bose sectqr o(4) + 5 £(2),
and an eight-dimensional Fermi sector which transforms like (4,2) under
o(4) + 3 4(2). Next the 31-dimensional superalgebra G(3) has g, + a4(2)

2 Lie superalgebras 13

in its Bose sector. Its 14-dimensional Fermi sector transforms like the
(7,2) representation of g, + seA2). This is the only time any of the excep-
tional ordinary Lie algebras makes an appearance in superalgebra theory.

Finally, F(4) is 40-dimensional. Its Bose sector is o f¢#(7) + se(2). Its
Fermi sector transforms like the (8,2) representation of s 4e#(7) + ae(2).
Here 8 is the eight-dimensional spinorial representation of s ¢ (7). This
superalgebra plays the role of an extended de-Sitter algebra in a six-
dimensional space—time (Nahm 1978).

Superalgebras of Cartan type
Consider a n-dimensional space with local coordinates x* u=1, 2,...,n.
One of the ordinary infinite simple Lie algebras of Cartan type is that of
analytic coordinate transformations in such a space. It is (locally) generated
by the infinite set of generators.

(xym...(x"™md, m;=0,1,.... (2.2)

Now assume x* not to be ordinary real numbers but generators of a
Grassmann algebra

x*x" + x"'x* =0
v __ SV
0,x" =0},

Then the set of generators of type (2.2) truncates since each m; can only
take two values, 0 and 1. One thus obtains a Lie superalgebra W(n) of
finite dimension n2" W(n) is then the algebra of analytic coordinate trans-
formations on a n-dimensional ‘fermionic space’, or more mathematically,
the algebra of derivations of the Grassman algebra with n generators. W(n)
is simple for n > 2. There are three more families of finite-dimensional Lie
superalgebras of Cartan type S(n + 1), S(n + 2) and H(n + 2), which all are

simple for n > 2, but which we shall not describe here in detail (see Kac
1977).

No matter what the space—time dimension, the ordinary Poincaré
algebra is not even semisimple, let alone simple. So one may question the
wisdom of paying this much attention to simple Lie superalgebras. Yet
on the one hand, the Poincaré algebra can be obtained by Wigner—Inonii
Contraction (to be described in chapter 4) from the simple de-Sitter algebra
and, on the other hand, it can be embedded in the again simple conformal
algebra. We shall see that similar things happen for the ‘Poincaré super-
algebras’ as well, and thereby simple Lie superalgebras will come to play
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a central role. The selection of the physically relevant simple superalgebras
is achieved using two principles: compatibility with the spin—statistics
connection and circumvention of the no-go theorem of chapter 1 (Haag,
Yopuszanski & Sohnius 1975). We shall come to identify the physically
relevant algebras in chapter 4. For the time being we still lack a technical
ingredient: the theory of spinors in d-dimensional (euclidean or minkow-
skian) space. We therefore devote the next chapter to this topic.

3

Spinors in d-dimensions

Consider a d-dimensional vector space V over the field F, for which we shall
choose the two alternatives F =R and F = C (R = field of real numbers,
€ = field of complex numbers). Let Q be a quadratic form on V.

Q:xeV-Q(x)ef.

This defines a symmetric scalar product on V: to any pair xeV, yeV we
associate the scalar product

d(x,y)=xy + yx = Q(x + y) — Q(x) — Q(y)

In particular, for e,, u = 1,...,d, a basis of V, orthogonal with respect to Q
we then have

ee, +ee,=26,00(@,)1 (3.1)

The associative algebra with unit element generated by the e, with the
defining relations (3.1) is called the Clifford algebra C(Q) of the quadratic
form Q. In particular, the Clifford algebra for the identically null quadratic
form Q(x) =0, is the Grassman algebra encountered in chapter 2. Here,
however, we shall pursue nondegenerate quadratic forms. The dimension
of C(Q) is 2°. A convenient basis for C(Q) is

Le,e,e,,.e,e,.e €,.€,,..-€

01€02€uzs -+ € € - with g, <, <py < <y

Ra
The general element of C(Q) can be written in this basis as
o)t ate, +ape.e, + 0+ aiy Mey, ey, (3-2)

with the F-valued coefficients afjj~*' totally antisymmetric in the Greek
indices. Now choose F = R and specify the quadratic form by

+1 u=12,...,p

33
—1 u=p+1,...,p+q=d. (3:3)

Qle,) = {

Then the elements (3.2) of the form

1a*(e,e, —ese,)
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span the ordinary Lie algebra a4 #(p, g; R) if one identifies Lie bracketing
with commutation. A representation of the Clifford algebra thus yields a
representation of df¢s(p,q;R). The elements of the corresponding
representation space are called o ¢soza.

It is a classical result (Chevalley 1954) that a Clifford algebra admits
an irreducible matrix representation, unique up to equivalence (for Dirac’s
Clifford algebra the proof of this statement is given in many physics
textbooks). It is therefore possible to uniquely characterize all Clifford
algebras as matrix algebras, as we shall now do (Atiyah, Bott, & Shapiro
1964, Coquereaux 1982).

We first study the Clifford algebras for F = R. Call C(p,q) the Clifford
algebra corresponding to the quadratic form (3.3). We shall show that
knowledge of, say, C(1,0), C(2,0),..., C(8,0) determines every other C(p, q),
and that the interesting properties of C(p, q) depend only on the signature
(p — q) mod 8. Let us start by considering the first few C(p, g)s.

C(1,0): e, is the one-dimensional unit matrix 1, and hence from (3.2)
the general element of C(1, 0)is ao) + a;)° 1, With a o), a; €R so that
C(1,0)is R+ R

C(0,1): e, =il, so that from (3.2) the general element of C(0, 1) is of
the form a, + a,il;, ie, C(0,1)=C.

C(2,0):e, =0, e, = a,e> =e’=1,ee, = — ig,area basis of the
algebra R(2) of real 2 x 2 matrices C(2,0) = R(2)

C(1,1): e, =0,, e, =i0,, e2= —e}=1,, e;e; = — a5 again imply
C(1,1)=R(2).

C(0,2): e, = io,, e, = io4, €,6; = — id;, €3 =5 = — 1, is a basis of
quaternion algebra H, so that C(0,2)=H.

We may add that C(0, 0) is but the algebra of the reals C(0, 0) = R since there
are no e;s. We thus have

C0,00=R C(1,00=R+R C(0,1)=C}

C2,00=R(2) C(1,)=RQR) C(0,2)=H (34)

From these simple building blocks we can construct all the other C(p, g)s.
A straightforward generalization of the familiar presentation of the algebra
of four-dimensional Dirac matrices as a direct product of two copies of
the Pauli algebra yields the isomorphisms:

C(p,q)®C(2,0)~ C(q + 2,p)
Cp, )@ C(1L,LN~C((p+1)g+1)
C(p,q)®C(0,2)~ Clg,p +2)

Finally, if we call K(n) the n x n matrix algebra over the field K =R, C, H,

(3.5)
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we note the isomorphisms:
R(m) ® R(n) ~ R(mn)
R(H~R
R(m)® C ~ C(m)
R(m)® H ~ H(m)
CeC~CoC
H®C~C(2)
HRH ~ R@4)

v

(3.6)

Here C (H) is again viewed as a 2- (4-) dimensional algebra over the reals.
Using the isomorphisms (3.4)«3.6) one readily constructs C(n,0) and
C(0,n) for 0 <n<8 with the results shown in Table 3.1. Repeated use of
the isomorphisms (3.5) along with the isomorphism

C(0,2) x C(0,2) x C(2,0) x C(2,0) = R(16) = C(0,8) = C(8,0)

yields

C(0,n+ 8)~ C(0,n)® C(0,8)

C(n+8,0) ~ C(n,0)® C(8,0).
Both C(0,8) and C(8,0) being R(16), this means by (3.6) that

C(0,n) = K(I)—> C(0,n + 8) = K(16]) 3.7
and a similar formula for C(n+ 8,0). Thus from the table 3.1 we can
calculate C(n,0) and C(0,n) for all n. For instance
C(0,137)=C(0,1 + (17 x 8)) = C(16'7)

A less facetious example is come by, comparing the n=0 and n=38
entries in Table 3.1. So far we have only determined C(n,0) and C(0,n)
for all n. But any C(p,q) can be obtained according to (3.5) either from

Table 3.1

n C(n,0) C(0,n)
0 R R

1 R+R C

2 R(2) H

3 C H+H
4 H(2) H(2)
5 HQ2)® H(2) C4)
6 H(4) R(8)

7 C@®) R(8) ® R(8)
8 R(16) R(16)
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C(p—4g,0) or C(0,q—p) by repeated multiplication with C(1,1). The
equation C(1, 1) = R(2) and (3.6) then allow the determination of all C(p, q)
from the already known prototype C(p — ¢,0) or C(0,q — p). The results
are presented in Table 3.2. Finally, we are interested in the complex Clifford
algebras. These are trivially obtained by complexifying the real C(p, gq).
Obviously the complexification of all C(p, g) with the same p + g will be
the same. Let C(d) = C(p,d — p) x C be the complexification of C(p,d — p);
then we have table 3.3. This is even simpler than table 3.2 for the real
Clifford algebras. With the classification of Clifford algebras complete, we
are now in measure to discuss the various types of spinors: Dirac,
Majorana, Weyl, Majorana—-Weyl.

The elements of the representation space of C(d) are called (complex)
Dirac spinors. From table 3.3 it is clear that Dirac spinors exist in any
dimension and that a Dirac spinor has 214 complex components among
which one can impose, for instance, the Dirac equation.

If there exists a real representation of the Clifford algebra corresponding

Table 3.2

—q (mod8) C(p.q)

p

0 R(2")

1 R(2)@R(2)

2 R(2")

3 c(2h

4 [H](zl - 1)

5 HR'"HeHE2'™Y)
6 [H](zl - l)

7 C(2)

In this table I=[d/2] is the integer part of
di2andd=p+gq.

Table 3.3

d(mod 2) C(d)

0 C(zh}dl)
1 C(z[fd]) + C(Z[%dl)
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to a given space—time dimension and metric signature, then the (massive
or massless) Dirac equation will shuffle the real parts of any Dirac spinor
among themselves and the imaginary parts among themselves. It is then
possible to impose a reality condition on spinors, say that the spinor be
real, without creating a contradiction with Dirac’s equation. In those
dimensions and metric signatures where such a real representation of the
Clifford algebra exists we can then have real or Majorana spinors. From
table 3.2 this is possible in any dimension provided only

@ M: the metric signature p— g =0, 1, or 2 (mod 8).

In the case of the massless Dirac equation a reality condition on spinors
is possible even if the Clifford algebra is not real, provided all its generators
(y-matrices) are pure imaginary (the overall i then factors out and as far
as the Dirac equation is concerned, everything proceeds as if there existed
a real representation). A pure imaginary (or pseudo-Majorana) represen-
tation of the Clifford generators of C(p, q) will always exist if C(q, p) has
a pure real representation which according to condition M above means
g—p=0, 1, 2 (mod8) or equivalently p—q=0, 6, 7 (mod8). So the
condition for the existence of a pseudo-Majorana representation is

® M'" the metric signature p — g =0, 6, 7 (mod 8).

For any Clifford algebra C(p — q) (or C(d)) the elements of form (3.2) with
only even terms, ie., with af},=a/4f =--- =0, form a (2~ !)-dimensional
subalgebra °C(p, q) (or °C(d)). This algebra is not simple, in general. This
is seen by considering the Clifford algebra element

e= 816283. . .ed,

the generalization to d-dimensions of the familiar y5 of Dirac. It is readily
checked that

o2 = +1 forp—g=0or 1 (mod4)
" |—1 for p—q#0or1(mod4).

When 2 = + 1 then, the analogues of (1 + Ys)
P.=41%¢

are projection operators.

For complex Clifford algebras C(d) the condition ¢2= +1 is not
necessary, since for ¢2 = — 1, the now legal ie, whose square is + 1, is
available for the construction of P, . Thus for even d (so that ee°C(d)) the
complex Clifford algebra °C(d) is not simple, it falls apart into two simple
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ideals.
OC(d)=°C(@d)P, +°C(d)P_

with P, defined as 41 + ¢) or K1 + ie) depending on whether ¢ or i¢ squares
to one. The full Lie algebra s ¢ #(p, g; R) is contained in °C(d) (d = p + q), s0
that for all even d the complex Dirac spinor representation is reducible into
two complex Weyl spinors. We thus have complex Weyl spinors whenever

m W:diseven

Retreating now to real Clifford algebras, °C(p,q) with even d=p+¢g
will split in a similar pattern

°C(p,q)="C(p,q)P, + °C(p,q)P -

whenever p—q =0 (mod4) (so that ¢2 = + 1, ie is now unavailable). In
particular, this implies that Majorana spinors can be further reduced into
Majorana—Weyl spinors whenever simultaneously p — g =0, 2 (mod 8) and
(p — q) = 0(mod 4). In other words, we have Majorana—Weyl spinors when-
ever

m X p—g=0(mod8).

Note that in these A dimensions one has both Majorana and pseudo-
Majorana spinors. For further references we present in table 3.4 the cases
for which there are Majorana (M), pseudo-Majorana (M’), and Majorana--
Weyl (£4) spinors for d < 12 and ¢ =0, 1, 2 time-like dimensions (complex
Weyl spinors occur in all even dimensions and have thus not been
tabulated).
The reader should have no trouble figuring out any other case according to
his needs, using the results M, M’, W and [J above. Here we still call
attention to two important {4 cases:
d=10, g=1 which is responsible for ten-dimensional supersym-
metric Yang—Mills theory which when reduced to four-dimensions
produces a famous ultraviolet finite quantum field theory;

Table 3.4

N 1 2 3 4 5 6 7 8 9 10 11 12
0 M M M M K M M

1 M X M M M M B M M
2 M M X M M M M X
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d = 12,q = 2, which in spite of causality problems (closed curves in the
plane of the two time-like dimensions are both time-like and closed)
has been considered in connection with maximal supergravity (see
chapter 26).

At a more mundane level, the existence of Majorana spinors in d = 4,
g =1 is essential for N =1 supergravity in our world. With this spinor-
classification problem fully solved, we are now in a position to find the
physically relevant supersymmetries.



4

Physical supersymmetries

In chapter 1 we have seen that the spin-statistics connection and
the ‘no-go’ theorems restrict the physically possible supersymmetries.
Specifically, a physically admissible supersymmetry s must satisfy the
following two principles:

(I) The Bose sector %5 of  must be the direct sum 2 + ¢ of the Poincaré

algebra 2 and of an ‘internal’ symmetry algebra g.
(IT) All elements of the Fermi sector 's of s must transform like Lorentz
spinors.

The Poincaré algebra itself is not simple, not even semisimple, so it
might appear somewhat far-fetched to expect the simple superalgebras
described in chapter 2 to play a central role in physics. Yet these algebras
make a crucial appearance, and in fact fully determine all superalgebras
relevant for physics. For that matter, a similar statement holds for the
Poincaré algebra 2. The Poincaré group enters physics as the group of
isometries of Minkowski space. If space-time were not perfectly
Minkowski but de-Sitter or anti-de-Sitter instead, its curvature would not
vanish, rather it would be constant. The isometry group however would
become a simple group: O(4, 1) for de-Sitter, O(3, 2) for anti-de-Sitter space.
In the limit in which the constant curvature of the de-Sitter or anti-de-Sitter
space goes to zero (so that its ‘curvature radius’ becomes infinite) either of
these spaces tends to Minkowski space and in the limit the simple isometry
group contracts to the Poincaré group. This Wigner—Inonii contraction
(Inénii & Wigner 1953, Gilmore 1974) can be tracked down at the level of
Lie algebras. Since similar constructions become possible for super-
algebras, we recall this ordinary de-Sitter - Poincaré contraction.

Independently of whether one considers the de-Sitter or anti-de-Sitter
case, one can decompose the corresponding Lie algebra into a Lorentz
(o(3,1)) algebra and a remainder (a part corresponding at the group level
to the 0(3,2)/0(3, 1) or 0(4,1)/0(3,1) coset space, or at the algebra level
to a Lie triple system, Bishop & Crittenden 1964). If, as usually, one labels

* We assume here a space—time with one time and three space dimensions.
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a basis of 2(3,2) or o(4,1) as M,,= —M,, (u,v=1,...,5), this decom-
position corresponds to the two sets of generators M =(M,,, M5, M,,,
Mjs Mas, M3y, P=(M5, Mys, Mys, M,). Symbolically, the Lie
bracketing relations can be written as

[M,M]~M, [M,P]~P, [P,P]~M, 4.1)

where, for example, by [M, P] ~ P we mean that the bracket of any element
from the set M with any element of the set P yields an element of the set
P, etc.... The contraction now amounts to rescaling the generators in M
and P according to the rule

M-M=M, P->P=P, 4.2)

so that we obtain (still symbolically),

[M,M]~M, [M,P1~P, [P ,P]~A’M 4.3)
and in the limit A — 0 (curvature radius — o0) we find precisely the commu-
tation relations of the Poincaré algebra: momenta (= Ps) commute.

Now we proceed to generalize this construction to the supersymmetric
case (Freund & Kaplansky 1976). Naively one would search for de-Sitter
superalgebras among the simple superalgebras that have as Bose sector
the direct sum of the appropriate real form (¢(3, 2)) or (¢(4, 1)) of #(5) and
of an internal symmetry algebra. Even before confronting the existence
problem for the requisite real form, we note a fatal flaw in this approach.
The only simple superalgebras that qualify are of the form o4 4(5|N)
which in the Fermi sector contains N Lorentz vectors and N Lorentz
scalars, thus violating principle II enunciated at the beginning of this
chapter. We are led to the discouraging conclusion that our naive cons-
truction fails. What saves the day is an ‘accident’. We are in a sufficiently
low dimension to avail ourselves of the ‘accidental’ isomorphisms of low-
dimensional Lie algebras. Indeed, the anti-de-Sitter Lie algebra o(3, 2) (but
not the de-Sitter algebra o(4, 1)!) is ‘accidentally’ isomorphic to the non-
compact symplectic algebra s4(4, R). So in addition to the unsuccessful
choice o4 £(5|N) above, this allows the extra choice o4 £(N|4), and as we
shall presently check, this choice conforms (after contraction) to both
principles T and 1L

Just as in the de-Sitter —» Poincaré contraction described above, we start
by dividing the generators of the extended super-de-Sitter algebra
o3 (N |4) into four classes. In the Bose sector there are the (anti-)de-Sitter
generators M and P of s4(4,R) ~ (3,2) and the generators B of the
internal o(N) symmetry. In addition there are, of course, the Fermi
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generators, the Qs. In the same symbolic notation as for the ordinary case, |
we can write down the o4 4(N |4) bracketing relations (as dictated by the |

construction in chapter 2) as
IM,M]~M [BM]~0 [M,Q]~Q
(P,P]~M [B,B]~B [B,Q]~0Q
[Q.O]~M+P+B

where by M + P + B we mean appropriate linear combinations of gen- ‘~

erators from the classes M, P, B. The contraction rescalings are now

M=M, P=JP, 0=1Q, B=A"B.

For the [Q, Q] bracket to have a nonsingular contracted (A — 0) limit f

we must impose ¢ >4 and b <2q. Regularity of the contracted [B, B]
and [B, Q] brackets further requires b > 0. For g > 1 the contractions are
rather trivial: for b <2q [Q,Q] =0, and for b=2q [Q,Q] = B, but all Bs
are central charges (they commute with all elements of the superalgebra).
For g =4%and 0 < b < 2q = 1 the contracted superalgebra becomes a direct
sum of an ordinary abelian algebra of Bs and a superalgebra of M, P, Q.
The only interesting cases are thus

, b=0

]
[t

q
and
q=% b=1.

Let us first consider the case b =0. Then, in the limit A -0 we obtain
(we skip the bars over the symbols)

[M,M]~M [M,B]~0 ([M,Q]~Q
(M,P]~P (P,B]~0 [BQ]~Q

[0.Q1~P

Notice that the M, P, Q sets span a closed superalgebra: the N-fold
extended Poincaré superalgebra, and that the o(N) algebra (generators: B)
enters only as an afterthought, as it were: it is represented on the Fermi
sector of the superalgebra. It is also clear that one can truncate o(N) to
any of its subalgebras without doing any harm. So after contraction the
Bs need not span ¢(N), but rather any compact ordinary algebra unitarily
representable on the Fermi sector.

Now to the alternative b= 1. One gets the same results as for b=0
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except that now
[B,B]~0 [B,Q]1~0 [Q,Q1~P+B

This time around, the Bs commute with each other and with the whole
rest of the superalgebra: they are central charges, whereas the [Q,0]
bracket indicates a central extension of the N-fold extended Poincaré
superalgebra. One can, of course, have both central charges and internal
symmetries represented on the Fermi sector, by contracting part of the B
sector with b =0 and part with b = 1. Independently of this construction
via the extended de-Sitter superalgebras, it can be shown that the N-fold
extended Poincaré superalgebra with central charges and internal
symmetries represented on the Fermi sector is the most general super-
symmetry of a relativistic S-matrix theory with finite multiplets of massive
particles (Hagg, Lopuszanski & Sohnius 1975). Any other type of super-
symmetry would lead to problems such as those discussed in chapter 1.
This is not surprising in view of the principles I and II we used in the
construction. It should be noted here that in the conformally invariant
case (when all masses vanish), the supersymmetry can be increased to
a2(2,2|N), as we shall see below.

Here we first fill in some of the details. Of the bracketing relations
presented above, those of the Poincaré algebra are well known. Then the
commutators of the Lorentz generators (the Ms) with the Fermi generators
(Qs) instruct us that the latter transform like spinors. Each Q has four
spinor components and there are N such four-component spinors. These
spinors are real, i.e, Majorana (this is most readily seen by noticing that
before the contraction it is 4/4(4,R) that enters oap(N|4), so that the
spinors are real) So let Q) (x=1,...,4; i=1,...,N) represent the 4N
components of these N Majorana spinors. The nontrivial new bracket is
then

[Qz @51 =2(*C)yy0"P, + CopZ + (5C) g Y7 (4.4)

where ZU) and YU are central charges. [Q}, Q4] is an anticommutator
and as such the left-hand side is symmetric under the simuitaneous inter-
changes o> B and i« j. This symmetry is readily confirmed also on the
right-hand side keeping in mind that (y*C)T = y*C, CT= — C, (ysC)T =
—y5C, and that by definition, Zl/1= — ZUil ylil = _ yUil From these
bracketing relations we see that (in the absence of central charges) the
generators P* of translations are quadratic in the fermionic generators,
which thus act as de facto ‘square roots’ of translations and are often
referred to as supertranslations.
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We now briefly consider the conformal superalgebras in four space—time

dimensions. The ordinary conformal algebra in four dimensions is (4,2) |
and again a naive orthosymplectic embedding violates principle II. This }
time again, we have the ‘accidental’ Lie algebra isomorphism s0(4,2) ~ |
a2/2,2), which allows the embedding into se(2,2|N) (Pael(2,2|4) for
N = 4), which turns out to be alright. One has the Lorentz generators M, 1
the translations P, the conformal generators K, and the dilatation D, the ]
supertranslations Q, the superconformal transformations R (the ‘square
roots’ of the Ks), the internal s«(N) transformations B, and the internal

«(1) transformation C. Schematically, the brackets are:

[M.M]~M
M,P]~P [P P]1~0
(M,K]~K [P,K]~M+D [K,K]~0

[M,D]~0 [P,D]~P [K,D]~K ([D,D]~0
[M,B]~0 ([P,B]~0 [K,B)~0 [D,B]~0 [B,B]~B
(M. C}~0 [P,C]~0 [K.C}1~0 [D,C]~0 [B,C]~0 [C,C]~0

(M. 01~Q [P.Q]~0 [K.Q1~R [D.Q1~Q (BQ1~Q [CQI~Q [Q.QI~P

[MRI~R [PRI~Q  [K.R]~0 [D,RI~R [BRI~R [CRI~R [Q.K)~M+D+B+C [RRI~K §

Clearly, the Poincaré superalgebra can be constructed in dimensions |
other than four as well (Nahm 1978), although in general, simple de-Sitter
and/or conformal superalgebras will not be available. After all, we had to |
use accidental isomorphisms between ordinary Lie algebras, and their 1

number is very limited.

Historical note

As mentioned above, Lie superalgebras have appeared, though not in a |
central role, in some mathematical contexts in the sixties (Frohlicher & |
Nijenhuis 1956, Gerstenhaber 1963, 1964, Milnor & Moore 1965, Gell- }
Mann & Ne’eman 1964, Michel 1969). They were independently redis-
covered in physics, and only following this, did the extensive physical and |

mathematical investigations, that form the subject of this book, kick off.

Strictly speaking the first appearance of Lie superalgebras in a central

role in a physical model is in the work of H. Miyazawa (1968). It is
remarkable that in the context of an approximate unified model of mesons,
baryons, antibaryons and exotic (gg43q) mesons Miyazawa gave a precise
definition of a Lie superalgebra including the technical observation con-
cerning the superselection rule mentioned in chapter 2. He then constructed
the Lie algebra V(6,21) which today would be called s4(6|21). Work by
Stavraky (1966) also dates back to this early epoch. Though unknown in
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the physics community, it seems to have triggered the mathematical
investigations of V.G. Kac (1975), (1977). Next we have the inspired work
of Gol'fand & Likhtman (1971), who discovered the four-dimensional
Poincaré superalgebra. In spite of its remarkable results this paper was
also ignored for a few years. Supersymmetry finally made it into the
mainstream of physics in the heat of the activity in string theory that
started the seventies. Ramond (1971) and Neveu & Schwarz (1971) dis-
covered superstrings and the corresponding supersymmetric extensions of
the infinite-dimensional Virasoro algebra (Virasoro 1970). Gervais &
Sakita (1971) related this super-Virasoro algebra to invariances of the
two-dimensional local field theory of the superstring. After the discovery
of quantum chromodynamics (see for example, Marciano & Pagels 1978),
with interest in hadronic strings on the wane, supersymmetry was being
revived in a field-theoretic setting in a nonlinear realization by Volkov &
Akulov (1973) and in the more direct linear realization by Wess & Zumino
(1974). Remarkably neither of these pairs of authors were aware of the
earlier work of Gol'fand & Likhtman. Like many another major concept in
the sciences, supersymmetry has been discovered independently by various
authors approaching different problems for seemingly different reasons. It
was the Wess—Zumino work that opened the floodgates, thus setting the
extremely fast pace for subsequent developments.

The next major technical step was taken by Salam & Strathdee (1974).
They introduced superspace. At the mathematical end, all this inspired
the classification of simple supersymmetries (Kac 1975, 1977, Freund &
Kaplansky 1976, Nahm & Scheunert 1976, Kaplansky 1980) and the
construction of a mathematically adequate superspace theory by Rogers
(1980), based on earlier but physically less directly useful work of Kostant
(1977), Batchelor (1980) and de Witt (1984).

