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An Ode to the Unity of Time and Space

Time, ah, time,

how you go off like this!

Physical things, ah, things,

so abundant you are!

The Ruo’s waters are three thousand,

how can they not have the same source?

Time and space are one body,

mind and things sustain each other.

Time, o time,

does not time come again?

Heaven, o heaven,

how many are the appearances of heaven!

From ancient days constantly shifting on,

black holes flaring up.

Time and space are one body,

is it without end?

Great indeed

is the riddle of the universe.

Beautiful indeed

is the source of truth.

To quantize space and time

the smartest are nothing.

To measure the Great Universe with a long thin tube

the learning is vast.

Shing-Tung Yau
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Preface

String theory is one of the most exciting and challenging areas of modern

theoretical physics. It was developed in the late 1960s for the purpose of de-

scribing the strong nuclear force. Problems were encountered that prevented

this program from attaining complete success. In particular, it was realized

that the spectrum of a fundamental string contains an undesired massless

spin-two particle. Quantum chromodynamics eventually proved to be the

correct theory for describing the strong force and the properties of hadrons.

New doors opened for string theory when in 1974 it was proposed to identify

the massless spin-two particle in the string’s spectrum with the graviton, the

quantum of gravitation. String theory became then the most promising can-

didate for a quantum theory of gravity unified with the other forces and has

developed into one of the most fascinating theories of high-energy physics.

The understanding of string theory has evolved enormously over the years

thanks to the efforts of many very clever people. In some periods progress

was much more rapid than in others. In particular, the theory has experi-

enced two major revolutions. The one in the mid-1980s led to the subject

achieving widespread acceptance. In the mid-1990s a second superstring

revolution took place that featured the discovery of nonperturbative duali-

ties that provided convincing evidence of the uniqueness of the underlying

theory. It also led to the recognition of an eleven-dimensional manifesta-

tion, called M-theory. Subsequent developments have made the connection

between string theory, particle physics phenomenology, cosmology, and pure

mathematics closer than ever before. As a result, string theory is becoming

a mainstream research field at many universities in the US and elsewhere.

Due to the mathematically challenging nature of the subject and the

above-mentioned rapid development of the field, it is often difficult for some-

one new to the subject to cope with the large amount of material that needs

to be learned before doing actual string-theory research. One could spend

several years studying the requisite background mathematics and physics,

but by the end of that time, much more would have already been developed,

xi
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and one still wouldn’t be up to date. An alternative approach is to shorten

the learning process so that the student can jump into research more quickly.

In this spirit, the aim of this book is to guide the student through the fasci-

nating subject of string theory in one academic year. This book starts with

the basics of string theory in the first few chapters and then introduces the

reader to some of the main topics of modern research. Since the subject is

enormous, it is only possible to introduce selected topics. Nevertheless, we

hope that it will provide a stimulating introduction to this beautiful subject

and that the dedicated student will want to explore further.

The reader is assumed to have some familiarity with quantum field theory

and general relativity. It is also very useful to have a broad mathematical

background. Group theory is essential, and some knowledge of differential

geometry and basics concepts of topology is very desirable. Some topics in

geometry and topology that are required in the later chapters are summa-

rized in an appendix.

The three main string-theory textbooks that precede this one are by

Green, Schwarz and Witten (1987), by Polchinski (1998) and by Zwiebach

(2004). Each of these was also published by Cambridge University Press.

This book is somewhat shorter and more up-to-date than the first two, and

it is more advanced than the third one. By the same token, those books

contain much material that is not repeated here, so the serious student will

want to refer to them, as well. Another distinguishing feature of this book

is that it contains many exercises with worked out solutions. These are in-

tended to be helpful to students who want problems that can be used to

practice and assimilate the material.

This book would not have been possible without the assistance of many

people. We have received many valuable suggestions and comments about

the entire manuscript from Rob Myers, and we have greatly benefited from

the assistance of Yu-Chieh Chung and Guangyu Guo, who have worked

diligently on many of the exercises and homework problems and have care-

fully read the whole manuscript. Moreover, we have received extremely

useful feedback from many colleagues including Keshav Dasgupta, Andrew

Frey, Davide Gaiotto, Sergei Gukov, Michael Haack, Axel Krause, Hong Lu,

Juan Maldacena, Lubos Motl, Hirosi Ooguri, Patricia Schwarz, Eric Sharpe,

James Sparks, Andy Strominger, Ian Swanson, Xi Yin and especially Cum-

run Vafa. We have further received great comments and suggestions from

many graduate students at Caltech and Harvard University. We thank Ram

Sriharsha for his assistance with some of the homework problems and Ke-

tan Vyas for writing up solutions to the homework problems, which will be

made available to instructors. We thank Sharlene Cartier and Carol Silber-
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stein of Caltech for their help in preparing parts of the manuscript, Simon

Capelin of Cambridge U. Press, whose help in coordinating the different

aspects of the publishing process has been indispensable, Elisabeth Krause

for help preparing some of the figures and Kovid Goyal for his assistance

with computer-related issues. We thank Steven Owen for translating from

Chinese the poem that precedes the preface.

During the preparation of the manuscript KB and MB have enjoyed the

warm hospitality of the Radcliffe Institute for Advanced Studies at Harvard

University, the physics department at Harvard University and the Perimeter

Institute for theoretical physics. They would like to thank the Radcliffe In-

stitute for Advanced Study at Harvard University, which through its Fellow-

ship program made the completion of this project possible. Special thanks

go to the Dean of Science, Barbara Grosz. Moreover, KB would also like

to thank the University of Utah for awarding a teaching grant to support

the work on this book. JHS is grateful to the Rutgers high-energy theory

group, the Aspen Center for Physics and the Kavli Institute for Theoretical

Physics for hospitality while he was working on the manuscript.

KB and MB would like to give their special thanks to their mother, Ingrid

Becker, for her support and encouragement, which has always been invalu-

able, especially during the long journey of completing this manuscript. Her

artistic talents made the design of the cover of this book possible. JHS

thanks his wife Patricia for love and support while he was preoccupied with

this project.

Katrin Becker

Melanie Becker

John H. Schwarz
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NOTATION AND CONVENTIONS

A area of event horizon

AdSD D-dimensional anti-de Sitter space-time

A3 three-form potential of D = 11 supergravity

b, c fermionic world-sheet ghosts

bn Betti numbers

bµr , r ∈ �
+ 1/2 fermionic oscillator modes in NS sector

B2 or B NS–NS two-form potential

c central charge of CFT

c1 = [R/2π] first Chern class

Cn R–R n-form potential

dµm, m ∈ �
fermionic oscillator modes in R sector

D number of space-time dimensions

F = dA+ A ∧ A Yang–Mills curvature two-form (antihermitian)

F = dA+ iA ∧A Yang–Mills curvature two-form (hermitian)

F4 = dA3 four-form field strength of D = 11 supergravity

Fm, m ∈ �
odd super-Virasoro generators in R sector

Fn+1 = dCn (n+ 1)-form R–R field strength

gs = 〈exp Φ〉 closed-string coupling constant

Gr, r ∈
�

+ 1/2 odd super-Virasoro generators in NS sector

GD Newton’s constant in D dimensions

H3 = dB2 NS–NS three-form field strength

hp,q Hodge numbers

j(τ) elliptic modular function

J = igab̄dz
a ∧ dz̄b̄ Kähler form

J = J + iB complexified Kähler form

k level of Kac–Moody algebra

K Kaluza–Klein excitation number

K Kähler potential

lp = 1.6× 10−33 cm Planck length for D = 4

`p Planck length for D = 11

ls =
√

2α′, `s =
√
α′ string length scale

Ln, n ∈ �
generators of Virasoro algebra

mp = 1.2× 1019GeV/c2 Planck mass for D = 4

Mp = 2.4× 1018GeV/c2 reduced Planck mass mp/
√

8π

M,N, . . . space-time indices for D = 11

M moduli space
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NL, NR left- and right-moving excitation numbers

QB BRST charge

R = dω + ω ∧ ω Riemann curvature two-form

Rµν = Rλµλν Ricci tensor

R = Rab̄dz
a ∧ dz̄b̄ Ricci form

S entropy

Sa world-sheet fermions in light-cone gauge GS formalism

Tαβ world-sheet energy–momentum tensor

Tp tension of p-brane

W winding number

xµ, µ = 0, 1, . . .D − 1 space-time coordinates

Xµ, µ = 0, 1, . . .D − 1 space-time embedding functions of a string

x± = (x0 ± xD−1)/
√

2 light-cone coordinates in space-time

xI , I = 1, 2, . . . ,D − 2 transverse coordinates in space-time

Z central charge

αµm, m ∈ �
bosonic oscillator modes

α′ Regge-slope parameter

β, γ bosonic world-sheet ghosts

γµ Dirac matrices in four dimensions

ΓM Dirac matrices in 11 dimensions

Γµν
ρ affine connection

η(τ) Dedekind eta function

ΘAa world-volume fermions in covariant GS formalism

λA left-moving world-sheet fermions of heterotic string

Λ ∼ 10−120M4
p observed vacuum energy density

σα, α = 0, 1, . . . , p world-volume coordinates of a p-brane

σ0 = τ , σ1 = σ world-sheet coordinates of a string

σ± = τ ± σ light-cone coordinates on the world sheet

σµ
αβ̇

Dirac matrices in two-component spinor notation

Φ dilaton field

χ(M) Euler characteristic of M

ψµ world-sheet fermion in RNS formalism

ΨM gravitino field of D = 11 supergravity

ωµ
α
β spin connection

Ω world-sheet parity transformation

Ωn holomorphic n-form
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• h̄ = c = 1.

• The signature of any metric is ‘mostly +’, that is, (−,+, . . . ,+).

• The space-time metric is ds2 = gµνdx
µdxν .

• In Minkowski space-time gµν = ηµν .

• The world-sheet metric tensor is hαβ.

• A hermitian metric has the form ds2 = 2gab̄dz
adz̄b̄.

• The space-time Dirac algebra in D = d+1 dimensions is {Γµ,Γν} = 2gµν .

• Γµ1µ2···µn = Γ[µ1Γµ2 · · ·Γµn].

• The world-sheet Dirac algebra is {ρα, ρβ} = 2hαβ.

• |Fn|2 = 1
n!g

µ1ν1 · · · gµnνnFµ1...µnFν1...νn .

• The Levi–Civita tensor εµ1···µD is totally antisymmetric with ε01···d = 1.
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Introduction

There were two major breakthroughs that revolutionized theoretical physics

in the twentieth century: general relativity and quantum mechanics. Gen-

eral relativity is central to our current understanding of the large-scale ex-

pansion of the Universe. It gives small corrections to the predictions of

Newtonian gravity for the motion of planets and the deflection of light rays,

and it predicts the existence of gravitational radiation and black holes. Its

description of the gravitational force in terms of the curvature of space-

time has fundamentally changed our view of space and time: they are now

viewed as dynamical. Quantum mechanics, on the other hand, is the essen-

tial tool for understanding microscopic physics. The evidence continues to

build that it is an exact property of Nature. Certainly, its exact validity is

a basic assumption in all string theory research.

The understanding of the fundamental laws of Nature is surely incomplete

until general relativity and quantum mechanics are successfully reconciled

and unified. That this is very challenging can be seen from many differ-

ent viewpoints. The concepts, observables and types of calculations that

characterize the two subjects are strikingly different. Moreover, until about

1980 the two fields developed almost independently of one another. Very

few physicists were experts in both. With the goal of unifying both subjects,

string theory has dramatically altered the sociology as well as the science.

In relativistic quantum mechanics, called quantum field theory, one re-

quires that two fields that are defined at space-time points with a space-like

separation should commute (or anticommute if they are fermionic). In the

gravitational context one doesn’t know whether or not two space-time points

have a space-like separation until the metric has been computed, which is

part of the dynamical problem. Worse yet, the metric is subject to quan-

tum fluctuations just like other quantum fields. Clearly, these are rather

challenging issues. Another set of challenges is associated with the quantum

1



2 Introduction

description of black holes and the description of the Universe in the very

early stages of its history.

The most straightforward attempts to combine quantum mechanics and

general relativity, in the framework of perturbative quantum field theory,

run into problems due to uncontrollable infinities. Ultraviolet divergences

are a characteristic feature of radiative corrections to gravitational processes,

and they become worse at each order in perturbation theory. Because New-

ton’s constant is proportional to (length)2 in four dimensions, simple power-

counting arguments show that it is not possible to remove these infinities by

the conventional renormalization methods of quantum field theory. Detailed

calculations demonstrate that there is no miracle that invalidates this simple

dimensional analysis.1

String theory purports to overcome these difficulties and to provide a

consistent quantum theory of gravity. How the theory does this is not yet

understood in full detail. As we have learned time and time again, string

theory contains many deep truths that are there to be discovered. Gradually

a consistent picture is emerging of how this remarkable and fascinating the-

ory deals with the many challenges that need to be addressed for a successful

unification of quantum mechanics and general relativity.

1.1 Historical origins

String theory arose in the late 1960s in an attempt to understand the strong

nuclear force. This is the force that is responsible for holding protons and

neutrons together inside the nucleus of an atom as well as quarks together

inside the protons and neutrons. A theory based on fundamental one-

dimensional extended objects, called strings, rather than point-like particles,

can account qualitatively for various features of the strong nuclear force and

the strongly interacting particles (or hadrons).

The basic idea in the string description of the strong interactions is that

specific particles correspond to specific oscillation modes (or quantum states)

of the string. This proposal gives a very satisfying unified picture in that it

postulates a single fundamental object (namely, the string) to explain the

myriad of different observed hadrons, as indicated in Fig. 1.1.

In the early 1970s another theory of the strong nuclear force – called

quantum chromodynamics (or QCD) – was developed. As a result of this,

as well as various technical problems in the string theory approach, string

1 Some physicists believe that perturbative renormalizability is not a fundamental requirement
and try to “quantize” pure general relativity despite its nonrenormalizability. Loop quantum
gravity is an example of this approach. Whatever one thinks of the logic, it is fair to say that
despite a considerable amount of effort such attempts have not yet been very fruitful.
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theory fell out of favor. The current viewpoint is that this program made

good sense, and so it has again become an active area of research. The

concrete string theory that describes the strong interaction is still not known,

though one now has a much better understanding of how to approach the

problem.

String theory turned out to be well suited for an even more ambitious

purpose: the construction of a quantum theory that unifies the description

of gravity and the other fundamental forces of nature. In principle, it has

the potential to provide a complete understanding of particle physics and of

cosmology. Even though this is still a distant dream, it is clear that in this

fascinating theory surprises arise over and over.

1.2 General features

Even though string theory is not yet fully formulated, and we cannot yet

give a detailed description of how the standard model of elementary particles

should emerge at low energies, or how the Universe originated, there are

some general features of the theory that have been well understood. These

are features that seem to be quite generic irrespective of what the final

formulation of string theory might be.

Gravity

The first general feature of string theory, and perhaps the most important,

is that general relativity is naturally incorporated in the theory. The theory

gets modified at very short distances/high energies but at ordinary distances

and energies it is present in exactly the form as proposed by Einstein. This

is significant, because general relativity is arising within the framework of a

Fig. 1.1. Different particles are different vibrational modes of a string.
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consistent quantum theory. Ordinary quantum field theory does not allow

gravity to exist; string theory requires it.

Yang–Mills gauge theory

In order to fulfill the goal of describing all of elementary particle physics, the

presence of a graviton in the string spectrum is not enough. One also needs

to account for the standard model, which is a Yang–Mills theory based on

the gauge group SU(3)×SU(2)×U(1). The appearance of Yang–Mills gauge

theories of the sort that comprise the standard model is a general feature

of string theory. Moreover, matter can appear in complex chiral representa-

tions, which is an essential feature of the standard model. However, it is not

yet understood why the specific SU(3) × SU(2) × U(1) gauge theory with

three generations of quarks and leptons is singled out in nature.

Supersymmetry

The third general feature of string theory is that its consistency requires

supersymmetry, which is a symmetry that relates bosons to fermions is re-

quired. There exist nonsupersymmetric bosonic string theories (discussed

in Chapters 2 and 3), but lacking fermions, they are completely unrealis-

tic. The mathematical consistency of string theories with fermions depends

crucially on local supersymmetry. Supersymmetry is a generic feature of all

potentially realistic string theories. The fact that this symmetry has not yet

been discovered is an indication that the characteristic energy scale of su-

persymmetry breaking and the masses of supersymmetry partners of known

particles are above experimentally determined lower bounds.

Space-time supersymmetry is one of the major predictions of superstring

theory that could be confirmed experimentally at accessible energies. A vari-

ety of arguments, not specific to string theory, suggest that the characteristic

energy scale associated with supersymmetry breaking should be related to

the electroweak scale, in other words in the range 100 GeV to a few TeV.

If this is correct, superpartners should be observable at the CERN Large

Hadron Collider (LHC), which is scheduled to begin operating in 2007.

Extra dimensions of space

In contrast to many theories in physics, superstring theories are able to

predict the dimension of the space-time in which they live. The theory
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is only consistent in a ten-dimensional space-time and in some cases an

eleventh dimension is also possible.

To make contact between string theory and the four-dimensional world of

everyday experience, the most straightforward possibility is that six or seven

of the dimensions are compactified on an internal manifold, whose size is

sufficiently small to have escaped detection. For purposes of particle physics,

the other four dimensions should give our four-dimensional space-time. Of

course, for purposes of cosmology, other (time-dependent) geometries may

also arise.

Fig. 1.2. From far away a two-dimensional cylinder looks one-dimensional.

The idea of an extra compact dimension was first discussed by Kaluza

and Klein in the 1920s. Their goal was to construct a unified description

of electromagnetism and gravity in four dimensions by compactifying five-

dimensional general relativity on a circle. Even though we now know that

this is not how electromagnetism arises, the essence of this beautiful ap-

proach reappears in string theory. The Kaluza–Klein idea, nowadays re-

ferred to as compactification, can be illustrated in terms of the two cylinders

of Fig. 1.2. The surface of the first cylinder is two-dimensional. However,

if the radius of the circle becomes extremely small, or equivalently if the

cylinder is viewed from a large distance, the cylinder looks effectively one-

dimensional. One now imagines that the long dimension of the cylinder is

replaced by our four-dimensional space-time and the short dimension by an

appropriate six, or seven-dimensional compact manifold. At large distances

or low energies the compact internal space cannot be seen and the world

looks effectively four-dimensional. As discussed in Chapters 9 and 10, even

if the internal manifolds are invisible, their topological properties determine

the particle content and structure of the four-dimensional theory. In the

mid-1980s Calabi–Yau manifolds were first considered for compactifying six

extra dimensions, and they were shown to be phenomenologically rather

promising, even though some serious drawbacks (such as the moduli space

problem discussed in Chapter 10) posed a problem for the predictive power
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of string theory. In contrast to the circle, Calabi–Yau manifolds do not have

isometries, and part of their role is to break symmetries rather than to make

them.

The size of strings

In conventional quantum field theory the elementary particles are mathemat-

ical points, whereas in perturbative string theory the fundamental objects

are one-dimensional loops (of zero thickness). Strings have a characteristic

length scale, denoted ls, which can be estimated by dimensional analysis.

Since string theory is a relativistic quantum theory that includes gravity it

must involve the fundamental constants c (the speed of light), h̄ (Planck’s

constant divided by 2π), and G (Newton’s gravitational constant). From

these one can form a length, known as the Planck length

lp =

(
h̄G

c3

)1/2

= 1.6× 10−33 cm.

Similarly, the Planck mass is

mp =

(
h̄c

G

)1/2

= 1.2× 1019 GeV/c2.

The Planck scale is the natural first guess for a rough estimate of the fun-

damental string length scale as well as the characteristic size of compact

extra dimensions. Experiments at energies far below the Planck energy can-

not resolve distances as short as the Planck length. Thus, at such energies,

strings can be accurately approximated by point particles. This explains

why quantum field theory has been so successful in describing our world.

1.3 Basic string theory

As a string evolves in time it sweeps out a two-dimensional surface in space-

time, which is called the string world sheet of the string. This is the string

counterpart of the world line for a point particle. In quantum field theory,

analyzed in perturbation theory, contributions to amplitudes are associated

with Feynman diagrams, which depict possible configurations of world lines.

In particular, interactions correspond to junctions of world lines. Similarly,

perturbation expansions in string theory involve string world sheets of var-

ious topologies.

The existence of interactions in string theory can be understood as a con-

sequence of world-sheet topology rather than of a local singularity on the
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world sheet. This difference from point-particle theories has two important

implications. First, in string theory the structure of interactions is uniquely

determined by the free theory. There are no arbitrary interactions to be cho-

sen. Second, since string interactions are not associated with short-distance

singularities, string theory amplitudes have no ultraviolet divergences. The

string scale 1/ls acts as a UV cutoff.

World-volume actions and the critical dimension

A string can be regarded as a special case of a p-brane, which is an object

with p spatial dimensions and tension (or energy density) Tp. In fact, various

p-branes do appear in superstring theory as nonperturbative excitations.

The classical motion of a p-brane extremizes the (p+1)-dimensional volume

V that it sweeps out in space-time. Thus there is a p-brane action that

is given by Sp = −TpV . In the case of the fundamental string, which has

p = 1, V is the area of the string world sheet and the action is called the

Nambu–Goto action.

Classically, the Nambu–Goto action is equivalent to the string sigma-

model action

Sσ = −T
2

∫ √
−hhαβηµν∂αXµ∂βX

νdσdτ,

where hαβ(σ, τ) is an auxiliary world-sheet metric, h = dethαβ, and hαβ is

the inverse of hαβ. The functions Xµ(σ, τ) describe the space-time embed-

ding of the string world sheet. The Euler–Lagrange equation for hαβ can be

used to eliminate it from the action and recover the Nambu–Goto action.

Quantum mechanically, the story is more subtle. Instead of eliminating h

via its classical field equations, one should perform a Feynman path integral,

using standard machinery to deal with the local symmetries and gauge fixing.

When this is done correctly, one finds that there is a conformal anomaly

unless the space-time dimension is D = 26. These matters are explored in

Chapters 2 and 3. An analogous analysis for superstrings gives the critical

dimension D = 10.

Closed strings and open strings

The parameter τ in the embedding functionsXµ(σ, τ) is the world-sheet time

coordinate and σ parametrizes the string at a given world-sheet time. For a

closed string, which is topologically a circle, one should impose periodicity

in the spatial parameter σ. Choosing its range to be π one identifies both



8 Introduction

ends of the string Xµ(σ, τ) = Xµ(σ + π, τ). All string theories contain

closed strings, and the graviton always appears as a massless mode in the

closed-string spectrum of critical string theories.

For an open string, which is topologically a line interval, each end can

be required to satisfy either Neumann or Dirichlet boundary conditions (for

each value of µ). The Dirichlet condition specifies a space-time hypersurface

on which the string ends. The only way this makes sense is if the open string

ends on a physical object, which is called a D-brane. (D stands for Dirichlet.)

If all the open-string boundary conditions are Neumann, then the ends of

the string can be anywhere in the space-time. The modern interpretation is

that this means that space-time-filling D-branes are present.

Perturbation theory

Perturbation theory is useful in a quantum theory that has a small dimen-

sionless coupling constant, such as quantum electrodynamics (QED), since it

allows one to compute physical quantities as expansions in the small param-

eter. In QED the small parameter is the fine-structure constant α ∼ 1/137.

For a physical quantity T (α), one computes (using Feynman diagrams)

T (α) = T0 + αT1 + α2T2 + . . .

Perturbation series are usually asymptotic expansions with zero radius of

convergence. Still, they can be useful, if the expansion parameter is small,

because the first terms in the expansion provide an accurate approximation.

The heterotic and type II superstring theories contain oriented closed

strings only. As a result, the only world sheets in their perturbation expan-

sions are closed oriented Riemann surfaces. There is a unique world-sheet

topology at each order of the perturbation expansion, and its contribution

is UV finite. The fact that there is just one string theory Feynman diagram

at each order in the perturbation expansion is in striking contrast to the

large number of Feynman diagrams that appear in quantum field theory. In

the case of string theory there is no particular reason to expect the coupling

constant gs to be small. So it is unlikely that a realistic vacuum could be

analyzed accurately using only perturbation theory. For this reason, it is

important to understand nonperturbative effects in string theory.

Superstrings

The first superstring revolution began in 1984 with the discovery that quan-

tum mechanical consistency of a ten-dimensional theory with N = 1 super-
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symmetry requires a local Yang–Mills gauge symmetry based on one of two

possible Lie algebras: SO(32) or E8×E8. As is explained in Chapter 5, only

for these two choices do certain quantum mechanical anomalies cancel. The

fact that only these two groups are possible suggested that string theory has

a very constrained structure, and therefore it might be very predictive. 2

When one uses the superstring formalism for both left-moving modes and

right-moving modes, the supersymmetries associated with the left-movers

and the right-movers can have either opposite handedness or the same hand-

edness. These two possibilities give different theories called the type IIA and

type IIB superstring theories, respectively. A third possibility, called type I

superstring theory, can be derived from the type IIB theory by modding out

by its left–right symmetry, a procedure called orientifold projection. The

strings that survive this projection are unoriented. The type I and type

II superstring theories are described in Chapters 4 and 5 using formalisms

with world-sheet and space-time supersymmetry, respectively.

A more surprising possibility is to use the formalism of the 26-dimensional

bosonic string for the left-movers and the formalism of the 10-dimensional

superstring for the right-movers. The string theories constructed in this

way are called “heterotic.” Heterotic string theory is discussed in Chap-

ter 7. The mismatch in space-time dimensions may sound strange, but it is

actually exactly what is needed. The extra 16 left-moving dimensions must

describe a torus with very special properties to give a consistent theory.

There are precisely two distinct tori that have the required properties, and

they correspond to the Lie algebras SO(32) and E8 × E8.

Altogether, there are five distinct superstring theories, each in ten dimen-

sions. Three of them, the type I theory and the two heterotic theories, have

N = 1 supersymmetry in the ten-dimensional sense. The minimal spinor

in ten dimensions has 16 real components, so these theories have 16 con-

served supercharges. The type I superstring theory has the gauge group

SO(32), whereas the heterotic theories realize both SO(32) and E8 × E8.

The other two theories, type IIA and type IIB, have N = 2 supersymmetry

or equivalently 32 supercharges.

1.4 Modern developments in superstring theory

The realization that there are five different superstring theories was some-

what puzzling. Certainly, there is only one Universe, so it would be most

satisfying if there were only one possible theory. In the late 1980s it was

2 Anomaly analysis alone also allows U(1)496 and E8 × U(1)248. However, there are no string
theories with these gauge groups.
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realized that there is a property known as T-duality that relates the two

type II theories and the two heterotic theories, so that they shouldn’t really

be regarded as distinct theories.

Progress in understanding nonperturbative phenomena was achieved in

the 1990s. Nonperturbative S-dualities and the opening up of an eleventh

dimension at strong coupling in certain cases led to new identifications. Once

all of these correspondences are taken into account, one ends up with the

best possible conclusion: there is a unique underlying theory. Some of these

developments are summarized below and are discussed in detail in the later

chapters.

T-duality

String theory exhibits many surprising properties. One of them, called T-

duality, is discussed in Chapter 6. T-duality implies that in many cases two

different geometries for the extra dimensions are physically equivalent! In

the simplest example, a circle of radius R is equivalent to a circle of radius

`2s/R, where (as before) `s is the fundamental string length scale.

T-duality typically relates two different theories. For example, it relates

the two type II and the two heterotic theories. Therefore, the type IIA and

type IIB theories (also the two heterotic theories) should be regarded as a

single theory. More precisely, they represent opposite ends of a continuum

of geometries as one varies the radius of a circular dimension. This radius is

not a parameter of the underlying theory. Rather, it arises as the vacuum

expectation value of a scalar field, and it is determined dynamically.

There are also fancier examples of duality equivalences. For example,

there is an equivalence of type IIA superstring theory compactified on a

Calabi–Yau manifold and type IIB compactified on the “mirror” Calabi–Yau

manifold. This mirror pairing of topologically distinct Calabi–Yau manifolds

is discussed in Chapter 9. A surprising connection to T-duality will emerge.

S-duality

Another kind of duality – called S-duality – was discovered as part of the

second superstring revolution in the mid-1990s. It is discussed in Chapter 8.

S-duality relates the string coupling constant gs to 1/gs in the same way

that T-duality relates R to `2s/R. The two basic examples relate the type

I superstring theory to the SO(32) heterotic string theory and the type

IIB superstring theory to itself. Thus, given our knowledge of the small

gs behavior of these theories, given by perturbation theory, we learn how
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these three theories behave when gs � 1. For example, strongly coupled

type I theory is equivalent to weakly coupled SO(32) heterotic theory. In

the type IIB case the theory is related to itself, so one is actually dealing

with a symmetry. The string coupling constant gs is given by the vacuum

expectation value of expφ, where φ is the dilaton field. S-duality, like T-

duality, is actually a field transformation, φ→ −φ, and not just a statement

about vacuum expectation values.

D-branes

When studied nonperturbatively, one discovers that superstring theory con-

tains various p-branes, objects with p spatial dimensions, in addition to the

fundamental strings. All of the p-branes, with the single exception of the

fundamental string (which is a 1-brane), become infinitely heavy as gs → 0,

and therefore they do not appear in perturbation theory. On the other

hand, when the coupling gs is not small, this distinction is no longer signifi-

cant. When that is the case, all of the p-branes are just as important as the

fundamental strings, so there is p-brane democracy.

The type I and II superstring theories contain a class of p-branes called D-

branes, whose tension is proportional 1/gs. As was mentioned earlier, their

defining property is that they are objects on which fundamental strings can

end. The fact that fundamental strings can end on D-branes implies that

quantum field theories of the Yang–Mills type, like the standard model,

reside on the world volumes of D-branes. The Yang–Mills fields arise as

the massless modes of open strings attached to the D-branes. The fact

that theories resembling the standard model reside on D-branes has many

interesting implications. For example, it has led to the speculation that the

reason we experience four space-time dimensions is because we are confined

to live on three-dimensional D-branes (D3-branes), which are embedded in a

higher-dimensional space-time. Model-building along these lines, sometimes

called the brane-world approach or scenario, is discussed in Chapter 10.

What is M-theory?

S-duality explains how three of the five original superstring theories behave

at strong coupling. This raises the question: What happens to the other

two superstring theories – type IIA and E8×E8 heterotic – when gs is large?

The answer, which came as quite a surprise, is that they grow an eleventh

dimension of size gs`s. This new dimension is a circle in the type IIA case

and a line interval in the heterotic case. When the eleventh dimension is
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large, one is outside the regime of perturbative string theory, and new tech-

niques are required. Most importantly, a new type of quantum theory in 11

dimensions, called M-theory, emerges. At low energies it is approximated

by a classical field theory called 11-dimensional supergravity, but M-theory

is much more than that. The relation between M-theory and the two super-

string theories previously mentioned, together with the T and S dualities

discussed above, imply that the five superstring theories are connected by

a web of dualities, as depicted in Fig. 1.3. They can be viewed as different

corners of a single theory.

type IIA type IIB

SO(32)

type I
11d 
SUGRA

E8XE8

Fig. 1.3. Different string theories are connected through a web of dualities.

There are techniques for identifying large classes of superstring and M-

theory vacua, and describing them exactly, but there is not yet a succinct

and compelling formulation of the underlying theory that gives rise to these

vacua. Such a formulation should be completely unique, with no adjustable

dimensionless parameters or other arbitrariness. Many things that we usu-

ally take for granted, such as the existence of a space-time manifold, are

likely to be understood as emergent properties of specific vacua rather than

identifiable features of the underlying theory. If this is correct, then the

missing formulation of the theory must be quite unlike any previous theory.

Usual approaches based on quantum fields depend on the existence of an

ambient space-time manifold. It is not clear what the basic degrees of free-

dom should be in a theory that does not assume a space-time manifold at

the outset.

There is an interesting proposal for an exact quantum mechanical descrip-
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tion of M-theory, applicable to certain space-time backgrounds, that goes

by the name of Matrix theory. Matrix theory gives a dual description of M-

theory in flat 11-dimensional space-time in terms of the quantum mechanics

of N ×N matrices in the large N limit. When n of the spatial dimensions

are compactified on a torus, the dual Matrix theory becomes a quantum

field theory in n spatial dimensions (plus time). There is evidence that this

conjecture is correct when n is not too large. However, it is unclear how to

generalize it to other compactification geometries, so Matrix theory provides

only pieces of a more complete description of M-theory.

F-theory

As previously discussed, the type IIA and heterotic E8×E8 theories can be

viewed as arising from a more fundamental eleven-dimensional theory, M-

theory. One may wonder if the other superstring theories can be derived in

a similar fashion. An approach, called F-theory, is described in Chapter 9.

It utilizes the fact that ten-dimensional type IIB superstring theory has a

nonperturbative SL(2,
�

) symmetry. Moreover, this is the modular group

of a torus and the type IIB theory contains a complex scalar field τ that

transforms under SL(2,
�

) as the complex structure of a torus. Therefore,

this symmetry can be given a geometric interpretation if the type IIB theory

is viewed as having an auxiliary two-torus T 2 with complex structure τ . The

SL(2,
�

) symmetry then has a natural interpretation as the symmetry of the

torus.

Flux compactifications

One question that already bothered Kaluza and Klein is why should the

fifth dimension curl up? Another puzzle in those early days was the size of

the circle, and what stabilizes it at a particular value. These questions have

analogs in string theory, where they are part of what is called the moduli-

space problem. In string theory the shape and size of the internal manifold

is dynamically determined by the vacuum expectation values of scalar fields.

String theorists have recently been able to provide answers to these questions

in the context of flux compactifications , which is a rapidly developing area

of modern string theory research. This is discussed in Chapter 10.

Even though the underlying theory (M-theory) is unique, it admits an

enormous number of different solutions (or quantum vacua). One of these

solutions should consist of four-dimensional Minkowski space-time times a

compact manifold and accurately describes the world of particle physics.
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One of the major challenges of modern string theory research is to find this

solution.

It would be marvelous to identify the correct vacuum, and at the same

time to understand why it is the right one. Is it picked out by some spe-

cial mathematical property, or is it just an environmental accident of our

particular corner of the Universe? The way this question plays out will be

important in determining the extent to which the observed world of particle

physics can be deduced from first principles.

Black-hole entropy

It follows from general relativity that macroscopic black holes behave like

thermodynamic objects with a well-defined temperature and entropy. The

entropy is given (in gravitational units) by 1/4 the area of the event horizon,

which is the Bekenstein–Hawking entropy formula. In quantum theory, an

entropy S ordinarily implies that there are a large number of quantum states

(namely, expS of them) that contribute to the corresponding microscopic

description. So a natural question is whether this rule also applies to black

holes and their higher-dimensional generalizations, which are called black p-

branes. D-branes provide a set-up in which this question can be investigated.

In the early work on this subject, reliable techniques for counting mi-

crostates only existed for very special types of black holes having a large

amount of supersymmetry. In those cases one found agreement with the

entropy formula. More recently, one has learned how to analyze a much

larger class of black holes and black p-branes, and even how to compute

corrections to the area formula. This subject is described in Chapter 11.

Many examples have been studied and no discrepancies have been found,

aside from corrections that are expected. It is fair to say that these studies

have led to a much deeper understanding of the thermodynamic properties

of black holes in terms of string-theory microphysics, a fact that is one of

the most striking successes of string theory so far.

AdS/CFT duality

A remarkable discovery made in the late 1990s is the exact equivalence (or

duality) of conformally invariant quantum field theories and superstring the-

ory or M-theory in special space-time geometries. A collection of coincident

p-branes produces a space-time geometry with a horizon, like that of a black

hole. In the vicinity of the horizon, this geometry can be approximated by a

product of an anti-de Sitter space and a sphere. In the example that arises
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from considering N coincident D3-branes in the type IIB superstring the-

ory, one obtains a duality between SU(N) Yang–Mills theory with N = 4

supersymmetry in four dimensions and type IIB superstring theory in a

ten-dimensional geometry given by a product of a five-dimensional anti-de

Sitter space (AdS5) and a five-dimensional sphere (S5). There are N units of

five-form flux threading the five sphere. There are also analogous M-theory

dualities.

These dualities are sometimes referred to as AdS/CFT dualities. AdS

stands for anti-de Sitter space, a maximally symmetric space-time geom-

etry with negative scalar curvature. CFT stands for conformal field the-

ory, a quantum field theory that is invariant under the group of conformal

transformations. This type of equivalence is an example of a holographic

duality, since it is analogous to representing three-dimensional space on a

two-dimensional emulsion. The study of these dualities is teaching us a

great deal about string theory and M-theory as well as the dual quantum

field theories. Chapter 12 gives an introduction to this vast subject.

String and M-theory cosmology

The field of superstring cosmology is emerging as a new and exciting dis-

cipline. String theorists and string-theory considerations are injecting new

ideas into the study of cosmology. This might be the arena in which predic-

tions that are specific to string theory first confront data.

In a quantum theory that contains gravity, such as string theory, the cos-

mological constant, Λ, which characterizes the energy density of the vacuum,

is (at least in principle) a computable quantity. This energy (sometimes

called dark energy) has recently been measured to fairly good accuracy, and

found to account for about 70% of the total mass/energy in the present-day

Universe. This fraction is an increasing function of time. The observed

value of the cosmological constant/dark energy is important for cosmology,

but it is extremely tiny when expressed in Planck units (about 10−120).

The first attempts to account for Λ > 0 within string theory and M-theory,

based on compactifying 11-dimensional supergravity on time-independent

compact manifolds, were ruled out by “no-go” theorems. However, certain

nonperturbative effects allow these no-go theorems to be circumvented.

A viewpoint that has gained in popularity recently is that string theory

can accommodate almost any value of Λ, but only solutions for which Λ is

sufficiently small describe a Universe that can support life. So, if it were

much larger, we wouldn’t be here to ask the question. This type of reasoning

is called anthropic. While this may be correct, it would be satisfying to have
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another explanation of why Λ is so small that does not require this type of

reasoning.

Another important issue in cosmology concerns the accelerated expansion

of the very early Universe, which is referred to as inflation. The observa-

tional case for inflation is quite strong, and it is an important question to

understand how it arises from a fundamental theory. Before the period of

inflation was the Big Bang, the origin of the observable Universe, and much

effort is going into understanding that. Two radically different proposals

are quantum tunneling from nothing and a collision of branes.
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The bosonic string

This chapter introduces the simplest string theory, called the bosonic string.

Even though this theory is unrealistic and not suitable for phenomenology,

it is the natural place to start. The reason is that the same structures

and techniques, together with a number of additional ones, are required for

the analysis of more realistic superstring theories. This chapter describes

the free (noninteracting) theory both at the classical and quantum levels.

The next chapter discusses various techniques for introducing and analyzing

interactions.

A string can be regarded as a special case of a p-brane, a p-dimensional

extended object moving through space-time. In this notation a point particle

corresponds to the p = 0 case, in other words to a zero-brane. Strings

(whether fundamental or solitonic) correspond to the p = 1 case, so that they

can also be called one-branes. Two-dimensional extended objects or two-

branes are often called membranes. In fact, the name p-brane was chosen

to suggest a generalization of a membrane. Even though strings share some

properties with higher-dimensional extended objects at the classical level,

they are very special in the sense that their two-dimensional world-volume

quantum theories are renormalizable, something that is not the case for

branes of higher dimension. This is a crucial property that makes it possible

to base quantum theories on them. In this chapter we describe the string as

a special case of p-branes and describe the properties that hold only for the

special case p = 1.

2.1 p-brane actions

This section describes the free motion of p-branes in space-time using the

principle of minimal action. Let us begin with a point particle or zero-brane.

17
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Relativistic point particle

The motion of a relativistic particle of mass m in a curved D-dimensional

space-time can be formulated as a variational problem, that is, an action

principle. Since the classical motion of a point particle is along geodesics,

the action should be proportional to the invariant length of the particle’s

trajectory

S0 = −α
∫
ds, (2.1)

where α is a constant and h̄ = c = 1. This length is extremized in the

classical theory, as is illustrated in Fig. 2.1.

X

XXf

Xf

0

0

11

Fig. 2.1. The classical trajectory of a point particle minimizes the length of the
world line.

Requiring the action to be dimensionless, one learns that α has the di-

mensions of inverse length, which is equivalent to mass in our units, and

hence it must be proportional to m. As is demonstrated in Exercise 2.1, the

action has the correct nonrelativistic limit if α = m, so the action becomes

S0 = −m
∫
ds. (2.2)

In this formula the line element is given by

ds2 = −gµν(X)dXµdXν . (2.3)

Here gµν(X), with µ, ν = 0, . . . ,D − 1, describes the background geome-

try, which is chosen to have Minkowski signature (− + · · ·+). The minus

sign has been introduced here so that ds is real for a time-like trajectory.

The particle’s trajectory Xµ(τ), also called the world line of the particle, is

parametrized by a real parameter τ , but the action is independent of the
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choice of parametrization (see Exercise 2.2). The action (2.2) therefore takes

the form

S0 = −m
∫ √

−gµν(X)ẊµẊνdτ, (2.4)

where the dot represents the derivative with respect to τ .

The action S0 has the disadvantage that it contains a square root, so that

it is difficult to quantize. Furthermore, this action obviously cannot be used

to describe a massless particle. These problems can be circumvented by

introducing an action equivalent to the previous one at the classical level,

which is formulated in terms of an auxiliary field e(τ)

S̃0 =
1

2

∫
dτ
(
e−1Ẋ2 −m2e

)
, (2.5)

where Ẋ2 = gµν(X)ẊµẊν . Reparametrization invariance of S̃0 requires that

e(τ) transforms in an appropriate fashion (see Exercise 2.3). The equation

of motion of e(τ), given by setting the variational derivative of this action

with respect to e(τ) equal to zero, is m2e2 + Ẋ2 = 0. Solving for e(τ) and

substituting back into S̃0 gives S0.

Generalization to the p-brane action

The action (2.4) can be generalized to the case of a string sweeping out

a two-dimensional world sheet in space-time and, in general, to a p-brane

sweeping out a (p + 1)-dimensional world volume in D-dimensional space-

time. It is necessary, of course, that p < D. For example, a membrane or

two-brane sweeps out a three-dimensional world volume as it moves through

a higher-dimensional space-time. This is illustrated for a string in Fig. 2.2.

The generalization of the action (2.4) to a p-brane naturally takes the

form

Sp = −Tp
∫
dµp. (2.6)

Here Tp is called the p-brane tension and dµp is the (p + 1)-dimensional

volume element given by

dµp =
√
−detGαβ d

p+1σ, (2.7)

where the induced metric is given by

Gαβ = gµν(X)∂αX
µ∂βX

ν α, β = 0, . . . , p. (2.8)

To write down this form of the action, one has taken into account that p-

brane world volumes can be parametrized by the coordinates σ0 = τ , which



20 The bosonic string

is time-like, and σi, which are p space-like coordinates. Since dµp has units

of (length)p+1 the dimension of the p-brane tension is

[Tp] = (length)−p−1 =
mass

(length)p
, (2.9)

or energy per unit p-volume.

EXERCISES

EXERCISE 2.1

Show that the nonrelativistic limit of the action (2.1) in flat Minkowski

space-time determines the value of the constant α to be the mass of the

point particle.

SOLUTION

In the nonrelativistic limit the action (2.1) becomes

S0 = −α
∫ √

dt2 − d~x2 = −α
∫
dt
√

1− ~v2 ≈ −α
∫
dt

(
1− 1

2
~v2 + . . .

)
.

Comparing the above expansion with the action of a nonrelativistic point

X

X

X 0

1

2

Fig. 2.2. The classical trajectory of a string minimizes the area of the world sheet.



2.1 p-brane actions 21

particle, namely

Snr =

∫
dt

1

2
m~v2,

gives α = m. In the nonrelativistic limit an additional constant (the famous

E = mc2 term) appears in the above expansion of S0. This constant does

not contribute to the classical equations of motion. 2

EXERCISE 2.2

One important requirement for the point-particle world-line action is that

it should be invariant under reparametrizations of the parameter τ . Show

that the action S0 is invariant under reparametrizations of the world line by

substituting τ ′ = f(τ).

SOLUTION

The action

S0 = −m
∫ √

−dX
µ

dτ

dXµ

dτ
dτ

can be written in terms of primed quantities by taking into account

dτ ′ =
df(τ)

dτ
dτ = ḟ(τ)dτ and

dXµ

dτ
=
dXµ

dτ ′
dτ ′

dτ
=
dXµ

dτ ′
· ḟ(τ).

This gives,

S′0 = −m
∫ √

−dX
µ

dτ ′
dXµ

dτ ′
ḟ(τ) · dτ

′

ḟ(τ)
= −m

∫ √
−dX

µ

dτ ′
dXµ

dτ ′
· dτ ′,

which shows that the action S0 is invariant under reparametrizations. 2

EXERCISE 2.3

The action S̃0 in Eq. (2.5) is also invariant under reparametrizations of the

particle world line. Even though it is not hard to consider finite transfor-

mations, let us consider an infinitesimal change of parametrization

τ → τ ′ = f(τ) = τ − ξ(τ).

Verify the invariance of S̃0 under an infinitesimal reparametrization.

SOLUTION

The field Xµ transforms as a world-line scalar, Xµ′(τ ′) = Xµ(τ). Therefore,
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the first-order shift in Xµ is

δXµ = Xµ′(τ)−Xµ(τ) = ξ(τ)Ẋµ.

Notice that the fact that Xµ has a space-time vector index is irrelevant

to this argument. The auxiliary field e(τ) transforms at the same time

according to

e′(τ ′)dτ ′ = e(τ)dτ.

Infinitesimally, this leads to

δe = e′(τ)− e(τ) =
d

dτ
(ξe).

Let us analyze the special case of a flat space-time metric gµν(X) = ηµν ,

even though the result is true without this restriction. In this case the vector

index on Xµ can be raised and lowered inside derivatives. The expression

S̃0 has the variation

δS̃0 =
1

2

∫
dτ

(
2ẊµδẊµ

e
− ẊµẊµ

e2
δe−m2δe

)
.

Here δẊµ is given by

δẊµ =
d

dτ
δXµ = ξ̇Ẋµ + ξẌµ.

Together with the expression for δe, this yields

δS̃0 =
1

2

∫
dτ

[
2Ẋµ

e

(
ξ̇Ẋµ + ξẌµ

)
− ẊµẊµ

e2

(
ξ̇e+ ξė

)
−m2d(ξe)

dτ

]
.

The last term can be dropped because it is a total derivative. The remaining

terms can be written as

δS̃0 =
1

2

∫
dτ · d

dτ

(
ξ

e
ẊµẊµ

)
.

This is a total derivative, so it too can be dropped (for suitable boundary

conditions). Therefore, S̃0 is invariant under reparametrizations. 2

EXERCISE 2.4

The reparametrization invariance that was checked in the previous exercise

allows one to choose a gauge in which e = 1. As usual, when doing this one

should be careful to retain the e equation of motion (evaluated for e = 1).

What is the form and interpretation of the equations of motion for e and

Xµ resulting from S̃0?
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SOLUTION

The equation of motion for e derived from the action principle for S̃0 is given

by the vanishing of the variational derivative

δS̃0

δe
= −1

2

(
e−2ẊµẊµ +m2

)
= 0.

Choosing the gauge e(τ) = 1, we obtain the equation

ẊµẊµ +m2 = 0.

Since pµ = Ẋµ is the momentum conjugate to Xµ, this equation is simply

the mass-shell condition p2 +m2 = 0, so that m is the mass of the particle,

as was shown in Exercise 2.1. The variation with respect to Xµ gives the

second equation of motion

− d

dτ
(gµνẊ

ν) +
1

2
∂µgρλẊ

ρẊλ

= −(∂ρgµν)ẊρẊν − gµνẌν +
1

2
∂µgρλẊ

ρẊλ = 0.

This can be brought to the form

Ẍµ + ΓµρλẊ
ρẊλ = 0, (2.10)

where

Γµρλ =
1

2
gµν(∂ρgλν + ∂λgρν − ∂νgρλ)

is the Christoffel connection (or Levi–Civita connection). Equation (2.10)

is the geodesic equation. Note that, for a flat space-time, Γµρλ vanishes

in Cartesian coordinates, and one recovers the familiar equation of motion

for a point particle in flat space. Note also that the more conventional

normalization (ẊµẊµ + 1 = 0) would have been obtained by choosing the

gauge e = 1/m. 2

EXERCISE 2.5

The action of a p-brane is invariant under reparametrizations of the p + 1

world-volume coordinates. Show this explicitly by checking that the action

(2.6) is invariant under a change of variables σα → σα(σ̃).

SOLUTION

Under this change of variables the induced metric in Eq. (2.8) transforms in
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the following way:

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
gµν = (f−1)γα

∂Xµ

∂σ̃γ
(f−1)δβ

∂Xν

∂σ̃δ
gµν ,

where

fαβ (σ̃) =
∂σα

∂σ̃β
.

Defining J to be the Jacobian of the world-volume coordinate transforma-

tion, that is, J = det fαβ , the determinant appearing in the action becomes

det

(
gµν

∂Xµ

∂σα
∂Xν

∂σβ

)
= J−2 det

(
gµν

∂Xµ

∂σ̃γ
∂Xν

∂σ̃δ

)
.

The measure of the integral transforms according to

dp+1σ = Jdp+1σ̃,

so that the Jacobian factors cancel, and the action becomes

S̃p = −Tp
∫
dp+1σ̃

√
−det

(
gµν

∂Xµ

∂σ̃γ
∂Xν

∂σ̃δ

)
.

Therefore, the action is invariant under reparametrizations of the world-

volume coordinates. 2

2.2 The string action

This section specializes the discussion to the case of a string (or one-brane)

propagating in D-dimensional flat Minkowski space-time. The string sweeps

out a two-dimensional surface as it moves through space-time, which is called

the world sheet. The points on the world sheet are parametrized by the two

coordinates σ0 = τ , which is time-like, and σ1 = σ, which is space-like. If

the variable σ is periodic, it describes a closed string. If it covers a finite

interval, the string is open. This is illustrated in Fig. 2.3.

The Nambu-Goto action

The space-time embedding of the string world sheet is described by functions

Xµ(σ, τ), as shown in Fig. 2.4. The action describing a string propagating

in a flat background geometry can be obtained as a special case of the

more general p-brane action of the previous section. This action, called the

Nambu–Goto action, takes the form

SNG = −T
∫
dσdτ

√
(Ẋ ·X ′)2 − Ẋ2X ′2, (2.11)
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where

Ẋµ =
∂Xµ

∂τ
and Xµ′ =

∂Xµ

∂σ
, (2.12)

and the scalar products are defined in the case of a flat space-time by A·B =

ηµνA
µBν . The integral appearing in this action describes the area of the

world sheet. As a result, the classical string motion minimizes (or at least

extremizes) the world-sheet area, just as classical particle motion makes the

length of the world line extremal by moving along a geodesic.

X

X

X 0

1

2

Fig. 2.3. The world sheet for the free propagation of an open string is a rectangular
surface, while the free propagation of a closed string sweeps out a cylinder.

Fig. 2.4. The functions Xµ(σ, τ) describe the embedding of the string world sheet
in space-time.
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The string sigma model action

Even though the Nambu–Goto action has a nice physical interpretation as

the area of the string world sheet, its quantization is again awkward due to

the presence of the square root. An action that is equivalent to the Nambu–

Goto action at the classical level, because it gives rise to the same equations

of motion, is the string sigma model action.1

The string sigma-model action is expressed in terms of an auxiliary world-

sheet metric hαβ(σ, τ), which plays a role analogous to the auxiliary field

e(τ) introduced for the point particle. We shall use the notation hαβ for the

world-sheet metric, whereas gµν denotes a space-time metric. Also,

h = dethαβ and hαβ = (h−1)αβ , (2.13)

as is customary in relativity. In this notation the string sigma-model action

is

Sσ = −1

2
T

∫
d2σ
√
−hhαβ∂αX · ∂βX. (2.14)

At the classical level the string sigma-model action is equivalent to the

Nambu–Goto action. However, it is more convenient for quantization.

EXERCISES

EXERCISE 2.6

Derive the equations of motion for the auxiliary metric hαβ and the bosonic

field Xµ in the string sigma-model action. Show that classically the string

sigma-model action (2.14) is equivalent to the Nambu–Goto action (2.11).

SOLUTION

As for the point-particle case discussed earlier, the auxiliary metric hαβ ap-

pearing in the string sigma-model action can be eliminated using its equa-

tions of motion. Indeed, since there is no kinetic term for hαβ, its equation

of motion implies the vanishing of the world-sheet energy–momentum tensor

1 This action, traditionally called the Polyakov action, was discovered by Brink, Di Vecchia and
Howe and by Deser and Zumino several years before Polyakov skillfully used it for path-integral
quantization of the string.
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Tαβ, that is,

Tαβ = − 2

T

1√
−h

δSσ
δhαβ

= 0.

To evaluate the variation of the action, the following formula is useful:

δh = −hhαβδhαβ,

which implies that

δ
√
−h = −1

2

√
−hhαβδhαβ. (2.15)

After taking the variation of the action, the result for the energy–momentum

tensor takes the form

Tαβ = ∂αX · ∂βX −
1

2
hαβh

γδ∂γX · ∂δX = 0.

This is the equation of motion for hαβ, which can be used to eliminate

hαβ from the string sigma-model action. The result is the Nambu–Goto

action. The easiest way to see this is to take the square root of minus the

determinant of both sides of the equation

∂αX · ∂βX =
1

2
hαβh

γδ∂γX · ∂δX.

This gives
√
−det(∂αX · ∂βX) =

1

2

√
−hhγδ∂γX · ∂δX.

Finally, the equation of motion for Xµ, obtained from the Euler–Lagrange

condition, is

∆Xµ = − 1√
−h

∂α

(√
−hhαβ∂βXµ

)
= 0.

2

EXERCISE 2.7

Calculate the nonrelativistic limit of the Nambu–Goto action

SNG = −T
∫
dτdσ

√
−detGαβ, Gαβ = ∂αX

µ∂βXµ

for a string in Minkowski space-time. Use the static gauge, which fixes

the longitudinal directions X0 = τ , X1 = σ, while leaving the transverse

directions X i free. Show that the kinetic energy contains only the transverse

velocity. Determine the mass per unit length of the string.
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SOLUTION

In the static gauge

detGαβ = det

(
∂τX

µ∂τXµ ∂τX
µ∂σXµ

∂σX
µ∂τXµ ∂σX

µ∂σXµ

)

= det

(
−1 + ∂τX

i∂τXi ∂τX
i∂σXi

∂σX
i∂τXi 1 + ∂σX

i∂σXi

)
.

Then,

detGαβ ≈ −1 + ∂τX
i∂τXi − ∂σXi∂σXi + . . .

Here the dots indicate higher-order terms that can be dropped in the non-

relativistic limit for which the velocities are small. In this limit the action

becomes (after a Taylor expansion)

SNG = −T
∫
dτdσ

√
| − 1 + ∂τXi∂τXi − ∂σXi∂σXi|

≈ T
∫
dτdσ

(
−1 +

1

2
∂τX

i∂τXi −
1

2
∂σX

i∂σXi

)
.

The first term in the parentheses gives −m
∫
dτ , if L is the length of the σ

interval and m = LT . This is the rest-mass contribution to the potential

energy. Note that L is a distance in space, because of the choice of static

gauge. Thus the tension T can be interpreted as the mass per unit length, or

mass density, of the string. The last two terms of the above formula are the

kinetic energy and the negative of the potential energy of a nonrelativistic

string of tension T . 2

EXERCISE 2.8

Show that if a cosmological constant term is added to the string sigma-model

action, so that

Sσ = −T
2

∫
d2σ
√
−hhαβ∂αXµ∂βXµ + Λ

∫
d2σ
√
−h,

it leads to inconsistent classical equations of motion.

SOLUTION

The equation of motion for the world-sheet metric is

2√
−h

δSσ
δhγδ

= −T [∂γX
µ∂δXµ −

1

2
hγδ(h

αβ∂αX
µ∂βXµ)]− Λhγδ = 0,
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where we have used Eq. (2.15). Contracting with hγδ gives

hγδh
γδΛ = T (

1

2
hγδh

γδ − 1)hαβ∂αX
µ∂βXµ.

Since hγδh
γδ = 2, the right-hand side vanishes. Thus, assuming h 6= 0,

consistency requires Λ = 0. In other words, adding a cosmological constant

term gives inconsistent classical equations of motion. 2

EXERCISE 2.9

Show that the sigma-model form of the action of a p-brane, for p 6= 1,

requires a cosmological constant term.

SOLUTION

Consider a p-brane action of the form

Sσ = −Tp
2

∫
dp+1σ

√
−hhαβ∂αX · ∂βX + Λp

∫
dp+1σ

√
−h. (2.16)

The equation of motion for the world-volume metric is obtained exactly as

in the previous exercise, with the result

Tp[∂γX · ∂δX −
1

2
hγδ(h

αβ∂αX · ∂βX)] + Λphγδ = 0.

This equation is not so easy to solve directly, so let us instead investigate

whether it is solved by equating the world-volume metric to the induced

metric

hαβ = ∂αX · ∂βX. (2.17)

Substituting this ansatz in the previous equation and dropping common

factors gives

Tp(1−
1

2
hαβhαβ) + Λp = 0.

Substituting hαβhαβ = p+ 1, one learns that

Λp =
1

2
(p− 1)Tp. (2.18)

Thus, consistency requires this choice of Λp.
2 This confirms the previous

result that Λ1 = 0 and shows that Λp 6= 0 for p 6= 1. Substituting the

value of the metric in Eq. (2.17) and the value of Λp in Eq. (2.18), one finds

that Eq. (2.16) is equivalent classically to Eq. (2.6). For the special case of

2 A different value is actually equivalent, if one makes a corresponding rescaling of hαβ . However,
this results in a multiplicative factor in the relation (2.17).
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p = 0, this reproduces the result in Eq. (2.5) if one makes the identifications

T0 = m and h00 = −m2e2. 2

2.3 String sigma-model action: the classical theory

In this section we discuss the symmetries of the string sigma-model action in

Eq. (2.14). This is helpful for writing the string action in a gauge in which

quantization is particularly simple.

Symmetries

The string sigma-model action for the bosonic string in Minkowski space-

time has a number of symmetries:

• Poincaré transformations. These are global symmetries under which the

world-sheet fields transform as

δXµ = aµνX
ν + bµ and δhαβ = 0. (2.19)

Here the constants aµν (with aµν = −aνµ) describe infinitesimal Lorentz

transformations and bµ describe space-time translations.

• Reparametrizations. The string world sheet is parametrized by two coor-

dinates τ and σ, but a change in the parametrization does not change the

action. Indeed, the transformations

σα → fα(σ) = σ′α and hαβ(σ) =
∂fγ

∂σα
∂f δ

∂σβ
hγδ(σ

′) (2.20)

leave the action invariant. These local symmetries are also called diffeo-

morphisms. Strictly speaking, this implies that the transformations and

their inverses are infinitely differentiable.

• Weyl transformations. The action is invariant under the rescaling

hαβ → eφ(σ,τ)hαβ and δXµ = 0, (2.21)

since
√
−h → eφ

√
−h and hαβ → e−φhαβ give cancelling factors. This

local symmetry is the reason that the energy–momentum tensor is trace-

less.

Poincaré transformations are global symmetries, whereas reparametriza-

tions and Weyl transformations are local symmetries. The local symmetries

can be used to choose a gauge, such as the static gauge discussed earlier, or

else one in which some of the components of the world-sheet metric hαβ are

of a particular form.
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Gauge fixing

The gauge-fixing procedure described earlier for the point particle can be

generalized to the case of the string. In this case the auxiliary field has three

independent components, namely

hαβ =

(
h00 h01

h10 h11

)
, (2.22)

where h10 = h01. Reparametrization invariance allows us to choose two of

the components of h, so that only one independent component remains. But

this remaining component can be gauged away by using the invariance of the

action under Weyl rescalings. So in the case of the string there is sufficient

symmetry to gauge fix hαβ completely. As a result, the auxiliary field hαβ
can be chosen as

hαβ = ηαβ =

(
−1 0

0 1

)
. (2.23)

Actually such a flat world-sheet metric is only possible if there is no topo-

logical obstruction. This is the case when the world sheet has vanishing

Euler characteristic. Examples include a cylinder and a torus. When a flat

world-sheet metric is an allowed gauge choice, the string action takes the

simple form

S =
T

2

∫
d2σ(Ẋ2 −X ′2). (2.24)

The string actions discussed so far describe propagation in flat Minkowski

space-time. Keeping this requirement, one could consider the following two

additional terms, both of which are renormalizable (or super-renormalizable)

and compatible with Poincaré invariance,

S1 = λ1

∫
d2σ
√
−h and S2 = λ2

∫
d2σ
√
−hR(2)(h). (2.25)

S1 is a cosmological constant term on the world sheet. This term is not

allowed by the equations of motion (see Exercise 2.8). The term S2 involves

R(2)(h), the scalar curvature of the two-dimensional world-sheet geometry.

Such a contribution raises interesting issues, which are explored in the next

chapter. For now, let us assume that it can be ignored.

Equations of motion and boundary conditions

Equations of motion

Let us now suppose that the world-sheet topology allows a flat world-sheet

metric to be chosen. For a freely propagating closed string a natural choice
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is an infinite cylinder. Similarly, the natural choice for an open string is an

infinite strip. In both cases, the motion of the string in Minkowski space is

governed by the action in Eq. (2.24). This implies that the Xµ equation of

motion is the wave equation

∂α∂
αXµ = 0 or

(
∂2

∂σ2
− ∂2

∂τ2

)
Xµ = 0. (2.26)

Since the metric on the world sheet has been gauge fixed, the vanishing of the

energy–momentum tensor, that is, Tαβ = 0 originating from the equation

of motion of the world-sheet metric, must now be imposed as an additional

constraint condition. In the gauge hαβ = ηαβ the components of this tensor

are

T01 = T10 = Ẋ ·X ′ and T00 = T11 =
1

2
(Ẋ2 +X ′2). (2.27)

Using T00 = T11, we see the vanishing of the trace of the energy–momentum

tensor TrT = ηαβTαβ = T11−T00. This is a consequence of Weyl invariance,

as was mentioned before.

Boundary conditions

In order to give a fully defined variational problem, boundary conditions

need to be specified. A string can be either closed or open. For convenience,

let us choose the coordinate σ to have the range 0 ≤ σ ≤ π. The stationary

points of the action are determined by demanding invariance of the action

under the shifts

Xµ → Xµ + δXµ. (2.28)

In addition to the equations of motion, there is the boundary term

−T
∫
dτ
[
X ′µδX

µ|σ=π −X ′µδXµ|σ=0

]
, (2.29)

which must vanish. There are several different ways in which this can be

achieved. For an open string these possibilities are illustrated in Fig. 2.5.

• Closed string. In this case the embedding functions are periodic,

Xµ(σ, τ) = Xµ(σ + π, τ). (2.30)

• Open string with Neumann boundary conditions. In this case the com-

ponent of the momentum normal to the boundary of the world sheet

vanishes, that is,

X ′µ = 0 at σ = 0, π. (2.31)
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If this choice is made for all µ, these boundary conditions respect D-

dimensional Poincaré invariance. Physically, they mean that no momen-

tum is flowing through the ends of the string.

• Open string with Dirichlet boundary conditions. In this case the positions

of the two string ends are fixed so that δXµ = 0, and

Xµ|σ=0 = Xµ
0 and Xµ|σ=π = Xµ

π , (2.32)

where Xµ
0 and Xµ

π are constants and µ = 1, . . . ,D − p − 1. Neumann

boundary conditions are imposed for the other p+ 1 coordinates. Dirich-

let boundary conditions break Poincaré invariance, and for this reason

they were not considered for many years. But, as is discussed in Chap-

ter 6, there are circumstances in which Dirichlet boundary conditions are

unavoidable. The modern interpretation is that Xµ
0 and Xµ

π represent the

positions of Dp-branes. A Dp-brane is a special type of p-brane on which a

fundamental string can end. The presence of a Dp-brane breaks Poincaré

invariance unless it is space-time filling (p = D − 1).

Solution to the equations of motion

To find the solution to the equations of motion and constraint equations it

is convenient to introduce world-sheet light-cone coordinates, defined as

σ± = τ ± σ. (2.33)

In these coordinates the derivatives and the two-dimensional Lorentz metric

take the form

∂± =
1

2
(∂τ ± ∂σ) and

(
η++ η+−
η−+ η−−

)
= −1

2

(
0 1

1 0

)
. (2.34)

σ=0 σ=π σ=0 σ=π



X  (σ,τ)µ X  (σ,τ)µ

Fig. 2.5. Illustration of Dirichlet (left) and Neumann (right) boundary conditions.
The solid and dashed lines represent string positions at two different times.
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In light-cone coordinates the wave equation for Xµ is

∂+∂−Xµ = 0. (2.35)

The vanishing of the energy–momentum tensor becomes

T++ = ∂+X
µ∂+Xµ = 0, (2.36)

T−− = ∂−Xµ∂−Xµ = 0, (2.37)

while T+− = T−+ = 0 expresses the vanishing of the trace, which is auto-

matic. The general solution of the wave equation (2.35) is given by

Xµ(σ, τ) = Xµ
R(τ − σ) +Xµ

L(τ + σ), (2.38)

which is a sum of right-movers and left-movers. To find the explicit form of

XR andXL one should requireXµ(σ, τ) to be real and impose the constraints

(∂−XR)2 = (∂+XL)2 = 0. (2.39)

The quantum version of these constraints will be discussed in the next sec-

tion.

Closed-string mode expansion

The most general solution of the wave equation satisfying the closed-string

boundary condition is given by

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(τ − σ) +
i

2
ls
∑

n6=0

1

n
αµne

−2in(τ−σ), (2.40)

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑

n6=0

1

n
α̃µne

−2in(τ+σ), (2.41)

where xµ is a center-of-mass position and pµ is the total string momentum,

describing the free motion of the string center of mass. The exponential

terms represent the string excitation modes. Here we have introduced a new

parameter, the string length scale ls, which is related to the string tension

T and the open-string Regge slope parameter α′ by

T =
1

2πα′
and

1

2
l2s = α′. (2.42)

The requirement that Xµ
R and Xµ

L are real functions implies that xµ and pµ

are real, while positive and negative modes are conjugate to each other

αµ−n = (αµn)? and α̃µ−n = (α̃µn)? . (2.43)
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The terms linear in σ cancel from the sum Xµ
R + Xµ

L , so that closed-string

boundary conditions are indeed satisfied. Note that the derivatives of the

expansions take the form

∂−X
µ
R = ls

+∞∑

m=−∞
αµme

−2im(τ−σ) (2.44)

∂+X
µ
L = ls

+∞∑

m=−∞
α̃µme

−2im(τ+σ), (2.45)

where

αµ0 = α̃µ0 =
1

2
lsp

µ. (2.46)

These expressions are useful later. In order to quantize the theory, let us

first introduce the canonical momentum conjugate to Xµ. It is given by

Pµ(σ, τ) =
δS

δẊµ

= TẊµ. (2.47)

With this definition of the canonical momentum, the classical Poisson brack-

ets are
[
Pµ(σ, τ), P ν(σ′, τ)

]
P.B.

=
[
Xµ(σ, τ),Xν(σ′, τ)

]
P.B.

= 0, (2.48)

[
Pµ(σ, τ),Xν(σ′, τ)

]
P.B.

= ηµνδ(σ − σ′). (2.49)

In terms of Ẋµ

[
Ẋµ(σ, τ),Xν(σ′, τ)

]
P.B.

= T−1ηµνδ(σ − σ′). (2.50)

Inserting the mode expansion for Xµ and Ẋµ into these equations gives the

Poisson brackets satisfied by the modes3

[
αµm, α

ν
n

]
P.B.

=
[
α̃µm, α̃

ν
n

]
P.B.

= imηµνδm+n,0 (2.51)

and
[
αµm, α̃

ν
n

]
P.B.

= 0. (2.52)

3 The derivation of the commutation relations for the modes uses the Fourier expansion of the
Dirac delta function

δ(σ − σ′) =
1

π

+∞X

n=−∞
e2in(σ−σ′).
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2.4 Canonical quantization

The world-sheet theory can now be quantized by replacing Poisson brackets

by commutators

[. . . ]P.B. → i [. . . ] . (2.53)

This gives

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0, [αµm, α̃

ν
n] = 0. (2.54)

Defining

aµm =
1√
m
αµm and aµ†m =

1√
m
αµ−m for m > 0, (2.55)

the algebra satisfied by the modes is essentially the algebra of raising and

lowering operators for quantum-mechanical harmonic oscillators

[aµm, a
ν†
n ] = [ãµm, ã

ν†
n ] = ηµνδm,n for m,n > 0. (2.56)

There is just one unusual feature: the commutators of time components

have a negative sign, that is,
[
a0
m, a

0†
m

]
= −1. (2.57)

This results in negative norm states, which will be discussed in a moment.

The spectrum is constructed by applying raising operators on the ground

state, which is denoted |0〉. By definition, the ground state is annihilated

by the lowering operators:

aµm|0〉 = 0 for m > 0. (2.58)

One can also specify the momentum kµ carried by a state |φ〉,

|φ〉 = aµ1†
m1
aµ2†
m2
· · · aµn†mn

|0; k〉, (2.59)

which is the eigenvalue of the momentum operator pµ,

pµ|φ〉 = kµ|φ〉. (2.60)

It should be emphasized that this is first quantization, and all of these states

(including the ground state) are one-particle states. Second quantization

requires string field theory, which is discussed briefly at the end of Chapter 3.

The states with an even number of time-component operators have pos-

itive norm, while those that are constructed with an odd number of time-
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component operators have negative norm.4 A simple example of a negative-

norm state is given by

a0†
m |0〉 with norm 〈0|a0

ma
0†
m |0〉 = −1, (2.61)

where the ground state is normalized as 〈0|0〉 = 1. In order for the theory

to be physically sensible, it is essential that all physical states have positive

norm. Negative-norm states in the physical spectrum of an interacting the-

ory would lead to violations of causality and unitarity. The way in which the

negative-norm states are eliminated from the physical spectrum is explained

later in this chapter.

Open-string mode expansion

The general solution of the string equations of motion for an open string

with Neumann boundary conditions is given by

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑

m6=0

1

m
αµme

−imτ cos(mσ). (2.62)

Mode expansions for other type of boundary conditions are given as home-

work problems. Note that, for the open string, only one set of modes αµm
appears, whereas for the closed string there are two independent sets of

modes αµm and α̃µm. The open-string boundary conditions force the left- and

right-moving modes to combine into standing waves. For the open string

2∂±Xµ = Ẋµ ±X ′µ = ls

∞∑

m=−∞
αµme

−im(τ±σ), (2.63)

where, αµ0 = lsp
µ.

Hamiltonian and energy–momentum tensor

As discussed above, the string sigma-model action is invariant under various

symmetries.

Noether currents

Recall that there is a standard method, due to Noether, for constructing a

conserved current Jα associated with a global symmetry transformation

φ→ φ+ δεφ, (2.64)

4 States that have negative norm are sometimes called ghosts, but we reserve that word for the
ghost fields that are arise from covariant BRST quantization in the next chapter.
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where φ is any field of the theory and ε is an infinitesimal parameter. Such

a transformation is a symmetry of the theory if it leaves the equations of

motion invariant. This is the case if the action changes at most by a surface

term, which means that the Lagrangian density changes at most by a total

derivative. The Noether current is then determined from the change in the

action under the above transformation

L → L+ ε∂αJ α. (2.65)

When ε is a constant, this change is a total derivative, which reflects the

fact that there is a global symmetry. Then the equations of motion imply

that the current is conserved, ∂αJ α = 0. The Poincaré transformations

δXµ = aµνX
ν + bµ, (2.66)

are global symmetries of the string world-sheet theory. Therefore, they give

rise to conserved Noether currents. Applying the Noether method to derive

the conserved currents associated with the Poincaré transformation of Xµ,

one obtains

Pµα = T∂αX
µ, (2.67)

Jµνα = T (Xµ∂αX
ν −Xν∂αX

µ) , (2.68)

where the first current is associated with the translation symmetry, and the

second one originates from the invariance under Lorentz transformations.

Hamiltonian

World-sheet time evolution is generated by the Hamiltonian

H =

∫ π

0

(
ẊµP

µ
0 − L

)
dσ =

T

2

∫ π

0

(
Ẋ2 +X ′2

)
dσ, (2.69)

where

Pµ0 =
δS

δẊµ

= TẊµ, (2.70)

was previously called P µ(σ, τ). Inserting the mode expansions, the result

for the closed-string Hamiltonian is

H =
+∞∑

n=−∞
(α−n · αn + α̃−n · α̃n) , (2.71)

while for the open string the corresponding expression is

H =
1

2

+∞∑

n=−∞
α−n · αn. (2.72)
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These results hold for the classical theory. In the quantum theory there are

ordering ambiguities that need to be resolved.

Energy momentum tensor

Let us now consider the mode expansions of the energy–momentum tensor.

Inserting the closed-string mode expansions for XL and XR into the energy–

momentum tensor Eqs (2.36), (2.37), one obtains

T−− = 2 l2s

+∞∑

m=−∞
Lme

−2im(τ−σ) and T++ = 2 l2s

+∞∑

m=−∞
L̃me

−2im(τ+σ),

(2.73)

where the Fourier coefficients are the Virasoro generators

Lm =
1

2

+∞∑

n=−∞
αm−n · αn and L̃m =

1

2

+∞∑

n=−∞
α̃m−n · α̃n. (2.74)

In the same way, one can get the result for the modes of the energy–

momentum tensor of the open string. Comparing with the Hamiltonian,

results in the expression

1

2
H = L0 + L̃0 =

1

2

+∞∑

n=−∞
(α−n · αn + α̃−n · α̃n) , (2.75)

for a closed string, while for an open string

H = L0 =
1

2

+∞∑

n=−∞
α−n · αn. (2.76)

The above results hold for the classical theory. Again, in the quantum theory

one needs to resolve ordering ambiguities.

Mass formula for the string

Classically the vanishing of the energy–momentum tensor translates into the

vanishing of all the Fourier modes

Lm = 0 for m = 0,±1,±2, . . . (2.77)

The classical constraint

L0 = L̃0 = 0, (2.78)

can be used to derive an expression for the mass of a string. The relativistic

mass-shell condition is

M2 = −pµpµ, (2.79)
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where pµ is the total momentum of the string. This total momentum is

given by

pµ = T

∫ π

0
dσẊµ(σ), (2.80)

so that only the zero mode in the mode expansion of Ẋµ(σ, τ) contributes.

For the open string, the vanishing of L0 then becomes

L0 =
∞∑

n=1

α−n · αn +
1

2
α2

0 =
∞∑

n=1

α−n · αn + α′p2 = 0, (2.81)

which gives a relation between the mass of the string and the oscillator

modes. For the open string one gets the relation

M2 =
1

α′

∞∑

n=1

α−n · αn. (2.82)

For the closed string one has to take the left-moving and right-moving modes

into account, and then one obtains

M2 =
2

α′

∞∑

n=1

(α−n · αn + α̃−n · α̃n) . (2.83)

These are the mass-shell conditions for the string, which determine the mass

of a given string state. In the quantum theory these relations get slightly

modified.

The Virasoro algebra

Classical theory

In the classical theory the Virasoro generators satisfy the algebra

[Lm, Ln]P.B. = i(m− n)Lm+n. (2.84)

The appearance of the Virasoro algebra is due to the fact that the gauge

choice Eq. (2.23) has not fully gauge fixed the reparametrization symmetry.

Let ξα be an infinitesimal parameter for a reparametrization and let Λ be an

infinitesimal parameter for a Weyl rescaling. Then residual reparametriza-

tion symmetries satisfying

∂αξβ + ∂βξα = Ληαβ, (2.85)

still remain. These are the reparametrizations that are also Weyl rescalings.

If one defines the combinations ξ± = ξ0 ± ξ1 and σ± = σ0 ± σ1, then one
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finds that Eq. (2.85) is solved by

ξ+ = ξ+(σ+) and ξ− = ξ−(σ−). (2.86)

The infinitesimal generators for the transformations δσ± = ξ± are given by

V ± =
1

2
ξ±(σ±)

∂

∂σ±
, (2.87)

and a complete basis for these transformations is given by

ξ±n (σ±) = e2inσ± n ∈ �
. (2.88)

The corresponding generators V ±n give two copies of the Virasoro algebra.

In the case of open strings there is just one Virasoro algebra, and the in-

finitesimal generators are

Vn = einσ
+ ∂

∂σ+
+ einσ

− ∂

∂σ−
n ∈ �

. (2.89)

In the classical theory the equation of motion for the metric implies the

vanishing of the energy–momentum tensor, that is, T++ = T−− = 0, which

in terms of the Fourier components of Eq. (2.73) is

Lm =
1

2

+∞∑

n=−∞
αm−n · αn = 0 for m ∈ �

. (2.90)

In the case of closed strings, there are also corresponding L̃m conditions.

Quantum theory

In the quantum theory these operators are defined to be normal-ordered,

that is,

Lm =
1

2

∞∑

n=−∞
: αm−n · αn : . (2.91)

According to the normal-ordering prescription the lowering operators always

appear to the right of the raising operators. In particular, L0 becomes

L0 =
1

2
α2

0 +
∞∑

n=1

α−n · αn. (2.92)

Actually, this is the only Virasoro operator for which normal-ordering mat-

ters. Since an arbitrary constant could have appeared in this expression,

one must expect a constant to be added to L0 in all formulas, in particular

the Virasoro algebra.
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Using the commutators for the modes αµm, one can show that in the quan-

tum theory the Virasoro generators satisfy the relation

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0, (2.93)

where c = D is the space-time dimension. The term proportional to c is a

quantum effect. This means that it appears after quantization and is absent

in the classical theory. This term is called a central extension, and c is called

a central charge, since it can be regarded as multiplying the unit operator,

which when adjoined to the algebra is in the center of the extended algebra.

SL(2, � ) subalgebra

The Virasoro algebra contains an SL(2, � ) subalgebra that is generated by

L0, L1 and L−1. This is a noncompact form of the familiar SU(2) algebra.

Just as SU(2) and SO(3) have the same Lie algebra, so do SL(2, � ) and

SO(2, 1). Thus, in the case of closed strings, the complete Virasoro algebra

of both left-movers and right-movers contains the subalgebra SL(2, � ) ×
SL(2, � ) = SO(2, 2). This is a noncompact version of the Lie algebra

identity SU(2) × SU(2) = SO(4). The significance of this subalgebra will

become clear in the next chapter.

Physical states

As was mentioned above, in the quantum theory a constant may need to be

added to L0 to parametrize the arbitrariness in the ordering prescription.

Therefore, when imposing the constraint that the zero mode of the energy–

momentum tensor should vanish, the only requirement in the case of the

open string is that there exists some constant a such that

(L0 − a)|φ〉 = 0. (2.94)

Here |φ〉 is any physical on-shell state in the theory, and the constant a will

be determined later. Similarly, for the closed string

(L0 − a)|φ〉 = (L̃0 − a)|φ〉 = 0. (2.95)

Mass operator

The constant a contributes to the mass operator. Indeed, in the quantum

theory Eq. (2.94) corresponds to the mass-shell condition for the open string

α′M2 =
∞∑

n=1

α−n · αn − a = N − a, (2.96)
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where

N =
∞∑

n=1

α−n · αn =
∞∑

n=1

na†n · an, (2.97)

is called the number operator, since it has integer eigenvalues. For the ground

state, which has N = 0, this gives α′M2 = −a, while for the excited states

α′M2 = 1− a, 2− a, . . .
For the closed string

1

4
α′M2 =

∞∑

n=1

α−n · αn − a =
∞∑

n=1

α̃−n · α̃n − a = N − a = Ñ − a. (2.98)

Level matching

The normal-ordering constant a cancels out of the difference

(L0 − L̃0)|φ〉 = 0, (2.99)

which implies N = Ñ . This is the so-called level-matching condition of the

bosonic string. It is the only constraint that relates the left- and right-

moving modes.

Virasoro generators and physical states

In the quantum theory one cannot demand that the operator Lm annihilates

all the physical states, for all m 6= 0, since this is incompatible with the

Virasoro algebra. Rather, a physical state can only be annihilated by half

of the Virasoro generators, specifically

Lm|φ〉 = 0 m > 0. (2.100)

Together with the mass-shell condition

(L0 − a)|φ〉 = 0, (2.101)

this characterizes a physical state |φ〉. This is sufficient to give vanishing

matrix elements of Ln − aδn,0, between physical states, for all n. Since

L−m = L†m, (2.102)

the hermitian conjugate of Eq. (2.100) ensures that the negative-mode Vi-

rasoro operators annihilate physical states on their left

〈φ|Lm = 0 m < 0. (2.103)
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There are no normal-ordering ambiguities in the Lorentz generators5

Jµν = xµpν − xνpµ − i
∞∑

n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
, (2.104)

and therefore they can be interpreted as quantum operators without any

quantum corrections. Using this expression, it is possible to check that

[Lm, J
µν ] = 0, (2.105)

which implies that the physical-state condition is invariant under Lorentz

transformations. Therefore, physical states must appear in complete Lorentz

multiplets. This follows from the fact that, the formalism being discussed

here is manifestly Lorentz covariant.

Absence of negative-norm states

The goal of this section is to show that a spectrum free of negative-norm

states is only possible for certain values of a and the space-time dimensionD.

In order to carry out the analysis in a covariant manner, a crucial ingredient

is the Virasoro algebra in Eq. (2.93).

In the quantum theory the values of a and D are not arbitrary. For

some values negative-norm states appear and for other values the physical

Hilbert space is positive definite. At the boundary where positive-norm

states turn into negative-norm states, an increased number of zero-norm

states appear. Therefore, in order to determine the allowed values for a and

D, an effective strategy is to search for zero-norm states that satisfy the

physical-state conditions.

Spurious states

A state |ψ〉 is called spurious if it satisfies the mass-shell condition and is

orthogonal to all physical states

(L0 − a)|ψ〉 = 0 and 〈φ|ψ〉 = 0, (2.106)

where |φ〉 represents any physical state in the theory. An example of a

spurious state is

|ψ〉 =

∞∑

n=1

L−n|χn〉 with (L0 − a+ n)|χn〉 = 0. (2.107)

5 Jij generates rotations and Ji0 generates boosts.
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In fact, any such state can be recast in the form

|ψ〉 = L−1|χ1〉+ L−2|χ2〉 (2.108)

as a consequence of the Virasoro algebra (e.g. L−3 = [L−1, L−2]). Moreover,

any spurious state can be put in this form. Spurious states |ψ〉 defined this

way are orthogonal to every physical state, since

〈φ|ψ〉 =

∞∑

n=1

〈φ|L−n|χn〉 =

∞∑

n=1

〈χn|Ln|φ〉? = 0. (2.109)

If a state |ψ〉 is spurious and physical, then it is orthogonal to all physical

states including itself

〈ψ|ψ〉 =

∞∑

n=1

〈χn|Ln|ψ〉 = 0. (2.110)

As a result, such a state has zero norm.

Determination of a

When the constant a is suitably chosen, a class of zero-norm spurious states

has the form

|ψ〉 = L−1|χ1〉 (2.111)

with

(L0 − a+ 1)|χ1〉 = 0 and Lm|χ1〉 = 0 m > 0. (2.112)

Demanding that |ψ〉 is physical implies

Lm|ψ〉 = (L0 − a)|ψ〉 = 0 for m = 1, 2, . . . (2.113)

The Virasoro algebra implies the identity

L1L−1 = 2L0 + L−1L1, (2.114)

which leads to

L1|ψ〉 = L1L−1|χ1〉 = (2L0 + L−1L1)|χ1〉 = 2(a− 1)|χ1〉 = 0, (2.115)

and hence a = 1. Thus a = 1 is part of the specification of the boundary

between positive-norm and negative-norm physical states.
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Determination of the space-time dimension

The number of zero-norm spurious states increases dramatically if, in addi-

tion to a = 1, the space-time dimension is chosen appropriately. To see this,

let us construct zero-norm spurious states of the form

|ψ〉 =
(
L−2 + γL2

−1

)
|χ̃〉. (2.116)

This has zero norm for a certain γ, which is determined below. Here |ψ〉 is

spurious if |χ̃〉 is a state that satisfies

(L0 + 1)|χ̃〉 = Lm|χ̃〉 = 0 for m = 1, 2, . . . (2.117)

Now impose the condition that |ψ〉 is a physical state, that is, L1|ψ〉 = 0 and

L2|ψ〉 = 0, since the rest of the constraints Lm|ψ〉 = 0 for m ≥ 3 are then

also satisfied as a consequence of the Virasoro algebra. Let us first evaluate

the condition L1|ψ〉 = 0 using the relation

[
L1, L−2 + γL2

−1

]
= 3L−1 + 2γL0L−1 + 2γL−1L0

= (3− 2γ)L−1 + 4γL0L−1. (2.118)

This leads to

L1|ψ〉 = L1

(
L−2 + γL2

−1

)
|χ̃〉 = [(3− 2γ)L−1 + 4γL0L−1] |χ̃〉. (2.119)

The first term vanishes for γ = 3/2 while the second one vanishes in general,

because

L0L−1|χ̃〉 = L−1(L0 + 1)|χ̃〉 = 0. (2.120)

Therefore, the result of evaluating the L1|ψ〉 = 0 constraint is γ = 3/2. Let

us next consider the L2|ψ〉 = 0 condition. Using

[
L2, L−2 +

3

2
L2
−1

]
= 13L0 + 9L−1L1 +

D

2
(2.121)

gives

L2|ψ〉 = L2

(
L−2 +

3

2
L2
−1

)
|χ̃〉 =

(
−13 +

D

2

)
|χ̃〉. (2.122)

Thus the space-time dimension D = 26 gives additional zero-norm spurious

states.
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Critical bosonic theory

The zero-norm spurious states are unphysical. The fact that they are spu-

rious ensures that they decouple from all physical processes. In fact, all

negative-norm states decouple, and all physical states have positive norm.

Thus, the complete physical spectrum is free of negative-norm states when

the two conditions a = 1 and D = 26 are satisfied, as is proved in the

next section. The a = 1, D = 26 bosonic string theory is called critical,

and one says that the critical dimension is 26. The spectrum is also free of

negative-norm states for a ≤ 1 and D ≤ 25. In these cases the theory is

called noncritical. Noncritical string theory is discussed briefly in the next

chapter.

EXERCISES

EXERCISE 2.10

Find the mode expansion for angular-momentum generators Jµν of an open

bosonic string.

SOLUTION

Using the current in Eq. (2.68),

Jµν =

∫ π

0
Jµν0 dσ = T

∫ π

0
(XµẊν −XνẊµ)dσ.

Now

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑

m6=0

1

m
αµme

−imτ cos(mσ),

Ẋµ(τ, σ) = l2sp
µ + ls

∑

m6=0

αµme
−imτ cos(mσ),

and T = 1/(πl2s ). A short calculation gives

Jµν = xµpν − xνpµ − i
∞∑

m=1

1

m

(
αµ−mα

ν
m − αν−mαµm

)
.

2
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2.5 Light-cone gauge quantization

As discussed earlier, the bosonic string has residual diffeomorphism symme-

tries, even after choosing the gauge hαβ = ηαβ, which consist of all the con-

formal transformations. Therefore, there is still the possibility of making an

additional gauge choice. By making a particular noncovariant gauge choice,

it is possible to describe a Fock space that is manifestly free of negative-norm

states and to solve explicitly all the Virasoro conditions instead of imposing

them as constraints.

Let us introduce light-cone coordinates for space-time6

X± =
1√
2

(X0 ±XD−1). (2.123)

Then the D space-time coordinates Xµ consist of the null coordinates X±

and the D−2 transverse coordinates X i. In this notation, the inner product

of two arbitrary vectors takes the form

v · w = vµw
µ = −v+w− − v−w+ +

∑

i

viwi. (2.124)

Indices are raised and lowered by the rules

v− = −v+, v+ = −v−, and vi = vi. (2.125)

Since two coordinates are treated differently from the others, Lorentz invari-

ance is no longer manifest when light-cone coordinates are used.

What simplification can be achieved by using the residual gauge symme-

try? In terms of σ± the residual symmetry corresponds to the reparametriza-

tions in Eq. (2.86) of each of the null world-sheet coordinates

σ± → ξ±(σ±). (2.126)

These transformations correspond to

τ̃ =
1

2

[
ξ+(σ+) + ξ−(σ−)

]
, (2.127)

σ̃ =
1

2

[
ξ+(σ+)− ξ−(σ−)

]
. (2.128)

This means that τ̃ can be an arbitrary solution to the free massless wave

equation (
∂2

∂σ2
− ∂2

∂τ2

)
τ̃ = 0. (2.129)

6 It is convenient to include the
√

2 factor in the definition of space-time light-cone coordinates
while omitting it in the definition of world-sheet light-cone coordinates.
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Once τ̃ is determined, σ̃ is specified up to a constant.

In the gauge hαβ = ηαβ , the space-time coordinates Xµ(σ, τ) also satisfy

the two-dimensional wave equation. The light-cone gauge uses the residual

freedom described above to make the choice

X+(σ̃, τ̃) = x+ + l2sp
+τ̃ . (2.130)

This corresponds to setting

α+
n = 0 for n 6= 0. (2.131)

In the following the tildes are omitted from the parameters τ̃ and σ̃.

When this noncovariant gauge choice is made, there is a risk that a

quantum-mechanical anomaly could lead to a breakdown of Lorentz in-

variance. So this needs to be checked. In fact, conformal invariance is

essential for making this gauge choice, so it should not be surprising that a

Lorentz anomaly in the light-cone gauge approach corresponds to a confor-

mal anomaly in a covariant gauge that preserves manifest Lorentz invariance.

The light-cone gauge has eliminated the oscillator modes of X+. It is

possible to determine the oscillator modes of X−, as well, by solving the

Virasoro constraints (Ẋ±X ′)2 = 0. In the light-cone gauge these constraints

become

Ẋ− ±X−′ = 1

2p+l2s
(Ẋi ±Xi′)2. (2.132)

This pair of equations can be used to solve for X− in terms of X i. In terms

of the mode expansion for X−, which for an open string is

X− = x− + l2sp
−τ + ils

∑

n6=0

1

n
α−n e

−inτ cosnσ, (2.133)

the solution is

α−n =
1

p+ls

(
1

2

D−2∑

i=1

+∞∑

m=−∞
: αin−mα

i
m : −aδn,0

)
. (2.134)

Therefore, in the light-cone gauge it is possible to eliminate both X+ and

X− (except for their zero modes) and express the theory in terms of the

transverse oscillators. Thus a critical string only has transverse excitations,

just as a massless particle only has transverse polarization states. The con-

venient feature of the light-cone gauge in Eq. (2.130) is that it turns the

Virasoro constraints into linear equations for the modes of X−.
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Mass-shell condition

In the light-cone gauge the open-string mass-shell condition is

M2 = −pµpµ = 2p+p− −
D−2∑

i=1

p2
i = 2(N − a)/l2s , (2.135)

where

N =
D−2∑

i=1

∞∑

n=1

αi−nα
i
n. (2.136)

Let us now construct the physical spectrum of the bosonic string in the

light-cone gauge.

In the light-cone gauge all the excitations are generated by acting with the

transverse modes αin. The first excited state, given by αi−1|0; p〉, belongs to

a (D−2)-component vector representation of the rotation group SO(D−2)

in the transverse space. As a general rule, Lorentz invariance implies that

physical states form representations of SO(D − 1) for massive states and

SO(D − 2) for massless states. Therefore, the bosonic string theory in the

light-cone gauge can only be Lorentz invariant if the vector state αi−1|0; p〉
is massless. This immediately implies that a = 1.

Having fixed the value of a, the next goal is to determine the space-

time dimension D. A heuristic approach is to compute the normal-ordering

constant appearing in the definition of L0 directly. This constant can be

determined from

1

2

D−2∑

i=1

+∞∑

n=−∞
αi−nα

i
n =

1

2

D−2∑

i=1

+∞∑

n=−∞
: αi−nα

i
n : +

1

2
(D − 2)

∞∑

n=1

n. (2.137)

The second sum on the right-hand side is divergent and needs to be reg-

ularized. This can be achieved using ζ-function regularization. First, one

considers the general sum

ζ(s) =
∞∑

n=1

n−s, (2.138)

which is defined for any complex number s. For Re(s) > 1, this sum con-

verges to the Riemann zeta function ζ(s). This zeta function has a unique

analytic continuation to s = −1, where it takes the value ζ(−1) = −1/12.

Therefore, after inserting the value of ζ(−1) in Eq. (2.137), the result for

the additional term is

1

2
(D − 2)

∞∑

n=1

n = −D − 2

24
. (2.139)
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Using the earlier result that the normal-ordering constant a should be equal

to 1, one gets the condition

D − 2

24
= 1, (2.140)

which implies D = 26. Though it is not very rigorous, this is the quickest

way to determined the values of a and D. The earlier analysis of the no-

negative-norm states theorem also singled out D = 26. Another approach

is to verify that the Lorentz generators satisfy the Lorentz algebra, which is

not manifest in the light-cone gauge. The nontrivial requirement is

[J i−, J j−] = 0. (2.141)

Once the α−n oscillators are eliminated, J i− becomes cubic in transverse

oscillators. The algebra is rather complicated, but the bottom line is that

the commutator only vanishes for a = 1 and D = 26. Other derivations of

the critical dimension are presented in the next chapter.

Analysis of the spectrum

Having determined the preferred values a = 1 and D = 26, one can now

determine the spectrum of the bosonic string.

The open string

At the first few mass levels the physical states of the open string are as

follows:

• For N = 0 there is a tachyon |0; k〉, whose mass is given by α′M2 = −1.

• For N = 1 there is a vector boson αi−1|0; k〉. As was explained in the

previous section, Lorentz invariance requires that it is massless. This

state gives a vector representation of SO(24).

• N = 2 gives the first states with positive (mass)2. They are

αi−2|0; k〉 and αi−1α
j
−1|0; k〉, (2.142)

with α′M2 = 1. These have 24 and 24 · 25/2 states, respectively. The

total number of states is 324, which is the dimensionality of the symmetric

traceless second-rank tensor representation of SO(25), since 25·26/2−1 =

324. So, in this sense, the spectrum consists of a single massive spin-two

state at this mass level.

All of these states have a positive norm, since they are built entirely from

the transverse modes, which describe a positive-definite Hilbert space. In

the light-cone gauge the fact that the negative-norm states have decoupled
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is made manifest. All of the massive representations can be rearranged in

complete SO(25) multiplets, as was just demonstrated for the first massive

level. Lorentz invariance of the spectrum is guaranteed, because the Lorentz

algebra is realized on the Hilbert space of transverse oscillators.

The number of states

The total number of physical states of a given mass is easily computed. For

example, in the case of open strings, it follows from Eqs (2.135) and (2.136)

with a = 1 that the number of physical states dn whose mass is given by

α′M2 = n− 1 is the coefficient of wn in the power-series expansion of

trwN =

∞∏

n=1

24∏

i=1

trwα
i
−nα

i
n =

∞∏

n=1

(1− wn)−24. (2.143)

This number can be written in the form

dn =
1

2πi

∮
trwN

wn+1
dw. (2.144)

The number of physical states dn can be estimated for large n by a saddle-

point evaluation. Since the saddle point occurs close to w = 1, one can use

the approximation

trwN =
∞∏

n=1

(1− wn)−24 ∼ exp

(
4π2

1− w

)
. (2.145)

This is an approximation to the modular transformation formula

η(−1/τ) = (−iτ)1/2η(τ) (2.146)

for the Dedekind eta function

η(τ) = eiπτ/12
∞∏

n=1

(
1− e2πinτ

)
, (2.147)

as one sees by setting w = e2πiτ . Then one finds that, for large n,

dn ∼ const. n−27/4 exp(4π
√
n). (2.148)

The exponential factor can be rewritten in the form exp(M/M0) with

M0 = (4π
√
α′)−1. (2.149)

The quantity M0 is called the Hagedorn temperature. Depending on de-

tails that go beyond present considerations, it is either a maximum possible

temperature or else the temperature of a phase transition.
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The closed string

For the case of the closed string, there are two sets of modes (left-movers and

right-movers), and the level-matching condition must be taken into account.

The spectrum is easily deduced from that of the open string, since closed-

string states are tensor products of left-movers and right-movers, each of

which has the same structure as open-string states. The mass of states in

the closed-string spectrum is given by

α′M2 = 4(N − 1) = 4(Ñ − 1). (2.150)

The physical states of the closed string at the first two mass levels are as

follows:

• The ground state |0; k〉 is again a tachyon, this time with

α′M2 = −4. (2.151)

• For the N = 1 level there is a set of 242 = 576 states of the form

|Ωij〉 = αi−1α̃
j
−1|0; k〉, (2.152)

corresponding to the tensor product of two massless vectors, one left-

moving and one right-moving. The part of |Ωij〉 that is symmetric and

traceless in i and j transforms under SO(24) as a massless spin-two par-

ticle, the graviton. The trace term δij |Ωij〉 is a massless scalar, which is

called the dilaton. The antisymmetric part |Ωij〉 − |Ωj i〉 transforms un-

der SO(24) as an antisymmetric second-rank tensor. Each of these three

massless states has a counterpart in superstring theories, where they play

fundamental roles that are discussed in later chapters.

HOMEWORK PROBLEMS

PROBLEM 2.1

Consider the following classical trajectory of an open string

X0 = Bτ,

X1 = B cos(τ) cos(σ),

X2 = B sin(τ) cos(σ),

Xi = 0, i > 2,

and assume the conformal gauge condition.
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(i) Show that this configuration describes a solution to the equations of

motion for the field Xµ corresponding to an open string with Neu-

mann boundary conditions. Show that the ends of this string are

moving with the speed of light.

(ii) Compute the energy E = P 0 and angular momentum J of the string.

Use your result to show that

E2

|J | = 2πT =
1

α′
.

(iii) Show that the constraint equation Tαβ = 0 can be written as

(∂τX)2 + (∂σX)2 = 0, ∂τX
µ∂σXµ = 0,

and that this constraint is satisfied by the above solution.

PROBLEM 2.2

Consider the following classical trajectory of an open string

X0 = 3Aτ,

X1 = A cos(3τ) cos(3σ),

X2 = A sin(aτ) cos(bσ),

and assume the conformal gauge.

(i) Determine the values of a and b so that the above equations describe

an open string that solves the constraint Tαβ = 0. Express the solu-

tion in the form

Xµ = Xµ
L(σ−) +Xµ

R(σ+).

Determine the boundary conditions satisfied by this field configura-

tion.

(ii) Plot the solution in the (X1,X2)-plane as a function of τ in steps of

π/12.

(iii) Compute the center-of-mass momentum and angular momentum and

show that they are conserved. What do you obtain for the relation

between the energy and angular momentum of this string? Comment

on your result.

PROBLEM 2.3

Compute the mode expansion of an open string with Neumann boundary

conditions for the coordinates X0, . . . ,X24, while the remaining coordinate

X25 satisfies the following boundary conditions:
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(i) Dirichlet boundary conditions at both ends

X25(0, τ) = X25
0 and X25(π, τ) = X25

π .

What is the interpretation of such a solution? Compute the conjugate

momentum P 25. Is this momentum conserved?

(ii) Dirichlet boundary conditions on one end and Neumann boundary

conditions at the other end

X25(0, τ) = X25
0 and ∂σX

25(π, τ) = 0.

What is the interpretation of this solution?

PROBLEM 2.4

Consider the bosonic string in light-cone gauge.

(i) Find the mass squared of the following on-shell open-string states:

|φ1〉 = αi−1|0; k〉, |φ2〉 = αi−1α
j
−1|0; k〉,

|φ3〉 = αi−3|0; k〉, |φ4〉 = αi−1α
j
−1α

k
−2|0; k〉.

(ii) Find the mass squared of the following on-shell closed-string states:

|φ1〉 = αi−1α̃
j
−1|0; k〉, |φ2〉 = αi−1α

j
−1α̃

k
−2|0; k〉.

(iii) What can you say about the following closed-string state?

|φ3〉 = αi−1α̃
j
−2|0; k〉

PROBLEM 2.5

Use the mode expansion of an open string with Neumann boundary condi-

tions in Eq. (2.62) and the commutation relations for the modes in Eq. (2.54)

to check explicitly the equal-time commutators

[Xµ(σ, τ),Xν(σ′, τ)] = [P µ(σ, τ), P ν(σ′, τ)] = 0,

while

[Xµ(σ, τ), P ν(σ′, τ)] = iηµνδ(σ − σ′).

Hint: The representation δ(σ − σ′) = 1
π

∑
n∈ � cos(nσ) cos(nσ′) might be

useful.
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PROBLEM 2.6

Exercise 2.10 showed that the Lorentz generators of the open-string world

sheet are given by

Jµν = xµpν − xνpµ − i
∞∑

n=1

1

n

(
αµ−nα

ν
n − αν−nαµn

)
.

Use the canonical commutation relations to verify the Poincaré algebra

[pµ, pν ] = 0,

[pµ, Jνσ] = −iηµνpσ + iηµσpν ,

[Jµν , Jσλ] = −iηνσJµλ + iηµσJνλ + iηνλJµσ − iηµλJνσ.

PROBLEM 2.7

Exercise 2.10 derived the angular-momentum generators Jµν for an open

bosonic string. Derive them for a closed bosonic string.

PROBLEM 2.8

The open-string angular momentum generators in Exercise 2.10 are appro-

priate for covariant quantization. What are the formulas in the case of

light-cone gauge quantization.

PROBLEM 2.9

Show that the Lorentz generators commute with all Virasoro generators,

[Lm, J
µν ] = 0.

Explain why this implies that the physical-state condition is invariant un-

der Lorentz transformations, and states of the string spectrum appear in

complete Lorentz multiplets.

PROBLEM 2.10

Consider an on-shell open-string state of the form

|φ〉 =
(
Aα−1 · α−1 +Bα0 · α−2 + C(α0 · α−1)2

)
|0; k〉,

where A, B and C are constants. Determine the conditions on the coeffi-

cients A, B and C so that |φ〉 satisfies the physical-state conditions for a = 1

and arbitrary D. Compute the norm of |φ〉. What conclusions can you draw

from the result?
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PROBLEM 2.11

The open-string states at the N = 2 level were shown in Section 2.5 to form

a certain representation of SO(25). What does this result imply for the

spectrum of the closed bosonic string at the NL = NR = 2 level?

PROBLEM 2.12

Construct the spectrum of open and closed strings in light-cone gauge for

level N = 3. How many states are there in each case? Without actually

doing it (unless you want to), describe a strategy for assembling these states

into irreducible SO(25) multiplets.

PROBLEM 2.13

We expect the central extension of the Virasoro algebra to be of the form

[Lm, Ln] = (m− n)Lm+n + A(m)δm+n,0,

because normal-ordering ambiguities only arise for m+ n = 0.

(i) Show that if A(1) 6= 0 it is possible to change the definition of L0, by

adding a constant, so that A(1) = 0.

(ii) For A(1) = 0 show that the generators L0 and L±1 form a closed

subalgebra.

PROBLEM 2.14

Derive an equation for the coefficients A(m) defined in the previous problem

that follows from the Jacobi identity

[[Lm, Ln], Lp] + [[Lp, Lm], Ln] + [[Ln, Lp], Lm] = 0.

Assuming A(1) = 0, prove that A(m) = (m3 − m)A(2)/6 is the unique

solution, and hence that the central charge is c = 2A(2).

PROBLEM 2.15

Verify that the Virasoro generators in Eq. (2.91) satisfy the Virasoro algebra.

It is difficult to verify the central-charge term directly from the commutator.

Therefore, a good strategy is to verify that A(1) and A(2) have the correct

values. These can be determined by computing the ground-state matrix

element of Eq. (2.93) for the cases m = −n = 1 and m = −n = 2.
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Conformal field theory and string
interactions

The previous chapter described the free bosonic string in Minkowski space-

time. It was argued that consistency requires the dimension of space-time

to be D = 26 (25 space and one time). Even then, there is a tachyon

problem. When interactions are included, this theory might not have a stable

vacuum. The justification for studying the bosonic string theory, despite

its deficiencies, is that it is a good warm-up exercise before tackling more

interesting theories that do have stable vacua. This chapter continues the

study of the bosonic string theory, covering a lot of ground rather concisely.

One important issue concerns the possibilities for introducing more gen-

eral backgrounds than flat 26-dimensional Minkowski space-time. Another

concerns the development of techniques for describing interactions and com-

puting scattering amplitudes in perturbation theory. We also discuss a

quantum field theory of strings. In this approach field operators create

and destroy entire strings. All of these topics exploit the conformal symme-

try of the world-sheet theory, using the techniques of conformal field theory

(CFT). Therefore, this chapter begins with an overview of that subject.

3.1 Conformal field theory

Until now it has been assumed that the string world sheet has a Lorentzian

signature metric, since this choice is appropriate for a physically evolving

string. However, it is extremely convenient to make a Wick rotation τ →
−iτ , so as to obtain a world sheet with Euclidean signature, and thereby

make the world-sheet metric hαβ positive definite. Having done this, one

can introduce complex coordinates (in local patches)

z = e2(τ−iσ) and z̄ = e2(τ+iσ) (3.1)

58
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and regard the world sheet as a Riemann surface. The factors of two in

the exponents reflect the earlier convention of choosing the periodicity of

the closed-string parametrization to be σ → σ + π. Replacing σ by −σ
in these formulas would interchange the identifications of left-movers and

right-movers. Note that if the world sheet is the complex plane, Euclidean

time corresponds to radial distance, with the origin representing the infinite

past and the circle at infinity the infinite future. The residual symmetries

in the conformal gauge, τ ± σ → f±(τ ± σ), described in Chapter 2, now

become conformal mappings z → f(z) and z̄ → f̄(z̄). For example, the

complex plane (minus the origin) is equivalent to an infinitely long cylinder,

as shown in Fig. 3.1. Thus, we are led to consider conformally invariant

two-dimensional field theories.

τ1

τ2

τ1 τ2

Fig. 3.1. Conformal mapping of an infinitely long cylinder onto a plane.

The conformal group in D dimensions

The main topic of this section is the conformal symmetry of two-dimensional

world-sheet theories. However, conformal symmetry in other dimensions also

plays an important role in recent string theory research (discussed in Chap-

ter 12). Therefore, before specializing to two dimensions, let us consider the

conformal group in D dimensions.

A D-dimensional manifold is called conformally flat if the invariant line

element can be written in the form

ds2 = eω(x)dx · dx. (3.2)

The dot product represents contraction with the Lorentz metric ηµν in the

case of a Lorentzian-signature pseudo-Riemannian manifold or with the Kro-

necker metric δµν in the case of a Euclidean-signature Riemannian manifold.

The function ω(x) in the conformal factor is allowed to be x-dependent.
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The conformal group is the subgroup of the group of general coordinate

transformations (or diffeomorphisms) that preserves the conformal flatness

of the metric. The important geometric property of conformal transforma-

tions is that they preserve angles while distorting lengths.

Part of the conformal group is obvious. Namely, it contains translations

and rotations. By “rotations” we include Lorentz transformations (in the

case of Lorentzian signature). Another conformal group transformation is

a scale transformation xµ → λxµ, where λ is a constant. One can either

regard this as changing ω, or else it can be viewed as a symmetry, if one

also transforms ω appropriately at the same time.

Another class of conformal group transformations, called special conformal

transformations, is less obvious. However, there is a simple way of deriving

them. This hinges on noting that the conformal group includes an inversion

element

xµ → xµ

x2
. (3.3)

This maps

dx · dx→ dx · dx
(x2)2

, (3.4)

so that the metric remains conformally flat.1 The trick then is to consider

a sequence of transformations: inversion – translation – inversion. In other

words, one conjugates a translation (xµ → xµ + bµ) by an inversion. This

gives

xµ → xµ + bµx2

1 + 2b · x+ b2x2
. (3.5)

Taking bµ to be infinitesimal, we get

δxµ = bµx2 − 2xµb · x. (3.6)

Summarizing the results given above, the following infinitesimal transfor-

mations are conformal:

δxµ = aµ + ωµνx
ν + λxµ + bµx2 − 2xµ(b · x). (3.7)

The parameters aµ, ωµν , λ and bµ are infinitesimal constants. After lowering

an index with ηµν or δµν , as appropriate, the parameters of infinitesimal

1 Strictly speaking, in the case of Euclidean signature this requires regarding the point at infinity
to be part of the manifold, a procedure known as conformal compactification. In the case of
Lorentzian signature, a Wick rotation to Euclidean signature should be made first for the
inversion to make sense.
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rotations are required to satisfy ωµν = −ωνµ. Altogether there are

D +
1

2
D(D − 1) + 1 +D =

1

2
(D + 2)(D + 1) (3.8)

linearly independent infinitesimal conformal transformations, so this is the

number of generators of the conformal group.

The number of conformal-group generators in D dimensions is the same

as for the group of rotations in D + 2 dimensions. In fact, by commuting

the infinitesimal conformal transformations one can derive the Lie algebra,

and it turns out to be a noncompact form of SO(D + 2). In the case of

Lorentzian signature, the Lie algebra is SO(D, 2), while if the manifold is

Euclidean it is SO(D + 1, 1).

When D > 2 the algebras discussed above generate the entire conformal

group, except that an inversion is not infinitesimally generated. Because of

the inversion element, the groups have two disconnected components. When

D = 2, the SO(2, 2) or SO(3, 1) algebra is a subalgebra of a much larger

algebra.

The conformal group in two dimensions

As has already been remarked, conformal transformations in two dimensions

consist of analytic coordinate transformations

z → f(z) and z̄ → f̄(z̄). (3.9)

These are angle-preserving transformations wherever f and its inverse func-

tion are holomorphic, that is, f is biholomorphic.

To exhibit the generators, consider infinitesimal conformal transforma-

tions of the form

z → z′ = z − εnzn+1 and z̄ → z̄′ = z̄ − ε̄nz̄n+1, n ∈ �
. (3.10)

The corresponding infinitesimal generators are2

`n = −zn+1∂ and ¯̀
n = −z̄n+1∂̄, (3.11)

where ∂ = ∂/∂z and ∂̄ = ∂/∂z̄. These generators satisfy the classical

Virasoro algebras

[`m, `n] = (m− n)`m+n and
[
¯̀
m, ¯̀

n

]
= (m− n)¯̀

m+n, (3.12)

while
[
`m, ¯̀

n

]
= 0. In the quantum case the Virasoro algebra can acquire

2 For n < −1 these are defined on the punctured plane, which has the origin removed. Similarly,
for n > 1, the point at infinity is removed. Note that `−1, `0 and `1 are special in that they
are defined globally on the Riemann sphere.
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a central extension, or conformal anomaly, with central charge c, in which

case it takes the form

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (3.13)

In a two-dimensional conformal field theory the Virasoro operators are the

modes of the energy–momentum tensor, which therefore is the operator that

generates conformal transformations. The term “central extension” means

that the constant term can be understood to multiply the unit operator,

which is adjoined to the Lie algebra. The expression “conformal anomaly”

refers to the fact that in certain settings the central charge can be interpreted

as signalling a quantum mechanical breaking of the classical conformal sym-

metry.

The conformal group is infinite-dimensional in two dimensions. However,

as was pointed out in Chapter 2, it contains a finite-dimensional subgroup

generated by `0,±1 and ¯̀
0,±1. This remains true in the quantum case. In-

finitesimally, the transformations are

`−1 : z → z − ε,
`0 : z → z − εz,
`1 : z → z − εz2.

(3.14)

The interpretation of the corresponding transformations is that `−1 and
¯̀−1 generate translations, (`0 + ¯̀

0) generates scalings, i(`0 − ¯̀
0) generates

rotations and `1 and ¯̀
1 generate special conformal transformations.

The finite form of the group transformations is

z → az + b

cz + d
with a, b, c, d ∈ � , ad− bc = 1. (3.15)

This is the group SL(2, � )/
�

2 = SO(3, 1).3 The division by
�

2 accounts for

the freedom to replace the parameters a, b, c, d by their negatives, leaving

the transformations unchanged. This is the two-dimensional case of SO(D+

1, 1), which is the conformal group for D > 2 Euclidean dimensions. In the

Lorentzian case it is replaced by SO(2, 2) = SL(2, � ) × SL(2, � ), where

one factor pertains to left-movers and the other to right-movers. This finite-

dimensional subgroup of the two-dimensional conformal group is called the

restricted conformal group.

The previous chapter described the construction of the world-sheet energy–

momentum tensor Tαβ. It was shown to satisfy T+− = T−+ = 0 as a con-

sequence of Weyl symmetry. Since the world-sheet theory has translation

3 By SO(3, 1) we really mean the connected component of the group. There is a similar qualifi-
cation, as well as implicit division by � 2 factors, in the Lorentzian case that follows.
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symmetry, this tensor is also conserved

∂αTαβ = 0. (3.16)

After Wick rotation the light-cone indices ± are replaced by (z, z̄). So the

nonvanishing components are Tzz and Tz̄z̄, and the conservation conditions

are

∂̄Tzz = 0 and ∂Tz̄z̄ = 0. (3.17)

Thus one is holomorphic and the other is antiholomorphic

Tzz = T (z) and Tz̄z̄ = T̃ (z̄). (3.18)

The Virasoro generators are the modes of the energy–momentum tensor.

In the current notation, for ls =
√

2α′ = 1, the right-moving part of the

coordinate Xµ given in Chapter 2 becomes

Xµ
R(σ, τ)→ Xµ

R(z) =
1

2
xµ − i

4
pµ ln z +

i

2

∑

n6=0

1

n
αµnz

−n (3.19)

and similarly

Xµ
L(σ, τ)→ Xµ

L(z̄) =
1

2
xµ − i

4
pµ ln z̄ +

i

2

∑

n6=0

1

n
α̃µnz̄

−n. (3.20)

The holomorphic derivatives take the simple form

∂Xµ(z, z̄) = − i
2

∞∑

n=−∞
αµnz

−n−1 (3.21)

and

∂̄Xµ(z, z̄) = − i
2

∞∑

n=−∞
α̃µnz̄

−n−1. (3.22)

Out of this one can compute the holomorphic component of the energy–

momentum tensor

TX(z) = −2 : ∂X · ∂X : =

+∞∑

n=−∞

Ln
zn+2

. (3.23)

Similarly,

T̃X(z̄) = −2 : ∂̄X · ∂̄X : =

+∞∑

n=−∞

L̃n
z̄n+2

. (3.24)

The subscript X has been introduced here to emphasize that these energy–

momentum tensors are constructed out of the Xµ coordinates.
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Since the two-dimensional conformal algebra is infinite-dimensional, there

is an infinite number of conserved charges, which are essentially the Virasoro

generators. For the infinitesimal conformal transformation

δz = ε(z) and δz̄ = ε̃(z̄), (3.25)

the associated conserved charge that generates this transformation is

Q = Qε +Qeε =
1

2πi

∮ [
T (z)ε(z)dz + T̃ (z̄)ε̃(z̄)dz̄

]
. (3.26)

The integral is performed over a circle of fixed radius. The variation of a

field Φ(z, z̄) under a conformal transformation is then given by

δεΦ(z, z̄) = [Qε,Φ(z, z̄)] and δeεΦ(z, z̄) = [Qeε,Φ(z, z̄)] . (3.27)

Conformal fields and operator product expansions

The fields of a conformal field theory are characterized by their conformal

dimensions, which specify how they transform under scale transformations.

Φ is called a conformal field (also sometimes called a primary field) of con-

formal dimension (h, h̃) if

Φ(z, z̄)→
(
∂w

∂z

)h(∂w̄
∂z̄

)h̃
Φ(w, w̄) (3.28)

under finite conformal transformations z → w(z). In other words, the (h, h̃)

differential

Φ(z, z̄)(dz)h(dz̄)h̃ (3.29)

is invariant under conformal transformations.

Equations (3.26) and (3.27) give

δεΦ(w, w̄) =
1

2πi

∮
dz ε(z) [T (z),Φ(w, w̄)] . (3.30)

This expression is somewhat formal, since we still have to specify the inte-

gration contour. The operator products T (z)Φ(w, w̄) and Φ(w, w̄)T (z) only

have convergent series expansions for radially ordered operators. This means

that the integral
∮
dz ε(z)T (z)Φ(w, w̄) should be evaluated along a contour

with |z| > |w|. This is the first contour displayed in Fig. 3.2. Similarly,∮
dz ε(z)Φ(w, w̄)T (z) should be evaluated along a contour with |z| < |w|.4

4 The point is that matrix elements of these products have convergent mode expansions when
these inequalities are satisfied. The results can then be analytically continued to other regions.
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This is the second contour in Fig. 3.2. The difference of these two expres-

sions, which gives the commutator, corresponds to a z contour that encircles

the point w.

- =

z

w

z

w

|z|>|w| |z|<|w|

z

w
Contour C

Fig. 3.2. Integration contour for the z integral in Eq. (3.30). Since the integrand is
radially ordered, the z integral is performed on a small path encircling w.

Evaluation of this contour integral only requires knowing the singular

terms in the operator product expansion (OPE) for z → w. If the singu-

larities are poles, all is well. The general idea is that a product of local

operators in a quantum field theory defined at nearby locations (compared

to any other operators) can be expanded in a series of local operators at

one of their positions (or any other nearby position). In doing this, it is

customary to write the terms that are most singular first, the next most

singular second, and so forth. For our purposes, the terms that diverge as

z → w are all that are required, and the rest of the terms are represented

by dots. Sometimes the term that is finite in the limit is also of interest.

Equation (3.28) describes the transformation behavior of Φ(w, w̄) under

conformal transformations. Infinitesimally, it becomes

δεΦ(w, w̄) = h∂ε(w)Φ(w, w̄) + ε(w)∂Φ(w, w̄), (3.31)

δeεΦ(w, w̄) = h̃ ∂̄ε̃(w̄)Φ(w, w̄) + ε̃(w̄)∂̄Φ(w, w̄). (3.32)

Requiring that the charge Q induce these transformations determines the

short-distance singularities in the OPE of T and T̃ with Φ

T (z)Φ(w, w̄) =
h

(z − w)2
Φ(w, w̄) +

1

z − w∂Φ(w, w̄) + . . . , (3.33)

T̃ (z̄)Φ(w, w̄) =
h̃

(z̄ − w̄)2
Φ(w, w̄) +

1

z̄ − w̄ ∂̄Φ(w, w̄) + . . . (3.34)
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The dots represent nonsingular terms. These short-distance expansions de-

termine the quantum energy–momentum tensor.

A free scalar field, such asXµ(z), is a conformal field with h = 0. However,

its OPE with itself is not meromorphic

Xµ(z)Xν(w) = −1

4
ηµν ln(z − w) + . . . (3.35)

The field ∂Xµ(z), which is a conformal field of dimension (1, 0), has mero-

morphic OPEs with itself as well as with Xν(w).

Recall that ∂X is the conformal field that enters in the energy–momentum

tensor, where it gives a contribution −2 : ∂X · ∂X :. The dots were defined

in Chapter 2 to mean normal-ordering of the oscillators. An equivalent, but

more elegant, viewpoint is that the dots represent removing the singular

part as follows:

: ∂Xµ(z)∂Xν(z) : = lim
w→z

(
∂zX

µ(z)∂wX
ν(w) +

ηµν

4(z − w)2

)
. (3.36)

These dots are sometimes omitted when the meaning is clear. Each such

scalar field gives a contribution of 1 to the conformal anomaly c. So in D

dimensions the Xµ coordinates give c = c̄ = D.

The OPE of the energy–momentum tensor with itself is

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂T (w) + . . . (3.37)

Note that the energy–momentum tensor is not a conformal field unless c = 0.

In that case T (z) has dimension (2, 0) and T̃ (z̄) has dimension (0, 2). Using

the OPE in Eq. (3.37), it is possible to derive how the energy–momentum

tensor transforms under a finite conformal transformation z → w(z). The

result is

(∂w)2T ′(w) = T (z)− c

12
S(w, z), (3.38)

where

S(w, z) =
2(∂w)(∂3w)− 3(∂2w)2

2(∂w)2
(3.39)

is called the Schwarzian derivative. T ′(w) denotes the transformed energy–

momentum tensor.

Another important example of a conformal field is a free fermi field ψ(z),

which has h = (1/2, 0) and the OPE

ψ(z)ψ(w) =
1

z − w. (3.40)
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Such fields play an important role in the next chapter. A free fermi field has

T (z) = −1

2
: ψ(z)∂ψ(z) : (3.41)

which leads to c = 1/2.

The fact that a pair of fermi fields gives c = 1 is significant. When a free

scalar field takes values on a circle of suitable radius, there is an equivalent

theory in which the scalar field is replaced by a pair of fermi fields. The

replacement of a boson by a pair of fermions is called fermionization, and

its (more common) inverse is called bosonization. It is not our purpose to

explore this in detail here, just to point out that the central charges match

up. In fact, in the simplest case the formulas take the form5

ψ± = : exp(±iφ) : . (3.42)

Here φ is a boson normalized in the usual way, so that the normal-ordered

operator has dimension 1/2. Clearly, for this expression to be single-valued,

φ should have period 2π.

Given a holomorphic primary field Φ(z) of dimension h, one can associate

a state |Φ〉 that satisfies

L0|Φ〉 = h|Φ〉 and Ln|Φ〉 = 0, n > 0. (3.43)

Such a state is called a highest-weight state. This state–operator correspon-

dence is another very useful concept in conformal field theory. The relevant

definition is

|Φ〉 = lim
z→0

Φ(z)|0〉, (3.44)

where |0〉 denotes the conformal vacuum. Recall that z = 0 corresponds to

the infinite past in Euclidean time. Writing a mode expansion

Φ(z) =
∞∑

n=−∞

Φn

zn+h
, (3.45)

the way this works is that

Φn|0〉 = 0 for n > −h and Φ−h|0〉 = |Φ〉. (3.46)

A highest-weight state |Φ〉, taken together with the infinite collection of

states of the form

L−n1L−n2 . . . L−nk |Φ〉, (3.47)

5 Strictly speaking, the right-hand side of this equation should contain another factor called a
cocycle. However, this can often be ignored.
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which are known as the descendant states, gives a representation of the

(holomorphic) Virasoro algebra known as a Verma module.

Highest-weight states appeared in Chapter 2, where we learned that the

physical open-string states of the bosonic string theory satisfy

(L0 − 1)|φ〉 = 0 (3.48)

and

Ln|φ〉 = 0 with n > 0. (3.49)

Therefore, physical open-string states of the bosonic string theory corre-

spond to highest-weight states with h = 1. This construction has a straight-

forward generalization to primary fields Φ(z, z̄) of dimension (h, h̃). In this

case one has

(L0 − h)|Φ〉 = (L̃0 − h̃)|Φ〉 = 0 (3.50)

and

Ln|Φ〉 = L̃n|Φ〉 = 0 with n > 0. (3.51)

Therefore, physical closed-string states of the bosonic string theory corre-

spond to highest-weight states with h = h̃ = 1.

Kac–Moody algebras

Particularly interesting examples of conformal fields are the two-dimensional

currents JAα (z, z̄), A = 1, 2, . . . ,dimG, associated with a compact Lie group

symmetry G in a conformal field theory. Current conservation implies that

there is a holomorphic component JA(z) and an antiholomorphic component

J̃A(z̄), just as was shown for T earlier. Let us consider the holomorphic

current JA(z) only. The zero modes JA0 are the generators of the Lie algebra

of G with

[JA0 , J
B
0 ] = ifABCJ

C
0 . (3.52)

The algebra of the currents JA(z) is an infinite-dimensional extension of this,

known as an affine Lie algebra or a Kac–Moody algebra Ĝ. These currents

have conformal dimension h = 1, and therefore the mode expansion is

JA(z) =
∞∑

n=−∞

JAn
zn+1

A = 1, 2, . . . ,dimG . (3.53)

The Kac–Moody algebra is given by the OPE

JA(z)JB(w) ∼ kδAB

2(z − w)2
+
ifABCJ

C(w)

z − w + . . . (3.54)
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or the equivalent commutation relations

[JAm, J
B
n ] =

1

2
kmδABδm+n,0 + ifABCJ

C
m+n. (3.55)

The parameter k in the Kac–Moody algebra, called the level, is analogous

to the parameter c in the Virasoro algebra. For a U(1) Kac–Moody alge-

bra, Û(1), it can be absorbed in the normalization of the current. However,

for a nonabelian group G, it has an absolute meaning once the normaliza-

tion of the structure constants is specified. The energy–momentum tensor

associated with an arbitrary Kac–Moody algebra is

T (z) =
1

k + h̃G

dimG∑

A=1

: JA(z)JA(z) : , (3.56)

where the dual Coxeter number h̃G takes the value n+1 for An = SU(n+1),

2n − 1 for Bn = SO(2n + 1) – except that it is 2 for SO(3), n + 1 for

Cn = Sp(2n), 2n− 2 for Dn = SO(2n), 4 for G2, 9 for F4, 12 for E6, 18 for

E7, and 30 for E8. In the case of simply-laced Lie groups6 the dual Coxeter

number h̃G is equal to cA, the quadratic Casimir number of the adjoint

representation, which is defined (with our normalization conventions) by

fBCDf
B′D

C = cAδ
BB′ . (3.57)

The central charge associated with this energy–momentum tensor is

c =
k dimG

k + h̃G
. (3.58)

For example, in the case of ŜU(2)k, h̃G = 2 and c = 3k/(k + 2).

Kac–Moody algebra representations of conformal symmetry are unitary if

G is compact and the level k is a positive integer. These symmetry structures

can be realized in Wess–Zumino–Witten models, which are σ models having

the group manifold as target space.

Coset-space theories

Suppose that the Kac–Moody algebra Ĝk has a subalgebra Ĥl. The level

l is determined by the embedding of H in G. For example, if the simple

roots of H are a subset of the simple roots of G, then l = k. If the Kac–

Moody algebra is a direct product of the form Ĝk1 × Ĝk2 and Ĥl is the

diagonal subgroup, then l = k1 + k2. Let us denote the corresponding

6 By definition, these are the Lie groups all of whose nonzero roots have the same length. They
are the groups that are labeled by A,D,E in the Cartan classification.
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energy–momentum tensors by TG(z) and TH(z). Now consider the difference

of the two energy–momentum tensors

T (z) = TG(z)− TH(z). (3.59)

The modes of T (z) are Lm = LGm − LHm. The nontrivial claim is that this

difference defines an energy–momentum tensor, and therefore it gives a rep-

resentation of the conformal group. If this is true, it is obviously unitary,

since it is realized on a subspace of the positive-definite representation space

of Ĝk.

The key to proving that T (z) satisfies the Virasoro algebra is to show that

it commutes with the currents that generate Ĥl. These currents Ja(z), a =

1, 2, . . . ,dimH, are a subset of the currents of Ĝk and therefore have con-

formal dimension h = 1 with respect to TG. In other words,

TG(z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w + . . . (3.60)

However, since they are also currents of Ĥl,

TH(z)Ja(w) ∼ Ja(w)

(z − w)2
+
∂Ja(w)

z − w + . . . (3.61)

Taking the difference of these equations,

T (z)Ja(w) ∼ O(1), (3.62)

or, in terms of modes, [Lm, J
a
n] = 0. Since TH(z) is constructed entirely out

of the dimH currents Ja(z), it follows that

T (z)TH(w) ∼ O(1), (3.63)

or, in terms of modes,

[Lm, L
H
n ] = [LGm − LHm, LHn ] = 0. (3.64)

Using this, together with the identity

[Lm, Ln] = [LGm, L
G
n ]− [LHm, L

H
n ]− [LHm, Ln]− [Lm, L

H
n ], (3.65)

one finds that

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0, (3.66)

where the central charge of T (z) is

c = cG − cH . (3.67)
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An immediate generalization of the construction above is for Ĝ to be

semisimple, that is, of the form

(Ĝ1)k1 × (Ĝ2)k2 × . . .× (Ĝn)kn . (3.68)

As a specific example, consider the coset model given by

ŜU(2)k × ŜU(2)l

ŜU(2)k+l

, (3.69)

where the diagonal embedding is understood. This defines a chiral algebra

with central charge

c =
3k

k + 2
+

3l

l + 2
− 3(k + l)

k + l + 2
. (3.70)

Minimal models

An interesting problem is the classification of all unitary representations of

the conformal group. Since the group is infinite-dimensional this is rather

nontrivial, and the complete answer is not known. A necessary requirement

for a unitary representation is that c > 0. There is an infinite family of

representations with c < 1, called minimal models, which have a central

charge

c = 1− 6(p′ − p)2

pp′
, (3.71)

where p and p′ are coprime positive integers (with p′ > p) that characterize

the minimal model. The minimal models are only unitary if p′ = p + 1 =

m+ 3, so that

c = 1− 6

(m+ 2)(m+ 3)
m = 1, 2, . . . (3.72)

The explicit construction of unitary representations with these central charges

(due to Goddard, Kent and Olive) uses the coset-space method of the pre-

ceding section.

Consider the coset model

ŜU(2)1 ⊗ ŜU(2)m

ŜU(2)m+1

, (3.73)

corresponding to Eq. (3.69) with l = 1. The central charge of the associated

energy–momentum tensor T (z) is

c = 1 +
3m

m+ 2
− 3(m+ 1)

m+ 3
= 1− 6

(m+ 2)(m+ 3)
, (3.74)
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which is the desired result. The first nontrivial case is m = 1, which has

c = 1/2. It has been proved that these are all of the unitary representations

of the Virasoro algebra with c < 1.

To understand the structure of these unitary minimal models, one should

also determine all of their highest-weight states. Equivalently, one can iden-

tify the primary fields that give rise to the highest-weight states by acting

on the conformal vacuum |0〉. Since |0〉, itself, is a highest-weight state, the

identity operator I is a primary field (with h = 0). Using the known ŜU(2)k
representations, one can work out all of the primary fields of these minimal

models. The result is a collection of conformal fields φpq with conformal

dimensions hpq given by

hpq =
[(m+ 3)p− (m+ 2)q]2 − 1

4(m+ 2)(m+ 3)
, 1 ≤ p ≤ m+ 1 and 1 ≤ q ≤ p.

(3.75)

Because of the symmetry (p, q) → (m + 2 − p,m + 3 − q), an equivalent

labeling is to allow 1 ≤ p ≤ m + 1, 1 ≤ q ≤ m + 2 and to restrict p − q to

even values. For example, the m = 1 theory, with c = 1/2, describes the

two-dimensional Ising model at the critical point. It has primary fields with

dimensions h11 = 0 (the identity operator), h21 = 1/2 (a free fermion), and

h22 = 1/16 (a spin field).

Note that the minimal models have c < 1 and accumulate at c = 1.

This limiting value c = 1 can be realized by a free boson X. There are

actually a continuously infinite number of possibilities for c = 1 unitary

representations, since the coordinate X can describe a circle of any radius.7

EXERCISES

EXERCISE 3.1

Use the oscillator expansion in Eq. (3.21) to derive the OPE:

∂Xµ(z)∂Xν(w) = −1

4

ηµν

(z − w)2
+ . . .

SOLUTION

Since the singular part of the OPE of the two fields ∂Xµ(z) and ∂Xν(w)

7 Chapter 6 shows that radius R and radius α′/R are equivalent.



3.1 Conformal field theory 73

is proportional to the identity operator, it can be determined by computing

the correlation function

〈∂Xµ(z)∂Xν(w)〉 = −1

4

+∞∑

m=−∞

+∞∑

n=−∞
〈0|αµmανn|0〉z−m−1w−n−1.

Since the positive modes and the zero mode annihilate the vacuum on the

right and the negative modes and the zero mode annihilate the vacuum on

the left, this yields

−1

4

+∞∑

m,n=1

〈0|αµmαν−n|0〉z−m−1wn−1 = −η
µν

4

+∞∑

m,n=1

mδm,nz
−m−1wn−1

= −1

4

ηµν

(z − w)2
.

Note that convergence requires |w| < |z|. 2

EXERCISE 3.2

Derive the Virasoro algebra from Eq. (3.37), that is, from the OPE of the

energy–momentum tensor with itself.

SOLUTION

The modes of the energy–momentum tensor are defined by

T (z) =
+∞∑

n=−∞

Ln
zn+2

or Ln =

∮
dz

2πi
zn+1T (z),

where one uses Cauchy’s theorem to invert the definition of the modes. The

modes then satisfy

[Lm, Ln] =

[∮
dz

2πi
zm+1T (z),

∮
dw

2πi
wn+1T (w)

]
.

One has to be a bit careful when defining the commutator of the above

contour integrals. Let us do the z integral first while holding w fixed. When

doing the z integral we assume that the integrand is radially ordered. As

a result, the commutator is computed by considering the z integral along a

small path encircling w (contour C in Fig. 3.2). Using Eq. (3.37), this gives

∮
dw

2πi
wn+1

∮

C

dz

2πi
zm+1

[
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂T (w) + . . .

]
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=

∮
dw

2πi

[ c
12

(m3 −m)wm+n−1 + 2(m+ 1)wn+m+1T (w) + wm+n+2∂T (w)
]
.

Performing the integral over w on a path encircling the origin, yields the

Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0.

2

EXERCISE 3.3

Verify that the expressions (3.38) and (3.39) for the transformation of the

energy–momentum tensor under conformal transformations are consistent

with Eq. (3.37) for an infinitesimal transformation w(z) = z + ε(z).

SOLUTION

Under the infinitesimal transformation f(z) = z+ε(z), Eqs (3.38) and (3.39)

reduce to T (z)→ T (z) + δεT (z) with

δεT (z) = −2∂ε(z)T (z)− ε(z)∂T (z)− c

12
∂3ε(z).

On the other hand, using Eq. (3.30), the change of T (w) under an infinites-

imal conformal transformation is given by

δεT (w) =

∮
dz

2πi
ε(z)[T (z), T (w)] =

∮

C

dz

2πi
ε(z)T (z)T (w),

where the integration contour C is the one displayed in Fig. 3.2. Using

Eq. (3.37), this becomes

∮

C

dz

2πi
ε(z)

[
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w

]

= 2∂ε(w)T (w) + ε(w)∂T (w) +
c

12
∂3ε(w).

But δεT (w) = −δεT (z), since z ∼ w− ε(w). This shows that both methods

yield the same result for ∂εT (z) to first order in ε. 2

EXERCISE 3.4

Show that Eqs (3.38) and (3.39) satisfy the group property by considering

two successive conformal transformations.
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SOLUTION

After two successive conformal transformations w(u(z)), one finds

(∂w)2T (w) = T (z)− c

12
S(u, z)− c

12
(∂u)2S(w, u),

where ∂ = ∂/∂z. In order to prove the group property, we need to verify

that

S(w, z) = S(u, z) + (∂u)2S(w, u).

This can be shown by substituting

dw

du
=

(
du

dz

)−1 dw

dz
=
w′

u′

and the corresponding expressions for the higher-order derivatives

d2w

du2
=
w′′u′ − w′u′′

(u′)3

d3w

du3
=
w′′′(u′)2 − 3w′′u′′u′ − w′u′′′u′ + 3w′(u′′)2

(u′)5

into S(w, u). 2

3.2 BRST quantization

An interesting type of conformal field theory appears in the BRST analysis

of the path integral.

In the Faddeev–Popov analysis of the path integral the choice of con-

formal gauge results in a Jacobian factor that can be represented by the

introduction of a pair of fermionic ghost fields, called b and c, with con-

formal dimensions 2 and −1, respectively.8 For these choices the b ghost

transforms the same way as the energy–momentum tensor, and the c ghost

transforms the same way as the gauge parameter.

These ghosts are a special case of the following set-up. A pair of holo-

morphic ghost fields b(z) and c(z), with conformal dimensions λ and 1− λ,

respectively, have an OPE

c(z)b(w) =
1

z − w + . . . and b(z)c(w) =
ε

z − w + . . . , (3.76)

while c(z)c(w) and b(z)b(w) are nonsingular. The choice ε = +1 is made

8 For details about the Faddeev–Popov gauge-fixing procedure we refer the reader to volume 1
of GSW or Polchinski.



76 Conformal field theory and string interactions

when b and c satisfy fermi statistics, and the choice ε = −1 is made when

they satisfy bose statistics. The conformal dimensions λ and 1−λ correspond

to a contribution to the energy–momentum tensor of the form

Tbc(z) = −λ : b(z)∂c(z) + ε(λ− 1) : c(z)∂b(z) : . (3.77)

This in turn implies a conformal anomaly

c(ε, λ) = −2ε(6λ2 − 6λ+ 1). (3.78)

For the bosonic string theory, there is a single pair of ghosts (associ-

ated with reparametrization invariance) satisfying ε = 1 and λ = 2. Thus

cgh = −26 in this case, and the conformal anomaly from all other sources

must total +26 in order to cancel the conformal anomaly. For example, 26

space-time coordinates Xµ, the choice made in the previous chapter, is a

possibility.

One may saturate the central-charge condition in other ways. In critical

string theories one chooses D ≤ 26 space-time dimensions, and then adjoins

a unitary CFT with c = 26−D to make up the rest of the required central

charge. This CFT need not have a geometric interpretation. Nevertheless, it

gives a consistent string theory (ignoring the usual problem of the tachyon).

An alternative way of phrasing this is to say that such a construction gives

another consistent quantum vacuum of the (unique) bosonic string theory.

Without knowing the final definitive formulation of string theory, which is

still lacking, it is not always clear when one has a new theory as opposed to

a new vacuum of an old theory.

Chapter 4 considers theories with N = 1 superconformal symmetry. For

such theories the choice of superconformal gauge gives an additional pair

of bosonic ghost fields with ε = −1 and λ = 3/2. Since c(−1, 3/2) = 11,

the total ghost contribution to the conformal anomaly in this case is cgh =

−26 + 11 = −15. This must again be balanced by other contributions. For

example, ten-dimensional space-time with a fermionic partner ψµ for each

space-time coordinate Xµ gives c = 10 · (1 + 1/2) = 15.

Let us now specialize to the bosonic string in 26 dimensions including the

fermionic ghosts. The quantum world-sheet action of the gauge-fixed theory

is

Sq =
1

2π

∫ (
2∂Xµ∂̄Xµ + b∂̄c+ b̃∂c̃

)
d2z, (3.79)

and the associated energy–momentum tensor is

T (z) = TX(z) + Tbc(z), (3.80)
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where TX is given in Eq. (3.23) and

Tbc(z) = −2 : b(z)∂c(z) : + : c(z)∂b(z) : . (3.81)

The quantum action has no conformal anomaly, because the OPE of T with

itself has no central-charge term. The contribution of the ghosts cancels the

contribution of the X coordinates.

The quantum action in Eq. (3.79) has a BRST symmetry, which is a global

fermionic symmetry, given by

δXµ = ηc∂Xµ,

δc = ηc∂c,

δb = ηT.

(3.82)

Most authors do not display the constant infinitesimal Grassmann param-

eter η. One reason for doing so is to keep track of minus signs that arise

when anticommuting fermionic expressions past one another. There is also

a complex-conjugate set of transformations that is not displayed.

The BRST charge that generates the transformations (3.82) is

QB =
1

2πi

∮
(cTX+ : bc∂c :) dz. (3.83)

The integrand is only determined up to a total derivative, so a term pro-

portional to ∂2c, which appears in the BRST current, can be omitted. In

particular, this operator solves the equation

{QB, b(z)} = T (z), (3.84)

which is the quantum version of δb = ηT (z). There is also a conjugate

BRST charge Q̃B given by complex conjugation. In terms of modes, the

BRST charge has the expansion

QB =
∞∑

m=−∞
(L

(X)
−m − δm,0)cm −

1

2

∞∑

m,n=−∞
(m− n) : c−mc−nbm+n : . (3.85)

Note the appearance of the combination L0− 1, the same combination that

gives the mass-shell condition, in the coefficient of c0.

Another useful quantity is ghost number. One assigns ghost number +1 to

c, ghost number−1 to b and ghost number 0 toXµ. This is an additive global

symmetry of the quantum action, so there is a corresponding conserved

ghost-number current and ghost-number charge. Thus, if one starts with

a Fock-space state of a certain ghost number and acts on it with various

oscillators, the ghost number of the resulting state is the initial ghost number
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plus the number of c-oscillator excitations minus the number of b-oscillator

excitations.

The BRST charge has an absolutely crucial property. It is nilpotent, which

means that

Q2
B = 0. (3.86)

Some evidence in support of this result is the vanishing of iterated field

variations (3.82). However, this test, while necessary, is not sufficiently

refined to pick up terms that are beyond leading order in the α′ expansion.

Thus, it cannot distinguish between L0 and L0−1 or establish the necessity

of 26 dimensions. This can be verified directly using the oscillator expansion,

though the calculation is very tedious. A somewhat quicker method is to

anticommute two of the integral representations using the various OPEs and

using Cauchy’s theorem to evaluate the contributions of the poles, though

even this is a certain amount of work.

A complete proof of nilpotency that avoids difficult algebra goes as follows.

Consider the identity

{[QB, Lm], bn} = {[Lm, bn], QB}+ [{bn, QB}, Lm]. (3.87)

Using [Lm, bn] = (m−n)bm+n, {bn, QB} = Ln−δn,0 and the Virasoro algebra,

one finds that the right-hand side vanishes for central charge c = 0. Thus

[QB, Lm] cannot contain any c-ghost modes. However, it has ghost number

(the number of c modes minus the number of b modes) equal to 1, so this

implies that it must vanish. Thus c = 0 implies that QB is conformally

invariant. Next, consider the identity

[Q2
B, bn] = [QB, {QB, bn}] = [QB, Ln]. (3.88)

If QB is conformally invariant, the right-hand side vanishes. This implies

that Q2
B has no c-ghost modes. Since it has ghost number equal to 2, this

implies that it must vanish. Putting these facts together leads to the con-

clusion that QB is nilpotent if and only if c = 0.

Recall that the oscillators that arise in the mode expansions of the Xµ

coordinates give a Fock space that includes many unphysical states including

ones of negative norm, and it is necessary to impose the Virasoro constraints

to define the subspace of physical states. Given this fact, the reader may

wonder why it represents progress to add even more oscillators, the modes

of the b and c ghost fields. This puzzle has a very beautiful answer.

The key is to focus on the nilpotency equation Q2
B = 0. It has the same

mathematical structure as the equation satisfied by the exterior derivative
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in differential geometry d2 = 0.9 In that case one considers various types

of differential forms ω. Ones that satisfy dω = 0 are called closed, and

ones that can be written in the form ω = dρ are called exact. Nilpotency

of d implies that every exact form is closed. If there are closed forms that

are not exact, this encodes topological information about the manifold M
on which the differential forms are defined. One defines equivalence classes

of closed forms by declaring two closed forms to be equivalent if and only

if their difference is exact. These equivalence classes then define elements

of the cohomology of M. More specifically, an equivalence class of closed

n-forms is an element of the nth cohomology group Hn(M).

The idea is now clear. Physical string states are identified as BRST co-

homology classes. Thus, in the enlarged Fock space that includes the b and

c oscillators in addition to the α oscillators, one requires that a physical

on-shell string state is annihilated by the operator QB, that is, it is BRST

closed. Furthermore, if the difference of two BRST-closed states is BRST

exact, so that it is given as QB applied to some state, then the two BRST-

closed states represent the same physical state. In the case of closed strings,

this applies to the holomorphic and antiholomorphic sectors separately.

Because of the ghost zero modes, b0 and c0, the ground state is doubly

degenerate. Denoting the two states by | ↑〉 and | ↓〉, c0| ↓〉 = | ↑〉 and

b0| ↑〉 = | ↓〉. Also, c0| ↑〉 = b0| ↓〉 = 0. The ghost number assigned to one

of these two states is a matter of convention. The other is then determined.

The most symmetrical choice is to assign the values ±1/2, which is what we

do. This resolves the ambiguity of a constant in the ghost-number operator

U =
1

2πi

∮
: c(z)b(z) : dz =

1

2
(c0b0 − b0c0) +

∞∑

n=1

(c−nbn − b−ncn). (3.89)

Which one of the two degenerate ground states corresponds to the physical

ground state (the tachyon)? The fields b and c are not on a symmetrical foot-

ing, so there is a definite answer, namely | ↓〉, as will become clear shortly.

The definition of physical states can now be made precise: they correspond

to BRST cohomology classes with ghost number equal to −1/2. In the case

of open strings, this is the whole story. In the case of closed strings, this

construction has to be carried out for the holomorphic (right-moving) and

antiholomorphic (left-moving) sectors separately. The two sectors are then

tensored with one another in the usual manner.

To make contact with the results of Chapter 2, let us construct a unique

9 This is the proper analogy for open strings. In the case of closed strings, the better analogy

relates QB and eQB to the holomorphic and antiholomorphic differential operators ∂ and ∂̄ of
complex differential geometry.
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representative of each cohomology class. A simple choice is given by the α

oscillators and Virasoro constraints applied to the ground state | ↓〉. The way

to achieve this is to select states |φ〉 that satisfy bn|φ〉 = 0 for n = 0, 1, . . .

Note that this implies, in particular, that | ↓〉 is physical and | ↑〉 is not. Then

the Virasoro constraints and the mass-shell condition follow from QB|φ〉 = 0

combined with {QB, bn} = Ln − δn,0. Note that bn|φ〉 = 0 implies that |φ〉
can contain no c-oscillator excitations. Then the ghost-number requirement

excludes b-oscillator excitations as well. So these representatives precisely

correspond to the physical states constructed in Chapter 2.

It was mentioned earlier that a pair of fermion fields can be equivalent to

a boson field on a circle of suitable radius. Let us examine this bosonization

for the ghosts. The claim is that it is possible to introduce a scalar field

φ(z) such that the energy–momentum tensors Tbc and Tφ can be equated:

−1

2
(∂φ)2 +

3i

2
∂2φ = c(z)∂b(z)− 2b(z)∂c(z), (3.90)

and similarly for the antiholomorphic fields. The coefficient of the term

proportional to ∂2φ is chosen so that the central charge is −26. In particular,

for the zero mode Eq. (3.90) gives

1

2
φ2

0 +

∞∑

n=1

φ−nφn − 1/8 =

∞∑

n=1

n(b−ncn + c−nbn). (3.91)

The −1/8 is the difference of the normal-ordering constants of the boson

and the fermions. The φ oscillators satisfy [φm, φn] = mδm+n,0, as usual.

Also, φ0 is identified with the ghost-number operator U , which is the zero

mode of the relation −i∂φ = cb. Note that 1
2φ

2
0 − 1/8 = 0 for ghost number

±1/2. More generally, U = φ0 takes values in
�

+ 1/2. The integer spacing

determines the periodicity of φ to be 2π, and the half-integer offset means

that string wave functions must be antiperiodic in their φ dependence

Ψ(φ(σ) + 2π) = −Ψ(φ(σ)). (3.92)

EXERCISES

EXERCISE 3.5

Show that the integrand in Eq. (3.79) changes by a total derivative under

the transformations (3.82).
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SOLUTION

Under the global fermionic symmetry the integrand L changes by

δL = 2∂δX · ∂̄X + 2∂X · ∂̄δX + δb∂̄c+ b∂̄δc = δL1 + δL3,

where the index on δL counts the number of fermionic fields. Using Eqs (3.82)

we obtain

δL1 = 2η∂(c∂X) · ∂̄X + 2η∂X · ∂̄(c∂X) + ηTX ∂̄c = 2η∂
(
c∂Xµ∂̄Xµ

)

and

δL3 = ηTbc∂̄c− ηb∂̄(c∂c) = −η∂
(
bc∂̄c

)
,

which are total derivatives since η is constant. The result for the complex-

conjugate fields can be derived similarly. 2

3.3 Background fields

Among the background fields, three that are especially significant are as-

sociated with massless bosonic fields in the spectrum. They are the metric

gµν(X), the antisymmetric two-form gauge field Bµν(X) and the dilaton

field Φ(X). The metric appears as a background field in the term

Sg =
1

4πα′

∫

M

√
hhαβgµν(X)∂αX

µ∂βX
νd2z. (3.93)

In Chapter 2 only flat Minkowski space-time with (gµν = ηµν) was consid-

ered, but other geometries are also of interest.

The antisymmetric two-form gauge field Bµν appears as a background

field in the term10

SB =
1

4πα′

∫

M
εαβBµν(X)∂αX

µ∂βX
νd2z. (3.94)

This term is only present in theories of oriented bosonic strings. The projec-

tion onto strings that are invariant under reversal of orientation (a procedure

called orientifold projection) eliminates the B field from the string spectrum.

In cases when this term is present, it can be regarded as a two-form analog

of the coupling SA of a one-form Maxwell field to the world line of a charged

particle,

SA = q

∫
Aµẋ

µdτ. (3.95)

10 The antisymmetric tensor density εαβ has components ε01 = −ε10 = 1 and ε00 = ε11 = 0.

The combination εαβ/
√
h transforms as a tensor.
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So the strings of such theories are charged in this sense. This is explored

further in later chapters.

The dilaton appears in a term of the form

SΦ =
1

4π

∫

M

√
hΦ(X)R(2)(h) d2z, (3.96)

where R(2)(h) is the scalar curvature of the two-dimensional string world

sheet computed from the world-sheet metric hαβ. The dilaton term SΦ is

one order higher than Sg and SB in the α′ expansion, since it is lacking the

two explicit factors of X that appear in Sg and SB .

The role of the dilaton

The dilaton plays a crucial role in defining the string perturbation expansion.

The special role of the dilaton term is most easily understood by considering

the particular case in which Φ is a constant. More generally, if it approaches

a constant at infinity, it is possible to separate this constant mode from the

rest of Φ and focus on its contribution.

The key observation is that, when Φ is a constant, the integrand in

Eq. (3.96) is a total derivative. This means that the value of the integral is

determined by the global topology of the world sheet, and this term does

not contribute to the classical field equations. The topological invariant that

arises here is an especially famous one. Namely,

χ(M) =
1

4π

∫

M

√
hR(2)(h) d2z (3.97)

is the Euler characteristic of M . It is related to the number of handles

nh, the number of boundaries nb and the number of cross-caps nc of the

Euclidean world sheet M by

χ(M) = 2− 2nh − nb − nc. (3.98)

The simplest example is the sphere, which has χ = 2, since it has no han-

dles, boundaries or cross-caps. χ = 1 is achieved for a disk, which has one

boundary and for a projective plane, which has one cross-cap. One can de-

rive a projective plane from a disk by decreeing that opposite points on the

boundary of the disk are identified as equivalent. There are four distinct

topologies that can give χ = 0. They are a torus (one handle), an annu-

lus or cylinder (two boundaries), a Moebius strip (one boundary and one

cross-cap), and a Klein bottle (two cross-caps).

There are several distinct classes of string-theory perturbation expansions,

which are distinguished by whether the fundamental strings are oriented or
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unoriented and whether or not the theory contains open strings in addition

to closed strings. All of these options can be considered as different versions

of the bosonic string theory. In a string theory that contains only closed

strings there can be no world-sheet boundaries, since these are created by

the ends of open strings. Also, in a theory of oriented strings the world sheet

is necessarily orientable, and this implies that there can be no cross-caps.

In the simplest and most basic class of string theories, the fundamen-

tal strings are closed and oriented, and there are no open strings. This

possibility is especially important as it is the case for type II superstring

theories and heterotic string theories in ten-dimensional Minkowski space-

time, which are discussed in subsequent chapters. For such theories the

only possible string world-sheet topologies are closed and oriented Riemann

surfaces, whose topologies are uniquely characterized by the genus nh (the

number of handles). The genus corresponds precisely to the number of string

loops. One can visualize this by imagining a slice through the world sheet,

which exposes a collection of closed strings that are propagating inside the

diagram.

A nice feature of theories of closed oriented strings is that there is just

one string theory Feynman diagram at each order of the perturbation ex-

pansion, since the Euler characteristic is uniquely determined by the genus.

The enormous number of Feynman diagrams in the field theories that ap-

proximate these string theories at low energy corresponds to various possible

degenerations (or singular limits) of these Riemann surfaces. Another mar-

velous fact is that at each order of the perturbation theory (that is, for each

genus) these amplitudes have no ultraviolet (UV) divergences. Thus these

string theories are UV finite theories of quantum gravity. As yet, no other

approach to quantum gravity has been found that can achieve this.

Another important possibility is that the fundamental strings are unori-

ented and they can be open as well as closed. This is the situation for

type I superstring theory. The fact that the strings are unoriented is ulti-

mately attributable to the presence of an object called an orientifold plane.

In a similar spirit, the fact that open strings are allowed can be traced to

the presence of objects called D-branes. D-branes are physical objects on

which strings can end, and the presence of D-branes implies that strings

are breakable. Thus, for example, in the type I superstring theory one has

to include all possible world sheets that have boundaries and cross-caps as

well as handles. Clearly this is a more complicated story than in the cases

without boundaries and cross-caps. Moreover, the cancellation of ultravio-

let divergences for such theories is only achieved when all diagrams of the

same Euler characteristic are (carefully) combined. The remainder of this
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section applies to theories that contain only oriented closed strings, so that

the relevant Riemann surface topologies are characterized entirely by the

genus nh.

Effective potential and moduli fields

The dependence of a string theory on the background values of scalar fields

can be characterized, at least at energies that are well below the string scale

1/ls, by an effective potential Veff(φ), where φ now refers to all low-mass or

zero-mass scalar fields, and one imagines that high-mass fields have been in-

tegrated out. String vacua correspond to local minima of this function. Such

minima may be only metastable if tunneling to lower minima is possible.