Arriving in an era in which gauging was already second nature to all
practicing theoretical physicists, it may not be surprising that supergravity
(ie, gauged supersymmetry) arrived so soon after supersymmetry.
Volkov & Akulov aiready mentioned both supergravity and the fermionic
Counterpart of the Brout—Englert—Higgs phenomenon. Yet N = 1 super-
gravity was first explicitly constructed (in second order formalism!) by
Freedman, van Nieuwenhuizen & Ferrara (1976), and right thereafter
recast in an elegant first order form by Deser and Zumino (1976). The
nonrenormalization theorems (Wess & Zumino 1974a, Iliopoulos &
Zumino 1974) have led to the construction of supersymmetric grand unified
theories by Witten (1981), Dimopoulos & Raby (1981), Dine, Fischler &
Srednicki (1981) and by Sakai (1981).
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Finite supersymmetric quantum field theories came about through the §
work of many people: Gliozzi, Olive & Scherk (1977), Brink, Scherk & |
Schwarz (1977), Jones (1977), Poggio & Pendieton (1977), Gell-Mann & 3
Schwarz (1977), Grisaru, Rotek & Siegel (1980), Avdeev, Tarasov & |
Vladimirov (1980), Caswell & Zanon (1981), Alvarez-Gaumé & Freedman |
(1981), Mandelstam (1983), Howe, Stelle & West (1983), Brink, Lindgren

and Nilsson (1983).

At the supergravity end we encounter N =1 conformal supergravity }
(Kaku, Townsend & van Nieuwenhuizen (1977)), superspace formalisms
(Wess & Zumino 1977, Brink, Gell-Mann, Ramond & Schwarz 1978,
Siegel 1978, 1979, Ogievetsky & Sokatchev 1978) and extended super-
gravities, culminating in the construction of the N =8 supergravities by ;

Cremmer & Julia (1978) and by de Wit & Nicolai (1982). All this then

coalesced with modern Kaluza—Klein theory (Appelquist Chodos &
Freund (1985)) via eleven-dimensional N =1 supergravity (Cremmer, }
Julia & Scherk 1978, Freund & Rubin 1980). Add to this the return of }
superstrings (Green & Schwarz 1984, 1984a) and we have updated this |
long history to where we now seem to be standing. Lest the reader be
misled into believing that he has just read a full history of supersymmetry, ]
let me warn him that this note is incomplete, though hopefully not capri- §

ciously so.

5

Particle contents of supermultiplets

In the absence of central charges, the Fermi~Fermi bracketing relation
of the Poincaré superalgebra for four-dimensional Minkowski space—time
is (see equation (4.1))

[QL 001 =26,(y*C)yP, a,Bp=1,...,4 ijj=1,...,N.

To find the particle contents of the corresponding supermultiplets (Salam &
Strathdee 1974a, 1975, Fayet & Ferrara 1977), consider first the case with
mass m#0. Then we can go to the particles’ rest frame where P, =
(—m,0,0,0). Rescaling @’ into J' =m~Y2Q}, we then find in the rest
frame

[Q:n Qﬂ = 25:'15“: = 25.’«, ip (5.1

which are precisely the anticommutation laws of the Clifford algebra
C(4n,0). Its unique irreducible representation is 2?¥-dimensional. This
2?N.dimensional supermultiplet contains both bosons and fermions and
we now wish to find the corresponding spin assignments. At this point it
is useful to switch from the Majorana presentation used until now, to
an — in four dimensions, the case under consideration — equivalent Weyl
presentation. This equivalence essentially expresses the fact that four real
numbers can be replaced by two complex numbers.
Consider the Majorana (i.e., real) representation of C(3,1)

7°=ip2®01 Y1=Px®ao V2=P2®02 )’3=P3®00

where p; and o; are two copies of the usual basis for Pauli matrices
and p, and g, are two copies of the 2 x 2 unit matrix. Then

P> =" = —ip, ®o;.

Now, from any Majorana spinor
M, =Mz
we construct the spinor

W=14(1-iysM (5-2a)
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with the result

w, M, +iM, ,
WZ 1 Mz - iM4
W, [ 2 iM, +iM,) (5.26)
W, —i(M, —iM,)

Only two of the complex components of W, say W, and W, are indepen- |

dent and we assemble them into the two-component Weyl spinor

w M, +iM ’

S G (53) |

W, M, —-iM,

which we henceforth denote as W,, « =1, 2. Using the complementary t
projection operator (1 +iys) and performing a similar truncation, we |

obtain a two-component spinor

W,=(W)* a=12, (54) |

whose components are the complex conjugates of those of W. Equations '
(5.2), (5.3) permit us also to recover a Majorana spinor from the equivalent ]
Weyl spinor. In terms of W', and W' the Weyl equivalents of the rest §

frame Majorana charges Q', the bracketing relations (5.1) become

(We Wil=[W,W}j1=0

(Wi, Wil = 6,0, (5.5) 1

These are precisely the anticommutation relations of 2N pairs of Fermi !

creation-annihilation operators. The possible states can then all be
obtained from a ‘vacuum’ state |0 on which the generators of the Clifford
algebra (5.5) act. This Clifford vacuum is defined by

Wi0>=0 a=1,2 i=1,2,...,N

The possible states are then

[nyinys.. .oy ) = (W;)"""O>

where on account of (5.5), each n, can take only two values: 0 and 1.
There are thus a total of 22V states. These states can readily be classified
by first noticing that the 4N2 operators W:W/ generate under
commutation the Lie algebra U(2N). With respect tog'its SU(2N) part, the
2?¥ Clifford states are in a reducible representation/ the direct sum of all
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totally antisymmetric representations:

-+D+H+B+-~+ }ZN.

To obtain the spin content, consider that SU(2),,;n X SU(N)jpeerna SUbgroup
of SU(2N) for which the W' are in the doublet (spin one-half) representation
of SU(2) and fundamental N representation of SU(N). The branching rules
of SU(2N) multiplets into this SU(2) x SU(N) then determine the spin
content, as can be verified by using the super-Poincaré commutation
relations of the rotation generators with the supertranslation generators
Wi. Thus, e.g., for N=1

SU(2N)=SU(2)—SU(2) x SU(N)=SU(2) x SU(1)=SU(2)

and the 22¥ = 4 states are in the representations

+0+H of su),
0 1 0

one spin one-half and two spin zero states. For N =2

BN

SU2N)=SU4) 1 6

SUQ) xSU@2) 0,00 3,2 (LO+O1) 3 (0,0)

corresponding to one spin one, four spin one-half and five spin zero states.
Higher N can now be analyzed along identical lines. A discrete space
inversion can also be defined and parities assigned.

We now discuss the massless supermultiplets. For m = 0 there is no rest
frame and it becomes convenient to go to a frame in which the four-
momentum P* is of the form

P*=(|P|,0,0,P)
so that
Pv=(_|P|,0a0’P)

In Weyl notation, the only nontrivial Fermi—Fermi bracketing relations are
(Wi, Wyl =26"6%P,

where — ¢ is the unit 2 x 2 matrix and ¢!, 62, ¢ are the Pauli matrices, so
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1+1 0 10
“ = =
o*P, P< 0 1_1> 2P<0 0),

[Wi, Wi] = 4P66,,6,,.

that (for P > 0)

and then

After the renormalization W, - W./2P)'?, W;— W/(2P)"/%, the only
nontrivial brackets are

(W, Wil =,

so there are only 2V states (the W} generate zero norm states). In this
massless case the states are classified according to helicity rather than
spin. One introduces again a ‘Clifford vacuum’ and the actual helicity
assignments will depend on the helicity of this vacuum state. We present
in table form the helicity assignments for N=1,2,...,8.

Table 5.1 Number of states of given helicity for N=1, 2,...,8

N
helicity 1 2 3 4 5 6 7 8
Jjmex 1 1 1 1 1 1 1 1
jmex 4 1 2 3 4 5 6 1 8
=1 1 3 6 10 15 21 28
o — 3 1 4 10 20 35 56
jrer—2 1 5 15 35 70
jmx— 3 1 6 21 56
jmax -3 1 7 28
jmax —_ % 1 8
j e —4 1

These assignments, obtained from the representation theory of Clifford
algebras, do not, in general, respect the CPT theorem, and as such ‘doubled’
reducible representations have to be considered to conform to this
fundamental theorem of local relativistic quantum field theory. Such
doubling can be avoided only for even N and j™*=4iN. These CPT
self-conjugate supermultiplets for N =2, 4, 8 play a very special role, as
we shall see.

The Clifford vacuum itself can be assigned attributes other than its
helicity. It can transform according to a nontrivial representation of the
internal symmetry, with the obvious changes in the counting of states.

From their construction, in both the massive and massless cases, the
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Fermi and Bose states of a Poincaré supermultiplet are in correspondence
with the odd and even sectors of a Clifford algebra respectively. These
sectors have the same dimensionality (one-half the dimensionality of the
full Clifford algebra). Hence in a supersymmetric theory the numbers of
Bose and Fermi states in any supermultiplet must be the same. This strict
balance between Bose and Fermi states (or degrees of freedom) will be
repeatedly used in what follows.



6

Superspace

To come by a method of constructing manifestly supersymmetric action
principles, it becomes advisable to generalize the concept of Minkowski
space — or more generally, of Lorentzian manifold — in a way allowing for
a simple action of the Poincaré, or of some other, supergroup. This ]
generalization runs under the name of superspace (Salam & Strathdee

1974).

features needed in physics.

In chapter 3 we have considered the Clifford algebra C(Q,) for the ,;
quadratic form Q;. In the case @; = 0, C(Q,) becomes a Grassmann algebra |
B, . Such a Grassmann algebra has L generators v, i =1, 2,..., L, obeying ‘~

Ull)]+ UJU,=0. (6.1)

In a basis of the form (3.2) an arbitrary element a of B, is written as

a=agl+ Y arvr
r

where

— smim—1)/2
=1 Vi Vi, U

= Vi . im tm

together with the scalars, form a 2“-dimensional basis of B, and the o, o 2
are ordinary real numbers. The Grassmann algebra (like any Clifford |

algebra for that matter) admits a mod 2 grading:

B, =°B, + 'B, 6.3)

with
°B, =set of all a for which ar =0 for all v =v,,_; with m odd
!B, = set of all a for which a, = 0 and ap = 0forall vy = v;, _
even.

N

There exists a considerable body of work aiming to place superspace
techniques (including supergroups, supermanifolds, superfields,...) on a }
mathematically solid footing (Kostant 1977, Batchelor 1980, de Witt 1984, §
Dell & Smolin 1979, Rogers 1980, 1981, Hoyos, Quirds, Ramirez §
Mittelbrunn & de Urriés 1984, Berezin 1979). We shall follow here and
in chapters 7, 8 the work of Rogers (1980, 1981), which incorporates the |

I <iy <o <y, 6.2) 1

_withm |
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The elements of °B, commute with all elements of B,, whereas any two
elements of !B, anticommute. Both °B;, and 'B, are 2*~!-dimensional.
We now define the flat superspace Bf'* corresponding to ordinary four-
dimensional Minkowski space and allowing an action of the N =1
Poincaré superalgebra (four Fermi generators) by setting

B}* =B, x"B,x°B, x"B, x'B,x'B, x'B, x'B,

where by x we mean the cartesian (not tensor) product. An arbitrary
element or ‘point’ of B}* is then given by specifying four even elements
x% x!, x?, x*€°B, and for odd elements ', 6%, 6, 8*c'B,. We emphasize
that x°, x', x?, x> are general even elements of B;, not ordinary real
numbers as in special relativity. The dimension of Bf*4 is thus 8 x 2171 =
2L*2 At this point the number L of Grassmann generators is as yet
unspecified. Ultimately, we shall let L— oo for reasons that will become
clear below. As we considered a real B, the %, a=1,...,4 are real, so
they are fit to span a Majorana spinor. It is convenient to use the notation
M, M=1,...,8, for the coordinates of a superpoint:

(]

== x2=22x3=23,00=2%* a=1,....4 (6.4

To qualify as a ‘super-Minkowski space’ Bf** must be endowed with a
topology. On B, itself we can define a norm. The norm | a|| of the element
a, as given by the expansion (6.2) is defined as

"a"=|ao|+;|ar|-

It has the Banach (algebraic) properties
It=1 labl<lallbl

This norm induces a Hausdorff (separable) topology on B;. In turn, this
topology on B,, induces a topology on Bi**. Endowed with this topology,
B}* is now an adequate ‘super’ generalization of Minkowski space. More
generally, we can define B}"" as the product of m copies of °B, and of
n copies of 'B,. With n the dimensionality of spinors in m-dimensional
Minkowski (or euclidean,...) space, Bi" will be the flat ‘Minkowski super-
space’ in m-dimensions. In equations (6.4) M =1,...,m+n with z! =
xLo 2" l=xml " =x0, 22t " =6% a=1,...,n In what follows, we
will stay with this more general case.

Once in possession of a superanalogue of flat Minkowski space it is
natural to consider supermanifolds that look only locally like flat super-
space. A (m,n)-dimensional supermanifold .# over B, is a Hausdorff
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topological space with a set of charts {U,,y,} such that
) UuUp=#
(1) each ¢, is a homeomorphism (i.e., a one-to-one map continuous in

both directions) of U, onto an open subset of Bf"” under the just |

defined topology.

(iii) The transition functions Y,°yz YU, nUp) -y (U,nU,) are ;

superanalytic.
By a superanalytic function f: U — B,, where U is an open set of Bf"",
we mean a function such that for any point p of coordinates z™ in U there

exists a neighborhood V,, of p with the property that at any point p'eV,

of coordinates z'™, f(p') is given by the series expansion

f(pr) — Z akln_km*"(zl _ Z’l)kl. . .(zm+n _ z/m+n)k,,.+n

with @, , ~€B,. Obviously the requirement of superanalyticity can be
suitably diluted, and more general classes of supermanifolds constructed. In
particular the counterpart of C® functions on ordinary manifolds are the
G functions on supermanifolds. A function f: U — B, is G® on the open
set U c Bp", if for the points of coordinates z¥ and z™ + a™ in U

fE@ +aM) = f(2M) + :Z &G, f(2) +0(la|?)

where the ‘partial’ superderivatives Gy f:U — B, are themselves G*
functions. This is a recursive definition. Indeed, dropping the G* require-
ments on the G, fs we would obtain what may be called G' functions,
imposing a G! property on the G, f's defines G? functions, and so on. As
examples, polynomials in z™ are G* functions.

On an open subset V of a supermanifold, let G*(V) be the set of all
G* functions from V to B,. A vector field X on V is now defined as a
map X:G*(V)- G=(V) which is a superlinear superderivation, i.e.,

X(bg)=(—1)*bXg
X(f9=Xfg+(-1’fXg

for all f, geG®(V), beB,. This of course is but the obvious super-
generalization of the concept of a vector field on an ordinary manifold.

In the next chapter we utilize these definitions towards the construction
of Lie supergroups, the ‘exponentials’ of Lie superalgebras with suitable
Grassmann parameters.

7

Lie supergroups

An ordinary Lie group is obtained by exponentiating a Lie algebra
with say real (or complex, etc.) parameters. In the case of superalgebras
a similar exponentiation is contemplated but with parameters valued in
a Grassmann algebra B;, and with an implied pairing of even generators
with even elements of B;, and of odd generators with odd elements of B, .

Technically, given a Lie superalgebra s and a Grassmann algebra B,
we can consider extending the vector space of s through left-multiplication
by B,. The Grassmann algebra B, not being a field, but only a ring, the
resulting object will not be a vector space but what in mathematics is
called a module, or more accurately, due to the gradings, a supermodule.
A left B;-supermodule M is thus defined as an abelian group under
addition, in which a distributive and associative left B,-multiplication is
defined. In other words to all aeB; and meM there exists ame M with
the properties a(m + n) = am + an, (a + bym = am + bm, a(bm) = (ab)m for
all a,beB; and m,neM. A Lie superalgebra W over R which is also a left
B, -supermodule, and for which the property [ax, y] = a[x, y] for all ae B,
x, ye W holds, is called a Lie supermodule (or more precisely a left B, Lie
supermodule). The even part of such a Lie supermodule when exponenti-
ated produces the Lie supergroup. Rather than go through this construction
we shall directly define its endproduct and then retrace our way via left-
invariant vector fields to this Lie supermodule. Thus we define a Lie
supergroup H as:

®  An abstract group which is also a superanalytic supermanifold of
dimension (m,n) for which there exists a superanalytic mapping
H x H— H defined by

(hnhz)_'hlhz_l-
For a given element he H consider the map
@ L, H- HviaL,(k)=hk for all keH

L, induces a map L, of vector fields on H, which to every vector field X



38 Physical and mathematical foundations

on H associates a new vector field L,, X according to the rule
(Lye X)f=X(f-L,) forall feG*(H).

A vector field X for which L, X = X for all L, is called left-invariant.

The set Z(H) of all left-invariant vector fields on H is readily shown
to span a Lie supermodule with the graded commutator of the vector
fields as the bracket. As in the ordinary case £ (H) is isomorphic to the
tangent space to H at the unit element.

In the last section we observed that B} has ordinary dimension
(m+mn)2t~1, so that a (m,n)-supermanifold can also be viewed as a
(m + n)2"~ '-dimensional ordinary manifold. Superanalyticity then auto-
matically implies ordinary analyticity. Thus a (m, n)-dimensional super-
group H over B; can also be viewed as an ordinary (m+ n)2L~!-
dimensional Lie group A. Now consider the (m + n)2%~ !-dimensional Lie
algebra 7 of A. On the other hand, note that in its turn the even part °.#(H)
of the Lie supermodule #(H) can also be viewed as a (m+ n)2-~!-
dimensional ordinary Lie algebra over R. The theorem of Rogers (1981)
states that

® °%(H) and % are isomorphic.
We shall skip the proof and proceed instead to give a few examples.

Example 1: The supergroups GL(m|n,R) and SL(m|n,R). Consider the
supergroup GL(m|n, R) over B;, the group of all nonsingular (m + n) x
(m + n) matrices of the form

m n

4 b\ " (1.1)
C B)n

where all entries in the submatrices 4, B are even elements of B, and all
entries of C and D are odd elements of B;, and the group operation is
ordinary matrix multiplication. It is straightforward to ascertain that
GL(m|n,R), so defined, is a Lie supergroup. In this case °Z(H) admits
the basis £”G,;, where G,; is the (m +n) x (m + n) matrix all entries of
which vanish, except for the entry in the ith row and jth column, which
equals one, and ¢/ is the most general even (odd) element of B, if G, ;18
an even (odd) element of g¢(m|n) as defined in chapter 2. Thus the ¢¥G;;
span the ordinary (m + n)>2*~ !-dimensional Lie algebra °#(GL(m|n, R)).
Inspecting the defining matrices of GL(m|n,R) we see that g£(m|n,R) is
the same Lie algebra.

For m # n the supergroup SL(m|n, R) is obtained from GL(m|n, R) by
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imposing the condition that the ‘superdeterminant’ (or Berezinian) of the
matrix (7.1) be equal to one. The superdeterminant of a matrix M is
defined as

sdet M = exp(strin M).
For a matrix M of the form (7.1) this yields

det A
detM=— —————— |
St = SetB—CcA D)
Example 2: The (4,4)-dimensional translation supergroup T, ,. Consider
B} itself with coordinates x*, 6* and the group operation

(x*, 0%)(¥*, %) = (x* + y* + iOy¥e, &% + 6. (7.2)
Defining
0 -
_ 08 =568
00° *

the generators of °# (T, ,) are
e*Q,, a'P, (7.2q)

with (o = 1,2,3,4) four odd elements of Bf#, a* (1 =0,1,2,3) four even
elements of B{** and

o . 8
_ (OVEC) ——
Qe = 5ge T 10O (7.2b)
8
Pu = lw.

By taking the semidirect product of T, , with the Lorentz group Spin(3,1)
the reader should have no difficulty reconstructing the (4,4) Poincaré
supergroups. The generators (7.2b) when supplemented by the Lorentz-
algebra generators

. 0 0 =~ 0
Mm=1<x#%—wi> +Ba“v% (7.20)

provide a Schrodinger—Eckart representation of the (4,4) Poincaré
superalgebras.
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Superfields

Just like ordinary fields are functions of the space-time coordinates x*,
so superfields are functions of the superspace coordinates z¥ = x* 6. The
6* being odd and therefore necessarily nilpotent elements of B™", (the
product of more than n 0s is guaranteed to vanish), the superfields must
be polynomials in them. The coefficients of the various §-monomials in
this 6-polynomial are functions only of the x*s. This does not mean that
they are ordinary numbers, the x*s themselves being even elements of B, !

We now proceed to make these ideas precise. To this end, given acB,
define the body B(a) of a as the coefficient a, of 1 in the expansion (6.2a)
of a.

Blay1 + ;arvr) =a,.
The soul a(a) of a is then defined as
a(a) =a— f(a)l.
In other words the body is the ordinary ‘c-number’ part of a, whereas the
soul is the nilpotent part of a (de Witt 1984).

Consider now a point P in the superspace B*" of coordinates (x°,
x™~1, 6',...,0"). The body B(P) of P is defined as the point of R™ of
coordinates B(x°),...,B(x™" '), whereas a(P), the soul of P, is the point
(0(x%),...,0(x™" 1), 6(8'),...,5(8")) of B". For L finite but L>n, let U
be an open set of B7" and B(U) the set of R™ corresponding to the bodies
of the points of U. Let f be a C* function from B(U) to B,. To any such

function f we associate a function z(f) from U itself to B, according to
the rule

2(NH[xC,...,x™" 1, 0,...,60"]
L 1 o \P
-5 il ()

)lﬁf (ﬂ"“’”---»ﬁ(x"'“))](a(x"))‘o. oyt
8.1)

<5ﬂ(x"' "
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This z(f)is a continuation (a G* continuation at that, as is readily shown) of
a function f over ordinary space into a function over superspace. Note
though, that at this point the odd coordinates had not yet been called
upon. The most general G* function on U can now be built out of such
z-continuations of C*® functions on ordinary space and of monomials in
the odd 6* coordinates. Specifically, all FeG®(U) can be expanded in the
form

F= Z WAZ(FA) (82)
A=0,a,...
where wo =1, w,=0,, W,,,, = 0,,0,,,...,w,, . =0,,0,,...0,, and each

F, is a C* function from the body B(U) into BL Thc F AS are uniquely
determined by F, uniquely that is, up to terms annihilated by the w,s.
Conversely, every function admitting an expansion (8.2) is in G*(U)
(Rogers 1980).

If a function ¢ maps U into the whole B, but only into its even (odd)
sector °By('B, ), it is called an even (odd) function. An even (odd) function
on flat superspace B}"" is called an even (odd) superfield. We shall deal
almost exclusively with even superfields and shall refer to them simply as
superfields (Salam & Strathdee 1974).

The superfields we are interested in must have simple supersymmetry
transformation laws. Under an infinitesimal ordinary translation of
parameter «* an ordinary scalar field transforms as

8¢ = i3, .

Similarly, for a scalar superfield ¢, a supersymmetry transformation of
infinitesimal Fermi parameters ¢* (ie., an element of °%L,.4) causes the
change

0¢ =ie"Q,¢

with Q, as given by equations (7.2b). Similar formulae for ordinary
translations and Lorentz transformations are also readily obtained. Of
course one can consider superfields that are not scalars, but carry ordinary
vector or spinor indices or superspace ‘vector’ indices.

More generally on a (4,4) supermanifold M, we have charts (U, y,) to
B}*, so that a superfield ¢ on U, is defined by the superfield ¢y}
the open set ,(U,) of Bf*. Again an expansion (8.2) is always possible
for a superfield.

We have finally come to the point where we can discuss the value L
(the order of the Grassmann algebra B, ) to be used in physics. Consider
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a superfield ¢. It admits an expansion (8.2), but being even, all the coeffi-
cients of w,s which are products of an odd number of s are themselves
odd elements of B;, and as such necessarily nilpotent as long as L is finite.
In the quantum theory these coefficients will correspond to Fermi fields,
yet any product of more than L such fields will necessarily vanish, so that
a truncation of Green’s functions occurs which violates unitarity. The way
out, is to let L— oo thus eliminating this unwanted truncation. The
technical details of the expansion (8.2) have to be slightly changed in the
case L= 00, one has to substitute entire functions for G® and C* functions.
In fact, there are also mathematical reasons for taking the L— oo limit
(Hoyos, Quiro6s, Ramirez Mittelbrunn & de Urriés 1984).

9

Integration on Grassmann algebras

To formulate an action principle on superspace we have to integrate not
over ordinary R-valued coordinates, but over coordinates valued in some
Grassmann algebra B;. How is this to be done? Consider, for simplicity,
one Fermi variable fe'B,. The most general B, -valued function of 6 is
of the form
f=a+bb

with a,beB;, but independent of 6. The integral {fd0 is envisioned as
generalizing the definite integral j’i: over the ordinary coordinates,

and as such required to be a map from the B, -valued functions of 6 to the
real numbers, which is

@ .linear: [pXe f1(6)d8 =Y C.[f(0)dd with f; functions of 6, C:eB,
independent of 6, i.e., ‘constants’.

(ii) translationally invariant f fl0+€)d0=(f(6)d for all ‘constant’
¢e'B,.

In detail this yields
f(a + b0 + be)dd = (a + bs)fd() + bf()d() = f(a + b0)d6 = afd() + bf@d()

where in the first and last steps we used linearity. This means
bsjd() =0, b f 6d6 = arbitrary

leading to the definition (Matthews & Salam 1955, Candlin 1956, Berezin
1966)

ﬁw:o f@d():l 9.1a)

The normalization of {648 is convenient but arbitrary; all that is required

to avoid triviality is {6d6 #0. When more variables 01.,0%...,6" are
contemplated, (9.1a) implies

foidof =g fd()f =0 (9.1b)
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Consider a function f = a + bf. We have then
Jf do="»

Taking the 6-derivative of f from the right

—

d

-

f
we find the same result. Whereas ordinary indefinite integration is the
inverse of derivation, this Berezin integration over 0 is the same thing as
derivation, but of course it generalizes definite, not indefinite integration.
To find the connection of this integral with some sort of ‘Riemann sum’
is an interesting problem (Rabin 1984). We further note that in view of
the normalization {#df = 1,6 and df have opposite dimensionalities. From
the supersymmetry transformation law

0-0+¢
x* o x4 i0y*e.
we see that @ and ¢ have the same dimensionality and that the coordinates
x* have the square of that dimensionality. The body of the coordinate x*
is the usual c-number coordinate and thus has dimension of length. Thus
the fermionic coordinates of superspace, the s, have dimension I}? and
finally df dimension L™ !/2! As far as integration is concerned, each Bose
coordinate x increases the dimension of superspace by one, each Fermi
coordinate 6 decreases it by one-half. It may then not be surprising that
in supersymmetric quantum field theories in which integrals now sum
over both Bose and Fermi dimensions convergence improves, in some

cases all the way to yielding finite theories.
For future use we still define here a Grassmann variant of the Dirac

‘5-function’ by
jf (0)6(6)do = £(0) 92)
so that
8(6)=0, J 6(0)d6=1 and JG&(())dG =0.
In case n > 1 Grassmann variables 8',62,..., 0" are encountered, we define
5"(0) = 8(6™)6(0""Y)...8(6Y)=6m0""1 ... 0"

with all the obvious properties.
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As noted in chapter 1, the action of a physical system is an integral
over spa.ceftime. Similarly, in the superspace formulation of a super-
symmetric field theory, the action is given as an integral over superspace.
As we _shall see, on account of the extreme simplicity of Berezin integration
(equations (9.1)), the integrals over the n fermionic coordinates of super-
space Cafl be carried out explicitly. This then leaves an integral over the
m bosonic coordinates. These coordinates, as we repeatedly emphasized,
are not valued in the reals, rather they are even elements of B, . Integrating
over such °B,-valued coordinates, is also not an ordinary Riemann sum
(de Witt 1984). It is most simply viewed as a contour integral in °B
which however is contour independent, so that nothing is lost by intg-,
grating along the real valued bodies of the bosonic coordinates. This way
we do have a full prescription for performing superspace integrals, one
which is nicely consistent with changes of variables (e.g. from super-
symm'etry transformations) which affect the soul of the bosonic space—time
coordinates. With the mathematical framework for the construction of
su.persymmetric theories thus in place, we proceed in the next chapter
with the simplest case of supersymmetric point particles.
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Supersymmetric point particle mechanics

The classical mechanics of point particles is so very simple, because it
corresponds to a ‘field theory’ in one time and zero space dimensions.
The particle’s coordinates x',...,x% are viewed as d ‘scalar fields’ of the
one-dimensional time-variable ¢. To supersymmetrize this setup (Friedan
& Windey 1984) all one need do is introduce a (1,1) superspace of co-
ordinates (z,7) with te®B, and te!B,. The nonrelativistic superpoint
particle is then described by d scalar superfields X Y, 1),..., X%t 7). We
have the expansion of type (8.2)

X4t 1) = x*(t) + 0°(t)7 (10.1)
with x“°e€°B, and 6°c'B,. The supersymmetry generators are then
Q =itd,— 0,
10.
H=ig, (102)

so that the superalgebra is
[Q.01=20Q°= —2H, [Q,H]=[H H]=0. (10.3)

This is an algebra of left-supertranslations and time-translations. The
corresponding right-supertranslations are generated by

D=i14,+0,. (10.9)
Indeed
D*=H, [D, H]=[H,H]=0 (10.5qa)
but also
[Q,D], =0. (10.5b)

On account of this last property, the generator D of right-translations can
be utilized in the construction of a manifestly supersymmetric action:

i
S, = f de f die, (10.6a)

&L, =1DXD(DX"). (10.6b)

That the supersymmetry of this action is manifest, is made clear by the
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following reasoning. Under a supersymmetry transformation of Fermi
parameter a, the superfields X* undergo the change

5X° = aQX". (10.7)

This can be used to calculate the change of the lagrangian superdensity
& ,. According to equation (10.5b) we have

[¢Q,D]- =0 (10.8)

so that DX = aQDX* = DaQX* = D6X", justifying the name covariant
derivative for DX*. From (10.7), (10.8) and (10.6b) we then find

8L, = a(itd, — 0L, (10.9)

The term in1d, %, = d,(iat.%,) is an exact time-derivative and as such does
not contribute to variations. The term — a0, %, on the other hand is ¢
independent, &£, being at most linear in 7. Its 7-integral then vanishes by
Berezin’s rule. Thus

68, = jdtdtég . = ‘surface’ term (10.10)

so that the action principle is supersymmetric.

It furthermore follows from (10.9) that £, itself a product of two
superfields, behaves under supersymmetry transformations as a superfield.
This result is quite general, it only depends on the supersymmetry generator
«Q acting as a derivation (obeying Leibniz’ rule) on superfields. As such
this argument holds in higher space—time dimensions as well: the product

of two superfields is again a superfield.
To find the supersymmetry-transformation laws of the X“ and 6° we
return to formula (10.7) and using equations (10.1), (10.2) write

85X = 6x° + 860°1 = a(itd, — 0.)(x" + 6°1) = ierx* + 2f* (10.11a)
so that in component form
ox® =af* 060° =iax’. (10.11b)

From the definitions (10.1), (10.4), DX® = — 6° + ix*t, DDX“ = i(x* + 61),
so that the action S, itself can be put in component form, by explicitly
carrying out the Berezin t-integration:

S, =%ijdt J di(—0° +ix*)(x* + 6%ty = — % f dt Jdrr(fc"fc“ +i6°6%)

=%Jdt(ﬁ“i“ +16°609). (10.12)
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The first term is just the kinetic energy term of an ordinary point particle
in which the mass m of the particle is m = 1. The 166 term, dictated
by supe.rsymmetry, is new. It is a ‘kinetic’ piece corresponding to the
superpoint -particle’s Grassmann degrees of freedom (the ¢%). Its
appearance is somewhat unusual. If the s were ordinary Bose variables
this 'would be a surface term. But for anticommuting quantities 266 =,
— 266" # (d/dt)(6°6) = 0. The equations of motion obtained from varying
the action (10.12) are second order for the Bose variables and first order for
the Fermi variables.

=0 6°=0. (10.13)

We' are obviously dealing with a free superpoint particle. To include inter-
action we would want to generalize the ordinary potential term V(x), say
to V(X(z,7)). This doesn’t work in this simple case since

oV
VX)=V(x)+—]| -6°
)=V + gl 0
al?d the te.rm V(x), whose supersymmetrization we seek, disappears upon
r-'mtegr.atlon. This difficulty is connected with the absence of space
dimensions. It can be corrected, by going to the N =2 case with two

super-charges. To this end we switch to a (1,2) superspace of coordinates
(t,7',7%). The superfields are now

X, 1) =x%0) + 04(t)r* + iF°()t'1?, a=1,2;a=1,....d.

(10.14)
The supersymmetry generators (see equations (7.2))
Q,=i1%0,— 3, (0,=0/0t%)
H=id, (10.15)
now span the superalgebra
[Q,H]=[H,H]=0. (10.16)
In terms of the right-supertranslations
D,=i1%0,+ 0, (10.17)

the action of the free N = 2 superpoint particle now becomes

S,=— f dtdt?dc' e, D, XDy X* (10.18)
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which, after carrying out the t-integrations, yields
S, = Jdt-%()&“)&“ +i0%6° + F°F°) (10.19)

It is worth noting some differences between the actions S, and S,. First
of all, S, contains three covariant derivatives (one D on the first factor
and DD on the second), whereas S, only contains two. This is readily
accounted for by observing that S, contains only one Berezin integration
while S, contains two. The action must be bosonic so the lagrangian density
%, must be fermionic and &, bosonic. For &, had we taken only one
covariant derivative we would have obtained the ‘surface’ term D(X“X*) =
2DX°X®=2X°DX" so the term with three Ds is minimal. Moreover, D,
D,,dz, and dr, all have dimension (time) /%, so the correct dimension
of action is only obtained for the number of derivatives that actually
appear in S, and S,. A further difference is the appearance in S, of the
new bosonic variables F! and F2. Their equations of motion, as obtained
by varying S,, are

F'=F?=0, (10.20)

so that F! and F? do not really evolve. They are auxiliary variables that
can be eliminated.

For the action S,, we can now add an interaction term on the sly, as
it were. Adding to S, integral

S =i J drdr2det WX(t, ', 12)] (10.21)

with W an arbitrary function of the superfields X°, will maintain super-
symmetry again by an argument of the type of equations (10.7)-(10.10).
Naively one would expect V(x(t)) again to be swept away by the Berezin
integrations. But the auxiliary fields come to the rescue. For, carrying out
the 7! and 2 integrations we find

~ Wx®)]., W)
S‘""',[d‘{ an) L oy

94 eg} (10.22)
ya=xa(1)

so that the equations of motion for the auxiliary fields, while still algebraic

rather than differential, are nevertheless less trivial now:

oW (x)
ox*

Fe= . (10.23)
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Inserting this in the action, we find

S=8+Sim= f dt[%aé"i" + 316202 — V(x)

2
LA 690 (10.24a)
ay aya ya=xa(t) 2

with the positive definite potential

1oW(y) oW (y)
2 0y*  0y*

Vix)= (10.24b)

yo=xb()
We shall deal with this simple class of problems in some more detail in
chapter 13. Here we content ourselves with this construction of our first
supersymmetric action principle. We now go on to explore the physics of

these somewhat unusual ‘classical’ systems with Grassmann algebra valued
variables.
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Pseudoclassical mechanics of superpoint
particles

While Grassmann variables were forced upon us by considerations of
supersymmetry, let us disregard supersymmetry for the moment, and
analyze the ‘classical’ mechanics of systems with Grassmann degrees of
freedom. Actually, this is not quite classical mechanics as we shall presently
see, so it is usual to refer to it as ‘pseudoclassical’ or ‘prequantum’
mechanics (Berezin & Marinov 1977, Casalbuoni 1976, 1976a).

Let 61(t), 82(t), 63(¢) be odd elements of the Grassmann algebra Bj.
Consider an action involving only these Grassmann variables (no space
coordinates)

S = |dt[1i6°6° — H(6")
J & N (11.1)
H(6?) = H(0) — Lie,, kB0 0F
with H(0), k, B*(a = 1,2, 3) all real numbers. The Euler—Lagrange equations
are

P

.7 )
0° = IH(??O“: Eanc KB2O". (11.2)

This is the well-known differential equation for the precession of an
(admittedly Grassmann) vector in a magnetic field. It has the solution

0°(t) = R(£)6%(0) (11.3)

where R?(¢) is the element of 0(3) (the three-dimensional rotation group),
corresponding to uniform rotation with precession frequency vector

o =KB. (11.4)
This all suggests that, textbook wisdom to the contrary, we are dealing
here with the (pseudo)-classical mechanics of spin! That this is the correct
interpretation will follow convincingly from the rest of our argument. It
is convenient to define here a graded counterpart to Poisson’s bracket

.o\
[/(0).9(0)]p = l@ﬁ)(ﬁg)' (11.5)
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It is graded antisymmetric

[f,9]e=—(=1Y?[g,f1s (11.6)

and obe.)is the graded Jacobi identity (of the type of equation (2.1)). Using
6 = iH(3/26°) we find as usual

f=[H,fIp. (11.7)
Finally the definition of [ ], entails
[6°,6°1p =5 (11.8)
The (spin) angular momentum components
§7= —Lig® ¢ (11.9)
span, under Poisson bracketing, the s«(2) Lie algebra
[S° 8b]p = — eS¢ (11.10)

This spin vector S represents the total angular momentum of the system.
Its projection B-S along the direction of the magnetic field is conserved,
corresponding to the invariance of the system under rotations around the
direction of B. For the free spin (B = 0), all three components of S are
conserved.

Space degrees of freedom § can be imparted to the particle, thus allowing
for a more realistic action:

2

”m —V(@)—T-SVis—xS-B) (1L11)

t . .
S— J apd + 40 -2
t

here L=7 x P is the orbital angular momentum, a spin—orbit potential
V.s and a central potential ¥ have been introduced besides the magnetic
field, and the particles’s mass m has been explicitly exhibited. This action
is simpler than it appears at first sight, the vector § being bilinear in the
three s, so that 52 and (L S)?, both contains four s and as such vanish.
As a consequence, the equations of motion can be simply solved.

We now address a question of principle. We were pretending so far, to
be dealing with a classical system. Questions of measurement, which can
be very subtle in quantum mechanics, are, as a rule, of no particular
complexity in classical mechanics. Yet, here we talk about the time evolu-
tion of Grassmann algebra valued quantities. These are not ordinary
numbers, whereas quantities measured in experiments are always valued
in the reals. So we would like to associate to every Grassmann algebra
valued observable f(0) of our system, a real number: its ‘expectation value’.
To this end we introduce a system density function p(0, t) obeying a Liouville
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equation
., g1, =0 oL

and use this density function to define the expectation value of f(6) as
<f>=iff(0)p(0,t)d30~ (11.13)

How do we choose p? Well, we require that only even elements of the
Grassmann algebra have a nonvanishing expectation value, and that

(y=1, (5»=C,

where C is some constant vector. This unambiguously fixes

p(6) = — %e,,,,ceﬂebef +Cope. (11.14)
This all sounds very reasonable, yet the rather obvious requirement
(f*>=0 (11.15)
is not met, as is clear from the examples
0! ¥ i6>
ft = —\/2_’

which yield
’ <ftf+ > =F JC3910293d03d92d01 =F C3’

one of which must be negative for C; # 0. To insure the inequality (11.15)
we would have to set C =0, thus entirely trivializing the problem.
Remarkably this difficulty is cured upon quantization. To guantize this
system we could proceed directly from the action via path. integrals. We
choose the more familiar Dirac approach of replacing Poisson brackets
by - in this case — graded commutators:

L 11.16
[Jeyl 1 (1116

Thus in particular, upon quantization equation (11.8) becomes

[6°,6%] 4= ho. (11.17)
It is now convenient to define o, = (2/h)'/26° whereupon the g,s obey the
Clifford algebra defining relations

(04,051 = 2045 (11.18)
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they are just the Pauli matrices. Quantization sends the Grassmann algebra
into a Clifford algebra. The earlier defined spin vector S = —1if x @ now
becomes

S = —1ithe x ¢ =147, (11.19)
and its components obey the standard commutation relations
[S.. 8,1 =ihe,,S.. (11.20)

In the standard approach one starts from these commutation relations,
and discovers that they have a spinorial representation in terms of Pauli
matrices, which also ‘happen’ to obey the anticommutation relations
(11.18). Here just the reverse happens. The Dirac quantization (11.16)
yields directly these anti-commutation relations, and the ae(2) algebra of
angular momentum is a by-product.

Finally, in quantum theory the density function p(6) gets replaced to
within a factor (34)*2 by the density matrix

p(0)=2<§+‘ég> (11.21)
whereas
iJ fpdo—-Tr(pf). (11.22)

Now p is positive semidefinite (i.e., the inequality (11.15) holds) provided
only

|C| <4, (11.23)

which is certainly physically acceptable.

The full meaning of the ‘pseudoclassical limit’ should now become clear.
As emphasized in the textbooks, spin, unlike orbital angular momentum,
is fixed for a given type of particle, usually at some low integer multiple
of #/2. So in the classical limit, as #— 0, spin disappears. Spin is a purely
quantum-mechanical phenomenon. Yet, we can contemplate an intermedi-
ate case in which # is set to zero, but the spin vectors that normally generate
the Pauli-Clifford algebra, are kept, as anticommuting quantities that
generate a Grassmann algebra (Casalbuoni 1976, 1976a). This Grassmann
algebra is a contraction of the Clifford algebra as #—0, in a sense not
dissimilar from the Galilei algebra being the contraction of the Poincaré
algebra as the inverse of the velocity of light goes to zero. The s, the
Grassmann variables of the pseudoclassical action embody this remanent

spin at #— 0. They are not zero as in classical mechanics, but they square to
zero.
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Pseudoclassical mechanics answers an important question. Take an
ordinary classical point particle. Quantize by path integral or by canonical
techniques. What you obtain is a first quantized picture governed by i
Schrodinger’s wave equation. But what is the classical system which when
quantized yields Pauli’s two-component wave equations for a non-
relativistic electron? Ordinary classical mechanics has no answer to this
question; hence all the statements about spin being a purely quantum |
phenomenon. The answer is given by pseudoclassical mechanics. The "
system described by the pseudoclassical action (11.11) when quantized,
yields Pauli’s nonrelativistic electron.

Evidently the next question is whether we can find the pseudoclassical -
action which upon quantization yields Dirac’s equation for the relativistic
electron. We can, as we now show. The idea is to append to the position 5
4-vector ¢*, four anticommuting quantities 6%, which upon quantization }
will grow into the four Dirac matrices y*, just as the nonrelativistic s
grew into Pauli matrices. We start from the Lorentz and reparametrization
invariant action (Berezin & Marinov 1977, Brink, Deser, Zumino, di
Vecchia & Howe 1976) A

S= fdr{ —m(—¢»)'"? +4i[00 + uh)(uf)1} (11.24)
where u=g/(—¢*"* and t is a Bose parameter. The bilinear form
60 + (u6)(ub) is degenerate, so this action does not determine uf. In the
usual way we impose a constraint

ub+0;,=0 (11.25)

(with 85 Fermi), and add to the lagrangian the constraint multiplied by a
fermionic lagrange multiplier 4. So now

S= f dr{ —m(— §})" + 4i[06 + 0505 — (ub + 05)A]).  (11.26)

The momentum is given by
o0& .
= %, = mu* — 3i[0* + (uB)u*] —P"

so that (using 42 = 0 which follows from the Fermi nature of 1)

(11.27)

2i A
P =t =S+ ) ==t (11280
since u> = — 1. Thus

(11.28b)
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Similarly,

. A
pl = mub — 5[ — 00 — (u6)(ud)] (——(12)”7 =muf)= —mby (11.29)
where the Fermi nature of 6* has been taken into account. We now have
the constraints

PO +mbs =0 (11.30a)

PP +m?*=0. (11.30b)

Upon quantization, the constraints are to be imposed on all physical states

ly>
(P60 +mbs)|y > =0

(P*+m?)y>=0

and, just as before, the Poisson brackets of the s and of 85 are to be
converted into anticommutators (1, = Minkowski metric):

[0;49 Bv] + = hnuv [659 05] + = h [0;49 05] + = 0

2 1/2 2 1/2
)’5}’;‘=<£> 0, v5=<5> 05

the ys obey their ordinary Dirac—Clifford algebra and the first constraint
(11.31) becomes the Dirac equation, as expected. Including an external
electromagnetic field in the action, one can derive at the pseudoclassical
level the equations for the spin precession (Bargmann, Michel & Telegdi
1959). Similar techniques work for the massless case. For higher spin it
is simplest to start from the Dirac-like equations of Bargmann & Wigner
(1948), which essentially view the higher spin as built from spin one-half
pieces. A spin j wave-function has 2j spinorial indices each acted on by
its own y-matrices. One thus introduces at the pseudoclassical level 2j
Grassmann four vectors. Of course 2j is odd (even) for j half-odd-integer
(integer), which makes one wonder how much of the spin—statistics
connection could already by encoded at the pseudoclassical level, even if
one believes that the full connection can only emerge in relativistic
quantum field theory.

It should be added that the action (11.24), which upon quantization
yielded Dirac’s equation is by no means unique. There exists an alternative
formulation in which the Grassmann degrees of freedom are chosen
spinorial at the pseudoclassical level (Freund in Ferber 1978, Brink &
Schwarz 1981).

(11.31a)
(11.31b)

(11.32)
Defining

(11.33)
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Supersymmetric field theories in two
space—time dimensions

While this time the end product will be a genuine field theory with infinitely
many degrees of freedom, the construction follows quite closely the pattern
described in chapter 10. We consider Majorana spinors 6* (x = 1,2) which
have two real components. Correspondingly the N =1 superfields will
admit three types of terms in their expansion (like the N =2 case in
one time, zero space dimensions). In repeating the steps leading to
equation (10.19), we will occasionally need to reorder the spinors in a
product. This is accomplished via Fierz rearrangements. Generically, the
following Fierz rearrangement will be all we need:

gawagﬂ = - %é.aeaq)ﬁ' (121)

Its proof is outlined in the following sequence of equalities

_ 0 (V| 0 0
(o) =0 007 6)(52)(G) == esen )
9192‘P1> 14, <(P1>
= — = — 360
(9192(02 2 @3

where we used the anticommutativity of the Fermi ;s and ¢;s and the
Majorana spinor relations

0=0"°, 60=0% 0=—B"", °= ( _(1) é) 160=10,6,.
(12.2)
The superfield ¢(x, ) is then
B(x,0) = A(x) + iB(x) + 3i00F(x) (12.3)

since all terms of higher order in 6, in the expansion of type (8.2), vanish. The
supersymmetry generators are given by

o .
Q.= prem — 1(y“9)a6u (12.4)
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and the transformation law of ¢ is
0¢ =aQ¢ = —iay*00,A + iay + ay*000,y + iadF, (12.5a)

just as in (10.11a). From here the transformation laws of the component
fields

3¢ = 6A + 166y + 1iPOSF

are obtained as

o4 =iay
oY = (yoA + Fa (12.5b)
SF = iaydy.

In going from (12.5a) to (12.5b) we performed Fierz rearrangements in the
first and third terms of equation (12.54), we used the Fermi nature of &
and the second and third of the following set of two-dimensional Dirac—
Majorana algebra relations

C=y’=ig, C"=—-C=C"' Cy’''C1=—y

TrC?= -2 TrCy’C=0. (12.6)
The covariant derivative is the spinor
D,= 5% +i(y*0),0, (127
and as before has the properties
[(D,,Q,1=0 [DD,Q,]=0 (12.8)
The invariance under supersymmetry of the lagrangian
Lo=31¢"DD¢ (12.9)

is proved exactly as in chapter 10. To expand %, in components we need
the two-dimensional Dirac algebra relations (12.6). We start by calculating
the field equation superfield (using equations (12.3), (12.6), (12.2), (12.7))

DD$ = D,C,yDyd = — CpD.Dyb
0 .= 0 .~ _ _
= _ Cﬂa[é’gi + 1(0})“C),6“:”:W + 1(0y”C)ﬂ5v:|(A + 10y + 1i66F)
= — Cp[ —iC4F + (gyvc)ﬁav‘//a - (5?"C)aau'/’ﬁ — (gyuc)uauFeﬁ

— (0y*C)8y°C)0,0,4]
=2(—iF + 6ydy + 16600 A) (12.10)
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where
O0A4=1"0,0,A=(—0;+08})A (12.11)

and the term containing é,F drops out on account of 5}),,9 =0. To get to
the action we still multiply by ¢ and collect all the terms proportional to
66, the only ones that survive the §' and 67 integrations. In this process
we encounter the term (Biydy)(Y0) which has to be Fierz transformed
according to the rule (12.1) into — 1(00)(Yiydy). The rest is straight-
forward and using 100 = 6,0, we find

So= J d*xd? 0% = —4 J 6,0,d6,d0, szx( A A+Jiydy — F?)
(12.12)

so that, up to a surface term,
So=—1% J d2x(0A0A + iyrydy — F?). (12.13)

As a check, this component field action is indeed invariant up to a surface
term under the component supersymmetry transformations (12.5b). Again
F is a nonpropagating auxiliary field, whereas A and y are respectively
a free massless Bose scalar and a free massless Fermi—Majorana spinor,
each with one physical degree of freedom.

At this point we may inquire into the role of the nonpropagating
auxiliary field F. Its ‘field equation’ is F =0, so F really ‘cuts no ice’. So,
why not set F =0 in the action (12.13) and be done with it? The point is
that F actively participates in the supersymmetry transformation laws
(12.5). Were one to set F =0 in the action (12.13), the so truncated action
would continue to be invariant up to a surface term under the truncated
supersymmetry transformations

0A = iay
50— yaAa} (12.14)

obtained from (12.5b) by setting F = 0. Yet these truncated infinitesimal
supersymmetry transformations (12.14) do not close unless we impose the
field equations (or mass-shell conditions) iydy =0, (14 =0, on the
propagating fields ¢ and A. In other words, the commutator of two
infinitesimal transformations of the type (12.14) yields a translation only
on-shell!

Another way of looking at this matter is to note that in two space—
time dimensions the Majorana fermion y has one degree of freedom
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on-shell, ie., after imposition of the Dirac equation. So does the pro-
pagating scalar field A. In a supersymmetric theory, as we saw in chapter
S, the numbers of Bose and Fermi degrees of freedom must be the same,
so on-shell 4 and y are all one needs. But as is well known, the Dirac
equation cuts by a factor two the number of spinor degrees of freedom.
Going off-shell, i.e., to y-fields that do not obey the Dirac equation, thus
doubles the number of Fermi degrees of freedom, while the scalar field A,
even off-shell has still only one degree of freedom. To match the Bose and
Fermi degrees of freedom, off-shell as well, we must call upon another
Bose degree of freedom. The auxiliary scalar field F has the role of providing
this needed degree of freedom off-shell, while automatically vanishing
on-shell just as the extra off-shell spinorial degree of freedom. We have
given this discussion in full detail in this simple case. Throughout super-
symmetry theory we will encounter such auxiliary fields, each time making
a discrete disappearing act on shell, but asserting their presence off-shell
where they are needed to restore the Fermi—Bose balance required by
supersymmetry.
As in one dimension we can now add an interaction in the form

S = ifdzx d2ow(¢), (12.15)
where the simplest nontrivial superspace potential
W(p)= — (9> + 19) (12.16)
yields
S, = f d2x[AF + g(FA? — iy A)]. (12.17)

The field equation for F is still algebraic:
F=—(A+g4?, (12.18)

which when inserted in the action yields

S=8,+8,= f d2x[ — 20404 — 4igydw — 44 + g A% — igy A].
(12.19)

Now the scalar field exhibits a quartic self-interaction and a Yukawa
interaction with the fermion. The effective potential at the tree level is

V=1F? =41+ gA4?>. (12.20)

For 1/g negative, ¥V has the familiar double well shape with two minima
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Vain=0 at (4> =+ Ay = +(— A/g)"?, corresponding to (F> =0 and
m,=m,= —2(—gi)"%. The fields 4 and ¥ have equal masses, super-
symmetry is exact at the tree level but the reflection symmetry A - — A4
is broken. In the next chapter we shall see whether this can be maintained
in quantum theory. For /g positive, ¥ has a single minimum Vin = A2/2
at {4 =0. The A — — A reflection symmetry is observed now, but super-
symmetry is broken at the tree level: m, = (2g4)'/%, m, =0, { F) = A. The
vanishing y-mass signals a Nambu—Goldstone fermion sometimes also
called a goldstino, associated with this spontaneous supersymmetry
breaking at the tree level. This is also reflected in the transformation law
0y = Aa = constant, which is obtained from (12.5b) for F = (F)» =1 and
A=0.

In the next chapter we address ourselves to this phenomenon of spon-
taneous supersymmetry breaking.

13

Spontaneous supersymmetry breaking

To get an idea about supersymmetry breaking, it is instructive to start
with the theories in one time and zero space dimensions discussed in
chapter 10 (Witten 1982). These have a finite number of degrees of freedom
and yet can exhibit spontaneous supersymmetry breaking. For such
theories we had the supersymmetry algebra (see equations (10.3))

Q>=—H, [H,H]=[H,0]=0 (13.1)
Consequently, for any state, |s), given that Q is hermitean, we have
CslHIsy=1Qls> (12 >0 (13.2)

and energy is positive semidefinite. Thus, the lowest energy a state can
have, is zero. Any zero energy state is then guaranteed to be a possible
ground state.

On the other hand, a state is supersymmetric if it is annihilated by the
generator Q of supersymmetry. But equation (13.2) then implies that any
state of zero energy is supersymmetric and vice versa. Thus any super-
symmetric quantum system, must have a zero energy state (which then
functions as a supersymmetric ground state).