In a nongravitational theory, an additive constant in the definition of

Veff would not matter. However, in a gravitational theory the value of Veff

at each of the minima determines the energy density in the corresponding

vacuum. This energy density acts as a source of gravity and influences the

geometry of the space-time. The value of Veff at a minimum determines

the cosmological constant for that vacuum. The measured value in our

Universe is exceedingly small, Λ ∼ 10−120 in Planck units. As such, it is

completely irrelevant to particle physics. However, it plays an important

role in cosmology. Explaining the observed vacuum energy, or dark energy,

is a major challenge that has been a research focus in recent years.

If the effective potential has an isolated minimum then the matrix of

second derivatives determines the masses of all the scalar fields to be positive.

If, on the other hand, there are flat directions, one or more eigenvalues of

the matrix of second derivatives vanishes and some of the scalar fields are

massless. The vacuum expectation values (or vevs) of those fields can be

varied continuously while remaining at a minimum. In this case one has

a continuous moduli space of vacua and one speaks of a flat potential. If

there are no massless scalars in the real world, the true vacuum should be

an isolated point rather than part of a continuum. This seems likely to be

the case for a realistic vacuum, because scalars in string theory typically

couple with (roughly) gravitational strength. The classical tests of general

relativity establish that the long-range gravitational force is pure tensor,

without a scalar component, to better than 1% precision. It is difficult

to accommodate a massless scalar in string theory without violating this

constraint. So one of the major challenges in string phenomenology is to

construct isolated vacua without any moduli. This is often referred to as

the problem of moduli stabilization, which is discussed in Chapter 10.
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3.4 Vertex operators

Vertex operators Vφ are world-sheet operators that represent the emission or

absorption of a physical on-shell string mode |φ〉 from a specific point on the

string world sheet. There is a one-to-one mapping between physical states

and vertex operators. Since physical states are highest-weight states, the

corresponding vertex operators are primary fields, and the problem of con-

structing them is the inverse of the problem discussed earlier in connection

with the state–operator correspondence. In the case of an open string, the

vertex operator must act on a boundary of the world sheet, whereas for a

closed string it acts on the interior. Thus, summing over all possible insertion

points gives an expression of the form go

∮
Vφ(s)ds in the open-string case.

The idea here is that the integral is over a boundary that is parametrized by

a real parameter s. In the closed-string case one has gs

∫
Vφ(z, z̄)d2z, which

is integrated over the entire world sheet. In each case, the index φ is meant

to label the specific state that is being emitted or absorbed (including its

26-momentum). There is a string coupling constant gs that accompanies

each closed-string vertex operator. The open-string coupling constant go is

related to it by g2
o = gs. To compensate for the integration measure, and

give a coordinate-independent result, a vertex operator must have conformal

dimension 1 in the open-string case and (1, 1) in the closed-string case.

If the emitted particle has momentum kµ, the corresponding vertex op-

erator should contain a factor of exp(ik · x). To give a conformal field, this

should be extended to exp(ik · X). However, this expression needs to be

normal-ordered. Once this is done, there is a nonzero conformal dimension,

which (in the usual units ls =
√

2α′ = 1) is equal to k2/2 in the open-

string case and (k2/8, k2/8) in the closed-string case. The relation between

these two results can be understood by recalling that the left-movers and

the right-movers each carry half of the momentum in the closed-string case.

These results are exactly what is expected for the vertex operators of the

respective tachyons. For other physical states, the vertex operator contains

an additional factor of dimension n or (n, n), where n is a positive integer.

Let us now explain the rule for constructing these factors.

A Fock-space state has the form

|φ〉 =
∏

i

αµi−mi

∏

j

α̃
νj
−nj |0; k〉, (3.99)

or (more generally) a superposition of such terms. The vertex operator of

the tachyon ground state is exp(ik ·X) (with normal-ordering implicit). In

the following we describe how to modify the ground-state vertex operator

to account for the αµ−m factors. To do this notice that the contour integral
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identity

αµ−m =
1

π

∮
z−m∂Xµdz (3.100)

suggests that we simply replace

αµ−m →
2i

(m− 1)!
∂mXµ, m > 0. (3.101)

This is not an identity, of course. The right-hand side contains αµ−m plus an

infinite series of z-dependent terms with positive and negative powers. So,

according to this proposal, a general closed-string vertex operator is given

by an expression of the form

Vφ(z, z̄) = :
∏

i

∂miXµi(z)
∏

j

∂̄njXνj (z̄)eik·X(z,z̄) :, (3.102)

or a superposition of such terms, where

k2

8
= 1−

∑

i

mi = 1−
∑

j

nj . (3.103)

It is not at all obvious that this ensures that Vφ has conformal dimension

(1, 1). In fact, this is only the case if the original Fock-space state satisfies

the Virasoro constraints.

Vertex operators can also be introduced in the formalism with Faddeev–

Popov ghosts. In this case the physical state condition is QB|φ〉 = Q̃B|φ〉 =

0. Physical states are BRST closed, but not exact. The corresponding

statement for vertex operators is that if φ is BRST closed, then [QB, Vφ] =

[Q̃B, Vφ] = 0. Similarly, if φ is BRST exact, then Vφ can be written as the

anticommutator of QB or Q̃B with some operator.

The operator correspondences for the ghosts are

b−m →
1

(m− 2)!
∂m−1b, m ≥ 2 (3.104)

and

c−m →
1

(m+ 1)!
∂m+1c, m ≥ −1. (3.105)

These rules reflect the fact that b is dimension 2 and c is dimension −1. In

particular, the unit operator is associated with a state that is annihilated

by bm with m ≥ −1 and by cm with m ≥ 2. Such a state is uniquely

(up to normalization) given by b−1| ↓〉, which has ghost number −3/2. Let

us illustrate the implications of this by considering the tachyon. Since one
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must act on b−1| ↓〉 with c1 to obtain the tachyon state, it follows that in the

BRST formalism the closed-string tachyon vertex operator takes the form

Vt(z, z̄) = : c(z)c̃(z̄)eik·X(z,z̄) : . (3.106)

Let Vφ denote the dimension (1, 1) vertex operator for a physical state |φ〉
described earlier. Then cc̃Vφ is the vertex operator corresponding to |φ〉 in

the formalism with ghosts, provided that one chooses the BRST cohomology

class representative satisfying bm|φ〉 = 0 for m ≥ 0 discussed earlier. Since

the c ghost has dimension −1 this operator has dimension (0, 0). As was

explained, dimension (1, 1) ensures that the integrated expression
∫
Vφ d

2z

is invariant under conformal transformations. Similarly, the dimension (0, 0)

unintegrated expression cc̃Vφ is also conformally invariant. For reasons that

are explained in the next section, both kinds of vertex operators, integrated

and unintegrated, are required.

EXERCISES

EXERCISE 3.6

By computing the OPE with the energy–momentum tensor determine the

dimension of the vertex operator V = : eik·X(z,z̄) :.

SOLUTION

In order to determine the dimension of the vertex operator V we only need

the leading singularity of the OPE

T (z) : eik·X(w,w̄) : = −2 : ∂Xµ(z)∂Xµ(z) :: eik·X(w,w̄) : .

This can be computed using Eq. (3.35), which gives

〈∂Xµ(z)Xν(w)〉 = −1

4

ηµν

z − w.

Here, Xν(w) should be identified with the holomorphic part of Xν(w, w̄).

From this it follows that

∂Xµ(z) : eik·X(w,w̄) : ∼ 〈∂Xµ(z) ik ·X(w)〉 : eik·X(w,w̄) :

∼ − i
4

kµ

z − w : eik·X(w,w̄) : .
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Therefore,

T (z) : eik·X(w,w̄) : ∼ k2/8

(z − w)2
: eik·X(w,w̄) : + . . .

This shows that h = k2/8. Similarly one can compute the OPE with T̃ (z̄)

showing (h, h̄) = (k2/8, k2/8) for the closed string. In particular, this is the

tachyon emission operator, which has dimension (1, 1), for M 2 = −k2 = −8.

2

EXERCISE 3.7

Determine the conformal dimensions of the operator

V = fµν : ∂Xµ(w)∂̄Xν(w̄)eik·X(w,w̄) : .

What condition has to be imposed on fµν so that this vertex operator is a

conformal field?

SOLUTION

The OPE of the energy–momentum tensor with the vertex operator is

−2fµν : ∂Xρ(z)∂Xρ(z) :: ∂Xµ(w)∂̄Xν(w̄)eik·X(w,w̄) : .

There are several contributions in the above OPE, which we denote by KN
where the index N denotes the contribution of order (z−w)−N . First of all

there is a cubic contribution

K3 = − i
4
kµfµν

∂̄Xν(w̄)

(z − w)3
,

which is required to vanish if V is supposed to be a conformal field. As a

result

kµfµν = 0.

The conformal dimension of V is then obtained from the K2 term, which

takes the form

K2 =
1 + k2/8

(z − w)2
V.

The 1 term comes from contracting T with the prefactor and the k2/8 term

comes from contracting T with the exponential (as in the previous problem).

This shows that V has conformal dimension (h, h̄) = (1 +k2/8, 1 +k2/8). 2
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3.5 The structure of string perturbation theory

The starting point for studying string perturbation theory is the world-sheet

action with Euclidean signature. Before gauge fixing, it has the general form

SWS =

∫

M
L(hαβ;Xµ; background fields) d2z . (3.107)

As usual, hαβ is the two-dimensional world-sheet metric, and Xµ(z, z̄) de-

scribes the embedding of the world sheet M into the space-time manifold

M. Thus z is a local coordinate on the world sheet and Xµ are local coordi-

nates of space-time. Working with a Euclidean signature world-sheet metric

ensures that the functional integrals (to be defined) are converted to con-

vergent Gaussian integrals. The background fields should satisfy the field

equations to be consistent. When this is the case, the world-sheet theory

has conformal invariance.

Partition functions and scattering amplitudes

Partition functions and on-shell scattering amplitudes can be formulated as

path integrals of the form proposed by Polyakov

Z ∼
∫
Dhαβ

∫
DXµ · · · e−S[h,X,...]. (3.108)

Here
∫
Dh means the sum over all Riemann surfaces (M,h). However, this

is a gauge theory, since S is invariant under diffeomorphisms and Weyl

transformations. So one should really sum over Riemann surfaces modulo

diffeomorphisms and Weyl transformations.11

World-sheet diffeomorphism symmetry allows one to choose a conformally

flat world-sheet metric

hαβ = eψδαβ. (3.109)

When this is done, one must add the Faddeev–Popov ghost fields b(z) and

c(z) to the world-sheet theory to represent the relevant Jacobian factors in

the path integral. Then the local Weyl symmetry (hαβ → Λhαβ) allows one

to fix ψ (locally) – say to zero. However, this is not possible globally, due

to a topological obstruction:

ψ = 0⇒ R(h) = 0⇒ χ(M) = 0. (3.110)

So, such a choice is only possible for world sheets that admit a flat metric.

11 In the case of superstrings in the RNS formalism, discussed in the next chapter, the action also
has local world-sheet supersymmetry and super-Weyl symmetry, so these equivalences also need
to be taken into account.
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Among orientable Riemann surfaces without boundary, the only such case

is nh = 1 (the torus). For each genus nh there are particular ψ s compatible

with χ(M) = 2 − 2nh that are allowed. A specific choice of such a ψ

corresponds to choosing a complex structure for M . Let us now consider the

moduli space of inequivalent choices.

Riemann surfaces of different topology are certainly not diffeomorphic, so

each value of the genus can be considered separately, giving a perturbative

expansion of the form

Z =
∞∑

nh=0

Znh
. (3.111)

This series is only an asymptotic expansion, as in ordinary quantum field

theory. Moreover, there are additional nonperturbative contributions that

it does not display. Sometimes some of these can be identified by finding

suitable saddle points of the functional integral, as in the study of instantons.

A constant dilaton Φ(x) = Φ0 contributes

Sdil = Φ0 χ(M) = Φ0(2− 2nh). (3.112)

Thus Znh
contains a factor

exp(−Sdil) = exp(Φ0(2nh − 2)) = g2nh−2
s , (3.113)

where the closed-string coupling constant is

gs = eΦ0 . (3.114)

Thus each handle contributes a factor of g2
s .

This role of the dilaton is very important. It illustrates a very general les-

son: all dimensionless parameters in string theory – including the value of

the string coupling constant – can ultimately be traced back to the vacuum

values of scalar fields. The underlying theory does not contain any dimen-

sionless parameters. Rather, all dimensionless numbers that characterize

specific string vacua are determined as the vevs of scalar fields.

The moduli space of Riemann surfaces

The gauge-fixed world-sheet theory, with a conformally flat metric, has two-

dimensional conformal symmetry, which is generated by the Virasoro opera-

tors. In carrying out the Polyakov path integral, it is necessary to integrate

over all conformally inequivalent Riemann surfaces of each topology. The

choice of a complex structure for the Riemann surface precisely corresponds

to the choice of a conformal equivalence class, so one needs to integrate over
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the moduli space of complex structures, which parametrizes these classes.

In the case of superstrings the story is more complicated, because there are

also fermionic moduli and various possible choices of spin structures. We

will not explore these issues.

In order to compute an N -particle scattering amplitude, not just the parti-

tion function, it is necessary to specify N points on the Riemann surface. At

each of them one inserts a vertex operator Vφ(z, z̄) representing the emission

or absorption of an asymptotic physical string state of type φ. Mathemati-

cians like to regard such marked points as removed from the surface, and

therefore they refer to them as punctures.

To compute the nh-loop contribution to the amplitude requires integrating

over the moduli space Mnh,N of genus nh Riemann surfaces with N punc-

tures. According to a standard result in complex analysis, the Riemann–

Roch theorem, the number of complex dimensions of this space is

dim � Mnh,N = 3nh − 3 +N, (3.115)

and the real dimension is twice this. Therefore, this is the dimension of the

integral that represents the string amplitude. For nh > 1 it is very difficult

to specify the integration regionMnh,N explicitly and to define the integral

precisely. However, this is just a technical problem, and not an issue of

principle. The cases nh = 0, 1 are much easier, and they can be made very

explicit.

In the case of genus 0 (or tree approximation), one can conformally map

the Riemann sphere to the complex plane (plus a point at infinity). The

SL(2, � ) group of conformal isometries is just sufficient to allow three of the

punctures to be mapped to arbitrarily specified distinct positions. Then all

that remains is to integrate over the coordinates of the other N−3 puncture

positions. This counting of moduli agrees with Eq. (3.115) for the choice

nh = 0. To achieve this in a way consistent with conformal invariance, one

should use three unintegrated vertex operators and N − 3 integrated vertex

operators in the Polyakov path integral. These two types of vertex operators

were described in the previous section. In the tree approximation, using the

fact that the correlator of two X fields on the complex plane is a logarithm,

one obtains the N -tachyon amplitude (or Shapiro–Virasoro amplitude)

AN (k1, k2, . . . , kN ) = gN−2
s

∫
dµN(z)

∏

i<j

|zi − zj|ki·kj/2, (3.116)

where

dµN(z) = |(zA − zB)(zB − zC)(zC − zA)|2
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×δ2(zA − z0
A)δ2(zB − z0

B)δ2(zC − z0
C)

N∏

i=1

d2zi. (3.117)

The formula is independent of z0
A, z

0
B, z

0
C due to the SL(2, � ) symmetry,

which allows them to be mapped to arbitrary values.

In the case of a torus (genus one), the complex structure (or conformal

equivalence class) is characterized by one complex number τ . The conformal

isometry group in this case corresponds to translations, so the position of

one puncture can be fixed. Thus, in the genus-one case the path integral

should contain one unintegrated vertex operator and N−1 integrated vertex

operators. This leaves an integral over τ and the coordinates of N − 1

of the punctures for a total of N complex integrations in agreement with

Eq. (3.115) for nh = 1. For genus nh > 1, there are no conformal isometries,

and so all N vertex operators should be integrated. In all cases, the number

of unintegrated vertex operators, and hence the number of c-ghost insertions

is equal to the dimension of the space of conformal isometries. This also

matches the number of c-ghost zero modes on the corresponding Riemann

surface, so these insertions are just what is required to give nonvanishing

integrals for the c-ghost zero modes.12

There also needs to be the right number of b-ghost insertions to match

the number of b-ghost zero modes. This number is just the dimension of the

moduli space. By combining these b-ghost factors with expressions called

Beltrami differentials in the appropriate way, one obtains a moduli-space

measure that is invariant under reparametrizations of the moduli space.

The reader is referred to the literature (e.g., volume 1 of Polchinski) for

further details.

Let us now turn to the definition of τ , the modular parameter of the torus,

and the determination of its integration region (the genus-one moduli space).

A torus can be characterized by specifying two periods in the complex plane,

z ∼ z + w1, z ∼ z + w2. (3.118)

The only restriction is that the two periods should be finite and nonzero, and

their ratio should not be real. The torus is then identified with the complex

plane � modulo a two-dimensional lattice Λ(w1,w2), where Λ(w1,w2) = {mw1+

nw2, m, n ∈
� },

T 2 = � /Λ(w1,w2). (3.119)

Rescaling by the conformal transformation z → z/w2, this torus is con-

formally equivalent to one whose periods are 1 and τ = w1/w2, as shown in

12 Recall that, for a Grassmann coordinate c0,
R
dc0 = 0 and

R
c0dc0 = 1.
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0 1 Re w

Im w

τ

Fig. 3.3. When opposite edges of the parallelogram are identified, this becomes a
torus.

Fig. 3.3. Without loss of generality (interchanging w1 and w2, if necessary),

one can restrict τ to the upper half-plane H (Im τ > 0). Now note that the

alternative fundamental periods

w′1 = aw1 + bw2 and w′2 = cw1 + dw2 (3.120)

define the same lattice, if a, b, c, d ∈ �
and ad− bc = 1. In other words,

(
a b

c d

)
∈ SL(2,

�
). (3.121)

This implies that a torus with modular parameter τ is conformally equivalent

to one with modular parameter

τ ′ =
ω′1
ω′2

=
aτ + b

cτ + d
. (3.122)

Accordingly, the moduli space of conformally inequivalent Riemann surfaces

of genus one is

Mnh=1 = H/PSL(2,
�

). (3.123)

The infinite discrete group PSL(2,
�

) = SL(2,
�

)/
�

2 is generated by the

transformations τ → τ+1 and τ → −1/τ . The division by
�

2 takes account

of the equivalence of an SL(2,
�

) matrix and its negative. The PSL(2,
�

)

identifications give a tessellation of the upper half-plane H.

A natural choice for the fundamental region F is

|Re τ | ≤ 1/2, Im τ > 0, |τ | ≥ 1, (3.124)

as shown in Fig. 3.4. The moduli space has three cusps or singularities,
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Fig. 3.4. The shaded region is the fundamental region of the modular group.

where there is a deficit angle, which are located at the τ values i, ∞, and

ω = exp(iπ/3).13 Therefore, it is not a smooth manifold.

If one uses the translation symmetry freedom to set z1 = 0, then a one-

loop amplitude takes the form
∫

F

d2τ

(Im τ)2

∫

T 2

µ(τ, z)〈V1(0)V2(z2) . . . VN (zN )〉d2z2 . . . d
2zN . (3.125)

The angular brackets around the product of vertex operators denote a func-

tional integration over the world-sheet fields. An essential consistency re-

quirement is modular invariance. This means that the integrand should be

invariant under the SL(2,
�

) transformations (also called modular transfor-

mations)

τ → aτ + b

cτ + d
, zi →

zi
cτ + d

, (3.126)

so that the result is the same whether one integrates over the fundamental

region F or any of its SL(2,
�

) images. It is a highly nontrivial fact that

this works for all consistent string theories. In fact, it is one method of

understanding why the only possible gauge groups for the heterotic string

theory (with N = 1 supersymmetry in ten-dimensional Minkowski space-

time) are SO(32) and E8 × E8, as is discussed in Chapter 7.

There are higher-genus analogs of modular invariance, which must also

be satisfied. This has not been explored in full detail, but enough is known

about the various string theories to make a convincing case that they must

be consistent. For now, let us make some general remarks about multiloop

13 The point ω2 = exp(2iπ/3) may appear to be another cusp, but it differs from ω by 1, and
therefore it represents the same point in the moduli space.
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string amplitudes that are less detailed than the particular issue of modular

invariance.

It is difficult to describe explicitly the moduli of higher-genus Riemann

surfaces, and it is even harder to specify a fundamental region analogous to

the one described above for genus one. However, the dimension of moduli

space, which is the number of integrations, is not hard to figure out. It is as

shown in Table 3.1. Note that in all cases the sum is 3nh− 3 +N , as stated

in Eq. (3.115).

moduli of M moduli of punctures

nh = 0 0 N − 3
nh = 1 1 N − 1
nh ≥ 2 3nh − 3 N

Table 3.1. The number of complex moduli for an nh-loop N -particle

closed-string amplitude.

a1 a2 a3 ag

b1 b2 b3 bg

Fig. 3.5. Canonical basis of one-cycles for a genus-g Riemann surface.

The first homology group of a genus-nh Riemann surface has 2nh genera-

tors. It is convenient to introduce a canonical basis consisting of nh a-cycles

and nh b-cycles, as shown in Fig. 3.5. There are also 2nh one-forms that

generate the first cohomology group. The complex structure of the Riemann

surface can be used to divide these into nh holomorphic and nh antiholomor-

phic one-forms. Thus one obtains the fundamental result that a genus-nh

Riemann surface admits nh linearly independent holomorphic one-forms.

One can choose a basis ωi, i = 1, 2, . . . , nh, of holomorphic one-forms by the

requirement that ∮

ai

ωj = δij . (3.127)

The integrals around the b-cycles then give a matrix
∮

bi

ωj = Ωij (3.128)
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called the period matrix. For example, in the simple case of the torus ω = dz

and Ω = τ . Two fundamental facts are that Ω is a symmetric matrix and

that its imaginary part is positive definite. Symmetric matrices with a

positive-definite imaginary part define a region called the Siegel upper half

plane.

There is a group of equivalences for the period matrices that general-

izes the SL(2,
�

) group of equivalences in the genus-one case. It acts in a

particularly simple way on the period matrices. Specifically, one has

Ω→ Ω′ = (AΩ +B)(CΩ +D)−1 , (3.129)

where A,B,C,D are nh × nh matrices and
(
A B

C D

)
∈ Sp(nh,

�
) . (3.130)

This group is called the symplectic modular group. The notation Sp(n,
�

)

refers to 2n-dimensional symplectic matrices with integer entries. Recall

that symplectic transformations preserve an antisymmetric “metric”
(
A B

C D

)(
0 1

−1 0

)(
AT CT

BT DT

)
=

(
0 1

−1 0

)
. (3.131)

In the one-loop case the modular parameter τ and the period matrix

are the same thing. So integration over the moduli space of conformally

inequivalent Riemann surfaces is the same as integration over a fundamental

region defined by modular transformations. At higher genus the story is

more complicated. The period matrix has complex dimension 1
2nh(nh + 1)

(since it is a complex symmetric matrix), whereas the moduli space has

3nh − 3 complex dimensions. At genus 2 and 3 these dimensions are the

same, and the relation between a fundamental region in the Siegel upper

half plane and the moduli space can be worked out. For nh > 3, the moduli

space is a subspace of finite codimension. Thus, even though the integrand

can be written quite explicitly, it is a very nontrivial problem (known as the

Riemann–Schottky problem) to determine which period matrices correspond

to Riemann surfaces.

EXERCISES

EXERCISE 3.8

Explain why the point τ = i is a cusp of the moduli space of the torus.
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SOLUTION

This can be understood by examining the identifications made in the moduli

space. This is displayed in Fig. 3.6. Specifically, the identification τ ∼ −1/τ

glues the left half of the unit circle to the right half, and it has τ = i as a

fixed point.

Fig. 3.6. Image of the fundamental domain of the torus. Opposite edges are glued
together as indicated by the arrows. This explains why there are cusps in the
moduli space.

2

EXERCISE 3.9

Show that d2τ/(Imτ)2 is an SL(2,
�

)-invariant measure on M. Using this

measure, compute the volume of M.

SOLUTION

Under the SL(2,
�

) transformation in Eq. (3.122)

d2τ → |cτ + d|−4d2τ and Imτ → |cτ + d|−2Im τ,

which implies the invariance of the measure. Equivalently, one can check

that the measure is invariant under the two transformations τ → τ + 1 and

τ → −1/τ which generate SL(2,
�

).

The volume of the moduli space is obtained from the integral

I =

∫

F

d2τ

(Imτ)2
,

over the fundamental region. Letting τ = x + iy and defining d2τ = dxdy,
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this takes the form

I =

∫ +1/2

−1/2
dx

∫ ∞
√

1−x2

dy

y2
=

∫ +1/2

−1/2

dx√
1− x2

=
π

3
,

where we have set τ = x+ iy. 2

3.6 The linear-dilaton vacuum and noncritical strings

An interesting example of a nontrivial background that preserves conformal

symmetry is one in which the dilaton field depends linearly on the spatial

coordinates. Letting y denote the direction along which it varies and xµ the

other D − 1 space-time coordinates, the linear dilaton background is

Φ(Xµ, Y ) = kY (z, z̄), (3.132)

where k is a constant. After fixing the conformal gauge, the dilaton term

no longer contributes to the world-sheet action, which remains independent

of k, but it does contribute to the energy–momentum tensor.

The energy–momentum tensor for the linear-dilaton background is derived

by varying the action with respect to the world-sheet metric before fixing

the conformal gauge. The result is

T (z) = −2(∂Xµ∂Xµ + ∂Y ∂Y ) + k∂2Y. (3.133)

This expression gives a TT OPE that still has the correct structure to define

a CFT. One peculiarity is that the OPE of T with Y has an extra term

(proportional to k), which implies that ∂Y does not satisfy the definition of

a conformal field.

CallingD the total space-time dimension (including Y ), the central charge

determined by the TT OPE turns out to be

c = c̃ = D + 3k2. (3.134)

Thus, the required value c = 26 can be achieved for D < 26 by choosing

k =

√
26−D

3
. (3.135)

Of course, there is Lorentz invariance in only D − 1 dimensions, since the

Y direction is special. Theories with k 6= 0 are called noncritical string

theories.

The extra term in T contributes to L0, and hence to the equation of motion

for the free tachyon field t(xµ, y). For simplicity, let us consider solutions
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that are independent of xµ. Then the equation of motion (L0 − 1)|t〉 = 0

becomes

t′′(y)− 2kt′(y) + 8t(y) = 0. (3.136)

Since this is a stationary (zero-energy) equation, the existence of oscilla-

tory solutions is a manifestation of tachyonic behavior. This equation has

solutions of the form exp(qy) for

q = q± = k ±
√

(2−D)/3. (3.137)

Thus, there is no oscillatory behavior for D ≤ 2, and one expects to have

a stable vacuum in this case. Since the Y field is present in any case, D ≥ 1.

Fractional values between 1 and 2 are possible if a unitary minimal model

is used in place of Xµ.

These results motivate one to further modify the world-sheet theory in the

case ofD ≤ 2 by adding a tachyon background term of the form T0 exp(q−Y ).

The resulting world-sheet theory is called a Liouville field theory. Despite

its nonlinearity, it is classically integrable, and even the quantum theory is

quite well understood (after many years of hard work).

Recall that the exponential of the dilaton field gives the strength of the

string coupling. So the linear dilaton background describes a world in which

strings are weakly coupled for large negative y and strongly coupled for large

positive y. One could worry about the reliability of the formalism in such

a set-up. However, the tachyon background or Liouville exponential eqy

suppresses the contribution of the strongly coupled region, and this keeps

things under control. Toy models of this sort with D = 1 or D = 2 are simple

enough that their study has proved valuable in developing an understanding

of some of the intricacies of string theory such as the asymptotic proper-

ties of the perturbation expansion at high genus and some nonperturbative

features.

A completely different methodology that leads to exactly the same world-

sheet theory makes no reference to dilatons or tachyons at all. Rather, one

simply adds a cosmological constant term to the world-sheet theory. This is

a rather drastic thing to do, because it destroys the classical Weyl invariance

of the theory. The consequence of this is that, when one uses diffeomorphism

invariance to choose a conformally flat world-sheet metric hαβ = eωηαβ, the

field ω no longer decouples. Rather, it becomes dynamical and plays the

same role as the field Y in the earlier discussion. This is an alternative

characterization of noncritical string theories.
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EXERCISES

EXERCISE 3.10

By computing the TT OPE in the linear-dilaton vacuum verify the value of

the central charge given in Eq. (3.134).

SOLUTION

In order to compute the OPE, it is convenient to rewrite the energy–mo-

mentum tensor in Eq.(3.133) in the form

T (z) = T0(z) + aµ∂
2Xµ(z),

where aµ = kδiµ, and i is the direction along which the dilaton varies. Since

we are interested in the central charge, we only need the leading singularity

in this OPE, which is given by

T (z)T (w) = T0(z)T0(w) + aµaν∂
2Xµ(z)∂2Xν(w) + . . .

Now we use the results for the leading-order singularities

T0(z)T0(w) =
D/2

(z − w)4
and ∂2Xµ(z)∂2Xν(w) =

3

2

ηµν

(z − w)4
,

to get

T (z)T (w) =
(D + 3a2)/2

(z − w)4
+ . . .

This shows that in the original notation the central charge is

c = D + 3k2.

The same computation can be repeated to obtain the result c̃ = c. 2

3.7 Witten’s open-string field theory

Witten’s description of the field theory of the open bosonic string has many

analogies with Yang–Mills theory. This is not really surprising inasmuch

as open strings can be regarded as an infinite-component generalization of

Yang–Mills fields. It is pedagogically useful to emphasize these analogies in

describing the theory. The basic object in Yang–Mills theory is the vector

potential Aaµ(xρ), where µ is a Lorentz index and a runs over the generators
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of the symmetry algebra. By contracting with matrices (λa)ij that represent

the algebra and differentials dxµ one can define

Aij(x
ρ) =

∑

a,µ

(λa)ijA
a
µ(xρ)dxµ, (3.138)

which is a matrix of one-forms. This is a natural quantity from a geometric

point of view. The analogous object in open-string field theory is the string

field

A[xρ(σ), c(σ)]. (3.139)

This is a functional field that creates or destroys an entire string with co-

ordinates xρ(σ), c(σ), where the parameter σ is taken to have the range

0 ≤ σ ≤ π. The coordinate c(σ) is the anticommuting ghost field described

earlier in this chapter. In this formulation the conjugate antighost b(σ) is

represented by a functional derivative with respect to c(σ).

(b)

(a) L R

A B L R

σ=0 σ=π/2 σ=π

A L C L
= B R C R=

Fig. 3.7. An open string has a left side (σ < π/2) and a right side (σ > π/2) depicted
in (a), which can be treated as matrix indices. The multiplication A ∗ B = C is
depicted in (b).

The string field A can be regarded as a matrix (in analogy to Aij) by

regarding the coordinates with 0 ≤ σ ≤ π/2 as providing the left matrix

index and those with π/2 ≤ σ ≤ π as providing the right matrix index as

shown in part (a) of Fig. 3.7. One could also associate Chan–Paton quark-

like charges with the ends of the strings,14 which would then be included

in the matrix labels as well, but such labels are not displayed. By not

including such charges one is describing the U(1) open-string theory. U(1)

14 This is explained in Chapter 6.
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gauge theory (without matter fields) is a free theory, but the string extension

has nontrivial interactions.

In the case of Yang–Mills theory, two fields can be multiplied by the rule
∑

k

Aik ∧Bkj = Cij . (3.140)

This is a combination of matrix multiplication and antisymmetrization of

the tensor indices (the wedge product of differential geometry). This multi-

plication is associative but noncommutative. A corresponding rule for string

fields is given by a ∗ product,

A ∗B = C. (3.141)

This infinite-dimensional matrix multiplication is depicted in part (b) of

Fig. 3.7. One identifies the coordinates of the right half of stringA with those

of the left half of string B and functionally integrates over the coordinates

of these identified half strings. This leaves string C consisting of the left

half of string A and the right half of string B. It is also necessary to include

a suitable factor involving the ghost coordinates at the midpoint σ = π/2.

A fundamental operation in gauge theory is exterior differentiation A →
dA. In terms of components

dA =
1

2
(∂µAν − ∂νAµ)dxµ ∧ dxν , (3.142)

which contains the abelian field strengths as coefficients. Exterior differenti-

ation is a nilpotent operation, d2 = 0, since partial derivatives commute and

vanish under antisymmetrization. The nonabelian Yang–Mills field strength

is given by the matrix-valued two-form

F = dA+ A ∧A, (3.143)

or in terms of tensor indices,

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]. (3.144)

Let us now construct analogs of d and F for the open-string field. The

operator that plays the roles of d is the nilpotent BRST operator QB, which

can be written explicitly as a differential operator involving the coordinates

X(σ), c(σ). Given the operator QB, there is an obvious formula for the

string-theory field strength, analogous to the Yang–Mills formula, namely

F = QBA+ A ∗A. (3.145)

The string field A describes physical string states, and therefore it has ghost

number −1/2. Since QB has ghost number +1, it follows that F has ghost
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number +1/2. For A ∗ A to have the same ghost number, the ∗ operation

must contribute +3/2 to the ghost number.

An essential feature of Yang–Mills theory is gauge invariance. Infinites-

imal gauge transformation can be described by a matrix of infinitesimal

parameters Λ(xρ). The transformation rules for the potential and the field

strength are then

δA = dΛ + [A,Λ] (3.146)

and

δF = [F,Λ]. (3.147)

There are completely analogous formulas for the string theory, namely

δA = QBΛ + [A,Λ] (3.148)

and

δF = [F,Λ]. (3.149)

In this case [A,Λ] means A ∗ Λ − Λ ∗ A, of course. Since the infinitesimal

parameter Λ[xρ(σ), c(σ)] is a functional, it can be expanded in terms of an

infinite number of ordinary functions. Thus the gauge symmetry of string

theory is infinitely richer than that of Yang–Mills theory, as required for

the consistency of the infinite spectrum of high-spin fields contained in the

theory.

The next step is to formulate a gauge-invariant action. The key ingredient

in doing this is to introduce a suitably defined integral. In the case of

Yang–Mills theory one integrates over space-time and takes a trace over the

matrix indices. Thus it is convenient to define
∫
Y as

∫
d4xTr(Y (x)). In

this notation the usual Yang–Mills action is

S ∼
∫
gµρgνλFµνFρλ. (3.150)

The definition of integration appropriate to string theory is a “trace”

that identifies the left and right segments of the string field Lagrangian,

specifically
∫
Y =

∫
D26Xµ(σ)Dφ(σ) exp

(
−3i

2
φ(π/2)

)
Y [Xµ(σ), φ(σ)]

×
∏

σ<π/2

δ26(Xµ(σ)−Xµ(π − σ))δ(φ(σ)− φ(π − σ)). (3.151)

As indicated in part (a) of Fig. 3.8, this identifies the left and right segments
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ofX. A ghost factor has been inserted at the midpoint. φ(σ) is the bosonized

form of the ghosts described earlier. This ensures that
∫

contributes −3/2

to the ghost number, as required. This definition of integration satisfies the

important requirements
∫
QBY = 0 and

∫
[Y1, Y2] = 0. (3.152)

(b)
L R

σ=0σ=π/2 σ=π

LR

R L

(a)

Fig. 3.8. Integration of a string functional requires identifying the left and right
halves as depicted in (a). The three-string vertex, shown in (b), is based on two
multiplications (star products) and one integration and treats the three strings
symmetrically.

We now have the necessary ingredients to write a string action. Trying

to emulate the Yang–Mills action runs into a problem, because no analog of

the metric gµρ has been defined. Rather than trying to find one, it proves

more fruitful to look for a gauge-invariant action that does not require one.

The simplest possibility is given by the Chern–Simons form

S ∼
∫ (

A ∗QBA+
2

3
A ∗A ∗A

)
. (3.153)

In the context of ordinary Yang–Mills theory the integrand is a three-form,

whose variation under a gauge transformation is closed, and therefore such

a term can only be introduced in three dimensions, where it is interpreted as

giving mass to the gauge field. In string theory the interpretation is different,

though the mathematics is quite analogous, and the formula makes perfectly

good sense. In fact, in both cases extremizing the action gives rise to the

deceptively simple classical field equation F = 0.

The fact that the string equation of motion is F = 0 does not mean the

theory is trivial. Dropping the interaction term, the equation of motion
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for the free theory is QBA = 0, which is invariant under the abelian gauge

transformation δA = QBΛ, since Q2
B = 0. Once one requires that A be

restricted to contain ghost number −1/2 fields, this precisely reproduces

the known spectrum of the bosonic string. As was explained earlier, the

physical states of the free theory are in one-to-one correspondence with

BRST cohomology classes of ghost number −1/2.

The cubic string interaction is depicted in part (b) of Fig. 3.8. Two of

the segment identifications are consequences of the ∗ products in A ∗A ∗A,

and the third is a consequence of the integration. Altogether, this gives an

expression that is symmetric in the three strings.

As was explained earlier, in string theory one is only interested in equiva-

lence classes of metrics that are related by conformal mappings. It is always

possible to find representatives of each equivalence class in which the metric

is flat everywhere except at isolated points where the curvature is infinite.

Such a metric describes a surface with conical singularities, which is not a

manifold in the usual sense. In fact, it is an example of a class of surfaces

called orbifolds. The string field theory construction of the amplitude au-

tomatically chooses a particular metric, which is of this type. The conical

singularities occur at the string midpoints in the interaction. They have

the property that a small circle of radius r about this point has circumfer-

ence 3πr. This is exactly what is required so that the Riemann surfaces

constructed by gluing vertices and propagators have the correct integrated

curvature, as required by Euler’s theorem.

Witten’s string field theory seems to be as simple and beautiful as one

could hope for, though there are subtleties in defining it precisely that have

been glossed over in the brief presentation given here. For the bosonic string

theory, it does allow a computation of all processes with only open-string

external lines to all orders in perturbation theory (at least in principle). The

extension to open superstrings is much harder and has not been completed

yet. It has been proved that the various Feynman diagrams generated by

this field theory piece together so as to cover the relevant Riemann surface

moduli spaces exactly once. In particular, this means that the contributions

of closed strings in the interior of diagrams is properly taken into account.

Moreover, the fact that this is a field-theoretic formulation means that it

can be used to define amplitudes with off-shell open strings, which are oth-

erwise difficult to define in string theory. This off-shell property has been

successfully exploited in nonperturbative studies of tachyon condensation.

However, since this approach is based on open-string fields, it is not appli-

cable to theories that only have closed strings. Corresponding constructions

for closed-string theories (mostly due to Zwiebach) are more complicated.
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HOMEWORK PROBLEMS

PROBLEM 3.1

Compute the commutator of an infinitesimal translation and an infinitesimal

special conformal transformation in D dimensions. Identify the resulting

transformations and their infinitesimal parameters.

PROBLEM 3.2

Show that the transformations (3.14) give rise to the D = 2 case of the

D-dimensional transformations in Eq. (3.7).

PROBLEM 3.3

Show that the algebra of Lorentzian-signature conformal transformations in

D dimensions is isomorphic to the Lie algebra SO(D, 2).

PROBLEM 3.4

Derive the OPE

T (z)Xµ(w, w̄) ∼ 1

z − w∂X
µ(w, w̄) + . . .

What does this imply for the conformal dimension of Xµ?

PROBLEM 3.5

(i) Use the result of the previous problem to deduce the OPE of T (z)

with each of the following operators:

∂Xµ(w, w̄) ∂̄Xµ(w, w̄), ∂2Xµ(w, w̄).

(ii) What do these results imply for the conformal dimension (h, h̃) (if

any) in each case?

PROBLEM 3.6

Show that

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0, [αµm, α̃

ν
n] = 0

by using the OPE of the field ∂Xµ(z, z̄) with itself and with ∂̄Xµ(z, z̄).

PROBLEM 3.7

Consider a conformal field Φ(z) of dimension h and a mode expansion of the
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form

Φ(z) =
+∞∑

n=−∞

Φn

zn+h
.

Using contour-integral methods, like those of Exercise 3.2, evaluate the com-

mutator [Lm,Φn].

PROBLEM 3.8

Let Φ(z) be a holomorphic primary field of conformal dimension h in a con-

formal field theory with the mode expansion given in the previous problem.

The conformal vacuum satisfies Φn|0〉 = 0 for n > −h. Use the results of

the previous problem to prove that |Φ〉 = Φ−h|0〉 is a highest-weight state.

PROBLEM 3.9

(i) Calculate the two-point functions 〈0|φi(z1, z̄1)φj(z2, z̄2)|0〉 for an ar-

bitrary pair of primary fields with conformal weights (hi, h̃i) and

(hj , h̃j) taking into account that the Virasoro generators L0 and L±1

annihilate the in and out vacua |0〉 and 〈0|.
(ii) Show that the three-point function 〈0|φi(z1, z̄1)φj(z2, z̄2)φk(z3, z̄3)|0〉

is completely determined in terms of the conformal weights of the

fields up to an overall coefficient Cijk.

PROBLEM 3.10

(i) Show that in a unitary conformal field theory, that is, one with a

positive-definite Hilbert space, the central charge satisfies c > 0, and

the conformal dimensions of primary fields satisfy h ≥ 0. Hint: eval-

uate 〈φ|[Ln, L−n]|φ〉 for a highest-weight state |φ〉.
(ii) Show that h = h̃ = 0 if and only if |φ〉 = |0〉.

PROBLEM 3.11

Verify the expression (3.78) for the central charge of a system of b, c ghosts

by computing the OPE of the energy–momentum tensor Tbc with itself.

PROBLEM 3.12

Verify the property Q2
B = 0 of the BRST charge by anticommuting two of

the integral representations and using the various OPEs.
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PROBLEM 3.13

Consider a closed oriented bosonic string theory in flat 26-dimensional space-

time. In this theory the integrated vertex operators are integrals of primary

fields of conformal dimension (1, 1).

(i) What is the form of these vertex operators for physical states with

NL = NR = 1?

(ii) Verify that these vertex operators lead to physical states |φ〉 that

satisfy the physical state conditions

(Ln − δn,0)|φ〉 = 0, (L̃n − δn,0)|φ〉 = 0 n ≥ 0.

PROBLEM 3.14

Carry out the BRST quantization for the first two levels (NL = NR = 0

and NL = NR = 1) of the closed bosonic string. In other words, identify

the BRST cohomology classes that correspond to the physical states. Hint:

analyze the left-movers and right-movers separately.

PROBLEM 3.15

Identify the BRST cohomology classes that correspond to physical states for

the third level (N = 2) of the open string.

PROBLEM 3.16

The open-string field can be expanded as a Fock-space vector in the first-

quantized Fock space given by the α and ghost oscillators. The first term in

the expansion is A = T (x)| ↓〉, where T (x) is the tachyon field. Expand the

string field A in component fields displaying the next two levels remembering

that the total ghost number should be −1/2. Expand the action of the free

theory to level N = 1.
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Strings with world-sheet supersymmetry

The bosonic string theory that was discussed in the previous chapters is

unsatisfactory in two respects. First, the closed-string spectrum contains a

tachyon. If one chooses to include open strings, then additional open-string

tachyons appear. Tachyons are unphysical because they imply an instability

of the vacuum. The elimination of open-string tachyons from the physical

spectrum has been understood in terms of the decay of D-branes into closed-

string radiation. However, the fate of the closed-string tachyon has not been

determined yet.

The second unsatisfactory feature of the bosonic string theory is that

the spectrum (of both open and closed strings) does not contain fermions.

Fermions play a crucial role in nature, of course. They include the quarks

and leptons in the standard model. As a result, if we would like to use string

theory to describe nature, fermions have to be incorporated. In string theory

the inclusion of fermions turns out to require supersymmetry, a symmetry

that relates bosons and fermions, and the resulting string theories are called

superstring theories. In order to incorporate supersymmetry into string the-

ory two basic approaches have been developed1

• The Ramond–Neveu–Schwarz (RNS) formalism is supersymmetric on the

string world sheet.

• The Green–Schwarz (GS) formalism is supersymmetric in ten-dimensional

Minkowski space-time. It can be generalized to other background space-

time geometries.

These two approaches are actually equivalent, at least for ten-dimensional

Minkowski space-time. This chapter describes the RNS formulation of su-

perstring theory, which is based on world-sheet supersymmetry.

1 More recently, various alternative formalisms have been proposed by Berkovits.

109
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4.1 Ramond–Neveu–Schwarz strings

In the RNS formalism the bosonic fields Xµ(σ, τ) of the two-dimensional

world-sheet theory discussed in the previous chapter are paired up with

fermionic partners ψµ(σ, τ). The new fields ψµ(σ, τ) are two-component

spinors on the world sheet and vectors under Lorentz transformations of the

D-dimensional space-time. These fields are anticommuting which is consis-

tent with spin and statistics, since they are spinors in the two-dimensional

sense. Consistency with spin and statistics in D = 10 dimensions is also

achieved, though that is less obvious at this point.

As was discussed in Chapter 2, the action for the bosonic string in con-

formal gauge is (for α′ = 1/2 or T = 1/π)

S = − 1

2π

∫
d2σ∂αXµ∂

αXµ, (4.1)

and this needs to be supplemented by Virasoro constraints. This is a free

field theory in two dimensions. To generalize this action, let us introduce ad-

ditional internal degrees of freedom describing fermions on the world sheet.

Concretely, one can incorporate D Majorana fermions that belong to the

vector representation of the Lorentz group SO(D − 1, 1). In the represen-

tation of the two-dimensional Dirac algebra described below, a Majorana

spinor is equivalent to a real spinor. The desired action is obtained by

adding the standard Dirac action for D free massless fermions to the free

theory of D massless bosons

S = − 1

2π

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ
)
. (4.2)

Here ρα, with α = 0, 1, represent the two-dimensional Dirac matrices, which

obey the Dirac algebra2

{ρα, ρβ} = 2ηαβ. (4.3)

To be explicit, let us choose a basis in which these matrices take the form

ρ0 =

(
0 −1

1 0

)
and ρ1 =

(
0 1

1 0

)
. (4.4)

Classically, the fermionic world-sheet field ψµ is made of Grassmann num-

bers, which implies that it satisfies the anticommutation relations

{ψµ, ψν} = 0. (4.5)

2 A Dirac algebra is known to mathematicians as a Clifford algebra. In GSW the definition of
ρα differed by a factor of i and the anticommutator was −2ηαβ . As a result, some signs differ
from those of GSW in subsequent formulas.
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This changes after quantization, of course.

The spinor ψµ has two components ψµA, A = ±,

ψµ =

(
ψµ−
ψµ+

)
. (4.6)

Here, and in the following, we define the Dirac conjugate of a spinor as

ψ̄ = ψ†β, β = iρ0, (4.7)

which for a Majorana spinor is simply ψTβ. Since the Dirac matrices are

purely real, Eq. (4.4) is a Majorana representation, and the Majorana spinors

ψµ are real (in the sense appropriate to Grassmann numbers)

ψ?+ = ψ+ and ψ?− = ψ−. (4.8)

In this notation the fermionic part of the action is (suppressing the Lorentz

index)

Sf =
i

π

∫
d2σ (ψ−∂+ψ− + ψ+∂−ψ+) , (4.9)

where ∂± refer to the world-sheet light-cone coordinates σ± introduced in

Chapter 2. The equation of motion for the two spinor components is the

Dirac equation, which now takes the form

∂+ψ− = 0 and ∂−ψ+ = 0. (4.10)

These equations describe left-moving and right-moving waves. For spinors

in two dimensions, these are the Weyl conditions. Thus the fields ψ± are

Majorana–Weyl spinors.3

EXERCISES

EXERCISE 4.1

Show that one can rewrite the fermionic part of the action in Eq. (4.2) in

the form in Eq. (4.9).

SOLUTION

Taking ∂± = 1
2(∂0 ± ∂1) and the explicit form of the two-dimensional Dirac

3 Group theoretically, they are two inequivalent real one-dimensional spinor representations of
the two-dimensional Lorentz group Spin(1, 1).
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matrices (4.4) into account, one obtains

ρα∂α =

(
0 ∂1 − ∂0

∂1 + ∂0 0

)
= 2

(
0 −∂−
∂+ 0

)
.

From the definition ψ̄ = ψ†iρ0, it follows that ψ̄ = i(ψ+,−ψ−). The action

in Eq. (4.9) is then obtained after carrying out the matrix multiplication. 2

4.2 Global world-sheet supersymmetry

The action in Eq. (4.2) is invariant under the infinitesimal transformations

δXµ = ε̄ψµ, (4.11)

δψµ = ρα∂αX
µε, (4.12)

where ε is a constant infinitesimal Majorana spinor that consists of anti-

commuting Grassmann numbers. Writing the spinors in components

ε =

(
ε−
ε+

)
, (4.13)

the supersymmetry transformations take the form

δXµ = i(ε+ψ
µ
− − ε−ψµ+), (4.14)

δψµ− = −2∂−Xµε+, (4.15)

δψµ+ = 2∂+X
µε−. (4.16)

The symmetry holds up to a total derivative that can be dropped for

suitable boundary conditions. Since ε is not dependent on σ and τ , this is

a global symmetry of the world-sheet theory.4 The supersymmetry trans-

formations (4.11) mix the bosonic and fermionic world-sheet fields. This

fermionic symmetry of the two-dimensional RNS world-sheet action was

noted by Gervais and Sakita in 1971 at about the same time that the four-

dimensional super-Poincaré algebra was introduced by Golfand and Likht-

man in the Soviet Union. Prior to these works, it was believed to be impossi-

ble to have a symmetry that relates particles of different spin in a relativistic

field theory.

4 This is the world-sheet theory in conformal gauge. There is a more fundamental formulation
in which the world-sheet supersymmetry is a local symmetry. In conformal gauge it gives rise
to the theory considered here.
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Superspace

Exercise 4.2 shows that the action (4.2) is invariant under the supersym-

metry transformations. The supersymmetry of component actions, such as

this one, is not manifest. The easiest way to make this symmetry mani-

fest is by rewriting the action using a superspace formalism. Superspace is

an extension of ordinary space-time that includes additional anticommuting

(Grassmann) coordinates, and superfields are fields defined on superspace.

The superfield formulation entails adding an off-shell degree of freedom to

the world-sheet theory, without changing the physical content. This has the

advantage of ensuring that the algebra of supersymmetry transformations

closes off-shell, that is, without use of the equations of motion.

The superfield formulation is very convenient for making supersymme-

try manifest (and simplifying calculations) in theories that have a relatively

small number of conserved supercharges. The number of supercharges is

two in the present case. When the number is larger than four, as is neces-

sarily the case for supersymmetric theories when the space-time dimension

is greater than four, a superfield formulation can become very unwieldy or

even impossible.

The super-world-sheet coordinates are given by (σα, θA), where

θA =

(
θ−
θ+

)
(4.17)

are anticommuting Grassmann coordinates

{θA, θB} = 0, (4.18)

which form a Majorana spinor. Upper and lower spinor indices need not be

distinguished here, so θA = θA. Frequently these indices are not displayed.

For the usual bosonic world-sheet coordinates let us define σ0 = τ and

σ1 = σ. One can then introduce a superfield Y µ(σα, θ). The most general

such function has a series expansion in θ of the form

Y µ(σα, θ) = Xµ(σα) + θ̄ψµ(σα) +
1

2
θ̄θBµ(σα), (4.19)

where Bµ(σα) is an auxiliary field whose inclusion does not change the

physical content of the theory. This field is needed to make supersymmetry

manifest. A term with more powers of θ would automatically vanish as a

consequence of the anticommutation properties of the Grassmann numbers

θA. Since ψ̄θ = θ̄ψ for Majorana spinors, a term linear in θ would be

equivalent to the linear term in θ̄ appearing above.
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The generators of supersymmetry transformations of the super-world-

sheet coordinates, called supercharges, are

QA =
∂

∂θ̄A
− (ραθ)A∂α. (4.20)

The world-sheet supersymmetry transformations given above can be ex-

pressed in terms of QA. Acting on superspace, ε̄Q generates the transfor-

mations

δθA =
[
ε̄Q, θA

]
= εA, (4.21)

δσα = [ε̄Q, σα] = −ε̄ραθ = θ̄ραε, (4.22)

of the superspace coordinates. In this way a supersymmetry transforma-

tion is interpreted as a geometrical transformation of superspace (see Exer-

cise 4.3). The supercharge Q acts on the superfield according to

δY µ = [ε̄Q, Y µ] = ε̄QY µ. (4.23)

Expanding this equation in components and using the two-dimensional Fierz

transformation

θAθ̄B = −1

2
δAB θ̄CθC , (4.24)

one gets the supersymmetry transformations

δXµ = ε̄ψµ, (4.25)

δψµ = ρα∂αX
µε+Bµε, (4.26)

δBµ = ε̄ρα∂αψ
µ. (4.27)

The first two formulas reduce to the supersymmetry transformations in

Eqs (4.11) and (4.12), which do not contain the auxiliary field Bµ, if one

uses the field equation Bµ = 0.

The action can be written in superfield language using the supercovariant

derivative

DA =
∂

∂θ̄A
+ (ραθ)A∂α. (4.28)

Note that {DA, QB} = 0, and therefore the supercovariant derivative DAΦ

of an arbitrary superfield Φ transforms under supersymmetry in the same

way as Φ itself. The desired action, written in terms of superfields, is

S =
i

4π

∫
d2σd2θD̄Y µDYµ. (4.29)
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The definition of integration over Grassmann coordinates is described be-

low. It has the property that the θ integral of a θ derivative is zero. This

superspace action has manifest supersymmetry, since the variation gives

δS =
i

4π

∫
d2σd2θε̄Q(D̄Y µDYµ). (4.30)

Both terms in the definition of Q give total derivatives: one term is a total

σα derivative and the other term is a total θA derivative. Depending on

the σ boundary conditions the world-sheet supersymmetry can be broken

or unbroken. Both cases are of interest. There are no boundary terms

associated with the Grassmann integrations.

The superspace formula for the action can be written in components by

substituting the component expansion of Y and carrying out the Grassmann

integrations. The basic rule for Grassmann integration in the case of a single

coordinate is
∫
dθ(a+ θb) = b. (4.31)

In the present case there are two Grassmann coordinates, and the only

nonzero integral is
∫
d2θ θ̄θ = −2i. (4.32)

The component form of the action can be derived by using this rule as well

as the expansions

DY µ = ψµ + θBµ + ραθ∂αX
µ − 1

2
θ̄θρα∂αψ

µ, (4.33)

D̄Y µ = ψ̄µ +Bµθ̄ − θ̄∂αXµρα +
1

2
θ̄θ∂αψ̄

µρα. (4.34)

One finds

S = − 1

2π

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ −BµBµ
)
. (4.35)

This action implies that the equation of motion for Bµ is Bµ = 0, as was

asserted earlier. As a result, the auxiliary field Bµ can be eliminated from

the theory leaving Eq. (4.2). The price of doing this is the loss of manifest

supersymmetry as well as off-shell closure of the supersymmetry algebra.
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EXERCISES

EXERCISE 4.2

Verify that the action (4.2) is invariant under the supersymmetry transfor-

mations (4.11) up to a total derivative.

SOLUTION

Suppressing Lorentz indices, it is straightforward to vary the action

S =
1

π

∫
d2σ (2∂+X∂−X + iψ−∂+ψ− + iψ+∂−ψ+) .

The terms proportional to ε+ are

δ+S =
2i

π
ε+

∫
d2σ (∂+ψ−∂−X + ∂+X∂−ψ− − ∂−X∂+ψ− + ψ−∂+∂−X) ≈ 0.

The equivalence to 0 is a consequence of the fact that the integrand is a

total derivative. The terms proportional to ε− work in a similar manner. 2

EXERCISE 4.3

Show that the commutator of two supersymmetry transformations (4.11)

amounts to a translation along the string world sheet by evaluating the

commutators [δ1, δ2]Xµ and [δ1, δ2]ψµ.

SOLUTION

Using the supersymmetry transformations

δXµ = ε̄ψµ, δψµ = ρα∂αX
µε,

we first compute the commutator acting on the fermionic field

[δε1 , δε2 ]ψµ = δε1(δε2ψ
µ)− δε2(δε1ψ

µ) = δε1(ρα∂αX
µε2)− δε2(ρα∂αX

µε1)

= ραε2∂αδε1X
µ − ραε1∂αδε2X

µ = ρα(ε2ε̄1 − ε1ε̄2)∂αψ
µ.

Using the spinor identity ε2ε̄1−ε1ε̄2 = −ε̄1ρβε2ρ
β and the anticommutation

relations of the Dirac matrices, this becomes

−ε̄1ρβε2ρ
αρβ∂αψ

µ = −2ε̄1ρ
αε2∂αψ

µ + ε̄1ρβε2ρ
βρα∂αψ

µ.
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The first term is interpreted as a translation by the amount

aα = −2ε̄1ρ
αε2.

Note that this is an even element of the Grassmann algebra, but not an

ordinary number. So the notion of translation has to be generalized in this

way. The second term vanishes using the equation of motion ρα∂αψ
µ = 0.

This is what we are referring to when we say that the algebra only closes

on-shell. When the auxiliary field is included, one achieves off-shell closure

of the algebra.

The commutator acting on the bosonic field can be computed in a similar

way

[δε1 , δε2 ]Xµ = ε̄2δε1ψ
µ − ε̄1δε2ψ

µ = −2ε̄1ρ
αε2∂αX

µ,

where we have used the identity ε̄1ρ
αε2 = −ε̄2ρ

αε1. This is a translation by

the same aα as before. 2

EXERCISE 4.4

Use the supersymmetry transformation for the superfield (4.23) to derive

the supersymmetry transformation for the component fields (4.25)–(4.27).

SOLUTION

The supersymmetry variation of the superfield is

δY µ = [ε̄Q, Y µ(σ, θ)] = ε̄QY µ(σ, θ),

where

QA =
∂

∂θ̄A
− (ραθ)A∂α.

So we obtain

δY µ(σ, θ) = ε̄AQA

(
Xµ(σ) + θ̄ψµ(σ) +

1

2
θ̄θBµ(σ)

)

= ε̄AψµA(σ)− ε̄A(ραθ)A∂αX
µ(σ) + ε̄AθAB

µ(σ)− ε̄A(ραθ)Aθ̄
B∂αψ

µ
B(σ)

= ε̄ψµ(σ) + θ̄ραε∂αX
µ(σ) + θ̄εBµ(σ) +

1

2
θ̄θε̄ρα∂αψ

µ(σ).

From here we can read off the supersymmetry transformations for the com-

ponent fields by matching the different terms in the θ expansion. 2
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EXERCISE 4.5

Derive the component form of the action in Eq. (4.35) from the superspace

action in Eq. (4.29).

SOLUTION

The supercovariant derivatives acting on superfieldsDY µ and D̄Y µ are given

in Eqs (4.33) and (4.34). We now multiply these expressions and substitute

into Eq. (4.29). Since only terms quadratic in θ survive integration, the

nonzero terms in Eq. (4.29) are

S =
i

4π

∫
d2σd2θ

(
−ψ̄µρα∂αψµθ̄θ +BµBµθ̄θ − θ̄ρα∂αXµρβθ∂βXµ

)
.

The last term simplifies according to

θ̄ρα∂αX
µρβθ∂βXµ = ∂αXµ∂αXµθ̄θ.

Therefore, by using Eq. (4.32) one obtains Eq. (4.35) for the component

action. 2

4.3 Constraint equations and conformal invariance

Let us now proceed as in Chapter 2. From the equations of motion we

can derive the mode expansion of the fields and use canonical quantization

to construct the spectrum of the theory. The problem of negative-norm

states appears also in the supersymmetric theory. Recall that in the case

of the bosonic string theory the spectrum seemed to contain negative-norm

states, but these were shown to be unphysical. Specifically, in Chapter 2 it

was shown that the negative-norm states decouple and Lorentz invariance

is maintained for D = 26. The RNS string has a superconformal symmetry

that allows us to proceed in a similar manner. The negative-norm states

are eliminated by using the super-Virasoro constraints that follow from the

superconformal symmetry in the critical dimension D = 10. Alternatively,

one can use it to fix a light-cone gauge and maintain Lorentz invariance for

D = 10.

In order to discuss the appropriate generalization of conformal invari-

ance for the RNS string, let us start by constructing the conserved cur-

rents associated with the global symmetries of the action. These are the

energy–momentum tensor (associated with translation symmetry) and the

supercurrent (associated with supersymmetry). In particular, the energy–
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momentum tensor of the RNS string is

Tαβ = ∂αX
µ∂βXµ +

1

4
ψ̄µρα∂βψµ +

1

4
ψ̄µρβ∂αψµ − (trace). (4.36)

The conserved current associated with the global world-sheet supersymme-

try of the RNS string is the world-sheet supercurrent. It can be constructed

using the Noether method. Specifically, taking the supersymmetry parame-

ter ε to be nonconstant, one finds that up to a total derivative the variation

of the action (4.2) takes the form

δS ∼
∫
d2σ(∂αε̄)J

α, (4.37)

where

JαA = −1

2
(ρβραψµ)A∂βX

µ. (4.38)

This current satisfies

(ρα)ABJ
α
B = 0 (4.39)

as a consequence of the identity ραρ
βρα = 0. This is the analog of the

tracelessness of the Tαβ. In fact, it can be traced back to local super-Weyl

invariance in the formalism with local world-sheet supersymmetry. As a

result, JαA has only two independent components, which can be denoted J+

and J−.

Written in terms of world-sheet light-cone coordinates, the nonzero com-

ponents of the energy–momentum tensor in Eq. (4.36) are

T++ = ∂+Xµ∂+X
µ +

i

2
ψµ+∂+ψ+µ, (4.40)

T−− = ∂−Xµ∂−Xµ +
i

2
ψµ−∂−ψ−µ. (4.41)

Similarly, the nonzero components of the supercurrent in Eq. (4.38) are

J+ = ψµ+∂+Xµ and J− = ψµ−∂−Xµ. (4.42)

The supercurrent (4.38) is conserved, ∂αJ
α
A = 0, as a consequence of the

equations of motion, which leads to

∂−J+ = ∂+J− = 0. (4.43)

The energy–momentum tensor satisfies analogous relations

∂−T++ = ∂+T−− = 0. (4.44)

These relations follow immediately from the equations of motion ∂+∂−Xµ =



120 Strings with world-sheet supersymmetry

0 and ∂+ψ
µ
− = ∂−ψ

µ
+ = 0. However, the requirements of superconformal

symmetry actually lead to stronger conditions than these, namely the van-

ishing of the supercurrent and the energy–momentum tensor.

In order to quantize the theory, one can introduce canonical anticommu-

tation relations for the fermionic world-sheet fields

{
ψµA(σ, τ), ψνB(σ′, τ)

}
= πηµνδABδ(σ − σ′) (4.45)

in addition to the commutation relations for the bosonic world-sheet fields

Xµ(σ, τ) given in Chapter 2. Because η00 = −1, there are negative-norm

states that originate from the time-like fermion ψ0 in the same way as for

the time-like boson X0. These must not appear in the physical spectrum, if

one wants a sensible causal theory.

Once again there is sufficient symmetry to eliminate the unwanted negative-

norm states. In the case of the bosonic theory the conditions T+− = T−+ = 0

followed from Weyl invariance, while T++ = T−− = 0 followed from the equa-

tions of motion for the world-sheet metric. The latter conditions were shown

to imply conformal invariance. This symmetry could be used to choose the

light-cone gauge, which gives a manifestly positive-norm spectrum in the

quantum theory. Let us try to follow the same steps in the RNS case.

The first step is to formulate the constraint equations that can be used to

eliminate the time-like components of ψµ and Xµ. In the bosonic case the

time-like component was eliminated in 26 dimensions by using the Virasoro

constraints T++ = T−− = 0. In the supersymmetric case it is natural to

try the same procedure again and to eliminate the time-like components

by using suitably generalized Virasoro conditions. In the RNS theory the

corresponding conditions are

J+ = J− = T++ = T−− = 0. (4.46)

One way of understanding this is in terms of the consistency with the al-

gebra of the currents. However, a deeper understanding can be achieved

by starting from a world-sheet action that has local supersymmetry. This

can be constructed by gauging the world-sheet supersymmetry by introduc-

ing a world-sheet Rarita–Schwinger gauge field, in addition to a world-sheet

zweibein, which replaces the world-sheet metric for theories with spinors.

The formulas are given in Section 4.3.4 of GSW. Just as the equations of

motion of the metric in conformal gauge give the vanishing of the energy–

momentum tensor, so the equations of motion of the Rarita–Schwinger field

give the vanishing of the supercurrent.
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EXERCISES

EXERCISE 4.6

Verify the form of the energy–momentum tensor in Eqs (4.40) and (4.41).

SOLUTION

These conserved currents should be a consequence of the world-sheet trans-

lation symmetry of the action

S =
1

π

∫
d2σ (2∂+X · ∂−X + iψ− · ∂+ψ− + iψ+ · ∂−ψ+)

derivable by the Noether method. An infinitesimal translation is given by

δX = aα∂αX and δψA = aα∂αψA. We focus here on δ+X = a+∂+X and

δ+ψA = a+∂+ψA, since the a− transformations work in exactly the same

way.

δ+ (2∂+X · ∂−X + iψ− · ∂+ψ− + iψ+ · ∂−ψ+)

= a+ (−2∂−(∂+X · ∂+X) + i∂+(ψ+ · ∂−ψ+)− i∂−(ψ+ · ∂+ψ+))

up to a total derivative. Identifying this with

−2a+(∂−T++ + ∂+T−+)

gives the desired result

T++ = ∂+X · ∂+X +
i

2
ψ+ · ∂+ψ+.

It also appears to give T−+ = − i
2ψ+ · ∂−ψ+. However, this vanishes by an

equation of motion. Similarly, the a− variation leads to

T−− = ∂−X · ∂−X +
i

2
ψ− · ∂−ψ−.

2

EXERCISE 4.7

Verify the form of the supercurrent in Eq. (4.42).

SOLUTION

The method is the same as in the previous exercise. This time we want
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to find the currents associated with the supersymmetry transformations in

Eqs (4.14)–(4.16). It is sufficient to consider the ε− transformations, since

the ε+ ones work in an identical way. Therefore, we consider

δ−Xµ = iε−ψ
µ
+,

δ−ψ
µ
+ = −2∂+X

µε− and δ−ψ
µ
− = 0.

Using these rules,

δ− (2∂+X · ∂−X + iψ− · ∂+ψ− + iψ+ · ∂−ψ+) = −4iε−∂−(ψ+ · ∂+X)

up to a total derivative. Thus, choosing the normalization appropriately,

this shows that J+ = ψ+ · ∂+X. Similarly, the expression J− = ψ− · ∂−X is

obtained by considering an ε+ transformation. 2

4.4 Boundary conditions and mode expansions

The possible boundary conditions and mode expansions for the bosonic fields

Xµ are exactly the same as for the case of the bosonic string theory, so that

discussion is not repeated here.

Suppressing the Lorentz index µ, the action for the fermionic fields ψµ in

light-cone world-sheet coordinates is

Sf ∼
∫
d2σ (ψ−∂+ψ− + ψ+∂−ψ+) . (4.47)

By considering variations of the fields ψ± one finds that the action is sta-

tionary if the equations of motion (4.10) are satisfied. The boundary terms

in the variation of the action,

δS ∼
∫
dτ (ψ+δψ+ − ψ−δψ−) |σ=π − (ψ+δψ+ − ψ−δψ−) |σ=0, (4.48)

must also vanish. There are several ways to achieve this, which are discussed

in the next two subsections.

Open strings

In the case of open strings the two terms in (4.48), corresponding to the two

ends of the string, must vanish separately. This requirement is satisfied if

at each end of the string

ψµ+ = ±ψµ−. (4.49)
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The overall relative sign between ψµ+ and ψµ− is a matter of convention.

Therefore, without loss of generality, one can choose to set

ψµ+|σ=0 = ψµ−|σ=0. (4.50)

The relative sign at the other end then becomes meaningful, and there are

two possible cases:

• Ramond boundary condition: In this case one chooses at the second end

of the string

ψµ+|σ=π = ψµ−|σ=π. (4.51)

As is shown later, Ramond (or R) boundary conditions give rise to space-

time fermions. The mode expansion of the fermionic field in the R sector

takes the form

ψµ−(σ, τ) =
1√
2

∑

n∈ �
dµne
−in(τ−σ), (4.52)

ψµ+(σ, τ) =
1√
2

∑

n∈ �
dµne
−in(τ+σ). (4.53)

The Majorana condition requires these expansions to be real, and hence

dµ−n = dµ†n . The normalization factor is chosen for later convenience.

• Neveu–Schwarz boundary condition: This boundary condition corresponds

to choosing a relative minus sign at the second end of the string, namely

ψµ+|σ=π = −ψµ−|σ=π. (4.54)

As is shown later, Neveu–Schwarz (or NS) boundary conditions give rise

to space-time bosons. The mode expansion in the NS sector is

ψµ−(σ, τ) =
1√
2

∑

r∈ � +1/2

bµr e
−ir(τ−σ), (4.55)

ψµ+(σ, τ) =
1√
2

∑

r∈ � +1/2

bµr e
−ir(τ+σ). (4.56)

In the following, the letters m and n are used for integers while r and s

are used for half-integers, that is,

m,n ∈ �
while r, s ∈ �

+
1

2
. (4.57)
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Closed strings

Closed-string boundary conditions give two sets of fermionic modes, cor-

responding to the left- and right-moving sectors. There are two possible

periodicity conditions

ψ±(σ) = ±ψ±(σ + π), (4.58)

each of which makes the boundary term vanish. The positive sign in the

above relation describes periodic boundary conditions while the negative

sign describes antiperiodic boundary conditions. It is possible to impose

the periodicity (R) or antiperiodicity (NS) of the right- and left-movers

separately. This means that, for the right-movers, one can choose

ψµ−(σ, τ) =
∑

n∈ �
dµne
−2in(τ−σ) or ψµ−(σ, τ) =

∑

r∈ � +1/2

bµr e
−2ir(τ−σ),

(4.59)

while for the left-movers one can choose

ψµ+(σ, τ) =
∑

n∈ �
d̃µne
−2in(τ+σ) or ψµ+(σ, τ) =

∑

r∈ � +1/2

b̃µr e
−2ir(τ+σ).

(4.60)

Corresponding to the different pairings of the left- and right-movers there

are four distinct closed-string sectors. States in the NS–NS and R–R sectors

are space-time bosons, while states in the NS–R and R–NS sectors are space-

time fermions.

4.5 Canonical quantization of the RNS string

The modes in the Fourier expansion of the space-time coordinates satisfy

the same commutation relations as in the case of the bosonic string, namely

[αµm, α
ν
n] = mδm+n,0η

µν . (4.61)

For the closed string there is again a second set of modes α̃µm.

The fermionic coordinates obey the free Dirac equation on the world

sheet. As a result, the canonical anticommutation relations are those given

in Eq. (4.45), which imply that the Fourier coefficients satisfy

{bµr , bνs} = ηµνδr+s,0 and {dµm, dνn} = ηµνδm+n,0. (4.62)

Since the space-time metric appears on the right-hand side in the above com-

mutation relations, the time components of the fermionic modes give rise to

negative-norm states, just like the time components of the bosonic modes.
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These negative-norm states are decoupled as a consequence of the appro-

priate generalization of conformal invariance. Specifically, the conformal

symmetry of the bosonic string generalizes to a superconformal symmetry

of the RNS string, which is just what is required.

The oscillator ground state in the two sectors is defined by

αµm|0〉R = dµm|0〉R = 0 for m > 0 (4.63)

and

αµm|0〉NS = bµr |0〉NS = 0 for m, r > 0. (4.64)

Excited states are constructed by acting with the negative modes (or raising

modes) of the oscillators. Acting with the negative modes increases the

mass of the states. In the NS sector there is a unique ground state, which

corresponds to a state of spin 0 in space-time. Since all the oscillators

transform as space-time vectors, the excited states that are obtained by

acting with raising operators are also space-time bosons.

By contrast, in the R sector the ground state is degenerate. The operators

dµ0 can act without changing the mass of a state, because they commute

with the number operator N , defined below, whose eigenvalue determines

the mass squared. Equation (4.62) tells us that these zero modes satisfy the

algebra

{dµ0 , dν0} = ηµν . (4.65)

Aside from a factor of two, this is identical to the Dirac algebra

{Γµ,Γν} = 2ηµν . (4.66)

As a result, the set of ground states in the R sector must furnish a represen-

tation of this algebra. This means that there is a set of degenerate ground

states, which can be written in the form |a〉, where a is a spinor index, such

that

dµ0 |a〉 =
1√
2

Γµba|b〉. (4.67)

Hence the R-sector ground state is a space-time fermion. Since all of the

oscillators (αµn and dµn) are space-time vectors, and every state in the R

sector can be obtained by acting with raising operators on the R-sector

ground state, all R-sector states are space-time fermions.
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Super-Virasoro generators and physical states

The super-Virasoro generators are the modes of the energy–momentum ten-

sor Tαβ and the supercurrent JαA. For the open string they are given by

Lm =
1

π

∫ π

−π
dσeimσT++ = L(b)

m + L(f)
m . (4.68)

• The contribution coming from the bosonic modes is

L(b)
m =

1

2

∑

n∈ �
: α−n · αm+n : m ∈ �

. (4.69)

• The contribution of the fermionic modes in the NS sector is

L(f)
m =

1

2

∑

r∈ � +1/2

(
r +

m

2

)
: b−r · bm+r : m ∈ �

. (4.70)

The modes of the supercurrent in the NS sector are

Gr =

√
2

π

∫ π

−π
dσeirσJ+ =

∑

n∈ �
α−n · br+n r ∈ �

+
1

2
. (4.71)

The operator L0 can be written in the form

L0 =
1

2
α2

0 +N, (4.72)

where the number operator N is given by

N =
∞∑

n=1

α−n · αn +
∞∑

r=1/2

rb−r · br. (4.73)

As in the bosonic theory of Chapter 2, the eigenvalue of N determines the

mass squared of an excited string state.

• In the R sector

L(f)
m =

1

2

∑

n∈ �

(
n+

m

2

)
: d−n · dm+n : m ∈ �

, (4.74)

while the modes of the supercurrent are

Fm =

√
2

π

∫ π

−π
dσeimσJ+ =

∑

n∈ �
α−n · dm+n m ∈ �

. (4.75)

Note that there is no normal-ordering ambiguity in the definition of F0.
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The algebra satisfied by the modes of the energy–momentum tensor and

supercurrent can now be determined. For the modes of the supercurrent in

the R sector one obtains the super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0, (4.76)

[Lm, Fn] =
(m

2
− n

)
Fm+n, (4.77)

{
Fm, Fn

}
= 2Lm+n +

D

2
m2δm+n,0, (4.78)

while in the NS sector one gets the super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n,0, (4.79)

[Lm, Gr] =
(m

2
− r
)
Gm+r, (4.80)

{
Gr, Gs

}
= 2Lr+s +

D

2

(
r2 − 1

4

)
δr+s,0. (4.81)

When quantizing the RNS string one can only require that the positive

modes of the Virasoro generators annihilate the physical state. So in the NS

sector the physical-state conditions are

Gr|φ〉 = 0 r > 0, (4.82)

Lm|φ〉 = 0 m > 0, (4.83)

(L0 − aNS)|φ〉 = 0. (4.84)

The last of these conditions implies that α′M2 = N − aNS, where M is

the mass of a state |φ〉 and N is replaced by its eigenvalue for this state.

Similarly, in the R sector the physical-state conditions are

Fn|φ〉 = 0 n ≥ 0, (4.85)

Lm|φ〉 = 0 m > 0, (4.86)

(L0 − aR)|φ〉 = 0. (4.87)

In the above formulas aNS and aR are constants introduced to allow for a

normal-ordering ambiguity, which must be determined. In fact, the value

aR = 0 in the R sector is immediately deduced from the identity L0 = F 2
0

and the F0 equation. The F0 equation can be written in the form
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(
p · Γ +

2
√

2

ls

∞∑

n=1

(α−n · dn + d−n · αn)

)
|φ〉 = 0. (4.88)

This is a stringy generalization of the Dirac equation, known as the Dirac–

Ramond equation.

EXERCISES

EXERCISE 4.8

Verify that the F0 constraint can be rewritten as the Dirac–Ramond equation

(4.88), as stated above.

SOLUTION

Since

αµ0 =
1

2
lsp

µ, dµ0 =
1√
2

Γµ

and

F0 =
∞∑

n=−∞
α−n · dn = α0 · d0 +

∞∑

n=1

(α−n · dn + d−n · αn),

the equation F0|φ〉 = 0 takes the form given in Eq. (4.88). 2

EXERCISE 4.9

Verify that the NS sector super-Virasoro generators L1, L0, L−1, G−1/2 and

G1/2 form a closed superalgebra.

SOLUTION

It is easy to see from inspection of the NS sector super-Virasoro algebra given

in Eqs (4.79)–(4.81) that the commutation and anticommutation relations

of these operators give a closed superalgebra. In particular, they imply

that G2
1/2 = 1

2{G1/2, G1/2} = L1 and G2
−1/2 = 1

2{G−1/2, G−1/2} = L−1. The

name of this superalgebra with three even generators and two odd generators

is SU(1, 1|1) or OSp(1|2). 2
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Absence of negative-norm states

As in the discussion of the bosonic string in Chapter 2, there are specific

values of a and D for which additional zero-norm states appear in the spec-

trum. The critical dimension turns out to be D = 10, while the result for a

depends on the sector:

aNS =
1

2
and aR = 0. (4.89)

As before, the theory is only Lorentz invariant in the light-cone gauge if aNS,

aR and D take these values.

Let us consider a few simple examples of zero-norm spurious states. Recall

that these are states that are orthogonal to physical states and decouple from

the theory even though they satisfy the physical state conditions.

• Example 1: Consider NS-sector states of the form

|ψ〉 = G−1/2|χ〉, (4.90)

with |χ〉 satisfying the conditions

G1/2|χ〉 = G3/2|χ〉 =

(
L0 − aNS +

1

2

)
|χ〉 = 0. (4.91)

The last of these conditions is equivalent to (L0− aNS)|ψ〉 = 0. To ensure

that |ψ〉 is physical, it is therefore sufficient to require that G1/2|ψ〉 =

G3/2|ψ〉 = 0. The G3/2 condition is an immediate consequence of the

corresponding conditions for |χ〉. So only the G1/2 condition needs to be

checked:

G1/2|ψ〉 = G1/2G−1/2|χ〉 = (2L0−G−1/2G1/2)|χ〉 = (2aNS−1)|χ〉. (4.92)

Requiring this to vanish gives aNS = 1/2. This choice gives a family of

zero-norm spurious states |ψ〉. Such a state satisfies the conditions for a

physical state with aNS = 1/2. Moreover, |ψ〉 is orthogonal to all physical

states, including itself, since

〈α|ψ〉 = 〈α|G−1/2|χ〉 = 〈χ|G1/2|α〉? = 0, (4.93)

for any physical state |α〉. Therefore, for aNS = 1/2 these are zero-norm

spurious states.

• Example 2: Now let us construct a second class of NS-sector zero-norm

spurious states. Consider states of the form

|ψ〉 =
(
G−3/2 + λG−1/2L−1

)
|χ〉. (4.94)
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Suppose further that the state |χ〉 satisfies

G1/2|χ〉 = G3/2|χ〉 = (L0 + 1)|χ〉 = 0. (4.95)

The L0 condition incorporates the previous result, a = 1/2. Using the

super-Virasoro algebra one can compute the following relations:

G1/2|ψ〉 = (2− λ)L−1|χ〉, (4.96)

G3/2|ψ〉 = (D − 2− 4λ)|χ〉, (4.97)

which have to vanish if |ψ〉 is a physical state. Therefore, by the same

reasoning as in the previous example, one concludes that |ψ〉 is a zero-

norm spurious state if λ = 2 and D = 10.

• Example 3: It was already explained that aR = 0 in the R sector as a

consequence of F 2
0 = L0. It is possible to construct a family of zero-norm

spurious states to confirm the choice D = 10 in this sector. Such a set of

zero-norm states can be built from R-sector states of the form

|ψ〉 = F0F−1|χ〉, (4.98)

where

F1|χ〉 = (L0 + 1)|χ〉 = 0. (4.99)

This state satisfies F0|ψ〉 = 0. If it is also annihilated by L1, then it is a

physical state with zero-norm. It is easy to check that

L1|ψ〉 = (
1

2
F1 + F0L1)F−1|χ〉 =

1

4
(D − 10)|χ〉. (4.100)

This vanishes for D = 10 giving us another family of zero-norm spurious

states for this space-time dimension.

4.6 Light-cone gauge quantization of the RNS string

As in the case of the bosonic string, after gauge fixing there is a residual

symmetry that can be used to impose the light-cone gauge condition

X+(σ, τ) = x+ + p+τ. (4.101)

This is true for the RNS string as well. Moreover, there is also a residual

fermionic symmetry that can be used to set5

ψ+(σ, τ) = 0, (4.102)

5 This formula is correct in the NS sector. In the R sector one should keep the zero mode, which
is a Dirac matrix.



4.6 Light-cone gauge quantization of the RNS string 131

at the same time. Because of the Virasoro constraint, the coordinate X− is

not an independent degree of freedom in the light-cone gauge (except for its

zero mode). The same is true for ψ− when the RNS theory is analyzed in

light-cone gauge. Therefore, all the independent physical excitations are ob-

tained in light-cone gauge by acting on the ground states with the transverse

raising modes of the bosonic and fermionic oscillators.

Analysis of the spectrum

This subsection describes the first few states of the open string in the light-

cone gauge. Remember that the fermionic fields have two possible boundary

conditions, giving rise to the NS and R sectors.

The Neveu–Schwarz sector

Recalling that aNS = 1/2, the mass formula in the NS sector is

α′M2 =
∞∑

n=1

αi−nα
i
n +

∞∑

r=1/2

rbi−rb
i
r −

1

2
. (4.103)

The first two states in this sector are as follows:

• The ground state is annihilated by the positive lowering modes, that is,

it satisfies

αin|0; k〉NS = bir|0; k〉NS = 0 for n, r > 0 (4.104)

and

αµ0 |0; k〉NS =
√

2α′kµ|0; k〉NS. (4.105)

The ground state in the NS sector is a scalar in space-time. From the

mass formula it becomes clear that the mass m of the NS-sector ground

state is given by

α′M2 = −1

2
. (4.106)

As a result, the ground state of the RNS string in the NS sector is once

again a tachyon. The next subsection describes how this state is elimi-

nated from the spectrum.

• In order to construct the first excited state in the NS sector, one acts with

the raising operators having the smallest associated frequency, namely

bi−1/2, on the ground state

bi−1/2|0; k〉NS. (4.107)
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Since this is in light-cone gauge, the index i labels the D−2 = 8 transverse

directions. The operator bi−r raises the value of α′M2 by r units, whereas

αi−m would raise it by m (a positive integer) units. This is the reason

why the first excited state is built by acting with a bi−1/2 operator. This

operator is a transverse vector in space-time. Since it is acting on a bosonic

ground state that is a space-time scalar, the resulting state is a space-time

vector. Note that there are eight polarization states, as required for a

massless vector in ten dimensions. Using the same reasoning as for the

bosonic string, one can use this state in order to independently determine

the value of aNS. Indeed, since the above state is a space-time vector of

SO(8) it must be massless. In general, its mass is given by

α′M2 =
1

2
− aNS. (4.108)

So requiring that this state is massless, as required by Lorentz invariance,

once again gives aNS = 1/2.

The Ramond sector

In the light-cone gauge description of the R sector the mass-shell condition

is

α′M2 =
∞∑

n=1

αi−nα
i
n +

∞∑

n=1

ndi−nd
i
n. (4.109)

In this sector the states are as follows:

• The ground state is the solution of

αin|0; k〉R = din|0; k〉R = 0 for n > 0, (4.110)

as well as the massless Dirac equation. The states have a spinor index that

is not displayed. As was discussed above, the solution of these equations is

not unique, since the zero modes satisfy the ten-dimensional Dirac algebra.

Thus the solution to these constraints gives a Spin(9, 1) spinor. The

operation of multiplying with dµ0 is then nothing else than multiplying

with a ten-dimensional Dirac matrix, which is a 32×32 matrix. Therefore,

the ground state in the R sector is described by a 32-component spinor.

In ten dimensions spinors can be restricted by Majorana and Weyl

conditions. The Majorana condition is already implicit, but the possibility

of Weyl projection goes beyond what has been explained so far. Taking

this into account, there are two alternative ground states corresponding to

the two possible ten-dimensional chiralities. One could also imagine that

both chiralities are allowed, though that turns out not to be the case. This

is not the whole story, since the Dirac–Ramond equation (4.88) must also
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be solved. For the ground state, the excited oscillators do not contribute,

and so this reduces to the massless Dirac equation. Solving this eliminates

half of the components of the Spin(9, 1) spinor leaving a Spin(8) spinor.

Thus in the end, the minimal possibility for a Ramond ground state has

eight physical degrees of freedom corresponding to an irreducible spinor

of Spin(8). This choice, rather than an R-sector ground state consisting

of more degrees of freedom, turns out to be necessary.

• The excited states in the R sector are obtained by acting with αi−n or

di−n on the R-sector ground state. Since these operators are space-time

vectors, the resulting states are also space-time spinors. The possibilities

are restricted further by the GSO condition described below.

Zero-point energies

In Chapter 2 we learned that the parameter a in the mass-shell condition

for the bosonic string, (L0 − a)|φ〉 = 0, is a = 1. The reason for this was

traced to the fact that there are 24 transverse periodic bosonic degrees of

freedom on the world sheet, each of which contributes a zero-point energy
1
2ζ(−1) = −1/24.

The NS sector of the RNS string has aNS = 1/2, which means that the

total zero-point energy is −1/2. Of this, −8/24 = −1/3 is attributable

to eight transverse periodic bosons. The remaining −1/6 is due to the

eight transverse antiperiodic world-sheet fermions, each of which contributes

−1/48.

The R sector of the RNS string has aR = 0, which means that the to-

tal zero-point energy is 0. The contribution of each transverse periodic

world-sheet boson is −1/24, and the contribution of each transverse periodic

world-sheet fermion is +1/24. The reason that these cancel is world-sheet

supersymmetry, which remains unbroken for R boundary conditions.

The fermionic zero-point energies deduced here can also be obtained by

(less rigorous) zeta-function methods like that described in Section 2.5. One

can also show that an antiperiodic boson, which was not needed here, but

can arise in other contexts, would give +1/48.

The GSO projection

The previous section described the spectrum of states of the RNS string

that survives the super-Virasoro constraints. But it is important to realize

that this spectrum has several problems. For one thing, in the NS sec-

tor the ground state is a tachyon, that is, a particle with imaginary mass.
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Also, the spectrum is not space-time supersymmetric. For example, there

is no fermion in the spectrum with the same mass as the tachyon. Un-

broken supersymmetry is required for a consistent interacting theory, since

the spectrum contains a massless gravitino, which is the quantum of the

gauge field for local supersymmetry. This inconsistency manifests itself in

a variety of ways. It is analogous to coupling massless Yang–Mills fields to

incomplete gauge multiplets, which leads to a breakdown of gauge invari-

ance and causality. This subsection explains how to turn the RNS string

theory into a consistent theory, by truncating (or projecting) the spectrum

in a very specific way that eliminates the tachyon and leads to a supersym-

metric theory in ten-dimensional space-time. This projection is called the

GSO projection, since it was introduced by Gliozzi, Scherk and Olive.

In order to describe the truncation of the spectrum, let us first define an

operator called G-parity.6 In the NS sector the definition is given by

G = (−1)F+1 = (−1)
P∞
r=1/2 b

i
−rb

i
r+1 (NS). (4.111)

Note that F is the number of b-oscillator excitations, which is the world-

sheet fermion number. So this operator determines whether a state has an

even or an odd number of world-sheet fermion excitations. In the R sector

the corresponding definition is

G = Γ11(−1)
P∞
n=1 d

i
−nd

i
n (R), (4.112)

where

Γ11 = Γ0Γ1 . . .Γ9 (4.113)

is the ten-dimensional analog of the Dirac matrix γ5 in four dimensions.

The matrix Γ11 satisfies

(Γ11)2 = 1 and {Γ11,Γ
µ} = 0. (4.114)

Spinors that satisfy

Γ11ψ = ±ψ (4.115)

are said to have positive or negative chirality. The chirality projection op-

erators are

P± =
1

2
(1± Γ11) . (4.116)

A spinor with a definite chirality is called a Weyl spinor.

6 This name was introduced in the original NS paper which hoped to use this theory to describe
hadrons. This operator was identified there with the G-parity operator for hadrons. Here its
role is entirely different.
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The GSO projection consists of keeping only the states with a positive

G-parity in the NS sector, that is, those states with

(−1)FNS = −1, (4.117)

while the states with a negative G-parity should be eliminated. In other

words, all NS-sector states should have an odd number of b-oscillator exci-

tations. In the R sector one can project on states with positive or negative

G-parity depending on the chirality of the spinor ground state. The choice

is purely a matter of convention.

The GSO projection eliminates the open-string tachyon from the spec-

trum, since it has negative G-parity

G|0〉NS = −|0〉NS. (4.118)

The first excited state, bi−1/2|0〉NS, on the other hand, has positive G-parity

and survives the projection. After the GSO projection, this massless vector

boson becomes the ground state of the NS sector. This matches nicely

with the fact that the ground state in the fermionic sector is a massless

spinor. This is a first indication that the spectrum could be space-time

supersymmetric after performing the GSO projection. At this point the

GSO projection may appear to be an ad hoc condition, but actually it is

essential for consistency. It is possible to derive this by demanding one-loop

and two-loop modular invariance. A much simpler argument is to note that

it leaves a supersymmetric spectrum. As has already been emphasized, the

closed-string spectrum contains a massless gravitino (or two) and therefore

the interacting theory wouldn’t be consistent without supersymmetry. In

particular, this requires an equal number of physical bosonic and fermionic

modes at each mass level. In order to check whether this is plausible, let us

examine the lowest-lying states in the spectrum.

The ground state in the R sector is a massless spinor while the ground

state in the NS sector is a massless vector. Let us compare the number of

physical degrees of freedom. The ground state in the NS sector after the

GSO projection is bµ−1/2|0, k〉, which has only eight propagating degrees of

freedom. This is most easily seen in the light-cone gauge, where one just

has the eight transverse excitations bi−1/2|0, k〉, as was discussed earlier. This

must match the number of fermionic degrees of freedom.

A fermion in ten dimensions has 32 complex components, since in general

a spinor in D dimensions would have 2D/2 complex components (when D is

even). However, the spinors can be further restricted by Majorana and Weyl

conditions, each of which gives a reduction by a factor of two. Moreover, in
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ten dimensions the two conditions are compatible, so there exist Majorana–

Weyl spinors with 16 real components.7 In a Majorana representation the

Majorana condition is just the statement that the spinor is real. Therefore,

this restriction leaves 32 real components in ten dimensions. The Weyl con-

dition implies that the spinor has a definite chirality. In other words, it is

an eigenstate of the chirality operator Γ11. As we have said, in ten dimen-

sions the Majorana and the Weyl conditions can be satisfied at the same

time, and Majorana–Weyl spinors have 16 real components. Imposing the

Dirac equation eliminates half of these components leaving eight real com-

ponents. This agrees with the number of degrees of freedom in the ground

state of the NS sector. Therefore, the ground state, the massless sector, has

an equal number of physical on-shell bosonic and fermionic degrees of free-

dom. They form two inequivalent real eight-dimensional representations of

Spin(8). The equality of number of bosons and fermions is a necessary, but

not sufficient, condition for these states to form a supersymmetry multiplet.

The proof of supersymmetry is described in the next chapter.

It is far from obvious, but nonetheless true, that the GSO projection leaves

an equal number of bosons and fermions at each mass level, as required

by space-time supersymmetry. This constitutes strong evidence, but not a

proof, of space-time supersymmetry. This is presented in the next chapter,

which describes the Green–Schwarz (GS) formalism. That formalism has

the advantage of making the space-time supersymmetry manifest.

The massless closed-string spectrum

To analyze the closed-string spectrum, it is necessary to consider left-movers

and right-movers. As a result, there are four possible sectors: R–R, R–NS,

NS–R and NS–NS. By projecting onto states with a positive G-parity in the

NS sector, the tachyon is eliminated. For the R sector we can project onto

states with positive or negative G-parity depending on the chirality of the

ground state on which the states are built. Thus two different theories can

be obtained depending on whether the G-parity of the left- and right-moving

R sectors is the same or opposite.

In the type IIB theory the left- and right-moving R-sector ground states

have the same chirality, chosen to be positive for definiteness. Therefore,

the two R sectors have the same G-parity. Let us denote each of them by

|+〉R. In this case the massless states in the type IIB closed-string spectrum

7 The rules for the possible types of spinors depend on the space-time dimension modulo 8. This
is known to mathematicians as Bott periodicity. Thus the situation in ten dimensions is quite
similar to the two-dimensional case discussed earlier.
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are given by

|+〉R ⊗ |+〉R, (4.119)

b̃i−1/2|0〉NS ⊗ bj−1/2|0〉NS, (4.120)

b̃i−1/2|0〉NS ⊗ |+〉R, (4.121)

|+〉R ⊗ bi−1/2|0〉NS. (4.122)

Since |+〉R represents an eight-component spinor, each of the four sectors

contains 8× 8 = 64 physical states.

For the type IIA theory the left- and right-moving R-sector ground states

are chosen to have the opposite chirality. The massless states in the spectrum

are given by

|−〉R ⊗ |+〉R, (4.123)

b̃i−1/2|0〉NS ⊗ bj−1/2|0〉NS, (4.124)

b̃i−1/2|0〉NS ⊗ |+〉R, (4.125)

|−〉R ⊗ bi−1/2|0〉NS. (4.126)

The states are very similar to the ones of the type IIB string except that

now the fermionic states come with two different chiralities.

The massless spectrum of each of the type II closed-string theories contains

two Majorana–Weyl gravitinos, and therefore they form N = 2 supergravity

multiplets. Each of the states in these multiplets plays an important role in

the theory. There are 64 states in each of the four massless sectors, that we

summarize below.

• NS–NS sector: This sector is the same for the type IIA and type IIB

cases. The spectrum contains a scalar called the dilaton (one state), an

antisymmetric two-form gauge field (28 states) and a symmetric traceless

rank-two tensor, the graviton (35 states).

• NS–R and R–NS sectors: Each of these sectors contains a spin 3/2 grav-

itino (56 states) and a spin 1/2 fermion called the dilatino (eight states).

In the IIB case the two gravitinos have the same chirality, whereas in the

type IIA case they have opposite chirality.

• R–R sector: These states are bosons obtained by tensoring a pair of

Majorana–Weyl spinors. In the IIA case, the two Majorana–Weyl spinors

have opposite chirality, and one obtains a one-form (vector) gauge field
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(eight states) and a three-form gauge field (56 states). In the IIB case the

two Majorana–Weyl spinors have the same chirality, and one obtains a

zero-form (that is, scalar) gauge field (one state), a two-form gauge field

(28 states) and a four-form gauge field with a self-dual field strength (35

states).

EXERCISES

EXERCISE 4.10

Show that there are the same number of physical degrees of freedom in the

NS and R sectors at the first massive level after GSO projection.

SOLUTION

At this level, the NS states have N = 3/2 and the R states have N = 1. The

G-parity constraint in the NS sector requires there to be an odd number of

b-oscillator excitations. In the R sector, the constraint correlates the number

of d-oscillator excitations with the chirality of the spinor.

Now let us count the number of physical bosonic and fermionic states that

survive the GSO projection. On the bosonic side (the NS sector) the states

at this level (in light-cone gauge) are

αi−1b
j
−1/2|0〉, bi−1/2b

j
−1/2b

k
−1/2|0〉, bi−3/2|0〉,

which gives a total of 64 + 56 + 8 = 128 states. Since these are massive

states they must combine into SO(9) representations. In fact, it turns out

that they give two SO(9) representations, 128 = 44⊕84. On the fermionic

side (the R sector) the states are

αi−1|ψ0〉, d i−1|ψ′0〉,

which again makes 64 + 64 = 128 states, so that there is agreement with the

number of degrees of freedom on the bosonic side. Note that |ψ0〉 and |ψ′0〉
denote a pair of Majorana–Weyl spinors of opposite chirality, each of which

has 16 real components. However, there are only eight physical degrees of

freedom, because the Dirac–Ramond equation F0|ψ〉 = 0 gives a factor of two

reduction. These 128 fermionic states form an irreducible spinor representa-

tion of Spin(9). This massive supermultiplet in ten dimensions, consisting
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of 128 bosons and 128 fermions, is identical to the massless supergravity

multiplet in 11 dimensions. 2

EXERCISE 4.11

Construct generating functions that encode the number of physical degrees

of freedom in the NS and R sectors at all levels after GSO projection.

SOLUTION

Let us denote the number of degrees of freedom with α′M2 = n in the NS

and R sectors of an open superstring by dNS(n) and dR(n), respectively.

Then the generating functions are

fNS(w) =
∞∑

n=0

dNS(n)wn and fR(w) =
∞∑

n=0

dR(n)wn.

Before GSO projection, the degeneracies in the NS sector are given by

trwN−1/2, where N is given in Eq. (4.73), except that in light-cone gauge

there are only transverse oscillators. The basic key to evaluating the traces

is to use the fact that for a bosonic oscillator

trwa
†a = 1 + w + w2 + . . . =

1

1− w
and for a fermionic oscillator

trwb
†b = 1 + w.

Since there are eight transverse dimensions for D = 10, it therefore follows

that

trwN−1/2 =
1√
w

∞∏

m=1

(
1 + wm−1/2

1− wm

)8

.

To take account of the GSO projection we need to eliminate the contribu-

tions due to an even number of b-oscillator excitations. This is achieved by

taking

fNS(w) =
1

2
√
w



∞∏

m=1

(
1 + wm−1/2

1− wm

)8

−
∞∏

m=1

(
1− wm−1/2

1− wm

)8

 .

The analysis in the R sector works in a similar manner. In this case the

effect of the GSO projection is to reduce the degeneracy associated with
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zero modes from 16 to 8. Thus one obtains

fR(w) = 8
∞∏

m=1

(
1 + wm

1− wm
)8

.

In 1829, Jacobi proved that fNS(w) = fR(w). 2

4.7 SCFT and BRST

In the study of the bosonic string theory in Chapter 3, it proved useful

to focus on the interpretation of the world-sheet action in the conformal

gauge as a conformal field theory. This reasoning extends nicely to the RNS

string, where the symmetry gets enlarged to a superconformal symmetry.

The Euclideanized conformal-gauge bosonic string action was written (in

units ls =
√

2α′ = 1) in the form

S =
1

π

∫
∂Xµ∂̄Xµd

2z. (4.127)

Then the holomorphic energy–momentum tensor took the form

T = −2 : ∂Xµ∂Xµ : =

∞∑

n=−∞

Ln
zn+2

. (4.128)

The Virasoro algebra, characterizing the conformal symmetry, is encoded in

the OPE

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂T (w), (4.129)

where the central charge c equals D, the dimension of the space-time.

Superconformal field theory

The generalization of these formulas to the RNS superstring is quite straight-

forward. The gauge-fixed world-sheet action becomes

Smatter =
1

2π

∫ (
2∂Xµ∂̄Xµ +

1

2
ψµ∂̄ψµ +

1

2
ψ̃µ∂ψ̃µ

)
d2z, (4.130)

where ψ and ψ̃ correspond to ψ+ and ψ− in the Lorentzian description.

The holomorphic energy–momentum tensor takes the form (B stands for

bosonic)

TB(z) = −2∂Xµ(z)∂Xµ(z) − 1

2
ψµ(z)∂ψµ(z) =

∞∑

n=−∞

Ln
zn+2

, (4.131)
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which now has central charge c = 3D/2. The conformal field ψµ(z) is a free

fermion. As explained in Chapter 3, it has conformal dimension h = 1/2

and the OPE

ψµ(z)ψν(w) ∼ ηµν

z − w. (4.132)

In the superconformal gauge, this theory also has a conserved h = 3/2 su-

percurrent, whose holomorphic part is denoted TF(z) (F stands for fermionic)

TF(z) = 2iψµ(z)∂Xµ(z) =
∞∑

r=−∞

Gr

zr+3/2
. (4.133)

This mode expansion is appropriate to the NS sector. In the R sector Gr,

which has half-integer modes, would be replaced by Fn, which has integer

modes. Together with the energy–momentum tensor, which is now denoted

TB(z), it forms a superconformal algebra with OPE

TF(z)TF(w) ∼ ĉ

4(z − w)3
+

TB(w)

2(z − w)
+ . . . (4.134)

where c = 3
2 ĉ, so that ĉ = D. One has c = 3D/2 = 15 because each bosonic

field contributes one unit and each fermionic field contributes half a unit of

central charge. It is convenient to use a superspace formulation involving

a single Grassmann parameter θ. It can be regarded as a holomorphic

Grassmann coordinate that corresponds to θ+ in the Lorentzian description.

One can then combine TF and TB into a single expression

T (z, θ) = TF(z) + θTB(z) (4.135)

whose OPE is

T (z1, θ1)T (z2, θ2) ∼ ĉ

4z3
12

+
3θ12

2z2
12

T (z2, θ2)+
D2T (z2, θ2)

2z12
+
θ12

z12
∂2T (z2, θ2)+. . . ,

(4.136)

where z12 = z1 − z2 − θ1θ2 and θ12 = θ1 − θ2. Also,

D =
∂

∂θ
+ θ

∂

∂z
. (4.137)

This describes the entire superconformal algebra. Note that θ12 and z12

are invariant under the supersymmetry transformations δθi = ε, δzi = θiε.

A superfield Φ(z, θ) with components of conformal dimension h and h + 1
2

satisfies

T (z1, θ1)Φ(z2, θ2) ∼ hθ12

z2
12

Φ(z2, θ2) +
1

2z12
D2Φ +

θ12

z12
∂2Φ + . . . (4.138)
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BRST symmetry

Superconformal field theory appears naturally when discussing the path-

integral quantization of supersymmetric strings. In the quantum theory, it is

convenient to add Faddeev–Popov ghosts to represent the Jacobian factors in

the path integral associated with gauge fixing. Rather than discuss the path-

integral quantization in detail, let us focus on the resulting superconformal

field theory.

As discussed in Chapter 3, in the bosonic string theory the Faddeev–

Popov ghosts consist of a pair of fermionic fields b and c with conformal

dimensions 2 and −1, respectively. These arose from gauge fixing the world-

sheet diffeomorphism symmetry. In the case of the RNS string there is also

a local supersymmetry on the world sheet that has been gauge-fixed, and

as a result an additional pair of Faddeev–Popov ghosts is required. They

are bosonic ghost fields, called β and γ, with conformal dimensions 3/2 and

−1/2, respectively. They have the OPE

γ(z)β(w) ∼ 1

z − w. (4.139)

Since these are bosonic fields, this is equivalent to

β(z)γ(w) ∼ − 1

z − w. (4.140)

The gauge-fixed quantum action includes all of these fields. It is S =

Smatter + Sghost, where Smatter is the expression in Eq. (4.130) and

Sghost =
1

2π

∫
(b∂̄c+ b̄∂c̄+ β∂̄γ + β̄∂γ̄)d2z. (4.141)

The fields c and γ have ghost number +1, while the fields b and β have

ghost number −1. The bosonic ghosts β and γ are required to have the

same moding as the fermi field ψµ – integer modes in the R sector and

half-integer modes in the NS sector. When the factors of z−h are taken into

account, this implies that ψµ(z), β(z) and γ(z) involve integer powers of z

and are single-valued in the NS sector. whereas in the R sector they involve

half-integer powers and are double-valued.

The superconformal symmetry operators of this system are also given

as the sum of matter and ghost contributions. The ghost fields give the

following contributions:

T ghost
B = −2b∂c+ c∂b− 3

2
β∂γ − 1

2
γ∂β, (4.142)

T ghost
F = −2bγ + c∂β +

3

2
β∂c. (4.143)
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These contribute ĉ = −10, and so the superconformal anomaly cancels for

D = 10.

As in the case of the bosonic string theory, the quantum action has a

global fermionic symmetry, namely BRST symmetry. In this case the trans-

formations that leave the Lagrangian invariant up to a total derivative are

δXµ = η(c∂Xµ − i

2
γψµ), (4.144)

δψµ = η(c∂ψµ − 1

2
ψµ∂c+ 2iγ∂Xµ), (4.145)

δc = η(c∂c− γ2), (4.146)

δb = ηTB, (4.147)

δγ = η(c∂γ − 1

2
γ∂c), (4.148)

δβ = ηTF. (4.149)

These transformations are generated by the BRST charge

QB =
1

2πi

∮
(cTmatter

B +γTmatter
F +bc∂c− 1

2
cγ∂β− 3

2
cβ∂γ−bγ2)dz. (4.150)

The transformations of b and β, in particular, correspond to the basic equa-

tions

{QB, b(z)} = TB(z) (4.151)

and

[QB, β(z)] = TF(z). (4.152)

As in the case of the bosonic string, the BRST charge is nilpotent, Q2
B = 0,

in the critical dimension D = 10. The proof is a straightforward analog

of the one given for the bosonic string theory and is left as a homework

problem. One first uses Jacobi identities to prove that [{QB, Gr}, βs] and

[{QB, Gr}, bm] vanish if ĉ = 0. This implies that {QB, Gr} cannot depend

on the γ or c ghosts. Since it has positive ghost number, this implies that it

vanishes. It follows (using the superconformal algebra and Jacobi identities)

that [QB, Ln] must also vanish. Hence QB is superconformally invariant for

ĉ = 0. In this case [Q2
B, bn] = [QB, Ln] = 0 and [Q2

B, βr] = {QB, Gr} = 0,

which implies that Q2
B cannot depend on the c or γ ghosts. Since it also has

positive ghost number, it vanishes. Thus nilpotency follows from ĉ = 0.

As a result of nilpotency, it is again possible to describe the physical states
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in terms of BRST cohomology classes. In the NS sector, the β, γ system has

half-integer moding, and so there is a two-fold vacuum degeneracy due to

the zero modes b0 and c0, just as in the case of the bosonic string. As in that

case, physical states are required to have ghost number −1/2. The case of

the R sector is more subtle, because in that sector there are additional zero

modes β0 and γ0, which give rise to an infinite degeneracy. Without going

into details, let us just give a hint about how this is handled. The degeneracy

due to the β0–γ0 Fock space is interpreted as giving infinitely many equiv-

alent descriptions of each physical state in different pictures. There is an

integer label that characterizes the picture, and there are picture-changing

operators that enable one to map back and forth between adjacent pictures.

In formulating path integrals for amplitudes, there are some restrictions

on which pictures can be used for the vertex operators that enter into the

calculation.

HOMEWORK PROBLEMS

PROBLEM 4.1

Consider a massless supersymmetric particle (or superparticle) propagating

in D-dimensional Minkowski space-time. It is described by D bosonic fields

Xµ(τ) and D Majorana fermions ψµ(τ). The action is

S0 =

∫
dτ

(
1

2
ẊµẊµ − iψµψ̇µ

)
.

(i) Derive the field equations for Xµ, ψµ.

(ii) Show that the action is invariant under the global supersymmetry

transformations

δXµ = iεψµ, δψµ =
1

2
εẊµ,

where ε is an infinitesimal real constant Grassmann parameter.

(iii) Suppose that δ1 and δ2 are two infinitesimal supersymmetry trans-

formations with parameters ε1 and ε2, respectively. Show that the

commutator [δ1, δ2] gives a τ translation by an amount δτ . Determine

δτ and explain why δτ is real.

PROBLEM 4.2

In Problem 4.1, supersymmetry was only a global symmetry, as ε did not

depend on τ . To construct an action in which this symmetry is local, one
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needs to include the auxiliary field e and its fermionic partner, which we

denote by χ. The action takes the form

S̃0 =

∫
dτ

(
ẊµẊµ

2e
+
iẊµψµχ

e
− iψµψ̇µ

)
.

(i) Show that this action is reparametrization invariant, that is, it is

invariant under the following infinitesimal transformations with pa-

rameter ξ(τ):

δXµ = ξẊµ, δψµ = ξψ̇µ,

δe =
d

dτ
(ξe), δχ =

d

dτ
(ξχ).

(ii) Show explicitly that the action is invariant under the local supersym-

metry transformations

δXµ = iεψµ, δψµ =
1

2e
(Ẋµ − iχψµ)ε,

δχ = ε̇, δe = −iχε.

(iii) Show that in the gauge e = 1 and χ = 0, one recovers the action in

Problem 4.1 and the constraint equations Ẋ2 = 0, Ẋ · ψ = 0.

PROBLEM 4.3

Consider quantization of the superparticle action in Problem 4.1.

(i) Show that canonical quantization gives the equal-τ commutation and

anticommutation relations

[Xµ, Ẋν ] = iηµν and {ψµ, ψν} = ηµν .

(ii) Explain why this describes a space-time fermion.

(iii) What is the significance of the constraints Ẋ2 = 0 and Ẋ · ψ = 0

obtained in Problem 4.2?

PROBLEM 4.4

Show the invariance of the action (4.35) under the supersymmetry transfor-

mations (4.25)–(4.27).

PROBLEM 4.5

Derive the mass formulas for states in the R and NS sector of the RNS open

superstring.
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PROBLEM 4.6

Verify the constants aR = 0, aNS = 1/2 for the critical RNS superstring

by using zeta-function regularization to compute the world-sheet fermion

zero-point energies, as suggested in Section 4.6.

PROBLEM 4.7

Consider the RNS string in ten-dimensional Minkowski space-time. Show

that after the GSO projection the NS and R sectors have the same number

of physical degrees of freedom at the second massive level. Determine the

explicit form of the states in the light-cone gauge. In other words, repeat

the analysis of Exercise 4.10 for the next level.

PROBLEM 4.8

Given a pair of two-dimensional Majorana spinors ψ and χ, prove that

ψAχ̄B = −1

2

(
χ̄ψδAB + χ̄ραψρ

α
AB + χ̄ρ3ψ(ρ3)AB

)
,

where ρ3 = ρ0ρ1.

PROBLEM 4.9

Derive the NS-sector Lorentz transformation generators in the light-cone

gauge.

PROBLEM 4.10

Show that Eqs (4.131) and Eq. (4.133) lead to the mode expansions of Ln
and Gr given earlier.

PROBLEM 4.11

Using the energy–momentum tensor TB in Eq. (4.131) and the supercurrent

TF in Eq. (4.133), verify that Eq. (4.134) holds with ĉ = 10.

PROBLEM 4.12

Work out the OPEs that correspond to the coefficients of the various powers

of θ in Eqs (4.136) and (4.138).

PROBLEM 4.13

Show that the total action S = Smatter + Sghost, given in Eqs (4.130) and

(4.141), is invariant under the BRST transformations of Eqs (4.144)–(4.149).
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PROBLEM 4.14

Consider the ghost contributions to the super-Virasoro generators in the NS

sector.

(i) Work out the mode expansions for ghost contributions to Ln and Gr
implied by Eqs (4.142) and (4.143).

(ii) Prove that these generate a super-Virasoro algebra with ĉ = −10.

PROBLEM 4.15

Using the method sketched in the text, show that the BRST charge in

Eq. (4.150) is nilpotent for the critical dimension D = 10.



5

Strings with space-time supersymmetry

After the GSO projection the spectrum of the ten-dimensional RNS super-

string has an equal number of bosons and fermions at each mass level. This is

strong circumstantial evidence that the theory has space-time supersymme-

try, even though this symmetry is extremely obscure in the RNS formalism.

This suggests that there should exist a different formulation of the theory

in which space-time supersymmetry becomes manifest. This chapter begins

by describing the Green–Schwarz (GS) formulation of superstring theory,

which achieves this.

Since the bosonic string theory is defined in terms of maps of the string

world sheet into space-time, a natural supersymmetric generalization to con-

sider is based on maps of the string world sheet into superspace, so that the

basic world-sheet fields are

Xµ(σ, τ) and Θa(σ, τ). (5.1)

This is the approach implemented in the GS formalism.

The GS formalism has advantages and disadvantages compared to the

RNS formalism. The basic disadvantage of the GS formalism stems from the

fact that it is very difficult to quantize the world-sheet action in a way that

maintains space-time Lorentz invariance as a manifest symmetry. However,

it can be quantized in the light-cone gauge. This is sufficient for analyzing

the physical spectrum. It is also sufficient for studying tree and one-loop

amplitudes. An advantage of the GS formalism is that the GSO projec-

tion is automatically built in without having to make any truncations, and

space-time supersymmetry is manifest. Moreover, in contrast to the RNS

formalism, the bosonic and fermionic strings are unified in a single Fock

space.

148
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5.1 The D0-brane action

Let us begin with a warm-up exercise that shares some features with the

GS superstring but is quite a bit simpler, specifically a space-time super-

symmetric world-line action for a point particle of mass m. The example

of particular interest, called the D0-brane, is a massive point particle that

appears as a nonperturbative excitation in the type IIA theory. The D0-

brane is a special case of more general Dp-branes, which are the subject of

the next chapter.

Recall that the action for a massive point particle in flat Minkowski space-

time has the form

S = −m
∫ √

−ẊµẊµdτ. (5.2)

Our goal here is to find a generalization of this action describing a massive

point particle that is supersymmetric in space-time. Any number, N , of

supersymmetries can be described by introducing N anticommuting spinor

coordinates ΘAa(τ) with A = 1, . . . ,N . The index a labels the compo-

nents of the space-time spinor in D dimensions. For a general Dirac spinor

a = 1, . . . , 2D/2 if D is even. In the following it is assumed that the spinors

are Majorana. This is the case of most interest, and it simplifies the for-

mulas, because one can use identities such as ψ̄1Γµψ2 = −ψ̄2Γµψ1. In the

important case of ten dimensions, there exist Majorana–Weyl spinors, so a

Weyl constraint can be imposed at the same time.

Supersymmetry can be represented in terms of infinitesimal supersymme-

try transformations of superspace

δΘAa = εAa, (5.3)

δXµ = ε̄AΓµΘA. (5.4)

Here, summation on the repeated index A is understood. Supersymmetry

is a nontrivial extension of the usual symmetries of space-time. In particu-

lar, a simple computation shows that the commutator of two infinitesimal

supersymmetry transformations gives

[δ1, δ2]ΘA = 0 and [δ1, δ2]Xµ = −2ε̄A1 ΓµεA2 = aµ. (5.5)

This shows that the commutator of two infinitesimal supersymmetry trans-

formations is an infinitesimal space-time translation of Xµ by aµ. The

supergroup obtained by adjoining supersymmetry transformations to the

Poincaré group is called the super-Poincaré group, and the generators de-

fine the super-Poincaré algebra. It is made manifest in the formulas that



150 Strings with space-time supersymmetry

follow. These symmetries are global symmetries of the world-line action, so

εAa is independent of τ .

In order to construct the supersymmetric action, let us define the super-

symmetric combination

Πµ
0 = Ẋµ − Θ̄AΓµΘ̇A. (5.6)

The subscript 0 refers to the fact that both terms involve time derivatives.

The corresponding formula for a Dp-brane is

Πµ
α = ∂αX

µ − Θ̄AΓµ∂αΘA, α = 0, 1, . . . , p. (5.7)

In the case of the D0-brane, p = 0, and so the index α can only take the

value 0.

Since Πµ
0 is invariant under supersymmetry transformations, a space-time

supersymmetric action can be constructed by making the replacement

Ẋµ → Πµ
0 (5.8)

in the action (5.2). As a result, one obtains the action

S1 = −m
∫ √

−Π0 ·Π0 dτ. (5.9)

This action is invariant under global super-Poincaré transformations and

local diffeomorphisms of the world line.

The D0-branes are massive supersymmetric point particles that appears

in the type IIA theory. Therefore, since this is a ten-dimensional theory, in

the following we assume that D = 10. Since the type IIA theory has N = 2

space-time supersymmetry, there are two spinor coordinates, Θ1a and Θ2a,

which are both Majorana–Weyl and have opposite chirality. One can define

a Majorana (but not Weyl) spinor

Θ = Θ1 + Θ2, (5.10)

and obtain Θ1 and Θ2 by projecting onto each chirality

Θ1 =
1

2
(1 + Γ11)Θ and Θ2 =

1

2
(1− Γ11)Θ, (5.11)

where, as in Chapter 4,

Γ11 = Γ0Γ1 . . .Γ9 (5.12)

satisfies Γ2
11 = 1 and {Γ11,Γ

µ} = 0. In this case one can write

Πµ
0 = Ẋµ − Θ̄ΓµΘ̇, (5.13)

since the cross terms between opposite-chirality spinors vanish.
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It turns out that the action S1, by itself, does not give the desired theory.

This can be seen by deriving the equations of motion associated with Xµ

and ΘA. The canonical conjugate momentum to Xµ is

Pµ =
δS1

δẊµ
=

m√
−Π0 ·Π0

(
Ẋµ − Θ̄ΓµΘ̇

)
. (5.14)

The Xµ equations of motion imply

Ṗµ = 0. (5.15)

Not all the components of the momentum are independent. Squaring both

sides of Eq. (5.14) gives the mass-shell condition

P 2 = −m2. (5.16)

On the other hand, the equation of motion for Θ is

P · ΓΘ̇ = 0. (5.17)

Multiplying this with P ·Γ gives m2Θ̇ = 0, so for m 6= 0 one obtains Θ̇ = 0.

There is nothing obviously wrong with this. However, the factor P · Γ

is singular in the massless case. This corresponds to saturation of a BPS

bound, a circumstance that reflects enhanced supersymmetry. This suggests

that another contribution to the action may be missing whose inclusion

would ensure saturation of a BPS bound and enhanced supersymmetry in

the massive case as well.

Suppose that there is a second contribution to the action that changes

Eq. (5.17) to

(P · Γ +mΓ11)Θ̇ = 0. (5.18)

This equation only forces half the components of Θ to be constant without

constraining the other half at all. The reason is that half of the eigenvalues

of P · Γ +mΓ11 are zero. As evidence of this consider its square

(P ·Γ+mΓ11)2 = (P ·Γ)2 +m{P ·Γ,Γ11}+(mΓ11)2 = P 2 +m2 = 0. (5.19)

Thus the number of independent equations is only half the number of com-

ponents of Θ. This suggests that there are local fermionic symmetries such

that half the components of Θ are actually gauge degrees of freedom.

The missing contribution to the action that gives this additional term in

the Θ equation of motion is

S2 = −m
∫

Θ̄Γ11Θ̇ dτ. (5.20)

The choice of the sign of this term is arbitrary. If this choice describes a



152 Strings with space-time supersymmetry

D0-brane, then the opposite sign would describe an anti-D0-brane. To sum-

marize, the complete space-time supersymmetric action for a point particle

of mass m is

S = S1 + S2 = −m
∫ √

−Π0 ·Π0 dτ −m
∫

Θ̄Γ11Θ̇ dτ. (5.21)

Kappa symmetry

The action S is invariant under super-Poincaré transformations and diffeo-

morphisms of the world line. By adding the contribution S2, the point-

particle action gains a new symmetry, called κ symmetry, which is a local

fermionic symmetry. κ symmetry involves a variation δΘ, whose form is

determined later, combined with a transformation of the bosonic variables

given by

δXµ = Θ̄ΓµδΘ = −δΘ̄ΓµΘ. (5.22)

This determines the transformation of Πµ
0 to be

δΠµ
0 = −2δΘ̄ΓµΘ̇. (5.23)

The variation of the action S1 in Eq. (5.9) under a κ transformation is

δS1 = m

∫
Π0 · δΠ0√
−Π2

0

dτ. (5.24)

Using (5.23) and the fact that Γ11 squares to 1, we obtain

δS1 = −2m

∫
Πµ

0δΘ̄ΓµΘ̇√
−Π2

0

dτ = −2m

∫
δΘ̄γΓ11Θ̇ dτ, (5.25)

where

γ =
Γ ·Π0√
−Π2

0

Γ11. (5.26)

Since

γ2 =
(Γ ·Π0)2

Π2
0

= 1, (5.27)

γ can be used to construct projection operators

P± =
1

2
(1± γ). (5.28)

The second contribution to the action, S2 in Eq. (5.20), has the variation

δS2 = −2m

∫
δΘ̄Γ11Θ̇ dτ. (5.29)
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Thus

δ(S1 + S2) = −2m

∫
δΘ̄(1 + γ)Γ11Θ̇ dτ = −4m

∫
δΘ̄P+Γ11Θ̇ dτ. (5.30)

For a transformation δΘ that takes the form

δΘ̄ = κ̄P−, (5.31)

with κ(τ) an arbitrary Majorana spinor, the action is invariant. So this

describes a local symmetry of the action. To summarize, the D0-brane

action S is invariant under the transformations

δΘ̄ = κ̄P− and δXµ = −κ̄P−ΓµΘ. (5.32)

The local fermionic κ symmetry implies that half of the components of

Θ are decoupled and can be gauged away. The key point to realize is that

without this symmetry there would be the wrong number of propagating

fermionic degrees of freedom. What is required is a local fermionic symmetry

that effectively eliminates half of the components of Θ.

EXERCISES

EXERCISE 5.1

Given two Majorana spinors Θ1 and Θ2 prove that

Θ̄1ΓµΘ2 = −Θ̄2ΓµΘ1.

SOLUTION

In a Majorana representation the Dirac matrices are real. Since Γ0 is an-

tihermitian and the spatial components Γi are hermitian, this implies that

Γ0 is antisymmetric and Γi is symmetric. Using these facts and the Dirac

algebra, it follows that the charge-conjugation matrix C = Γ0 satisfies

CΓµC−1 = −ΓTµ .

For Majorana spinors

Θ̄1ΓµΘ2 = Θ†1Γ0ΓµΘ2 = ΘT
1 CΓµΘ2.

This can be written in the form

−ΘT
2 ΓTµCTΘ1 = −ΘT

2 CΓµΘ1 = −Θ̄2ΓµΘ1,
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which proves the desired result.

More generally, the same reasoning gives

Θ̄1Γµ1···µnΘ2 = (−1)n(n+1)/2Θ̄2Γµ1···µnΘ1,

where we define

Γµ1µ2···µn = Γ[µ1
Γµ2 · · ·Γµn]

and square brackets denote antisymmetrization of the enclosed indices. 2

EXERCISE 5.2

Check explicitly that the commutator of two supersymmetry transforma-

tions gives the result claimed in Eq. (5.5).

SOLUTION

Under the supersymmetry transformations in Eqs (5.3) and (5.4) the fermi-

onic coordinate transformation is δΘA = εA. Therefore, δ1δ2ΘA = δ1ε
A
2 = 0,

which implies that [δ1, δ2] ΘA = 0. Similarly,

δ1δ2X
µ = δ1

(
ε̄A2 ΓµΘA

)
= ε̄A2 ΓµεA1 .

As a result,

[δ1, δ2]Xµ = ε̄A2 ΓµεA1 − ε̄A1 ΓµεA2 = −2ε̄A1 ΓµεA2 ,

where we have used the result of the previous exercise. 2

EXERCISE 5.3

Show that Πµ
0 , as defined in Eq. (5.6), is invariant under the supersymmetry

transformations in Eqs (5.3) and (5.4).

SOLUTION

From the definition of Πµ
0 it follows that

δ(Ẋµ − Θ̄AΓµΘ̇A) =
d

dτ
(ε̄AΓµΘA)− ε̄AΓµΘ̇A − Θ̄AΓµε̇A

= ε̄AΓµΘ̇A − ε̄AΓµΘ̇A = 0.

2

EXERCISE 5.4

Derive the equations of motion for Xµ and ΘA obtained from the action S1.
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SOLUTION

The momentum corresponding to the Xµ coordinate is

Pµ =
δL
δẊµ

= m
Πµ

√
−Π2

.

As a result, the equation of motion for Xµ is

Ṗµ = 0.

The equation of motion for the fermionic field is

d

dτ

δL
δ ˙̄ΘA

− δL
δΘ̄A

= 0.

This gives

d

dτ

(
PµΓµΘA

)
+ PµΓµΘ̇A = 0,

or, using Ṗµ = 0,

P · ΓΘ̇A = 0.

2

5.2 The supersymmetric string action

As was discussed in Chapter 4, there are two string theories with N = 2

supersymmetry in ten dimensions, called the type IIA and type IIB super-

string theories. Since in each case the supersymmetry is N = 2, there are

two fermionic coordinates Θ1 and Θ2. For the type IIA theory these spinors

have opposite chirality while for the type IIB theory they have the same

chirality, that is,

Γ11ΘA = (−1)A+1ΘA type IIA (5.33)

Γ11ΘA = ΘA type IIB. (5.34)

The two spinors ΘAa, A = 1, 2, are Majorana–Weyl spinors.

In order to construct the GS world-sheet action for the type II super-

strings, let us start with the bosonic Nambu–Goto action (for α′ = 1/2 or

T = 1/π)

SNG = − 1

π

∫
d2σ
√
−det (∂αXµ∂βXµ). (5.35)



156 Strings with space-time supersymmetry

The obvious guess is that the supersymmetric string action takes the form

S1 = − 1

π

∫
d2σ
√
−G, (5.36)

with G = detGαβ, Gαβ = Πα ·Πβ and

Πµ
α = ∂αX

µ − Θ̄AΓµ∂αΘA. (5.37)

This expression is supersymmetric even if the number of supersymmetries

is different from N = 2. In the general case the index A takes the values

A = 1, . . . ,N . However, the case of interest to us has D = 10, N = 2,

and the spinors ΘA are Majorana–Weyl spinors with 16 independent real

components (though we use a 32-component notation).

As in the case of the D-particle, the action S1 is not the complete answer,

because it is not invariant under κ transformations. As before, a second

term S2 has to be added in order to produce local κ symmetry and thereby

decouple half of the components of the fermionic variables. The action S1

is invariant under global super-Poincaré transformations as well as local

reparametrizations (diffeomorphisms) of the world sheet. These properties

must be preserved by the new term S2.

Kappa symmetry

In analogy to the discussion of the D0-brane, the bosonic variables transform

under κ transformations according to

δXµ = Θ̄AΓµδΘA = −δΘ̄AΓµΘA, (5.38)

which implies

δΠµ
α = −2δΘ̄AΓµ∂αΘA. (5.39)

Using (5.39) one obtains

δS1 =
2

π

∫
d2σ
√
−GGαβΠµ

αδΘ̄
AΓµ∂βΘA. (5.40)

The next step is to construct a second contribution to the action S2 that

also has global super-Poincaré symmetry and local diffeomorphism symme-

try. Moreover, its kappa variation δS2 should combine nicely with δS1 so as

to ensure kappa symmetry of the sum. The analysis can be rather messy if

one does it by brute force. It makes a lot more sense, however, if one focuses

on the crucial geometrical aspects of the problem in the manner that follows.

This methodology is generally applicable to problems of this type.

There is a large class of world-volume theories for which the action takes
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the form S1 + S2, where S1 is of the Nambu–Goto type and S2 is of the

Chern–Simons or Wess–Zumino type. These characterizations concern the

way in which the diffeomorphism symmetry is implemented. S1 has the

structure of a supersymmetrized volume. The term S2, on the other hand,

is naturally described as the integral of a two-form

S2 =

∫
Ω2 =

1

2

∫
d2σεαβΩαβ, (5.41)

where Ω2 does not depend on the world-sheet metric. More generally, for a

p-brane it would be an integral of a (p+1)-form. Such a geometric structure

has manifest diffeomorphism symmetry.

The way to make the symmetries of the problem manifest is to formally

introduce an additional dimension and consider the three-form Ω3 = dΩ2.

As a mathematical device, one may imagine that there is a three-dimensional

region D whose boundary is the string world sheet M . The region D has no

physical significance. In mathematical notation, M = ∂D. Then by Stokes’

theorem ∫

D
Ω3 =

∫

M
Ω2. (5.42)

The advantage of this is that the symmetries of the problem are manifest in

Ω3. The differential form Ω3 is like a characteristic class in that it is closed

and invariant under the symmetries in question. The differential form Ω2 is

the corresponding Chern–Simons form. In general it is not invariant under

the corresponding symmetry transformations. However, its variation is a

total derivative, which is sufficient for our purposes.

A key formula in this subject is an identity satisfied by a Majorana–Weyl

spinor Θ in ten dimensions

ΓµdΘ dΘ̄ΓµdΘ = 0. (5.43)

In our notation wedge products are implicit, so the left-hand side of this

equation is a three-form. This formula is crucial to the existence of super-

symmetric Yang–Mills theory in ten dimensions, and it is also required in

the analysis that follows. It is proved by considering Fierz transformations

of the spinors, which are given in the appendix of Chapter 10.

Let us focus on the implementation of global space-time supersymmetry.

There are three one-forms that are supersymmetric, namely dΘ1, dΘ2, and

Πµ = dXµ−Θ̄AΓµdΘA. So Ω3 should be a Lorentz-invariant three-form con-

structed out of these. Up to a normalization constant, c, to be determined

later, the appropriate choice is

Ω3 = c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)Πµ. (5.44)
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The crucial minus sign in this formula is determined from the requirement

that Ω3 should be closed, that is, dΩ3 = 0. To see this substitute the explicit

formula dΠµ = −(dΘ̄1ΓµdΘ1 + dΘ2ΓµdΘ2) into

dΩ3 = c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)dΠµ. (5.45)

The minus sign ensures the cancellation of the cross terms that have two

powers of dΘ1 and two powers of dΘ2. The terms that are quartic in dΘ1

or dΘ2, on the other hand, vanish due to Eq. (5.43).

Let us now compute the kappa symmetry variation of Ω3,

δΩ3 = 2c(dδΘ̄1ΓµdΘ1 − dδΘ̄2ΓµdΘ2)Πµ

−2c(dΘ̄1ΓµdΘ1 − dΘ̄2ΓµdΘ2)δΘ̄AΓµdΘA. (5.46)

Using Eq. (5.43) again, the second line of this expression can be recast in

the form

−2c(δΘ̄1ΓµdΘ1 − δΘ̄2ΓµdΘ2)dΠµ. (5.47)

Therefore,

δΩ3 = d
[
2c(δΘ̄1ΓµdΘ1 − δΘ̄2ΓµdΘ2)Πµ

]
, (5.48)

and thus

δΩ2 = 2c(δΘ̄1ΓµdΘ1 − δΘ̄2ΓµdΘ2)Πµ. (5.49)

To be explicit, setting c = 1/π gives

δS2 =
2

π

∫
d2σεαβ(δΘ̄1Γµ∂αΘ1 − δΘ̄2Γµ∂αΘ2)Πµ

β . (5.50)

The term S2 is required to have this variation, since then the variation of

the entire action under κ transformations takes the form

δS =
4

π

∫
d2σεαβ(δΘ̄1P+Γµ∂αΘ1 − δΘ̄2P−Γµ∂αΘ2)Πµ

β . (5.51)

The orthogonal projection operators P± are defined by

P± =
1

2
(1± γ) (5.52)

with

γ = −
εαβΠµ

αΠν
βΓµν

2
√
−G

. (5.53)

It now follows that the action is invariant under the transformations

δΘ̄1 = κ̄1P− and δΘ̄2 = κ̄2P+ (5.54)
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for arbitrary MW spinors κ1 and κ2 of appropriate chirality.

Let us now construct the term S2. Using Eq. (5.44), Ω3 = dΩ2 can be

solved for Ω2. The solution, unique up to an irrelevant exact expression, is

Ω2 = c(Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2)dXµ − cΘ̄1ΓµdΘ1Θ̄2ΓµdΘ2. (5.55)

Note that changing the sign of c corresponds to interchanging Θ1 and Θ2,

and therefore the choice is a matter of convention. The term S2 can be

reconstructed from this formula in the manner indicated in Eq. (5.41). Al-

together, the κ-invariant action for the string is then

S = S1 + S2. (5.56)

Other p-branes, some of which are discussed in Chapter 6, also have world-

volume actions with local κ symmetry. One example is the supermembrane

in D = 11 supergravity (or M theory). Other examples contain additional

world-volume fields besides Xµ and Θ. For example, the Dp-brane world-

volume actions also contain U(1) gauge fields. This gauge field could be

ignored in the special case p = 0 discussed earlier.

EXERCISES

EXERCISE 5.5

Show that γ, defined in Eq. (5.53), satisfies γ2 = 1, as required for P± =

(1± γ)/2 to be orthogonal projection operators.

SOLUTION

The square of γ is

γ2 = − 1

4G

(
εαβΠµ

αΠν
βΓµν

)2
= − 1

8G
εα1β1εα2β2Πµ1

α1
Πν1
β1

Πµ2
α2

Πν2
β2
{Γµ1ν1 ,Γµ2ν2} .

Using the identity

{Γµ1ν1 ,Γµ2ν2} = −2ηµ1µ2ην1ν2 + 2ηµ1ν2ην1µ2 + 2Γµ1ν1µ2ν2 ,

and noting that the Γµ1ν1µ2ν2 term does not contribute, one obtains

γ2 =
1

4G
εα1β1εα2β2 (Gα1α2Gβ1β2 −Gα1β2Gβ1α2) = 1.

2
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5.3 Quantization of the GS action

The GS action is difficult to quantize covariantly, since the equations of

motion are nonlinear in the coordinates Xµ and ΘA. Also, the canonical

variables satisfy constraints as a consequence of the local κ symmetry. These

constraints are a mixture of first and second class (in Dirac’s classification).

Standard methods require disentangling the two types of constraints and

treating them differently. However, this separation cannot be achieved co-

variantly. Many proposals for overcoming these difficulties have been made

over the years, most of which were unsuccessful. More recently, Berkovits

has found a scheme based on pure spinors, that does seem to work, but it

is not yet understood well enough to include here.

The following analysis uses the light-cone gauge in which the equations of

motion become linear, and the quantization of the theory becomes tractable.

This gauge choice is very convenient for analyzing the physical spectrum of

the theory. It can also be used to compute tree and one-loop amplitudes.

However, to be perfectly honest, it is very awkward for most other purposes.

The light-cone gauge

As in the case of the bosonic string, the diffeomorphism symmetry can be

used to choose the conformally flat gauge in which the world-sheet metric

takes the form

hαβ = eφηαβ . (5.57)

After choosing this gauge the action is still invariant under superconformal

transformations. As explained in Section 2.5, this residual symmetry allows

one to choose the light-cone gauge in which the oscillators α+
n , with n 6= 0,

vanish, and therefore

X+ = x+ + p+τ. (5.58)

As before, this leaves only the transverse coordinates X i with i = 1, . . . , 8

as independent degrees of freedom. As a result, the theory contains eight

bosonic degrees of freedom corresponding to the eight transverse directions

in ten dimensions. In the world-sheet theory these appear as eight left-

movers and eight right-movers.

Let’s consider the fermionic degrees of freedom. As was discussed earlier,

a generic spinor in ten dimensions has 32 complex components. Imposing

Majorana and Weyl conditions reduces this to 16 real components, which

is the content of a Majorana–Weyl spinor. In the present set-up there are

two Majorana–Weyl spinors ΘA, which therefore have a total of 32 real
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components. A factor of two reduction is provided by the local κ symmetry,

which can be used to gauge away half of the 32 fermionic degrees of freedom.

The final factor of two that leaves eight real degrees of freedom, for both

left-movers and right-movers, is provided by the equations of motion.

A natural and convenient gauge choice is

Γ+ΘA = 0, where Γ± =
1√
2

(Γ0 ± Γ9). (5.59)

This reduces the number of fermionic degrees of freedom for each of the two

Θ s to eight. Note that η+− = −1, so that Γ+ = −Γ− and Γ− = −Γ+. This

gauge choice meshes nicely with gauge-fixing X+, since δX+ = ε̄AΓ+ΘA

vanishes. It could be justified by constructing a local κ transformation that

implements this choice.

The GS action, in the version with a world-sheet metric, is

S = S1 + S2, (5.60)

with

S1 = − 1

2π

∫
d2σ
√
−hhαβΠα ·Πβ (5.61)

and

S2 =
1

π

∫
d2σεαβ

[
−∂αXµ(Θ̄1Γµ∂βΘ1−Θ̄2Γµ∂βΘ2)−Θ̄1Γµ∂αΘ1Θ̄2Γµ∂βΘ2

]
.

(5.62)

The equations of motion for the superstring in the GS formalism are highly

nonlinear and given by

Πα ·Πβ =
1

2
hαβh

γδΠγ ·Πδ, (5.63)

Γ ·ΠαP
αβ
− ∂βΘ1 = Γ ·ΠαP

αβ
+ ∂βΘ2 = 0, (5.64)

∂α

[√
−h
(
hαβ∂βX

µ − 2Pαβ− Θ̄1Γµ∂βΘ1 − 2Pαβ+ Θ̄2Γµ∂βΘ2
)]

= 0, (5.65)

where

Pαβ± =
1

2

(
hαβ ± εαβ√

−h

)
. (5.66)

Once the gauge choices (5.58) and (5.59) are imposed, the equations of

motion for the string become linear. The basic reason for this simplification

is that the term

Θ̄AΓµ∂αΘA (5.67)
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vanishes for µ = i,+ and is nonvanishing only for µ = −. Using the fermion

gauge choice (5.59), the first equation in (5.64) takes the form

(ΓµΠµ
α)Pαβ− ∂βΘ1 = (Γ+Π+

α + ΓiΠ
i
α)Pαβ− ∂βΘ1 = 0. (5.68)

Multiplying this result by Γ+ gives

Γ+(Γ+Π+
α + ΓiΠ

i
α)Pαβ− ∂βΘ1 = 2Π+

αP
αβ
− ∂βΘ1 = 0. (5.69)

Using Π+
α = p+δα,0 this gives

P 0β
− ∂βΘ1 = 0. (5.70)

Using the definition of Pαβ− and the gauge choice hαβ = eφηαβ, this takes

the form (
∂

∂τ
+

∂

∂σ

)
Θ1 = 0. (5.71)

This is the equation of motion for Θ1 in the light-cone gauge. It is consid-

erably simpler than the covariant equation of motion. Since this equation is

linear, it can be solved explicitly. In a similar way, the equations of motion

for Xi and Θ2 also become linear. One learns, in particular, that Θ1 and Θ2

describe waves that propagate in opposite directions along the string. This

fact can be traced back to the relative minus sign between the Θ1 and Θ2

dependence in S2.

The light-cone gauge action

The superstring theories considered here have ten-dimensional Lorentz in-

variance, but in the light-cone gauge only an SO(8) transverse rotational

symmetry is manifest. The eight surviving components of each Θ form

an eight-dimensional spinor representation of this transverse SO(8) group

(or more precisely its Spin(8) covering group). There are two inequivalent

spinor representations of Spin(8), which are denoted by 8s and 8c. These

two representations describe spinors of opposite eight-dimensional chirality.

The ten-dimensional chirality of the spinors Θ1,2 determines whether an 8s

or 8c representation survives in the light-cone gauge. Using the symbol S

for the surviving components of Θ, multiplied by a factor proportional to√
p+, the choices are

IIA :
√
p+ΘA → 8s + 8c = (Sa1 , S

ȧ
2 ), (5.72)

IIB :
√
p+ΘA → 8s + 8s = (Sa1 , S

a
2 ). (5.73)
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In the above formulas the letters a, b, . . . label the indices of a spinor in

the 8s representation and dotted indices ȧ, ḃ, . . . label spinors in the 8c

representation. This should be contrasted with the result obtained for the

RNS formalism in light-cone gauge, where the fermionic fields on the world

sheet are vectors of SO(8) rather than spinors. In the case of the group

Spin(8) there is a triality symmetry that relates the vector representation

to the two spinor representations. This symmetry is manifested as an S3

symmetry of the Spin(8) Dynkin diagram shown in Fig. 5.1.1

Fig. 5.1. Dynkin diagram for SO(8) = D4. Triality refers to the symmetries of this
diagram.

In the notation where the components of Θ that survive after gauge fixing

are denoted by S, as described above, the equations of motion take the very

simple form

∂+∂−Xi = 0, ∂+S
a
1 = 0 and ∂−Sa or ȧ

2 = 0. (5.74)

These equations are identical to those for the fields X i, ψi+ and ψi− in the

RNS formalism. The only difference is that now the fermions are in the

spinor representation of Spin(8), whereas in the RNS formalism they were

in the vector representation. By using the triality symmetry discussed above

one can transform space-time spinors into vectors. As a result, these equa-

tions of motion are very similar to those for superstrings in the RNS formal-

ism, though there are important differences in their usage.

The light-cone gauge action that gives rise to the above equations of mo-

tion is

S = − 1

2π

∫
d2σ∂αXi∂

αXi +
i

π

∫
d2σ(Sa1∂+S

a
1 + Sa2∂−S

a
2 ), (5.75)

for the type IIB string. For the type IIA string one replaces Sa2 by Sȧ2 . In

the IIB case one can combine S1 and S2 into a two-component Majorana

1 The representation theory of the groups Spin(2n) is described in Appendix 5.A of GSW.
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world-sheet spinor giving the action

S = − 1

2π

∫
d2σ(∂αXi∂

αXi + S̄aρα∂αS
a), (5.76)

where ρα are the two-dimensional Dirac matrices described in Chapter 4.

As a result, the light-cone gauge superstring in the GS formalism looks

almost the same as in the RNS formalism. An important difference is the

fact that, whereas the RNS formalism required two sectors (R and NS), the

entire spectrum is obtained from a single sector in the GS approach. It

is an interesting fact that before gauge fixing the GS fermions transform

as world-sheet scalars, but after gauge fixing they transform as world-sheet

spinors.

Canonical quantization

Canonical quantization of the coordinates X i is the same as in the case of

the bosonic string or of the RNS string. Therefore, the equations of motion

and the boundary conditions are solved by the same oscillator expansions.

The fermionic coordinates satisfy anticommutation relations
{
SAa(σ, τ), SBb(σ′, τ)

}
= πδabδABδ(σ − σ′), (5.77)

where A,B = 1, 2 and a, b = 1, . . . , 8. To determine the quantization condi-

tions for the coefficients in the mode expansions of the fermionic fields, one

must first choose boundary conditions for the fermionic coordinates. These

determine the structure of the mode expansions, just as for the bosonic

coordinates. There are several different possibilities:

Open type I superstring

The bosonic fields of the open or type I superstring satisfy Neumann bound-

ary conditions at σ = 0, π. When they are required to end on lower-

dimensional hypersurfaces (D-branes), Dirichlet boundary conditions, which

are another possibility, are discussed in Chapter 6. The corresponding

boundary conditions for the fermionic fields S1 and S2 require that they

are related at the ends of the strings.

In order to keep the fermionic zero mode, which is necessary for unbroken

space-time supersymmetry, there is no arbitrariness for the choice of sign in

the boundary conditions. This is in contrast to the situation in the RNS

approach. Space-time supersymmetry is only possible for the same relative

sign choice at both ends. Thus the appropriate boundary conditions are

S1a|σ=0 = S2a|σ=0 and S1a|σ=π = S2a|σ=π. (5.78)
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Since the space-time supersymmetry transformation is δΘA = εA (where

the εA are constants) the above boundary conditions are only compatible

with supersymmetry if ε1 = ε2. As a result, open strings only have an

N = 1 supersymmetry. Such open strings occur in the type I superstring

theory, which therefore is a theory with N = 1 supersymmetry. The mode

expansions for the fermionic fields of an open string satisfying Eqs (5.74)

and (5.78) are

S1a =
1√
2

∞∑

n=−∞
Sane

−in(τ−σ), (5.79)

S2a =
1√
2

∞∑

n=−∞
Sane

−in(τ+σ). (5.80)

After quantization, the coefficients in the above mode expansions satisfy

{Sam, Sbn} = δm+n,0δ
ab. (5.81)

The reality condition implies Sa−m = (Sam)†.

Closed strings

Closed strings require the periodicity

SAa(σ, τ) = SAa(σ + π, τ), (5.82)

since this is the only boundary condition that is compatible with supersym-

metry. As a result, the mode expansions become

S1a =
∞∑

−∞
Sane

−2in(τ−σ), (5.83)

S2a =

∞∑

−∞
S̃ane

−2in(τ+σ). (5.84)

Each set of modes satisfies the same canonical anticommutation relations

as in Eq. (5.81). S1 and S2 belong to different spinor representations, 8s

and 8c, for the type IIA theory and to the same spinor representation, 8s

or 8c, for the type IIB theory. A left–right symmetrization (or orientifold

projection) of the closed type IIB superstring gives a truncated spectrum

that describes the closed type I superstring with N = 1 supersymmetry.
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The free string spectrum

Let us now examine the spectrum of free GS strings with space-time su-

persymmetry in flat ten-dimensional Minkowski space-time starting with

the type I open-string states. This is useful for closed strings, as well,

since closed-string left-movers and right-movers have essentially the same

structure as open strings. This implies that closed-string states can be con-

structed as tensor products of open-string states, just as for the bosonic

string.

Open type I superstrings

Open type I superstrings satisfy the mass-shell condition

α′M2 =

∞∑

n=1

(
αi−nα

i
n + nSa−nS

a
n

)
. (5.85)

Note that there is no extra constant (previously called a), since the normal-

ordering constants for the bosonic and fermionic modes cancel exactly. As

a result, there is no tachyon in the spectrum, and so no analog of the GSO

projection is required to eliminate a tachyon. Moreover, the ground state

is degenerate since the operator Sa0 commutes with the mass operator. The

ground-state spectrum must provide a representation of the zero-mode Clif-

ford algebra

{Sa0 , Sb0} = δab a, b = 1, . . . , 8. (5.86)

The representation consists of a massless vector 8v, which we denote by |i〉,
i = 1, . . . , 8, and a massless spinor partner |ȧ〉, ȧ = 1, . . . , 8, which belongs

to the 8c. These are related according to2

|ȧ〉 = ΓiȧbS
b
0|i〉 and |i〉 = ΓiȧbS

b
0|ȧ〉. (5.87)

This construction is identical to the one used for the zero modes of the

Ramond sector in the RNS formalism in Chapter 4. The difference is that the

role of a vector and spinor representation has been interchanged. However,

because of the triality symmetry of Spin(8), the mathematics is the same.

This is exactly the massless spectrum required by supersymmetry that

was found earlier. This time it has been achieved in a single sector, without

any GSO-like projection. The excited levels at positive mass are obtained

by acting on the massless states with the negative modes (Sa−n and αi−n)

in the usual way. The methodology of this construction ensures that the

2 The eight 8×8 Dirac matrices Γiȧb are the Clebsch–Gordon coefficients for combining the three
inequivalent 8 s of Spin(8) into a singlet.
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supersymmetry generators can be expressed in terms of these oscillators,

and therefore the physical spectrum is guaranteed to be supersymmetric.

Type II superstring theories

Type II superstrings, on the other hand, have the following spectrum. The

ground state for the closed string is also massless and is given by the tensor

product of left- and right-movers. Since the ground state for the open string

is the 16-dimensional multiplet given by 8v + 8c, there are 256 = 16 × 16

states in the closed-string ground state. The resulting supermultiplets are

different for the type IIA and type IIB theories.

In the case of the type IIA theory one should form the tensor product of

two supermultiplets in which the spinors have opposite chirality

(8v + 8c)⊗ (8v + 8s). (5.88)

This tensor product gives rise to the following bosonic fields:

8v ⊗ 8v = 1 + 28 + 35 and 8s ⊗ 8c = 8v + 56t, (5.89)

while the tensor products of 8v ⊗ 8s and 8v ⊗ 8c give rise to the corre-

sponding fermionic superpartners. The product of the two vectors 8v ⊗ 8v

decomposes into a scalar, an antisymmetric rank-two tensor and a symmet-

ric traceless tensor. The corresponding fields are the dilaton, antisymmetric

tensor and the graviton. The product of the two spinors of opposite chirality,

denoted ζ and χ, is evaluated by constructing the independent tensors

ζ̄Γiχ and ζ̄Γijkχ. (5.90)

These describe 8 + 56 = 64 fermionic states, which is the expected num-

ber. Equation (5.89) describes the massless bosons of the ten-dimensional

type IIA theory. This is the same bosonic content that is obtained when

11-dimensional supergravity is dimensionally reduced to ten dimensions.

Furthermore, the fermions also match. This relationship has rather deep

significance, as it suggests a connection between the two theories. This is

explored in Chapter 8.

The spectrum of massless particles of the type IIB theory is given by the

tensor product of two supermultiplets in which the spinors have the same

chirality. The massless ground states are then given by

(8v + 8c)⊗ (8v + 8c). (5.91)

This gives rise to the following bosonic fields:

8v ⊗ 8v = 1 + 28 + 35 and 8c ⊗ 8c = 1 + 28 + 35+. (5.92)
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Here 35+ describes a fourth-rank self-dual antisymmetric tensor. This spec-

trum does not arise from dimensional reduction of a higher-dimensional the-

ory.

The above results show that both type II theories have the same field

content in the NS–NS sector,3 namely (in a mixed notation)

8v ⊗ 8v = φ⊕Bµν ⊕Gµν , (5.93)

which are the dilaton, antisymmetric tensor and the graviton. In the R–

R sector the type IIA and type IIB theories are different. The type IIA

theory contains odd rank potentials, namely 8v and 56t, which are one-

form and three-form potentials. The type IIB theory, on the other hand,

contains even rank potentials, namely 1, 28 and 35+, which are a zero-

form potential corresponding to an R–R scalar, a two-form potential and a

four-form potential with a self-dual field strength in ten dimensions.

EXERCISES

EXERCISE 5.6

Show that Θ̄AΓµ∂αΘA vanishes for µ = +, i.

SOLUTION

The vanishing is obvious for µ = +, because Γ+ΘA = 0. To see it for the

case µ = i insert 1 = −(Γ+Γ− + Γ−Γ+)/2. Then Γ+ multiplies ΘA either

from the left or the right to give zero, and so each of the two terms vanishes.

2

EXERCISE 5.7

Show that Θ1 and Θ2 propagate in opposite directions along the string.

SOLUTION

Θ1 and Θ2 satisfy the equations of motion

(∂τ + ∂σ) Θ1 = (∂τ − ∂σ) Θ2 = 0.

3 The GS formalism doesn’t have distinct sectors, but these are the states of the NS–NS sector
in the RNS formalism.
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As a result, Θ1 = Θ1(τ − σ) is right-moving and Θ2 = Θ2(τ + σ) is left-

moving. 2

EXERCISE 5.8

Work out the decomposition of the tensor products 8s ⊗ 8s and 8c ⊗ 8s.

SOLUTION

This problem involves evaluating tensor products of representations of the

Lie group Spin(8) = D4. Recall that it has three eight-dimensional repre-

sentations, denoted 8v, 8s and 8c. These are related to one another by the

triality automorphism group. The tensor product

8v ⊗ 8v = 1 + 28 + 35

is ordinary SO(8) group theory: the decomposition of a second rank tensor

tij into a trace, antisymmetric and symmetric-traceless parts. The product

8s ⊗ 8s works the same way for a tensor tab. One obtains

8s ⊗ 8s = 1 + 28 + 35−.

The 1 and 28 are triality-invariant representations. However, there are

three 35-dimensional representations related by triality. The 35+ and 35−
can be described alternatively as the self-dual and anti-self-dual parts of a

fourth-rank antisymmetric tensor

tijkl = ± 1

4!
εijkli

′j′k′l′ti′j′k′l′ .

Each of these has 1
2

(
8

4

)
= 35 independent components.

The tensor product 8c ⊗ 8s contains an 8v given by Γi
aḃ
taḃ, where Γi

aḃ
is

the invariant tensor described in the text. The remaining 56 components

of the product form an irreducible representation 56t. It has an alternative

description as a third-rank antisymmetric tensor tijk, which has

(
8

3

)
= 56

independent components.

2

5.4 Gauge anomalies and their cancellation

In the early 1980s it appeared that superstrings could not describe parity-

violating theories, because of quantum inconsistencies called anomalies. The
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1984 discovery that the anomalies could cancel in certain cases was impor-

tant for convincing many theorists that string theory is a promising approach

to unification. In the years that have passed since then, string theory has

been studied intensively, and many issues are understood much better now.

In particular, it is possible to present the anomaly cancellation mechanism in

a more elegant way than in the original papers. The improvements that are

incorporated in the following discussion include an improved understanding

of the association of specific terms with specific string world sheets as well

as some mathematical tricks.

When a symmetry of a classical theory is broken by radiative corrections,

so that there is no choice of local counterterms that can be added to the

low-energy effective action to restore the symmetry, the symmetry is called

anomalous. Anomalies arise from divergent Feynman diagrams, with a clas-

sically conserved current attached, that do not admit a regulator compatible

with conservation of the current. Anomalies only arise at one-loop order

(Adler–Bardeen theorem) in diagrams with a chiral fermion or boson going

around the loop. Their origin can be traced to the behavior of Jacobian

factors in the path-integral measure.

There are two categories of anomalies. The first category consists of

anomalies that break a global symmetry. An example is the axial part

of the flavor SU(2)×SU(2) symmetry of QCD. These anomalies are good in

that they do not imply any inconsistency. Rather, they make it possible to

carry out certain calculations to high precision. The classic example is the

rate for the decay π0 → γγ. The second category of anomalies consists of

ones that break a local gauge symmetry. These are bad, in that they imply

that the quantum theory is inconsistent. They are our concern here.

Parity-violating theories with chiral fields only exist in space-times with

an even dimension. If the dimension is D = 2n, then anomalies can occur

in Feynman diagrams with one current and n gauge fields attached to a

chiral field circulating around the loop. In four dimensions these are triangle

diagrams, and in ten dimensions these are hexagon diagrams, as shown in

Fig. 5.2. The resulting nonconservation of the current Jµ takes the form

∂µJ
µ = aεµ1µ2...µ2nFµ1µ2 · · ·Fµ2n−1µ2n , (5.94)

where a is some constant.

In string theory there are various world-sheet topologies that correspond

to one-loop diagrams, as was discussed in Chapter 3. In the case of type II or

heterotic theories the only possibility is a torus. For the type I superstring

theory it can be a torus, a Klein bottle, a cylinder or a Moebius strip.

However, the anomaly analysis can be carried out entirely in terms of a low-
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D=4 D=10

Fig. 5.2. Diagrams contributing to the gauge anomaly in four and ten dimensions.
Each of these diagrams contains one current, while the remaining insertions are
gauge fields.

energy effective action, which is what we do here. Even so, it is possible to

interpret the type I result in terms of string world sheets. The torus turns

out not to contribute to the anomaly. For the other world-sheet topologies, it

is convenient to imagine them as made by piecing together boundary states

|B〉 and cross-cap states |C〉. Cross-caps can be regarded as boundaries that

have opposite points identified. In this way 〈B|B〉 represents a surface with

two boundaries, which is a cylinder, 〈B|C〉 and 〈C|B〉 represent surfaces

with one boundary and one cross-cap, which is a Moebius strip, and 〈C|C〉
represents a surface with two cross-caps, which is a Klein bottle. The correct

relative weights of the Feynman diagrams are encoded in the combinations

(〈B|+ 〈C|)× (|B〉+ |C〉). (5.95)

The consistency of the SO(32) type I theory arises from a cancellation be-

tween the boundary and cross-cap contributions. It should also be pointed

out that the modern interpretation of the boundary state is in terms of a

world sheet that ends on a D-brane, whereas the cross-cap state corresponds

to a world sheet that ends on an object called an orientifold plane. These

are discussed in Chapter 6.

Chiral fields

As we learned earlier, in ten dimensions (in contrast to four dimensions)

there exist spinors that are simultaneously Majorana and Weyl. Another

difference between four and ten dimensions is that in ten dimensions it is

also possible to have chiral bosons! To be specific, consider a fourth rank

antisymmetric tensor field Aµνρλ, which is conveniently represented as a
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four-form A4. Then the five-form field strength F5 = dA4 has a gauge in-

variance analogous to that of the Maxwell field, namely δA4 = dΛ3, where

Λ3 is a three-form. Moreover, one can covariantly eliminate half of the de-

grees of freedom associated with this field by requiring that F is self-dual

(or anti-self-dual). Because the self-duality condition involves the ε symbol,

the resulting degrees of freedom are not reflection invariant, and they there-

fore describe a chiral boson. When interactions are taken into account, the

self-duality condition of the free theory is deformed by interaction terms.

This construction in ten dimensions is consistent with Lorentzian signature,

whereas in four dimensions a two-form field strength can be self-dual for

Euclidean signature (a fact that is crucial for constructing instantons).

Differential forms and characteristic classes

To analyze anomalies it is extremely useful to use differential forms and

characteristic classes. For example, Yang–Mills gauge fields are Lie-algebra-

valued one-forms:

A =
∑

µ,a

Aaµ(x)λadxµ. (5.96)

Here the λa are matrices in a convenient representation (call it ρ) of the Lie

algebra G. The field strengths are Lie-algebra-valued two-forms:

F =
1

2

∑

µν

Fµνdx
µ ∧ dxν = dA+ A ∧ A. (5.97)

Note that this definition constrains F and A to be antihermitian in the case

that the representation is complex and antisymmetric for real representa-

tions.4 Under an infinitesimal Yang–Mills gauge transformation

δΛA = dΛ + [A,Λ] and δΛF = [F,Λ], (5.98)

where Λ is an infinitesimal Lie-algebra-valued zero-form.

Gravity (in the vielbein formalism) is described in an almost identical

manner. The spin connection one-form

ω =
∑

µ,a

ωaµ(x)λadxµ (5.99)

is a gauge field for local Lorentz symmetry. The λa are chosen to be in the

4 To make contact with the hermitian fields that appear in the low-energy effective actions in a
later chapter the fields have to be rescaled by a factor of i.
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fundamental representation of the Lorentz algebra (D ×D matrices). The

curvature two-form is

R = dω + ω ∧ ω. (5.100)

Under an infinitesimal local Lorentz transformation (with infinitesimal pa-

rameter Θ)

δΘω = dΘ + [ω,Θ] and δΘR = [R,Θ]. (5.101)

Characteristic classes are differential forms, constructed out of F and R,

that are closed and gauge invariant. Thus X(R,F ) is a characteristic class

provided that

dX(R,F ) = 0 and δΛX(R,F ) = δΘX(R,F ) = 0. (5.102)

Some examples are

tr(F ∧ . . . ∧ F ) ≡ tr(F k), (5.103)

tr(R ∧ . . . ∧R) ≡ tr(Rk), (5.104)

as well as polynomials constructed out of these building blocks using wedge

products.

Characterization of anomalies

Yang–Mills anomalies and local Lorentz symmetry anomalies (also called

gravitational anomalies) in D = 2n dimensions are encoded in a character-

istic class that is a (2n + 2)-form, denoted I2n+2. You can’t really anti-

symmetrize 2n + 2 indices in 2n dimensions, so these expressions are a bit

formal, though they can be given a precise mathematical justification. In

any case, the physical anomaly is characterized by a 2n-form G2n, which

certainly does exist. The precise formula is

δSeff =

∫
G2n. (5.105)

Here, Seff represents the quantum effective action and the variation δ is an

infinitesimal gauge transformation. The formulas forG2n are rather ugly and

subject to the ambiguity of local counterterms and total derivatives. On the

other hand, by pretending that there are two extra dimensions, one uniquely

encodes the anomalies in beautiful expressions I2n+2. Moreover, any G2n

that is deduced from an I2n+2 by the formulas that follow is guaranteed to

satisfy the Wess–Zumino consistency conditions.
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The anomaly G2n is obtained from I2n+2 (in a coordinate patch) by the

descent equations

I2n+2 = dω2n+1 (5.106)

and

δω2n+1 = dG2n. (5.107)

Here δ represents a combined gauge transformation (that is, δ = δΛ + δΘ).

The ambiguities in the determination of the Chern–Simons form ω2n+1 and

the anomaly form G2n from these equations are just as they should be and do

not pose a problem. The total anomaly is a sum of contributions from each

of the chiral fields in the theory, and it can be encoded in a characteristic

class

I2n+2 =
∑

α

I
(α)
2n+2. (5.108)

The formulas for every possible anomaly contribution I
(α)
2n+2 were worked out

by Alvarez-Gaumé and Witten. Dropping an overall normalization factor,

because the goal is to achieve cancellation, their results are as follows:

• A left-handed Weyl fermion belonging to the ρ representation of the Yang–

Mills gauge group contributes

I1/2(R,F ) =
[
Â(R) trρe

iF
]

2n+2
. (5.109)

The notation [· · · ]2n+2 means that one should extract the (2n + 2)-form

part of the enclosed expression, which is a sum of differential forms of

various orders. The factor trρe
iF is called a Chern character. The Dirac

roof genus Â(R) is given by

Â(R) =
n∏

i=1

λi/2

sinhλi/2
, (5.110)

where the λi are the eigenvalue two-forms of the curvature:

R ∼




0 λ1

−λ1 0

0 λ2

−λ2 0

.

.

0 λn
−λn 0




. (5.111)
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The first few terms in the expansion of Â(R) are

Â(R) = 1 +
1

48
trR2 +

1

16

[
1

288
(trR2)2 +

1

360
trR4

]
+ . . . (5.112)

• A left-handed Weyl gravitino, which is always a singlet of any Yang–Mills

groups, contributes I3/2(R), where

I3/2(R) =
(∑

j

2 coshλj − 1
)∏

i

λi/2

sinhλi/2
. (5.113)

• A self-dual tensor gives a contribution denoted IA(R), where

IA(R) = −1

8
L(R), (5.114)

where the Hirzebruch L-function is defined by

L(R) =
n∏

i=1

λi
tanhλi

. (5.115)

In each case a chiral field of the opposite chirality (right-handed instead of

left-handed) gives an anomaly contribution of the opposite sign. An identity

that will be used later is

Â(R/2) =

√
L(R/4)Â(R), (5.116)

which is an immediate consequence of Eqs (5.110) and (5.115).

Type IIB superstring theory

Type IIB superstring theory is a ten-dimensional parity-violating theory,

whose massless chiral fields consist of two left-handed Majorana–Weyl grav-

itinos (or, equivalently, one Weyl gravitino), two right-handed Majorana–

Weyl spinors (or dilatinos) and a self-dual boson. Thus the total anomaly

is given by the 12-form part of

I(R) = I3/2(R)− I1/2(R) + IA(R). (5.117)

An important result of the Alvarez-Gaumé and Witten paper is that this

12-form vanishes, so that this theory is anomaly-free. The proof requires

showing that the expression

(
2

5∑

j=1

coshλj − 2
) 5∏

i=1

λi/2

sinhλi/2
− 1

8

5∏

i=1

λi
tanhλi

(5.118)
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contains no terms of sixth order in the λi. This involves three nontrivial

cancellations. The relevance of this fact to the type I theory is that it allows

us to represent I3/2(R) by I1/2(R) − IA(R). This is only correct for the

12-form part, but that is all that is needed.

Type I superstring theory

Type I superstring theory has 16 conserved supercharges, which form a

Majorana–Weyl spinor in ten dimensions. The massless fields of type I

superstring theory consist of a supergravity multiplet in the closed-string

sector and a super Yang–Mills multiplet in the open-string sector.

The supergravity multiplet

The supergravity multiplet contains three bosonic fields: the metric (35), a

two-form (28), and a scalar dilaton (1). The parenthetical numbers are the

number of physical polarization states represented by these fields. None of

these is chiral. It also contains two fermionic fields: a left-handed Majorana–

Weyl gravitino (56) and a right-handed Majorana–Weyl dilatino (8). These

are chiral and contribute an anomaly given by

Isugra =
1

2

[
I3/2(R)− I1/2(R)

]
12

= −1

2
[IA(R)]12 =

1

16
[L(R)]12 . (5.119)

The super Yang–Mills multiplet

The super Yang–Mills multiplet contains the gauge fields and left-handed

Majorana–Weyl fermions (gauginos), each of which belongs to the adjoint

representation of the gauge group. Classically, the gauge group of a type I

superstring theory can be any orthogonal or symplectic group. In the fol-

lowing we only consider the case of SO(N), since it is the one for which the

desired anomaly cancellation can be achieved. In this case the adjoint repre-

sentation corresponds to antisymmetric N ×N matrices, and has dimension

N(N − 1)/2.

Adding the anomaly contribution of the gauginos to the supergravity con-

tribution given above yields

I =

[
1

2
Â(R) TreiF +

1

16
L(R)

]

12

. (5.120)

The symbol Tr is used to refer to the adjoint representation, whereas the

symbol tr is used (later) to refer to the N -dimensional fundamental repre-

sentation.
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The Chern-character factorization property

trρ1×ρ2e
iF =

(
trρ1e

iF
) (

trρ2e
iF
)

(5.121)

allows us to deduce that, for SO(N),

TreiF =
1

2

(
treiF

)2 − 1

2
tre2iF =

1

2
(tr cosF )2 − 1

2
tr cos2F. (5.122)

The last step used the fact that the trace of an odd power of F vanishes,

since the matrix is antisymmetric.

Substituting Eq. (5.122) into Eq. (5.120) gives the anomaly as the 12-form

part of

I =
1

4
Â(R) (tr cosF )2 − 1

4
Â(R)tr cos2F +

1

16
L(R). (5.123)

Since this is of sixth order in R s and F s, the following expression has the

same 12-form part:

I ′ =
1

4
Â(R) (tr cosF )2 − 16Â(R/2)tr cosF + 256L(R/4). (5.124)

Moreover, using Eq. (5.116), this can be recast as a perfect square

I ′ = Y 2 where Y =
1

2

√
Â(R)tr cosF − 16

√
L(R/4). (5.125)

There is no choice of N for which [I ′]12 = [I]12 vanishes. However, as is

explained later, it is possible to introduce a local counterterm that cancels

the anomaly if [I]12 factorizes into a product of a four-form and an eight-

form.

Indeed, a priori, Y is a sum of forms Y0 + Y4 + Y8 + . . . However, if the

constant term vanishes (Y0 = 0), then

[I]12 = [(Y4 + Y8 + . . .)2]12 = 2Y4Y8, (5.126)

as required. To evaluate the constant term Y0, note that L and Â are each

equal to 1 plus higher-order forms and that tr cosF = N + . . . Thus

Y0 =
N − 32

2
, (5.127)

and the desired factorization only works for the choice N = 32 in which case

the gauge algebra is SO(32).

Let us express Y as a sum of two terms YB + YC, where

YB =
1

2

√
Â(R) tr cosF (5.128)



178 Strings with space-time supersymmetry

and

YC = −16
√
L(R/4). (5.129)

This decomposition has a simple interpretation in terms of string world

sheets. YB is the boundary – or D-brane – contribution. It carries all the

dependence on the gauge fields. YC is the cross-cap – or orientifold plane –

contribution. Note that

I ′ = Y 2 = Y 2
B + 2YBYC + Y 2

C (5.130)

displays the anomaly contributions arising from distinct world-sheet topolo-

gies: the cylinder, the Moebius strip, and the Klein bottle, as shown in

Fig. 5.3.

Fig. 5.3. World-sheet topologies contributing to the anomaly in type I superstring
theory. Opposite edges with arrows are identified with the arrow aligned.

Cancellation of the anomaly requires a local counterterm, Sct, with the

property that

δSct = −
∫
G10, (5.131)

where G10 is the anomaly ten-form that follows, via the descent equations,

from [I]12 = 2Y4Y8. As was mentioned earlier, there are inconsequential

ambiguities in the determination of G10 from [I]12. A convenient choice in

the present case is

G10 = 2G2Y8, (5.132)

where G2 is a two-form that is related to Y4 by the descent equations Y4 =

dω3 and δω3 = dG2. This works because Y8 is closed and gauge invariant.

Specifically, for the normalizations given here,

Y4 =
1

4
(trR2 − trF 2) (5.133)
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and ω3 = (ω3L − ω3Y)/4, where

dω3L = trR2 and dω3Y = trF 2. (5.134)

The type I supergravity multiplet contains a two-form gauge field denoted

C2. It is the only R–R sector field of the type IIB supergravity multiplet

that survives the orientifold projection. In terms of its index structure, it

would seem that the field C2 should be invariant under Yang–Mills gauge

transformations and local Lorentz transformations. However, it does trans-

form nontrivially under each of them in just such a way as to cancel the

anomaly. Specifically, writing the counterterm as

Sct = µ

∫
C2Y8, (5.135)

Eq. (5.131) is satisfied provided that

µδC2 = −2G2. (5.136)

The coefficient µ is a parameter whose value depends on normalization con-

ventions that are not specified here.

One consequence of the nontrivial gauge transformation properties of the

field C2 is that the naive kinetic term
∫
|dC2|2 must be modified to give

gauge invariance. The correct choice is
∫
|F̃3|2, where

F̃3 = dC2 + 2µ−1ω3. (5.137)

Note that ω3 contains both Yang–Mills and Lorentz Chern–Simons forms.

Only the former is present in the classical supergravity theory.

The case of E8 × E8

The preceding discussion presented the anomaly analysis for the type I the-

ory in a way where the physical meaning of the various terms could be

understood. In order to describe the situation for the E8 × E8 theory, it is

useful to begin by backing up and presenting the same result from a more

“brute force” viewpoint.

Writing down the various contributions to the anomaly 12-form charac-

teristic class, one finds that the required factorization into a product of a

four-form and an eight-form (I12 ∼ Y4Y8) requires that two conditions be

satisfied: (1) the dimension of the gauge group must be 496 to ensure can-

cellation of trR6 terms, a condition that is satisfied by both SO(32) and
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E8 ×E8; (2) TrF 6 must be re-expressible as follows:

TrF 6 =
1

48
TrF 2TrF 4 − 1

14, 400
(TrF 2)3. (5.138)

This identity is satisfied in the case of SO(32) because of the following iden-

tities relating adjoint representation traces to fundamental representation

traces:

TrF 2 = 30 trF 2, (5.139)

TrF 4 = 24 trF 4 + 3(trF 2)2, (5.140)

TrF 6 = 15 trF 2 trF 4. (5.141)

These identities follow from Eq. (5.122). Given these formulas, the factorized

anomaly can be written in the form I12 ∼ X4X8,5 where

X4 = trR2 − 1

30
TrF 2 (5.142)

and

X8 =
1

8
trR4+

1

32
(trR2)2− 1

240
trR2TrF 2+

1

24
TrF 4− 1

7200
(TrF 2)2. (5.143)

In the case of E8 × E8, Eq. (5.138) is also satisfied, and X4 and X8 are

again given by Eqs (5.142) and (5.143). To see this one needs to understand

first that

TrF 2n = TrF 2n
1 + TrF 2n

2 , (5.144)

where the subscripts 1 and 2 refer to the two individual E8 factors. In other

words,

F =

(
F1 0

0 F2

)
. (5.145)

Thus this formula re-expresses the trace of a 496-dimensional matrix as the

sum of the traces of two 248-dimensional matrices.

The following identities hold for each of the two E8 groups:

TrF 4
i =

1

100
(TrF 2

i )2 and TrF 6
i =

1

7200
(TrF 2

i )3 i = 1, 2. (5.146)

Using these relations it is straightforward to verify Eq. (5.138). These for-

mulas have a certain black-magic quality. It would be more satisfying to

obtain a deeper understanding of where they come from, as was done in the

5 We have introduced X4 = 4Y4 and X8 = 48Y8.
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type I case. Such an understanding was achieved by Hořava and Witten in

1995, and it is very different from that of the type I theory.

The key observation of Hořava and Witten was that at strong coupling

the E8 × E8 heterotic string theory grows an eleventh dimension that is a

line interval of length gsls. In the detailed construction, which is described in

Chapter 8, it is convenient to represent the line interval as an S1/
�

2 orbifold.

Since the size of this dimension is proportional to the string coupling, it is

invisible in perturbation theory, where the space-time appears to be ten-

dimensional. However, a deeper understanding of the anomaly cancellation

can be achieved by reconsidering it from an 11-dimensional viewpoint.

Theories in an odd number of space-time dimensions ordinarily are not

subject to anomalies. However, in the case of the M-theory set-up appropri-

ate to the E8 × E8 theory, the space-time has two ten-dimensional bound-

aries, and there can be anomalies that are localized on these boundaries.

The picture one gets is that each of the E8 factors is associated with one of

the boundaries. Thus, one set of E8 gauge fields is localized on one bound-

ary and the other set of E8 gauge fields is localized on the other boundary.

This gives a very nice intuitive understanding of why the gauge group is the

direct product of two identical groups. Indeed, Hořava and Witten carried

out the anomaly analysis in detail and showed that, when M-theory has a

ten-dimensional boundary, there must be an E8 vector supermultiplet con-

fined to that boundary. No other choice of gauge group is consistent with the

anomaly analysis. This is one of many deep connections between M-theory

and the Lie group E8.

Since the two E8 groups are spatially separated, the anomaly analysis

should work for each of them separately. This requires that the factor-

ized anomaly 12-form should be re-expressible as the sum of two factorized

anomaly 12-forms

X4X8 = X
(1)
4 X

(1)
8 +X

(2)
4 X

(2)
8 , (5.147)

where the first term on the right-hand side only involves the gauge fields

of the first E8, and the second term only involves the gauge fields of the

second E8. It is a matter of some straightforward algebra to verify that this

identity is satisfied for the choices

X
(i)
4 =

1

2
trR2 − 1

30
TrF 2

i i = 1, 2 (5.148)

and

X
(i)
8 =

1

8
trR4+

1

32
(trR2)2− 1

120
trR2TrF 2

i +
1

3600
(TrF 2

i )2 i = 1, 2. (5.149)



182 Strings with space-time supersymmetry

Finally, the local counterterms that complete the anomaly analysis have the

structure
∑

i

∫
B(i) ∧X(i)

8 , where the integral is over the ith boundary. The

field B(i) is obtained from the M-theory three-form field Aµνρ by setting

one index equal to 11 (the compact direction) and restricting to the ith

boundary.

EXERCISES

EXERCISE 5.9

Let us consider supergravity theories in six dimensions with N = 1 super-

symmetry. Let us further assume that the minimal supergravity multiplet is

coupled to a tensor multiplet as well as nH hypermultiplets and nV vector

multiplets. Show that a necessary condition for anomaly cancellation is

nH − nV = 244.

SOLUTION

The fields of the gravity and tensor multiplets combine to give a graviton

gµν , a two-form Bµν , a scalar, a left-handed gravitino and a right-handed

dilatino. The reason for combining these two multiplets is that one of them

gives the self-dual part of H = dB and the other gives the anti-self-dual part.

A vector multiplet contains a vector gauge field and a left-handed gaugino.

A hypermultiplet contains four scalars and a right-handed hyperino. There-

fore, the total purely gravitational anomaly is given by the eight-form part

of

I3/2(R) + (nV − nH − 1)I1/2(R).

Using the formulas in the text, the eight-form parts of I1/2(R) and I3/2(R)

are

I
(8)
1/2(R) =

1

128 · 180
(4 trR4 + 5(trR2)2),

I
(8)
3/2(R) =

1

128 · 180
(980 trR4 − 215(trR2)2).

By the same reasoning as in the text, a necessary requirement for anomaly

cancellation is that the total anomaly factorizes into a product of two four-

forms. A necessary requirement for this to be possible is the cancellation of
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the trR4 terms, since trR4 cannot be factorized. This requirement gives the

condition 980 + 4(nV − nH − 1) = 0, which simplifies to nH − nV = 244. 2

EXERCISE 5.10

The type IIA NS5-brane, which is introduced in Chapter 8, has a six-

dimensional world-volume theory with (0, 2) supersymmetry. This means

that both supercharges have the same chirality. As a result, the theory is

chiral, and there is an anomaly associated with it. The resulting anomaly

cannot be canceled by the methods described in this chapter. Instead, the

brane has interactions with fields of the ten-dimensional bulk that lead to an

anomaly-inflow mechanism that cancels the anomaly. Determine the form

of this interaction required for the cancellation.

SOLUTION

The NS5-brane world volume has N = 2 supersymmetry, and the field con-

tent is given by two matter multiplets. The first multiplet contains four

scalars and a right-handed fermion. The second multiplet contains one anti-

self-dual tensor, a single scalar and another right-handed fermion. Of these

fields only the fermions and the anti-self-dual tensor are chiral and con-

tribute to the anomaly. Since the theory is six-dimensional, the anomalies

are characterized by eight-forms. For this problem, it is desirable to keep

track of the overall normalization, which was not relevant in the previous

discussions. For this purpose it is convenient to express the anomalies in

terms of Pontryagin classes. These are defined by the formula

p(R) = det

(
1 +

R

2π

)
=

n∏

i=1

(
1 + (λi/2π)2

)
.

Thus

p1 = −1

2

1

(2π)2
trR2 and p2 =

1

8

1

(2π)4

(
(trR2)2 − 2trR4

)

and so forth.

Expressed in terms of Pontryagin classes, including the overall normaliza-

tion factor, the anomalies are

I
(8)
1/2 =

1

5760

(
7p2

1 − 4p2

)
and I

(8)
A =

1

5760

(
16p2

1 − 112p2

)
.

So the total anomaly on the NS5-brane world volume is

I8 = 2I
(8)
1/2 + I

(8)
A =

1

192

(
p2

1 − 4p2

)
=

1

192

1

(2π)4

(
trR4 − 1

4
(trR2)2

)
.
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The descent equations in this case can be written in the form I8 = dω7

and δω7 = dG6. The anomaly G6 is a certain six-form that depends on the

infinitesimal parameter of a local Lorentz transformation.

The type IIA theory contains a massless antisymmetric tensor B2 in the

NS–NS sector with a field strength H3 = dB2. Now suppose that the low-

energy effective action of the type IIA theory contains the term
∫
H3 ∧ ω7.

Under infinitesimal local Lorentz transformations this expression has the

variation

δ

∫
H3 ∧ ω7 =

∫
H3 ∧ dG6 = −

∫
dH3 ∧G6.

The NS5-brane is a source for the gauge field B2, a fact that can be expressed

in the form

dH3 = δW ,

where δW is a four-dimensional delta function with support on the 5-brane

world volume. Therefore, in the presence of a 5-brane the variation of this

term under an infinitesimal local Lorentz transformation is −
∫
G6. This

term exactly cancels the anomaly contribution due to the chiral fields on

the 5-brane world volume. Therefore, quantum consistency requires the

ten-dimensional interaction
∫
H3 ∧ ω7.

Let us jump ahead in the story and mention that the strong-coupling limit

of the type IIA theory is an 11-dimensional theory called M-theory. In the

strong-coupling limit the type IIA NS 5-brane goes over to the M5-brane in

11 dimensions. Also, the two-form B2 becomes part of a three-form potential

A3 with a four-form field strength F4 = dA3. The corresponding interaction

in M-theory that cancels the world-volume anomaly of the M5-brane has

the form ∫
F4 ∧ ω7.

2

HOMEWORK PROBLEMS

PROBLEM 5.1

Show that the action in Eq. (5.21) is invariant under a reparametrization of

the world line.
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PROBLEM 5.2

In order to obtain a nontrivial massless limit of Eq. (5.21), it is useful to

first restore the auxiliary field e(τ) described in Chapter 2.

(i) Re-express the massive D0-brane action with the auxiliary field e(τ).

(ii) Find the massless limit of the D0-brane action.6

(iii) Verify the κ symmetry of the massless D0-brane action.

PROBLEM 5.3

Prove that, for a pair of Majorana spinors, Θ1 and Θ2, the flip symmetry is

given by

Θ̄1Γµ1···µnΘ2 = (−1)n(n+1)/2Θ̄2Γµ1···µnΘ1,

as asserted at the end of Exercise 5.2.

PROBLEM 5.4

Derive the relevant Fierz transformation identities for Majorana–Weyl spinors

in ten dimensions and use them to prove that

ΓµdΘ dΘ̄ΓµdΘ = 0.

PROBLEM 5.5

Verify that the action (5.41) with Ω2 given by Eq. (5.55) is invariant under

supersymmetry transformations.

PROBLEM 5.6

Prove the identity

{Γµ1ν1 ,Γµ2ν2} = −2ηµ1µ2ην1ν2 + 2ηµ1ν2ην1µ2 + 2Γµ1ν1µ2ν2 ,

invoked in Exercise 5.5.

PROBLEM 5.7

Verify that the action (5.62) is supersymmetric.

PROBLEM 5.8

Construct the conserved supersymmetry charges for open strings in the

light-cone gauge formalism of Section 5.3 and verify that they satisfy the

supersymmetry algebra. Hint: the 16 supercharges are given by two eight-

component spinors, Q+ and Q−. The Q+ s anticommute to P+, the Q− s

6 This is sometimes called the Brink–Schwarz superparticle.
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anticommute to P−, and the anticommutator of Q+ and Q− gives the trans-

verse momenta.

PROBLEM 5.9

(i) Show that trF ∧ F is closed and gauge invariant.

(ii) This quantity is a characteristic class proportional to c2, the second

Chern class. Since it is closed, in a local coordinate patch one can

write trF ∧ F = dω3, where ω3 is a Chern–Simons three-form. Show

that

ω3 = tr

(
A ∧ dA+

2

3
A ∧A ∧ A

)
.

(iii) Similarly, one can write trF 4 = dω7. Find ω7.

PROBLEM 5.10

Check the identity in Eq. (5.122) for SO(N).

PROBLEM 5.11

(i) Using the definition of Y in Eq. (5.125), obtain an expression for Y4.

(ii) Apply the descent formalism to obtain a formula forG2 in Eq. (5.132).

PROBLEM 5.12

Prove the relations given in Eqs (5.139)–(5.141).

PROBLEM 5.13

Verify that the identity (5.138) is satisfied for the gauge group E8 × E8.

PROBLEM 5.14

There is no string theory known with the gauge groups E8 × U(1)248 or

U(1)496. Nevertheless, the anomalies cancel in these cases as well. Prove

that this is the case. Hint: infer the result from the fact that the anomalies

cancel for E8 × E8.

PROBLEM 5.15

Prove that TrF 4 = 1
100(TrF 2)2 for the adjoint representation of E8. Hint:

use the Spin(16) decomposition 248 = 120 + 128.
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T-duality and D-branes

String theory is not only a theory of fundamental one-dimensional strings.

There are also a variety of other objects, called branes, of various dimension-

alities. The list of possible branes, and their stability properties, depends on

the specific theory and vacuum configuration under consideration. One clue

for deciphering the possibilities is provided by the spectrum of massless par-

ticles. Chapters 4 and 5 described the spectra of massless states that appear

in the type I and type II superstring theories in ten-dimensional Minkowski

space-time. In particular, it was shown that several antisymmetric tensor

(or differential form) gauge fields appear in the R–R sector of each of the

type II theories. These tensor fields couple naturally to higher-dimensional

extended objects, called D-branes. However, this is not the defining prop-

erty of D-branes. Rather, the defining property is that D-branes are objects

on which open strings can end. A string that does not touch a D-brane must

be a closed loop. Those D-branes that have charge couplings to antisym-

metric tensor gauge fields are stable, whereas those that do not usually are

unstable.

One way of motivating the necessity of D-branes is based on T-duality, so

this chapter starts with a discussion of T-duality of the bosonic string the-

ory. Under T-duality transformations, closed bosonic strings transform into

closed strings of the same type in the T-dual geometry. The situation is dif-

ferent for open strings, however. The key is to focus on the type of boundary

conditions imposed at the ends of the open strings. Even though the only

open-string boundary conditions that are compatible with Poincaré invari-

ance (in all directions) are of Neumann type, Dirichlet boundary conditions

inevitably appear in the equivalent T-dual reformulation. Open strings with

Dirichlet boundary conditions in certain directions have ends with specified

positions in those directions, which means that they have to end on specified

hypersurfaces. Even though this violates Lorentz invariance, there is a good

187
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physical reason for them to end in this manner. The reason this is sensible

is that they are ending on other physical objects that are also part of the

theory, which are called Dp-branes. The letter D stands for Dirichlet, and p

denotes the number of spatial dimensions of the D-brane. For example, as

discussed in the previous chapter, a D0-brane is a point particle. When the

time direction is also taken into account, the world volume of a Dp-brane

has p+ 1 dimensions.

Much of the importance of Dp-branes stems from the fact that they pro-

vide a remarkable way of introducing nonabelian gauge symmetries in string

theory: nonabelian gauge fields naturally appear confined to the world vol-

ume of multiple coincident Dp-branes. Moreover, Dp-branes are useful for

discovering dualities that relate apparently different string theories. T-

duality is introduced in this chapter, because it can be understood in pertur-

bative string theory. Most other string dualities are nonperturbative. The

general subject of string dualities is discussed in more detail in Chapter 8.

6.1 The bosonic string and Dp-branes

T-duality and closed strings

In order to introduce the notion of T-duality, let us first consider the sim-

plest example, namely the bosonic string with one of the 25 spatial directions

forming a circle of radius R. Altogether, the space-time geometry is cho-

sen to be 25-dimensional Minkowski space-time times a circle ( � 24,1 × S1).

Sometimes one describes this as compactification on a circle of radius R.

In this case a T-duality transformation inverts the radius of the circle, that

is, it maps R → R̃ = α′/R, and it leaves the mass formula for the string

invariant provided that the string winding number is exchanged with the

Kaluza–Klein excitation number. Let us now explore how this works.

To describe a closed bosonic string in a theory compactified on a circle of

radius R, one takes periodic boundary conditions for one of the coordinates

X25(σ + π, τ) = X25(σ, τ) + 2πRW, W ∈ �
, (6.1)

where W is the winding number. The winding number W indicates the

number of times the string winds around the circle and its sign encodes the

direction, as shown in Fig. 6.1. Let us now consider the mode expansion for

a closed string with winding number W . The expansion of the coordinates

Xµ, for µ = 0, . . . , 24, does not change compared to the expansion in flat 26-

dimensional Minkowski space given in Chapter 2. However, the expansion

of X25(σ, τ) has to be changed, by adding a term linear in σ, in order to
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incorporate the boundary condition (6.1). The expansion is

X25(σ, τ) = x25 + 2α′p25τ + 2RWσ + . . . , (6.2)

where the coefficient of σ is chosen to satisfy (6.1). The dots refer to the

oscillator terms, which are not modified by the compactification.

0 +1 -1

Fig. 6.1. Strings winding around a compact direction.

Since one dimension is compact, the momentum eigenvalue along that

direction, p25, is quantized. Remember that the quantum mechanical wave

function contains the factor exp(ip25x25). As a result, if x25 is increased

by 2πR, corresponding to going once around the circle, the wave function

should return to its original value. In other words, it should be single-valued

on the circle. This implies that the momentum in the 25 direction is of the

form

p25 =
K

R
, K ∈ �

. (6.3)

The integer K is called the Kaluza–Klein excitation number. Splitting the

expansion into left- and right-movers,

X25(σ, τ) = X25
L (τ + σ) +X25

R (τ − σ), (6.4)

gives

X25
R (τ − σ) =

1

2
(x25 − x̃25) + (α′

K

R
−WR)(τ − σ) + . . . , (6.5)

X25
L (τ + σ) =

1

2
(x25 + x̃25) + (α′

K

R
+WR)(τ + σ) + . . . , (6.6)

where x̃25 is a constant that cancels in the sum. In terms of the zero modes

α25
0 and α̃25

0 , defined in Chapter 2, the mode expansion is

X25
R (τ − σ) =

1

2
(x25 − x̃25) +

√
2α′α25

0 (τ − σ) + . . . , (6.7)

X25
L (τ + σ) =

1

2
(x25 + x̃25) +

√
2α′α̃25

0 (τ + σ) + . . . , (6.8)
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where
√

2α′α25
0 = α′

K

R
−WR, (6.9)

√
2α′α̃25

0 = α′
K

R
+WR. (6.10)

The mass formula for the string with one dimension compactified on a cir-

cle can be interpreted from a 25-dimensional viewpoint in which one regards

each of the Kaluza–Klein excitations (labelled by K) as distinct particles.

The 25-dimensional mass squared is given by

M2 = −
24∑

µ=0

pµp
µ. (6.11)

On the other hand, the requirement that the operators L0 − 1 and L̃0 − 1

annihilate on-shell physical states still holds. The expressions for L0 and

L̃0 include contributions from all 26 dimensions, including the 25th. As a

result, the equations L0 = 1 and L̃0 = 1 become

1

2
α′M2 = (α̃25

0 )2 + 2NL − 2 = (α25
0 )2 + 2NR − 2. (6.12)

Taking the sum and difference of these formulas, and using Eqs (6.9) and

(6.10), gives

NR −NL = WK (6.13)

and

α′M2 = α′
[(

K

R

)2

+

(
WR

α′

)2
]

+ 2NL + 2NR − 4. (6.14)

Note that Eq. (6.13) shows how the usual level-matching condition NL = NR

is modified for closed strings with both nonzero winding number W and

nonzero Kaluza–Klein momentum K.

Equations (6.13) and (6.14) are invariant under interchange of W and K,

provided that one simultaneously sends R → R̃ = α′/R. This symmetry of

the bosonic string is called T-duality. It suggests that compactification on

a circle of radius R is physically equivalent to compactification on a circle

of radius R̃. In fact, this turns out to be exactly true for the full interacting

string theory, at least perturbatively.1

In the example considered here, T-duality maps two theories of the same

1 It is unclear whether the bosonic string theory actually exists nonperturbatively (due to the
closed-string tachyon), so that it is only sensible to discuss this theory at the perturbative level.
However, the corresponding statements for superstrings are true nonperturbatively, as well.
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type (one with a circle of radius R and one with a circle of radius R̃ = α′/R)

into one another. The physical equivalence of a circle of radius R and a

circle of radius R̃ is a clear indication that ordinary geometric concepts and

intuitions can break down in string theory at the string scale. This is not so

surprising once one realizes that this is the characteristic size of the objects

that are probing the geometry. Note that the W ↔ K interchange means

that momentum excitations in one description correspond to winding-mode

excitations in the dual description and vice versa.

Omitting the superscript 25, the transformation can be expressed as

α0 → −α0 and α̃0 → α̃0, (6.15)

as becomes clear from Eqs (6.9) and (6.10). In fact, it is not just the zero

mode, but the entire right-moving part of the compact coordinate that flips

sign under the T-duality transformation

XR → −XR and XL → XL. (6.16)

It is evident that this is a symmetry of the theory as physical quantities

such as the energy–momentum tensor and correlation functions are invariant

under this transformation. Equivalently, X is mapped into

X̃(σ, τ) = XL(τ + σ)−XR(τ − σ), (6.17)

which has an expansion

X̃(σ, τ) = x̃+ 2α′
K

R
σ + 2RWτ + . . . (6.18)

Note that the coordinate x, which parametrizes the original circle with pe-

riodicity 2πR, has been replaced by a coordinate x̃. It is clear that this

parametrizes the dual circle with periodicity 2πR̃, because its conjugate

momentum is p̃25 = RW/α′ = W/R̃.

T-duality and the sigma model

The conclusion that T-duality interchanges X(τ, σ) and X̃(τ, σ) can also

be understood from a world-sheet viewpoint. Consider the following world-

sheet action: ∫
(
1

2
V αVα − εαβX∂βVα) d2σ, (6.19)

where an overall constant coefficient is omitted, because the considerations

that follow are classical. Varying X, which acts as a Lagrange multiplier,

gives the equation of motion εαβ∂βVα = 0, which can be solved by setting
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Vα = ∂αX̃, for an arbitrary function X̃. Substituting this into the action

gives

1

2

∫
∂αX̃∂αX̃ d2σ. (6.20)

Alternatively, varying Vα in the original action gives the equation of motion

Vα = −εαβ∂βX. Substituting this into the original action and using

εαβεα
γ = −ηβγ , (6.21)

where the minus sign is due to the Lorentzian signature, gives

1

2

∫
∂αX∂αX d2σ. (6.22)

If we compare the two formulas for Vα we get

∂αX̃ = −εαβ∂βX, (6.23)

which is equivalent to the rule in Eq. (6.16). This type of world-sheet analysis

of T-duality is repeated in a more general setting including background fields

later in this chapter. Toroidal generalizations are discussed in the next

chapter.

T-duality and open strings

Boundary conditions

The dynamics of a bosonic string in 26-dimensional Minkowski space-time

is described in conformal gauge by the action

S = − 1

4πα′

∫
dτdσ ηαβ∂αX

µ∂βXµ. (6.24)

For a small variation δXµ, the variation of the action consists of a bulk term,

whose vanishing gives the equations of motion, plus a boundary contribution

δS = − 1

2πα′

∫
dτ ∂σXµδX

µ|σ=π
σ=0 . (6.25)

As was discussed in Chapter 2, making this boundary variation vanish re-

quires imposing suitable boundary conditions at the ends of open strings.

The only choice of boundary conditions that is compatible with invariance

under Poincaré transformations in all 26 dimensions is Neumann boundary

conditions for all components of Xµ

∂

∂σ
Xµ(σ, τ) = 0, for σ = 0, π. (6.26)



6.1 The bosonic string and Dp-branes 193

A natural question to ask at this point is what happens when a T-duality

transformation is applied to a theory containing open strings. The first

thing to note about open strings in a theory that is compactified on a circle

is that they have no winding modes. Topologically, an open string can always

be contracted to a point, so winding number is not a meaningful concept.

Since the winding modes were crucial to relate the closed-string spectra of

two bosonic theories using T-duality, one should not expect open strings to

transform in the same way. Let us look at this in more detail.

In order to find the T-dual of an open string with Neumann boundary

conditions, recall that in Chapter 2 we saw that the mode expansion for a

space-time coordinate with Neumann boundary conditions is

X(τ, σ) = x+ pτ + i
∑

n6=0

1

n
αne

−inτ cos(nσ), (6.27)

where we have set ls = 1 or equivalently α′ = 1/2. It is convenient to split

the mode expansion into left- and right-movers, just as was done for closed

strings. The expansions for these fields are

XR(τ − σ) =
x− x̃

2
+

1

2
p(τ − σ) +

i

2

∑

n6=0

1

n
αne

−in(τ−σ), (6.28)

XL(τ + σ) =
x+ x̃

2
+

1

2
p(τ + σ) +

i

2

∑

n6=0

1

n
αne

−in(τ+σ). (6.29)

Compactifying, once again, on a circle of radius R and carrying out a

T-duality transformation gives

XR → −XR and XL → XL. (6.30)

For the dual coordinate in the 25 direction this implies

X̃(τ, σ) = XL −XR = x̃+ pσ +
∑

n6=0

1

n
αne

−inτ sin(nσ). (6.31)

Now let us read off the properties of the T-dual theory. First, the dual open

string has no momentum in the 25 direction, since Eq. (6.31) contains no

term linear in τ . Therefore, the coordinate of the T-dual open string only

undergoes oscillatory motion. Next, Eq. (6.31) can be used to read off the

boundary conditions satisfied by the T-dual open string in the circular X̃

direction. At σ = 0, π the position of the string is fixed, since the oscillator

terms vanish. This means that T-duality maps Neumann boundary condi-

tions into Dirichlet boundary conditions (and vice versa) in the relevant
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directions, as can be seen by comparing the original field (6.27) with the

T-dualized field (6.31). Explicitly, the boundary conditions are

X̃(τ, 0) = x̃ and X̃(τ, π) = x̃+
πK

R
= x̃+ 2πKR̃, (6.32)

where we have used p = K/R and R̃ = α′/R = 1/(2R) for the dual radius.

Observe that this string wraps the dual circle K times. This winding mode

is topologically stable, since the end points of the string are fixed by the

Dirichlet boundary conditions. Therefore, this string cannot unwind without

breaking.

Fig. 6.2. Dp-branes and open strings ending on them.

D-branes

T-duality has transformed a bosonic open string with Neumann boundary

conditions on a circle of radius R to a bosonic open string with Dirichlet

boundary conditions on a circle of radius R̃. We started with a string that

has momentum and no winding in the circular direction and ended up with

a string that has winding but no momentum in the dual circular direction.

The ends of the dual open string are attached to the hyperplane X̃ = x̃, and

they can wrap around the circle an integer number of times. The hyperplane

X̃ = x̃ is an example of a Dirichlet-brane or a D-brane for short. In general,

a D-brane is defined as a hypersurface on which an open string can end, as

illustrated in Fig. 6.2. The important point to appreciate, though, is that

this is not just an arbitrary location in empty space. Rather, it is a physical

object. Usually one specifies the dimension of the brane and calls it a Dp-

brane, where p denotes the number of spatial dimensions. In the example

given here p = 24. By applying a T-duality transformation to open bosonic
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strings with Neumann boundary conditions in all directions, we learned that

in the dual theory the corresponding open strings have Dirichlet boundary

conditions along the dual circle and therefore end on a D24-brane.

This reasoning can be iterated by taking other directions to be circular and

performing T-duality transformations in those directions, as well. Starting

with n such circles (or an n-torus) one ends up with a T-dual description in

which the open strings have Dirichlet boundary conditions in n directions.

This implies that the string ends on a D(25 − n)-brane. What does this

mean for the open strings in the original description, which had Neumann

boundary conditions for all directions? Clearly this is just the n = 0 case, so

those open strings should be regarded as ending on a space-time-filling D25-

brane. In general, one can consider a set-up in which there are a number

of D-branes of various dimensions. They are replaced by D-branes of other

dimensions in T-dual formulations.

To summarize: the general rule that we learn from the previous discussion

is that if a D-brane wraps a circle that is T-dualized, then it doesn’t wrap

the T-dual circle and vice versa.

Open-string tachyons

An important feature of the bosonic string theory is the existence of tachyons

in the spectrum. As we saw in Chapter 2, this is true both for the closed-

string spectrum and the open-string spectrum. It is also true for open strings

that satisfy Dirichlet boundary conditions in some directions, as is shown in

Exercise 6.1.

Tachyons imply a quantum instability. The negative value of M 2 means

that one is studying the theory at a point in field space where the effective

potential is either at a maximum or a saddle point. This raises the follow-

ing question: Where is the true vacuum? In the case of the open-string

tachyons, it has been argued that the corresponding Dp-branes decay into

closed-string radiation. Thus, once the string coupling is turned on, the

bosonic string theory doesn’t really contain any D-branes (and hence any

open strings) as stable objects. Unless the coupling is very small, these

D-branes decay rapidly. This picture has been borne out by detailed com-

putations in Witten’s open-string field theory. The basic idea is to find a

string field configuration that minimizes the energy density and to show that

its depth relative to the unstable tachyonic vacuum equals the energy den-

sity (or tension) of the space-time-filling D-brane. Using an approximation

technique, called the level-truncation method, agreement to better than 1%

accuracy has been achieved.



196 T-duality and D-branes

Chan–Paton charges, Wilson lines and multiple branes

In the preceding construction a single Dp-brane appeared naturally after

applying T-duality to an open string with Neumann boundary conditions.

This section shows that, when several Dp-branes are present instead of a

single one, something rather interesting happens, namely nonabelian gauge

symmetries emerge in the theory.

An open string can carry additional degrees of freedom at its end points,

called Chan–Paton charges. These are degrees of freedom that were orig-

inally introduced, when string theory was being developed as a model for

strong interactions, to describe flavor quantum numbers of quarks and anti-

quarks attached to the ends of an open string. The original idea was to de-

scribe the global SU(2) isotopic spin symmetry acting on a quark–antiquark

pair located at the ends of the string, but it was eventually realized that the

construction actually gives a gauge symmetry.

n

m
_

Fig. 6.3. Chan–Paton charges at the ends of an open string.

The Chan–Paton factors associate N degrees of freedom with each of the

end points of the string. For the case of oriented open strings, which is the

case we have discussed so far, the two ends of the string are distinguished,

and so it makes sense to associate the fundamental representation N with

the σ = 0 end and the antifundamental representation N with the σ = π

end, as indicated in Fig. 6.3. In this way one describes the gauge group

U(N).

For strings that are unoriented, such as type I superstrings, the represen-

tations associated with the two ends have to be the same, and this forces the

symmetry group to be one with a real fundamental representation, specif-

ically an orthogonal or symplectic group. Each state is either symmetric

or antisymmetric under orientation reversal, an operation that interchanges

the two ends. If the massless vectors correspond to antisymmetric states,

then there are N(N − 1)/2 of them and the group is SO(N). On the other

hand, if they are symmetric, there are N(N + 1)/2 of them and the group is
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USp(N). Since symplectic matrices are even-dimensional, the latter groups

only exist for N even.

Let us consider the case of oriented bosonic open strings. In this case,

every state in the open-string spectrum now has an additional N 2 multiplic-

ity. In particular, the N 2 massless vector states describe the U(N) gauge

fields. Since the charges that are associated with the ends of a string are

associated with an unbroken gauge symmetry, they are conserved. Also, the

energy–momentum tensor does not depend on the new degrees of freedom,

so the conformal invariance of theory is unaffected. In general, the Chan–

Paton charges are nondynamical in the world-sheet theory, so that a unique

index is associated with each world-sheet boundary in a scattering process

such as the one depicted in Fig. 6.4. This three-point scattering amplitude

(and similarly for other open-string amplitudes) contains an extra factor

δii
′
δjj
′
δkk
′
λ1
ijλ

2
j′kλ

3
k′i′ = Trλ1λ2λ3, (6.33)

coming from the Chan–Paton matrices. The λ matrices encode the charge

states of the strings as described below. For a boundary on the interior of the

string world sheet, one should sum over the associated Chan–Paton index,

which gives a factor of N . This guarantees that the scattering amplitudes

are invariant under the U(N) symmetry.

m

m
_

n

n

_ll
_

Fig. 6.4. An interaction involving three open strings.

A basis of open-string states in � 25,1 can be labeled by Fock-space states

φ (as usual), momentum k, and a pair of integers i, j = 1, 2, . . . , N labeling

the Chan–Paton charges at the left and right ends of the string

|φ, k, ij〉. (6.34)

This state transforms with charge +1 under U(1)i and charge −1 under

U(1)j. To describe an arbitrary string state, we need to introduce N 2 her-
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mitian matrices, the Chan–Paton matrices λij , which are representation

matrices of the U(N) algebra. An arbitrary state can then be expressed as

a linear combination

|φ, k, λ〉 =
N∑

i,j=1

|φ, k, ij〉λij. (6.35)

String states become matrices transforming in the adjoint representation of

U(N). There are now N2 tachyons, N2 massless vector bosons and so on.

In a theory compactified on a circle, a flat potential2 can have nontrivial

physical effects analogous to the Aharanov–Bohm effect. If the component

of the gauge potential along the circle takes nonzero constant values, it gives

a holonomy matrix, or Wilson line,

U = exp i

∫ 2πR

0
Adx. (6.36)

Diagonalizing the hermitian matrix A by a constant gauge transformation

allows it to be written in the form

A = − 1

2πR
diag(θ1, θ2, . . . , θN ). (6.37)

The presence of nonzero gauge fields, characterized by the Wilson line,

breaks the U(N) gauge symmetry to the subgroup commuting with U . For

example, if the eigenvalues of U are all distinct, the symmetry is broken

from U(N) to U(1)N .

In the presence of Wilson lines the momentum assigned to a string state

|φ, k, ij〉 gets shifted so that the wave function becomes

eip2πR = e−i(θi−θj). (6.38)

This is derived in Exercise 6.2 and explored further in a homework problem.

Therefore, the momentum in the circular direction becomes fractional

p =
K

R
− θi − θj

2πR
, K ∈ �

. (6.39)

Applying the T-duality rules, one obtains the result that the θi s describe

the angular positions along the dual circle of N D24-branes. Indeed, since

the momentum number gets mapped to the winding number, the fractional

Kaluza–Klein excitation number introduced by the Wilson line is mapped

to a fractional winding number. A fractional winding number means that

the open string winds over a fraction of the circle, which is appropriate for

2 A flat potential is one that gives a vanishing field strength, that is, F = dA+ iA∧A = 0. The
factor of i appears when A is chosen to be hermitian (rather than antihermitian).
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an open string connecting two separated D-branes. Only when θi = θj do

we have an integer number of windings. This is illustrated in Fig. 6.5.

Fig. 6.5. Strings with fractional and integer winding number.

The mode expansion of the dual ij open string becomes

X̃25
ij = x̃0 + θiR̃+ 2R̃σ

(
K +

θj − θi
2π

)
+ . . . , (6.40)

so that one end is at x̃0 + θiR̃ and the other end is at x̃0 + θjR̃. This is

interpreted as an open string whose σ = 0 end is attached to the ith D-brane

and whose σ = π end is attached to the jth D-brane. Note that diagonal

strings wind an integer number of times around the circle while off-diagonal

strings generally do not.

The spectrum

The masses of the particles in the ij open-string spectrum of the bosonic

string theory compactified on a circle are3

M2
ij =

(
K

R
+
θj − θi
2πR

)2

+
1

α′
(N − 1). (6.41)

This formula follows from the mass-shell condition and the fact that the p25

component of the momentum is shifted according to Eq. (6.39).

Equation (6.41) shows that if all of the θi s are different, the only massless

vector states are ones that arise from strings starting and ending on the

same D-brane without wrapping the circle. All other vector string states

are massive. Therefore, when no D-branes coincide, there are N different

massless U(1) vectors given by the diagonal strings with K = 0. As a result,

the unbroken gauge symmetry is U(1)N .

3 The number operator N should not be confused with the rank of the gauge group.
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If two θi s are equal, so that two of the D-branes coincide, two extra off-

diagonal string states become massless. This enhances the gauge symmetry

from U(1) × U(1) to U(2). If the D-branes are moved apart, the gauge

symmetry is broken to U(1) × U(1), with the off-diagonal noncommuting

gauge bosons becoming massive through a stringy Higgs mechanism. More

generally, if N0 ≤ N D-branes coincide, then the unbroken gauge symmetry

contains a U(N0) factor. Therefore, the possibility of having multiple co-

incident D-branes gives a way of realizing nonabelian gauge symmetries in

string theory. This fact is of fundamental importance. A collection of five

parallel D-branes, which gives U(1)5 gauge symmetry, is shown in Fig. 6.6.

Fig. 6.6. A collection of D-branes with some attached strings.

Let us find the concrete form of some of the states in more detail. Massless

states generically come from open strings that can shrink to a point. These

strings start and end on the same brane (or collection of coincident branes),

and they are naturally regarded as living on the world volume of the brane

(or branes). Concretely, one type of massless state that appears in the

spectrum is the scalar particle arising from an oscillator excitation in the

circle direction

α25
−1|0, k〉, (6.42)

which corresponds to a scalar field A25(~x). The rest of the components are

tangential to the D24-brane

αµ−1|0, k〉 with µ = 0, . . . , 24, (6.43)

and correspond to a vector field Aµ(~x). Here ~x = (x0, . . . , x24) denotes the

coordinates on the Dp-brane. These are all 25 coordinates other than the
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coordinate x̃25, of the circle, which is fixed at the position of the D-brane.

So these states describe a gauge field on the D24-brane.

When A25 is allowed to depend on the 25 noncompact space-time coordi-

nates, the transverse displacement of the D24-brane in the x̃25 direction can

vary along its world volume. Therefore, an A25 background configuration

can describe a curved D-brane world volume. More generally, starting with

a flat rigid Dp-brane, transverse deformations are described by the values

of the 25 − p world-volume fields that correspond to massless scalar open-

string states. These scalar fields are the 25 − p transverse components of

the higher-dimensional gauge field, and their values describe the transverse

position of the D-brane. These scalar fields on the D-brane world volume

can be interpreted as the Goldstone bosons associated with spontaneously

broken translation symmetry in the transverse directions. The translation

symmetry is broken by the presence of the D-branes.

This discussion illustrates the fact that condensates (or vacuum expecta-

tion values) of massless string modes can have a geometrical interpretation.

There is a similar situation for gravity itself. String theory defined on a flat

space-time background gives a massless graviton in the closed-string spec-

trum, and the corresponding field is the space-time metric. The metric can

take values that differ from the Lorentz metric, thereby describing a curved

space-time geometry. The significant difference in the case of D-branes is

that their geometry is controlled by open-string scalar fields.

EXERCISES

EXERCISE 6.1

Compute the mass squared of the ground state of an open string attached

to a flat Dp-brane in � 25,1.

SOLUTION

Let us label the coordinates that satisfy Neumann boundary conditions by

an index i = 0, . . . , p and the coordinates that satisfy Dirichlet boundary

conditions at both ends by an index I = p+1, . . . , 25. The mode expansions

for left- and right-movers are, as usual,

Xµ
L =

xµ + x̃µ

2
+

1

2
l2sp

µ(τ + σ) +
i

2
ls
∑

m6=0

1

m
αµme

−im(τ+σ),
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Xµ
R =

xµ − x̃µ
2

+
1

2
l2sp

µ(τ − σ) +
i

2
ls
∑

m6=0

1

m
αµme

−im(τ−σ).

The mode expansions for the fields with Neumann and Dirichlet boundary

conditions are

Xi = Xi
L +Xi

R and XI = XI
L −XI

R ,

respectively. The two ends of the string have

XI(0, τ) = XI(π, τ) = x̃I ,

which specifies the position of the D-brane. In uncompactified space-time

there can be no winding modes, so pI = 0.

The energy–momentum tensor

T++ = ∂+X
i∂+Xi + ∂+X

I∂+XI = ∂+X
µ
L∂+XLµ

has the same mode expansion as in Chapter 2, independent of p, and thus

the Virasoro generators, the zero-point energy, and the mass formula, are

the same as before

M2 = 2(N − 1)/l2s .

The main difference is that this is now the mass of a state in the (p + 1)-

dimensional world volume of the Dp-brane, whereas in Chapter 2 only the

space-time-filling p = 25 case was considered. The mass squared of the

open-string ground state therefore is

M2 = −2/l2s = −1/α′.

2

EXERCISE 6.2

Consider a relativistic point particle with mass m and electric charge e

moving in an electromagnetic potential Aµ(x). The action describing this

particle is

S =

∫ (
−m

√
−ẊµẊµ − eẊµAµ

)
dτ.

Suppose that one direction is compactified on a circle of radius R. Show

that a constant vector potential along this direction, given by

A = − θ

2πR
,
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leads to a fractional momentum component along the compact direction

p =
K

R
+

eθ

2πR
,

where K is an integer.

SOLUTION

In the gauge τ = X0 = t the action takes the form

S =

∫ (
−m

√
1− v2 − e(A0 + ~A · ~v)

)
dt,

where vi = Ẋi. The canonical momentum conjugate to the compact coor-

dinate X, which is one of the X i s, is

P =
δS

δẊ
= p− eA = p+

eθ

2πR
,

where

p =
mẊ√
1− v2

is the physical momentum. The wave function of the charged particle in-

cludes a factor containing the canonical momentum

Ψ(x) ∼ eiPX ,
since P ∼ −i∂/∂X. This must be single-valued, and thus P = K/R, where

K is an integer. This gives

p =
K

R
− eθ

2πR
.

2

6.2 D-branes in type II superstring theories

D-branes also exist in superstring theories. Indeed, just as in the bosonic

theory, adding D-branes to the type IIA or type IIB vacuum configuration

gives a theory that has closed strings in the bulk plus open strings that

end on the D-branes. Certain D-branes in superstring theories exhibit an

important feature that does not occur in the bosonic string theory. Namely,

they carry a conserved charge that ensures their stability. In such a case, the

spectrum of open strings that start and end on the D-brane is tachyon-free.

When D-branes are present, some of the symmetries of the superstring

vacuum are broken. For example, consider starting with the Minkowski
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space vacuum of a type II superstring theory, which has ten-dimensional

Poincaré invariance. Adding a flat Dp-brane, and neglecting its back reac-

tion on the geometry, breaks the ten-dimensional SO(1, 9) Lorentz symmetry

to SO(1, p)×SO(9−p). Moreover, some or all of the supersymmetry is also

broken by the addition of the Dp-brane.

Recall that both of the type II superstring theories, in the ten-dimensional

Minkowski vacuum, have N = 2 supersymmetry. Since each supercharge

corresponds to a Majorana–Weyl spinor, with 16 real components, there are

a total of 32 conserved supercharges. However, the maximum number of

unbroken supersymmetries that is possible for vacua containing D-branes

is 16. There are several ways of seeing this. A simple one is to note that

the massless open strings form a vector supermultiplet, and such super-

multiplets only exist with 16 or fewer conserved supercharges. Thus, when

D-branes are added to type II superstring vacua, not only is translational

invariance in the transverse directions broken, but at least 16 of the original

32 supersymmetries must also be broken.

Form fields and p-brane charges

The five superstring theories and M-theory contain a variety of massless

antisymmetric tensor gauge fields, which can be represented as differential

forms. An n-form gauge field is given by

An =
1

n!
Aµ1µ2···µndx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµn . (6.44)

These can be regarded as generalizations of an ordinary Maxwell field, which

corresponds to the case n = 1. With this in mind, one defines the (n+ 1)-

form field strength by Fn+1 = dAn, where

Fn+1 =
1

(n+ 1)!
Fµ1µ2···µn+1dx

µ1 ∧ dxµ2 ∧ · · · ∧ dxµn+1 . (6.45)

Such a field strength is invariant under a gauge transformation of the form

δAn = dΛn−1, since the square of an exterior derivative vanishes (d2 = 0).

Maxwell theory

Recall that classical electromagnetism is described by Maxwell’s equations,

which can be written in the form

dF = 0 and d ? F = 0, (6.46)
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in the absence of charges and currents. Here F is the two-form field strength

describing the electric and magnetic fields. Notice that the above equations

are symmetric under the interchange of F and ?F .

More generally, one should include electric and magnetic sources. Electri-

cally charged particles (or electric monopoles) exist, but magnetic monopoles

have not been observed yet. Most likely, magnetic monopoles exist with

masses much higher than have been probed experimentally. When sources

are included, Maxwell’s equations become

dF = ?Jm and d ? F = ?Je. (6.47)

In each case J = Jµdx
µ is a one-form related to the current and charge

density as

Jµ = (ρ,~j), (6.48)

with µ = 0, . . . , 3 in the case of four dimensions. For a point-like electric

charge the charge density is described by a delta function ρ = eδ(3)(~r), where

e denotes the electric charge. Similarly, a point-like magnetic source has an

associated magnetic charge, which we denote by g. These charges can be

defined in terms of the field strength

e =

∫

S2

?F and g =

∫

S2

F, (6.49)

where the integrations are carried out over a two-sphere surrounding the

charges.

Electric and magnetic charges are not independent. Indeed, as Dirac

pointed out in 1931, the wave function of an electrically charged particle

moving in the field of a magnetic monopole is uniquely defined only if the

electric charge e is related to the magnetic charge g by the Dirac quantization

condition4

e · g ∈ 2π
�
. (6.50)

The derivation of this result is described in Exercise 6.3.

Generalization to p-branes

The preceding considerations can be generalized to p-branes that couple to

(p+ 1)-form gauge fields in D dimensions. To determine the possibilities for

stable p-branes, it is worthwhile to consider the types of conserved charges

that they can carry. This entails generalizing the statement that a point

particle (or 0-brane) can carry a charge such that it acts as a source for a

4 For dyons, which carry both electric and magnetic charge, the Dirac quantization rule gener-
alizes to Witten’s rule: e1g2 − e2g1 = 2πn.
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one-form gauge field, that is, a Maxwell field A = Aµdx
µ. There are two

aspects to this. On the one hand, a charged particle couples to the gauge

field in a way that is described by the interaction

Sint = e

∫
A = e

∫
dτAµ

dxµ

dτ
, (6.51)

where e is the electric charge. On the other hand, the charge of the particle

can be determined by Gauss’s law. This entails surrounding the particle with

a two-sphere and integrating the electric field over the sphere. Defining the

field strength by F = dA, as usual, the relevant integral is
∫
S2 ?F . Note that

F is a two-form and in D dimensions its Hodge dual ?F is a (D − 2)-form.

In terms of components

(?F )µ1µ2···µD−2 =
εµ1µ2···µD

2
√−g FµD−1µD . (6.52)

In general, a (D−2)-sphere can surround a point inD-dimensional Lorentzian

space-time. For example, an electrically charged D0-brane in the type IIA

theory can be surrounded by an eight-sphere S8. The magnetic dual of an

electrically charged point particle carries a magnetic charge that is mea-

sured by integrating the magnetic flux over a sphere that surrounds it. This

is simply
∫
F , which in the case of a Maxwell field is a two-dimensional

integral. In D dimensions a two-sphere S2 can surround a (D − 4)-brane.

In four dimensions this is a point particle, but in the ten-dimensional type

IIA theory the magnetic dual of the D0-brane is a D6-brane.

The preceding can be generalized to an n-form gauge field An with an

(n + 1)-form field strength Fn+1 = dAn. An n-form gauge field can couple

electrically to the world volume of a brane whose world volume has n = p+1

dimensions

Sint = µp

∫
Ap+1, (6.53)

where µp is the p-brane charge and the pullback from the bulk to the brane

is understood. In other words,
∫
Ap+1 =

1

(p+ 1)!

∫
Aµ1···µp+1

∂xµ1

∂σ0
· · · ∂x

µp+1

∂σp
dp+1σ. (6.54)

This generalizes Eq. (6.51), which has p = 0 and e = µ0. This brane is

electrically charged as can be seen by evaluating the electric charge using

Gauss’s law µp =
∫
∗Fp+2. In D dimensions this is an integral over a sphere

SD−p−2, which is the dimension required to surround a p-brane. The charge

of the magnetic dual branes can be measured by computing the flux
∫
Fp+2

through a surrounding Sp+2. In D dimensions an Sp+2 can surround a
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(D − p − 4)-brane. Thus, in the case of ten dimensions, the magnetic dual

of a p-brane is a (6− p)-brane.

The Dirac quantization condition for point-like charges in D = 4, eg =

2πn, has a straightforward generalization to the charges carried by a dual

pair of p-branes. For our normalization conventions, in ten dimensions one

has

µp µ6−p ∈ 2π
�
. (6.55)

This is derived by a generalization of the usual proof that is described in

Exercise 6.4. The basic idea is to require that the wave function of an electric

brane is well defined in the field of the magnetic brane. In all superstring

theory and M-theory examples it turns out that a single p-brane carries the

minimum allowed quantum of charge. In other words, the product of the

charges of a single p-brane and a single dual (6− p)-brane is exactly 2π.

Stable D-branes in type II superstring theories

Specializing to the case of ten dimensions, the preceding considerations tell

us that an n-form gauge field can couple electrically to a p-brane with p =

n−1 and magnetically to a p-brane with p = 7−n. Since the R–R sector of

the type IIA theory contains gauge fields with n = 1 and n = 3, this theory

should contain stable branes that carry the corresponding charges. These

are Dp-branes with p = 0, 2, 4, 6. Since this is giving even integers, it is

natural to consider p = 8, as well. Larger even values are not possible, since

the dimension of the brane cannot exceed the dimension of the space-time.

The existence of a D8-brane would seem to require a nine-form gauge field

with a ten-form field strength. Such a field is nondynamical, and therefore it

did not arise when we analyzed the physical degrees of freedom of type IIA

supergravity. In fact, stable D8-branes do occur in special circumstances,

which are discussed later in this chapter.

In the case of the type IIB theory the R–R sector contains n-form gauge

fields with n = 0, 2, 4. Applying the rules given above the zero-form should

couple electrically to a (−1)-brane. This is an object that is localized in

time as well as in space. It is interpreted as a D-instanton, which makes

sense in the Euclideanized theory. Its magnetic dual is a D7-brane which is

well defined in the Lorentzian signature theory. However, since a D7-brane

has codimension 2 it gives rise to a deficit angle in the geometry, just as

occurs for a point mass in three-dimensional general relativity. The two-form

couples electrically to a D1-brane (also called a D-string) and magnetically

to a D5-brane. The four-form couples both electrically and magnetically
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to a D3-brane. However, these are not distinct D-branes. Since the field

strength is self-dual, F5 = ?F5, the D3-brane carries a self-dual charge.

In addition, one can also introduce space-time-filling D9-branes in the IIB

theory, though there are consistency conditions that restrict when they can

occur. Altogether, the conclusion is that type IIB superstring theory admits

stable Dp-branes, carrying conserved charges, for odd values of p.

The stable D-branes (with p even in the IIA theory or odd in the IIB the-

ory) preserve half of the supersymmetry (16 supersymmetries). Therefore,

they are sometimes called half-BPS D-branes. This fact implies that the as-

sociated open-string spectrum has this much supersymmetry, and therefore

it must be tachyon-free. To be explicit, let Q1 and Q2 be the two super-

symmetry charges of the string theory. These are Majorana–Weyl spinors,

which have opposite chirality in the IIA case and the same chirality in the

IIB case. Now suppose a Dp-brane extends along the directions 0, 1, . . . , p.

Then the supersymmetry that is conserved is the linear combination

Q = Q1 + Γ01···pQ2, (6.56)

where the sign of the second term depends on conventions. Note that in all

cases the two terms have the same chirality, since the Dirac matrix flips the

chirality of the Q2 term when p is even (the IIA case) but not when p is odd

(the IIB case).

To recapitulate, conserved R–R charges, supersymmetry, stability, and

absence of tachyons are all features of these type II Dp-branes.

Non-BPS D-branes

The type II superstring theories also admit Dp-branes with “wrong” values

of p, meaning that p is odd in the IIA theory or even in the IIB theory. These

Dp-branes do not carry conserved charges and are unstable. They break all

of the supersymmetry and give an open-string spectrum that includes a

tachyon. The features of these branes are the same as those of Dp-branes

with any value of p in the bosonic string theory. In the context of superstring

theories, D-branes of this type are sometimes referred to as non-BPS D-

branes.

Type II superstrings and T-duality

T-duality for the closed bosonic string theory, compactified on a circle of

radius R, maps the theory to an identical theory on a dual circle of radius

R̃ = α′/R. In this sense the theory is self-dual under T-duality, and there
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is a
�

2 symmetry at the self-dual radius Rsd =
√
α′. Let us now examine

the same T-duality transformation for type II superstring theories. It will

turn out that the type IIA theory is mapped to the type IIB theory and

vice versa. Of course, if several directions are compactified on circles it is

possible to carry out several T-dualities. In this case an even number of

transformations gives back the same type II theory that one started with

(on the dual torus). This is a symmetry if the torus is self-dual.

Returning to the case of a single circle, imagine that the X9 coordinate of

a type II theory is compactified on a circle of radius R and that a T-duality

transformation is carried out for this coordinate. The transformation of the

bosonic coordinates is the same as for the bosonic string, namely

X9
L → X9

L and X9
R → −X9

R, (6.57)

which interchanges momentum and winding numbers. In the RNS for-

malism, world-sheet supersymmetry requires the world-sheet fermion ψ9 to

transform in the same way as its bosonic partner X9, that is,

ψ9
L → ψ9

L and ψ9
R → −ψ9

R . (6.58)

This implies that after T-duality the chirality of the right-moving Ramond-

sector ground state is reversed (see Exercise 6.5). The relative chirality of the

left-moving and right-moving ground states is what distinguishes the type

IIA and type IIB theories. Since only one of these is reversed, it follows that

if the type IIA theory is compactified on a circle of radius R, a T-duality

transformation gives the type IIB theory on a circle of radius R̃.

In the light-cone gauge formulation, only X i and ψi, i = 1, . . . , 8, are

independent dynamical degrees of freedom. In this case a T-duality trans-

formation along any of those directions works as described above, but one

along the x9 direction is more awkward to formulate.

Now let us examine what happens to type II Dp-branes when the theory

is T-dualized. Since the half-BPS Dp-branes of the type IIA theory have

p even, while the half-BPS Dp-branes of the type IIB theory have p odd,

these D-branes are mapped into one another by T-duality transformations.

A similar statement can also be made for the non-BPS Dp-branes. The

relevant analysis is the same as for the bosonic string. Let us review the

analysis for a pair of flat parallel Dp-branes that fill the dimensions xµ, with

µ = 0, . . . , p, and have definite values of the other transverse coordinates.

An open string connecting these two Dp-branes satisfies Neumann boundary

conditions in p+ 1 dimensions

∂σX
µ|σ=0 = ∂σX

µ|σ=π = 0, µ = 0, . . . , p, (6.59)
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and Dirichlet boundary conditions for the transverse coordinates

Xi|σ=0 = di1 and Xi|σ=π = di2, i = p+ 1, . . . , 9, (6.60)

where di1 and di2 are constants. These boundary conditions imply that the

mode expansions are

Xµ(τ, σ) = xµ + pµτ + i
∑

n6=0

1

n
αµn cosnσe−inτ , (6.61)

Xi(τ, σ) = di1 + (di2 − di1)
σ

π
+
∑

n6=0

1

n
αin sinnσe−inτ . (6.62)

Now consider a T-duality transformation along the circular X9 direc-

tion. The transformation X9
R → −X9

R interchanges Dirichlet and Neumann

boundary conditions. Running the previous analysis in the reverse direction,

one learns that in the dual description there is a pair of D-branes that wrap

the dual circle and that the U(2) gauge symmetry is broken to U(1)×U(1)

by a pair of Wilson lines. As in the bosonic theory, Dp-branes that were

localized on the original circle of radius R are wrapped on the dual circle of

radius R̃.

Thus the general rule is that under T-duality the branes that are wrapped

and those that are unwrapped are interchanged. If T-duality is performed

in one of the directions of the original theory on which a p-brane is wrapped,

then T-duality transforms this p-brane into a (p−1)-brane, which is localized

on the dual circle. This is consistent with the requirement that the half-BPS

Dp-branes of the type IIA theory, which have p even, are mapped into the

half-BPS Dp-branes of the type IIB theory, which have p odd. Starting with

any one of these half-BPS D-branes, all of the others can be accessed by

repeated T-duality transformations.

Mapping of coupling constants

T-duality of the type IIA and type IIB superstring theories is a perturbative

duality, which holds order by order in the string perturbation expansion.

When the type IIA theory is compactified on a circle of radius R and the

type IIB theory is compactified on a circle of radius R̃, the two theories are

related by the T-duality identification RR̃ = α′. This amounts to inverting

the dimensionless parameter
√
α′/R. Let us now examine the mapping of

the string coupling constants implied by T-duality. To do this it is sufficient

to consider the coupling constant dependence of the NS–NS part of the
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low-energy effective action of the type IIA theory, which has the form

1

g2
s

∫
d10xLNS. (6.63)

For the NS–NS part of the type IIB theory, one has the same formula, with

the IIA string coupling gs replaced by the IIB string coupling g̃s. The explicit

formula for the Lagrangian LNS is given in Chapter 8. Compactifying each

of these theories on a circle, and keeping only the zero-mode contributions

on the circle gives

2πR

g2
s

∫
d9xLNS (6.64)

in the type IIA case, and

2πR̃

g̃2
s

∫
d9xLNS (6.65)

in the type IIB case. T-duality implies that these two expressions should be

the same. Using the T-duality relation RR̃ = α′, one obtains the relation

between the coupling constants

g̃s =

√
α′

R
gs. (6.66)

Although derived here by examining certain terms in the low-energy expan-

sion, the relation in Eq. (6.66) is completely general. Since the two string

coupling constants are proportional, a perturbative expansion in gs in type

IIA corresponds to a perturbative expansion in g̃s in type IIB.

K-theory

Since D-branes carry conserved R–R charges that are sources for R–R gauge

fields, which are differential forms, one might suppose that the charges could

be identified with cohomology classes of gauge field configurations. This is

roughly, but not precisely, correct. The appropriate mathematical general-

ization uses K-theory, and classifies D-brane charges by K-theory classes.

Type II D-branes

Consider a collection of coincident type II D-branes – N Dp-branes and

N ′ Dp-branes. Dp denotes an antibrane, which is the charge-conjugate of

the Dp-brane. The important world-volume fields can be combined in a

superconnection

A =

(
A T

T A′

)
, (6.67)



212 T-duality and D-branes

where A is a connection on a U(N) vector bundle E, A′ is a connection on

a U(N ′) vector bundle E′, and T is a section of E∗ ⊗ E′ that describes an

N ×N ′ matrix of tachyon fields. The (p + 1)-dimensional world volume of

the branes, X, is the base of E and E ′. The three types of fields arise as

modes of the three types of open strings: those connecting branes to branes,

those connecting antibranes to antibranes, and those connecting branes to

antibranes.

If the gauge field bundles E and E ′ are topologically equivalent (E ∼ E ′)
complete annihilation should be possible. This requires N = N ′ so that the

total charge is zero. Moreover, the tachyon field matrix should take a value

T = T0 that gives the true minimum of the tachyon potential. If there is

complete annihilation, the minimum of the tachyon potential energy V (T )

should be negative and exactly cancel the energy density of the branes so

that the total energy is zero

V (T0) + 2NTDp = 0. (6.68)

As a specific example, consider the case p = 9 in the type IIB theory.

Consistency of the quantum theory (tadpole cancellation) requires that the

total R–R 9-brane charge should vanish, and thus N = N ′. So we must have

an equal number of D9-branes and D9-branes filling the ten-dimensional

space-timeX. Associated with this there are a pair of vector bundles (E,E ′),
where E and E′ are rank-N complex vector bundles.

We now want to define equivalence of pairs (E,E ′) and (F,F ′) whenever

the associated 9-brane systems can be related by brane–antibrane annihila-

tion and creation. In particular, E ∼ E ′ corresponds to pure vacuum, and

therefore

(E,E′) ∼ 0⇔ E ∼ E′. (6.69)

If we add more D9-branes and D9-branes with identical vector bundles H,

this should not give anything new, since they are allowed to annihilate. This

means that

(E ⊕H,E′ ⊕H) ∼ (E,E′). (6.70)

In this way we form equivalence classes of pairs of bundles. These classes

form an abelian group. For example, (E ′, E) belongs to the inverse class

of the class containing (E,E ′). If N and N ′ are unrestricted, the group is

called K(X). However, the group that we have constructed above is the

subgroup of K(X) defined by requiring N = N ′. This subgroup is called

K̃(X). Thus type IIB D-brane charges should be classified by elements of

K̃(X). Let us examine whether this works.
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The formalism is quite general, but we only consider the relatively simple

case of Dp-branes that are hyperplanes in flat � 9,1. For this purpose it is

natural to decompose the space into tangential and normal directions

� 9,1 = � p,1 × � 9−p, (6.71)

and consider bundles that are independent of the tangential � p,1 coordi-

nates. If the fields fall sufficiently at infinity, so that the energy is nor-

malizable, then we can add the point at infinity thereby compactifying the

normal space so that it becomes topologically a sphere S9−p. Then the rele-

vant base space for the Dp-brane bundles is X = S9−p. We can now invoke

the mathematical results:

K̃(S9−p) =

{ �
p = odd

0 p = even
. (6.72)

This precisely accounts for the R–R charge of all the stable (BPS) Dp-branes

of the type IIB theory on � 9,1. It should be noted that the unstable non-

BPS type IIB D-branes, discussed earlier, carry no conserved charges, and

they do not show up in this classification.

Suppose now that some dimensions form a compact manifold Q of dimen-

sion q, so that the total space-time is � 9−q,1 × Q. Then the construction

of a Dp-brane requires compactifying the normal space � 9−p−q ×Q to give

S9−p−q × Q. This involves adjoining a copy of Q at infinity. In this case

the appropriate mathematical objects to classify D-brane charges are rela-

tive K-theory groups K(S9−p−q ×Q,Q). In particular, if Q = S1, we have

K(S8−p × S1, S1). Mathematically, it is known that this relative K-theory

group can be decomposed into two pieces

K(X × S1, S1) = K−1(X)⊕ K̃(X). (6.73)

The physical interpretation of this formula is very nice. K̃(S8−p) classifies

the type IIB D-branes that are wrapped on the circle, whereas

K−1(S8−p) ∼= K̃(S9−p) (6.74)

classifies unwrapped D-branes. So, altogether, in nine dimensions there are

additive D-brane charges for all p < 8.

The type IIA case is somewhat more subtle, since the space-time-filling

D9-branes are unstable in this case. The right K-theory group in this case

is K−1(X), the same group that appeared in the previous paragraph. The

mathematical results

K−1(S9−p) =

{ �
for p = even

0 for p = odd
(6.75)
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account for all the stable type IIA Dp-branes embedded in � 9,1. Compact-

ifying the type IIA theory on a circle gives the relative K-theory group

K−1(X × S1, S1) = K̃(X)⊕K−1(X). (6.76)

This time K−1(X) describes wrapped D-branes and K̃(X) describes un-

wrapped ones. This result matches the type IIB result in exactly the way

required by T-duality (wrapped ↔ unwrapped).

EXERCISES

EXERCISE 6.3

Derive the Dirac quantization condition (6.50) for point particles in four-

dimensional space-time.

SOLUTION

In the case of Maxwell theory in D = 4 the vector potential is a one-form

A1 whose field strength is a two-form F2 = dA1. Let us denote the dual of

this field strength ?F2, which is also a two-form, by F̃2. Then Gauss’s law

is the statement that if a two-sphere S2 surrounds an electric charge e, one

has
∫
S2 F̃2 = e. Similarly, if it surrounds a magnetic charge g,

∫
S2 F2 = g.

Now consider the wave function ψ(x) of an electrically charged particle,

with charge e, in the field of a magnetic monopole of charge g. Such a wave

function has the form

ψ(x) = exp

(
ie

∫ x

x0

A1

)
ψ0(x),

where the integral is along some path to the end point x. The choice of base

point x0 (and the contour) gives an overall x-independent phase that doesn’t

matter. This formula can be understood as follows: the minimal coupling

J ·A ensures that the vector potential enters the Schrödinger equation only

via the covariant derivative Dµ = ∂µ− ieAµ. Then the phase factor isolates

the non-gauge-invariant part of ψ(x); the function ψ0(x) is gauge invariant.

Now consider the change in this wave function as x traces out a small

circle γ. One obtains

ψ(x)→ U(γ)ψ(x), U(γ) = eie
H
γ A1 ,

where the contour integral is around the circle γ. Let D denote a disk whose
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boundary is γ. By Stokes’ theorem,
∮

γ
A1 =

∫

D
F2.

However, the choice of D is not unique, and any choice must give the same

answer for the wave function to be well defined. Let D′ be another choice

that passes on the other side of the magnetic charge. Then the difference

D−D′ is topologically a two-sphere that surrounds the magnetic charge. In

other words, ∫

D
F2 −

∫

D′
F2 =

∫

D−D′
F2 = g.

Thus the holonomy group element U(γ) is well defined only if exp(ieg) = 1.

This gives the Dirac quantization condition

eg ∈ 2π
�
.

There is a mathematical issue that has been suppressed in the preceding

discussion. Namely, the field of a monopole gives a topologically nontrivial

U(1) bundle. This means that the region exterior to the monopole can be

covered by two open sets, O and O′, on which the gauge field is A and A′,
respectively. On the overlap O ∪ O′, the two gauge fields differ by a gauge

transformation: A − A′ = dΛ.5 It also means that the “wave function” is

not a function, but rather a section of a line bundle. In the use of Stokes’

theorem the field A should be used for the extension to D, which is assumed

to be interior to O, and the field A′ should be used for the extension to

D′, which is assumed to be interior to O′. By explicitly integrating the

difference of A and A′ along γ and requiring that U(γ) is unique, one can

give an alternative proof of the quantization condition. 2

EXERCISE 6.4

Generalize the reasoning of the preceding exercise to prove the Dirac quan-

tization condition for p-branes in Eq. (6.55).

SOLUTION

Equation (6.55) applies to ten dimensions. Let us be a bit more general, and

consider D dimensions instead. Given an electrically charged p-brane with

charge µp, there is a (p+ 1)-form gauge field that has the minimal coupling

5 If one only uses one field A it is singular along a line, called a Dirac string, which runs from the
monopole to infinity. It should be emphasized that a Dirac string is a mathematical artefact
and not a physical object.
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µp
∫
Ap+1 to the brane. The gauge-invariant field strength is Fp+2 = dAp+1

and its dual is

F̃D−p−2 = ?Fp+2.

Gauss’s law is the statement that if we loop the p-brane once with a sphere

SD−p−2, then the charge is given by

µp =

∫

SD−p−2

F̃D−p−2.

The magnetic dual of this brane is a (D−p−4)-brane that can be encircled

by a sphere Sp+2. Gauss’s law gives its magnetic charge

µD−p−4 =

∫

Sp+2

Fp+2.

Requiring that both branes have nonnegative dimension gives 0 ≤ p ≤ D−4.

Now let’s consider a probe electric p-brane in the field of a magnetic

(D − p − 4)-brane. For the argument that follows, the topology of the

magnetic brane doesn’t matter, but it is extremely convenient to choose the

electric brane to be topologically a sphere Sp. Let us denote this p-cycle by

β. Then, for the same reason as in the previous exercise, the wave function

of the p-brane has the form

ψ(β) = exp

(
iµp

∫ β

β0

Ap+1

)
ψ0(β)

where ψ0 is gauge invariant. The lower limit is a fixed p-cycle β0 and the

integral is over a region that is a “cylinder” whose topology is a line interval

times Sp. As before, it does not matter how this is chosen.

V

V

V


1

2

3

Fig. 6.7. This illustrates, for the case p = 1, how a loop of p-dimensional spheres
can trace out a (p+ 1)-dimensional sphere γ.
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D

D'
γ

Fig. 6.8. This illustrates, for the case p = 0, that the difference of two (p + 2)-
dimensional balls D and D′ with a common boundary γ (a (p + 1)-dimensional
sphere) that pass on opposite sides of a magnetic brane is a (p + 2)-dimensional
sphere that encircles the magnetic brane.

Now we need to generalize the step in the previous exercise in which the

electric charge traced out a circle. What we want is for the p-brane to trace

out a surface γ that is topologically a sphere Sp+1. The way to achieve this

is shown in Fig. 6.7. For a vanishingly small cycle β this gives the result

that

ψ(β)→ U(γ)ψ(β), U(γ) = exp

(
iµp

∫

γ
Ap+1

)
.

Now let D be a ball whose boundary is γ. Stokes’ theorem gives

∮

γ
Ap+1 =

∫

D
Fp+2.

Again D is not unique, and we can consider two different choices D and

D′ that pass on opposite sides of the magnetic brane. Their difference is

topologically a sphere Sp+2 that surrounds the magnetic brane, as indicated

in Fig. 6.8. Thus,

∫

D
Fp+2 −

∫

D′
Fp+2 =

∫

D−D′
Fp+2 = µD−p−4.

Now requiring that U(γ) is well defined gives exp(iµp µD−p−4) = 1, and

hence

µp µD−p−4 ∈ 2π
�
.

2
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EXERCISE 6.5

Show that a T-duality transformation reverses the chirality of the right-

moving Ramond-sector ground state.

SOLUTION

T-duality reverses the sign of the right-moving bosons

X9
R → −X9

R.

World-sheet supersymmetry requires the fermions to transform in the same

way as the bosons, that is,

ψ9
R → −ψ9

R.

In particular, the zero mode of ψ9
R in the Ramond sector transforms is

reversed

d9
0 → −d9

0.

In Chapter 4 we learned that there is a relation between R-sector zero modes

and ten-dimensional Dirac matrices

Γµ =
√

2dµ0 .

Thus, under a T-duality transformation

Γµ → Γµ (forµ 6= 9) and Γ9 → −Γ9.

We conclude that the chirality operator behaves as

Γ11 = Γ0Γ1 · · ·Γ9 → −Γ11,

so the chirality of the right-moving Ramond ground state is reversed. This

may seem paradoxical until one realizes that both ten-dimensional chiralities

correspond to nonchiral spinors in nine dimensions. 2

EXERCISE 6.6

T-duality has been described for superstrings in the RNS formulation. How

do the world-sheet fields transform under a T-duality transformation in the

xj direction in the light-cone GS formulation?

SOLUTION

The world-sheet fields consist of left-movers X i
L and Sa1 and right-movers

Xi
R and Sȧ2 (type IIA) or Sa2 (type IIB). As always, the left-movers are un-

changed, and the only nontrivial bosonic transformation is X j
R → −X

j
R. So



6.2 D-branes in type II superstring theories 219

the issue boils down to finding the transformation rule for the S2 s. There

is really only one sensible possibility. In Chapter 5 we introduced the Dirac

matrices Γi
aḃ

= Γi
ḃa

, which were also interpreted as Clebsch–Gordon coeffi-

cients for coupling the three inequivalent eight-dimensional representations

of Spin(8). Clearly, the rule

Sȧ2 → ΓjbȧS
b
2 (for IIA) and Sa2 → Γj

aḃ
S ḃ2 (for IIB)

respects the symmetries of the problem and maps the type IIA theory to the

type IIB theory and vice versa. Also, it squares to the trivial transformation

because Γj
aḃ

Γj
ḃc

= δac and ΓjȧbΓ
j
bċ = δȧċ, where the index j is unsummed.

For multiple T-dualities, such as along x1 and x2, there is a sign ambiguity.

Depending on the order, one could get S2 → Γ1Γ2S2 or S2 → Γ2Γ1S2 =

−Γ1Γ2S2. However, the sign reversal S2 → −S2 is a trivial symmetry of

both the type IIA and IIB theories, so this is inconsequential. 2

EXERCISE 6.7

T-duality transforms a p-brane into a (p− 1)-brane if a direction along the

brane is T-dualized, while it transforms a p-brane into a (p+1)-brane if a di-

rection orthogonal to the brane is T-dualized. Let us analyze this statement

for a concrete brane configuration. Consider a system of one D0-brane, D2-

brane, D4-brane and D6-brane. The last three branes are extended along

the (8, 9), (6, 7, 8, 9) and (4, 5, 6, 7, 8, 9) directions, respectively. What brane

configurations can be obtained after T-duality?

SOLUTION

The relative orientation of the different branes is illustrated in the table

below.

0 1 2 3 4 5 6 7 8 9

D6 × × × × × × ×
D4 × × × × ×
D2 × × ×
D0 ×

Let us just consider transformations along a single circle. Then the original

type IIA configuration gets mapped to a type IIB configuration. A T-duality

transformation along the 1, 2 or 3 directions gives a D7, D5, D3, D1 con-

figuration. A T-duality transformation along the 4 or 5 directions gives a

D5, D3, D3, D1 configuration. A T-duality transformation along the 6 or 7
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directions gives a D5, D5, D3, D1 configuration. A T-duality transformation

along the 8 or 9 directions gives a D5, D3, D1, D1 configuration.

One might also consider a T-duality transformation along the time direc-

tion. However, this only makes sense in the context of finite temperature,

where one has a periodic Euclidean time coordinate. That would lead one

to an object that is localized in the time direction. Quite aside from the

issue of T-duality, one could consider an object that fills some spatial di-

rections and is localized in time and the other spatial directions. This is a

higher-dimensional analog of an instanton, called an S-brane. Like instan-

tons, it is not a physical object, but rather a possible stationary point of a

path-integral that could play a role in the nonperturbative physics.

2

6.3 Type I superstring theory

Orientifold projection

Type I superstring theory can be understood as arising from a projection of

type IIB superstring theory. Type IIB superstrings are oriented, and their

world sheets are orientable. The world-sheet parity transformation

Ω : σ → −σ (6.77)

reverses the orientation of the world sheet. World-sheet parity exchanges the

left- and right-moving modes of the world-sheet fields Xµ and ψµ. This
�

2

transformation is a symmetry of the type IIB theory and not of the type IIA

theory, because only in the IIB case do the left- and right-moving fermions

carry the same space-time chirality. When one gauges this
�

2 symmetry,

the type I theory results. The projection operator

P =
1

2
(1 + Ω) (6.78)

retains the left–right symmetric parts of physical states, which implies that

the resulting type I closed strings are unoriented.

The type I closed-string spectrum is obtained by keeping the states that

are even under the world-sheet parity transformation and eliminating the

ones that are odd. The massless type IIB closed-string states in the NS–NS

sector are given by the tensor product of two vectors. Only states that are

symmetric in the two vectors survive the orientifold projection. These are

the dilaton and the graviton, while the antisymmetric tensor B2 is elimi-

nated.

The two gravitino fields of type IIB superstring theory, Ψµ
1 and Ψµ

2 , are
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associated with the Fock-space states

bµ−1/2|0; a〉 and b̃µ−1/2|a; 0〉. (6.79)

Here the label a denotes a spinor index for a Ramond-sector ground state.

Under world-sheet parity |0; a〉 ↔ |a; 0〉, and left-moving and right-moving

excitations are exchanged, which implies that only the sum Ψµ
1 +Ψµ

2 survives

the projection. Similarly, one of the two type IIB dilatinos survives, so that

one is left with a total of 56 + 8 = 64 massless fermionic degrees of freedom.

The fact that only one gravitino survives implies that the type I theory has

half as much supersymmetry as the type IIB theory (16 conserved super-

charges instead of 32). This supersymmetry corresponds to the diagonal

sum of the left-moving and right-moving supersymmetries of the type IIB

theory.

Which massless R–R sector states survive the world-sheet parity projec-

tion can be determined by counting degrees of freedom. Since there is a

massless gravitino field in the spectrum, the theory must be supersymmet-

ric, and therefore the number of massless fermionic and bosonic degrees of

freedom have to be equal. The only way to achieve this is to require that C0

and C4 are eliminated while the two-form C2 survives. To summarize, after

the projection the massless closed-string bosonic fields are the graviton and

the dilaton in the NS–NS sector and the two-form C2 in the R–R sector.

This gives a total of 35 + 1 + 28 = 64 bosonic degrees of freedom, which

matches the number of fermionic degrees of freedom. Together, these give

the N = 1 supergravity multiplet.

In addition, it is necessary to add a twisted sector – the type I open

strings. These are strings whose ends are associated with the fixed points

of σ → −σ, which are at σ = 0 and σ = π.6 Since this applies for all Xµ,

and open strings always end on D-branes, the existence of these open strings

signals the presence of space-time-filling D9-branes. The open strings must

also respect the Ω symmetry, so they are also unoriented.

The type IIB fundamental string (F-string) is a stable BPS object that

carries a conserved charge that couples to B2. Since the orientifold pro-

jection eliminates B2, the type I fundamental string is not a stable BPS

object. It can break. However, the amplitude for breaking is proportional

to the string coupling constant. So at weak coupling, which is assumed in

perturbation theory, type I superstrings are long-lived. At strong coupling,

fundamental type I strings cease to be a useful concept, since they quickly

disintegrate.

6 To obtain the usual open-string σ interval of length π, one should start with a closed-string
coordinate σ of period 2π, which is double the choice that has been made previously.
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Anomalies

As was explained in Chapter 5, type I supergravity in ten-dimensional

Minkowski space-time by itself is inconsistent due to gravitational anoma-

lies. Moreover, the only way to eliminate anomalies is to couple it to super

Yang–Mills theory with an SO(32) or E8×E8 gauge group. Only the group

SO(32) is possible for type I superstrings, and it can be realized by including

open strings with Chan–Paton charges corresponding to this gauge group.

Under world-sheet parity the open-string coordinates ψµ can transform with

either sign. Taking into account the Chan–Paton degrees of freedom, repre-

sented by labels i, j, the transformation rule for open-string states becomes

Ωbµ−1/2|0, ij〉 = ± bµ−1/2|0, j i〉, (6.80)

because the world-sheet parity transformation interchanges the two ends of

the string. If one chooses the plus sign in Eq. (6.80), then the projection picks

out symmetric matrices, which corresponds to a symplectic gauge group.

If, on the other hand, one chooses the minus sign the projection leaves

antisymmetric matrices, which corresponds to an orthogonal group. So this

is the choice that is needed to describe the anomaly-free supersymmetric

SO(32) theory.

Another way of interpreting the preceding conclusion is as follows. The

orientifold projection results in the appearance of a space-time-filling ori-

entifold plane. The plus sign in Eq. (6.80) results in the appearance of an

O9+ plane with +16 units of D9-brane charge, whereas the minus sign in

Eq. (6.80) results in the appearance of an O9− plane with −16 units of D9-

brane charge. Consistency requires the cancellation of this D9-brane charge.

This corresponds to the cancellation of R–R tadpoles, which also ensures the

cancellation of all gauge anomalies. This cancellation can be achieved in the

first case (the plus sign) by the addition of 16 anti-D9-branes. This results in

a theory with USp(32) gauge symmetry. However, the presence of anti-D9-

branes breaks all of the supersymmetry. In the second case (the minus sign)

consistency is achieved by adding 16 D9-branes, which results in SO(32)

gauge symmetry. As discussed above, this preserves one of the two type IIB

supersymmetries.

The tension of both kinds of O9-planes is −16TD9. Therefore, in both

cases the total energy density of the vacuum is zero. In the supersymmetric

SO(32) case this is ensured to all orders in the string coupling constant

by supersymmetry. In the nonsupersymmetric USp(32) case, perturbative

corrections to the free theory are expected to generate a nonzero vacuum

energy.
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Other type I D-branes

The only massless R–R field in the type I spectrum is C2. Therefore, aside

from the D9-branes, the only stable type IIB D-branes that survive the

orientifold projection are the ones that couple to this field. They are the

D1-brane and its magnetic dual, the D5-brane.

The world-volume theories of these D-branes are more complicated than

in the type IIB case. The basic reason is that there are additional massless

modes that arise from open strings that connect the D1-brane or the D5-

brane to the 16 D9-branes. Moreover, this is taking place in the presence of

an O9− plane.

Let us consider first a system of N coincident D1-branes. In the type

IIB theory the world-volume theory would be a maximally supersymmetric

U(N) gauge theory. However, due to the presence of the orientifold plane in

the type I theory, the gauge symmetry is enhanced to SO(2N), and there is

half as much unbroken supersymmetry as in the type IIB case. Moreover,

the world-volume theory contains massless matter supermultiplets that arise

as modes of open strings connecting the D1-branes to the D9-branes. These

transform as (2N,32) under SO(2N) × SO(32). The SO(32) gauge sym-

metry of the ten-dimensional bulk is a global symmetry of the D1-brane

world-volume theory.

The analysis of the world-volume theory of a system of N coincident D5-

branes is carried out in a similar manner. The U(N) gauge symmetry that

is present in the type IIB case is enhanced to USp(2N) due to the O9−

plane, and the amount of unbroken supersymmetry is cut in half. Moreover,

there are massless supermultiplets that arise as modes of open strings con-

necting the D5-branes to the D9-branes. They transform as (2N,32) under

USp(2N)× SO(32).

The K-theory analysis of possible charges of type I D-branes, which is not

presented here, accounts for all of the D-branes listed above. Moreover, it

also predicts the existence of a stable point particle in � 9,1 that carries a
�

2

charge and is not supersymmetric. Thus this particle is a stable non-BPS

D0-brane. This particle, like all D-branes, is a nonperturbative excitation

of the theory. Moreover, it belongs to a spinor representation of the gauge

group. Its existence implies that, nonperturbatively, the gauge group is

actually Spin(32)/
�

2 rather than SO(32). The stability of this particle

is ensured by the fact that it is the lightest state belonging to a spinor

representation. The mod 2 conservation rule is also an obvious consequence

of the group theory: two spinors can combine to give tensor representations.

In Chapter 8 it is argued that type I superstring theory is dual to one of
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the heterotic string theories. The non-BPS D0-brane of the type I theory

corresponds to a perturbative excitation of the dual heterotic theory.

The type I ′ theory

Let us now examine the T-dual description of the type I theory on a space-

time of the form � 8,1 × S1, where the circle has radius R. Since the type

IIB theory is T dual to the type IIA theory, and the type I theory is an

orientifold projection of the type IIB theory, one should not be surprised to

learn that the result is a certain orientifold projection of the type IIA theory

compactified on the dual circle S̃1 of radius R̃ = α′/R. The resulting T-dual

version is called the type I ′ theory. The name type IA is also used.

Recall that T-duality for a type II theory compactified on a circle corre-

sponds to the world-sheet transformation

XR → −XR, ψR → −ψR, (6.81)

for the component of X and ψ along the circle. This implies that

X = XL +XR → X̃ = XL −XR. (6.82)

In the case of type II theories, X̃ describes the dual circle S̃1. In the type

I theory world-sheet parity Ω, which corresponds to XL ↔ XR, is gauged.

Evidently, in the T-dual formulation this corresponds to

X̃ → −X̃. (6.83)

Therefore, the gauging of Ω gives an orbifold projection of the dual circle,

S̃1/
�

2. More precisely, the
�

2 action is an orientifold projection that com-

bines X̃ → −X̃ with Ω. As noted earlier, Ω is not a symmetry of the IIA

theory, since left-moving and right-moving fermions have opposite chirality.

However, the simultaneous spatial reflection X̃ → −X̃ compensates for this

mismatch.

The quotient S̃1/
�

2 describes half of a circle. In other words, it is the

interval 0 ≤ X̃ ≤ πR̃. The other half of the circle is present as a mirror

image that is also Ω reflected. Altogether, the statement of T-duality is the

equivalence of the compactified IIB orientifold

( � 8,1 × S1)/Ω, (6.84)

with the type IIA orientifold

( � 8,1 × S1)/Ω · I, (6.85)

where the symbol I represents the reflection X̃ → −X̃.
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The fixed-point set in the type I′ construction consists of a pair of ori-

entifold 8-planes located at X̃ = 0 and X̃ = πR̃. Each of these carries −8

units of R–R charge. Consistency of the type I′ theory requires adding 16

D8-branes, which are localized at points in the interval 0 ≤ X̃ ≤ πR̃ while

filling the nine noncompact space-time dimensions. Clearly, these D8-branes

are the T-duals of the D9-branes of the type I description.

The positions of the D8-branes along the interval are determined in the

type I description by Wilson lines in the Cartan subalgebra of SO(32).

Since this group has rank 16, its Cartan subalgebra has 16 generators. The

corresponding Wilson lines take values in compact U(1) groups, so these

values can be characterized by angles θI that are defined modulo 2π. These

angles determine the dual positions of the D8-branes to be

X̃I = θIR̃, I = 1, 2, . . . , 16. (6.86)

The SO(32) gauge symmetry is broken by the Wilson lines. In terms of the

type I′ description the unbroken gauge symmetry is given by the following

rules:

• WhenN D8-branes coincide in the interior of the interval, this corresponds

to an unbroken U(N) gauge group.

• When N D8-branes coincide with an O8− plane they give an unbroken

SO(2N) gauge group.

In both cases the gauge bosons arise as zero modes of D8–D8 open strings.

In the second case the mirror-image D8-branes also contribute.

The case of trivial Wilson lines (all θI = 0) corresponds to having all 16

D8-branes (and their mirror images) coincide with one of the O8− planes.

This gives SO(32) gauge symmetry, of course. In addition, there are two

U(1) factors. The corresponding gauge fields arise as components of the

ten-dimensional metric and C2 field: gµ9 and Cµ9.

Somewhat more generally, consider the Wilson lines given by

θI = 0 for I = 1, . . . , 8 +N and θI = π for I = 9 +N, . . . , 16. (6.87)

This corresponds to having 8 + N D8-branes coincide with the O8− plane

at X̃ = 0 and 8 − N D8-branes coincide with the O8− plane at X̃ = πR̃.

Generically, according to the rules given above, this gives rise to the gauge

symmetry

SO(16 + 2N)× SO(16− 2N)× U(1)2. (6.88)

However, for the particular value of the radius R̃ =
√
gsNα′/8 one finds the
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gauge symmetry enhancement7

SO(16− 2N)× U(1)→ E9−N . (6.89)

This is a nonperturbative symmetry enhancement. As such, it cannot be ex-

plained using the tools that have been described so far. It is best understood

in terms of the S-dual heterotic string described in Chapter 8.

EXERCISES

EXERCISE 6.8

Show that under a T-duality transformation in the x9 direction the world-

sheet parity operator Ω of the type IIB theory transforms as follows:

Ω in IIB → I9Ω in IIA,

where I9 inverts the sign of the ninth coordinates X9 → −X9 and ψ9 →
−ψ9. How does ΩI9 act on the type IIA space-time fermions?

SOLUTION

The orientifold projection Ω in type IIB corresponds to T9ΩT9 in type IIA,

because the T9 operations map back and forth between type IIA and type

IIB. Therefore, the desired result is obtained if one can verify the identity

T9ΩT9 = I9Ω.

This identity holds because

T9ΩT9 : (X9
L,X

9
R)→ (X9

L,−X9
R)→ (−X9

R,X
9
L)→ (−X9

R,−X9
L)

and

I9Ω : (X9
L,X

9
R)→ (X9

R,X
9
L)→ (−X9

R,−X9
L).

The fermi coordinate ψ9 transforms in exactly the same way.

The combined operation I9Ω maps R–NS type IIA space-time spinors to

NS–R space-time spinors of the same chirality. The operation Ω interchanges

the R–NS and NS–R fermions, and the operation I9 reverses their chirality.

This is what must happen in order to define a nontrivial projection operator.

2

7 E6, E7, and E8 are exceptional Lie groups. The meaning of En with n < 6 can be inferred by
extrapolating Dynkin diagrams. This gives E5 = SO(10), E4 = SU(5), E3 = SU(3)× SU(2),
E2 = SU(2)× U(1) and E1 = SU(2).
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6.4 T-duality in the presence of background fields

The previous sections have discussed T-duality for string theories compact-

ified on a circle with the assumption that the remaining space-time dimen-

sions are described by Minkowski space-time and that all other background

fields vanish. In this section we shall discuss the generalization of the T-

duality transformations along a circle in curved space-times with background

fields. The first part considers NS–NS background fields: the graviton gµν ,

two-form tensor Bµν and dilaton Φ, while the second part considers the

nontrivial R–R background fields.

NS–NS sector fields

The massless fields that appear in the closed bosonic-string spectrum or the

NS–NS sector of either type II superstring consist of the space-time metric

gµν , the two-form Bµν and the dilaton Φ. So far we have only considered a

flat background with vanishing Bµν . The value of exp(Φ) gives the string

coupling constant gs, which has been assumed to be constant and small. One

can analyze more general possibilities by introducing the background fields

into the world-sheet action. This cannot be done in an arbitrary way, since

the action only has the required conformal symmetry for backgrounds that

are consistent solutions of the theory. One possibility that works is for all of

the background fields to be constants. There are more general possibilities,

which are explored in this section.

The appropriate generalization of the world-sheet action in conformal

gauge that includes NS–NS background fields is

S = Sg + SB + SΦ, (6.90)

with

Sg = − 1

4πα′

∫
d2σ
√
−hhαβgµν∂αXµ∂βX

ν , (6.91)

SB =
1

4πα′

∫
d2σεαβBµν∂αX

µ∂βX
ν , (6.92)

SΦ =
1

4π

∫
d2σ
√
−hΦR(2). (6.93)

The first term replaces the Minkowski metric with the more general space-

time metric in the obvious way. The second term expresses the fact that the

fundamental string carries NS–NS two-form charge, just as the half-BPS
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D-branes carry R–R charge. In differential form notation for the pull-

back field, it is proportional to
∫
B2. The coefficient says that the two-form

charge is equal to the string tension. For suitable normalization conven-

tions, this is required by supersymmetry. The Φ term is higher-order in the

α′ expansion. Note also that both the B term and the Φ term are total

derivatives for constant fields. Even so, they have an important influence on

the physics. The SB term contributes to the world-sheet canonical momenta

and hence to the canonical commutation relations. The dilaton determines

the string coupling constant precisely due to the term SΦ, as was discussed

in Chapter 3.

If the background fields are independent of the circular coordinate (for

example, X9 in the case of the superstring), the T-dual world-sheet theory

can be derived by a duality transformation of the X9 coordinate. The for-

mulas can be derived by using the Lagrange multiplier method introduced

in Section 6.1. Introducing a Lagrange multiplier X̃9, consider the action

4πα′S =
∫
d2σ
[√
−hhαβ

(
− g99VαVβ − 2g9µVα∂βX

µ − gµν∂αXµ∂βX
ν)+

εαβ(B9µVα∂βX
µ +Bµν∂αX

µ∂βX
ν) + X̃9εαβ∂αVβ + α′

√
−hR(2)Φ(X)

]
.

(6.94)

In the above action µ, ν = 0, . . . , 8 refer to all space-time coordinates except

X9. The X̃9 equation of motion,

εαβ∂αVβ = 0, (6.95)

is solved by writing Vβ = ∂βX
9. Substituting this into the action returns us

to the original action (6.90). On the other hand, using the Vα equations of

motion to eliminate this field, gives the dual action

S̃ = Sg̃ + S eB + SeΦ, (6.96)

where the background fields of the dual theory are given by

g̃99 =
1

g99
, g̃9µ =

B9µ

g99
, g̃µν = gµν +

B9µB9ν − g9µg9ν

g99
.

B̃9µ = −B̃µ9 =
g9µ

g99
, B̃µν = Bµν +

g9µB9ν −B9µg9ν

g99
. (6.97)

The dilaton transformation rule requires a different analysis. We argued

in Section 6.2 that the type IIA and type IIB coupling constants are related

by g̃s = gs

√
α′/R. For the identifications g99 = R2/α′ and g̃99 = R̃2/α′, this

implies that

Φ̃ = Φ− 1

2
log g99, (6.98)
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at least if we assume g9µ = g̃9µ = 0. Equation (6.66) can be understood as

the vacuum expectation value of this relation.

R–R sector fields

The massless spectrum of each of the superstring theories also contains

bosonic fields in the R–R sector. There is an obstruction to describing

their coupling to the string world sheet in the RNS formulation, a fact that

is a fundamental limitation of this approach. They can be coupled to the

world sheet in the GS formulation, in which case they have couplings of the

form Θ̄Γµ1···µnΘFµ1···µn .

A possible approach to understanding the behavior of R–R background

fields under T-duality is to go back to the construction of these fields as

bilinears in fermionic fields in the GS formulation of the superstring and

use the fact that under T-duality the right-moving fermions are multiplied

by a Dirac matrix (see Exercise 6.6). Alternatively, since they couple to

D-branes, one can use the T-duality properties of D-branes to deduce the

transformation rules. Either method leads to the same conclusion. In total,

the effect of T-duality on the R–R tensor fields of the type IIA theory is to

give the following type IIB R–R fields:

C̃9 = C, C̃µ = Cµ9, C̃µν9 = Cµν , C̃µνλ = Cµνλ9. (6.99)

As a result, the odd-form potentials of the type IIA theory are mapped to

the even-form potentials of the type IIB theory. These formulas can be read

backwards to describe the transformations in the other direction, that is,

from type IIB to type IIA. These formulas are only valid for trivial NS–NS

backgrounds (Bµν = 0, gµν = ηµν and constant Φ). Otherwise, they need to

be generalized.

6.5 World-volume actions for D-branes

Let us now turn to the construction of world-volume actions for D-branes.

The basic idea is that modes of the open strings that start and end on a

given D-brane can be described by fields that are restricted to the world

volume of the D-brane. In order to describe the dynamics of the D-brane at

energies that are low compared to the string scale, only the massless open-

string modes need to be considered, and one can construct a low-energy

effective action based entirely on them. Thus, associated with a Dp-brane,

there is a (p+1)-dimensional effective field theory of massless fields (scalars,
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spinors, and vectors), that captures the low-energy dynamics of the D-brane

in question.

Restricting our attention to the half-BPS D-branes, p is even for the type

IIA theory and odd for the type IIB theory. As was explained, these are

the stable D-branes that preserve half of the space-time supersymmetry.

Associated with such a brane there is a world-volume theory that has 16

conserved supercharges. The way to construct this theory is to use the GS

formalism with κ symmetry. This construction is carried out here for a flat

space-time background.8 In fact, this was done already in Chapter 5 for the

case of a D0-brane in the type IIA theory.

There are a number of interesting generalizations. One is the extension

to a curved background, as well as the coupling to background fields in

both the NS–NS and R–R sectors. Such actions are described later, but

only for the truncation to the bosonic sector, which has no κ symmetry.

An extension that is especially interesting is the generalization to multiple

coincident D-branes. In this case the world-volume theory has a nonabelian

gauge symmetry, and there are interesting new phenomena that emerge.

Kappa symmetric D-brane actions

The D-brane world-volume theories that follow contain the same ingredients

as in Chapter 5 as well as one new ingredient. The familiar ingredients are

the functions

Xµ(σ),

which describe the embedding of the D-brane in ten-dimensional Minkowski

space-time. Here the coordinates σα, α = 0, 1, . . . , p, parametrize the Dp-

brane world volume. The other familiar ingredient is a pair of Majorana–

Weyl spinors,

Θ1a(σ) and Θ2a(σ),

which extends the mapping to N = 2 superspace. The new ingredient is an

abelian world-volume gauge field Aα(σ).

Counting of degrees of freedom

There are several ways of understanding the necessity of the gauge field.

Perhaps the best one is to realize that it is part of the spectrum of the

open string that starts and ends on the D-brane. As a check, one can verify

8 It can be generalized to other backgrounds, provided that they satisfy the classical supergravity
field equations.
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that there are an equal number of physical bosonic and fermionic degrees

of freedom, as required by supersymmetry. In fact, after all local symme-

tries are taken into account, the physical content should be the same as

in maximally supersymmetric Maxwell theory, which also has 16 conserved

supercharges. That theory has eight propagating fermionic states and eight

propagating bosonic states. In ten dimensions the relevant massless super-

multiplet in the open-string spectrum consists of a massless vector and a

Majorana–Weyl spinor.

The fields ΘAa have 32 real components. Kappa symmetry gives a factor

of two reduction and the Dirac equation implies that half of the remaining 16

components are independent propagating degrees of freedom. This is correct

counting for all values of p. The bosonic degrees of freedom come partly

from Xµ and partly from Aα. Taking account of the p + 1 diffeomorphism

symmetries that are built into the world-volume theory, only 10− (p+ 1) =

9 − p components of the Xµ are propagating degrees of freedom. These

are the components that describe transverse excitations of the Dp-brane.

The gauge field Aα has p+ 1 components, but for a gauge-invariant theory

two of them are nondynamical, so A contributes p − 1 physical degrees

of freedom. Altogether, the total number of physical bosonic degrees of

freedom is (9− p) + (p− 1) = 8, as required by supersymmetry.

Born–Infeld action

Before the advent of quantum mechanics, Born and Infeld proposed a nonlin-

ear generalization of Maxwell theory in an attempt to eliminate the infinite

classical self-energy of a charged point particle. They suggested replacing

the Maxwell action by

SBI ∼
∫ √

−det(ηαβ + kFαβ) d4σ, (6.100)

where k is a constant. Expanding in powers of F gives a constant plus the

Maxwell action plus higher powers of F . The Born–Infeld action was an

inspired guess in that exactly this structure appears in low-energy effective

D-brane actions. They were led to this structure by realizing that it would

be generally covariant if the Lorentz metric were replaced by an arbitrary

space-time metric. This reasoning does not give a unique result, however.

To see evidence that such a formula is required in string theory, consider

specializing to the two-dimensional D1-brane case and supposing that the

spatial dimension is a circle. Evaluating the determinant in this case gives
∫ √

1− k2F 2
01d

2σ. (6.101)
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By T-duality there should be a dual interpretation in terms of a D0-brane

on a dual circle. In this case it was shown in Chapter 5 that

A1 = − 1

2πα′
X̃1, (6.102)

where X̃1 is the coordinate on the dual circle. This gives a field strength

F01 = − 1

2πα′
v where v =

˙̃
X

1

. (6.103)

Here v is the velocity of the D0-brane on the dual circle. The spatial integra-

tion gives a constant factor, and one is left with the action for a relativistic

particle (compare with Chapter 2)

−m
∫ √

1− v2 dt, (6.104)

for the choice

k = 2πα′. (6.105)

Thus the Born–Infeld structure is required for Lorentz invariance of the

T-dual description.

Generalizing to p + 1 dimensions, the Born–Infeld structure combines

nicely with the usual Nambu–Goto structure for a Dp-brane (discussed in

Chapter 2) to give the action

S1 = −TDp

∫
dp+1σ

√
−det(Gαβ + kFαβ), (6.106)

where TDp is the tension (or energy density), and k = 2πα′. For type

II superstrings in Minkowski space-time supersymmetry is incorporated by

defining

Gαβ = ηµνΠµ
αΠν

β , (6.107)

where

Πµ
α = ∂αX

µ − Θ̄AΓµ∂αΘA. (6.108)

This is the same supersymmetric combination introduced in Chapter 5.

Also,

Fαβ = Fαβ + bαβ, (6.109)

where F = dA is the usual Maxwell field strength and the two-form b is a

Θ-dependent term that is required in order that F is supersymmetric. The

concrete expression, whose verification is a homework problem, is

b = (Θ̄1ΓµdΘ1 − Θ̄2ΓµdΘ2)(dXµ − 1

2
Θ̄AΓµdΘA). (6.110)
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An action with the general structure of S1 is usually referred to as a DBI

action, referring to Dirac, Born and Infeld, even though it would make sense

to refer to Nambu and Goto, as well. As in the examples described in

Chapter 5, a Chern–Simons action S2 still needs to be added in order to

implement κ symmetry. The form of S2 is determined below.

D-brane tensions

As was already mentioned, the DBI Lagrangian density can be expanded in

powers of the field strength. The first term is proportional to
√
−detGαβ.

A convenient gauge choice is the static gauge in which the diffeomorphism

symmetry is used to set the first p + 1 components of Xµ equal to the

world-volume coordinates σα, while the other 9 − p components survive as

scalar fields on the world volume that describe transverse excitations of the

brane. In the static gauge, the Lagrangian density consists of the constant

term −TDp plus field-dependent terms. Thus the Hamiltonian density, which

gives the energy density of the brane, is +TDp plus positive field-dependent

terms. The zero-point energies of the world-volume fields exactly cancel,

thanks to supersymmetry, so this remains true in the quantum theory. The

Maxwell term (the term quadratic in k in the expansion of S1) can be written

in the form (see Exercise 6.6)

SMaxwell = − 1

4g2

∫
FαβF

αβdp+1σ. (6.111)

Here g is the gauge coupling in p+1 dimensions, which is proportional to the

dimensionless open-string coupling constant gopen, since the gauge field is

an open-string excitation. The open-string coupling is related in turn to the

closed-string coupling gs by gs = g2
open. These facts imply that the Dp-brane

tension is given by

TDp =
cp
gs
. (6.112)

The numerical factor cp is derived below.

The tension of a Dp-brane (in the string frame) is proportional to 1/gs.

This shows that D-branes are nonperturbative excitations of string theory,

which become very heavy at weak coupling. This justifies treating them

as rigid objects in the weak-coupling limit. The tension of a D-brane in-

creases more slowly for gs → 0 than more conventional solitons, such as the

NS5-brane, the magnetic dual of the fundamental string, whose tension is

proportional to 1/g2
s . When the growth is this rapid, there is no longer a

weak-coupling regime in which it is a valid approximation to neglect the

gravitational back reaction on the geometry in the vicinity of the brane.
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One reason D-branes are useful probes of string geometry is that a tension

proportional to 1/gs does allow for such a regime. Chapter 12 considers a

situation in which the number of D-branes N is increased at the same time

as gs → 0 with N ∼ 1/gs. The gravitational effects of the D-branes survive

in this limit.

The same type of reasoning used earlier to relate the type IIA and IIB

string coupling constants can be used to determine D-brane tensions. T-

duality exchanges a wrapped Dp-brane in the type IIA theory and an un-

wrapped D(p− 1)-brane in the type IIB theory (and vice versa). Using this

fact, compactification of the D-brane action on a circle gives (for p even) the

relation 2πRTDp = TD(p−1), or

2πRcp
gs

=
cp−1

g̃s
. (6.113)

Inserting the relation between the string coupling constants in Eq. (6.66)

gives

cp =
1

2π
√
α′
cp−1. (6.114)

If one sets TD0 = (gs

√
α′)−1, a result that is derived in Chapter 8, then one

obtains the precise formula

TDp =
1

gs(2π)p(α′)(p+1)/2
. (6.115)

As before, it is understood that the type IIA string coupling constant is used

if p is even, and the type IIB coupling constant is used if p is odd.

The construction of S2

Supersymmetric D-brane actions require κ symmetry in order to have the

right number of fermionic degrees of freedom. As in the examples of Chap-

ter 5, this requires the addition of a Chern–Simons term, which can be

written as the integral of a (p+ 1)-form

S2 =

∫
Ωp+1. (6.116)

However, as in the case of the superstring, it is easier to construct the (p+2)-

form dΩp+1. It is manifestly invariant under supersymmetry, whereas the

supersymmetry variation of Ωp+1 is a total derivative.

The analysis is rather lengthy, but it involves the same techniques that

were described for simpler examples in Chapter 5. Let us settle here for a
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description of the result. The answer takes the form

dΩp+1 = dΘ̄AT ABp dΘB , (6.117)

where T ABp is a 2×2 matrix of p-form valued Dirac matrices and A,B = 1, 2

is summed. Comparing to the result for the D0-brane given in Chapter 5,

gives in that case

Ω1 = −mΘ̄Γ11dΘ = m(Θ̄1dΘ2 − Θ̄2dΘ1), (6.118)

which implies that

T0 = m

(
0 1

−1 0

)
. (6.119)

The formula for D-brane tensions gives the identification

m = TD0 =
1

gs

√
α′
. (6.120)

Now let us present the general result for S2. It turns out to be simpler to

give all the results at once rather than to enumerate them one by one. In

other words, the expression for

T AB =
∞∑

p=0

T ABp (6.121)

can be written relatively compactly.9 In the type IIA case the sum is over

even values of p, and in the type IIB case the sum is over odd values of p.

Given T , which is a sum of differential forms of various orders, one simply

extracts the p-form part to obtain Tp and construct the Chern–Simons term

S2 of the Dp-brane action. Forms of order higher than 9 are not relevant.

The expression for T turns out to have the form

T AB = me2πα′FfAB(ψ), (6.122)

where F is given in Eq. (6.109), and ψ is a matrix-valued one-form given by

ψ =
1√

2πα′
Γµ Πµ

α dσ
α. (6.123)

In the type IIA case

f(ψ) =

(
0 cos ψ

− cosh ψ 0

)
(6.124)

9 Recall that sums of differential forms of various orders were encountered earlier in the anomaly
discussion of Chapter 5.
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and in the type IIB case

f(ψ) =

(
0 sin ψ

sinh ψ 0

)
. (6.125)

The formulas for the functions f ensure that the matrix is symmetric or

antisymmetric for the appropriate powers of ψ, as required when T is sand-

wiched between Majorana–Weyl spinors. It is not obvious that the formulas

for dΩp+1 presented here are closed. However, with a certain amount of

effort, this can be proved and the formulas for Ωp+1 can be extracted.

The static gauge

As was briefly mentioned earlier, the static gauge consists of using the diffeo-

morphism symmetry of the Dp-brane action to identify p+1 of the space-time

coordinates Xµ with the world-volume coordinates σα. Let us then relabel

the remaining 9 − p coordinates as 2πα′Φi to emphasize the fact that they

are scalar fields of the world-volume theory with mass dimension equal to

one. Doing this, the bosonic part of the DBI action collapses to the form

SDBI = −TDp

∫
dp+1σ

√
−det(ηαβ + k2∂αΦi∂βΦi + kFαβ), (6.126)

where k = 2πα′, as before.

Now let us generalize this result to include fermion degrees of freedom,

by considering first the D9-brane case. This requires making a gauge choice

for the κ symmetry. A particularly nice choice, which maintains manifest

Lorentz invariance, is to use this freedom to set one of the two ΘA s equal

to zero. This completely kills the Chern–Simons term, because the matrices

f (A) and f (B) are entirely off-diagonal. Making this gauge choice in the

special case p = 9 and renaming the remaining Majorana–Weyl Θ variable

as kλ gives the action SD9 equal to

TD9

∫
d10σ

√
−det

(
ηαβ + kFαβ − 2k2λ̄Γα∂βλ+ k3λ̄Γγ∂αλλ̄Γγ∂βλ

)
.

(6.127)

It is truly remarkable that this nonlinear extension of ten-dimensional

super-Maxwell theory has exact unbroken supersymmetry. In addition to

the usual 16 linearly realized supersymmetries of super-Maxwell theory, it

also has 16 nonlinearly realized supersymmetries that represent the sponta-

neously broken supersymmetries that gave rise to λ as a Goldstone fermion.

Put differently, this action combines features of the Born–Infeld theory with

features of the Volkov–Akulov theory of the Goldstone fermion.

The static gauge Dp-brane actions with p < 9 can be obtained in a similar
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manner. However, a quicker method is to note that they can be obtained

by dimensional reduction of the gauge-fixed D9-brane action in Eq. (6.127).

Dimensional reduction simply means dropping the dependence of the world-

volume fields on 9− p of the coordinates. This works for both even and odd

values of p. For example, dimensional reduction of Eq. (6.127) to four dimen-

sions gives an exactly supersymmetric nonlinear extension of N = 4 super

Maxwell theory. The supersymmetry transformations are complicated, be-

cause the gauge-fixing procedure contributes induced κ transformations to

the original ε transformations of the fields.

Bosonic D-brane actions with background fields

The D-brane actions obtained in the previous section are of interest as they

describe D-branes in flat space. However, one frequently needs a general-

ization that describes the D-brane in a more general background in which

the various bosonic massless supergravity fields are allowed to take arbitrary

values. These actions exhibit interesting features, that we shall now address.

The abelian case

The background fields in the NS–NS sector are the space-time metric gµν ,

the two-form Bµν and the dilaton Φ. These can be pulled back to the world

volume

P [g +B]αβ = (gµν +Bµν)∂αX
µ∂βX

ν . (6.128)

Henceforth, for ease of writing, pullbacks are implicit, and this is denoted

gαβ + Bαβ. Note that this gαβ is the bosonic restriction of the quantity

that was called Gαβ previously. With this definition, the DBI term in static

gauge takes the form

SDp = −TDp

∫
dp+1σe−Φ0

√
−det (gαβ +Bαβ + k2∂αΦi∂βΦi + kFαβ).

(6.129)

Since the string coupling constant gs is already included in the tension TDp,

the dilaton field is shifted by a constant so that it has vanishing expectation

value (Φ = log gs + Φ0). This is the significance of the subscript. Note that

invariance under a two-form gauge transformation

δB = dΛ (6.130)

requires a compensating shift of the gauge field A.

The possibility of R–R background fields should also be considered. They

do not contribute to the DBI action, but they play an important role in
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the Chern–Simons term. Let us denote an n-form R–R field by Cn and

the corresponding field strength by Fn+1 = dCn. Previously, it was stated

that the complete list of these fields in type II superstring theories involves

only n = 0, 1, 2, 3, 4. However, it is convenient to introduce redundant fields

Cn for n = 5, 6, 7, 8. This makes it possible to treat electric and magnetic

couplings in a more symmetrical manner and leads to more elegant formulas.

The idea is to generalize the self-duality of the five-form field strength by

requiring that

?Fn+1 = F9−n. (6.131)

This requires that the R–R gauge fields are harmonic. This can be general-

ized to allow for interactions by including additional terms in the definitions

of the field strengths Fn+1 = dCn + . . .

The Cn fields are differential forms in ten-dimensional space-time. How-

ever, they can also be pulled back to the D-brane world volume, after which

they are represented by the same symbols. Then the Chern–Simons term

must contain a contribution

µp

∫
Cp+1, (6.132)

where µp denotes the Dp-brane charge, since a Dp-brane couples electrically

to the R–R field Cp+1. However, this is not the entire Chern–Simons term.

In the presence of a background B field or world-volume gauge fields, the

D-brane also couples to R–R potentials of lower rank. This can be described

most elegantly in terms of the total R–R potential

C =
8∑

n=0

Cn. (6.133)

The result then turns out to be

SCS = µp

∫ (
C eB+kF

)
p+1

. (6.134)

The subscript means that one should extract the (p+1)-form piece of the in-

tegrand. Since B and F are two-forms, only odd-rank R–R fields contribute

for even p (the IIA case) and only even-rank R–R fields contribute for odd

p (the IIB case). The B and F fields appear in the same combination as in

the DBI term, and so the two-form gauge invariance still works in the same

way. The structure of the Chern–Simons term implies that a Dp-brane in

the presence of suitable backgrounds can also carry induced charge of the

type that is associated with a D(p− 2n)-brane for n = 0, 1, . . . Generically,

this charge is smeared over the (p+ 1)-dimensional world volume, though in
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special cases it may be concentrated on a lower-dimensional hypersurface,

for example a brane within a brane.

In the presence of space-time curvature the Chern–Simons term contains

an additional factor involving differential forms constructed from the curva-

ture tensor. We won’t describe this factor, since it would require a rather

long digression. It reduces to 1 in a flat space-time, which is the case con-

sidered here.

The nonabelian case

When N Dp-branes coincide, the world-volume theory is a U(N) gauge the-

ory. Almost all studies of nonabelian D-brane actions use the static gauge

from the outset, since otherwise it is unclear how to implement diffeomor-

phism invariance and κ symmetry. In the static gauge the world-volume

fields are just those of a maximally supersymmetric vector supermultiplet:

gauge fields, scalars and spinors, all in the adjoint representation of U(N).

If one only wants to describe the leading nontrivial terms in a weak-field ex-

pansion, the result is exactly super Yang–Mills theory. This approximation

is sufficient for many purposes including the important examples of Matrix

theory, based on D0-branes, and AdS/CFT duality, based on D3-branes,

which are discussed in Chapter 12.

When one tries to include higher powers of fields to give formulas that cor-

rectly describe nonabelian D-brane physics for strong fields, the subject can

become mathematically challenging and physically confusing. The reason it

can be confusing concerns the domain of validity of DBI-type actions. They

are meant to capture the physics in the regime of approximation in which

the background fields and the world-volume gauge fields are allowed to be

arbitrarily large, but whose variation is small over distances of order the

string scale. The requirement of slow variation is meant to justify dropping

terms involving derivatives of the world-volume fields. The tricky issue in

the nonabelian case is that one should use covariant derivatives to maintain

gauge invariance, but there are relations of the form

[Dα,Dβ] ∼ Fαβ. (6.135)

This makes it somewhat ambiguous whether a term is derivative or not, and

so it is not obvious how to suppress rapid variation while allowing strong

fields. Nonetheless, some success has been achieved, which will now be

described.

Henceforth all fermion fields are set to zero and only bosonic actions are

considered. In addition to the background fields g, B, Φ and C, the desired

actions contain adjoint gauge fields A and 9− p adjoint scalars Φi, both of
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which are represented as hermitian N × N matrices. The notation that is

used is

Aα =
∑

n

A(n)
α Tn and Φi =

∑

n

Φi(n)Tn, (6.136)

where Tn are N2 hermitian N × N matrices satisfying Tr(TmTn) = Nδmn.

We also define10

Fαβ = ∂αAβ − ∂βAα + i[Aα, Aβ ], (6.137)

DαΦi = ∂αΦi + i[Aα,Φ
i]. (6.138)

Let us start with the nonabelian D9-brane action, which is relatively sim-

ple, because there are no scalar fields. In this case the proposed DBI term

is

S1 = −TD9

∫
d10σe−Φ0 Tr

(√
−det (gαβ +Bαβ + kFαβ)

)
. (6.139)

This innocent-looking formula requires explanation. The determinant refers

to the 10×10 matrix labelled by the Lorentz indices. However, the expression

inside the determinant is also an N ×N matrix, assuming that g and B are

multiplied by unit matrices. The understanding is that the square root of

the determinant is computed for each of the N 2 matrix elements, though

only the diagonal entries are required, since the trace of the resulting N×N
matrix needs to be taken. This is the simplest prescription that makes

sense, and it has survived a number of checks. For example, if one chooses

the positive branch of the square root in each case, then the trace is N plus

field-dependent terms. This gives an energy density of N times the tension

of a single brane, as one expects for N coincident branes.

In similar fashion, the proposed nonabelian D9-brane Chern–Simons term

is

S2 = µ9

∫
Tr
(
C eB+kF

)
10
. (6.140)

Starting from this ansatz for the p = 9 case, Myers was able to deduce a

unique formula for all the p < 9 cases by implementing consistency with

T-duality. This required allowing the background fields to be functionals

of the nonabelian coordinates and the introduction of nonabelian pullbacks.

The formula that was obtained in this way has a complicated Φ dependence.

Rather than describing it in detail, we settle here for pointing out an inter-

esting feature of the result: in the abelian case a Dp-brane can couple to

10 When the Tn s are chosen to be antihermitian, the factors of i do not appear.
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the R–R potentials Cp−1, Cp−3, . . . in addition to the usual Cp+1. The sur-

prising result in the nonabelian case is that the Dp-brane can also couple to

the higher-rank R–R potentials Cp+3, Cp+5, . . .

The Myers effect

The coupling of nonabelian D-branes to higher-rank R–R potentials has

some interesting physical consequences. The simplest example, due to My-

ers, concerns N coincident D0-branes in the presence of constant four-form

flux F4 = dC3. The flux is chosen to be electric, meaning that the only

nonzero components have a time index and three spatial indices F0ijk. It

is sufficient to restrict the nonvanishing components to three spatial direc-

tions and write F0ijk = fεijk, where f is a constant. All other background

fields are set to zero, and the background geometry is assumed to be ten-

dimensional Minkowski space-time. The result to be described concerns the

point-like D0-brane system becoming polarized into a fuzzy two-sphere by

the electric field.

The relevant terms that need to be considered are a kinetic energy term

proportional to Tr(Φ̇iΦ̇i), which comes from the DBI term, and a potential

energy term

V (Φ) ∼ −1

4
Tr([Φi,Φj ][Φi,Φj ])− i

3
fεijkTr(ΦiΦjΦk). (6.141)

The first term in the potential comes from the DBI action, and the second

term in the potential, which is the coupling to the R–R four-form electric

field, comes from the nonabelian CS action. Now let us look for a static

solution for which the potential is extremal, which requires

[[Φi,Φj ],Φj] + ifεijk[Φ
j ,Φk] = 0. (6.142)

A class of solutions of this equation is obtained by letting Φi = fαi/2, where

αi is an N -dimensional representation of SU(2) satisfying

[αi, αj ] = 2iεijkα
k. (6.143)

This gives many possible solutions (besides zero) if N is large – one for

each partition of N . However, the one of lowest energy is given by the

N -dimensional irreducible representation of SU(2), which satisfies

Tr(αiαj) =
1

3
N(N2 − 1)δij . (6.144)

Recall that in the abelian theory 2πα′Φi is interpreted as a transverse

coordinate of the D-brane. In the nonabelian theory this becomes an N×N
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matrix, so this identification is not so straightforward anymore. In the ab-

sence of the four-form electric field, the preferred configurations that min-

imize the potential have [Φi,Φj ] = 0. This allows one to define a moduli

space on which these matrices are simultaneously diagonal. One can inter-

pret the diagonal entries as characterizing the positions of the N D-branes.

The pattern of U(N) symmetry breaking is encoded in the degeneracies of

these positions.

In the presence of the four-form flux, the Φi no longer commute at the

extrema of the potential, and so the classical interpretation of the D-brane

positions breaks down. There is an irreducible fuzziness in the description of

their positions. One can say that the mean-square value of the ith coordinate

(averaged over all N D-branes) is given by

〈(Xi)2〉 =
1

N
(2πα′)2Tr[(Φi)2]. (6.145)

Summing over the three coordinates gives a “fuzzy sphere” whose radius

R squared is the sum of three such terms. Substituting the ground-state

solution gives

R2 = (πα′f)2(N2 − 1). (6.146)

For large N the sphere becomes less fuzzy, and the radius is approximately

R = πα′fN . Specifically, the uncertainty δR is proportional to 1/N . So

the radius is proportional to the strength of the electric field and the num-

ber of D0-branes. If one used a reducible representation of SU(2) instead,

one would find a set of concentric fuzzy spheres, one for each irreducible

component. However, such solutions are energetically disfavored.

The fuzzy sphere has an alternative interpretation as a spherical D2-brane

with N dissolved D0-branes. For large N this can be analyzed using the

abelian D2-brane theory. The total D2-brane charge is zero, though there is

a nonzero D2-charge electric dipole moment, which couples to the four-form

electric field. The previous results can be reproduced, at least for large N ,

in this picture.

EXERCISES

EXERCISE 6.9

Expand (6.106) to quartic order in k and show that the quadratic term gives

the Maxwell action (6.111).
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SOLUTION

Because

det(Gαβ + kFαβ) = det(Gαβ + kFαβ)T = det(Gαβ − kFαβ),

this is an even function of k. Using a matrix notation, let us define

M = kG−1F.

Then √
−det(G+ kF ) =

√
−detG

√
det(1 +M)

=
√
−detG

[
det(1−M2)

]1/4
.

Next, we use the identity

log det(1−M2) = tr log(1−M2) = −tr
(
M2 +

1

2
M4 + . . .

)
.

Thus [
det(1−M2)

]1/4
= exp

(
− 1

4
trM2 − 1

8
trM4 + . . .

)

= 1− 1

4
trM2 − 1

8
trM4 +

1

32
(trM2)2 + . . .

The final form of the action has a constant energy-density term, a quadratic

Maxwell-type term, plus higher-order corrections

S1 = −TDp

∫
dp+1σ

√
−det(Gαβ + kFαβ)

= −TDp

∫
dp+1σ

√
−detG

(
1 +

k2

4
FαβF

αβ

−k
4

8
(FαβF

αβ)2 +
k4

32
FαβF

βγFγδF
δα + ...

)
.

Indices are raised in this formula using the inverse of the induced metric

Gαβ. The Maxwell term has the normalization − 1
4g2

∫
FαβF

αβdp+1σ for the

identification g2 = (2π)p−2`p−3
s gs. 2

EXERCISE 6.10

Consider the static-gauge DBI action for a Dp-brane given in Eq. (6.126)

SDBI = −TDp

∫
dp+1σ

√
−det(ηαβ + k2∂αΦi∂βΦi + kFαβ).
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What types of charged soliton solutions is this theory expected to have?

What are their physical interpretations?

SOLUTION

This is a (p + 1)-dimensional theory containing a U(1) gauge field. A one-

form gauge field can couple electrically to a point-like charge in any di-

mension. Furthermore, as we have learned, it can couple magnetically to a

(p − 3)-brane for D = p + 1. Therefore, a solitonic 0-brane solution could

be an electric source of the gauge field and a solitonic (p− 3)-brane solution

could be a magnetic source of the gauge field.

If these solitons do actually exist (finding them is homework), then they

should have an interpretation from the point of view of the ten-dimensional

superstring theory that contains the Dp-brane. The defining property of a D-

brane is that a fundamental string can end on it. Moreover, the fundamental

string carries a unit of Chan–Paton electric charge at its end. Thus the

electrically charged 0-brane soliton should be interpreted as the end of a

fundamental string.

Recall that the scalars Φi can be interpreted as transverse displacements

of the D-brane. Using this fact, the solution that one finds actually exhibits

a spike sticking out from the D-brane that asymptotically approaches zero

thickness. So the solution allows one to see the entire string, not just its

end point. In fact, the solution describes a smooth transition from a p-

dimensional D-brane to a one-dimensional string.

The magnetic solution is somewhat similar. In this case a (p − 3)-brane

soliton is the end of a D(p − 2)-brane. In other words, a D(p − 2)-brane

can end on a Dp-brane. When it does so, its end, which has p − 2 spatial

dimensions, is interpreted as a magnetic source of the U(1) gauge field in the

Dp-brane world-volume theory. Again, the explicit soliton solution allows

one to see the entire D(p− 2)-brane protruding from the Dp-brane. 2

HOMEWORK PROBLEMS

PROBLEM 6.1

Consider the type IIA and type IIB superstring theories compactified on a

circle so that the space-time is M10 = � 8,1 × S1, where � 8,1 denotes nine-

dimensional Minkowski space-time. Show that the spectrum of the type IIA
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theory for radius R agrees with the spectrum of the type IIB theory for

radius R̃ = α′/R.

PROBLEM 6.2

Equations (6.38) and (6.39) describe a generalization of the result of Exer-

cise 6.2 from a U(1) gauge field to a U(N) gauge field

A = − 1

2πR
diag(θ1, θ2, . . . , θN ),

where the θ s are again constants. Derive these equations.

PROBLEM 6.3

The T-duality rules for R–R sector tensor fields can be derived by taking into

account that the field strengths are constructed as bilinears in Majorana–

Weyl spinors in the covariant RNS approach. Explicitly,

Fµ1...µn = ψ̄LΓµ1...µnψR.

(i) Explain why n is even for the type IIA theory and odd for the type

IIB theory.

(ii) Explain why (in differential form notation) Fn = ?F10−n.

(iii) Show that, for both the type IIA and type IIB theories, the number of

independent components of the tensor fields agrees with the number

of degrees of freedom of a tensor product of two Weyl–Majorana

spinors in ten dimensions.

PROBLEM 6.4

Show that the Dirac equations for ψL and ψR in the previous problem imply

that the field equations and Bianchi identities for the field strengths are

satisfied, that is,

∂[µFµ1...µn] = 0, ∂µFµµ2...µn = 0.

Also, show that, when these equations for Fn are re-expressed as equations

for F10−n, the field equation and Bianchi identity are interchanged.

PROBLEM 6.5

Derive the T-duality transformation formulas for NS–NS background fields

in (6.97). You may ignore the dilaton term and set hαβ = ηαβ. Verify that if

the transformation is repeated a second time, one recovers the original field

configuration.
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PROBLEM 6.6

Show that the Born–Infeld action (6.100) gives a finite classical self-energy

for a charged point particle. Hint: show that the solution to the equations

of motion with a point particle of charge e at the origin is given by

Er = Frt =
e√

(r4 + r4
0)
, r2

0 = 2πα′e.

PROBLEM 6.7

Consider the DBI action in Eq. (6.106).

(i) Derive the equation of motion for the gauge field.

(ii) Expand this equation in powers of k to obtain the leading correction

to the usual Maxwell field equation of electrodynamics in the absence

of sources. You may use the result of Exercise 6.9.

PROBLEM 6.8

Consider a D0–D8 system in the type I ′ theory, where the D0-brane is

coincident with the D8-brane. There are also other D8-branes and O8-planes

parallel to the D8-brane, as described in Section 6.3.

(i) Determine the zero-point energy of a D0–D8 open string in the NS

sector.

(ii) Describe the supersymmetries that are preserved by this configura-

tion. How many of them are there? Hint: Eq. (6.56) shows which su-

persymmetries are preserved by a single D-brane. The problem here

is to determine which ones are preserved by both of the D-branes.

PROBLEM 6.9

Consider a type I′ configuration in which N1 D8-branes are coincident at

X ′L = θLR
′ and the remaining N2 = 16 − N1 D8-branes are coincident at

X ′R = θRR
′.

(i) What is the gauge symmetry for generic positions X ′L and X ′R?

(ii) What is the maximum enhanced gauge symmetry that can be achieved

for N1 = N2 = 8? How are the D8-branes positioned in this case?

PROBLEM 6.10

Show that the right-hand side of Eq. (6.117) is closed.
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PROBLEM 6.11

(i) Determine how the two-form b, defined in Eq. (6.110), transforms

under a supersymmetry transformation.

(ii) Determine the supersymmetry transformation of the gauge field A for

which the field strength F , defined in Eq. (6.109), is supersymmetric,

that is, invariant under supersymmetry transformations.

PROBLEM 6.12

By taking account of the pullback on the Dp-brane world volume show that

the action (6.129) is invariant under (6.130) if a compensating shift of the

gauge field A is made.

PROBLEM 6.13

Consider the static-gauge DBI action for a Dp-brane given in Eq. (6.126)

that was discussed in Exercise 6.10.

(i) Find the action for a D3-brane in spherical coordinates (t, r, θ, φ) for

the special case in which the only nonzero fields are At(r) and one

scalar Φ(r).

(ii) Obtain the equations of motion for At(r) and Φ(r).

(iii) Find a solution of the equations of motion that corresponds to an

electric charge at the origin, and deduce the profile of the string

that is attached to the D3-brane. For what range of r are the DBI

approximations justified?

PROBLEM 6.14

As in the preceding problem, consider the static-gauge DBI action for a

Dp-brane given in Eq. (6.126) that was discussed in Exercise 6.10.

(i) Find the action for a D3-brane in spherical coordinates (t, r, θ, φ) for

the special case in which the only nonzero fields are Aφ(θ) and one

scalar Φ(r).

(ii) Obtain the equations of motion for Aφ(θ) and Φ(r).

(iii) Find a solution of the equations of motion that corresponds to a

magnetic charge at the origin and deduce the profile of the D-string

that is attached to the D3-brane. For what range of r are the DBI

approximations justified?
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PROBLEM 6.15

Compute the minimum of the potential function in Eq. (6.141) when the N -

dimensional representation of SU(2) is irreducible. What is the minimum

of the potential if the N -dimensional representation of SU(2) is the sum

of two irreducible representations? How does it compare to the previous

result? Describe the fuzzy sphere configuration in this case.
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The heterotic string

The preceding chapters have described bosonic strings as well as type I

and type II superstrings. In the case of the bosonic string, one was led to

26-dimensional Minkowski space-time by the requirement of cancellation of

the conformal anomaly of the world-sheet theory. Similar reasoning led to

the conclusion that the type I and type II superstring theories should have

D = 10.

In all of these theories the world-sheet degrees of freedom can be divided

into left-movers and right-movers, though in the case of open strings these

are required to combine so as to give standing waves. In the case of the

type II superstring theories, the left-moving and right-moving modes in-

troduce independent conserved supersymmetry charges, each of which is a

Majorana–Weyl spinor with 16 real components. Thus, the type II super-

string theories have two such conserved charges, or N = 2 supersymme-

try, which means that they have 32 conserved supercharges. The type IIA

and type IIB theories are distinguished by whether the two Majorana–Weyl

spinors have the same (IIB) or opposite (IIA) chirality. In the case of the

type I theory, as well as related theories whose construction involves an

orientifold projection, the only conserved supercharge that survives the pro-

jection is the sum of the left-moving and right-moving supercharges of the

type IIB theory. Thus these theories have N = 1 supersymmetry in ten

dimensions.

There is an alternative method of constructing supersymmetrical string

theories in ten dimensions with N = 1 supersymmetry, which is the topic

of this chapter. These theories, known as heterotic string theories, imple-

ment this supersymmetry by combining the left-moving degrees of freedom

of the 26-dimensional bosonic string theory with the right-moving degrees

of freedom of the ten-dimensional superstring theory. It is surprising at first

sight that this is a sensible thing to do, but it leads to interesting new super-

249
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string theories. Since heterotic string theories have N = 1 supersymmetry

in ten dimensions, they are subject to the consistency conditions required

by anomaly cancellation that were described in Chapter 5. This means that

their spectrum must contain massless super Yang–Mills multiplets based on

either an SO(32) or E8 × E8 gauge group.

The heterotic construction is the only construction of a ten-dimensional

superstring with E8 × E8 gauge symmetry, though there is an interesting

connection to M-theory, which is explored in Chapter 8. On the other hand,

the heterotic string provides an alternative realization of SO(32) gauge sym-

metry, which is the gauge group for the type I superstring derived in Chap-

ter 5. Chapter 8 shows that these two SO(32) theories are actually dual

descriptions of the same theory.

7.1 Nonabelian gauge symmetry in string theory

String theory naturally gives rise to the most interesting types of local gauge

symmetries. These symmetries are general coordinate invariance, associated

with a spin 2 quantum (the graviton), local supersymmetries associated with

spin 3/2 quanta (gravitinos), and Yang–Mills gauge invariances associated

with spin 1 quanta (gauge particles). Experimentally, the only one of these

that is unconfirmed is supersymmetry, though there is some indirect evidence

for it. It would be astonishing if such a wonderful opportunity were not

utilized by Nature. In fact, if string theory is correct, supersymmetry must

play a role at least at the Planck scale, if not at lower energies. What is

certainly observed, and therefore should be incorporated in string theory, is

local gauge symmetry. Indeed, the standard model of elementary particles,

which describes the strong, weak and electromagnetic interactions, is based

on SU(3)× SU(2)× U(1) local gauge symmetry.

D-branes and orientifold planes

In the description of string theory presented so far, only one mechanism

for realizing nonabelian gauge symmetries was described. It involved open

strings ending on D-branes whose ends carry Chan–Paton charges. The

SO(32) gauge symmetry of the type I superstring theory is achieved in

this way. In this theory the open strings end on a collection of 16 space-

time-filling D9-branes, and there is also a space-time-filling orientifold plane.

However, even though SO(32) is a very large group, it is not a very good

starting point for embedding the standard model. The possibilities for

achieving nonabelian gauge symmetry utilizing D-branes and orientifold
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planes become much more elaborate in the context of compactification of

extra dimensions.

In the case of the type II superstring theories, after compactification of the

extra dimensions, various D-branes may fill the four noncompact dimensions

and wrap various cycles1 in the compact dimensions. As was explained in

Chapter 6, N coincident D-branes have a U(N) gauge symmetry on their

world volume. If, in addition, there are orientifold planes or singularities in

the compactification, other types of gauge groups can also arise. Thus by

incorporating various collections of D-branes, and perhaps orientifold planes,

a rich variety of gauge theories can be achieved. This is one of the main

approaches that is being studied for constructing a realistic string model of

elementary particles. Such constructions are explored in later chapters.

Isometries of the internal space

Another possibility for generating gauge symmetry is for the compactifica-

tion space to have isometries. Then the zero modes of the ten-dimensional

graviton on the compact manifold give rise to gauge fields in the noncompact

dimensions that realize the symmetry of the manifold as a gauge symmetry.

This is a basic feature of Kaluza–Klein compactification. For example, if

the compact space is an N -torus TN , one obtains a U(1)N gauge symme-

try. Similarly an N -sphere SN gives rise to an SO(N + 1) gauge symmetry

and a projective space with N complex dimensions CPN gives SU(N + 1)

gauge symmetry. The case of S5 plays an important role in the AdS/CFT

correspondence in Chapter 12.

Heterotic strings

The heterotic string theories described in this chapter utilize yet another

mechanism, special to theories of strings, for implementing local gauge sym-

metry. The heterotic theories are oriented closed strings, and the properties

of the left-moving and right-moving modes are different. As was mentioned

above, the supersymmetry charges are carried by the right-moving currents

of the string. The heterotic theories realize Yang–Mills gauge symmetries in

a similar way. Namely, the conserved charges of Yang–Mills gauge symme-

tries are carried by the left-moving currents of the string. Thus the charges

are distributed democratically along closed strings. This is to be contrasted

with the case of the type I superstring theory, where gauge-symmetry charges

are localized at the end points of open strings.

1 Supersymmetric cycles are discussed in Chapter 9.
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7.2 Fermionic construction of the heterotic string

In this section we would like to construct the action for the heterotic string.

The conformal gauge action describing the bosonic string is

S = − 1

2π

∫
d2σ∂αXµ∂

αXµ, (7.1)

where the dimension of space-time is D = 26. This is supplemented by

Virasoro constraints for both the left-moving and right-moving modes. The

corresponding conformal gauge action for superstrings in the RNS formalism

is

S = − 1

2π

∫
d2σ(∂αXµ∂

αXµ + ψ̄µρα∂αψµ). (7.2)

In this case D = 10, and there are super-Virasoro constraints for both the

left-moving and right-moving modes. The world-sheet fields ψµ are ten

two-component Majorana spinors. This superstring action has world-sheet

supersymmetry. Space-time supersymmetry arises by including both the R

and NS sectors and imposing the GSO projection, as explained in Chapter 5.

In order to incorporate gauge degrees of freedom, let us consider a slightly

different extension of the bosonic string theory. Specifically, let us add world-

sheet fermions that are singlets under Lorentz transformation in space-time

but which carry some internal quantum numbers. Introducing n Majorana

fermions λA with A = 1, . . . , n, consider the action

S = − 1

2π

∫
d2σ

(
∂αXµ∂

αXµ + λ̄Aρα∂αλ
A
)
. (7.3)

This theory has an obvious global SO(n) symmetry under which the λA

transform in the fundamental representation and the coordinates Xµ are

invariant. Since a fermion contributes half a unit to the central charge, the

requirement that the total central charge should be 26 is satisfied provided

that D + n/2 = 26. This is one way of describing a compactification of the

bosonic string theory to D < 26.

Examining this theory more carefully, one sees that the symmetry is ac-

tually larger than SO(n). Indeed, writing the terms out explicitly in world-

sheet light-cone coordinates gives

S =
1

π

∫
d2σ

(
2∂+Xµ∂−Xµ + iλA−∂+λ

A
− + iλA+∂−λ

A
+

)
. (7.4)

Written this way, it is evident that the theory actually has an (unwanted)

SO(n)L × SO(n)R global symmetry under which the left-movers and right-

movers transform independently. One could try to discard the right-movers,
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for example, and work only with left-moving fermions, which would leave

only the SO(n)L global symmetry. The problem with this, of course, is that

then it would not be possible to satisfy the central-charge conditions for

both the left-movers and right-movers at the same time.

Until now we have discussed bosonic strings, for which the critical dimen-

sion is 26, and superstrings, for which the critical dimension is 10. In both

cases the world-sheet left-movers and right-movers are completely decou-

pled. This independence of the left-movers and right-movers was utilized

by Gross, Harvey, Martinec and Rohm to propose a type of string theory

in which the bosonic string structure is used for the left-movers and the

superstring structure is used for the right-movers. They named this hybrid

theory the heterotic string.

Space-time supersymmetry is implemented in the right-moving sector that

corresponds to the superstring. Associated with this sector there are right-

moving super-Virasoro constraints and a GSO projection of the usual sort.

This ensures the absence of tachyons, which are removed by space-time

supersymmetry.

Since the left-moving modes correspond to the bosonic string theory, the

left-moving central charge should be 26, and there are constraints given by

a left-moving Virasoro algebra. One possibility, known as the fermionic

construction of the heterotic string is to have ten bosonic left-movers and 32

fermionic left-movers λA, since this gives a central charge 10 + 32/2 = 26.

This description makes it clear that this is a ten-dimensional theory, since

the ten coordinates Xµ have both left-moving and right-moving degrees of

freedom. The rest of the degrees of freedom are described by left-moving

and right-moving fermions. This formulation of the heterotic string theory

is pursued in the remainder of this section.

There is an equivalent bosonic construction of the heterotic string, which

uses 26 left-moving bosonic coordinates. It is surprising in that it appears

that the number of space-time dimensions is different for the left-moving and

right-moving sectors. In this description one could wonder how many space-

time dimensions there really are. However, as we have already asserted, this

description is equivalent to the fermionic description in which it is clear that

this is a ten-dimensional theory. The bosonic description of the heterotic

string is given in Section 7.4.

The action for the heterotic string in the fermionic formulation is

S =
1

π

∫
d2σ(2∂+Xµ∂−Xµ + iψµ∂+ψµ + i

32∑

A=1

λA∂−λA), (7.5)
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where µ = 0, . . . , 9 labels the vector representation of the ten-dimensional

Lorentz group SO(9, 1), while λA are Lorentz singlets. Both sets of fermions

are one-component Majorana–Weyl spinors from the point of view of the

two-dimensional world-sheet Lorentz group.