To decide whether a system is supersymmetric, or breaks supersymmetry
spontaneously, we just have to find out whether it has zero energy states.
To this end it is convenient to introduce Witten’s operator (— 1)F with
the properties

(=DF1S>==1f> (=DF1b>=|b) (13.3)

for any Fermi state | ) and Bose state |b) in the system’s Hilbert space.
By the spin-—statistics connection, in higher dimensions (— 1)F can be
realized in terms of the generator of rotations J, around say the z-axis
as

(= D) =exp(i2nJ,) (13.9)

The trace of ( — 1) contains information about zero energy states. To see
this, let |b) be any bosonic energy eigenstate of energy E > 0. The action
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of Q on |b) produces a fermionic state which we can write as

Qb =E"2|f) (EY*#0). (13.50)
Then

2 H
Q|f>=ﬁz|b>=mlb>=E”2|b>, (13.5b)

so that the two states |b) and | /) are paired in an irreducible multiplet
of the supersymmetry algebra. A zero energy bosonic state |b, ) is super-
symmetric as we have seen,

Qlby>=0. (13.6a)
Similarly for a zero energy fermionic state | f,, )

Qlfo>=0. (13.6b)

Thus the state |b,) is by itself a supersymmetry singlet, as is | f, ). We
see that for finite energy the number of bosonic states equals that of the
fermionic states, but for zero energy states the numbers of bosonic and
fermionic states need not be equal. Denote by v(E) the difference between
the number of bosonic and fermionic states of energy E in the system.
Then the observation just made means that v(E) must vanish at all energies
except at zero energy where it equals some integer.

Were we now to vary the parameters of the theory (masses, coupling
constants, ...) the energies of the states would vary accordingly. The validity
of the supersymmetry algebra requires though, that the states move around
in Bose-Fermi pairs, otherwise there would appear nonvanishing energy
values with an excess of Bose or Fermi states. In particular, states land
on, or leave zero energy in such Bose—Fermi pairs, so that not only does
W(E) vanish for E # 0 at all values of the parameters, but even the integer
value of v(0) is frozen in, as we vary the parameters. But if v(0) # 0 then
there must exist zero energy states in the system and therefore super-
symmetry does not break spontaneously. If v(0) =0 all we know is that
even at E =0 the number of bosonic and fermionic states are equal, but
that by itself is not very instructive.

Since every bosonic (fermionic) state contributes + 1 (—1) to the trace
of Witten’s operator tr(— 1), it follows (on account of the Bose—Fermi
pairing of E 3 0 states) that

tr(— 1)f = v0). (13.7)

The trace being taken over a Hilbert space, questions of convergence arise,
but can be readily dealt with by writing lim,_+tr [(— 1) exp(— BH)] on
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the left-hand side of equation (13.7). The important thing is that the value of
tr(— 1) is impervious to variations of the parameters as long as these do
not go to zero, or no new parameters are introduced. To illustrate these
ideas we discuss two simple examples.

Example 1: The N =2 superpoint particle in d = 1 space dimensions.
In chapter 10 we had the action (see equations (10.24))

_ . . 1/dw\? . d*w
S—J\dt[%xz+%10¢91—§(a) +lw0102J (138)

(the Latin indices of equations (10.24) have been suppressed since for d = 1

they only take the value 1). The corresponding hamiltonian (see also
chapter 11) is

1/dw\*  a*w
For simplicity we choose
W(x)=4x3+ax (13.10)
so that
H=1p* + 4(x* + a)* — 2ix0,0, (13.11)
Here
[0,051 =0 fora,f=1,2. (13.12)
Upon quantization this is replaced (see equation (11.17)) by
[0, 051 = h6,5, (13.13)
6, can be represented by Pauli matrices
0,=Gh"%e, a=1,2 (13.14)
and
H=3p*+4(x* + a)* + ho,x (13.15)

At the classical (or tree) level: #—0, so that the ground state energy is
determined by the minimum of the potential (x* + a)%. For a>0, V(x) >
a*/2 > 0 and supersymmetry is spontaneously broken. For a <0, V attains
the minimum value V,,;, =0 at x = + (|a|)"/? and it would appear that
supersymmetry is unbroken. This is however a tree level result that does

not hold in the full quantum theory. To see this, consider the
transformation

H— [ =e?*xHe 2ax (13.16)



68 Globally supersymmetric theories

This transformation is so chosen that H is precisely H with the sign of
the parameter a inverted. Under this transformation the two super-
symmetry generators

1
0, =ﬁ[°’11’ +0,(x* +a)]
A (13.17)
0, =‘\7§[02P —0,(x* +a)]

transform as
0,0, =e*Q,e 2 (13.18)

It is readily checked that the expressions given here for @, obey the N =2
supersymmetry algebra [Q,,Qz] =25,,H. The operator e*** not being
unitary, the theory based on J, and H is not equivalent to that based
on Q, and H. Still, the number of zero energy states of H and of H are
the same, as we shall prove below. Yet for the theory based on H we have
already established the absence of zero energy states, which in turn implies
spontaneous supersymmetry breakdown. Thus in the theory with a <0,
described by H, tree level appearances notwithstanding, supersymmetry
is also spontaneously broken.

To complete the argument we have to prove the equality of the numbers
of zero energy states in the H and H theories. Consider the operators
Q, =(1/4/2)(Q, £iQ,). The supersymmetry algebra imposes

Q:=0 [Q.,0-1=H. (13.19)

A state |s) for which @, |s> =0 will be called a closed state. A state |s),
for which there exists a state |t) such that {s)> = Q. |t), will be called an
exact state (this nomenclature is of cohomological origin). By virtue of
Q2 =0, every exact state is closed. We now ask whether there exist closed
states which are not exact. We start from a basis |sg) of hamiltonian
eigenstates

H|sg) = E|sg). (13.20)

We first show that every closed state |sg ) corresponding to a nonvanishing
eigenvalue E # 0 is exact. To this end, consider the state [t;) = (1/E)Q_|sg).
We have Q.ltz>=(/E)Q.+Q_Isg>=(1/E) [Q.,Q-]lsg> (since
0_0.,|sg>=0, |sg> being closed by assumption). Using the super-
symmetry algebra (13.19), we further find Q. |tg) =(1/E)H|sg), thus
proving |sz ) to be exact. If however E =0, the supersymmetry algebra
relation [Q,,H] =0 implies that, if there exists a state |t,> for which
[so>=01to), then H|t,> =0. But Q,, and therefore @, annihilate ail
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zero energy states (i.e., all zero energy states are closed), so that Q , |t,> =0
and therefore |s,> = 0, |ty ) cannot hold. Thus the zero energy states are
all the closed states which are not exact. Under a similarity transformation
M, Q. changes

0,~»0,=M"'Q.M. (13.21)

Consider a zero energy state [s,> of H. Under the action of Q. it is
closed but not exact. The state |§,> =M ~!|s,) is then closed but not
exact under the action of §, (0.|5,)=M"1Q, MM is,)> =
M™'Q,|so>=0; if |5,> were exact, then from the existence of |t,)
such that [5,>=0,|t,>, we could conclude |[so)= M|5,> =
MM™'Q . M|ty> = Q. (M|ty)), which would mean |s, ) is exact contrary
to the assumption). Thus under a similarity transformation zero energy
states of H map into zero energy states of H. The converse is then also
easily established, so that the similarity transformation provides a one-
to-one map between the zero energy states of H and those of H. Hence
the numbers of zero energy states of H and H are equal as claimed. For
the case of the supersymmetric point particle all that needs to be added
is that the transformation (13.16) is a similarity.

Example 2: Supersymmetric two-dimensional field theory
Consider the theory discussed in chapter 12, with action (12.19). There
we have discussed supersymmetry breaking at the tree level for this theory.
But as we saw in the previous example such discussions may be misleading.
Indeed, were we to treat this model in a finite volume, the sign of i/g
could then be changed by a similarity transformation, and just as in
example 1 we would have spontaneous supersymmetry breaking for either
sign of A/g. For negative i/g, as was already noted in chapter 12,
(A) =+ Ay #0so that m, #0. There is no Nambu-Goldstone fermion,
and there can be no spontaneous supersymmetry breaking in the infinite
volume limit. In this limit Poincaré supersymmetry is established, and in
a Poincaré superinvariant theory, if a symmetry or supersymmetry
spontaneously breaks, then a Nambu-Goldstone particle (boson or
fermion as the case may be) must appear. This is the contents of Goldstone’s
theorem (Goldstone, Salam & Weinberg 1962), which ceases to hold in a
finite volume or for nonrelativistic point particles. Thus, in the infinite
volume limit, the discussion of chapter 12 remains valid. In this theory
tr(— 1)f vanishes for both signs of A/g. For i/g >0 there are no zero
energy states, for 1/g <0 there are two such states.

Much of our discussion was based on the observation, made at the
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beginning of this chapter that in a supersymmetric ground state the energy
must vanish on account of the supersymmetry algebra (13.1). This obser-
vation has a close relativistic counterpart (Zumino 1975) which we now
present.

In a relativistic quantum field theory consider the vacuum expectation
{0|T,,(x)|0> of the energy momentum tensor T,.(x). Generically
0| T,,(x)|0) is set equal to zero through subtractions performed order-
by-order in perturbation theory. In a supersymmetric quantum field theory
the Poincaré superalgebra implies

[Qa Qp] = 20#C)apPy (13.22)

where @, is the space integral (at constant time) of the time-like component
of a fermionic ‘supercurrent’ S$% and P, the similar integral of the
component T,, of the energy—momentum tensor. Thus dropping the
space integration we find

[Qa, Sou(x)] = 20*C)ap Ty0(x) + ST, (13.23)

where ST stands for a Schwinger term. In a supersymmetric theory
0.10> =0 and ¢0|Q, =0, so that taking the vacuum expectation value of
equation (13.23) and recalling <0|ST|0) =0, we see that (0|T,,]0) =0,
or because of Lorentz invariance

0|T,10>=0 (13.24)

For free fields, viewed as a collection of harmonic oscillators, what
happens is, that the positive zero point energy of the Bose oscillators
cancels against the negative zero point energy of the equally numerous
Fermi oscillators. Of course, in view of our discussion above, (13.24) breaks
down if supersymmetry is spontaneously broken.

14

Vector and chiral superfields in
four-dimensional space—time

In the case of four-dimensional space—time the simplest, N = 1, superspace
is B}* involving one Majorana spinor 6% (x=1,2,3,4) along with the
Minkowski coordinates x* (1 =0, 1, 2, 3). A superfield ¢(x*, 6%) now admits
a G-expansion of the type

¢(x, 9) = ¢(X) + ¢a01 + 4 ¢[aﬂy610¢0ﬂ0705.

It is both convenient and conventional to switch to the Weyl notation as
explained in chapter 5. We trade-in the real four-component Majorana
spinor 8* for a two-component complex Weyl spinor also called 6* (x = 1,2)
and its conjugate 8, = (6,)*. In what has, by now, become a conventional
notation, the #-expansion is written as

d(x,0,0) = C + 0%, — i0,7" + 0°0,5(M +iN) — 0,0°5(M — iN)
— 0%0,), V" +16%0,0,T" — kio* f )
—i0,0°0%(25 + Sio*,0,0) + 0°8.9,°4D + O C),  (141)

For completeness we recall the Weyl notation 6%=¢*6,, 6 = 8‘9(7,,,
e2=gl2=, = —gfs H= _¢hi 0o°, is the unit matrix, 6™, m=1,
2, 3, the three Pauli matrices. Notice that %ia“aﬁéuiﬁ transforms like a
spinor with an undotted index which explains its appearance in the
company of 4. We shall also use the abbreviations ¢*y, = ¢y, d¥° = pyY
for any two spinors ¢ and ¥, or ¢ and .

In (14.1) the superfield ¢ has been assumed real. Thus the coefficients
of 6% and of 6* are each other’s complex conjugates, as are the coefficients
of 6°9, and #°9,, etc.... Strictly speaking, the (dimensionally correct:
dim, =4, dimd,= —1) terms $iody and 3JC in the O-trilinear and
O-quadrilinear terms are not necessary, they have been included to simplify
the transformation laws of the component fields. The highest spin in (14.1)
corresponds to the vector field V,, hence the name vector superfield for ¢
as given by this -expansion. The supersymmetry generators are now
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Qa i - io-“«m'e_daﬂ

~ o6
(14.2)
R "
Qa = a—es- _ 10“6“1385 6”
whereas the covariant derivatives are
0 . s
Da = w + IO'MadO 8‘,
3 (14.3)
D,= - 6_@ —i6%* 40,
The bracketing rules are
[0.,0.1= [Py D] =2ie"5, } (14.4)
[Qa Q] = [0, 941 =[D,, D] =[D,,D;]=0

whereas all Ds and Ds anticommute with all Qs and (s as befits covariant
derivatives. All this is but a rehash of what we already had in lower
dimensions. In four-dimensions, we have one novel feature: we can impose
the supersymmetric constraints (Salam & Strathdee 1975)

D=0 (14.5q)

or

D,p =0, (14.5b)

thus obtaining superfields with a smaller number of component fields.
Superfields obeying the constraints (14.5a) or (14.5b) are called respec-
tively right-handed and left-handed, or simply chiral. One may wonder
about the possibility of such chiral constraints in the one- and two-
dimensional cases treated in chapters 10 and 12. In one dimension as in
any odd dimension there are no chiral spinors (see chapter 3) and thus
no chiral constraint can be imposed. In two-dimensions there exist [q

spinors (table 3.4) and a further chiral constraint on the superfield is
enforceable and of interest in superstring theory.

To solve, say, the left-handed constraints (14.5b) note that

D;## =0 Dy(x*+i6c"8) =0, (14.6)
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let ¢,(x, 8) be a superfield which, while depending on the even elements
x* of the Grassmann algebra and on the odd elements 8, does not depend
on the odd elements f. The identities (14.6) then guarantee that the most
general solution of the constant (14.5b) is

B(x*, 04, 0,) = & (", 0] o _ o, ooz (14.7)

The superfield ¢,, independent of 0, has the much more economical 8-
expansion

é1(x,0) =14 —iB) + 0%y, + 6°0,5(F +iG). (14.8)

Note that this chiral superfield is complex. Assuming the superfield ¢, to
be superanalytic, we can expand ¢, (x* +i6¢*8, 8%) around the point (x*, 6%).
This will bring into play a finite number of terms (i#¢* is nilpotent)
containing the derivatives (typical of a Taylor expansion) of the fields A,
B and ¢ appearing in (14.8). This way, from (14.7) and (14.8) we finally
obtain the general form of the chirally constrained superfield ¢(x, 6, §) as

$(x,0,0) = 1(A —iB) + 6%y, + 0°0,4(F +iG) + }i6°0* ,0°0 (4 — iB)
—1i6°0,0,06""0 4, + $6°0,0,6° 1(4 — iB). (14.9)

Unlike ¢,, the chiral superfield does depend on 8, but in a manner pre-
ordained by the solution (14.7), (14.8) of the chiral constraint.

We note here a few important properties of chiral superfields. We have
seen earlier that the product of two superfields is a superfield. Since both
D, and D, are derivations (i.e., obey Leibniz’ rule), the product of two
left-chiral (right-chiral) superfields is again a left-chiral (right-chiral) super-
field.

Next, consider the superspace integral of a chiral superfield {d*xd?
d20¢. The Berenzin integration over the s and 0s is, as we saw in chapter 9,
equivalent to taking the corresponding, 6, or 8 derivative. But for a chiral
superfield, equations (14.3) and (14.5) imply that either the § or the 8
derivative reduces to a divergence. Hence after performing the Berezin
integrals on a superfield, the rest of the superspace integral, namely the
space—time integral has an exact divergence as integrand: it is a surface
term. The superspace integral of a chiral superfield is thus always a surface
term, and as such irrelevant in an action principle. Since we will be dealing
with products of chiral superfields, it is worthwhile to note that super-
symmetric integrals that are not surface terms in ordinary space-time, can
be obtained by integrating on the submanifold 8 =0 for a left-chiral or
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6 =0 for a right-chiral superfield. Indeed, for a left-chiral superfield ¢
Jd‘xd20¢(x, 6,0)5_0= Jd‘x d20d%0¢(x,0,0)6%0)  (14.10)

is supersymmetric, and we have a similar formula for right-chiral super-
fields. We can now proceed to the construction of supersymmetric actions
in four space-time dimensions, and then to the study of the remarkable
features of the corresponding quantum field theories.

15

The Wess—Zumino model

Given a left-chiral superfield ¢ we want to write down a supersymmetric
action. We integrate over superspace jd"'x d20d?d (yes, we have to
integrate over 8, ¢ does depend on 8, ¢, of chapter 14 didn’t) a lagrangian
superfield density £. Based on lower-dimensional experience, we would
be tempted to apply some covariant derivatives to ¢ and form & from
these covariant derivatives of ¢. But, unlike in previous cases, a chiral
superfield is constrained, it already contains derivatives of the component
fields. Applying any further covariant derivatives, would produce higher
derivatives of these component fields, and lead us to an undesirable theory
with higher derivatives. So we shall try to make do with the superfield ¢
and its hermitean conjugate (remember the chiral superfield is complex)
and take no further covariant derivatives. The simplest term we can
contemplate is then ¢ *¢. We could of course also consider ¢2 and ¢*2
but these are products of like-chiral superfields and as such chiral super-
fields themselves. Therefore, their superspace integrals yield uninteresting
surface terms as was noted in the last section. But equation (14.10) suggests
that we include the terms ¢26%(9) + h.c. The Grassmann coordinates §
have dimension of (length)'/2 so that 6%(0) = 8,0, has dimension of length.
Relative to the term ¢* ¢, the ¢25%(0) term and its hermitean conjugate
must therefore be multiplied with a coefficient m having dimension of
mass. Not surprisingly then ¢*¢ turns out to yield kinetic terms for the
component fields whereas m¢26%(0) + h.c. is the supersymmetric mass
term. One may wonder how the different powers of m arise in the Fermi
and Bose mass terms. The mass term in its raw form is overall linear in
m, but upon the elimination of the auxiliary fields, the mass terms of the
propagating Bose fields acquire the second m factor, much the way the
superfield action equation (12.17), linear in g, was able to induce a quartic
self-interaction of the bosonic A-field of strength 4g%. Indeed, an entirely
similar construction for an interaction term in four dimensions yields
fd*xd?0d%0¢°5%9) + h.c.. Again the 5%(f) appears on account of ¢>
being left-chiral. So we end up with the Wess—Zumino action (its super-
symmetry is proved by a straightforward generalization of the argument
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between equations (10.7) and (10.10))
Swz = fd“x d*0d%0{¢* ¢ + [(me* + £9¢9%0%(0) +hcl}.  (15.1)

Inserting here the 6-expansion (14.9) we find that F and G are nonpro-
pagating auxiliary fields. (This could have been realized on dimensional
grounds alone. Indeed, as the only Fermi field in the theory, ¢ has to
propagate, and as such, is expected to have dimension (length)~3/2. With
6 having dimension (length)!/?, we see from equation (14.8) or (14.9) that
the fields A, B must have canonical dimension (length) !, whereas the
fields F and G must be dimensionless auxiliary fields.) Carrying out the
Berezin integrals in (15.1) and eliminating the auxiliary fields F and G via
the field equations in the same way as in (12.19), we get the following
action in terms of the propagating fields A, B, y alone:

Swz= jd“x[ — §(2,A0*A + 0,B0"B) — §ifryoy — sm(4* + B?)

— Limy — gmA(A* + B2) — 1g*(A* + B2)? —igy(4 — ysBW].
(15.2)

Here we reverted via equations (5.3) from the Weyl spinor y in (14.9) to
its Majorana equivalent, which for simplicity is also denoted by ¥ in (15.2).
The action Sy, defines the Wess—Zumino model. Just as a check, on-shell
the two Fermi degrees of freedom of the Weyl spinor  are matched by
the Bose degrees of freedom of the scalar fields A and B. Off-shell y
develops two extra degrees of freedom, again matched by those of the
auxiliary scalar Bose fields F and G. In chapter 17 we shall look into the
quantum field theory built on (15.2).

16

The supersymmetric Maxwell and
Yang—Mills theories

Consider two (complex) left-chiral superficlds ¢, and ¢,. Define

d)=%(¢1 +1i¢,). (16.1)
The kinetic action
S= J d*xd?0d20¢* ¢ (16.2)
is invariant under the global rephasings

d)_,(:—igld) ¢+_>eig1¢+ (163)

where g4 is a (superspace-independent) phase angle. So far, everything
sounds as in the discussion of ordinary gauge invariance. Indeed, the next
step would be to let A become space-dependent A(x). But that is not possible
in a supersymmetric context. For, even if ¢ started out a superfield, e 94 ¢
is not a superfield any longer. This is readily corrected by letting A acquire
not only an x-dependence but also a 6- and 0-dependence so that
A= A(x, 8,0) with A a complex (A* # A) chiral superfield (Wess & Zumino
1974b). Then

poreTiNg, Pt teint (16.4)
and
¢ d>d dpexpligAt —A)]#¢* . (16.5)

So, the kinetic matter action (16.2) while invariant under the global trans-
formations (16.3), fails to be invariant under the local transformations
(16.4). A la Maxwell-Weyl-Yang—Mills we replace

Ptdp=0¢"e" 9 (16.6)

with V, what we called in chapter 14 a vector superfield, which undergoes
the transformation

Vo V+ig(A —A*Y),
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when the matter fields undergo the transformation (16.4). The chiral super-
field A has a f-expansion of the type (14.9). We shall use the notations
of equation (14.9) for the component fields of A. We can then calculate
the change of the vector superfield

dV=ig(A — A™"). (16.7)

Comparing the result with the 8-expansion of the vector field V, equation
(14.1), we deduce the changes in the individual component fields of V' to be

s5C=B, dy=y, OM=F, 6N=G,}

16.8
8V,=08,A, 5i=0, 6D=0. (165)

The chiral superfield A being arbitrary, B, ¥, F, G are arbitrary and can
suitably be chosen to cancel out the original C, y, M and N fields of the
vector superfield:

B=-C, y=—y F=—-M, G=—N (16.9)

The component fields C, y, M, N of the vector superfield V are thus
recognized as gauge degrees of freedom that can be eliminated by going
to the Wess—Zumino gauge (16.9). From (16.8) the component field 4 of
the ‘phase’ superfield A is seen to correspond to an ordinary abelian gauge
transformation of the abelian gauge field V. In the Wess-Zumino gauge,
the B-expansion of V simplifies considerably

Viwz = — 05,0V* +i(00)(04) — i(9)(04) + 4(66)(BH)D.  (16.10)
V|wz has no body, and as such is nilpotent
(Vlwz)"=0 forn>2. (16.11)

The supersymmetric, gauge invariant kinetic term ¢*e?¢ (equation
(16.6)), which on account of the exponential is nonpolynomial in most
gauges, thus becomes polynomial in a Wess—Zumino gauge, since by
(16.11) the Taylor expansion of the exponential then truncates at the
quadratic term.

It must be pointed out though, that the Wess-Zumino gauge is not
supersymmetric. Supersymmetry transformations in general carry a field
out of the Wess—Zumino gauge.

To have a full supersymmetric Maxwell theory we still need a gauge
invariant superfield containing F,, = 9,V, — 0,V,,, from which the Maxwell
kinetic term and its supersymmetric partners are to be built. By acting
on V with sufficiently many covariant derivatives, we can achieve
invariance under the transformations (16.7), since these covariant deri-
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vatives will annihilate chiral superfields that appear in éV. The super-
field

wW,=(DD)D,V (16.12a)
and its conjugate
W,=(DD)D,V (16.12b)
have the properties of
(i) being chiral D,W; =0, D,W;=0
(i) being gauge invariant 6W,=0, W, ~0 under the transformation
(16.7)

(iii) obeying the identity D*W, — D, W*=0.

The action (W,, W, are chiral)

Ssusy MAXWELL = Jd4x d*0 dzgsl_z[WaWa‘sz(g) + Wdeaz(e)] (16.13a)

once the Berezin integrations are carried out, yields in the Wess—Zumino
gauge (16.9), the component field action

Ssusy MAXWELL wz = fd4x( —4F  F* —3iy0A +3D?). (16.13b)

We recognize D as a nonpropagating auxiliary field and 4 as the super-
symmetric partner of the photon field: the photino field.

On-shell the propagating photon and photino each have two degrees
of freedom, whilst off-shell the full vector multiplet comes into play. The
off-shell photino now has doubled the number of its components (it does
not obey the Dirac equation) to four and in addition to field y also weighs
in with four components of its own for a grand total of eight Fermi
components. On the Bose-side, off-shell, the photon 4-vector has four
components with the remaining four being provided by the scalars C, D,
M and N.

To summarize, we found for supersymmetric electrodynamics the super-
symmetric and gauge-invariant action

Ssusy Ep = Jd‘xdzﬂdz 0{¢* e ¢ + JHLWW,5%(6)+ W,W*6%(6)1}
(16.14)

with the first term providing the coupling to a chiral matter superfield.
We refrain here from writing out in detail the component form of this
interaction term. Suffice it to say that the photon couples both to charged
Fermi matter and to its charged scalar superpartners as expected, whereas
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the photino couples the Fermi matter fields to their Bose partners, in a
matched universal way.
There is one surprise in store. The term

Se = xfd“x d20d2ev (16.15)

with k a constant is supersymmetric (by the usual argument) and gauge
invariant (since 6¥V=1i(A — A*) is the sum of two chiral superfields each
of which superspace integrate to surface terms as shown in chapter 14).
Thus such a Fayet—Iliopoulos term (Fayet & Iliopoulos 1974) can be added
to Sgysy ep, With the result that it induces spontaneous supersymmetry
breaking. This whole construction can immediately be generalized (Ferrara
& Zumino 1974, Salam & Strathdee 1974b) to the nonabelian (except for
the Fayet—Iliopoulos term which is only possible for an abelian factor of
the overall gauge group).

We wish to comment here on one more item. The modern point of view
in gauge theory (see for example Eguchi, Gilkey & Hanson 1980) is to
view the gauge potentials as components of a connection one-form on a
principal fibre bundle, with the field strengths spanning the corresponding
curvature two-form. Gauge theories, like general relativity (itself a gauge
theory), are thus viewed as geometries. The construction given in this
section had virtually nothing to do with the geometry of some ‘superfibre
bundle.’” An alternative approach supersymmetrizing the usual geometric
approach to gauge theory is possible and yields results equivalent to those
obtained here (see Wess & Bagger 1983). Yet we shall not present this
approach because in its present form the supergeometrical formalism lacks
the elegance and simplicity of the geometric formalism for ordinary gauge
theories. It is to be hoped that this important formalism will be perfected.

17

Supersymmetric quantum field theories and
their applicationst

Quantum field theories, even of the tame renormalizable type, contain
(manageable) divergences in perturbation theory. As a rule, super-
symmetric theories also contain such divergences, but less virulent ones
than in nonsupersymmetric theories of similar type. Indeed, after years of
getting used to the idea that divergences in quantum field theory are
simply unavoidable, supersymmetric theories, possibly even some realistic
ones, have been produced in which all divergences cancel to all orders in
perturbation theory.

We shall briefly state some of the basic results on divergences in super-
symmetric quantum field theories, and then heuristically consider some
of their potential phenomenological applications.