Once one solves the equations of motion, there are ten right-moving bosons

Xµ
R(τ − σ) and ten left-moving bosons Xµ

L(τ + σ). In addition, there are

ten right-moving fermions ψµ(τ −σ) and 32 left-moving fermions λA(τ +σ).

These fields give a right-moving central charge ĉ = 3c/2 = 10 and a left-

moving central charge c = 26, since each Majorana fermion contributes c =

1/2. Once the b and c ghosts are introduced for left-movers and right-movers

and the β and γ ghosts are introduced for right-movers only the central

charges cancel. Thus, one has a right-moving superconformal symmetry

and a left-moving conformal symmetry.

As we remarked earlier, this action has a manifest SO(32) symmetry

under which the λA transform in the fundamental representation. This

global symmetry of the world-sheet theory gives rise to a corresponding

local gauge symmetry of the space-time theory. At this point it may appear

rather mysterious how one could ever hope to achieve an E8 × E8 gauge

symmetry. The key to discriminating the different possibilities is the choice

of GSO projections for the λA, as is explained in Section 7.2.

For the right-moving modes there is a world-sheet supersymmetry, whose

transformations are given by

δXµ = iεψµ and δψµ = −2ε∂−Xµ. (7.6)

This is what survives in conformal gauge of the local supersymmetry that is

present before gauge fixing. This original local supersymmetry is the reason

that the right-moving constraints are given by a super-Virasoro algebra.

There is no supersymmetry for the left-movers.

The SO(32) heterotic string

Let us start with an analysis of the SO(32) heterotic string using methods

that are similar to those used for the superstring in Chapter 4.

Right-movers

The right-moving modes of the heterotic string satisfy super-Virasoro con-

straints like those of right-moving modes of type II superstrings. As in that

case, there is an NS and an R sector. In both sectors one should impose the

GSO projections that were described in Chapter 5.
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• An on-shell physical state |φ〉 in the NS sector must satisfy the conditions

Gr|φ〉 = Lm|φ〉 =

(
L0 −

1

2

)
|φ〉 = 0, r,m > 0, (7.7)

where the various super-Virasoro generators are given by the same formu-

las as in Chapter 4. The mass-shell condition is given by the L0 equation
(
L0 −

1

2

)
|φ〉 =

(
p2

8
+NR −

1

2

)
|φ〉 = 0, (7.8)

where

NR =

∞∑

n=1

α−n · αn +

∞∑

r=1/2

rb−r · br. (7.9)

• In the R sector the physical-state conditions are

Fm|φ〉 = Lm|φ〉 = 0, m ≥ 0, (7.10)

which includes the mass-shell condition

L0|φ〉 =

(
p2

8
+NR

)
|φ〉 = 0, (7.11)

where

NR =
∞∑

n=1

(α−n · αn + nd−n · dn). (7.12)

Alternatively, if one uses the light-cone GS formalism of Chapter 5, then

there is a very simple description of the right-moving modes that does not

involve combining separate sectors or imposing GSO projections. Rather

one simply has

L0|φ〉 =

(
p2

8
+NR

)
|φ〉 = 0, (7.13)

where

NR =

∞∑

n=1

(αi−nα
i
n + nSa−nS

a
n). (7.14)

As explained in Chapter 5, the transverse index i and the spinor index a

each take eight values. The mass-shell condition in this formalism is

M2 = 8NR, (7.15)

which already shows that there are no tachyons, as expected from super-

symmetry.
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Left-movers

The left-moving fermionic fields λA can have periodic or antiperiodic bound-

ary conditions, just like the fermionic coordinates ψµ in the RNS formalism.

Periodic boundary conditions define the P sector, which is the analog of the

R sector of the superstring. The mode expansion in the P sector is

λA(τ + σ) =
∑

n∈ �
λAn e

−2in(τ+σ). (7.16)

These modes satisfy the anticommutation relations
{
λAm, λ

B
n

}
= δABδm+n,0. (7.17)

Antiperiodic boundary conditions define the A sector, which is the analog

of the NS sector of the superstring. The mode expansion in the A sector is

λA(τ + σ) =
∑

r∈ � +1/2

λAr e
−2ir(τ+σ). (7.18)

These modes satisfy the anticommutation relations
{
λAr , λ

B
s

}
= δABδr+s,0. (7.19)

The left-moving modes of the heterotic string satisfy Virasoro constraints

L̃m|φ〉 = (L̃0 − ã)|φ〉 = 0, m > 0. (7.20)

If one goes to light-cone gauge and solves the Virasoro constraints, then only

the eight transverse components α̃in are relevant. For the left-movers the A

and P sectors need to be treated separately.

• For the P sector
(
L̃0 − ãP

)
|φ〉 =

(
p2

8
+NL − ãP

)
|φ〉 = 0, (7.21)

where

NL =

∞∑

n=1

(α̃−n · α̃n + nλA−nλ
A
n ). (7.22)

• In the A sector we have
(
L̃0 − ãA

)
|φ〉 =

(
p2

8
+NL − ãA

)
|φ〉 = 0, (7.23)

where

NL =
∞∑

n=1

α̃−n · α̃n +
∞∑

r=1/2

rλA−rλ
A
r . (7.24)
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Now let us compute the left-moving normal-ordering constants ãA and ãP.

The general rule is most easily understood in the light-cone gauge, where

only physical degrees of freedom contribute. The normal-ordering constant

due to the zero-point energy of a periodic boson is 1/24, for an antiperiodic

fermion is 1/48 and for a periodic fermion is −1/24.2 Using these rules, we

obtain the following value for the normal-ordering constants:

ãA =
8

24
+

32

48
= 1, (7.25)

ãP =
8

24
− 32

24
= −1. (7.26)

Thus, the mass formula for the states in the A sector is

1

8
M2 = NR = NL − 1, (7.27)

and in the P sector it is

1

8
M2 = NR = NL + 1. (7.28)

These equations show that massless states must have NR = 0. Therefore, in

the A sector there are massless states, which have to satisfy NL = 1. On the

other hand, there are no massless states in the P sector, since NL cannot be

negative.

Massless spectrum

Massless states are constructed by taking the tensor product of right-moving

modes with NR = 0 and left-moving modes with NL = 1 in the A sector, as

there are no massless states in the P sector.

• For the right-moving sector the states with NR = 0 are those of the

D = 10 vector supermultiplet, as in the superstring theories. Explicitly,

in light-cone gauge notation, the massless modes in the NR = 0 sector are

|i〉R and |ȧ〉R, (7.29)

which are the ground states in the bosonic and fermionic sectors corre-

sponding to the vector 8v and the spinor 8c representations of the trans-

verse rotation group Spin(8).

• The left-moving modes with NL = 1 consist of

α̃i−1|0〉L, (7.30)

2 The derivation of these normal-ordering constants is given in Chapter 4.
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which is an SO(32) singlet and an SO(8) vector, and

λA−1/2λ
B
−1/2|0〉L, (7.31)

which is an antisymmetric rank-two tensor of dimension 32 × 31/2 =

496. The latter states are Lorentz singlets and transform in the adjoint

representation of the gauge group SO(32).

Since the heterotic string theory is a closed-string theory, the physical states

are given by the tensor product of right-movers and left-movers. Let us

consider the contributions of α̃i−1|0〉L first. In the bosonic sector this gives

the massless states

|i〉R ⊗ α̃j−1|0〉L. (7.32)

These 64 states can be decomposed into a symmetric traceless part (gravi-

ton), an antisymmetric tensor and a scalar (dilaton). In the fermionic sector

the massless states are

|ȧ〉R ⊗ α̃j−1|0〉L, (7.33)

which decomposes into a gravitino with 56 components and a dilatino with

eight components. Altogether, these 64 bosons and 64 fermions form the

N = 1 supergravity multiplet.

The tensor product of the other 496 NL = 1 left-moving states of the form

in Eq. (7.31) with the 16 right-moving states with NR = 0 gives the D = 10

vector supermultiplet for the gauge group SO(32). It is important that all

the massless vector states have appeared in the adjoint representation, as is

required by Yang–Mills theory. The massless fermionic gauginos, which are

their supersymmetry partners, are also in the adjoint representation.

A GSO-type projection

The modes in the A sector are constrained to satisfy NR = NL − 1. This

condition has interesting implications for the left-movers. Recall that NR as

defined in Eq. (7.14) has only integer eigenvalues, whereas NL can have half-

integer eigenvalues, which arise whenever an odd number of λA oscillators

act on the Fock-space vacuum. The relation NR = NL−1 implies that these

half-integer eigenvalues do not contribute to the physical spectrum. This

projecting out of states with an odd number of λA oscillators is reminiscent of

the GSO projection. In fact, it is a projection of exactly the same type, since

it says that there must be an even number of λA-oscillator excitations. A

similar projection condition is required for the P sector by one-loop unitarity.

It cannot be discovered just from level-matching, since P-sector modes are
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integral in the first place. The projection condition in this case is (−1)F = 1,

where

(−1)F = λ̄0(−1)
P∞

1 λA−nλ
A
n (7.34)

and

λ̄0 = λ1
0λ

2
0 . . . λ

32
0 (7.35)

is the product of the fermionic zero modes. The NL = 0 level contributes

only half of the 216 modes that one might otherwise expect. This corresponds

to an irreducible spinor representation of Spin(32), which is the universal

covering group of SO(32). In fact, because of this projection condition only

one of the two possible conjugacy classes of spinors occurs in the physical

spectrum. As a result, the gauge group of the theory is most precisely

described as Spin(32)/
�

2. This means that two of the four conjugacy classes

of Spin(32) survive: the adjoint conjugacy class (corresponding to the root

lattice) and one for the two spinor conjugacy classes. The conjugacy class

containing the vector 32 representation and the other spinor conjugacy class

do not occur.

The E8 × E8 heterotic string

The anomaly analysis in Chapter 5 showed that in addition to SO(32)

there is one other compact Lie group,3 namely E8 × E8, for which there

could be a consistent supersymmetric gauge theory in ten dimensions. This

group shows much more promise for phenomenological applications, since

the gauge group of the standard model, SU(3) × SU(2) × U(1), fits inside

E8 through a nice chain of embeddings:

SU(3)× SU(2)× U(1) ⊂ SU(5) ⊂ SO(10) ⊂ E6 ⊂ E7 ⊂ E8. (7.36)

The various groups that appear in this sequence are precisely the ones that

have been most studied as candidates for grand unification symmetry groups.

This gives additional motivation for trying to realize an E8 × E8 gauge

symmetry in the fermionic description of the heterotic string theory.

The construction of the SO(32) heterotic string retained the manifest

SO(32) symmetry of the world-sheet action at all stages of the analysis by

assigning the same boundary conditions (A or P) to all of the 32 left-moving

fermions λA in each of the sectors. So there was just one P sector and one A

sector. If maintaining the SO(32) symmetry is no longer an objective, then

3 For a brief introduction to Lie groups, and E8 in particular, see Polchinski Section 11.4 and
GSW, Appendix 6.A, respectively.
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it is natural to consider introducing sectors in which there are A boundary

conditions for some of the fermions and P boundary conditions for the rest of

them. Of course, as long as the goal is to achieve a supersymmetric theory,

there should be no change in the treatment of the right-moving fermions ψµ

or Sa. So let us now explore the possibilities for introducing different λA

sectors.

Boundary conditions for fermions

Suppose that n of the fermions λA satisfy the same boundary conditions,

either A or P, and the other (32 − n) fermions independently satisfy A or

P boundary conditions. If this results in a consistent theory, this would be

expected to break the SO(32) symmetry group to the subgroup SO(n) ×
SO(32− n).

There are four different sectors, denoted AA, AP, PA and PP, where the

first label refers to the boundary condition of the first n components of

λA and the second label refers to the boundary condition of the remaining

(32 − n) components. As a result, there are four different choices for the

normal-ordering constant ã. Recall again that the normal-ordering constant

for a boson is +1/24, while a periodic fermion has −1/24 and an antiperiodic

fermion has +1/48. Taking this into account, the values for the normal-

ordering constants are

ãAA =
8

24
+

n

48
+

32− n
48

= 1, (7.37)

ãAP =
8

24
+

n

48
− 32− n

24
=

n

16
− 1, (7.38)

ãPA =
8

24
− n

24
+

32− n
48

= 1− n

16
, (7.39)

ãPP =
8

24
− n

24
− 32− n

24
= −1. (7.40)

The sectors labeled AA and PP are the same as the ones labeled A and P

in the SO(32) theory discussed in the previous section, but the ones labeled

AP and PA are new.

In each sector there is a level-matching condition of the form NR = NL−ã.

The eigenvalues of NR are always integers, and the eigenvalues of NL can

be integers or half-integers. Therefore, there are no solutions unless ã is an

integer or half-integer, which implies that n must be a multiple of 8. In this

notation the n = 32 or 0 case corresponds to the theory constructed in the

previous section, as stated above. The cases n = 8 and n = 24 would lead
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to a spectrum that is inconsistent due to gauge anomalies. Therefore, only

the n = 16 case remains to be considered.

The n = 16 case

This is the case of most interest. It would naively appear to have an

SO(16)×SO(16) gauge symmetry, but it turns out that each SO(16) factor

is enhanced to an E8. The AP and PA sectors have ã = 0 for n = 16.

This value makes it possible to contribute states to the massless spectrum,

a fact that proves to be very important in understanding the symmetry

enhancement.

Let us now examine the massless spectrum in the n = 16 case. The right-

movers have NR = 0 (in the light-cone GS description) and contribute a

vector supermultiplet, which should be tensored with the massless states of

the left-moving sectors. The left-movers can have the boundary conditions:

• The PP sector does not contribute to the massless spectrum, as before.

• The AA sector, on the other hand, does contribute states with NL = 1.

These include states of the form

α̃i−1|0〉L (7.41)

and

λA−1/2λ
B
−1/2|0〉L. (7.42)

The eight states (7.41), when tensored with the right-moving vector mul-

tiplet give the N = 1 gravity supermultiplet, just as in the case of the

SO(32) theory. The 496 states in (7.42) are exactly those that gave the

SO(32) gauge supermultiplets previously. They will do so again unless

some of them are projected out. To see what is required, let us examine

how they transform under SO(16)× SO(16):

(120,1) if A,B = 1, . . . , 16,

(1,120) if A,B = 17, . . . , 32,

(16,16) if A = 1, . . . , 16, B = 17, . . . , 32.

(7.43)

Here 120 = 16 × 15/2 denotes the antisymmetric rank-two tensor in the

adjoint representation of SO(16) and 16 denotes the vector representa-

tion. Clearly, if we want to keep only the SO(16)× SO(16) gauge fields,

then we need a rule that says that the (120,1) and the (1,120) multiplets

are physical, while the (16,16) multiplet is unphysical. The way to do

this is to require that the number of λA excitations involving the first

set of 16 components and the second set of 16 components should each

be even. This is more restrictive than just requiring that their sum is
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even, and it eliminates the (16,16) multiplet while retaining the other

two multiplets. This rule, which is required to obtain the desired gauge

symmetry, corresponds to using one and the same GSO projection for all

sectors.

• Now consider the massless states in the PA and AP sectors. Since ã = 0,

states in the massless sector should have NL = 0. The 16 components

of λA with periodic boundary conditions have zero modes. Therefore, as

usual, the Fock-space ground states should furnish a spinor representation

of the corresponding SO(16) group (more precisely, its Spin(16) covering

group). If we denote the two inequivalent spinor representations of SO(16)

by 128 and 128′, then the possible additional massless states transform

as

PA : (128,1)⊕ (128′,1),

AP : (1,128)⊕ (1,128′).
(7.44)

However, as in previous cases, not all of these states survive in the physical

spectrum. There is a GSO-like projection that eliminates some of them.

The 32 fermions λA are divided into two sets of 16. As we already

learned from studying the AA sector, separate projection conditions should

be imposed for each of these two sets. Indeed, given the previous results,

the rule is pretty clear. The analysis of the AA sector showed that for a

set of 16 λA with A boundary conditions, there should be an even number

of λA excitations. Now this needs to be supplemented with the corre-

sponding rule for P boundary conditions.

The rules for the A and P sectors are the same as in the SO(32) theory,

except that they are applied to each set of 16 components separately.

Thus, for example, if the first 16 λA have P boundary conditions, then

a physical state is required to be an eigenstate, with eigenvalue equal to

one, of the operator

(−1)F1 = λ̄
(1)
0 (−1)

P∞
n=1

P16
A=1 λ

A
−nλ

A
n , (7.45)

where

λ̄
(1)
0 = λ1

0λ
2
0 . . . λ

16
0 . (7.46)

The rule is the same for the second set of 16, of course. If they have P

boundary conditions, then a physical state is required to be an eigenstate,

with eigenvalue equal to one, of the operator

(−1)F2 = λ̄
(2)
0 (−1)

P∞
n=1

P32
A=17 λ

A
−nλ

A
n , (7.47)
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where

λ̄
(2)
0 = λ17

0 λ
18
0 . . . λ32

0 . (7.48)

This rule eliminates one of the two spinors from each of the AP and PA

sectors. Therefore, their surviving contribution to the massless spectrum

is

(128,1)⊕ (1,128). (7.49)

Each of the left-moving multiplets (7.49) is tensored with the right-moving

vector multiplet and therefore contributes additional massless vectors. To

understand what this means let us focus on the massless vector fields. The

massless spectrum contains vector fields that transform as (120,1) + (128,1)

as well as ones that transform as (1,120) + (1,128). The only way this can

make sense is if these 248 states form the adjoint representation of a Lie

group.

Here is where E8 enters the picture. This Lie group is the largest of the

five exceptional compact simple Lie groups in the Cartan classification. It

has rank eight and dimension 248. Moreover, it contains an SO(16) sub-

group with respect to which the adjoint decomposes as 248 = 120 + 128.

This is exactly the content that we found, so it is extremely plausible that

the heterotic theory with the projections described here gives a consistent

supersymmetric string theory in ten dimensions with E8 × E8 gauge sym-

metry.

This suggests that there exists a consistent heterotic string theory with

E8 × E8 gauge symmetry. First indications appeared already from the

anomaly analysis in Chapter 5, where this gauge group is one of the two

possibilities that was singled out. The GSO-like projections introduced here

are a straightforward generalization of those that gave the SO(32) heterotic

theory (as well as those of the RNS string), and they give precisely the

necessary massless spectrum.

EXERCISES

EXERCISE 7.1

Consider left-moving currents

Ja(z) =
1

2
T aABλ

A(z)λB(z),
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where λA(z) are free fermi fields that transform in a real representation R

of a Lie group G. The representation matrices T a satisfy the Lie algebra

[T a, T b] = ifabcT c.

Verify that the currents have the OPE

Ja(z)Jb(w) =
kδab

2(z − w)2
+ i

fabc

z − wJ
c(w) + . . . ,

where the level k is given by

tr(T aT b) = kδab.

This defines a level k Kac–Moody algebra of the type discussed in Sec-

tion 3.1. Show that k = 1 in the special case of the vector representation of

SO(n).

SOLUTION

The free fermion fields satisfy the OPE

λA(z)λB(w) =
δAB

z − w,

and as a result the leading term in the OPE is given by

〈1
2
T aABλ

A(z)λB(z)
1

2
T bCDλ

C(w)λD(w)〉 =
1

2

tr(T aT b)

(z − w)2
=

kδab

2(z − w)2
.

Note that the two contractions (AC)(BD) and (AD)(BC) have contributed

equally due to the antisymmetry of the representation matrices and anti-

commutation of the fermi fields. The second term in the OPE works in a

similar manner with four possible single contractions contributing. These

combine in pairs to give commutators of the representation matrices, which

are evaluated using the Lie algebra.

In the special case of the vector representation of SO(n) there are n free

fermi fields each of which contributes 1/2 to the central charge giving a total

of n/2. This should be compared with the general formula for the central

charge at level k given in Section 3.1

c =
k dimG

k + h̃G
.

In the present case dimG = n(n − 1)/2 and h̃G = n − 2. Thus, for n > 2,

c = n/2 corresponds to k = 1. 2
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EXERCISE 7.2

Derive the mass formulas for states in the A and P sector, Eqs (7.27) and

(7.28), respectively.

SOLUTION

Consider first the A sector. Because the right-moving sector is a superstring,

from Chapter 4 we know that the mass formula is

1

8
M2 = NR.

For the left-moving sector we have ãA = 1, which leads to the mass-shell

condition

L̃0 − 1 = 0→ 1

8
M2 = NL − 1.

Thus altogether

1

8
M2 = NR = NL − 1.

In the P sector the left-movers have ãP = −1, and so the same reasoning

gives

1

8
M2 = NR = NL + 1.

2

7.3 Toroidal compactification

Chapter 6 examined compactification on a circle in considerable detail. It

was shown that the consequences for string theory are much more than

one might expect based on classical geometric reasoning. One important

lesson was the existence of T-duality, which relates radius R to radius α′/R.

Another lesson was the existence of D-branes associated with open strings,

which emerge after T-duality.

What is demonstrated here is that the generalization to compactification

on an n-dimensional torus T n adds additional interesting structure. The

T-duality group becomes enlarged to an infinite discrete group, and there

are interesting new possibilities for realizing nonabelian gauge symmetry.

The details depend on which string theory one considers.
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The bosonic string

Let us consider closed bosonic strings on a toroidally compactified space-

time. Specifically, the space-time manifold is described by the metric

ds2 =

d−1∑

µ,ν=0

ηµνdX
µdXν +

n∑

I,J=1

GIJdY
IdY J , (7.50)

with d + n = 26. Here the first term describes flat Minkowski space-time

parametrized by coordinates Xµ and the second term describes the “inter-

nal” torus Tn with coordinates Y I , each of which has period 2π.

The physical sizes and angles that characterize the T n can be encoded

in the constant internal metric GIJ . For example, in the special case of a

rectangular torus the n internal circles are all perpendicular and the internal

metric is diagonal resulting in

GIJ = R2
IδIJ , (7.51)

where RI is the radius of the Y I circle. A more general internal metric with

off-diagonal elements would describe a torus with nonorthogonal circles.

A closed bosonic string is described by the embedding maps Xµ(σ, τ) and

Y I(σ, τ), where 0 ≤ σ ≤ π. The fact that the string is closed implies

Xµ(σ + π, τ) = Xµ(σ, τ),

Y I(σ + π, τ) = Y I(σ, τ) + 2πW I with W I ∈ �
.

(7.52)

Here W I are the winding numbers which give the number of times (and

direction) that the string winds around each of the cycles of the torus.

Mode expansions

The mode expansion for the external and internal components of X is a

slight generalization of the expansion for a string compactified on a circle in

Chapter 6. The mode expansions (for ls = 1) for the noncompact coordinates

take the form

Xµ(σ, τ) = Xµ
L(τ + σ) +Xµ

R(τ − σ),

Xµ
L(τ + σ) = 1

2x
µ + pµL(τ + σ) + i

2

∑
n6=0

1
n α̃

µ
ne−2in(τ+σ),

Xµ
R(τ − σ) = 1

2x
µ + pµR(τ − σ) + i

2

∑
n6=0

1
nα

µ
ne−2in(τ−σ),

(7.53)

where

pµL = pµR =
1

2
pµ. (7.54)



7.3 Toroidal compactification 267

The compact coordinates Y I(σ, τ) have analogous expansions given by

Y I(σ, τ) = Y I
L (τ + σ) + Y I

R(τ − σ),

Y I
L (τ + σ) = 1

2y
I + pIL(τ + σ) + i

2

∑
n6=0

1
n α̃

I
ne
−2in(τ+σ),

Y I
R(τ − σ) = 1

2y
I + pIR(τ − σ) + i

2

∑
n6=0

1
nα

I
ne
−2in(τ−σ).

(7.55)

Notice that in these formulas pIL and pIR do not have to be equal. Thus the

first terms in the expansion of Y I are

Y I(σ, τ) = Y I
L (τ+σ)+Y I

R(τ−σ) = yI+(pIL+pIR)τ+(pIL−pIR)σ+. . . , (7.56)

and the second equation in (7.52) implies that the difference between pIL and

pIR is an integer given by the winding number

pIL − pIR = 2W I with W I ∈ �
. (7.57)

Moreover, the sum of pIL and pIR, the momenta along the circle directions,

must be quantized, so that eipy is single-valued. In the simplest case of a

rectangular torus and no background B fields, this implies that

pIL + pIR = KI with KI ∈
�
. (7.58)

These quantized internal momenta correspond to the Kaluza–Klein excita-

tions.

Mode expansions with constant background fields

The above results hold for the case of no background B fields and a diagonal

internal metric. Now consider turning on constant background values for

the antisymmetric two-form BIJ and the internal metric GIJ . To derive the

expressions for the momenta in terms of the winding numbers as well as

Kaluza–Klein quantum numbers, the relevant part of the world-sheet action

for strings in this background needs to be taken into account

S = − 1

2π

∫
d2σ

(
GIJη

αβ −BIJεαβ
)
∂αY

I∂βY
J . (7.59)

This action gives the canonical momentum density

pI =
δS

δẎ I
=

1

π

(
GIJ Ẏ

J +BIJY
′J
)
. (7.60)

This momentum density integrates to give the total momentum vector
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KI , which is an integer, because Y I are periodic. Using the mode expansion

for the internal coordinates appearing in Eq. (7.56), one obtains

KI =

∫ π

0
pIdσ = GIJ

(
pJL+pJR

)
+BIJ

(
pJL−pJR

)
with KI ∈

�
. (7.61)

This is the generalization of Eq. (7.58). Equations (7.57) and (7.61) can be

solved for the left-moving and right-moving momenta resulting in

pIL = W I +GIJ
(

1
2KJ −BJKWK

)
,

pIR = −W I +GIJ
(

1
2KJ −BJKWK

)
,

(7.62)

where, as usual, G with superscript indices denotes the inverse matrix.

The mass spectrum and level-matching condition

The starting point for determining the mass spectrum and level-matching

condition of the toroidally compactified bosonic string is again the physical-

state conditions

(L0 − 1) |Φ〉 =
(
L̃0 − 1

)
|Φ〉 = 0, (7.63)

which now take the form

1

8
M2 =

1

2
GIJp

I
Lp

J
L +NL − 1 =

1

2
GIJp

I
Rp

J
R +NR − 1. (7.64)

Here the number operators are the usual expressions (independent of the

background fields)

NR =

∞∑

m=1

α−m · αm and NL =

∞∑

m=1

α̃−m · α̃m. (7.65)

The difference of the two equations in (7.64) gives the level-matching condi-

tion

NR −NL =
1

2
GIJ(pILp

J
L − pIRpJR) = W IKI . (7.66)

Taking the sum of the same two equations, the mass operator becomes

M2 = M2
0 +4(NR +NL−2) with M2

0 = 2GIJ (pILp
J
L +pIRp

J
R). (7.67)

A convenient way of rewriting M 2
0 , which is useful for exhibiting the symme-

tries of the spectrum, is obtained by substituting Eqs (7.62) into Eq. (7.67).

Suppressing indices, this gives

1

2
M2

0 = (W K)G−1

(
W

K

)
, (7.68)
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where4

G−1 =

(
2(G−BG−1B) BG−1

−G−1B 1
2G
−1

)
, (7.69)

or the inverse

G =

(
1
2G
−1 −G−1B

BG−1 2(G−BG−1B)

)
. (7.70)

Note that these are 2n× 2n matrices written in terms of n× n blocks.

The O(n, n;
�

) duality group

Compactification of the bosonic string on tori T n has a beautiful symmetry,

called O(n, n;
�

), which generalizes the T-duality symmetry of circle com-

pactifications. This O(n, n;
�

) symmetry of the spectrum is best described

in terms of the matrix G. Indeed, for a nonorthogonal torus the R → 1/R

duality of the circle compactification generalizes to the inversion symmetry

W I ↔ KI , G ↔ G−1. (7.71)

This symmetry becomes clear from the expressions (7.68) – (7.70). Addi-

tional discrete shift symmetries are given by

BIJ → BIJ +
1

2
NIJ with W I →W I , KI → KI +NIJW

J , (7.72)

where NIJ is an antisymmetric matrix of integers. These transformations

are symmetries, because they leave pIL and pIR in (7.62) unchanged. Since

N is antisymmetric these symmetries only appear when n > 1.

Altogether, the inversion symmetry and the shift symmetries generate

the infinite discrete group O(n, n;
�

). By definition, the group O(n, n; � )

consists of matrices A satisfying

AT
(

0 1n
1n 0

)
A =

(
0 1n
1n 0

)
, (7.73)

where 1n denotes an n×n unit matrix. The group O(n, n;
�

) is the subgroup

of O(n, n; � ) consisting of those matrices all of whose matrix elements are

integers. Note that if G is integral, then G−1 is automatically integral, as

well. The group O(n, n;
�

) is an infinite group (for n > 1). This group

is generated by the geometric duality subgroup SL(n,
�

), which just corre-

sponds to a change of basis for the defining periods of the torus, and the

nongeometric transformation G ↔ G−1.

A convenient way of rewriting the above symmetry transformations is the

4 The various factors of 2 and 1/2 in these formulas are a consequence of the choice α′ = 1/2.
They could be eliminated by redefining G and B by a factor of 2.
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following. Under the T-duality group O(n, n;
�

), the symmetry is realized

as

G → AGAT and

(
W

K

)
→
(
W ′

K ′

)
= A

(
W

K

)
. (7.74)

This preserves the result for the mass spectrum in Eqs (7.67) and (7.68) as

well as the level-matching condition in Eq. (7.66). The best way to see this

is to rewrite the level-matching condition in the form

W IKI =
1

2
(W K)

(
0 1n
1n 0

)(
W

K

)
(7.75)

and use Eq. (7.73). In terms of O(n, n;
�

) transformations, the inversion

symmetry corresponds to the matrix

inversion : A =

(
0 1n
1n 0

)
, (7.76)

and the shift symmetry corresponds to the matrix

shift : A =

(
1n 0

NIJ 1n

)
. (7.77)

The claim is that an arbitrary O(n, n;
�

) transformation can be represented

by a succession of these two types of transformations. This is the T-duality

group for the toroidally compactified bosonic string theory.

The moduli space

The compactification moduli space is parametrized by the n2 parameters

GIJ , BIJ . The sum GIJ +BIJ is an n×n real matrix. The only restriction

on this matrix is that its symmetric part is positive definite. This space

of matrices can be represented as a homogeneous space, in other words as

a coset space G/H. The appropriate choice is (see Exercise 7.5 for more

details)

M0
n,n = O(n, n; � )/[O(n; � )×O(n; � )]. (7.78)

This is not the whole story, however. Points in this moduli space that are

related by an O(n, n,
�

) T-duality transformation are identified as physically

equivalent.5 Thus the physical moduli space is

Mn,n =M0
n,n/O(n, n;

�
). (7.79)

SinceM0
n,n is a homogeneous space,M0

n,n is a smooth manifold of dimension

n2. On the other hand, Mn,n has singularities (or cusps) corresponding

5 This is an example of a discrete gauge symmetry.
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to fixed points of O(n, n;
�

) transformations. At these special values of

(GIJ , BIJ) the spectrum has additional massless gauge bosons, and there is

unbroken nonabelian gauge symmetry.

Enhanced gauge symmetry

Nonabelian gauge symmetries can arise from toroidal compactifications.

From a Kaluza–Klein viewpoint this is very surprising. In a point-particle

theory the gauge symmetries one would expect are those that correspond

to isometries of the compact dimensions. The isometry of T n is simply

U(1)n and this is abelian. So the feature in question is a purely stringy one

involving winding modes in addition to Kaluza–Klein excitations.

This section considers the bosonic string theory compactified on a T n

as before. The extension to the heterotic string is given in the following

section. The basic idea in both cases is that for generic values of the moduli

the gauge symmetry is abelian. In the case of the bosonic string theory

it is actually U(1)2n, so there are 2n massless U(1) gauge bosons in the

spectrum. Half of them arise from reduction of the 26-dimensional metric

(namely, components of the form gµI) and half of them arise from reduction

of the 26-dimensional two-form (namely, components of the form BµI).

At specific loci in the moduli space there appear additional massless parti-

cles including massless gauge bosons. When this happens there is symmetry

enhancement resulting in nonabelian gauge symmetry. For example, in the

n = 1 case, the symmetry is enhanced from U(1)× U(1) to SU(2)× SU(2)

at the self-dual radius. Let us explore how this happens.

The self-dual radius

In order to consider enhanced gauge symmetry of the bosonic string theory

compactified on a circle of radius R, let us assume that the coordinate X25

is compact and the remaining coordinates are noncompact. The spectrum

is described by the mass formula

M2 =
K2

R2
+ 4R2W 2 + 4(NL +NR − 2), (7.80)

as well as the level-matching condition

NR −NL = KW. (7.81)

As before, W describes the number of times the string winds around the

circle. Let us now explore some of the low-mass states in the spectrum of

this theory.
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• The Fock-space ground state, with K = W = 0, gives the tachyon with

M2 = −8, as usual.

• At the massless level with NR = NL = 1 and K = W = 0 there are the

25-dimensional graviton, antisymmetric tensor and dilaton, represented

by

αµ−1α̃
ν
−1|0〉, (7.82)

with the oscillators in the 25 noncompact directions. Here and in the

following µ, ν = 0, . . . , 24. There are also two massless vector states given

by

|V µ
1 〉 = αµ−1α̃−1|0〉, (7.83)

|V µ
2 〉 = α−1α̃

µ
−1|0〉, (7.84)

where α̃−1, without space-time index, denotes the oscillator in the direc-

tion 25. As usual for a vector particle, these states satisfy the L1 and L̃1

Virasoro constraints provided that their polarization vectors are orthogo-

nal to their momenta. These are Kaluza–Klein states that arise from the

26-dimensional graviton and antisymmetric tensor. These two fields give

a U(1)L × U(1)R gauge symmetry. The symmetric linear combination,

which comes from the graviton, couples electrically to the Kaluza–Klein

charge K. Similarly, the antisymmetric combination, which comes from

the B field, couples electrically to winding number W . The state

|φ〉 = α−1α̃−1|0〉 (7.85)

describes a massless scalar field.

• Let us now consider states with W = K = ±1. The level-matching

condition in this case is NR = NL +1. Choosing the first instance, namely

NL = 0 and NR = 1, there are two vector states

|V µ
++〉 = αµ−1|+ 1,+1〉 and |V µ

−−〉 = αµ−1| − 1,−1〉, (7.86)

where we have introduced the notation |K,W 〉. In addition there are two

scalars

|φ++〉 = α−1|+ 1,+1〉 and |φ−−〉 = α−1| − 1,−1〉. (7.87)

The mass of these states depends on the radius of the circle and is given

by

M2 =
1

R2
+ 4R2 − 4 =

(
1

R
− 2R

)2

. (7.88)
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Note that this vanishes for R2 = 1/2 = α′, which is precisely the self-dual

radius of the T-duality transformation R→ α′/R.

In the same way we can consider the states which have K = −W = ±1.

Then there are again two vectors

|V µ
+−〉 = α̃µ−1|+ 1,−1〉 and |V µ

−+〉 = α̃µ−1| − 1,+1〉, (7.89)

and two scalars

|φ+−〉 = α̃−1|+ 1,−1〉 and |φ−+〉 = α̃−1| − 1,+1〉. (7.90)

The mass of these states is also given by Eq. (7.88). Altogether, at the

self-dual radius there are four additional massless vectors in the spectrum

in addition to the two that are present for any radius. The interpretation

is that there is enhanced gauge symmetry for this particular value of

the radius. The gauge group U(1) × U(1), which is present in general,

is a subgroup of the enhanced symmetry group, which in this case is

SU(2)× SU(2). This is explored in Exercise 7.3. The three vectors that

involve an αµ−1 excitation are associated with a right-moving SU(2) on

the string world sheet. Similarly, the other three involve a α̃µ−1 excitation

and are associated with a left-moving SU(2) on the string world sheet.

The case of SU(3)× SU(3) is studied in Exercise 7.8.

This enhancement of gauge symmetry at the self-dual radius is a “stringy”

effect. For other values of the radius the gauge symmetry is broken to

U(1)L × U(1)R. The four gauge bosons |V µ
±±〉 eat the four scalars |φ±±〉

as part of a stringy Higgs effect. On the other hand, the U(1)L × U(1)R

gauge bosons, as well as the associated scalar |φ〉, remain massless for all

values of the radius. This neutral scalar has a flat potential (meaning that

the potential function does not depend on it), which corresponds to the

freedom of choosing the radius of the circle to be any value with no cost

in energy. Altogether, the spectrum of the bosonic string compactified on

a circle is characterized by a single parameter R, called the modulus of the

compactification. It is the radius of the circle, whose value is determined by

the vacuum expectation value of the scalar field |φ〉.
As was explained in the previous section, the T-duality symmetry of the

bosonic string theory requires that the moduli space of the theory compact-

ified on a circle be defined as the quotient space of the positive line R > 0

modulo the identification of R and 1/(2R). Therefore, the point of enhanced

gauge symmetry, which is the fixed point of the T-duality transformation,

is also the singular point of the moduli space.
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In the case of type II superstrings, compactification on a T n again gives

rise to 2n abelian gauge fields. However, unlike the bosonic string theory,

there is no possibility of symmetry enhancement. One way of understanding

this is to note that all 2n of the gauge fields belong to the supergravity

multiplet in 10 − n dimensions, and this cannot be extended to include

additional gauge fields. Another way of understanding this is to observe that

symmetry enhancement in the bosonic string utilized winding and Kaluza–

Klein excitations so that NL = NR ± 1. The same relations in the case of

type II superstrings imply that the mass is strictly positive.

Toroidal compactification of the heterotic string is studied in Section 7.4.

It is shown that compactification to 10−n dimensions gives n right-moving

U(1) currents and 16 +n left-moving U(1) currents. Moreover, there can be

no symmetry enhancement for the right-moving current algebra, but there

can be symmetry enhancement for the left-moving current algebra. In fact,

in the special case n = 0, the U(1)16 is necessarily enhanced, to either

SO(32) or E8 × E8.

One-loop modular invariance

Chapter 3 showed that one-loop amplitudes are given by integrals over

the moduli space of genus-one (toroidal) Riemann surfaces. This space

is parametrized by a modular parameter τ whose imaginary part is posi-

tive. An important consistency requirement is that the integral should have

modular invariance. In other words, it should be of the form

∫

F

d2τ

(Imτ)2
I(τ, . . .), (7.91)

where F denotes a fundamental region of the modular group. Modular

invariance requires that I is invariant under the PSL(2,
�

) modular trans-

formations

τ → τ ′ =
aτ + b

cτ + d
, (7.92)

where a, b, c, d ∈ �
and ad− bc = 1, since the measure d2τ/(Imτ)2 is invari-

ant. Two examples of modular transformations are shown in Fig. 7.1. This

ensures that it is equivalent to define the integral over the region F or any

of its images under a modular transformation. In other words, the value of

the integral is independent of the particular choice of a fundamental region.

This property is satisfied by the bosonic string theory in 26-dimensional

Minkowski space-time. Accepting that result, we propose to examine here
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whether it continues to hold when the theory is compactified on T n with

arbitrary background fields GIJ and BIJ .

Fig. 7.1. Two examples of modular transformations of the torus. The right-hand
dotted parallelogram has been rotated for clarity of presentation.

In the computation of the amplitude the key factor that needs to be

considered is the partition function

Tr
(
qL0 q̄

eL0

)
, (7.93)

where

q = e2πiτ . (7.94)

Toroidal compactification only changes the contribution of the zero modes

to the partition function, which becomes

Tr
(
q

1
2
p2

R q̄
1
2
p2

L

)
=
∑

W I ,KI

eπiτ1(p2
R−p2

L)e−πτ2(p2
L+p2

R), (7.95)

where τ = τ1 + iτ2, and pL and pR are defined in Eqs (7.62). This factor

replaces the momentum integration
∫

exp(−πτ2p
2)dnp = (τ2)−n/2, (7.96)

in the noncompact case. Therefore, to establish modular invariance of the

toroidally compactified bosonic string, it is necessary to prove modular in-

variance of

F (τ ;G,B) = (τ2)n/2Tr
(
q

1
2
p2

R q̄
1
2
p2

L

)
. (7.97)
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Modular invariance of F (τ ;G,B)

Modular invariance of F (τ ;G,B) is verified by checking that it is invariant

under the two transformations τ → τ + 1 and τ → −1/τ .

• Invariance under τ → τ + 1 is verified using Eq. (7.95), since

p2
R − p2

L = 2(NL −NR) = −2W IKI (7.98)

is an even integer.

• Invariance under τ → −1/τ is the next step to check. The key to this is

to make use of the Poisson resummation formula which states that if A is

a positive definite m×m symmetric matrix and

f(A) =
∑

{M}
exp

(
−πMTAM

)
, (7.99)

where M represents a vector made of m integers M1,M2, . . . ,Mm, each

of which is summed from −∞ to +∞, then

f(A) =
1√

detA
f(A−1). (7.100)

The derivation of the Poisson resummation formula is very beautiful and

relatively easy to prove, so the proof is given in the appendix at the end

of this chapter.

Now let us apply the Poisson resummation formula to our problem.

The function F (τ,G,B) takes the form

F (τ,G,B) = (τ2)n/2f(A), (7.101)

where A is the 2n× 2n matrix

A = τ2

(
2(G−BG−1B) BG−1

−G−1B 1
2G
−1

)
+ iτ1

(
0 1n
1n 0

)
. (7.102)

It is now a straightforward calculation, described in Exercise 7.4, to com-

pute the determinant and the inverse of this matrix. The results are

detA = |τ |2n (7.103)

and

A−1 = τ̃2

(
1
2G
−1 −G−1B

BG−1 2(G−BG−1B)

)
+ iτ̃1

(
0 1n
1n 0

)
, (7.104)

where

τ̃ = −1

τ
=
−τ1 + iτ2

|τ |2 . (7.105)
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Interchanging the first n rows and columns with the second n rows and

columns brings A(τ)−1 into agreement with A(τ̃). One deduces that

F (τ ;G,B) = F

(
−1

τ
;G,B

)
, (7.106)

which establishes one-loop modular invariance of the toroidally compact-

ified theory.

Even self-dual lattices

The reason that the proof of modular invariance, given above, was successful

can be traced to the fact that the moduli space M can be regarded as

parametrizing the space of even self-dual lattices Γn,n of signature (n, n).

In order to explain what this means, a few basic facts about lattices are

reviewed in the next section.

A brief introduction to lattices

In general, a lattice is defined as a set of points in a vector space V , which

we take to be � (p,q), (that is, � p+q with Lorentzian inner product) of the

form

Λ =

{
m∑

i=1

niei, ni ∈
�
}
, (7.107)

where m = p + q and {ei} are the basis vectors of Λ. The metric on the

lattice is defined by

gij = ei · ej . (7.108)

This metric contains the information about the lengths of the basis vectors

and their angles.

The dual lattice is defined by

Λ? = {w ∈ V such that w · v ∈ �
, for all v ∈ Λ}. (7.109)

This is illustrated in Fig. 7.2. If we call a set of basis vectors of the dual

lattice {e?i }, then the dual lattice is given by

Λ? = {
m∑

i=1

nie
?
i , ni ∈

� }. (7.110)

The basis vectors of the dual lattice can be chosen to satisfy

e?i · ej = δij . (7.111)
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The metric on the dual lattice is therefore given by

g?ij = e?i · e?j , (7.112)

which is the inverse of gij . A lattice is called

• unimodular if Vol(Λ) =
√
|det g| = 1,

• integral if v · w ∈ �
for all v, w ∈ Λ,

• even if Λ is integral and v2 is even for all v ∈ Λ,

• self-dual if Λ = Λ?.

Fig. 7.2. A lattice and the dual lattice.

Lattices and toroidal compactifications

The momenta pI = (pIL, p
I
R) in toroidal compactifications of the bosonic

string live on a lattice Γn,n with Lorentzian signature which turns out to be

even and self-dual:

• The signature of the lattice is ((+1)n, (−1)n) since the length-squared of

a 2n-component vector of the form p = (pIL, p
I
R) is defined by

p2 = p2
L − p2

R. (7.113)

Here the individual squares p2
L and p2

R are computed using the metric

GIJ .
6

6 This lattice can be represented by a lattice with metric ηab = ((+1)n, (−1)n), which was
discussed in the previous section, by writing GIJ = eaI e

b
Jη
ab and contracting the momenta

with the eaI .
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• Using Eq. (7.66), one obtains

p2 = 2W IKI ∈ 2
�
. (7.114)

This is an even integer. Thus, for fixed values of the moduli, the set of all

possible vectors p forms a lattice in 2n dimensions all of whose sites have

even length-squared. This is the condition for an even lattice. It ensures

that the level-matching condition is satisfied.

• Moreover, the lattice is self-dual, since the lattice generated by p =

(pIL, p
I
R) is equivalent to the lattice generated by the winding and the

Kaluza–Klein excitation numbers. Indeed the mass formula can be rewrit-

ten in the form

M2 = 2(W I KI)G−1

(
W I

KI

)
+ 4(NR +NL − 2). (7.115)

We saw that this formula has a duality symmetry that exchanges

W I ↔ KI , G ↔ G−1. (7.116)

So this duality inverts the metric on the lattice, and as a result the lattice

is self-dual. The self-duality condition ensures that the invariance under

the modular transformation G → G−1, which was discussed in the previous

section, is satisfied.

The lattice defined here is an even and self-dual lattice of signature (n, n).

One can ask the following mathematical question: For what signatures

(n1, n2) do even self-dual lattices exist? The answer is that n1 and n2

must differ by a multiple of 8. This result is relevant to the bosonic formu-

lation of the heterotic string, where the left-moving dimension is 26 and the

right-moving dimension is 10, so that their difference is 16.

Type II superstrings

There is a very similar construction for type II superstrings. In this case,

the geometry is � d × Tn with d + n = 10. By the same reasoning as in

the bosonic string, one finds an O(n, n;
�

) duality group. However, there

is one new issue, which was already encountered in Chapter 6. This is

that the inversion element of the duality group also reverses the relative

chirality of the two fermionic coordinates, which are denoted θ in the GS

formalism. In particular, recall that θ1 and θ2 (corresponding to left- and

right-moving modes) have opposite chirality for the type IIA theory and the

same chirality for the type IIB theory. In the case of circle compactification,

we found that the moduli space is characterized entirely by the radius R of
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the circle. However, all radii R > 0 are allowed, in contrast to the bosonic

string theory where R and R̃ = 1/(2R) are equivalent.

As in the case of the bosonic string theory, one can form a moduli space

Mn,n of inequivalent toroidal compactifications of type II superstrings as

a quotient of M0
n,n by a suitable duality group. The appropriate duality

group is smaller in this case than in the bosonic theory. It is only a subgroup

of the O(n, n;
�

) transformation group. Specifically, it is the subgroup that

preserves the chirality of the spinors. This reduces the group to SO(n, n;
�

).

To summarize, one could say that the distinction between type IIA and

type IIB dissolves after T n compactification, and there is a single moduli

space for the pair constructed in the way indicated here, but this moduli

space is twice as large as in the case of the bosonic string theory. Chap-

ter 8 shows that, when other dualities are taken into account, the duality

group SO(n, n;
�

) is extended to En+1(
�

), which is a discrete subgroup of

a noncompact exceptional group.

EXERCISES

EXERCISE 7.3

Consider the bosonic string theory compactified on a circle of radius R =√
α′. Verify that there is SU(2)×SU(2) gauge symmetry by constructing the

conserved currents. Show that the modes of the currents satisfy a level-one

Kac–Moody algebra.

SOLUTION

To do this let us focus on the holomorphic right-moving currents, since the

antiholomorphic left-moving currents work in an identical fashion. Let us

define

J±(z) = e±2iX25(z)/
√
α′

and

J3(z) = i
√

2/α′ ∂X25(z).

The coefficients in the exponent have been chosen to ensure that J±(z) have

conformal dimension h = 1. These currents are single valued at the self-dual

radius R =
√
α′, because X25(z) contains the zero mode 1

2x
25. Note that in

the text we have been setting α′ = 1/2.
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Now one can compute the OPEs of these currents using the rules discussed

in Chapter 3. Defining J±(z) = (J1(z)± iJ2(z))/
√

2, one obtains

J i(z)J j(w) ∼ δij

(z − w)2
+ iεijk

Jk(w)

z − w + . . .

Defining the modes by

J i(z) =
∑

n∈ �
J inz

−n−1 or J in =

∮
dz

2πi
znJ i(z),

as appropriate for h = 1 operators, it is possible to verify using the tech-

niques described in Chapter 3 that
[
J im, J

j
n

]
= iεijkJkm+n +mδijδm+n,0,

which is a level-one SU(2) Kac–Moody algebra. 2

EXERCISE 7.4

T-duality, which inverts G, can be translated into transformations on the

background fields G and B. Show that G ↔ G−1 (a statement about 2n×2n

matrices) is equivalent to G + B ↔ 1
4(G + B)−1 (a statement about n × n

matrices).

SOLUTION

In order to check this, a new metric G̃ and tensor field B̃, which are related

to the old fields by

G̃+ B̃ =
1

4
(G+B)−1 ,

are introduced. Taking the symmetric and antisymmetric parts leads to

G̃ =
1

8

[
(G+B)−1 + (G−B)−1

]

and

B̃ =
1

8

[
(G+B)−1 − (G−B)−1

]
.

By simple manipulations, these can be rewritten in the form

G̃ =
1

4

(
G−BG−1B

)−1
and B̃ = −G−1BG̃.

Using these expressions for G̃ and B̃ and comparing Eqs (7.69) and (7.70)

one concludes that

G̃ = G−1
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as required. 2

EXERCISE 7.5

Starting with Eq. (7.95) fill in the details of the derivation of Eq. (7.106).

In particular, derive the expressions for the determinant (7.103) and the

inverse matrix (7.104).

SOLUTION

Starting with

Tr
(
q

1
2
p2

R q̄
1
2
p2

L

)
=

∑

{W I ,KI}
eπiτ1(p2

R−p2
L)e−πτ2(p2

L+p2
R),

and using

p2
R − p2

L = −2W IKI and p2
R + p2

L = (W K)G−1

(
W

K

)
,

one obtains that the formula for the trace is equivalent to
∑

{M}
exp

(
−πMTAM

)
,

with

A =

(
2τ2(G−BG−1B) iτ11n + τ2BG

−1

iτ11n − τ2G
−1B 1

2τ2G
−1

)
and M =

(
W

K

)
.

The determinant of A can be obtained by using the fact that the determinant

of a block matrix
(
M1 M2

M3 M4

)
=

(
1n M2M

−1
4

0 1n

)(
M1 −M2M

−1
4 M3 0

M3 1n

)(
1n 0

0 M4

)

is given by

det(M1 −M2M
−1
4 M3) detM4.

This gives

detA = |τ |2n.

The result for A−1 in Eq. (7.104) can be verified by checking that it gives

the unit matrix when multiplied with A. The identities τ1τ̃2 + τ2τ̃1 = 0 and

τ2τ̃2 − τ1τ̃1 = 1, which follow from τ τ̃ = −1, are useful. 2
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EXERCISE 7.6

Show that GIJ + BIJ has the right number of components to parametrize

the coset space M0
n,n.

SOLUTION

The moduli space M0
n,n is given in terms of a lattice spanned by the left-

moving and right-moving momenta (pL, pR) under the restriction that

p2
L − p2

R ∈ 2
�
.

This condition is left invariant by the group of O(n, n, ; � ) transformations,

but the mass formula

M2 = 2(p2
L + p2

R)− 8 + oscillators

is not. The invariance of the mass formula is rather given by O(n, � ) ×
O(n, � ). As a result, the moduli space is given by the quotient space

O(n, n; � )/O(n; � )×O(n, � ).

Taking into account that O(n, � ) has dimension n(n−1)/2 and O(n, n, ; � )

has dimension n(2n − 1), we see that the dimension of the moduli space is

n2.

On the other hand, the metric G is a symmetric tensor with n(n + 1)/2

parameters while the antisymmetric B field has n(n − 1)/2 independent

components. In total, this gives n2 components, as we wanted to show. 2

EXERCISE 7.7

Compute the matrix G for the special case of compactification on a circle

and compare with the results derived in Chapter 6.

SOLUTION

In the special case of n = 1 one simply has a circle of radius R, andG11 = R2.

Then G reduces to the 2× 2 matrix

G =

(
1/(2R2) 0

0 2R2

)
,

so that

M2
0 = (2WR)2 + (K/R)2,

in agreement with the result obtained in Chapter 6 (for α′ = 1/2). The first

term is the winding contribution and the second term is the Kaluza–Klein
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contribution. This exhibits the T-duality symmetry K ↔ W , R↔ 1/(2R),

which was discussed in Chapter 6. 2

EXERCISE 7.8

Consider the bosonic string compactified on a two-torus T 2. Where in the

moduli space do enhanced gauge symmetries appear? What are the corre-

sponding gauge groups?

SOLUTION

A T 2 compactification is determined by the moduli

G =

(
G11 G12

G12 G22

)
and B = B12

(
0 1

−1 0

)
.

These four real parameters can be traded for two complex parameters τ and

ρ by using the identifications

τ = τ1 + iτ2 =
G12

G22
+ i

√
detG

G22

and

ρ = ρ1 + iρ2 = B12 + i
√

detG.

Each of these transforms as an SL(2,
�

) modulus under T-duality transfor-

mations. The reason for this can be traced to the identity

SO(2, 2;
�

) = SL(2,
�

)× SL(2,
�

),

which is the discrete version of the identity SO(2, 2) = SL(2, � )×SL(2, � ),

which appeared in Section 2.2 in a different context. These relations can be

inverted yielding

G+B =
ρ2

τ2

(
τ2

1 + τ2
2 τ1

τ1 1

)
+ ρ1

(
0 1

−1 0

)
.

The moduli space of the torus is given by the fundamental domain displayed

in Fig. 7.3.

For generic moduli the gauge group is U(1)2
L × U(1)2

R. The points of

enhanced symmetries correspond to the singular points of the fundamental

domain. We give several examples below, without attempting to give a

systematic and exhaustive analysis. In particular, we focus on examples

with B = 0, which have identical spectra for left-movers and right-movers.
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Fig. 7.3. Fundamental domain of the torus displaying the discrete identifications.
Points in the τ plane where enhanced symmetries appear for ρ = i are displayed.

Suppose that ρ1 = τ1 = 0, so that B = 0 and

G =

(
ρ2τ2 0

0 ρ2/τ2

)
.

If ρ2 = τ2 or ρ2 = 1/τ2 then one of the two entries is one, which means that

one of the two circles is at the self-dual radius, and there is an enhanced

SU(2) gauge symmetry for both left-movers and right-movers. These two

relations are satisfied simultaneously if

(τ, ρ) = (i, i).

In this case both circles are at the self-dual radius and the enhanced symme-

try is SU(2) × SU(2) for both left-movers and right-movers giving SU(2)4

altogether.

Another point of enhanced symmetry appears when

(τ, ρ) = (−1

2
+ i

√
3

2
, i).

In this case B = 0 and

G =
1√
3

(
2 −1

−1 2

)
.

Here G is proportional to the Cartan matrix of SU(3). (For an introduction

to the theory of roots and weights of Lie algebras see the review article by

Goddard and Olive.) As a consequence both the left-movers and the right-

movers contain the massless vectors required for SU(3) enhanced gauge
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symmetry. Thus, altogether, the gauge symmetry in this case is SU(3) ×
SU(3).

2

7.4 Bosonic construction of the heterotic string

Let us now consider the heterotic string in a formalism in which the current

algebra is represented by bosons. The left-moving sector of the heterotic

string corresponds to the bosonic string theory while the right-moving sec-

tor corresponds to the superstring theory. For the theory in ten-dimensional

Minkowski space-time, the left-moving coordinates consist of ten bosonic

fields Xµ
L(τ + σ), µ = 0, . . . , 9, describing excitations in the noncompact

dimensions and 16 bosonic fields XI
L(τ + σ), I = 1, . . . , 16, describing ex-

citations on a 16-dimensional torus T 16. The torus is characterized by the

momenta of the internal bosons pIL. They take discrete values that lie on a

16-dimensional lattice Γ16 spanned by 16 basis vectors {eI1, eI2, . . . , eI16}

pL ∈ Γ16, pIL =
∑

i

nie
I
i , ni ∈

�
. (7.117)

One-loop modular invariance requires that Γ16 be a Euclidean even self-dual

lattice. This ensures that the partition function

ΘΓ(τ) =
∑

p∈Γ

eiπτp
2

(7.118)

is a modular form of weight eight, which means that, for a modular trans-

formation τ → τ ′ of the usual form, in Eq. (7.92)

ΘΓ(τ ′) = (cτ + d)8ΘΓ(τ). (7.119)

Remarkably, in 16 dimensions there are only two Euclidean even self-dual

lattices.

In eight dimensions there is a unique Euclidean even self-dual lattice,

denoted Γ8. The lattice Γ8 is the root lattice of the Lie group E8. This

beautiful result is at the heart of the reason for the appearance of this Lie

group in heterotic string theory. This implies that one way to make an even

self-dual lattice in 16 dimensions is to form Γ8 × Γ8, the product of two E8

lattices.

The second even self-dual lattice in 16 dimensions, denoted Γ16, is the

weight lattice of Spin(32)/
�

2. It contains the weights of two of the four

conjugacy classes of Spin(32). One conjugacy class is the root lattice of

SO(32). The second conjugacy class is one of the two spinor conjugacy
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classes of Spin(32). Even though the Spin(32)/
�

2 lattice Γ16 is different

from the E8×E8 lattice, it gives exactly the same partition function ΘΓ(τ).

This fact implies that the two heterotic string theories have the same number

of physical states at every mass level.

Toroidal compactification of the heterotic string

Let us consider the heterotic string toroidally compactified to leave 10 −
n noncompact dimensions. Noncompact dimensions must have both left-

and right-movers. Therefore, it is necessary to compactify n of the right-

moving dimensions and 16 + n of the left-moving dimensions. The compact

dimensions in this set-up are characterized by Λ16+n,n, which is the lattice

that describes the discrete momenta and winding modes associated with 16+

n left-moving compact dimensions and n right-moving compact dimensions.

Such a lattice is often called a Narain lattice. We are interested in classifying

lattices of this signature that are even and self-dual. The reason is that this is

exactly what is required to ensure one-loop modular invariance of scattering

amplitudes.

For n > 0 there is a moduli space of dimension (16 + n)n given by

M16+n,n =M0
16+n,n/O(16 + n, n;

�
), (7.120)

where

M0
16+n,n =

O(16 + n, n; � )

O(16 + n, � )×O(n, � )
. (7.121)

The infinite discrete group O(16 + n, n;
�

) is the T-duality group for the

toroidally compactified heterotic string theory.

At a generic point in the moduli space the gauge symmetry consists of

one U(1) gauge field for each dimension of the lattice, giving U(1)16+n ×
U(1)n. The left-moving gauge fields belong to vector supermultiplets, and

the right-moving gauge fields belong to the supergravity multiplet. Once

again, there is enhanced nonabelian gauge symmetry at the singularities

of M. However, in the case of the heterotic string only the left-moving

gauge fields, which belong to vector supermultiplets, can become nonabelian

in Minkowski space-time. When this happens, the rank remains 16 + n.

There is an enormously rich set of possibilities. One class of examples of

nonabelian gauge groups that can be realized for special loci in the moduli

space is SO(32 + 2n). In particular, SO(44) is possible for d = 4. The

proof requires finding the locus in the moduli space where there are massless

vectors with the appropriate U(1) charges to give the nonzero roots of the

adjoint representation of the group in question.
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Duality and the heterotic string

Let us conclude this chapter by mentioning a beautiful and important rela-

tion between the two heterotic theories. The distinction between the E8×E8

and SO(32) heterotic theories only exists in ten dimensions. After toroidal

compactification, there is a single moduli space. In other words, the moduli

space in ten dimensions consists of two points, whereas in 10−n dimensions

it is a connected space of dimension (16 + n)n.

This can be interpreted as implying that the E8 × E8 and SO(32) het-

erotic theories are related by T-duality. This is analogous to the relationship

between the two type II superstring theories. To see what this means, let

us consider compactification to nine dimensions. In this case the moduli

space M17,1 has 17 dimensions. One scalar is the metric component g99

which encodes the radius of the circle. The other 16 moduli are the gauge

field components AI9, which are the Wilson lines. For generic values of these

moduli, the left-moving gauge symmetry is U(1)17. However, on various loci

in the moduli space enhanced gauge symmetry occurs. E8 ×E8 ×U(1) and

SO(32)×U(1) are just two of the many possibilities. An elementary method

of exploring the possibilities is to construct Fock-space descriptions of the

gauge fields with NR = NL = 0 and p2
L = 2 along the lines described for the

bosonic string in 25 dimensions.

EXERCISES

EXERCISE 7.9

Use the Poisson resummation formula to prove that an even self-dual lattice

Γ16 has a partition function ΘΓ16(τ) that is a modular form of weight eight.

SOLUTION

The modular group is generated by the two transformations

τ → τ + 1 and τ → −1

τ
,

so it is sufficient to just consider them. Since the lattice Γ16 is even, the

partition function

ΘΓ16(τ) =
∑

p∈Γ16

exp
(
iπτp2

)
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is invariant under τ → τ + 1. In order to check how the partition function

behaves under the second transformation, we rewrite it in terms of a vector

N with components ni and the matrix

Aij = −iτGij ,

where

Gij = eI ieI j

and eI i are the basis vectors that appear in Eq. (7.117). This gives

ΘΓ16(τ) =
∑

p∈Γ16

exp
(
−πNTAN

)
.

Applying the Poisson resummation formula yields

1√
detA

∑

p∈Γ16

exp
(
−πNTA−1N

)
.

Since the lattice is self-dual detG = 1. Also, replacing the matrix G by its

inverse corresponds to replacing the basis vectors by the dual basis vectors,

which span the same lattice. Therefore, the result simplifies to

τ−8
∑

p∈Γ16

exp
(
−πNTA−1N

)
= τ−8

∑

p∈Γ16

exp

(
− iπ
τ
p2

)
,

which is exactly the transformation obtained from (7.119) for τ → −1/τ . 2

EXERCISE 7.10

Use the bosonic formulation of the heterotic string to construct the first

massive level of the E8 ×E8 heterotic string.

SOLUTION

The mass formula for the heterotic string is

1

8
M2 = NR = NL − 1 +

1

2

16∑

I=1

(pI)2.

For the first massive level, M 2 = 8, there are three possibilities:

(i)

NR = 1, NL = 2,
16∑

I=1

(pI)2 = 0
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There are 324 possible left-moving states:

α̃I−1α̃
J
−1|0〉L, α̃I−2|0〉L, α̃i−1α̃

j
1|0〉L, α̃i−2|0〉L, α̃i−1α̃

I
−1|0〉L

(ii)

NR = 1, NL = 1,

16∑

I=1

(pI)2 = 2

In this case there are 24× 480 possible left-moving states:

α̃I−1|pJ ,
16∑

J=1

(pJ )2 = 2〉L, α̃i−1|pI ,
16∑

I=1

(pJ )2 = 2〉L.

(iii)

NR = 1, NL = 0,

16∑

I=1

(pI)2 = 4

In this case there are 129× 480 possible left-moving states:

|pI ,
16∑

I=1

(pI)2 = 4〉L.

The total number of left-moving states is 73 764. In each case the right-

movers have NR = 1, so these are the 256 states

αi−1|j〉R, αi−1|a〉R, ;Sa−1|i〉R, Sa−1|b〉R.

The spectrum of the heterotic string at this mass level is given by the tensor

product of the left-movers and the right-movers, a total of almost 20 000 000

states. 2

Appendix: The Poisson resummation formula

Let A be a positive definite m×m symmetric matrix and define

f(A) =
∑

{M}
exp

(
−πMTAM

)
. (7.122)

Here M represents a vector made of m integers M1,M2, . . . ,Mm each of

which is summed from −∞ to +∞. The Poisson resummation formula is

f(A) =
1√

detA
f(A−1). (7.123)
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To derive this formula it is convenient to add dependence on m variables

xi and define

f(A, x) =
∑

{M}
exp

(
−π(M + x)TA(M + x)

)
. (7.124)

This function is periodic, with period 1, in each of the xi. Therefore, it must

have a Fourier series expansion of the form

f(A, x) =
∑

{N}
CN (A) exp(2πiNTx). (7.125)

The next step is to evaluate the Fourier coefficients:

CN (A) =

∫ 1

0
f(A, x)e−2πiNTxdmx. (7.126)

Inserting the series expansion of f(A, x) in Eq. (7.124) gives

CN (A) =

∫ ∞

−∞
exp(−πxTAx−2πiNTx)dmx =

exp(−πNTA−1N)√
detA

. (7.127)

Note that the summations in Eq. (7.125) have been taken into account by

extending the range of the integrations. It therefore follows that

f(A) =
∑

{N}
CN (A) =

1√
detA

f(A−1) (7.128)

as desired.

HOMEWORK PROBLEMS

PROBLEM 7.1

Section 7.1 discussed several possibilities for generating nonabelian gauge

symmetries in string theory. Show that in the context of toroidally com-

pactified type II superstring theories, the only massless gauge fields are

abelian.

PROBLEM 7.2

It is possible to compactify the 26-dimensional bosonic string to ten di-

mensions by replacing 16 dimensions with 32 Majorana fermions. The 32

left-moving fermions and the 32 right-moving fermions each give a level-one
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SO(32) current algebra. Making the same GSO projection as in the left-

moving sector of the heterotic string, find the ground state and the massless

states of this theory.

PROBLEM 7.3

Exercise 7.1 introduced free-fermion representations of current algebras and

showed that fermions in the fundamental representation of SO(n) give a

level-one current algebra.

(i) Find the level of the current algebra for fermions in the adjoint rep-

resentation of SO(n).

(ii) Find the level of the current algebra for fermions in a spinor repre-

sentation of SO(16).

PROBLEM 7.4

Generalize the analysis of Exercise 7.6 to the heterotic string. In particular,

verify that the Wilson lines, together with the B and G fields, have the right

number of parameters to describe the moduli spaceM0
16+n,n in Eq. (7.121).

PROBLEM 7.5

In addition to the SO(32) and E8 × E8 heterotic string theories, there is

a third tachyon-free ten-dimensional heterotic string theory that has an

SO(16) × SO(16) gauge group. This theory is not supersymmetric. In-

vent a plausible set of GSO projection rules for the fermionic formulation of

this theory that gives an SO(16) × SO(16) gauge group and does not give

any gravitinos. Find the complete massless spectrum.

PROBLEM 7.6

The SO(16) × SO(16) heterotic string theory, constructed in the previous

problem, is a chiral theory. Using the rules described in Chapter 5, construct

the anomaly 12-form. Show that anomaly cancellation is possible by showing

that this 12-form factorizes into the product of a four-form and an eight-

form.

PROBLEM 7.7

The ten-dimensional SO(32) and E8 × E8 string theories have the same

number of states at the massless level. Construct the spectrum at the first

excited level explicitly in each case using the formulation with 32 left-moving

fermions. What is the number of left-moving states at the first excited level
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in each case? Show that the numbers are the same and that they agree with

the result obtained in Exercise 7.10.

PROBLEM 7.8

(i) Consider a two-dimensional lattice generated by the basis vectors

e1 = (1, 1) and e2 = (1,−1)

with a standard Euclidean scalar product. Construct the dual lattice

Λ?. Is Λ: unimodular, integral, even or self-dual? How about Λ??

(ii) Find a pair of basis vectors that generate a two-dimensional even

self-dual Lorentzian lattice.

PROBLEM 7.9

Consider the Euclideanized world-sheet theory for a string coordinate X

S[X] =
1

π

∫

M
∂X∂̄Xd2z.

Suppose that X is circular, so that X ∼ X + 2πR and that the world sheet

M is a torus so that z ∼ z + 1 ∼ z + τ . Define winding numbers W1 and

W2 by

X(z + 1, z̄ + 1) = X(z, z̄) + 2πRW1,

X(z + τ, z̄ + τ̄) = X(z, z̄) + 2πRW2.

(i) Find the classical solution Xcl with these winding numbers.

(ii) Evaluate the action Scl(W1,W2) = S[Xcl].

(iii) Recast the classical partition function

Zcl =
∑

W1,W2

e−Scl(W1,W2)

by performing a Poisson resummation. Is the result consistent with

T-duality?

PROBLEM 7.10

Consider a Euclidean lattice generated by basis vectors ei, i = 1, . . . , 8,
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whose inner products ei · ej are described by the following metric:



2 −1 0 0 0 0 0 0

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 −1

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 0

0 0 0 0 −1 0 0 2




.

This is the Cartan matrix for the Lie group E8.

(i) Find a set of basis vectors that gives this metric.

(ii) Prove that the lattice is even and self-dual. It is the E8 lattice.

PROBLEM 7.11

As stated in Section 7.4, in 16 dimensions there are only two Euclidean even

self-dual lattices. One of them, the E8 × E8 lattice, is given by combining

two of the E8 lattices in the previous problem. Construct the other even

self-dual lattice in 16 dimensions and show that it is the Spin(32)/
�

2 weight

lattice.

PROBLEM 7.12

Show that the spectrum of the bosonic string compactified on a two-torus

parametrized using the two complex coordinates τ and ρ defined in Exer-

cise 7.8 is invariant under the set of duality transformations SL(2,
�

)τ ×
SL(2,

�
)ρ generated by

τ → τ + 1 ρ→ ρ+ 1

τ → −1/τ ρ→ −1/ρ
.

Moreover, show that the spectrum is invariant under the following inter-

changes of coordinates:

U : (τ, ρ)→ (ρ, τ) and V : (σ, τ)→ (−σ̄,−τ̄).

These results imply that the moduli space is given by two copies of the

moduli space of a single torus dividing out by the symmetries U and V .

PROBLEM 7.13

Consider the bosonic string compactified on a square T 3

ds2 = R2(dx2 + dy2 + dz2),
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where the coordinates x, y, z each have period 2π. Suppose there is also a

nonvanishing three-form Hxyz = N , where N is an integer. For example,

Bxy = Nz.

(i) Using the T-duality rules for background fields derived in Chapter 6,

carry out a T-duality transformation in the x direction followed by

another one in the y direction. What is the form of the resulting

metric and B fields?

(ii) One can regard the T 3 as a T 2, parametrized by x and y, fibered over

the z-circle. Going once around the z-circle is trivial in the original

background. What happens when we go once around the z-circle

after the two T-dualities are performed?

(iii) The background after the T-dualities has been called nongeometrical.

Explain why. Hint: use the results of the preceding problem.

PROBLEM 7.14

Consider the compactification of each of the two supersymmetric heterotic

string theories on a circle of radius R. As discussed in Section 7.4, the

moduli space is 17-dimensional and at generic points the left-moving gauge

symmetry is U(1)17. However, at special points there are enhanced sym-

metries. Assume that the gauge fields in the compact dimensions, that is,

the Wilson lines, are chosen in each case to give SO(16) × SO(16) × U(1)

left-moving gauge symmetry. Show that the two resulting nine-dimensional

theories are related by a T-duality transformation that inverts the radius of

the circle. This is very similar to the T-duality relating the type IIA and

IIB superstring theories compactified on a circle.

PROBLEM 7.15

(i) Compactifying the E8 × E8 heterotic string on a six-torus to four

dimensions leads to a theory with N = 4 supersymmetry in four

dimensions. Verify this statement and assemble the resulting massless

spectrum into four-dimensional supermultiplets.

(ii) Repeat the analysis for the type IIA or type IIB superstring. What is

the amount of supersymmetry in four dimensions in this case? What

is the massless supermultiplet structure in this case?
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M-theory and string duality

During the “Second Superstring Revolution,” which took place in the mid-

1990s, it became evident that the five different ten-dimensional superstring

theories are related through an intricate web of dualities. In addition to

the T-dualities that were discussed in Chapter 6, there are also S-dualities

that relate various string theories at strong coupling to a corresponding dual

description at weak coupling. Moreover, two of the superstring theories (the

type IIA superstring and the E8 × E8 heterotic string) exhibit an eleventh

dimension at strong coupling and thus approach a common 11-dimensional

limit, a theory called M-theory. In the decompactification limit, this 11-

dimensional theory does not contain any strings, so it is not a string theory.

Low-energy effective actions

This chapter presents several aspects of M-theory, including its low-energy

limit, which is 11-dimensional supergravity, as well as various nonpertur-

bative string dualities. Some of these dualities can be illustrated using

low-energy effective actions. These are supergravity theories that describe

interactions of the massless fields in the string-theory spectrum. It is not

obvious, a priori, that this should be a useful approach for analyzing nonper-

turbative features of string theory, since extrapolations from weak coupling

to strong coupling are ordinarily beyond control. However, if one restricts

such extrapolations to quantities that are protected by supersymmetry, one

can learn a surprising amount in this way.

BPS branes

A second method of testing proposed duality relations is to exploit the

various supersymmetric or Bogomolny–Prasad–Sommerfield (BPS) p-branes

296
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that these theories possess and the matching of the corresponding spectra of

states. As we shall illustrate below, saturation of a BPS bound can lead to

shortened supersymmetry multiplets, and then reliable extrapolations from

weak coupling to strong coupling become possible. This makes it possible to

carry out detailed matching of p-branes and their tensions in dual theories.

The concept of a BPS bound and its saturation can be illustrated by mas-

sive particles in four dimensions. The N -extended supersymmetry algebra,

restricted to the space of particles of mass M > 0 at rest in D = 4, takes

the form

{QIα, Q†Jβ } = 2MδIJδαβ + 2iZIJΓ0
αβ, (8.1)

where ZIJ is the central-charge matrix. I, J = 1, . . . ,N labels the super-

symmetries and α, β = 1, 2,3,4 labels the four components of each Majorana

spinor supercharge. The central charges are conserved quantities that com-

mute with all the other generators of the algebra. They can appear only

in theories with extended supersymmetry, that is, theories that have more

supersymmetry than the minimal N = 1 case, because the central-charge

matrix is antisymmetric ZIJ = −ZJI . The central charges are electric and

magnetic charges that couple to the gauge fields belonging to the supergrav-

ity multiplet.

By a transformation of the form Z → UTZU , where U is a unitary matrix,

the antisymmetric matrix ZIJ can be brought to the canonical form

ZIJ =




0 Z1 0 0

−Z1 0 0 0 . . .

0 0 0 Z2

0 0 −Z2 0
...

. . .




(8.2)

with |Z1| ≥ |Z2| ≥ . . . ≥ 0. The structure of Eq. (8.1) implies that the

2N × 2N matrix (
M Z

Z† M

)
(8.3)

should be positive semidefinite. This in turn implies that the eigenvalues

M±|Zi| have to be nonnegative. Therefore, the mass is bounded from below

by the central charges, which gives the BPS bound

M ≥ |Z1|. (8.4)

States that have M = |Z1| are said to saturate the BPS bound. They be-

long to a short supermultiplet or BPS representation. States with M > |Z1|
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belong to a long supermultiplet. The zeroes that appear in the supersym-

metry algebra when M = |Z1| are responsible for the multiplet shortening.

A further refinement in the description of BPS states keeps track of the

number of central charges that equal the mass. Thus, for example, in the

N = 4 case, states with M = |Z1| = |Z2| are called half-BPS and ones with

M = |Z1| > |Z2| are called quarter-BPS. These fractions refer to the number

of supersymmetries that are unbroken when these particles are present.

The preceding discussion is specific to point particles in four dimensions,

but it generalizes to p-branes in D dimensions. The important point to

remember from Chapter 6 is that a charged p-brane has a (p + 1)-form

conserved current, and hence a p-form charge. To analyze such cases the

supersymmetry algebra needs to be generalized to cases appropriate to D

dimensions and p-form central charges. Calling them central is a bit of a

misnomer in this case, because for p > 0 they carry Lorentz indices and

therefore do not commute with Lorentz transformations.

One very important conclusion from the BPS bound given above is that

BPS states, which have M = |Z1| and belong to a short multiplet, are stable.

The mass is tied to a central charge, and this relation does not change as

parameters are varied if the supersymmetry is unbroken. The only way in

which this could fail is if another representation becomes degenerate with the

BPS multiplet, so that they can pair up to give a long representation. The

idea is actually more general than supersymmetry. This is what happens

in the Higgs mechanism, where a massless vector (a short representation of

the Lorentz group) joins up with a scalar to give a massive vector (a long

representation) as a parameter in the Higgs potential is varied. The thing

that is different about supersymmetric examples is that short multiplets can

be massive. In any case, the conclusion is that so long as such a joining of

multiplets does not happen, it is possible to follow BPS states from weak

coupling to strong coupling with precise control. This is very important for

testing conjectures about the behavior of string theories at strong coupling,

as we shall see in this chapter.

EXERCISES

EXERCISE 8.1

The N = 1 supersymmetry algebra in four dimensions does not have a

central extension. The explicit form of this algebra, with the supercharges
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expressed as two-component Weyl spinors Qα and Qβ̇ = Q†β, is

{Qα, Qβ̇} = 2σµ
αβ̇
Pµ, and {Qα, Qβ} = {Qα̇, Qβ̇} = 0.

Determine the irreducible massive representations of this algebra.

SOLUTION

As in the text, for massive states we can work in the rest frame, where the

momentum vector is Pµ = (−M, 0, 0, 0). Then the algebra becomes

{Qα, Qβ̇} = 2Mδαβ̇ = 2M

(
1 0

0 1

)
.

This algebra is a Clifford algebra, so it is convenient to rescale the operators

to obtain a standard form for the algebra

bα =
1√
2M

Qα and b†α =
1√
2M

Qα̇.

The supersymmetry algebra then becomes

{bα, b†β} = δαβ, {bα, bβ} = {b†α, b†β} = 0.

As a result, bα and b†α act as fermionic lowering and raising operators, and we

obtain all the states in the supermultiplet by acting with raising operators b†α
on the Fock-space ground state |Ω〉, which satisfies the condition bα|Ω〉 = 0.

Then, if |Ω〉 represents a state of spin j, a state of spin j ± 1
2 is created

by acting with the fermionic operators b†α|Ω〉. If the ground state |Ω〉 has

spin 0 (a boson), then b†α|Ω〉 represent the two states of a spin 1/2 fermion.

Moreover b†1b
†
2|Ω〉 gives a second spin 0 state. In general, for a ground state

of spin j > 0 and multiplicity 2j + 1, this construction gives the 4(2j + 1)

states of a massive representation of N = 1 supersymmetry in D = 4 with

spins j − 1/2, j, j, j + 1/2. 2

EXERCISE 8.2

Determine the multiplet structure for massive states of N = 2 supersymme-

try in four dimensions in the presence of the central charge. In particular

derive the form of the short and long multiplets.

SOLUTION

For N = 2 supersymmetry the central charge is ZIJ = ZεIJ . For simplicity,

let us assume that Z is real and nonnegative. Using this form of the central
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charge, the supersymmetry algebra in the rest frame can be written in the

form

{QIα, Q
J
β̇} = 2Mδαβ̇δ

IJ ,

{QIα, QJβ} = 2Zεαβε
IJ ,

{QIα̇, Q
J
β̇} = 2Zεα̇β̇ε

IJ ,

where I, J = 1, 2. We rearrange these generators and define

b±α = Q1
α ± εαβQ

2
β and (b±α )† = Q

1
α ± εαβQ2

β.

Note that this construction identifies dotted and undotted indices. This

is sensible because a massive particle at rest breaks the SL(2, � ) Lorentz

group to the SU(2) rotational subgroup, so that the 2 and 2̄ representa-

tions become equivalent. It is then easy to verify that the only nonzero

anticommutators of these generators are

{b+α , (b+β )†} = 4δαβ(M + Z) and {b−α , (b−β )†} = 4δαβ(M − Z).

These anticommutation relations give the BPS bound for N = 2 theories,

which takes the form

M ≥ Z.

If this bound is not saturated, we can act with (b±α )† on a spin j ground

state |Ω〉 to create the 16(2j + 1) states of a long supermultiplet. However,

if the BPS bound is saturated, that is, if M = Z, then the physical states in

the supermultiplet are created by acting only with (b+
α )†. This reduces the

number of states to 4(2j + 1) and creates a short supermultiplet. The case

j = 0 gives a half hypermultiplet. Such a multiplet is always paired with its

TCP conjugate to give a hypermultiplet with four scalars and two spinors.

The case j = 1/2 gives a vector multiplet. 2

8.1 Low-energy effective actions

Previous chapters have described how the spectrum of states of the various

superstring theories behaves in the weak-coupling limit. The masses of all

states other than the massless ones become very large for α′ → 0, which

corresponds to large string tension. Equivalently, at least in a Minkowski

space background where there is no other scale, this corresponds to the

low-energy limit, since the only dimensionless parameter is α′E2. In the
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low-energy limit, it is a good approximation to replace string theory by a

supergravity theory describing the interactions of the massless modes only, as

the massive modes are too heavy to be observed. This section describes the

supergravity theories arising in the low-energy limit of string theory. These

theories are not fundamental, but they do capture some of the important

features of the more fundamental string theories.

Renormalizability

By conventional power counting, effective supergravity theories are non-

renormalizable. A good guide to assessing this is to examine the dimensions

of various terms in the action. The Einstein–Hilbert action, for example, in

D dimensions takes the form

S =
1

16πGD

∫ √−gRdDx. (8.5)

The curvature has dimensions (length)−2, and therefore the D-dimensional

Newton constantGD must have dimension (length)D−2. This is proportional

to the square of the gravitational coupling constant, which therefore has

negative mass dimension for D > 2. Ordinarily, barring some miracle, this

is an indication of nonrenormalizability.1 It has been shown by explicit

calculation that no such miracle occurs in the case of pure gravity in D = 4.

There is no good reason to expect miraculous cancellations in other cases

with D > 3, either, though it would be nice to prove that they don’t occur.

Nonrenormalizability is okay for theories whose only intended use is as

effective actions for describing the low-energy physics of a more fundamental

theory (string theory or M-theory). The infinite number of higher-order

quantum corrections to these actions can be ignored for most purposes at

low energies. Some of these quantum corrections are important, however.

In fact, some of them already arose in the anomaly analysis of Chapter 5.

M-theory certainly requires an infinite number of higher-dimension correc-

tions to 11-dimensional supergravity. Such an expansion is unambiguously

determined by M-theory (up to field redefinitions) if one assumes a simple

space-time topology, such as � 10,1. In Chapter 9 it is shown that in � 10,1

there are R4 terms, in particular. The present chapter describes dualities

relating M-theory to type IIA and type IIB superstring theory. These have

been used to determine the precise form of the R4 corrections to D = 11

supergravity required by M-theory.

1 Actually, pure gravity for D = 3 appears to be a consistent quantum theory. However, a
graviton in three dimensions has no physical polarization states, so that theory is essentially
topological.
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Eleven-dimensional supergravity

The low-energy effective action of M-theory, called 11-dimensional super-

gravity, is our starting point. This theory was constructed in 1978 and

studied extensively in subsequent years, but it was only in the mid-1990s

that this theory found its place on the string theory map.

In its heyday (around 1980) there were two major reasons for being skep-

tical about D = 11 supergravity. The first was its evident lack of renormal-

izability, which led to the belief that it does not approximate a well-defined

quantum theory. The second was its lack of chirality, that is, its left–right

symmetry, which suggested that it could not have a vacuum with the chiral

structure required for a realistic model. Within the conventional Kaluza–

Klein framework being explored at that time, both of these objections were

justified. However, we now view D = 11 supergravity as a low-energy effec-

tive description of M-theory. As such, there are good reasons to believe that

there is a well-defined quantum interpretation. The situation with regard

to chirality is also changed. Among the new ingredients are the branes, the

M2-brane and the M5-brane, as well as end-of-the-world 9-branes. As was

mentioned in Chapter 5, and is discussed further in this chapter, the latter

appear in the strong-coupling description of the E8 × E8 heterotic string

theory and introduce left–right asymmetry consistent with anomaly can-

cellation requirements. There are also nonperturbative dualities, which is

discussed in this chapter, that relate M-theory to chiral superstring theories.

Moreover, it is now understood that compactification on manifolds with suit-

able singularities, which would not be well defined in a pure Kaluza–Klein

supergravity context, can result in chirality in four dimensions.

Field content

Compared to the massless spectrum of the ten-dimensional superstring the-

ories, the field content of 11-dimensional supergravity is relatively simple.

First, since it contains gravity, there is a graviton, which is a symmetric

traceless tensor of SO(D− 2), the little group for a massless particle. It has

1

2
(D − 1)(D − 2)− 1 =

1

2
D(D − 3) = 44 (8.6)

physical degrees of freedom (or polarization states). The first term counts

the number of independent components of a symmetric (D − 2) × (D − 2)

matrix and 1 is subtracted due to the constraint of tracelessness. Since this

theory contains fermions, it is necessary to use the vielbein formalism and

represent the graviton by a vielbein field EA
M . This can also be called an

elfbein field in the case of 11 dimensions, since viel is German for many, and
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elf is German for 11. The indices M,N, . . . are used for base-space (curved)

vectors in 11 dimensions, and the indices A,B, . . . are used for tangent-space

(flat) vectors. The former transform nontrivially under general coordinate

transformations, and the latter transform nontrivially under local Lorentz

transformations.2

The gauge field for local supersymmetry is the gravitino field ΨM , which

has an implicit spinor index in addition to its explicit vector index. For

each value of M , it is a 32-component Majorana spinor. When spinors

are included, the little group becomes the covering group of SO(9), which

is Spin(9). It has a real spinor representation of dimension 16. Group

theoretically, the Spin(9) Kronecker product of a vector and a spinor is

9 × 16 = 128 + 16. The analogous construction in four dimensions gives

spin 3/2 plus spin 1/2. As Rarita and Schwinger showed in the case of a

free vector-spinor field in four dimensions, there is a local gauge invariance

of the form δΨM = ∂Mε, which ensures that the physical degrees of freedom

are pure spin 3/2. The kinetic term for a free gravitino field ΨM in any

dimension has the structure

SΨ ∼
∫

ΨMΓMNP∂NΨP d
Dx.

Due to the antisymmetry of ΓMNP , for δΨM = ∂Mε this is invariant up to

a total derivative.

In the case of 11 dimensions this local symmetry implies that the phys-

ical degrees of freedom correspond only to the 128. Therefore, this is the

number of physical polarization states of the gravitino in 11 dimensions. In

the interacting theory this local symmetry is identified as local supersymme-

try. This amount of supersymmetry gives 32 conserved supercharges, which

form a 32-component Majorana spinor. This is the dimension of the minimal

spinor in 11 dimensions, so there couldn’t be less supersymmetry than that

in a Lorentz-invariant vacuum. Also, if there were more supersymmetry, the

representation theory of the algebra would require the existence of massless

states with spin greater than two. It is believed to be impossible to construct

consistent interacting theories with such higher spins in Minkowski space-

time. For this reason, one does not expect to find nontrivial supersymmetric

theories for D > 11.

In order for the D = 11 supergravity theory to be supersymmetric, there

must be an equal number of physical bosonic and fermionic degrees of free-

dom. The missing bosonic degrees of freedom required for supersymmetry

2 The reader not familiar with these concepts can consult the appendix of Chapter 9 for some
basics. These also appeared in the anomaly analysis of Chapter 5.
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are obtained from a rank-3 antisymmetric tensor, AMNP , which can be rep-

resented as a three-form A3. As usual for such form fields, the theory has

to be invariant under the gauge transformations

A3 → A3 + dΛ2, (8.7)

where Λ2 is a two-form. As is always the case for antisymmetric tensor

gauge fields, including the Maxwell field, the gauge invariance ensures that

the indices for the independent physical polarizations are transverse. In the

case of a three-form in 11 dimensions this means that there are 9·8·7/3! = 84

physical degrees of freedom. Together with the graviton, this gives 44+84 =

128 propagating bosonic degrees of freedom, which matches the number of

propagating fermionic degrees of freedom of the gravitino, which is the only

fermi field in the theory.

Action

The requirement of invariance under A3 gauge transformations, together

with general coordinate invariance and local Lorentz invariance, puts strong

constraints on the form of the action. As in all supergravity theories, di-

mensional analysis determines that the number of derivatives plus half the

number of fermi fields is equal to two for each term in the action. This re-

quirement reduces the arbitrariness to a few numerical coefficients. Finally,

the requirement of local supersymmetry leads to a unique supergravity the-

ory in D = 11 (up to normalization conventions). In fact, it is so strongly

constrained that its existence appears quite miraculous.

The bosonic part of the 11-dimensional supergravity action is

2κ2
11S =

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4, (8.8)

where R is the scalar curvature, F4 = dA3 is the field strength associated

with the potential A3, and κ11 denotes the 11-dimensional gravitational cou-

pling constant. The relation between the 11-dimensional Newton’s constant

G11, the gravitational constant κ11 and the 11-dimensional Planck length `p

is3

16πG11 = 2κ2
11 =

1

2π
(2π`p)9. (8.9)

The last term in Eq. (8.8), which has a Chern–Simons structure, is inde-

pendent of the elfbein (or the metric). The first term does depend on the

elfbein, but only in the metric combination

GMN = ηABE
A
ME

B
N . (8.10)

3 The coefficients in these relations are the most commonly used conventions.
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The quantity |F4|2 is defined by the general rule

|Fn|2 =
1

n!
GM1N1GM2N2 · · ·GMnNnFM1M2···MnFN1N2···Nn . (8.11)

Supersymmetry transformations

The complete action of 11-dimensional supergravity is invariant under local

supersymmetry transformations under which the fields transform according

to

δEAM = ε̄ΓAΨM ,

δAMNP = −3ε̄Γ[MNΨP ],

δΨM = ∇Mε+ 1
12

(
ΓMF(4) − 3F

(4)
M

)
ε.

(8.12)

Here we have introduced the definitions

F(4) =
1

4!
FMNPQΓMNPQ (8.13)

and

F
(4)
M =

1

2
[ΓM ,F

(4)] =
1

3!
FMNPQΓNPQ. (8.14)

Straightforward generalizations of this notation are used in the following.

The formula for δΨM displays the terms that are of leading order in fermi

fields. Additional terms of the form (fermi)2ε have been dropped. The Dirac

matrices satisfy

ΓM = EAMΓA, (8.15)

where ΓA are the numerical (coordinate-independent) matrices that obey

the flat-space Dirac algebra. Also, the square brackets represent antisym-

metrization of the indices with unit weight. For example,

Γ[MNΨP ] =
1

3
(ΓMNΨP + ΓNPΨM + ΓPMΨN ). (8.16)

Another convenient notation that has been used here is

ΓM1M2···Mn = Γ[M1ΓM2 · · ·ΓMn]. (8.17)

The covariant derivative that appears in Eq. (8.12) involves the spin con-

nection ω and is given by

∇Mε = ∂Mε+
1

4
ωMABΓABε. (8.18)
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The spin connection can be expressed in terms of the elfbein by

ωMAB =
1

2
(−ΩMAB + ΩABM − ΩBMA), (8.19)

where

ΩMN
A = 2∂[NE

A
M ]. (8.20)

In fact, these relations are valid in any dimension. Depending on conven-

tions, the spin connection may also contain terms that are quadratic in fermi

fields. Such terms are neglected here, since they are not relevant to the issues

that we discuss.

Supersymmetric solutions

One might wonder why the supersymmetry transformations have been pre-

sented without also presenting the fermionic terms in the action. After all,

it is the complete action including the fermionic terms that is supersym-

metric. The justification is that one of the main uses of this action, and

others like it, is to construct classical solutions. For this purpose, only the

bosonic terms in the action are required, since a classical solution always

has vanishing fermionic fields.

One is also interested in knowing how many of the supersymmetries sur-

vive as vacuum symmetries of the solution. Given a supersymmetric solu-

tion, there exist spinors, called Killing spinors, that characterize the super-

symmetries of the solution. The concept is similar to that of Killing vectors,

which characterize bosonic symmetries. Killing vectors are vectors that ap-

pear as parameters of infinitesimal general coordinate transformations under

which the fields are invariant for a specific solution. In analogous fashion,

Killing spinors are spinors that parametrize infinitesimal supersymmetry

transformations under which the fields are invariant for a specific field con-

figuration. Since the supersymmetry variations of the bosonic fields always

contain one or more fermionic fields, which vanish classically, these variations

are guaranteed to vanish. Thus, in exploring supersymmetry of solutions,

the terms of interest are the variations of the fermionic fields that do not

contain any fermionic fields. In the case at hand this means that Killing

spinors ε are given by solutions of the equation

δΨM = ∇Mε+
1

12

(
ΓMF(4) − 3F

(4)
M

)
ε = 0, (8.21)

and the bosonic terms that have been included in Eq. (8.12) determine the

possible supersymmetric solutions.
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M-branes

An important feature of M-theory (and 11-dimensional supergravity) is the

presence of the three-form gauge field A3. As has been explained in Chap-

ter 6, such fields couple to branes, which in turn are sources for the gauge

field. In this case (n = 3 and D = 11) the three-form can couple electrically

to a two-brane, called the M2-brane, and magnetically to a five-brane, called

the M5-brane. If the tensions saturate a BPS bound (as they do), these are

stable supersymmetric branes whose tensions can be computed exactly. By

focusing attention on BPS M-branes, it is possible to learn various facts

about M-theory that go beyond the low-energy effective-action expansion.

In fact, we will even discover an M-theory version of T-duality that shows

the limitations of a geometrical description.

The only scale in M-theory is the 11-dimensional Planck length `p. There-

fore, the M-brane tensions can be determined, up to numerical factors, by

dimensional analysis. The exact results, which are confirmed by duality ar-

guments relating M-branes to branes in type II superstring theories, turn

out to be

TM2 = 2π(2π`p)−3 and TM5 = 2π(2π`p)−6. (8.22)

As is the case with all BPS branes, an M-brane can be excited so that it is

no longer BPS, but then it would be unstable and radiate until reaching the

minimal BPS energy density in (8.22).

Type IIA supergravity

The action of 11-dimensional supergravity is related to the actions of the

various ten-dimensional supergravity theories, which are the low-energy ef-

fective descriptions of superstring theories. The most direct connection is

between 11-dimensional supergravity and type IIA supergravity. The deep

reason is that M-theory compactified on a circle of radius R corresponds

to type IIA superstring theory in ten dimensions with coupling constant

gs = R/
√
α′. This duality is discussed later in this chapter.4 For now, the

important consequence is that it implies that type IIA supergravity can be

obtained from 11-dimensional supergravity by dimensional reduction. Di-

mensional reduction is achieved by taking one dimension to be a circle and

only keeping the zero modes in the Fourier expansions of the various fields.

This is to be contrasted with compactification, where all the modes are kept

4 In particular, it turns out that the type IIA superstring can be obtained from the M2-brane
by wrapping one dimension of the membrane on the circle to give a string in the other ten
dimensions.



308 M-theory and string duality

in the lower-dimensional theory. In fact, the type IIA supergravity action

was originally constructed by dimensional reduction. This is the easiest

method, so it is utilized in the following.

Fermionic fields

As we already discussed in Chapter 5, the massless fermions of type IIA

supergravity consist of two Majorana–Weyl gravitinos of opposite chirality

and two Majorana–Weyl dilatinos of opposite chirality. These fermionic

fields can be obtained by taking an 11-dimensional Majorana gravitino and

dimensionally reducing it to ten dimensions. The 32-component Majorana

spinors ΨM give a pair of 16-component Majorana–Weyl spinors of oppo-

site chirality. Then the first ten components give the two ten-dimensional

gravitinos and Ψ11 gives the two ten-dimensional dilatinos. Each type IIA

dilatino has eight physical polarizations, because the Dirac equation implies

that half of the 16 components describe independent propagating modes. For

the counting to add up, it is clear that each of the gravitinos must have 56

physical degrees of freedom. These are the dimensions of irreducible repre-

sentations of Spin(8), so the discussion given here can be understood group

theoretically as the decomposition of the 128 representation of Spin(9) into

irreducible representations of the subgroup Spin(8). Altogether, there are

128 fermionic degrees of freedom, just as in 11 dimensions. This preserva-

tion of degrees of freedom is a general feature of dimensional reduction on

circles or tori.

Bosonic fields

Let us now consider the dimensional reduction of the bosonic fields of 11-

dimensional supergravity, the metric and the three-form. Greek letters

µ, ν, . . . refer to the first ten components of the 11-dimensional indices M,N ,

which are chosen to take the values 0, 1, . . . , 9, 11. Note that we skip the in-

dex value 10. The metric is decomposed according to

GMN = e−2Φ/3

(
gµν + e2ΦAµAν e2ΦAµ

e2ΦAν e2Φ

)
, (8.23)

where all of the fields depend on the ten-dimensional space-time coordinates

xµ only. The exponential factors of the scalar field Φ, which turns out to be

the dilaton, are introduced for later convenience. From the decomposition

of the 11-dimensional metric (8.23) one gets a ten-dimensional metric gµν ,

a U(1) gauge field Aµ and a scalar dilaton field Φ. Equation (8.23) can be

recast in the form

ds2 = GMNdx
MdxN = e−2Φ/3gµνdx

µdxν + e4Φ/3(dx11 + Aµdx
µ)2. (8.24)
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In terms of the elfbein EA
M this reduction takes the form

EAM =

(
e−Φ/3eaµ 0

e2Φ/3Aµ e2Φ/3

)
, (8.25)

where eaµ is the ten-dimensional zehnbein. The corresponding inverse elfbein,

which is useful in the following, is given by

EMA =

(
eΦ/3eµa 0

−eΦ/3Aa e−2Φ/3

)
. (8.26)

The three-form in D = 11 gives rise to a three-form and a two-form in

D = 10

A(11)
µνρ = Aµνρ and A

(11)
µν11 = Bµν , (8.27)

with the corresponding field strengths given by

F
(11)
µνρλ = Fµνρλ and F

(11)
µνρ11 = Hµνρ. (8.28)

The dimensional reduction can lead to somewhat lengthy formulas due to

the nondiagonal form of the metric. A useful trick for dealing with this is

to convert first to tangent-space indices, since the reduction of the tangent-

space metric is trivial. With this motivation, let us expand

F
(11)
ABCD = EMA E

N
BE

P
CE

Q
DF

(11)
MNPQ. (8.29)

There are two cases depending on whether the indices (A,B,C,D) are purely

ten-dimensional or one of them is 11-dimensional

F
(11)
abcd = e4Φ/3(Fabcd + 4A[aHbcd]) = e4Φ/3F̃abcd,

F
(11)
abc11 = eΦ/3Habc.

(8.30)

It follows that upon dimensional reduction the 11-dimensional field strength

is a combination of a four-form and a three-form field strength

F(4) = e4Φ/3F̃(4) + eΦ/3H(3)Γ11, (8.31)

where Γ11 is the ten-dimensional chirality operator. The quantities F̃(4) and

H(3) are defined in the same way as F(4) in Eq. (8.13). Using differential-

form notation, the rescaled tensor field can be written as

F̃4 = dA3 + A1 ∧H3. (8.32)

Notice that for the four-form F̃4 to be invariant under the U(1) gauge
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transformation δA1 = dΛ, the three-form potential should transform as

δA3 = dΛ ∧B. Then

δF̃4 = d(dΛ ∧B) + dΛ ∧H3 = 0. (8.33)

In addition, the four-form F̃4 is invariant under the more obvious gauge

transformation δA3 = dΛ2.

Coupling constants

The vacuum expectation value of exp Φ is the type IIA superstring coupling

constant gs. From Eq. (8.24) we see that if a distance in string units is 1,

say, then the same distance measured in 11d Planck units is g
−1/3
s . For small

gs, this is large. It follows that the Planck length is smaller than the string

length if gs is small. As a result,5

`p = g1/3
s `s with `s =

√
α′. (8.34)

In ten dimensions the relation between Newton’s constant, the gravita-

tional coupling constant and the string length and coupling constant is

16πG10 = 2κ2
10 =

1

2π
(2π`s)

8g2
s . (8.35)

Dimensional reduction on a circle of radius R11 gives a relation between

Newton’s constant in ten and 11 dimensions

G11 = 2πR11G10. (8.36)

Using Eqs (8.9) and (8.34), one deduces that the radius of the circle is

R11 = g2/3
s `p = gs`s. (8.37)

These formulas are confirmed again later in this chapter when the type IIA

D0-brane is identified with the first Kaluza–Klein excitation on the circle.

Let us also define

2κ2 =
1

2π
(2π`s)

8, (8.38)

which agrees with 2κ2
10 up to a factor of g2

s , that is, κ2
10 = κ2g2

s .

5 Chapter 2 introduced a string length scale ls =
√

2α′, which has been used until now. Here it is

convenient to introduce a string length scale `s =
√
α′, which is used throughout this chapter.

Note the change of font. Both conventions are used in the literature, and there is little to be
gained from eliminating one of them.
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Action

The bosonic action in the string frame for the D = 10 type IIA supergravity

theory is obtained from the bosonic D = 11 action once the integration over

the compact coordinate is carried out. The result contains three distinct

types of terms

S = SNS + SR + SCS. (8.39)

The first term is

SNS =
1

2κ2

∫
d10x
√−g e−2Φ

(
R+ 4∂µΦ∂µΦ− 1

2
|H3|2

)
. (8.40)

Note that the coefficient is 1/2κ2, which does not contain any powers of the

string coupling constant gs. This string-frame action is characterized by the

exponential dilaton dependence in front of the curvature scalar. By a Weyl

rescaling of the metric, this action can be transformed to the Einstein frame

in which the Einstein term has the conventional form. This is a homework

problem.

The remaining two terms in the action S involve the R–R fields and are

given by

SR = − 1

4κ2

∫
d10x
√−g

(
|F2|2 + |F̃4|2

)
, (8.41)

SCS = − 1

4κ2

∫
B2 ∧ F4 ∧ F4. (8.42)

As a side remark, let us point out the following: a general rule, discussed in

Chapter 3, is that a world sheet of Euler characteristic χ gives a contribution

with a dilaton dependence exp(χΦ), which leads to the correct dependence

on the string coupling constant. All terms in the classical action Eq. (8.39)

correspond to a spherical world sheet with χ = −2, because they describe

the leading order of the expansion in gs. Notice, however, that the terms

SR and SCS, which involve R–R fields, do not contain the expected factor

of e−2Φ. This is only a consequence of the way the R–R fields have been

defined. One could rescale C1 and F2 by C1 = e−ΦC̃1 and F2 = e−ΦF̃2,

where F̃2 = dC̃1 − dΦ ∧ C̃1 and make analogous redefinitions for C3 and

F4. Then the factor of e−2Φ would appear in all terms. However, this field

redefinition is not usually made, so the action that is displayed is in the form

that is most commonly found in the literature.

Supersymmetry transformations

Let us now examine the supersymmetry transformations of the fermi fields

to leading order in these fields. We first rewrite the gravitino variation in
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Eq. (8.12) in the form

δΨA = EµA∂µε+
1

4
ωABCΓBCε+

1

24

(
3F(4)ΓA − ΓAF(4)

)
ε, (8.43)

where we are using 11-dimensional tangent-space indices. To interpret the

previous expression in terms of ten-dimensional quantities, we need to work

out the various pieces of the spin connection, which (to avoid confusion) is

now denoted ω
(11)
ABC . Using Eq. (8.19), one finds that

ω
(11)
aBCΓBC = eΦ/3(ωabcΓ

bc − 2

3
Γa

µ∂µΦ) + e4Φ/3FabΓ
bΓ11 (8.44)

and

ω
(11)
11BCΓBC = −1

2
e4Φ/3FbcΓ

bc − 4

3
eΦ/3ΓµΓ11∂µΦ. (8.45)

Using these equations

e−Φ/3δΨ11 = −1

4
eΦF(2)ε− 1

3
∂µΦΓµΓ11ε+

1

12
eΦF̃(4)Γ11ε+

1

6
H(3)ε (8.46)

and

e−Φ/3δΨa = eµa∇µε−
1

6
Γa

µ∂µΦε+
1

4
eΦFabΓ

bΓ11ε

+
1

24
eΦ(3F̃(4)Γa − ΓaF̃

(4))ε− 1

24
(3H(3)Γa + ΓaH

(3))Γ11ε. (8.47)

To obtain the supersymmetry transformations in the desired form, we

define new spinors as follows:

λ̃ = e−Φ/6Ψ11, (8.48)

Ψ̃µ = e−Φ/6(Ψµ +
1

2
ΓµΓ11Ψ11) (8.49)

and ε̃ = exp(Φ/6)ε. The final expressions for the supersymmetry transfor-

mations then become6

δλ =

(
−1

3
Γµ∂µΦΓ11 +

1

6
H(3) − 1

4
eΦF(2) +

1

12
eΦF̃(4)Γ11

)
ε (8.50)

and

δΨµ =

(
∇µ −

1

4
H(3)
µ Γ11 −

1

8
eΦFνρΓµ

νρΓ11 +
1

8
eΦF(4)Γµ

)
ε. (8.51)

The second term in δΨµ has an interpretation as torsion.7 Because of the Γ11

6 In order to make the equations less cluttered, we have removed the tildes from the fermionic
fields and ε.

7 Torsion is defined in the appendix of Chapter 9.
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factor, the torsion has opposite sign for the opposite chiralities 1
2(1±Γ11)Ψµ.

The spinors λ, Ψµ and ε are each Majorana spinors. As such they could

be decomposed into a pair of Majorana–Weyl spinors of opposite chirality,

though there is no advantage in doing so. Therefore, they describe two

dilatinos, two gravitinos and N = 2 supersymmetry in ten dimensions.

Type IIB supergravity

Unlike type IIA supergravity, the type IIB theory cannot be obtained by

reduction from 11-dimensional supergravity. The guiding principles to con-

struct this theory come from supersymmetry as well as gauge invariance.

One challenging feature of the type IIB theory is that the self-dual five-form

field strength introduces an obstruction to formulating the action in a man-

ifestly covariant form. One strategy for dealing with this is to focus on the

field equations instead, since they can be written covariantly. Alternatively,

one can write an action that needs to be supplemented by a self-duality

constraint.

Field content

Chapter 5 derived the massless spectrum of the type IIB superstring, which

gives the particle content of type IIB supergravity. The fermionic part of the

spectrum consists of two left-handed Majorana–Weyl gravitinos (or, equiv-

alently, one Weyl gravitino) and two right-handed Majorana–Weyl dilatinos

(or, equivalently, one Weyl dilatino). The NS–NS bosons consist of the met-

ric (or zehnbein), the two-form B2 (with field strength H3 = dB2) and the

dilaton Φ. The R–R sector consists of form fields C0, C2 and C4. The latter

has a self-dual field strength F̃5.

The self-dual five-form

The presence of the self-dual five-form introduces a significant complication

for writing down a classical action for type IIB supergravity. The basic issue,

which also exists for analogous self-dual tensors in two and six dimensions,

is that an action of the form ∫
|F5|2 d10x (8.52)

does not incorporate the self-duality constraint, and therefore it describes

twice the desired number of propagating degrees of freedom. The introduc-

tion of a Lagrange multiplier field to implement the self-duality condition

does not help, because the Lagrange multiplier field itself ends up reintro-

ducing the components it was intended to eliminate.
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There are several different ways of dealing with the problem of the self-

dual field. The original approach is to not construct an action, but only

the field equations and the supersymmetry transformations. This is entirely

adequate for most purposes, since the supergravity theory is only an effec-

tive theory, and not a quantum theory that one inserts in a path integral.

The basic idea is that the supersymmetric variation of an equation of mo-

tion should give another equation of motion (or combination of equations

of motion). By pursuing this systematically, it turns out to be possible to

determine the supersymmetry transformations and the field equations simul-

taneously. In fact, the equations are highly overconstrained, so one obtains

many consistency checks.

It is possible to formulate a manifestly covariant action with the correct

degrees of freedom if, following Pasti, Sorokin, and Tonin (PST), one in-

troduces an auxiliary scalar field and a compensating gauge symmetry in a

suitable manner. The extra gauge symmetry can be used to set the auxiliary

scalar field equal to one of the space-time coordinates as a gauge choice, but

then the resulting gauge-fixed theory does not have manifest general coordi-

nate invariance in one of the directions. Nonetheless, it is a correct theory,

at least for space-time topologies for which this gauge choice is globally well

defined.

An action

We do not follow the PST approach here, but instead present an action

that gives the correct equations of motion when one imposes the self-duality

condition as an extra constraint. Such an action is not supersymmetric, how-

ever, because (without the constraint) it has more bosonic than fermionic

degrees of freedom. Moreover, the constraint cannot be incorporated into

the action for the reasons discussed above.

The way to discover this action is to first construct the supersymmetric

equations of motion, and then to write down an action that reproduces those

equations when the self-duality condition is imposed by hand. The bosonic

part of the type IIB supergravity action obtained in this way takes the form

S = SNS + SR + SCS. (8.53)

Here SNS is the same expression as for the type IIA supergravity theory in

Eq. (8.40), while the parts of the action describing the massless R–R sector

fields are given by

SR = − 1

4κ2

∫
d10x
√−g

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (8.54)
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SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3. (8.55)

In these formulas Fn+1 = dCn, H3 = dB2 and

F̃3 = F3 − C0H3, (8.56)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (8.57)

These are the gauge-invariant combinations analogous to F̃4 in the type

IIA theory. In each case the R–R fields that appear here differ by field

redefinitions from the ones that couple simply to the D-brane world volumes,

as described in Chapter 6. The five-form satisfying the self-duality condition

is F̃5, that is,

F̃5 = ?F̃5. (8.58)

This condition has to be imposed as a constraint that supplements the equa-

tions of motion that follow from the action.

Supersymmetry transformations

Even though the action we presented is not the bosonic part of a supersym-

metric action, the field equations, including the constraint, are. In other

words, as explained earlier, the supersymmetry variations of these equa-

tions vanish if after the variation one imposes the equations themselves.

The supersymmetry transformations of type IIB supergravity are required

in later chapters, so we present them here.

Let us represent the dilatino and gravitino fields by Weyl spinors λ and

Ψµ, respectively. Similarly, the infinitesimal supersymmetry parameter is

represented by a Weyl spinor ε. The supersymmetry transformations of the

fermi fields of type IIB supergravity (to leading order in fermi fields) are

δλ =
1

2

(
∂µΦ− ieΦ∂µC0

)
Γµε+

1

4

(
ieΦF̃(3) −H(3)

)
ε? (8.59)

and

δΨµ =

(
∇µ +

i

8
eΦF(1)Γµ +

i

16
eΦF̃(5)Γµ

)
ε− 1

8

(
2H(3)

µ + ieΦF̃(3)Γµ

)
ε?.

(8.60)

Global SL(2, � ) symmetry

Type IIB supergravity has a noncompact global symmetry SL(2, � ). This

is not evident in the equations above, so let us sketch what is required to

make it apparent. The theory has two two-form potentials, B2 and C2, which
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transform as a doublet under the SL(2, � ) symmetry group. Therefore, to

rewrite the action in a way that the symmetry is manifest, let us rename

the two-form potentials B2 = B
(1)
2 and C2 = B

(2)
2 and introduce a two-

component vector notation

B2 =

(
B

(1)
2

B
(2)
2

)
. (8.61)

Similarly, H3 = dB2 is also a two-component column vector. Under a trans-

formation by

Λ =

(
d c

b a

)
∈ SL(2, � ), (8.62)

the B fields transform linearly by the rule

B2 → ΛB2. (8.63)

Since the parameters in Λ are constants, H3 transforms in the same way.

The complex scalar field τ , defined by

τ = C0 + ie−Φ, (8.64)

is useful because it transforms nonlinearly by the familiar rule

τ → aτ + b

cτ + d
. (8.65)

The field C0 is sometimes referred to as an axion, because of the shift sym-

metry C0 → C0+constant of the theory (in the supergravity approximation),

and then the complex field τ is referred to as an axion–dilaton field.

The action can be conveniently written in terms of the symmetric SL(2, � )

matrix

M = eΦ

(
|τ |2 −C0

−C0 1

)
, (8.66)

which transforms by the simple rule

M→ (Λ−1)TMΛ−1. (8.67)

The canonical Einstein-frame metric gE
µν and the four-form C4 are SL(2, � )

invariant. Note that since the dilaton transforms, the type IIB string-frame

metric gµν in the action (8.53), which is related to the canonical Einstein

metric by

gµν = eΦ/2gE
µν , (8.68)
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is not SL(2, � ) invariant. The transformation of the scalar curvature term

under this change of variables is given by

1

2κ2

∫
d10x
√−g e−2ΦR→ 1

2κ2

∫
d10x
√−g(R− 9

2
∂µΦ∂µΦ), (8.69)

where the string-frame metric is used in the first expression and the Einstein-

frame metric is used in the second one.

Using the quantities defined above, the type IIB supergravity action can

be recast in the form

S =
1

2κ2

∫
d10x
√−g

(
R− 1

12
HT
µνρMHµνρ +

1

4
tr(∂µM∂µM−1)

)

− 1

8κ2

(∫
d10x
√−g|F̃5|2 +

∫
εijC4 ∧H(i)

3 ∧H
(j)
3

)
, (8.70)

where the metric gE is used throughout. This action is manifestly invariant

under global SL(2, � ) transformations.

The self-duality equation, F̃5 = ?F̃5, which is imposed as a constraint in

this formalism, is also SL(2, � ) invariant. To see this, first note that the

Hodge dual that defines ?F̃5 is invariant under a Weyl rescaling, so that it

doesn’t matter whether it is defined using the string-frame metric or the

Einstein-frame metric. The definition of F̃5 in Eq. (8.57) can be recast in

the manifestly SL(2, � ) invariant form

F̃5 = F5 +
1

2
εijB

(i)
2 ∧H

(j)
3 . (8.71)

The invariance of the self-duality equation then follows.

Type I supergravity

Field content

As explained in Chapter 6, type I superstring theory arises as an orientifold

projection of the type IIB superstring theory. This involves a truncation

of the type IIB closed-string spectrum to the left–right symmetric states

as well as the addition of a twisted sector consisting of open strings. The

massless closed-string sector is N = 1 supergravity in ten dimensions and

the massless open-string sector isN = 1 super Yang–Mills theory with gauge

group SO(32) in ten dimensions. Therefore, the low-energy effective action

should describe the interactions of these two supermultiplets to leading order

in the α′ expansion.
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Restricting to the bosonic sector of the theory, the massless fields of type

I superstring theory in ten dimensions consist of

gµν , Φ, C2 and Aµ. (8.72)

Here gµν is the graviton, Φ is the dilaton, C2 is the R–R two-form and Aµ
is the SO(32) Yang–Mills gauge field coming from the twisted sector.

Action

In the string frame, the bosonic part of the supersymmetric Lagrangian

describing the low-energy limit of the type I superstring is

S =
1

2κ2

∫
d10x
√−g

[
e−2Φ (R+ 4∂µΦ∂µΦ)− 1

2
|F̃3|2 −

κ2

g2
e−Φtr(|F2|2)

]
.

(8.73)

Here F2 = dA+A∧A is the Yang–Mills field strength corresponding to the

gauge field A = Aµdx
µ. Moreover,

F̃3 = dC2 +
`2s
4
ω3, (8.74)

as explained in the anomaly analysis of Chapter 5.8 In the full string theory

the Chern–Simons term is

ω3 = ωL − ωYM, (8.75)

where

ωL = tr(ω ∧ dω +
2

3
ω ∧ ω ∧ ω) (8.76)

and

ωYM = tr(A ∧ dA+
2

3
A ∧ A ∧A). (8.77)

Here ωL is the Lorentz Chern–Simons term (ω is the spin connection) and

ωYM is the Yang–Mills Chern–Simons term. However, the Lorentz Chern–

Simons term is higher-order in derivatives, so only the Yang–Mills Chern–

Simons term is part of the low-energy effective supergravity theory.

The parameter g, introduced in Eq. (8.73), is related to the ten-dimensional

Yang–Mills coupling constant gYM by

g2
YM

4π
=
g2

4π
gs = (2π`s)

6gs. (8.78)

In type I superstring theory, gYM is an open-string coupling, and therefore

8 The conventions here correspond to setting the parameter µ that was introduced in Section 5.4
equal to 8/`2s . The gauge field A is antihermitian as in Chapter 5.
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it is proportional to
√
gs. As discussed in Chapter 3, this is a consequence of

the fact that open strings couple to world-sheet boundaries, whereas closed

strings couple to interior points of the string world sheet.9 In the heterotic

string theory, considered in the next section, the counting is a bit different.

There gYM is a closed-string coupling, and therefore it is proportional to gs.

Note that the first two terms of Eq. (8.73) come from a spherical world

sheet (with χ = −2), whereas the last term comes from a disk world sheet

(with χ = −1). The third term involves an R–R field and therefore is

independent of Φ, as discussed earlier.

The action (8.73) describes N = 1 supergravity coupled to SO(32) super

Yang–Mills theory in ten dimensions. As such, it only contains the leading

terms in the low-energy expansion of the effective action of the type I super-

string theory. In this particular case, some of the higher-order corrections

to this action are already known from the anomaly analysis. Specifically,

as mentioned above, the Chern–Simons term in the definition of F̃3 con-

tains both a Yang–Mills and a Lorentz contribution in the full theory, but

the Lorentz Chern–Simons term is higher-order in derivatives, and there-

fore it is not included in the leading low-energy effective action. A local

counterterm proportional to

∫
C2 ∧ Y8, (8.79)

also required by anomaly cancellation, consists entirely of terms of higher

dimension than are included in the action given above.10

Supersymmetry transformations

Let us now consider the supersymmetry transformations that leave the type

I effective action invariant. The terms involving the supergravity multiplet

can be obtained by truncation of the type IIB supersymmetry transforma-

tions given earlier. The type IIB formulas used complex fermi fields such as

λ = λ1 + iλ2, and similarly for Ψµ and the supersymmetry parameter ε. In

the truncation to type I the combinations that survive are Majorana–Weyl

fields given by sums such as λ = λ1 + λ2, and similarly for Ψµ and the

supersymmetry parameter ε. Using this rule, the type IIB formulas imply

that the transformations of the fermions in the supergravity multiplet are

9 This rule can be understood in terms of the genus of the relevant world-sheet diagrams.
10 The precise form of Y8 can be found in Chapter 5.
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given in the type I case by

δΨµ = ∇µε− 1
8e

ΦF̃(3)Γµε,

δλ = 1
2∂/Φε+ 1

4e
ΦF̃(3)ε,

δχ = −1
2F(2)ε.

(8.80)

The last equation represents the supersymmetry transformation of the ad-

joint fermions χ in the super Yang–Mills multiplet. As always, there are

corrections to these formulas that are quadratic in fermi fields, but these

are not needed to construct Killing spinor equations.

Heterotic supergravity

Chapter 7 derived the particle spectrum of the heterotic string theories in

ten-dimensional Minkowski space-time. The massless field content of the

SO(32) heterotic string theory is exactly the same as that of the type I

superstring theory. The massless fields of the E8×E8 heterotic string differ

only by the replacement of the gauge group, though the differences are more

substantial for the massive excitations.

Action

The bosonic part of the low-energy effective action of both of the heterotic

theories in the ten-dimensional string frame is given by

S =
1

2κ2

∫
d10x
√−ge−2Φ

[
R+ 4∂µΦ∂µΦ− 1

2
|H̃3|2 −

κ2

30g2
Tr(|F2|2)

]
.

(8.81)

Note that the entire action comes from a spherical world sheet in this case,

and heterotic theories have no R–R fields, which explains why every term

contains a factor of exp(−2Φ). F2 is the field strength corresponding to the

gauge groups SO(32) or E8 × E8 and

H̃3 = dB2 +
`2s
4
ω3 (8.82)

satisfies the relation

dH̃3 =
`2s
4

(
trR ∧R− 1

30
TrF ∧ F

)
. (8.83)

However, as noted in the type I context, the Lorentz term is not part of

the leading low-energy effective theory. The gauge theory trace denoted Tr
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is evaluated using the 496-dimensional adjoint representation. As was dis-

cussed in Chapter 5, this can be re-expressed in terms of the 32-dimensional

fundamental representation of SO(32), for which the trace is denoted tr, by

using the identity

trF ∧ F =
1

30
TrF ∧ F. (8.84)

Sometimes this notation is used in the E8×E8 theory, as well, even though

this group doesn’t have a 32-dimensional representation. In this notation,

the cohomology classes of trR ∧R and trF ∧ F must be equal, since dH̃3 is

exact.

Supersymmetry transformations

The heterotic string effective action has N = 1 local supersymmetry in ten

dimensions, which means that the gravitino field Ψµ is a Majorana–Weyl

spinor. There is also a Majorana–Weyl dilatino field λ. The bosonic parts

of the transformation formulas of the fermi fields, which is what is required

to read off the Killing spinor equations, are

δΨµ = ∇µε− 1
4H̃

(3)
µ ε,

δλ = −1
2Γµ∂µΦε+ 1

4H̃(3)ε,

δχ = −1
2F(2)ε.

(8.85)

The first two transformations can be deduced from the type IIB supersym-

metry transformations by truncating to an N = 1 subsector and keeping

only the NS–NS fields. A nice feature of this formulation is that the H̃3

contribution to δΨµ can be interpreted as torsion.

EXERCISES

EXERCISE 8.3

The previous section described the global symmetry of the type IIB super-

gravity action using a matrix M. Verify the identities

1

4
tr(∂µM∂µM−1) = − ∂

µτ∂µτ̄

2(Imτ)2
= −1

2

(
∂µΦ∂µΦ + e2Φ∂µC0∂µC0

)
.

Verify the SL(2, � ) invariance of this expression.
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SOLUTION

By definition τ = C0 + ie−Φ and

M = eΦ

(
|τ |2 −C0

−C0 1

)
.

As a result,

M−1 = eΦ

(
1 C0

C0 |τ |2
)
.

So

1

4
tr(∂µM∂µM−1) =

1

2
∂µ
(
eΦ|τ |2

)
∂µ
(
eΦ
)
− 1

2
∂µ
(
C0e

Φ
)
∂µ
(
C0e

Φ
)

= −1

2

(
∂µΦ∂µΦ + e2Φ∂µC0∂µC0

)
.

Also,

− ∂
µτ∂µτ̄

2(Imτ)2
= −1

2
e2Φ∂µ

(
C0 + ie−Φ

)
∂µ
(
C0 − ie−Φ

)

= −1

2

(
∂µΦ∂µΦ + e2Φ∂µC0∂µC0

)
.

This establishes the required identities. The SL(2, � ) symmetry is manifest

for tr(∂µM∂µM−1), because when one substitutesM→ (Λ−1)TMΛ−1 the

constant Λ factors cancel using the cyclicity of the trace. 2

EXERCISE 8.4

Verify that the action in Eq. (8.70) agrees with Eq. (8.53).

SOLUTION

First we need the action (8.53) in the Einstein frame. Using Eqs (8.68) and

(8.69), it is given by S = SNS + SR + SCS, where

SNS =
1

2κ2

∫
d10x
√−g

(
R− 1

2
∂µΦ∂µΦ− 1

2
e−Φ|H3|3

)

SR = − 1

4κ2

∫
d10x
√−g

(
e2Φ|F1|2 + eΦ|F̃3|2 +

1

2
|F̃5|2

)

SCS = − 1

4κ2

∫
C4 ∧H3 ∧ F3.

We only need to rewrite the first two terms in Eq. (8.70) and compare them
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with the corresponding terms in the above actions, since the last two terms

obviously agree. These terms are

− 1
12H

T
µνρMHµνρ + 1

4tr(∂µM∂µM−1)

= −1
2e

Φ
(
|τ |2|H3|2 + |F3|2 − 2C0F ·H

)
− 1

2

(
∂µΦ∂µΦ + e2Φ∂µC0∂µC0

)

= −1
2

(
e−Φ|H3|2 + eΦ (F3 − C0H3)2

)
− 1

2

(
∂µΦ∂µΦ + e2Φ∂µC0∂µC0

)
.

Using F̃3 = F3 − C0H3, it becomes manifest that all terms match. 2

8.2 S-duality

S-duality is a transformation that relates a string theory with coupling con-

stant gs to a (possibly) different theory with coupling constant 1/gs. This is

analogous to the way that T-duality relates a circular dimension of radius

R to one of radius `2s/R. In each case the parameter is given by the vacuum

expectation value of a scalar field. Thus the duality, at a more fundamental

level, can be understood in terms of field transformations.

The symmetry of Maxwell’s equation under the interchange of electric

and magnetic quantities, combined with the Dirac quantization condition,

already hints at the possibility of such a duality in field theory. This

strong–weak (or electric–magnetic) duality symmetry generalizes to non-

abelian gauge theories. The cleanest example is N = 4 supersymmetric

Yang–Mills (SYM) theory, which is a conformally invariant quantum the-

ory, a fact that plays an important role in Chapter 12. In fact, when one

includes a θ term

Sθ =
θ

16π2

∫
F a ∧ F a (8.86)

in the definition of the N = 4 SYM theory (as one should), this theory has

an SL(2,
�

) duality under which the complex coupling constant

τ =
θ

2π
+ i

4π

g2
YM

(8.87)

transforms as a modular parameter. The fact that the theory is conformally

invariant ensures that τ is a constant independent of any renormalization

scale. The simple electric–magnetic duality gYM → 4π/gYM corresponds to

the special case τ → −1/τ evaluated for θ = 0. There has been extensive

progress in recent times in understanding electric–magnetic dualities of other
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supersymmetric gauge theories, starting with the important work of Seiberg

and Witten in 1994 for N = 2 gauge theories.

A double expansion

In order to understand the various string dualities and their relationships it is

useful to view string theory as a simultaneous expansion in two parameters:11

• One parameter is the Regge slope (or inverse string tension) α′. An ex-

pansion in α′ is an expansion in “stringiness” about the point-particle

limit. Mathematically, it is the perturbation expansion that corresponds

to quantum-mechanical treatment of the string world-sheet theory, even

though it concerns the classical physics of a string. (Recall that the world-

sheet action has a coefficient 1/α′, so that α′ plays a role analogous to

Planck’s constant.) Since α′ has dimensions of (length)2, the dimension-

less expansion parameter can be α′p2, where p is a characteristic momen-

tum or energy, or α′/L2, where L is a characteristic length scale, such as

the size of a compact dimension.

• The second expansion is the one in the string coupling constant gs, which

is the expectation value of the exponentiated dilaton field. This is the

expansion in the number of string loops or, equivalently, the genus of the

string world sheet.

S-duality and T-duality are quite analogous. However, S-duality seems

deeper in that it is nonperturbative in the string loop expansion, whereas

T-duality holds order by order in the loop expansion. In particular, it is

valid in the leading (tree or classical) approximation.

Type I superstring – SO(32) heterotic string duality

The low-energy effective actions for the type I and SO(32) heterotic theories

are very similar. In particular, they are mapped into one another by the

simple transformation

Φ→ −Φ (8.88)

combined with a Weyl rescaling of the metric

gµν → e−Φgµν . (8.89)

Thus the canonical Einstein metric gE
µν = e−Φ/2gµν is an invariant combina-

tion. All other bosonic fields remain unchanged (A↔ A and B2 ↔ C2).

11 The discussion that follows applies to any of the superstring theories.
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This leads to the conjecture that the two string theories (not just their

low-energy limits) are actually dual to one another, which means that they

are descriptions in two different regions of the parameter space of one and

the same quantum theory. Since the string coupling constant is the vev of

exp(Φ) in each case, Eq. (8.88) implies that the type I superstring coupling

constant is the reciprocal of the SO(32) heterotic string coupling constant,

gI
s g

H
s = 1. (8.90)

Thus, when one of the two theories is weakly coupled, the other one is

strongly coupled. This, of course, makes proving the type I–heterotic duality

difficult. Some checks, beyond the analysis of the effective actions described

above, can be made and no discrepancy has been found. More significantly,

this is one link in an intricate overconstrained web of dualities. If any of

them were wrong, the whole story would fall apart.

Nonperturbative test

As an example of a nonperturbative test of the duality, consider the D-string

of the type I theory, whose tension is

TD1 =
1

gs

1

2π`2s
. (8.91)

Let us test the conjecture that this string actually is the SO(32) heterotic

string, whose tension is

TF1 =
1

2π`2s
, (8.92)

continued from weak coupling to strong coupling. The D-string is a super-

symmetric object that saturates a BPS bound, and therefore the tension

formula ought to be exact for all values of gs. To compare these formulas

one must realize that although the physical values of `s are the same in the

two cases, they are being measured in different metrics, as a consequence of

the Weyl rescaling in Eq. (8.89). Thus

`s → `s
√
gs. (8.93)

Combined with the rule gs → 1/gs, this indeed implies that the tensions TD1

and TF1 agree. Note that the transformation gs → 1/gs, `s → `s
√
gs squares

to the identity, and so it is the same as its inverse.

The tensions of the magnetically-charged 5-branes that are dual to these

strings can be compared in similar fashion. This is guaranteed to work by
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what has already been said, but let’s check it anyway. In the type I theory

TD5 =
1

gs(2π)5`6s
, (8.94)

and in the heterotic theory

TNS5 =
1

(gs)2(2π)5`6s
. (8.95)

Once again, these map into one another in the required fashion.

The fundamental type I string

Having seen that the SO(32) heterotic string can be identified with the type

I D-string, one might wonder whether one can also identify a counterpart

for the fundamental type I string in the SO(32) heterotic theory. To answer

this it is important to understand the essential difference between the two

types of strings. The type I F-string does not carry a conserved charge, and

it is not supersymmetric. The two-form B2, which is the field that couples

to a fundamental type IIB string, is removed from the spectrum by the

orientifold projection. There are two ways of thinking about the reason that

a type I F-string can break, both of which are correct. One is that there

are space-time-filling D9-branes, and fundamental strings can break on D-

branes. The other one is that since it does not carry a conserved charge,

and it is not supersymmetric, there is no conservation law that prevents it

from breaking. The amplitude for breaking a type I string is proportional

to
√
gs, so these strings can be long-lived for sufficiently small coupling

constant. This is good enough for making them the fundamental objects

on which to base a perturbation expansion. However, if the type I coupling

constant is large, the type I F-strings are no longer a useful concept, since

they disintegrate as shown in Fig. 8.1. Accordingly, there is no trace of them

in the weakly-coupled heterotic description.

Fig. 8.1. The fundamental type I string disintegrates at strong coupling.
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Type IIB S-duality

Type IIB supergravity has a global SL(2, � ) symmetry that was described

earlier. However this symmetry of the low-energy effective action is not

shared by the full type IIB superstring theory. Indeed, it is broken by

a variety of stringy and quantum effects to the infinite discrete subgroup

SL(2,
�

). One way of seeing this is to think about stable strings in this

theory. Since there are two two-form gauge fields B2 (NS–NS two-form) and

C2 (R–R two-form) there are two types of charge that a string can carry.

The F-string (or fundamental string) has charge (1, 0), which means that it

has one unit of the charge that couples to B2 and none of the charge that

couples to C2. In similar fashion, the D-string couples to C2 and has charge

(0, 1). Since the two-forms form a doublet of SL(2, � ) it follows that these

strings also transform as a doublet. In general, they transform into (p, q)

strings, which carry both kinds of charge. The restriction to the SL(2,
�

)

subgroup is essential to ensure that these charges are integers, as is required

by the Dirac quantization conditions.

Symmetry under gs → 1/gs

Recall that in type IIB supergravity the complex field

τ = C0 + ie−Φ (8.96)

transforms nonlinearly under SL(2, � ) transformations. This remains true

in the full string theory, but only for the discrete subgroup SL(2,
�

). In

particular, the transformation τ → −1/τ , evaluated at C0 = 0, changes the

sign of the dilaton, which implies that the string coupling constant maps

to its inverse. This is an S-duality transformation like the one that relates

the type I superstring and SO(32) heterotic string theories. In this case it

relates the type IIB superstring theory to itself. Moreover, it is only one

element of the infinite duality group SL(2,
�

). This duality group bears a

striking resemblance to that of the N = 4 SYM theory discussed at the

beginning of this section. In Chapter 12 it is shown that this is not an

accident.

(p, q) strings

The (p, q) strings are all on an equal footing, so they are all supersymmetric,

in particular. This implies that each of their tensions saturates a BPS bound

given by supersymmetry, and this uniquely determines what their tensions
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are. In the string frame, the result turns out to be

T(p,q) = |p− qτB|TF1 = TF1

√(
p− q θ0

2π

)2

+
q2

g2
s

, (8.97)

where we have defined the vev

τB = 〈τ〉 =
θ0

2π
+

i

gs
(8.98)

and

TF1 = T(1,0) =
1

2π`2s
. (8.99)

This result can be derived by constructing the (p, q) strings as solitonic

solutions of the type IIB supergravity field equations. The fact that these

equations are only approximations to the superstring equations doesn’t mat-

ter for getting the tension right, since it is a consequence of supersymmetry.

Later, we confirm this tension formula by deriving it from a duality that

relates the type IIB theory to M-theory.

Note that the F-string tension formula is valid for all values of θ0, but the

usual D-string tension formula

TD1 = T(0,1) =
TF1

gs
(8.100)

is only valid for θ0 = 0. Note also that a (p, q) string with θ0 = 2π is

equivalent to a (p− q, q) string with θ0 = 0.

These (p, q) string tensions satisfy a triangle inequality

T(p1+p2,q1+q2) ≤ T(p1,q1) + T(p2,q2), (8.101)

and equality requires that the vectors (p1, q1) and (p2, q2) are parallel. One

way of stating the conclusion is that a (p, q) string can be regarded as a

bound state of p F-strings and q D-strings. It has lower tension than any

other configuration with the same charges if and only if p and q are coprime.

If there is a common divisor, there exists a multiple-string configuration with

the same charges and tension.

Other BPS states

Let us briefly consider the SL(2,
�

) properties of the other BPS type IIB

branes:

• The D3-brane carries a charge that couples to the SL(2,
�

) singlet field

C4. Therefore, it transforms as an SL(2,
�

) singlet, as well. This fact has

the interesting consequence that any (p, q) string can end on a D3-brane,
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since an SL(2,
�

) transformation that turns an F-string into a (p, q) string

leaves the D3-brane invariant.

• There exist stable supersymmetric (p, q) 5-branes, which are the magnetic

duals of (p, q) strings. Their SL(2,
�

) properties are quite similar to those

of the (p, q) strings.

• The D7-brane couples magnetically to C0. This field transforms in a

rather complicated way under SL(2,
�

), so it is not immediately obvious

how to classify 7-branes. Although this issue won’t be pursued here, the

classification is important, because certain nonperturbative vacua of type

IIB superstring theory (described by F-theory) contain various 7-branes.

This is addressed later.

The definition of a D-brane as a p-brane on which an F-string can end

has to be interpreted carefully for p = 1. A naive interpretation of “a

fundamental string ending on a D-string” would suggest a junction of three

string segments, one of which is (1, 0) and two of which are (0, 1). This

is not correct, however, because the charge on the end of the fundamental

string results in flux that must go into one or the other of the attached

string segments, changing the string charge in the process. In short, the

three-string junction must satisfy charge conservation. This means that an

allowed junction of three strings with charges (p(i), q(i)) with i = 1, 2, 3 has

to satisfy ∑

i

p(i) =
∑

i

q(i) = 0. (8.102)

Mathematically, this is just like momentum conservation at a vertex in a

Feynman diagram (in two dimensions). The junction configuration is stable

if the angles are chosen so that the three tensions, treated as vectors, add

to zero. It is possible to build complex string webs using such junctions.

8.3 M-theory

The term M-theory was introduced by Witten to refer to the “mysterious”

or “magical” quantum theory in 11 dimensions whose leading low-energy

effective action is 11-dimensional supergravity. M-theory is not yet fully

formulated, but the evidence for its existence is very compelling. It is as

fundamental (but not more) as type IIB superstring theory, for example.

In fact, the latter is somewhat better understood precisely because it is a

string theory and therefore admits a well-defined perturbation expansion.

This section describes a duality that relates M-theory compactified on a

torus to type IIB superstring theory compactified on a circle. Since this
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duality requires a particular geometric set-up, it only allows solutions (or

quantum vacua) of one theory to be recast in terms of the other theory for

appropriate classes of geometries.

The description of M-theory in terms of an effective action is clearly not

fundamental, so string theorists are searching for alternative formulations.

One proposal for an exact nonperturbative formulation of M-theory, known

as Matrix theory, is discussed in Chapter 12. It is not the whole story,

however, since it is only applicable for a limited class of background geome-

tries. A more general approach, called AdS/CFT duality, also is discussed

in Chapter 12.

Type IIA superstring theory at strong coupling

The low-energy limit of type IIA superstring theory is type IIA supergravity,

and this supergravity theory can be obtained by dimensional reduction of

11-dimensional supergravity, as has already been discussed. However, the

correspondence between type IIA superstring theory and M-theory is much

deeper than that. So let us take a closer look at the strong-coupling limit

of the type IIA superstring theory.

D0-branes

Type IIA superstring theory has stable nonperturbative excitations, the D0-

branes, whose mass in the string frame is given by (`sgs)
−1. The claim is that

this can be interpreted from the viewpoint of M-theory compactified on a

circle as the first Kaluza–Klein excitation of the massless supergravity mul-

tiplet. The entire 256-dimensional supermultiplet is sometimes referred to

as the supergraviton. To examine this claim, let us consider 11-dimensional

supergravity (or M-theory) compactified on a circle. The mass of the super-

graviton in 11 dimensions is zero

M2
11 = −pMpM = 0, M = 0, 1, . . . , 9, 11. (8.103)

In ten dimensions this takes the form

M2
10 = −pµpµ = p2

11, µ = 0, 1, . . . , 9. (8.104)

The momentum on the circle in the eleventh direction is quantized, p11 =

N/R11, and therefore the spectrum of ten-dimensional masses is

(MN )2 = (N/R11)2 with N ∈ �
(8.105)

representing a tower of Kaluza–Klein excitations. These states also form

short (256-dimensional) supersymmetry multiplets, so that they are all BPS
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states, and carry N units of a conserved U(1) charge. For N = 1 the

correspondence with the D0-brane requires that

R11 = `sgs, (8.106)

in agreement with the result presented in Section 8.1. The D0-branes are

nonperturbative excitations of the type IIA theory, since their tensions di-

verge as gs → 0. Therefore, this correspondence provides a test of the duality

between the type IIA theory and 11-dimensional M-theory that goes beyond

the perturbative regime.

Since R11 = `sgs, the radius of the compactification is proportional to

the string coupling constant. This means that the perturbative regime of

the type IIA superstring theory in which gs → 0 corresponds to the limit

R11 → 0. Conversely, the strong-coupling limit, that is, the limit gs → ∞,

corresponds to decompactification of the circular eleventh dimension giving

a theory in which all ten spatial dimensions are on an equal footing. The

11-dimensional theory obtained in this way is M-theory, and the low-energy

limit of M-theory is 11-dimensional supergravity.

Turning the argument around, this is powerful evidence in support of

a nontrivial result concerning the existence of bound states of D0-branes.

The Nth Kaluza–Klein excitation gives a multiplet of stable particles in ten

dimensions that have N units of charge. Therefore, they can be regarded

as bound states of N D0-branes. However, these are a very special type of

bound state, one that has zero binding energy. There is no room for any

binding energy, since these states saturate a BPS bound, which means they

are as light as they are allowed to be for a state with N units of D0-brane

charge. It also means that the mass formula in Eq. (8.105) is exact for all

values of gs. As discussed earlier, the only way in which the BPS mass

formula could be violated would be for the short supermultiplet to turn

into a long supermultiplet. However, the degrees of freedom that would be

needed for this to happen are not present in this case.

Bound states with zero binding energy are called threshold bound states,

and the question of whether or not they are stable is a very delicate matter.

From the Kaluza–Klein viewpoint it is clear that they should be stable, but

from the point of view of the dynamics of D0-branes in the type IIA theory,

it is not at all obvious. In fact, the proof is highly technical involving an

index theorem for a family of non-Fredholm operators. Moreover, the result

is specific to this particular problem. There are other instances in which

coincident BPS states do not form threshold bound states. An example

that we already encountered concerns the type IIB (p, q) strings. These

strings are only stable bound states if p and q are coprime.
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M-branes

The BPS branes of M-theory are the M2-brane and the M5-brane. M-theory

on � 11 does not contain any strings. This raises the following question:

What happens to the type IIA fundamental string for large coupling, when

the theory turns into M-theory? The only plausible guess is that the type

IIA F-string is actually an M2-brane with a circular dimension wrapping

the circular eleventh dimension. Since tension is energy density, this identi-

fication requires that

TF1 = 2πR11TM2. (8.107)

This relation is satisfied by the tensions

TF1 =
1

2π`2s
and TM2 =

2π

(2π`p)3
, (8.108)

as can be verified using R11 = `sgs and `p = g
1/3
s `s. All of these relations

were presented earlier, and the proposal presented here confirms that they

are correct. Various other branes can be matched in a similar manner. For

example, the D4-brane is identified to be an M5-brane with one dimension

wrapped on the spatial circle.

Another interesting fact can be deduced by considering the M-theory ori-

gin of a type IIA configuration in which an F-string ends on a D4-brane.

In view of the above, this clearly corresponds to an M2-brane ending on

an M5-brane, where each of the M-branes is wrapped around the circular

dimension. One reason that a type IIA F-string can end on a D-brane is

that the flux associated with the charge at the end of the string is carried

away by the one-form gauge field of the D-brane world-volume theory. That

being the case, one can ask what is the corresponding mechanism for M-

branes. The end of the M2-brane is a string inside the M5-brane. So the

world-volume theory of the M5-brane must contain a two-form gauge field

A2 to carry away the associated flux. That is indeed the case. In fact,

the corresponding field strength F3 is self-dual, just like the five-form field

strength in type IIB supergravity.

The D6-brane

The preceding discussion explained the M-theory origin of the type IIA Dp-

branes for p = 0, 2, 4 in terms of wrapped or unwrapped M-branes. This

raises the question of how one should understand the D6-brane from an

M-theory point of view. Clearly, unlike the other D-branes, it cannot be

related to the M2-brane or the M5-brane in any simple way. The key to
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answering this question is to recall that the D6-brane is the magnetic dual

of the D0-brane and that the D0-brane is interpreted as a Kaluza–Klein

excitation along the x11 circle. The D0-brane carries electric charge with

respect to the U(1) gauge field Cµ = gµ11. Therefore, the D6-brane should

couple magnetically to this same gauge field.

This problem was solved long ago for the case of pure gravity in five di-

mensions compactified on a circle. In this case, the challenge is to construct

the five-dimensional metric that describes the Kaluza–Klein monopole, that

is, a magnetically charged soliton in four dimensions. By tensoring this so-

lution with � 6, exactly the same construction applies to the 11-dimensional

problem. The extra six flat dimensions constitute the spatial directions of

the D6-brane world volume.

The relevant five-dimensional geometry that is Ricci-flat and nonsingular

in five dimensions is given by

ds2
5 = −dt2 + ds2

TN, (8.109)

where the Taub–NUT metric is

ds2
TN = V (r)

(
dr2 + r2dΩ2

2

)
+

1

V (r)

(
dy +R sin2(θ/2) dφ

)2
. (8.110)

Here dΩ2
2 = dθ2 + sin2 θdφ2 is the metric of a round unit two-sphere, and

V (r) = 1 +
R

2r
. (8.111)

Also, the magnetic field is given by

~B = −~∇V = ~∇× ~A with Aφ = R sin2(θ/2), (8.112)

where we have displayed only the nonvanishing component of the vector

potential. The Taub–NUT metric is nonsingular at r = 0 if the coordinate

y has period 2πR. Thus the actual radius of the circle is

R̃(r) = V (r)−1/2R, (8.113)

which approaches R for r →∞ and zero as r → 0.

The mass of the soliton described by the Taub–NUT metric can be com-

puted by integrating the energy density T00. For the purpose of understand-

ing the tension of the D6-brane, we can add six more flat dimensions and

obtain

TD6 =
2πR

16πG11

∫
d3x∇2V. (8.114)
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Since the integral gives 2πR,

TD6 =
(2πR)2

16πG11
=

2πR

16πG10
=

2π

(2π`s)7gs
, (8.115)

where we have used R = gs`s. This agrees with the value obtained in

Chapter 6.

There is a simple generalization of the above, the multi-center Taub–NUT

metric, that describes a system of N parallel D6-branes. The metric in this

case is

ds2 = V (~x)d~x · d~x+
1

V (~x)

(
dy + ~A · d~x

)2
, (8.116)

where

~B = −~∇V = ~∇× ~A and V (~x) = 1 +
R

2

N∑

α=1

1

|~x− ~xα|
. (8.117)

Since this system is BPS, the tension and magnetic charge are just N times

the single D6-brane values.

A similar construction applies to other string theories compactified on

circles. Indeed, the type IIB superstring theory compactified on a circle

contains a Kaluza–Klein 5-brane, constructed in the same way as the D6-

brane, which is the magnetic dual of the Kaluza–Klein 0-brane. A T-duality

transformation along the circular dimension transforms the type IIB theory

into the type IIA theory compactified on the dual circle. The Kaluza–Klein

0-brane is dual to a fundamental type IIA string wound on the dual circle.

Therefore, the Kaluza–Klein 5-brane must map to the magnetic dual of the

fundamental IIA string, which is the type IIA NS5-brane.

E8 × E8 heterotic string theory at strong coupling

Let us briefly review the Hořava–Witten picture of the strongly coupled

E8 × E8 heterotic string theory. One starts with the strongly coupled type

IIA superstring theory, or equivalently M-theory on � 9,1 × S1, and mods

out by a certain
�

2 symmetry, much like one does in deriving the type I

superstring theory from the type IIB superstring theory. The appropriate�
2 symmetry in this case includes the following reversals:

x11 → −x11 and A3 → −A3. (8.118)

In particular, modding out by this
�

2 action implies that the zero mode of

the Fourier expansion of Aµνρ in the x11 direction is eliminated from the
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spectrum, while the zero mode of

Bµν = Aµν11 (8.119)

survives. This is required, of course, to account for the fact that N = 1

supergravity in ten dimensions contains a massless two-form but no massless

three-form. The heterotic string coupling constant gs is given by

gs = R11/`s, (8.120)

just as in the case of the type IIA theory.

The space S1/
�

2 can be regarded as a line segment from x11 = 0 to

x11 = πR11. The two end points are the fixed points of the orbifold. Their

presence leads to an interesting physical picture: the 11-dimensional space-

time can be viewed as a slab of thickness πR11. The two ten-dimensional

boundaries are the orbifold singularities where the super Yang–Mills fields

are localized. The two boundaries are sometimes called end-of-the-world

9-branes. Each of them carries the gauge fields for an E8 group. This is a

very intuitive way of understanding why this theory has a gauge group that

is a product of two identical factors. The fact that the boundaries carry

E8 gauge supermultiplets is required for anomaly cancellation. There are

no anomalies in odd dimensions, except at a boundary. In this case the

boundary anomaly cancels only for the gauge group E8. No other choice

works, as was explained in Chapter 5.

There is an alternative route by which one can deduce that M-theory com-

pactified on S1/
�

2 is dual to the E8×E8 heterotic string in ten dimensions.

It uses the following sequence of dualities that have been introduced previ-

ously: (1) T-duality between the E8 × E8 heterotic string and the SO(32)

heterotic string; (2) S-duality between the SO(32) heterotic string and the

type I superstring; (3) T-duality between the type I superstring and the

type I′ superstring; (4) identification of the type I′ superstring as a type IIA

orientifold; (5) duality between the type IIA superstring and M-theory on a

circle. Quantitative details of this construction are described in Exercise 8.6.

M2-branes, with the topology of a cylinder, are allowed to terminate on

a boundary of the space-time, so that the boundary of the M2-brane is a

closed loop inside the end-of-the-world 9-brane. In this picture, an E8 ×E8

heterotic string is a cylindrical M2-brane suspended between the two space-

time boundaries, with one E8 associated with each boundary. This cylinder

is well approximated by a string living in ten dimensions when the separation

πR11 is small, as indicated in Fig. 8.2. Since perturbation theory in gs is an

expansion about R11 = 0, the fact that there really are 11 dimensions and

that the string is actually a membrane is invisible in that approach. The
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tension of the heterotic string is therefore

TH = 2πR11TM2 = (2π`2s)−1. (8.121)

All of these statements are straightforward counterparts of statements con-

cerning the strongly coupled type IIA superstring theory.

There are two possible strong coupling limits of the E8 × E8 heterotic

string theory. One possibility is a limit in which both boundaries go to

infinity, so that one ends up with an � 11 space-time geometry. This is the

same limit as one obtains by starting with type IIA superstring theory and

letting R11 →∞. The strongly coupled E8×E8 heterotic string and the type

IIA superstring theory are identical in the 11-dimensional bulk. The only

thing that distinguishes them is the existence of boundaries in the former

case. The second possibility is to hold one boundary fixed as R11 → ∞.

This limit leads to a semi-infinite eleventh dimension. Since there is just

one boundary in this limit, there is just one E8 gauge group. This limit has

received very little attention in the literature. It is also possible to consider

11-dimensional geometries with more than two boundaries, and therefore

more than two E8 groups.

In studies of possible phenomenological applications of the strongly cou-

pled E8×E8 heterotic string, a subject sometimes called heterotic M-theory,

one considers compactification of six more spatial dimensions (usually on

a Calabi–Yau space). An interesting possibility that does not arise in

Fig. 8.2. A cylindrical M2-brane suspended between two end-of-the-world 9-branes
is approximated by an E8 × E8 heterotic string as R11 → 0.
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the weakly coupled ten-dimensional description is that moduli of this six-

dimensional space, as well as other moduli (such as the vev of the dilaton),

can vary along the length of the compact eleventh dimension. Thus, for

example, one E8 theory can be more strongly coupled than the other one.

This is explored further in Chapter 10.

EXERCISES

EXERCISE 8.5

Use T-duality to deduce the tension of the type IIB Kaluza–Klein 5-brane.

SOLUTION

The type IIB KK5-brane is T-dual to the NS5-brane in the type IIA theory.

In the type IIA theory one can form the dimensionless combination

TNS5

T 2
D2

=
1

2π
.

Since this is a dimensionless number, it is preserved under T-duality ir-

respective of the coordinate frame used to measure distances. Under the

T-duality

TNS5 → TKK5 and TD2 → 2πR9TD3.

Therefore, in the type IIB string frame

TKK5 =
1

2π
(2πR9TD3)2 =

R2
9

g2
s (2π)5`8s

. (8.122)

It is an interesting fact that this is proportional to the square of the radius.

2

EXERCISE 8.6

Show that the duality between M-theory on S1/
�

2 and the E8×E8 heterotic

string is a consequence of previously discussed dualities.

SOLUTION

Consider the E8 × E8 heterotic string with string coupling gs and x9 coor-

dinate compactified on a circle of radius R9. This is T-dual to the SO(32)
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heterotic string on a circle of radius

R′9 = `2s/R9

and coupling

g′s = `sgs/R9.

As discussed in Chapter 7, Wilson lines need to be turned on to give the

desired E8 × E8 gauge symmetry. Applying an S-duality transformation

then gives the type I string with

g′′s =
1

g′s
=

R9

`sgs

and

R′′9 = R′9
√
g′′s = R′9/

√
g′s = (`s)

3/2/
√
R9gs.

Another T-duality then gives the type I′ theory with

R′′′9 = `2s/R
′′
9 =

√
R9`sgs

and

g′′′s = `sg
′′
s /R

′′
9 = (R9/`s)

3/2g−1/2
s .

In the bulk this is the type IIA theory, so we can use the type IIA/M-theory

duality to introduce R11 = g′′′s `s and `p = (g′′′s )1/3`s. A little algebra then

gives the relations

R′′′9 /`p = (gs)
2/3

and

R11 =
R2

9

R′′′9
.

Now we can decompactify R9 →∞ at fixed R′′′9 and `p. Note that R11 →∞
at the same time. On the one hand, this gives the ten-dimensional E8 ×E8

heterotic string, with coupling constant gs, while on the other hand it gives

a dual M-theory description with a compact eleventh dimension that is an

interval of length πR′′′9 satisfying the expected relation R′′′9 = (gs)
2/3`p. 2

8.4 M-theory dualities

The previous section showed that the strongly coupled type IIA superstring

and the strongly coupled E8 × E8 heterotic string have a simple M-theory

interpretation. There are additional dualities involving M-theory that relate

it to the other superstring theories as well as to itself.
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An M-theory/type IIB superstring duality

M-theory compactified on a circle gives the type IIA superstring theory,

while type IIA superstring theory on a circle corresponds to type IIB super-

string theory on a dual circle. Putting these two facts together it follows

that there should be a duality between M-theory on a two-torus T 2 and type

IIB superstring theory on a circle S1. The M-theory torus is characterized

by an area AM and a modulus τM, while the IIB circle has radius RB. Let

us explore this duality directly without reference to the type IIA theory.

Specifically, the plan is to compare various BPS states and branes in nine

dimensions.