Consider the Wess—Zumino model described in chapter 15. For this
model it has been found that to all orders in perturbation theory, all loop
diagrams, evaluated using superspace techniques, involve an integration
over both [d?6 and [d2 without the presence of either a 5%(6) or a 6%().
From equation (15.1) this shows that neither the mass terms m(¢256%(9) +
h.c) nor the interaction terms ($g$°36%(6) + h.c.) get renormalized. All
one encounters is a common overall wave-function renormalization of the
Bose and Fermi fields

¢rcnormalized =Z" 1/2¢ ¢ = A’ B’ F’ G’ ‘// (17 1)

There are no mass and coupling constant renormalizations beyond those
implied by (17.1). In other words, writing the generic mass and coupling
constant renormalizations as

mrenormalized =Zm + 5m’ Grenormalized = 23/2219’ (172)
in the supersymmetric theory we have

om=0, Z'=1. (17.3)

' This brief section obviously cannot do justice to the vast and important topics implied
in its title. It is meant to provoke the reader’s curiosity rather than satiate it.
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What this means is, that if we fix at the classical (tree) level a Bose—Fermi
mass-degeneracy and the supersymmetric relations among coupling
constants, as in equation (15.2), then this mass-degeneracy and these
coupling constant relations will survive in the quantum theory, to all
orders in perturbation theory (on the other hand there exist nonpertur-
bative mechanisms of supersymmetry breaking). This result has been
invoked as a solution to the pernicious hierarchy problem in grand unified
theories (Witten 1981, Dimopoulos & Raby 1981, Dine, Fischler &
Srednicki 1981, Sakai 1981).

In grand unification (Langacker 1981) one postulates a gauge theory
with a large simple gauge group (SU(5), O(10) are the simplest candidates),
which breaks down via a Higgs mechanism to SU(3).o.r X [SU(2) x
U(1)]erectrowear at @ typical scale of ~10'° GeV. The electroweak theory
involves a further scale of ~ 10*GeV, which is set by the ordinary
Weinberg-Salam Higgs bosons. One then expects these bosons not to be
much heavier than 100 GeV, to insure perturbative unitarity at the electro-
weak scale. Compared to the grand unification scale, 100 GeV is very light
indeed. Moreover scalar bosons (such as the Higgs bosons) are prone to
acquire large masses. Interaction with the Higgs bosons of grand uni-
fication should render the electroweak Higgs bosons superheavy as well.
At the tree level, cancellations can be contrived, but with generically
quadratically divergent radiative corrections one still expects squares of
the electroweak Higgs masses of the order of some power of the fine
structure constant times the square of the grand unification energy scale
(gravity may not be harmless in this context either) Were the grand
unification to be N = 1 supersymmetric, the just discussed no-renormal-
ization theorems would insure that light scalars stay light; for if the super-
symmetry were exact, the quadratically divergent radiative corrections
due to Fermi loops would exactly cancel those from Bose loops. But
supersymmetry cannot be exact, in nature we do not observe mass-
degenerate Fermi and Bose particles. If supersymmetry is broken, this
would mean that the electroweak Higgs bosons will acquire a mass which
will be larger, the larger the supersymmetry breaking, i.c., the larger the
difference (dm)* between the (mass)? of bosons and fermions originally
belonging to the same supermultiplet. A Higgs (mass)® of order a(0m)” is
thus induced which, with « ~ 1072, and a Higgs mass of ~ 100GeV
suggests a supersymmetry breaking effect dm of about 1000 GeV. Models
implementing this ideology are legion and will not be discussed here. Their
most striking prediction (Witten 1981, Dimopoulos & Raby 1981, Dine,
Fischler & Srednicki 1981, Sakai 1981, Fayet 1976) is that of super-

17 Supersymmetric quantum field theories 83

symmetric partners to all the ‘low mass particles’. Thus spin zero sleptons
and squarks are to accompany the fermionic leptons and quarks, whereas
spin one-half photinos, gluinos, winos, zinos must accompany the photon,
gluon, W and Z, etc.... Once supersymmetry breaking effects can occur
at around 1000 GeV (the supersymmetry breaking scale itself may be much
higher), then the experimental discovery, at least of the lightest super-
symmetry partners should be ‘around the corner’.

Three comments are in order here. First, the supersymmetry that might
be observed ‘down’ to 1000 GeV is expected to be of the N =1 (and not
of the extended N = 2, 3, or 4) type. Otherwise, as can be seen from table
5.1 each spin one-half fermion of a supermultiplet would have a partner
of the opposite helicity, still in the same supermultiplet, and the theory
would be vector-like rather than chiral as is the case in nature (of course
there is always the possibility of ‘mirror fermions’ that complete the vector-
like structure at 1000 GeV or so, in which case even N > 2 supersymmetries
could be accommodated).

Second, there is the problem of supersymmetry breaking. In the two-
dimensional theory of chapter 12, spontaneous supersymmetry breaking
was achieved by introducing the linear term A¢ in the superpotential, and
adjusting the relative sign of the coefficient A4 with respect to that of the
cubic term (g/3)¢>. In four dimensions we already have chiral cubic inter-
action and quadratic mass terms. These can, without further ado, be
supplemented with linear chiral terms A'¢,6%(f) + h.c. and it has been
shown by O’Raifeartaigh (1975), that with a minimum of three superfields
one can conjure up such ‘F-like’ spontaneous supersymmetry breaking.
With an abelian gauge field one has the Fayet—Iliopoulos D-term, equation
(16.15), which also leads to spontaneous supersymmetry breaking.

Finally, we mention here that coupling supersymmetric grand unified
theories to nonrenormalizable N =1 supergravity at the Planck scale
induces nonrenormalizable terms at low energy which affect the scalar
potential, as well as other aspects of phenomenology.

We leave the problem of supersymmetric grand unification at this
rudimentary level, with the assurance that should a broken N =1
supersymmetry with superpartners around a few TeV be observed in
experiments, this topic will then become due for a book in its own right.
In the interim we refer to the reviews of Nilles (1984), and of Nanopoulos &
Savoy-Navarro (1984), which contain extensive bibliographies.
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Finite quantum field theories

In the last chapter we saw the customary divergences of quantum field
theories getting alleviated by supersymmetry. Over the last few years it
has been established that in the case of extended supersymmetry there
exist theories for which the divergences are not only alleviated but outright
eliminated: the theories are finite, no divergences whatsoever!

The first theory where finiteness was noticed, first to two loops (Jones
1977, Poggio & Pendleton 1977), then to three loops (Grisaru, Ro¢ek &
Siegel 1980, Avdeev, Tarasov & Vladimirov 1980, Caswell & Zanon 1981),
and then established to all orders in perturbation theory (Mandelstam
1983, Howe, Stelle & Townsend 1984, Brink, Lindgren & Nilsson 1983,
West 1983, Grisaru & Siegel 1982) was the extended N = 4 supersymmetric
Yang—Mills theory with arbitrary compact gauge group G, in four space—
time dimensions (Brink, Scherk & Schwarz 1977, Gliozzi, Olive & Scherk
1977). The renormalization-group f-function vanishes identically for this
theory and to all orders in perturbation theory one finds finite results for
all Green’s functions. Individual Feynman graphs may diverge but in
each order the divergences cancel among the various graphs. This theory
may develop spontaneous G-symmetry breaking and monopoles and may
be electric—magnetic self-dual (Osborn 1979, Montonen & Olive 1978).
Other finite quantum field theories in four space—time dimensions having
only N =2 supersymmg¢try have since been found (Howe, Stelle & West
1983) and even N =1 supersymmetric candidates are being explored
(Parkes & West 1984, Jones & Mezincescu 1984, Hamidi & Schwarz 1984),
with potential phenomenological aims. There can be no doubt that the
discovery of these theories radically changes our ideas about the structure
of quantum field theory. The existing proofs of finiteness in four space-
time dimensions are quite technical (see, however, chapter 19). We therefore
choose to look at finite quantum field theories in two space—time
dimensions. Whereas their existence was noticed after the N =4 theory
had already been conjectured to be finite, these two-dimensional theories
(Curtright & Freedman 1979) were the first for which finiteness was proved
to all orders (Alvarez-Gaumé & Freedman 1981). In this case the argument
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does involve beautiful ideas from the geometry of Kihler manifolds
(Lichnerowicz 1955), so we will sketch it here.

In chapter 12 we have written down the action for a free real superfield
in two space—time dimensions in the form

1 _
So=7 f d2x d20D¢D¢ (18.1)

or for a set of N free superfields
1 o
Sox = Zfdzx d*06,;,D¢'Dp’ (18.2)

with summation over i, j from 1 to N understood. From this trivial free
action we switch to the nontrivial action of a nonlinear o-model by
replacing (Meetz 1969) the Kronecker J;; by a general superfield-dependent
metric g;;(¢")

1 o
S= Zszx d*6g,/(¢")D¢'Dp’. (18.3)
As in chapter 12, we have the 6-expansion of the superfields

@' = Al(x) + Oyi(x) + L00F(x). (18.4)

Using the expression (12.6) for the covariant derivative, performing the 6
integrations and eliminating the auxiliary fields, we can rewrite the action
(18.3) in component form

S= Efdzx[gij(A)auAlauAJ +igy (AW Dy’

+ %Rijkt('pi'ﬁh)(‘pjl//l)]- (18.5a)

Here
Dy =04"+T%8,4y* (18.5b)

and T, R, are the Christoffel symbols and the components of the
Riemann curvature tensor of the metric g;,(A4) respectively. They make an
appearance in the derivative terms of the Taylor expansion of the super-
analytic metric g;(¢") around ¢*= 4* This expansion truncates on
account of the nilpotence of the 6-dependent part of the ¢’ and therefore
only first and second derivatives appear. These derivatives then reassemble
in the connection and curvature terms. Had there been higher order terms
in the expansion there would have also been covariant derivatives of
curvatures.
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The action (18.5) has a supersymmetry described by

SA = gy }

8=~ iyod'e — (@) *. (18.6)

Were it not for the I'%, term, these would be precisely the on-shell trans-
formation laws (12.14). This is as it should be, for with g;(¢)=4;; we
recover the free field case of equation (12.14) and in that case I'}, =0.
The T, term is needed in the case g; j#0;; as can be directly checked.
Aside from the supersymmetry (18.6), the action (18.5) is also invariant
under general coordinate transformations (diffeomorphisms) on the
manifold of the fields

0A"

Al AT, Yyt

12l (18.7)
(the ¥'s transform as a contravariant vector).

We now ask under what circumstances does the action (18.5) admit
further supersymmetries beyond (18.6). To answer this question we write
down the most general form of such extra supersymmetries again in
component form.

0A' = (fa)ijgslpj
5W = i(ha)ijVaAjEB - (SB)ijk(él//j)lpk _(VB)ijk(IEBV”W)'}’M/’k (18.8)
- (Pa)ijk(g_ysl//j)}’sll’k-

Here B=1,2,...,N labels the supersymmetry, ¢® is a two-component
Majorana spinor and the symbols fy, hg, Sg, V5 and Py are functions of
the scalar fields A;. For these supersymmetries to commute with diffeomor-
phisms (general coordinate transformations) these symbols (the fs, hs, Ss,
Vs, and Ps) must all transform as tensors of appropriate rank and type
(as indicated by the number of lower case latin indices they carry). For
the action § to be invariant under the supersymmetry of parameter &5 we
must have

B

gik(fB)kj = gjk(hB)kia Vk(fB)ij =0
(fB)imijkl =—- Rimkl(fB)mj (18.9a)
(VB)ijk = (PB)ijk =0 (SB)ijk = rikl(fB)lj
The first two of these equations imply the covariant constancy of (hg);

Vi(hg), =0 (18.9b)
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We now impose the supersymmetry algebra
[07, 0% 1 =26*%(y*P ), (18.10)
on the transformations (18.8), and obtain using (18.9) the further constraints

Gl f DS Y=g (18.11a)

for each A4 (i.e., no summation over A4 is implied in (18.11)), and, using
matrix notation for the fs,

fAfEl+fo;1=25AB' (18-1”’)

One of the supersymmetry generators (18.10), say that for A =1, is the
one we already pointed out in equation (18.6), for which

(f)=9¢'. (18.12)
Considering equation (18.11b) for A # 1, B = 1, we then find, using (18.12)
that

fa=—f1' for A#1 (18.13)
or

(fA)ij{fA)jk = _5ki' (18.14)

Multiplying equation (18.11a) for A #1 by (f,),, and using standard
tensor notation g;;(f )" = (f 4> we then find from (18.14)

(fadij= —(a)si- (18.15)
Finally (18.13) and (18.11b) combine to
[fasf81s =20 45 (18.16)

Now to the meaning of all this algebra. A manifold hospitable to a tensor
(fa) ; obeying (18.14) is said to admit an almost complex structure. For,
such a tensor acting twice in succession on any tangent vector v* will effect
a multiplication of this vector by — 1, just as the imaginary unit i would.
The multiplication of the vector v* by the complex number a + ib, a, be R
is ‘faked’ by

Vis(ad'; + b(f ) )V (18.17)

An almost complex structure obeying (18.11a) is said to be an almost
hermitean structure on the manifold. But by (18.9a) (f,)’; are covariantly
constant almost hermitean structures. A 2n-dimensional manifold with
such a covariantly constant almost hermitean structure is called a Kdhler
manifold: It can be covered by charts into C", with holomorphic transition
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functions. Introducing complex local coordinates z!, . . ., z", the line element
of such a Kdhler manifold is of the form

ds? = g,;dz*dz" (18.18a)

where z° is the complex conjugate of z%, and no terms of the form g,pdz?dz?
or g,dz* ‘dz? appear. The covariant constancy of the almost hermitean
structure translates into

0 0

0 529 =0 (18.18h)

once complex coordinates are introduced. We thus recognize the two-
dimensional version of Zumino’s theorem (Zumino 1979):

m  There exists precisely one supersymmetry beyond the supersymmetry
(18.6) if the manifold of the scalar fields is Kéhler.
Alternatively: a two-dimensional g-model has N = 2 supersymmetry
if the scalar field manifold is Kahler.

It is readily checked that any two-dimensional s-model which admits
N =3 supersymmetry also admits N = 4 supersymmetry, and that in this
case the scalar field manifold must be hyperkdhler, (Calabi 1979), i.e., it
has a quaternionic structure in the tangent space. This quaternionic
structure uses the (f° 1)‘j=5ij of equation (18.6) for the real part, and the
three almost complex structures f,, f5, f, as ‘faking’ the three imaginary
units of quaternions a la (18.17). It is also readily established that there exist
no two-dimensional o-models with N > 4 supersymmetry.

After all this, admittedly pretty, preparation, we now finally reach the
crucial problem, that of establishing the ultraviolet finiteness of the theory
(18.5) if it admits N =4 supersymmetry, i.e., if the manifold of the scalars
is hyperkaéhler. Briefly, the argument goes as follows. Nonsupersymmetric
o-models have been extensively studied (Friedan 1980), and extending
these results to the supersymmetric case one finds that the ultraviolet
counterterms are of the type

= % f d*xd?07T,,(¢)D¢' D’

with the tensor T;; an algebraic expression in terms of the curvature tensor
constructed from the metric g;;(¢) and of the covariant derivatives of this
curvature tensor. The l-loop contribution T{) to T;; is found to have
conformal weight [ — 1, i.e., under the conformal transformation g;;—

A™'g;; with A =constant, T{)—A'"!T{). These counterterms are ‘on-
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shell’, there being also ‘off-shell’ counterterms that vanish upon the use
of the field equations. These off-shell counterterms are of no importance,
as they can always be compensated by field redefinitions.

The effective unrenormalized metric is g;; + T;;. Now g;; is hyperkihler
by assumption, and if N = 4 supersymmetry is to survive (as can be shown
it must; no anomalies) g;; + T;; must also be hyperkihler. All hyperkahler
manifolds are Ricci-flat (Llchnerowwz 1955). Thus both the Ricci tensors
calculated from g;; and from g;; + T;; must vanish. This can be shown to
require T;; to be a zero mode of the Llchnerow1cz laplacian A; . A particular
case of hyperkéihler manifolds are the four-real-dimensional gravitational
ALE-instantons (Gibbons & Hawking 1978, Hitchin 1979) for which all
zero modes of A; are known to have conformal weight — 1. But at />0
loops we saw T{? having conformal weight [ —1> — 1. Thus no ultra-
violet counterterms can arise and these N =4 supersymmetric g-models
in two dimensions are on-shell ultraviolet finite to all orders in perturbation
theory!
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The supercurrent and anomaly
supermultiplets

When the fields that appear in the lagrangian of a classical theory undergo
the transformations dictated by an ordinary Lie algebra, the change of
the action itself, according to the celebrated theorem of Emmy Noether,
can be cast into the form of a space—time integral of the divergence of
some currents. In particular, when the action is invariant under the effect
of the Lie algebra these Noether currents (their number equal to the Lie
algebra’s dimension) are conserved. Not surprisingly, this theorem admits
a straightforward generalization to the case of Lie superalgebras, i.e., to
the supersymmetric case. Along with the vectorial and tensorial Bose
currents, there will exist spinorial Fermi currents in this case (see chapter 1).
In both ordinary and supersymmetric quantum theories, anomalies can
break the classical conservation laws.

We shall discuss here the classical conservation laws and their quantum
demise via anomalies in a supersymmetric theory. As we shall see, the
existence of a supermultiplet containing both the energy-momentum
tensor and the chiral current at the classical level can lead to some para-
doxical results in the quantum theory, unless sufficient care is exercised.

Consider a field theory which classically is both N =1 Poincaré super-
symmetric and conformally invariant, i.., invariant under the full N =1
superconformal algebra su(2,2|1) (see chapter 4).

Now let us look at the conserved currents. As in the non-supersymmetric
case these fall into two classes:

(A) the currents that depend only on the fields and their gradients;
(B) the currents that depend explicitly on the space-time coordinates.

Of the Bose currents, the energy-momentum tensor 6,, and the chiral
current j; are of type (A), whereas the angular momentum-Lorentz boost
tensor M, the dilatation current j,’f and the conformal current K, are
of type (B) (e.g. j? = x"0,,, M ,,, =x,0,, — x,0,,, etc...) Not surprisingly,
of the Fermi supercurrents, the supertranslation current S% (the ‘square
root’ of 8,,) is of type (A4) and the super-conformal current T, (the ‘square

root’ of K,,) is of type (B). The N = 1 Poincaré superalgebra is a subsuper-
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algebra of su(2,2|1) and as such, the just listed su(2,2|1) currents transform
reducibly under the Poincaré superalgebra. In particular, all type (A)
currents form a supermultiplet as noted by Ferrara & Zumino (1975).
Thus the supersymmetric partners of the energy—momentum tensor are
the Poincaré supercurrent (corresponding to supertranslations) and the
chiral current.

Classically all su(2,2|1) currents are obviously conserved for a super-
conformally invariant theory. At the quantum level super-Poincaré
invariance is maintained, whilst the su(2,2{1) invariance is broken by
anomalies. Even without supersymmetry one encounters the a priori
unrelated chiral and conformal (or trace) anomalies. The former breaks
the conservation of the chiral current 8,j* # 0, the latter the conservation
of the dilatation and conformal currents 9, #0 6,K%#0. For the
dilatation current j? = x*6,,, on account of the conservation of 6,, even
at the quantum level, a non-vanishing divergence amounts to a non-
vanishing trace 0 of ,,,. So does the nonconservation of K ,,. Thus, because
of the chiral anomaly, ¢,,j 5# does not vanish, and because of the conformal
anomaly, 6 does not vanish. In the supersymmetric context, j and 6,
belong to the same supermultiplet. One then expects d,j°* and 6 to also
belong to the same supermultiplet, with the Fermi sector being provided
by the divergence J,T"* of the superconformal (not supertranslational!)
current T3. Just as the K, s are expressed in terms of 6,, and of the
coordinates x”, so that 0,K% #0 implies 6 #0, so T,, is expressed in
terms of the supertranslational current §,,, of the coordinates x”, and of
y matrices

T:=(y"x,);5% (19.1)

with the result that 0, T#* # 0 implies an anomaly in the ‘y-trace’ (not the
divergence!) of the supertranslational current (or supercurrent) S%,

(»*S,) #0. (19.2)

This is the superconformal anomaly (Curtright 1977, Abbott, Grisaru &
Schnitzer 1977). So one expects d,j°,0 and y*S% to form a chiral super-
multiplet. The previously independent chiral and trace anomalies are now
connected and further tied to the superconformal anomaly. Breaking of
conformal and chiral invariance always were believed to go hand-in-hand
(Carruthers 1971), and here this really happens. Or does it? The famous
Adler-Bardeen theorem (Adler & Bardeen 1969) states that the chiral
anomaly is strictly a one-loop phenomenon, whereas, on the other hand,
the trace anomaly is proportional to the renormalization group p-function
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and as such acquires contributions from two and more loops. How can
these anomalies possibly have anything to do with each other? This is
the paradox alluded to at the beginning of this section.

Now to the resolution of this paradox. At the classical level all the
su(2,2|1) currents are conserved. At the quantum level the corresponding
operators are only rendered meaningful once one also prescribes a
regularization procedure (Clark, Piguet & Sibold 1978, Grisaru & West
1985). One given classical current can thus generate more than one
renormalized quantum current depending on the regularization procedure.
Thus we expect to find at the quantum level both a chiral current j;,p
obeying the Adler-Bardeen theorem but not related by supersymmetry
to the energy-momentum tensor, and a chiral current jigysy violating
this theorem but representing the supersymmetric partner of 6,,. Classi-
cally, jap is indistinguishable from jlsusy but quantum mechanically
they are represented by different operators.

Let us illustrate all this with a nontrivial example. Consider the N =1
supersymmetric Yang—Mills theory. It is classically conformally invariant
and therefore exhibits superconformal s«(2,2|1) invariance. Just as in
chapter 16, where we dealt with the supersymmetric Maxwell theory, the
supersymmetric Yang—Mills theory contains in the Wess—Zumino gauge
(after the elimination of the auxiliary fields) a massless vector field v} and
a massless Majorana spinor 1. both in the adjoint representation of the
gauge group G(i = 1,...,dimG). The lagrangian is that of Yang—Muiils for
vi, with a minimal coupling of the gauge field to the spinor fields. At the
classical level, the chiral current j; = 1'y,ys A’ is conserved, the energy—
momentum tensor 6,,, is traceless and the supercurrent S obeys y*S, = 0.
The use of a supersymmetric subtraction scheme then defines a quantum
operator jogusy, which will share a supermultiplet with the energy—
momentum tensor. Calculating its divergence one finds (Grisaru &
West 1985)

i 1 ﬂ(g) vpo i i i i
0,J3tsy = — 3 7[%(5" 7 F v Foo)susy — 0,47 y54'] (19.3)

with B(g) the renormalization group f-function of the supersymmetric
Yang—Mills theory under investigation. Here the *FF term is also super-
symmetrically regularized. The bracketed expression on the right-hand
side of equation (19.3) is the G-like component (in the notation (14.9)) of
a chiral superfield whose F-like component is precisely the super-
symmetric Yang—-Mills lagrangian, and indeed —%$(B(g)/g)¥ is what
appears in the trace anomaly. The Fermi spinor component of this same
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superfield then yields the superconformal anomaly. As expected, with a
supersymmetric subtraction scheme we find a chiral superfield that has
the three anomalies as three of its component fields.

But... all this appears to run in the face of the Adler—Bardeen theorem.
This theorem claims the existence of a gauge invariance maintaining ‘AB
subtraction scheme’ which yields a current j3 5 for which

gZ

Qi = {677

Co(G)3(e e F* F*)an (19.4)

with C,(G) the value of the quadratic Casimir operator for the gauge
group G. The one-loop (cubic) term f,(g) of f(g) is given by

3g°

1672

Bi(g) = C,(G) (19.5)

so that

5. j3 = B1(9)

uJAB — 3g

%(guvptrFiquipa)AB (196)

and the Adler-Bardeen anomaly (19.6) differs from the supersymmetric
one on two counts: (i) it does not contain the second term in the bracket
of (19.3) and (ii) it is multiplied by the one-loop f-function f,, rather than
by the full B-function as in (19.3). It is not the superpartner of the trace
and superconformal anomalies. Remarkably there exists a non-
supersymmetric subtraction procedure which produces the Adler—Bardeen
theorem obeying current. Without going into all the details (Grisaru &
West 1985) this subtraction procedure removes the ,4*y°4" piece at
order g2, as required by the Adler—Bardeen theorem, but then at order
g* it produces a new *FF term with coefficient (8,/3g) + 2(8,/39)* (where
B, is the two-loop term in the p-function). The Adler-Bardeen theorem
forbids such an extra * FF term, thus determining 8, in terms of ;. Iterating
this reasoning one determines f; in terms of §, and g, i.e., in terms of #, and
so on. In the end one determines all higher loop terms f, in the f-function
(B, for n > 3 are subtraction scheme dependent!) leading to the closed Jones
formula (Jones 1983) for this function

ﬁ(g)=_B 19 (19.7)

We have thus removed the paradox. The solution is that the same classical
chiral current 1y,y54' has more than one quantum operator counterpart.
There is josysy Whose divergence completes the anomaly supermultiplet
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and j;,p which obeys the Adler-Bardeen theorem. This is all very nice
but it raises a phenomenological question (Curtright 1984). Suppose the
grand unified theory exists and is supersymmetric to start with. Can we
then observe matrix elements of both j},5 and jisysy, or only of one,
and in that case which one? Does the chiral current whose anomaly
accounts for the decay n°—2y necessarily obey the Adler-Bardeen
theorem as is always assumed, without reference to an underlying super-
symmetric gauge theory?

The arguments presented in this section have one further interesting
application. The validity of the Adler-Bardeen theorem allowed us to
calculate the full f-function from its one-loop expression. One can repeat
this argument for extended N > 2 supersymmetric Yang—Mills theories
coupled to matter with the result

B(g) = B.(9) (19.8)

instead of the Jones formula (19.7). In N = 2 gauge theories, N = 2 matter
supermultiplets can be introduced in a variety of ways which will rig up
the vanishing of f,(g) and therefore, by (19.8), of B(g). In particular, the
N = 4 supersymmetric Yang—Mills theories, which can of course be viewed
as N = 2 theories with N = 2 matter-supermultiplets completing the N = 4
particle contents, such a rigging of f,(g) is known to occur. But there are
many more such theories (Howe, Stelle & West 1983). If we accept the
Adler—Bardeen theorem, we then possess a proof of the vanishing of the
B-function in all these theories. Power counting arguments (West 1983,
Grisaru & Siegel 1982, Howe, Stelle & Townsend 1984) show that the
only divergences in theories with N > 2 are those that lead to B,(g) #0.
This rigging of ,(g) =0 in all these theories then implies that they all are
ultraviolet finite quantum field theories.

On the other hand, one disposes of direct proofs of the finiteness of
these theories which do not assume the validity of the Adler-Bardeen
theorem. As we already mentioned in chapter 18, it has been speculated
that there may even exist finite N = 1 supersymmetric theories.