Since all of the (p, q) strings in type IIB superstring theory are related

by SL(2,
�

) transformations,12 they are all equivalent, and any one of them

can be weakly coupled. However, when one is weakly coupled, all of the

others are necessarily strongly coupled. Let us consider an arbitrary (p, q)

string and write down the spectrum of its nine-dimensional excitations in

the limit of weak coupling using the standard string theory formulas given

in Chapter 6:

M2
B =

(
K

RB

)2

+ (2πRBWT(p,q))
2 + 4πT(p,q)(NL +NR). (8.123)

As before, K is the Kaluza–Klein excitation number and W is the string

winding number. NL and NR are excitation numbers of left-moving and

right-moving oscillator modes, and the level-matching condition is

NR −NL = KW. (8.124)

The plan is to use the formula above for all the (p, q) strings simultane-

ously. However, the formula is completely meaningless at strong coupling,

and at most one of the strings is weakly coupled. The appropriate trick in

this case is to consider only BPS states, that is, ones belonging to short

supersymmetry multiplets, since their mass formulas can be reliably extrap-

olated to strong coupling. They are easy to identify, being given by either

NL = 0 or NR = 0. (Ones with NL = NR = 0 are ultrashort.) In this way,

one obtains exact mass formulas for a very large part of the spectrum – much

more than appears in any perturbative limit. Of course, the appearance of

this rich spectrum of BPS states depends crucially on the compactification.

There is a unique correspondence between the three integers W,p, q, where

p and q are coprime, and an arbitrary pair of integers n1, n2 given by

(n1, n2) = (Wp,Wq). The integer W is the greatest common divisor of n1

12 It is assumed here that p and q are coprime.
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and n2. The only ambiguity is whether to choose W or −W , but since W

is the (oriented) winding number and the (−p,−q) string is the orientation-

reversed (p, q) string, the two choices are actually equivalent. Thus BPS

states are characterized by three integers K,n1, n2 and oscillator excitations

corresponding to NL = |WK|, tensored with a 16-dimensional short mul-

tiplet from the NR = 0 sector (or vice versa). Note that the combination

|W |T(p,q), which appears in Eq. (8.123), can be rewritten using Eq. (8.97)

in the form

|W |T(p,q) = |n1 − n2τB|TF1. (8.125)

Let us now consider M-theory compactified on a torus. If the two periods

in the complex plane, which define the torus, are 2πR11 and 2πR11τM, then

AM = (2πR11)2Im τM (8.126)

is the area of the torus. In terms of coordinates z = x+ iy on the torus, a

single-valued wave function has the form

ψn1,n2 ∼ exp

{
i

R11

[
n2x−

n2Re τM − n1

Im τM
y

]}
. (8.127)

These characterize Kaluza–Klein excitations. The contribution to the mass-

squared is given by the eigenvalue of −∂2
x − ∂2

y ,

M2
KK =

1

R2
11

[
n2

2 +
(n2Re τM − n1)2

(Im τM)2

]
=
|n1 − n2τM|2
(R11Im τM)2

. (8.128)

Clearly, this term has the right structure to match the type IIB string

winding-mode terms, described above, for the identification

τM = τB. (8.129)

The normalization of M 2
KK and the winding-mode contribution to M 2

B is not

the same, but that is because they are measured in different metrics. The

matching tells us how to relate the two metrics, a formula to be presented

soon.

The identification in Eq. (8.129) is a pleasant surprise, because it implies

that the nonperturbative SL(2,
�

) symmetry of type IIB superstring theory,

after compactification on a circle, has a dual M-theory interpretation as the

modular group of a toroidal compactification! Modular transformations of

the torus are certainly symmetries, since they correspond to the disconnected

components of the diffeomorphism group. Once the symmetry is established

for finite RB, it should also persist in the decompactification limit RB →∞.

To go further requires an M-theory counterpart of the term (K/RB)2 in
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the type IIB superstring mass formula (8.123). Here there is also a natural

candidate: wrapping M-theory M2-branes so as to cover the torus K times.

If the M2-brane tension is TM2, this gives a contribution (AMTM2K)2 to the

mass-squared. Matching the normalization of this term and the Kaluza–

Klein term gives two relations. One learns that the metrics in nine dimen-

sions are related by

g(M) = β2g(B), (8.130)

where

β2 =
2πR11TM2

TF1
, (8.131)

and that the compactification volumes are related by

g2
s

TF1R
2
B

= TM2(2πR11)3 = TM2

(
AM

Im τM

)3/2

. (8.132)

Since all the other factors are constants, this gives (for fixed τB = τM) the

scaling law RB ∼ A−3/4
M .

There still are the oscillator excitations of the type IIB superstring BPS

mass formula to account for. Their M-theory counterparts must be exci-

tations of the wrapped M2-brane. Unfortunately, the quantization of the

M2-brane is not understood well enough to check this, though this must

surely be possible.

Matching BPS brane tensions in nine dimensions

We can carry out additional tests of the proposed duality, and learn inter-

esting new relations at the same time, by matching BPS p-branes with p > 0

in nine dimensions. Only some of the simpler cases are described here. Let

us start with strings in nine dimensions. Trivial reduction of the type IIB

strings, that is, not wrapped on the circular dimension gives strings with the

same charges (p, q) and tensions T(p,q) in nine dimensions. The interesting

question is how these should be interpreted in M-theory. The way to answer

this is to start with an M2-brane of toroidal topology in M-theory and to

wrap one of its cycles on a (p, q) homology cycle of the spatial torus. The

minimal length of such a cycle is13

L(p,q) = 2πR11|p− qτM|. (8.133)

13 This is understood most easily by considering the covering space of the torus, which is the
plane tiled by parallelograms. A closed geodesic curve on the torus is represented by a straight
line between equivalent points in the covering space, as shown in Fig. 8.3.
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Thus, this wrapping gives a string in nine dimensions, whose tension is

T
(11)
(p,q) = L(p,q)TM2. (8.134)

The superscript 11 emphasizes that this is measured in the 11-dimensional

metric. To compare with the type IIB string tensions, we use Eqs (8.130)

and (8.131) to deduce that

T(p,q) = β−2T
(11)
(p,q). (8.135)

This agrees with the result given earlier, showing that this is a correct in-

terpretation.

Fig. 8.3. In the covering space of the torus, which is the plane tiled by parallelo-
grams, a closed geodesic curve on the torus is represented by a straight line between
equivalent points.

To match 2-branes in nine dimensions requires wrapping the type IIB

D3-brane on the circle and comparing to the unwrapped M2-brane. The

wrapped D3-brane gives a 2-brane with tension 2πRBTD3. Including the

metric conversion factor, the matching gives

TM2 = 2πRBβ
3TD3. (8.136)

Combining this with Eqs (8.131) and (8.132) gives the identity

TD3 =
(TF1)2

2πgs
, (8.137)

in agreement with the tension formulas in Chapter 6. It is remarkable that

the M-theory/type IIB superstring theory duality not only relates M-theory

tensions to type IIB superstring theory tensions, but it even implies a rela-

tion involving only type IIB tensions.

Wrapping the M5-brane on the spatial torus gives a 3-brane in nine di-

mensions, which can be identified with the unwrapped type IIB D3-brane

in nine dimensions. This gives

TM5AM = β4TD3, (8.138)
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which combined with Eqs (8.131) and (8.137) implies that

TM5 =
1

2π
(TM2)2. (8.139)

This corresponds to satisfying the Dirac quantization condition with the

minimum allowed product of charges. It also provides a check of the tensions

in (8.22).

An M-theory/SO(32) superstring duality

There is a duality that is closely related to the one just considered that

relates M-theory compactified on (S1/
�

2)× S1 to the SO(32) theory com-

pactified on S1. Because of the similarity of the two problems, fewer details

are provided this time.

L

R R

M-theory on a cylinder SO(32) on a circle

2

1

O

Fig. 8.4. Duality between M-theory on a cylinder and SO(32) on a circle.

Since S1/
�

2 can be regarded as a line interval I, (S1/
�

2)×S1 can be re-

garded as a cylinder. Let us choose its height to be L1 and its circumference

to be L2 = 2πR2. The circumference of the circle on which the dual SO(32)

theory is compactified is LO = 2πRO as measured in the ten-dimensional

Einstein metric. This is illustrated in Fig. 8.4.

The SO(32) theory in ten dimensions has both a type I and a heterotic

description, which are S dual. As before, the duality can be explored by

matching supersymmetry-preserving (BPS) branes in nine dimensions. Re-

call that in the SO(32) theory, there is just one two-form field, and the

p-branes that couple to it are the SO(32) heterotic string and its magnetic

dual, which is a solitonic 5-brane. (From the type I viewpoint, both of these

are D-branes.) The heterotic string can give a 0-brane or a 1-brane in nine

dimensions, and the dual 5-brane can give a 5-brane or a 4-brane in nine
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dimensions. In each case, the issue is simply whether or not one cycle of the

brane wraps around the spatial circle.

Now let us find the corresponding nine-dimensional p-branes from the M-

theory viewpoint and explore what can be learned from matching tensions.

The E8 × E8 string arises in ten dimensions from wrapping the M2-brane

on I. Subsequent reduction on a circle can give a 0-brane or a 1-brane. The

story for the M5-brane is just the reverse. Whereas the M2-brane must wrap

the I dimension, the M5-brane must not do so. As a result, it gives a 5-brane

or a 4-brane in nine dimensions according to whether or not it wraps around

the S1 dimension. So, altogether, both pictures give the electric–magnetic

dual pairs (0, 5) and (1, 4) in nine dimensions.

From the p-brane matching one learns that the SO(32) heterotic string

coupling constant is

g(HO)
s =

L1

L2
. (8.140)

Thus, the SO(32) heterotic string is weakly coupled when the spatial cylin-

der of the M-theory compactification is a thin ribbon (L1 � L2). This

is consistent with the earlier conclusion that the E8 × E8 heterotic string

is weakly coupled when L1 is small. Conversely, the type I superstring is

weakly coupled for L2 � L1, in which case the spatial cylinder is long and

thin. The
�

2 transformation that inverts the modulus of the cylinder, L1/L2,

corresponds to the type I/heterotic S duality of the SO(32) theory. Since it

is not a symmetry of the cylinder it implies that two different-looking string

theories are S dual. This is to be contrasted with the SL(2,
�

) modular

group symmetry of the torus, which accounts for the self-duality of the type

IIB theory.

The p-brane matching in nine dimensions also gives the relation

L1L
2
2TM2 =

(
T

(HO)
1 L2

O

2π

)−1

, (8.141)

which is the analog of Eq. (8.132). As in that case, it tells us that, for

fixed modulus L1/L2, one has the scaling law LO ∼ A
−3/4
C , where AC =

L1L2 is the area of the cylinder. Equation (8.139) relating TM2 and TM5 is

reobtained, and one also learns that

T
(HO)
5 =

1

(2π)2

(
L2

L1

)2

(T
(HO)
1 )3. (8.142)

In the heterotic string-frame metric, where T
(HO)
1 is a constant, this implies
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that

T
(HO)
5 ∼ (g(HO)

s )−2, (8.143)

as is typical of a soliton. In the type I string-frame metric, on the other

hand, it implies that

TD1 ∼ 1/g(I)
s and TD5 ∼ 1/g(I)

s , (8.144)

consistent with the fact that both are D-branes from the type I viewpoint.

U-duality

It is natural to seek type II counterparts of the O(n, n;
�

) and O(16+n, n;
�

)

duality groups that were found in Chapter 7 for toroidal compactification

of the bosonic and heterotic string theories, respectively. A clue is provided

by the fact that the massless sector of type II superstring theories are max-

imal supergravity theories (ones with 32 conserved supercharges), with a

noncompact global symmetry group.

In the case of type IIB supergravity in ten dimensions the noncompact

global symmetry group is SL(2, � ), as was shown earlier in this chapter.

Toroidal compactification leads to theories with maximal supersymmetry in

lower dimensions.14 So, for example, toroidal compactification of the type

IIB theory to four dimensions and truncation to zero modes (dimensional

reduction) leads to N = 8 supergravity. N = 8 supergravity has a noncom-

pact E7 symmetry. More generally, for d = 11 − n, 3 ≤ n ≤ 8, one finds a

maximally noncompact form of En, denoted En,n. The maximally noncom-

pact form of a Lie group of rank n has n more noncompact generators than

compact generators. Thus, for example, E7,7 has 133 generators of which

63 are compact and 70 are noncompact. A compact generator generates a

circle, whereas a noncompact generator generates an infinite line. En are

standard exceptional groups that appear in Cartan’s classification of simple

Lie algebras for n = 6, 7, 8. The definition for n < 6 can be obtained by

extrapolation of the Dynkin diagrams. This gives the identifications (listing

the maximally noncompact forms)15

E5,5 = SO(5, 5), E4,4 = SL(5, � ), E3,3 = SL(3, � )× SL(2, � ). (8.145)

These noncompact Lie groups describe global symmetries of the classical

low-energy supergravity theories. However, as was discussed already for the

14 Chapter 9 describes compactification spaces that (unlike tori) break some or all of the super-
symmetries.

15 The compact forms of the same sequence of exceptional groups was encountered in the study
of type I ′ superstrings in Chapter 6.
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case of the E1,1 = SL(2, � ) symmetry of type IIB superstring theory in ten

dimensions, they are broken to infinite discrete symmetry groups by quan-

tum and string-theoretic corrections. The correct statement for superstring

theory/M-theory is that, for M-theory on � d × Tn or (equivalently) type

IIB superstring theory on � d×Tn−1, the resulting moduli space is invariant

under an infinite discrete U-duality group. The group, denoted En(
�

), is a

maximal discrete subgroup of the noncompact En,n symmetry group of the

corresponding supergravity theory.

The U-duality groups are generated by the Weyl subgroup of En,n plus

discrete shifts of axion-like fields. The subgroup SL(n,
�

) ⊂ En(
�

) can be

understood as the geometric duality (modular group) of T n in the M-theory

picture. In other words, they correspond to disconnected components of

the diffeomorphism group. The subgroup SO(n − 1, n − 1;
�

) ⊂ En(
�

) is

the T-duality group of type IIB superstring theory compactified on T n−1.

These two subgroups intertwine nontrivially to generate the entire En(
�

)

U-duality group. For example, in the n = 3 case the duality group is

E3(
�

) = SL(3,
�

)× SL(2,
�

). (8.146)

The SL(3,
�

) factor is geometric from the M-theory viewpoint, and an

SO(2, 2;
�

) = SL(2,
�

)× SL(2,
�

) (8.147)

subgroup is the type IIB T-duality group. Clearly, E3(
�

) is the smallest

group containing both of these.

Toroidally compactified M-theory (or type II superstring theory) has a

moduli space analogous to the Narain moduli space of the toroidally com-

pactified heterotic string described in Chapter 7. LetHn denote the maximal

compact subgroup of En,n. For example, H6 = USp(8), H7 = SU(8) and

H8 = Spin(16). Then one can define a homogeneous space

M0
n = En,n/Hn. (8.148)

This is directly relevant to the physics in that the scalar fields in the super-

gravity theory are defined by a sigma model on this coset space. Note that

all the coset generators are noncompact. It is essential that they all be the

same so that the kinetic terms of the scalar fields all have the same sign. The

number of scalar fields is the dimension of the coset space dn = dimM0
n.

For example, in three, four and five dimensions the number of scalars is

d3 = dimE8 − dimSpin(16) = 248− 120 = 128, (8.149)

d4 = dimE7 − dimSU(8) = 133− 63 = 70, (8.150)
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d5 = dimE6 − dimUSp(8) = 78− 36 = 42. (8.151)

The discrete duality-group identifications must still be accounted for, and

this gives the moduli space

Mn =M0
n/En(

�
). (8.152)

A nongeometric duality of M-theory

String theory possesses certain features, such as T-duality, that go beyond

ones classical geometric intuition. This section shows that the same is true

for M-theory by constructing an analogous duality transformation. There is

a geometric understanding of the SL(n,
�

) subgroup of En(
�

) that comes

from considering M-theory on � 11−n × Tn, since it is the modular group

of Tn. But what does the rest of En(
�

) imply? To address this question

it suffices to consider the first nontrivial case to which it applies, which is

n = 3. In this case the U-duality group is E3(
�

) = SL(3,
�

) × SL(2,
�

).

From the M-theory viewpoint the first factor is geometric and the second

factor is not. So the question boils down to understanding the implication

of the SL(2,
�

) duality in the M-theory construction. Specifically, we want

to understand the nontrivial τ → −1/τ element of this group.

To keep the story as simple as possible, let us choose the T 3 to be rectan-

gular with radii R1, R2, R3, that is, gij ∼ R2
i δij , and assume that C123 = 0.

Choosing R3 to correspond to the “eleventh” dimension makes contact with

the type IIA theory on a torus with radii R1 and R2. In this set-up, the

stringy duality of M-theory corresponds to simultaneous T-duality transfor-

mations of the type IIA theory for both of the circles. This T-duality gives

a mapping to an equivalent point in the moduli space for which

Ri → R′i =
`2s
Ri

=
`3p

R3Ri
i = 1, 2, (8.153)

with `s unchanged. The derivation of this formula has used `3
p = R3`

2
s , which

relates the 11-dimensional Planck scale `p to the ten-dimensional string scale

`s. Under a T-duality the string coupling constant also transforms. The rule

is that the coupling of the effective theory, which is eight-dimensional in this

case, is invariant:

1

g2
8

= 4π2R1R2

g2
s

= 4π2R
′
1R
′
2

(g′s)2
. (8.154)

Thus

g′s =
gs`

2
s

R1R2
. (8.155)
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What does this imply for the radius of the eleventh dimension R3? Using

R3 = gs`s → R′3 = g′s`s,

R′3 =
gs`

3
s

R1R2
=

`3p
R1R2

. (8.156)

However, the 11-dimensional Planck length also transforms, because

`3p = gs`
3
s → (`′p)

3 = g′s`
3
s (8.157)

implies that

(`′p)
3 =

gs`
5
s

R1R2
=

`6p
R1R2R3

. (8.158)

The perturbative type IIA description is only applicable for R3 � R1, R2.

However, even though T-duality was originally discovered in perturbation

theory, it is supposed to be an exact nonperturbative property. Therefore,

this duality mapping should be valid as an exact symmetry of M-theory

without any restriction on the radii. Another duality is an interchange

of circles, such as R3 ↔ R1. This corresponds to the nonperturbative S-

duality of the type IIB superstring theory. Combining these dualities gives

the desired stringy duality of M-theory on T 3, namely

R1 →
`3p

R2R3
, (8.159)

and cyclic permutations, accompanied by

`3p →
`6p

R1R2R3
. (8.160)

This basic stringy duality of M-theory, combined with the geometric ones,

generates the entire U-duality group in every dimension. It is a property

of quantum M-theory that goes beyond what can be understood from the

effective 11-dimensional supergravity theory, which is geometrical.

EXERCISES

EXERCISE 8.7

Verify Eqs (8.131) and (8.132).
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SOLUTION

Since the M-theory metric and the type IIB metric are related by

g(M) = β2g(B),

masses are related according to

M11 = βMB.

Matching the mass of an M2-brane wrapped on the torus with a Kaluza–

Klein excitation on the type IIB circle therefore gives

AMTM2 = β
1

RB
.

Similarly, using Eq. (8.128) for the mass of a Kaluza–Klein excitation on

the torus, and equating it to the mass of a wrapped type IIB string gives

1

R11ImτM
= β(2πRBTF1).

Multiplying these equations together, using AM = (2πR11)2ImτM, gives

β2 =
RBAMTM2

2πRBTF1R11ImτM
=

2πR11TM2

TF1
,

which is Eq. (8.131). Taking the quotient of the same two equations, using

gs = (ImτM)−1, gives

g2
s

R2
BTF1

= TM2(2πR11)3,

which is Eq. (8.132). 2

EXERCISE 8.8

Identifying type IIB superstring theory compactified on a circle and M-

theory compactified on a torus, match the tensions of the nine-dimensional

4-branes.

SOLUTION

A (p, q) type IIB 5-brane wrapped on the circle is identified with an M5-

brane wrapping a geodesic (p, q) cycle of the torus. Equating the resulting

tensions gives

2πRBβ
5T(p,q) = L(p,q)TM5,

where L(p,q) = 2πR11|p − qτM|. We can check that the resulting D5-brane
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tension in ten dimensions agrees with the result quoted in Chapter 6. Indeed,

setting p = 1 and q = 0, we obtain

TD5 =
R11

RB
β−5TM5 =

T 3
F1

(2π)2gs
=

1

(2π)5`6sgs
,

which is the TD5 derived in Chapter 6. Therefore,

T(p,q) = |p− qτM|TD5.

In particular, the NS5-brane tension is obtained by setting q = 1 and p = 0

TNS5 = |τM|TD5.

The standard result is obtained by setting τM = i/gs. 2

EXERCISE 8.9

Verify that the three groups (8.145) are maximally noncompact.

SOLUTION

The group SO(5, 5) has dimension equal to 45, just like its compact form

SO(10). Its maximal compact subgroup is SO(5)×SO(5), which has dimen-

sion equal to 20. Thus, there are 25 noncompact generators and 20 compact

generators. Since the rank of SO(5, 5), which is five, agrees with 25 − 20,

it is maximally noncompact. In the case of SL(5, � ), which is a noncom-

pact form of SU(5), the rank is four and the dimension is 24. The maximal

compact subgroup is SO(5), which has dimension equal to ten. Thus there

are 14 noncompact generators and ten compact generators, and once again

the difference is equal to the rank. This reasoning generalizes to SL(n, � ),

which has (n − 1)(n + 2)/2 noncompact generators, (n − 1)n/2 compact

generators and rank n − 1. The group SL(3, � ) × SL(2, � ) is maximally

noncompact, because each of its factors is. 2

EXERCISE 8.10

Find a physical interpretation of Eqs (8.159) and (8.160).

SOLUTION

Equation (8.159) implies that

1

R1
→ (2πR2)(2πR3)TM2.

Thus it interchanges a Kaluza–Klein excitation of the first circle with an
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M2-brane wrapped on the second and third circles. The circles can be

permuted, so it follows that these six 0-brane excitations belong to the (3,2)

representation of the SL(3,
�

)× SL(2,
�

) U-duality group.

Equation (8.160) implies that

TM2 → (2πR1)(2πR2)(2πR3)TM5.

Therefore, it interchanges an unwrapped M2-brane with an M5-brane wrap-

ped on the T 3. Thus these two 2-branes (from the eight-dimensional view-

point) belong to the (1,2) representation of the U-duality group. 2

HOMEWORK PROBLEMS

PROBLEM 8.1

Derive the bosonic equations of motion of 11-dimensional supergravity.

PROBLEM 8.2

Show that a particular solution of the bosonic equations of motion of 11-

dimensional supergravity, called the Freund–Rubin solution, is given by a

product space-time geometry AdS4 × S7 with

F4 = Mε4,

where ε4 is the volume form on AdS4, and M is a free parameter with the

dimensions of mass.16 AdS4 denotes four-dimensional anti-de Sitter space,

which is a maximally symmetric space of negative curvature, with Ricci

tensor

Rµν = −(M4)2gµν µ, ν = 0, 1, 2, 3.

The seven-sphere has Ricci tensor

Rij = (M7)2gij i, j = 4, 5, . . . , 10.

What are the masses M4 and M7 in terms of the mass parameter M?

PROBLEM 8.3

Derive Eq. (8.69) and transform the bosonic part of the type IIA supergrav-

ity action in ten dimensions from the string frame to the Einstein frame.

16 Actually, in the quantum theory it has to be an integer multiple of a basic unit.
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PROBLEM 8.4

Derive the redefinitions of C1, C3, F2 and F4 that are required to display

a factor of e−2Φ in the terms SR and SCS of the type IIA action given in

Eqs (8.41) and (8.42).

PROBLEM 8.5

Show that SCS in Eq.(8.42) is invariant under a U(1) gauge transformation

even though it contains F4 rather than F̃4.

PROBLEM 8.6

Consider the type IIB bosonic supergravity action in ten dimensions given

in Eq. (8.53). Setting C0 = 0, perform the transformations Φ → −Φ and

gµν → e−Φgµν . What theory do you obtain, and what does the result imply?

How should the transformations be generalized when C0 6= 0?

PROBLEM 8.7

Verify that the actions in Eqs (8.73) and (8.81) map into one another under

the transformations (8.88) and (8.89).

PROBLEM 8.8

Verify that the supersymmetry transformations of the fermi fields in the

heterotic and type I theories map into one another to leading order in fermi

fields under an S-duality transformation, if λ and χ are suitably rescaled.

PROBLEM 8.9

Consider the Euclidean Taub–NUT metric (8.110). Show that there is no

singularity at r = 0 by showing that the metric takes the following form

near the origin:

ds2 = dρ2 +
ρ2

4
(dθ2 + dφ2 + dψ2 − 2 cos θ dφ dψ)

with ψ ∼ ψ + 4π, and that this corresponds to a metric on flat four-

dimensional Euclidean space. Hint: let ψ = φ+ 2y/R.

PROBLEM 8.10

Consider the ten-dimensional type IIA metric for a KK5-brane

ds = −dt2 +
5∑

i=1

dx2
i + ds2

TN,

where ds2
TN is given in Eqs (8.110) and (8.111).
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(i) Use the rules presented in Section 6.4 to deduce the type IIB solution

that results from a T-duality transformation in the y direction.

(ii) What is the type IIB interpretation of the result?

(iii) Verify that the tension of the type IIB solution supports this inter-

pretation.

PROBLEM 8.11

In the presence of an M5-brane the 11-dimensional F4 satisfies the Bianchi

identity

dF4 = δW ,

where δW is a delta function with support on the M5-brane world volume.

How must the equation of motion of F4 be modified in order to be compatible

with this Bianchi identity? What does this imply for the field content on

the M5-brane world volume? Hint: Consult Exercise 5.10.

PROBLEM 8.12

Verify that a type IIA D2-brane is an unwrapped M2-brane by showing that

TD2 = TM2. Do the same for the NS5-brane and the M5-brane. Verify that

a wrapped M5-brane corresponds to a D4-brane.

PROBLEM 8.13

Verify Eqs (8.137) and (8.139).

PROBLEM 8.14

Verify that Eq. (8.139) implies that the Dirac quantization condition is sat-

isfied if the M2- and M5-brane each carry one unit of charge and saturate

the BPS bound.

PROBLEM 8.15

Derive Eqs (8.140), (8.141) and (8.142).
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String geometry

Since critical superstring theories are ten-dimensional and M-theory is 11-

dimensional, something needs to be done to make contact with the four-

dimensional space-time geometry of everyday experience. Two main ap-

proaches are being pursued.1

Kaluza–Klein compactification

The approach with a much longer history is Kaluza–Klein compactification.

In this approach the extra dimensions form a compact manifold of size lc.

Such dimensions are essentially invisible for observations carried out at en-

ergy E � 1/lc. Nonetheless, the details of their topology have a profound

influence on the spectrum and symmetries that are present at low energies

in the effective four-dimensional theory. This chapter explores promising

geometries for these extra dimensions. The main emphasis is on Calabi–Yau

manifolds, but there is also some discussion of other manifolds of special

holonomy. While compact Calabi–Yau manifolds are the most straight-

forward possibility, modern developments in nonperturbative string theory

have shown that noncompact Calabi–Yau manifolds are also important. An

example of a noncompact Calabi–Yau manifold, specifically the conifold, is

discussed in this chapter as well as in Chapter 10.

Brane-world scenario

A second way to deal with the extra dimensions is the brane-world scenario.

In this approach the four dimensions of everyday experience are identified

with a defect embedded in a higher-dimensional space-time. This defect

1 Some mathematical background material is provided in an appendix at the end of this chapter.
Readers not familiar with the basics of topology and geometry may wish to study it first.
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is typically given by a collection of coincident or intersecting branes. The

basic fact (discussed in Chapter 6) that makes this approach promising is the

observation that Yang–Mills gauge fields, like those of the standard model,

are associated with the zero modes of open strings, and therefore they reside

on the world volume of D-branes.

A variant of the Kaluza–Klein idea that is often used in brane-world sce-

narios is based on the observation that the extra dimensions could be much

larger than one might otherwise conclude if the geometry is warped in a

suitable fashion. In a warped compactification the overall scale of the four-

dimensional Minkowski space-time geometry depends on the coordinates of

the compact dimensions. This chapter concentrates on the more traditional

Kaluza–Klein approach, where the geometry is a product of an internal

manifold and an external manifold. Warped geometries and their use for

brane-world constructions are discussed in Chapter 10.

Motivation

The only manifolds describing extra dimensions that have been discussed

so far in this book are a circle and products of circles (or tori). Also, a�
2 orbifold of a circle has appeared a couple of times. If any of the five

ten-dimensional superstring theories is compactified to four dimensions on a

six-torus, then the resulting theory is very far from being phenomenologically

acceptable, since no supersymmetry is broken. This means that there isN =

4 or N = 8 supersymmetry in four dimensions, depending on which ten-

dimensional theory is compactified. This chapter explores possibilities that

are phenomenologically much more attractive, such as orbifolds, Calabi–Yau

manifolds and exceptional-holonomy manifolds. Compactification on these

spaces leads to vacua with less supersymmetry in four dimensions.

In order to make contact with particle phenomenology, there are various

properties of the D = 4 theory that one would like:

• The Yang–Mills gauge group SU(3) × SU(2) × U(1), which is the gauge

group of the standard model.

• An interesting class of D = 4 supersymmetric extensions of the standard

model have N = 1 supersymmetry at high energy. This supersymmetry

must be broken at some scale, which could be as low as a TeV, to make

contact with the physics observed at low energies. N = 1 supersymmetry

imposes restrictions on the theory that make calculations easier. Yet these

restrictions are not so strong as to make the theory unrealistic, as happens

in models with N ≥ 2.
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At sufficiently high energy, supersymmetry in ten or 11 dimensions

should be manifest. The issue being considered here is whether at energies

that are low compared to the compactification scale, where there is an

effective four-dimensional theory, there should be N = 1 supersymmetry.

One intriguing piece of evidence for this is that supersymmetry ensures

that the three gauge couplings of the standard model unify at about 1016

GeV suggesting supersymmetric grand unification at this energy.

A technical advantage of supersymmetry, which appeared in the dis-

cussion of dualities in Chapter 8, and is utilized in Chapter 11 in the

context of black hole physics, is that supersymmetry often makes it possi-

ble to extrapolate results from weak coupling to strong coupling, thereby

providing information about strongly coupled theories. Supersymmetric

theories are easier to solve than their nonsupersymmetric counterparts.

The constraints imposed by supersymmetry lead to first-order equations,

which are easier to solve than the second-order equations of motion. For

the type of backgrounds considered here a solution to the supersymme-

try constraints that satisfies the Bianchi identity for the three-form field

strength is always a solution to the equations of motion, though the con-

verse is not true.

If the ten-dimensional heterotic string is compactified on an internal man-

ifold M , one wants to know when this gives N = 1 supersymmetry in four

dimensions. Given a certain set of assumptions, it is proved in Section 9.3

that the internal manifold must be a Calabi–Yau three-fold.

A first glance at Calabi–Yau manifolds

Calabi–Yau manifolds are complex manifolds, and they exist in any even

dimension. More precisely, a Calabi–Yau n-fold is a Kähler manifold in n

complex dimensions with SU(n) holonomy. The only examples in two (real)

dimensions are the complex plane � and the two-torus T 2. Any Riemann

surface, other than a torus, is not Calabi–Yau. In four dimensions there are

two compact examples, the K3 manifold and the four-torus T 4, as well as

noncompact examples such as � 2 and � ×T 2. The cases of greatest interest

are Calabi–Yau three-folds, which have six real (or three complex) dimen-

sions. In contrast to the lower-dimensional cases there are many thousands

of Calabi–Yau three-folds, and it is an open question whether this number

is even finite. Compactification on a Calabi–Yau three-fold breaks 3/4 of

the original supersymmetry. Thus, Calabi–Yau compactification of the het-
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erotic string results in N = 1 supersymmetry in four dimensions, while for

the type II superstring theories it gives N = 2.

Conifold transitions and supersymmetric cycles

Nonperturbative effects in the string coupling constant need to be included

for the four-dimensional low-energy theory resulting from Calabi–Yau com-

pactifications to be consistent. For example, massless states coming from

branes wrapping supersymmetric cycles need to be included in the low-

energy effective action, as otherwise the metric is singular and the action is

inconsistent. This is discussed in Section 9.8.

Mirror symmetry

Compactifications on Calabi–Yau manifolds have an interesting property

that is related to T-duality, which is a characteristic feature of the toroidal

compactifications described in Chapters 6 and 7. This chapter shows that

certain toroidal compactifications also have another remarkable property,

namely invariance under interchange of the shape and size of the torus. This

is the simplest example of a symmetry known as mirror symmetry, which is a

property of more general Calabi–Yau manifolds. This property, discussed in

Section 9.9, implies that two distinct Calabi–Yau manifolds, which typically

have different topologies, can be physically equivalent. More precisely, type

IIA superstring theory compactified on a Calabi–Yau manifold M is equiv-

alent to type IIB superstring theory compactified on the mirror Calabi–Yau

manifold W .2 Evidence for mirror symmetry is given in Fig. 9.1. Some

progress towards a proof of mirror symmetry is discussed in Section 9.9.

Exceptional-holonomy manifolds

Calabi–Yau manifolds have been discussed a great deal since 1985. More

recently, other consistent backgrounds of string theory have been investi-

gated, partly motivated by the string dualities discussed in Chapter 8. The

most important examples, discussed in Section 9.12, are manifolds of G2

and Spin(7) holonomy. G2 manifolds are seven-dimensional and break 7/8

of the supersymmetry, while Spin(7) manifolds are eight-dimensional and

break 15/16 of the supersymmetry. Calabi–Yau four-folds, which are also

eight-dimensional, break 7/8 of the supersymmetry. They are discussed in

the context of flux compactifications in Chapter 10.

2 Even though it is called a symmetry, mirror symmetry is really a duality that relates pairs of
Calabi–Yau manifolds.
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Fig. 9.1. This figure shows a plot of the sum h1,1 + h2,1 against the Euler number
χ = 2(h1,1 − h2,1) for a certain class of Calabi–Yau manifolds. The near-perfect
symmetry of the diagram illustrates mirror symmetry, which is discussed in Sec-
tion 9.7.

9.1 Orbifolds

Before discussing Calabi–Yau manifolds, let us consider a mathematically

simpler class of compactification spaces called orbifolds. Sometimes it is

convenient to know the explicit form of the metric of the internal space,

which for almost all Calabi–Yau manifolds is not known,3 not even for the

3 Exceptions include tori and the complex plane.
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four-dimensional manifold K3. Orbifolds include certain singular limits of

Calabi–Yau manifolds for which the metric is known explicitly.

Suppose that X is a smooth manifold with a discrete isometry group

G. One can then form the quotient space X/G. A point in the quotient

space corresponds to an orbit of points in X consisting of a point and all

of its images under the action of the isometry group. If nontrivial group

elements leave points of X invariant, the quotient space has singularities.

General relativity is ill-defined on singular spaces. However, it turns out

that strings propagate consistently on spaces with orbifold singularities, pro-

vided so-called twisted sectors are taken into account. (Twisted sectors will

be defined below). At nonsingular points, the orbifold X/G is locally indis-

tinguishable from the original manifold X. Therefore, it is natural to induce

local structures, such as the metric, to nonsingular regions of the orbifold.

It is assumed here that the orbifold group action acts only on spatial dimen-

sions. When the time direction is involved, new phenomena, such as closed

time-like curves, can result.

Some simple examples

Compact examples

A circle is obtained by identifying points on the real line according to x ∼
x+2πR. The simplest example of an orbifold is the interval S1/

�
2 resulting

after the identification of the circle coordinate x→ −x. This identification

transforms a circle into an interval as shown in Fig. 9.2. This orbifold plays

a crucial role in connection with the strong-coupling limit of the E8 × E8

heterotic string, as discussed in Chapter 8.

0

x

x ~ - x

π

Fig. 9.2. The simplest example of an orbifold is the interval S1/ � 2.



360 String geometry

Noncompact examples

A simple noncompact example of an orbifold results from considering the

complex plane � , described by a local coordinate z in the usual way, and

the isometry given by the transformation

z → −z. (9.1)

This operation squares to one, and therefore it generates the two-element

group
�

2. The orbifold � / �
2 is defined by identifying points that are in the

same orbit of the group action, that is, by identifying z and −z. Roughly

speaking, this operation divides the complex plane into two half-planes.

More precisely, the orbifold corresponds to taking the upper half-plane and

identifying the left and right halves of the boundary (the real axis) according

to the group action. As depicted in Fig. 9.3, the resulting space is a cone.

Fig. 9.3. To construct the orbifold � / � 2 the complex plane is divided into two
parts and identified along the real axis (z ∼ −z). The resulting orbifold is a cone.

This orbifold is smooth except for a conical singularity at the point (0, 0),

because this is the fixed point of the group action. One consequence of

the conical singularity is that the circumference of a circle of radius R,

centered at the origin, is πR and the conical deficit angle is π. An obvious

generalization is the orbifold � / �
N , where the group is generated by a

rotation by 2π/N . In this case there is again a singularity at the origin

and the conical deficit angle is 2π(N − 1)/N . This type of singularity is

an AN singularity. It is included in the more general ADE classification of

singularities, which is discussed in Sections 9.11 and 9.12.

The example � / �
2 illustrates the following general statement: points

that are invariant (or fixed) under some nontrivial group element map to

singular points of the quotient space. Because of the singularities, these

quotient spaces are not manifolds (which, by definition, are smooth), and
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they are called orbifolds instead. Not every discrete group action has fixed

points. For example, the group
�

generated by a translation z → z + a

gives rise to the quotient space � / �
, which is a cylinder. Since there are no

fixed points, the cylinder is a smooth manifold, and it would not be called

an orbifold. When there are two such periods, whose ratio is not real, the

quotient space � /( � × �
) is a smooth torus.

The spectrum of states

What kind of physical states occur in the spectrum of free strings that live

on an orbifold background geometry? In general, there are two types of

states.

• The most obvious class of states, called untwisted states, are those that

exist on X and are invariant under the group G. In other words, the

Hilbert space of string states on X can be projected onto the subspace

of G-invariant states. A string state Ψ on X corresponds to an orbifold

string state on X/G if

gΨ = Ψ, for all g ∈ G. (9.2)

For a finite group G, one can start with any state on X, Ψ0, and construct

a G-invariant state Ψ by superposing all the images gΨ0.

• There is a second class of physical string states on orbifolds whose exis-

tence depends on the fact that strings are extended objects. These states,

called twisted states, are obtained in the following way. In a theory of

closed strings, which is what is assumed here, strings must start and end

at the same point, that is, Xµ(σ + 2π) = Xµ(σ). A string that connects

a point of X to one of its G images would not be an allowed configura-

tion on X, but it maps to an allowed closed-string configuration on X/G.

Mathematically, the condition is

Xµ(σ + 2π) = gXµ(σ), (9.3)

for some g ∈ G. The untwisted states correspond to g = 1. Twisted states

are new closed-string states that appear after orbifolding. In general, there

are various twisted sectors, labeled by the group element used to make

the identification of the ends. More precisely, it is the conjugacy classes

of G that give distinct twisted sectors. This distinction only matters if G

is nonabelian.

In the example � / �
2 it is clear that the twisted string states enclose

the singular point of the orbifold. This is a generic feature of orbifolds.
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In the quantum spectrum, the individual twisted-sector quantum states

of the string are localized at the orbifold singularities that the classical

configurations enclose. This is clear for low-lying excitations, at least,

since the strings shrink to small size.

Orbifolds and supersymmetry breaking

String theories on an orbifold X/G generically have less unbroken supersym-

metry than on X, which makes them phenomenologically more attractive.

Let us examine how this works for a certain class of noncompact orbifolds

that are a generalization of the example described above, namely orbifolds

of the form � n/
�
N . The conclusions concerning supersymmetry breaking

are also applicable to compact orbifolds of the form T 2n/
�
N .

The orbifold � n/
�
N

Let us parametrize � n by coordinates (z1, . . . , zn), and define a generator g

of
�
N by a simultaneous rotation of each of the planes

g : za → eiφ
a
za, a = 1, . . . , n, (9.4)

where the φa are integer multiples of 2π/N , so that gN = 1. The example

of the cone corresponds to n = 1, N = 2 and φ1 = π.

Unbroken supersymmetries are the components of the original supercharge

Qα that are invariant under the group action. Since the group action in this

example is a rotation, and the supercharge is a spinor, we have to exam-

ine how a spinor transforms under this rotation. The weights of spinor

representations of a rotation generator in 2n dimensions have the form

(±1
2 ,±1

2 , . . . ,±1
2), a total of 2n states. This corresponds to dividing the

exponents by two in Eq. (9.4), which accounts for the familiar fact that a

spinor reverses sign under a 2π rotation. An irreducible spinor representa-

tion of Spin(2n) has dimension 2n−1. An even number of − weights gives

one spinor representation and an odd number gives the other one. Under

the same rotation considered above

g : Qα → exp

(
i
n∑

a=1

εaαφ
a

)
Qα, (9.5)

where εα is a spinor weight. Suppose, for example, that the φa are chosen

so that

1

2π

n∑

a=1

φa = 0 mod N. (9.6)
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Then, in general, the only components of Qα that are invariant under g are

those whose weights εα have the same sign for all n components, since then∑
εaαφ

a = 0. In special cases, other components may also be invariant. For

each value of α for which the supercharge is not invariant, the amount of

unbroken supersymmetry is cut in half. Thus, if there is invariance for only

one value of α, the fraction of the supersymmetry that is unbroken is 21−n.

This chapter shows that the same fraction of supersymmetry is preserved

by compactification on a Calabi–Yau n-fold. In fact, some orbifolds of this

type are singular limits of smooth Calabi–Yau manifolds.

9.2 Calabi–Yau manifolds: mathematical properties

Definition of Calabi–Yau manifolds

By definition, a Calabi–Yau n-fold is a Kähler manifold having n complex

dimensions and vanishing first Chern class

c1 =
1

2π
[R] = 0. (9.7)

A theorem, conjectured by Calabi and proved by Yau, states that any com-

pact Kähler manifold with c1 = 0 admits a Kähler metric of SU(n) holon-

omy. As we will see below a manifold with SU(n) holonomy admits a spinor

field which is covariantly constant and as a result is necessarily Ricci flat.

This theorem is only valid for compact manifolds. In order for it to be valid

in the noncompact case, additional boundary conditions at infinity need to

be imposed. As a result, metrics of SU(n) holonomy correspond precisely

to Kähler manifolds of vanishing first Chern class.

We will motivate the above theorem by showing that the existence of a

covariantly constant spinor implies that the background is Kähler and has

c1 = 0. A fundamental theorem states that a compact Kähler manifold has

c1 = 0 if and only if the manifold admits a nowhere vanishing holomorphic

n-form Ω. In local coordinates

Ω(z1, z2, . . . , zn) = f(z1, z2, . . . , zn)dz1 ∧ dz2 · · · ∧ dzn. (9.8)

In section 9.5 we will establish the vanishing of c1 by explicitly constructing

Ω in backgrounds of SU(n) holonomy.

Hodge numbers of a Calabi–Yau n-fold

Betti numbers are fundamental topological numbers associated with a mani-

fold.4 The Betti number bp is the dimension of the pth de Rham cohomology

4 There is more discussion of this background material in the appendix of this chapter.
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of the manifold M , Hp(M), which is defined in the appendix. When the

manifold has a metric, Betti numbers count the number of linearly inde-

pendent harmonic p-forms on the manifold. For Kähler manifolds the Betti

numbers can be decomposed in terms of Hodge numbers hp,q, which count

the number of harmonic (p, q)-forms on the manifold

bk =
k∑

p=0

hp,k−p. (9.9)

Hodge diamond

A Calabi–Yau n-fold is characterized by the values of its Hodge numbers.

This is not a complete characterization, since inequivalent Calabi–Yau man-

ifolds sometimes have the same Hodge numbers. There are symmetries and

dualities relating different Hodge numbers, so only a small subset of these

numbers is independent. The Hodge numbers of a Calabi–Yau n-fold satisfy

the relation

hp,0 = hn−p,0. (9.10)

This follows from the fact that the spaces Hp(M) and Hn−p(M) are isomor-

phic, as can be proved by contracting a closed (p, 0)-form with the complex

conjugate of the holomorphic (n, 0)-form and using the metric to make a

closed (0, n− p)-form. Complex conjugation gives the relation

hp,q = hq,p, (9.11)

and Poincaré duality gives the additional relation

hp,q = hn−q,n−p. (9.12)

Any compact connected Kähler complex manifold has h0,0 = 1, correspond-

ing to constant functions. A simply-connected manifold has vanishing funda-

mental group (first homotopy group), and therefore vanishing first homology

group. As a result,5

h1,0 = h0,1 = 0. (9.13)

In the important case of n = 3 the complete cohomological description of

Calabi–Yau manifolds only requires specifying h1,1 and h2,1. The full set of

Hodge numbers can be displayed in the Hodge diamond

5 Aside from tori, the Calabi–Yau manifolds that are considered here are simply connected.
Calabi–Yau manifolds that are not simply connected can then be constructed by modding out
by discrete freely acting isometry groups. In all cases of interest, these groups are finite, and
thus the resulting Calabi–Yau manifold still satisfies Eq. (9.13).
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h3,3

h3,2 h2,3

h3,1 h2,2 h1,3

h3,0 h2,1 h1,2 h0,3

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

=

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(9.14)

Using the relations discussed above, one finds that the Euler characteristic

of the Calabi–Yau three-fold is given by

χ =

6∑

p=0

(−1)pbp = 2(h1,1 − h2,1). (9.15)

In Chapter 10 compactifications of M-theory on Calabi–Yau four-folds

are discussed. This corresponds to the case n = 4. These manifolds are

characterized in terms of three independent Hodge numbers h1,1, h1,3, h1,2.

The Hodge diamond takes the form

1

0 0

0 h1,1 0

0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1

0 h2,1 h2,1 0

0 h1,1 0

0 0

1

(9.16)

For Calabi–Yau four-folds there is an additional relation between the

Hodge numbers, which will not be derived here, namely

h2,2 = 2(22 + 2h1,1 + 2h1,3 − h1,2). (9.17)

As a result, only three of the Hodge numbers can be varied independently.

The Euler number can therefore be written as

χ =
8∑

p=0

(−1)pbp = 6(8 + h1,1 + h3,1 − h2,1). (9.18)
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9.3 Examples of Calabi–Yau manifolds

Calabi–Yau one-folds

The simplest examples of Calabi–Yau manifolds have one complex dimen-

sion.

Noncompact example: �
A simple noncompact example is the complex plane � described in terms

of the coordinates (z, z̄). It can be described in terms of a flat metric

ds2 = |dz|2, (9.19)

and the holomorphic one-form is

Ω = dz. (9.20)

Compact example: T 2

The only compact Calabi–Yau one-fold is the two-torus T 2, which can be

described with a flat metric and can be thought of as a parallelogram with

opposite sides identified. This simple example is discussed in Sections 9.5

and 9.9 in order to introduce concepts, such as mirror symmetry, that can

be generalized to higher dimensions.

Calabi–Yau two-folds

Noncompact examples

Some simple examples of noncompact Calabi–Yau two-folds, which have

two complex dimensions, can be obtained as products of the previous two

manifolds: � 2 = � × � , � × T 2.

Compact examples: T 4, K3

Requiring a covariantly constant spinor is very restrictive in four real di-

mensions. In fact, K3 and T 4 are the only two examples of four-dimensional

compact Kähler manifolds for which they exist. As a result, these mani-

folds are the only examples of Calabi–Yau two-folds. If one requires the

holonomy to be SU(2), and not a subgroup, then only K3 survives. By con-

trast, there are very many (possibly infinitely many) Calabi–Yau three-folds.

Since K3 and T 4 are Calabi–Yau manifolds, they admit a Ricci-flat Kähler

metric. Moreover, since SU(2) = Sp(1), it turns out that they are also

hyper-Kähler.6 The explicit form of the Ricci-flat metric of a smooth K3

6 In general, a 4n-dimensional manifold of Sp(n) holonomy is called hyper-Kähler. The notation
USp(2n) is also used for the same group when one wants to emphasize that the compact form
is being used. Both notations are used in this book.
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is not known. However, K3 can be described in more detail in the orbifold

limit, which we present next.

Orbifold limit of K3

A singular limit of K3, which is often used in string theory, is an orbifold

of the T 4. This has the advantage that it can be made completely explicit.

Consider the square T 4 constructed by taking � 2 and imposing the following

four discrete identifications:

za ∼ za + 1 za ∼ za + i, a = 1, 2. (9.21)

There is a
�

2 isometry group generated by

I : (z1, z2)→ (−z1,−z2). (9.22)

This
�

2 action has 16 fixed points, for which each of the za takes one of the

following four values

0,
1

2
,
i

2
,

1 + i

2
. (9.23)

Therefore, the orbifold T 4/
�

2 has 16 singularities. These singularities can

be repaired by a mathematical operation called blowing up the singularities

of the orbifold.

Blowing up the singularities

The singular points of the orbifold described above can be “repaired” by

the insertion of an Eguchi–Hanson space. The way to do this is to excise a

small ball of radius a around each of the fixed points. The boundary of each

ball is S3/
�

2 since opposite points on the sphere are identified, according to

Eq. (9.22). One excises each ball and replaces it by a smooth noncompact

Ricci-flat Kähler manifold whose boundary is S3/
�

2. The unique manifold

that has an S3/
�

2 boundary and all the requisite properties to replace each

of the 16 excised balls is an Eguchi–Hanson space. The metric of the Eguchi–

Hanson space is

ds2 = ∆−1dr2 +
1

4
r2∆(dψ + cos θdφ)2 +

1

4
r2dΩ2

2, (9.24)

with ∆ = 1− (a/r)4 and dΩ2
2 = dθ2 + sin2 θdφ2. The radial coordinate is in

the range a ≤ r ≤ ∞, where a is an arbitrary constant and ψ has period 2π.

Repairing the singularities in this manner gives a manifold with the desired

topology, but the metric has to be smoothed out to give a true Calabi–Yau

geometry. The orbifold then corresponds to the limit a → 0. The nonzero
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Hodge numbers of the Eguchi–Hanson space are h0,0 = h1,1 = h2,2 = 1.

Moreover, the (1, 1)-form is anti-self-dual and is given by

J =
1

2
rdr ∧ (dψ + cos θdφ)− 1

4
r2 sin θdθ ∧ dφ, (9.25)

as you are asked to verify in a homework problem. In terms of the complex

coordinates

z1 = r cos (θ/2) exp

[
i

2
(ψ + φ)

]
and z2 = r sin (θ/2) exp

[
i

2
(ψ − φ)

]
,

(9.26)

the metric is Kähler with Kähler potential

K = log

[
r2 exp(r4 + a4)1/2

a2 + (r4 + a4)1/2

]
. (9.27)

Hodge numbers of K3

The cohomology of K3 can be computed by combining the contributions

of the T 4 and the Eguchi–Hanson spaces. The result obtained in this way

remains correct after the metric has been smoothed out.

The Eguchi–Hanson spaces contribute a total of 16 generators to H1,1,

one for each of the 16 spaces used to blow up the singularities. Moreover, on

the T 4 the following four representatives of H1,1 cohomology classes survive

the
�

2 identifications:

dz1 ∧ dz̄1, dz2 ∧ dz̄2, dz1 ∧ dz̄2, dz2 ∧ dz̄1. (9.28)

This gives in total h1,1 = 20. In addition, there is one H2,0 class represented

by dz1 ∧ dz2 and one H0,2 class represented by dz̄1 ∧ dz̄2. As a result, the

Hodge numbers of K3 are given by the Hodge diamond

1

0 0

1 20 1

0 0

1

(9.29)

Thus, the nonzero Betti numbers of K3 are b0 = b4 = 1, b2 = 22, and the

Euler characteristic is χ = 24. The 22 nontrivial harmonic two-forms consist

of three self-dual forms (b+
2 = 3) and 19 anti-self-dual forms (b−2 = 19).
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Calabi–Yau n-folds

The complete classification of Calabi–Yau n-folds for n > 2 is an unsolved

problem, and it is not even clear that the number of compact Calabi–Yau

three-folds is finite. Many examples have been constructed. Here we mention

a few of them.

Submanifolds of complex projective spaces

Examples of a Calabi–Yau n-folds can be constructed as a submanifold of

� Pn+1 for all n > 1. Complex projective space, � P n, sometimes just de-

noted Pn, is a compact manifold with n complex dimensions. It can be

constructed by taking � n+1/{0}, that is the set of (z1, z2, . . . , zn+1) where

the zi are not all zero and making the identifications

(z1, z2, . . . , zn+1) ∼ (λz1, λz2, . . . , λzn+1), (9.30)

for any nonzero complex λ 6= 0. Thus, lines7 in � n+1 correspond to points

in � Pn.

� Pn is a Kähler manifold, but it is not a Calabi–Yau manifold. The sim-

plest example is � P 1, which is topologically the two-sphere S2. Obviously,

it does not admit a Ricci-flat metric. The standard metric of � P n, called the

Fubini–Study metric, is constructed as follows. First one covers the manifold

by n + 1 open sets given by za 6= 0. Then on each open set one introduces

local coordinates. For example, on the open set with zn+1 6= 0, one defines

wa = za/zn+1, with a = 1, . . . , n. Then one introduces the Kähler potential

(for this open set)

K = log

(
1 +

n∑

a=1

|wa|2
)
. (9.31)

This determines the metric by formulas given in the appendix. A crucial

requirement is that the analogous formulas for the Kähler potential on the

other open sets differ from this one by Kähler transformations. You are

asked to verify this in a homework problem.

Examples of Calabi–Yau manifolds can be obtained as subspaces of com-

plex projective spaces. Specifically, let G be a homogenous polynomial of

degree k in the coordinates za of � n+2, that is,

G(λz1, . . . , λzn+2) = λkG(z1, . . . , zn+2). (9.32)

The submanifold of � P n+1 defined by

G(z1, . . . , zn+2) = 0 (9.33)

7 A line in a complex manifold has one complex dimension.
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is a compact Kähler manifold with n complex dimensions. This submanifold

has vanishing first Chern class for k = n+2. One way of obtaining this result

is to explicitly compute c1(X). To do so note that c1(X) can be expressed

through the volume form since X is Kähler. As a volume form on X one can

use the pullback of the (n−1)-power of the Kähler form of CP n+1. Another

way of obtaining this result is to use the adjunction formula of algebraic

geometry, which implies

c1(X) ∼ [k − (n+ 2)] c1( � Pn+1). (9.34)

This vanishes for k = n+ 2.

• In the case of n = 2 (quartic polynomials in � P 3) one obtains K3 mani-

folds. As an example consider

4∑

a=1

(za)4 = 0, (9.35)

as a quartic equation representing K3. Different choices of quartic poly-

nomials give K3 manifolds that are diffeomorphic to each other but have

different complex structures. Deformations of Calabi–Yau manifolds, in

particular deformations of the complex structure, are discussed in Sec-

tion 9.5.

• In the case of n = 3 this construction describes the quintic hypersurface

in � P 4. This manifold can be described by the polynomial

5∑

a=1

(za)5 = 0, (9.36)

or a more general polynomial of degree five in five variables. This manifold

has the Hodge numbers

h1,1 = 1 and h2,1 = 101, (9.37)

which gives an Euler number of χ = −200. Varying the coefficients of the

quintic polynomial corresponds again to complex-structure deformations.

The manifold defined by Eq. (9.36) can be covered by five open sets for

which za 6= 0, a = 1, . . . , 5. On the first open set, for example, one can

define local coordinates wa = za/z1, a = 2, 3, 4, 5. These satisfy

5∑

a=2

(wa)4dwa = 0. (9.38)
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In terms of these coordinates the holomorphic three-form is given by

Ω =
dw2 ∧ dw3 ∧ dw4

(w5)4
. (9.39)

Note that Eq. (9.39) seems to single out one of the coordinates. However,

taking Eq. (9.38) into account one sees that the four coordinates wa,

a = 2, . . . , 5, are treated democratically.

Weighted complex projective space: W � P nk1···kn+1

One generalization entails replacing � P n by weighted complex projective

space W � Pnk1···kn+1
. This n-dimensional complex space is defined by starting

with � n+1 and making the identifications8

(λk1z1, λk2z2, . . . , λkn+1zn+1) ∼ λN (z1, z2, . . . , zn+1), (9.40)

where k1, . . . , kn+1 are positive integers, and N is their least common multi-

ple. Further generalizations consist of products of such spaces with dimen-

sions ni. One can impose m polynomial constraint equations that respect

the scaling properties of the coordinates. Generically, this produces a space

with
∑
ni − m complex dimensions. Then one has to compute the first

Chern class, which is not so easy in general. Still this procedure has been

automated, and several thousand inequivalent Calabi–Yau three-folds have

been obtained. Other powerful techniques, based on toric geometry, which is

not discussed in this book, have produced additional examples. Despite all

this effort, the classification of Calabi–Yau three-folds is not yet complete.

EXERCISES

EXERCISE 9.1

Show that up to normalization
∫
J ∧ J ∧ J is the volume of a compact six-

dimensional Kähler manifold. Consider first the case of two real dimensions.

SOLUTION

Here J = igab̄dz
a∧dz̄b̄ is the Kähler form, which is discussed in the appendix.

This result has to be true because h3,3 = 1 for a compact Kähler manifold

in three complex dimensions. J ∧ J ∧ J , which is a (3, 3)-form, must be

8 Note that the λ s have exponents and the z s have superscripts.



372 String geometry

proportional to the volume form (up to an exact form), since it is closed but

not exact. Still, it is instructive to demonstrate this explicitly. So let us do

that now.

For one complex dimension (or two real dimensions) the Kähler form is

J = igzz̄dz ∧ dz̄, where z = x + iy. The metric components then take the

form

gxx = gyy = 2gzz̄, gxy = 0.

The Kähler form describes the volume, V =
∫
J , since

J = igzz̄dz ∧ dz̄ = 2gzz̄dx ∧ dy =
√
gdx ∧ dy.

This argument generalizes to n complex dimensions, where J = igab̄dz
a∧dz̄b̄.

Setting za = xa + iya and using
√
g = 2n det gab̄, one obtains for n = 3

1

6
J ∧ J ∧ J =

√
gdx1 ∧ · · · ∧ dy3,

which is the volume form. Thus,

V =
1

6

∫
J ∧ J ∧ J.

2

EXERCISE 9.2

Consider the orbifold T 2×T 2/
�

3, where
�

3 acts on the coordinates of T 2×T 2

by (z1, z2) → (ωz1, ω−1z2), where ω = exp(2πi/3) is a third root of unity,

and (z1, z2) are the coordinates of the two tori. Compute the cohomology of

M , including the contribution coming from the fixed points. Compare the

result to the cohomology of K3.

SOLUTION

In order for the
�

3 transformation to be a symmetry, let us choose the

complex structure of the tori such that the periods are

za ∼ za + 1 ∼ za + eπi/3 a = 1, 2.

The
�

3 action has nine fixed points where each of the za takes one of the

following three values:

0,
1√
3
eπi/6,

2√
3
eπi/6.
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The cohomology of the orbifold has two contributions: one from the har-

monic forms of T 2 × T 2 that are invariant under action
�

3. The other one

comes from the fixed points.

The
�

3-invariant harmonic forms are:

1, dz1 ∧ dz2, dz̄1 ∧ dz̄2, dz1 ∧ dz̄1, dz2 ∧ dz̄2, dz1 ∧ dz2 ∧ dz̄1 ∧ dz̄2.

Each of the nine singularities has a � P 1 × � P 1 blow-up whose boundary

is S3/
�

3. Each of these contributes two two-cycles or h1,1 = 2. The two

two-cycles intersect at one point. Thus, the nonvanishing Hodge numbers

of the orbifold are

h2,2 = h0,0 = h2,0 = h0,2 = 1, h1,1 = 2 + 9× 2 = 20,

while the other Hodge numbers vanish. These numbers are the same as

those for K3. This orbifold is a singular limit of a smooth K3, like the
�

2

orbifold considered in the text.
�

4 and
�

6 orbifolds also give singular K3 s.

2

EXERCISE 9.3

Consider � 2/G, where G is the subgroup of SU(2) generated by (z1, z2)→
(ωz1, ω−1z2) and (z1, z2) → (−z2, z1) with ω2n = 1. Show that in terms of

variables invariant under the action of G the resulting (singular) space can

be described by9

xn+1 + xy2 + z2 = 0.

SOLUTION

The variables

x = (z1z2)2, y =
i

2
((z1)2n + (z2)2n), z =

1

2
((z1)2n − (z2)2n)z1z2

are invariant under the action of G. Thus

xn+1 = (z1z2)2n+2,

xy2 = −1

4
((z1)4n + (z2)4n + 2(z1z2)2n)(z1z2)2,

z2 =
1

4
((z1)4n + (z2)4n − 2(z1z2)2n)(z1z2)2.

9 The singularity of this space is called a Dn+2 singularity, because the blown-up geometry has
intersection numbers encoded in the Dn+2 Dynkin diagram. Intersection number is defined in
Section 9.6, and the Dynkin diagram is explained in Section 9.11.
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This leads to the desired equation

xn+1 + xy2 + z2 = 0.

2

9.4 Calabi–Yau compactifications of the heterotic string

Calabi–Yau compactifications of ten-dimensional heterotic string theories

give theories in four-dimensional space-time with N = 1 supersymmetry.10

In other words, 3/4 of the original 16 supersymmetries are broken. As

mentioned in the introduction, the motivation for this is the appealing,

though unproved, possibility that this much supersymmetry extends down

to the TeV scale in the real world. Another motivation for considering these

compactifications is that it is rather easy to embed the standard-model gauge

group, or a grand-unification gauge group, inside one of the two E8 groups

of the E8 × E8 heterotic string theory.

Ansatz for the D = 10 space-time geometry

Let us assume that the ten-dimensional space-time M10 of the heterotic

string theory decomposes into a product of a noncompact four-dimensional

space-time M4 and a six-dimensional internal manifold M , which is small

and compact

M10 = M4 ×M. (9.41)

Previously, ten-dimensional coordinates were labeled by a Greek index and

denoted xµ. Now, the symbol xM denotes coordinates of M10, while xµ

denotes coordinates ofM4 and ym denotes coordinates of the six-dimensional

space M . This index rule is summarized by M = (µ,m). Generalizations of

the ansatz in Eq. (9.41) are discussed in Chapter 10.

Maximally symmetric solutions

Let us consider solutions in which M4 is maximally symmetric, that is, a

homogeneous and isotropic four-dimensional space-time. Symmetries alone

imply that the Riemann tensor of M4 can be expressed in terms of its metric

according to

Rµνρλ =
R

12
(gµρgνλ − gµλgνρ), (9.42)

10 This amount of supersymmetry is unbroken to every order in perturbation theory. In some
cases it is broken by nonperturbative effects.
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where the scalar curvature R = gµρgνλRµνρλ is a constant. It is proportional

to the four-dimensional cosmological constant. Maximal symmetry restricts

the space-time M4 to be either Minkowski (R = 0), AdS (R < 0) or dS

(R > 0). The assumption of maximal symmetry along M4 also requires

the following components of the NS–NS three-form field strength H and the

Yang–Mills field strength to vanish

Hµνρ = Hµνp = Hµnp = 0 and Fµν = Fµn = 0. (9.43)

In this chapter it is furthermore assumed that the internal three-form field

strength Hmnp vanishes and the dilaton Φ is constant. These assumptions,

made for simplicity, give rise to the backgrounds described in this chapter.

Backgrounds with nonzero internal H-field and a nonconstant dilaton are

discussed in Chapter 10.

Conditions for unbroken supersymmetry

The constraints that N = 1 supersymmetry imposes on the vacuum arise

in the following way. Each of the supersymmetry charges Qα generates an

infinitesimal transformation of all the fields with an associated infinitesimal

parameter εα. Unbroken supersymmetries leave a particular background

invariant. This is the classical version of the statement that the vacuum

state is annihilated by the charges. The invariance of the bosonic fields

is trivial, because each term in the supersymmetry variation of a bosonic

field contains at least one fermionic field, but fermionic fields vanish in a

classical background. Therefore, the only nontrivial conditions come from

the fermionic variations

δε(fermionic fields) = 0. (9.44)

In fact, for exactly this reason, only the bosonic parts of fermionic super-

symmetry transformations were presented in Chapter 8. If the expectation

values for the fermions still vanish after performing a supersymmetry vari-

ation, then one obtains a solution of the bosonic equations of motion that

preserves supersymmetry for the type of backgrounds considered here. In

fact, as is shown in Exercise 9.4, a solution to the supersymmetry constraints

is always a solution to the equations of motion, while the converse is not

necessarily true. Here we are applying this result for theories with local

supersymmetry. This can be done if we impose the Bianchi identity sat-

isfied by the three-form H as an additional constraint. In order to obtain

unbroken N = 1 supersymmetry, Eq. (9.44) needs to hold for four linearly



376 String geometry

independent choices of ε forming a four-component Majorana spinor (or

equivalently a two-component Weyl spinor and its complex conjugate).

The supergravity approximation to heterotic string theory was described

in Section 8.1. In particular, the bosonic part of the ten-dimensional action

was presented. The full supergravity approximation also contains terms in-

volving fermionic fields, which are incorporated in such a way that the theory

has N = 1 local supersymmetry (16 fermionic symmetries). As described in

Section 8.1, the bosonic terms of the supersymmetry transformations of the

fermionic fields can be written in the form11

δΨM = ∇Mε− 1
4HMε,

δλ = −1
2/∂Φε+ 1

4Hε,

δχ = −1
2Fε,

(9.45)

in the string frame. In addition, the three-form field strength H satisfies

dH =
α′

4
[tr(R ∧R)− tr(F ∧ F )] . (9.46)

The left-hand side is exact. Therefore, the cohomology classes of tr(R ∧R)

and tr(F ∧ F ) have to be the same. In compactifications with branes, this

condition can be modified by additional contributions.

Since the H-flux is assumed to vanish, the supersymmetry transformation

of the gravitino simplifies,

δΨM = ∇Mε. (9.47)

For an unbroken supersymmetry this must vanish, and therefore there should

exist a nontrivial solution to the Killing spinor equation

∇Mε = 0. (9.48)

This equation means that ε is a covariantly constant spinor.

N = 1 supersymmetry implies that one such spinor should exist. Since

the manifold M10 is a direct product, the covariantly constant spinor ε can

be decomposed into a product structure

ε(x, y) = ζ(x)⊗ η(y), (9.49)

or a sum of such terms. The properties of these spinors and the form of the

decomposition are discussed in the next section. In making such decompo-

sitions of anticommuting (Grassmann-odd) spinors, it is always understood

11 The notation introduced in Section 8.1 is simplified here according to H̃(3) → H and H̃3 → H.
Also, the fermionic variables that had tildes there are written here without tildes.
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that the space-time components ζ(x) are anticommuting (Grassmann odd),

while the internal components η(y) are commuting (Grassmann even).

Properties of the external space

Let us consider the external components of Eq. (9.48) for which the index

takes value M = µ. The existence of a covariantly constant spinor ζ(x) on

M4, satisfying

∇µζ = 0, (9.50)

implies that the curvature scalar R in Eq. (9.42) vanishes, and hence M4 is

Minkowski space-time. This follows from

[∇µ,∇ν ] ζ =
1

4
RµνρσΓρσζ = 0 (9.51)

and the assumption of maximal symmetry (9.42). The details are shown in

Exercises 9.6 and 9.7. Then ζ is actually constant, not just covariantly con-

stant, and it is the infinitesimal transformation parameter of an unbroken

global supersymmetry in four dimensions. This is a nontrivial result inas-

much as unbroken supersymmetry does not necessarily imply a vanishing

cosmological constant by itself. AdS spaces can also be supersymmetrical,

a fact that plays a crucial role in Chapter 12. However, this result does

not solve the cosmological constant problem. The question that needs to be

answered in order to make contact with the real world is whether the cos-

mological constant can vanish, or at least be extremely small, when super-

symmetry is broken. The present result has nothing to say about this, since

it is derived by requiring unbroken supersymmetry. To summarize: super-

symmetry constrains the external space to be four-dimensional Minkowski

space.

Properties of the internal manifold

Let us now consider the restrictions coming from the internal components

M = m of Eq. (9.48). The existence of a spinor that satisfies

∇mη = 0, (9.52)

and therefore is covariantly constant on M , leads to the integrability condi-

tion

[∇m,∇n] η =
1

4
RmnpqΓ

pqη = 0. (9.53)



378 String geometry

This implies that the metric on the internal manifold M is Ricci-flat (see

Exercises 9.6 and 9.7)

Rmn = 0. (9.54)

However, in contrast to the external space-time, where maximal symmetry

is assumed, it does not mean that M is flat, since the Riemann tensor can

still be nonzero.

Holonomy and unbroken supersymmetry

For an orientable six-dimensional spin manifold,12 the main case of inter-

est here, parallel transport of a spinor η around a closed curve generically

gives a rotation by a Spin(6) = SU(4) matrix. This is the generic holonomy

group.13 A real spinor on such a manifold has eight components, but the

eight components can be decomposed into two irreducible SU(4) represen-

tations

8 = 4⊕ 4̄, (9.55)

where the 4 and 4̄ represent spinors of opposite chirality, which are complex

conjugates of one another. Thus, a spinor of definite chirality has four

complex components.

A spinor that is covariantly constant remains unchanged after being par-

allel transported around a closed curve. The existence of such a spinor is

required if some supersymmetry is to remain unbroken; see Eq. (9.48). The

largest subgroup of SU(4) for which a spinor of definite chirality can be

invariant is SU(3). The reason is that the 4 has an SU(3) decomposition

4 = 3⊕ 1, (9.56)

and the singlet is invariant under SU(3) transformations. Since the condi-

tion for N = 1 unbroken supersymmetry in four dimensions is equivalent to

the existence of a covariantly constant spinor on the internal six-dimensional

manifold, it follows that the manifold should have SU(3) holonomy.

The supersymmetry charge of the heterotic string in ten dimensions is a

Majorana–Weyl spinor with 16 real components, which form an irreducible

representation of Spin(9, 1). Group theoretically, this decomposes with re-

spect to an SL(2, � )× SU(4) subgroup as14

16 = (2,4)⊕ (2̄, 4̄). (9.57)

12 A spin manifold is a manifold on which spinors can be defined, that is, it admits spinors.
13 More information about holonomy and spinors is given in the appendix.
14 The other 16-dimensional spinor, which is not a supersymmetry of the heterotic string, then

has the decomposition 16 = (2, 4̄) + (2̄,4).
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Here SL(2, � ) is the four-dimensional Lorentz group, so 2 and 2̄ correspond

to positive- and negative-chirality Weyl spinors. On a manifold of SU(3)

holonomy only the singlet pieces of the 4 and the 4̄ in Eq. (9.56) lead to

covariantly constant spinors. Denoting them by fields η±(y), the covariantly

constant spinor ε can be decomposed into a sum of two terms

ε(x, y) = ζ+ ⊗ η+(y) + ζ− ⊗ η−(y), (9.58)

where ζ± are two-component constant Weyl spinors on M4. Note that

η− = η∗+ and ζ− = ζ∗+, (9.59)

since ε is assumed to be in a Majorana basis.

A representation of the gamma matrices that is convenient for this 10 =

4 + 6 split is

Γµ = γµ ⊗ 1 and Γm = γ5 ⊗ γm, (9.60)

where γµ and γm are the gamma matrices of M4 and M , respectively, and

γ5 is the usual four-dimensional chirality operator

γ5 = −iγ0γ1γ2γ3, (9.61)

which satisfies γ2
5 = 1 and anticommutes with the other four γµ s.

Internal Dirac matrices

The 8 × 8 Dirac matrices on the internal space M can be chosen to be an-

tisymmetric. A possible choice of the six antisymmetric matrices satisfying

{γi, γj} = 2δij is

σ2 ⊗ 1⊗ σ1,3 σ1,3 ⊗ σ2 ⊗ 1 1⊗ σ1,3 ⊗ σ2. (9.62)

One can then define a seventh antisymmetric matrix that anticommutes

with all of these six as γ7 = iγ1 . . . γ6 or

γ7 = σ2 ⊗ σ2 ⊗ σ2. (9.63)

The chirality projection operators are

P± = (1± γ7)/2. (9.64)

In terms of the matrices defined above, one defines matrices γm = eimγi in a

real basis or γa and γā in a complex basis.
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Kähler form and complex structure

Now let us consider possible fermion bilinears constructed from η+ and η−.

Since these spinors are covariantly constant they can be normalized accord-

ing to

η†+η+ = η†−η− = 1. (9.65)

Next, define the tensor

Jm
n = iη†+γm

nη+ = −iη†−γmnη−, (9.66)

which by using the Fierz transformation formula (given in the appendix of

Chapter 10) satisfies

Jm
nJn

p = −δmp. (9.67)

As a result, the manifold is almost complex, and J is the almost complex

structure.

Since the spinors η± and the metric are covariantly constant, the almost

complex structure is also covariantly constant, that is

∇mJnp = 0. (9.68)

This implies that the almost complex structure satisfies the condition that

it is a complex structure, since it satisfies

Np
mn = 0, (9.69)

where Np
mn is the Nijenhuis tensor (see the appendix and Exercise A.4).

So one can introduce local complex coordinates za and z̄a in terms of which

Ja
b = iδa

b, Jā
b̄ = −iδāb̄ and Ja

b̄ = Jā
b = 0. (9.70)

Note that

gmn = Jm
kJn

lgkn, (9.71)

which together with Eq. (9.70) implies that the metric is hermitian with

respect to the almost complex structure. Moreover, Eq. (9.71) implies that

the quantity

Jmn = Jm
kgkn, (9.72)

is antisymmetric and as a result defines a two-form

J =
1

2
Jmndx

m ∧ dxn. (9.73)

The components of J are related to the metric according to

Jab̄ = igab̄. (9.74)
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One important property of J is that it is closed, since

dJ = ∂J + ∂̄J = i∂agbc̄dz
a ∧ dzb ∧ dzc̄ + i∂āgbc̄dz

ā ∧ dzb ∧ dzc̄ = 0. (9.75)

To see this, note that the metric is covariantly constant and take into account

that we are using a torsion-free connection. As a result, the background is

Kähler, and J is the Kähler form.

Holomorphic three-form

Let us now consider possible fermion bilinears, starting with ones that are

bilinear in η−. Remembering that η is Grassmann even, one can see that

the bilinears ηT−γaη− and ηT−γabη− vanish by symmetry. Also, the bilinear

ηT−η− vanishes by chirality. The only nonzero possibility, consistent with

both chirality and symmetry, is

Ωabc = ηT−γabcη−. (9.76)

This can be used to define a nowhere-vanishing (3, 0)-form

Ω =
1

6
Ωabcdz

a ∧ dzb ∧ dzc. (9.77)

• Let us now show that Ω is closed. Since η and the metric are covariantly

constant, it satisfies ∇d̄Ωabc = 0. The connection terms vanish for a

Kähler manifold, and therefore one deduces that ∂̄Ω = 0. It is obvious

that ∂Ω = 0, since there are only three holomorphic dimensions. Thus,

Ω is closed, dΩ = (∂ + ∂̄)Ω = 0. The fact that ∂̄Ω = 0 implies that the

coefficients Ωabc are holomorphic.

• On the other hand, Ω is not exact. This can be understood as a conse-

quence of the fact Ω ∧Ω is proportional to the volume form, which has a

nonzero integral over M (see Exercise 9.8). Therefore, Ω∧Ω is not exact,

which implies that Ω is not exact. A Calabi–Yau manifold has h3,0 = 1,

and Ω is a representative of the unique (3, 0) cohomology class. Other

representatives differ by a nonzero multiplicative constant.

The existence of a holomorphic (3, 0)-form implies that the manifold has

a vanishing first Chern class. Indeed, since the holomorphic indices take

three values, Ωabc must be proportional to the Levi–Civita symbol εabc:

Ωabc = f(z)εabc, (9.78)

with f(z) a nowhere vanishing holomorphic function of z1, z2 and z3. This

implies that the norm of Ω, defined according to

||Ω||2 =
1

3!
ΩabcΩ̄

abc, (9.79)
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satisfies

√
g =

|f |2
||Ω||2 , (9.80)

where g denotes the determinant of the metric. As a result, the Ricci form

is given by

R = i∂∂̄ log
√
g = −i∂∂̄ log ||Ω||2. (9.81)

Since log ||Ω||2 is a coordinate scalar, and therefore globally defined, this

implies that R is exact and c1 = 0. Since the internal spaces are Kähler

manifolds with a vanishing first Chern class, they are by definition Calabi–

Yau manifolds.

To summarize, assuming H = 0 and a constant dilaton, the requirement

of unbroken N = 1 supersymmetry of the heterotic string compactified

to four dimensions implies that the internal manifold is Kähler and has a

vanishing first Chern class. In other words, it is a Calabi–Yau three-fold.

Such a manifold admits a unique Ricci-flat metric. The Ricci-flat metric is

generally selected in the supergravity approximation (analyzed here), while

stringy corrections can deform it to a metric that is not Ricci-flat.15 The

advantage of this formulation is that Kähler manifolds with vanishing first

Chern class can be constructed using various methods (some of which are

presented in Section 9.3). However, backgrounds in which only the holonomy

is specified, which in the present case is SU(n), are extremely difficult to

deal with.

EXERCISES

EXERCISE 9.4

Given a theory with N = 1 global supersymmetry, show that a supersym-

metric state is a zero-energy solution to the equations of motion.

SOLUTION

A supersymmetric state |Ψ〉 is annihilated by one or more supercharges

Q|Ψ〉 = 0.

15 However, the known corrections to the metric can be absorbed in field redefinitions, so that
the metric becomes Ricci-flat again.



9.4 Calabi–Yau compactifications of the heterotic string 383

For an N = 1 supersymmetric theory there is no central charge, and we can

write the Hamiltonian as

H = Q†Q,

which is positive definite. A supersymmetric state satisfies

H|Ψ〉 = 0,

and therefore it gives a zero-energy solution of the equations of motion.

The converse is not true, since there are positive-energy solutions of the

equations of motion that are not supersymmetric. In classical terms, this

result means that a field configuration satisfying δεψ = 0, for all the fermi

fields, as discussed in the text, is a solution of the classical field equations.2

EXERCISE 9.5

Prove that η± in Eqs (9.59) are Weyl spinors of opposite chirality, that is,

γ7 has eigenvalues ±1.

SOLUTION

Using γ7 ≡ iγ1γ2γ3γ4γ5γ6, one finds γ2
7 = 1. This is manifest for the repre-

sentation presented in Eq. (9.63). We can then define P± ≡ 1
2(1± γ7), and

η± ≡ P±η. Therefore,

γ7η+ = η+ and γ7η− = −η−.
In terms of holomorphic and antiholomorphic indices

γ7 = (1− γ1̄γ1)(1− γ2̄γ2)(1− γ3̄γ3) = −(1− γ1γ1̄)(1− γ2γ2̄)(1− γ3γ3̄),

so the conditions γaη+ = 0 and γāη− = 0 also give the same results. 2

EXERCISE 9.6

Derive the identity [∇m,∇n]η = 1
4RmnpqΓ

pqη used in Eq. (9.53).

SOLUTION

Using Eq. (9.60) and the definition of the covariant derivative in the ap-

pendix,

∇nη = ∂nη +
1

4
ωnpqγ

pqη,

where ωnpq are the components of the spin connection. Thus

[∇m,∇n]η = [∂m +
1

4
ωmpqγ

pq, ∂n +
1

4
ωnrsγ

rs]η.
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In writing this one has used the fact that Christoffel-connection terms of the

form (Γpmn − Γpnm)∂pη cancel by symmetry. The commutator above gives

1

4
(∂mωnrs − ∂nωmrs)γrsη +

1

16
ωmpqωnrs[γ

pq, γrs]η,

which simplifies to

1

4
(∂mωnrs − ∂nωmrs + ωmrpωn

p
s − ωnrpωmps)γrsη =

1

4
Rmnrsγ

rsη,

where we have used

[γrs, γ
pq] = −8δ

[p
[rγ

q]
s] .

2

EXERCISE 9.7

Prove that Rmnpqγ
pqη = 0 implies that Rmn = 0.

SOLUTION

Multiplying the above equation with γn gives

γnγpqRmnpqη = 0.

Using the gamma matrix identity

γnγpq = γnpq + gnpγq − gnqγp

and the equation

γnpqRmnpq = γnpqRm[npq] = 0,

which is the Bianchi identity, we get the expression

2gnqγpRmnpqη = 0.

This implies γpRmpη = 0. If η = η+ is positive chirality, for example, this

gives

iηT−γqγ
pη+Rmp = Jq

pRmp = 0.

J is invertible, so this implies that Rmp = 0, and thus the manifold is Ricci-

flat. 2

EXERCISE 9.8

Show that Ω ∧ Ω is proportional to the volume form of the Calabi–Yau

three-fold that we derived in Exercise 9.1.
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SOLUTION

As in the case of Exercise 9.1, this is a nontrivial closed (3, 3)-form, so this

has to be true (up to an exact form) by uniqueness. Still, it is instruc-

tive to examine the explicit formulas and determine the normalization. By

definition

Ω =
1

6
Ωa1a2a3dz

a1 ∧ dza2 ∧ dza3,

where Ωa1a2a3 = ηT−γa1a2a3η−. Thus Ω ∧ Ω becomes

1

36
dza1 ∧ dza2 ∧ dza3 ∧ dz̄b̄1 ∧ dz̄b̄2 ∧ dz̄b̄3Ωa1a2a3Ωb̄1b̄2 b̄3

= − i

36
J ∧ J ∧ J(Ωa1a2a3Ωb̄1b̄2 b̄3

ga1b̄1ga2b̄2ga3b̄3).

Since 1
6J ∧ J ∧ J = dV is the volume form, we only need to prove that

the extra factor is a constant. Because of the properties ∇mΩabc = 0 and

∇mgab̄ = 0, we have

∇m‖Ω‖2 = 0

where

‖Ω‖2 =
1

6
ga1b̄1ga2b̄2ga3b̄3Ωa1a2a3Ωb̄1 b̄2b̄3

.

‖Ω‖2 is a scalar, and thus it is a constant. It follows that Ω∧Ω is −i‖Ω‖2dV .

2

9.5 Deformations of Calabi–Yau manifolds

Calabi–Yau manifolds with specified Hodge numbers are not unique. Some

of them are smoothly related by deformations of the parameters characteriz-

ing their shapes and sizes, which are called moduli. Often the entire moduli

space of manifolds is referred to as a single Calabi–Yau space, even though

it is really a continuously infinite family of manifolds. This interpretation

was implicitly assumed earlier in raising the question whether or not there

is a finite number of Calabi–Yau manifolds. There can also be more than

one Calabi–Yau manifold of given Hodge numbers that are topologically dis-

tinct, with disjoint moduli spaces, since the Hodge numbers do not give a full

characterization of the topology. On the other hand, when one goes beyond

the supergravity approximation, it is sometimes possible to identify smooth

topology-changing transitions, such as the conifold transition described in

Section 9.8, which can even change the Hodge numbers.
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This section and the next one explain how the moduli parametrize the

space of possible choices of undetermined expectation values of massless

scalar fields in four dimensions. They are undetermined because the effective

potential does not depend on them, at least in the leading supergravity

approximation. A very important property of the moduli space of Calabi–

Yau three-folds is that it is the product of two factors, one describing the

complex-structure moduli and one describing the Kähler-structure moduli.

Let us now consider the spectrum of fluctuations about a given Calabi–

Yau manifold with fixed Hodge numbers. Some of these fluctuations come

from metric deformations, while others are obtained from deformations of

antisymmetric tensor fields.

Antisymmetric tensor-field deformations

As discussed in Chapter 8, the low-energy effective actions for string theories

contain various p-form fields with kinetic terms proportional to
∫
d10x
√−g | Fp |2, (9.82)

where Fp = dAp−1. An example of such a field is the type IIA or type IIB

three-form H3 = dB2. The equation of motion of this field is16

∆Bp−1 = d ? dBp−1 = 0. (9.83)

If we compactify to four dimensions on a product space M4 ×M , where

M is a Calabi–Yau three-fold, then the space-time metric is a sum of a four-

dimensional piece and a six-dimensional piece. Therefore, the Laplacian is

also a sum of two pieces

∆ = ∆4 + ∆6, (9.84)

and the number of massless four-dimensional fields is given by the number of

zero modes of the internal Laplacian ∆6. These zero modes are counted by

the Betti numbers bp. The ten-dimensional field B2, for example, can give

rise to four-dimensional fields that are two-forms, one-forms and zero-forms.

The number of these fields is summarized in the following table:

BMN Bµν Bµn Bmn
p-form in 4D p = 2 p = 1 p = 0

# of fields in 4D b0 = 1 b1 = 0 b2 = h1,1

16 This assumes other terms vanish or can be neglected.



9.5 Deformations of Calabi–Yau manifolds 387

The b2 scalar fields in this example are moduli originating from the B

field. More generally, a p-form field gives rise to bp moduli fields.

Metric deformations

The zero modes of the ten-dimensional metric (or graviton field) give rise

to the four-dimensional metric gµν and a set of massless scalar fields orig-

inating from the internal components of the metric gmn. In Calabi–Yau

compactifications no massless vector fields are generated from the metric

since b1 = 0. A closely related fact is that Calabi–Yau three-folds have no

continuous isometry groups.

The fluctuations of the metric on the internal space are analyzed by per-

forming a small variation

gmn → gmn + δgmn, (9.85)

and then demanding that the new background still satisfies the Calabi–Yau

conditions. In particular, one requires

Rmn(g + δg) = 0. (9.86)

This leads to differential equations for δg, and the number of solutions counts

the number of ways the background metric can be deformed while preserving

supersymmetry and the topology. The coefficients of these independent

solutions are the moduli. They are the expectation values of massless scalar

fields, called the moduli fields. These moduli parametrize changes of the size

and shape of the internal Calabi–Yau manifold but not its topology.

A simple example: the torus

Fig. 9.4. A rectangular torus can be constructed by identifying opposite sides of a
rectangle.

Consider the rectangular torus T 2 = S1 × S1 displayed in Fig. 9.4. This
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torus is described by a flat metric. As discussed in Exercise 9.9, it is conve-

nient to describe a torus using two complex parameters τ and ρ, which in

the present case are related to the two radii by

τ = i
R2

R1
and ρ = iR1R2. (9.87)

The shape, or complex structure, of the torus is described by τ , while the

size is described by ρ. As a result, two transformations can be performed so

that the torus remains a torus. A complex-structure deformation changes

τ , while a Kähler-structure deformation changes ρ. These deformations are

illustrated in Fig. 9.5.

Fig. 9.5. Kähler structure deformations and complex structure deformations corre-
spond to changing the size and shape of a torus respectively.

Recall that the holomorphic one-form on a torus is given by

Ω = dz. (9.88)

The complex-structure parameter τ can then be written as the quotient of

the two periods

τ =

∫
A Ω∫
B Ω

, (9.89)

where A and B are the cycles shown in Fig. 9.4. This definition is generalized

to Calabi–Yau three-folds in the next section. The rectangular torus is not

the most general torus. There can be an angle θ as shown in Fig. 9.6. When

τ has a real part, mirror symmetry17 only makes sense if ρ has a real part

as well. The imaginary part of ρ then describes the volume, while the real

part descends from the B field, as explained in Exercise 7.8.

Deformations of Calabi–Yau three-folds

In order to analyze the metric deformations of Calabi–Yau three-folds, let us

use the strategy outlined in the introduction of this section and require that

17 The mirror symmetry transformation that interchanges τ and ρ is discussed in Section 9.9.



9.5 Deformations of Calabi–Yau manifolds 389

gmn and gmn + δgmn both satisfy the Calabi–Yau conditions. In particular,

they describe Ricci-flat backgrounds so that

Rmn(g) = 0 and Rmn(g + δg) = 0. (9.90)

Some metric deformations only describe coordinate changes and are not of

interest. To eliminate them one fixes the gauge

∇mδgmn =
1

2
∇nδgmm, (9.91)

where δgmm = gmpδgmp. Expanding the second equation in (9.90) to linear

order in δg and using the Ricci-flatness of g leads to

∇k∇kδgmn + 2R p q
m n δgpq = 0. (9.92)

This equation is known as the Lichnerowicz equation, which you are asked

to verify in Problem 9.7. Using the properties of the index structure of the

metric and Riemann tensor of Kähler manifolds, one finds that the equations

for the mixed components δgab̄ and the pure components δgab decouple.

Consider the infinitesimal (1, 1)-form

δgab̄dz
a ∧ dz̄b̄, (9.93)

which is harmonic if (9.92) is satisfied, as you are asked to verify in Prob-

lem 9.8. We imagine that after the variation g+δg is a Kähler metric, which

in classical geometry should be positive definite. The Kähler metric defines

the Kähler form J = igab̄dz
a∧dz̄b̄, and positivity of the metric is equivalent

to ∫

Mr

J ∧ · · · ∧ J︸ ︷︷ ︸
r−times

> 0, r = 1, 2, 3, (9.94)

R

R1

2

θ

Fig. 9.6. The shape of a torus is described by a complex-structure parameter τ .
The angle θ is the phase of τ .
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where Mr is any complex r-dimensional submanifold of the Calabi–Yau

three-fold. The subset of metric deformations that lead to a Kähler form

satisfying Eq. (9.94) is called the Kähler cone. This space is a cone since

if J satisfies (9.94), so does rJ for any positive number r, as illustrated in

Fig. 9.7.

Fig. 9.7. The deformations of the Kähler form that satisfy Eq. (9.94) build the
Kähler cone.

The five ten-dimensional superstring theories each contain an NS–NS two-

form B. After compactification on a Calabi–Yau three-fold, the internal

(1, 1)-form Bab̄ has h1,1 zero modes, so that this many additional massless

scalar fields arise in four dimensions. The real closed two-form B combines

with the Kähler form J to give the complexified Kähler form

J = B + iJ. (9.95)

The variations of this form give rise to h1,1 massless complex scalar fields

in four dimensions. Thus, while the Kähler form is real from a geometric

viewpoint, it is effectively complex in the string theory setting, generalizing

the complexification of the ρ parameter of the torus. This procedure is called

the complexification of the Kähler cone. For M-theory compactifications,

discussed later, there is no two-form B, and so the Kähler form, as well as

the corresponding moduli space, is not complexified.

The purely holomorphic and antiholomorphic metric components gab and

gāb̄ are zero. However, one can consider varying to nonzero values, thereby

changing the complex structure. With each such variation one can associate

the complex (2, 1)-form

Ωabcg
cd̄δgd̄ēdz

a ∧ dzb ∧ dz̄ē. (9.96)

This is harmonic if (9.90) is satisfied. The precise relation to complex-

structure variations is explained in Section 9.6.
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9.6 Special geometry

The mathematics that is needed to describe Calabi–Yau moduli spaces,

known as special geometry, is described in this section.

The metric on moduli space

The moduli space has a natural metric defined on it18, which is given as

a sum of two pieces. The first piece corresponds to deformations of the

complex structure and the second to deformations of the complexified Kähler

form

ds2 =
1

2V

∫
gab̄gcd̄ [δgacδgb̄d̄ + (δgad̄δgcb̄ − δBad̄δBcb̄)]

√
g d6x, (9.97)

where V is the volume of the Calabi–Yau manifold M . The fact that the

metric splits into two pieces in this way implies that the geometry of the

moduli space has a product structure (at least locally)

M(M) =M2,1(M)×M1,1(M). (9.98)

Each of these factors has an interesting geometric structure of its own de-

scribed below.

The complex-structure moduli space

The Kähler potential

Let us begin with the space of complex-structure deformations of the metric.

First we define a set of (2, 1)-forms according to

χα =
1

2
(χα)abc̄dz

a ∧ dzb ∧ dz̄c̄ with (χα)abc̄ = −1

2
Ωab

d̄∂gc̄d̄
∂tα

, (9.99)

where tα, with α = 1, . . . , h2,1 are local coordinates for the complex-structure

moduli space. Indices are raised and lowered with the hermitian metric,

so that Ωab
d̄ = gcd̄Ωabc, for example. As in Eq. (9.96), these forms are

harmonic. These relations can be inverted to show that under a deformation

of the complex structure the metric components change according to

δgāb̄ = − 1

‖ Ω ‖2 Ωā
cd

(χα)cdb̄δt
α, where ‖ Ω ‖2=

1

6
ΩabcΩ

abc
.

(9.100)

18 The metric on the moduli space, which is a metric on the parameter space describing deforma-
tions of Calabi–Yau manifolds, should not be confused with the Calabi–Yau metric.
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Writing the metric on moduli space as

ds2 = 2Gαβ̄δt
αδt̄β̄, (9.101)

and using Eqs (9.97) and Eq. (9.100) for δgāb̄, one finds that the metric on

moduli space is

Gαβ̄δt
αδt̄β̄ = −

(
i
∫
χα ∧ χ̄β̄

i
∫

Ω ∧ Ω

)
δtαδt̄β̄. (9.102)

Under a change in complex structure the holomorphic (3, 0)-form Ω be-

comes a linear combination of a (3, 0)-form and (2, 1)-forms, since dz be-

comes a linear combination of dz and dz̄. More precisely,

∂αΩ = KαΩ + χα, (9.103)

where ∂α = ∂/∂tα and Kα depends on the coordinates tα but not on the

coordinates of the Calabi–Yau manifold M . The concrete form of Kα is

determined below. Moreover, the χα are precisely the (2, 1)-forms defined

in (9.99). Exercise 9.10 verifies Eq. (9.103).

Combining Eqs (9.102) and (9.103) and recalling that Gαβ̄ = ∂α∂β̄K, one

sees that the metric on the complex-structure moduli space is Kähler with

Kähler potential given by

K2,1 = − log

(
i

∫
Ω ∧ Ω

)
. (9.104)

Exercise 9.9 considers the simple example of a two-dimensional torus and

shows that the Kähler potential is given by Eq. (9.104) for Ω = dz.

Special coordinates

In order to describe the complex-structure moduli space in more detail, let

us introduce a basis of three-cycles AI , BJ , with I, J = 0, . . . , h2,1, chosen

such that their intersection numbers are

AI ∩BJ = −BJ ∩ AI = δIJ and AI ∩ AJ = BI ∩BJ = 0. (9.105)

The dual cohomology basis is denoted by (αI , β
I). Then

∫

AJ
αI =

∫
αI ∧ βJ = δJI and

∫

BJ

βI =

∫
βI ∧αJ = −δIJ . (9.106)

The group of transformations that preserves these properties is the symplec-

tic modular group Sp(2h2,1 + 2;
�

).
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In analogy with the torus example, we can define coordinates XI on the

moduli space by using the A periods of the holomorphic three-form

XI =

∫

AI
Ω with I = 0, . . . , h2,1. (9.107)

The number of coordinates defined this way is one more than the number of

moduli fields. However, the coordinates XI are only defined up to a complex

rescaling, since the holomorphic three-form has this much nonuniqueness.

To take account of this factor consider the quotient19

tα =
Xα

X0
with α = 1, . . . , h2,1, (9.108)

where the index α now excludes the value 0. This gives the right number

of coordinates to describe the complex-structure moduli. Since the X I give

the right number of coordinates to span the moduli space, the B periods

FI =

∫

BI

Ω (9.109)

must be functions of the X, that is, FI = FI(X). It follows that

Ω = XIαI − FI(X)βI . (9.110)

A simple consequence of Eq. (9.103) is
∫

Ω ∧ ∂IΩ = 0, (9.111)

which implies

FI = XJ ∂FJ
∂XI

=
1

2

∂

∂XI

(
XJFJ

)
, (9.112)

or, equivalently,

FI =
∂F

∂XI
where F =

1

2
XIFI . (9.113)

As a result, all of the B periods are expressed as derivatives of a single

function F called the prepotential. Moreover, since

2F = XI ∂F

∂XI
, (9.114)

F is homogeneous of degree two, which means that if we rescale the coordi-

nates by a factor λ

F (λX) = λ2F (X). (9.115)

19 As usual in this type of construction, these coordinates parametrize the open set X0 6= 0.
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Since the prepotential is defined only up to an overall scaling, strictly speak-

ing it is not a function but rather a section of a line bundle over the moduli

space.

The prepotential determines the metric on moduli space. Using the gen-

eral rule for closed three-forms α and β
∫

M
α ∧ β = −

∑

I

(∫

AI
α

∫

BI

β −
∫

AI
β

∫

BI

α

)
, (9.116)

the Kähler potential (9.104) can be rewritten in the form

e−K
2,1

= −i
h2,1∑

I=0

(
XI F̄I −XI

FI

)
, (9.117)

as you are asked to verify in a homework problem. As a result, the Kähler

potential is completely determined by the prepotential F , which is a holo-

morphic homogeneous function of degree two. This type of geometry is

called special geometry.

An important consequence of the product structure (9.98) of the moduli

space is that the complex-structure prepotential F is exact in α′. Indeed,

the α′ expansion is an expansion in terms of the Calabi–Yau volume V ,

which belongs to M1,1(M), and it is independent of position in M2,1(M),

that is, the complex structure.20 When combined with mirror symmetry,

this important fact provides insight into an infinite series of stringy α′ cor-

rections involving the Kähler-structure moduli using a classical geometric

computation involving the complex-structure moduli space only.

The Kähler transformations

The holomorphic three-form Ω is only determined up to a function f , which

can depend on the moduli space coordinates XI but not on the Calabi–Yau

coordinates, that is, the transformation

Ω→ ef(X)Ω (9.118)

should not lead to new physics. This transformation does not change the

Kähler metric, since under Eq. (9.118)

K2,1 → K2,1 − f(X)− f̄(X), (9.119)

which is a Kähler transformation that leaves the Kähler metric invariant.

20 Since V and α′ are the only scales in the problem, the only dimensionless quantity containing
α′ is (α′)3/V . So if one knows the full V dependence, one also knows the full α′ dependence.
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Equations (9.103) and (9.104) determine Kα to be

Kα = −∂αK2,1. (9.120)

One can then introduce the covariant derivatives

Dα = ∂α + ∂αK2,1, (9.121)

and write

χα = DαΩ, (9.122)

which now transforms as χα → ef(X)χα.

The Kähler-structure moduli space

The Kähler potential

An inner product on the space of (1, 1) cohomology classes is defined by

G(ρ, σ) =
1

2V

∫

M
ρad̄σb̄cg

ab̄gcd̄
√
gd6x =

1

2V

∫

M
ρ ∧ ?σ, (9.123)

where ? denotes the Hodge-star operator on the Calabi–Yau, and ρ and σ

are real (1, 1)-forms. Let us now define the cubic form

κ(ρ, σ, τ) =

∫

M
ρ ∧ σ ∧ τ, (9.124)

and recall from Exercise 9.1 that κ(J, J, J) = 6V . Using the identity

?σ = −J ∧ σ +
1

4V
κ(σ, J, J)J ∧ J (9.125)

the metric can be rewritten in the form

G(ρ, σ) = − 1

2V
κ(ρ, σ, J) +

1

8V 2
κ(ρ, J, J)κ(σ, J, J). (9.126)

If we denote by eα a real basis of harmonic (1, 1)-forms, then we can

expand

J = B + iJ = wαeα with α = 1, . . . , h1,1. (9.127)

The metric on moduli space is then

Gαβ̄ =
1

2
G(eα, eβ) =

∂

∂wα
∂

∂w̄β̄
K1,1, (9.128)

where

e−K
1,1

=
4

3

∫
J ∧ J ∧ J = 8V. (9.129)
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A change in the normalization of the right-hand side would correspond to

shifting the Kähler potential by an inconsequential constant. These equa-

tions show that the space spanned by wα is a Kähler manifold and the

Kähler potential is given by the logarithm of the volume of the Calabi–Yau.

We also define the intersection numbers

καβγ = κ(eα, eβ, eγ) =

∫
eα ∧ eβ ∧ eγ (9.130)

and use them to form

G(w) =
1

6

καβγw
αwβwγ

w0
=

1

6w0

∫
J ∧ J ∧ J , (9.131)

which is analogous to the prepotential for the complex-structure moduli

space. Here we have introduced one additional coordinate, namely w0, in

order to make G(w) a homogeneous function of degree two. Then we find

e−K
1,1

= i
h1,1∑

A=0

(
wA

∂Ḡ

∂w̄A
− w̄A ∂G

∂wA

)
, (9.132)

where now the new coordinate w0 is included in the sum. In Eq. (9.132) it

is understood that the right-hand side is evaluated at w0 = 1. A homework

problem asks you to verify that Eq. (9.132) agrees with Eq. (9.129).

The form of the prepotential

To leading order the prepotential is given by Eq. (9.131). However, note that

the size of the Calabi–Yau belongs toM1,1(M) and as a result α′ corrections

are possible. So Eq. (9.131) is only a leading-order result. However, the

corrections are not completely arbitrary, because they are constrained by

the symmetry. First note that the real part of wα is determined by B,

which has a gauge transformation. This leads to a Peccei–Quinn symmetry

given by shifts of the fields by constants εα

δwα = εα. (9.133)

Together with the fact that G(w) is homogeneous of degree two, this implies

that perturbative corrections take the form

G(w) =
κABCw

AwBwC

w0
+ iY(w0)2, (9.134)

where Y is a constant. Note that the coefficient of (w0)2 is taken to be

purely imaginary. Any real contribution is trivial since it does not affect the



9.6 Special geometry 397

Kähler potential. The result, which was derived by using mirror symmetry,

is

Y =
ζ(3)

2(2π)3
χ(M), (9.135)

where χ(M) = 2(h1,1 − h2,1) is the Euler characteristic of the manifold.

Nonperturbatively, the situation changes, since the Peccei–Quinn symme-

tries are broken and corrections depending on wα become possible. It turns

out that sums of exponentially suppressed contributions of the form

exp

(
−cαw

α

α′w0

)
, (9.136)

where cα are constants, are generated. These corrections arise due to in-

stantons, as is discussed in Section 9.8.

EXERCISES

EXERCISE 9.9

Use the definition (9.97) to show that the metric on the complex-structure

moduli space of a two-dimensional torus is Kähler with Kähler potential

given by

K = − log

(
i

∫
Ω ∧ Ω

)
and Ω = dz. (9.137)

SOLUTION

As we saw in Exercise 7.8, a two-torus compactification, with complex-

structure modulus τ = τ1 + iτ2, can be described by a metric of the form

g =
1

τ2

(
τ2

1 + τ2
2 τ1

τ1 1

)
.

Here we are setting B = 0 and
√

det g = 1, since we are interested in

complex-structure deformations. The torus metric then takes the form

ds2 =
1

τ2

[(
τ2

1 + τ2
2

)
dx2 + 2τ1dxdy + dy2

]
= 2gzz̄dzdz̄,

where we have introduced a complex coordinate defined by

dz = dy + τdx and gzz̄ =
1

2τ2
.
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For these choices the Kähler potential is

K = − log

(
i

∫
dz ∧ dz̄

)
= − log(2τ2).

This gives the metric

Gτ τ̄ = ∂τ∂τ̄K =
1

4τ2
2

.

Under a change in complex structure τ → τ + dτ the metric components

change by

δgzz =
dτ

2τ2
2

and δgz̄z̄ =
dτ̄

2τ2
2

.

Using the definition of the metric on moduli space (9.97) we find the moduli-

space metric

ds2 = 2Gτ τ̄dτdτ̄ =
1

2V

∫
(gzz̄)2δgzzδgz̄z̄

√
gd2x =

dτdτ̄

2τ2
2

in agreement with the computation based on the Kähler potential. 2

EXERCISE 9.10

Prove that ∂αΩ = KαΩ + χα, where the χα are the (2, 1)-forms defined in

Eq. (9.99).

SOLUTION

By definition

Ω =
1

6
Ωabcdz

a ∧ dzb ∧ dzc,

so the derivative gives

∂aΩ =
1

6

∂Ωabc

∂tα
dza ∧ dzb ∧ dzc +

1

2
Ωabcdz

a ∧ dzb ∧ ∂(dzc)

∂tα
.

The first term is a (3, 0)-form, while the derivative of dzc is partly a (1, 0)-

form and partly a (0, 1)-form. Since the exterior derivative d is independent

of tα, ∂Ω/∂tα is closed, and hence

∂Ω/∂tα ∈ H(3,0) ⊕H(2,1).

Now we are going to show that the (2, 1)-form here is exactly the χα in

Eq. (9.99). By Taylor expansion we have

zc(tα + δtα) = zc(tα) +M c
αδt

α,
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which implies that

∂(dzc)

∂tα
= dM c

α =
∂M c

α

∂zd
dzd +

∂M c
α

∂z̄d̄
dz̄d̄.

Therefore, the (2, 1)-form is equal to

1

2
Ωabc

∂M c
α

∂z̄d̄
dza ∧ dzb ∧ dz̄d̄.

We want to show that this is equal to

χα = −1

4
Ωabcg

cē

(
∂gd̄ē
∂tα

)
dza ∧ dzb ∧ dz̄d̄.

Therefore, we need to show that

∂M c
α

∂z̄d̄
= −1

2
gcē
(
∂gd̄ē
∂tα

)
.

Differentiating the hermitian metric ds2 = 2gab̄dz
adz̄b̄ in the same way that

we did the holomorphic three-form gives the desired result

∂gd̄ē
∂tα

= −2gcē
∂M c

α

∂z̄d̄
.

2

9.7 Type IIA and type IIB on Calabi–Yau three-folds

The compactification of type IIA or type IIB superstring theory on a Calabi–

Yau three-fold M leads to a four-dimensional theory with N = 2 supersym-

metry. The metric perturbations and other scalar zero modes lead to moduli

fields that belong to N = 2 supermultiplets. These supermultiplets can be

either vector multiplets or hypermultiplets, since these are the only massless

N = 2 supermultiplets that contain scalar fields.

D = 4, N = 2 supermultiplets

Massless four-dimensional supermultiplets have a structure that is easily

derived from the superalgebra by an analysis that corresponds to the mass-

less analog of that presented in Exercise 8.2. The physical states are labeled

by their helicities, which are Lorentz-invariant quantities for massless states.

For N -extended supersymmetry the multiplet is determined by the maximal

helicity with the rest of the states having multiplicities given by binomial
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coefficients. When the multiplet is not TCP self-conjugate, one must also

adjoin the conjugate multiplet.21

In the case of N = 2 this implies that the supermultiplet with maximal

helicity 2 also has two helicity 3/2 states, and one helicity 1 state. Adding

the TCP conjugate multiplet (with the opposite helicities) gives the N = 2

supergravity multiplet, which contains one graviton, two gravitinos and one

graviphoton. If the maximal helicity is 1, and one again adds the TCP con-

jugate, the same reasoning gives the N = 2 vector multiplet, which contains

one vector, two gauginos and two scalars. Finally, the multiplet with max-

imal helicity 1/2, called a hypermultiplet contains two spin 1/2 fields and

four scalars. In each of these three cases there is a total of four bosonic and

four fermionic degrees of freedom.

Type IIA

When the type IIA theory is compactified on a Calabi–Yau three-fold M , the

resulting four-dimensional theory contains h1,1 abelian vector multiplets and

h2,1 + 1 hypermultiplets. The scalar fields in these multiplets parametrize

the moduli spaces. There is no mixing between the two sets of moduli, so

the moduli space can be expressed in the product form

M1,1(M)×M2,1(M). (9.138)

Each vector multiplet contains two real scalar fields, so the dimension of

M1,1(M) is 2h1,1. In fact, this space has a naturally induced geometry that

promotes it into a special-Kähler manifold (with a holomorphic prepoten-

tial). Each hypermultiplet contains four real scalar fields, so the dimen-

sion of M2,1(M) is 4(h2,1 + 1). This manifold turns out to be of a special

type called quaternionic Kähler.22 These geometric properties are inevitable

consequences of the structure of the interaction of vector multiplets and hy-

permultiplets with N = 2 supergravity. The massless field content of the

compactified type IIA theory is explored in Exercise 9.12.

Type IIB

Compactification of the type IIB theory on a Calabi–Yau three-fold W yields

h2,1 abelian vector multiplets and h1,1 +1 hypermultiplets. The correspond-

21 The only self-conjugate multiplets in four dimensions are the N = 4 vector multiplet and the
N = 8 supergravity multiplet.

22 Note that quaternionic Kähler manifolds are not Kähler. The definition is given in the appendix.
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ing moduli space takes the form

M1,1(W )×M2,1(W ). (9.139)

In this case the situation is the opposite to type IIA, in that M2,1(W )

is special Kähler and M1,1(W ) is quaternionic Kähler. The massless field

content of the compactified type IIB theory is explored in Exercise 9.13.

For each of the type II theories the dilaton belongs to the universal hyper-

multiplet, which explains the extra hypermultiplet in each case. This scalar

is complex because there is a second scalar, an axion a, which is the four-

dimensional dual of the two-form Bµν (dB = ?da). The complex-structure

moduli, being associated with complex (2, 1)-forms, are naturally complex.

The h1,1 Kähler moduli are complex due to the B-field contribution in the

complexified Kähler form (Jab̄+ iBab̄) as in the case of the heterotic string.

EXERCISES

EXERCISE 9.11

Explain the origin of the massless scalar fields in five dimensions that are

obtained by compactifying M-theory on a Calabi–Yau three-fold.

SOLUTION

The massless fields in 11 dimensions are

{GMN , AMNP , ΨM}.

Let us decompose the indices of these fields in a SU(3) covariant way, M =

(µ, i, ī). The fields belong to the following five-dimensional supermultiplets:

gravity multiplet : Gµν , Aijk, Aµνρ, fermions

h1,1 vector multiplets : Aµjk̄, Gjk̄, fermions

h2,1 hypermultiplets : Aijk̄, Gjk, fermions.

A five-dimensional duality transformation allows one to replace Aµνρ by a

real scalar field. The gravity multiplet has eight bosonic and eight fermionic

degrees of freedom. The other supermultiplets each have four bosonic and
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four fermionic degrees of freedom. The total number of massless scalar fields

is

4h2,1 + h1,1 + 3.

2

EXERCISE 9.12

Consider the type IIA theory compactified on a Calabi–Yau three-fold. Ex-

plain the ten-dimensional origin of the massless fields in four dimensions.

SOLUTION

The massless fields in ten dimensions are

{GMN , BMN , Φ, CM , CMNP , Ψ
(+)
M , Ψ

(−)
M , Ψ(+), Ψ(−)},

where Ψ
(+)
M , Ψ

(−)
M are the two Majorana–Weyl gravitinos of opposite chiral-

ity, while Ψ(+), Ψ(−) are the two Majorana–Weyl dilatinos. Writing indices

in a SU(3) covariant way, M = (µ, i, ī), we can arrange the fields in N = 2

supermultiplets:

gravity multiplet : Gµν , Ψµ, Ψ̃µ, Cµ

h1,1 vector multiplets : Cµij̄ , Gij̄ , Bij̄ , fermions

h2,1 hypermultiplets : Cijk̄, Gij , fermions

universal hypermultiplet : Cijk, Φ, Bµν , fermions.

Bµν is dual to a scalar field. Since the fields Cijk̄, Gij , Cijk are complex, the

number of the massless scalar fields is 2h1,1 + 4h2,1 + 4. There are h1,1 + 1

massless vector fields. 2

EXERCISE 9.13

Consider the type IIB theory compactified on a Calabi–Yau three-fold. Ex-

plain the ten-dimensional origin of the massless fields in four dimensions.

SOLUTION

The massless fields in ten dimensions are

{GMN , BMN , Φ, C, CMN , CMNPQ, Ψ
(+)
M , Ψ̃

(+)
M , Ψ(−), Ψ̃(−)}.
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Let us use the same SU(3) covariant notation as in the previous exercise.

Compactification on a Calabi–Yau three-fold again gives N = 2, D = 4

supersymmetry. The fields belong to the following supermultiplets:

gravity multiplet : Gµν , Ψµ, Ψ̃µ, Cµijk

h2,1 vector supermultiplets : Cµijk̄, Gij , fermions

h1,1 hypermultiplets : Cµνij̄ , Gij̄ , Bij̄ , Cij̄ , fermions

universal hypermultiplet : Φ, C, Bµν , Cµν , fermions.

Now taking into account that Gij is complex and that the four-form C has a

self-duality constraint on its field strength, the total number of the massless

scalar fields is 2h2,1 + 4(h1,1 + 1). The total number of massless vector fields

is h2,1 + 1. 2

9.8 Nonperturbative effects in Calabi–Yau compactifications

Until now we have discussed perturbative aspects of Calabi–Yau compact-

ification that were understood prior to the second superstring revolution.

This section and the following ones discuss some nonperturbative aspects

of Calabi–Yau compactifications that were discovered during and after the

second superstring revolution.

The conifold singularity

In addition to their nonuniqueness, one of the main problems with Calabi–

Yau compactifications is that their moduli spaces contain singularities, that

is, points in which the classical description breaks down. By analyzing a

particular example of such a singularity, the conifold singularity, it became

clear that the classical low-energy effective action description breaks down.

Nonperturbative effects due to branes wrapping vanishing (or degenerating)

cycles have to be taken into account.

To be concrete, let us consider the type IIB theory compactified on a

Calabi–Yau three-fold. As we have seen in the previous section, the moduli

space M2,1(M) can be described in terms of homogeneous special coordi-

nates XI . A conifold singularity appears when one of the coordinates, say

X1 =

∫

A1

Ω, (9.140)

vanishes. The period of Ω over A1 goes to zero, and therefore A1 is called
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a vanishing cycle. At these points the metric on moduli space generically

becomes singular. Indeed, the subspace X1 = 0 has complex codimension 1,

which is just a point if h2,1 = 1, and so it can be encircled by a closed loop.

Upon continuation around such a loop the basis of three-cycles comes back

to itself only up to an Sp(2;
�

) monodromy transformation. In general, the

monodromy is

X1 → X1 and F1 → F1 +X1. (9.141)

This implies that near the conifold singularity

F1(X1) = const +
1

2πi
X1 logX1. (9.142)

In the simplest case one can assume that the other periods transform triv-

ially. This result implies that near the conifold singularity the Kähler po-

tential in Eq. (9.117) takes the form

K2,1 ∼ log(|X1|2 log |X1|2). (9.143)

It follows that the metric G11̄ = ∂2K
∂X1∂X

1 is singular at X1 = 0. This is

a real singularity, and not merely a coordinate singularity, since the scalar

curvature diverges, as you are asked to verify in a homework problem.

The singularity of the moduli space occurs for the following reason. The

Calabi–Yau compactification is a description in terms of the low-energy effec-

tive action in which the massive fields have been integrated out. At the coni-

fold singularity certain massive states become massless, and an inconsistency

appears when such fields have been integrated out. The particular states

that become massless at the singularity arise from D3-branes wrapping cer-

tain three-cycles, called special Lagrangian cycles, which are explained in

the next section. Near the conifold singularity these states becomes light,

and it is no longer consistent to exclude them from the low-energy effective

action.

Supersymmetric cycles

This section explains how to calculate nonperturbative effects due to Eu-

clideanized branes wrapping supersymmetric cycles. The world volume of a

Euclideanized p-brane has p+ 1 spatial dimensions, and it only exists for an

instant of time. Note that only the world-volume time, and not the time in

the physical Minkowski space, is Euclideanized. If a Euclideanized p-brane

can wrap a (p + 1)-cycle in such a way that some supersymmetry is pre-

served, then the corresponding cycle is called supersymmetric. This gives a
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contribution to the path integral that represents a nonperturbative instan-

ton correction to the theory. More precisely, fundamental-string instantons

give contributions that are nonperturbative in α′, whereas D-branes and

NS5-branes give contributions that are also nonperturbative in gs.
23 If the

internal manifold is a Calabi–Yau three-fold, the values of p for which there

are nontrivial (p+ 1)-cycles are p = −1, 1, 2, 3, 5.24

As was discussed in Chapter 6, type IIA superstring theory contains

even-dimensional BPS D-branes, whereas the type IIB theory contains odd-

dimensional BPS D-branes. Each of these D-branes carries a conserved

R–R charge. So, in addition to fundamental strings wrapping a two-cycle

and NS5-branes wrapping the entire manifold, one can consider wrapping

D2-branes on a three-cycle in the IIA case. Similarly, one can wrap D1,

D3 and D5-branes, as well as D-instantons, in the IIB case. These config-

urations give nonperturbative instanton contributions to the moduli-space

geometry, that need to be included in order for string theory to be consis-

tent. As explained in Section 9.9, these effects are crucial for understanding

fundamental properties of string theory, such as mirror symmetry. There

are different types of supersymmetric cycles in the context of Calabi–Yau

compactifications, which we now discuss.25

Special Lagrangian submanifolds

For Calabi–Yau compactification of M-theory, which gives a five-dimensional

low-energy theory, the possible instanton configurations arise from M2-

branes wrapping three-cycles and M5-branes wrapping the entire Calabi–

Yau manifold. Let us first consider a Euclidean M2-brane, which has a

three-dimensional world volume. The goal is to examine the conditions un-

der which a Euclidean membrane wrapping a three-cycle of the Calabi–Yau

manifold corresponds to a stationary point of the path-integral-preserving

supersymmetry. Once this is achieved, the next step is to determine the cor-

responding nonperturbative contribution to the low-energy five-dimensional

effective action.

The M2-brane in 11 dimensions has a world-volume action, with global

supersymmetry and local κ symmetry, whose form is similar to the actions

for fundamental superstrings and D-branes described in Chapters 5 and 6.

As in the other examples, in flat space-time this action is invariant under

23 The gs dependence is contained in the tension factor that multiplies the world-volume actions.
24 A p-brane with p = −1 is the D-instanton of the type IIB theory.
25 A vanishing potential for the tensor fields is assumed here. The generalization to a nonvanishing

potential is known.



406 String geometry

global supersymmetry

δεΘ = ε and δεX
M = iε̄ΓMΘ, (9.144)

where XM (σα), with M = 0, . . . , 10, describes the membrane configuration

in space-time. Θ is a 32-component Majorana spinor, and ε is a constant

infinitesimal Majorana spinor. However, the question arises how much of this

supersymmetry survives if a Euclideanized M2-brane wraps a three-cycle of

the compactification. The M2-brane is also invariant under fermionic local

κ symmetry, which acts on the fields according to

δκΘ = 2P+κ(σ) and δκX
M = 2iΘ̄ΓMP+κ(σ), (9.145)

where κ is an infinitesimal 32-component Majorana spinor, and P± are or-

thogonal projection operators defined by

P± =
1

2

(
1± i

6
εαβγ∂αX

M∂βX
N∂γX

PΓMNP

)
. (9.146)

The key to the analysis is the observation that a specific configuration

XM (σα) (and Θ = 0) preserves the supersymmetry corresponding to a par-

ticular ε transformation, if this transformation can be compensated by a κ

transformation. In other words, there should exist a κ(σ) such that

δεΘ + δκΘ = ε+ 2P+κ(σ) = 0. (9.147)

By acting with P− this implies

P−ε = 0. (9.148)

This equation is equivalent to the following two conditions:26

• The 11 coordinates XM consist of Xa and X ā, which refer to Calabi–Yau

coordinates, and Xµ, which is the coordinate in five-dimensional space-

time. In the supersymmetric instanton solution, Xµ = Xµ
0 is a constant,

and the nontrivial embedding involves the other coordinates. The first

condition is

∂[αX
a∂β]X

b̄Jab̄ = 0. (9.149)

The meaning of this equation is that the pullback of the Kähler form of

the Calabi–Yau three-fold to the membrane world volume vanishes.

• The second condition is27

∂αX
a∂βX

b∂γX
cΩabc = e−iϕeKεαβγ . (9.150)

26 The equivalence of Eq. (9.148) and the conditions (9.149) and (9.150) is proved in Exercise 9.15.

27 εαβγ is understood to be a tensor here. Otherwise a factor of
√
G, where Gαβ is the induced

metric, would appear.
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The meaning of this equation is that the pullback of the holomorphic

(3, 0)-form Ω of the Calabi–Yau manifold to the membrane world volume

is proportional to the membrane volume element. The complex-conjugate

equation implies the same thing for the (0, 3)-antiholomorphic form Ω.

The phase ϕ is a constant that simply reflects an arbitrariness in the

definition of Ω. The factor eK, where K is given by

K =
1

2
(K1,1 −K2,1), (9.151)

is a convenient normalization factor. The term K2,1 is a function of the

complex moduli belonging to h2,1 hypermultiplets. K1,1 is a function of

the real moduli belonging to h1,1 vector supermultiplets.

The supersymmetric three-cycle conditions (9.149) and (9.150) define a

special Lagrangian submanifold. When these conditions are satisfied, there

exists a nonzero covariantly constant spinor of the form ε = P+η. Thus,

the conclusion is that a Euclidean M2-brane wrapping a special Lagrangian

submanifold of the Calabi–Yau three-fold gives a supersymmetric instanton

contribution to the five-dimensional low-energy effective theory.

The conditions (9.149) and (9.150) imply that the membrane has mini-

mized its volume. In order to derive a bound for the volume of the membrane

consider ∫

Σ
ε†P †−P−ε d

3σ ≥ 0, (9.152)

where Σ is the membrane world volume. Since

P †−P− = P−P− = P−, (9.153)

the inequality becomes

2V ≥ e−K
(
eiϕ
∫

Σ
Ω + e−iϕ

∫

Σ
Ω

)
, (9.154)

where ϕ is a phase which can be adjusted so that we obtain

V ≥ e−K
∣∣∣∣
∫

Σ
Ω

∣∣∣∣ . (9.155)

The bound is saturated whenever the membrane wraps a supersymmetric

cycle C, in which case

V = e−K
∣∣∣∣
∫

C
Ω

∣∣∣∣ . (9.156)

Type IIA or type IIB superstring theory, compactified on a Calabi–Yau

three-fold, also has supersymmetric cycles, which can be determined in a
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similar fashion. As in the case of M-theory, the type IIA theory receives

instanton contributions associated with a D2-brane wrapping a special La-

grangian manifold. These contributions have a coupling constant depen-

dence of the form exp(−1/gs), because the D2-brane tension is proportional

to 1/gs.

Black-hole mass formula

When the type IIB theory is compactified on a Calabi–Yau three-fold, four-

dimensional supersymmetric black holes can be realized by wrapping D3-

branes on special Lagrangian three-cycles. In the present case the bound

for the mass of the black holes takes the form

M ≥ eK2,1/2

∣∣∣∣
∫

C
Ω

∣∣∣∣ = eK
2,1/2

∣∣∣∣
∫

M
Ω ∧ Γ

∣∣∣∣ , (9.157)

where Γ is the three-form that is Poincaré dual to the cycle C. Here we are

assuming that the mass distribution on the D3-brane is uniform. Letting

Γ = qIαI − pIβI , (9.158)

we can introduce special coordinates and use the expansion (9.110) to obtain

the BPS bound

M ≥ eK2,1/2 | pIXI − qIFI | . (9.159)

For BPS states the inequality is saturated, and the mass is equal to the

absolute value of the central charge Z in the supersymmetry algebra. Thus

Eq. (9.157) is also a formula for |Z|. As a result, BPS states become massless

when a cycle shrinks to zero size. The above expression relating the central

charge to the special coordinates plays a crucial role in the discussion of the

attractor mechanism for black holes which will be presented in chapter 11.

Holomorphic cycles

In the case of type II theories other supersymmetric cycles also can con-

tribute. For example, some supersymmetry can be preserved if a Euclidean

type IIA string world sheet wraps a holomorphic cycle. This means that the

embedding satisfies

∂̄Xa = 0 and ∂X ā = 0, (9.160)

in addition to Xµ = Xµ
0 . Thus, the complex structure of the Euclideanized

string world sheet is aligned with that of the Calabi–Yau manifold. In this

case, one says that it is holomorphically embedded. Recall that the type IIA

theory corresponds to M-theory compactified on a circle. Therefore, from the

M-theory viewpoint this example corresponds to a solution on M4×S1×M
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in which a Euclidean M2-brane wraps the circle and a holomorphic two-cycle

of the Calabi–Yau.

EXERCISES

EXERCISE 9.14

Show that the submanifold X = X is a supersymmetric three-cycle inside

the Calabi–Yau three-fold given by a quintic hypersurface in � P 4.

SOLUTION

To prove the above statement, we should first check that the pullback of

the Kähler form is zero. This is trivial in this case, because X → X under

the transformation J → −J . On the other hand, the pullback of J onto the

fixed surface X = X should give J → J , so the pullback of J is zero.

Now let us consider the second condition, and compute the pullback of

the holomorphic three-form. The equation for a quintic hypersurface in � P 4

discussed in Section 9.3 is

5∑

m=1

(Xm)5 = 0.

Defining inhomogeneous coordinates Y k = Xk/X5, with k = 1, 2, 3, 4, on

the open set X5 6= 0, the holomorphic three-form can be written as

Ω =
dY 1 ∧ dY 2 ∧ dY 3

(Y 4)4
.

The norm of Ω is

‖Ω‖2 =
1

6
ΩabcΩ

abc
=

1

ĝ|Y 4|8 ,

where ĝ = det gab̄. Using Eqs (9.104) and (9.129), as well as Exercise 9.8,

one has

e−K
2,1

= i

∫
Ω ∧ Ω = V ‖Ω‖2 =

1

8
e−K

1,1‖Ω‖2

which implies that

‖Ω‖2 = 8e2K,
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where K = 1
2(K1,1 −K2,1). It follows that

ĝ =
e−2K

8|Y 4|8 .

The pullback of the metric gives

hαβ = 2∂αY
agab̄∂βY

b̄

so
√
h =

√
8ĝ |det(∂Y )| = |det(∂Y )| e

−K

|Y 4|4 .

Now we can calculate the pullback of the holomorphic (3, 0)-form

∂αY
a∂βY

b∂γY
cΩabc =

εabc∂αY
a∂βY

b∂γY
c

(Y 4)4
= e−iφeK

√
h εαβγ,

which is what we wanted to show. 2

EXERCISE 9.15

Derive the equivalence between Eq. (9.148) and Eqs (9.149) and (9.150).

For M-theory on M5×M , where M is a Calabi–Yau three-fold, the M-theory

spinor ε has the decomposition

ε = λ⊗ η+ + λ∗ ⊗ η−,

where λ is a spinor on M5, and η± are Weyl spinors on the Calabi–Yau

manifold. So the condition (9.148) takes the form
(

1− i

6
εαβγ∂αX

m∂βX
n∂γX

pγmnp

)(
e−iθη+ + c.c.

)
= 0,

where m, n, p label real coordinates of the internal Calabi–Yau manifold.

Let us focus on the η+ terms and take account of the complex-conjugate

terms at the end of the calculation.

The formula can be simplified by using complex coordinates Xa and X̄ ā,

as in the text, and the conditions γaη+ = 0. This implies that γabcη+ = 0

and γabc̄η+ = 0. The nonzero terms are

γab̄c̄η+ = −2iJa[b̄γc̄]η+

and

γāb̄c̄η+ = e−KΩāb̄c̄η−.

The first of these relations follows from the {γa, γb̄} = 2gab̄ and Jab̄ = igab̄.

The second one is an immediate consequence of the complex conjugate of
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Ωabc = e−KηT−γabcη− and ηT+η− = 1. The dependence on K reflects a choice

of normalization of Ω. The arbitrary phase θ could have been absorbed

into η+ earlier, but then it would reappear in this equation reflecting an

arbitrariness in the phase of Ω.

Now we can write the above condition as

e−iθη+ +
i

6
eiθεαβγ∂αX

a∂βX
b∂γX

ce−KΩabcη+

−e−iθεαβγ∂αXa∂βX
b̄∂γX

c̄Jab̄γc̄η+ + c.c. = 0.

Because η−, γāη−, η+, γaη+ are linearly independent, this is equivalent to

the following two conditions:

εαβγ∂αX
a∂βX

b̄∂γX
c̄Jab̄ = 0

and

e−iθ +
i

6
eiθεαβγ∂αX

a∂βX
b∂γX

ce−KΩabc = 0.

Because the first equation is satisfied for all c̄, we have

∂[αX
a∂β]X

b̄Jab̄ = 0,

which is exactly Eq. (9.149). The second equation can be written as

∂αX
a∂βX

b∂γX
cΩabc = −ie−2iθeKεαβγ.

Setting e−iϕ = −ie−2iθ gives Eq. (9.150). 2

9.9 Mirror symmetry

As T-duality illustrated, the geometry probed by point particles is different

from the geometry probed by strings. In string geometry a circle of radius R

can be equivalent to a circle of radius α′/R, providing a simple example of the

surprising properties of string geometry. A similar phenomenon for Calabi–

Yau three-folds, called mirror symmetry, is the subject of this section.

The mirror map associates with almost28 any Calabi–Yau three-fold M

another Calabi–Yau three-fold W such that

Hp,q(M) = H3−p,q(W ). (9.161)

This conjecture implies, in particular, that h1,1(M) = h2,1(W ) and vice

28 In the few cases where this fails, there still is a mirror, but it is not a Calabi–Yau manifold.
However, it is just as good for string theory compactification purposes. This happens, for
example, when M has h2,1 = 0, since any Calabi–Yau manifold W has h11 ≥ 1.
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versa. An early indication of mirror symmetry was that the space of thou-

sands of string theory vacua appears to be self-dual in the sense that if a

Calabi–Yau manifold with Hodge numbers (h1,1, h2,1) exists, then another

Calabi–Yau manifold with flipped Hodge numbers (h2,1, h1,1) also exists.

The set of vacua considered were known to be only a sample, so perfect

matching was not expected. In fact, a few examples in this set had no

candidate mirror partners. This was shown in Fig. 9.1.

These observations lead to the conjecture that the type IIA superstring

theory compactified on M is exactly equivalent to the type IIB superstring

theory compactified on W . This implies, in particular, an identification of

the moduli spaces:

M1,1(M) =M2,1(W ) and M1,1(W ) =M2,1(M). (9.162)

This is a highly nontrivial statement about how strings see the geometry of

Calabi–Yau manifolds, since M and W are in general completely different

from the classical geometry point of view. Indeed, even the most basic

topology of the two manifolds is different, since the Euler characteristics are

related by

χ(M) = −χ(W ). (9.163)

Nonetheless, the mirror symmetry conjecture implies that the type IIA the-

ory compactified on M and the type IIB theory compactified on W are dual

descriptions of the same physics, as they give rise to isomorphic string the-

ories. A second, and genuinely different, possibility is given by the type IIA

theory compactified on W , which (by mirror symmetry) is equivalent to the

type IIB theory compactified on M .

Mirror symmetry is a very powerful tool for understanding string geome-

try. To see this note that the prepotential of the type IIB vector multiplets

is independent of the Kähler moduli and the dilaton. As a result, its depen-

dence on α′ and gs is exact. Mirror symmetry maps the complex-structure

moduli space of type IIB compactified on W to the Kähler-structure moduli

space of type IIA on the mirror M . The type IIA side does receive cor-

rections in α′. As a result, a purely classical result is mapped to an (in

general) infinite series of quantum corrections. In other words, a classical

computation of the periods of Ω in W is mapped to a problem of counting

holomorphic curves in M . Both sides should be exact to all orders in gs,

since the IIA dilaton is not part ofM1,1(M) and the IIB dilaton is not part

of M2,1(W ).

Let us start by discussing mirror symmetry for a circle and a torus. These

simple examples illustrate the basic ideas.
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R1/R

Fig. 9.8. T-duality transforms a circle of radius R into a circle of radius 1/R. This
duality is probably the origin of mirror symmetry.

The circle

The simplest example of mirror symmetry has already been discussed ex-

tensively in this book. It is T-duality. Chapter 6 showed that, when the

bosonic string is compactified on a circle of radius R, the perturbative string

spectrum is given by

α′M2 = α′
[(

K

R

)2

+

(
WR

α′

)2
]

+ 2NL + 2NR − 4, (9.164)

with

NR −NL = WK. (9.165)

These equations are invariant under interchange of W and K, provided

that one simultaneously sends R → α′/R as illustrated in Fig. 9.8. This

turns out to be exactly true for the full interacting string theory, at least

perturbatively.

The torus

One can also illustrate mirror symmetry for the two-torus T 2 = S1 × S1,

where the first circle has radius R1 and the second circle has radius R2.

This torus may be regarded as an S1 fibration over S1. It is characterized
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by complex-structure and Kähler-structure parameters

τ = i
R2

R1
and ρ = iR1R2, (9.166)

as in Section 9.5. Performing a T-duality on the fiber circle sends R1 → 1/R1

(for α′ = 1), and as a result the moduli fields of the resulting mirror torus

are

τ̃ = iR1R2 and ρ̃ = i
R2

R1
. (9.167)

This shows that under the mirror map the complex-structure and Kähler-

structure parameters have been interchanged, just as in the case of the

Calabi–Yau three-fold.

T 3 fibrations

An approach to understanding mirror symmetry, which is based on T-

duality, was proposed by Strominger, Yau and Zaslow (SYZ). If mirror sym-

metry holds, then a necessary requirement is that the spectrum of BPS states

for the type IIA theory on M and type IIB on W must be the same. Ver-

ifying this would not constitute a complete proof, but it would give strong

support to the mirror-symmetry conjecture. That is often the best that can

be done for duality conjectures in string theory.

The BPS states to be compared arise from D-branes wrapping supersym-

metric cycles of the Calabi–Yau. In the case of the type IIA theory, Dp-

branes, with p = 0, 2, 4, 6, can wrap even-dimensional cycles of the Calabi–

Yau. However, since only BPS states can be compared reliably, only su-

persymmetric cycles should be considered. In the simplest case one only

considers the D0-brane, whose moduli space is the whole Calabi–Yau M ,

since the D0-brane can be located at any point in M . In the type IIB the-

ory the BPS spectrum of wrapped D-branes arises entirely from D3-branes

wrapping special Lagrangian three-cycles.

Since mirror symmetry relates the special Lagrangian three-cycle of W

to the whole Calabi–Yau manifold M , its properties are very constrained.

First, the D3-brane moduli space has to have three complex dimensions.

Three real moduli are provided by the transverse position of the D3-brane.

The remaining three moduli are obtained by assuming that mirror symmetry

is implemented by three T-dualities. D0-branes are mapped to D3-branes

under the action of three T-dualities. After performing the three T-dualities,

three flat U(1) gauge fields appear in the directions of the D3-brane. These

are associated with the isometries of three circles which form a three-torus.
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As a result, W is a T 3 fibration over a base B. By definition, a Calabi–

Yau manifold is a T 3 fibration if it can be described by a three-dimensional

base space B, with a three-torus above each point of B assembled so as to

make a smooth Calabi–Yau manifold. A T 3 fibration is more general than a

T 3 fiber bundle in that isolated T 3 fibers are allowed to be singular, which

means that one or more of their cycles degenerate. Turning the argument

around, M must also be a T 3 fibration. Mirror symmetry is a fiber-wise

T-duality on all of the three directions of the T 3. A simple example of a

fiber bundle is depicted in Fig. 9.9.

Fig. 9.9. A Moebius strip is an example of a nontrivial fiber bundle. It is a line
segment fibered over a circle S1. Calabi–Yau three-folds that have a mirror are
conjectured to be T 3 fibrations over a base B. In contrast to the simple example
of the Moebius strip, some of the T 3 fibers are allowed to be singular.

Since the number of T-dualities is odd, even forms and odd forms are in-

terchanged. As a result, the (1, 1) and (2, 1) cohomologies are interchanged,

as is expected from mirror symmetry. Moreover, there exists a holomor-

phic three-form on W , which implies that W is Calabi–Yau. The three

T-dualities, of course, also interchange type IIA and type IIB.

The argument given above probably contains the essence of the proof of

mirror symmetry. A note of caution is required though. We already pointed

out that there are Calabi–Yau manifolds whose mirrors are not Calabi–Yau,

so a complete proof would need to account for that. The T-duality rules and

the condition that a supersymmetric three-cycle has to be special Lagrangian

are statements that hold to leading order in α′, while the full description of

the mirror W requires, in general, a whole series of α′ corrections.

9.10 Heterotic string theory on Calabi–Yau three-folds

As was discussed earlier, the fact that dH is an exact four-form implies that

tr(R∧R) and tr(F ∧F ) = 1
30Tr(F ∧F ) must belong to the same cohomology

class. The curvature two-form R takes values in the Lie algebra of the
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holonomy group, which is SU(3) in the case of Calabi–Yau compactification.

Specializing to the case of the E8×E8 heterotic string theory, F takes values

in the E8 ×E8 Lie algebra. The characteristic class tr(R ∧R) is nontrivial,

and so it is necessary that gauge fields take nontrivial background values in

the compact directions.

The easiest way – but certainly not the only one – to satisfy the cohomol-

ogy constraint is for the field strengths associated with an SU(3) subgroup

of the gauge group to take background values that are equal to those of

the curvature form while the other field strengths have zero background

value. More fundamentally, the Yang–Mills potentials A can be identified

with the potentials that give the curvature, namely the spin connections.

This method of satisfying the constraint is referred to as embedding the spin

connection in the gauge group. There are many ways of embedding SU(3)

inside E8×E8 and not all of them would work. The embedding is restricted

by the requirement that the cohomology class of tr(F ∧ F ) gives exactly

the class of tr(R ∧ R) and not just some multiple of it. The embedding

that satisfies this requirement is one in which the SU(3) goes entirely into

one E8 factor in such a way that its commutant is E6. In other words,

E8 ⊃ E6×SU(3). Thus, for this embedding, the unbroken gauge symmetry

of the effective four-dimensional theory is E6 × E8.

This specific scenario is not realistic for a variety of reasons, but it does

have some intriguing features that one could hope to preserve in a better

set-up. For one thing, E6 is a group that has been proposed for grand uni-

fication. In that context, the gauge bosons belong to the adjoint 78 and

chiral fermions are assigned to the 27, which is a complex representation.

This representation might also be used for Higgs fields. Clearly, these rep-

resentations give a lot of extra fields beyond what is observed, so additional

measures are required to lift them to high mass or else eliminate them alto-

gether.

The presence of the second unbroken E8 also needs to be addressed. The

important observation is that all fields that participate in standard-model

interactions must carry nontrivial standard-model quantum numbers. But

the massless fields belonging to the adjoint of the second E8 are all E6 sin-

glets. Fields that belong to nontrivial representations of both E8 s first occur

for masses comparable to the string scale. Thus, if the string scale is com-

parable to the Planck scale, the existence of light fields carrying nontrivial

quantum numbers of the second E8 could only be detected by gravitational-

strength interactions. These fields comprise the hidden sector. A hidden

sector could actually be useful. Assuming that the hidden sector has a mass

gap, perhaps due to confinement, one intriguing possibility is that hidden-
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sector particles comprise a component of the dark matter. It has also been

suggested that gaugino condensation in the hidden sector could be the origin

of supersymmetry breaking.

The adjoint of E8, the 248, is reducible with respect to the E6 × SU(3)

subgroup, with the decomposition

248 = (78,1) + (1,8) + (27,3) + (27, 3̄). (9.168)

The massless spectrum in four dimensions can now be determined. There

are massless vector supermultiplets in the adjoint of E6 × E8, since this is

the unbroken gauge symmetry. In addition, there are h1,1 chiral supermul-

tiplets containing (complexified) Kähler moduli and h2,1 chiral supermul-

tiplets containing complex-structure moduli. These chiral supermultiplets

are all singlets of the gauge group, since the ten-dimensional graviton is a

singlet.

Let us now explain the origin of chiral matter, which belongs to chiral

supermultiplets. It is easiest to focus on the origin of the scalars and invoke

supersymmetry to infer that the corresponding massless fermions must also

be present. For this purpose let us denote the components of the gauge

fields as follows:

AM = (Aµ, Aa, Aā). (9.169)

Now let us look for the zero modes of Aa, which give massless scalars in four-

dimensional space-time. As explained above, the corresponding fermions

are chiral. The subscript a labels a quantity that transforms as a 3 of

the holonomy SU(3). However, the embedding of the spin connection in

the gauge group means that this SU(3) is identified with the SU(3) in

the decomposition of the gauge group. Therefore, the components of Aa
belonging to the (27, 3̄) term in the decomposition can be written in the form

Aa,s̄b̄, where s̄ labels the components of the 27 and b̄ labels the components

of the 3̄. This can be regarded as a (1, 1)-form taking values in the 27.

However, a (1, 1)-form has h1,1 zero modes. Thus, we conclude that there

are h1,1 massless chiral supermultiplets belonging to the 27 of E6. The next

case to consider is Aa,sb. To recast this as a differential form, one uses the

inverse Kähler metric and the antiholomorphic (0, 3)-form to define

Aad̄ēs = Aa,sbg
bc̄Ωc̄d̄ē. (9.170)

This is a 27-valued (1, 2)-form. It then follows that there are h2,1 massless

chiral supermultiplets belonging to the 27 of E6.

As an exercise in group theory, let us explore how the reasoning above

is modified if the background gauge fields take values in SU(4) or SU(5)
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rather than SU(3). In the first case, the appropriate embedding would be

E8 ⊃ SO(10) × SU(4), so that the unbroken gauge symmetry would be

SO(10)× E8, and the decomposition of the adjoint would be

248 = (45,1) + (1,15) + (10,6) + (16,4) + (16, 4̄). (9.171)

This could lead to a supersymmetric SO(10) grand-unified theory with gen-

erations of chiral matter in the 16, antigenerations in the 16 and Higgs

fields in the 10. This is certainly an intriguing possibility. In the SU(5)

case, the embedding would be E8 ⊃ SU(5) × SU(5), so that the unbroken

gauge symmetry would be SU(5) × E8. This could lead to a massless field

content suitable for a supersymmetric SU(5) grand-unified theory.

As a matter of fact, there are more complicated constructions in which

these possibilities are realized. For the gauge fields to take values in SU(4)

or SU(5), rather than SU(3), requires more complicated ways of solving

the topological constraints than simply embedding the holonomy group in

the gauge group. The existence of solutions is guaranteed by a theorem

of Uhlenbeck and Yau, though the details are beyond the scope of this

book. For these more general embeddings there is no longer a simple relation

between the Hodge numbers and the number of generations.

Starting from a Calabi–Yau compactification scenario that leads to a su-

persymmetric grand-unified theory, there are still a number of other issues

that need to be addressed. These include breaking the gauge symmetry to

the standard-model gauge symmetry and breaking the residual supersym-

metry. If the Calabi–Yau space is not simply connected, as happens for

certain quotient-space constructions, there is an elegant possibility. Wilson

lines Wi = exp(
∮
γi
A) can be introduced along the noncontractible loops γi

without changing the field strengths. The unbroken gauge symmetry is then

reduced to the subgroup that commutes with these Wilson lines. This can

break the gauge group to SU(3) × SU(2) × U(1)n, where n = 3 for the E6

case, n = 2 for the SO(10) case and n = 1 for the SU(5) case. Experimen-

talists are on the lookout for heavy Z bosons, which would correspond to

extra U(1) factors.

9.11 K3 compactifications and more string dualities

Compactifications of string theory that lead to a four-dimensional space-

time are of interest for making contact with the real world. However, it is

also possible to construct other consistent compactifications, which can also

be of theoretical interest. This section considers a particularly interesting

class of four-dimensional compact manifolds, namely Calabi–Yau two-folds.
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As discussed earlier, the only Calabi–Yau two-fold with SU(2) holonomy is

the K3 manifold. It can be used to compactify superstring theories to six

dimensions, M-theory to seven dimensions or F-theory to eight dimensions.

Compactification of M-theory on K3

M-theory has a consistent vacuum of the form M7×K3, where M7 represents

seven-dimensional Minkowski space-time. The compactification breaks half

of the supersymmetries, so the resulting vacuum has 16 unbroken super-

symmetries. The moduli of the seven-dimensional theory have two potential

sources. One source is the moduli-space of K3 manifolds, itself, which is

manifested as zero modes of the metric tensor on K3. The other source is

from zero modes of antisymmetric-tensor gauge fields. However, the only

such field in M-theory is a three-form, and the third cohomology of K3 is

trivial. Therefore, the three-form does not contribute any moduli in seven

dimensions, and the moduli space of the compactified theory is precisely the

moduli space of K3 manifolds.

Moduli space of K3

Let us count the moduli of K3. Kähler-structure deformations are given

by closed (1, 1)-forms,29 so their number in the case of K3 is h1,1 = 20.

Complex-structure deformations in the case of K3 correspond to coefficients

for the variations

δgab ∼ Ωacg
cd̄ωbd̄ + (a↔ b), (9.172)

where Ω is the holomorphic two-form and ωbd̄ is a closed (1, 1)-form. This

variation vanishes if ω is the Kähler form, as you are asked to verify in a

homework problem. Thus, there are 38 real (19 complex) complex-structure

moduli. Combined with the 20 Kähler moduli this gives a 58-dimensional

moduli space of K3 manifolds.

This moduli space is itself an orbifold. The result, worked out by mathe-

maticians, is � + ×M19,3, where

M19,3 =M0
19,3/O(19, 3;

�
) (9.173)

and

M0
19,3 =

O(19, 3; � )

O(19, � )×O(3, � )
. (9.174)

The � + factor corresponds to the overall volume modulus, and the factor

M19,3 describes a space of dimension 19× 3 = 57, as required. In contrast

29 This is true for any Calabi–Yau n-fold.
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to the case of Calabi–Yau three-folds, the dependence on Kähler moduli and

complex-structure moduli does not factorize. The singularities of the moduli

space correspond to singular limits of the K3 manifold. Typically, one or

more two-cycles of the K3 manifold degenerate (that is, collapse to a point)

at these loci. In fact, the
�

2 orbifold described in Section 9.3 is such a limit

in which 16 nonintersecting two-cycles degenerate.

The proof that this is the right moduli space is based on the observation

that the coset space characterizes the alignment of the 19 anti-self-dual and

three self-dual two-forms in the space of two forms. Rather than trying to

explain this carefully, let us confirm this structure by physical arguments.

Dual description of M-theory on M7 ×K3

The seven-dimensional theory obtained in this way has exactly the same

massless spectrum, the same amount of supersymmetry, and the same mod-

uli space as is obtained by compactifying (either) heterotic string theory on

a three-torus. Recall that in Chapter 7 it was shown that the moduli space

of the heterotic string compactified on T n is M16+n,n × � +, where

M16+n,n =M0
16+n,n/O(16 + n, n;

�
) (9.175)

and

M0
16+n,n =

O(16 + n, n; � )

O(16 + n, � )×O(n, � )
. (9.176)

Therefore, it is natural to conjecture, following Witten, that heterotic string

theory on a three-torus is dual to M-theory on K3.

In the heterotic description, the � + modulus is associated with the string

coupling constant, which is the vacuum expectation value of exp(Φ), where

Φ is the dilaton. Since this corresponds to the K3 volume in the M-theory

description, one reaches the following interesting conclusion: the heterotic-

string coupling constant corresponds to the K3 volume, and thus the strong-

coupling limit of heterotic string theory compactified on a three-torus cor-

responds to the limit in which the volume of the K3 becomes infinite. Thus,

this limit gives 11-dimensional M-theory! This is the same strong-coupling

limit as was obtained in Chapter 8 for ten-dimensional type IIA superstring

theory at strong coupling. The difference is that in one case the size of a

K3 manifold becomes infinite and in the other the size of a circle becomes

infinite.

An important field in the heterotic theory is the two-form B, whose

field strength H includes Chern–Simon terms so that dH is proportional

to trR2−trF 2. In the seven-dimensional K3 reduction of M-theory consid-

ered here, the B field arises as a dual description of A3. The field A3 also
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gives rise to 22 U(1) gauge fields in seven dimensions, as required by the

duality. The Chern–Simons 11-form gives seven-dimensional couplings of

the B field to these gauge fields of the form required to account for the trF 2

term in the dH equation. To account for the trR2 terms it is necessary to

add higher-dimension terms to the M-theory action of the form
∫
A3 ∧X8,

where X8 is quartic in curvature two-forms. Such terms, with exactly the

required structure, have been derived by several different arguments. These

include anomaly cancellation at boundaries as well as various dualities to

string theories.

Matching BPS branes

As a further test of the proposed duality, one can compare BPS branes in

seven dimensions. One interesting example is obtained by wrapping the

M5-brane on the K3 manifold. This leaves a string in the seven noncompact

dimensions. The only candidate for a counterpart in the heterotic theory

is the heterotic string itself! To decide whether this is reasonable, recall

that in the bosonic description of the heterotic string compactified on T n

there are 16+n left-moving bosonic coordinates and n right-moving bosonic

coordinates. To understand this from the point of view of the M5-brane, the

first step is to identify the field content of its world-volume theory. This is

a tensor supermultiplet in six dimensions, whose bosonic degrees of freedom

consist of five scalars, representing transverse excitations in 11 dimensions,

and a two-form potential with an anti-self-dual three-form field strength.30

This anti-self-dual three-form F3 gives zero modes that can be expanded as

a sum of terms

F3 =
3∑

i=1

∂−Xiωi+ +
19∑

i=1

∂+X
iωi−, (9.177)

where ωi± denote the self-dual and anti-self-dual two-forms of K3, and ∂±Xi

correspond to the left-movers and right-movers on the string world sheet.

Since the latter are self-dual and anti-self-dual, respectively, all terms in

this formula are anti-self-dual. In addition, the heterotic string has five

more physical scalars, with both left-moving and right-moving components,

describing transverse excitations in the noncompact dimensions. These are

provided by the five scalars of the tensor multiplet.

Recall that the dimensions of a charged p-brane and its magnetic dual

p′-brane are related in D dimensions by

p+ p′ = D − 4. (9.178)

30 This field has three physical degrees of freedom, so the multiplet contains eight bosons and
eight fermions, as is always the case for maximally supersymmetric branes.



422 String geometry

For example, in 11 dimensions, the M5-brane is the magnetic dual of the

M2-brane. It follows that in the compactified theory, the string obtained by

wrapping the M5-brane on K3 is the magnetic dual of an unwrapped M2-

brane. In the ten-dimensional heterotic string theory, on the other hand, the

magnetic dual of a fundamental string (F1-brane) is the NS5-brane. After

compactification on T 3, the magnetic dual of an unwrapped heterotic string

is a fully wrapped NS5-brane. Thus, the heterotic NS5-brane wrapped on

the three-torus corresponds to an unwrapped M2-brane.

The matching of tensions implies that

TF1 = TM5VK3 and TNS5VT 3 = TM2 (9.179)

or
1

`2s
∼ VK3

`6p
and

VT 3

g2
s `

6
s

∼ 1

`3p
, (9.180)

where the ∼ means that numerical factors are omitted. Combining these

two relations gives the dimensionless relation

gs

(
VT 3/`3s

)−1/2 ∼
(
VK3/`

4
p

)3/4
. (9.181)

The left-hand side of this relation is precisely the seven-dimensional heterotic-

string coupling constant. This quantifies the earlier claim that gs → ∞
corresponds to VK3 →∞.

Nonabelian gauge symmetry

It is interesting to check how nonabelian gauge symmetries that arise in the

heterotic string theory are understood from the M-theory point of view. We

learned in Chapter 7 that the generic U(1)22 abelian gauge symmetry of the

heterotic string compactified on T 3 is enhanced to nonabelian symmetry at

singularities of the Narain moduli space, which exist due to the modding out

by the discrete factor SO(19, 3;
�

). It was demonstrated in examples that

at such loci certain spin-one particles that are charged with respect to the

U(1) s and massive away from the singular loci become massless to complete

the nonabelian gauge multiplet. The nonabelian gauge groups that appear

in this way are always of the type An = SU(n+ 1), Dn = SO(2n), E6, E7,

E8, or semisimple groups with these groups as factors. The ADE groups in

the Cartan classification are the simple Lie groups with the property that

all of their simple roots have the same length. Such Lie groups are called

simply-laced. Given the duality that we have found, these results should be

explainable in terms of M-theory on K3.

Generically, K3 compactification of M-theory gives 22 U(1) gauge fields
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in seven dimensions. These one-forms arise as coefficients in an expansion

of the M-theory three-form A3 in terms of the 22 linearly independent har-

monic two-forms of K3. The three gauge fields associated with the self-dual

two-forms correspond to those that arise from right-movers in the heterotic

description and belong to the supergravity multiplet. Similarly, the 19 gauge

fields associated with the anti-self-dual two-forms correspond to those that

arise from left-movers in the heterotic description and belong to the vector

supermultiplets.

The singularities of the Narain moduli space correspond to singularities

of the K3 moduli space. So we need to understand why there should be

nonabelian gauge symmetry at these loci. Each of these singular loci of

the K3 moduli space correspond to degenerations of a specific set of two-

cycles of the K3 surface. When this happens, wrapped M2-branes on these

cycles give rise to new massless modes in seven dimensions. In particular,

these should provide the charged spin-one gauge fields for the appropriate

nonabelian gauge group.

The way to tell what group appears is as follows. The set of two-cycles

that degenerate at a particular singular locus of the moduli space has a

matrix of intersection numbers, which can be represented diagrammatically

by associating a node with each degenerating cycle and by connecting the

nodes by a line for each intersection of the two cycles. Two distinct cycles

of K3 intersect either once or not at all, so the number of lines connecting

any two nodes is either one or zero.

The diagrams obtained in this way look exactly like Dynkin diagrams,

which are used to describe Lie groups. However, the meaning is entirely

different. The nodes of Dynkin diagrams denote positive simple roots, whose

number is equal to the rank of the Lie group, and the number of lines

connecting a pair of nodes represents the angle between the two roots. For

example, no lines represents π/4 and one line represents 2π/3. For simply-

laced Lie groups these are the only two cases that occur.