Part III
Supergravities: locally supersymmetric theories



20

The problem of gauging supersymmetry

The fundamental symmetries exhibited by the laws of nature are local
rather than global, i.e. they are gauged. This is certainly true, say, of
SU(3)co1or @and [SU(2) X U(1)Jerectroweax- 1f the laws of nature turn out to
exhibit some form of supersymmetry, it is then natural to ask whether
supersymmetry can also be gauged. As we saw, all (N=1 and N> 1)
supersymmetries in four dimensions contain the Poincaré (or de-Sitter)
algebra as a subalgebra. Gauging supersymmetry thus implies gauging
the Poincaré or de-Sitter algebras. But such a gauge theory of the Poincaré
or de-Sitter algebras is the Einstein theory of gravity (Kibble 1961). When
gauging supersymmetry, gravity then must be included. This gives us an
idea about the gauge fields to be expected when supersymmetry is gauged.
Gravity is described by a massless spin two boson. Then at the very least,
for local N = 1 supersymmetry we expect this spin two graviton to acquire
a supersymmetric partner. Purely on representation—theoretic grounds
(see chapter 5) this partner must be a massless fermion of spin three-halves
or five-halves. The supersymmetry charges Q, span a (spin one-half)
Majorana spinor. The corresponding gauge field having one vector index
beyond that of the charges, will describe spin three-halves, not five-halves.
So the N = 1 supergravity multiplet contains one massless spin two boson,
the graviton, and one Majorana spin three-halves fermion (Volkov &
Akulov 1973) the gravitino. Theories involving interacting spin three-halves
fields are notorious in that they lead to all kinds of inconsistencies including
acausal propagation at the classical level (Velo & Zwanziger 1969). It is
remarkable that local supersymmetry removes these problems, as we shall
see in chapter 21. The problem is now to construct a super-symmetrization
of the Einstein—Hilbert lagrangian and to couple the resulting supergravity
theory to N =1 supersymmetric matter.

The Einstein—Hilbert action has an elegant, simple and well-known
interpretation in the context of Riemannian geometry. One’s first impulse
in constructing the supergravity lagrangian would then lead to a super-
Riemannian formulation (Arnowitt & Nath 1976). Alas, its mathematical
appeal notwithstanding, such a formulation is of no physical interest. To
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understand why this is so, we need but recall that in a small enough
neighborhood of the world manifold, or more precisely in the tangent
space at any point of this world manifold, we have an SO(3,1) invariant
Minkowski metric and the laws of special relativity apply. In the N =1
supersymmetric context we deal with a (4,4)-supermanifold and the
straightforward extension of the Riemannian idea is to require that in the
tangent space an OSp(4|4) metric prevails. Thus locally the laws are OSp(4|4)
invariant. But we only expect OSp(1/4) (more precisely its Poincaré con-
traction) to be operative as in the flat superspace of global supersymmetry
(for N > 1, again, one gets OSp(4|4N) instead of OSp(N|4)). Were one to
go ahead anyway, this discrepancy would come to take its revenge, in
that the supersymmetrized Hilbert-Einstein action would allow a flat,
torsion-free OSp(4/4) invariant ‘vacuum’-solution, but would admit no
Poincaré or de-Sitter supersymmetric vacuum. The superspace of global
supersymmetry is not a solution of the super-Riemannian field equations.

Another way of seeing the same thing is to recall that ordinary
Minkowski space is flat, and in addition to being Riemannian, is also
torsionless. By contrast, on account of the expression for the [D,,D,]
bracket of equation (14.4), the flat superspace of global supersymmetry is
not torsionless, as required by super-Riemannian geometry (nor can this
torsion be eliminated in the standard way).

Thus, constructing supergravity in a supermanifold formalism is not a
straightforward geometric task. To be sure, such a construction is possible,
but in its present form sufficiently complicated to foster the belief that the
final word on superspace—supergravity has not yet been spoken. The
Christoffel zero-torsion constraints, are replaced by a set of torsion con-
straints, of a much less intuitive nature (Wess & Zumino 1977). The major
open problem is to understand these constraints in a simple geometric
and/or physical way. Given this situation, I will not present superspace—
supergravity here. Existing monographs (Wess & Bagger 1983, Gates,
Grisaru, Rocek & Siegel 1983, van Nieuwenhuizen 1981) cover this topic
anyway. Rather, I will use a component approach in which supersymmetry
is not manifest and has to be checked at each step. Yet such a component
formalism can be given a rather elegant form in four space—time dimensions
in the unextended N =1 case. The N =1 supergravity action was first
constructed using a component form using a so-called second order
formalism (Freedman, van Nieuwenhuizen & Ferrara 1976) and then
treated in an elegant first order formalism (Deser & Zumino 1976). We
shall follow a variant (MacDowell & Mansouri 1977, Chamseddine & West
1977) that for N = 1 most closely parallels the nonsupersymmetric (‘N = 0’)
Einstein case.

21

Einstein gravity as a gauge theory

We present here a construction (MacDowell & Mansouri 1977) of ordinary
(‘N =0’) Einstein gravity with or without a cosmological term in four-
dimensional space—time, to set the stage for an entirely parallel construc-
tion for the N = 1 supersymmetric case. This construction has the added
advantage of revealing certain assumptions implied in Einstein’s theory,
and the possibilities connected with their relaxation.

Viewed as a gauge theory, Einstein’s theory is ubiquitous. Whether
the gauge group be the Poincaré or the de-Sitter group, we expect a set
of gauge fields w%’ for the Lorentz group and a further set e, for the
translations, or the P, transformations of the de-Sitter group. Everybody
knows though, that Einstein’s theory contains but one spin two field,
originally chosen by Einstein as g,, = e5ebn,, (1., = Minkowski metric).
What happened to the w%? The field equations obtained from the Hilbert—
Einstein action by varying the % are algebraic in the w% and obviously
are in the right number to make a solution possible, thus permitting us
to express the % in terms of the e%s. The w}’® do not propagate, they
are ‘composite’ fields. We shall see all this happening but mention it at
this early stage to allay all uneasiness on the reader’s part.

We start from the four-dimensional de-Sitter algebra sp(4) =so(3,2).
Technically, this is the anti-de-Sitter algebra, as opposed to the alternative
so(4, 1) de-Sitter algebra, but only so(3,2) can be supersymmetrized as noted
in chapter 4, so we stick to it. Let G, A = 1,..., 10, be a basis of sp(4), thus
defining the structure constants f 5 via

[G4,Gs]l=f %sGc. 2L

We envision space—time as a four-dimensional manifold M. At each point
of M we have a copy of SO(3,2) (a fibre, in fibre-bundle terminology) and
we introduce the gauge potentials (the connection) hi(x), A=1,...,10,
u=1,...,4. Here x are local coordinates on M. From these potentials h}
we calculate the field-strengths (curvature components)

RA, =0,h? —d,h + fgchihS. (21.2)
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Under an infinitesimal local (x-dependent) sp(4) transformation ¢4(x)G,
the connection transforms as

O.hf =D, &' =0,6" + ffchBe€ (21.3)
whereas the curvatures transform homogeneously
0.R%, =f13c€8RE,. (21.4)

The algebraic Jacobi identity entails the so-called Bianchi identities
D,R},+ D,R},+D,R{,=0. (21.5)

We now wish to write down the action S as an integral over the four-
manifold M, which should be invariant under general coordinate trans-
formations on M. We further require the action to depend on the Rs
only, and not on a possible Riemannian metric on M. Given that the

curvatures Ry, are the components of a two-form R4, this means

S(Q)= J R4 ARRQ 4 (21.6q)
M

where Q5 are constants, yet to be chosen. In ordinary tensor notation,
without any reference to differential forms, the ansatz (21.6a) amounts to
requiring the integrand of S to be quadratic in the curvature components

5(Q)= Jd“xe‘”""ﬁtv R%,0 45 (21.6b)

We reemphasize that this action is independent of any specific metric 9uv
on M. Indeed, general covariance dictates the combinations d*x(|g|)!/?

(g =detg,,) and &***?/(]g|)"/* so that in the end, the g,,-dependence via
(Igh*'? cancels.

For later use we record here the response of the action to variations of
the connection components k. First, when the potentials undergo the
local infinitesimal sp(4) transformations (21.3), we see from (21.4) that the
variation of the action is

4,5(Q)= fd“xs‘”""ZsCféDRva",’,,QAB. (21.7)

Under general variations 6k, of the connection coefficients we find

08(Q)= f d*xohi[4h7RC(f 5cQap —f25Qnc)e"™° ] (21.8)

We are now in a position to make a meaningful choice of the, so far
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arbitrary, coefficients Q .z which determine the action S(Q). The equation
(21.8) has an important consequence concerning this choice. A ‘natural’
choice for the numerical coefficients Q ,; would seem to be the Killing
metric

Q48=0Gusp =f2cfgv (21.9)
of the de-Sitter algebra. But, this being a simple algebra, we have
fgCGDA _ngGDC =0 (21.10)

so that by (21.8) the variation of the action S(g) vanishes automatically.
The lagrangian is then an exact divergence; the action a topological
invariant, a surface term. Less trivial choices for Q ,5 are therefore needed.
To effect them we require

(i) the invariance of S(Q) under local Lorentz transformations, i.e. under
transformations of type (21.3), (21.7) with ¢ restricted to the SO(3,1)
Lorentz subgroup of SO(3,2);

(ii) the invariance of S(Q) under space inversions.

According to requirement (1) the Q zs must be constructed only from
invariant tensors of the Lorentz group. To see what this means in detail
let us introduce the following notation. The capital indices A, B have been
assumed ten-valued. Let us achieve this ten-valuedness of say A, by the
juxtaposition of a four-valued index a(a=0,1,2,3) and of a six-valued
antisymmetric pair [a’a"] of four-valued indices @’,a”

A=1,2,...,10=(@=0,1,2,3)®([d'a"]
=[01],[02],[03],[12],[13],[23]). (21.11)

Then the most general Lorentz invariant form of Q42 is

®E€aapy fOT A=T[aa"],B=[bb"]
Qup=<Pnsp ford=a,B=>b (21.12)
0 otherwise

with a,  two real parameters. In view of the appearance of £***° in (21.6b),
the requirement (2) of space inversion invariance fixes

=0 (21.13)
in the expression (21.12). We will therefore concentrate on

o _ fEaasy for A=[aa’l, B=[bb]

= 21.14
4B {O otherwise ( )

where, without any loss of generality we have set a = 1.
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One may wonder now whether, with the choice (21.14), the action
becomes invariant under all local de-Sitter transformations, not just the
Lorentz transformations, directly imposed in (21.14). Actually this is the
case as we shall see below.

We now write out the action S(Q®)

S(Q®) = fd4x8quagabcdRyf1R§:1. (21.15)

Here we used the notation (21.11). The curvatures RI%! calculated
according to (21.2) with the full de-Sitter sp(4) structure constants {5,
ae not the same as the usual curvatures, R{fv’”, encountered in Einstein’s
theory. These RIZs are calculated with the Lorentz structure constants,
not the de-Sitter ones. Given that the sp(4) structure constants f g,
automatically vanish (in the notation of chapter 4, [M, P] ~ P, equation
(4.1)), it then follows that

RE =Ry, + hghl £l (21.16)

where, to conform to standard notation we have dropped the anti-
symmetrizing bracket on the usual (Lorentz) curvature RS, = R
Following a rescaling of the type (4.2), we can express

S = — 4335265 — 626%). (21.17)
Inserting (21.16) and (21.17) into (21.15) we find

S(Q¥ = fd“xe‘””"aabcdR“b R — 1642 Jd4x£””””sabcdR“b he hd

uv w'p

+ 6414 fd‘xa““””e,,,,c,,h;‘,h’v’h;h‘f’,. (21.18)
We notice that the first term on the right-hand side, now with ordinary
Lorentz curvatures, is precisely the topological Euler invariant (related to
the number of ‘handles’ of the manifold M). It is a surface term, its variation
vanishes identically and it can be discarded at the classical level. This is
interesting, since we know the Hilbert—Einstein lagrangian to be linear
in curvatures. Yet our starting point (21.15) was quadratic in de-Sitter
curvatures (Rs), therefore in Lorentz curvatures (Rs). Fortunately the
quadratic term, as we just found, is an exact divergence and what survives
are the linear ‘crossed’ terms ~ 42 and the Lorentz curvature independent
terms ~ A*. We now proceed to carry out the algebra in (21.18). To this
end we make the following notational changes. We relabel hj = e and

21 Einstein gravity as a gauge theory 103

hi#) = % so that with (21.2), (21.16) and
f{ﬁ{]][cd] = 4[15:050] — 1ac050] + M2a0507 — 1405011 — e=f (21.19)
we find the usual expressions
R% =0,0% — 0,0 + (0% 0¥ — 0¥ 0N, (21.20)

e, being the usual vierbein and % the spin connection (Ricci rotation
coefficients). We further assume (here for the first time!) that the vierbein
has an inverse e* defined by

ele? =064 eheh=0b. (21.21)
Then
"% 00 = €Eluerelel, e =det(ey), (21.22)

so that equations (21.21), (21.22) inserted into equation (21.18), yield, after
a rescaling of the action

1

1
= 8§(0¥)= — —— | d*xe(R + 2A). 21.23
SHE 10247:G/IZS(Q ) jd xe(R +2A) ( a)

16nG
Here

R=R%eke;,

v-a 21.23b
A= —1222 } ( )

G = Newton’s gravitational constant, and 1 imaginary (real) corresponds
to the de-Sitter (anti-de-Sitter) case.

From equations (21.20), (21.23) we recognize Sy as the familiar Hilbert—
Einstein action with cosmological term in vierbein notation (with the
metric g,, = e%ebn,,, where n,, is the Minkowski tensor, one can also
write e = /( — g) where g = det(g,,)). The de-Sitter - Poincaré contraction
described in chapter 4 corresponds to 41— 0, so that in the Poincaré limit
the scalar curvature density term is all that survives, the cosmological
term vanishes. The field equations are most readily come by, using equation
(21.8). Variation of the vierbein leads to the Einstein equations with
cosmological term. Variation of the spin-connection w% (= h) in turn
produces the field equations

R:,=0. (21.24)
Using equations (21.2) and the structure constant expressions
S be =f[abc][de] =0, f:[cd] = _ffcd]b = %(nbcés — 5a0¢); (21.25)
we then recast equation (21.13) (in the €%, w2’ notation) in the form

Ri, =T: =D,et—D,ei=0, D,ei=0,e%—wiein, (21.26)
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These equations, algebraic in @@ can be solved for w® and yield the
torsionless Christoffel connection

wP=—(c—cp,—ch)

(21.27)
¢, =0,e% — 0,5, i = el efieln . e, etc. . }

as mentioned at the beginning of this section. We can use equations (21.27)
to go to the second order formalism involving only the ¢ fields. Consider
this substitution performed, and let us see now the effect on the action of
an sp(4) transformation £%x) which is not a Lorentz transformation. From
equation (21.7), using the form (21.14) of Q ,5 and the structure constants
(21.25) we find the variation of the action to be proportional to Rs (i.e.,
the torsion components) which now vanish. So at this level full sp(4)
invariance has been checked.

This construction of the Hilbert—Einstein action highlights one aspect
of gravity theory usually left unmentioned. Were it not for the assumed
space-inversion invariance (assumption (ii)) we need not have set f=0in
the ansatz (21.12) and we could have had a parity violating gravity. This
would have entailed solutions of the gravitational field equations without
definite space-inversion properties. On the other hand, such solutions are
possible even for f§=0. For instance the most general Lorentz invariant
ansatz for ¢ and wf’ is

a4 _ 2\ 54 2 4
€)= c(x?)04 + d(x*)x,x } (21.28q)

o = f(x?)(x*8} — xb62) + g(x?)e® , x*
with x2 = (x')* + (x2)? + (x*)* — (x°)?, x, =1,,x". Even with B =0 we can

find solutions with both f and g nonvanishing. The simplest such solution

o(x?) = C/(x*)'2,d(x*) = — C/x*/(x?), f(x?) = F/x?,g(x?) = G/x?,
(21.28b)

with C, F, G constants, has the added features of a singularity at x2 =0
and of a metric

. C? X, X,
g”v = e“eenab = x—2 <"uv —_ ;2 ) (21286’)
(x,=n,,x" as above), which is not invertible: g** does not exist. Unlike
in Einstein’s theory, starting from the action (21.15) does not require the
Riemannian invertibility of the metric. In all these senses (21.15) is wider
in scope than the ordinary Hilbert-Einstein formulation. Incidentally the
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solution (21.28) has torsion

2CG x?

TS, = — 75",”‘,(;2)1—/2 (21.284)
produced by an interference between parity violating and parity conserving
amplitudes. Parity violation and torsion go hand-in-hand. Independently
of any more realistic parity violating solution of the gravity equations this
raises the cosmological question whether the universe as a whole is in a
space-inversion symmetric configuration.

We have discussed these matters chiefly in order to stress the differences
between the Hilbert—FEinstein action and the action (21.15). In the next
chapter we have an easy job repeating in a supersymmetric context the steps
that led us to the action (21.15).
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N =1 Supergravity

To extend the construction given in the last section to the supersymmetric
case (MacDowell & Mansouri 1977, Chamseddine & West 1977), we start
from the anti-de-Sitter super-algebra o4 4(1]4) instead of the anti-de-Sitter
algebra 54(4) (= 2494(0]4)). The index A can now take four Majorana—
Fermi values a =1, 2, 3, 4 in addition to the ten Bose values (21.11):

A=(a=0,1,2,3)®([aa]=[01],[02],[03],[12],[13],[23])
@(=1,2,3,4). (22.1)
We again define the structure constants, through the graded brackets of the
superalgebra generators
[G4, Ggl =fCABGC- (22.2)

Subject to the Lorentz and space-inversion invariance constraints (i) and (ii)
of the last section we now find

Ean'bb’ for A =[aa’], B=[bb]
0% ()= { (Cys)yy for A=o, B=§ (22.3)
0 otherwise

where, as in chapter 20, we set the parameter « multiplying &, equal to
one, and  is a numerical parameter. The o4 (1 |4) curvatures Rf, are now
related to the super-Poincaré curvatures by

Rt = R+ Wi ) + h’h”f“’”’ (22.40)
R, =R:, + (h‘;h€ W) f
Re, =R, + hehb g,

Here R% are the ordinary (Lorentz) curvatures given by equation (21.20),
thc torsions of equation (21.26) and the new Fermi curvatures are

R, = 0,1 — 0,h% + f &y, (WP — HOPTH2). (22.4b)
The ansatz (22.3) then yields

S(Q°%¥ () = J d*xe? P (R R eabea + XRGWRE(CYs)eg).  (22.5)
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Inserting here the expressions (22.4), we find

SO = f d*(T+K + C + E), (22.60)
with
T= """ [eaed RIVRGG + 2RIKSHS f157) + YR2,RE,(Cy5),5]
(22.6b)
K = 7% 26, aREHSHS f18 + 4y R2 HERE £5 (Cs)sp) (22.6¢)
C= Suvpa(gabcdha'hb’hc hd f[ﬂb]f[Cd] + 2£abcdhz he h;hﬂf[ab]flcd]
+ AYhTRERS £2 £84(Cps)ag) (22.6d)
E = "%, ht K hy X f[ab] f[c‘;n. (22.6¢)

Besides the old structure constants (21.17), (21.19), (21.25) of the anti-de-
Sitter algebra, with A real, the extra structure constants of the corres-
ponding superalgebra appear here. In a basis, chosen to agree with the
notations of Deser & Zumino (1976), they are

1191 =2i4(Co®),,

faﬂ = fl(cya)aﬂ
Flp= M), (22.7a)

f{ab]ﬂ = _%(O-ab)yﬁ'
Making use of the identity

eabcafS 55 = 814 f L1 C5),, (22.7b)

one readily checks that the last two terms in the expression for T (equation
(22.6b)) assemble into an exact divergence for the special value

x =814 (22.8)

of the parameter y (the terms quadratic in derivatives of the Fermi fields
are, by themselves, already an exact divergence; the terms linear in deri-
vatives of the Fermi fields from the expansion of the last term in T, along
with those linear in derivatives of the spin connection A from the
expansion of the second term in T, add up to an exact divergence once
(22.8) is imposed; the nonderivative terms originating from the last two
terms in T cancel). In particular this remarkable set of cancellations allows
the Fermi fields to obey first order field equations. The first term in T is
an exact divergence (the Euler number density) as already noticed in
chapter 21. Thus, all of T is an exact divergence, which contributes a
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topological surface term to the action. Without any further ado then, T
can be ignored.

The terms K and C are the supersymmetrizations of the Hilbert-Einstein
lagrangian and of the cosmological term respectively, whereas the term E
vanishes identically.

With the conventional notations (G = Newton’s gravitational constant)

he = et hab) = o, bt = (8G)' Y2 (22.9)

uo

the OSp(1|4) supergravity action can be written, up to surface terms,
in the form (Deser & Zumino 1976)

Ssg(4) = S(Q5™Y (x = 8id))

10247GA?
= Ss6(4 = 0) — Ssusy cosmological (22.10a)

where

1 . -
SSG = SSG(Il = 0) = J‘d“’x( - 167'EG eR - %leuvpal//MVSvapwd)

D“ —_ a“ — %wzbaab Oup = %[?m yb] - (2210b)
[Du, Dv] = - %Rz’;o’ab
R=R%ele;, e=det(el),

the R are given as before by the equation (21.20),

v

1 o
SSUSY cosmological — Jd4x< — 87[—G Ae — %lms“ 4 l//uys()'vp(//a> (2210C)
and as before

(22.10d)

A=—1222,
m=2i=(—A/3)?

with 4 real, corresponding to the anti-de-Sitter algebra s 4(4).

Upon anti-de-Sitter —» Poincaré contraction (4—0), the supersym-
metrized cosmological term, equation (22.10c) (Das & Freedman 1977,
Townsend 1977, MacDowell & Mansouri 1977) drops out and one recovers
the action (22.10b) of Poincaré supergravity, the supersymmetrized
Einstein action, in close similarity to what happened in the nonsuper-
symmetric case of chapter 21.

We now proceed to a more detailed discussion of the A—0 Poincare
supergravity and will return to the cosmological term at the end of this
chapter. For the discussion at hand, we consider the action S5 of equation
(22.10b). It is convenient at this point to adopt units such that 8zG = 1.
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The field equations corresponding to variations of the vierbein e; are then

G* =3ie"**y,y "D Y, (22.11q)
where

G* = e}(R} —1elR) (22.11b)
and

Rva = Rv).a;' (221 IC)

ii the (nonsymmetric) Ricci tensor. Recalling the expression for the torsion
R}, (equation (21.26))

Ri,=Ti =D,ei— Dt D=0, — e, (22.11d)
the field equations obtained by varying the spin-connection w?’ take the
form

Tj, = Tiel = 3i,0%), (22.11¢)
and finally the field equations for the spin-vector Rarita—Schwinger
gravitino field y are

eE* =¢*(y,D,— 5y, T W,=0. (22.111)

Throughout these equations

W=ew. V= eyn® (22.11g)
with y, the ordinary Dirac matrices. The supersymmetry transformations
o€, =iy,
oY, =2D (22.120)
dwi = B — 3¢5 B + 5e4BY
where
B = i&y57aD 6"
b o b'/:" . . (22.12b)
BY = Brregele; B = elB
and ¢(x) is the local Majorana-spinor ‘Fermi parameter’, leave the action
(22.10b) invariant. The transformations (22.12) close on the mass-shell but
not off it; auxiliary fields have not yet been included.

The novel and surprising feature of all this is that we encounter a natural
interacting Rarita—Schwinger field. But as a rule such interacting Rarita—
Schwinger fields cause all kinds of problems. What happens is that by
taking the covariant divergence of the Rarita—Schwinger equation (22.11f)
one obtains in general a new independent constraint,

D,(eE*) =0 (22.13)
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which when imposed on the theory causes inconsistencies and acausal
propagation (Velo & Zwanziger 1969).

In supergravity, equation (22.13) is not an independent constraint, rather
it follows from the field equations and local supersymmetry, as we now
show. Consider for this purpose a general variation of the action (22.10b)

oS, . . OS w . OS.
885G = J d4x< 5:; de’ + 5;:; S +5 df: 54/#). (22.14)
If, now, the variations of the fields are of the local supersymmetry type
(22.12), then the last term in (22.14) becomes

2 J.d“x(D JE)eE* (22.15)

where we used the fact that E* is precisely 6Ssg/0¥,. A partial integration
then recasts (22.15) in the form

—2 f d*xD,(eE¥). (22.16)

If we now impose the ¢% and w?’ field equations then the first two terms in
(22.14) are automatically zero, so that with (22.16), (22.14) becomes

J d*xéD,(eE*) = 0. (22.17)

The parameter &(x) being arbitrary, this means
D, (eE*)=0 (22.18)

which is precisely the potentially troublesome constraint (22.13). So, this
constraint follows from local supersymmetry and the bosonic field
equations, and as such can cause no new problems. Had we placed the
Rarita—Schwinger field in a massless (3, 1) supermultiplet involving one
spin 3 and one spin 1 field, (the existence of such a supermultiplet was
proved in chapter 5), no local supersymmetry would have been available
(without spin 2 the Poincaré part remains ungauged) and the constraint
(22.13) would not have been defused. It is for this reason that such (3, 1)
supermultiplets are never taken into consideration. Even letting them
supergravitate would only defuse the type (22.17) gravitino constraints,
not those of these additional spin 3 fields in (3, 1) supermultiplets, unless
further N > 1 local supersymmetries were to be enforced.

At this point it is worthwhile considering in some more detail the
supersymmetrized cosmological term of equation (22.10c) which we
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contracted away (4 —0). The first term in Ssysy cosmoiogicat 15 Of cOurse just
the ordinary cosmological term, whereas the second term looks like a
gravitino mass term. This seems paradoxical since the gravitino is in the
same supermultiplet with the massless graviton. The paradox is lifted
(Deser & Zumino 1977) when we realize that with a nonvanishing cosmo-
logical constant we have to quantize in an anti-de-Sitter rather than a
Minkowski background, and that in such a background ‘masslessness’ is
a subtle concept. It can be defined for nonvanishing spin, by requiring an
appropriate gauge invariance that reduces the number of degrees of
freedom to two. As a matter of fact, the local supersymmetry trans-
formations which leave invariant the full action (22.10a) with 1 # 0, differ
from those given in equation (22.12a) in that the gravitino field transforms
as

8Y% = 2D, +imy,)e. (22.19)

This insures the proper gravitino ‘masslessness’ in an anti-de-Sitter back-
ground.

Having abandoned superspace two chapters ago, we have also forfeited
our rights to a clear and immediate picture of off-shell local super-
symmetry with the de rigueur auxiliary fields. Off-shell, all 16 components
of the Rarita—Schwinger field must be matched. The vierbein can always
have 6 of its 16 components removed by a local Lorentz transformation,
leaving an imbalance of at least 6 Bose fields. This can be remedied in a
‘minimal’ way by introducing an axial vector field (four components) and
two scalars (two components) (Ferrara & van Nieuwenhuizen 1978, Stelle
& West 1978). However this is not unique and there exist further possible
sets of auxiliary fields (Breitenlohner 1977, Siegel 1979, Sohnius & West
1981). The coupling of this supergravity multiplet to matter and gauge
supermultiplets (Cremmer et al., 1979, Cremmer, Ferrara, Girardello &
van Proeyen 1983, Bagger & Witten 1983) is of importance in the
phenomenology of supersymmetric grand unification (Overt & Wess 1982,
Nilles 1984).
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Extended supergravities

From table 5.1 it can be seen that in the case of extended supersymmetry
of type N, a supermultiplet must contain states of helicity A such that
|h| > N/4. This means that for N >2 we have no supermultiplets with
scalars and spin one-half fermions only; for N > 4 we must exceed helicity
one, (thus no Yang—Mills supermultiplets for N > 4) and as of N > 9 states
of helicity larger than two make an appearance (the critical values N = 2,
4, 8 correspond to the CPT self-conjugate cases mentioned in chapter 5).
There are strong reasons to believe (though really no proof as yet) that
nontrivial interacting theories containing fields of spin five-halves and
higher in the lagrangian are inconsistent (Aragone & Deser 1979, Curtright
1979 Berends, van Holten, de Wit & van Nicuwenhuizen 1980). Hence one
is limited to supergravities with N <8.