Mathematicians observed long ago that the intersection diagrams of de-

generating two-cycles of K3 have an ADE classification, but it was com-

pletely mysterious what, if anything, this has to do with Lie groups. M-

theory provides a beautiful answer. The diagram describing the degener-

ation of the K3 is identical to the Dynkin diagram that describes the re-

sulting nonabelian gauge symmetry in seven dimensions. The ADE Dynkin

diagrams are shown in Fig. 9.10. The simplest example is when a single

two-cycle degenerates. This is represented by a single node and no lines,

which is the Dynkin diagram for SU(2). This case was examined in detail

from the heterotic perspective in Chapter 7. A somewhat more complicated



424 String geometry

example is the degeneration corresponding to the T 4/
�

2 orbifold discussed

in Section 9.3. In this case 16 nonintersecting two-cycles degenerate, which

gives [SU(2)]16 gauge symmetry (in addition to six U(1) factors). Similarly,

the
�

3 orbifold considered in Exercise 9.2 gives [SU(3)]9 gauge symmetry

(in addition to four U(1) factors). The number of U(1) factors is determined

by requiring that the total rank is 22.

An

Dn

6E

7E

E8

Fig. 9.10. The Dynkin diagrams of the simply-laced Lie algebras.

Type IIA superstring theory on K3

Compactification of the type IIA theory on K3 gives a nonchiral theory with

16 unbroken supersymmetries in six dimensions. This example is closely re-

lated to the preceding one, because type IIA superstring theory corresponds

to M-theory compactified on a circle. Compactifying the seven-dimensional

theory of the previous section on a circle, this suggests that the type IIA

theory on K3 should be dual to the heterotic theory on T 4. A minimal spinor

in six dimensions has eight components, so this is an N = 2 theory from

the six-dimensional viewpoint. Left–right symmetry of the type IIA theory

implies that the two six-dimensional supercharges have opposite chirality,

which agrees with what one obtains in the heterotic description.

Let us examine the spectrum of massless scalars (moduli) in six dimensions

from the type IIA perspective. As in the M-theory case, the metric tensor
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gives 58 moduli. In addition to this, the dilaton gives one modulus and the

two-form B2 gives 22 moduli, since b2(K3) = 22. The R–R fields C1 and C3

do not provide any scalar zero modes, since b1 = b3 = 0. Thus, the total

number of moduli is 81. The heterotic string compactified on T 4 also has

an 81-dimensional moduli space, obtained in Chapter 7,

� + ×M20,4. (9.182)

Thus, this should also be what one obtains from compactifying the type

IIA superstring theory on K3. The � + factor corresponds to the heterotic

dilaton or the type IIA dilaton, so these two fields need to be related by the

duality.

We saw above that the 58 geometric moduli contain 38 complex-structure

moduli and 20 Kähler-structure moduli. Of the 22 moduli coming from

B2 the 20 associated with (1, 1)-forms naturally combine with the 20 ge-

ometric Kähler-structure moduli to give 20 complexified Kähler-structure

moduli, just as in the case of Calabi–Yau compactification described earlier.

Altogether the 80-dimensional space M20,4 is parametrized by 20 complex

Kähler-structure moduli and 20 complex-structure moduli. There is a mir-

ror description of the type IIA theory compactified on K3, which is given by

type IIA theory compactified on a mirror K3 in which the Kähler-structure

moduli and complex-structure moduli are interchanged. While this is anal-

ogous to what we found for Calabi–Yau three-fold compactification, there

are also some significant differences. For one thing, the two sets of mod-

uli are incorporated in a single moduli space rather than a product of two

separate spaces. Also, type IIA is related to type IIA, whereas in the Calabi–

Yau three-fold case type IIA was related to type IIB. In that case, we used

the SYZ argument to show that, when the Calabi–Yau has a T 3 fibration,

this could be understood in terms of T-duality along the fibers. The cor-

responding statement now is that, when K3 has a T 2 fibration, the mirror

description can be deduced by a T-duality along the fibers. The reason type

IIA is related to type IIA is that this is an even number (two) of T-duality

transformations.

Let us now investigate the relationship between the two dilatons, or equiv-

alently the two string coupling constants, by matching branes. The analysis

is very similar to that considered for the previous duality. For the purpose

of this argument, let us denote the string coupling and string scale of the

type IIA theory by gA and `A and those of the heterotic theory by gH and

`H. Equating tensions of the type IIA NS5-brane wrapped on K3 and the

heterotic string as well as the heterotic NS5-brane wrapped on T 4 and the
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type IIA string gives the relations

1

`2H
∼ VK3

g2
A`

6
A

and
VT 4

g2
H`

6
H

∼ 1

`2A
. (9.183)

Let us now define six-dimensional string coupling constants by

g2
6H = g2

H

(
VT 4/`4H

)−1
and g2

6A = g2
A

(
VK3/`

4
A

)−1
. (9.184)

Then these relations can be combined to give

g2
6H ∼ g−2

6A . (9.185)

This means that the relation between the two six-dimensional theories is

an S-duality that relates weak coupling and strong coupling, just like the

duality relating the two SO(32) superstring theories in ten dimensions.

Type IIB superstring theory on K3

Compactification of type IIB superstring theory on K3 gives a chiral the-

ory with 16 unbroken supersymmetries in six dimensions. The two six-

dimensional supercharges have the same chirality. The massless sector in

six dimensions consists of a chiral N = 2 supergravity multiplet coupled

to 21 tensor multiplets. This is the unique number of tensor multiplets for

which anomaly cancellation is achieved. The chiral N = 2 supergravity has

a USp(4) ≈ SO(5) R symmetry, and there is an SO(21) symmetry that

rotates the tensor multiplets. In fact, in the supergravity approximation,

these combine into a noncompact SO(21, 5) symmetry. However, as always

happens in string theory, this gets broken by string and quantum corrections

to the discrete duality subgroup SO(21, 5;
�

).

The gravity multiplet contains five self-dual three-form field strengths,

while each of the tensor multiplets contains one anti-self-dual three-form

field strength and five scalars. This is the same multiplet that appears on

the world volume of an M5-brane, discussed a moment ago. It is the only

massless matter multiplet that exists for chiral N = 2 supersymmetry in six

dimensions. Most of the three-form field strengths come from the self-dual

five-form in ten dimensions as a consequence of the fact that K3 has three

self-dual two-forms (b+
2 = 3) and 19 anti-self-dual two-forms (b−2 = 19).

The additional two self-dual and anti-self-dual three-forms are provided by

F3 = dC2 and H3 = dB2. The 5× 21 = 105 scalar fields arise as follows: 58

from the metric, 1 from the dilaton Φ, 1 from C0, 22 from B2, 22 from C2,

and 1 from C4.

The symmetries and the moduli counting described above suggest that
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the moduli space for K3 compactification of the type IIB theory should be

M21,5. The natural question is whether this has a dual heterotic string

interpretation. The closest heterotic counterpart is given by toroidal com-

pactification to five dimensions, for which the moduli space is

� + ×M21,5. (9.186)

The extra modulus, corresponding to the � + factor, is provided by the

heterotic dilaton. Therefore, it is tempting to identify the heterotic string

theory compactified to five dimensions on T 5 with the type IIB superstring

compactified to five dimensions on K3 × S1. In this duality the heterotic-

string coupling constant corresponds to the radius of the type IIB circle.

Thus, the strong coupling limit of the toroidally compactified heterotic string

theory in five dimensions gives the K3 compactified type IIB string in six

dimensions. The relationship is analogous to that between the type IIA

theory in ten dimensions and M-theory in 11 dimensions.

This picture can be tested by matching branes, as in the previous exam-

ples. However, the analysis is more complicated this time. The essential

fact is that in five dimensions both constructions give 26 U(1) gauge fields,

with five of them belonging to the supergravity multiplet and 21 belong-

ing to vector multiplets. Thus, point particles can carry 26 distinct electric

charges. Their magnetic duals, which are strings, can also carry 26 distinct

string charges. By matching the BPS formulas for their tensions one can

deduce how to map parameters between the two dual descriptions and verify

that, when the heterotic string coupling becomes large, the type IIB circle

decompactifies.

Compactification of F-theory on K3

Type IIB superstring theory admits a class of nonperturbative compactifica-

tions, first described by Vafa, that go by the name of F-theory. The dilaton

is not constant in these compactifications, and there are regions in which

it is large. Therefore, since the value of the dilaton field determines the

string coupling constant, these solutions cannot be studied using perturba-

tion theory (except in special limits that correspond to orientifolds). This

is the sense in which F-theory solutions are nonperturbative.

The crucial fact that F-theory exploits is the nonperturbative SL(2,
�

)

symmetry of type IIB superstring theory in ten-dimensional Minkowski

space-time. Recall that the R–R zero-form potential C0 and the dilaton

Φ can be combined into a complex field

τ = C0 + ie−Φ, (9.187)
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which transforms nonlinearly under SL(2,
�

) transformations in the same

way as the modular parameter of a torus:

τ → aτ + b

cτ + d
. (9.188)

The two two-forms B2 and C2 transform as a doublet at the same time,

while C4 and the Einstein-frame metric are invariant.

F-theory compactifications involve 7-branes, which end up filling the d

noncompact space-time dimensions and wrapping (8− d)-cycles in the com-

pact dimensions. Therefore, before explaining F-theory, it is necessary to

discuss the classification and basic properties of 7-branes. 7-branes in ten

dimensions are codimension two, and so they can be enclosed by a circle,

just as is the case for a point particle in three dimensions and a string in

four dimensions. Just as in those cases, the presence of the brane creates

a deficit angle in the orthogonal plane that is proportional to the tension

of the brane. Thus, a small circle of radius R, centered on the core of the

brane, has a circumference (2π − φ)R, where φ is the deficit angle. In fact,

this property is the key to searching for cosmic strings that might stretch

across the sky.

The fact that fields must be single-valued requires that, when they are

analytically continued around a circle that encloses a 7-brane, they return

to their original values up to an SL(2,
�

) transformation. The reason for

this is that SL(2,
�

) is a discrete gauge symmetry, so that the configuration

space is the naive field space modded out by this gauge group. So the

requirement stated above means that fields should be single-valued on this

quotient space. The field τ , in particular, can have a nontrivial monodromy

transformation like that in Eq. (9.188). Other fields, such as B2 and C2,

must transform at the same time, of course.

Since 7-branes are characterized by their monodromy, which is an SL(2,
�

)

transformation, there is an infinite number of different types. In the case of a

D7-brane, the monodromy is τ → τ+1. This implies that 2πC0 is an angular

coordinate in the plane perpendicular to the brane. More precisely, the 7-

brane is characterized by the conjugacy class of its monodromy. If there is

another 7-brane present the path used for the monodromy could circle the

other 7-brane then circle the 7-brane of interest, and finally circle the other

7-brane in the opposite direction. This gives a monodromy described by a

different element of SL(2,
�

) that belongs to the same conjugacy class and

is physically equivalent. The conjugacy classes are characterized by a pair

of coprime integers (p, q). This is interpreted physically as labelling the type
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of IIB string that can end on the 7-brane. In this nomenclature, a D7-brane

is a (1, 0) 7-brane, since a fundamental string can end on it.

Let us examine the type IIB equations of motion in the supergravity

approximation. The relevant part of the type IIB action, described in Ex-

ercise 8.3, is

1

2

∫ √−g
(
R− gµν ∂µτ∂ν τ̄

(Imτ)2

)
d10x. (9.189)

To describe a 7-brane, let us look for solutions that are independent of

the eight dimensions along the brane, which has a flat Lorentzian metric,

and parametrize the perpendicular plane as the complex plane with a local

coordinate z = reiθ. The idea is that the brane should be localized at the

origin of the z-plane. Now let us look for a solution to the equations of

motion in the gauge in which the metric in this plane is conformally flat

ds2 = eA(r,θ)(dr2 + r2dθ2)− (dx0)2 + (dx1)2 + . . .+ (dx7)2. (9.190)

Just as in the case of the string world sheet, the conformal factor cancels

out of the τ kinetic term. Therefore, its equation of motion is the same as

in flat space. The τ equation of motion is satisfied if τ is a holomorphic

function τ(z), as you are asked to verify in a homework problem.

The elliptic modular function j(τ) gives a one-to-one holomorphic map

of the fundamental region of SL(2,
�

) onto the entire complex plane. It

is invariant under SL(2,
�

) modular transformations, and it has a series

expansion of the form

j(τ) =
∞∑

n=−1

cne
2πinτ (9.191)

with c−1 = 1. Its leading asymptotic behavior for Im τ → +∞ is given by

the first term

j(τ) ∼ e−2πiτ . (9.192)

If we choose the holomorphic function τ(z) to be given by

j
(
τ(z)

)
= Cz, (9.193)

where C is a constant, then for large z

τ(z) ∼ − 1

2πi
log z. (9.194)

This exhibits the desired monodromy τ → τ − 1 as one encircles the 7-

brane.31

31 To get τ → τ + 1 instead, one could replace z by z̄, which corresponds to replacing the brane
by an antibrane.
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The tension of the 7-brane is given by

T7 =
1

2

∫
d2x

~∂τ · ~∂τ̄
(Im τ)2

=
1

2

∫
d2x

∂τ ∂̄τ̄ + ∂̄τ∂τ̄

(Im τ)2
. (9.195)

Now let us evaluate this for the solution proposed in Eq. (9.193). Since τ is

holomorphic

T7 =
1

2

∫
d2x

∂τ ∂̄τ̄

(Im τ)2
=

1

2

∫

F

d2τ

(Im τ)2
=
π

6
. (9.196)

This has used the fact that the inverse image of the complex plane is the

fundamental region F . The volume of the moduli space was evaluated in

Exercise 3.9.

The integrand in Eq. (9.196) is the energy density that acts as a source

for the gravitational field in the Einstein equation

R00 −
1

2
g00R = −1

2
g00e

−A ∂τ ∂̄τ̄

(Im τ)2
. (9.197)

Evaluating the curvature for the metric in Eq. (9.190), one obtains the equa-

tion

∂∂̄A = −1

2

∂τ ∂̄τ̄

(τ − τ̄)2
= ∂∂̄ log Im τ. (9.198)

The energy density is concentrated within a string-scale distance of the

origin, where the supergravity equations aren’t reliable. The total energy is

reliable because of supersymmetry (saturation of the BPS bound), however.

So, to good approximation, we can take A = α log r and use ∇2 log r =

2πδ2(~x) to approximate the energy density by a delta function at the core.

Doing this, one then matches the integrals of the two sides to determine

α = −1/6. This gives a result that is correct for large r, namely

A ∼ −1

6
log r. (9.199)

By the change of variables ρ = r11/12 this brings the two-dimensional metric

to the asymptotic form

ds2 ∼ dρ2 + ρ2

(
11

12
dθ

)2

, (9.200)

which shows that there is a deficit angle of π/6 in the Einstein frame.

A more accurate solution, applicable for multiple 7-branes at positions

zi, i = 1, . . . , N , can be constructed as follows. The general solution of

Eq. (9.198) is

eA = |f(z)|2Im τ (9.201)
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where f(z) is holomorphic. This function is determined by requiring mod-

ular invariance and r−1/6 singularities at the cores of 7-branes. The result

is

f(z) = [η(τ)]2
N∏

i=1

(z − zi)−1/12. (9.202)

The Dedekind η function is

η(τ) = q1/24
∞∏

n=1

(1− qn), (9.203)

where

q = e2πiτ . (9.204)

Under a modular transformation the Dedekind η function transforms as

η(−1/τ) =
√
−iτη(τ). (9.205)

Thus, |η(τ)|4Im τ is modular invariant.

Since all 7-branes are related by modular transformations that leave the

Einstein-frame metric invariant, it follows that in Einstein frame they all

have a deficit angle of π/6. Suppose that 7-branes (of various types) are

localized at (finite) points on the transverse space such that the total deficit

angle is
∑

φi = 4π. (9.206)

Then the transverse space acquires the topology of a sphere with its cur-

vature localized at the positions of the 7-branes, and the z-plane is bet-

ter described as a projective space � P 1. Since every deficit angle is π/6,

Eq. (9.206) requires that there are a total of 24 7-branes. However, the

choice of which types of 7-branes to use, and how to position them, is not

completely arbitrary. For one thing, it is necessary that the monodromy

associated with a circle that encloses all of them should be trivial, since the

circle can be contracted to a point on the other side of the sphere without

crossing any 7-branes.

The τ parameter is well defined up to an SL(2,
�

) transformation every-

where except at the positions of the 7-branes, where it becomes singular. A

nicer way of expressing this is to say that one can associate a torus with

complex-structure modulus τ(z) with each point in the z-plane. This gives

a T 2 fibration with base space � P 1, where the 24 singular fibers correspond

to the positions of the 7-branes. Such a T 2 fibration is also called an elliptic
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fibration. Only the complex structure of the torus is specified by the mod-

ulus τ . Its size (or Kähler structure) is not a dynamical degree of freedom.

Recall that the type IIB theory can be obtained by compactifying M-theory

on a torus and letting the area of the torus shrink to zero. In this limit

the modular parameter of the torus gives the τ parameter of the type IIB

theory. Therefore, the best interpretation is that the torus in the F-theory

construction has zero area.

A nice way of describing the complex structure of a torus is by an algebraic

equation of the form

y2 = x3 + ax+ b. (9.207)

This describes the torus as a submanifold of � 2, which is parametrized by

complex numbers x and y. The constants a and b determine the complex

structure τ of the torus. There is no metric information here, so the area

is unspecified. The torus degenerates, that is, τ is ill-defined, whenever the

discriminant of this cubic vanishes. This happens for

27a3 − 4b2 = 0. (9.208)

Thus, the positions of the 7-branes correspond to the solutions of this equa-

tion. To ensure that z =∞ is not a solution, we require that a3 and b2 are

polynomials of the same degree.

Since there should be 24 7-branes, the equation should have 24 solutions.

Thus, a = f8(z) and b = f12(z), where fn denoted a polynomial of degree

n. The total space can be interpreted as a K3 manifold that admits a

T 2 fibration. The only peculiar feature is that the fibers have zero area.

Let us now count the number of moduli associated with this construction.

The polynomials f8 and f12 have arbitrary coefficients, which contribute

9 + 13 = 22 complex moduli. However, four of these are unphysical because

of the freedom of an SL(2, � ) transformation of the z-plane and a rescaling

f8 → λ2f8, f12 → λ3f12. This leaves 18 complex moduli. In addition there

is one real modulus (a Kähler modulus) that corresponds to the size of the

� P 1 base space. The complex moduli parametrize the positions of the 7-

branes (modulo SL(2, � )) in the z-plane. The fact that there are fewer

than 21 such moduli shows that the positions of the 7-branes (as well as

their monodromies) is not completely arbitrary.

Remarkably, there is a dual theory that has the same properties. The

heterotic string theory compactified on a torus to eight dimensions has 16

unbroken supersymmetries and the moduli space

� + ×M18,2. (9.209)
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The real modulus is the string coupling constant, which therefore corre-

sponds to the area of the � P 1 in the F-theory construction. The second

factor has 18×2 real moduli or 18 complex moduli. In fact, mathematicians

knew before the discovery of F-theory that this is the moduli space of ellip-

tically fibered K3 manifolds. Thus, F-theory compactified on an elliptically

fibered K3 (with section) is conjectured to be dual to the heterotic string

theory compactified on T 2.

This duality can be related to the others, and so it constitutes one more

link in a consistent web of dualities. For example, if one compactifies on

another circle, and uses the duality between type IIB on a circle and M-

theory on a torus, this torus becomes identified with the F-theory fiber

torus, which now has finite area. Then one recovers the duality between M-

theory on K3 and the heterotic string on T 3 for the special case of elliptically

fibered K3 s.

The F-theory construction described above is the simplest example of a

large class of possibilities. More generally, F-theory on an elliptically fibered

Calabi–Yau n-fold (with section) gives a solution for (12− 2n)-dimensional

Minkowski space-time. For example, using elliptically fibered Calabi–Yau

four-folds one can obtain four-dimensional F-theory vacua with N = 1 su-

persymmetry. It is an interesting challenge to identify duality relations

between such constructions and other ones that can give N = 1, such as the

heterotic string compactified on a Calabi–Yau three-fold.

9.12 Manifolds with G2 and Spin(7) holonomy

Since the emergence of string dualities and the discovery of M-theory, special-

holonomy manifolds have received considerable attention. Manifolds of

SU(3) holonomy have already been discussed at length. 7-manifolds with

G2 holonomy and 8-manifolds with Spin(7) holonomy are also of interest

for a number of reasons. They constitute the exceptional-holonomy man-

ifolds. We refer to them simply as G2 manifolds and Spin(7) manifolds,

respectively.

G2 manifolds

Suppose that M-theory compactified to four dimensions on a 7-manifold M7,

M11 = M4 ×M7, (9.210)

gives rise to N = 1 supersymmetry in four dimensions. An analysis of the

supersymmetry constraints, along the lines studied for Calabi–Yau three-
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folds, constrains M7 to have G2 holonomy. In such a compactification to

flat D = 4 Minkowski space-time, there should exist one spinor (with four

independent components) satisfying

δψM = ∇Mε = 0. (9.211)

The background geometry is then � 3,1 ×M7, where M7 has G2 holonomy,

and ε is the covariantly constant spinor of the G2 manifold tensored with a

constant spinor of � 3,1. As in the case of Calabi–Yau three-folds, Eq. (9.211)

implies thatM7 is Ricci flat. Of course, it cannot be Kähler, or even complex,

since it has an odd dimension. Let us now examine why Eq. (9.211) implies

that M7 has G2 holonomy.

The exceptional group G2

G2 can be defined as the subgroup of the SO(7) rotation group that preserves

the form

ϕ = dy123 + dy145 + dy167 + dy246 − dy257 − dy347 − dy356, (9.212)

where

dyijk = dyi ∧ dyj ∧ dyk, (9.213)

and yi are the coordinates of � 7. G2 is the smallest of the five exceptional

simple Lie groups (G2, F4, E6, E7, E8), and it has dimension 14 and rank 2.

Its Dynkin diagram is given in Fig. 9.11. Let us describe its embedding in

Spin(7), the covering group of SO(7), by giving the decomposition of three

representations of Spin(7), the vector 7, the spinor 8 and the adjoint 21:

• Adjoint representation: decomposes under G2 as 21 = 14 + 7.

• The vector representation is irreducible 7 = 7.

• The spinor representation decomposes as 8 = 7 + 1.

2
G

Fig. 9.11. The G2 Dynkin diagram.

The singlet in the spinor representation precisely corresponds to the co-

variantly constant spinor in Eq. (9.211) and this decomposition is the reason

why G2 compactifications preserve 1/8 of the original supersymmetry, lead-

ing to an N = 1 theory in four dimensions in the case of M-theory. While
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Calabi–Yau three-folds are characterized by the existence of a nowhere van-

ishing covariantly constant holomorphic three-form, a G2 manifold is charac-

terized by a covariantly constant real three-form Φ, known as the associative

calibration

Φ =
1

6
Φabce

a ∧ eb ∧ ec, (9.214)

where ea are the seven-beins of the manifold. The Hodge dual four-form ?Φ

is known as the coassociative calibration.

A simple compact example

Smooth G2 manifolds were first constructed by resolving the singularities

of orbifolds. A simple example is the orbifold T 7/Γ, where T 7 is the flat

seven-torus and Γ is a finite group of isometries preserving the calibration

Eq. (9.212) generated by

α : (y1, . . . , y7)→ (y1, y2, y3,−y4,−y5,−y6,−y7), (9.215)

β : (y1, . . . , y7)→ (y1,−y2,−y3, y4, y5, 1/2− y6,−y7), (9.216)

γ : (y1, . . . , y7)→ (−y1, y2,−y3, y4, 1/2− y5, y6, 1/2− y7). (9.217)

In a homework problem you are asked to verify that α, β, γ have the following

properties: (1) they preserve the calibration, (2) α2 = β2 = γ2 = 1, (3) the

three generators commute. The group Γ is isomorphic to
� 3

2. The fixed

points of α (and similarly for β and γ) are 16 copies of T 3, while (β, γ)

act freely on the fixed-point set of α (similarly for the fixed-point set of β

and γ). The singularities of this orbifold can be blown up in a similar way

discussed in Section 9.1 for K3, that is, by cutting out a ball B4/
�

2 around

each singularity and replacing it with an Eguchi–Hanson space. The result

is a smooth G2 manifold.

Supersymmetric cycles in G2 manifolds

As in the case of Calabi–Yau three-folds, supersymmetric cycles in G2 man-

ifolds play a crucial role in describing nonperturbative effects. Supersym-

metric three-cycles can be defined for G2 manifolds in a similar manner as

for Calabi–Yau three-folds in Section 9.8. A supersymmetric three-cycle is

a configuration that solves the equation

P−ε =
1

2

(
1− i

6
εαβγ∂αX

M∂βX
N∂γX

PΓMNP

)
ε = 0, (9.218)

where now the spinor ε lives in seven dimensions. Here α, β, . . . are indices

on the cycle while M,N, . . . are D = 11 indices. By a similar calculation
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to that in Exercise 9.15, one can verify that the defining equation for a

supersymmetric three-cycle is

∂[αX
a∂βX

b∂γ]X
cΦabc = εαβγ. (9.219)

This means that the pullback of the three-form onto the cycle is proportional

to the volume form. A G2 manifold can also have supersymmetric four-

cycles, which solve the equation

P−ε =
1

2

(
1− i

4!
εαβγσ∂αX

M∂βX
N∂γX

Q∂σX
PΓMNPQ

)
ε = 0. (9.220)

The solution has the same form as Eq. (9.219) with the associative calibra-

tion replaced by the dual coassociative calibration ?Φ. Both type of cycles

break 1/2 of the original supersymmetry.

Obviously, there is interest in the phenomenological implications of M-

theory compactifications on G2 manifolds, because these give N = 1 theo-

ries in four dimensions. Let us mention a few topics in this active area of

research.

G2 manifolds and strongly coupled gauge theories

Compactification of M-theory on a smooth G2 manifold does not lead to

chiral matter or nonabelian gauge symmetry. The reason is that M-theory

is a nonchiral theory and compactification on a smooth manifold cannot lead

to a chiral theory. A chiral theory can only be obtained if singularities or

other defects, where chiral fermions live, are included. Singularities arise,

for example, when a supersymmetric cycle shrinks to zero size.

M-theory compactification on a G2 manifold with a conical singularity

leads to interesting strongly coupled gauge theories, which have been in-

vestigated in some detail. The local structure of a conical singularity is

described by a metric of the form

ds2 = dr2 + r2dΩ2
n−1. (9.221)

Here r denotes a radial coordinate and dΩ2
n−1 is the metric of some compact

manifold Y . In general, this metric describes an n-dimensional space X

that has a singularity at r = 0 unless dΩ2
n−1 is the metric of the unit sphere,

Sn−1. An example is a lens space S3/
�
N+1, which corresponds to an AN

singularity.

Singularities can give rise to nonabelian gauge groups in the low-energy

effective action. Recall from Chapter 8 that M-theory compactified on K3

is dual to the heterotic string on T 3, and that there is enhanced gauge

symmetry at the singularities of K3, which have an ADE classification.
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Invoking this duality for fibered manifolds, there should be a duality between

compactification of heterotic theories on Calabi–Yau manifolds with a T 3

fibration and M-theory on G2 manifolds with a K3 fibration.

In order to obtain four-dimensional theories with nonabelian gauge sym-

metry, one strategy is to embed ADE singularities in G2 manifolds. In

general, the singularities of four-dimensional manifolds can be described as

� 2/Γ, where Γ is a subgroup of the holonomy group SO(4). The points that

are left invariant by Γ then correspond to the singularities. The holonomy

group of K3 is SU(2), and as a result Γ has to be a subgroup of SU(2) to

give unbroken supersymmetry. The finite subgroups of SU(2) also have an

ADE classification consisting of two infinite series (An, n = 1, 2, . . . and Dk,

k = 4, 5 . . . ) and three exceptional subgroups (E6, E7 and E8). So for exam-

ple, the generators for the two infinite series can be represented according

to (
e2πi/n 0

0 e−2πi/n

)
, (9.222)

for the An series. Meanwhile Dk has two generators given by
(
eπi/(k−2) 0

0 e−πi/(k−2)

)
and

(
0 i

i 0

)
. (9.223)

In the heterotic/M-theory duality discussed in Section 9.11, the heterotic

string gets an enhanced symmetry group whenever the K3 becomes sin-

gular. In general, M-theory compactified on a background of the form

� 4/ΓADE × � 6,1 gives rise to a Yang–Mills theory with the correspond-

ing ADE gauge group, near the singularity. Embedding four-dimensional

singular spaces into G2 manifolds, M-theory compactification can therefore

give rise to nonabelian gauge groups in four dimensions.

G2 manifolds and intersecting D6-brane models

Another area where G2 manifolds play an important role is intersecting D6-

brane models.32 Recall that Section 8.3 showed that N parallel D6-branes

in the type IIA theory are interpreted in M-theory as a multi-center Taub–

NUT metric times a flat seven-dimensional Minkowski space-time. Half

of the supersymmetry is preserved by a stack of parallel branes. If they

are not parallel, the amount of supersymmetry preserved depends on types

of rotations that relate the branes. Any configuration preserving at least

one supersymmetry is described by a special-holonomy manifold from the

M-theory perspective. If the position of the branes is such that they can

32 This is one of the constructions used in attempts to obtain realistic models.
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be interpreted in M-theory as a seven-manifold on which one covariantly

constant real spinor can be defined times flat four-dimensional Minkowski

space-time, then this is a G2 holonomy configuration.

For parallel D6-branes, the 7-manifold with G2 holonomy is a direct prod-

uct of the multi-center Taub–NUT metric times � 3, as you are asked to

verify in a homework problem. As discussed in Chapter 8, certain type IIA

fields, such as the dilaton and the U(1) gauge field, lift to pure geometry in

11 dimensions. From the M-theory perspective, strings stretched between

two D6-branes have an interpretation as membranes wrapping one of the

n(n + 1)/2 holomorphic embeddings of S2 in multi-center Taub–NUT, as

shown in Fig. 9.12. When two D6-branes come close to each other, these

strings become massless, resulting in nonabelian gauge symmetry. Without

entering into the details, let us mention that chiral matter can be realized

when D6-branes intersect at appropriate angles, because the GSO projection

removes massless fermions of one chirality. This leads to interesting models

with some realistic features.

Fig. 9.12. Strings stretched between two D6-branes can be interpreted as mem-
branes wrapping a holomorphically embedded S2 in a multi-center Taub–NUT ge-
ometry.

Spin(7) manifolds

Eight-dimensional manifolds of Spin(7) holonomy are of interest in the study

of string dualities including connections to strongly coupled gauge theories.

Compactification of M-theory on a Spin(7) manifold gives a theory with

N = 1 supersymmetry in three dimensions. The supercharge has two com-

ponents, so 1/16 of the original supersymmetry is preserved. This is less
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supersymmetry than the minimal amount for a Lorentz-invariant supersym-

metric theory in four dimensions. Witten has speculated that the existence

of such a three-dimensional theory might indicate the existence of a theory

in four dimensions with no supersymmetry that upon circle compactifica-

tion develops an N = 1 supersymmetry in three dimensions. This is one

of many speculations that have been considered in attempts to explain why

the observed cosmological constant is so tiny.

Spin(7) is the subgroup of Spin(8) that leaves invariant the self-dual four-

form

Ω = dy1234 + dy1256 + dy1278 + dy1357 − dy1368 − dy1458 − dy1467−
dy2358 − dy2367 − dy2457 + dy2468 + dy3456 + dy3478 + dy5678,

where

dyijkl = dyi ∧ dyj ∧ dyk ∧ dyl, (9.224)

and yi with i = 1, . . . , 8 are the coordinates of � 8. This 21-dimensional Lie

group is compact and simply-connected.

The decomposition of the adjoint is 28 = 21 + 7. Spin(8) has three

eight-dimensional representations: the fundamental and two spinors, which

are sometimes denoted 8v, 8s and 8c. Because of the triality of Spin(8),

discussed in Chapter 5, it is possible to embed Spin(7) inside Spin(8) such

that one spinor decomposes as 8c = 7 + 1, while the 8v and 8s both reduce

to the spinor 8 of the Spin(7) subgroup. By choosing such an embedding,

the Spin(7) holonomy preserves 1/16 of the original supersymmetry corre-

sponding to the singlet in the decomposition of the two Spin(8) spinors.

Examples of compact Spin(7) manifolds can be obtained, as in the G2

case, as the blow-ups of orbifolds. The simplest example starts with an

orbifold T 8/
� 4

2. Spin(7) manifolds are not Kähler in general. As in the G2

case, it is interesting to consider manifolds with singularities, which can lead

to strongly coupled gauge theories.

EXERCISES

EXERCISE 9.16

Verify that the calibration (9.212) is invariant under 14 linearly independent

combinations of the 21 rotation generators of � 7.



440 String geometry

SOLUTION

An infinitesimal rotation has the form Rij = δij + aij , where aij is infinites-

imal, and aij = −aji. This acts on the coordinates by y′i = Rijy
j . Now

plug this into the three-form (9.212) and keep only the linear terms in a.

Requiring the three-form to be invariant results in the equations

a14 + a36 + a27 = 0, a15 + a73 + a26 = 0,

a16 + a43 + a52 = 0, a17 + a35 + a42 = 0,

a76 + a54 + a32 = 0, a12 + a74 + a65 = 0,

a13 + a57 + a64 = 0.

These seven constraints leave 21 − 7 = 14 linearly independent rotations

under which the calibration is invariant. This construction ensures that

they generate a group. 2

Appendix: Some basic geometry and topology

This appendix summarizes some basic geometry and topology needed in this

chapter as well as other chapters of this book. This summary is very limited,

so we refer the reader to GSW as well as some excellent review articles for

a more detailed discussion. The mathematically inclined reader may prefer

to consult the math literature for a more rigorous approach.

Real manifolds

What is a manifold?

A real d-dimensional manifold is a space which locally looks like Euclidean

space � d. More precisely, a real manifold of dimension d is defined by

introducing a covering with open sets on which local coordinate systems are

introduced. Each of these coordinate systems provides a homeomorphism

between the open set and a region in � d. The manifold is constructed by

pasting together the open sets. In regions where two open sets overlap,

the two sets of local coordinates are related by smooth transition functions.

Some simple examples of manifolds are as follows:

• � d and � d are examples of noncompact manifolds.
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Fig. 9.13. This is not a one-dimensional manifold, because the intersection points
are singularities.

• The n-sphere
∑n+1

i=1 (x2
i ) = 1 is an example of a compact manifold. The

case n = 0 corresponds to two points at x = ±1, n = 1 is a circle and n = 2

is a sphere. In contrast to the one-dimensional noncompact manifold � 1,

the compact manifold S1 needs two open sets to be constructed.

• The space displayed in Fig. 9.13 is not a one-dimensional manifold since

there is no neighborhood of the cross over points that looks like � 1.

Homology and cohomology

Many topological aspects of real manifolds can be studied with the help of

homology and cohomology groups. In the following let us assume that M is

a compact d-dimensional manifold with no boundary.

A p-form Ap is an antisymmetric tensor of rank p. The components of Ap
are

Ap =
1

p!
Aµ1···µpdx

µ1 ∧ · · · ∧ dxµp , (9.225)

where ∧ denotes the wedge product (an antisymmetrized tensor product).

From a mathematician’s viewpoint, these p-forms are the natural quantities

to define on a manifold, since they are invariant under diffeomorphisms and

therefore do not depend on the choice of coordinate system. The possible

values of p are p = 0, 1, . . . , d.

The exterior derivative d gives a linear map from the space of p-forms into

the space of (p+ 1)-forms given by

dAp =
1

p!
∂µ1Aµ2···µp+1dx

µ1 ∧ · · · ∧ dxµp+1 . (9.226)

A crucial property that follows from this definition is that the operator d is

nilpotent, which means that d2 = 0. This can be illustrated by applying d2
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to a zero form

ddA0 = d

(
∂A0

∂xµ
dxµ

)
=

∂2A0

∂xµ∂xν
dxµ ∧ dxν , (9.227)

which vanishes due to antisymmetry of the wedge product. A p-form is

called closed if

dAp = 0, (9.228)

and exact if there exists a globally defined (p− 1)-form Ap−1 such that

Ap = dAp−1. (9.229)

A closed p-form can always be written locally in the form dAp−1, but this

may not be possible globally. In other words, a closed form need not be

exact, though an exact form is always closed.

Let us denote the space of closed p-forms on M by Cp(M) and the space

of exact p-forms on M by Zp(M). Then the pth de Rham cohomology group

Hp(M) is defined to be the quotient space

Hp(M) = Cp(M)/Zp(M). (9.230)

Hp(M) is the space of closed forms in which two forms which differ by an

exact form are considered to be equivalent. The dimension of Hp(M) is

called the Betti number. Betti numbers are very basic topological invariants

characterizing a manifold. The Betti numbers of S2 and T 2 are described in

Fig. 9.14. Another especially important topological invariant of a manifold

is the Euler characteristic, which can be expressed as an alternating sum of

Betti numbers

χ(M) =

d∑

i=0

(−1)ibi(M). (9.231)

The Betti numbers of a manifold also give the dimensions of the homology

groups, which are defined in a similar way to the cohomology groups. The

analog of the exterior derivative d is the boundary operator δ, which acts

on submanifolds of M . Thus, if N is a submanifold of M , then δN is its

boundary. This operator associates with every submanifold its boundary

with signs that take account of the orientation. The boundary operator is

also nilpotent, as the boundary of a boundary is zero. Therefore, it can

be used to define homology groups of M in the same way that the exterior

derivative was used to define cohomology groups of M . Arbitrary linear

combinations of submanifolds of dimension p are called p-chains. Here again,

to be more precise, one should say what type of coefficients is used to form
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Fig. 9.14. The Betti numbers bp count the number of p-cycles which are not bound-
aries. For the sphere all one-cycles can be contracted to a point and the Betti
numbers are b0 = b2 = 1 and b1 = 0. The torus supports nontrivial one-cycles and
as a result the Betti numbers are b0 = b2 = 1 and b1 = 2.

the linear combinations. A chain that has no boundary is called closed, and

a chain that is a boundary is called exact. A closed chain zp, also called a

cycle, satisfies

δzp = 0. (9.232)

The simplicial homology group Hp(M) is defined to consist of equivalence

classes of p-cycles. Two p-cycles are equivalent if and only if their difference

is a boundary.

Poincaré duality

A fundamental theorem is Stokes’ theorem. Given a real manifold M , let

A be an arbitrary p-form and let N be an arbitrary (p + 1)-chain. Then

Stokes’ theorem states ∫

N
dA =

∫

δN
A. (9.233)

This formula provides an isomorphism between Hp(M) and Hd−p(M) that

is called Poincaré duality. To every closed p-form A there corresponds a

(d− p)-cycle N with the property
∫

M
A ∧B =

∫

N
B, (9.234)

for all closed (d− p)-forms B. The fact that the left-hand side only depends

on the cohomology class of A and the right-hand side only depends on the

homology class of N is an immediate consequence of Stokes’ theorem and

the fact that M has no boundary. Poincaré duality allows us to determine

the Betti numbers of a manifold by counting the nontrivial cycles of the

manifold. For example, SN has Betti numbers b0 = 1, b1 = 0, . . . , bN = 1.



444 String geometry

Riemannian geometry

Metric tensor

The manifolds described so far are entirely characterized by their topol-

ogy. Next, we consider manifolds endowed with a metric. If the metric

is positive definite, the manifold is called a Riemannian manifold. If it

has indefinite signature, as in the case of general relativity, it is called a

pseudo-Riemannian manifold. In either case the metric is a symmetric ten-

sor characterized by an infinitesimal line element

ds2 = gµν(x)dxµdxν , (9.235)

which allows one to compute the length of a curve by integration. The

line element itself is coordinate independent. This fact allows one to com-

pute how the metric components gµν(x) transform under general coordinate

transformations (diffeomorphisms).

The metric tensor can be expressed in terms of the frame. This consists

of d linearly independent one-forms eα that are defined locally on M . In

terms of a basis of one-forms

eα = eαµdx
µ. (9.236)

The components eαµ form a matrix called the vielbein. Let ηαβ and ηαβ
denote the flat metric whose only nonzero entries are ±1 on the diagonal.

In the Riemannian case (Euclidean signature) η is the unit matrix. In the

Lorentzian case, there is one −1 corresponding to the time direction. The

metric tensor is given in terms of the frame by

g = ηαβe
α ⊗ eβ. (9.237)

In terms of components this corresponds to

gµν = ηαβe
α
µe

β
ν . (9.238)

The inverse vielbein and metric are denoted eµα and gµν .

Harmonic forms

The metric is needed to define the Laplace operator acting on p-forms on a

d-dimensional space given by

∆p = d†d+ dd† = (d+ d†)2, (9.239)

where

d† = (−1)dp+d+1 ? d? (9.240)
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for Euclidean signature, and there is an extra minus sign for Lorentzian

signature. The Hodge ?-operator acting on p-forms is defined as

?(dxµ1 ∧ · · · ∧ dxµp) =
εµ1···µpµp+1···µd

(d− p)!|g|1/2 gµp+1νp+1 · · · gµdνddxνp+1 ∧ · · · ∧ dxνd .
(9.241)

The Levi–Civita symbol ε transforms as a tensor density, while ε/|g|1/2 is a

tensor. A p-form A is said to be harmonic if and only if

∆pA = 0. (9.242)

Harmonic p-forms are in one-to-one correspondence with the elements of the

group Hp(M). Indeed, from the definition of the Laplace operator it follows

that if Ap is harmonic

(dd† + d†d)Ap = 0, (9.243)

and as a result

(Ap, (dd
† + d†d)Ap) = 0⇒ (d†Ap, d†Ap) + (dAp, dAp) = 0. (9.244)

Using a positive-definite scalar product it follows that Ap is closed and co-

closed. The Hodge theorem states that on a compact manifold that has a

positive definite metric a p-form has a unique decomposition into harmonic,

exact and co-exact pieces

Ap = Ah
p + dAe.

p−1 + d†Ac.e.
p−1. (9.245)

As a result, a closed form can always be written in the form

Ap = Ah
p + dAe.

p−1. (9.246)

Since the Hodge dual turns a closed p-form into a co-closed (d− p)-form

and vice versa, it follows that the Hodge dual provides an isomorphism

between the space of harmonic p-forms and the space of harmonic (d− p)-
forms. Therefore,

bp = bd−p. (9.247)

The connection

Another fundamental geometric concept is the connection. There are ac-

tually two of them: the affine connection and the spin connection, though

they are related (via the vielbein). Connections are not tensors, though the

arbitrariness in their definitions corresponds to adding a tensor. Also, they

are used in forming covariant derivatives, which are constructed so that they
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map tensors to tensors. The expressions for the connections can be deduced

from the fundamental requirement that the vielbein is covariantly constant

∇µeαν = ∂µe
α
ν − Γρµνe

α
ρ + ωµ

α
βe
β
ν = 0. (9.248)

This equation determines the affine connection Γ and the spin connection ω

up to a contribution characterized by a torsion tensor, which is described in

Chapter 10. The affine connection, for example, is given by the Levi–Civita

connection plus a torsion contribution

Γρµν =

{
ρ

µν

}
+Kµν

ρ, (9.249)

where the Levi–Civita connection is
{
ρ

µν

}
=

1

2
gρλ(∂µgνλ + ∂νgµλ − ∂λgµν), (9.250)

and K is called the contortion tensor. The formula for the spin connection,

given by solving Eq. (9.248), is

ωµ
α
β = −eνβ(∂µe

α
ν − Γλµνe

α
λ). (9.251)

Curvature tensors

The curvature tensor can be constructed from either the affine connection Γ

or the spin connection ω. Let us follow the latter route. The spin connection

is a Lie-algebra valued one-form ωαβ = ωµ
α
βdx

µ. The algebra in question is

SO(d), or a noncompact form of SO(d) in the case of indefinite signature.

Thus, it can be regarded as a Yang–Mills gauge field. The curvature two-

form is just the corresponding field strength,

Rαβ = dωαβ + ωαγ ∧ ωγβ, (9.252)

which in matrix notation becomes

R = dω + ω ∧ ω. (9.253)

Its components have two base-space and two tangent-space indices Rµν
α
β.

One can move indices up and down and convert indices from early Greek

to late Greek by contracting with metrics, vielbeins and their inverses. In

particular, one can form Rµνρλ, which coincides with the Riemann curvature

tensor that is usually constructed from the affine connection. Contracting

a pair of indices gives the Ricci tensor

Rνλ = Rµνµλ, (9.254)
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and one more contraction gives the scalar curvature

R = gµνRµν . (9.255)

Holonomy groups

The holonomy group of a Riemannian manifold M of dimension d describes

the way various objects transform under parallel transport around closed

curves. The objects that are parallel transported can be tensors or spinors.

For spin manifolds (that is, manifolds that admit spinors), spinors are the

most informative. The reason is that the most general transformation of

a vector is a rotation, which is an element of SO(d).33 The corresponding

transformation of a spinor, on the other hand, is an element of the covering

group Spin(d). So let us suppose that a spinor is parallel transported around

a closed curve. As a result, the spinor is rotated from its original orientation

ε→ Uε, (9.256)

where U is an element of Spin(d) in the spinor representation appropriate

to ε. Now imagine taking several consecutive paths each time leaving and

returning to the same point. The result for the spinor after two paths is, for

example,

ε→ U1U2ε = U3ε. (9.257)

As a result, the U matrices build a group, called the holonomy group H(M).

The generic holonomy group of a Riemannian manifold M of real di-

mension d that admits spinors is Spin(d). Now one can consider different

special classes of manifolds in which H(M) is only a subgroup of Spin(d).

Such manifolds are called manifolds of special holonomy.

• H ⊆ U(d/2) if and only if M is Kähler.

• H ⊆ SU(d/2) if and only if M is Calabi–Yau.

• H ⊆ Sp(d/4) if and only if M is hyper-Kähler.

• H ⊆ Sp(d/4) · Sp(1) if and only if M is quaternionic Kähler.

In the first two cases d must be a multiple of two, and in the last two

cases it must be a multiple of four. Kähler manifolds and Calabi–Yau man-

ifolds are discussed later in this appendix. Hyper-Kähler and quaternionic

Kähler manifolds will not be considered further. There are two other cases

of special holonomy. In seven dimensions the exceptional Lie group G2 is

33 Reflections are avoided by assuming that the manifold is oriented.
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a possible holonomy group, and in eight dimensions Spin(7) is a possible

holonomy group. The G2 case is of possible physical interest in the context

of compactifying M-theory to four dimensions.

Complex manifolds

A complex manifold of complex dimension n is a special case of a real mani-

fold of dimension d = 2n. It is defined in an analogous manner using complex

local coordinate systems. In this case the transition functions are required

to be biholomorphic, which means that they and their inverses are both

holomorphic. Let us denote complex local coordinates by za (a = 1, . . . , n)

and their complex conjugates z̄ā.

A complex manifold admits a tensor J , with one covariant and one con-

travariant index, which in complex coordinates has components

Ja
b = iδa

b, Jā
b̄ = −iδāb̄, Ja

b̄ = Jā
b = 0. (9.258)

These equations are preserved by a holomorphic change of variables, so they

describe a globally well-defined tensor.

Sometimes one is given a real manifold M in 2n dimensions, and one

wishes to determine whether it is a complex manifold. The first requirement

is the existence of a tensor, Jmn, called an almost complex structure, that

satisfies

Jm
nJn

p = −δmp. (9.259)

This equation is preserved by a smooth change of coordinates. The second

condition is that the almost complex structure is a complex structure. The

obstruction to this is given by a tensor, called the Nijenhuis tensor

Np
mn = Jm

q∂[qJn]
p − Jnq∂[qJm]

p. (9.260)

When this tensor is identically zero, J is a complex structure. Then it is

possible to choose complex coordinates in every open set that defines the

real manifold M such that J takes the values given in Eq. (9.258) and the

transition functions are holomorphic.

On a complex manifold one can define (p, q)-forms as having p holomorphic

and q antiholomorphic indices

Ap,q =
1

p!q!
Aa1···ap b̄1···b̄qdz

a1 ∧ · · · ∧ dzap ∧ dz̄b̄1 ∧ · · · ∧ dz̄b̄q . (9.261)

The real exterior derivative can be decomposed into holomorphic and anti-

holomorphic pieces

d = ∂ + ∂̄ (9.262)
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with

∂ = dza
∂

∂za
and ∂̄ = dz̄ā

∂

∂z̄ā
. (9.263)

Then ∂ and ∂̄, which are called Dolbeault operators, map (p, q)-forms to

(p + 1, q)-forms and (p, q + 1)-forms, respectively. Each of these exterior

derivatives is nilpotent

∂2 = ∂̄2 = 0, (9.264)

and they anticommute

∂∂̄ + ∂̄∂ = 0. (9.265)

Complex geometry

Let us now consider a complex Riemannian manifold. In terms of the com-

plex local coordinates, the metric tensor is given by

ds2 = gabdz
adzb + gab̄dz

adz̄b̄ + gābdz̄
ādzb + gāb̄dz̄

ādz̄b̄. (9.266)

The reality of the metric implies that gāb̄ is the complex conjugate of gab
and that gab̄ is the complex conjugate of gāb. A hermitian manifold is a

special case of a complex Riemannian manifold, which is characterized by

the conditions

gab = gāb̄ = 0. (9.267)

These conditions are preserved under holomorphic changes of variables, so

they are globally well defined.

The Dolbeault cohomology group Hp,q
∂̄

(M) of a hermitian manifold M

consists of equivalence classes of ∂̄-closed (p, q)-forms. Two such forms are

equivalent if and only if they differ by a ∂̄-exact (p, q)-form. The dimension

of Hp,q
∂̄

(M) is called the Hodge number hp,q. We can define the Laplacians

∆∂ = ∂∂† + ∂†∂ and ∆∂̄ = ∂̄∂̄† + ∂̄†∂̄. (9.268)

A Kähler manifold is defined to be a hermitian manifold on which the

Kähler form

J = igab̄dz
a ∧ dz̄b̄ (9.269)

is closed

dJ = 0. (9.270)

It follows that the metric on these manifolds satisfies ∂agbc̄ = ∂bgac̄, as well
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as the complex conjugate relation, and therefore it can be written locally in

the form

gab̄ =
∂

∂za
∂

∂z̄b̄
K(z, z̄), (9.271)

where K(z, z̄) is called the Kähler potential. Thus,

J = i∂∂̄K.

The Kähler potential is only defined up to the addition of arbitrary holo-

morphic and antiholomorphic functions f(z) and f̄(z̄), since

K̃(z, z̄) = K(z, z̄) + f(z) + f̄(z̄) (9.272)

leads to the same metric. In fact, there are such relations on the overlaps of

open sets.

On Kähler manifolds the various Laplacians all become identical

∆d = 2∆∂̄ = 2∆∂ . (9.273)

The various possible choices of cohomology groups (based on d, ∂ and ∂̄)

each have a unique harmonic representative of the corresponding type, as in

the real case described earlier. Therefore, in the case of Kähler manifolds,

it follows that they are all identical

Hp,q
∂̄

(M) = Hp,q
∂ (M) = Hp,q(M). (9.274)

As a consequence, the Hodge and the Betti numbers are related by

bk =
k∑

p=0

hp,k−p. (9.275)

If ω is a (p, q)-form on a Kähler manifold with n complex dimensions,

then the complex conjugate form ω? is a (q, p)-form. It follows that

hp,q = hq,p. (9.276)

Similarly, if ω is a (p, q)-form, then ?ω is a (n− p, n− q)-form. This implies

that

hn−p,n−q = hp,q. (9.277)

One way of understanding this result is to focus on the harmonic represen-

tatives of the cohomology classes, which are both closed and co-closed. As

in the case of real manifolds, the Hodge dual of a closed form is co-closed

and vice versa, so the Hodge dual of a harmonic form is harmonic.

In terms of complex local coordinates, only the mixed components of the
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Ricci tensor are nonvanishing for a hermitian manifold. Therefore, one can

define a (1, 1)-form, called the Ricci form, by

R = iRab̄dz
a ∧ dz̄b̄. (9.278)

For a hermitian manifold, the exterior derivative of the Ricci form is propor-

tional to the torsion. However, for a Kähler manifold the torsion vanishes,

and therefore the Ricci form is closed dR = 0. It is therefore a represen-

tative of a cohomology class belonging to H1,1(M). This class is called the

first Chern class

c1 =
1

2π
[R]. (9.279)

EXERCISES

EXERCISE A.1

Use Stokes’ theorem to verify Poincaré duality.

SOLUTION

Consider a form A ∈ Hp(M). It can be expanded in a basis {wi}, so that

A = αiw
i. Consider also a form B ∈ Hd−p(M), which is expanded in a basis

{vj} as B = βjv
j. Therefore,
∫

M
A ∧B = αiβj

∫

M
wi ∧ vj ≡ αiβjmij .

Now we define the dual basis to {vj} as {Zj}, which are (d− p)-cycles that

satisfy ∫

Zj

vi = δij .

According to Stokes’ theorem, we can integrate B over the (d − p)-cycle

N = αim
ijZj , to get
∫

N
B =

∫

αimijZj

βγv
γ = αiβγm

ijδγj = αiβjm
ij =

∫

M
A ∧B.

It follows that, for any A ∈ Hp(M), there is a corresponding N ∈ Hd−p(M).

This implies Poincaré duality

Hp(M) ≈ Hd−p(M)
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EXERCISE A.2

Consider the complex plane with coordinate z = x + iy and the standard

flat Euclidean metric (ds2 = dx2 + dy2). Compute ?dz and ?dz̄.

SOLUTION

Because we have a Euclidean metric, it is easy to check

?dx = dy and ? dy = −dx,

where we have used εxy = −εyx = 1. Thus

?dz = −idz and ? dz̄ = idz̄.

EXERCISE A.3

If ∇ is a torsion-free connection, which means that Γpmn = Γpnm, show that

Eq. (9.260) is equivalent to

Np
mn = Jqm∇qJpn − Jqn∇qJpm − Jpq∇mJqn + Jpq∇nJqm.

SOLUTION

By definition

Jqm∇qJpn + Jpq∇nJqm − Jqn∇qJpm − Jpq∇mJqn

= Jqm(∂qJ
p
n + Γ p

qλ Jλn − Γ λ
qn Jpλ)

+Jpq(∂nJ
q
m + Γ q

nλ Jλm − Γ λ
nm Jqλ)− (n↔ m).

Because JqmΓ p
qλ Jλn and JpqΓ λ

nm Jqλ are symmetric in (n,m), if the con-

nection is torsion-free, these terms cancel. To see the cancellation of

JpqΓ
q

nλ Jλm − JqmΓ λ
qn Jpλ,

we only need to exchange the index λ and q of the first term. So all the

affine connection terms cancel out, and the expression simplifies to

Np
mn = Jqm∂qJ

p
n + Jpq∂nJ

q
m − (n↔ m),

which is what we wanted to show. 2
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HOMEWORK PROBLEMS

PROBLEM 9.1

By considering the orbifold limit in Section 9.3 explain why the 22 harmonic

two-forms of K3 consist of three self-dual forms and 19 anti-self-dual forms.

PROBLEM 9.2

Show that the Eguchi–Hanson space defined by Eq. (9.24) is Ricci flat and

Kähler and that the Kähler form is anti-self-dual.

PROBLEM 9.3

Show that the curvature two-form of S2 using the Fubini–Study metric is

R = −2
dz ∧ dz̄

(1 + zz̄)2
.

Using this result compute the Chern class and the Chern number (that is,

the integral of the Chern class over S2) for the tangent bundle of S2.

PROBLEM 9.4

Show that the Kähler potential for � P n given in Eq. (9.31) undergoes a

Kähler transformation when one changes from one set of local coordinates

to another one. Construct the Fubini–Study metric.

PROBLEM 9.5

Show that K = − log(
∫
J) is the Kähler potential for the Kähler-structure

modulus of a two-dimensional torus.

PROBLEM 9.6

Consider a two-dimensional torus characterized by two complex parame-

ters τ and ρ (that is, an angle θ is also allowed). Show that T-duality

interchanges the complex-structure and Kähler parameters, as mentioned in

Section 9.5, and that the spectrum is invariant under this interchange.

PROBLEM 9.7

Verify the Lichnerowicz equation discussed in Section 9.5:

∇k∇kδgmn + 2R p q
m n δgpq = 0.

Hint: use Rmn = 0 and the gauge condition in Eq. (9.91).
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PROBLEM 9.8

Use (9.92) to show that (9.93) and (9.96) are harmonic.

PROBLEM 9.9

Check the result for the Kähler potential Eq. (9.117).

PROBLEM 9.10

Show that Eq. (9.132) agrees with Eq. (9.129).

PROBLEM 9.11

Compute the scalar curvature of the conifold metric in Eq. (9.143), and

show that it diverges at X1 = 0. Thus, the conifold singularity is a real

singularity in the moduli space.

PROBLEM 9.12

Show that the operators in Eq. (9.146) are projection operators.

PROBLEM 9.13

Consider the E8 × E8 heterotic string compactified on a six-dimensional

orbifold

T 2 × T 2 × T 2

�
4

,

where
�

4 acts on the complex coordinates (z1, z2, z3) of the three tori, as

(z1, z2, z3) → (iz1, iz2,−z3). Identify the spin connection with the gauge

connection of one of the E8 s to find the spectrum of massless modes and

gauge symmetries in four dimensions.

PROBLEM 9.14

Verify that Eq. (9.172) vanishes if J is the Kähler form.

PROBLEM 9.15

As mentioned in Section 9.11, compactification of the type IIB theory on

K3 leads to a chiral theory with N = 2 supersymmetry in six dimensions.

Since this theory is chiral, it potentially contains gravitational anomalies.

Using the explicit form of the anomaly characteristic classes discussed in

Chapter 5, show that anomaly cancellation requires that the massless sector

contain 21 matter multiplets (called tensor multiplets) in addition to the

supergravity multiplet.
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PROBLEM 9.16

Consider the second term in the action (9.189) restricted to two dimensions

described by a complex variable z. Form the equation of motion of the field

τ and show that it is satisfied by any holomorphic function τ(z).

PROBLEM 9.17

Consider a Calabi–Yau three-fold given as an elliptically fibered manifold

over � P 1 × � P 1

y2 = x3 + f(z1, z2)x+ g(z1, z2),

where z1, z2 represent the two � P 1 s and f, g are polynomials in f in (z1, z2).

(i) What is the degree of the polynomials f and g? Hint: write down

the holomorphic three-form and insist that it has no zeros or poles

at infinity.

(ii) Compute the number of independent complex structure deformations

of this Calabi–Yau. What do you obtain for the Hodge number h2,1?

(iii) How many Kähler deformations do you find, and what does this imply

for h1,1?

PROBLEM 9.18

Verify properties (i)–(iii) for the G2 orbifold T 7/Γ defined in Section 9.12.

Show that the blow-up of each fixed point gives 12 copies of T 3.

PROBLEM 9.19

Verify that the solution to the constraint equation for a supersymmetric

three-cycle in a G2 manifold Eq. (9.218) is given by Eq. (9.219). Repeat the

calculation for the supersymmetric four-cycle.

PROBLEM 9.20

Show that the direct product of the multi-center Taub–NUT metric dis-

cussed in Section 8.3 with flat � 3 corresponds to a 7-manifold with G2

holonomy.

PROBLEM 9.21

Find the conditions, analogous to those in Exercise 9.16, defining the Spin(7)

action that leaves invariant the four-form (9.224). Verify that there are the

correct number of conditions.
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Flux compactifications

Moduli-space problem

The previous chapter described Calabi–Yau compactification for a product

manifold M4 ×M . When the ten-dimensional heterotic string is compacti-

fied on such a manifold the resulting low-energy effective action has N = 1

supersymmetry, which makes it phenomenologically attractive in a num-

ber of respects. Certain specific Calabi–Yau compactifications even lead to

three-generation models.

An unrealistic feature of these models is that they contain massless scalars

with undetermined vacuum expectation values (vevs). Therefore, they do

not make specific predictions for many physical quantities such as coupling

constants. These scalar fields are called moduli fields, since their vevs are

moduli for which there is no potential in the low-energy four-dimensional

effective action. This moduli-space problem or moduli-stabilization problem

has been recognized, but not emphasized, in the traditional string theory

literature. This situation changed with the discovery of string dualities and

recognition of the key role that branes play in string theory.

As discussed in Chapter 8, the moduli-space problem already arises for

simple circle compactification of D = 11 supergravity, where the size of the

circle is a modulus, dual to the vev of the type IIA dilaton, which is un-

determined. A similar problem, in a more complicated setting, appears for

the volume of the compact space in conventional Calabi–Yau compactifica-

tions of any superstring theory. In this case the size of the internal manifold

cannot be determined.

Warped compactifications

Recently, string theorists have understood how to generate a potential that

can stabilize the moduli fields. This requires compactifying string theory

456
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on a new type of background geometry, a warped geometry.1 Warped com-

pactifications also provide interesting models for superstring and M-theory

cosmology. Furthermore, they are relevant to the duality between string

theory and gauge theory discussed in Chapter 12.

In a warped geometry, background values for certain tensor fields are

nonvanishing, so that associated fluxes thread cycles of the internal manifold.

An n-form potential A with an (n + 1)-form field strength F = dA gives a

magnetic flux of the form2

∫

γn+1

F, (10.1)

that depends only on the homology of the cycle γn+1. Similarly, in D di-

mensions the same field gives an electric flux
∫

γD−n−1

?F, (10.2)

where the star indicates the Hodge dual in D dimensions. This flux depends

only on the homology of the cycle γD−n−1.

Flux quantization

This chapter explores the implications of flux compactifications for the

moduli-space problem, and it presents recent developments in this active

area of research. The fluxes involved are strongly constrained. This is im-

portant if one hopes to make predictions for physical parameters such as the

masses of quarks and leptons. The form of the n-form tensor fields that solve

the equations of motion is derived, and the important question of which of

these preserve supersymmetry and which do not is explored.

In addition to the equations of motion, a second type of constraint arises

from flux-quantization conditions. Section 10.5 shows that when branes are

the source of the fluxes, the quantization is simple to understand: the flux

(suitably normalized) through a cycle surrounding the branes is the number

of enclosed branes, which is an integer. For manifolds of nontrivial homology,

there can be integrally quantized fluxes through nontrivial cycles even when

there are no brane sources, as is explained in Section 10.1. In such cases, the

quantization is a consequence of the generalized Dirac quantization condition

explained in Chapter 6. In special cases, there can be an offset by some

fraction in the flux quantization rule due to effects induced by curvature.

1 Warped geometries have been known for a long time, but their role in the moduli-stabilization
problem was only recognized in the 1990s.

2 It is a matter of convention which flux is called magnetic and which flux is called electric.
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This happens in M-theory, for example, due to higher-order quantum gravity

corrections to theD = 11 supergravity action, as is explained in Section 10.5.

Flux compactifications

Let us begin by considering compactifications of M-theory on manifolds that

are conformally Calabi–Yau four-folds. For these compactifications, the met-

ric differs from a Calabi–Yau metric by a conformal factor. Even though

these models are phenomenologically unrealistic, since they lead to three-

dimensional Minkowski space-time, in some cases they are related to N = 1

theories in four dimensions. This relatively simple class of models illustrates

many of the main features of flux compactifications. More complicated ex-

amples, such as type IIB and heterotic flux compactifications, are discussed

next. In the latter case nonzero fluxes require that the internal compactifica-

tion manifolds are non-Kähler but still complex. It is convenient to describe

them using a connection with torsion.

The dilaton and the radial modulus

Two examples of moduli are the dilaton, whose value determines the string

coupling constant, and the radial modulus, whose value determines the size

of the internal manifold. Classical analysis that neglects string loop and in-

stanton corrections is justified when the coupling constant is small enough.

Similarly, a supergravity approximation to string theory is justified when

the size of the internal manifold is large compared to the string scale. When

there is no potential that fixes these two moduli, as is the case in the ab-

sence of fluxes, these moduli can be tuned so that these approximations are

arbitrarily good. Therefore, even though compactifications without fluxes

are unrealistic, at least one can be confident that the formulas have a regime

of validity. This is less obvious for flux compactifications with a stabilized

dilaton and radial modulus, but it will be shown that the supergravity ap-

proximation has a regime of validity for flux compactifications of M-theory

on manifolds that are conformally Calabi–Yau four-folds.

More generally, moduli fields are stabilized dynamically in flux compactifi-

cations. While this is certainly what one wants, it also raises new challenges.

How can one be sure that a classical supergravity approximation has any

validity at all, once the value of the radial modulus and the dilaton are sta-

bilized? There is generally a trade-off between the number of moduli that

are stabilized and the amount of mathematical control that one has. This

poses a challenge, since in a realistic model all moduli should be stabilized.
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Some models are known in which all moduli are fixed, and a supergravity

approximation still can be justified. In these models the fluxes take integer

values N , which can be arbitrarily large in such a way that the supergravity

description is valid in the large N limit.

The string theory landscape

Even though flux compactifications can stabilize the moduli fields appear-

ing in string theory compactifications, there is another troubling issue. Flux

compactifications typically give very many possible vacua, since the fluxes

can take many different discrete values, and there is no known criterion for

choosing among them. These vacua can be regarded as extrema of some po-

tential, which describes the string theory landscape. Section 10.6 discusses

one approach to addressing this problem, which is to accept the large de-

generacy and to characterize certain general features of typical vacua using

a statistical approach.

Fluxes and dual gauge theories

Chapter 12 shows that superstring theories in certain backgrounds, which

typically involve nonzero fluxes, have a dual gauge-theory description. The

simplest examples involve conformally invariant gauge theories. However,

there are also models that provide dual supergravity descriptions of confining

supersymmetric gauge theories. Section 10.2 describes a flux model that is

dual to a confining gauge theory in the context of the type IIB theory, the

Klebanov–Strassler (KS) model. The dual gauge theory aspects of this model

are discussed in Chapter 12.

Brane-world scenarios

An alternative to the usual Kaluza–Klein compactification method of hid-

ing extra dimensions, called the brane-world scenario, is described in Section

10.2. One of the goals of this approach is to solve the gauge hierarchy prob-

lem, that is, to explain why gravity is so much weaker than the other forces.

The basic idea is that the visible Universe is a 3-brane, on which the stan-

dard model fields are confined, embedded in a higher dimension space-time.

Extra dimensions have yet to be observed experimentally, of course, but in

this set-up it is not out of the question that this could be possible.3 While

3 The search for extra dimensions is one of the goals of the Large Hadron Collider (LHC) at
CERN, which is scheduled to start operating in 2007.
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the standard model fields are confined to the 3-brane, gravity propagates in

all 4 + n dimensions. Section 10.2 shows that the hierarchy problem can be

solved if the (4 + n)-dimensional background geometry is not factorizable,

that is, if it involves a warp factor, like those of string theory flux compact-

ifications. In fact, flux compactifications of string theory give a warp factor

in the geometry, which could provide a solution to the hierarchy problem.

This is an alternative to the more usual approach to the hierarchy problem

based on supersymmetry broken at the weak scale.

Fluxes and superstring cosmology

The Standard Big Bang model of cosmology (SBB) is the currently accepted

theory that explains many features of the Universe such as the existence of

the cosmic microwave background (CMB). The CMB accounts for most of

the radiation in the Universe. This radiation is nearly isotropic and has

the form of a black-body spectrum. However, there are small irregularities

in this radiation that can only be explained if, before the period described

by the SBB, the Universe underwent a period of rapid expansion, called

inflation. This provides the initial conditions for the SBB theory. Different

models of inflation have been proposed, but inflation ultimately needs to be

derived from a fundamental theory, such as string theory. This is currently

a very active area of research in the context of flux compactifications, and it

is described towards the end of this chapter. Cosmology could provide one

of the most spectacular ways to verify string theory, since strings of cosmic

size, called cosmic strings, could potentially be produced.

10.1 Flux compactifications and Calabi–Yau four-folds

In the traditional string theory literature, compactifications to fewer than

four noncompact space-time dimensions were not considered to be of much

interest, since the real world has four dimensions. However, this situa-

tion changed with the discovery of the string dualities described in Chap-

ters 8 and 9. In particular, it was realized that M-theory compactifications

on conformally Calabi–Yau four-folds, which are discussed in this section,

are closely related to certain F-theory compactifications to four dimensions.

Since the three-dimensional theories have N = 2 supersymmetry, which

means that there are four conserved supercharges, they closely resemble

four-dimensional theories with N = 1 supersymmetry.

Recall that Exercise 9.4 argued that a supersymmetric solution to a the-

ory with global N = 1 supersymmetry is a zero-energy solution of the equa-
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tions of motion. By solving the first-order supersymmetry constraints one

obtains solutions to the second-order equations of motion, and thus a con-

sistent string-theory background. One has to be careful when generalizing

this to theories with local supersymmetry, since solving the Killing spinor

equations does not automatically ensure that a solution to the full equations

of motion. This section shows that the supersymmetry constraints for flux

compactifications, together with the Bianchi identity, yield a solution to the

equations of motion, which can be derived from a potential for the moduli,

and that this potential describes the stabilization of these moduli.

M-theory on Calabi–Yau four-folds

The bosonic part of the action for 11-dimensional supergravity, presented in

Chapter 8, is

2κ2
11S =

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4. (10.3)

The only fermionic field is the gravitino and a supersymmetric configuration

is a nontrivial solution to the Killing spinor equation

δΨM = ∇Mε+
1

12

(
ΓMF(4) − 3F

(4)
M

)
ε = 0. (10.4)

The notation is the same as in Section 8.1. This equation needs to be solved

for some nontrivial spinor ε and leads to constraints on the background

metric as well as the four-form field strength. In Chapter 9 a similar analysis

of the supersymmetry constraints for the heterotic string was presented.

However, there the three-form tensor field was set to zero for simplicity.

In general, it is inconsistent to set the fluxes to zero, unless additional sim-

plifying assumptions (or truncations) are made. This section shows that van-

ishing fluxes are inconsistent for most M-theory compactifications on eight

manifolds due to the effects of quantum corrections to the action Eq. (10.3).

Warped geometry

Let us now construct flux compactifications of M-theory to three-dimensional

Minkowski space-time preserving N = 2 supersymmetry.4 The most gen-

eral ansatz for the metric that is compatible with maximal symmetry and

Poincaré invariance of the three-dimensional space-time is a warped metric.

This means that the space-time is not a direct product of an external space-

time with an internal manifold. Rather, a scalar function depending on the

4 A similar analysis can be performed to obtain models with N = 1 supersymmetry.
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coordinates of the internal dimensions ∆(y) is included. The explicit form

for the metric ansatz is

ds2 = ∆(y)−1 ηµνdx
µdxν︸ ︷︷ ︸

3D flat

space-time

+∆(y)1/2 gmn(y)dymdyn︸ ︷︷ ︸
8D internal

manifold

, (10.5)

where xµ are the coordinates of the three-dimensional Minkowski space-time

M3 and ym are the coordinates of the internal Euclidean eight-manifold

M . In the following we consider the case in which the internal manifold

is a Calabi–Yau four-fold, which results in N = 2 supersymmetry in three

dimensions. The scalar function ∆(y) is called the warp factor. The powers

of the warp factor in Eq. (10.5) have been chosen for later convenience.

In general, a warp factor can have a dramatic influence on the properties

of the geometry. Consider the example of a torus, which can be described

by the flat metric

ds2 = dθ2 + dϕ2 with 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π. (10.6)

By including a suitable warp factor, the torus turns into a sphere

ds2 = dθ2 + sin2 θdϕ2, (10.7)

leading to topology change. Moreover, once the warp factor is included,

it is no longer clear that the space-time splits into external and internal

components. However, this section shows (for flux compactifications of M-

theory on Calabi–Yau four-folds) that the effects of the warp factor are

subleading in the regime in which the size of the four-fold is large. In this

regime, one can use the properties of Calabi–Yau manifolds discussed in

Chapter 9.

Decomposition of Dirac matrices

To work out the dimensional reduction of Eq. (10.4), the 11-dimensional

Dirac matrices need to be decomposed. The decomposition that is required

for the 11 = 3 + 8 split is

Γµ = ∆−1/2(γµ ⊗ γ9) and Γm = ∆1/4(1⊗ γm), (10.8)

where γµ are the 2 × 2 Dirac matrices of M3. Concretely, they can be

represented by

γ0 = iσ1, γ1 = σ2 and γ2 = σ3, (10.9)
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where the σ’s are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
. (10.10)

Moreover, γm are the 16 × 16 gamma matrices of M and γ9 is the eight-

dimensional chirality operator that satisfies γ2
9 = 1 and anticommutes with

the other eight γm’s. It is both possible and convenient to choose a repre-

sentation in which the γm and γ9 are real symmetric matrices. In a tangent-

space basis one can choose the eight 16× 16 Dirac matrices on the internal

space M to be

σ2 ⊗ σ2 ⊗ 1⊗ σ1,3, σ2 ⊗ σ1,3 ⊗ σ2 ⊗ 1,

σ2 ⊗ 1⊗ σ1,3 ⊗ σ2, σ1,3 ⊗ 1⊗ 1⊗ 1 .
(10.11)

Then one can define a ninth symmetric matrix that anticommutes with all

of these eight as

γ9 = γ1 . . . γ8 = σ2 ⊗ σ2 ⊗ σ2 ⊗ σ2, (10.12)

from which the chirality projection operators

P± = (1± γ9)/2 (10.13)

are constructed.

Decomposition of the spinor

The 11-dimensional Majorana spinor ε decomposes into a sum of two terms

of the form

ε(x, y) = ζ(x)⊗ η(y) + ζ∗(x)⊗ η∗(y), (10.14)

where ζ is a two-component anticommuting spinor in three dimensions, while

η is a commuting 16-component spinor in eight dimensions. A theory with

N = 2 supersymmetry in three dimensions has two linearly independent

Majorana–Weyl spinors η1, η2 on M , which have been combined into a

complex spinor in Eq. (10.14). In general, these two spinors do not need to

have the same chirality. However, for Calabi–Yau four-folds the spinor on

the internal manifold is complex and Weyl

η = η1 + iη2 with (γ9 − 1)η = 0. (10.15)

This sign choice for the eigenvalue of γ9, which is just a convention, is

called positive chirality. The two real spinors η1, η2 correspond to the two

singlets in the decomposition of the 8c representation of Spin(8) to SU(4),

the holonomy group of a Calabi–Yau four-fold,

8c → 6⊕ 1⊕ 1. (10.16)
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Fig. 10.1. This figure illustrates the Poincaré–Hopf index theorem. A continuous
vector field on a sphere must have at least two zeros, which in this case are located
at the north and south poles, since the Euler characteristic is 2. On the other hand,
a vector field on a torus can be nonvanishing everywhere since χ = 0.

Nonchiral spinors

If η1 and η2 have opposite chirality the complex spinor η = η1 + iη2 is

nonchiral. The two spinors of opposite chirality define a vector field on the

internal manifold

va = η†1γaη2. (10.17)

Requiring this vector to be nonvanishing leads to an interesting class of solu-

tions. Indeed, the Poincaré–Hopf index theorem of algebraic topology states

that the number of zeros of a continuous vector field must be at least equal to

the absolute value of the Euler characteristic χ of the background geometry.

As a result, a nowhere vanishing vector field only exists for manifolds with

χ = 0. An example of this theorem is illustrated in Fig. 10.1. Flux back-

grounds representing M5-branes filling the three-dimensional space-time and

wrapping supersymmetric three-cycles on the internal space are examples of

this type of geometries. Moreover, once the spinor is nonchiral, compacti-

fications to AdS3 spaces become possible. Compactifications to AdS space

are considered in Chapter 12, so the discussion in this chapter is restricted

to spinors of positive chirality. It will turn out that AdS3 is not a solution

in this case.

Solving the supersymmetry constraints

The constraints that follow from Eq. (10.4) are influenced by the warp-

factor dependence of the metric. As was pointed out in Chapter 8, there

is a relation between the covariant derivatives of a spinor with respect to

a pair of metrics that differ by a conformal transformation. In particular,

in the present case, the internal and external components of the metric are

rescaled with a different power of the warp factor and the vielbeins are given
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by Eαµ = ∆−1/2eαµ and Eαm = ∆1/4eαm. This leads to

∇µε → ∇µε− 1
4∆−7/4 (γµ ⊗ γ9γ

m) ∂m∆ε,

∇mε → ∇mε+ 1
8∆−1∂n∆ (1⊗ γmn) ε.

(10.18)

For compactifications to maximally symmetric three-dimensional space-time,

Poincaré invariance restricts the possible nonvanishing components of F4 to

Fmnpq(y) and Fµνρm = εµνρfm(y), (10.19)

where εµνρ is the completely antisymmetric Levi–Civita tensor of M3. Once

the gamma matrices are decomposed as in Eq (10.8), the nonvanishing flux

components take the form

F(4) = ∆−1(1⊗ F) + ∆5/4(1⊗ γ9f),

F
(4)
µ = ∆3/4(γµ ⊗ f),

F
(4)
m = −∆3/2fm(y) (1⊗ γ9) + ∆−3/4(1⊗ Fm),

(10.20)

where F, Fm and f are defined like their ten-dimensional counterparts, but

the tensor fields are now contracted with eight-dimensional Dirac matrices

F =
1

24
Fmnpqγ

mnpq, Fm =
1

6
Fmnpqγ

npq and f = γmfm.

(10.21)

The gravitino supersymmetry transformation Eq. (10.4) has external and

internal components depending on the value of the index M .

External component of the gravitino equation

Let us analyze the external component δΨµ = 0 first. In three-dimensional

Minkowski space-time a covariantly constant spinor, satisfying

∇µζ = 0, (10.22)

can be found. As a result, the δΨµ = 0 equation becomes

/∂∆−3/2η + fη +
1

2
∆−9/4Fη = 0, (10.23)

which by projecting on the two chiralities using the projection operators P±
leads to

Fη = 0, (10.24)

and

fm(y) = −∂m∆−3/2. (10.25)
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The last of these equations provides a relation between the external flux

component and the warp factor.

Internal component of the gravitino equation

After decomposing the gamma matrices and fluxes using Eqs (10.8) and

(10.20), respectively, the internal component of the supersymmetry trans-

formation δΨm = 0 takes the form

∇mη +
1

4
∆−1∂m∆ η − 1

4
∆−3/4Fmη = 0. (10.26)

This equation leads to

Fmξ = 0 and ∇mξ = 0, (10.27)

where

ξ = ∆1/4η. (10.28)

Since ξ is a nonvanishing covariantly constant complex spinor with defi-

nite chirality, the second expression in Eq. (10.27) states that the internal

manifold M is conformal to a Calabi–Yau four-fold.

Conditions on the fluxes

The mathematical properties of Calabi–Yau four-folds are similar to those

of three-folds, as discussed in Chapter 9. The covariantly constant spinor

appearing in Eq. (10.27) can be used to define the almost complex structure

of the internal manifold

Ja
b = −iξ†γabξ, (10.29)

which has the same properties as for the Calabi–Yau three-fold case, as you

are asked to verify in Problems 10.2, 10.3. Recall that the Dirac algebra for

a Kähler manifold

{γa, γb} = 0, {γā, γ b̄} = 0, {γa, γ b̄} = 2gab̄, (10.30)

can be interpreted as an algebra of raising and lowering operators. This

is useful for evaluating the solution of Eq. (10.27). To see this rewrite

Eq. (10.29) as

Jab̄ = igab̄ = −iξ†γab̄ξ = −iξ†(γaγb̄ − gab̄)ξ. (10.31)

This implies

0 = ξ†γaγb̄ξ = (γāξ)
†(γb̄ξ). (10.32)
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By setting ā = b̄ the previous equation implies that ξ is a highest-weight

state that is annihilated by γā,

γāξ = γaξ = 0, (10.33)

for all indices on the Calabi–Yau four-fold. Using this result, Exercise 10.3

shows that the first condition in Eq. (10.27) implies the vanishing of the

following flux components:

F 4,0 = F 0,4 = F 1,3 = F 3,1 = 0, (10.34)

and that the only nonvanishing component is F ∈ H (2,2), which must satisfy

the primitivity condition

Fab̄cd̄g
cd̄ = 0. (10.35)

Since ξ has a definite chirality, F is self-dual on the Calabi–Yau four-fold,

as is explained in Exercise 10.2. The self-duality implies that Eq. (10.35)

can be written in the following form:5

F 2,2 ∧ J = 0. (10.36)

As a result of the above analysis, supersymmetry is unbroken if F lies in the

primitive (2, 2) cohomology, that is,

F ∈ H(2,2)
primitive(M). (10.37)

In the following the general definition of primitive forms is given and their

relevance in building the complete de Rham cohomology is discussed.

Primitive cohomology

Any harmonic (p, q)-form of a Kähler manifold can be expressed entirely in

terms of primitive forms, a representation known as the Lefschetz decompo-

sition. This construction closely resembles the Fock-space construction of

angular momentum states |j,m〉 using raising and lowering operators J±.

Chapter 9 discussed the Hodge decomposition of the de Rham cohomology

of a compact Kähler manifold. The Lefschetz decomposition is compatible

with the Hodge decomposition, as is shown below.

On a compact Kähler manifold M of complex dimension d (and real di-

mension 2d) with Kähler form J , one can define an SU(2) action on harmonic

5 Problem 10.5 asks you to verify that the primitivity condition is modified when the complex
spinor on the internal manifold is nonchiral.
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forms (and hence the de Rham cohomology) by

J3 : G→ 1
2(d− n)G,

J− : G→ J ∧G,

J+ : G→ 1
2(n−2)!J

p1p2Gp1p2...pndx
p3 ∧ · · · ∧ dxpn ,

(10.38)

where G is a harmonic n-form. Notice that J− lowers the J3 eigenvalue by

one and as a result acts as a lowering operator while J+ increases the value

of J3 by one and thus acts as a raising operator. Problem 10.6 asks you to

verify that these operators satisfy an SU(2) algebra.

As in the case of the angular momentum algebra, the space of harmonic

forms can be classified according to their J3 and J2 eigenvalues, with basis

states denoted by

|j,m〉 with m = −j,−j + 1, . . . , j − 1, j. (10.39)

Primitive forms are defined as highest-weight states that are annihilated by

J+, that is,

J+Gprimitive = 0, (10.40)

and may be denoted by |j, j〉. All other states (or harmonic forms) can then

be obtained by acting with lowering operators J− on primitive forms. A

primitive n-form also satisfies

J2j+1
− Gprimitive = 0 where j =

d− n
2

. (10.41)

Notice that the primitive forms in the middle-dimensional cohomology (that

is, with n = d) correspond to j = 0. So they are singlets |0, 0〉 that are

annihilated by both the raising and lowering operators

J+G = 0 or J−G = 0. (10.42)

These two formulas correspond to Eqs (10.35) and (10.36), respectively.

This discussion makes it clear that primitive forms can be used to construct

any harmonic form and hence representatives of every de Rham cohomology

class. Schematically, the Lefschetz decomposition is6

Hn(M) =
⊕

k

Jk−H
n−2k
primitive(M). (10.43)

6 It would be more precise to write Harmn(M) instead of Hn(M).



10.1 Flux compactifications and Calabi–Yau four-folds 469

The Lefschetz decomposition is compatible with the Hodge decomposition,

so that we can also write

H(p,q)(M) =
⊕

k

Jk−H
(p−k,q−k)
primitive (M). (10.44)

In this way any harmonic (p, q)-form can be written in terms of primitive

forms. If M is a Calabi–Yau four-fold, it follows from Eq. (10.41) that

primitive (p, q)-forms satisfy

J ∧ · · · ∧ J︸ ︷︷ ︸
5−p−q times

∧F p,qprimitive = 0. (10.45)

In the case of a Calabi–Yau four-fold, it is a useful fact that the Hodge ?

operator has the eigenvalue (−1)p on the primitive (p, 4 − p) cohomology

(see Exercise 10.4). This is of relevance in Section 10.3.

Tadpole-cancellation condition

We have learned that unbroken supersymmetry requires that the internal

flux components Fmnpq(y) are given by a primitive (2, 2)-form, Eq. (10.37),

and the external flux components fm(y) are determined in terms of the warp

factor by Eq. (10.25). The equation that determines the warp factor follows

from the equation of motion of the four-form field strength. Using self-

duality, it would make the energy density |F4|2 proportional to the Laplacian

of log ∆, which gives zero when integrated over the internal manifold. If

this were the whole story, one would be forced to conclude that the flux

vanishes, so that one is left with ordinary Calabi–Yau compactification of

the type discussed in Chapter 9. However, quantum gravity corrections to

11-dimensional supergravity must be taken into account, and then nonzero

flux is required for consistency. Let us explain how this works.

The action for 11-dimensional supergravity receives quantum corrections,

denoted δS, coming from an eight-form X8 that is quartic in the Riemann

tensor

δS = −TM2

∫

M
A3 ∧X8, (10.46)

where

X8 =
1

(2π)4

[
1

192
trR4 − 1

768
(trR2)2

]
. (10.47)

This correction term was first derived by considering a one-loop scattering

amplitude in type IIA string theory involving four gravitons Gµν and one

two-form tensor field Bµν . In the type IIA theory the correction takes a

similar form as in M-theory, with the three-form A3 replaced by the NS–NS
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Gµν

Gµν Gµν

Gµν

Bµν

Fig. 10.2. The higher-order interaction in Eq. (10.46) can be determined by calcu-
lating a one-loop diagram in type IIA string theory, involving four gravitons and
one NS–NS two-form field, whose result can then be lifted to M-theory.

two-form B2. Since the result does not depend on the dilaton, it can be

lifted to M-theory.

The δS term is also required for the cancellation of anomalies on bound-

aries of the 11-dimensional space-time, such as those that are present in the

strongly coupled E8 × E8 theory, which is also know as heterotic M-theory.

This was discussed in Chapter 5. Together with the original
∫
A3 ∧ F4 ∧ F4

term it gives the complete Chern–Simons part of the theory, so it is not just

the leading term in some expansion. In fact, it is the only higher-derivative

term that can contribute to the problem at hand in the large-volume limit.

The field strength satisfies the Bianchi identity

dF = 0. (10.48)

Furthermore, the δS term contributes to the 11-dimensional equation of

motion of the four-form field strength. Combining Eqs (10.3) and (10.46),

the result is

d ? F4 = −1

2
F4 ∧ F4 − 2κ2

11TM2X8. (10.49)

Using Eq. (10.25) this gives an equation for the warp factor

d ?8 d log ∆ =
1

3
F ∧ F +

4

3
κ2

11TM2X8. (10.50)

Integrating this expression over the internal manifold leads to the tadpole-

cancellation condition, as follows. The integral of the left-hand side vanishes,

since it is exact, and (for the time being) it is assumed that no explicit delta

function singularities are present. In other words, it is assumed that no
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space-filling M2-branes are present. To obtain the result of the X8 integra-

tion, it is convenient to express the anomaly characteristic class X8 in terms

of the first and second Pontryagin forms of the internal manifold

P1 =
1

(2π)2

(
−1

2
trR2

)
and P2 =

1

(2π)4

[
−1

4
trR4 +

1

8
(trR2)2

]
.

(10.51)

This gives

X8 =
1

192
(P 2

1 − 4P2). (10.52)

For complex manifolds the Pontryagin classes are related to the Chern classes

by

P1 = c2
1 − 2c2 and P2 = c2

2 − 2c1c3 + 2c4. (10.53)

Thus

X8 =
1

192
(c4

1 − 4c2
1c2 + 8c1c3 − 8c4). (10.54)

Calabi–Yau manifolds have vanishing first Chern class, so the only nontrivial

contribution comes from the fourth Chern class. This in turn is related to

the Euler characteristic χ, so
∫

M
X8 = − 1

24

∫

M
c4 = − χ

24
. (10.55)

Thus, Eq. (10.50) leads to the tadpole-cancellation condition

1

4κ2
11TM2

∫

M
F ∧ F =

χ

24
. (10.56)

Fluxes without sources

Using the last equation, it is possible to estimate the order of magnitude of

the internal flux components. Expressing κ2
11 and the M2-brane tension in

terms of the 11-dimensional Planck length `p yields

4κ2
11TM2 = 2(2π`p)6. (10.57)

As a result, the order of magnitude of the fluxes is

Fmnpq ' O
(
`3p√
v

)
, (10.58)

where v is the volume of the Calabi–Yau four-fold. Comparing this result

with Eq. (10.50) shows that the warp factor satisfies log ∆ ∼ `6
p/v

3/4, or if
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Fig. 10.3. According to Maxwell’s theory, an electric current in a solenoid gener-
ates a magnetic field even though no monopoles, electric or magnetic, are present.
The integral of the field strength and its dual over any closed surface in space van-
ishes. Similarly, nontrivial flux solutions exist in M-theory, even when no δ-function
sources, corresponding to M2-branes or M5-branes, are present.

this is small

∆ ' 1 +O

(
`6p

v3/4

)
. (10.59)

In the approximation in which the size of the Calabi–Yau is very large, that

is, when `p/v
1/8 → 0, the background metric becomes unwarped.

This analysis shows that nontrivial flux solutions are possible even in the

absence of explicit delta function sources for M2-branes or M5-branes, which

would appear in the equation of motion and Bianchi identity for F4. A rather

similar situation appears in ordinary Maxwell theory, where a magnetic flux

is generated by an electric current running through a loop even though there

are no magnetic monopoles, as illustrated in Fig. 10.3.

According to Eq. (10.50), nonsingular solutions for the warp factor and

the background geometry are possible even in the absence of explicit brane

sources. In fact, a nonsingular background is necessary to justify rigorously

the validity of the supergravity approximation everywhere in space-time.

Nevertheless, the supergravity approximation is valid for singular solutions

provided that the delta-function singularities are treated carefully.

Inclusion of M2-brane sources

If M2-branes filling the external Minkowski space are also present, an addi-

tional integer N (the number of M2-branes) appears on the left-hand side

of Eq. (10.56), resulting in

N +
1

4κ2
11TM2

∫

M
F ∧ F =

χ

24
. (10.60)
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Since F is self-dual, both terms on the left-hand side of this equation are

positive. So if χ > 0, there are supersymmetry preserving solutions with

nonvanishing flux or M2-branes. The number of these solutions is finite,

because of quantization constraints on the fluxes that are discussed in Sec-

tion 10.6. For χ < 0 there are no supersymmetric solutions.

Interactions of moduli fields

As discussed in Chapter 9, a Calabi–Yau four-fold has three independent

Hodge numbers (h1,1, h2,1 and h3,1), each of which gives the multiplicities

of scalar fields in the lower-dimensional theory. The purpose here is to show

that many of these fields can be stabilized by fluxes.

The D = 3 field content

The variations of the complex structure of a Calabi–Yau four-fold are parametrized

by h3,1 complex parameters T I , the complex-structure moduli fields, which

belong to chiral supermultiplets. Deformations of the Kähler structure give

rise to h1,1 real moduli KA. Thus, the Kähler form is

J =

h1,1∑

A=1

KAeA, (10.61)

where eA is a basis of harmonic (1, 1)-forms. Together with the h1,1 vec-

tors arising from the three-form A3 these give h1,1 three-dimensional vec-

tor supermultiplets. Moreover, h2,1 additional complex moduli N I , belong-

ing to chiral supermultiplets, arise from the three-form A3. For simplic-

ity of the presentation, the scalars N I are ignored in the discussion that

follows. The conditions for unbroken N = 2 supersymmetry in three di-

mensions, described above, can be regarded as conditions that determine

some of the scalar fields in terms of the fluxes. Let us therefore derive the

three-dimensional interactions that account for these conditions. A more

direct derivation, based on a Kaluza–Klein compactification, is given in Sec-

tion 10.3.

In the absence of flux it is possible to make duality transformations that

replace the vector multiplets by chiral multiplets. In particular, the vectors

are replaced by scalars. Once this is done, the Kähler moduli are complex-

ified. When fluxes are present there are nontrivial Chern–Simons terms.

Nevertheless the duality transformation is still possible, but it becomes more

complicated. Thus, we prefer to work with the real Kähler moduli.
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Superpotential for complex-structure moduli

The complex-structure moduli T I appear in chiral multiplets, and the inter-

actions responsible for stabilizing them are encoded in the superpotential

W 3,1(T ) =
1

2π

∫

M
Ω ∧ F, (10.62)

where Ω is the holomorphic four-form of the Calabi–Yau four-fold, and we

have set κ11 = 1. There are several different methods to derive Eq. (10.62).

The simplest method, which is the one used here, is to verify that this super-

potential leads to the supersymmetry constraints Eq. (10.34). An alternative

derivation is presented in Section 10.3, where it is shown that Eq. (10.62)

arises from Kaluza–Klein compactification of M-theory on a manifold that

is conformally Calabi–Yau four-fold.

In space-times with a vanishing cosmological constant, the conditions for

unbroken supersymmetry are the vanishing of the superpotential and the

vanishing of the Kähler covariant derivative of the superpotential, that is,

W 3,1 = DIW 3,1 = 0 with I = 1, . . . , h3,1, (10.63)

where DIW 3,1 = ∂IW
3,1 −W 3,1∂IK3,1, and K3,1 is the Kähler potential on

the complex-structure moduli space introduced in Section 9.6, namely

K3,1 = − log

(∫

M
Ω ∧ Ω

)
. (10.64)

The Kähler potential is now formulated in terms of the holomorphic four-

form instead of the three-form used in Chapter 9. The condition W 3,1 = 0

implies

F 4,0 = F 0,4 = 0. (10.65)

As in the three-fold case of Section 9.6, ∂IΩ generates the (3, 1) cohomology

so that the second condition in Eq. (10.63) imposes the constraint

F 1,3 = F 3,1 = 0. (10.66)

The form of the superpotential in Eq. (10.62) holds to all orders in per-

turbation theory, because of the standard nonrenormalization theorem for

the superpotentials. This theorem, which is most familiar for N = 1 the-

ories in D = 4, also holds for N = 2 theories in D = 3.7 Supersymmetry

7 The basic argument is that since the superpotential is a holomorphic function, the size of
the internal manifold could only appear in the superpotential paired up with a corresponding
axion. However, the superpotential cannot depend on this axion, as otherwise the axion shift
symmetry would be violated. Correspondingly, the superpotential does not depend on the size
of the internal manifold, and its form is not corrected in perturbation theory. Nonperturbative
corrections are nevertheless allowed, as they violate the axion shift symmetry. For more details
see GSW, Vol. II.
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implies that the superpotential Eq. (10.62) generates a scalar potential for

the complex-structure moduli fields, so that these fields are stabilized. This

potential is discussed in Section 10.3.

Interactions of the Kähler moduli

The primitivity condition,

F 2,2 ∧ J = 0, (10.67)

is the equation that stabilizes the Kähler moduli. This condition can be

derived from the real potential

W 1,1(K) =

∫

M
J ∧ J ∧ F, (10.68)

where J is the Kähler form. This interaction is sometimes called a superpo-

tential in the literature, but it is not a holomorphic function, so this name

is somewhat misleading. Supersymmetry imposes the constraint

W 1,1 = ∂AW
1,1 = 0 with A = 1, . . . , h1,1, (10.69)

which leads to the primitivity condition. Section 10.3 shows that W 1,1

appears in the scalar potential for the moduli fields of M-theory compactified

on a Calabi–Yau four-fold.

F-theory on Calabi–Yau four-folds

The M-theory compactifications on manifolds that are conformally Calabi–

Yau four-folds are dual to certain F-theory compactifications on Calabi–

Yau four-folds, which lead to four-dimensional space-times with N = 1

supersymmetry. Thus, this dual formulation is more attractive from the

phenomenological point of view. The F-theory backgrounds one is interested

in are nonperturbative type IIB backgrounds in which the Calabi–Yau four-

fold is elliptically fibered, as was discussed in Chapter 9.

To be concrete, the Calabi–Yau four-fold one is interested in can be de-

scribed locally as a product of a Calabi–Yau three-fold times a torus.8 The

conditions on the four-form fluxes derived above correspond to conditions

on three-form fluxes in the type IIB theory. Concretely, the relation between

the F-theory four-form and type IIB three-form is

F4 =
1

τ − τ̄ (G?3 ∧ dz −G3 ∧ dz̄) , (10.70)

8 Locally, this is always possible, except at singular fibers.
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where

dz = dσ1 + τdσ2. (10.71)

σ1,2 are the coordinates parametrizing the torus, and τ is its complex struc-

ture, which in the type IIB theory is identified with the axion–dilaton field.

Moreover, G3 = F3− τH3 is a combination of the type IIB R–R and NS–NS

three-forms. In components, this implies that

F 1,3 =
1

τ − τ̄
[
(G?3)0,3 ∧ dz − (G3)1,2 ∧ dz̄

]
, (10.72)

F 0,4 = − 1

τ − τ̄ (G3)0,3 ∧ dz̄. (10.73)

Imposing the M-theory supersymmetry constraints F 0,4 = F 1,3 = 0 leads to

the supersymmetry constraints for the type IIB three-form

G3 ∈ H(2,1), (10.74)

while the remaining components of G3 vanish. The next section shows that

any harmonic (2, 1)-form on a Calabi–Yau three-fold with h1,0 = 0 is primi-

tive. Therefore, primitivity is automatic if the background is a Calabi–Yau

three-fold with nonvanishing Euler characteristic. Otherwise, it is an addi-

tional constraint that has to be imposed.

Many examples of M-theory and F-theory compactifications on Calabi–

Yau four-fold have been constructed in the literature. A simple example is

described by M-theory on K3 × K3, which leads to a theory with N = 4

supersymmetry in three dimensions. Other examples include orbifolds of

T 2 × T 2 × T 2 × T 2.

EXERCISES

EXERCISE 10.1

Explain the powers of ∆ in Eq. (10.20).

SOLUTION

The powers of ∆ in Eq. (10.20) are a straightforward consequence of the

powers of ∆ appearing in the gamma matrices in Eq. (10.8). 2
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EXERCISE 10.2

Show that if the Killing spinor ξ has positive chirality, that is, if γ9ξ = +ξ,

F is self-dual on the Calabi–Yau four-fold, as stated in the text. What

happens if we reverse the chirality of ξ?

SOLUTION

Using the gamma-matrix identities listed in the appendix of this chapter it

is possible to show that

FmFmξ = −2F2ξ − 1

12
Fmnpq (Fmnpq ∓ ?Fmnpq) ξ,

where γ9ξ = ±ξ. Since Fmξ = Fξ = 0, it follows that

(F ∓ ?F )2 = 0.

This quantity is positive and therefore

F = ± ? F for γ9ξ = ±ξ.
Thus, positive-chirality spinors lead to a self-dual F . If the chirality is

reversed, self-duality is replaced by anti-self-duality. 2

EXERCISE 10.3

Show that a harmonic four-form on a Calabi–Yau four-fold satisfying Fmξ =

0 belongs to H
(2,2)
primitive.

SOLUTION

In complex coordinates the condition Fmξ = 0 implies

Fmāb̄c̄γ
āb̄c̄ξ + 3Fmāb̄cγ

āb̄cξ = 0,

where m can be a holomorphic or antiholomorphic index. Each of these

terms has to vanish separately:

• Using Eq. (10.33), the condition Fmāb̄c̄γ
āb̄c̄ξ = 0 implies

Fmāb̄c̄

{
γd̄, γ

āb̄c̄
}
ξ = 6Fmd̄b̄c̄γ

b̄c̄ξ = 0.

This in turn implies that

Fmd̄b̄c̄

[
γē, γ

b̄c̄
]
ξ = 4Fmd̄ēc̄γ

c̄ξ = 0,

which yields

Fmd̄ēc̄
{
γf̄ , γ

c̄
}
ξ = 2Fmd̄ēf̄ξ = 0.
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Since m can be holomorphic or antiholomorphic and F is real, this results

in

F 4,0 = F 3,1 = F 1,3 = F 0,4 = 0.

• Applying the same reasoning as above, the condition Fmāb̄cγ
āb̄cξ = 0 im-

plies that

Fab̄cd̄g
cd̄ = 0.

Using the self-duality of F shown in Exercise 10.2 and the relation between

J and the metric, this equation can be re-expressed as

F ∧ J = 0.

As a result, F ∈ H(2,2)
primitive. 2

EXERCISE 10.4

Show that a harmonic (3, 1)-form on a Calabi–Yau four-fold is anti-self-dual.

SOLUTION

A harmonic (3, 1)-form

F 3,1 =
1

6
Fabcd̄dz

a ∧ dzb ∧ dzc ∧ dzd̄

satisfies

Fabcd̄J
cd̄ = 0.

If this did not vanish, it would give a harmonic (2, 0)-form, but this does

not exist on a Calabi–Yau four-fold. Using this equation and the explicit

representation of the ε symbol,

εabcdp̄q̄r̄s̄ = (gap̄gbq̄gcr̄gds̄ ± permutations),

it is easy to verify that ?F 3,1 = −F 3,1. Note that this argument can be

easily generalized to show that a primitive (p, 4− p)-form satisfies

?F (p,4−p) = (−1)pF (p,4−p).

2

EXERCISE 10.5

Show that the supersymmetry constraints in Eqs (10.63) and (10.69) lead

to the flux constraints in Eqs (10.65)–(10.67).
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SOLUTION

In analogy to the three-fold case discussed in Chapter 9, the following for-

mulas hold for four-folds:

∂IΩ = KIΩ + χI , I = 1, ..., h3,1

and

J = KAeA, A = 1, ..., h1,1,

where χI and eA describe bases of harmonic (3, 1)-forms and (1, 1)-forms,

respectively. Since Ω is a (4, 0)-form one obtains from Eq. (10.63)

∫

M
Ω ∧ F 0,4 = 0 and

∫

M
χI ∧ F 1,3 = 0.

Since h0,4 = 1, the first constraint leads to F 0,4 = 0. Since χI describes a

basis of harmonic (3, 1)-forms, ?F 3,1 =
∑h3,1

I=1A
IχI , which leads to

∫

M
?F 3,1 ∧ F 1,3 =

∫

M
?(F 1,3)∗ ∧ F 1,3 =

∫

M
|F 1,3|2√g d8x = 0,

as F is real. This leads to the flux constraint

F 1,3 = F 3,1 = F 0,4 = F 4,0 = 0.

Using ∂AW
1,1 = 0 and Eq. (10.68), one gets

∫
eA ∧ J ∧ F 2,2 = 0.

Since ?(J ∧ F 2,2) is a harmonic (1, 1)-form, we have

?(J ∧ F 2,2) =

h1,1∑

A=1

UAeA.

So the above constraint results in
∫

M
?(J ∧ F 2,2) ∧ (J ∧ F 2,2) =

∫

M
|J ∧ F 2,2|2√g d8x = 0,

which leads to the primitivity condition Eq. (10.67). Notice that the condi-

tion W 1,1 = 0 is then satisfied, too. 2
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10.2 Flux compactifications of the type IIB theory

No-go theorems for warped compactifications of perturbative string theory

date back as far as the 1980s. The arguments used then, based on low-

energy supergravity approximations to string theory, were claimed to rule

out warped compactifications to a Minkowski or a de Sitter space-time. If

the internal spaces are compact and nonsingular, and no brane sources are

included, the warp factor and fluxes are necessarily trivial in the leading

supergravity approximation. These theorems were revisited in the 1990s

when the contributions of branes and higher-order corrections to low-energy

supergravity actions were understood better. These ingredients made it pos-

sible to evade the no-go theorems and to construct warped compactifications

of the type IIB theory, which we will describe in detail below.

The no-go theorem

The no-go theorem states that if the type IIB theory is compactified on

internal spaces that are compact and nonsingular, and no brane sources are

included, the warp factor and fluxes are necessarily trivial in the leading su-

pergravity approximation. This subsection shows how this result is derived

and then it shows how sources invalidate the no-go theorem. A similar no-go

theorem shows that compactifications to D = 4 de Sitter space-time do not

solve the equations of motion (see Problem 10.8).

Type IIB action in the Einstein frame

For illustrative purposes, as well as concreteness, let us consider warped

compactifications of the type IIB theory to four-dimensional Minkowski

space-time M4 on a compact manifold M . The ten-dimensional low-energy

effective action for the type IIB theory was presented in Chapter 8. In the

Einstein frame it takes the form9

S =
1

2κ2

∫
d10x
√
−G

[
R− |∂τ |2

2(Im τ)2
− |G3|2

2 Im τ
− |F̃5|2

4

]

+
1

8iκ2

∫
C4 ∧G3 ∧G?3

Im τ
, (10.75)

where

G3 = F3 − τH3, (10.76)

9 Recall that the Einstein-frame and string-frame metrics are related by gE
MN = e−Φ/2gS

MN .
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and F3 = dC2, H3 = dB2. The R–R scalar C0, which is sometimes called an

axion, and the dilaton Φ are combined in the complex axion–dilaton field

τ = C0 + ie−Φ. (10.77)

The only change in notation from that described in Section 8.1 is the use of

M,N (rather than µ, ν) for ten-dimensional vector indices. As explained in

that section,

F̃5 = ?10F̃5 (10.78)

has to be imposed as a constraint. Here ?10 is the Hodge-star operator in

ten dimensions. |G3|2 is defined by

|G3|2 =
1

3!
GM1N1GM2N2GM3N3GM1M2M3G

?
N1N2N3

. (10.79)

The equations of motion and their solution

To compactify the theory to four dimensions, let us consider a warped-metric

ansatz of the form

ds2
10 =

9∑

M,N=0

GMNdx
MdxN = e2A(y) ηµνdx

µdxν︸ ︷︷ ︸
4D

+e−2A(y) gmn(y)dymdyn︸ ︷︷ ︸
6D

,

(10.80)

where xµ denote the coordinates of four-dimensional Minkowski space-time,

and ym are local coordinates on M . Poincaré invariance implies that the

warp factor A(y) is allowed to depend on the coordinates of the internal

manifold only.

Poincaré invariance and the Bianchi identities restrict the allowed com-

ponents of the flux. The three-form flux G3 is allowed to have components

along M only, while the self-dual five-form flux F̃5 should take the form

F̃5 = (1 + ?10)dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (10.81)

where α(y) is a function of the internal coordinates, which will turn out to

be related to the warp factor A(y).

The no-go theorem is derived by using the equations of motion following

from the action Eq. (10.75). The ten-dimensional Einstein equation can be

written in the form

RMN = κ2

(
TMN −

1

8
GMNT

)
, (10.82)

where

TMN = − 2√
−G

δS

δGMN
(10.83)
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is the energy–momentum tensor, and T is its trace. This equation has an

external piece (µν) and an internal piece (mn), but the mixed piece vanishes

trivially. The external piece takes the form10

RMN = −1

4
GMN

(
1

2 Im τ
|G3|2 + e−8A|∂α|2

)
M,N = 0, 1, 2, 3.

(10.84)

Transforming to the metric ηµν gives an equation determining the warp

factor in terms of the fluxes

∆A =
e4A

8 Im τ
|G3|2 +

1

4
e−8A|∂α|2, (10.85)

or, equivalently

∆e4A =
e8A

2 Im τ
|G3|2 + e−4A

(
|∂α|2 + |∂e4A|2

)
. (10.86)

The no-go theorem is a simple consequence of this equation. If both sides

are integrated over the internal manifold M , the left-hand side vanishes,

because it is a total derivative. The right-hand side is a sum of positive-

definite terms, which only vanishes if the individual terms vanish. As a

result, one is left with constant A, α and vanishing G3. The assumption of

maximal symmetry would, in principle, allow an external space-time with a

cosmological constant Λ, which for Λ < 0 results in AdS space-times while

for Λ > 0 gives dS space-times. It turns out that the above no-go theorem

can be generalized to include this cosmological constant. As you are asked

to show in Problem 10.8, Λ appears with a positive coefficient on the right-

hand side of Eq. (10.86). Using the same reasoning as above, one obtains

another no-go theorem which excludes dS solutions in the absence of sources

and/or singularities in the background geometry.

Flux-induced superpotentials

It turns out that brane sources can and do invalidate the no-go theorem.

There is an energy–momentum tensor associated with these sources, which

contributes to the right-hand side of Eq. (10.86) in the form

2κ2e2AJloc, (10.87)

where

Jloc =
1

4
(

9∑

M=5

TM
M −

3∑

M=0

TM
M )loc, (10.88)

10 Indices M,N are used (rather than µ, ν) to emphasize that this curvature is constructed using
the metric GMN .
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and T loc denotes the energy–momentum tensor associated with the local

sources given by

T loc
MN = − 2√

−G
δSloc

δGMN
. (10.89)

Here Sloc is the action describing the sources. For a Dp-brane wrapping a

(p− 3)-cycle Σ in M the relevant interactions are

Sloc = −
∫

�
4×Σ

dp+1ξTp
√−g + µp

∫
�

4×Σ
Cp+1. (10.90)

This is the action to leading order in α′ and for the case of vanishing fluxes

on the brane. This action was described in detail in Section 6.5. In order

to describe D7-branes wrapped on four-cycles it is necessary to include the

first α′ correction given by the Chern–Simons term on the D7-brane

−µ3

∫
�

4×Σ
C4 ∧

p1(R)

48
. (10.91)

It turns out that Eq. (10.87) can contribute negative terms on the right-hand

side of Eq. (10.86).

These sources also contribute to the Bianchi identity11 for F̃5

dF̃5 = H3 ∧ F3 + 2κ2T3ρ3. (10.92)

Here ρ3 is the D3 charge density from the localized sources and, as usual, it

contains a delta function factor localized along the source.

Tadpole-cancellation condition

Integrating Eq. (10.92) over the internal manifold M leads to the type IIB

tadpole-cancellation condition

1

2κ2T3

∫

M
H3 ∧ F3 +Q3 = 0, (10.93)

where Q3 is the total charge associated with ρ3. As a result, nonvanishing

Q3 charges induce three-form expectation values. It is shown below that G3

is imaginary self-dual. Therefore, three-form fluxes are only induced if Q3

is negative. Problem 10.12 asks you to check that the D7-branes generate

a negative contribution to the right-hand side of Eq. (10.86) by solving the

equations of motion in the presence of branes.

A useful way of describing the type IIB solution is by lifting it to F-theory

compactified on an elliptically fibered Calabi–Yau four-fold X. As explained

in Section 9.3, the base of the fibration encodes the type IIB geometry while

11 Because of self-duality, this is the same as the equation of motion.
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the fiber describes the behavior of the type IIB axion–dilaton τ . In this

description, the tadpole-cancellation condition takes a form similar to that

found for M-theory on a four-fold

χ(X)

24
= ND3 +

1

2κ2T3

∫

M
H3 ∧ F3, (10.94)

where χ(X) is the Euler characteristic of the four-fold, and ND3 is the D3-

brane charge present in the compactification.12 The left-hand side of this

equation can be interpreted as the negative of the D3-brane charge induced

by curvature of the D7-branes. Thus, the equation is the condition for the

total D3-brane charge from all sources to cancel.

Conditions on the fluxes

What conditions does the background satisfy? To answer this question there

are several ways to proceed. One way is to solve the equations of motion pre-

viously described but now taking brane sources into account. Schematically,

this is done by inserting the F̃5 flux of Eq. (10.81) into the Bianchi identity

Eq. (10.92) and subtracting the result from the contracted Einstein equa-

tion Eq. (10.86), taking the energy–momentum tensor contribution from the

brane sources into account. The resulting constraint is

∆
(
e4A − α

)
= 1

6 Imτ e
8A | iG3 − ?G3 |2 +e−4A | ∂(e4A − α) |2

+2κ2e2A
(
Jloc − T3ρ

loc
3

)
.

(10.95)

Most localized sources satisfy the BPS-like bound

Jloc ≥ T3ρ
loc
3 . (10.96)

As a result, for the kinds of sources that are considered here, the solutions

to the equations are characterized by the following conditions:

• The three-form field strength G3 is imaginary self-dual,

?G3 = iG3, (10.97)

where the ? denotes the Hodge dual in six dimensions. A solution to the

imaginary self-dual condition is a harmonic form of type (2, 1) + (0, 3).

It is shown below that only the primitive part of the (2, 1) component is

allowed in supersymmetric solutions.

• There is a relation between the warp factor and the four-form potential

e4A = α. (10.98)

12 This includes D3-branes and instantons on D7-branes.
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• The sources saturate the BPS bound, that is,

Jloc = T3ρ
loc
3 . (10.99)

This equation is satisfied by D3-branes, for example. Indeed, using the

relevant terms in the world-volume action for the D3-brane in Eq. (10.90)

shows

T0
0 = T1

1 = T2
2 = T3

3 = −T3ρ3 and Tm
m = 0. (10.100)

This implies that the BPS inequality is not only satisfied but also satu-

rated. On the other hand, anti-D3-branes satisfy the inequality but do

not saturate it, since the left-hand side of Eq. (10.99) is still positive but

the right-hand side has the opposite sign. A different way to saturate the

bound is to use D7-branes wrapped on four-cycles and O3-planes. D5-

branes wrapped on collapsing two-cycles satisfy, but do not saturate, the

BPS bound.

The superpotential

The constraint Eq. (10.97) can be derived from a superpotential for the

complex-structure moduli fields

W =

∫

M
Ω ∧G3, (10.101)

where Ω denotes the holomorphic three-form of the Calabi–Yau three-fold.

Let us derive the conditions for unbroken supersymmetry using the super-

potential Eq. (10.101). For concreteness, consider the case of a Calabi–Yau

manifold with a single Kähler modulus, which characterizes the size of the

Calabi–Yau. Before turning on fluxes, there are massless fields describing

the complex-structure moduli zα (α = 1, . . . , h2,1), the axion–dilaton τ and

the superfield ρ containing the Kähler modulus.

As is explained in Exercise 10.6, the Kähler potential can be computed

from the dimensional reduction of the ten-dimensional type IIB action by

taking the Calabi–Yau manifold to be large. The result for the radial mod-

ulus ρ is

K(ρ) = −3 log[−i(ρ− ρ̄)]. (10.102)

This should be added to the results for the axion–dilaton and complex-

structure moduli, which are

K(τ) = − log[−i(τ − τ̄)] and K(zα) = − log

(
i

∫

M
Ω ∧ Ω̄

)
.

(10.103)
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The total Kähler potential is given by

K = K(ρ) +K(τ) +K(zα). (10.104)

Conditions for unbroken supersymmetry

Supersymmetry is unbroken if

DaW = ∂aW + ∂aKW = 0, (10.105)

where a = ρ, τ, α labels all the moduli superfields. In order to evaluate this

condition, first note that the superpotential in Eq. (10.101) is independent

of the radial modulus. As a result,

DρW = ∂ρKW = −
(

3

ρ− ρ̄

)
W = 0, (10.106)

which implies that supersymmetric solutions obey

W = 0. (10.107)

So the (0, 3) component of G3 has to vanish. The equation

DτW =
1

τ − τ̄

∫

M
Ω ∧G3 = 0 (10.108)

implies that the (3, 0) component of G3 has to vanish as well. The remaining

conditions are

DαW =

∫

M
χα ∧G3 = 0, (10.109)

where χα is a basis of harmonic (2, 1)-forms introduced in Chapter 9. Since

this condition holds for all harmonic (2, 1)-forms, one concludes that super-

symmetry is unbroken if

G3 ∈ H(2,1)(M). (10.110)

Remark on primitivity

Compact Calabi–Yau three-folds with a vanishing Euler characteristic satisfy

h1,0 = 0. In this case any harmonic (2, 1)-form is primitive. To see this,

let us apply the Lefschetz decomposition to the present case. A harmonic

(2, 1)-form

χ =
1

2
χabc̄dz

a ∧ dzb ∧ dz̄c̄ (10.111)

can be decomposed into a part parallel to J and an orthogonal part according

to

χ = v ∧ J + (χ− v ∧ J) = χ‖ + χ⊥, (10.112)
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where

v =
3

2
χapq̄J

pq̄dza, (10.113)

which has been chosen so that

χ⊥ ∧ J = 0. (10.114)

On the other hand, if such a one-form v exists, it is harmonic, which implies

h1,0 6= 0. As a result, χ = χ⊥, and any harmonic (2, 1)-form is primitive.

Note that the vanishing of h1,0 is required to prove that any harmonic (2, 1)-

form is primitive. On a six-torus h1,0 6= 0 and there are harmonic (2, 1)-forms

that are not primitive. If h1,0 6= 0 supersymmetry is unbroken if

G3 ∈ H(2,1)
primitive. (10.115)

Note that besides being primitive, the χα are also imaginary self-dual. The

behavior of three-forms under the Hodge-star operation is displayed in the

table. Expressing the Levi–Civita tensor in the form

εabcp̄q̄r̄ = −i (gap̄gbq̄gcr̄ ± permutations) (10.116)

allows us to check these rules by the reasoning of Exercise 10.4. Then

Eq. (10.110) agrees with the condition that G3 is imaginary self-dual.

(3, 0) Ω ?Ω = −iΩ
(2, 1) χα ?χα = iχα
(1, 2) χ̄α ?χ̄α = −iχ̄α
(0, 3) Ω̄ ?Ω̄ = iΩ̄

An example: flux background on the conifold

As discussed in Chapter 9, different Calabi–Yau manifolds are connected

by conifold transitions. At the connection points the Calabi–Yau manifolds

degenerate. This section explores further the behavior of a Calabi–Yau

manifold near a conifold singularity of its moduli space. By including these

singular points it is possible to describe many, and possibly all, Calabi–Yau

manifolds as part of a single connected web. In order to be able to include

these singular points, it is necessary to understand how to smooth out the

singularities. This can be done in two distinct ways, called deformation and

resolution.

Conifold singularities occur commonly in the moduli spaces of compact

Calabi–Yau spaces, but they are most conveniently analyzed in terms of
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Fig. 10.4. The deformation and the resolution of the singular conifold near the
singularity at the tip of the cone.

the noncompact Calabi–Yau space obtained by magnifying the region in

the vicinity of a singularity of the three-fold. This noncompact Calabi–

Yau space is called the conifold, and its geometry is given by a cone. This

section describes the space-time geometry of the conifold, together with its

smoothed out cousins, the deformed conifold and the resolved conifold. Type

IIB superstring theory compactified on a deformed conifold is an interesting

example of a flux compactification. It is the superstring dual of a confin-

ing gauge theory, which is described in Chapter 12. Here we settle for a

supergravity analysis.

The conifold

At a conifold point a Calabi–Yau three-fold develops a conical singularity,

which can be described as a hypersurface in � 4 given by the quadratic

equation

4∑

A=1

(wA)2 = 0 for wA ∈ � 4. (10.117)

This equation describes a surface that is smooth except at wA = 0. It

describes a cone with an S2 × S3 base. To see that it is a cone note that if

wA solves Eq. (10.117) then so does λwA, where λ is a complex constant.

Letting wA = xA + iyA, and introducing a new coordinate ρ, Eq. (10.117)

can be recast as three real equations

~x · ~x− 1

2
ρ2 = 0, ~y · ~y − 1

2
ρ2 = 0, ~x · ~y = 0. (10.118)
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The first equation describes an S3 with radius ρ/
√

2. Then the last two

equations can be interpreted as describing an S2 fibered over the S3. It can

be shown that a Ricci flat and Kähler metric on this space is given by a cone

ds2 = dr2 + r2dΣ2, (10.119)

where r =
√

3/2ρ2/3 and dΣ2 is the metric on the five-dimensional base,

which has the topology S2 × S3. Explicitly, the metric on the base can be

written in terms of angular variables

dΣ2 =
1

9

(
2dβ +

2∑

i=1

cos θidφi

)2
+

1

6

2∑

i=1

(
dθ2
i + sin2 θidφ

2
i

)
. (10.120)

The range of the angular variables is

0 ≤ β ≤ 2π, 0 ≤ θi ≤ π and 0 ≤ φi ≤ 2π, (10.121)

for i = 1, 2, while 0 ≤ r < ∞. This space has the isometry group SU(2) ×
SU(2)× U(1).13

In order to describe this background in more detail, it is convenient to

introduce the basis of one-forms

g1 = 1√
2
(e1 − e3), g2 = 1√

2
(e2 − e4),

g3 = 1√
2
(e1 + e3), g4 = 1√

2
(e2 + e4),

g5 = e5,

(10.122)

with

e1 = − sin θ1dφ1, e2 = dθ1,

e3 = cos 2β sin θ2dφ2 − sin 2βdθ2,

e4 = sin 2β sin θ2dφ2 + cos 2βdθ2,

e5 = 2dβ + cos θ1dφ1 + cos θ2dφ2.

(10.123)

In terms of this basis the metric takes the form

dΣ2 =
1

9
(g5)2 +

1

6

4∑

i=1

(gi)2. (10.124)

The conifold has a conical singularity at r = 0. In fact, this would also

13 Compact Calabi–Yau three-folds do not have continuous isometry groups.
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be true for any choice of the five-dimensional base space other than a five-

sphere of unit radius. As was already mentioned, in the case of the conifold

there are two ways of smoothing out the singularity at the tip of the cone,

called deformation and resolution.

The deformed conifold

The deformation consists in replacing Eq. (10.117) by

4∑

A=1

(wA)2 = z, (10.125)

where z is a nonzero complex constant. Since wA ∈ � 4 we can rescale

these coordinates and assume that z is real and nonnegative. This defines

a Calabi–Yau three-fold for any value of z. As a result, z spans a one-

dimensional moduli space. At the singularity of the moduli space (z = 0)

the manifold becomes singular (at ρ = 0).

For large r the deformed conifold geometry reduces to the singular conifold

with z = 0, that is, it is a cone with an S2 × S3 base. Moving from ∞
towards the origin, the S2 and S3 both shrink. Decomposing wA into real

and imaginary parts, as before, yields

z = ~x · ~x− ~y · ~y, (10.126)

and using the definition

ρ2 = ~x · ~x+ ~y · ~y, (10.127)

shows that the range of r is

z ≤ ρ2 <∞. (10.128)

As a result, the singularity at the origin is avoided for z > 0. This shows

that as ρ2 gets close to z the S2 disappears leaving just an S3 with finite

radius.

The resolved conifold

The second way of smoothing out the conifold singularity is called resolution.

In this case as the apex of the cone is approached, it is the S3 which shrinks

to zero size, while the size of the S2 remains nonvanishing. This is also

called a small resolution, and the nonsingular space is called the resolved

conifold.

In order to describe how this works, let us make a linear change of variables
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to recast the singular conifold in the form

det

(
X U

V Y

)
= 0. (10.129)

Away from (X,Y,U, V ) = 0 this space is equivalently described as the space
(
X U

V Y

)(
λ1

λ2

)
= 0, (10.130)

in which λ1 and λ2 don’t both vanish. The solutions for λi are determined

up to an overall multiplicative constant, that is,

(λ1, λ2) ' λ(λ1, λ2) with λ ∈ � ?. (10.131)

As a result, the variables (X,Y,U, V ) and (λ1, λ2) lie in � 4 × � P 1 and

satisfy the condition (10.130). This describes the resolved conifold, which

is nonsingular. Why is the singularity removed? In order to answer this

question note that for (X,Y,U, V ) 6= (0, 0, 0, 0) this space is the same as

the singular conifold. However, at the point (X,Y,U, V ) = (0, 0, 0, 0) any

solution for (λ1, λ2) is allowed. This space is � P 1, which is a two-sphere.

Fluxes on the conifold

Let us now consider a flux background of the conifold geometry given by

N space-time-filling D3-branes located at the tip of the conifold, as well as

M D5-branes wrapped on the S2 in the base of the deformed conifold and

filling the four-dimensional space-time. These D5-branes are usually called

fractional D3-branes.

This background can be constructed by starting with a set of M D5-

branes, which give ∫

S3

F3 = 4π2α′M. (10.132)

This can also be written as

F3 =
Mα′

2
ω3 where ω3 = g5 ∧ ω2, (10.133)

and

ω2 =
1

2
(sin θ1dθ1 ∧ dφ1 − sin θ2dθ2 ∧ dφ2) . (10.134)

In order to describe a supersymmetric background, the complex three-form

G3 should be an imaginary self-dual (2, 1)-form. This implies that an H3

flux has to be included. Imaginary self-duality determines the H3 flux to be

H3 =
3

2r
gsMα′dr ∧ ω2, (10.135)
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where gs = eΦ is the string coupling constant, which is assumed to be

constant, while the axion C0 has been set to zero. Once H3 and F3 are both

present, F5 is determined by the Bianchi identity

dF̃5 = H3 ∧ F3 + 2κ2T3ρ3, (10.136)

to be

F̃5 = (1 + ?10)F , (10.137)

where

F =
1

2
π(α′)2Neff(r)ω2 ∧ ω3 (10.138)

and

Neff(r) = N +
3

2π
gsM

2 log

(
r

r0

)
. (10.139)

Note that the total five-form flux is now radially dependent, with
∫

Σ
F̃5 =

1

2
(α′)2πNeff(r). (10.140)

The geometry in this case is a warped conifold, where the metric has the

form

ds2
10 = e2A(r)ηµνdx

µdxν + e−2A(r)(dr2 + r2dΣ2). (10.141)

The metric of the base, dΣ2, is given in Eq. (10.120). The volume form for

the metric in these coordinates is given by

√−g =
1

54
e−2Ar5 sin θ1 sin θ2. (10.142)

Using this and

ω2 ∧ ω3 = −dβ ∧ sin θ1dθ1 ∧ dφ1 ∧ sin θ2dθ2 ∧ dφ2, (10.143)

one obtains

?(ω2 ∧ ω3) = 54r−5e8Adr ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3. (10.144)

The warp factor is determined in terms of the five-form flux by Eq. (10.81),

or equivalently

?10F = dα ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3, (10.145)

while α = exp(4A) according to Eq. (10.98). Using the expression for the

five-form flux in Eq. (10.138) this leads to the equation

dα = 27π(α′)2α2r−5Neff(r)dr. (10.146)
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Integration then gives the warp factor

e−4A(r) =
27π(α′)2

4r4

[
gsN +

3

2π
(gsM)2 log

(
r

r0

)
+

3

8π
(gsM)2

]
, (10.147)

where r0 is a constant of integration.

Problem 10.13 asks you to show that G3 is primitive. This result implies

that this is a supersymmetric background. Note that in this section we have

used the constraints in Eqs (10.98) and (10.115), which were derived for

compact spaces. However, these constraints can also be derived from the

Killing spinor equations for type IIB, which are local. As a result, they also

hold for noncompact spaces.

Warped space-times and the gauge hierarchy

The observation that Poincaré invariance allows space-times with extra di-

mensions that are warped products has interesting consequences for phe-

nomenology. Brane-world scenarios are toy models based on the proposal

that the observed four-dimensional world is confined to a brane embedded

in a five-dimensional space-time.14 In one version of this proposal, the fifth

dimension is not curled up. Instead, it is infinitely extended. If we live on

such a brane, why is there a four-dimensional Newtonian inverse-square law

for gravity instead of a five-dimensional inverse-cube law? The answer is

that the space-time is warped. Let’s explore how this works.

Localizing gravity with warp factors

The action governing five-dimensional gravity with a cosmological constant

Λ in the presence of a 3-brane is

S ∼
∫
d5x
√
−G (R− 12Λ)− T

∫
d4x
√−g, (10.148)

where T is the 3-brane tension, GMN is the five-dimensional metric, and gµν
is the induced four-dimensional metric of the brane. This action admits a

solution of the equations of motion of the form

ds2 = e−2A(x5)ηµνdx
µdxν + dx2

5, (10.149)

with

A(x5) =
√
−Λ|x5|. (10.150)

14 There could be an additional compact five-dimensional space that is ignored in this discussion.
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Fig. 10.5. Gravity is localized on the Planck brane due to the presence of a warp
factor in the metric.

Here −∞ ≤ x5 ≤ ∞ is infinite, and the brane is at x5 = 0. Moreover,

for a static solution it is necessary that the brane tension is related to the

space-time cosmological constant Λ by

T = 12
√
−Λ, (10.151)

which requires that the cosmological constant is negative. This geometry is

locally anti-de Sitter (AdS5), except that there is a discontinuity in deriva-

tives of the metric at x5 = 0. This discontinuity is determined by the delta

function brane source using standard matching formulas of general relativity.

The metric (10.149) contains a warp factor, which has the interesting

consequence that, even though the fifth dimension is infinitely extended,

four-dimensional gravity is observed on the brane. This way of concealing

an extra dimension is an alternative to compactification. Computing the

normal modes of the five-dimensional graviton in this geometry, one finds

that the zero mode, which is interpreted as the four-dimensional graviton,

is localized in the vicinity of the brane and that G4 controls its interactions.

The effective four-dimensional Planck mass on the brane is given by

M2
4 = M3

5

∫
dx5e

−2
√
−Λ|x5|, (10.152)

or in terms of Newton’s constant

G4 = G5

(∫
dx5e

−2
√
−Λ|x5|

)−1

. (10.153)
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Fig. 10.6. On the SM brane the energy scales are redshifted due to the presence of
the warp factor in the metric.

Large hierarchies from warp factors

If instead of one 3-brane, two parallel 3-branes are considered, the implica-

tions for phenomenology are even more interesting. In this construction the

background geometry is again a warped product, but now the warp factor

provides a natural way to solve the hierarchy problem.

Imagine that the 3-branes are again embedded in a five-dimensional space-

time as shown Fig. 10.6. One brane is located at x5 = πr, and called the

standard-model brane (SM), while the other brane is located at x5 = 0 and

called the Planck brane (P). The action governing five-dimensional gravity

coupled to the two branes is

S =

∫
d5x
√
−G (R− 12Λ)− TSM

∫
d4x
√
−gSM − TP

∫
d4x
√
−gP ,
(10.154)

where TSM and TP are the tensions of the two branes. The metric is again

assumed to be a warped product

ds2 = e−2A(x5)ηµνdx
µdxν + dx2

5 (10.155)

in the interval 0 ≤ x5 ≤ πr.
The equations of motion are solved by a warp factor of the form

A(x5) =
√
−Λ|x5|, (10.156)

as before, and

TP = −TSM = 12
√
−Λ. (10.157)
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Negative tension may seem disturbing. However, negative-tension branes

can be realized in orientifold models and in F-theory compactifications. In

this solution the metric is normalized so that it takes the form

gP
µν = ηµν . (10.158)

on the Planck brane. Then, because of the warp factor, the SM brane metric

is

gSM
µν = e−2πr

√
−Ληµν . (10.159)

This scale factor means that objects with energy E at the Planck brane are

red-shifted on the SM brane, and appear as objects with energy e−πr
√
−ΛE.

By choosing the separation scale r suitably, one can arrange for this factor

to be of order 10−16, so as to find TeV scale physics on the SM brane by

starting with Planck-scale physics on the Planck brane. This is an interest-

ing proposal (due to Randall and Sundrum) for solving the gauge hierarchy

problem. This scenario has a number of remarkable implications. It be-

comes conceivable that phenomena that used to be relegated to ultra-high

energy scales may be accessible at accelerator energies. Thus, Kaluza–Klein

modes, fundamental strings, black holes, gravitational radiation could all be

observable. The LHC experiments are preparing to search for all of these

possibilities. Supersymmetry, which many view as more likely to be dis-

covered, seems quite mundane by comparison. Not surprisingly, these ideas

have attracted a lot of attention, and there is a large and rapidly growing

literature on the subject. In the following, we settle for a brief sketch of how

this scenario might be realized in string theory.

A large hierarchy on the deformed conifold

It is interesting that the above approach to solving the hierarchy problem

appears naturally in string theory.15 The branes that seem best suited

to this purpose are the D3-branes in a type IIB orientifold or F-theory

construction. One can imagine D3-branes placed at points on a compact

internal manifold. To get a large hierarchy two sets of D3-branes would

need to be separated by the distance r. This distance would then determine

the size of the hierarchy. However, r is a modulus in the four-dimensional

theory, since the D3-brane coordinates have no potential. In the following

we will see that one can obtain a warped background generating a large and

stable hierarchy by using the flux backgrounds discussed at the beginning

of this section.

To be concrete, one can consider the deformed conifold geometry. Locally,

15 So does supersymmetry.
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near the tip of the cone, the flux solution is similar to the one described in

the previous section. Globally, however, the background solution must be

changed, since we are interested in a compact solution. The conifold solution

presented in the previous section is noncompact with r unbounded. This

can be interpreted as a singular limit of a compact manifold in which one of

the cycles degenerates to infinite size.

Let us assume that there are M units of F3 flux through an A-cycle and

−K units of H3 flux through a B-cycle, that is,

1

2πα′

∫

A
F3 = 2πM and

1

2πα′

∫

B
H3 = −2πK. (10.160)

Using Poincaré duality, the superpotential can then be written as

W =

∫
G3 ∧ Ω = (2π)2α′

(
M

∫

B
Ω−Kτ

∫

A
Ω

)
, (10.161)

The complex coordinate describing the cycle collapsing at the tip of the

conifold is

z =

∫

A
Ω. (10.162)

The discussion of special geometry in Section 9.6 explained that the dual

coordinates, that is, the coordinates defining periods of the B-cycles, are

functions of the periods of the A-cycles. More concretely, since we are de-

scribing a conifold singularity, we can invoke the result derived in Section 9.8

that ∫

B
Ω =

z

2πi
log z + holomorphic. (10.163)

Using these results, the Kähler covariant derivative of the superpotential

can be rewritten in the form16

DzW ' (2π)2α′
(
M

2πi
log z − iK

gs
+ . . .

)
(10.164)

in the limit in which K/gs is large. The equation DzW = 0 is solved by

z ' e−2πK/Mgs. (10.165)

Thus, one obtains a large hierarchy of scales if, for example, M = 1 and

K/gs = 5. It is assumed that the dilaton is frozen in this solution.

The solution for the warp factor can be estimated in the following way. As

16 This assumes z � 1, which is the case of interest.
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will be discussed in more detail in Chapter 12, close to a set of N D3-branes

the space-time metric takes the form

ds2 =
( r
R

)2
| d~x |2 +

(
R

r

)2 (
dr2 + r2dΩ2

5

)
with R4 = 4πgsN(α′)2,

(10.166)

where r is the distance from the D3-brane, which is located at r ≈ 0. We

would like to estimate the warp factor close to the D3-brane. Since the

background is the deformed conifold, r has a minimal value determined by

the deformation parameter z according to

rmin ' ρ2/3
min = z1/3 ' e−2πK/3Mgs, (10.167)

showing that the warp factor approaches a small and positive value close to

the D3-brane.

EXERCISES

EXERCISE 10.6

Show that in a Calabi–Yau three-fold compactification of type IIB super-

string theory the Kähler potential for the radial modulus, the axion–dilaton

modulus and the complex-structure moduli is given by

K = −3 log [−i(ρ− ρ̄)]− log[−i(τ − τ̄)]− log

(
i

∫

M
Ω ∧ Ω̄

)
.

SOLUTION

The part of the Kähler potential depending on the complex-structure moduli

(the last term) was derived in Chapter 9. The way to derive the contribution

from the radial modulus ρ and the axion–dilaton modulus τ is to consider

the action on a background of the form

ds2 = e−6u(x) gµνdx
µdxν︸ ︷︷ ︸

4D

+e2u(x) gmndy
mdyn︸ ︷︷ ︸

CY3

.

Here u(x) parametrizes the volume of the Calabi–Yau three-fold. The power

of eu(x) in the first term has been chosen to give a canonically normalized

Einstein term in four dimensions.

The supersymmetric partner of the radial modulus is another axion b,
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which descends from the four-form according to

Cµνpq = aµνJpq,

where J is the Kähler form. In four dimensions the two-form a can be

dualized to a scalar b according to

da = e−8u(x) ? db.

Setting

ρ =
b√
2

+ ie4u,

the resulting low-energy effective action is

S =
1

2κ2
4

∫
d4x
√−g

(
R− 1

2

∂µτ∂
µτ̄

(Im τ)2
− 3

2

∂µρ∂
µρ̄

(Im ρ)2

)
.

Here the four-dimensional gravitational coupling constant is given by κ2
4 =

κ2
10/V, where V is the volume of the Calabi–Yau three-fold computed using

the metric gmn. The kinetic terms for τ and ρ correspond to the first two

terms in the Kähler potential K. 2

10.3 Moduli stabilization

The important fact about compactifications with flux is that there is a non-

trivial scalar potential for the moduli fields.17 This should not be surprising,

since the background flux modifies the equations that determine the geom-

etry. The complete scalar potential V for the moduli fields can be obtained

from the superpotential and the Kähler potential by a standard supergravity

formula, as was discussed earlier, or by a direct Kaluza–Klein compactifica-

tion, as is done here.

Scalar potential for M-theory

In the following the scalar potential for flux compactifications of M-theory

on a Calabi–Yau four-fold is derived from the low-energy expansion of the

action Eq. (10.3) on the warped geometry described by Eq. (10.5). This

further illustrates that the constraints derived from W 3,1 in Eq. (10.62)

stabilize the complex-structure moduli, while the equations derived from

W 1,1 in Eq. (10.68) stabilize the Kähler moduli.

17 Calling these fields moduli in this setting is a bit of an oxymoron, since moduli are defined to
have no potential. However, this has become standard usage.
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As you are asked to check in Problem 10.18, fluxes generate a scalar

potential for the moduli

V (T,K) =
1

4V3

(∫

M
F ∧ ?F − 1

6
TM2χ

)
, (10.168)

where we set κ11 = 1, as in Section 10.1. The terms that contribute to the

potential originate from the internal component of the flux while the fm
term has been dropped, because it gives a subleading contribution in the

large-volume limit.

Since F is a four-form it lies in the middle-dimensional cohomology of the

Calabi–Yau four-fold. According to Eq. (10.44) the (2, 2)-component of the

four-form flux has the Lefschetz decomposition

F 2,2 = F 2,2
o + J ∧ F 1,1

o + J ∧ JF 0,0
o , (10.169)

where the subindex o indicates that the flux is primitive. As was shown in

Eq. (10.67), only the primitive term, that is, the first term, is nonzero for

a supersymmetric solution. However, here all terms are included in order

to allow for the possibility of supersymmetry breaking. Since the first and

third terms are self-dual, and the second term is anti-self-dual,

?F 2,2 = F 2,2 − 2J ∧ F 1,1
o , (10.170)

where ? denotes the Hodge dual on the internal manifold. It follows from

Exercise 10.4 that

?F 4,0 = F 4,0 and ? F 3,1 = −F 3,1, (10.171)

and similarly for the (0, 4) and (1, 3) components, since F is real. Taking

the previous two equations into account, the total four-form flux satisfies

?F = F − 2F 3,1 − 2F 1,3 − 2J ∧ F 1,1
o . (10.172)

Therefore, after taking the wedge product with F , the kinetic term for the

flux appearing in Eq. (10.168) can be rewritten in the form
∫

M
F ∧?F =

∫

M
F ∧F−4

∫

M
F 3,1∧F 1,3−2

∫

M
J∧F 1,1

o ∧J∧F 1,1
o . (10.173)

All other terms vanish by orthogonality relations given by the Hodge de-

composition and the Lefschetz decomposition. Inserting this into the scalar

potential Eq. (10.168), we realize that the first term on the right-hand side

of Eq. (10.173) cancels due to the tadpole-cancellation condition Eq. (10.60)

with N = 0. As a result, only the anti-self-dual part of F contributes to the

scalar potential.
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Supersymmetry-breaking solutions

The preceding results imply the existence of supersymmetry-breaking solu-

tions of the equations of motion. Indeed, any flux satisfying

F = ?F and F /∈ H(2,2)
primitive (10.174)

solves the equations of motion and breaks supersymmetry. Fluxes of the

form

F ∼ Ω or F ∼ J ∧ J (10.175)

provide examples. Moreover, since these flux components do not appear in

the scalar potential they do not generate a cosmological constant.

The scalar potential

The second term on the right-hand side of Eq. (10.173) can be rewritten

according to
∫

M
F 3,1 ∧ F 1,3 = −eK3,1

GIJ̄DIW 3,1DJ̄W
3,1
, (10.176)

and as a result yields a scalar potential for the complex-structure moduli.

This result is obtained by expanding F 3,1 in a basis of (3, 1)-forms. The

explicit calculation is rather similar to Exercise 10.5. Analogously, the last

term on the right-hand side of Eq. (10.173) generates a potential for the

Kähler-structure moduli
∫

M
J ∧ F 1,1

o ∧ J ∧ F 1,1
o = −V−1GABDAW 1,1DBW 1,1, (10.177)

where18

DA = ∂A −
1

2
∂AK1,1 with K1,1 = −3 logV, (10.178)

and GAB is the inverse of the metric GAB

GAB = −1

2
∂A∂BlogV. (10.179)

Here V = 1
24

∫
J ∧ J ∧ J ∧ J is the Calabi–Yau volume. In total, the scalar

potential becomes

V (T,K) = eKGIJ̄DIW 3,1DJ̄W
3,1

+
1

2
V−4GABDAW 1,1DBW 1,1, (10.180)

18 Note that K1,1 is not a Kähler potential, since it is function of real fields. Nevertheless, it has
some similar properties.
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where K = K3,1 + K1,1. This potential is manifestly nonnegative, which

shows that compactifications to AdS3 spaces cannot be obtained in this

way.

The radial modulus

Note that not all of the moduli need contribute to the potential Eq. (10.180).

For example, it does not depend on the radial modulus, which characterizes

the overall volume of the compact manifold M . Therefore, this modulus

is not stabilized. The reason for this is that the conditions for unbroken

supersymmetry in Eqs (10.65), (10.66) and (10.67), and also the conditions

for the existence of supersymmetry breaking solutions in Eq. (10.174), are

invariant under the rescaling of the volume by a constant. While this may

seem disappointing, it is also quite fortunate. This freedom means that the

volume can be chosen sufficiently large to justify the approximations that

have been made. At sufficiently large volume, most of the higher-derivative

terms of M-theory can be dropped. The situation, of course, changes once

nonperturbative effects are included. It is expected that such effects stabilize

the radial modulus and that the calculations made remain valid when the

flux quantum is large. This is not specific to the M-theory compactifications

discussed in this section, but holds for most of the flux compactifications

discussed in the literature. Very few models have been constructed in which

all moduli are stabilized without nonperturbative effects.

The scalar potential for type IIB

The scalar potential for type IIB compactified on a Calabi–Yau three-fold

follows from a standard supergravity formula. In Section 10.2 the formulas

for the superpotential W and Kähler potential K were presented. Given

these potentials, N = 1 supergravity determines the scalar potential in

terms of these quantities19

V = eK
(
Gab̄DaWDb̄W − 3|W |2

)
, (10.181)

where Gab̄ = ∂a∂b̄K is the metric on moduli space, with a, b labelling all the

superfields, and Gab̄ is its inverse. Moreover, Da = ∂a + ∂aK.

As it should be, this scalar potential is invariant under the Kähler trans-

formation

K(z, z̄)→ K(z, z̄)− f(z)− f̄(z̄), (10.182)

19 This compactification gives N = 2 supersymmetry, but an N = 1 formalism is still applicable.
Moreover, one only has N = 1 when orientifold planes are included.
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since the superpotential transforms according to

W (z)→ ef(z)W (z). (10.183)

This transformation is a consequence of the linear dependence ofW on Ω and

the behavior of the holomorphic three-form under Kähler transformations.

Here z refers to the moduli fields and f(z) is a holomorphic function of

these fields. The four-dimensional gravitational constant (or Planck length)

κ4 has been set to one in the above formulas.

A simple calculation shows that this potential does not depend on the

radial modulus (except as an overall factor). Using the result for the Kähler

potential for ρ derived in exercise 10.6, one finds

Gρρ̄DρWDρ̄W − 3|W |2 = 0. (10.184)

As a result, the scalar potential is of the no-scale type

V = eK
∑

i,j 6=ρ
Gij̄DiWDj̄W, (10.185)

where i, j label all the fields excluding ρ. At the minimum of the potential

DiW = 0, (10.186)

which implies V = 0 even though supersymmetry is broken in general, since

DρW 6= 0. (10.187)

These solutions have the interesting property that V = 0 at the minimum of

the potential, so that the cosmological constant vanishes at the same time

supersymmetry that is broken. Even though this may seem encouraging for

achieving the goal of breaking supersymmetry without generating a large

vacuum energy density, it does not constitute a solution of the cosmological

constant problem. There is no reason to believe that this result continues

to hold when α′ and gs corrections are included. In the next section we will

see that nonperturbative corrections to W depending on ρ can generate a

nonvanishing cosmological constant.

Moduli stabilization by nonperturbative effects

The type IIB no-go theorem excludes the possibility of compactification to

four-dimensional de Sitter (dS) space, or more generally to a space with a

positive cosmological constant. This section shows that this conclusion can

be circumvented when nonperturbative effects are taken into account. This
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is of interest, since the Universe appears to have a small positive cosmological

constant.

The basic idea is to stabilize all moduli of the type IIB compactification

and to break the no-scale structure by adding nonperturbative corrections

to the superpotential. These contributions are combined in such a way

that supersymmetry is not broken. This leads to an AdS vacuum with a

negative vacuum energy density. Then one adds anti-D3-branes that break

the supersymmetry and give a positive vacuum energy density.

In the simplest case, there is only one exponential correction to the su-

perpotential, but in general there may be multiple exponentials. The cor-

rections to the Kähler potential can be ignored in the large-volume limit.

The Kähler potential for the radial modulus is then equal to its tree-level

expression. Assuming that all other modes are massive and can be inte-

grated out, one is left with an effective theory for the radial modulus. In

the following we assume that the only Kähler modulus is the size, while the

complex structure and the dilaton become massive due to the presence of

fluxes.

The superpotential is assumed to be given by the tree-level result W0

together with an exponential generated by nonperturbative effects

W = W0 +Aeiaρ. (10.188)

One source of nonperturbative effects is instantons arising from Euclidean

D3-branes wrapping four-cycles. These give a contribution to the superpo-

tential of the form

Winst = T (zα)e2πiρ, (10.189)

where T (zα) is the one-loop determinant that is a function of the complex-

structure moduli, and ρ is the radial modulus. Another possible source for

such corrections is gluino condensation in the world-volume gauge theory of

D7-branes, which might be present and wrapped around internal four-cycles.

The coefficient a is a constant that depends on the specific source of the

nonperturbative effects. For simplicity, we assume that a, A and W0 are real

and that the axion vanishes. At the supersymmetric minimum all Kähler

covariant derivatives of the superpotential vanish including DρW = 0. Using

the Kähler potential in Eq. (10.102), Exercise 10.7 shows that the effective

potential

V = eK
(
Gρρ̄DρWDρ̄W − 3|W |2

)
(10.190)
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V(σ)

V0

σ
σ

0

Fig. 10.7. Form of the potential as a function of the radial modulus. The values of
the potential and the size depend on the values used for A, a and W0. The figure
displays a minimum at which the potential is negative leading to an AdS vacuum.

has a minimum that is given by

V0 = −a
2A2

6σ0
e−2aσ0. (10.191)

Here σ0 is the value of σ in the radial modulus ρ = iσ at the minimum of the

potential. Since this potential is negative, the only maximally symmetric

space-time allowed by such a supersymmetric compactification is AdS space-

time.

One can break supersymmetry explicitly by adding anti-D3-branes. This

gives an additional term in the scalar potential of the form

δV =
D

σ2
, (10.192)

where D is proportional to the number of anti-D3-branes.

It can be chosen to make the vacuum energy density positive, so that a

compactification to dS space becomes possible. Including the anti-D3-brane

contribution results in the scalar potential

V (σ) =
aAe−aσ

2σ2

(
1

3
σaAe−aσ +W0 + Ae−aσ

)
+
D

σ2
. (10.193)

The form of V (σ) is displayed in Fig. 10.8. It shows that a vacuum with a

positive cosmological constant can be obtained. Strictly speaking, the vacua

obtained in this way are only metastable. However, the lifetime could be

extremely long.
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V(σ )

σ

Fig. 10.8. Form of the potential as a function of the radial modulus after taking
anti-D3-branes into account. The figure displays a minimum at which the potential
is positive leading to a de Sitter vacuum.

EXERCISES

EXERCISE 10.7

Derive the extremum of the potential in Eq. (10.191).

SOLUTION

The only solution is supersymmetric, so let us assume it from the outset.

Using

W = W0 +Aeiaρ,

the solution for ρ = iσ in the ground state, which we denote by σ0, is the

solution of

DρW = ∂ρW + ∂ρKW = 0 with K = −3 log [−i(ρ− ρ̄)] .

This gives

W0 = −A
(

2

3
aσ0 + 1

)
e−aσ0,

or

W = −2

3
Aaσ0e

−aσ0 .

So the minimum of the potential

V = eK
(
Gρρ̄DρWDρ̄W − 3|W |2

)
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is

V0 = −a
2A2

6σ0
e−2aσ0,

in agreement with Eq. (10.191). 2

EXERCISE 10.8

Show that the potential Eq. (10.181) can be expressed entirely in terms of

the Kähler-transformation invariant combination

K̃ = K+ log |W |2.

SOLUTION

Using this definition, Eq. (10.181) is equal to

V = e
eK
(
Gab̄
DaW
W

Db̄W
W
− 3

)
.

However,

Gab̄ = ∂a∂b̄K = ∂a∂b̄K̃,

and thus the inverse metric Gab̄ only depends on K̃. Also,

DaW
W

= ∂a logW + ∂aK = ∂aK̃.

Therefore,

V = e
eK
(
Gab̄∂aK̃∂b̄K̃ − 3

)

only depends on K̃. 2

EXERCISE 10.9

Use dimensional analysis to restore the factors of κ4 in the scalar potential.

Discuss the limit κ4 → 0.

SOLUTION

W has dimension three, K has dimension two and the scalar potential V has

dimension four. Therefore, restoring the powers of κ4, Eq. (10.181) takes

the form

κ4
4V = eκ

2
4K
(
κ4

4G
ab̄DaWDb̄W − 3κ6

4|W |2
)
,
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where DaW = ∂aW + κ2
4∂aKW . Thus

V = eκ
2
4K
(
Gab̄DaWDb̄W − 3κ2

4|W |2
)
.

For small κ4,

V = Gab̄∂aW∂b̄W +O(κ2
4).

As expected, one finds the global supersymmetry formula plus corrections

proportional to Newton’s constant. 2

10.4 Fluxes, torsion and heterotic strings

This section explores compactifications of the weakly coupled heterotic string

in the presence of a nonzero three-form field H.20 A nonvanishing H flux has

two implications for the background geometry. First, the background geom-

etry becomes a warped product, like that discussed in the previous sections.

The second consequence of nonvanishing H is that its contributions to the

various equations can be given a geometric interpretation as torsion of the

internal manifold. If the gauge fields are not excited, heterotic supergravity

is a truncation of either type II supergravity theory. Therefore, some of the

analysis in this section applies to those cases and vice versa.

Warped geometry

As in the previous sections, when H flux is included, the space-time is no

longer a direct-product space of the form M10 = M4×M . (For simplicity, in

the following we assume that the external space-time is four-dimensional.)

Analysis of the heterotic supersymmetry transformation laws will show that

a warp factor e2D(y) must be included in the metric in order to provide

a consistent solution. In the Einstein frame, let us write the background

metric for the warped compactification in the form

ds2 = e2D(y)(gµν(x)dxµdxν︸ ︷︷ ︸
4D

+ gmn(y)dymdyn︸ ︷︷ ︸
6D

) (10.194)

As before, x denotes the coordinates of the external space, y the internal

coordinates, the indices µ, ν label the coordinates of the external space and

m,n label the coordinates of the internal space.

The function D(y) depends only on the internal coordinates. It will be

shown that supersymmetry can be satisfied when there is nonzero H flux

provided that

D(y) = Φ(y), (10.195)

20 The index on H3 is suppressed.
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where Φ is the dilaton field. In the case without H flux, the dilaton is

constant, so the geometry is a direct product in the Einstein frame. When

∂mΦ 6= 0, it becomes a warped product. This warp factor is exactly the

one that converts the Einstein frame to the string frame. So the geometry

actually is a direct product with respect to the string-frame metric even

when there is nonzero H flux. Since the internal space is compact and

the dilaton field Φ(y) is nonsingular (in the absence of NS5-branes), the

dilaton is bounded. Therefore, shifting by a constant can make the coupling

arbitrarily weak, so that perturbation theory is justified.

Torsion

The use of a connection with torsion is natural, since the three-form H is

part of the supergravity multiplet. The torsion two-form T α is defined in

terms of the frame and spin-connection one-forms by21

Tα = deα + ωαγ ∧ eγ , (10.196)

which can be written in terms of connection coefficients Γrmn according to

Tα = Γrmne
α
rdx

m ∧ dxn, (10.197)

Since torsion is a tensor, it has intrinsic geometric meaning. A connection

is torsion-free if it is symmetric in its lower indices.

In defining the geometry one is free to choose what torsion tensor to

include in the connection as one pleases. A connection, which is not a

tensor, can always be redefined by a tensor, and in this way the torsion

is changed. In particular, one can choose to use the Christoffel connection,

which has no torsion. The use of a connection with torsion has the geometric

consequences described below. However, you are never required to use such

a connection. In flux compactifications of the heterotic string there is a

natural choice, since by incorporating the three-form flux in the connection,

in the way described below, one is able to define a covariantly constant

spinor.

Geometrically, torsion measures the failure of infinitesimal parallelograms,

defined by the parallel transport of a pair of vectors, to close. Parallel

transport for the case in which the torsion vanishes is illustrated in Fig. 10.9

and a case in which it does not vanish is illustrated in Fig. 10.10.

As a simple example consider the Euclidean metric ds2 = dx2 + dy2 on

the two-dimensional plane � 2. If parallel transport is defined in the usual

21 There are other meanings of the word torsion that should not be confused with the one intro-
duced here.
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Fig. 10.9. The vectors V and W are parallel transported to V ′ and W ′ using a
torsion-free connection. The resulting parallelogram closes.

sense of elementary geometry, the Christoffel connection vanishes in carte-

sian coordinates. However, any connection compatible with the flat metric

is allowed. This means one can choose any connection that respects angles

and distances or equivalently which leaves the metric covariantly constant.

In the present case this means that one can choose any spin connection one-

form taking values in the Lie algebra of the two-dimensional rotation group,

so

ωαβ = hεαβ, (10.198)

where h can be any one-form. Parallel transport of a vector now leads to

a (would-be) parallelogram that fails to close, as indicated in Fig. 10.10.

Mathematically, this means that ∇VW −∇WV 6= [V,W ].

Fig. 10.10. The vectors V and W are parallel transported to V ′ and W ′ using a
connection that has torsion. The resulting parallelogram fails to close.
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Conditions for unbroken supersymmetry

The goal of this subsection is to derive the supersymmetry constraints

for compactifications of the heterotic string to maximally symmetric four-

dimensional space-time allowing for nonzero H flux. As was explained in

Section 9.4, a supersymmetric configuration is one for which a spinor ε exists

that satisfies

δΨM = ∇Mε− 1
4HMε = 0,

δλ = −1
2/∂Φε+ 1

4Hε = 0,

δχ = −1
2Fε = 0,

(10.199)

in the notation of Section 8.1. A very convenient fact is that these formulas

are written in the string frame. Therefore, the warp factor is already taken

into account, and they can be analyzed using a space-time that is a direct

product of external and internal spaces, just as in Chapter 9. As before, Φ

is the dilaton, F is the nonabelian Yang–Mills field strength and H is the

three-form field strength satisfying the Bianchi identity

dH =
α′

4
[tr(R ∧R)− tr(F ∧ F )] . (10.200)

Poincaré invariance of the external space-time requires some components to

vanish

Hµνρ = Hµνp = Hµnp = 0 and Fµν = Fµn = 0. (10.201)

The nonvanishing fields can depend on the coordinates of the internal man-

ifold only.

One class of consistent solutions of Eq. (10.199) has a vanishing three-

form and a constant dilaton. These solutions are the conventional Calabi–

Yau compactifications described in Chapter 9. Now let us consider solutions

with

Hmnp 6= 0 and ∂mΦ 6= 0. (10.202)

The supersymmetry transformation of the gravitino can be rewritten con-

veniently in terms of a covariant derivative with torsion. To understand

this, recall that

∇Mε = ∂Mε+
1

4
ωMABΓABε. (10.203)

This result is written for tangent-space indices A,B and base-space indices
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M,N,P of the ten-dimensional space-time. In the ten-dimensional theory,

the supersymmetry variation of the gravitino can be written as

∇̃Mε = (∇M −
1

8
HMABΓAB)ε, (10.204)

where ∇M is the torsion-free connection, since this combination appears in

the supersymmetry transformation of the gravitino field. Here the derivative

∇̃M is defined with respect to a connection with torsion. The three-form

flux shifts the spin connection according to

ω̃AB = ωAB −
1

2
H A
M Bdx

M . (10.205)

Using Eq. (10.196) one sees that the three-form flux represents an additional

contribution to the torsion one-form

T̃A = TA +
1

2
HA

MNdx
M ∧ dxN . (10.206)

We will choose TA = 0 so that T̃A is given by the three-form flux.

The supersymmetry parameter and gamma matrices decompose into in-

ternal and external pieces

ε(x, y) = ζ+(x)⊗ η+(y) + ζ−(x)⊗ η−(y), (10.207)

where ζ± are Weyl spinors on M4 and η± are Weyl spinors on M that satisfy

ζ− = ζ?+ and η− = η?+. (10.208)

The gamma matrices split as

Γµ = γµ ⊗ 1 and Γm = γ5 ⊗ γm. (10.209)

The conditions (10.199) have several components. From the external com-

ponent of the gravitino transformation one obtains

δψµ = ∇µζ+ = 0, (10.210)

which implies that R = 0. Here R is the scalar curvature of the external

space, which by maximal symmetry is a constant. Even though solutions

with a negative cosmological constant, that is, AdS compactifications, can

be compatible with supersymmetry, only Minkowski-space compactifications

are possible in the present set-up. This part of the analysis is unaffected by

the H flux and is the same as in Chapter 9.

The internal component of the gravitino supersymmetry condition re-

quires the existence of H-covariant spinors η± with

∇̃mη± = (∇m −
1

8
Hmnpγ

np)η± = 0 (10.211)
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for a supersymmetric solution. Eq. (10.211) implies that the scalar quantity

η†+η+ is a constant, and so once again it can be normalized so that η†+η+ = 1.

In terms of this spinor, one can define the tensor

Jm
n = iη†+γm

nη+ = −iη†−γmnη− . (10.212)

Moreover, using Fierz transformations, it is possible to show that

Jm
nJn

p = −δmp. (10.213)

Thus, the background geometry is almost complex, and J is an almost com-

plex structure. This implies that the metric has the property

gmn = Jm
kJn

lgkl, (10.214)

and that the quantity

Jmn = Jm
kgkn (10.215)

is antisymmetric. As a result, it can be used to define a two-form

J =
1

2
Jmndx

m ∧ dxn, (10.216)

which is sometimes called the fundamental form. It should not be confused

with the Kähler form.

The tensor Jn
p is covariantly constant with respect to the connection ∇̃

with torsion,

∇̃mJnp = ∇mJnp −
1

2
Hsm

pJn
s − 1

2
Hs

mnJs
p = 0. (10.217)

Again, it is understood that ∇ uses the Christoffel connection. Using this

result, it follows that the Nijenhuis tensor, defined in the appendix of chapter

9, vanishes (see Exercise 10.10). As a result, J is a complex structure, and

the manifold is complex. So one can introduce local complex coordinates za

and z̄ā in terms of which

Ja
b = iδa

b, Jā
b̄ = −iδāb̄ and Ja

b̄ = Jā
b = 0. (10.218)

The metric is hermitian with respect to J , since combining Eqs (10.214)

and (10.218) implies that the metric has only mixed components gab̄. The

fundamental form J is then related to the metric by

Jab̄ = igab̄. (10.219)

Inserting the relation between the fundamental form and the metric into

Eq. (10.217) gives

H = i(∂ − ∂̄)J. (10.220)
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By definition dJ = 0 for a Kähler manifold. As a result, backgrounds with

nonvanishing H are non-Kähler.

Let us consider the implications of the dilatino equation in Eq. (10.199).

Evaluating it in complex coordinates and using γ āη+ = γaη− = 0, one finds

that

∂aΦ = −1

2
Habc̄g

bc̄ (10.221)

and the complex-conjugate relation. This relation implies the existence of

a unique nowhere-vanishing holomorphic three-form Ω. This three-form is

given by

Ω = e−2ΦηT−γabcη−dz
a ∧ dzb ∧ dzc. (10.222)

Using Eq. (10.221), Exercise 10.11 shows that Ω is holomorphic, that is,

∂̄Ω = 0. (10.223)

Note that the norm of Ω, defined by

||Ω||2 = Ωa1a2a3Ω̄b̄1 b̄2b̄3
ga1b̄1ga2b̄2ga3b̄3 , (10.224)

is related to the dilaton by

||Ω||2 = e−4(Φ+Φ0), (10.225)

where Φ0 is an arbitrary constant.

The existence of the holomorphic (3, 0)-form implies the vanishing of the

first Chern class, that is, c1 = 0. Together with Eq. (10.211) this implies that

the background has SU(3) holonomy. However, since the internal manifolds

are not Kähler they cannot be Calabi–Yau. Note that even though the

background is not Kähler, it still satisfies the weaker condition

d
(
e−2ΦJ ∧ J

)
= 0, (10.226)

which means that the background is conformally balanced.

The vanishing of the supersymmetry variation of the gluino, Fε = 0,

implies that

(Fabγ
ab + Fāb̄γ

āb̄ + 2Fab̄γ
ab̄)η = 0 (10.227)

and hence that the gauge field satisfies

gab̄Fab̄ = Fab = Fāb̄ = 0, (10.228)

which is called the hermitian Yang–Mills equation.
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Once a solution for the hermitian Yang–Mills field has been found, the

fundamental form is constrained to satisfy the differential equation

i∂∂̄J =
α′

8
[tr(R ∧R)− tr(F ∧ F )] , (10.229)

which is a consequence of the anomaly cancellation condition.

To summarize, supersymmetry is unbroken if the external space-time is

Minkowski and the internal space satisfies the following conditions:

• It is complex and hermitian.

• There exists a holomorphic (3, 0)-form Ω that is related to the fundamental

form by the condition that the background is conformally balanced, that

is,

d(||Ω||J ∧ J) = 0. (10.230)

• The gauge field satisfies the hermitian Yang–Mills condition.

• The fundamental form satisfies the differential equation in Eq. (10.229).

These are the only conditions that have to be imposed. Once a solution

of the above constraints has been found, H and Φ are determined by the

data of the geometry according to

H = i(∂ − ∂̄)J and Φ = Φ0 −
1

2
log ||Ω||. (10.231)

There exist six-dimensional compact internal spaces that solve the above

constraints and lead to interesting phenomenological models in four dimen-

sions. However, they lie beyond the scope of this book. In the following we

describe a simpler example in which the internal space is four-dimensional.

Conformal K3

Four-dimensional internal spaces for heterotic-string backgrounds with tor-

sion can be constructed by considering an ansatz of the form of a direct

product in the string-frame, as before, with

gmn(y) = e2D(y)gK3
mn(y), (10.232)

where gK3
mn(y) represents the (unknown) metric of K3, and gmn(y) is the

internal part of the string-frame metric. In this four-dimensional example,

the internal manifold is given by a conformal factor times a Calabi–Yau

manifold.
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In this background the dilatino and gravitino supersymmetry conditions

can be written in the form

(∂mΦ +
1

2
∂mh)γmη = 0 (10.233)

and

∇mη +
1

4
∂nh γm

nη = 0. (10.234)

Here dh = ?H is the one-form dual to H in four dimensions and the Hodge-

star operator is defined with respect to the metric gmn. The first equation

implies that

Φ(y) = −1

2
h(y) + const. (10.235)

In other words, the flux is given in terms of the dilaton by H = −2 ? dΦ. In

terms of the metric rescaled by the factor e2D, Eq. (10.234) takes the form

∇̃mη +
1

2
∂nD γm

nη +
1

4
∂nh γm

nη = 0. (10.236)

Therefore, for the choice

D(y) = Φ(y) (10.237)

one finds ∇̃mη = 0. This is just the Killing spinor equation required to

define a Calabi–Yau manifold. Since K3 is the only Calabi–Yau manifold in

four dimensions, one is justified in identifying the rescaled metric with the

K3 metric.

The conformal factor and the dilaton are constrained by the Bianchi iden-

tity for the H flux

d ? dΦ = −α
′

8
[tr(R ∧R)− tr(F ∧ F )] . (10.238)

Solutions can be found if the right-hand side is exact. The conditions

Fāb̄ = Fab = gab̄Fab̄ = 0 (10.239)

are conformally invariant. Therefore, they only need to be solved for K3.

EXERCISES

EXERCISE 10.10

Show that the backgrounds described in Section 10.4 are complex.
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SOLUTION

In order to prove that the manifold is complex one computes the Nijenhuis

tensor, which was defined in the appendix of Chapter 9 to be

Nmn
p = Jm

qJ[n
p
,q] − JnqJ[m

p
,q].

Eq. (10.217) implies that the Nijenhuis tensor takes the form

Nmnp =
1

2

(
Hmnp − 3J[m

qJn
sHp]qs

)

Identities for Dirac matrices, which are listed in the appendix of this chapter,

imply

J[m
pJn]

q = 1
4g

prgqs(J ∧ J)mrns + 1
2JmnJ

pq

= 1
2η
†γpqmnη − 1

2η
†γpqη η†γmnη ,

where the last line has used the six-dimensional identity

1

2
(J ∧ J) = ∗J.

As a result, one obtains

Nmnp = − 1
12η
†
+

{
H, γmnp + 3iγ[mJnp]

}
η+

= − 1
12η
†
+

[
/∂Φ, γmnp + 3iγ[mJnp]

]
η+

= 0.

This proves that the manifold is complex. 2

EXERCISE 10.11

Prove that Ω in Eq. (10.222) is holomorphic.

SOLUTION

A holomorphic three-form is a ∂̄ closed form of type (3, 0). In order to prove

that Ω is holomorphic, we compute ∂̄Ω. We start by computing its covariant

derivative.

The covariant derivative (defined with respect to the Christoffel connec-

tion) acting on the tensor Ω is

∇k̄Ωabc = ∂k̄Ωabc − 3Γp
k̄[a

Ωbc]p = ∂k̄Ωabc − Γp
k̄p

Ωabc.

Using the definition of the Christoffel connection and expanding Eq. (10.220)

in components implies

Γp
k̄p

= gpq̄∂[k̄gq̄]p =
1

2
Hk̄pq̄g

pq̄ = ∂k̄Φ.
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As a result,

∇k̄Ωabc = ∂k̄Ωabc − ∂k̄ΦΩabc.

On the other hand, using the definition of Ω, one obtains

∇k̄Ωabc = −∂k̄ΦΩabc.

Indeed, to see this last relation, use

∇k̄Ωabc = ∇k̄
(
e−2ΦηT−γabcη−

)
= −2∂k̄ΦΩabc + 2e−2ΦηT−γabc∇k̄η−.

Using Eq. (10.211), this is equal to

−2∂k̄ΦΩabc +
1

2
Hk̄np̄g

np̄Ωabc = −∂k̄ΦΩabc.

This implies that Ω is holomorphic. 2

10.5 The strongly coupled heterotic string

This feature is generic and is not special to the type IIB theory. It also

applies to the heterotic theory. The subject of moduli stabilization in the

strongly coupled heterotic string is still relatively unexplored and an active

area of current research.

A natural way to describe the strongly coupled E8 × E8 heterotic string

theory is in terms of M-theory. This formulation, called heterotic M-theory,

was introduced in Chapter 8. Recall that it has a space-time geometry

� 10 × S1/
�

2. The quotient space S1/
�

2 can be regarded as a line interval

that arises when the E8 × E8 heterotic string is strongly coupled, with a

length equal to gs`s. The gauge fields of the two E8 gauge groups live on

the two ten-dimensional boundaries of the resulting 11-dimensional space-

time. This section explores some phenomenological implications of fluxes in

heterotic M-theory and briefly describes moduli stabilization in the context

of the strongly coupled theory. For heterotic M-theory compactified on a

Calabi–Yau three-fold, the four-form field strength F4 does not vanish if

higher-order terms in κ2/3 are taken into account. The Yang–Mills fields act

as magnetic sources in the Bianchi-identity for F4 and therefore an F4 of

order κ2/3 is required for consistency. As in the previous sections, a warped

geometry again plays a crucial role in heterotic M-theory compactifications.

One rather intriguing result is that, in heterotic M-theory, Newton’s con-

stant is bounded from below by an expression that is close to the correct
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value. This is in contrast to the weakly coupled heterotic string theory,

where the value of Newton’s constant comes out too large. Let us describe

this in more detail.

Newton’s constant from the D = 10 heterotic string

As was shown in Chapter 8, the leading terms of the ten-dimensional effective

action for the heterotic string in the string frame are

Leff =

∫
d10x

√
−Ge−2Φ

( 4

α′4
R− 1

α′3
tr|F |2

)
+ . . . . (10.240)

If this theory is compactified on a Calabi–Yau manifold with volume V, the

resulting four-dimensional low-energy effective action takes the form

Leff =

∫
d4x V

√
−Ge−2Φ

( 4

α′4
R− 1

α′3
tr|F |2

)
+ . . . . (10.241)

In the supergravity approximation, the volume of the Calabi–Yau manifold

is assumed to be large V > α′3. Thus, the value of Newton’s constant from

the previous formula is

G4 =
e2Φα′4

64πV . (10.242)

The value of the unification gauge coupling constant is

αU =
e2Φα′3

16πV . (10.243)

The previous two formulas lead to an expression for Newton’s constant in

terms of these variables

G4 =
1

4
αUα

′. (10.244)

If one assumes that the string is weakly coupled, then e2Φ � 1, and the

volume of the Calabi–Yau is bounded from above

V � α′3

16παU
. (10.245)

In heterotic-string compactifications of the type described in Chapter 9,

the size of the compactification manifold gives a bound on the unification

scale. Thus, for a Calabi–Yau manifold that can be characterized by a

single length scale, the volume satisfies V ≈ M−6
U . Inserting this value

into Eq. (10.245) and Eq. (10.244) one obtains a lower bound for Newton’s
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constant22

G4 >
α

4/3
U

M2
U

, (10.246)

which is too large by a significant factor. The lesson is that by insisting on

perturbative control, one obtains unrealistic values for the four-dimensional

Newton’s constant.

Newton’s constant from heterotic M-theory

This situation can be improved in the context of the strongly coupled het-

erotic string. At strong coupling, the corrections to the predicted value of

Newton’s constant are closer to the phenomenologically interesting regime.

If simultaneously the Calabi–Yau volume is large then the successful weak-

coupling prediction for the gauge coupling constants is not ruined. Let us

illustrate how fluxes at strong coupling can lead to the right prediction for

G4 in the example of the strongly coupled E8 × E8 heterotic string, as de-

scribed in terms of heterotic M-theory.23

The terms of interest in the action for heterotic M-theory are

L =
1

2κ2
11

∫

M11

d11x
√
gR−

∑

i

1

8π(4πκ2
11)2/3

∫

M10
i

d10x
√
g|Fi|2, (10.247)

where i = 1, 2 labels the gauge fields of the two different E8 gauge groups,

and κ11 is the 11-dimensional gravitational constant as usual. If this theory

is compactified on a Calabi–Yau manifold with volume V times an interval

S1/
�

2 of length πd, one can read off the value of Newton’s constant and the

gauge couplings to be

G4 =
κ2

11

8π2Vd and αU =
(4πκ2

11)2/3

2V . (10.248)

These formulas show that, if αU and MU are made small enough, then

Newton’s constant G4 can be made small by taking d to be large enough.

The length of the interval d cannot be arbitrarily large, because there is

a value of order (V/κ11)2/3, beyond which one of the two E8’s is driven to

infinite coupling. To derive this bound, the concrete form of the supergravity

background needs to be worked out. This was done by Witten by solving

the constraint following from the gravitino supersymmetry transformation.

22 Typical values are αU ∼ 1/25 and MU ∼ 2×1016GeV, whereas G4 = m−2
p and mp ∼ 1019GeV.

23 A similar conclusion can be drawn for the strongly coupled SO(32) heterotic string theory,
whose strong-coupling limit is given by the weakly coupled ten-dimensional type I superstring
theory.
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In this background the metric is warped and the fluxes are nonvanishing due

to the Bianchi identity

(dF )11IJKL = −3
√

2

2π

(κ11

4π

)2/3
[trF[IJFKL]−

1

2
trR[IJRKL]]δ(x

11). (10.249)

The delta-function singularity on the right-hand side of this equation comes

from the boundaries or
�

2-fixed planes, and it requires the fluxes F4 to be

nonvanishing. This Bianchi identity reproduces the right Bianchi identity

for the perturbative heterotic string in the weakly coupled limit (in which

the length of the interval goes to zero). As a side remark, one can see from

Eq. (10.249) that, when higher-order corrections are taken into account,

fluxes no longer obey the ordinary Dirac quantization condition. Namely, in

the appropriate normalization, the Bianchi identity implies that fluxes are

half-integer quantized,

[F4/2π] = λ(F )− λ(R)/2, (10.250)

where λ describes the first Pontryagin class, which is an integer. Also, F

refers to the E8 bundle and R refers to the tangent bundle.

Requiring that the infinite coupling regime be avoided gives a lower bound

on Newton’s constant, which (up to a numerical factor) is

G4 ≥
α2

U

M2
U

. (10.251)

This bound is about an order of magnitude weaker than what was derived

from the weakly coupled heterotic string at the beginning of this section.

Inclusion of numerical factors, such as 16π2, gives a bound that is close

to the correct value. Moreover, the bound can be weakened further if one

chooses a Calabi–Yau manifold that is much smaller in some directions than

in others, so that its size is not well characterized by a single scale.

Moduli stabilization

Moduli stabilization in the context of the heterotic string has not been ex-

plored in detail. It is, of course, desirable to see if a potential for the interval

length d can be generated and to make sure that the resulting value for the

interval is in agreement with the value of Newton’s constant. Without en-

tering into details, let us only mention that such a potential can be derived

from nonperturbative effects in a similar manner as was done for the type

IIB theory. The nonperturbative effects come from open M2-brane instan-

tons that wrap the length of the interval (as illustrated in Fig. 10.11) and

gluino condensation on the hidden boundary. Both effects combine in such
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a way that the length of the interval is stabilized in a phenomenologically

interesting regime.

Fig. 10.11. Open M2-brane instantons stretching between both boundaries together
with gluino condensation generate a potential for the interval length.

10.6 The landscape

One of the goals of string theory is to derive the standard model of elemen-

tary particles from first principles and to compute as many of its parameters

as possible. The dream of a unique consistent quantum vacuum capable of

making these predictions evaporated when it was discovered that there are

several consistent superstring vacua in ten dimensions. Soon it became

evident that the situation is even more complicated, because continua of

supersymmetric vacua exist parametrized by the dilaton and other moduli.

These vacua are unrealistic because they contain massless scalars, the mod-

uli fields, and they have unbroken supersymmetry. Until supersymmetry is

broken, one cannot answer the question of why the value of the cosmological

constant is incredibly small but nonzero. This problem has been addressed

in the recent string theory literature in the context of flux compactifications.

The anthropic principle

One approach proposed in the literature argues that there is a large number

of nonsupersymmetric vacua so that the typical spacing between adjacent

values for the cosmological constant is smaller than the observed value. In

this case, it is reasonable that some vacua should have approximately the
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observed value. Moreover, a significantly larger value than is observed would

not lead to galaxy formation and the development of life in the Universe, so

our existence ensures that a small value was chosen. In these discussions,

the possible string theory vacua are viewed as the local minima of a very

complicated potential function with many peaks and valleys. This function

is visualized as a landscape. This picture is based on an intuition derived

from nonrelativistic quantum mechanics. This intuition surely breaks down

if the scale of the peaks and valleys approaches the string scale or the Planck

scale, as it is based on the use of the low energy effective actions that can

be derived from string theory. However, it provides a valid description if it

is smaller than those scales by a factor that can be made arbitrarily large.

The statistical approach

Motivated by the existence of this enormous number of vacua, a statisti-

cal analysis of their properties has been proposed. Consider the type IIB

flux vacua discussed in Section 10.2, where the minima of the potential

are described by isolated points. In the statistical approach, ensembles of

randomly chosen systems are picked and specific quantities of interest are

studied. Rather than studying individual vacua, the overall distribution of

vacua on the moduli space is analyzed. Important examples of quantities

that can be analyzed statistically are the cosmological constant and the su-

persymmetry breaking scale. These studies are motivating string theorists

to rethink the concept of naturalness in quantum field theory. If the multi-

plicity of vacua can compensate for small numbers such as the ratio of the

weak scale to the Planck scale, then it could undermine one of the arguments

for low-energy supersymmetry breaking.

In order to study the number and distribution of type IIB flux vacua, the

ensemble is built from the low-energy effective theories with flux described

by the superpotential of Eq. (10.101) and subject to the tadpole-cancellation

condition Eq. (10.94). It is rather important in this approach that the num-

ber of vacua that is found is finite. Fortunately, this seems to be a conse-

quence of the constraints given by the tadpole-cancellation condition, which

provides a bound on the possible fluxes. Additional constraints come from

supersymmetry and duality symmetries as is discussed below. The number

of vacua, with all moduli stabilized, is finite for this class of examples, but

this might not be true in general.

Counting of vacua

Let us now describe the counting of supersymmetric type IIB flux vacua

discussed in Section 10.2. Recall that in these vacua the three-form G3 =
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F3 − τH3 is nonvanishing. Since the three-forms F3 and H3 are harmonic,

they are fully characterized by their periods on a basis of three-cycles

Nα
RR = ηαβ

∫

Σβ

F3 and Nα
NS = ηαβ

∫

Σβ

H3. (10.252)

Here ηαβ is the intersection matrix of three-cycles and ηαβ is its inverse.

Recall that (for suitable normalizations) these N ’s are integers as a conse-

quence of the generalized Dirac quantization condition. In this notation the

tadpole-cancellation condition Eq. (10.94) gives the following constraint on

the fluxes

0 ≤ ηαβNα
RRN

β
NS ≤ L, (10.253)

where

L = χ/24−ND3. (10.254)

Here χ is the Euler characteristic of the 3-fold and ND3 is a positive integer

describing the total R–R charge, as in Eq. (10.94).

Using Eq. (10.101), the superpotential can be written in terms of the

periods of the holomorphic three-form

Πα =

∫

Σα

Ω, (10.255)

as

W = (Nα
RR − τNα

NS)Πα = N ·Π. (10.256)

A supersymmetric flux vacuum is determined by the flux quanta Nα and

solves the equation

DiW = 0, (10.257)

where W = 0 corresponds to Minkowski space and W 6= 0 corresponds to

AdS space.

A simple example

The simplest examples of flux compactifications are orientifolds, such as

T 6/
�

2. As an example, let us count the flux vacua for the simple toy model

of a rigid Calabi–Yau with no complex-structure moduli, b3 = 2 and periods

Π1 = 1 and Π2 = i. The Kähler moduli are ignored as these moduli fields

are fixed by nonperturbative effects and therefore can be ignored in a pertur-

bative description. This simple example illustrates all the features of more

realistic six-dimensional examples. It has no geometric moduli at all, only

the axion–dilaton modulus τ , which can be viewed as the complex-structure

modulus of a torus.
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The superpotential takes the simple form

W = N ·Π = Aτ +B, (10.258)

with coefficients

A = −(N1
NS + iN2

NS) = a1 + ia2, (10.259)

B = N1
RR + iN2

RR = b1 + ib2. (10.260)

Using Eq. (10.103), the condition Eq. (10.257) gives

DτW = ∂τW + ∂τKW = ∂τW −
1

τ − τ̄ W = −Aτ̄ +B

τ − τ̄ = 0. (10.261)

This determines the τ -parameter of the axion–dilaton to be

τ = −B̄/Ā. (10.262)

Fig. 10.12. Values of τ in the fundamental region of SL(2, � ) for a rigid Calabi–Yau
manifold with L = 150.
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One final restriction on the vacua comes from the SL(2,
�

) duality sym-

metry of the type IIB theory. This symmetry allows one to restrict the value

of the integers appearing in the previous formula to a2 = 0 and 0 ≤ b1 < a1,

which then implies that a1b2 ≤ L. For each choice of L, the values of

τ that correspond to allowed choices of the fluxes can be computed using

Eq. (10.262). A scatter plot of these values for the choice L = 150 is shown

in Fig. 10.12. This figure shows that, at particular points, such as τ = ni,

there are holes. At the center of these holes there is a large degeneracy of

vacua. For example, there are 240 vacua for τ = 2i. So one concludes from

this simple toy example that the statistical analysis provides the informa-

tion where vacua with certain properties can be found in the moduli space.

With these techniques it is possible to compute the distribution function of

vacua on the moduli space of string compactifications and such an analysis

can be generalized to the nonsupersymmetric case. However, this is beyond

the scope of this book. On the more speculative side, it has been proposed

that the landscape can be described in terms of a wave function of the Uni-

verse, providing an alternative way of thinking about the issue of how to

choose among the many different flux vacua. This subject is an active area

of current string theory research.

10.7 Fluxes and cosmology

Superstring theory and M-theory have implications for cosmology, some of

which are addressed in this section. The main conceptual issues arise when

the classical space-time description derived from general relativity breaks

down, and the curvature of space-time diverges. This happens at the be-

ginning of the Universe in the SBB, when the classical space-time becomes

singular and the energy density becomes infinite. Here, one might hope

that string theory smoothes out the singularity, due to the finite size of the

string, so that there could be a sensible cosmology before the Big Bang.

When the curvature of space-time and the string coupling become large,

the perturbative formulation of string theory becomes unreliable, and one

needs to turn to other techniques, such as the Matrix-theory proposal for

M-theory,24 which is an interesting area of current research.

Some basic cosmology

Before discussing string-theory cosmology, some basic features of the stan-

dard model of cosmology, including its successes and shortcomings, are pre-

24 Matrix theory is introduced in Chapter 12.
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sented. The next two subsections are intended to present a basic “tool kit”

of cosmology for the string-theory student. The interested student should

consult cosmology textbooks for a more detailed and complete explanation.

The perfect-fluid description

Let us consider four-dimensional general relativity in the presence of a per-

fect fluid, which describes the energy content of the Universe. By defini-

tion, a perfect fluid is described in terms of a stress-energy tensor that is

a smoothly varying function of position and is isotropic in the local rest

frame. The perfect-fluid description is suggested by the fact that the mat-

ter and radiation distribution of the Universe looks remarkably homoge-

neous and isotropic on very large cosmological scales. For instance, most

of the radiation contained in the Universe is accounted for by the cosmic

microwave background (CMB), which is isotropic up to tiny fluctuations

of order 10−5 once the dipole moment due to the motion of the Sun and

Earth is subtracted. Furthermore, galaxy surveys indicate a homogeneous

distribution at scales greater than 100 Mpc (1 pc = 3.086 × 1016m). The

energy–momentum tensor of a perfect fluid takes the form

T00 = ρ, Tij = pgij . (10.263)

This tensor is characterized by three quantities: the mass-energy density ρ,

the pressure p and the spatial components of the metric gij . In addition, it

is generally assumed that there is a simple relation between the mass-energy

density ρ and pressure p given by the equation of state

p = wρ , (10.264)

where w is a constant that depends on whether the Universe is dominated

by relativistic particles (termed radiation), nonrelativistic particles (collec-

tively called matter) or vacuum energy. Some of the cosmologically relevant

gravitating sources are listed in Table 10.1.

type of fluid w ρ ∼ a−3(w+1) a(t) ∼ t2/3(w+1)

radiation 1/3 1/a4 t1/2

matter 0 1/a3 t2/3

vacuum energy −1 const. e
√

Λ/3t

Table 10.1: Cosmologically most relevant gravitating sources. The time

dependence of the scale factor a is given for k = 0.
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Friedmann–Robertson–Walker Universe

The homogeneity and isotropy of the D = 4 space-time uniquely determines

the metric to be of the following Friedmann–Robertson–Walker (FRW) type

ds2 = −dt2 + a2(t)
( dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
. (10.265)

The only functional freedom remaining in this metric is the time-dependent

scale-factor a(t) which determines the radial size of the Universe. It is

determined by the Einstein equations

Gµν = Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (10.266)

and therefore by the dynamics of the theory. Here G denotes Newton’s con-

stant. A cosmological constant has been included in this equation, since re-

cent astronomical observations indicate that it has a positive (nonvanishing)

value Λ = 10−120M4
P = (10−3eV)4. In addition, the metric is characterized

by the discrete parameter k, which characterizes the spatial curvature25

Rcurv = a|k|−1/2. (10.267)

It takes the values −1, 0, 1 depending on whether there is enough gravitating

energy in the Universe to render it closed, flat or open. The precise definition

of these terms is given below. For the flat case, k = 0, the time-dependence

of the scale factor for various cosmic fluids is displayed in Table 10.1.

Friedmann and acceleration equations

The Einstein field equations, which determine a(t), reduce for the FRW

ansatz to the Friedmann and acceleration equations, respectively

H2 =
1

3M2
P

ρtot −
k

a2
+

Λ

3
, (10.268)

ä

a
= − 1

6M2
P

(ρtot + 3ptot) +
Λ

3
, (10.269)

where

H(t) = ȧ(t)/a(t) (10.270)

defines the Hubble parameter, which determines the rate of expansion of the

Universe. Furthermore,

ρtot =
∑

i

ρi, ptot =
∑

i

pi (10.271)

25 In these conventions r is dimensionless and a(t) is a length. For k = 0,
√−g = a3.
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are the total energy density and pressure, while MP = (8πG)−1/2 denotes

the reduced Planck mass.26 The index i labels different contributing fluids,

as listed in Table 10.1. Sometimes the cosmological constant is regarded as

a time-independent contribution to the energy density and pressure of the

vacuum ρvac = −pvac = M2
pΛ. It does not appear explicitly in the previous

equations.

Open, flat and closed Universes

It follows from the Friedmann equation Eq. (10.268) that (for Λ = 0) the

Universe is flat, k = 0, when the energy density equals the critical density

ρc = 3H2M2
P. (10.272)

This is a time-dependent function that at present has the value ρc,0 = 1.7×
10−29g/cm3.

It is customary to define the energy density of the various fluids that are

present in units of ρc by introducing the density parameter Ωi = ρi/ρc for

the ith fluid. In terms of the sum over all such contributions, Ω =
∑

i Ωi =

ρtot/ρc, the Friedmann equation takes the simple form

Ω− 1 =
k

a2H2
− Λ

3H2
. (10.273)

This illustrates that there is a simple relation between the curvature k and

the deviation from the critical density ρc. The classification of cosmological

models as open (infinite), flat or closed (finite), which is summarized in

Table 10.2, follows from this equation.27

ρ Ω spatial curvature k type of Universe

< ρc < 1 −1 open

= ρc = 1 0 flat

> ρc > 1 1 closed

Table 10.2: The classification of cosmological models.

The Friedmann and acceleration equations imply the continuity or fluid

equation, which expresses energy conservation

ρ̇tot + 3H(ρtot + ptot) = 0 . (10.274)

26 The reduced Planck mass has a numerical value MP = 2.436×1018 GeV and differs by a factor√
8π from the alternative definition mp = 1.22× 1019 GeV.

27 The value of Λ has been absorbed into Ω in this table.
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If there is a single cosmic fluid, with equation of state given by Eq. (10.264),

one obtains from here the following dependence of ρ on the FRW scale-factor

ρ ∼ 1

a3(w+1)
. (10.275)

This relation, valid for any value of k, is displayed in Table 10.1 for the

most important cosmic fluids. The acceleration equation implies that ä < 0

for fluids with ρ + 3p > 0, and hence the associated FRW cosmologies

describe decelerating Universes. Under the general assumption that the

energy density ρ is positive, one can show that a FRW cosmology implies

an initial singularity. This forms the basis for the SBB model of cosmology

in which a FRW Universe starts from an initial it Big-Bang singularity.

The SBB model of cosmology

Let us now briefly summarize the successes and remaining puzzles of the

SBB model of cosmology. In the cosmological time period starting at the

time of nucleosynthesis, when protons and neutrons bound together to form

atomic nuclei (mostly of hydrogen and helium), the SBB model is very well

confirmed by three main observations. These are

• The Hubble redshift law: by extrapolation of the measured velocities of

galaxies of the nearby galaxy cluster, Hubble made the bold conjecture

that the Universe is undergoing a uniform expansion, so that galaxies that

are separated by a distance L recede from one another with a velocity

v = H0L, where H0 is the present Hubble parameter. This relation and

deviations from it are well understood.

• Nucleosynthesis: the relative abundance of the light elements, such as 75%

H, 24% 3He and smaller fractions of Deuterium and 4He, is explained by

the theory of nucleosynthesis and constitutes the earliest observational

confirmation of the SBB model.

• The cosmic microwave background (CMB): most of the radiation con-

tained in the Universe at present is nearly isotropic and has the form of

a blackbody spectrum with temperature about 2.7 oK. It is known as the

Cosmic Microwave Background (CMB). The discovery of this radiation in

1964 by Penzias and Wilson constitutes one of the great triumphs of the

SBB model, which predicts a black-body distribution for the CMB. The

measurement of the CMB’s temperature fluctuations, δT/T , whose spa-

tial variation is decomposed into a power spectrum, provides information

on the energy-density fluctuations δρ/ρ in the early Universe. This is im-

portant for understanding the potential microscopic origin of the observed

large-scale structure of the Universe.
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However, puzzles still remain in the SBB model. Some of the most im-

portant ones are

• The horizon problem: the observed CMB is isotropic. However, when we

follow the evolution of the Universe backwards in time according to the

SBB model the sky decomposes into lots of causally disconnected patches.

It needs to be explained why opposite points in the sky look so similar

even though they cannot have been in causal contact since the Big Bang.

• The flatness problem: observation shows that Ω = ρtot/ρc ' 1 at the

current epoch. From the SBB evolution one finds that the comoving

Hubble length 1/(aH) increases in time. Hence the Friedmann equation

Eq. (10.273) shows that Ω would have to be fine-tuned to a value extremely

close to one at earlier times in order to comply with present observation.

• Unwanted relics: the SBB model does not explain why some relics, that

could in principle be abundant, are so rare. Examples of such relics are

magnetic monopoles, which would be produced when the gauge group of

a grand-unified theory is broken to a smaller group. Other examples are

domain walls, cosmic strings or the gravitino. Perhaps not all of these

objects exist, but some of them probably do. The presence of unwanted

relics would be dramatic, since some of them could quickly dominate the

evolution of the Universe.

• The origin of the CMB anisotropies: the SBB does not explain the ob-

served CMB anisotropies occurring at a relative magnitude of about 10−5.

These four puzzles are successfully addressed by an inflationary phase in

the early Universe (taking place prior to the Big Bang), as discussed in the

next section. There are more puzzles, which may or may not be connected

to inflation, such as

• Dark matter: rotation curves of galaxies and the application of the virial

theorem to the dynamics of clusters of galaxies indicate that there must be

some form of invisible matter, called dark matter, which clusters around

galaxies and is responsible for explaining the large-scale structure of the

Universe. This dark matter should be predominantly cold, meaning that it

is composed of particles that were nonrelativistic at the time of decoupling

with no significant random motion.

• Dark energy: measurements of high red-shift Type I supernovas imply

that our Universe is undergoing an accelerated expansion in the present

epoch. A positive ä requires an unusual equation of state with sources

of negative pressure appearing in the energy–momentum tensor, as the

inequality ρ + 3p < 0 needs to be satisfied. The presence of a positive
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cosmological constant on the right-hand side of the acceleration equation

Eq. (10.269) would give such a repulsive force.

• Why four dimensions?: Critical M-theory or string theory predicts 11 or

ten dimensions, respectively. The answer to the question of why we only

observe four large dimensions might be provided within the context of

cosmology.

These last three problems seem to require new physics beyond the SBB for

their solution. For example, supersymmetry can provide viable dark mat-

ter candidates such as the lightest supersymmetric partner of the standard

model particles (LSP). A thorough understanding of quantum gravity may

be required to solve the latter two questions. On the other hand, as is dis-

cussed in the next subsection, there is a simple mechanism within the FRW

cosmology framework that solves the first set of four puzzles.

Basics of inflation

Inflationary cosmology was introduced in the 1980s to solve some of the

previously mentioned problems of the SBB model. This theory does not

replace the SBB model, rather it describes an era in the evolution of our

Universe prior to the Big Bang, without destroying any of its successes.

Definition of inflation

Very generally, a period of inflation is defined as a period in which the

Universe is accelerating and thus the scale factor satisfies

ä(t) > 0. (10.276)

Equivalently, this condition can be rephrased as

d

dt

( 1

aH

)
< 0 . (10.277)

This equation states that the comoving28 Hubble length 1/aH, which is the

most important characteristic scale of an expanding Universe, decreases in

time. From the acceleration equation Eq. (10.269), one finds that inflation

implies

ρtot + 3ptot < 0, (10.278)

so that, assuming ρ > 0, the effective pressure of the material driving the

expansion has to be negative. Scalar (spin-0) particles have this property,

as is discussed next.

28 In general, a comoving point is defined as a point moving with the expansion of the Universe,
that is, a point with vanishing momentum density.
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The inflaton

The scalar particles used to construct different inflationary models are called

inflatons. When there is just one such inflaton, it is described by the La-

grangian

L = −1

2
gµν∂µφ∂νφ− V (φ), (10.279)

where φ is the inflaton and V (φ) is its potential. Different inflationary

models are described by different potentials, which ultimately should be

derived from a fundamental theory, such as string theory. The components

of the energy–momentum tensor following from Eqs (10.279), (10.83) and

(10.263) determine the expressions for the density and pressure to be

ρφ =
1

2
φ̇2 + V (φ), (10.280)

pφ =
1

2
φ̇2 − V (φ). (10.281)

Here spatial gradients are assumed to be negligible, so that φ can be regarded

to be a function of t only.

We conclude from this that inflation takes place as long as φ̇2 < V (φ),

which is generally the case for potentials that are flat enough. Neglecting k,

Λ and other forms of matter, these expressions can be substituted into the

Friedmann equation Eq. (10.268) and the continuity equation Eq. (10.274)

to get the equations of motion

H2 =
1

3M2
P

[V (φ) +
1

2
φ̇2] (10.282)

and

φ̈+ 3Hφ̇ = −dV
dφ

. (10.283)

One observes that the field equation for the inflaton looks like a harmonic

oscillator with a friction term given by the Hubble parameter. Different

models of inflation can be obtained by solving these two equations for a

variety of potentials V (φ). Some examples are discussed below. Before

doing so, let us first explain why inflation solves some of the problems not

explained within the context of the SBB model.

Solution to some problems of the SBB model

From the form of the Friedmann equation, it becomes evident why inflation

can solve some of the unanswered questions of the SBB model. According
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to Eq. (10.277), the comoving Hubble length decreases in time during infla-

tion, and this is just what is needed to solve the flatness problem. Whereas

usually Ω is driven away from 1, the opposite happens during inflation, as

we can see from Eq. (10.273) (the Friedmann equation), with the cosmo-

logical constant term set to zero or absorbed into Ω. The curvature term

become negligible once the comoving Hubble length increases. Hence, if in-

flation lasts for a long enough time, it brings Ω very close to 1 without the

necessity for fine-tuning Ω. The horizon problem is solved as the distance

between comoving points gets drastically stretched during inflation. This

allows the entire present observable Universe to lie within a region that was

well inside the Hubble radius before inflation. Since the Hubble radius is a

good proxy for the particle horizon size, that is, the size over which massless

particles can causally influence each other, the whole currently observable

Universe could have been causally connected before inflation. Likewise, this

stretching dilutes the density of any undesired relic particles, provided they

are produced before the inflationary era.

Different inflationary models

Cosmologists have considered a large number of models and studied their

inflationary behavior. The models studied in the literature can be classified

according to three independent criteria.

• Initial conditions for inflation: many inflationary models are based on the

assumption that the Universe was in a state of thermal equilibrium with

a very high temperature at the beginning of inflation. The inflaton was

at the minimum of its temperature dependent effective potential V (φ, T ).

The main idea of chaotic inflation is to study all possible initial conditions

for the Universe including those where the Universe is outside of thermal

equilibrium and the scalar is no longer at its minimum.

• Behavior of the model during inflation: there are various possibilities for

the time dependence of the scale factor a(t). Power law inflation is one

example that is discussed next.

• End of inflation: there are basically two possibilities for ending the in-

flationary era, slow roll or a phase transition. In the first type of model

the inflaton is a slowly evolving (or ”rolling”) field, which at the end of

inflation becomes faster and faster. Phase transition models contain at

least two scalar fields. One of the fields becomes tachyonic at the end

of inflation, which generally signals an instability, where a phase transi-

tion takes place. Hybrid inflation is an example. This type of inflation is
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of particular interest in recent attempts to make contact between string

theory and inflation.

Power-law inflation

It is hard to find the exact solution of Eqs (10.282) and (10.283) for a

generic inflaton potential V (φ), so approximations or numerical studies have

to be made. However, there is one known analytic solution called power-law

inflation. For power-law inflation the potential is

V (φ) = V0 exp
(
−
√

2

p

φ

MP

)
, (10.284)

where V0 and p are constants. The scale factor and inflaton that solve the

spatially flat equations of motion are

a(t) = a0t
p, (10.285)

φ(t) =
√

2pMP log
(√ V0

p(3p− 1)

t

MP

)
. (10.286)

The scale factor is inflationary as long as p > 1.

Slow-roll approximation

As stated above, finding exact solutions to Eqs (10.282) and (10.283) is

difficult, so approximations need to be made. The so-called slow roll ap-

proximation neglects one term in each equation

H2 ≈ V (φ)

3M2
P

, (10.287)

3Hφ̇ ≈ −V ′(φ), (10.288)

where primes are derivatives with respect to the inflaton. A necessary con-

dition for the slow-roll approximation to be valid is that the two slow-roll

parameters ε and η are small

ε(φ) =
1

2
M2

P(V ′/V )2 � 1, (10.289)

|η(φ)| = M2
P |V

′′
/V | � 1. (10.290)

The parameter ε is positive by definition, but the absolute value is required

on the left-hand side of the second equation, since η can be negative. Ob-

taining a solution to the slow-roll conditions is sufficient to achieve inflation,
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but not necessary. This can be seen by rewriting the condition for inflation

Eq. (10.276) as

ä

a
= Ḣ +H2 > 0, (10.291)

where a > 0 needs to be taken into account. This is obviously satisfied

for Ḣ > 0. From the Friedman and acceleration equations this requires in

pφ < ρφ, which is not satisfied for the scalar field described by Eqs (10.280),

(10.281). If Ḣ < 0, then the following inequality has to be satisfied

− Ḣ

H2
< 1. (10.292)

This can be rewritten in terms of ε using the slow-roll approximation

− Ḣ

H2
≈ M2

P

2

(V ′
V

)2
= ε. (10.293)

By the slow-roll approximation, ε� 1, we observe that this condition leads

to ä > 0 and inflation. The second restriction η � 1 guarantees the friction

term dominates in Eq. (10.283) so that inflation lasts long enough. The

above conditions provide a straightforward method to check if a particular

potential is inflationary. For the simple example of V (φ) = m2φ2/2, the

slow-roll approximation holds for φ2 > 2M2
P, and inflation ends once the

scalar field gets so close to the minimum that the slow-roll conditions break

down.

Exit from inflation

From the previous discussion, one concludes that the slow-roll conditions

provide a way to characterize the exit from inflation. The inflationary pro-

cess comes to an end when the approximations break down, which happens

for a value of φ for which ε(φ) = 1. A simple calculation shows that, for

power-law inflation, the slow-roll parameters are given by constants

ε = η/2 = 1/p, (10.294)

so that inflation never ends. In principle, this is a problem. One way of

solving it could be provided by embedding this model into string theory,

where additional dynamics might provide an end to the inflationary era.

Hybrid inflation

An inflationary model that has played a role in recent string-cosmology de-

velopments, called hybrid inflation, was constructed in the early 1990s. This

model is based on two scalar fields: the inflaton ψ, whose potential is flat and
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satisfies the slow-roll conditions, and another scalar φ, whose mass depends

on the inflaton field. Inflation ends in this model not because the slow-roll

approximation breaks down, but because the field φ becomes tachyonic, that

is, its mass squared becomes negative. This signals an instability, where a

phase transition takes place. During this phase transition topological de-

fects, such as cosmic strings29, can be formed. The explicit form of the

potential for hybrid inflation is

V (φ, ψ) = a(ψ2 − 1)φ2 + bφ4 + c, (10.295)

where a, b, c are positive constants. From the form of V (φ, ψ), one easily

observes that, for ψ2 > 1, the field φ has a positive mass squared, it becomes

massless at ψ = 1 and φ is tachyonic for ψ2 < 1. Since φ is driven to zero

for ψ > 1, the potential in the ψ direction is flat and satisfies the slow-

roll conditions, so that ψ is identified with the inflaton, while φ is called

the tachyon. As discussed in the next section, precisely such a tachyon

appears in brane–antibrane inflation, which is how hybrid inflation makes

its appearance in string theory. After inflation ψ2 < 1, φ acquires a vev and

ψ becomes massive.

Number of e-foldings

There are various model-dependent quantities that can be compared with

cosmological observations, and which can eventually be used to rule out

some of the inflationary models. The amount of inflation that occurs after

time t is characterized by the ratio of the scale factors at time t and at the

end of inflation. This ratio determines number of e-foldings N(t)

N(t) = log
(a(tend)

a(t)

)
, (10.296)

where tend is the time when inflation ends. This quantity measures the

amount of inflation that remains to take place at any given time t. Using

the slow-roll approximation, N can be conveniently rewritten in terms of

the inflaton and its potential

N(t) =

∫ tend

t

ȧ

a
dt =

∫ tend

t
Hdt ≈ 1

M2
P

∫ φ

φend

V

V ′
dφ. (10.297)

Here φend is the value of the inflaton at the end of inflation, which satis-

fies ε(φend) = 1 when inflation ends through a breakdown of the slow-roll

approximation. To solve the flatness and horizon problems, the number of

29 The existence of cosmic strings would be extraordinary, as a direct experimental evidence of
string theory would be provided. This subject is nevertheless beyond the scope of this book.
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e-foldings has to be larger than 60, a criterion that can be used to rule out

some inflationary models.

Gravitational waves and density perturbations

Inflation not only explains the homogeneity and isotropy of the Universe,

but it also predicts the spectrum of gravitational waves (also called tensor

perturbations) as well as the density perturbations (also called scalar pertur-

bations) of the CMB. Density perturbations create anisotropies in the CMB

and are responsible for the formation and clustering of galaxies. The size

of these irregularities depends on the energy scale at which inflation takes

place. The observed scalar perturbations are in excellent agreement with

the predictions of inflation. Gravitational waves do not affect the forma-

tion of galaxies but lead to polarization of the CMB, which is beginning to

show up in the WMAP (Wilkinson Microwave Anisotropy Probe) satellite

experiment and will be measured better in future missions.

Without entering into much detail, let us mention that such fluctuations

in the energy density of the Universe can be explained in the context of

inflation as originating from the quantum fluctuations of the inflaton. In-

flation produces density perturbations at every scale. The amplitude of

these perturbations depends on the form of the inflaton potential V . More

precisely, the spectrum for density perturbations δH(k) ∼ δρ/ρ and gravita-

tional waves AG(k) are given by the expressions

δH(k) =

√
512π

75

V 2/3

M3
PV
′

∣∣∣
k=aH

, (10.298)

AG(k) =

√
32

75

V 1/2

M2
P

∣∣∣
k=aH

. (10.299)

Here k is the comoving wave number, appearing because the fluctuations

are typically analyzed in a Fourier expansion into comoving modes δφ =

Σδφke
ikx. The right-hand side of these equations is to be evaluated at a

particular time during inflation for which k = aH, which for a given k

corresponds to a particular value of φ.

Comparison with cosmological data

Cosmological data lead to δH = 1.91 × 10−5, provided that AG << δH .

To compare with observational data, it is useful to express the spectrum in

terms of observable quantities and to make a power-law approximation

δH(k) ≈ kn−1, A2
G(k) ≈ knG. (10.300)



10.7 Fluxes and cosmology 539

Here n and nG are called the spectral indices for scalar and tensor pertur-

bations, respectively

n− 1 =
d ln δ2

H

d ln k
, nG =

d lnA2
G

d ln k
. (10.301)

The spectral indices can be expressed in terms of the slow-roll parameters

n = 1− 6ε+ 2η, (10.302)

nG = −2ε, (10.303)

which shows that, in the slow-roll approximation, the spectrum is almost

scale invariant n ≈ 1. Because spectral indices are measurable quantities,

we can use these relations to gain information about the inflaton potential.

Recent results from WMAP indicate that n ∼ .95.

Fluxes and inflation

The embedding of inflation into string theory is difficult in conventional

Calabi–Yau compactification. Even though such compactifications contain

many scalar fields that could potentially serve as inflatons, namely the mod-

uli fields, these fields are generically either massless or have a potential with

a runaway behavior, which makes their interpretation as inflatons rather

difficult. This situation has changed quite a bit with the development of a

better nonperturbative understanding of string theory and flux compactifi-

cations.

Brane–brane inflation

One of the first attempts to embed inflation into string theory (developed in

the late 1990s) makes use of D-branes. In this approach a pair of D-branes

is considered and the inflaton is identified with the scalar field describing

the separation of the branes, that is, it is the lowest mode of the open string

that connects the two D-branes. If supersymmetry is preserved, there is no

net force between the branes and no potential for the inflaton. This has been

verified by a one-loop string amplitude calculation, which is not presented

here. The intuitive argument is that, for a BPS brane configuration, the

gravitational attraction between the branes is compensated by the repulsive

Coulomb forces between the two branes coming from various NS–NS and

R–R fields. However, when supersymmetry is broken (in a certain way),

there is a net attractive force between the branes. This leads to a potential

for the inflaton field.

Even though this was the first proposal that demonstrated the possibility
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of making connections between string theory or brane physics and inflation,

the concrete model had some problems, such as a drastic fine tuning required

to reproduce the experimental values of the density perturbations or the lack

of a satisfactory explanation for the end of inflation.

Brane–antibrane inflation

Some of these problems were solved in the context of brane–antibrane in-

flation. Consider instead a D3/anti-D3 system located at specific points of

a Calabi–Yau three-fold. For a D3/anti-D3 system supersymmetry is bro-

ken, and there is a net attractive force between the branes and antibranes,

whose explicit form is given by the potential (for a large distance between

the brane and the antibrane)

V (r) = 2T3

(
1− 1

2π3

T3

M8
10r

4

)
, (10.304)

where M10 is the ten-dimensional Planck mass, T3 is the D3-brane tension

and r is the separation between the brane and the antibrane. One can write

this potential in terms of the canonically normalized scalar φ = T
1/2
3 r, where

it takes the form

V (φ) = 2T3

(
1− 1

2π3

T 3
3

M8
10φ

4

)
. (10.305)

Using this potential, one can compute the slow-roll parameters appearing in

Eqs (10.289) and (10.290)

ε =
1

2
M2

P(V ′/V )2 ∼ L6

r10
. (10.306)

η = M2
P(V ′′/V ) ∼ L6

r6
. (10.307)

MP is the four-dimensional Planck mass appearing in Eq. (10.290) which

is related to the ten-dimensional Planck mass by M 2
P = L6M8

10. Here L6

approximately represents the volume of the Calabi–Yau three-fold. The

D3 and anti-D3-branes are localized at specific points on the Calabi–Yau

manifold, that is, they cannot be separated by more than L. As a result, it

is not possible to achieve |η| << 1, as needed for slow-roll inflation. Different

proposals for solving this problem have been presented in the literature, such

as D3- and anti-D3-branes in a warped geometry (this is discussed next),

branes at angles or collisions of multiple branes 30.

30 A more recent proposal is to give up the slow roll condition.
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Inflation and fluxes

In the previous treatment of the D3/anti-D3 system the size L was treated

as a constant. However, it is known that in string theory the size of the

internal manifold is a modulus. The potential (in the four-dimensional Ein-

stein frame) for this field (again for a D3/anti-D3-brane distance large as

compared to the string scale) is

V (φ,L) ≈ 2T3

L12
. (10.308)

This potential is very steep for small L. As a result, treating L as a dy-

namical field causes the Calabi–Yau size to become large too fast to realize

slow-roll inflation. This issue could in principle be avoided if the radial mod-

ulus of the internal manifold is stabilized. In Section 10.3 a mechanism was

described to stabilize the radial modulus of a D3/anti-D3 system in terms of

fluxes and nonperturbative effects. The stabilization of the radial modulus

using nonperturbative corrections to the superpotential does not solve this

problem (unless some degree of fine tuning is allowed), but it puts it into a

new perspective.

As discussed in Section 10.3, to analyze the stabilization of the moduli of

a D3/anti-D3 system on an internal warped geometry the scalar potential

for the radial modulus of the internal manifold and the scalars describing

the positions of the branes need to be derived. N = 1 supersymmetry

dictates that this potential is determined in terms of a Kähler potential and

a superpotential.

Consider first a single D3-brane position modulus φ and the radial mod-

ulus of the internal space ρ. The Kähler potential is given by

K(ρ, ρ̄, φ, φ̄) = −3 log
[
ρ+ ρ̄− k(φ, φ̄)

]
. (10.309)

Here the real part of ρ is related to the size L by

2L = ρ+ ρ̄− k(φ, φ̄), (10.310)

while the imaginary part of ρ is the axion χ. Furthermore, k(φ, φ̄) is the

canonical Kähler potential for the inter-brane distance, which is given by

k(φ, φ̄) = φφ̄.

The other quantity that determines the form of the low-energy effective

action is the superpotential W . As explained in Section 10.3, W takes the

form

W (ρ) = W0 + Ae−aρ. (10.311)
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Here W0 is the perturbative superpotential

W0 =

∫
G3 ∧ Ω, (10.312)

where Ω is the holomorphic (3, 0) form. The exponential contribution de-

pending on ρ comes from nonperturbative effects, as discussed in Chapter 10.

Further contributions to the scalar potential involving the radial modulus

come from corrections to the Kähler potential, which will be ignored in the

following. The complete form of these corrections is not known at present.

The above results for the Kähler potential and the superpotential can be

used to compute the scalar potential for the Calabi–Yau volume and the

brane position, which is determined by supersymmetry

V = eK
(
Gab̄DaWDb̄W̄ − 3|W |2

)
. (10.313)

Using the previous expressions for the Kähler potential and the superpoten-

tial the potential takes the form

V =
1

6L

(
|∂ρW |2 −

3

2L
(W̄∂ρW +W∂ρ̄W̄ )

)
+

( |∂ρW |2
12L2

)
φφ̄. (10.314)

As explained in Chapter 10, including the effects of the anti-D3-brane gives

an additional term in the potential

V =
1

6L

(
|∂ρW |2 −

3

2L
(W̄∂ρW +W∂ρ̄W̄ )

)
+

( |∂ρW |2
12L2

)
φφ̄+

D

(2L)2
,

(10.315)

where D is a positive constant. This potential can be expanded about a

minimum in which ρ = ρc, and φ = 0. After transforming to a canonically

normalized field ϕ = φ/
√

3/(ρ+ ρ̄), the potential can be written in the form

V =
V0(ρc)

(1− ϕϕ̄/3)2
≈ V0(ρc)

(
1 +

2

3
ϕϕ̄

)
. (10.316)

This potential leads to a slow-roll parameter η = 2/3, which again indicates

that no slow-roll inflation can be described in this scenario, at least not in

an obvious manner. Allowing a certain amount of fine tuning of the inter-

brane distance would obviously solve this problem. As previously mentioned,

other alternatives based on inflation are currently explored in the literature.

Other approaches aim to propose an alternative to inflation such as brane

gases, time-dependent warped geometries, models based on Matrix theory

or models that make a connection to the dS/CFT correspondence. It is fair

to say that, even though it is an exciting prospect, the application of string

theory to cosmology is still at its early stages.
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Hybrid inflation and exit from inflation

One very attractive aspect of D3/anti-D3-brane inflation is that it provides a

natural mechanism to end inflation based on the hybrid inflation mechanism

previously discussed. The potential for the interbrane distance discussed so

far is valid for distances that are large compared to the string scale. Since the

force between the D3-brane and the anti-D3-brane is attractive, the branes

collide and annihilate with one another. This process is described in terms of

an additional field T , which corresponds to the tachyon of hybrid inflation.

For large brane separation, this field is massive. It becomes massless once

the branes come sufficiently close to one another and tachyonic when they

annihilate. The form of the potential describing this process is the same as

the potential for hybrid inflation previously discussed:

V (φ, T ) = a
(
(φ/`s)

2 − b
)
T 2 + cT 4 + V (φ), (10.317)

where a, b and c are positive constants. The collision of branes results in

the production of strings of cosmic size, which are called cosmic strings.

Even though they are not an inevitable prediction, the discovery of such

objects would be a spectacular way to verify string theory. Further progress

in string cosmology, together with more observational data, may someday

provide direct evidence of string theory.

Appendix: Dirac matrix identities

This appendix lists various identities satisfied by Dirac matrices. These have

been used in this chapter to analyze the conditions for unbroken supersym-

metry of flux compactifications.

[γm, γ
r] = 2γm

r {γm, γr} = 2δm
r

[γmn, γ
r] = −4δ[m

rγn] {γmn, γr} = 2γmn
r

[γmnp, γ
r] = 2γmnp

r {γmnp, γr} = 6δ[m
rγnp]

[γmnpq, γ
r] = −8δ[m

rγnpq] {γmnpq, γr} = 2γmnpq
r

[γmnpqk, γ
r] = 2γmnpqk

r {γmnpqk, γr} = 10δ[m
rγnpqk]
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[γmn, γ
rs] = −8δ[m

[rγn]
s] {γmn, γrs} = 2γmn

rs − 4δ[mn]
rs

[γmnp, γ
rs] = 12δ[m

[rγnp]
s] {γmnp, γrs} = 2γmnp

rs − 12δ[mn
rsγp]

[γmnpq, γ
rs] = −16δ[m

[rγnpq]
s] {γmnpq, γrs} = 2γmnpq

rs − 24δ[mn
rsγpq]

[γmnpqk, γ
rs] = 20δ[m

[rγnpqk]
s] {γmnpqk, γrs} = 2γmnpqk

rs − 40δ[mn
rsγpqk]

[γmnp, γ
rst] = 2γmnp

rst − 36δ[mn
[rsγp]

t]

[γmnpq, γ
rst] = −24δ[m

[rγnpq]
st] + 48δ[mnp

rstγq]

[γmnpqk, γ
rst] = 2γmnpqk

rst − 120δ[mn
[rsγpqk]

t]

{γmnp, γrst} = 18δ[m
[rγnp]

st] − 12δ[mnp]
rst

{γmnpq, γrst} = 2γmnpq
rst − 72δ[mn

[rsγpq]
t]

{γmnpqk, γrst} = 30δ[m
[rγnpqk]

st] − 120δ[mnp
rstγqk]

[γmnpq, γ
rstu] = −32δ[m

[rγnpq]
stu] + 192δ[mnp

[rstγq]
u]

[γmnpqk, γ
rstu] = 40δ[m

[rγnpqk]
stu] − 480δ[mnp

[rstγqk]
u]

{γmnpq, γrstu} = 2γmnpq
rstu − 144δ[mn

[rsγpq]
tu] + 48δ[mnpq]

rstu

{γmnpqk, γrstu} = 2γmnpqk
rstu − 240δ[mn

[rsγpqk]
tu] + 240δ[mnpq

rstuγk]

[γmnpqk, γ
rstuv] = 2γmnpqk

rstuv − 400δ[mn
[rsγpqk]

tuv] + 1200δ[mnpq
[rstuγk]

v]

{γmnpqk, γrstuv} = 50δ[m
[rγnpqk]

stuv] − 1200δ[mnp
[rstγqk]

uv] + 240δ[mnpqk]
rstuv
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In general,

[γm1...mp , γ
n1...nq ] pq odd

{γm1...mp , γ
n1...nq} pq even

}
= 2γm1...mp

n1...nq

− 2p!q!
2!(p−2)!(q−2)!δ[m1m2

[n1n2γm3...mp]
n3...nq ]

+ 2p!q!
4!(p−4)!(q−4)!δ[m1...m4

[n1...n4γm5...mp]
n5...nq]

− . . .

and

[γm1...mp , γ
n1...nq ] pq even

{γm1...mp , γ
n1...nq} pq odd

}
= (−1)p−12p!q!

1!(p−1)!(q−1)!δ[m1
[n1γm2...mp]

n2...nq]

− (−1)p−12p!q!
3!(p−3)!(q−3)!δ[m1m2m3

[n1n2n3γm4...mp]
n4...nq]

+ . . .

The Fierz transformation identity for commuting spinors is

χψ̄ =
1

2[d/2]

d∑

p=0

1

p!
γmp...m1ψ̄γm1...mpχ. (10.318)

In the case of anticommuting spinors there is an additional minus sign.

HOMEWORK PROBLEMS

PROBLEM 10.1

Show that covariant derivatives with respect to conformally transformed

metrics ĝMN = Ω2gMN are related by

∇̂Mη = ∇Mη +
1

2
Ω−1∇NΩΓM

Nη.

Use this result to derive Eq. (10.18).

PROBLEM 10.2

Re-express the supersymmetry transformation Eq. (10.26) in terms of the

rescaled spinor ξ = ∆1/4η. Use this equation to show that the almost
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complex structure defined by Eq. (10.29) is covariantly constant

∇pJmn = 0,

where ∇p is defined with respect to the metric gmn appearing in Eq. (10.5).

PROBLEM 10.3

Use the Fierz identity Eq. (10.318) to show that the almost complex struc-

ture given in Eq. (10.29) satisfies J2 = −1.

PROBLEM 10.4

Consider a flux compactification of M-theory on an eight manifold to three-

dimensional Minkowski space-time. Suppose that two Majorana–Weyl spin-

ors of opposite chirality ξ+, ξ− on the eight-dimensional internal manifold

can be found

P±ξ =
1

2
(1± γ9)ξ = ξ±,

so that the 8D spinor ξ = ξ+ + ξ− is nonchiral. Assuming that the internal

flux component is self-dual, show that, after an appropriate rescaling of the

spinor, the internal component of the gravitino supersymmetry transforma-

tion takes the form

∇mξ+ −
1

4
∆−3/4Fmξ− = 0, ∇mξ− = 0.

PROBLEM 10.5

Consider M-theory compactified on an eight manifold with a nonchiral com-

plex spinor on the internal space. Recall that Eq. (10.17) showed that a

nonvanishing vector field can be constructed.

(i) Use the Fierz identity (10.318) to show that Eq. (10.17) implies that

the vector field relates the two (real) spinors of opposite chirality

η1 = vaγaη2.

(ii) Use part (i) and the result of Problem 10.4 to show that the primi-

tivity condition Eq. (10.36) is modified to

F ∧ J + ? dv = 0,

where v has been rescaled by a constant.

PROBLEM 10.6

Show that the operations J3, J+, J− in Eq. (10.38) define an SU(2) algebra.
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PROBLEM 10.7

Verify Eq. (10.226), which shows that the flux backgrounds for the weakly

coupled heterotic string in Section 10.4 are conformally balanced.

PROBLEM 10.8

Show that, in the absence of sources or singularities in the background ge-

ometry, type IIB theories compactified to four dimensions do not admit dS

space-times as solutions to the equations of motion. In other words, repeat

the computation that led to Eq. (10.86) by allowing a cosmological constant

Λ in external space-time.

PROBLEM 10.9

Assuming a constant dilaton, show that the scalar potential of type IIB

theory compactified on a Calabi–Yau three-fold in the presence of fluxes is

given by

V = eK
(
Gab̄DaWDb̄W − 3|W |2

)
,

where

W =

∫

M
Ω ∧G3.

Here a, b label all the holomorphic moduli. You can assume that the Kähler

potential is given by Eq. (10.104).

PROBLEM 10.10

Show that, in a Calabi–Yau four-fold compactification of M-theory, the sta-

tionary points of

|Z(γ)|2 =
|
∫
γ Ω|2

∫
Ω ∧ Ω̄

are given by the points in moduli space where |Z(γ)|2 = 0, or if |Z(γ)|2 6=
0, then F has to satisfy F 1,3 = F 3,1 = 0. In the above expression γ is

the Poincaré dual cycle to the four-form F . A related result is derived in

Chapter 11 in the context of the attractor mechanism for black holes.

PROBLEM 10.11

Show that the Christoffel connection does not transform as a tensor under

coordinate transformations, but that torsion transforms as a tensor.

PROBLEM 10.12

Show that D7-branes give a negative contribution to the right-hand side of
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Eq. (10.86). In order to do this, you have to take into account the first α′

correction to the D7-brane action, whose form is given in Eq. (10.91) after

determining the coefficient.

PROBLEM 10.13

Show that the Kähler form J of the singular conifold described in Sec-

tion 10.2 can be written in terms of a basis of one-forms according to

J =
2

3
dr ∧ g5 +

1

3

(
e2 ∧ e1 + e3 ∧ e4

)

Deduce that G3, given by Eqs (10.133) and (10.135), is primitive.

PROBLEM 10.14

For the heterotic string with torsion there is an identity of the form

?6H = −e−aΦd(eaΦJ).

Derive the value of the parameter a for which this is true.

PROBLEM 10.15

Verify Eqs (10.170), (10.173), (10.176) and (10.177) for flux compactifica-

tions of M-theory on a Calabi–Yau four-fold.

PROBLEM 10.16

Fill in the details of the Kaluza–Klein compactification to derive the scalar

potential Eq. (10.168).

PROBLEM 10.17

Derive the formula for Newton’s constant in the context of the strongly

coupled heterotic string Eq. (10.248).

PROBLEM 10.18

Derive the result Eq. (10.221) from the dilatino equation Eq. (10.199).

PROBLEM 10.19

Show that the Einstein field equations that determine a(t) reduce for the

FRW ansatz to the Friedmann and acceleration equations.

PROBLEM 10.20

When the slow-roll parameters satisfy Eqs (10.289) and (10.290), show that

it is consistent to neglect the corresponding two terms in the FRW equations.
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Black holes in string theory

Black holes are a fascinating research area for many reasons. On the one

hand, they appear to be a very important constituent of our Universe. There

are super-massive black holes with masses ranging from a million to a billion

solar masses at the centers of most galaxies. The example of M31 is pictured

in Fig. 11.1. Much smaller black holes are formed as remnants of certain

supernovas.

Fig. 11.1. The nuclei of many galaxies, including M31, are quite violent places, and
the existence of supermassive black holes is frequently postulated to explain them.
M15, on the other hand, is one of the most densely packed globular clusters known
in the Milky Way galaxy. The core of this cluster has undergone a core collapse,
and it has a central density cusp with an enormous number of stars surrounding
what may be a central black hole.

From the theoretical point of view, black holes provide an intriguing arena

in which to explore the challenges posed by the reconciliation of general

relativity and quantum mechanics. Since string theory purports to provide

a consistent quantum theory of gravity, it should be able to address these

challenges. In fact, some of the most fascinating developments in string

549
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theory concern quantum-mechanical aspects of black-hole physics. These

are the subject of this chapter.

The action for general relativity (GR) inD dimensions without any sources

is given by the Einstein–Hilbert action1

S =
1

16πGD

∫
dDx
√−gR, (11.1)

where GD is theD-dimensional Newton gravitational constant. The classical

equation of motion is the vanishing of the Einstein tensor

Gµν = Rµν −
1

2
gµνR = 0, (11.2)

or, equivalently (for D > 2), Rµν = 0. Thus, the solutions are Ricci-

flat space-times. Straightforward generalizations are provided by adding

electromagnetic fields, spinor fields or tensor fields of various sorts, such as

those that appear in supergravity theories. Some of the most interesting

solutions describe black holes. They have singularities at which certain

curvature invariants diverge. In most cases these singularities are shielded by

an event horizon, which is a hypersurface separating those space-time points

that are connected to infinity by a time-like path from those that are not.

The conjecture that space-time singularities should always be surrounded by

a horizon in physically allowed solutions is known as the cosmic censorship

conjecture.2 Classically, black holes are stable objects, whose mass can only

increase as matter (or radiation) crosses the horizon and becomes trapped

forever. Quantum mechanically, black holes have thermodynamic properties,

and they can decay by the emission of thermal radiation.

Challenges posed by black holes

A long list of challenges is presented by black holes. Some of them have

been addressed by string theory already, while others remain active areas of

research. Here are some of the most important ones:

• Does the existence of black holes and branes imply that quantum me-

chanics must break down and that pure quantum states can evolve into

mixed states? The fact that this superficially appears to be the case is

known as the information loss puzzle. String theory is constructed as a

quantum theory, and therefore the answer is expected to be “no.” In fact,

various arguments have been constructed that point quite strongly in that

1 See the Appendix of Chapter 9 for a brief review of Riemannian geometry.
2 This is a modern version of the conjecture. Originally, the conjecture was that, starting from

“good” initial conditions, general relativity never generates naked singularities.
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direction. However, a complete resolution of the information loss puzzle

undoubtedly requires understanding how string theory makes sense of the

singularity, where quantum gravity effects become very important. So it

is fair to say that this is still an open question.

• Can string theory elucidate the thermodynamic description of black holes?

Does black-hole entropy have a microscopic explanation in terms of a large

degeneracy of quantum states? One of the most important achievements

of string theory in recent times (starting with work of Strominger and

Vafa) is the construction of examples that provide an affirmative answer

to this question. This chapter describes explicit string solutions for which

a microscopic derivation of the Bekenstein–Hawking entropy is known.

• Are there black-hole solutions that correspond to single microstates rather

than thermodynamic ensembles? If so, do they have a singularity and a

horizon? Or do these properties arise from thermodynamic averaging?

These questions are currently under discussion. However, since the an-

swers are not yet clear, they will not be addressed further in this chapter.

• What, if anything, renders black-hole singularities harmless in string the-

ory? In some cases, as illustrated by the analysis of the conifold in Chap-

ter 9, the singularity can be “lifted” once nonperturbative states are taken

into account. One natural question is whether string theory can elucidate

the status of the cosmic censorship conjecture?

• Does string theory forbid the appearance of closed time-like curves? Such

causality-violating solutions can be constructed. There needs to be a

good explanation why such solutions should or should not be rejected as

unphysical. It may be that they only occur when sources have unphysical

properties.

• What generalizations of black-hole solutions exist in dimensions D > 4?

The case of five dimensions is discussed extensively in this chapter, and ex-

plicit supersymmetric black-hole solutions are presented. Black holes fall

into two categories: (1) large black holes that have finite-area horizons in

the supergravity approximation; (2) small black holes that have horizons

of zero area, and hence a naked singularity, in the supergravity approxi-

mation. The small black holes acquire horizons of finite area when stringy

corrections to the supergravity approximation are taken into account. It

seems that large supersymmetric black holes only arise for D ≤ 5. This is

one reason why there has been a lot of interest in the D = 5 case. Another

reason is that nonspherical horizon topologies become possible for D > 4.

The example of D = 5 black rings will be described.

Chapter 12 describes black p-brane solutions. Black branes are higher-
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dimension generalizations of black-hole solutions. These solutions play an

important role in the context of the AdS/CFT correspondence.

• A recent speculative suggestion is that black holes might be copiously

produced at particle accelerators, such the LHC.3 This prediction hinges

on the possibility of lowering the scale at which gravity becomes strong in

suitably warped backgrounds, such as those discussed in Chapter 10. The

scale might even be as low as the TeV scale. If correct, this would provide

one way of testing string theory at particle accelerators, which would be

quite fantastic.

11.1 Black holes in general relativity

In order to introduce the reader to some basic notions of black-hole physics,

let us begin with the simplest black-hole solutions of general relativity in

four dimensions, which are the Schwarzschild and Reissner–Nordström black

holes. The latter black hole is a generalization of the Schwarzschild solution

that is electrically charged. Another generalization, known as the Kerr

black hole, is a black hole with angular momentum. Certain black holes

with angular momentum are considered in Section 11.3.

Schwarzschild black hole

The Schwarzschild solution in spherical coordinates

For a spherically symmetric mass distribution of mass M in four space-time

dimensions, there is a unique solution to the vacuum Einstein’s equations

Rµν = 0, (11.3)

that describes the geometry outside of the mass distribution.4 In four

dimensions it is given by the Schwarzschild black-hole metric, which in

Schwarzschild coordinates (t, r, θ, φ) is

ds2 = gµνdx
µdxν = −

(
1− rH

r

)
dt2 +

(
1− rH

r

)−1
dr2 + r2dΩ2

2, (11.4)

where

rH = 2G4M. (11.5)

3 The LHC is the Large Hadron Collider at CERN, which is scheduled to start operating in 2007.
4 The statement that the Schwarzschild black hole is the unique vacuum solution of Einstein’s

equations in four dimensions with spherical symmetry. Its time independence is known as
Birkhoff’s theorem.
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Here rH is known as the Schwarzschild radius, and G4 is Newton’s constant.

The metric describing the unit two-sphere is

dΩ2
2 = dθ2 + sin2 θdφ2. (11.6)

The Schwarzschild metric only depends on the total mass M (which is

both inertial and gravitational), and it reduces to the Minkowski metric

as M → 0. Note that t is a time-like coordinate for r > rH and a space-like

coordinate for r < rH, while the reverse is true for r. The surface r = rH,

called the event horizon, separates the previous two regions. This metric is

stationary in the sense that the metric components are independent of the

Schwarzschild time coordinate t, so that ∂/∂t is a Killing vector. This Killing

vector is time-like outside the horizon, null on the horizon, and space-like

inside the horizon.

It becomes clear that M has the interpretation of a mass by considering

the weak field limit, that is, the asymptotic r →∞ behavior of Eq. (11.4). In

this limit we should recover Newtonian gravity.5 The Newtonian potential

Φ in these stationary coordinates can be read off from the tt component of

the metric

gtt ∼ − (1 + 2Φ) . (11.7)

As a result, in the case of the Schwarzschild black hole,

Φ = −MG4

r
, (11.8)

so that it becomes clear that the parameter M is the black-hole mass.

Schwarzschild black hole in D dimensions

The four-dimensional Schwarzschild metric (11.4) can be generalized to D

dimensions, where it takes the form

ds2 = −hdt2 + h−1dr2 + r2dΩ2
D−2, (11.9)

with

h = 1−
(rH

r

)D−3
(11.10)

and

rD−3
H =

16πMGD
(D − 2)ΩD−2

. (11.11)

5 This is nicely illustrated by considering a massive test particle moving in the curved background.
This is a homework problem.
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Here Ωn is the volume of a unit n-sphere, namely6

Ωn =
2π(n+1)/2

Γ
(
n+1

2

) . (11.12)

For large r, this again determines the Newton potential and therefore the

black-hole mass M .

The singularities

As can be seen from Eq. (11.4), the coefficients of the metric become sin-

gular at r = 0 and also at the Schwarzschild radius r = rH. In general,

a singularity in a metric component could be a coordinate-dependent phe-

nomenon. In order to determine whether a physical singularity is present,

coordinate-independent quantities, that is, scalars, should be analyzed. Such

a scalar quantity should involve the Riemann tensor. For example, theD = 4

Schwarzschild solution yields, after a straightforward calculation,

RµνρσRµνρσ =
12r2

H

r6
. (11.13)

This is evidence that the singularity at the horizon r = rH is only a coor-

dinate singularity, as we will prove shortly, while it proves that a physical

singularity is located at r = 0.

For objects that are not black holes, the behavior of the solution at the

point r = 0 is of no physical relevance, since these objects have a mass

distribution of finite size, and there is no horizon or singularity. The metric

describing the sun, for example, is perfectly well defined at r = 0. If,

however, the mass is concentrated inside the Schwarzschild radius, then the

singularity at r = 0 becomes relevant, and the resulting solution is called a

Schwarzschild black hole.

In general relativity, it is common practice to set Newton’s constant equal

to unity, G4 = 1, as a choice of length scale. We prefer not to do so,

both because we are interested in Newton’s constant in various space-time

dimensions, and because the string scale, rather than Newton’s constant, is

the natural length scale in string theory. G4, and more generally GD, are

related to the string scale, the string coupling, and a (10−D)-dimensional

compactification volume V by GD = G10/V and G10 = 8π6g2
s `

8
s .

Schwarzschild solution in Kruskal–Szekeres coordinates

There are other coordinate systems in which the Schwarzschild solution does

not even have a coordinate singularity at the horizon. One such coordinate

6 This can be derived by computing
R

exp(−r2) dn+1x in spherical coordinates and comparing
to the answer computed in Cartesian coordinates.
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system, called the Kruskal–Szekeres coordinate system, is related to the

Schwarzschild coordinates previously introduced by

u =

(
r

rH
− 1

)1/2

er/2rH cosh

(
t

2rH

)
, (11.14)

v =

(
r

rH
− 1

)1/2

er/2rH sinh

(
t

2rH

)
. (11.15)

In these coordinates the metric takes the form

ds2 =
4r3

H

r
e−r/rH

(
−dv2 + du2

)
+ r2dΩ2

2. (11.16)

Note that, from Eqs (11.14) and (11.15), it follows that

u2 − v2 =
( r
rH
− 1
)
er/rH. (11.17)

Different regions of space-time determined by this metric are represented in

the Kruskal diagram shown in Fig. 11.2. Equation (11.17) shows that the

event horizon r = rH corresponds to u = ±v, which is represented by a pair

of solid lines in Fig. 11.2. Equation (11.17) also shows that v2 < u2 when

r > rH. The metric in the u, v coordinates can be analytically extended to

the region in between the horizon and the singularity. In these coordinates

the curvature singularity at r = 0 corresponds to the hyperbola v2−u2 = 1.

This is a pair of space-like curves represented by dashed lines in Fig. 11.2.

Thus the space-time is well defined for

−∞ < u < +∞ and v2 < u2 + 1. (11.18)

As can be seen from Eq. (11.16), the singularity at the horizon is no longer

present in these coordinates.

The Schwarzschild geometry in Kruskal–Szekeres coordinates displays more

space-time regions than those represented by the original Schwarzschild co-

ordinates, which are only good for r > rH. The additional regions are

unphysical in the sense that a physical black hole that forms by collapse

would only have the future singularity (with u > 0) and not the past one

(with u < 0). The latter behaves like a time-reversed black hole and is

sometimes called a white hole.

The Kruskal–Szekeres coordinates have the additional advantage that

geodesics take a very simple form. The equation ds = 0 is satisfied by

lines with the property du = ±dv (and fixed position on the two-sphere).

This means that null geodesics are 45o lines in Fig. 11.2.
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r=rH

t=-
r=rH

t=
u

v

Fig. 11.2. The Schwarzschild black hole in Kruskal–Szekeres coordinates. The solid
lines correspond to the horizon, while the dashed lines correspond to the singularity.
The shaded region describes the part of the diagram in which the Kruskal–Szekeres
coordinates are well defined.

For |u| > |v|,

t = rH log

(
u+ v

u− v

)
, (11.19)

and so the horizon maps to t = ±∞. It takes an infinite amount of

Schwarzschild time to reach the horizon, which reflects the fact that the

horizon is infinitely redshifted for an asymptotic observer. From Fig. 11.2

one can infer that light rays emitted by a source situated inside the black

hole, which means inside the horizon but outside the singularity, never es-

cape to the region outside the black hole. This is the reason why the surface

r = rH is called the event horizon. In general, such event horizons are null

hypersurfaces, which means that vectors nµ normal to these surfaces satisfy

n2 = 0. In the case at hand, the horizon is a two-sphere of radius rH times

a null line. In Fig. 11.2, only the null line is shown. It is customary to

say that the horizon is S2 and leave the null line implicit.7 In particular, it

follows from Eq. (11.5) that the area of the event horizon is

A = 4πr2
H = 16π(MG4)2. (11.20)

7 There is a theorem to the effect that S2 is the only possible horizon topology for a black hole in
four dimensions. We will see later that there are other possibilities, besides a sphere, in higher
dimensions.
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Reissner–Nordström black hole

Reissner–Nordström metric in spherical coordinates

The generalization of the Schwarzschild black hole to one with electric charge

Q, but no angular momentum, is called the Reissner–Nordström black hole.

Charged black holes play a very special role in string theory, because in some

cases they are supersymmetric. Thus, by the usual BPS-type reasoning, they

can provide information about string theory at strong coupling. In four

dimensions the metric of a Reissner–Nordström black hole can be written in

the form

ds2 = −∆ dt2 + ∆−1dr2 + r2dΩ2
2, (11.21)

where

∆ = 1− 2MG4

r
+
Q2G4

r2
. (11.22)

This metric is a solution to Einstein’s equations in the presence of an electric

field

Gµν = Rµν −
1

2
Rgµν = 8πG4Tµν , (11.23)

where Tµν is in general the energy–momentum tensor for this field

Tµν = FµρFν
ρ − 1

4
gµνFρσF

ρσ. (11.24)

Since the problem has spherical symmetry, the only nonvanishing component

of the U(1) electric field strength is given by the radial component of the

electric field Er

Ftr = Er =
Q

r2
, (11.25)

as is verified in Exercise 11.1. The Reissner–Nordström metric can be gener-

alized to include magnetic charges as well as electric charges, which results

in a nonvanishing component Fθφ. This generalization is described in Exer-

cise 11.2.

Singularities

The metric components in Eq. (11.21) are singular for three values of r.

The dependence of the function ∆(r) which illustrates these singularities is

shown in Fig. 11.3. There is a physical curvature singularity at r = 0, which

can be verified by computing again the scalar RµνρσRµνρσ. In addition, the

factor gtt in the metric vanishes for

r = r± = MG4 ±
√

(MG4)2 −Q2G4, (11.26)
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Fig. 11.3. Plots of the function ∆(r) for the Reissner–Nordström black hole

which are referred to as the inner horizon and the outer horizon. The outer

horizon, r = r+, is the event horizon in this case. Note that it is only present

if

M
√
G4 ≥ |Q|. (11.27)

If this bound is not satisfied, then the metric has a naked singularity at r = 0

that is unshielded by a horizon. According to the cosmic censorship conjec-

ture, naked singularities should never be produced in physical processes, so

that these solutions would be unphysical.

Extremal Reissner–Nordström black hole for D = 4

In the limiting case

r± = MG4 or M
√
G4 = |Q| (11.28)

the black hole is called extremal, and it has the maximal charge that is al-

lowed given its mass, as follows from the bound (11.27). When the Reissner–

Nordström solution arises as a solution of a supersymmetric theory, the sat-

uration of this bound is often equivalent to the saturation of a BPS bound,

which then implies that the extremal Reissner–Nordström black-hole solu-

tion has some unbroken supersymmetry.

The metric of an extremal Reissner–Nordström black hole takes the form

ds2 = −
(

1− r0

r

)2
dt2 +

(
1− r0

r

)−2
dr2 + r2dΩ2

2, (11.29)

where r0 = MG4. Let us shift the definition of r by letting r̃ = r − r0 and
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then dropping the tilde. After some simple algebra this leaves

ds2 = −
(

1 +
r0

r

)−2
dt2 +

(
1 +

r0

r

)2 (
dr2 + r2dΩ2

2

)
. (11.30)

This is a convenient form of the extremal Reissner–Nordström metric in

which the horizon is located at r = 0. As in the Schwarzschild case, the

space-time is regular at the horizon, which is again only a coordinate sin-

gularity. In the near-horizon limit, where r ≈ 0, the geometry approaches

AdS2 × S2, as is shown in Exercise 11.3.

Extremal Reissner–Nordström black hole for D = 5

Reissner–Nordström black holes have straightforward generalizations to other

space-time dimensions. As pointed out in the introduction, an extremal

Reissner–Nordström black hole in D = 5 is of interest in connection with

the microscopic derivation of the black-hole entropy. Its metric can be writ-

ten in a form similar to Eq. (11.29)

ds2 = −
[
1−

(r0

r

)2
]2

dt2 +

[
1−

(r0

r

)2
]−2

dr2 + r2dΩ2
3. (11.31)

Alternatively, one can define r̃ =
√
r2 − r2

0 and then drop the tilde to obtain

a form analogous to Eq. (11.30)

ds2
5 = −

[
1 +

(r0

r

)2
]−2

dt2 +

[
1 +

(r0

r

)2
] (
dr2 + r2dΩ2

3

)
. (11.32)

Using this expression, it is easy to see that the horizon at r = 0 has radius

r0, and therefore and its area is

A = Ω3r
3
0 = 2π2r3

0. (11.33)

Comparing with Eq. (11.11), the mass and charge (suitably normalized) of

this black hole are

M =
Q√
G5

=
3πr2

0

4G5
. (11.34)

EXERCISES

EXERCISE 11.1

The Reissner–Nordström black hole discussed in Section 11.1 is a solution
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of Einstein–Maxwell theory

S =

∫
d4x
√−g

(
1

2κ2
R− 1

4
FµνF

µν

)
.

The equation of motion and Bianchi identity for the gauge field are

∇µFµν =
1√−g∂µ

(√−gFµν
)

= 0,

εµνρσ∂νFρσ = 0.

Find the most general solution for the gauge field that solves these equations

for the spherically symmetric background

ds2 = −e2A(r)dt2 + e2B(r)dr2 + r2dΩ2
2.

SOLUTION

Since Fµν is static and spherically symmetric, there are only two independent

nonvanishing components for the field strength, Ftr(r, θ, φ) and Fθφ(r, θ, φ).

For the particular metric of this exercise
√−g = eA+Br2 sin θ.

The nontrivial equation of motion for the electric field is

∂r
(√−gF rt

)
= ∂r

(
eA+Br2 sin θ · (−e−2A−2BFrt)

)

= ∂r
(
e−A−Br2 sin θFtr

)
= 0.

The most general static solution of this equation is

Ftr = eA+B q(θ, φ)

r2
.

The Bianchi identity εµνρσ∂νFρσ = 0, leads to additional constraints, ∂θFtr =

0 = ∂φFtr, so that

Ftr = eA+B q

r2
,

where q is constant. For the values of A and B given in Eq. (11.21), this

reduces to Eq. (11.25). These values also solve the Einstein equation (11.23).

The equations of motion for the magnetic field takes the form

∂θ

(
eA+Br2 sin θF θφ

)
= 0,

∂φ

(
eA+Br2 sin θF φθ

)
= 0.
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The solution to these equations is

Fθφ = p(r, t) sin θ.

Taking into account the Bianchi identity, ∂rFθφ = ∂tFθφ = 0, one obtains

Fθφ = p sin θ,

where p is a constant. This field can then be inserted in the Einstein equation

to determine the functions A and B. 2

EXERCISE 11.2

Show that the parameters q and p in the previous exercise are electric and

magnetic charges.

SOLUTION

As discussed in Chapter 8, magnetic and electric charge are given by

Qmag =
1

4π

∫
F =

1

4π

∫ π

0
dθ

∫ 2π

0
dφFθφ

and

Qel =
1

4π

∫
?F =

1

4π

∫ π

0
dθ

∫ 2π

0
dφ (?F )θφ.

Inserting Fθφ = p sin θ in the first integral gives Qmag = p. To evaluate the

electric charge it is necessary to compute the dual of the electric field:

(?F )θφ =
√−gF rt = eA+Br2 sin θe−2(A+B)Ftr = q sin θ.

Thus Qel = q.

EXERCISE 11.3

Show that the near-horizon geometry of a D = 4 extremal Reissner–Nord-

ström black hole is AdS2 × S2.

SOLUTION

Near the horizon r ≈ 0. In this limit Eq. (11.30) becomes

ds2 = −
(r0

r

)−2
dt2 +

(r0

r

)2
dr2 + r2

0dΩ2
2.

Setting r̃ = r2
0/r, and dropping the tilde,

ds2 =
(r0

r

)2 (
−dt2 + dr2

)
+ r2

0dΩ2
2.
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This gives a constant negative curvature in the r and t directions, which is

AdS2. Similarly, in the angular directions one has a sphere, with constant

positive curvature. In each case the radius of curvature is r0. As a result,

the geometry in the near-horizon limit is AdS2 × S2. This is also known as

the Bertotti–Robinson metric. 2

11.2 Black-hole thermodynamics

Entropy and temperature

Classical black holes behave like thermodynamical objects characterized by

a temperature and an entropy. The microscopic quantum origin of these

features is addressed in Section 11.4. For now, let us consider the thermo-

dynamic description, that is, the macroscopic description of black holes.

Given a static metric, such as the D = 4 Schwarzschild metric Eq. (11.4),

there is an elementary method of computing the temperature. The key

point to recall is that a system that has a temperature T = β−1 is periodic

in Euclideanized time τ = it with period β. A simple way to understand

this fact is to recall that a thermodynamic partition function is given by

Z = Tr
(
e−βH

)
,

where H is the Hamiltonian of the system. Since quantum mechanical evolu-

tion by a time interval t is given by e−iHt, the trace corresponds to imposing

a periodicity β in Euclidean time.

The way to determine the temperature of a black hole is to consider its

analytic continuation to Euclidean time and then to examine the period-

icity of this coordinate. This period is determined by requiring that the

Euclideanized metric is regular at the horizon. This may sound like a cook-

book recipe, but it is by far the easiest way to carry out the computation. It

can be confirmed in a variety of ways, for example by showing that a black

hole emits blackbody radiation at the computed temperature.

In order to examine the vicinity of the horizon, let us define ρ by

r = rH(1 + ρ2), (11.35)

and expand the Euclideanized version of the Schwarzschild metric Eq. (11.4)

about ρ = 0. This gives

ds2 ≈ 4r2
H

(
dρ2 + ρ2

( dτ
2rH

)2
+

1

4
dΩ2

2

)
. (11.36)

The first two terms describe a flat plane in polar coordinates provided that
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the period of τ is

β = 4πrH = 8πMG4. (11.37)

Thus the temperature of the Schwarzschild black hole is T = 1/(8πMG4).

Since the temperature decreases as M increases, the specific heat is negative.

Very massive black holes are accurately described by classical solutions of

Einstein’s theory of general relativity. Classically, black holes are stable and

black, which means that nothing can ever escape from inside the horizon.

Thus the mass can only increase as matter falls through the horizon. If

one takes the thermodynamic interpretation of black holes into account, the

analogy suggests that

dM = TdS, (11.38)

where M is the mass of the black hole, T is its temperature and S is the

black hole’s entropy. The black-hole entropy should be taken into account

in the second law of thermodynamics,

dS/dt ≥ 0. (11.39)

The entropy of black holes added to the entropy of their surroundings always

has to increase with time.

For a Schwarzschild black hole, β = 1/T = 8πMG4. Requiring that

S → 0 as M → 0, to fix an integration constant, one obtains

S = 4πM2G4. (11.40)

Bekenstein–Hawking entropy formula

From Eq. (11.4) it follows that the area A of the event horizon of a Schwarz-

schild black hole is given by

A = 4πr2
H = 16π(MG4)2, (11.41)

so the entropy can be written in the form

S =
A

4G4
. (11.42)

This is one-quarter of the area of the horizon measured in units of the

Planck length. This relation, known as the Bekenstein–Hawking (BH) en-

tropy formula, appears to be universally valid (for any black hole in any

dimension), at least when A is sufficiently large. For an arbitrary (not nec-

essarily Schwarzschild) black hole in D dimensions, the formula becomes

S =
A

4GD
, (11.43)
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where A is the volume (usually called the area) of the (D − 2)-dimensional

horizon. According to this formula, the entropy of a D = 4 Reissner–

Nordström black hole is

S = πr2
+/G4. (11.44)

For an extremal Reissner–Nordström black hole this is S = πM 2G4.

Hawking radiation

When an object has a finite temperature, it emits thermal radiation, which

for a black hole would suggest that its mass should decrease in time. This

contradicts the known classical behavior, namely that the mass can only

increase, discussed earlier. This paradox led Hawking to consider quantum

corrections to the classical description. He argued that the gravitational

fields at the horizon are strong enough for quantum mechanical pair pro-

duction in the vicinity of the horizon to lead to the emission of thermal

radiation. Roughly speaking, one particle in the virtual pair falls into the

hole, and the other one is emitted as a physical on-shell particle. For large

black holes, this can be demonstrated reliably using quantum field theory in

a classical curved space-time background geometry. Since gravity is treated

classically, the black hole has to be big for this analysis to be reliable. In this

way, Hawking argued that a black hole emits radiation, and as a consequence

it loses mass. The outgoing radiation is thermal, when back-reaction can

be neglected. Thus, the black hole behaves as if it were a black body with

the temperature computed earlier. The classical statement that nothing can

escape from a black hole is undermined by quantum effects. The fact that

the entropy of the black hole decreases when Hawking radiation is emitted

is consistent with the second law of thermodynamics when the entropy of

the emitted radiation is taken into account.

Pure states and mixed states

Hawking has argued that quantum mechanics breaks down when gravity is

taken into account. First, by a semi-classical analysis, he argued that black

holes emit thermal radiation at a temperature determined by the parameters

of the black hole (mass, charge, and angular momentum). Such radiation

has no correlations, and therefore is in a mixed state, characterized by a

density matrix. On the other hand, a collapsing shell of matter that forms a

black hole can be in a pure quantum state. Thus, he argued, pure states can

evolve into mixed states in a quantum theory of gravity. This contradicts

the basic tenet of unitary evolution in quantum mechanics, and it is referred

to as information loss or loss of quantum coherence.
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The AdS/CFT conjecture, described in Chapter 12, certainly would ap-

pear to contradict this reasoning, since the AdS space in which black holes

can form is dual to a unitary conformal field theory. Thus string solutions,

at least ones that are asymptotically AdS, probably provide counterexam-

ples to Hawking’s claim. That said, it should be admitted that it is an

extremely subtle matter to explain in detail where Hawking’s argument for

information loss breaks down. This question has been discussed extensively

in the literature, but it is not yet completely settled.

EXERCISE 11.4

Show that the temperature of a D = 4 Reissner–Nordström black hole is

T =

√
(MG4)2 −Q2G4

2πr2
+

.

What happens to this temperature in the extremal limit?

SOLUTION

Using the same reasoning as in Section 11.2, we set r = r+(1+ρ2) and expand

the Euclideanized metric of the Reissner–Nordström black hole about ρ = 0

to get

ds2 =
4r3

+

r+ − r−

[
dρ2 + ρ2

(
(r+ − r−)dτ

2r2
+

)2

+
r+ − r−

4r+
dΩ2

]
.

The value of β that follows from this expression is

β =
4πr2

+

r+ − r−
,

which leads to a temperature

T =
r+ − r−

4πr2
+

=

√
(MG4)2 −Q2G4

2πr2
+

.

In the extremal limit, M
√
G4 = |Q|, this gives a vanishing temperature

T = 0. 2

EXERCISE 11.5

Estimate the Schwarzschild radius, temperature, and entropy of a one solar

mass Schwarzschild black hole. Estimate its lifetime due to the emission of

Hawking radiation. The sun has a mass of M = 2.0× 1033g.
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SOLUTION

Reinstating h̄, c and kB by dimensional analysis, in order to express these

quantities in ordinary units, gives

rH =
2G4M

c2
∼ 3.0× 103m, T =

h̄c3

8πMG4kB
∼ 6.0× 10−8K,

S =
A

4G4
=
πR2c3

G4h̄
∼ 1.0× 1077, ∆t ∼ G2

4M
3

αh̄c4
∼ 1066years.

The value of the coefficient α is about 10−3. 2

11.3 Black holes in string theory

This section considers supersymmetric (and hence extremal) black holes

that have finite entropy in the supergravity approximation. These include

three-charge black holes in five dimensions and four-charge black holes in

four dimensions, which can be interpreted as approximations to solutions

of toroidally compactified string theory. For this class of compactifications,

finite-horizon-area black-hole solutions that are asymptotically flat only exist

in the supergravity approximation in four and five dimensions. The reason

for this can be explained by referring to the extremal Reissner–Nordström

solutions given in Eqs (11.30) and (11.32). In each case the coefficient of

dr2 takes the form

grr =
(
1 + (r0/r)

D−3
) 2
D−3 . (11.45)

This behaves near the horizon (r = 0) like grr ∼ (r0/r)
2, which is necessary

to obtain a finite horizon radius and area. It appears that constructions

obtained by string-theory or M-theory compactification always give an outer

exponent that is a positive integer. This can only correspond to 2/(D − 3)

if D = 4 or D = 5. In the multi-charge examples that are discussed in this

section, the expression 1+(r0/r)
D−3 is replaced by a product of factors that

can have different radii, but the same conclusion still applies.

For all other supersymmetric black holes, including any supersymmetric

solution for D > 5, the horizon has zero radius in the supergravity approxi-

mation. To obtain a nonzero radius in these cases, it is necessary to include

stringy corrections, that is, corrections to the Einstein–Hilbert action that

are higher order in the curvature tensor. This is discussed in Section 11.6.
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Extremal three-charge black holes for D = 5

The simplest nontrivial example for which the entropy can be calculated

involves supersymmetric black holes in five dimensions that carry three dif-

ferent kinds of charges. These can be studied in the context of compactifi-

cations of the type IIB superstring theory on a five-torus T 5. The analysis

is carried out in the approximation that five of the ten dimensions of the

IIB theory are sufficiently small and the black holes are sufficiently large so

that a five-dimensional supergravity analysis can be used.

N = 8 supergravity for D = 5

The supergravity theory in question is N = 8 supergravity in five dimen-

sions. This contains a number of one-form and two-form gauge fields. How-

ever, by duality transformations, the two-forms can be replaced by one-

forms. Once this is done, the resulting theory contains 27 U(1) gauge fields.

Furthermore, the theory has a noncompact E6,6 global U-duality symme-

try.8 The 27 U(1) s belong to the fundamental 27 representation of this

group. Therefore, a charged black hole in this theory can carry 27 different

types of electric charges. Some of these electric charges can be realized by

wrapping branes and exciting Kaluza–Klein excitations. A specific example

is discussed below.

The black-hole solution

Three-charge black holes in five dimensions can be obtained by takingQ1 D1-

branes wrapped on an S1 of radius R inside the T 5, Q5 D5-branes wrapped

on the T 5 = T 4×S1, and n units of Kaluza–Klein momentum along the same

circle. Each of these objects breaks half of the supersymmetry, so altogether

7/8 of the supersymmetry is broken, and one is left with solutions that have

four conserved supercharges. Other equivalent string-theoretic constructions

of these black-hole solutions are related to the one considered here by U-

duality transformations. Some examples are given later.

There are a variety of ways to analyze this system. One of them is in terms

of a five-dimensional gauge theory. Since the Q1 D1-branes are embedded

inside the Q5 D5-branes, this configuration can be described entirely in

terms of the U(Q5) world-volume gauge theory of the D5-branes. In this

description a D-string wound on a circle is described by a U(Q5) instanton

that is localized in the other four directions. So, altogether, there are Q1

such instantons. The Kaluza–Klein momentum can also be described as

excitations in this gauge theory.

8 In the supergravity approximation it is a continuous symmetry.
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The five-dimensional metric describing this black-hole can be obtained

from the ten-dimensional type IIB theory by wrapping the corresponding

branes as described above, or it can be constructed directly. In either case,

the resulting metric can be written in Einstein frame in the form

ds2 = −λ−2/3dt2 + λ1/3
(
dr2 + r2dΩ2

3

)
, (11.46)

where

λ =
3∏

i=1

[
1 +

(ri
r

)2
]
. (11.47)

The relation between the parameters ri and the charges Qi is derived below.

This solution describes an extremal three-charge black hole with a vanish-

ing temperature T = 0. Note that this formula reduces to the extremal

Reissner–Nordström black-hole metric given in Eq. (11.32) in the special

case r1 = r2 = r3, that is, when the three charges are equal. The dilaton

is a constant, so there is a globally well defined string coupling constant gs.

Thus, the string-frame metric differs from the one given above only by a

constant factor.

The horizon of the black hole in Eq. (11.46) is located at r = 0, and its

area is

A = 2π2r1r2r3. (11.48)

This vanishes when any of the three charges vanishes, which is the reason

that three charges have been considered in the first place. Put differently,

one needs to break 7/8 of the supersymmetry in order to form a horizon

that has finite area in the supergravity approximation, and this requires

introducing three different kinds of excitations. When there is only one or

two nonzero charges, there still is a horizon of finite area, but its depen-

dence on the string scale is such that its area vanishes in the supergravity

approximation. For the supergravity approximation to string theory to be

valid, it is necessary that the geometry is slowly varying at the string scale.

This requires ri � `s.

The black hole mass

Using Eq. (11.11) one can read off the mass of the black hole M to be

M = M1 +M2 +M3 where, Mi =
πr2

i

4G5
. (11.49)

The fact that the masses are additive in this way is a consequence of the

form of the metric. However, this had to be the case, because the BPS

condition is satisfied, and the charges are additive.
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To express the result for ri in terms of ten-dimensional quantities, the

value of G5 needs to be determined. Letting (2π)4V denote the volume of

the T 4 and R be the radius of the S1 one obtains

G5 =
G10

(2π)5RV
. (11.50)

As explained in Chapter 8, G10 = 8π6g2
s `

8
s is the 10-dimensional Newton

constant in string units. Putting these facts together gives the relation

r2
i =

g2
s `

8
s

RV
Mi. (11.51)

The masses Mi can be computed at weak string coupling using string-

theoretic considerations, namely the formulas for the mass of winding and

momentum modes derived in Chapter 7. In the string frame, the masses are

M1 = 2πRTD1Q1 = Q1R
gs`2s

,

M2 = (2π)5RV TD5Q5 = Q5RV
gs`6s

,

M3 = n
R .

(11.52)

Here Q1 and Q5 are the numbers of wrapped D1-branes and D5-branes,

respectively, and hence the values of the corresponding charges. Similarly,

n is the integer that specifies momentum on the circle.

The quantities TD1 and TD5 are the tensions of a single D1-brane and

D5-brane given in Chapter 6. Using these relations, the conditions r2
i � `2s

become

gsQ1 �
V

`4s
, gsQ5 � 1, g2

sn�
R2V

`6s
. (11.53)

If R and V are of order string scale, and one wants gs � 1, so as to be in

the perturbative string theory regime, then all three charges must be large.

Since the effective expansion parameters in string perturbation theory are

actually gsQ1 and gsQ5,9 this takes one out of the perturbative regime. On

the other hand, when the couplings are small, the mass and the spectrum

of excitations can be computed by string-theoretic considerations.

The crucial fact is that supersymmetry allows us to extrapolate certain

properties from weak coupling to strong coupling reliably, so that results

that are obtained in the two limits can be compared meaningfully. The

property of this type that is of most interest is the number of quantum

9 These correspond to the ’t Hooft couplings in the corresponding large-N world-volume gauge
theories.
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states. It is computed in weakly coupled string theory and compared to

the classical entropy, which is meaningful for strong coupling. This type of

reasoning could break down if short supermultiplets join up to give a long

supermultiplet. Strictly speaking, the quantity that can be continued safely

from weak coupling to strong coupling is an index, which typically counts

the number of bosonic states minus the number of fermionic states, whereas

the entropy is the logarithm of the sum of these numbers. Usually, this

distinction can be ignored.

The entropy

Using Eqs (11.48), (11.50) and (11.51), one finds that the entropy is

S =
A

4G5
=

2πgs`
4
s√

RV

√
M1M2M3. (11.54)

Using the relations in (11.52) to re-express this in terms of the charges, one

obtains the elegant result

S = 2π
√
Q1Q5n. (11.55)

As was mentioned earlier, there are 27 possible electric charges, and this

is the result when only a specific three of them are nonzero. The charges

transform as a 27 representation of the noncompact E6,6 symmetry group

of N = 8 supergravity in D = 5. The entropy should be invariant under

this symmetry group.10 In other words, there should be an E6,6 invariant ∆

that is cubic in the 27 electric charges such that the entropy takes the form

S = 2π
√

∆. (11.56)

The invariant ∆ generalizes the factor Q1Q5n appearing in Eq. (11.55).

The construction of the cubic invariant is relatively simple in this case.

The 27 representation is also an irreducible representation of the maximal

compact subgroup USp(8). That group has a unique cubic invariant, which

therefore must also be the E6,6 invariant. In the case of five dimensions the

central charge matrix ZAB is a real antisymmetric 8× 8 matrix that is also

symplectic traceless. This means that, given a symplectic matrix ΩAB , one

has tr(ΩZ) = 0.11 This is one real condition, so Z contains 27 independent

real charges, as expected. The unique cubic invariant with manifest USp(8)

10 Stringy corrections to the formula need only be invariant under the discrete E6( � ) U-duality
subgroup.

11 We can choose ΩAB to be the antisymmetric matrix whose nonzero matrix elements with
A < B are Ω12 = Ω34 = Ω56 = Ω78 = 1. A symplectic matrix A satisfies ATΩA = Ω.
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symmetry is

∆ = − 1

48
tr(ΩZΩZΩZ), (11.57)

where the normalization is chosen for later convenience.

By a transformation of the form, Z → ATZA, where A is a symplectic

matrix,12 the matrix ZAB can be brought to a canonical form in which its

only nonzero entries for A < B are Z12 = x1, Z34 = x2, Z56 = x3, Z78 = x4,

where
∑
xi = 0 and the xi s are real. A symmetric way of writing this is

x1 = Q1 −Q2 −Q3, x2 = −Q1 +Q2 −Q3,

x3 = −Q1 −Q2 +Q3, x4 = Q1 +Q2 +Q3. (11.58)

If one evaluates ∆ for these choices, one finds the desired result:

∆ =
1

24

∑
x3
i = Q1Q2Q3. (11.59)

Thus, up to a change of basis, the three-charge solution is completely general.

Duality and other black-hole configurations

Three-charge supersymmetric black holes in five dimensions have been de-

scribed above as D1-D5-P bound states in the toroidally compactified type

IIB theory. Here D1 refers to the Q1 D1-branes wrapped on a y1 circle,

D5 refers to the Q5 D5-branes wrapped on the y1 · · · y5 torus, and P refers

to the n units of Kaluza–Klein momentum on the y1 circle. Using the var-

ious possible S and T dualities that exist for type II theories, this brane

configuration can be related to various dual configurations describing black

holes that have an entropy given by Eq. (11.55), with the corresponding

charges of the dual brane configuration. For example, an S-duality transfor-

mation replaces the D1-branes by F1-branes (fundamental strings) and the

D5-branes by NS5-branes. The Kaluza–Klein momenta P are unaffected.

Alternatively, a T-duality transformation along the y1 direction maps the

type IIB configuration to a type IIA configuration with the D1-branes map-

ping to D0-branes and the D5-branes mapping to D4-branes. Moreover, the

Kaluza–Klein momentum maps to an F1-brane wrapped n times on the dual

y1 circle. Further T dualities give a host of other equivalent type IIA and

type IIB configurations. Exercise 11.6 works out an example of such a dual

description.

12 This is appropriate, because USp(8) is the automorphism group of the N = 8, D = 5 super-
symmetry algebra.
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M-theory interpretation

Starting from the Type IIA configuration described above, one can carry out

two more T-duality transformations along the y2 and y3 directions to obtain

a type IIA configuration consisting of Q1 D2-branes wrapped on y2 and y3,

Q5 D2-branes wrapped on y4 and y5 and n fundamental strings wrapped on

y1. This configuration can be interpreted at strong coupling as M-theory

compactified on a 6-torus. Calling the M-theory circle coordinate y6, the n

fundamental type IIA strings are then identified as n M2-branes wrapped

on the y1 and y6 circles. The two sets of D2-branes are then identified as

sets of M2-branes. Altogether, there are three sets of M2-branes wrapped

on three orthogonal tori. This is a satisfying picture in that it puts the

three sources of charges on a symmetrical footing, which nicely accounts for

their symmetrical appearance in the entropy formula. The verification that

this brane configuration gives the same entropy as before is a homework

problem.

Nonextremal three-charge black holes for D = 5

The extremal three-charge black-hole solutions in five dimensions given

above have nonextremal generalizations, which describe nonsupersymmetric

black holes with finite temperature. These black holes are described by the

metric

ds2 = −h λ−2/3dt2 + λ1/3

(
dr2

h
+ r2dΩ2

3

)
, (11.60)

where

h = 1− r2
0

r2
(11.61)

and

λ =
3∏

i=1

[
1 +

(ri
r

)2
]

with r2
i = r2

0 sinh2 αi, i = 1, 2, 3. (11.62)

This reduces to the extremal metric in Eq. (11.46) in the limit r0 → 0

with ri held fixed. Moreover, the limit αi → 0 with r0 held fixed gives the

Schwarzschild metric in five dimensions given in Eq. (11.9).

The mass of this black hole can be read off using the same rules as before

resulting in

M =
πr2

0

8G5
(cosh 2α1 + cosh 2α2 + cosh 2α3) . (11.63)
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The inclusion of the factor h in the metric shifts the position of the event

horizon from r = 0 to r = r0. At the horizon the factor λ takes the value

λ(r0) =
3∏

i=1

cosh2 αi. (11.64)

The radial size of the horizon is

rH = r0 [λ(r0)]1/6 , (11.65)

and thus the area of the horizon is

A = 2π2r3
H = 2π2r3

0 coshα1 coshα2 coshα3. (11.66)

The entropy is then given by

S =
A

4G5
=

2πr3
0V6

`9p
coshα1 coshα2 coshα3. (11.67)

To convert to string units, one would replace `9
p by g2

s `
9
s .

These formulas have a suggestive interpretation. Let us imagine that,

in addition to there being Q1 D1-branes wrapping the y1 circle, there are

also Q1 anti-D1-branes wrapping the same circle. Similarly, anti-D5-branes

and right-moving Kaluza–Klein excitations can be introduced. Then the net

charge in each case is

Q̂i = Qi −Qi i = 1, 2, 3. (11.68)

The three types of electric charge have Q̂i ∼ sinh 2αi. By identifying Qi ∼
exp(2αi) and Qi ∼ exp(−2αi) one interprets the net charge as a difference of

brane and antibrane contributions and the expression for Mi ∼ cosh 2αi as

the sum of brane and antibrane contributions. This also allows the entropy

in Eq. (11.67) to be rewritten in form

S =
A

4G5
= 2π

3∏

i=1

(
√
Qi +

√
Qi), (11.69)

which is a nice generalization of Eq. (11.55).

Rotating supersymmetric black holes for D = 5

In five dimensions it is possible for a three-charge black hole to rotate and

still be supersymmetric.13 This is not possible in four dimensions, where all

13 A rotating time-independent black-hole solution in four dimensions is known as a Kerr black
hole. The solution under consideration here is quite different from that one.
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rotating black holes, even extremal ones, are not supersymmetric. The key is

to note that the rotation group in five dimensions is SO(4) ∼ SU(2)×SU(2).

Supersymmetry requires restricting the rotation to one of the two SU(2) fac-

tors, which corresponds to simultaneous rotation, with equal angular mo-

mentum, in two orthogonal planes. There are more general ways in which a

five-dimensional black hole can rotate, of course, but this is the only one that

is supersymmetric. It preserves 1/8 of the original 32 supersymmetries, just

like the previous examples. To describe this case, let us introduce angular

coordinates as follows:

x1 = r cos θ cosψ, x2 = r cos θ sinψ, (11.70)

x3 = r sin θ cosφ, x4 = r sin θ sinφ. (11.71)

Then

dxidxi = dr2 + r2dΩ2
3 (11.72)

describes Euclidean space for

dΩ2
3 = dθ2 +sin2 θdφ2 +cos2 θdψ2, 0 ≤ θ ≤ π/2, 0 ≤ φ, ψ ≤ 2π. (11.73)

The metric of the desired supersymmetric rotating black hole is a relatively

simple generalization of Eq. (11.46)

ds2 = −λ−2/3
(
dt− a

r2
sin2 θdφ+

a

r2
cos2 θdψ

)2
+ λ1/3

(
dr2 + r2dΩ2

3

)
,

(11.74)

where λ is again given by Eq. (11.47). This metric describes simultaneous

rotation in the 12 and 34 planes. The parameter a is related to J12 = J34 = J

by

J =
πa

4G5
. (11.75)

The area of the horizon at r = 0, and hence the entropy, is computed in

Exercise 11.7 and shown to be

S =
A

4G5
= 2π

√
Q1Q5n− J2. (11.76)

Extremal four-charge black holes for D = 4

The metric and entropy

The construction of supersymmetric black holes in four dimensions is quite

similar to the five-dimensional case. Before proposing a specific brane real-

ization, let us write down the metric and explore its properties. The analog
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of Eq. (11.46) is

ds2 = −λ−1/2dt2 + λ1/2
(
dr2 + r2dΩ2

2

)
, (11.77)

where

λ =
4∏

i=1

(
1 +

ri
r

)
. (11.78)

This reduces to Eq. (11.30) when all four ri are equal. We can read off the

mass of the black hole from the large distance behavior of gtt using Eqs (11.7)

and (11.8). The result is

M =

4∑

i=1

Mi with Mi =
ri

4G4
. (11.79)

The area of the horizon, which is located at r = 0, is

A = 4π
√
r1r2r3r4. (11.80)

Putting these facts together, the resulting entropy is

S =
A

4G4
= 16πG4

√
M1M2M3M4. (11.81)

Type IIA brane construction

It still remains to relate the four masses to four electric (or magnetic)

charges. This requires some sort of brane construction involving four types

of branes or excitations. To be specific, let us consider the type IIA theory

compactified on a six torus that is a product of six circles with coordinates

y1, . . . , y6 and radii R1, . . . , R6. A brane configuration that preserves 1/8 of

the N = 8 supersymmetry, and therefore is suitable, is the following: Q1

D2-branes wrapped on the y1 and y6 circles, Q2 D6-branes wrapped on all

six circles, Q3 NS5-branes wrapped on the first five circles, and Q4 units of

Kaluza–Klein momentum on the first circle. The masses that correspond to

these types of excitations are

M1 = (2πR1)(2πR6)TD2Q1 = 1
gs`3s

(R1R6)Q1,

M2 = (2πR1) · · · (2πR6)TD6Q2 = 1
gs`7s

(R1 · · ·R6)Q2,

M3 = (2πR1) · · · (2πR5)TNS5Q3 = 1
g2
s `

6
s
(R1 · · ·R5)Q3,

M4 = 1
R1
Q4.

(11.82)
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Inserting these masses into the entropy formula given above and using

G4 =
G10

(2πR1) · · · (2πR6)
=

g2
s `

8
s

8R1 · · ·R6
(11.83)

yields the final formula for the entropy

S = 2π
√
Q1Q2Q3Q4. (11.84)

This result bears a striking resemblance to Eq. (11.55).

Dual brane configurations

As in the five-dimensional three-charge case, there are many other equivalent

brane configurations that are related by various S- and T-duality transforma-

tions, and Eq. (11.84) applies to all of them. For example, a T-duality along

directions 1,2,3 gives a type IIB configuration. Following this by an S-duality

gives a type IIB configuration that has Q1 D3-branes wrapping directions

2,3,6, Q2 D3-branes wrapping directions 4,5,6, Q3 D5-branes wrapping di-

rections 1–5, and Q4 D1-branes wrapping direction 1. A further T-duality

along direction 6 gives a type IIA configuration consisting of three sets of

D2-branes wrapping orthogonal two-tori and a set of D6-branes wrapping

the entire 6-torus.

N = 8 supergravity in D = 4

The effective four-dimensional theory in this case is N = 8 supergravity,

which has a noncompact E7,7 duality group. This is a continuous symmetry

in the supergravity approximation, though it is broken to the infinite discrete

U-duality group E7(
�

) by string theory corrections. Since we are working in

the supergravity approximation, the entropy of extremal black holes should

be invariant under the continuous symmetry group. Writing the entropy

in the form S = 2π
√

∆, we found ∆ = Q1Q2Q3Q4 for a certain specific

four-charge black hole in Eq. (11.84). We can use group theory to figure out

how this should generalize.

N = 8 supergravity has 28 U(1) gauge fields. There are therefore 28

distinct electric and magnetic charges that a black hole can carry. These

charges form a 56 representation of the E7,7 duality group. There is a

unique E7,7-symmetric quartic invariant that can be constructed out of these

charges, and the product Q1Q2Q3Q4 corresponds to a special case of that

invariant. The way this works is as follows: The matrix of central charges

is an 8× 8 complex antisymmetric matrix

ZAB = qAB + ipAB, (11.85)
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where the qAB denote the 28 electric charges and the pAB denote the 28

magnetic charges. The invariant ∆ is a quartic expression in these central

charges. The E7,7 duality group has an SU(8) subgroup, which can be made

manifest. Subscripts A,B label an 8 and superscripts label an 8̄ of SU(8).

Thus the complex conjugate of the central charge is denoted Z
AB

. Now

consider the formula

∆ = tr(ZZZZ)− 1

4

(
trZZ

)2
+ 4(PfZ + PfZ), (11.86)

where the Pfaffian is

PfZ =
1

24 · 4!
εABCDEFGHZABZCDZEFZGH . (11.87)

Each of the terms in Eq. (11.86) has manifest SU(8) symmetry. The claim

is that this particular combination is the unique one (up to normalization)

for which this extends to E7,7 symmetry.

By a transformation of the form Z → UTZU , where U is a unitary ma-

trix,14 Z can be brought to a canonical form in which the only nonzero

entries (with A < B) are z1 = Z12, z2 = Z34, z3 = Z56, z4 = Z78. The zi s

are complex, in general. In this basis one has

∆ = 2
∑
|zi|4 −

(∑
|zi|2

)2
+ 8 Re(z1z2z3z4). (11.88)

As a matter of fact, by an SU(8) transformation, it is possible to remove

three phases. So, for example, all four zi could be chosen to have the same

phase or else three of the zi could be chosen to be real. Thus, the five-charge

case discussed below, is the generating solution for the arbitrary case in the

same sense that the three-charge solution was in five dimensions.

To make contact with the four-charge black hole considered previously,

all four zi can be chosen to be real in order to give four electric charges. For

the specific choices

z1 =
1

4
(Q1 +Q2 +Q3 +Q4), z2 =

1

4
(Q1 +Q2 −Q3 −Q4),

z3 =
1

4
(Q1 −Q2 +Q3 −Q4), z4 =

1

4
(Q1 −Q2 −Q3 +Q4), (11.89)

one finds after some algebra that ∆ = Q1Q2Q3Q4 in agreement with what

we found earlier by other methods.

14 This is appropriate because U(8) is the automorphism group of the N = 8, D = 4 supersym-
metry algebra.
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Five-charge configuration

It is possible to add P1 D0-branes to the D2-D2-D2-D6 configuration de-

scribed above without breaking any additional supersymmetry. The result-

ing 5-charge configuration differs from the configurations considered so far

in an important respect. Namely, a D0-brane and a wrapped D6-brane are

mutually nonlocal. In other words, they are electric and magnetic with re-

spect to the same gauge field. Let us not attempt to write down the solution

that describes such a black hole. It is given by an E7,7 transformation of the

solution that we presented. Rather, let us simply note that the E7 quartic

invariant can be evaluated for all possible choices of electric and magnetic

charges, so it is simply a matter of reading off what it gives. To do this we

should simply replace Q1 → Q1 + iP1 in each of the four zi s and re-evaluate

∆. After some algebra one finds that Eq. (11.88) gives

∆ = Q1Q2Q3Q4 −
1

4
P 2

1Q
2
1. (11.90)

Thus

S = 2π

√
Q1Q2Q3Q4 −

1

4
P 2

1Q
2
1. (11.91)

If one chooses to make the more common convention of calling D0-branes

electrically charged and D6-branes magnetically charged, then we should

make an electric–magnetic duality transformation, which amounts to re-

naming the charges as follows: Q1 = P0 and P1 = −Q0. Written this way,

the entropy takes the form

S = 2π

√
P0Q2Q3Q4 −

1

4
P 2

0Q
2
0. (11.92)

The 4d/5d connection

The astute reader may have noticed a resemblance between the entropy

of a rotating black hole in five dimensions, given in Eq. (11.76), and the

four-dimensional entropy describing a four-charge black hole Eq. (11.92).

Specifically, the two formulas agree if one sets P0 = 1 and makes the identi-

fication J = Q0/2. This turns out to be more than a coincidence. Without

going into the mathematical details, let us explain qualitatively how this

comes about.

Since the four-dimensional black hole has P0 = 1, there is one D6-brane.

In Chapter 8 it was explained that a D6-brane of the type IIA theory is a

higher-dimensional analog of a Kaluza–Klein monopole. This means that,
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from the 11-dimensional M-theory perspective, the four dimensions trans-

verse to the brane form the Taub–NUT geometry

ds2
TN =

(
1 +

R

2r

)(
dr2 + r2dΩ2

2

)

+

(
1 +

R

2r

)−1(
dy +R sin2(θ/2) dφ

)2
. (11.93)

This geometry can be visualized as analogous to a cigar with the D6-brane

localized to the region near the tip. Far from the tip of the cigar, the

geometry looks like � 3×S1, where the circle is the M-theory circle, which in

type IIA units has radius R = gs`s. The fact that the number of D0-branes

is Q0 means that there are Q0 units of momentum around the M-theory

circle. On the other hand, near the tip of the cigar the geometry would be

nonsingular and look like � 4 if there were no other branes in the problem.

However, their presence makes the story more complicated.

Now consider the strong-coupling limit of the previous four-dimensional

picture. In this limit the radius of the M-theory circle approaches infinity,

and the Taub–NUT geometry approaches flat � 4 far from the origin. How-

ever, near the origin there is a five-dimensional black hole. The Q0 units of

momentum around the M-theory circle are still present, but now as angular

momentum J12 = J34 = Q0/2 about the origin, which was the tip of the

cigar. In the limit one is left with a five-dimensional black hole with M2-

brane charges Q1, Q2, Q3 and J = J12 = J34. Since the entropy does not

depend on the string coupling constant, which controls the size of the M-

theory circle, its value must be the same for the four- and five-dimensional

black holes, which is what we found.

EXERCISES

EXERCISE 11.6

Verify that the D0-D4-F1 realization of the black hole discussed in Sec-

tion 11.3 has entropy given by Eq. (11.55), with the charges replaced by the

charges of the dual configuration.

SOLUTION

Consider Q0 D0-branes, Q4 D4-branes wrapping the T 4, which has a volume
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(2π)4V , and Q1 F1-branes wrapping the y1 circle, which has radius R. This

leads to the masses

M1 =
Q0

gs`s
, M2 =

Q4

(2π)4gs`5s
(2π)4V, M3 =

Q1

2π`2s
2πR.

Inserting this into the expression for the entropy Eq. (11.54) gives

S =
A

4G5
=

2πgs`
4
s√

RV

√
M1M2M3 = 2π

√
Q0Q4Q1.

Comparison of this formula with Eq. (11.55) shows that the D0-D4-F1 sys-

tem gives the same entropy for Q0 = Q1, Q4 = Q5 and Q1 = n, which is

what we wanted to show.

Note that the various dualities that relate the different brane descriptions

of the black hole do not change the five-dimensional metric except by an

overall constant factor. Such a factor has no bearing on the computation of

the entropy, which is dimensionless.

2

EXERCISE 11.7

Compute the area of the horizon of the rotating black hole described in

Section 11.3 and deduce its entropy.

SOLUTION

In the near-horizon limit r ≈ 0 and constant t the metric Eq. (11.74) reduces

to

ds2 = R2dΩ2
3 − (a/R2)2(cos2 θdψ − sin2 θdφ)2

= R2dθ2 +R2(cos θ sin θ)2(dφ+dψ)2 +(R2− (a/R2)2)(cos2 θdψ− sin2 θdφ)2,

where

R2 = (r1r2r3)2/3.

The easiest way to compute the area of the horizon described by this metric

is to define the orthonormal one-forms

e1 = Rdθ,

e2 = R cos θ sin θ(dφ+ dψ),

e3 =
√
R2 − (a/R2)2(cos2 θdψ − sin2 θdφ).
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Then the area of the horizon obtained from this metric is given by

A =

∫
e1 ∧ e2 ∧ e3 = R2

√
R2 − (a/R2)2

∫
cos θ sin θdθ ∧ dφ ∧ dψ

= 2π2
√

(r1r2r3)2 − a2.

Using this result,

S =
A

4G5
= 2π

√
Q1Q5n− J2,

where the angular momentum J is related to the parameter a by

J =
πa

4G5
.

If a > r1r2r3, the black hole is over-rotating, and the geometry has a naked

singularity, at least in the supergravity approximation. 2

EXERCISE 11.8

Consider the dual configuration of the D = 4 extremal four-charge black

described in Section 11.3. Show that this gives the entropy in Eq. (11.84),

with the charges replaced by the charges of the dual configuration.

SOLUTION

The dual configuration has three sets of D2-branes and one set of D6-branes.

The associated masses are

M1 = (2πR2)(2πR3)TD2 =
R2R3

gs`3s
Q1, M2 =

R4R5

gs`3s
Q2,

M3 =
R1R6

gs`3s
Q3, M4 = (2π)6(R1 · · ·R6)TD6P0 =

R1 · · ·R6

gs`7s
P0.

Therefore, the entropy is

S =
A

4G4
= 16π

g2
s`

8
s

8R1 · · ·R6

√
M1M2M3M4 = 2π

√
Q1Q2Q3P0,

which reproduces Eq. (11.84). 2

EXERCISE 11.9

Construct the nonextremal generalization of the four-charge black hole by

analogy with the construction given for nonextremal black holes in five di-

mensions. Interpret the masses, charges, and entropy in terms of branes and

antibranes, as was done in the five-dimensional case.
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SOLUTION

The formulas analogous to Eqs (11.60) – (11.62) for D = 4 black holes take

the form

ds2 = −λ−1/2
(

1− r0

r

)
dt2 + λ1/2

((
1− r0

r

)−1
dr2 + r2dΩ2

2

)
,

λ =
4∏

i=1

(
1 +

r0 sinh2 αi
r

)
.

We can then extract the values of the masses in the usual way,

M =
r0

4G4

4∑

i=1

sinh2 αi +
r0

2G4
=

r0

8G4

4∑

i=1

cosh 2αi,

which gives

Mi =
r0 cosh 2αi

8G4
.

The outer horizon, located at r = r0, has an area

A = 4πr2
0

4∏

i=1

coshαi.

This result can be interpreted as signaling the presence of Qi antibranes in

addition to the Qi branes. Identifying Qi ∼ exp(−2αi) and Qi ∼ exp(2αi),

we see that the result for the mass comes from the sum of the masses of the

branes and the antibranes, while the net charge comes from the difference

Q̂i = Qi −Qi.

The result for the entropy can then be written in terms of these charges

S =
A

4G4
= 2π

4∏

i=1

(
√
Qi +

√
Qi).

2

11.4 Statistical derivation of the entropy

Extremal black holes

Now let us turn to the microscopical derivation of the entropy of the three-

charge supersymmetric black hole in five dimensions. The four-charge su-

persymmetric black hole in four dimensions can be analyzed in a similar
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manner, but that is left as a homework problem. The derivation was first

given by Strominger and Vafa in the context of type IIB compactifications

on K3×S1. The discussion that follows analyzes the somewhat simpler case

of the toroidal compactification described in Section 11.3. The analysis can

be carried out either for the D1-D5-P system or for the S-dual F1-NS5-P

system. For definiteness, the discussion that follows refers to the former

set-up.

The fact that there are Q1 units of charge associated with D1-branes

means that there are Q1 windings of D1-branes around the circle. However,

the way this is achieved has not been specified. The two extreme possibil-

ities are (1) there are Q1 D1-branes each of which wraps around the circle

once and (2) there is a single D1-brane that wraps around the circle Q1

times. Altogether, the distinct possibilities correspond to the partitions of

Q1. When there is more than one D1-brane, it is important that they form

a bound state in order to give a single black hole. The Q5 units of D5-brane

charge also can be realized in various ways. In all cases, one wants the D1-

D5-P system to form a bound state, so that one ends up with a localized

object in the noncompact dimensions.

The low-energy physics of these bound states is described by an orbifold

conformal field theory that is defined on the circle of radius R. The fields

in the conformal field theory correspond to the zero modes of open strings

that connect the D1-branes to the D5-branes. There are Q1Q5 distinct such

strings, since each strand of D1-branes can connect to each strand of D5-

branes. That is the picture locally. However, imagine displacing this (small)

connecting string repeatedly around the circle. If there is a single multiply

wound D1-brane and a single multiply wound D5-brane (along the circle),

and if Q1 and Q5 have no common factors, then one must go around the

circle Q1Q5 times to get back to where one started. Thus, the excitations

of this system are the same as what one gets from having a single string

wound around the circle Q1Q5 times. Since this string is localized in the

noncompact dimensions, the only bosonic zero modes in its world-volume

theory correspond to its position in the four transverse compact dimensions.

Since the system is supersymmetric, there must therefore be four boson and

four fermion zero modes on the string world volume.

The system described above can be represented as an orbifold conformal

field theory that is obtained by taking the tensor product of Q1Q5 theo-

ries describing singly wound strings and then modding out by all of their

(Q1Q5)! permutations. This orbifold theory has many twisted sectors,15 and

15 They are given by the conjugacy classes of the permutation group SQ1Q5 .
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just one of them corresponds to a single string wound Q1Q5 times. How-

ever, this sector gives more low-energy degrees of freedom than any of the

other sectors, all of which involve multiple strings. Excitations of shorter

strings have higher energy, which suppresses them entropically. Therefore,

one obtains an excellent approximation to the entropy by only counting the

excitations of this long string, which is what we will do.

In view of the preceding, let us consider a single string wound Q1Q5

times around a circle of radius R that is only allowed to oscillate in four

transverse directions. The question to be answered is how many different

ways are there of constructing a supersymmetric excitations of energy n/R.

The string can have left-moving and right-moving excitations, and the level-

matching condition is NL −NR = nW , where the winding number is

W = Q1Q5. (11.94)

Supersymmetry requires that either NL or NR vanishes, since then that

sector contributes a short (supersymmetric) representation in the tensor

product of left-movers and right-movers that gives the physical states of the

closed string. Whether NL or NR should vanish is determined by the sign

of nW .

If N i
m and nim denote excitation numbers of the four transverse bosonic

and fermionic oscillators, respectively, then evaluation of NL or NR gives

|nW | =
4∑

i=1

∞∑

m=1

m(N i
m + nim). (11.95)

The degeneracy d(Q1, Q5, n) is then given by N0 times the number of choices

for N i
m and nim that gives|nQ1Q5|. The factor N0 denotes the degeneracy of

the left-moving or right-moving ground state, which is always 16 for a type II

string. However, multiplicative numerical factors turn out to be completely

negligible.

The degeneracy is given by the coefficient of wnW in the generating func-

tion

G(w) = N0

∞∏

m=1

(
1 + wm

1− wm
)4

. (11.96)

The numerator takes account of the four fermions and the denominator

takes account of the four bosons. To be precise, in this formula the fermions

are taken here to be in the R sector. The NS sector would give an equal

contribution (after GSO projection).

The degeneracy is evaluated for large nW by representing it as a contour

integral and using a saddle-point evaluation, as was described in Chapter 2.
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It is already clear that the answer is a function of N = nW = nQ1Q5 only.

However, while this is true for the single-string sector under consideration,

it is not true for the subdominant multiple-string configurations that are

not being considered. Evaluation of the degeneracy for large N requires

knowing the behavior of G near w = 1. This is obtained using the Jacobi

theta function identity

θ4(0|τ) =
1√
−iτ θ2(0| − 1/τ), (11.97)

where w = eiπτ , for the representations

θ4(0|τ) =

∞∏

m=1

(
1− wm
1 + wm

)
(11.98)

θ2(0|τ) =
∞∑

n=−∞
w(n−1/2)2

. (11.99)

This implies that as w → 1

G(w)→
(
− logw

π

)2

exp

(
− π2

logw

)
. (11.100)

Then writing the degeneracy in the form

d(Q1, Q5, n) =
1

2πi

∮
G(w)dw

wN+1
, (11.101)

and using a saddle-point approximation, one finds for large N that

d(Q1, Q5, n) ∼ (Q1Q5n)−7/4 exp
(

2π
√
Q1Q5n

)
, (11.102)

and as a result the microcanonical black-hole entropy is given by

S = log d ∼ 2π
√
Q1Q5n−

7

4
log(Q1Q5n) + . . . (11.103)

Remarkably, the leading term in Eq. (11.103) reproduces the result obtained

earlier in Eq. (11.55) by computing the area of the horizon in the super-

gravity approximation. The exponential factor in the degeneracy factor is

multiplied by a power of Q1Q5n, and the first correction to the entropy for-

mula is proportional to the logarithm of this factor. This term is a stringy

correction to the entropy computed in the supergravity approximation. For

the particular black hole considered here, the leading correction to the BH

entropy formula is proportional to log(A/GD). That seems to be the rule

quite generally. However, in contrast to the famous factor of 1/4 in the

leading term, A/4GD, the coefficient of the logarithm is not universal.
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Nonextremal black holes

It is natural to try to extend this analysis to nonextremal black holes. The

goal would be to reproduce the BH entropy formula by counting microstates.

However, in this case the black holes are no longer supersymmetric, and the

entropy formula is not guaranteed to extrapolate from weak coupling to

strong coupling without corrections. Because of this lack of control, the

result has not been derived in the general case using controlled approxi-

mations. What has been done successfully, in a mathematically controlled

way, is to compare the results for nearly extremal black holes for which the

nonextremality can be treated as a perturbation.

Let us consider the nonextremal D = 5 black holes described in Sec-

tion 11.3 in the special case that the only antibranes are n̄ Kaluza–Klein

excitations. In this case, the macroscopic entropy formula Eq. (11.69) be-

comes

S = 2π(
√
Q1Q5n+

√
Q1Q5n̄). (11.104)

The interpretation in terms of the world-volume theory of a string of winding

number W = Q1Q5 is that the equations NL = nQ1Q5 and NR = 0, which

were appropriate in the extremal case are now replaced by

NL = nQ1Q5 and NR = n̄Q1Q5. (11.105)

In this case the degeneracy of states contains both a left-moving and a right-

moving factor

d ∼ exp(2π
√
NL + 2π

√
NR). (11.106)

Taking the logarithm of both sides gives the microscopic entropy

S = 2π(
√
NL +

√
NR), (11.107)

in exact agreement with the macroscopic formula! Surely this is better

agreement than one had any right to expect. At the very least, the approx-

imations that have been made require n̄ � n. We will not describe the

precise requirements for the approximations to be justified. Suffice it to say,

there is some region for which they are justified, but the result that one

obtains turns out to give agreement in an even larger region. It would be

nice if one could understand why this happened.

Hawking radiation

The nonextremal black holes have a finite temperature and decay by the

emission of Hawking radiation. The brane picture makes the instability
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clear: it can be interpreted as brane-antibrane annihilation. Specifically, for

the set-up in the preceding subsection, where there are both left-moving and

right-moving Kaluza–Klein excitations, they can collide to give a massless

closed-string state, which is then emitted from the black hole. The calcula-

tion has been carried out for n̄� n with the conclusion that the decay rate

as a function of frequency is

dΓ(ω) =
A

eω/T − 1

d4k

(2π)4
, (11.108)

where the temperature is

T =
2
√
n̄

πR
. (11.109)

If one considers D1-brane anti-D1-brane or D5-brane/anti-D5-brane an-

nihilations instead, then a different viewpoint is convenient. When a brane

and an antibrane coincide, their common world volume contains a tachyonic

mode that arises as the lowest mode of the open string that connects the

brane to the antibrane. This tachyon signals an instability of the world-

volume theory, which results in the emission of closed-string radiation as

in the previous discussion. In fact, one can test this reasoning by using

Witten’s string field theory to describe the open string. Sen has argued per-

suasively that this theory gives a potential for the tachyon field, and that the

decay corresponds to sliding down this potential from a local maximum to a

local minimum, that is, tachyon condensation. Furthermore, the value of the

potential at the minimum should be lower than its value at the maximum

by exactly twice the brane tension. Thus the world-volume tachyon rolling

to the minimum of its potential precisely corresponds to brane–antibrane

annihilation. This results in the emission of closed-string quanta. In the

black-hole setting considered here, these quanta comprise the Hawking ra-

diation. This prediction for the gap between the maximum and minimum

of the potential has been tested numerically in Witten’s bosonic string field

theory, and it has been verified to high precision. Moreover, it has recently

been derived analytically.

11.5 The attractor mechanism

Moduli fields

As has been discussed in previous sections, black holes can appear when

a superstring theory or M-theory is compactified to lower dimensions and

when branes are wrapped on nontrivial cycles of the compact manifold. The
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compactified theories typically have many moduli of the type considered in

Chapters 9 and 10. These moduli appear as part of the black-hole solutions,

which turn out to exist for generic values of these moduli at infinity, that is,

far from the black hole where the geometry is essentially flat. As a result,

there is the dangerous possibility that the entropy of the black hole may

depend on parameters that are continuous, namely the moduli fields at in-

finity, and not only on discrete black-hole charges. This would be a problem,

since the number of microstates with given charges is an integer, that should

not depend on parameters that can be varied continuously. It should only

depend on quantities that take discrete values, such as electric/magnetic

charges and angular momenta.16

The attractor mechanism

In order to resolve this puzzle, one has to realize that the entropy of a black

hole is determined by the behavior of the solution at the horizon of the

black hole and not at infinity. The obvious way to reconcile this with the

observations in the preceding paragraph is for the moduli fields to vary with

the radius in such a way that their values at the horizon of the black hole

are completely determined by the discrete quantities, such as the charges,

regardless of their values at infinity. In other words, the radial dependence

of these moduli is determined by differential equations whose solutions flow

to definite values at the horizon, regardless of their boundary values at

infinity. This solution is called an attractor and its existence is the essence

of the attractor mechanism. The existence of an attractor is necessary for a

microscopic description of the black-hole entropy to be possible.

The attractor equations arise from combining laws of black-hole physics

with properties of the internal compactification manifolds. To be specific,

this section gives the derivation of the attractor equations for type IIB super-

string theory compactified on Calabi–Yau three-folds. A crucial ingredient

in these cases is special geometry, a tool used to describe the relevant moduli

spaces that was introduced in Chapter 9.

Black holes in type IIB Calabi–Yau compactifications

As discussed in Chapter 9, when type IIB superstring theory is compactified

on a Calabi–Yau three-fold M , the resulting theory in four dimensions has

N = 2 supersymmetry. The four-dimensional theory is N = 2 supergrav-

ity coupled to h2,1 abelian vector multiplets and h1,1 + 1 hypermultiplets.

16 The entropy formulas given earlier depend on integers only, though they are not logarithms of
integers. The reason, of course, is that the formulas are not exact.
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The vector multiplets contain the complex-structure moduli, while the hy-

permultiplets contain the Kähler moduli and the dilaton. The following

discussion focuses on the fields contained in vector multiplets, since the en-

tropy does not depend on the hypermultiplets, at least in the supergravity

approximation, as will become clear.

Brief review of special geometry

An N = 2 vector multiplet contains a complex scalar, a gauge field and

a pair of Majorana (or Weyl) fermions. The moduli space describing the

scalars is h2,1-dimensional and is a special-Kähler manifold. The Kähler

potential for the complex-structure moduli space is

K = − log

(
i

∫

M
Ω ∧ Ω

)
, (11.110)

where Ω is the holomorphic three-form of the Calabi–Yau manifold, as usual.

In this set up a black hole can be realized by wrapping a set of D3-branes on

a special Lagrangian three-cycle C. In order to describe this, let us introduce

the Poincaré dual three-form to C, which we denote by Γ.

This black hole carries electric and magnetic charges with respect to the

h2,1 U(1) gauge fields originating from the ten-dimensional type IIB self-dual

five-form F5 as well as the graviphoton belonging to the N = 2 supergravity

multiplet. In order to describe the charges, let us introduce a basis of three-

cycles AI , BJ (with I, J = 1, . . . , h2,1 + 1), which can be chosen such that

the intersection numbers are

AI ∩BJ = −BJ ∩AI = δIJ and AI ∩AJ = BI ∩BJ = 0. (11.111)

The Poincaré dual three-forms are denoted αI and βI . The group of trans-

formations that preserves these properties is the symplectic modular group

Sp(2h2,1 + 2;
�

). The symplectic coordinates introduced in Chapter 9 are

XI = eK/2
∫

AI
Ω and FI = eK/2

∫

BI

Ω. (11.112)

Recall that the definition of Ω can be rescaled by a factor that is independent

of the manifold coordinates and that this corresponds to a rescaling of the

homogeneous coordinates XI . This freedom has been used to include the

factors of eK/2, which will be convenient later.

The electric and magnetic charges, qI and pI , that result in four dimen-

sions are encoded in the homology class C = pIBI − qIAI or the equivalent

cohomology class Γ = pIαI − qIβI . Thus, in terms of a canonical homology
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basis AI , BI , one can write

∫

AI
Γ =

∫

M
Γ ∧ βI = pI and

∫

BI

Γ =

∫

M
Γ ∧ αI = qI . (11.113)

The central charge, which is determined by the charges, is given by

Z(Γ) = eiα|Z| = eK/2
∫

M
Γ ∧ Ω = eK/2

∫

C
Ω. (11.114)

This expression for the central charge can be derived from the N = 2 su-

persymmetry algebra, as was shown in Chapter 9. it can be re-expressed as

follows:

Z(Γ) = eK/2
∑

I

(∫

AI
Γ

∫

BI

Ω−
∫

BI

Γ

∫

AI
Ω

)
= pIFI − qIXI . (11.115)

The attractor equations and dyonic black holes

Let us now show that the complex-structure moduli fields at the horizon

are determined by the charges of the black hole, independent of the values

of these fields at infinity. In order to illustrate this, we will derive the

differential equations satisfied by the complex-structure moduli fields for

the case of four-dimensional spherically symmetric supersymmetric black

holes. These conditions restrict the space-time metric to be of the form

ds2 = −e2U(r)dt2 + e−2U(r)d~x · d~x, (11.116)

where ~x = (x1, x2, x3) and r = |~x| is the radial distance and r = 0 is the

event horizon. Note that this requires using a coordinate system that is

singular at the horizon like the one in Eq. (11.77), for example. Let us

also assume that the holomorphic complex-structure moduli fields tα only

depend on the radial coordinate, so that tα = tα(r), with α = 1, . . . , h2,1.

Recall that these coordinates are related to the homogeneous coordinates

XI introduced above by tα = Xα/X0. It is convenient to introduce the

variable τ = 1/r. Then τ = 0 corresponds to spatial infinity, while τ = ∞
corresponds to the horizon of the black hole.

The first-order differential equations satisfied by U(τ) and tα(τ) can be

derived by solving the conditions for unbroken supersymmetry

δψµ = δλα = 0, (11.117)

where ψµ is the gravitino, and λa represents the gauginos. These equations
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Fig. 11.4. The pendulum with a dissipative force acting on it evolves towards θ = 0
independently of the initial conditions.

imply a set of first-order differential equations17

dU(τ)

dτ
= −eU(τ)|Z|, (11.118)

dtα(τ)

dτ
= −2eU(τ)Gαβ̄∂β̄|Z|. (11.119)

Recall that Gαβ̄ is the inverse of Gαβ̄ = ∂α∂β̄K. In this form the conditions

for unbroken supersymmetry can be interpreted as differential equations

describing a dynamical system with τ playing the role of time.

The physical scenario described by these equations has a nice analogy with

dynamical systems. Consider, for example, a pendulum with a dissipative

force acting on it. In general, the final position of the pendulum is inde-

pendent of its initial position and velocity. The point at θ = 0 in Fig. 11.4

represents the attractor in this simple example. Solving the equations in the

near-horizon limit is then equivalent to solving the late-time behavior of the

dynamical system. It will turn out that the horizon represents an attractor,

that is, a point (or surface) in the phase space to which the system evolves

after a long period of time. This means that the moduli approach fixed

values at the horizon that are independent of the initial conditions.

Solution of the attractor equations

In order to solve Eqs (11.118) and (11.119) explicitly near the horizon, let us

first note that these differential equations can be written in the alternative

equivalent form

2
d

dτ

[
e−U(τ)+K/2Im

(
e−iαΩ

)]
∼ −Γ. (11.120)

17 The derivations are given in hep-th/9807087. Since Eq. (11.114) is homogeneous of degree one
in the X s, Z(tα) means (X0)−1Z(XI).
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The ∼ symbol means that two sides are cohomologous. In other words, they

are allowed to differ by an exact three-form, though this freedom can be

eliminated by choosing harmonic representatives. Equation (11.118) is one

real equation and (11.119) is h2,1 complex equations, making 2h2,1 + 1 real

equations altogether. Equation (11.120) can be projected along each of the

classes of H3, and there are 2h2,1 +2 of these. So, if it really is equivalent to

Eqs (11.118) and (11.119), it is necessary that there is a redundancy among

these equations.

Consider integrating Eq. (11.120) over the A cycles and the B cycles.

Using Eqs (11.112) and (11.113) this gives

2
d

dτ

[
e−U(τ)Im

(
e−iαXI

)]
= −pI (11.121)

and

2
d

dτ

[
e−U(τ)Im

(
e−iαFI

)]
= −qI . (11.122)

Contracting the first equation with qI and subtracting the second equation

contracted with pI gives

2
d

dτ

[
e−U(τ)Im

(
e−iα(qIX

I − pIFI)
)]

= 0. (11.123)

However, Eqs (11.114) and (11.115) imply that

e−iα(qIX
I − pIFI) = −|Z|, (11.124)

so that Eq. (11.123) is automatically satisfied. This is the required redun-

dancy that leaves 2h2,1 + 1 nontrivial equations.

Equation (11.118) can be obtained from Eq. (11.120) by projecting both

sides on e−iαeK/2Ω. This means taking the wedge product with this three-

form and then integrating over the manifold. The derivation of Eq. (11.118)

by this method is given in Exercise 11.10. To deduce the complex equations

in Eq. (11.119), one should project along e−iαeK/2DαΩ. Together with the

previous result, this extracts the full information content of Eq. (11.120).

The derivation of Eq. (11.119) is left as a homework problem.

The differential equation (11.120) can be integrated, since Γ does not

depend on τ . Its expansion in a real cohomology basis only depends on the

electric and magnetic charges carried by the black hole.18 The result is

2e−U(τ)+K/2Im
(
e−iαΩ

)
∼ −Γτ + 2

[
e−U(τ)+K/2Im

(
e−iαΩ

)]
τ=0

. (11.125)

This equation yields implicitly the solution for the moduli fields tα = tα(τ).

18 Of course, its Hodge decomposition depends on the complex structure and thus on τ , but this
is not relevant to the argument.
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Equation (11.119) implies that

d|Z|
dτ

=
dtα(τ)

dτ
∂α|Z|+

dt̄ᾱ(τ)

dτ
∂ᾱ|Z| = −4eUGαβ̄∂α|Z|∂β̄|Z| ≤ 0. (11.126)

As a result, |Z| is a monotonically decreasing function of τ converging to a

minimum. The fixed point is then determined by

d|Z|
dτ
→ 0 as τ →∞. (11.127)

In order to solve for the moduli fields near the horizon, we assume that the

central charge has a nonvanishing value Z = Z? 6= 0 at the fixed point.

Therefore, Eq. (11.118) can be integrated to give, for large τ ,

τ−1e−U(τ) → |Z?|. (11.128)

Substituting into the metric, this implies that the near-horizon geometry is

AdS2 × S2, just as in Exercise 11.3,

ds2 → − r2

|Z?|2
dt2 + |Z?|2

dr2

r2
+ |Z?|2(dθ2 + sin2 θdφ2), (11.129)

and it determines the area of the horizon to be

A = 4π|Z?|2. (11.130)

In the near-horizon limit Eq. (11.125) can be solved giving rise to the at-

tractor equation, which is a determining equation for the complex-structure

moduli in the near-horizon limit. In this limit Eq. (11.125) implies that

2eK/2Im
(
Z?Ω

)
∼ −Γ (11.131)

at the horizon. This implies that

Γ = Γ(3,0) + Γ(0,3) (11.132)

at the horizon, that is, the only nonvanishing terms in the Hodge decom-

position of Γ are (3, 0) and (0, 3), while the (1, 2) and (2, 1) parts vanish.

This is a property of the fixed-point, and it need not be true away from the

horizon. Therefore, the attractor mechanism can be viewed as a method to

determine Ω at the horizon in terms of the charges of the black hole.

The attractor condition (11.131) and the charges defined in Eq. (11.113)

give the alternative formulas19

pI = −2Im
(
ZXI

)
and qI = −2Im

(
ZFI

)
. (11.133)

This form of the attractor equations is used in the following sections.

19 These equations often appear with plus signs. Clearly, the signs depend on conventions that
have been made along the way.
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Fig. 11.5. Lines with constant τ of the 3-center solution with identical charges.

Multi-center solutions

There are stationary multi-black holes solutions that are known as multi-

center solutions. The reason these exist is that, when each of the black

holes preserves the same supersymmetry charge, this supersymmetry is an

unbroken symmetry of the multi-black hole system. In this case, the BPS

condition result in a no-force condition, which means that the total force

acting on each of the black holes due to the presence of the others exactly

cancels, so that each of them can remain at rest. The various attractive and

repulsive forces due to gravity, scalar fields, and gauge fields are guaranteed

to cancel out due to supersymmetry. This is true even though the field

configurations are much more complicated than they are for a single black

hole.

The attractor equations can be generalized to the case where are black-

hole horizons, with charges encoded in harmonic three-forms Γp, at different

points ~xp. In the special case where all of the component black-holes have

the same charges, the flow parameter τ is naturally defined to be

τ =
∑

p

1

| ~x− ~xp |
. (11.134)

Surfaces with constant τ in the 3-center case are displayed in Fig. 11.5. In

general, the charges are not identical. In order to describe such a solution,

known as a multi-center solution, one has to consider a slightly generalized

metric of the form

ds2 = −e2U (dt+ ωidx
i)2 + e−2Ud~x · d~x. (11.135)
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The attractor equations can then be shown to take the form

H = 2e−U Im
(
e−iαeK/2Ω

)
,

?dω =
∫
M dH ∧H,

(11.136)

where H(~x) is a harmonic function of the space-like coordinates (as well as

a differential form in the compact dimensions), ? is the Hodge star operator

on � 3 and α is the phase of Z(
∑

Γp). The first of these equations is the

generalization of Eq. (11.125), while the second one has no counterpart in

the one-center case. Since each of the horizons is an attractor, the flow

equation in this case is called a split attractor flow.