The ‘natural’ N = 1 supergravity in four space—time dimensions has just
been presented. Here we ask for the extended supergravities (N > 1). The
corresponding lagrangians can be constructed. We shall not do so here,
but will content ourselves with a few remarks on these lagrangians and
on the phenomenology of the N =8 theory. First of all, the elegant
construction (MacDowell & Mansouri 1977) we presented for the N =1
case, already fails at the N =2 level, as in addition to the types of terms
in the ansatz (22.5) it requires terms explicitly containing the vierbein or
metric (Townsend & van Nieuwenhuizen 1977). Fortunately the additional
type of term is simple and is readily guessed.

An alternative method starts from the Noether current of global super-
symmetry, couples this to the gravitino and then introduces extra generally
covariant terms with arbitrary coefficients which are then determined so
that local supersymmetry is obtained. In a sense this is the supersymmetric
generalization of the methods of Gupta (1954), Thirring (1961), and
Feynman (1963), from ordinary gravity theory.

Another technique first constructs natural (N = 1) supergravities in
space—times of dimensionality d > 4 and then dimensionally reduces them
to d=4. If the small manifold in the extra dimensions is sufficiently
symmetrical, extended supergravities in d = 4 are obtained. We shall see
more on this in the next two chapters. The idea here is that constructing
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natural (i.e., N = 1) supergravities is always simpler. Yet even at this level
it must be admitted that general methods do not exist. Fortunately there
exists a maximal supergravity in d = 11 dimensions from which all four-
dimensional supergravities can be retrieved.

Superspace methods would seem then to be indicated in order to
eliminate all this guesswork. Unfortunately, even for low N these methods
are way too cumbersome to recommend themselves with any degree of
finality. For N > 2 supergravities superspace methods are not available
and reasonable doubts have been entertained concerning the existence of
auxiliary fields for these theories.

We now turn to a brief discussion of the phenomenological possibilities
of extended supergravities. In extended supergravity of type N the largest
internal nonabelian gauge group is O(N), corresponding to a gauged
OSp(N|4). Were we to partially or fully contract, some or all of this gauge
group would be lost in favor of gauged central charges (see chapter 4).
The phenomenologically requisite SU(3).,,,, gauge group will thus be
available inside O(N) only for N > 6. Requiring at least one additional
U(1) symmetry, say for electromagnetism, further pushes N up to 7 or 8.
Since the N =7 and N =8 theories are indistinguishable by the time the
N =17 theory’s spectrum is CPT doubled, we will concentrate exclusively
on the maximal CPT self-conjugate N = 8 theory. There are a number of
variants of this theory. The largest nonabelian gauge symmetry is O(8)
(de Wit & Nicolai 1982) but there are versions with a product of 28 abelian
gauge groups (Cremmer & Julia 1979) or a noncompact nonabelian gauge
group (Hull 1984). We shall consider here the de Wit—Nicolai version
with gauged O(8). An interesting phenomenon (already noted in the
Cremmer-Julia version) is the appearance of a ‘hidden’ gauged SU(8)
symmetry. One may wonder how this is possible, there being only 28
massless vector bosons in the N =8 supergravity multiplet described in
table 5.1 whereas a local SU(8) symmetry would require 63 massless vector
particles. The answer is that the gauging of SU(8) is done nonlinearly
through ‘composite’ combinations of scalar fields. To understand how this
can be, consider the following example (Witten 1979). Let ¢!,....¢" be
N complex scalar fields coupled to the abelian gauge field 4, in a gauge
invariant way as in the lagrangian

L, =0, +ied, )"0, —ied,)p" — $AF, F* (23.1)

where summation over a from 1 to N is implied, F w=0,4,—0,4, and
4 is a parameter usually set equal to 1 in Maxwell theory. The Maxwell
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equation is
— A0"F,, = ie¢™ 8 ¢" + 2e2 A, p"¢". (23.2)

Now let the parameter A go to zero. The A, field becomes nonpropagating
and (23.2) becomes a set of four algebraic equations for 4, with the solution
_ i¢fa5v¢a

A,= bt (23.3)
Inserting (23.3) into &, _, we find a new, still gauge invariant, lagrangian
that does not contain the vector field A, anymore, but which is highly
nonlinear. The gauging is done by the scalar field composite (23.3). This
argument is readily generalized to the nonabelian case, and this is the
way SU(8) is gauged in N =8 supergravity. In the fully contracted
Cremmer—Julia case the 70 scalars of the supergravity multiplet span the
coset space E, ,/SU(8). Here E, , is the maximally noncompact real form
of the Lie group E,, the one whose maximal compact subgroup is SU(8).
The group E, , has dimension 133, SU(8) has dimension 63 so that the
coset space has 70 dimensions as required. In this case E, , is a global
symmetry of the theory. In the de Wit—Nicolai case, in which O(8) is
gauged, the local SU(8) is again present, though not the global E, ,
symmetry. The theory thus has local SO(8) x SU(8) symmetry to start
with, which is then broken to SO(8) by SU(8) gauge fixing. The low energy
gauge group SU3)cor0r X (SUR) x U(1))esectroweax fits inside SU(8) x SO(8),
though certainly not inside SO(8). Anyway, the SO(8) can further be broken
according to the shape of the scalar potential. This potential is fully deter-
mined in the theory and its critical points have been studied (Warner
1984). It has a stable critical point that preserves the full SO(8) symmetry,
a stable critical point where SO(8) breaks down to SU(3) x U(1), one where
it breaks down to G,, two unstable critical points with SO(7) residual
symmetry, one critical point with SO(6) left over (stability unknown), as
well as critical points for which the leftover symmetry cannot fit even
SU(3) (e.g., SO(3) x SO(3)).

In one word, the symmetry breaking situation is complicated, as is the
N =8 theory itself. As we shall see it is much more profitable to start
from a simple higher-dimensional theory, which puts all this complexity
into a neat perspective (chapter 25). Were we to take phenomenologically
seriously the gauged SO(8), we would have to concentrate on its maximal
SU@3) x U(1) x U(1) subgroup and attempt to identify the SU(3) factor
with the color gauge group, one of the U(1) factors with the Maxwell-Weyl
gauge group of electromagnetism, and the other U(1) either with the ‘third’
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component of Glashow’s weak SU(2) or with some yet unknown abelian
gauge group. In either case the charged weak gauge bosons W#, at the very
least, would not fit into SO(8). They would have to be composite,
qualitatively different from the gluon, the photon, and possibly even the Z°.
This is disappointing.

Let us now see what can be said about the fermions (Gell-Mann 1977). Con-
centrating for the time being on the supergravity multiplet from table 5.1,
we notice the presence of an SO(8) 8 of massless spin three-halves gravitini

and of a 56 (Young tableau @) of massless spin one-half fermions. The

interesting branching of the SO(8) octet with respect to SU(3) x U(1) x U 1)
is 8=3+3+1+1 where, for the moment, we suppress the U(1) x u()
attributes and only indicate the SU(3) multiplicities. We then readily find
the branching ruleforthe 56 =1+1+1+1+3+3+3+3+3+3+3+
3+6+8+8+8. Of these 56 ‘spin” one-half states, eight 3+3+1+1)
get absorbed as the helicity + one-half states of massive gravitini, via a
fermionic Higgs phenomenon. Alongside the quark-antiquark-like
triplets, and ‘exotic’ (sextet and octet) quarks, this leaves but two color
singlet leptons, thus frustrating any phenomenology. The electric charges
can be arranged so that the color triplets have the usual fractional charges
and the leptons have integral charges, but as we just saw, that is small
consolation.

If one wants to achieve any amount of realism one has to escape the
constraints of table 5.1. To this end one can reinterpret (Curtright &
Freund 1979) all or part of the supergravity multiplet as preons (Pati &
Salam 1974), some kind of more fundamental building blocks than the
quarks and leptons. Just like for the W+, we could then search also for
the Z° the gluons (?), the Higgs-bosons, quarks and leptons among
composites (bound states) of N = 8 supergravity. The dynamical problem
of finding the bound state spectrum is formidable indeed. Therefore, all
kinds of phenomenological approaches were developed. Cremmer & Julia
(1979) proposed that the originally nonlinearly gauged SU(8) develops
propagating vector gauge bosons in quantum theory. A similar pheno-
menon is known to occur in two-dimensional o-models (Witten 1979).
Centered on this idea’s combinations with supersymmetry, an SU(8)
phenomenology was born (Ellis, Gaillard & Zumino 1980) which we do
not present here in detail. In the context of higher-dimensional theories
similar problems arise, and one is led to reconsider this phenomenology.

It is gratifying that a tinge of realism — inclusion of color, fractional
quark charges, and integral lepton charges — can be perceived at even the
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most naive level. In addition, SU(8) © SU(5)grand unification X SU(3)generation X
U(1) leading naturally (Curtright & Freund 1979) to an SU(3)scneration
which suggests three generations, just as seen until now in experiment.
But all this makes the ultimate absence of a compelling and realistic
spectrum all the more frustrating. There is no question that more work
along these lines, but with a higher-dimensional starting point, is forth-
coming.

24

The hidden assumptions of grand unification
and the matter/force problem

There are some features of N =8 supergravity, shared, as we shall see,
with higher-dimensional supergravities, that make these theories so very
attractive. First of all, there are some assumptions in both ordinary and
supersymmetric grand unification, so well hidden, that it is usually glossed
over that they even are assumptions. Any grand unification starts by
naming the grand unifying compact simple gauge group G(SU(5), SO(10)...).
Now a clever guess concerning G goes a long way, but the list of simple
compact Lie groups is infinite (Cartan 1894), and in theoretical physics a
specific choice of G out of this infinite list ought to be theoretically justified.
In ordinary grand unification no ideas for such a theoretical justification
of the gauge group are ever alluded to. In extended (N = 8) supergravity
we have seen that the choice of G is quite limited: SO(8) x SU(8) or some
subgroup thereof as chosen by the extrema of the potential. Once G is
chosen, the gauge bosons are uniquely specified, but grand unification
again refers to inspired guesses when it comes to the assignment of the
matter (spin one-half fermions + Higgs scalars) to specific G-multiplets.
Again these assignments, modulo all the difficulties mentioned in chapter
23, are theoretically dictated in N = 8 supergravity.

The solution of a third problem lies then close at hand. Einstein (1955)
repeatedly emphasized the conceptual imbalance between the two sides of
his gravitational equations. On the left-hand side sits the Einstein tensor
G, =R,,—1g,,R, a genuinely geometrical construct, whereas on the
right-hand side we find the energy—momentum tensor totally unspecified
by the theory. Its arbitrariness reflects our freedom to postulate all kinds
of gravitating matter. Indeed this problem is a very old one, going back
essentially to Newton. Two physical ‘categories’ are independently
introduced: matter and force. But, a priori, there is no connection between
the various forces, or between the various kinds of matter, let alone between
the various kinds of forces and the various kinds of matter. In quantum
field theory all forms of matter imply the existence of ‘forces’ corresponding
to the exchange of the corresponding matter quanta. But even at this level,
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the exchange of fermions is qualitatively different from the exchange of
bosons. Two ‘objects’ can interact via single boson exchange without
losing their ‘identities’. By contrast, this is not possible via single fermion
exchange. Two fermion exchange forces do not require the loss of identity
of the interacting objects, but such forces are qualitatively different from
single boson exchange forces. The point of view that the fermions (quarks,
leptons,...) are the basic forms of matter out of which more complex
matter forms (baryons, mesons, nuclei...) are ‘built’ has therefore gained
acceptance. Thus at the quantum field theory level the old Newtonian
matter/force dichotomy survived. Forces, now related to Bose fields and
their quanta (photons, gluons, weak bosons, gravitons...), came to be
viewed, by and large, as providing the binding between the fermionic
constituents of matter. Of course these bosonic quanta can themselves
bind into rarer matter forms (glueballs, solitons,...). N = 1 supersymmetry
in four space-time dimensions enforces a certain correlation between
fermions and bosons, but this correlation is insufficient for solving the
matter/force problem. Sure the graviton has its Fermi partner the gravitino,
the gluon the gluino, ..., the quark its Bose partner the squark,.... Yet,
no correlation whatsoever is provided between the gauge force supermulti-
plets (graviton—gravitino, photon—-photino,...) on the one hand, and the
matter supermultiplets (quark—squark, lepton-slepton,...) on the other
hand. The situation in N = 8 supergravity (in four space—time dimensions)
is radically different. There exists but one supermultiplet that does not
run over into helicities >3. This supermultiplet already contains the
graviton. To the extent that we want a unique graviton, we are forced to
start with one such N = 8 supergravity multiplet, to which no further forms
of ‘matter’ or ‘force’ can be added. This N =8 supergravity multiplet
already contains gravity, chromodynamics and the electroweak(?) forces,
all unified at the Planck scale, as well as a fully specified set of spin one-half
(‘matter’) and spin zero (‘Higgs’) fields. All basic forces and all basic forms
of matter now appear in the same supermultiplet. Newton’s dichotomy is
removed, Einstein’s ‘complaint’ is answered. Just as the Einstein tensor
G,, is specified by general covariance and local Lorentz invariance, so the
form of the energy-momentum tensor is picked by local supersymmetry.
The different basic forces together with the different basic forms of matter
form a whole. They are all but different members of the same super-
multiplet, different aspects of the same phenomenon. Just as a Lorentz
transformation can switch electricity and magnetism, so a supersymmetry
transformation can switch force and matter. No previous physical theory
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has exhibited anything like this degree of self-containedness and complete-
ness. It is in view of all this that attempts at constructing a phenomeno-
logically viable (remember all the difficulties of chapter 23) supergravity,
or superstring theory are being intensely pursued at present. This brings
us unambiguously to higher-dimensional theories.
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Higher-dimensional unification

Consider two interesting four-dimensional supersymmetric theories which
we have encountered before: the maximal N =4 Yang—Mills theory,
and the maximal N =8 supergravity theory. Both these theories have
remarkable properties: the N =4 Yang—Mills theory is finite, the N =8
supergravity solves the matter/force problem (it also may have improved
convergence properties). Yet, as is clear from table 5.1 both these theories
have rich particle spectra, and complicated lagrangians describe the mani-
fold interactions of these numerous fields. For N = 8 supergravity we even
recorded the existence of various forms of the theory (Cremmer—Julia, de
Wit-Nicolai, etc...). Somehow this all flies in the face of an unwritten rule
of theoretical physics, namely that important theories be simple, unique
and beautiful. Could it be that the apparent aesthetic flaws of these theories,
are consequences of our way of looking at them, rather than of the theories
themseives? What I have in mind is something like looking at an animal
outside of its natural habitat when it can easily appear clumsy and weird.
Only replacing it on its home ground will reveal its natural grace. What is
the natural habitat of these theories?

Take the N =4 supersymmetric Yang—Mills theory in four space—time
dimensions. Its particle spectrum involves all massless particles in the
adjoint representation of the gauge group G; dim G spin one particles
(each with two transverse degrees of freedom), 6dim G scalars and 4dim G
spin one-half Majorana particles (two degrees of freedom each), a total
of 8dim G Bose degrees of freedom and 8dim G Fermi degrees of freedom.
Now imagine space—time had one time and nine space dimensions. A
vector field would then have ten components, a massless vector field eight
transverse degrees of freedom. The metric signature of this ten-dimensional
space being eight, it admits Majorana—Weyl spinors also with eight degrees
of freedom (see chapter 3). Next we construct the N = 1 supersymmetric
Yang—Mills theory (gauge group G) in ten-dimensional space-time. It
amounts to the Yang—Mills term (~ F?) and to a minimal coupling of
the G-gauge field to the adjoint G-representation Majorana—Weyl spinor,
as simple a lagrangian as could be hoped for. If six of the space dimensions
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were to curl up into a six-torus T°, Minkowski ten-space M, would be
replaced by the product V,, = M, x T®M, = Minkowski four-space). All
fields would be periodic in the six curled up dimensions. They would
correspond to towers of four-dimensional particles of spin one, one-half
and zero and ever increasing mass. The lowest mass in each tower would
be zero (zeroth harmonics), and the mass scale for the higher excitations
would be set by the radii of the six circles whose product is the six-torus.
In a step usually referred to as dimensional reduction let all these six radii
shrink down to zero. V,;, would then lose six of its dimensions and
become ordinary M,. At the same time, all nonvanishing masses would
go to infinity (the mass scales being inversely proportional to the circle
radii), and thus be removed from the physical spectrum. One reaches a
four-dimensional theory with only massless particles. A ten-dimensional
vector field A, (M =0, 1, 2, 3, 5, 6,...,10) appears in M, as a four
dimensional vector field 4,(u =0, 1, 2, 3) and six scalar fields (M =5,...,10),
where we assumed the curled up dimensions to be x°, x5, ..., x'°. Similarly
the eight degrees of freedom of the ten-dimensional spinor reorganize
themselves into four four-dimensional Majorana spinors with two degrees
of freedom each. The spectrum obtained this way is the same as that of
the N =4 supersymmetric Yang-Mills theory in four-dimensions.
Following these reductions of the fields, the simple ten-dimensional
lagrangian itself can be rewritten as a four-dimensional lagrangian and
this turns out to be precisely that of the N = 4 supersymmetric Yang—Mills
theory. The ten-dimensional Lorentz group SO(9, 1) contains the product
SO(3,1) x SO(6) with SO(3,1) the Lorentz group of four-dimensional
Minkowski space, and SO(6) corresponding to rotations in the dimensions
x3,...,x'9 The four-dimensional theory retains this SO(6) ~ SU(4)
invariance and this SU(4) is what enters the N =4 extended conformal
supergroup PSU(4|2,2) of the N = 4 supersymmetric Yang-Mills theory
in four dimensions. It is really remarkable that a quite involved four-
dimensional theory is thus reproduced by dimensionally reducing a ten-
dimensional theory of unusual simplicity. In all this discussion the
ten-dimensional flat space served as a purely mathematical device, which
simplified the four-dimensional theory. Could one however take the higher-
dimensional space seriously and let the size of the — in this example — six-
torus become small without actually going to zero? We are then confronted
with the questions:

(I) what is the ‘true’ dimension of space—time?

(IT) Is there a way of predicting the ‘true’ and the ‘apparent’ dimensions of

space—time?



122 Supergravities: locally supersymmetric theories

This brings us into the field of modern Kaluza—Klein theory (Appelquist,
Chodos & Freund 1985).

Leaving these ‘aesthetic’ considerations aside, the most compelling
reason to consider higher-dimensional theories comes from the need to
construct a consistent quantum theory of gravity. Already in four space-
time dimensions, gravity is nonrenormalizable. The only way to achieve
quantum consistency for gravity then remains the possibility of a finite
quantum theory: infinitely many counterterms may be needed but their
coefficients are calculable and finite (small) rather than arbitrary constants.
Even in the context of extended (all the way to N = 8) supergravity this
does not seem to occur. This had led to an extension of the search to
higher dimensions. Before we go into the details of the most interesting
theories of this type, let us briefly review the general geometric framework
of such a theory.

Basic formalism
I will present the formalism in the simplest give-dimensional case. The
five-dimensional manifold M is assumed of the form M= M, x §! with
M, the ‘ordinary’ four-dimensional universe and S' a small circle.
Neglecting higher harmonics (nonzero-modes) the metric is then of the
form

—_— <g‘,v + 2P ALA, l €K¢A”> (25.1)

expd, | ¢

with M, N=0,1,2,3,5: 4,v=0, 1,2, 3, and the fields g,,,, A,, ¢ depending
only on x* the coordinates on M,. The line element is

ds? = ypndx™ dx" = dsi + P(dy + exA,dx*)? (25.2a)
where we used the notation y = x* and
dsi =g,,dx*dx" (25.2b)
is the line element on M. This ds? admits a gauge invariance
XHB 5 x'H = xKk
y—y =y + exa(x*) (25.3)
A, A,=A4,—d,a

The ordinary gauge transformations of the vector field 4, thus correspond
to four-space-dependent translations on the circle. The gauge group
acquires a five-dimensional geometrical meaning.
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The five-dimensional Einstein—Hilbert action is

— 1 5 1/2
s =~ Tenc. f dx*(1gs)'Rs (254)

where the subscript 5, as in the line element earlier, always indicates that
the corresponding quantities refer to five-space. Inserting here the metric
(25.1) and carrying out the y integration yields

I= j(l DM2(1 )7 ( L R+ £X g, F )
+= | 119s 162G * " 162G *9 9 Twlee
(25.5)

G= ;r—;, gs=det(g,), F,,=0,A,—0,A,
where R, is the scalar curvature calculated from the four-metric g,,,, and
p is the radius of the small circle in the fifth dimension. Were it not for
the scalar field ¢(x) this would be precisely the four-dimensional Einstein—
Maxwell lagrangian. As is, this involves the Jordan—Brans—Dicke (JBD)
modification thereof. The correct sign of the Maxwell piece requires the:
fifth dimension to be space-like, as does causality for that matter (already
in flat space any closed curve in the plane defined by two time-like
directions is everywhere time-like and violates causality.)

The basic set-up (Kaluza 1921, Klein1926) does not change radically
by introducing more than one, say N, extra space-like dimensions curled
up into a small N-manifold My (de Witt 1964, Kerner 1968, Trautman
1970, Cho & Freund 1975). The Maxwell term in (25.5) is then replaced
by a Yang—Milis term (with a nonabelian JBD modification), the gauge
group being determined by the isometries of M. The scalar JBD fields
self-interact as in a 6-model. The correct normalization of the Yang—Mills
piece fixes the length

l=2nk = E4na~ 112G (25.6)

with a = e%/4r the ‘fine structure’ constant of the Yang-Mills interaction
presumably corresponding to some grand unification group, so that
a~1072% G=G,,5/Vy (where Vy is the volume of My) is the four-
dimensional Newton constant of gravity, £ a parameter, £ =1 for a torus
and in general £ > 1 for coset spaces. (Wetterich 1983, Weinberg 1983).
The length [ is readily established as the ‘size’ of the small manifold (e.g.,
circumference for a circle). This size / as given by (25.6) exceeds the Planck
length by 2-3 orders of magnitude thus calling into question the meaning
of grand unification, since by the time the grand unification scale is reached



124 Supergravities: locally supersymmetric theories

space—time may cease to be four-dimensional. It is really remarkable that
coming from the Planck scale via Kaluza-Klein arguments on the one
hand, and from low energy physics via purely four-dimensional renor-
malization group arguments on the other hand, one ends up at the same
scale in both cases. In Kaluza—Klein theories this means that quantum
gravity is to be considered in the higher-dimensional (not the four-
dimensional) context. Furthermore, this leads one to consider ‘Kaluza-
Klein cosmologies’ in which the ‘effective’ number of space dimensions is
time-dependent (Chodos & Detweiler 1980, Freund 1982, Alvarez & Belen
Gavela 1983, Shafi & Wetterich 1983, Sahdev 1984).

In pure higher-dimensional gravity there is no reason for the vacuum
to correspond to a product manifold, let alone to a product with one of
the factors (the Lorentzian one) having dimension four. One could couple
a judicious set of matter fields to the higher-dimensional gravity, in order
to produce a classical solution of the type: four-dimensional Minkowski
space x My, with My a compact manifold, a phenomenon known as
spontaneous compactification (Cremmer & Scherk 1976, Luciani 1978). But
then one has to face the problem as to what determines the nature of the
so postulated matter fields. Remarkably, in the interesting higher-
dimensional supergravity (and superstring) theories, supersymmetry
requires the presence of both Fermi and Bose matter as superpartners of
the higher-dimensional graviton. As we shall see, the Bose superpartners
of the graviton are capable of inducing spontaneous compactification with
the unexpected result of preferentially leaving four dimensions large
(Freund & Rubin 1980). We present the details in the next chapter.

26

Eleven-dimensional supergravity and its
preferential compactification

We saw in the last chapter how an extremely simple theory in ten dimen-
sions reduced to the famous finite (see chapter 18) N =4 Yang—Mills
theory in four dimensions. Just as the N = 4 Yang—Muills theory is maximal,
in the sense of there not existing N > 4 supersymmetric theories with super-
multiplets containing only states of helicity between — 1 and + 1, so the
ten-dimensional supersymmetric Yang—Mills theory is maximal. To see
this, notice that the spectrum of a supersymmetric Yang—Mills theory in
d-dimensions consists of one massless (i.e., transverse) vector, and one
massless spinor both in the adjoint representation of the gauge group.
For a gauge group of dimensionality y we then have d5 = y(d — 2) Bose
degrees of freedom (d — 2 since we subtract both the time-like and longi-
tudinal modes of the vector) and 6, =72!#¥" % Fermi degrees of freedom.
Here [4d] is the largest integer in id (see chapter 3) and ¢, takes the
values zero for Dirac, one for Weyl or Majorana and two for Majorana—
Weyl spinors respectively. The existence of such spinors is specified in
table 3.4. The equality

Og=0p (26.1a)
required by supersymmetry (see chapter 5) thus takes the form
d—2=204"¢ (26.1b)

Reading ¢; from table 5.1 for Lorentzian metric signature, we see that
(26.1) cannot be enforced beyond ten space—time dimensions; for ten-
dimensions one must choose ¢, =2 corresponding to Majorana—Weyl
spinors. What happens is, that d; increases exponentially with d, whereas
& only increases linearly with d and for d > 10 the Bose degrees of freedom
cannot ‘keep pace’ with the Fermi degrees of freedom. Of course there exist
supermultiplets even for d > 10, but they will of necessity include higher
rank tensor and/or spin—tensor fields.

A similar argument can be made for supergravity, for which the maximal
dimension turns out to be d =11 (Nahm 1978). The number of graviton
degrees of freedom J, increases quadratically with d, 8, = 3d(d — 3), corres-
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ponding to a symmetric, transverse traceless tensor of rank two. By contrast
the spin-vector gravitino (transverse and obeying yy4, = 0) has Oy, =
(d — 3)2B391 7% degrees of freedom. In eleven dimensions ¢, = 1, as there
exist Majorana spinors, so that 6, =8(2)°"!'=128, whereas §,=
3(11 x 8) = 44 and there arises a mismatch. The cure calls for a transverse

antisymmetric tensor field of rank three with (d ; 2) degrees of freedom,

which in d = 11 yields precisely the 84 additional degrees of freedom to
make supersymmetry possible: 44 + 84 = 128, and J, = ; as required by
(26.1a). That this is the right assignment — as opposed, say, to introducing
84 scalars — can be checked either from superalgebra representation theory
(Nahm 1978) or by explicitly constructing a supersymmetric lagrangian
(Cremmer, Julia & Scherk 1978). As we said, this eleven-dimensional super-
gravity is maximal for Lorentzian metric signature. For two time and
(d — 2) space dimensions there are Majorana—Weyl spinors for d = 12 (see
table 3.4) and there may also exist a supergravity, though its interpretation
would be quite obscure, anyway at present.

Continuing with the eleven-dimensional theory, we proceed to write
down its lagrangian (Cremmer, Julia, & Scherk 1978) in component form:

311=$B+$F (26.2a)
PLp= —1eR —LseF yprFM PR
2
+_3\4/'5_68M‘"'M"FMI"'M4FM5~~.M5AM9...M“ (262b)

— 2 -
Lr=~e[3Yn™" Dy + %(V’MFMNPQRS'/’N

+ 12§ T2RYS)F pors]- (26.2¢)

Here e}, and "} are the elfbein and eleven-dimensional spin connection
respectively, e = det e}, 4,,,, is theantisymmetrictensor field required by
super-symmetry, ¢, the gravitino field,

FMNPR = 246[MANPR] }

TMN--P — yIMyN--.5P1 (i particular '™ = yM),

26.2d
Moy (26.2d)

the square bracket indicates the antisymmetrized sum over all permut-
ations of bracketed indices, divided by the number of these permutations;
y™ are the real eleven-dimensional Majorana y-matrices, and

Dypg = Oy — %w;\‘IBaAB'I’M}

—1
648 =130 4p-

(26.2¢)
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We have omitted the four-Fermi terms. They can be included by appro-
priately ‘supercovariantizing’ the spin connection and the antisymmetric
tensor field strengths (Cremmer, Julia & Scherk 1978). Our notations differ
from those of this reference in our use of the — + + -+ + metric signature,
of real y-matrices, in the normalization of our A,y (Which is £ times theirs)
and in our units which set their gravitational constant k? =3 (see also
Englert & Nicolai 1983).

The action [d''x%,, is invariant under the ‘on shell’ local super-
symmetry transformation

bty = 4T 4
2

SAynp= — \/?EFMNlpP . (26.3a)

2
\/—(FNPQRM + SégerQR)FNPQRs'

¥m =Dy~ 353

Here also dy,, acquires further Fermi bilinears through ‘supercovarianti-
zation’. The action is also invariant under the gauge transformations

Aynr = Aynr + OuAng + OxAgy + OrAyn (26.3b)

where Ayn(x)= —Ayy(x) (the Chern-Simons term eM'-MuF, . x
Frr,. . msAMo...m,, changes by an exact divergence under these trans-
formations).

We note the simplicity of the lagrangian (26.2) and the absence of a
cosmological term. The latter is connected with the nonexistence of a
de-Sitter superalgebra in eleven-dimensional space-time (remember the
arguments of chapters 21 and 22). After all, even in four dimensions, the
existence of a de-Sitter superalgebra was intimately connected with the
‘accidental’ isomorphism ¢ £(4) ~ s0(3, 2), and there are no such isomor-
phisms involving the eleven-dimensional de-Sitter or anti-de-Sitter
algebras a0(11, 1), 50(10, 2).

With the eleven-dimensional supergravity lagrangian (26.2) now in hand
(alas, its construction is not very methodical as yet, so we have skipped
it), let us see whether there is any chance for spontaneous compactification
of some of the ten space dimensions. There is ‘Bose-matter’ in this theory,
given by the A,y field, and this does produce compactification. The
surprise is that this compactification is preferential (Freund & Rubin 1980)
towards a four-dimensional space—time.

To find possible vacua, we have to search for classical solutions around
which to quantize the theory. There is of course the trivial vacuum
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ey = 0%, wf{” =0, Auxe=0, ¥} =0, (26.4)

a solution of the field equations following from the lagrangian (26.2). It
corresponds to eleven-dimensional Minkowski space—time M, or to a
product manifold M, x T, _4T,,_, being the compact (11— d)-
dimensional torus). To find less trivial solutions, let us first write down
the field equations, for the special case 5, =0 (as Fermi fields should
vanish in the vacuum).

Ryn —29mxR = — %(FMPQRFNPQR - ”tligMNFPQRsFPQRS)
2
Dupre= - N2 wronmp, L p b o6

gmMN= effeg’TAB-

We want the ‘ordinary’ space—time to be maximally symmetric. The gauge
invariant antisymmetric field-strengths tensor FM¥®5 can then have a non-
vanishing vacuum expectation value if M, , is of the form M,; = M, x M.
The metric on M, is then of the form
0
) (26.6a)

- [ 9(X)
MU0 lgmy)

where M, N=0,1,2,3,5,6,...,11; u,v=0,...,3; m,n=15,..., 11, x*(y")
are coordinates on M (M ). The FMNRS can then (Freund & Rubin 1980)
take the form (this is not the most general form possible)

MNRS
AN f when M, N, R, S all take values between 0 and 3
FMNRS= (l |)1/2 .
0 9a otherwise. (26.6b)
MNRS

Here ¢ is the usual four-dimensional totally antisymmetric Levi—
Civita symbol and g, is the determinant of the 4 x 4 matrix g,,(x) of
equation (26.6a). For this vacuum field ansatz the Fermi field again
vanishes.

Y5 =0. (26.6¢)
Inserting the ansatz (26.6) into the A,.yp field equations we find
1 8MNRS
—— Ol (| | 1/"'4f:|=0‘ 26.7a)
(Tgag:)" “[( 94010 g (

From (26.6b) the index M in equation (26.7a) must take values between 0
and 3, so that d,, is necessarily of the form d/0x*. Since g, depends only on y,
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and ¢éMVRS is constant, this means

527 ~0 (26.7b)

The Bianchi identities

1
WaM[(|g4g7|)1/28MM2...M11FM8“.M“] -0 (26.7¢)
497

similarly yield

0
e f=0 (26.7d)

so that from (26.7b) and (26.7d) we find
f=constant (26.8)

Inserting this result into the expression of the energy—momentum tensor
on the right-hand side of the first equation (26.5), we see that the second
term of this tensor gives an overall cosmological term, whereas the first
term gives an extra cosmological term whenever both M and N are between
0 and 3. In other words M, and M, are both Einstein manifolds but
corresponding to different values A, and A, of the cosmological constant.
We have

A4 = - %g‘”Ruv = %fZ sgn (g4)a A7 = - Tszgmann = - %fz sgn (g4)
(26.9)

The sign of g, enters since the ¢ symbol in the ansatz (26.6b), contracted
with the metric tensors in the energy—-momentum tensor yields a deter-
minant of g,,, whereas the factor 1/\/| g4 in the ansatz (26.6b), when
squared (the energy-momentum tensor is quadratic in Fpypg) yields a
factor 1/g,l, so that we find a factor g,/|g,| =sgn(g,). A positive value
of the cosmological constant means compactification. f being real, 2 is
positive so that the signs of A, and A, depend solely on the sign of g,,
i.e., on whether the time-like dimension is on M ,(g, < 0) or on M,(g, > 0).
We see from (26.9) that (i) when the time-like dimension is on M,, then
M, compactifies, and (ii) when it is on M, then M, compactifies. Case (i)
is of course ‘realistic’. We have thus shown that spontaneous compactifi-
cation does occur in eleven dimensional supergravity. That already is
interesting, but we also found that there exists a preferential compactifica-
tion towards four space-time dimensions. That is a surprise. Let us briefly
recapitulate the logic of this argument. Eleven is the maximum dimen-
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sionality of a space—time in which a supergravity exists. Supersymmetry
requires, in addition to the graviton, the existence of a further Bose matter-
field represented by an antisymmetric tensor A yp With three indices. That
this tensor has three indices is thus a consequence of supersymmetry. Its
gauge invariant curl then has four indices and it is this curl that can have
a vacuum expectation value in a, then necessarily, four-dimensional space.
If time is among the four dimensions then the dynamics is right to com-
pactify the remaining seven dimensions. It is now clear that this preferential
4 + 7 split of the originally eleven-dimensional space—time can be traced
directly to supersymmetry. It is thus supersymmetry that ‘dials’ the dimen-
sionality of the observed space—time.

Yet as it stands, this argument still has some weak spots and outright
difficulties. First of all the time dimension could be among the seven rather
than the four. No good argument exists to rule out this alternative. Even
if time is on M, this M, is not then a Minkowski space with vanishing
cosmological constant, but rather an anti-de-Sitter space with an immense
(four-dimensional) cosmological constant given by (26.9). Grand uni-
fication is also plagued by outsize cosmological constants, and under-
standing why the observed A, is so very close to zero is a major theoretical
puzzle, whether for grand unification or Kaluza—Klein theory. There is
in Kaluza—Klein theory the additional deficiency (Witten 1985) that it is
hard to obtain chiral fermions at the four-dimensional level. This may be
somewhat alleviated in supergravity, when bound states and ‘hidden’
symmetries like the Cremmer—Julia SU(8) of chapter 24 are taken into
account.

For the time being we ignore these problems and inquire into the type
of physics we should expect in four dimensions. This depends largely on
the ‘shape’ of the small Einstein manifold M,. The isometry group G,
(the invariance group of the metric) on M, dictates the overt gauged
symmetry of the four-dimensional theory (in addition to this, one has the
gauged hidden symmetry). So we will have a gauged Sp(4), corresponding
to gravity with cosmological term, on M, and a gauged G,. The Lie
algebra s 4(4) @ g is then spanned by the Killing vector fields on M, x M.
But even some supersymmetry can survive down to four dimensions. If
this is the case, then the vanishing of the Fermi field /%, (equation (26.6¢))
must be maintained under some supersymmetry transformations. But the
change of Y}, under a supersymmetry transformation as given by equation
(26.3a) must then vanish.

Sy, = 0. (26.10)
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The &* appearing in equations (26.3) are 32-component Majorana spinors.
Now assume the factorization

&lx, y) = elLom(y) (26.11)

with ¢ a four-component. Majorana spinor on M,, and n an eight-
component spinor on M,. Equation (26.10) then requires

_ . f _
ljmr]=<Dm—16—ﬁym>n—0 (26.12)

where D,n is the ordinary covariant derivative on M, of the spinor #.
The Killing spinor equations (26.12) have at most eight independent
solutions (n has eight components). So, by equation (26.11) we can then
have at most N = 8 supersymmetry in four dimensions, as expected. The
integrability condition of equation (26.12) is (Awada, Duff and Pope 1983)

[Dma Dn]r’ = Cmnab[ya’ 7"]—’1 = 0 (2613)

where m, n(a,b) are world (tangent space) indices on M, and C,,,, is
Weyl’s conformal curvature tensor. The [y% y?]_ span the Lie algebra of
s fén(7), whereas the combinations C,,..,[7% "] span a subalgebra w
thereof: the Weyl holonomy algebra. According to equation (26.13) n must
be a singlet of this Weyl holonomy algebra w. There will then be at most as
many Majorana-spinor supersymmetry generators in four dimensions as
there are w-singlets in the spinorial octet representation of 4 f¢ (7).

We can now go to specific cases. The simplest case is to have M,
conformally flat in which case equation (26.13) reduces to 0 = 0 and there
are no conditions on # so that we have the maximum number of eight
independent Majorana supersymmetries in four-dimensions. This can
happen only in two cases:

(i) for the seven-torus T7 (26.4) corresponding to the Cremmer-Julia

N = 8 supergravity in four-dimenssions and
(ii) for the seven-sphere S”, with isometry group SO(8) corresponding to
the de Wit—Nicolai version of N = 8 supergravity (see chapter 24).
But there are many additional solutions with N =1, 2, 3, 4 or without
supersymmetry (N =0), corresponding to choices of the various Einstein
manifolds M, (see Awada Duff & Pope 1983, Castellani, d’Auria & Fré
1984). In the T7 and S” cases just mentioned, we of course find also the
hidden gauged SU(8) symmetry. In addition to the massless supergravity
sector in this eleven-dimensional theory we also have the massive higher
harmonics. The full theory is thus not the same as its massless supergravity
truncation. In fact, in the case of S” there exist massless (by anti-de-Sitter
standards) scalar states in addition to those 70 included in the four-
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dimensional N =8 supergravity multiplet. These do not have massless
superpartners. The supersymmetry, after all, in OSp(8|4) and not the N =8
Poincaré supergroup. Therefore the mass squared operator does not
commute with the OSp(8]/4) Fermi generators so that states of different
mass can belong to the same supermultiplet.

Next we recall that the ansatz (26.6b) is not the most general one. One
can extend it without losing the maximal symmetry of M,, by allowing
Frynpo#0for M, N, P, Q =5,...,11 (Englert 1982). This leads to further
solutions with a remarkable geometric raison d’étre. Furthermore if M,
is not a homogeneous space one can also relax the ansatz (26.6a) by
multiplying g,,(x) in the upper left-hand corner by an overall function
h(y) of the coordinates on M, (de Wit & Nicolai 1984, van Nieuwenhuizen
1984). In this case the compact manifold M, need not even be Einstein.
These solutions permit one to find more simply, coming from eleven
dimensions, all the extrema of the scalar potential of the four-dimensional
N =8 theory (Warner 1984). This is not to say that to each and every
M, x M, solution of the eleven-dimensional theory there corresponds an
extremum of the four-dimensional scalar potential. For instance, the case
of the ‘squashed’ seven-sphere (Awada, Duff & Pope 1983, Duff, Nilsson
& Pope 1983), does not correspond to such an extremum. The reason is
that in the process of squashing the ordinary seven-sphere a level crossing
occurs: previously very massive higher harmonics descend to zero mass,
whereas previously massless levels acquire immense mass. Since the higher
harmonics of the Kaluza—Klein theory compactified on §7 are not present
in ordinary four-dimensional N = 8 supergravity, the symmetry breaking
corresponding to sphere squashing can not be replicated in four-
dimensional N = 8 supergravity. The massive states, a signature of higher
dimensions, play a crucial role. This phenomenon is referred to as space
invaders.

The next question concerns the stability of these solutions under classical
perturbations. Where the full spectrum is known (e.g., M, = S7) stability
amounts to the requirement that no tachyons be present in the spectrum.
For the N = 8 supersymmetric M, = S’ case, there are indeed no tachyons
in the spectrum (Englert & Nicolai 1983), so the solution (26.6), (26.8) with
M., =S is classically stable. So are all solutions that have any (N > 1)
residual supersymmetry in four dimensions. Of the nonsupersymmetric
solutions both stable and unstable ones are known. For instance, all
Englert solutions (without the de Wit-Nicolai g,,(x)h(y) generalization
mentioned above) have no residual supersymmetry and are unstable.

As mentioned above, there is the problem of the large four-dimensional
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cosmological constant A,. Ideally, we would wish A, =0, or at least a
cosmological (i.e., time-dependent rather than static) solution that yields
a small A, at later times. Cosmological solutions to eleven-dimensional
supergravity have by now been found (Freund 1982).

For the higher-dimensional theory to make sense at the quantum level,
it must be a finite quantum field theory, for there are no renormalizable
local field theories in space-times of dimension seven and higher, and
anyway any local field theory which includes gravity is fated to be
nonrenormalizable. At the one-loop level eleven-dimensional supergravity
is finite, but this is trivial for an odd-dimensional space—time (Duff & Toms
1982). To have a nontrivial test one would have to check two loop finiteness.
This has not yet been done for eleven-dimensional supergravity, but there
exist possible dangerous counterterms, so the prospects are not the best.
Still, only a calculation can settle this problem.

The potential divergence of eleven-dimensional supergravity has led to
a retreat to ten space-time dimensions. In ten dimensions there exist two
distinct N =2 supergravities and an N =1 supergravity which can be
coupled to a N =1 supersymmetric Yang—Mills system for some gauge
group G. All these theories are limits for infinite string tension of super-
symmetric string theories (Ramond 1971, Neveu & Schwarz 1971, Green
& Schwarz 1982). The superstring theories are demonstrably one-loop
finite (in ten dimensions this is nontrivial) and there exist good reasons
to expect their finiteness upon inclusion of all higher loops as well. The
consistency of the N = 1 theories requires the gauge group to be SO(32)
or Eg x Eg (Green & Schwarz 1984a, Freund 1985, Gross, Harvey,
Martinec & Rohm 1985). The Eg x Eg4 case has phenomenological merits
(Candelas, Horowitz, Strominger & Witten 1985). It should also be pointed
out that these superstring theories do yield chiral fermions upon compactif-
ication down to four dimensions.

Roughly speaking, one-loop finiteness is achieved in superstring theory
in a manner reminiscent of the way Glashow—Weinberg—Salam theory
achieves the renormalizability absent in the old phenomenological Fermi
theory of weak interactions (Green & Schwarz 1984). There, the offending
four-Fermi vertices are smeared out by massive intermediate bosons, the
Ws and the Z°. In superstring theory, the infinitely many offensive vertices
of supergravity theory (which like all local theories that include gravity
is nonpolynomial) are smeared out by supermassive string excitations. If
this finiteness is to hold up at higher loops, as seems now virtually certain,
then a combination of supersymmetry, of the generalized Kaluza-Klein
idea, and of the Veneziano~Nambu string idea may finally have achieved
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the long sought-after synthesis of quantum theory and general relativity.
At the same time supersymmetry will have returned to string theory where
it was originally conceived. All this would be yet another example of a
phenomenon often encountered in physics: a theory, originally pursued
for its mathematical and philosophical beauty, is shown to possess a new
feature which then turns into the driving force of research into the theory.
Renormalizability (t Hooft 1971) was this new feature for electroweak
theory, finiteness in the presence of gravity (?) may just be it for supergravity
and superstring type theories.

Part IV
Conclusion
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The present status of supersymmetry

It may be appropriate to conclude this book by assessing the present
status of the principle of supersymmetry in physics. A physical principle
can be reliably evaluated according to the following criteria:
(A) The experimental evidence that supports the principle.
(B) New phenomena predicted on the basis of the principle.
(C) The experimental and theoretical puzzles solved by the principle.
(D) The internal consistency of theories that incorporate the principle.
(E) The aesthetic and philosophic advantages of the principle.
Let us now consider each of these five criteria and apply them to super-
symmetry.

As the first three parts of this book imply, supersymmetry fares poorly
on criterion (A4). There is no hard evidence for supersymmetry in particle
physics (at the time of this writing). Given the mathematical novelty of
the concept, one may wonder whether supersymmetric systems appear in
physics at all. There are two fields of physics in which supersymmetry
does indeed make an appearance: the quantum statistical mechanics of
two-dimensional systems and nuclear physics. We briefly review these
examples with the main objective of showing that the set of supersymmetric
physical systems is not empty.

First the example from the theory of two-dimensional systems. The
tricritical Ising model, realized experimentally by adsorbing helium-4 on
krypton plated graphite (notice the de rigueur appearance of krypton)
near the critical point is supersymmetric. Near a critical point two-
dimensional statistical systems scale and become conformally invariant.
In two dimensions the conformal algebra is the infinite-dimensional
Virasoro algebra corresponding to conformal mappings. This algebra
allows a supersymmetric extension, as known already from the theory
of dual models (Ramond 1971, Neveu & Schwarz 1971). It is this infinite-
dimensional superalgebra that is the supersymmetry algebra of the tri-
critical Ising model. Its validity implies ‘selection rules’ and ‘Clebsch—
Gordan’-like relations, which are found to hold (Friedan, Qiu & Shenker
1985). At the critical point, this model is exactly soluble, so these super-
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symmetry relations are only partial features of the exact solution. It is as
if, with the intent of showing the relevance of ordinary Lie algebras beyond
so(3) for physics, we were to parade the exactly soluble hydrogen-atom
with its so(4) invariance. Sure, the degeneracy of states with equal principal
quantum number n, is evidence for this ‘accidental’ symmetry, but if this
were the only system in nature with symmetry beyond so(3), ordinary Lie
algebras would play a less dominant role in physics than they now do.
In the same spirit the tricritical Ising model settles the existence question,
but can hardly be used to justify the considerable body of work on super-
symmetry over the last decade.

The nuclear physics example (Balantekin, Bars & Iachello 1981) involves
only an approximate supersymmetry and concerns itself with the details
of the supersymmetry breaking. For nuclei in the osmium—platinum region
a model involving bosonic spin singlet-like nucleon pairs of total angular
momentum j=0 and j=2, and fermionic 2D, (ie., J=3) unpaired
protons is proposed. This involves six Bose degrees of freedom (one for
the j =0, and five for the j =2 pairs) and four Fermi degrees of freedom
(corresponding to j = 3). Now, disregarding the difference between single
nucleons and nucleon pairs (!), one can postulate a unitary U(6(4)
supersymmetry between these 10 =6 + 4 degrees of freedom. By its very
nature, such a supersymmetry must be broken. There are various ‘chains’
for this supersymmetry breaking, and to each chain there corresponds a
mass formula involving a linear combination (with free coefficients) of the
Casimir operators of the (super) groups in the breakdown chain. The most
successful chain is

U(6]4) - U(6) x U(4) - SO(6) x SU(4) — Spin(6) — Spin(5)
— Spin(3) - Spin(2).

The corresponding ten parameter mass formula can fit many levels of
both even—even and even—odd nuclei at the 20-30% level of accuracy.
Again, while certainly very interesting, this is not the kind of phenomenon
to make supersymmetry physically compelling. A similar model in hadron
phenomenology was put forward much earlier by Miyazawa (1968), and
developed recently by Giirsey (1984).

All told, criterion (A), as applied to supersymmetry today is
far from providing clear evidence in favor of supersymmetry. Given this
bleak assessment, one might be tempted to conclude that criteria (B)
and (C) will also fail to help make the case for supersymmetry. This is
not so! We have seen in chapter 17 that supersymmetric grand unification
makes predictions concerning supersymmetric partners to known particles.
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These theories can be tested in the near future, hopefully with results that
will change the verdict according to criterion (A4). Similar considerations
apply to extended supergravities in four-dimensions to higher-dimensional
supergravities (chapters 23, 26) and to superstrings. So on criterion (B) the
prospects are brighter.

On criterion (C) supersymmetry has not solved any experimental
puzzles, partly because for a long time there just hadn’t been any such
puzzles around! Concerning theoretical puzzles, the hierarchy problem is
certainly an important and venerable puzzle going back essentially to
Dirac’s large number hypothesis (Dirac 1937). Here as we saw in chapter 17,
supersymmetry is of use. Further problems such as why space-time appears
four-dimensional, and the force/matter problem also receive a first
meaningful treatment in the framework of supersymmetry. Based on
criterion (C) then, supersymmetry does make an impact.

On criterion (D) supersymmetry fairs very well indeed. After all, who
would have thought that virtually half a century into quantum field theory,
we could still face the surprise of finite theories. There is no question that
such theories have a degree of consistency beyond that of ordinary
renormalizable theories. Even gravity, as we saw in chapter 26, appears to
be consistently quantized this way.

On criterion (E) supersymmetry is also a clear winner. New mathematical
structures have emerged: superalgebras, supergroups, supermanifolds. A
much more unified picture is possible, fermions and bosons are meaning-
fully grouped together, and again we can refer to the resolution of the
age old force/matter problem. It is after all to a large extent these aesthetic,
mathematical and philosophical merits that have driven much of the early
work on supersymmetry. In a sense I perceive a certain similarity with
the history of nonabelian gauge theories. They also were formulated by
Yang and Mills for aesthetical, mathematical and philosophical reasons,
rather than brought forth in answer to existing experimental puzzles.
Proposed in the mid-fifties, they entered the mainstream of physics only
some 17 years later. Why this long delay? This question has a fascinating
answer which may have some relevance for supersymmetry.

In the early days of Yang—Mills theory it was believed (Yang & Mills
1954, Sakurai 1960) that ‘flavor’-symmetries, such as isospin, baryon
number, hypercharge, ‘eightfold way SU(3), charm, were to be gauged.
The corresponding gauge bosons would be massless vector mesons with
quantum numbers like the p, w, ¢, K*, J/i etc.... No mesons with these
attributes had yet been discovered at the time this proposal was particularly
forcefully put forward by Sakurai. It was clear that these mesons had to
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‘somehow’ acquire mass. So, as the p, w, ¢, K* mesons were discovered
everybody seemed to agree that Sakurai’s predictions were being confirmed.
To make matters ‘worse’, the coupling pattern of these vector mesons was
following the rules one would have expected for gauge bosons (e.g., the
p°, which was to couple to the third component I; of isospin, did couple
half as strongly to the proton (I; = ) as it did to the 7 meson (I3 = + 1)).
Gauge theory had arrived; all that remained to be explained was the
nonvanishing mass of these flavor gauge bosons. Imaginative people came
up with mechanisms by which gauge bosons grow mass (Englert & Brout
1964, Higgs 1964, Guralnik, Hagen & Kibble 1964, Schwinger 1962). Alas,
these mechanisms didn’t work! According to the Brout—Englert-Higgs
mechanism, the K* mesons acquired mass as SU(3)eignirold way WaS being
broken, i.e., at the level of strong interactions, whereas the p* mesons
only acquired their mass when isospin was broken, ie., at the level of
electromagnetic interactions. One then expected (mpt/mx.)2~ 1/100
whereas experimentally it is close to one (Schwinger’s model referred to
two space—time dimensions, and its relevance to the mass problem in four
dimensions was unclear at the time). What did one (we all?) conclude from
this? Well, since we ‘knew’ Sakurai’s theory to work, too bad for Brout,
Englert, Higgs! This way a remarkable theoretical idea was shelved for
about six years. We now know (or ‘know’?) the gauged symmetry to be
not SUQ3).ignicord way> UL rather SUQ)coror X (SU(2) X U(1))etectrowears and
here the Higgs mechanism does work. The p, K*, et al,, have long been
demoted to ‘mere’ quark—antiquark 3S; bound states. Their coupling
pattern has been successfully explained by the quark model and the success-
ful vector dominance hypothesis (originally due to Nambu 1957, Gell-
Mann & Zachariasen 1961, later extended by Freund 1966, and by Ross
& Stodolsky 1966). How about Sakurai’s theory? We now know it to be
obsolete. Yet without it, we might not have had (4) the eightfold way',
(B) vector-dominance, (C) the Brout—Englert-Higgs mechanism, and (D)
the Schwinger model. We can now conveniently discard™ the flawed
parent theory, and gracefully retain its four remarkable offspring. The
Sakurai theory has thus played both a positive role by leading to these
four successful ideas, and a negative role by retarding their acceptance.

' Both the Gell-Mann and the Ne’eman papers (Gell-Mann & Ne’eman 1964) are
formulated in the context of Sakurai’s ideas.

* Ironically, it has been proposed very recently that the p, w, ¢, K* might also be viewed
as dynamical (composite) gauge bosons of a hidden U(3) symmetry in a nonlinear chiral
effective lagrangian for QCD (Bando, Kugo, Uehara, Yamawaki & Yanagida 1985),
thus vindicating Sakurai’s intuition to a certain extent.

27 Present status of supersymmetry 141

1 have allowed myself this historical detour because I believe it to hold
a moral for the present status of supersymmetry. It may well be that we
already possess all the essential ingredients for a successful implementation
of supersymmetry in particle physics, but are blinded by an assumption
as obvious to ‘us all’, as Sakurai’s ideas about flavor gauging were in their
time. One of the hardest steps in science is the discarding of ‘obvious’
flaws. Let me not speculate in writing about what the possible obvious
flaws in present-day supersymmetry ideas may be. After all, there is always
the obvious way out: not enough accelerator energy. Time will tell.
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