If we have N centers in asymptotically flat space-time, integration gives

H = −
N∑

p=1

Γp
1

| ~x− ~xp |
+ 2Im

(
e−iαeK/2Ω

)
r=∞

. (11.137)

Acting with the operator d? on the second equation in (11.136) gives the

condition ∫

M
∆H ∧H = 0. (11.138)

Using

∆
1

| ~x− ~xp |
= −4πδ(3)(~x− ~xp), (11.139)

one then obtains

N∑

q=1

1

| ~xp − ~xq |

∫

M
Γp ∧ Γq = 2Im

[
e−iαZ(Γp)

]
r=∞ . (11.140)

It can be shown that a multi-center solution exists as long as the this equa-

tion is satisfied. It determines the position of the charges. So, for example,

in the two-center case the separation of the horizons is determined by

| ~x1 − ~x2 |=
∫
M Γ1 ∧ Γ2

2Im [e−iαZ(Γ1)]r=∞
. (11.141)

Black rings

In four dimensions there is a theorem to the effect that the topology of a

black-hole event horizon is necessarily that of a two-sphere. It therefore

came as a surprise when people realized that there are more possibilities in

higher dimensions. In all of the five-dimensional examples discussed so far,

the horizon has S3 topology. However, there are also asymptotically flat
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supersymmetric solutions in five dimensions for which the topology of the

horizon is S1×S2. In fact, there are so many solutions of this type that they

are not uniquely determined by their mass, charges and angular momenta, in

contrast to black holes. These solutions are called black rings. As you might

guess, rotation is required to support this topology. These solutions can be

found by considering N = 2 supergravity coupled to a set of vector multi-

plets in five dimensions. This can be realized by compactifying M-theory on

a Calabi–Yau three-fold, as was discussed in Chapter 9. This is a concep-

tually beautiful subject, but the formulas tend to get a bit complicated. So

we will just list the essential results without the derivations.20

In order to present the supersymmetric black-ring solutions, let us first

describe the most general solutions with unbroken supersymmetry. The

scalars in the vector multiplets are real and denoted by Y A. The BPS

equations are then solved by

ds2
5 = −f−2(dt+ ω)2 + fds2

X , (11.142)

where

ds2
X =

4∑

m,n=1

hmndx
mdxn. (11.143)

Here X is a four-dimensional hyperkähler space with metric hmn, ω is a

one-form on X and f is a scalar function depending on the coordinates

of X. The U(1) field strength two-forms FA in the vector multiplets are

determined by

FA = d
[
f−1Y A(dt+ ω)

]
+ ΘA, (11.144)

where ΘA are closed self-dual two-forms on X, that is,

ΘA = ?4ΘA. (11.145)

Moreover, supersymmetry implies that ω and f are determined by

dω + ?4dω = −fYAΘA, (11.146)

and

∇2(fYA) = 3DABCΘBΘC , (11.147)

where DABC are the intersection numbers of two-forms (or dual four-cycles)

describing the geometry of the Y A moduli space. This is the most general

solution preserving supersymmetry in five dimensions. So, for example, the

five-dimensional three-charge black holes and rotating black holes described

20 For further details see hep-th/0504126.
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in Section 11.3 are special cases of this solution, as you are asked to check

in a homework problem.

In order to obtain an example of a black-ring solution, it is sufficient to

consider the case of one modulus, that is, A = 1 and D111 = 1. The space

X is taken to be Taub–NUT with metric

ds2
X = H0d~x · d~x+

1

H0
(dx5 + ω0)2 and dω0 = ?3dH

0, (11.148)

where x5 has period 4π. The solution is then formulated in terms of a set

of two-center harmonic functions H defined by

H0 =
4

R2
TN

+
1

| ~x | H0 = −q0

L
+

q0

| ~x− ~x0 |
, (11.149)

and

H1 =
p1

| ~x− ~x0 |
, H1 = 1 +

q1

| ~x− ~x0 |
, (11.150)

where ~x0 = (0, 0, L) and (p1, q1, q0) are constants. When compactified to

four dimensions, this background is a bound state of one D6-brane located

at | ~x |= 0 and a black hole with D4-D2-D0 brane charges (p1, q1, q0).

Using these harmonic functions, Eq. (11.145) is solved by

Θ1 = d

[
H1

H0

(
dx5 + ω0

)]
+ ?3dH

1, (11.151)

while the solution to Eq. (11.147) is provided by

f = H1 + 3
(H1)2

H0
. (11.152)

Moreover,

ω = −
[
H0 + 2

(H1)3

(H0)2
+
H1H

1

H0

]
(dx5 + ω0) + ω(4), (11.153)

where ω(4) is the solution of

dω(4) = HI ?3 dH
I −HI ?3 dH

I . (11.154)

The black-ring solution is then obtained by taking the limit RTN →∞. This

is the same sort of limit considered earlier when we discussed the 4d/5d

connection relating a rotating black hole in five dimensions to one with

suitable charges in four dimensions.

The five-dimensional metric can then be written in the form

ds2
5 = G(4)

µν dx
µdxν + λ(dx5 − Aµdxµ)2, (11.155)
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where G
(4)
µν is the four-dimensional metric, λ is a scalar and Aµ is a U(1)

gauge field. The four-dimensional metric satisfies the two-center attractor

equations.

EXERCISES

EXERCISE 11.10

Deduce Eq. (11.118) by projecting both sides of Eq. (11.120) on e−iα+K/2Ω.

SOLUTION

Equation (11.120) is equivalent to

d

dτ

[
e−U

(
e−iα+K/2Ω− eiα+K/2Ω

)]
∼ −iΓ.

Taking the wedge product with e−iα+K/2Ω, only the second term on the left

contributes since Ω ∧ Ω = Ω ∧ d
dτΩ = 0. Thus

− d

dτ

(
e−U

)
eKΩ ∧ Ω− e−Ue−iα+K/2Ω ∧ d

dτ

(
eiα+K/2Ω

)

∼ −ie−iα+K/2Ω ∧ Γ.

The imaginary part of this equation is now integrated over the manifold. A

useful identity that implies that the integral of the second term is real is
∫
eiα+K/2Ω ∧ d

dτ

(
e−iα+K/2Ω

)
=

∫
e−iα+K/2Ω ∧ d

dτ

(
eiα+K/2Ω

)
,

which is derived by differentiating Eq. (11.110) written in the form
∫ (

e−iα+K/2Ω
)
∧
(
eiα+K/2Ω

)
= −i.

In this way, one obtains

i
d

dτ

(
e−U

)
eK
∫

Ω ∧ Ω = −1

2
eK/2

∫ (
e−iαΩ + eiαΩ

)
∧ Γ.

Using Eq. (11.110) to simplify the left-hand side and Eq. (11.114) to simplify

the right-hand side, one obtains

d

dτ

(
e−U

)
= |Z|,
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which is equivalent to Eq. (11.118). 2

11.6 Small BPS black holes in four dimensions

Section 11.4 showed how the counting of microscopic degrees of freedom

reproduces the BH entropy of certain supersymmetric black holes. A crucial

requirement for this agreement is that Dp-branes wrapped on cycles of the

internal manifold excite enough different charges to give a solution with a

nonvanishing classical black-hole horizon.

Black holes can also be created using fundamental strings and their ex-

citations without invoking solitonic branes. The string spectrum consists

of an infinite tower of states with arbitrarily large masses. For sufficiently

high excitations, or sufficiently large coupling constant, gravitational col-

lapse becomes unavoidable. This implies that the Hilbert space of string

excitations should contain black holes. This opens up the interesting possi-

bility that certain string excitations admit an alternative interpretation as

black holes. In this section we discuss evidence that black holes are an al-

ternative description of certain elementary string excitations. The evidence

again follows from comparing the black-hole entropy obtained by counting

microscopic quantum states to the macroscopic black-hole entropy described

by geometry.

The difficulty in making a black hole out of perturbative string excitations

is that an elementary string states do not excite all four types of charges in

the λ factor of the metric in Eq. (11.77). Therefore, the area of the horizon

would vanish in the supergravity approximation, leaving a null singularity

at the origin. For large string excitation number N , the entropy is pro-

portional to
√
N , and the area of the horizon is A ∼

√
N`2p where `p is

the four-dimensional Planck length. Even though the area of the horizon

is large in Planck units, it is of order one in string units, which explains

why the supergravity approximation gives zero. Therefore, α′ corrections to

the supergravity approximation are important for obtaining a horizon of fi-

nite radius that shields the singularity, as required by the cosmic censorship

conjecture.

Microstate counting

As a specific example, let us consider the heterotic string compactified on a

six-torus to four dimensions, which was discussed in Chapter 7.21 This gives

21 The techniques discussed in this section are of more general applicability than this specific
example.
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28 U(1) gauge fields.22 These transform as a vector of the O(22, 6;
�

) duality

group. 22 of the gauge fields belong to 22 vector multiplets, while the other

6 belong to the supergravity multiplet. The allowed charges of these gauge

fields are given by sites of the Narain lattice, as described in Chapter 7.

Since this is an even lattice, a charge vector in this lattice squares to an

even integer. In other words, since the charges are encoded in the internal

momenta (pR, pL), where pL has 22 components and pR has six components,

p2
R − p2

L = 2N. (11.156)

The mass formula for these states is

1

4
α′M2 =

1

2
p2

R +NR =
1

2
p2

L +NL − 1, (11.157)

where NL and NR are the usual oscillator excitation numbers.

Dabholkar–Harvey states

Most states with masses given by Eq. (11.157) are unstable, but the BPS

states are stable. The BPS states, that is, the state belonging to short

supermultiplets for which the mass saturates the BPS bound, have NR = 0.

In this case

α′M2 = 2p2
R, (11.158)

while NL is arbitrary. This results in a whole tower of stable states, which

are sometimes called Dabholkar–Harvey states. For these states the level-

matching condition reduces to

NL − 1 = N. (11.159)

For example, if there is winding number w and Kaluza–Klein excitation num-

ber n on one cycle of the torus, then N = |nw|. In general, the degeneracy

of states for large N is given by

dN ≈ exp
(

4π
√
N
)
, (11.160)

resulting in a leading contribution to the black-hole entropy given by

S = log dN ≈ 4π
√
N. (11.161)

22 We assume generic positions in the moduli space so that there is no enhanced gauge symmetry.
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Counting states

Let us now compute the corrections to Eq. (11.161). The degeneracy dN
denotes the number of ways that the 24 left-moving bosonic oscillators can

give NL = N + 1 units of excitation. This can be encoded in a partition

function

Z(β) =
∑

dNe
−βN =

16

∆(q)
, (11.162)

where

q = e−β = e2πiτ , (11.163)

and the factor of 16 is the degeneracy of right-moving ground states. The

factor ∆(q) is related to the Dedekind η function by

∆(q) = η(τ)24 = q

∞∏

n=1

(1− qn)24. (11.164)

The large-N degeneracy depends on the value of this function as q → 1 or

β → 0. Under a modular transformation the Dedekind η function transforms

as

η(−1/τ) =
√
−iτη(τ). (11.165)

As a result,

∆(e−β) =

(
β

2π

)−12

∆(e−4π2/β), (11.166)

which, by using ∆(q) ≈ q for small q, gives the estimate

∆(e−β) ≈
(
β

2π

)−12

e−4π2/β. (11.167)

This result is extremely accurate, since all corrections are exponentially

suppressed.

Now one can compute dN , as in earlier chapters.

dN =
1

2πi

∮
Z(β)

dq

qN+1
=

1

2πi

∮
16

∆(q)

dq

qN+1
. (11.168)

Using Eq. (11.166), this can be approximated for large N by

dN ≈ 16 Î13(4π
√
N), (11.169)

where

Îν(z) =
1

2πi

∫ ε+i∞

ε−i∞
(t/2π)−ν−1et+z

2/4tdt (11.170)
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is a modified Bessel function. This formula includes all inverse powers of N ,

but it does not include terms that are exponentially suppressed for large N .

A saddle-point estimate for large N gives

S = log dN ≈ 4π
√
N − 27

2
log
√
N +

15

2
log 2 + . . . (11.171)

This shows that the leading-order entropy of the black hole obtained by

counting microstates is proportional to the mass, S ∼ M . We could try to

compare this to the corresponding macroscopic black-hole solution, but the

black hole constructed of perturbative Dabholkar–Harvey states only excites

two of the four charges that are needed to get a nonvanishing area of the

event horizon. So the result is zero in the supergravity approximation. This

is the best that one could hope for in this approximation, because if the area

were nonzero, the entropy would be proportional to M 2.

So how can we construct a macroscopic black hole that reproduces the

entropy (11.169)? The resolution lies in realizing that elementary string

states become heavy enough to form black holes at large coupling. As a

result, one should expect that string-theoretic corrections to supergravity,

such as terms in the action that are higher order in the curvature, modify the

macroscopic geometry and the associated entropy, yielding a nonvanishing

result.

Macroscopic entropy

The preceding analysis gave a very accurate result for the degeneracy of

states dN of a certain class of supersymmetric black holes. Remarkably, this

formula has been reproduced precisely from a dual macroscopic analysis.

The crucial point is that the supergravity approximation is inadequate for

this problem, and one must include higher-order terms in the string effective

action. In general, this is a hopelessly difficult problem. However, in the case

at hand, it turns out that the relevant higher-order terms can be computed.

In order to compute these corrections, it is more convenient to work with

the type IIA string theory compactified on K3×T 2 instead of the heterotic

string on T 6. According to a duality discussed in Chapter 9, this is an

equivalent theory. In this description the machinery of special geometry is

applicable. The quantum gravity corrections are then encoded in corrections

to the prepotential. No closed expression for these corrections is known in

general, but luckily in this case there is N = 4 supersymmetry. When

there is this much supersymmetry, a nonrenormalization theorem implies

that only the first correction to the prepotential is nonvanishing, and this
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is enough to reproduce the microscopic entropy discussed in the previous

section. A key ingredient in the analysis is the attractor mechanism.

Type IIA superstring theory on K3 × T 2 has N = 4 supersymmetry in

four dimensions, but the attractor mechanism analysis is carried out most

conveniently using the N = 2 complex special geometry formalism. It is

still applicable when there are additional supersymmetries. When one goes

beyond the supergravity approximation and includes higher-genus contribu-

tions to the effective action, the holomorphic prepotential F (X I) generalizes

to a function

F (XI ,W 2) =
∞∑

h=0

Fh(XI)W 2h, (11.172)

where h denotes the genus and W is a chiral superfield that appears in the

description of theN = 2 supergravity multiplet.23 The first component ofW

is the anti-self-dual part of the graviphoton field strength. The graviphoton

is the U(1) gauge field contained in the N = 2 supergravity multiplet. The

prepotential satisfies the homogeneity equation

XI∂IF (XI ,W 2) +W∂WF (XI ,W 2) = 2F (XI ,W 2), (11.173)

which generalizes the formula presented in Chapter 9. Topological string

theory techniques, which are not described in this book, enable one to com-

pute the coefficients of terms in the effective action of the form
∫
d4xd4θW 2hFh(XI), (11.174)

which is exactly what is required.

When terms of higher-order than the Einstein–Hilbert term contribute to

the action in a significant way, the BH entropy formula is no longer correct.

The appropriate generalization has been worked out by Wald. Wald’s for-

mula (see Problem 11.15) is applied to the R2 corrected action in the present

case.

The attractor equations that determine the moduli in terms of the charges,

and make the central charge extremal, are24

pI = Re (CXI)

qI = Re (CFI),

(11.175)

23 Since we do not wish to describe this formalism, as well as other issues, the argument presented
here is sketchy. The reader is referred to hep-th/0507014 for further details.

24 The coordinates XI , FI in this section and those in section 11.5 differ by a rescaling of the
holomorphic three-form Ω by a factor 2iZ/C, where C is an arbitrary field introduced here for
bookkeeping purposes.
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where pI denote magnetic charges and qI denote electric charges as before.

Moreover, in the conventions that are usually used, the graviphoton field

strength at the horizon takes the value

C2W 2 = 256. (11.176)

After taking the corrections into account, it can be shown that the black-hole

entropy is

S =
πi

2

(
qICX

I − pICF I
)

+
π

2
Im
(
C3∂CF

)
. (11.177)

The first term in this equation agrees with the attractor value S = π|Z?|2
(for G4 = 1) derived in the previous section when one takes account the

rescaling mentioned in the footnote. The second term is a string theory

correction.

The first equation in (11.175) is solved by writing

CXI = pI +
i

π
φI . (11.178)

In order to solve the second equation, we define

F(φ, p) = −π ImF (pI +
i

π
φI , 256). (11.179)

Using this definition,

qI =
1

2

(
CFI + CF I

)
= − ∂

∂φI
F(φ, p), (11.180)

where we have used

∂

∂φI
=

i

πC

∂

∂XI
− i

πC

∂

∂X
I
. (11.181)

The homogeneity relation for the prepotential then implies

C∂CF

(
XI ,

256

C2

)
= XI ∂

∂XI
F − 2F. (11.182)

As a result, the corrected entropy can be written in the form

S(p, q) = F(φ, p)− φI ∂

∂φI
F(φ, p). (11.183)

In other words, the entropy of the black hole is the Legendre transform of

F with respect to φI . So it is more convenient to specify the φI , which play

the role of chemical potentials, rather than the electric charges qI .
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For the reasons just described, it is natural to consider a mixed ensemble

with the partition function

Z(φI , pI) = eF(φI ,pI) =
∑

qI

Ω(qI , p
I)e−φ

IqI , (11.184)

which is microcanonical with respect to the magnetic charges pI and canoni-

cal with respect to the electric charges qI . Moreover, Ω(qI , p
I) are the black-

hole degeneracies, and log Ω is the microcanonical entropy. The black-hole

entropy is then obtained according to

S(q, p) = log Ω(q, p). (11.185)

The inverse transform is (formally)

Ω(qI , p
I) =

∫
eF(φI ,pI)+φIqI

∏
dφI , (11.186)

which, in principle, allows one to obtain the microscopic black-hole degen-

eracies by using amplitudes computed by topological string theory.

Heterotic compactification on T 6

In the special case of the heterotic string on T 6, one can use these results by

going to the S-dual description in terms of the type IIA theory on K3×T 2.

In this description the Kaluza–Klein modes and winding modes map to D4-

branes wrapped on the K3 and D0-branes. The D0-branes are electrically

charged with respect to one gauge field and the D4-branes are magnetically

charged with respect to another one. Thus, only two charges, q0 and p1 say,

are nonzero.

The prepotential is particularly simple in this case. Since this theory

has an N = 4 supersymmetry, the only nonvanishing contributions to the

prepotential are F0 and F1. For F0 one takes the tree-level amplitude given

by

F0 = −1

2
CabX

aXb

(
X1

X0

)
, a, b = 2, . . . , 23 (11.187)

where Cab is the intersection matrix of two-cycles on K3, and

τ = τ1 + iτ2 = X1/X0 (11.188)

is the Kähler modulus of the torus.

The only additional contribution is F1. Schematically, this term can be

obtained by taking the ten-dimensional interaction
∫
B ∧ Y8 and compacti-

fying on K3×T 2. In the type IIA description there is an SL(2,
�

) T-duality

symmetry associated with the T 2 factor, which corresponds to an SL(2,
�

)
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S-duality symmetry of the dual heterotic string theory in four dimensions.

The modular parameter of this symmetry is τ , and it transforms nonlinearly

under SL(2,
�

) transformations in the usual way. Its real part, τ1, which is

an axion-like field, arises from a duality transformation of the two-form B

in four dimensions. Accordingly, the ten-dimensional interaction gives rise

to a four-dimensional term of the form

1

8π

∫
τ1 (trR ∧R− trF ∧ F ) . (11.189)

The normalization is fixed by the requirement that this should be well de-

fined up to a multiple of 2π when τ1 is shifted by an integer, since such

shifts are part of the SL(2,
�

) group. To get the rest of the group working,

specifically the transformation τ → −1/τ , it is necessary to add higher-order

terms by the replacement

τ =
1

2πi
log q → 24

2πi
log η(τ) =

1

2πi
log ∆(q). (11.190)

In the heterotic viewpoint, the corrections given by this substitution have the

interpretation as instanton contributions due to Euclideanized NS5-branes

wrapping the six-torus.

It follows that the S-duality invariant and supersymmetric completion of

the trR ∧R term is25

1

16π2
Im

∫
log ∆(q)tr [(R− iR?) ∧ (R− iR?)] . (11.191)

The factor involving the curvatures is part of
∫
d4θW 2, and its coefficient

determines F1 to be

F1 =
i

128π
log ∆(q). (11.192)

This shows that F1 is independent of the K3 moduli. Moreover, Fh = 0

for h > 1. As a result, one finds that the prepotential for this case takes a

particularly simple form, namely

F (X,W 2) = −1

2
CabX

aXb

(
X1

X0

)
− W 2

128πi
log ∆(q). (11.193)

Using these formulas one can solve the attractor equations and the Legendre

transformation obtaining

φ0 = −2π

√
p1

q0
. (11.194)

25 In terms of two-forms, R∗ is defined by a duality transformation of the Lorentz indices
(R∗)mn = 1

2
εmnpqRpq .
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One then reproduces the desired entropy formula

S ∼ log
(

16Î13(4π
√
p1q0)

)
. (11.195)

The analysis described above was restricted to supersymmetric black holes.

However, the analysis can be extended to the entropy of black holes that

are extremal, but not necessarily supersymmetric. Specifically, the entropy

given by Wald’s formula is given by extremizing an entropy function with

respect to moduli fields as well as electric fields at the horizon. This im-

plies that the attractor mechanism is very general: if the entropy function

depends on a specific modulus, that modulus is fixed at the horizon. If it

does not depend on a modulus, the entropy does not depend on it either.

HOMEWORK PROBLEMS

PROBLEM 11.1

Consider motion of a massive particle in an arbitrary D = 4 space-time.

The Newtonian limit can be obtained when the curvature of the space-time

is small and the velocity is small v � 1. Expand the space-time metric

about flat Minkowski space, gµν = ηµν + g̃µν with |g̃µν | � 1, to show that

the Newtonian potential Φ is related to the metric by Φ = −g̃tt/2.

PROBLEM 11.2

Verify that the metric in Eq. (11.9) has a vanishing Ricci tensor, so that D-

dimensional Schwarzschild black hole is a solution to Einstein’s equations.

PROBLEM 11.3

Derive Eq. (11.11).

PROBLEM 11.4

Re-express the metric in Eq. (11.9) in a higher-dimensional generalization of

Kruskal–Szekeres coordinates and verify that there is no singularity at the

horizon.

PROBLEM 11.5

Calculate the temperature of the nonextremal black hole (11.60). What

happens in the limit r0 → 0?
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PROBLEM 11.6

By similar reasoning to Exercise 11.6, show that the entropy of the three-

charge extremal D = 5 black hole is given correctly by M-theory on T 6 =

T 2 × T 2 × T 2 with Q1 M2-branes wrapping the first T 2, Q2 M2-branes

wrapping the second T 2 and Q3 M2-branes wrapping the third T 2.

PROBLEM 11.7

Verify that Eq. (11.90) follows from Eq. (11.88).

PROBLEM 11.8

Deduce Eq. (11.119) by projecting both sides of Eq. (11.120) on e−iα+K/2DaΩ

and using reasoning similar to that in Exercise 11.12. Warning: this is a

difficult problem.

PROBLEM 11.9

Show that the Kähler potential in Eq. (11.110) can be recast in the form

K = − log[2 Im(X
I
FI)].

What form does this equation take when re-expressed in terms of tα =

Xα/X0 and F̃ (tα) = (X0)−2F (XI)?

PROBLEM 11.10

Show that the five-dimensional three-charge black hole with rotation dis-

cussed in Section 11.3 solves Eqs (11.144) to (11.154).

PROBLEM 11.11

Show that the horizon of the black-ring solution described by Eqs (11.148)

to (11.154) has the topology S1 × S2. What is the area of the horizon and

what is the entropy of the corresponding black hole?

PROBLEM 11.12

The Dedekind η function can be represented in the form

η(τ) = q1/24
∞∏

n=1

(1− qn) =
∞∑

n=−∞
(−1)nq

3
2

(n−1/6)2
.

Use the Poisson resummation formula and this representation of the η func-

tion to verify the modular transformation (11.165).
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PROBLEM 11.13

Verify the result for the partition function (11.162).

PROBLEM 11.14

Derive Eq. (11.194).

PROBLEM 11.15

Wald’s formula determines the entropy of a D = 4 black hole when the effec-

tive action contains terms of higher order in the curvature tensor. Denoting

the effective Lagrangian density by L, Wald’s formula expresses the entropy

as an integral over the horizon of the black hole

S = 2π

∫

S2

εµνερλ
∂L

∂Rµνρλ
d2Ω.

Verify that Wald’s formula gives the usual BH entropy formula when only

the Einstein–Hilbert term is present.

PROBLEM 11.16

Perform microstate counting to obtain the entropy of the nonextremal three-

charge black hole given in Eq. (11.69).

PROBLEM 11.17

Perform microstate counting to obtain the entropy of the D = 5 rotating

black hole given in Eq. (11.76). Also, derive the entropy formula given in

Eq. (11.84).
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Gauge theory/string theory dualities

Many remarkable dualities relating string theories and M-theory have been

described in previous chapters. However, this is far from the whole story.

There is an entirely new class of dualities that relates conventional (non-

gravitational) quantum field theories to string theories and M-theory.

There are three main areas in which such a gauge theory/string theory

duality emerged around the mid to late 1990 s that are described in this

chapter:

• Matrix theory

• Anti-de Sitter/conformal field theory (AdS/CFT) correspondence

• Geometric transitions

Historically, string theory was introduced in the 1960 s to describe hadrons

(particles made of quarks and gluons that experience strong interactions).

Strings would bind quarks and anti-quarks together to build a meson, as

depicted in Fig. 12.1 or three quarks to make a baryon. As this approach was

developed, it gradually became clear that critical string theory requires the

presence of a spin 2 particle in the string’s spectrum. This ruled out critical

string theory as a theory of hadrons, but it led to string theory becoming

a candidate for a quantum theory of gravity. Also, QCD emerged as the

theory of the strong interaction. The idea that there should be some other

string theory that gives a dual description of QCD was still widely held,

but it was unclear how to construct it. Given this history, the discovery

of the dualities described in this chapter is quite surprising. String theory

and M-theory were believed to be fundamentally different from theories

based on local fields, but here are precise equivalences between them, at

least for certain background geometries. In fact, it seems possible that

every nonabelian gauge theory has a dual description as a quantum gravity

theory. To the extent that this is true, it answers the question whether

610
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quantum mechanics breaks down when gravity is taken into account with

a resounding no, because the dual field theories are quantum theories with

unitary evolution.

q q

Fig. 12.1. A meson can be viewed as a quark and an antiquark held together by a
string.

The methods introduced in this chapter can be used to study the infrared

limits of various quantum field theories. Realistic models of QCD, for exam-

ple, should be able to explain confinement and chiral-symmetry breaking.

These properties are not present in models such as N = 4 super Yang–Mills

theory due to the large amount of unbroken supersymmetry. There is a vari-

ety of ways to break these symmetries so as to get richer models, in both the

AdS/CFT and geometric transition approaches. In this setting, phenomena

such as confinement and chiral-symmetry breaking can be understood.

Matrix theory

With the discovery of the string dualities described in Chapter 8, it became

a challenge to understand M-theory beyond the leading D = 11 supergrav-

ity approximation. Unlike ten-dimensional superstring theories, there is no

massless dilaton, and therefore there is no dimensionless coupling constant

on which to base a perturbation expansion. In short, 11-dimensional su-

pergravity is not renormalizable. Of course, ten-dimensional supergravity

theories are also not renormalizable, but superstring theory allows us to

do better. So one of the most fundamental goals of modern string the-

ory research is to understand better what M-theory is. An early success

was a quantum description of M-theory in a flat 11-dimensional space-time

background, called Matrix theory. This theory is discussed in Section 12.2.

Its fundamental degrees of freedom are D0-branes instead of strings. The

generalization to toroidal space-time backgrounds is also described. Matrix

theory is formulated in a noncovariant way, and it is difficult to use for ex-

plicit computations, so the quest for a simpler formulation of Matrix theory

or a variant of it is an important goal of current string theory research.

Nevertheless, the theory is correct, and it has passed some rather nontrivial

tests that are described in Section 12.2.
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AdS/CFT duality

By considering collections of coincident M-branes or D-branes, one finds a

space-time geometry that has the features discussed in Chapter 10. The

branes are sources of flux and curvature, and a warped geometry results. In

certain limits the gauge theory on the world-volume of the branes describes

precisely the same physics as string theory or M-theory in the warped ge-

ometry created by the branes. In this way one is led to a host of remarkable

gauge theory/string theory dualities.

In their most straightforward realization, AdS/CFT dualities relate type

IIB superstring theory or M-theory in space-time geometries that are asymp-

totically anti-de Sitter (AdS) times a compact space to conformally invariant

field theories.1 Anti-de Sitter space is a maximally symmetric space-time

with a negative cosmological constant. Even though it is spatially infinite in

extent, one can define a boundary at infinity. For reasons to be explained,

the space-time manifold of the conformal field theory (CFT) is associated

with this boundary of the AdS space. Therefore, these are holographic du-

alities. The name is meant to reflect the similarity to ordinary holography,

which records three-dimensional images on two-dimensional emulsions.

The conjectured AdS/CFT correspondences are dualities in the usual

sense: when one description is weakly coupled, the dual description is

strongly coupled. Thus, assuming that the conjecture is correct, it allows the

use of weak-coupling perturbative methods in one theory to learn nontrivial

facts about the strongly coupled dual theory. Just as Matrix theory can be

regarded as defining quantum M-theory in certain space-time backgrounds,

a possible point of view is that the AdS/CFT dualities serve to complete

the quantum definitions of string theories and M-theory for another class

of space-time backgrounds. Ideally, one would like to have a background-

independent definition of these quantum theories, but that does not exist

yet. Even so, what has been achieved is really quite remarkable.

The AdS/CFT conjecture emerged from considering the space-time ge-

ometry in the vicinity of a large number (N) of coincident p-branes. The

three basic examples of AdS/CFT duality, which have maximal supersym-

metry (32 supercharges), correspond to taking the p-branes to be either

M2-branes, D3-branes, or M5-branes. The corresponding world-volume the-

ories (in three, four, or six dimensions) have superconformal symmetry, and

therefore they are superconformal field theories (SCFT). In each case the

dual M-theory or string-theory geometry is the product of an anti-de Sitter

space-time and a sphere:

1 The conformal group in D dimensions was defined in Chapter 3.
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• SCFT on N M2-branes ↔ M-theory on AdS4 × S7,

• SCFT on N M5-branes ↔ M-theory on AdS7 × S4,

• SCFT on N D3-branes ↔ type IIB on AdS5 × S5.

The background in each case has nonvanishing antisymmetric tensor gauge

fields with N units of flux threading the sphere. This is clearly required by

Gauss’s law, since the sphere surrounds the p-branes, each of which carries

one unit of the appropriate type of charge. Because it is the case that

is best understood, the duality based on coincident D3-branes in type IIB

superstring theory is described in greatest detail.

The AdS/CFT correspondence has various extensions and generalizations.

One natural direction to explore is the possibility of a dS/CFT correspon-

dence. Such a correspondence is much less well understood, however, since

theories in a de Sitter space-time cannot be supersymmetric. dS/CFT dual-

ity relates string theory on a D-dimensional de Sitter space to a Euclidean

conformal field theory on a (D− 1)-dimensional sphere. One of the motiva-

tions for such a conjecture is the observational evidence for a small positive

cosmological constant, which suggests that the Universe is approaching a de

Sitter cosmology in the far future. Such a correspondence might also have

relevance for the very early Universe. Instead of the usual M-branes and D-

branes, the extended objects that are required in this context are Euclidean

objects, called S-branes, which are discussed in Section 12.1.

Geometric transitions and topological strings

Geometric transitions were originally discovered in the context of the type

IIA string theory, but there is a mirror type IIB version of this duality and an

M-theory interpretation of this transition. The basic idea of this approach is

to construct an N = 1 supersymmetric, confining gauge theory by wrapping

D5-branes on topologically nontrivial two-cycles of a Calabi-Yau manifold.

The open string excitations on the D5-branes define a supersymmetric gauge

theory. If moduli are varied so that the two-cycles shrink to zero size, the

theory undergoes a geometric transition to a closed-string sector in which

the D-branes disappear and fluxes emerge. Many quantities of the gauge

theory, in particular the superpotential, can be computed in terms of fluxes

integrated over suitable cycles. This is the subject of Section 12.6.

12.1 Black-brane solutions in string theory and M-theory

In order to discuss the above-mentioned dualities, let us start by introducing

black p-brane solutions, which are higher-dimensional counterparts of four-

dimensional classical black-hole solutions. The relevant equations of motion
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are those that are obtained from the actions describing the low-energy limits

of superstring theory and M-theory, which were discussed in Chapter 8.

Higher-order corrections to these equations are not important in this context.

Black-hole solutions in four dimensions are point-like and (in the absence

of angular momentum) have SO(3) rotational symmetry. There is also an �
symmetry associated with time-translation invariance. In higher dimensions,

D > 4, it is also possible to obtain solutions that describe the geometry

and other fields associated with black p-branes, which are p-dimensional

extended objects surrounded by an event horizon. If the theory is initially

formulated in D = d + 1 dimensions, the presence of an extremal p-brane

breaks the Lorentz symmetry

SO(d, 1)→ SO(d− p)× SO(p, 1). (12.1)

The first factor describes the rotational symmetry transverse to the brane

and the second factor describes the Lorentz symmetry along the brane.

There are also translational symmetries along the brane that enlarge the

Lorentz symmetry to a Poincaré symmetry. Moreover, we are mainly inter-

ested in cases that have Killing spinors and preserve supersymmetries. In

fact, the main focus here is on higher-dimensional analogs of extremal and

near-extremal Reissner–Nordström black holes. In the nonextremal case the

Lorentz symmetry along the brane is broken to a subgroup.

The black M2-brane and M5-brane solutions of 11-dimensional supergrav-

ity are considered first. Then we present the black Dp-brane solutions of the

type II supergravity theories.

Extremal black M-branes

Chapter 8 presented the bosonic part of the 11-dimensional supergravity

action, which is

2κ2
11S =

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

6

∫
A3 ∧ F4 ∧ F4. (12.2)

Varying the metric and the three-form gives the field equations that we wish

to solve. Alternatively, as discussed in previous chapters, one can obtain

supersymmetric solutions by solving the Killing spinor equation

δΨM = ∇Mε+
1

12

(
ΓMF(4) − 3F

(4)
M

)
ε = 0. (12.3)

There are two types of solutions corresponding to the two types of BPS

branes in M-theory, M2-branes and M5-branes, since these are the objects

that are electric and magnetic sources of the four-form flux.
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Extremal black M2-brane

The supersymmetric (or BPS) M2-brane solution of the Killing spinor equa-

tion should have SO(2, 1)× SO(8) symmetry. The metric takes the form2

ds2 = H−2/3dx · dx+H1/3dy · dy, (12.4)

while the four-form flux has the form

F4 = dx0 ∧ dx1 ∧ dx2 ∧ dH−1. (12.5)

Since this has nonzero time components F0ijk, it is an called electric field

strength.3

The symbol dx · dx represents the three-dimensional Minkowski metric

along the brane, while dy · dy represents the Euclidean metric for the eight

dimensions perpendicular to the brane. Denoting by r the radial coordinate

in the transverse space, that is, r = |~y|, it turns out that the Killing spinor

equation is solved if H solves the 8-dimensional Laplace equation.4 Thus,

one of the solutions is

H = 1 +
r6

2

r6
, (12.6)

where

r6
2 = 32π2N2`

6
p (12.7)

and N2 is the number of M2-branes. This describes a source at r = 0, which

is the black M2-brane horizon. The strength of the source is proportional

to the M2-brane charge and hence the number of M2-branes, as is checked

in Exercise 12.1.

This solution describes the fields created by a set of flat coincident M2-

branes in the supergravity approximation. The sources are the charge and

energy density of the M2-branes. It is a straightforward analog of the ex-

tremal Reissner–Nordström black hole described in Chapter 11.

Extremal black M5-brane

The magnetic dual of the preceding solution is the black M5-brane describing

the field configuration sourced by N5 coincident flat M5-branes in 11 dimen-

sions. The BPS M5-brane solution must have SO(5, 1)× SO(5) symmetry.

Therefore, the metric takes the form

ds2 = H−1/3dx · dx+H2/3dy · dy, (12.8)

2 The precise form of this solution is verified in Problem 12.1.
3 F0ijk and Fijkl are called the electric and magnetic components of F4, respectively.
4 This structure is quite common. It also appeared at several points in Chapters 10 and 11.
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where now dx · dx is the six-dimensional Lorentz metric, and dy · dy =

dr2 + r2dΩ2
4 is the five-dimensional Euclidean metric. As before, the powers

of H are chosen such that a supersymmetric solution is obtained if H solves

Laplace’s equation (this time in five dimensions), so that

H = 1 +
r3

5

r3
, (12.9)

where

r3
5 = πN5`

3
p. (12.10)

The four-form flux in this case is magnetic

F4 = ?
(
dx0 ∧ dx1 ∧ . . . ∧ dx5 ∧ dH−1

)
, (12.11)

as expected for the black M5-brane solution.

Near-horizon limits

The extremal M2-brane solution has a horizon at r = 0. Let us write the

perpendicular part of the metric in spherical coordinates

dy · dy = dr2 + r2dΩ2
7. (12.12)

Then as r → 0, the coefficient of dΩ2
7 has a finite limit

r2H1/3 → r2
2. (12.13)

Therefore, r2 is the radius of horizon, which in this case has topology S7× � 2

times a null line. The 11-dimensional near-horizon geometry is

ds2 ∼ (r/r2)4dx · dx+ (r2/r)
2dr2 + r2

2dΩ2
7. (12.14)

The first two terms describe four-dimensional anti-de Sitter space, so alto-

gether the near-horizon geometry of this extremal black M2-brane is AdS4×
S7.5

Anti-de Sitter space in (d+ 1) dimensions

To understand the near-horizon geometry, let us describe (d+1)-dimensional

anti-de Sitter space (AdSd+1) of radius R by the metric

ds2 = R2dx · dx+ dz2

z2
, (12.15)

5 You are asked to construct this solution in Problem 8.2.
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where dx · dx represents the metric of d-dimensional Minkowski space-time.

The first two terms in the near-horizon M2-brane geometry (12.14) are

brought to this form by the change of variables

z =
r3

2

2r2
, (12.16)

which gives R = r2/2. The AdS4 radius is half the S7 radius.

The horizon of the extremal M5-brane solution is again at r = 0, and it

has the topology S4 × � 5 times a null line, where the spherical factor has

radius r5. The near-horizon geometry in this case is

ds2 ∼ (r/r5)dx · dx+ (r5/r)
2dr2 + r2

5dΩ2
4. (12.17)

The change of variables r = 4r3
5/z

2 shows that the first two terms again

describe an anti-de Sitter space with R = 2r5, so the near-horizon geometry

is that of AdS7 × S4. The AdS7 radius is twice the S4 radius.

The AdS4 × S7 and AdS7 × S4 geometries discussed above have been ob-

tained as the near-horizon geometries of a collection of coincident M2-branes

and M5-branes, respectively, embedded in an asymptotically Minkowski

space-time. However, they have a more far-reaching significance than that.

They are exact BPS solutions of M-theory. Not only do they solve the equa-

tions of motion of 11-dimensional supergravity, but they solve the equations

of M-theory including all the (mostly unknown) higher-order corrections to

the low-energy effective action. This result is established by arguing that all

higher-order corrections necessarily give vanishing corrections to the equa-

tions of motion when evaluated in these backgrounds as a consequence of

their high symmetry. The same is true for the AdS5 × S5 solution of the

type IIB theory discussed below.

Extremal black D-branes

The construction of extremal black D-brane solutions can be carried out in

the same way as that of black M-brane solutions. In this case the action

that is required is a type II supergravity action. However, if the goal is to

construct a black Dp-brane, then the only one R–R field, Cp+1 with field

strength Fp+2 = dCp+1, needs to be included in the action. Also, the NS–

NS two-form vanishes, and therefore it can be dropped. Thus, the required

string-frame action, which can be read off from Section 8.1, is

S(p) =
1

2κ2

∫ √−g
[
e−2Φ

(
R+ 4(∂Φ)2

)
− 1

2
|Fp+2|2

]
d10x. (12.18)
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When p is even this is a type IIA action and when p is odd it is a type IIB

action. In the special case p = 3, the constraint F5 = ?F5 has to be imposed

and an extra factor of 1/2 should be inserted in the F5 kinetic term. While

the problem is conceptually the same as the black M-brane problems, and

the solutions are very similar, there is one significant difference. This is the

presence of the dilaton field Φ. The solution has a spatially varying dilaton

field for all values of p except for p = 3.

The extremal black Dp-brane solution has the metric

ds2 = H−1/2
p dx · dx+H1/2

p dy · dy, (12.19)

where the harmonic function Hp is given by

Hp(r) = 1 +
(rp
r

)7−p
. (12.20)

As before, dx · dx is the (p+ 1)-dimensional Lorentz metric along the brane

and dy ·dy = dr2+r2dΩ2
8−p is the Euclidean metric in the 9−p perpendicular

directions. The dilaton is given by

eΦ = gsH
(3−p)/4
p . (12.21)

Problem 12.15 asks you to verify these formulas.

Since Hp → 1 as r → ∞, the dilaton approaches a constant. Thus,

the parameter gs is the string coupling constant at infinity. This formula

displays the important fact that the dilaton is a constant for p = 3 only. If

p < 3, the coupling becomes large for r → 0, which puts the system in a

nonperturbative regime, where the solution is unreliable.

The R–R field strength is

Fp+2 = dH−1
p ∧ dx0 ∧ dx1 ∧ . . . ∧ dxp, (12.22)

which is realized for the R–R potential

C01...p = Hp(r)
−1 − 1. (12.23)

This can be rewritten in the form

Fp+2 = Q ? ω8−p, (12.24)

where Q is the D-brane charge and ωn is the volume form for a unit n-sphere.

This form ensures that ?F integrates over the sphere to give the charge, as

required by Gauss’s law. In the special case of p = 3 this should be replaced

by

F5 = Q(ω5 + ?ω5) (12.25)
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in order to incorporate self-duality. Using the formula G10 = 8π6g2
s `

8
s from

Chapter 8 and

TDp = (2π)−p`−(p+1)
s g−1

s , (12.26)

from Chapter 6, one obtains

(rp/`s)
7−p = (2

√
π)5−p Γ

(
7− p

2

)
gsN. (12.27)

The extremal black D3-brane

In the special case of p = 3 the formulas above give a constant dilaton. In

this case, letting r3 = R, Eq. (12.27) takes the form

R4 = 4πgsNα
′2. (12.28)

Furthermore, the near-horizon limit of the metric takes the form

ds2 ∼ (r/R)2dx · dx+ (R/r)2dr2 +R2dΩ2
5. (12.29)

The change of variables z = R2/r brings this to the form

ds2 ∼ R2dx · dx+ dz2

z2
+R2dΩ2

5. (12.30)

This shows that the near-horizon geometry is AdS5×S5, where both factors

have radius R.

Nonextremal black D-branes

The extremal black D-brane solutions, which describe the geometry and

other fields generated by a set of coincident D-branes, are supersymmetric.

However, the equations of motion following from the action Eq. (12.18) also

have nonsupersymmetric charged solutions, which are called nonextremal

black p-branes (see Problem 12.6). We only consider p < 7 here, since the

other cases are somewhat special and not relevant to the discussion in the

remainder of this chapter.6 For p < 7 the line element is given by

ds2 = −∆+(r)∆−(r)−1/2dt2 + ∆−(r)1/2dxidxi

+∆+(r)−1∆−(r)γdr2 + r2∆−(r)γ+1dΩ2
8−p, (12.31)

6 7-branes have a conical deficit angle at their core, like point particles in D = 3. Their geom-
etry is discussed in Chapter 9 in connection with F-theory. 8-branes are domain walls in ten
dimensions that divide the space-time into disjoint regions and 9-branes are space-time-filling.
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where xi, i = 1, . . . , p, describes the spatial coordinates along the brane,

γ = −1

2
− 5− p

7− p (12.32)

and

∆±(r) = 1−
(r±
r

)7−p
. (12.33)

The dilaton and electric field are given by

eΦ = gs∆−(r)(p−3)/4 (12.34)

and

?Fp+2 = Qω8−p, (12.35)

respectively. Here, ωn is the volume form for the unit n-sphere, so that∫
ωn = Ωn and N = QΩ8−p, the R–R charge of the brane, is an integer.

Nonextremal black D3-branes

The case p = 3 is again special because the brane is self-dual. In this case

one has

F5 = Q(ω5 + ?ω5). (12.36)

Also, when p = 3 it follows from Eqs (12.32) and (12.34) that the dilaton is

constant and γ = −1.

To recover the extremal solutions with r+ = r−, discussed in the previous

section, one should make a change of radial coordinate like in the previous

chapter for extremal Reissner–Nordström black holes. Namely, define r̃ by

r̃7−p = r7−p − r7−p
+ , (12.37)

so that in this new coordinate the horizon is at r̃ = 0.

Mass and charge of the solutions

The solutions given above are two-parameter families of solutions labeled by

r+ and r−. These radii are in turn related to the mass per unit p-volume

T and the charge per unit volume Q, as in the case of Reissner–Nordström

black holes. These solutions have an event horizon at r = r+ and an inner

horizon at r = r−. The mass per unit volume and charge of the black

Dp-brane are related to the radii r± by

T =
Ω8−p
2κ2

10

[
(8− p)r7−p

+ − r7−p
−
]

(12.38)
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and

Q =
(7− p)

2
(r+r−)(7−p)/2, (12.39)

respectively. The charge is determined by the asymptotic behavior of the

gauge field in the usual way. The mass density is determined by the asymp-

totic behavior of the geometry by a standard prescription of general relativ-

ity known as the ADM mass formula.

As in the case of the Reissner–Nordström black hole, the singularity at

r = 0 is shielded by the horizon provided that r+ > 0. In the case of

Dp-branes, the inequality r+ ≥ r− is equivalent to the Bogomolny bound

T ≥ NTDp, (12.40)

where TDp is the tension of a single BPS D-brane, given in Chapter 6. Thus,

extremal black Dp-branes saturate the bound and are supersymmetric.

Gregory–Laflamme instability

Under certain circumstances, nonextremal black p-branes can be unstable to

break up into black branes of lower dimension. This instability is caused by

the different shapes that horizons of black branes can have in string theory.

Accordingly, there are different entropies. Indeed, in four dimensions event

horizons are always spherically symmetric, but in higher dimensions the

event horizons can have different topologies, as discussed in Chapter 11. A

higher-dimensional black brane decays into lower-dimensional branes, if in

the process the entropy increases. This is the basic idea of the Gregory–

Laflamme instability.

Fig. 12.2. A black string breaks into black holes if the entropy becomes larger in
this process.

Let us illustrate the idea with the example illustrated in Fig. 12.2. Imagine

that one considers an uncharged five-dimensional black string, which is given

by the product of a four-dimensional Schwarzschild solution times the real

line. Imagine wrapping this string on a circle of radius R. Denoting the
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Schwarzschild radius by r1, the mass is proportional to r1R and the entropy

is S1 ∼ r2
1R. Now consider a black hole that is localized on the circle. This

can be constructed by starting with a periodic array with spacing 2πR on

the covering space. Denoting the radius of this black hole by r0, its mass

is proportional to r2
0 and the entropy is S0 ∼ r3

0. Now let us equate the

masses. We then obtain the following relation for the entropies

S1

S0
= k

r0

R
, (12.41)

where k is a numerical constant that is not relevant for the present discus-

sion. Thus, holding the mass fixed, S1 > S0 for R < Rc and S1 < S0 for

R > Rc, where Rc is the critical radius at which the entropies are equal.

Intuitively, the lower-entropy configuration is unstable and decays into

the higher-entropy configuration. In other words, for large enough radius,

the black string decays into an array of black holes. More generally, a long

enough segment of black string must break. This is somewhat like a QCD

string, which can break if a quark–antiquark pair is formed at the endpoints.

The existence of this instability has been confirmed by studying the world-

volume theory of the black string and showing that it develops a tachyonic

mode for R > Rc.

S-branes

The black-brane solutions that have been described so far are static solutions

of the low-energy effective action of string theory. However, since space and

time appear on an equal footing in relativity, one should also be able to

construct time-dependent solutions. This is the case, and there are solutions

called S-branes that are quite similar to Dp-branes. They satisfy Dirichlet

boundary conditions, but now in the time direction. Like conventional Dp-

branes, they have a perturbative interpretation as hyperplanes on which

strings can end, and they can be obtained as solutions of the equations of

motion.

S-branes in field theory

The simplest example of an S-brane can be found in a four-dimensional field

theory with one scalar field φ and the potential

V (φ) = (φ2 − a2)2, (12.42)

where φ is real. There are two classical minima located at

φ = φ± = ±a. (12.43)
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A time-dependent configuration is constructed by choosing initial conditions

φ(~x, 0) = 0 and φ̇(~x, 0) = v. (12.44)

If v is chosen to be positive, then after a sufficient amount of time, that is,

for t → +∞, the scalar approaches the φ+ minimum. The time-reversed

process would start at φ = φ− for t = −∞ and then evolve to φ(~x, 0) = 0.

Altogether, for the desired solution, φ → ±a for t → ±∞. This solution is

called a space-like brane, or S-brane, to contrast it with a D-brane which

would take φ→ ±a for x→ ±∞.

S-branes couple to tensor fields, pretty much as D-branes do. For example,

an S0-brane, which is defined to have one spatial dimension, couples in

four dimensions to an electromagnetic field. The corresponding Maxwell

equations are

dF = 0 and d†F = dzδ(t)δ(x)δ(y). (12.45)

This corresponds to an S0-brane extended in the z-direction. Note the δ(t)

on the right-hand side of the second equation. This describes the fact that

S-branes are localized in time and underscores the difference from D-branes.

The solution of Maxwell equations in this case is

F = Re

(
dz ∧ d 1√

t2 − x2 − y2 − iε

)
. (12.46)

S-branes in string theory

There are several ways of describing S-branes in string theory. In pertur-

bation theory they can be represented as branes with Dirichlet boundary

conditions in the time direction. They can also be obtained as Euclidean

analogs of the black-brane solutions. The simplest example of such a con-

struction is an S0-brane solution in four dimensions, which can be obtained

from the Schwarzschild solution by analytic continuation. The SO(3) radial

symmetry of the black-hole solution is replaced by the hyperbolic symmetry

SO(2, 1).

Starting with

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(sin2 θdφ2 + dθ2), (12.47)

and transforming t→ ir, r → it, θ → iθ, M → iP yields

ds2 = −
(

1− 2P

t

)−1

dt2 +

(
1− 2P

t

)
dr2 + t2dΣ2, (12.48)
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where

dΣ2 = sinh2 θdφ2 + dθ2 (12.49)

is the metric of the hyperbolic space in two dimensions. Making a change

of coordinates given by

t = 2P cosh2(η/2), (12.50)

with −∞ < η <∞, the metric takes the form

ds2 = C2(η)
(
−dη2 + dΣ2

)
+D2(η)dr2, (12.51)

with

C(η) = t(η) and D(η) = tanh
(η

2

)
. (12.52)

The S0-brane is localized at the horizon where η = 0. Solutions for Sp-branes

have also been constructed. They provide time-dependent backgrounds,

which could play an interesting role in cosmology. However, they are difficult

to study, since they are not supersymmetric. S-branes play a prominent

role in the dS/CFT correspondence, which is an interesting analog of the

AdS/CFT correspondence discussed in this chapter. Since the Universe has

a positive cosmological constant, it is natural to search for such an analog.

Defining a quantum theory of gravity in dS space is difficult, and it is not

described in this book, but it is a promising direction to explore.

EXERCISES

EXERCISE 12.1

Relate the horizon radius r2 in Eq. (12.6) to the number of M2-branes N2.

SOLUTION

The rule for computing the mass of a black hole given in Chapter 11 needs to

be slightly generalized. The generalization is to ignore the spatial dimensions

along the brane and interpret the result as a tension (mass per unit volume).

In the present case this gives

g00 ∼ −1 +
2

3
(r2/r)

6 = −1 +
16πG11N2TM2

9Ω7r6
.

Here, G11 = 16π7`9p is Newton’s constant in 11 dimensions, Ω7 = π4/3 is
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the volume of a unit seven-sphere,7 and TM2 = (2π)−2`−3
p is the tension of

an M2-brane. Putting these together gives

r6
2 = 32π2N2`

6
p.

2

EXERCISE 12.2

Describe the zero-charge limit of the nonextremal black p-brane solution.

SOLUTION

In the special case of an uncharged black p-brane, which can be achieved

by starting with an equal number of branes and antibranes, r− = 0, so that

∆− = 1. Then the solution collapses to

ds2 = −∆+(r)dt2 + dxidxi + ∆+(r)−1dr2 + r2dΩ2
8−p,

which is the (10− p)-dimensional Schwarzschild metric times p-dimensional

Euclidean space. In this case the dilaton is a constant, the tension of the

brane is proportional to r7−p
+ /G10 and the entropy per unit p-volume is

proportional to r8−p
+ /G10. 2

12.2 Matrix theory

The analysis of brane configurations and their near-horizon geometry leads

to some extremely remarkable duality conjectures. Historically, the first

one of these dualities was Matrix theory,8 so let us begin our discussion of

gauge/gravity dualities with this example.

As discussed in Chapter 8, M-theory is believed to be a consistent quan-

tum theory of gravity in 11 dimensions. Although we do not have a precise

formulation of quantum M-theory, several aspects are well understood:

• There are numerous dualities relating superstring theories to specific com-

pactifications of M-theory.

• At low energies and large distances M-theory reduces to 11-dimensional

supergravity.

Matrix theory constitutes an important step towards understanding quan-

tum M-theory when all 11 dimensions are noncompact, and it has general-

izations that characterize certain compactifications.

7 As explained in Chapter 11, Ωn = 2π(n+1)/2 [Γ((n+ 1)/2)]−1.
8 The originators (Banks, Fischler, Shenker and Susskind) called it M(atrix) theory, since it

relates to M-theory. We choose to omit the parentheses.
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Matrix theory in the infinite-momentum frame

The Matrix-theory conjecture states that M-theory in the infinite-momentum

frame is described by a specific supersymmetric matrix model. The only dy-

namical degrees of freedom (or partons) are identified as the D0-branes of

type IIA superstring theory, so that the calculation of any physical quantity

in M-theory can be reduced to a calculation in the Matrix-model quantum

mechanics. Recall that type IIA superstring theory corresponds to M-theory

compactified on a circle of radius R, and the D0-brane corresponds to the

first Kaluza–Klein excitation of the massless fields (or supergraviton) of M-

theory on this circle. A general Kaluza–Klein excitation is a point-like object

whose 11-component of momentum is

p11 =
N

R
, (12.53)

where N is an integer. From the ten-dimensional perspective, this is in-

terpreted as a threshold bound state of N D0-branes. The term infinite-

momentum frame refers to the limit in which p11 and N go to infinity.

Chapter 6 described the world-volume theories of various D-branes and

collections of D-branes. In particular, the action describing a system of

N D0-branes is ten-dimensional super Yang–Mills theory dimensionally re-

duced to 0+1 dimensions supplemented by higher-order corrections (of the

Born–Infeld type). The claim, however, is that these higher-order terms do

not contribute in the infinite-momentum frame, and therefore the bosonic

part of the Lagrangian is given precisely by

L =
1

2R
Tr

(
−(DτX

i)2 +
1

2
[Xi,Xj ]2

)
, (12.54)

where i = 1, . . . , 9 labels the transverse directions. This quantum mechanical

system has a U(N) gauge symmetry.

Matrix theory and DLCQ

In the original formulation of the conjecture, which relates M-theory to

Matrix theory, an N → ∞ limit was required. Later, a somewhat stronger

version of the conjecture was formulated for finite N . This version states

that the discrete light-cone quantization (DLCQ) of M-theory is exactly

described by the U(N) Matrix theory in Eq. (12.54) supplemented by the

usual fermion terms. In the DLCQ approach, the circle is chosen to be in

a null direction rather than space-like. For a null circle, the radius R has

no invariant meaning, but the integer N does. The DLCQ predictions agree

with the infinite-momentum frame ones in the limit N →∞.
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To test this conjecture, some quantities can be computed in both M-

theory and Matrix theory and can then be compared for finite N . This can

be done by computing the effective action for the scattering of two (groups

of) D0-branes. This conjecture has been verified up to two loops in the gauge

theory, beyond which calculations in Matrix theory become very difficult,

though they are well defined.

Super Yang–Mills action in 0 + 1 dimensions

To compute the effective action for two D0-branes, the background-field

method is used. This is a technique that allows a gauge choice to be made

and quantum computations to be carried out without sacrificing manifest

gauge invariance. The complete gauge-theory action is obtained from ten-

dimensional super Yang–Mills theory dimensionally reduced to 0 + 1 dimen-

sions.

The Matrix-theory action

After covariant gauge fixing, the Lagrangian contains a U(2) gauge field Aµ,

a gauge-fixing term and ghost fields. The complete Lagrangian is

L = Tr

(
1

2g
F 2
µν − iψ̄Dψ +

1

g
(D̄µAµ)2

)
+ LG , (12.55)

where Fµν is a U(2) field strength with µ, ν = 0, . . . , 9, ψ is a real 16-

component spinor in the adjoint of U(2) and LG is the ghost Lagrangian,

whose explicit form is given in Problem 12.14. For the gauge-fixing term, it

is convenient to use the background-field gauge condition

D̄µAµ = ∂µAµ + [Bµ, Aµ], (12.56)

where Bµ is the background field. After dimensional reduction to 0+1 di-

mensions, the field strength and the derivative of the fermionic fields can be

expressed in terms of the matrices Xi as

F0i = ∂τXi + [A,Xi],

Fij = [Xi,Xj],

Dτψ = ∂τψ + [A,ψ], (12.57)

Diψ = [Xi, ψ].

Here, A denotes the zero component of the gauge field in Eq. (12.55). Setting

g = 2R in Eq. (12.55), we recover Eq. (12.54).
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This action can be expanded around a classical background Bi by setting

Xi = Bi +
√
gY i, (12.58)

where Y i represents the quantum degrees of freedom. For example, to de-

scribe the motion of two D0-branes on straight lines, one chooses the back-

ground fields

B1 = i
vτ

2
σ3 and B2 = i

b

2
σ3. (12.59)

Here, v is the relative velocity of the two D0-branes, b is the impact param-

eter and σ3 is a Pauli matrix. Furthermore, Bi = 0 for i = 0 and i = 3, . . . 9.

A convenient form of the action is written in terms of U(2) generators by

decomposing the fields in terms of Pauli matrices,

A =
i

2
(A011 + Aaσ

a) , (12.60)

and similarly for the fields X i and ψ. The zero components of this decom-

position describe the motion of the center of mass and are ignored in the

following. The Lagrangian is now a sum of four terms

L = LY + LA + LG + Lfermi, (12.61)

whose explicit form is given in Problem 12.14.

The field content

Since A and the X i are ten traceless 2 × 2 matrices, they give 30 bosonic

fields. Defining

r2 = b2 + (vτ)2, (12.62)

one finds that the bosonic Lagrangians LY and LA are described in terms of

16 bosons with mass-squared m2
B = r2, two bosons with m2

B = r2 + 2v, two

bosons with m2
B = r2−2v and ten massless bosons. All these fields are real.

The ghost action is described in terms of two complex bosons with m2
G = r2

and one complex massless boson.

Feynman rules for Matrix theory

There are two possible approaches to compute the gauge-invariant back-

ground field effective action. The first one treats the background field ex-

actly, so that this field enters in the propagators and vertices of the theory.

To compute the effective action, one has to sum over all 1PI graphs without

external lines. The second approach treats the background field perturba-

tively, so that it appears as external lines in the one-particle irreducible
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(1PI) graphs of the theory. Here, the first approach is followed, and the

background field is treated exactly.

We can now derive the Feynman rules. The explicit form of the vertices

can be read off from the actions described in Problem 12.14, where cubic and

quartic vertices appear. The concrete form of the propagators can be easily

obtained, since the problem can be mapped onto the problem of finding the

propagators for the one-dimensional harmonic oscillator. By definition, the

propagators of the bosonic fields solve the equation

(−∂2
τ + µ2 + (vτ)2)∆B

(
τ, τ ′|µ2 + (vτ)2

)
= δ(τ − τ ′), (12.63)

where µ2 = b2 or b2± 2v depending on the type of boson that one is consid-

ering. This is nothing but the propagator for a one-dimensional harmonic

oscillator, so that the propagators of all the bosonic fields take the form

∆B
(
τ, τ ′|µ2 + (vτ)2

)

=

∫ ∞

0
dse−µ

2s

√
v

2π sinh 2sv
exp

[
−v

2

(
(τ2 + τ ′2) cosh 2sv − 2ττ ′)

sinh 2sv

)]
.

(12.64)

The propagator of the fermionic fields is the solution to the equation

(−∂τ +mF) ∆F
(
τ, τ ′| mF

)
= δ(τ − τ ′), (12.65)

where mF = vτγ1 + bγ2 is the fermionic mass matrix. Using gamma matrix

algebra, it is verified in Exercise 12.13 that the fermionic propagator can be

expressed in terms of the bosonic propagator by

∆F(τ, τ ′|mF) = (∂τ +mF) ∆B
(
τ, τ ′| r2 − vγ1

)
. (12.66)

This is a Dirac-like operator acting on a bosonic propagator of a particle

with mass r2 − vγ1. Since Eq. (12.64) provides a closed expression for ∆B,

one can use Eq. (12.66) to obtain an exact expression for the fermionic

propagator ∆F . Diagonalizing the mass matrix we find that our theory

contains eight real fermions with mass m2
F = r2 + v and eight real fermions

with m2
F = r2 − v. The third component of ψ is massless. The effective

action can be derived using these Feynman rules. The one-loop effective

action is considered first.

One-loop effective action

The one-loop effective action can be characterized by a potential V (r), which

is related to the phase shift δ in the scattering amplitude of the two D0-
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branes by

δ(b, v) = −
∫
dτ V (b2 + v2τ2). (12.67)

The phase shift is obtained from the determinants of the operators −∂2
τ +M2

that originate from integrating out the massive degrees of freedom at one-

loop. The result for the one-loop determinants is

det4(−∂2
τ + r2 + v) det4(−∂2

τ + r2 − v)

det−1(−∂2
τ + r2 + 2v) det−1(−∂2

τ + r2 − 2v) det−6(−∂2
τ + r2), (12.68)

where the first line is the fermionic contribution and the second line is the

bosonic contribution. In a proper-time representation of the determinants

the phase shift is written as

δ =

∫ ∞

0

ds

s

e−sb
2

sinh sv
(3− 4 cosh sv + cosh 2sv) . (12.69)

The integrand can be expanded for large impact parameter, and one ob-

tains to leading order in inverse powers of r

V (r) =
15

16

v4

r7
. (12.70)

As shown in the next section, this is precisely the result expected for a single

supergraviton exchange in 11 dimensions. Therefore, (0 + 1)-dimensional

Matrix theory seems to know about the propagation of massless modes in

11 dimensions! Of course, one would like to check if this agreement holds

beyond one-loop order, so the two-loop effective action is computed next.

Two-loop effective action

Feynman diagrams that contribute

The two-loop effective action is given by the sum of all diagrams of the form

contained in Fig. 12.3. The propagators for the fluctuations Y and the gauge

field A are indicated by wavy lines, ghost propagators by dashed lines and

the solid lines indicate the fermion propagators. The explicit expression is
∫
dτλ4∆1(τ, τ |m1)∆2(τ, τ |m2) (12.71)

for the diagram involving the quartic vertex λ4, where ∆1 and ∆2 are the

propagators of the corresponding particles with masses m1 and m2, respec-
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(a) (b) (c) (d)

Fig. 12.3. Feynman diagrams that contribute to the two-loop effective action. The
different types of lines represent different fields, as explained in the text.

tively. Similarly,
∫
dτdτ ′λ(1)

3 λ
(2)
3 ∆1(τ, τ ′|m1)∆2(τ, τ ′|m2)∆3(τ, τ ′|m3) (12.72)

for the diagram involving the cubic vertices λ
(1)
3 and λ

(2)
3 .

Massive states that contribute

Let us see what masses are involved in these diagrams. Equation (12.71) is

well behaved when m1 and m2 are both different from zero. If m1 = 0, it

contributes ∫
dp

p2
(12.73)

to the relevant integrals. However, this expression vanishes in dimensional

regularization. Dimensional regularization of ill-defined integrals is defined

by requiring three properties: translation symmetry, dilatation symmetry

and factorization. Invariance under dilatations imposes the condition that

the integral Eq. (12.73) vanishes. Therefore, diagrams containing a quartic

vertex only contribute when they involve two massive particles. A similar

argument for Eq. (12.72) leads to the conclusion that exactly one massless

state is present, as otherwise the corresponding diagram vanishes.

Nonrenormalization theorem for the v4 term

Dimensional analysis of the two-loop effective action gives gL2, which has

an expansion of the form

L2 = α0
1

r2
+ α2

v2

r6
+ α4

v4

r10
+ . . . (12.74)
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Odd powers in v in this series are missing because of time-reversal invariance.

The αi s are numerical coefficients that are determined by computation of the

Feynman diagrams. This is a cumbersome but straightforward calculation.

Only the final results are quoted here. First, the coefficient of the v4/r10

term, which appears at two loops in Matrix theory, turns out to be equal to

zero once all the contributions coming from bosons and fermions are added

up. The vanishing of this numerical coefficient is in agreement with the

nonrenormalization theorem for the v4 term appearing in Matrix theory and

is required in order to have agreement with M-theory, as shown in the next

section. So Matrix theory has passed the first two-loop test: the vanishing

of the v4/r10 term. However, this is only one term in the effective action for

two D0-branes.

Dimensional analysis of the two-loop effective action

By dimensional analysis, described in Exercise 12.4, the allowed terms have

a double expansion in v and r of the following form

gL =

∞∑

m=0

gmLm = c00v
2 +

∞∑

m,n=1

cmng
m v2n+2

r3m+4n
. (12.75)

Specifically,

L0 = c00v
2

L1 = c11
v4

r7
+ c12

v6

r11
+ c13

v8

r15
+ . . .

L2 = c21
v4

r10
+ c22

v6

r14
+ c23

v8

r18
+ . . .

L3 = c31
v4

r13
+ c32

v6

r17
+ c33

v8

r21
+ . . .

(12.76)

The subscript on Ln labels the number of Matrix-theory loops. It has just

been argued that the c12 vanishes. As a test of the conjectured duality, let

us now explore how this result arises from the M-theory point of view.

Comparison with M-theory and more predictions

In this section M-theory amplitudes are computed and compared to the

Matrix theory predictions described above.

Probe and source gravitons

The calculation is set up in such a way that, when two gravitons scatter,

one of the gravitons is taken to be heavy and serves as the source graviton.
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The other graviton is light and is the probe graviton. The way this can make

sense is for the two gravitons to have momenta p− = N1/R and p− = N2/R,

and for N1 to be much larger than N2, so that the first graviton is the source

of the gravitational field. Note that the circle is null, as required for DLCQ.

The source graviton is taken to have vanishing transverse velocity. Its

worldline is x− = xi = 0 and it produces the Aichelburg–Sexl metric

Gµν = ηµν + hµν , (12.77)

where the only nonvanishing component of hµν is

h−− =
2κ2

11p−
7Ω8r7

δ(x−) =
15πN1

RM9
pr

7
δ(x−). (12.78)

Here, κ2
11 = 16π5/M9

p , where Mp is the 11-dimensional Planck mass up to a

convention-dependent numerical factor, and Ω8 is the volume of the eight-

sphere. This metric is obtained from the Schwarzschild metric by taking

the limit of infinite boost in the + direction while the mass is taken to

zero. The latter accounts for the absence of higher-order terms in 1/r or N1

dependence. The source graviton is in a state of definite p− so the average

over the x− ∈ (0, 2πR) direction gives

h−− =
15N1

2R2M9
pr

7
. (12.79)

(a) (b)

Fig. 12.4. Matrix theory Feynman diagrams. (a) illustrates a probe graviton (thin
straight line) interacting with the metric of the source graviton (heavy straight line)
at second order in perturbation theory. (b) illustrates a nonvanishing nonlinear
correction to the metric of the source.
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Action for probe graviton

The action of the probe graviton in this field is now determined. To find it,

it is sufficient to consider the action for a massive scalar, since spin effects

give a more rapid fall off with r.

S = −m
∫
dτ (−Gµν ẋµẋν)1/2 (12.80)

= −m
∫
dτ
(
−2ẋ− − v2 − h−−ẋ−ẋ−

)1/2
,

where the form of the Aichelburg-Sexl metric was used with x+ = τ . A dot

denotes a τ derivative, and v2 = ẋiẋi. This action vanishes if m → 0 with

fixed velocities, but for the process being considered here it is p− that is to

be fixed. We therefore carry out a Legendre transformation on x−:

p− = m
1 + h−−ẋ−

(−2ẋ− − v2 − h−−ẋ−ẋ−)1/2
. (12.81)

The appropriate Lagrangian for xi at fixed p− is (minus) the Routhian,

L′(p−) = −R(p−) = L − p−ẋ−(p−). (12.82)

Equation (12.81) determines ẋ−(p−); it is convenient before solving to take

the limit m→ 0, where it reduces to Gµν ẋ
µẋν = 0. Then

ẋ− =

√
1− h−−v2 − 1

h−−
. (12.83)

In the m→ 0 limit at fixed p− = N2/R the effective Lagrangian becomes

−p−ẋ−(p−) = p−

{
v2

2
+
h−−v4

8
+
h2
−−v

6

16
+ . . .

}

=
N2

2R
v2 +

15

16

N1N2

R3M9
p

v4

r7
+

225

64

N2
1N2

R5M18
p

v6

r14
+ . . . (12.84)

In this formula the explicit dependence on R3Mp has been restored by di-

mensional analysis. The second and third terms correspond to the diagrams

in Fig. 12.4.

What do we see from this expression?

• The v and r dependencies exactly match with the diagonal terms (m = n)

appearing in the previous section, and the N dependence agrees with the

leading large-N behavior NL+1, where L is the number of loops.

• The coefficient of the v4/r7 term agrees with the one-loop Matrix-theory

result.
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• The absence of a two-loop term gv4/r10 is in agreement with the previous

Matrix-theory result. It reflects the existence of a nonrenormalization

theorem for the v4 term.

• There appears a new term with a coefficient 225/64 that should correspond

to a two-loop term in Matrix theory. Can Matrix theory reproduce this

two-loop coefficient? Computing the v6/r14-term in Matrix theory by

extending the calculation of the two-loop v4-term, precise agreement has

been achieved.

Reproducing the N dependence

Next, the N dependence of this result needs to be reconstructed. Recall

that we are considering the scattering of two D0-branes in Matrix theory.

To get the right N1 and N2 dependence, one must consider the scattering of

a group of N1 D0-branes against N2 D0-branes. One can easily reconstruct

the N -dependence of this scattering process. In double line notation, every

graph involving three index loops is of order N 3. Terms proportional to N 3
1

or N3
2 would only involve one block (graviton) and so could not depend on r.

Symmetry under the interchange of N1 and N2 determines that the SU(2)

result is multiplied by

N1N
2
2 +N2

1N2

2
, (12.85)

which agrees with the supergravity result for the terms of interest. Finally,

restoring the dependence on M and R, the two-loop result of Matrix theory

is precisely the result found in the supergravity calculation Eq. (12.84).

This highly nontrivial agreement is a strong test of the Matrix theory

conjecture. As pointed out earlier, calculations become very difficult in the

Matrix-theory picture at higher orders, but there is no reason to anticipate

problems.

Matrix theory for toroidal compactifications

Let us now consider what happens when p of the transverse dimensions in the

previous construction are taken to form a torus T p. Requiring consistency

with some of the dualities discussed in previous chapters provides some

additional tests of the Matrix-theory conjecture.

In Chapter 8 it was argued that, when M-theory is compactified on a T p,

the resulting theory has a nonperturbative U-duality symmetry that is given
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by Ep(
�

). Let us recall the first few cases of this group:

E2(
�

) = SL(2,
�

), E3(
�

) = SL(3,
�

)× SL(2,
�

), E4(
�

) = SL(5,
�

).

(12.86)

It is an interesting test of the Matrix-theory proposal to see whether it

can reproduce these symmetries. First of all, compactification on T p gives

a modular symmetry SL(p,
�

) as a straightforward geometric symmetry.

So this gives the full result for p = 2, but only a subgroup of the desired

symmetries for p > 2. Recall that Chapter 8 attributed the enhancement of

SL(p,
�

) to Ep(
�

) to a nongeometric duality of M-theory. So the question

is whether Matrix theory is smart enough to know about such nongeometric

dualities.

Let us now consider the problem from the Matrix-theory side. To start

with, we have a system of N D0-branes on a geometry containing a torus T p.

It is very convenient in this case to carry out T-duality transformations along

all of the torus directions. That leads to a system in which the compact space

consists of the dual torus T̂ p, which is wrapped by N Dp-branes. The world-

volume theory of these Dp-branes is maximally supersymmetric Yang–Mills

theory on the dual torus assuming that it remains true that higher-dimension

corrections can be dropped in the infinite-momentum frame. Thus, it is a

gauge theory in p+1 dimensions. So the question arises whether the required

symmetry enhancement for p > 2 can be understood in terms of these gauge

theories.

The first nontrivial case is p = 3. This is our old friend N = 4 super

Yang–Mills theory in D = 4, which features prominently in the remainder

of this chapter. In the present setting it is compactified on T 3, which gives a

geometric SL(3,
�

) duality group. However, as was discussed in Chapter 8,

this gauge theory also has a nonperturbative SL(2,
�

) S-duality group. So

the full duality group is SL(3,
�

)× SL(2,
�

) exactly as desired.

Next, let us consider the case p = 4. This leads us to consider super

Yang–Mills theory in 4 + 1 dimensions. One may be tempted to reject this

as nonrenormalizable, but let us proceed anyway. The duality group of

the torus is SL(4,
�

), but the desired group is SL(5,
�

). The clue to what

happens is given by the observation that the Yang–Mills coupling constant

gYM in five dimensions has the dimensions of a length. The claim is that

this gauge theory generates a fifth spatial dimension, which is a circle, and

the size of this circle is controlled by gYM. This is reminiscent of how type

IIA string theory grows an extra dimension at strong coupling.

In fact, we already know that this is true. The five-dimensional gauge the-

ory in question is the world-volume theory of a set of coincident D4-branes
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in the type IIA theory. However, we know that, from the M-theory view-

point, D4-branes are really M5-branes that wrap the extra spatial dimension

that M-theory provides. Thus, the D4-brane system is better viewed as a

set of M5-branes wrapping a T 5. The desired SL(5,
�

) duality group is

then recognized to be the modular group of this torus. This six-dimensional

world-volume theory is believed to be a well-defined quantum field theory.

The reason its discovery was made relatively recently is that it is strongly

coupled in the UV, and therefore it does not have a simple Lagrangian de-

scription.

The situation for p > 4 is even more challenging and has not been worked

out in detail. However, it should be clear already that Matrix theory is

capable of capturing a great deal of subtle physics. In fact, its validity can

be deduced from the gauge theory/string theory dualities considered in the

next section.

EXERCISES

EXERCISE 12.3

Show that the fermionic propagator can be expressed in terms of the bosonic

propagator as indicated in Eq. (12.65).

SOLUTION

Comparing Eqs (12.63), (12.65) and (12.66), we need to show that

(∂τ − vτγ1 − bγ2)(∂τ + vτγ1 + bγ2) = ∂2
τ − r2 + vγ1,

where we have used r2 = b2 +(vτ)2 and mF = vτγ1 +bγ2. This follows from

some simple gamma matrix algebra and the derivative acting on the τ term.

Thus, one obtains the desired relation between the bosonic and fermionic

propagators. 2

EXERCISE 12.4

Show that the only terms in the Matrix theory effective action up to three

loops are the terms appearing in Table (12.76).

SOLUTION

The solution follows from dimensional analysis. Since the action is dimen-
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sionless, it follows that the Lagrangian has dimension [L] = −1. From

the explicit form of the Lagrangian in Eq. (12.54), it then follows that

[R] = [g] = −3, [X i] = −1. Also, [r] = [b] = −1 and [v] = −2. It fol-

lows that gmv2n+2/r3m+4n has dimension −4 as required. Therefore, these

dimensions lead to the expansion appearing in Table (12.76). Dimensional

analysis determines the entire v and r dependence of the effective actions at

each order in the perturbation expansion. Only the numerical coefficients

need to be computed by evaluating Feynman diagrams. 2

12.3 The AdS/CFT correspondence

The basic idea of the AdS/CFT duality and its generalizations is that string

theory or M-theory in the near-horizon geometry of a collection of coinci-

dent D-branes or M-branes is equivalent to the low-energy world-volume

theory of the corresponding branes. This section explains the AdS/CFT

correspondence.

The D3-brane case

The conjecture

The AdS/CFT conjecture (for the case of D3-branes) is that type IIB su-

perstring theory in the AdS5 × S5 background described in Section 12.1 is

dual to N = 4, D = 4 super Yang–Mills theory with gauge group SU(N).

This string theory background corresponds to the ground state of the gauge

theory, and excitations and interactions in one description correspond to

excitations and interactions in the dual description.

D-brane world-volume theories were studied in considerable detail in Chap-

ter 6. In the case of type II superstring theories we learned that the world-

volume theory ofN coincident BPS D-branes is a maximally supersymmetric

U(N) gauge theory. The formulas become complicated when terms that are

higher order in α′ or nontrivial background fields are taken into account.

However, in the absence of background fields and at lowest order in α′, the

result is very simple: the low-energy effective action on the world volume

of N coincident Dp-branes is given by the dimensional reduction of super-

symmetric U(N) gauge theory in ten dimensions to p+ 1 dimensions. This

theory is all that is required for the analysis that follows. The U(1) sub-

group of U(N) decouples as a free theory and does not participate in the
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duality.9 So the gauge group in the duality is really SU(N), not U(N). The

distinction between the two is a subleading effect in the large-N limit.

The coupling constants

The dimensionless effective coupling of super Yang–Mills theory in p + 1

dimensions is scale dependent. At an energy scale E, it is determined by

dimensional analysis to be

g2
eff(E) ∼ g2

YMNE
p−3. (12.87)

This coupling is small, so that perturbation theory applies, for large E (the

UV) for p < 3 and for small E (the IR) for p > 3.

The special case p = 3 corresponds to N = 4 super Yang–Mills theory in

four dimensions, which is known to be a UV finite, conformally invariant field

theory. In that case g2
eff(E) is independent of the scale E and corresponds

to the ’t Hooft coupling constant

λ = g2
YMN. (12.88)

This is the combination that is held constant in the large-N expansion of

the gauge theory discussed below.

The Yang–Mills coupling constant is the same as the open-string coupling

constant, since the gauge fields are massless modes of open strings. Using

the relation between open- and closed-string coupling constants, this gives

the identification

g2
YM = 4πgs. (12.89)

Fortunately, the dilaton in Eq. (12.21) is constant, so there is no ambiguity in

this identification. Indeed, this constancy reflects the fact that the coupling

is energy independent. Combining this with the identity R4 = 4πgsNα
′2,

obtained in Eq. (12.28), gives the relation

R = λ1/4`s. (12.90)

The last equation relates R/`s, which is the radius of both the S5 and the

AdS5 in string units, to the ’t Hooft coupling of the dual gauge theory.

When the field theory is weakly coupled, the dual string theory geometry is

strongly curved, which makes computations difficult. Conversely, when the

string-theory geometry is weakly curved, and a supergravity approximation

is justified, the dual gauge theory is strongly coupled.

9 More precisely, the U(1) lives on the boundary and the SU(N) lives in the bulk, which is why
the U(1) is not relevant.
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Rank of the gauge group

Another important fact about the duality is that the rank of the gauge group

corresponds to the five-form flux through the five-sphere
∫

S5

F5 = N. (12.91)

To understand this, recall that the extremal D3-brane construction started

with N coincident D3-branes, which carry a total of N units of D3-brane

charge. This charge is measured by enclosing the D3-branes with a five-

sphere and computing the five-form flux. Thus, the parameter N , which

labels the gauge-theory group, corresponds to the five-form flux in the dual

type IIB description.

Symmetry matching

If the proposed correspondence is true, it is necessary that the two dual the-

ories should have the same symmetry. This requirement is relatively easy to

test, because the symmetry in each case is independent of the parameters λ

and N . So it doesn’t matter which theory is in a strongly coupled regime. In

each case the complete symmetry is given by the superalgebra PSU(2, 2|4),

as we explain below.10 This supergroup group has a bosonic subgroup that

is SU(2, 2) × SU(4). In addition, it contains 32 fermionic generators that

transform as (4,4) + (4̄, 4̄) under this group. This supergroup is described

in more detail in Exercise 12.8.

Let us discuss the symmetry of the string theory solution first. The AdS5

geometry has the isometry SO(4, 2) and the S5 geometry has the isometry

SO(6). The theory has fermions that belong to spinor representations, so

it is better to refer to the covering groups which are SU(2, 2) and SU(4),

respectively. Thus the bosonic subgroup of the supergroup is realized by

the geometry. This background realizes all 32 supersymmetries of the type

IIB superstring theory as vacuum symmetries. In other words, it has just

as much supersymmetry as the ten-dimensional Minkowski vacuum, which

corresponds to R → ∞. The conserved supercharges transform as (4,4) +

(4̄, 4̄) under SU(2, 2) × SU(4) and combine with the space-time isometries

to give PSU(2, 2|4).

Now let us turn to the symmetry of the dual N = 4 super Yang–Mills

theory. First of all, as we have already asserted, this is a conformally in-

variant field theory. This has been proved to be an exact property of the

10 A superalgebra of the form SU(m|n) has a bosonic subalgebra SU(m)× SU(n)×U(1). When
m = n the U(1) factor decouples from the rest of the algebra. The letter P indicates that this
U(1) factor is absent.
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quantum theory, not just a feature of the classical field theory. This is a

very special feature, which implies in particular, that there is an exact can-

cellation of ultraviolet divergences to all orders in perturbation theory, so

that no renormalization scale needs to be introduced to define the theory.

One is still free, however, to define the theory at a given energy scale by

integrating out all degrees of freedom above that scale. However, since the

theory is conformal, the effective coupling defined in this way is independent

of the energy scale.

The SU(4) symmetry arises as the global SU(4) R symmetry of the dual

N = 4 super Yang–Mills theory. By definition, an R symmetry is a sym-

metry that does not commute with the supersymmetries. In particular, the

four fermions of one chirality transform as a 4 and those of the opposite

chirality transform as a 4̄, and the six scalar fields form a 6. The linearly

realized supersymmetries account for 16 fermionic symmetries. However,

there are 16 additional nonlinearly realized fermionic symmetries. One way

of discovering these is to compute the commutators of the linearly realized

supersymmetries with the conformal transformations. Putting all this to-

gether, one is led to the desired superconformal algebra PSU(2, 2|4).

Large-N limit

The large-N limit, at fixed λ, is of particular interest. Large-N gauge-theory

amplitudes have a convenient topological expansion. Specifically, using a

double-line notation for adjoint U(N) fields, and filling in the space between

the lines so that propagators look like ribbons, the Feynman diagrams can

be viewed as two-dimensional surfaces and assigned an Euler characteristic

χ. As described in Exercise 12.7, the contribution of diagrams of genus g (or

Euler characteristic χ = 2−2g) to field-theory amplitudes scales for large N

and fixed λ as Nχ. The proof uses Euler’s theorem that a two-dimensional

simplicial complex with V vertices, E edges, and F faces has

χ = V − E + F. (12.92)

Since gs corresponds to λ/N , the 1/N expansion at fixed λ corresponds to

the loop expansion of the dual string description.

Planar diagrams

The leading terms in the large-N fixed-λ expansion of the gauge theory

define the planar (or genus 0) approximation. It is conjectured that N = 4

super Yang–Mills theory is integrable in this approximation. There is quite

a bit of circumstantial evidence for this conjecture, including the existence

of an infinite number of conserved charges, but it has not yet been proved.
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There is hope that exact analytic computations of correlation functions in

the planar approximation may be possible some day. In any case, in the

planar approximation they can be computed perturbatively in λ. There

is also hope of carrying out exact tree-level calculations of the type IIB

superstring theory in the AdS5 × S5 background. According to the duality,

this would predict the complete planar approximation to the gauge theory.

Unfortunately, this computation also is not yet tractable with currently

known methods. So the tests of the duality that have been carried out to

date are more limited than this, but still very impressive.

Stringy corrections

The preceding discussion shows that, in the string-theory description, stringy

effects are suppressed for λ � 1 (so that the radius R is much larger than

the string length scale). Similarly, quantum corrections (given by string

loops) are small when N � 1, provided that the limit is carried out at fixed

λ. Geometrically, this means that R is much larger than the Planck length.

To understand this, recall that Chapter 8 showed that the ten-dimensional

Planck length is given by

`p = g1/4
s `s. (12.93)

Combining this with λ = 4πgsN gives

N =
1

4π
(R/`p)4. (12.94)

The dictionary

Now that we have described the basic features of the D3-brane correspon-

dence, let us summarize the conclusions for this case:11

• The integer N gives the rank of the gauge group, which corresponds to

the flux of the five-form R–R gauge field threading the five-sphere.

• The Yang–Mills coupling constant gYM is related to the string coupling

constant by g2
YM = 4πgs. The fact that gYM does not depend on the

energy scale corresponds to the fact the dilaton is a constant for the black

D3-brane solution.

• The supergroup PSU(2, 2|4) is the isometry group of the superstring the-

ory background, and it is also the superconformal symmetry group of the

N = 4 gauge theory. All of the generators correspond to Killing vectors

and Killing spinors of the space-time geometry. In the gauge theory, some

11 All of this can be generalized to other Dp-branes, but this is the simplest, most symmetrical,
example for the reasons that have been explained.
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of the operators generate the super-Poincaré subgroup, and the rest gen-

erate other conformal transformations. In particular, 16 of the fermionic

operators generate linearly realized Poincaré supersymmetries and the

other 16 generate superconformal symmetries.

• The common radius R of the AdS5 and S5 geometries is related to the ‘t

Hooft parameter λ = g2
YMN of the gauge theory by R = λ1/4`s.

Duality for M-branes

There are similar AdS/CFT conjectures for the two M-theory cases for which

extremal black-brane solutions were constructed in Section 12.1. However,

they have been explored in much less detail than the D3-brane case. There

are at least three reasons for this: (1) computations are much more difficult

in M-theory than in type IIB superstring theory; (2) the dual conformal field

theories are much more elusive than the N = 4 super Yang–Mills theory;

(3) there is great interest in using AdS/CFT dualities to learn more about

four-dimensional gauge theories.

The M2-brane conjecture

A stack of M2-branes has an AdS4 × S7 near-horizon geometry, and M-

theory for this geometry (with N units of ?F4 flux through the sphere) is

dual to a conformally invariant SU(N) gauge theory in three dimensions.

One significant difference from the type IIB superstring example, is that

the M-theory background does not contain a dilaton field, and therefore

there is no weak-coupling limit. Correspondingly, the three-dimensional

conformal field theory does not have an adjustable coupling constant, and

it is necessarily strongly coupled. As a result, it does not need to have a

classical Lagrangian description. In fact, there does not appear to be one.

Therefore, this three-dimensional CFT is much more difficult to analyze

than N = 4 super Yang–Mills theory.

CFT for the M2-brane case

One way of thinking about the three-dimensional CFT is as follows. The

low-energy effective world-volume theory on a collection of N coincident

D2-branes of type IIA superstring theory is a maximally supersymmetric

U(N) Yang–Mills theory in three dimensions. This theory is not conformal

because the Yang–Mills coupling in three dimensions is dimensionful and

introduces a scale. Recall that the type IIA coupling constant is proportional

to the radius of a circular eleventh dimension. When this coupling becomes

large, the gauge-theory coupling constant also becomes large. In view of
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Eq. (12.87), this corresponds to a flow to the infrared in the gauge theory. It

also corresponds to the radius of the circular eleventh dimension increasing

giving an 11-dimensional M-theory geometry in the limit. Therefore, in

the limit, the coupling becomes infinite, and one reaches the conformally-

invariant fixed-point theory that describes a collection of coincident M2-

branes in 11 dimensions. This theory should have an SO(8) R symmetry

corresponding to rotations in the eight dimensions that are transverse to the

M2-branes in 11 dimensions.

The AdS4 × S7 metric has the isometry group

SO(3, 2)× SO(8) ≈ Sp(4)× Spin(8). (12.95)

As before, the first factor is the symmetry of the AdS space, which corre-

sponds to the conformal symmetry group of the dual gauge theory. Also,

the second factor is the symmetry of the sphere, which corresponds to the R

symmetry of the dual gauge theory. This solution is maximally supersym-

metric, which means that there are 32 conserved supercharges. In the dual

gauge theory 16 supersymmetries are realized linearly, and the other 16 are

conformal supersymmetries. Including the supersymmetries, the complete

isometry superalgebra is OSp(8|4). This contains 32 fermionic generators

(the supercharges) transforming as (8,4) under Spin(8)× Sp(4).

The M5-brane case

Similar remarks apply to the six-dimensional CFT associated with a stack

of M5-branes that is dual to M-theory with an AdS7 × S4 geometry. The

AdS7 × S4 metric has the isometry group

SO(6, 2)× SO(5) ≈ Spin(6, 2)× USp(4). (12.96)

Including the supersymmetries, the complete isometry superalgebra in this

case is OSp(6, 2|4). This superalgebra contains 32 fermionic generators

transforming as (8,4) under Spin(6, 2)× USp(4).

The problem of defining the conformal field theory on the M5-branes is

more severe than in the M2-brane case. To define a field theory, a weak-

coupling description in the UV is required. Unlike the M2-brane case, there

is no such description in the M5-brane case, because it is a six-dimensional

theory. Still, there must be a CFT associated with the M5-brane system.

The problem is that we don’t know how to describe it other than via the

AdS/CFT duality.
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The structure of anti-de Sitter space

In Section 8.1, AdSd+1, where d = p + 1, has been described in Poincaré

coordinates. In these coordinates, the AdSd+1 metric is given by

ds2 =
R2

z2

(
(dx2)d+1 + dz2

)
, z ≥ 0. (12.97)

Recall that the boundary at spatial infinity (r →∞) corresponds to z = 0,

since z ∼ R2/r. Similarly, the horizon at r = 0 corresponds to z =∞.

From AdS to CAdS

Fig. 12.5. AdSp+2 is a hyperboloid in � 2,p+1 with a closed time-like curve in the θ
direction.

Poincaré coordinates do not give a complete description of the Lorentzian

AdSd+1 space-time. To understand this, it is useful to consider a hypersur-

face in a (d+ 2)-dimensional Lorentzian space of signature (d, 2), describing

a hyperboloid

y2
1 + . . .+ y2

d − t21 − t22 = −R2 = −1, (12.98)

as depicted in Fig. 12.5. In the last step the radius R has been set equal

to one, for convenience. This description makes the SO(p+ 1, 2) symmetry

manifest. The relation between the coordinates introduced here and the

Poincaré coordinates given earlier is

(z, x0, xi) =
(
(t1 + yd)

−1, t2z, yi(t1 + yd)
−1
)
. (12.99)

To pass to spherical coordinates for both the y s and the t s, the notation

(y1, . . . , yd)→ (v,Ωp) and (t1, t2)→ (τ, θ) (12.100)
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is introduced. In these coordinates the hypersurface is v2 − τ2 = −1, and

the metric on this surface is

ds2 =
∑

dy2
i −

∑
dt2j =

dv2

1 + v2
+ v2dΩ2

p − (1 + v2)dθ2. (12.101)

Note that the time-like coordinate θ is periodic! This would imply that

the conjugate energy eigenvalues are quantized as multiples of a basic unit.

This is definitely not what type IIB superstring theory on AdS5 × S5 gives.

The energy quantization does hold for the supergravity modes and their

Kaluza–Klein excitations, but it is not true for the stringy excitations.

CAdS/CFT correspondence

The solution to this problem is to replace the AdS space-time with its

covering space CAdS. Therefore, strictly speaking, one should speak of

CAdS/CFT duality, but that is not usually done. To describe the covering

space, let us replace the circle parametrized by θ by a real line parametrized

by t. This gives a global description of the desired space-time geometry.

Letting v = tan ρ, the metric becomes

ds2 =
1

cos2 ρ
(dρ2 + sin2 ρ dΩ2

p − dt2). (12.102)

This has topology Bp+1× � which can be visualized as a solid cylinder. The

� factor, which is a real line, corresponds to the global time coordinate t, and

Bp+1 denotes a solid ball whose boundary is the sphere Sp. The boundary of

the CAdS space-time at spatial infinity (ρ = π/2) is Sp × � . The Poincaré

coordinates cover a subspace of the global space-time, called the Poincaré

patch, as shown in Fig. 12.6. This diagram, which shows the global causal

structure of the geometry, is called a Penrose diagram. All light rays travel

at 45 degrees in a Penrose diagram.

When one uses the covering space CAdS to describe the bulk theory, the

spatial coordinates of the dual gauge theory are naturally taken to form

a sphere Sp. This does have a significant technical advantage: when the

spatial coordinates form a sphere, the Hamiltonian has a discrete spectrum

rather than a continuous one. This can be traced to the fact that the

time coordinate in global coordinates differs from the time coordinate in the

Poincaré patch. Thus, if P0 denotes the Yang–Mills Hamiltonian appropriate

to the Poincaré patch time coordinate, then

H =
1

2
(P0 +K0), (12.103)

is the Hamiltonian appropriate to global time, and it has a discrete spec-
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z=const.

/2p

z=0

z= 8
- q=q= p/2ρ=−π/2 ρ=π/2

t

Fig. 12.6. This diagram shows how the Poincaré patch is embedded in global CAdS
for the special case of AdS2.

trum.12 Geometrically, it is as though the geometry in Eq. (12.102) is cre-

ating a potential well so that the center point ρ = 0 is at a minimum.

It should also be noted that, in global coordinates, there is no horizon.

The horizon is a feature of the description in terms of the coordinates of the

Poincaré patch but not of the global space-time. One can see in Fig. 12.6

that there is nothing special about the horizon of the Poincaré patch in

the global description. In case this sounds surprising, recall that even flat

space-time appears to have a horizon for a uniformly accelerating observer,

who sees a Rindler space.

Euclideanized AdS geometry

As discussed in the next subsection, it is useful to consider the Euclideanized

AdS geometry (EAdS) to test the AdS/CFT correspondence more precisely.

This can be obtained by Wick-rotating the t2 coordinate:

y2
1 + . . .+ y2

d − t21 + t22 = −1. (12.104)

The symmetry is now SO(d + 1, 1). This manifold should not be confused

with Lorentzian signature de Sitter space, which would have +1 on the

right-hand side. As before, EAdS can be described in Poincaré coordinates

by

ds2 =
1

z2
(dz2 + (dx2)d), (12.105)

where now (dx2)d = dx2
1 + . . . + dx2

d. Unlike the Lorentzian case, these

coordinates describe the space globally. They give a description that is

12 K0 is one of the conformal group generators.
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equivalent to the one given by the metric

ds2 = dρ2 + sinh2 ρ dΩ2
d, (12.106)

which is the analog of Eq. (12.102). Another equivalent metric in terms of

d+ 1 coordinates ui is

ds2 =
4
∑
du2

i

(1−∑u2
i )

2
, (12.107)

where
∑
u2
i ≤ 1. The latter form shows that the topology is that of a ball

Bd+1, whose boundary is a sphere Sd. Thus the dual Euclideanized gauge

theory should be compactified on a sphere — S4 for our main example. In

this case the SO(5) subgroup of the SO(5, 1) conformal group is realized as

the symmetry of the S4.

Holographic duality

The notion of holography was first introduced into gravitational physics in

the context of trying to encode the degrees of freedom of a black hole on its

horizon, with roughly one degree of freedom (or Q-bit, to be more precise)

per Planck area, as suggested by the Bekenstein–Hawking entropy formula.

While that may be possible, it is not understood in detail how to do that;

if it were, we would have a more general understanding of the microscopic

origin of the entropy formula than currently exists.

Holography in AdS space

The holographic duality considered here is somewhat similar, except that it

applies to the entire space-time rather than to a black hole. The AdS/CFT

duality is holographic in the sense that the physics of the (d+1)-dimensional

bulk – or even the ten or 11-dimensional bulk, if the sphere is taken into

account – is encoded in the dual d-dimensional gauge theory.

How does the hologram work?

The basic idea is that d-dimensional xµ coordinates of a point in the bulk

correspond to the xµ position in the field theory. The more subtle question

is how the radial coordinate r or z is encoded in the gauge theory.

One approach to defining the gauge theory as a quantum theory is to

define it as a function of an energy (or momentum) scale E, as discussed

earlier. This should be interpreted (in the Wilsonian sense) to mean that

fields with momenta above this scale have been integrated out. For theories

that are conformal, the resulting effective theory at the scale E is indepen-

dent of E, since there is no other scale to which E can be compared. Let us
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consider a scale transformation of the gauge theory xµ → axµ. Scale invari-

ance implies that, if this is accompanied by a rescaling of the energy scale

E → E/a, this is a symmetry. Since xµ in the gauge theory is identified with

xµ in the bulk, this scaling can be performed in the AdS metric Eq. (12.97).

However, there we see that, when xµ → axµ is accompanied by z → z/a,

this is a symmetry of the metric. Thus, we are led to the identification

E ∼ 1/z ∼ r. (12.108)

This reasoning shows that the radial coordinate in the bulk corresponds

to the energy scale in the dual gauge theory, but it does not establish the

constant of proportionality. Dimensional analysis suggests that one should

identify

E = kr`−2
s , (12.109)

where k is a dimensionless constant. For example, if one identifies the en-

ergy of a string stretched from the horizon at r = 0 to a point with ra-

dial coordinate r with the scale E, this would determine a value of k.13

However, other analyses can lead to different constants of proportionality.

Perhaps this reflects the ambiguity in defining the energy scale of the field

theory in the first place. The important, and unambiguous, fact is that in

any scheme for defining energy scales there is a correspondence of ratios

E1/E2 = z2/z1 = r1/r2.

This identification of radial coordinate in the bulk with energy scale in

the gauge theory is very striking, and one might wonder how it could be

reconciled with any notion of locality in the bulk theory. It is difficult

to define gauge-invariant local observables in a gravitational theory with

diffeomorphism symmetry. So it is not clear that locality should be an

exact principle for the bulk theory. However, one would expect it to hold

for scales larger than the string scale, when local field theory in a fixed

gravitational background is a reasonable approximation. One reason the

holographic correspondence proposed here is not in manifest conflict with

locality is the observation that changes in energy scale in the gauge theory

are given by the renormalization group equation, which is local in the energy

scale.

Given the holographic identification, one can ask where the dual gauge

theory is located. If one regards the theory without any degrees of freedom

integrated out as the most fundamental, this corresponds to E →∞. Then

one can say that the dual gauge theory is located at the boundary r = ∞
13 This energy is finite, and proportional to r, even though the proper distance is infinite, due to

the compensating effect of the red-shift factor.
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or z = 0. As one integrates out high-momentum degrees of freedom, it gets

translated inwards toward the horizon.

The correspondence can be generalized to bulk theories that are only AdS

asymptotically as r →∞. In such a case, the dual gauge theory is not con-

formal, but (according to the holographic principle) it should approach a

conformal fixed point in the ultraviolet. It is often convenient to work in

a small curvature regime of the bulk theory, where a supergravity approx-

imation can be used. In cases where the dual gauge theory is not exactly

conformal, the ’t Hooft coupling constant may not be large, for a sufficiently

large range of energies, for there to be a large fifth dimension in the dual

description.

S-duality

Section 8.2 described the S-duality of type IIB superstring theory. In flat

ten-dimensional space-time the S-duality group was shown to be SL(2,
�

).

In particular, it was shown that the complex scalar field

τIIB = C0 + ie−Φ, (12.110)

transforms as a modular parameter under SL(2,
�

) transformations.

Section 8.2 also described an SL(2,
�

) S-duality of U(N) N = 4 super

Yang–Mills theory. As explained there, if one includes a topological θ term

in the Lagrangian, one can define a complexified gauge theory coupling

τYM =
θ

2π
+

4πi

g2
YM

. (12.111)

Now one is led to an important implication of the AdS/CFT duality.

Namely, the S-duality of the gauge theory is induced by the S-duality of the

string theory. Since the AdS/CFT correspondence requires the S-duality of

the gauge theory, any test of this S-duality is also a test of the correspon-

dence. Conversely, the existing evidence in support of the S-duality ofN = 4

super Yang–Mills theory can be regarded as support for the AdS/CFT con-

jecture.

The identification g2
YM = 4πgs, where eΦ = gs for the extremal D3-brane

solution, naturally generalizes to

τYM = τIIB , (12.112)

provided one makes the identification θ = 2πC0. The black D3-brane so-

lution can be generalized to allow a constant nonzero value of C0 without

making any other changes, and this corresponds to adding a θ term to the

dual gauge theory. The conclusion is that the value of the complex coupling
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in the gauge theory is identified with the vacuum expectation value of the

complex scalar field of the string theory. Each of them is defined on a space

that is identical to the moduli space of complex structures of a torus, which

was described in Chapter 3 and utilized several times in Chapter 8.

A more precise correspondence

The tests of AdS/CFT duality described so far only required analyzing per-

turbations of AdS5×S5. Another successful test in this framework, which we

have not explained, was to show that all the linearized supergravity states

correspond to states in the dual gauge theory. However, there is more than

this perturbative framework that needs to be understood to define a precise

map between a CFT and its AdS dual, since this set-up is only sensitive

to the supergravity states and their Kaluza–Klein excitations, but does not

probe the underlying string-theory structure of the theory.

A conformal field theory does not have particle states or an S-matrix. The

only physical observables, that is, well-defined and meaningful quantities, in

a CFT are correlation functions of gauge-invariant operators. Thus, what

is required is an explicit prescription for relating such correlation functions

to computable quantities in the AdS string-theory background. These are

very similar to ordinary S-matrix elements, with the definition suitably gen-

eralized to AdS boundary conditions at infinity. Since the dimension of the

AdS exceeds that of the CFT by one, it is sensible that off-shell quantities

in the CFT should correspond to on-shell quantities in AdS.

The gauge-invariant operators are defined at a point, which corresponds

to perturbing the gauge theory in the ultraviolet. Therefore, according to

the holographic energy/radius correspondence, the gauge theory should be

considered to be at the AdS boundary.

It is technically easier to work with the Euclideanized conformal field the-

ory and to relate its correlation functions to quantities in the Euclideanized

anti-de Sitter geometry. So this is a good place to start. After that, we

discuss the case of Lorentzian-signature case. The prescription requires a

one-to-one correspondence of bulk fields φ and gauge-invariant operators O
of the boundary CFT.

The path integral

Schematically the correspondence works as follows. Denoting boundary val-

ues of φ by φ0, one computes the bulk-theory path integral with these bound-
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ary values to define a partition function

Zstring(φ0) =

∫

φ0

Dφe−Sstring . (12.113)

Then this is identified with the field theory expression

〈
exp

∫

Sd
φ0O

〉
CFT

, (12.114)

which is the generating function of correlation functions. To complete the

explanation one should carefully explain how one removes the divergences

that occur in these formal expressions. Even then, these formulas are hard

to evaluate in practice, except in regimes where perturbation theory is ap-

plicable, as illustrated in Fig. 12.7. The Feynman rules require interaction

vertices in the bulk and three types of propagators: bulk to bulk, bulk to

boundary, and boundary to boundary.

Fig. 12.7. Correlation functions in strongly coupled gauge theories can be calculated
in terms of ordinary Feynman diagrams in the bulk theory with propagators that
terminate on the boundary.

One of the bulk fields is the metric gµν . It corresponds to the energy–

momentum tensor Tµν of the CFT, which is always a gauge-invariant op-

erator. For this reason the AdS/CFT correspondence always involves a

gravitational theory for the bulk. The asymptotic behavior of the metric

as the boundary is approached is well defined up to a conformal rescaling

(gµν ∼ λ gµν .) Thus, φ0 in this case denotes the boundary value of the

conformal class of the metric. Another example for which the bulk field

to boundary operator correspondence is known is the dilaton. The dila-

ton corresponds to the Lagrangian of the CFT, because a small change in

the gauge coupling, which is dual to the string coupling determined by the

dilaton, adds an operator proportional to the Lagrangian.14

14 The analogous M-theory backgrounds do not have a dilaton, so maybe it is not surprising that
one is unable to construct a Lagrangian for the dual CFT in those cases.
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Anomalous dimensions

As an example, consider a scalar field φ of mass m in EAdS5, whose metric

is given in Eq. (12.105). The quadratic terms in the action are

S ∼
∫
d4y dz [z2(∂yφ)2 + z2(∂zφ)2 +m2R2φ2]/z5. (12.115)

Considering five dimensions rather than ten implies a truncation to the low-

est Kaluza–Klein mode on the five-sphere. The classical field equation de-

rived from this action has two independent solutions that are given by Bessel

functions. To decide which solutions are normalizable, we are particularly

interested in the asymptotic behavior at the boundary, which corresponds

to z = 0. The two solutions both give power behavior of the form φ ∼ zα,

and the two values of α, determined by the equation of motion, are the roots

of15

α(α− 4) = m2R2, (12.116)

which are

α± = 2±
√

4 +m2R2. (12.117)

You are asked to derive this result from the equation of motion in Prob-

lem 12.8.

In defining the boundary value φ0 that enters in Eq. (12.113), a singular

factor must be removed. The reason for this is that the more singular

solution goes as φ ∼ zα− near the boundary. Since the boundary theory is

conformal, a conformal rescaling that is x independent is allowed. Thus, the

regularized boundary value of the field is

φ0(x) = lim
z→0

z−α−φ(x, z). (12.118)

As a result of this renormalization, the corresponding boundary operator

acquires a scaling dimension. The naive scaling dimension would be four for

a scalar field. However, one also has to take account of the scaling property of

z−α− , recalling that z scales like x. This contributes an anomalous dimension

−α− ≥ 0. As a result, one obtains the scaling dimension for the dual gauge

theory operator

∆ = 4− α− = 2 +
√

4 +m2R2. (12.119)

For example, the dilaton has m = 0, which agrees with the fact that the

SYM Lagrangian has ∆ = 4. The corresponding analysis for the graviton

“predicts” that the stress tensor should have ∆ = 4, which is also correct.

15 When the boundary theory has d dimensions, this generalizes to α(α− d) = m2R2.
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As an aside, and for completeness, let us note the following. The restric-

tion to the α− solution is correct for the AdS5×S5 case, but it is not always

correct. In AdSd+1 space-time the mass-squared parameter m2 can be neg-

ative without making the vacuum unstable, as it would in flat space-time.

In fact, the stability bound, known as the Breitenlohner–Freedman bound,

can be deduced from the d-dimensional generalization of Eq. (12.115). It is

m2R2 > −d2/4. (12.120)

For m2R2 > 1−d2/4 there is a unique admissible boundary condition, which

is the case for all fields in the theory under consideration here. However,

some theories have fields with masses in the window

1− d2/4 > m2R2 > −d2/4, (12.121)

and then both solutions α± are admissible, since they both satisfy the uni-

tarity bound ∆ > (d− 2)/2.

Lorentzian signature and the Hamiltonian

The CAdS/CFT duality for Lorentzian signature entails new issues. The

boundary-value problem in this case no longer has unique solutions, be-

cause one can add normalizable (propagating) modes. Nonnormalizable

bulk modes correspond to backgrounds that couple to gauge-invariant lo-

cal operators of the boundary gauge theory, as in the Euclidean case. In

addition, the normalizable modes of the Lorentzian case correspond to lo-

calized fluctuations of the gauge theory.

From the point of view of the dual CFT, there is a Hamiltonian that

generates the time evolution. This is conceptually cleanest when the spatial

dimensions form a p-dimensional sphere, as is natural in the global CAdS

formulation. In this case, if one imagines expanding all fields in Fourier

modes on the sphere, one has a quantum mechanical theory with an infinite

number of degrees of freedom. However, there are only a finite number of

states below any fixed energy.

The AdS5 × S5 solution (for example) corresponds to the ground state of

this Hamiltonian, whereas nonnormalizable modes in the bulk correspond

to excited states of the gauge theory. Generic excited states of the gauge

theory correspond to bulk geometries with string-scale curvatures for which

the supergravity approximation is not valid. Smooth geometries correspond

to highly excited states of the gauge theory with a smooth distribution of

excitations. This correspondence has been worked out in complete detail for

the half-BPS states. While this is far from the whole story, it is a highly

instructive starting point. In this case the excitations of the CFT correspond
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to placing N free fermions in a harmonic oscillator potential. That study

makes it clear how the energy eigenvalues of the fermions in the gauge theory

encode the geometry of the dual string theory. Generically, unless N is very

large and the eigenvalues are smoothly distributed, one obtains a turbulent

quantum-foam-like geometry. The term bubbling AdS has been introduced

in this context.

The modification of the bulk solution obtained by the addition of normal-

izable modes, on the other hand, corresponds to changing the Hamiltonian

of the boundary CFT by the addition of relevant perturbations. Relevant

perturbations are defined to be ones with dimension less than four, which

are important in the IR and unimportant in the UV. For example, the ad-

dition of a mass term for one (or more) of the six scalar fields is a relevant

perturbation of the gauge theory.

Chiral primary operators

An alternative to analyzing the gauge theory on Sp and using the Hamil-

tonian approach is to consider the gauge theory on � p, as is natural in

the Poincaré patch description of the AdS space. In this case the physi-

cal observables are correlation functions of gauge-invariant operators. The

gauge-invariant operators correspond to the various states in the Hamil-

tonian description by a state–operator correspondence that is a higher-

dimensional analog of that described for two-dimensional conformal field

theories in Chapter 3.

Testing the AdS/CFT correspondence in this set-up involves finding the

correspondence between gauge-invariant operators in the gauge theory and

particle states in the string theory. In each case these are classified by rep-

resentations of the superconformal symmetry algebra. Such representations

include three types: long, short, and ultrashort. As explained in Chapters 8

and 11, the N = 4 supersymmetry algebra provides lower bounds (BPS

bounds) on allowed masses or energies. If neither bound is saturated, the

representation is long and all 16 of the linearly realized supersymmetry gen-

erators are effective in building up the multiplet structure. In this case the

allowed helicities cover a range of eight units, since each charge can shift the

helicity by one half. If one of the bounds is saturated and the other is not,

the representation is called short and eight of the supersymmetry generators

are effective. Then the helicities in the multiplet cover a range of four units.

In the ultrashort case, both bounds are saturated, and the helicities cover

a range of two units. The N = 4 super Yang–Mills fields themselves have

helicities ranging from −1 to +1 and form an ultrashort multiplet. However,

they are not gauge-invariant operators.
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In the string description short multiplets arise as the five-dimensional

supergravity multiplet and all of its Kaluza–Klein excitations on the five-

sphere. The harmonics on the five-sphere give SU(4) irreducible represen-

tations denoted (0, n, 0) in Dynkin notation. In SO(6) language, these cor-

respond to rank-n tensors that are totally symmetric and traceless. Clearly,

the helicities range from −2 to +2 for these multiplets, since the five-sphere

harmonic does not contribute to the helicity. All of the excited string states

belong to long multiplets, which are much more difficult to analyze. How-

ever, it is possible to say something about a certain class of them in the

plane-wave limit, as is done in Section 12.5.

Let us now consider some local operators in the gauge theory that be-

long to short multiplets. The SU(N) super Yang–Mills fields are described

as traceless N × N hermitian matrices. The way to form gauge-invariant

combinations is to consider traces of various products. The quantities that

are allowed inside the traces are the six scalars, four spinors, and Yang–

Mills field strength, as well as arbitrary covariant derivatives of these fields.

One can also consider products of such traces. However, it turns out that

single-trace operators correspond to single-particle states and multi-trace

operators correspond to multi-particle states in leading order. At higher

orders in λ and 1/N , there can be mixing between operators with differing

numbers of traces.

A convenient way of characterizing a supermultiplet is by finding the pri-

mary operator of lowest dimension. By definition, this operator is annihi-

lated by all of the conformal symmetries Sα and Kµ. The other operators in

the supermultiplet are reached by commuting or anticommuting the primary

operator with the super-Poincaré generators Qα and Pµ. These operators

are called descendants and are characterized by the fact that they can be

expressed as Q acting on some operator. In the case of short multiplets,

the primary operator is also annihilated by half of the Q supersymmetry

generators. Such operators are called chiral primary operators.

As an example, consider the trace of a product of n scalar fields

OI1I2···In = Tr
(
φI1φI2 · · ·φIn

)
. (12.122)

It turns out that if any of the indices are antisymmetrized this operator is a

descendant. A commutator [φI , φJ ] is a descendant field because it appears

in the supersymmetry transformation of fermion fields. To understand this,

recall that in ten dimensions δψ ∼ FµνΓµνε. On reduction to four dimensions

FIJ → [φI , φJ ].

The way to make a primary operator is to totally symmetrize all n indices
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and remove all traces to make a traceless symmetric tensor. However, this

is not quite the whole story. These operators can be related to multi-trace

operators when n > N . By a multi-trace operator, we mean an operator

that is a product of operators of the form in Eq. (12.122). Thus, to state

the final conclusion, these operators provide a complete list of single-trace

chiral primary operators for n = 2, 3, . . . , N . This rule reflects the fact that

these are the orders of the independent Casimir invariants of SU(N). This

is explored further in Exercise 12.9.

These chiral primary operators form the (0, n, 0) representation of SU(4).

In the large-N limit this matches perfectly with what one finds from Kaluza–

Klein reduction on the five-sphere in the dual string-theory picture. It has

been shown that the masses of these bulk scalar fields match the conformal

dimensions of the chiral primary operators in the way required by the duality

that was described earlier. It is interesting, though, that for finite N the

Kaluza–Klein excitations with n > N seem to be missing in the dual gauge-

theory description. This is how it should be, however. The infinite tower

of Kaluza–Klein excitations actually is truncated at N . The reason will be

explained later.

Anomalies

In general, it is difficult to compare gauge theory and string theory correla-

tion functions, because the AdS/CFT correspondence relates weak coupling

to strong coupling. However, there are certain quantities that are controlled

by anomalies that can be computed exactly enabling the comparison to be

made. Let us describe an example.

The SU(4) R symmetry is a chiral symmetry of N = 4 super Yang–

Mills theory. This is evident because left-handed and right-handed fermions

belong to complex-conjugate representations (4 and 4̄). If one were to add

SU(4) gauge fields and make this symmetry into a local symmetry, one

would obtain an inconsistent quantum theory, because the SU(4) currents

would acquire an anomalous divergence

(∇µJµ)a =
N2 − 1

384π2
i dabcεµνρλF bµνF

c
ρλ. (12.123)

Such SU(4) gauge fields are not present in the super Yang–Mills theory,

so there is no inconsistency. However, they do exist in the bulk theory,

where they arise by the Kaluza–Klein mechanism as a consequence of the

isometry of the five-sphere. The anomaly means that if one turns on nonzero

field strengths for these gauge fields the bulk theory would no longer be

gauge invariant. The associated anomaly can be computed from the bulk
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perspective and compared to the gauge theory anomaly described above as

a nontrivial test of the AdS/CFT correspondence.

The way to see the anomaly in the string-theory description is to consider

the Chern–Simons term in the low-energy effective five-dimensional action

of the bulk theory

SCS =
iN2

96π2

∫

AdS5

d5x
(
dabcεµνρλσAaµ∂νA

b
ρ∂λA

c
σ + . . .

)
. (12.124)

Under a gauge transformation δAaµ = ∇µΛa, the Chern–Simons term changes

by a boundary term

− iN2

384π2

∫
d4xdabcεµνρλΛaF bµνF

c
ρλ. (12.125)

Identifying this with −
∫
d4xΛa(∇µJµ)a in the dual gauge theory, one ob-

tains exact agreement with the gauge theory calculation to leading order in

large N . A more refined analysis, at one-loop order in the string theory, has

been carried out. It shows that the factor really is N 2 − 1 rather than N2.

This agreement is a very nontrivial test of the AdS/CFT correspondence,

since the two computations look completely different.

A similar anomaly analysis can be carried out for the conformal (or Weyl)

anomaly that arises from coupling the gauge theory to gravity. Agreement

is again found at leading order in large N .

Near-extremal black D3-brane

Nonextremal black D-branes solutions were presented in Section 12.1. Like

nonextremal black-hole solutions, they have thermodynamic properties in-

cluding temperature and entropy. This section explores these properties

for the near-extremal black D3-brane and interprets them in the context

of the AdS/CFT duality. The analysis is carried out for an asymptotically

AdS5 × S5 space-time, where the radius of each factor is R.

The metric for a nonextremal black D-brane is given in Eq. (12.31). Here,

we specialize that formula to the case p = 3 and re-express it terms of the

coordinate z = R2/r, which was introduced earlier. It has a horizon at

z = z0 that encloses a singularity. Including the five-sphere, the metric in

Poincaré coordinates for a near-extremal black 3-brane in an asymptotically

AdS5 × S5 space-time is

ds2 =
R2

z2

(
− f(z)dt2 + d~x · d~x+ f−1(z)dz2

)
+R2dΩ2

5, (12.126)
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where

f(z) = 1− (z/z0)4. (12.127)

This space-time approaches AdS5 × S5 asymptotically at infinity, which in

these coordinates is given by z → 0.

The temperature

The temperature of this black 3-brane can be determined in the standard

way. Specifically, one introduces a Euclidean time coordinate τ = it and

requires that the periodicity of τ is such that there is no conical singularity

at the horizon (z = z0). Substituting z = z0 − ε in Eq. (12.126) and

expanding in ε, one obtains

ds2 =
R2

z2
0

(4ε

z0
dτ2 + dxidxi +

z0

4ε
dε2
)

+R2dΩ2
5. (12.128)

Now making the change of variables ε = z0ρ
2/R2, one sees that ρ and

θ = 2τ/z0 parametrize a plane in polar coordinates. Thus, the required

period of τ is β = πz0. As usual, β is identified as the inverse temperature

of the black D3-brane.

The entropy

The entropy of this black 3-brane per unit three-volume (as measured in the

xi coordinates) is given by the Bekenstein–Hawking formula (horizon area

divided by 4G10), is

S

V
=

1

4G10

(
R

z0

)3

·R5Ω5 =
π2

2
N2T 3. (12.129)

One can try to test this result with a dual CFT computation of the entropy

carried out for the N = 4 gauge theory at temperature T . However, exact

agreement should not be expected. The preceding analysis is based on a

supergravity approximation to the string-theory geometry. This is valid

when the string is weakly coupled and the curvature is small, in other words

for large N and large λ. The CFT computation can be carried out for small

λ by simply adding up the contributions of the individual free fields. Since

these are opposite limits, the results need not agree. Nonetheless, let us

carry out the comparison. The small λ CFT computation gives

S

V
=

2π2

3
N2T 3. (12.130)

The T 3 dependence was inevitable because the theory is conformal and there

is no other scale. The N 2 factor is also obvious, because each of the fields in
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the CFT is an N×N matrix, and the entropy is proportional to the number

of fields.16 So only the numerical coefficient requires care. It is determined

by adding the contributions of one vector, four spinors and six scalars in

each supermultiplet.

The two preceding results differ by a factor of 4/3, but it was already

emphasized that agreement should not be expected. One result corresponds

to the limit λ → 0 and the other one to the limit λ → ∞. The results

for these two limits suggest that there should be a formula for the entropy

density of the large-N limit of the gauge theory of the form

S

V
= c(λ)

π2

2
N2T 3, (12.131)

where λ = g2
YMN and g2

YM = 4πgs, as before. The gravity calculation then

implies that c(∞) = 1, while the CFT calculation implies that c(0) = 4/3.

It is conjectured that the function c(λ) extrapolates smoothly between these

two values. The complete function c(λ) is not known yet, but the next-to-

leading terms in the two limits have been computed and are given by

c(λ) =
4

3
− 2λ

π2
+ . . . for smallλ, (12.132)

c(λ) = 1 +
15ζ(3)

8λ3/2
+ . . . for largeλ. (12.133)

Giant gravitons and the stringy exclusion principle

In Chapter 6 we discussed the Myers effect, in which a D0-brane in an electric

four-form flux is polarized into a spherical D2-brane. A similar phenomenon

can be realized in the present setting by considering a massless particle, such

as a graviton, moving along a great circle of the S5. These are BPS solutions

that are included in the Kaluza–Klein spectrum discussed earlier. As the

momentum of the particle is increased the effect of the background five-

form flux becomes more important, and the particle becomes polarized into

a sphere. What we are discussing here can be viewed as the polarization of a

graviton by a five-form flux into a spherical D3-brane. Such a configuration

is sometimes called a giant graviton.

Giant gravitons can occur inside the anti-de Sitter space, localized on the

five-sphere, or inside the five-sphere, localized in the anti-de Sitter space.

The two cases differ in one interesting respect. In the latter case the radius

of the giant graviton is bounded by the radius R of the five-sphere. This

fact, referred to as the stringy exclusion principle, implies that the tower of

16 Since we are interested in large N , we do not distinguish between N2 and N2 − 1.
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Kaluza–Klein excitations is actually cut off at N . This is a string-theoretic

effect that is not visible in the supergravity approximation.

In the previous section, this stringy exclusion principle was anticipated

by classifying the single-trace chiral primary operators in the dual gauge

theory. What we are finding now is exactly what is required for agreement

of the two pictures. This success of AdS/CFT duality is highly significant

in that it is nonperturbative in the 1/N expansion.

Confinement/deconfinement phase transition

One can explore whether gauge theories are confining or not by evaluat-

ing Wilson loops. These are gauge-invariant operators, and thus physical

observables, of the boundary gauge theory. Given a closed contour C in

� 4 and a representation D of the gauge group (usually chosen to be the

fundamental), one defines the Wilson-loop operator

W (C) = Tr

(
P exp

∮

C
A

)
. (12.134)

Here, the gauge field A is a matrix of one forms in the representation D, and

P denotes that the integral is path ordered. The choice of starting point

for the path does not matter once the trace is taken. Physically, one can

think of C as the world line of a heavy external quark. The usual assertion

is that, for a square contour with sides of length L, one finds for large L that

W ∼ exp(−cL) for a nonconfining theory. This behavior is referred to as a

perimeter law. On the other hand, W ∼ exp(−cL2) for a confining theory.

This behavior is referred to as an area law.

In a conformally invariant theory, such asN = 4 SYM theory, dimensional

analysis together with a large-N limit requires that the potential for a quark-

antiquark pair with separation L should be of the form V (L) = v(λ)/L.

This is a nonconfining (Coulomb-like) behavior corresponding to a perime-

ter law.17 Perturbation theory implies that, for small coupling, v(λ) is

proportional to λ.

The dual string picture can be used to derive the behavior of v(λ) for

large λ, the limit in which the AdS curvature is small compared to the

string tension T . In other words, TR2 ∼
√
λ� 1. In the string picture one

views the contour C as the boundary of a string world sheet. Then, in the

large tension limit, the Wilson loop is given to good approximation by

〈W 〉 ∼ exp(−T ·Area). (12.135)

17 An area law would correspond to a linear potential V ∼ L.
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Here, the area is that of the minimal area surface (embedded in AdS5) with

boundary C. The fact that this is an area might seem to contradict what

was said previously. However, because of the curvature of the AdS space,

this area actually grows linearly for large L, and one finds for large λ that

v(λ) ∼ TR2 ∼
√
λ. One subtlety in this analysis is that the area of the world

sheet is actually divergent, because the proper distance to the boundary of

AdS is infinite. However, the divergent part has a universal behavior that

can be subtracted as part of a consistent regularization procedure. Then

the results asserted above can be obtained.

Compactification on a circle

An example of a confining gauge theory is pure Yang–Mills in three dimen-

sions. We can make contact with that theory starting from N = 4 SYM

in two steps. The first step is to take one of the three spatial dimensions

to be a circle of radius r0. Then, for energies below 1/r0, the theory is

effectively three-dimensional. The second step is to get rid of all massless

particles other than the gauge fields. A convenient way to achieve this is to

require the fermi fields to be antiperiodic on the circle, so that their masses

are of order 1/r0. The bosons are given periodic boundary conditions. Even

so, the scalars of the SYM-theory also get masses of order 1/r0 induced by

radiative corrections. So do the three-dimensional scalars corresponding to

the component of the gauge fields along the compact direction.

The next problem is to identify the bulk supergravity geometry that has

this geometry for its boundary. A trick for finding the answer is to start

with the black 3-brane solution and perform a double Wick rotation (t→ iy

and x3 → it) giving

ds2 =
R2

z2

(
− dt2 + f(z)dy2 + dx2

1 + dx2
2 + f−1(z)dz2

)
, (12.136)

where R is the AdS radius and

f(z) = 1− (z/z0)4. (12.137)

This solution does not have a horizon, and it is only defined for z < z0. This

means that z0 is the end of space. As a result, the warp factor (1/z) cannot

go to zero. This changes the analysis of the Wilson loop asymptotics, and

one concludes that there is an area law (confinement) in this case.

Recall that the y coordinate is periodic with period 2πr0. For the metric

to be nonsingular for z → z0, one needs to take z0 = 2r0. This geometry is

topologically B2 × � 2,1, and its boundary has the topology S1 × � 2,1. The
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y circle on the boundary (where z = 0) is the boundary of a disk whose

interior corresponds to z > 0.

Finite temperature

The preceding compactified theory can be studied at finite temperature by

Euclideanizing the time coordinate t and imposing periodicity β, as usual.

The boundary topology of the finite temperature theory is � 2 × S1 × S1,

where the first circle is the spatial circle of radius r0 and the second circle

is the periodic Euclidean time of circumference β. There are two choices

for the topology of the finite temperature bulk theory that could give this

boundary. The one implied by the analysis given above is � 2 × B2 × S1.

An alternative possibility is � 2 × S1 × B2. In the latter solution the disk

has the time circle as its boundary. Since it has a perimeter law, it does not

give confinement. In the bulk-boundary correspondence, one should include

all possible bulk configurations that give a specified boundary configuration.

In this case there are two of them. The Wilson-loop analysis for one case

indicates confinement and for the other indicates deconfinement. So what

should we conclude?

In a saddle-point approximation, the string-theory partition function has

roughly the form

Zstring ∼ e−S1 + e−S2 , (12.138)

where the two terms represent the contributions of the two possible bulk

topologies. Actually, both S1 and S2 contain an infinite factor – the volume

of the space-time. However, one can compute the difference S2 − S1, which

is finite. It is a positive function of β and r0 times β2 − r2
0. Therefore,

one or the other is dominant as N → ∞ depending on the ratio of β to

r0. This implies that, for large N , there is a phase transition, which is

known as the Hawking–Page phase transition. The interpretation of this

phase transition in the dual field theory is that the low-temperature phase

(in which the first term dominates) exhibits confinement and a mass gap,

whereas the high-temperature phase (in which the second term dominates)

has deconfinement. In other words, there are physical unconfined quanta

(gluons, etc.) carrying color quantum numbers.

This is roughly the same picture one expects for QCD. Even though the

bulk theory that should be dual to QCD is not known, it is now reasonably

clear that there should be a dual five-dimensional string theory that contains

gravity. At low temperature, one bulk geometry dominates, and at high

temperature there should be a different dual geometry. The quark-gluon

deconfinement phase transition should be analogous to the Hawking–Page
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phase transition. In fact, there have been qualitative successes in account-

ing for data on high-energy collisions of large nuclei in the RHIC collider

at Brookhaven National Laboratory using this type of a holographic model.

More specifically, when heavy nuclei collide at high energies, it is believed

that a quark-gluon plasma is formed, which quickly cools due to expansion.

However, before it cools through the deconfinement phase transition temper-

ature, high-energy partons (deconfined quarks or gluons) can travel through

the plasma with an effective viscosity that one can try to deduce from the

observations. This is an example of a parameter that has been estimated

using the string theory/gauge theory duality. It is quite remarkable that

members of the nuclear physics community are now becoming interested in

black holes in five-dimensional anti-de Sitter space-time!

Proving the conjecture

We have presented many pieces of evidence that support the validity of

the AdS/CFT conjecture. Some of them are highly nontrivial and very

impressive. So one might wonder whether the construction of a proof that

it is correct is a reasonable goal. One problem with this is that there is no

other known way of giving a complete definition of string theory. We know

pretty well how to define the perturbation expansion, and we know many

facts about the nonperturbative physics in various string vacua. Certainly,

the duality should reproduce, or at least not contradict, what is known. So

a falsification of the conjecture would be straightforward.

Perhaps, the right attitude at this point is to assume that the conjecture is

correct, as long as this does not lead to contradictions or paradoxes. Since, at

least in four dimensions, the dual gauge theories are unambiguously defined,

this means that the duality can be taken as the definition of string theory (or

M-theory) for the class of background configurations where it applies. There

is also room for further progress in precisely specifying how the duality map

works.

One might hope that some completely independent fundamental formula-

tion of string theory would be found some day. If this were to happen, then

the goal of proving AdS/CFT would become better formulated. A more

modest goal is to learn how to apply AdS/CFT ideas to a larger class of

backgrounds.

To be specific, there is a lot of interest in space-times that are asymp-

totically de Sitter, rather than anti-de Sitter, mostly motivated by the as-

trophysical/cosmological observations that point to a positive cosmological

constant. One idea has been to try to formulate dS/CFT dualities. Another
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idea that is being explored is to formulate dualities for asymptotically AdS

space-times that have large regions within them that are nearly de Sitter.

EXERCISES

EXERCISE 12.5

Explain why the superpotential of an N = 1 supersymmetric theory with

an unbroken R symmetry should have R charge equal to two.

SOLUTION

The four Grassmann coordinates of N = 1 superspace decompose into two

chiral components θα and two antichiral components θ̄α̇. The superfield

formulation of N = 1 gauge theories contains two types of terms, called

D terms and F terms, where D terms are given by integrals over the full

superspace and F terms are given by integrals over chiral superspace. The

Lagrangian density has the general structure

L = LK + LV + LW ,

where the first term is a D term and the last two terms are F terms and

their complex conjugates. For example,

LW =

∫
d2θW +

∫
d2θ̄ W ,

where the superpotential W is a holomorphic function of chiral superfields.

Under an R-symmetry transformation, the different components of a su-

perfield carry different charges. One can assign uniform R-charge assign-

ment to the entire superfield if one adopts the rule that θ carries R-charge

+1 and θ̄ carries R-charge −1. These statements are a consequence of the

commutation relations

[R,Qα] = Qα and [R,Qα̇] = −Qα̇.

Integration over θ is like differentiation, and therefore d2θ carries R-charge

−2. Therefore, for LW to be R-invariant, it is necessary that the superpo-

tential W have R-charge equal to 2. This entails finding suitable R-charge

assignments for all the chiral superfields so that each term in the superpo-

tential has R-charge equal to 2. 2
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EXERCISE 12.6

Formulate N = 4 super Yang–Mills theory in terms of N = 1 superfields.

SOLUTION

Expressed in terms of N = 1 superfields, the N = 4 theory can be recast

as a theory with a vector superfield V and three adjoint chiral superfields

Φi, i = 1, 2, 3. The Lagrangian consists of a kinetic term for the chiral

superfields

LK =

∫
d4θ

3∑

i=1

tr
(

Φ†ie
V Φi

)
,

a kinetic term for the gauge superfields18

LV =
1

4g2

∫
d2θ tr(WαWα) + h.c.,

and a superpotential term

LW =

∫
d2θW + h.c..

The first two terms are completely determined by the choice of gauge group

and representations, so that all that remains is to specify the superpotential

W .

The only parameter of the theory is the dimensionless coupling constant

g. Therefore, the superpotential must be cubic in the chiral superfields,

since these are the terms with dimensionless coefficients. By formulating

the theory using N = 1 superfields, only one of the four supersymmetries

is manifest and only a subgroup of the SU(4) R-symmetry group can be

made manifest. Specifically, an SU(3) × U(1) subgroup of the SU(4) R-

symmetry group is manifest in this formulation. The three chiral superfields

transform as a 3 of the SU(3). The U(1) factor is the usual R symmetry of

anN = 1 theory. From these considerations the superpotential is completely

determined up to an overall normalization

W ∼ εijktr (ΦiΦjΦk) ∼ tr(Φ1[Φ2,Φ3]).

The normalization is uniquely determined by the requirement of N = 4

supersymmetry or SU(4) R symmetry. The correct result turns out to be

W =
√

2tr(Φ1[Φ2,Φ3]). (12.139)

18 The adjoint fields V , Wα, Φi are all written as matrices. For example V =
P
V ata. The

matrices ta give a representation of the Lie algebra [T a, T b] = ifabcT c for which tr(tatb) =
kδab. The formulas are written for the fundamental representation of SU(N), which has k = 1.
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Using the result of the previous exercise, one learns that the three chiral

superfields have U(1) R charge 2/3. Since they are chiral, their scaling

dimension is ∆ = 3R/2 = 1, which receives no quantum corrections. 2

EXERCISE 12.7

Consider a four-dimensional U(N) gauge theory with only adjoint represen-

tation fields. Verify that a Feynman diagram with Euler characteristic χ (in

the same sense as in Eq. (12.92) scales as Nχ for large N .

N 2 0N

Fig. 12.8. Two-loop planar and nonplanar vacuum diagrams.

SOLUTION

In this case vertices, propagators and loops of the Feynman diagram cor-

respond to the vertices, edges and faces of the two-dimensional surfaces,

respectively. Each vertex contributes a factor 1/g2, each propagator con-

tributes a factor g2 and each loop contributes a factor N . So the Feynman

diagram is proportional to

(g2)E−VNF = (λ/N)E−VNF = NχλE−V .

For fixed λ, the diagram scales as Nχ. A couple of examples are shown in

Fig. 12.8. 2

EXERCISE 12.8

Describe the Lie superalgebra for the supergroup PSU(2, 2|4).

SOLUTION

The discussion that follows is relevant to all four-dimensional superconfor-

mal groups SU(2, 2|N). There is a similar analysis for three-dimensional su-



668 Gauge theory/string theory dualities

perconformal groups OSp(N |4) and six-dimensional superconformal groups

OSp(6, 2|2N).

Conformal groups in arbitrary dimension were described in Chapter 3.

The generators consist of the Poincaré generators Mµν and Pµ as well as

the conformal generator Kµ and the dilatation generator D. Generators can

be assigned conformal weights determined by their commutation with D.

Thus, since

[D,Mµν ] = 0, [D,Pµ] = −iPµ, [D,Kµ] = iKµ,

M and D have weight 0, P has weight 1 and K has weight −1. This

immediately determines which terms can appear in a commutation relation.

For example,

[Pµ,Kν ] = 2iMµν − 2iηµνD.

For N -extended supersymmetry in four dimensions, one adjoins super-

charges QA
α and their complex conjugates Qα̇A. An upper A labels an

N of SU(N) and a lower A labels the conjugate N representation. Since

{Q,Q} ∼ P , Q has conformal weight 1/2. It follows that the commutators

[Q,K] should generate weight −1/2 generators. These are the superconfor-

mal supercharges denoted SαA and SAα̇ . The SU(N) group theory requires

that {QA
α , S

B
β̇
} = 0, but

{QAα , SβB} = c1σ
µν
αβδ

A
BMµν + c2εαβR

A
B + c3εαβδ

A
BD.

In the special case of N = 4 one can impose RAA = 0, so that the R-

symmetry group is SU(4). The supergroup is then called PSU(2, 2|4).

Given normalization conventions, the coefficients ci can be determined by

analyzing the Jacobi identities.

An alternative approach is to use the defining representation of the su-

peralgebra in terms of supermatrices. In the case of SU(M |N) they have

M +N rows and columns which can be written in block form

X =

(
A B

C D

)
,

where A is M ×M hermitian, D is N ×N hermitian and B = C† is M ×N
fermionic. Also, the supertrace vanishes:

StrX = trA− trD = 0.

You are asked to explore this algebra in a homework problem. In this no-

tation, the generators of the supergroup PSU(2, 2|4) are assembled in a
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supermatrix of the form

X =




1
2Mµν(σµν)αβ +Dδαβ Kµ(σµ)αβ̇ SαB

Pµ(σµ)α̇β
1
2Mµν(σµν)α̇β̇ −Dδα̇β̇ Qα̇B

QAβ SAβ̇ RAB


 .

2

EXERCISE 12.9

Explain why the operators defined in Eq. (12.122) can be related to multi-

trace operators for n > N .

SOLUTION

The operators

OI1I2···In = Tr
(
φI1φI2 · · ·φIn

)
+ . . .

are totally symmetric and traceless, which ensures that these are chiral pri-

mary operators. For example,

OIJ = Tr
(
φIφJ

)
− 1

6
δIJ
(
φKφK

)
.

These conditions imply that O belongs to an irreducible representation of

the SU(4) R-symmetry group. The case n = 1 vanishes because the fields

are N × N traceless hermitian matrices as appropriate for the Lie algebra

of SU(N). The claim is that for n > N operators of this type can be re-

expressed as products of traces up to terms that involve commutators, which

can be ignored since they are descendent operators.

To make the argument, one can assume that the fields are commuting,

since this only involves dropping commutators. Since each field has N−1 in-

dependent eigenvalues, there are N−1 algebraically independent symmetric

monomials made from these eigenvalues. In the case of SU(N) these inde-

pendent monomials have order n = 2, 3, . . . , N . This is the same reasoning

by which one argues that these are the orders of the independent Casimir

invariants of SU(N). 2

12.4 Gauge/string duality for the conifold and generalizations

The duality between type IIB superstring theory in an AdS5×S5 background

with N units of flux and N = 4 super Yang–Mills theory with gauge group

SU(N) is the simplest example of a large class of string theory/gauge theory

dualities. This section says a little bit about some other examples.
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Other gauge/string dualities

In Section 12.1 we found that the metric for an extremal black D3-brane is

ds2 = H
−1/2
3 dx · dx+H

1/2
3 (dr2 + r2dΩ2

5), (12.140)

where H3 = 1+(R/r)4 and dx ·dx is the four-dimensional Minkowski metric

on the brane. The horizon is at r = 0, and the near-horizon geometry is

AdS5 × S5. There are also N units of five-form flux, and

R4 = λ`4s , (12.141)

where λ = g2
YMN = 4πgsN . In this section we wish to consider general-

izations of this construction that are obtained by replacing the S5 by other

compact Einstein spaces.19 In other words,

ds2 = H
−1/2
3 dx · dx+H

1/2
3 (dr2 + r2ds2

5), (12.142)

where ds2
5 is the metric of the Einstein space.

Other N = 4 examples

The six-dimensional metric dr2 + r2ds2
5 describes a cone. In fact, for any

choice of ds2
5, other than a unit five-sphere, there is a singularity at the tip

of the cone, r = 0. The physical interpretation is that N D3-branes are

localized at this conical singularity. Another example that is still maximally

supersymmetric is obtained by making antipodal identifications of the five-

sphere, which amounts to replacing it by the smooth space � P 5. There are

actually a few distinct ways to carry out this construction. Depending on

this choice, the dual N = 4 super Yang–Mills theory has a gauge group that

is either SO(2N), SO(2N + 1) or USp(2N).

N = 2 examples

Another class of possibilities is to replace the sphere by an orbifold of the

sphere S5/Γ, where Γ is a suitably chosen discrete group of SU(2) such as�
n. In this case, half the supersymmetry is broken so that the dual gauge

is an N = 2 superconformal Yang–Mills theory. In such examples the gauge

group is typically a product group
∏
SU(Ni). In addition to the vector

multiplets it contains hypermultiplets that transform as bifundmentals of

the form (Ni,Nj). For example, in the case of
�

2 one obtains the gauge

group SU(N)× SU(N) with hypermultiplets that transform as (N,N) and

(N,N).

19 An Einstein space is one for which Rmn = cgmn, that is, the Ricci tensor is proportional to
the metric tensor.
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N = 1 examples

The five-dimensional space X5 is called a Sasaki–Einstein space, if it is an

Einstein space and if the six-dimensional cone over X5 is a noncompact

Calabi–Yau space (with a conical singularity). Then 3/4 of the supersym-

metry is broken. Therefore, the dual gauge theory on the world-volume

of the D3-branes should be an N = 1 superconformal gauge theory. The

formula for the AdS radius is modified to

R4 = 4πλ`4s
Vol(S5)

Vol(X5)
. (12.143)

For this ratio to be meaningful, it is important to choose coordinates in

which Rmn = gmn for the Sasaki–Einstein space.

T 1,1 and the conifold

Chapter 10 introduced a noncompact Calabi–Yau space, called the conifold,

with this structure. Recall that it was defined as a hypersurface in � 4 by the

simple equation
∑

(wA)2 = 0. In this case, the five-dimensional space X5

is T 1,1 = SU(2)× SU(2)/U(1), which has SU(2)× SU(2)× U(1) isometry.

T 1,1 is the simplest nontrivial case of a Sasaki–Einstein space. Its metric was

given in Chapter 10. As was explained there, it has the topology S3 × S2.

This example is the simplest case of an infinite family of possible choices.

This section explores this example in some detail, and then comments very

briefly on the other ones. The bulk theory contains vector superfields that

realize the SU(2)×SU(2) symmetry. There is also a U(1) gauge field in the

AdS5 supergravity multiplet. As is always the case, these local symmetries

of the bulk theory correspond to global symmetries of the dual gauge theory.

In particular, the part coming from the supergravity multiplet, which is U(1)

in this case, is dual to the global R symmetry of the gauge theory. This R

symmetry is contained in the superconformal algebra SU(2, 2|1).

The dual gauge theory

Let us now describe the gauge theory in more detail. The T 1,1 space can be

obtained by smoothing out the
�

2 orbifold theory described above. This fact

allows us to deduce that this is also an SU(N)×SU(N) gauge theory. Each

N = 2 hypermultiplet decomposes into two N = 1 chiral supermultiplets.

Thus, the gauge theory has two chiral superfields, denoted Ai, transforming

under the gauge group as (N,N) and two chiral superfields, denoted Bi,

transforming as (N,N). The Ai fields form a doublet of one SU(2) symmetry

and the Bi fields form a doublet of the other SU(2). All four fields Ai and
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Bi have R-charge equal to 1/2, a result that is determined by anomaly

cancellation.

The superconformal symmetry group implies an inequality between the

R-charge and the dimension

∆ ≥ 3R/2, (12.144)

which is analogous to a BPS bound. The A s and B s are chiral fields that

saturate this bound, and therefore their dimensions are determined by their

R-charges. Thus, they have dimension ∆ = 3/4.20 Since the naive dimension

is 1, this means that these fields have anomalous dimension ∆a = −1/4. The

superpotential, which is required to have dimension equal to three and R-

charge equal to two, is of the form

W ∼ tr(A1B1A2B2 − A1B2A2B1). (12.145)

This is the unique structure with these values that respects all the local and

global symmetries.

A test of the duality

Many tests of this duality have been carried out successfully. Let us describe

one of these results. To make a comparison to the bulk theory, one must

form gauge-invariant operators. The appropriate ones in this case are

Ok = tr (Ai1Bj1 . . . AikBjk) . (12.146)

These are chiral primary operators if the i s and j s are separately sym-

metrized. Then this operator belongs to the (k + 1,k + 1) representation

of the global SU(2) × SU(2). The R-charge of these operators is k and

the dimension is ∆k = 3k/2. The duality requires that the bulk theory

should have corresponding scalar fields belonging to short supermultiplets

with mass given by m2
k = ∆k(∆k− 4) as in Eq. (12.116). The Kaluza–Klein

analysis of the scalar modes on T 1,1 gives precisely such states with the

correct SU(2)× SU(2)× U(1) quantum numbers.

Adding fractional D3-branes

The fun really starts when we add wrapped D5-branes to the previous con-

struction. This breaks the AdS symmetry and take us out of the realm of

conformal symmetry for the dual gauge theory. This is significant, because

then many physically important phenomena appear. There are various ways

20 These fields are allowed to violate the unitarity bound ∆ ≥ 1, because that bound only applies
to gauge-invariant operators.
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one can add D5-branes. They could wrap the entire T 1,1, its three-cycle or

its two cycle. As in Section 10.2, we wish to consider the case in which M

D5-branes wrap the two-cycle at the base of the deformed conifold geome-

try. As was explained there, when such fractional D3-branes are included,

the geometry undergoes a logarithmic warping, but supersymmetry remains

unbroken, since the relevant three-form flux is primitive.

The effect of the D5-branes on the gauge symmetry can be understood

as follows. Suppose that there is only one of them and it is somehow held

at a nonzero value r = r0. Then it forms a domain wall in five dimensions

separating the regions r < r0 and r > r0. As one crosses the domain

wall, the gauge symmetry changes from SU(N) × SU(N) for r < r0 to

SU(N)×SU(N + 1) for r > r0. Iterating this M times, and letting r0 → 0,

one deduces that, when there are M D5-branes, in addition to the usual N

D3-branes, at the tip of the conifold the gauge symmetry is

SU(M +N)× SU(N). (12.147)

More precisely, this is the gauge symmetry in the ultraviolet, which corre-

sponds to large r. The four chiral superfields then belong to the representa-

tion (M + N,N) and its complex conjugate. It was shown in Section 10.2

that the warp factor is modified to the form21

e−4A(r) =
L4

r4
log(r/rs), L2 =

9gsMα′

2
√

2
. (12.148)

This logarithmic warping of the AdS geometry implies that the dual N = 1

gauge theory with M > 0 is no longer conformal, and therefore it has a

nontrivial renormalization group flow. The details are described below.

R-symmetry breaking

One consequence of the addition of the fractional D3-branes is to break

the U(1) gauge symmetry of the bulk theory and the dual global U(1) R

symmetry of the gauge theory. These phenomena can be explored separately

and shown to match as required.

In the gauge theory withM > 0 the U(1) R-symmetry current Jµ develops

an anomaly. By computing the appropriate one-loop triangle diagrams, as

described in Exercise 12.8, one finds that

∂µJ
µ =

M

16π2

(
F aµνF̃

aµν −GbµνG̃bµν
)
, (12.149)

where F aµν are SU(M+N) field strengths andGb
µν are SU(N) field strengths.

21 Various constants that were presented in Section 10.2 are absorbed in the parameter rs here.
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The integrated expression is the same as what one gets by shifting a θ

parameter by π/M , and therefore the R symmetry is broken to the discrete

group
�

2M .

In the bulk theory, the U(1) gauge field eats a scalar field, thereby breaking

the U(1) gauge symmetry spontaneously. The scalar field that is eaten

is the one that is dual to the operator F a
µνF̃

aµν − GbµνG̃
bµν . In terms of

the geometry, the U(1) symmetry appears as symmetry under shifts of the

coordinate β introduced in Section 10.2. However, after the fractional D3-

branes are introduced, there is also a nonzero R–R potential C2 that shifts

by C2 → C2 +Mα′εω2 when β → β + ε. Integrating this over the S2 inside

T 1,1, one deduces that the symmetry is broken to discrete shifts by multiples

of π/M , that is,
�

2M .

The duality cascade

The warp factor in Eq. (12.148) contains the factor log(r/rs). Using the rule

that r is proportional to energy scale in the gauge theory, this corresponds

to log(µ/Λ), where µ is the running scale and Λ is the fundamental scale of

the gauge theory. These formulas are well defined for large r and large µ. So

the question arises as to what happens as these are decreased and approach

the singularity. This is referred to as the flow to the infrared.

In the N = 4 theory, we had the relation g2
YM = 4πgs, which can be

re-expressed as α = gs, where α = g2
YM/4π. The generalization of this to

the N = 1 theory described by the warped conifold is

1

α1(µ)
+

1

α2(µ)
=

1

gs
. (12.150)

The index 1 refers to SU(M + N) and the index 2 refers to SU(N). The

dilaton is a constant in the warped conifold geometry, so this implies the

constancy of the left-hand side. This can be verified by computing the

one-loop beta functions of the gauge theory. The difference of the inverse

couplings exhibits the expected logarithmic running

1

α1(µ)
− 1

α2(µ)
=

3M

π
log(µ/Λ) + const. (12.151)

The coefficient on the right-hand side is easily computed in the gauge theory,

and it has been verified in the dual string geometry.

These formulas show that, as µ decreases, which corresponds to decreasing

r, 1/α1 decreases and 1/α2 increases. What happens when 1/α1 → 0? This

question needs to be answered both in the framework of the gauge theory

and the string theory. There is a beautiful answer in the gauge theory,

known as Seiberg duality.
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To cut a long story short, Seiberg showed that one can continue N =

1 gauge theories of this type across the singularity, provided one replaces

the gauge theory by a different one, called the Seiberg dual, on the other

side! For an SU(Nc) theory with Nc colors and Nf > Nc flavors (meaning

chiral superfields in the fundamental representation), the Seiberg dual is

an SU(Nf − Nc) gauge theory with Nf flavors.22 In the present context,

Nc = M + N and Nf = 2N . Therefore, the SU(M + N) gauge group

gets replaced with an SU(N −M) gauge group. Altogether, when the dust

settles, one has an SU(N) × SU(N −M) gauge theory that is isomorphic

to the theory one started with in the UV, with N replaced by N −M . This

process repeats k times as one flows to the infrared so long as N − kM

remains positive, and then it ends. For example, if N is an integer multiple

of M , the final gauge theory in the IR is N = 1 SU(M) gauge theory with

no chiral matter. The renormalization group flow is plotted in Fig. 12.9.

Confinement

N = 1 SU(M) gauge theory with no chiral matter is well known to exhibit

confinement and a mass gap. Also, it has a gaugino condensate that breaks

the discrete R symmetry
�

2M → �
2. So the question arises how these

features are manifested in the bulk string theory. The basic mechanism was

already hinted at in Chapter 10. The naked singularity in the metric at rs is

removed because the conifold becomes a deformed conifold. Recall that this

corresponds to a manifold given by an equation of the form
∑

(wA)2 = ε2.

The parameter ε is related to rs by ε ∼ r
3/2
s . This smooths out the tip of

the conifold and cuts off the space-time before one reaches a horizon. In

other words, r = 0 is no longer part of the space-time.

22 There are also some other fields that are not relevant to the present discussion.

α

g

logµ

α−1

−1

−1
S

1

2

Fig. 12.9. The renormalization group flow of the duality cascade.
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Sasaki–Einstein spaces

As stated earlier, Sasaki–Einstein spaces in five dimensions are defined to

be Einstein spaces, whose cones are Calabi–Yau three-folds. Such manifolds

can also be expressed as circle bundles over a four-dimensional Kähler base.

In the case of T 1,1 the explicit metric in Chapter 10 shows that the base is

S2 × S2, and the metric has SU(2)× SU(2)× U(1) isometry.

In 2004 an infinite family of new Sasaki–Einstein spaces, called Y p,q, where

p and q are coprime integers, were discovered. All of these spaces are topo-

logically S2×S3, but their isometry is only SU(2)×U(1)×U(1). Each of the

Y p,q Sasaki–Einstein spaces give rise to a dual N = 1 conformal field theory,

all of which have been identified. Moreover, the phenomena discussed above,

including a duality cascade when fractional D3-branes are present, occur for

each of these theories. In 2005 an even larger set of Sasaki–Einstein spaces,

denoted Lp,q,r, was constructed. These are also topologically S3 × S2, but

their isometry is further reduced to U(1)×U(1)×U(1). One now has a rich

set of examples with which to carry out many interesting studies of string

theory/gauge theory duality.

EXERCISES

EXERCISE 12.10

Verify the R-symmetry anomaly Eq. (12.149).

SOLUTION

If a classical Lagrangian has a chiral U(1) global symmetry, there can be

an anomaly due to one-loop triangle diagrams, which have one U(1) current

and two gauge fields attached. Each chiral fermion circulating in the loop

gives a contribution to the anomaly that is proportional to its U(1) charge.

In the case of a single gauge group G with field strength F a
µν , the formula is

∂µJ
µ =

K

32π2
F aµν F̃

aµν ,

where K =
∑
nmRm. Here, nm is the number of chiral fermions with

R-charge Rm. More precisely, in the case of SU(N), each fundamental rep-

resentation chiral fermion counts as nm = 1 and each adjoint representation

chiral fermion counts as nm = 2N .
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The chiral superfields Ai and Bi each have R = 1/2. The chiral fermions

in these multiplets, which are coefficients of θα, therefore have R-charge

−1/2. Similarly, the chiral gluinos have R = 1. Thus, in the case of the

SU(M +N) the total contribution is

K = 4N · (−1/2) + 2(M +N) · 1 = 2M

and in the case of SU(N)

K = 4(M +N) · (−1/2) + 2N · 1 = −2M.

There are the required results. 2

12.5 Plane-wave space-times and their duals

As was explained earlier, the tree-level approximation to the type IIB super-

string theory in an AdS5×S5 background, with N units of R–R flux through

the five-sphere, corresponds to the planar approximation to the dual N = 4

super Yang–Mills theory with an SU(N) gauge group. Both sides of this

duality, even for the planar/tree-level approximation, are difficult. With

great effort, one can compute a few order in λ in the field theory and a few

orders in α′ in the string theory. However, these are expansions in opposite

limits and cannot be compared.

Compared with superstring theory in flat space, there are two severe com-

plications. One is that the background geometry causes the world-sheet

theory to be a nonlinear system. Thus, solving classical string theory in

this geometry is mathematically the same as solving a complicated inter-

acting two-dimensional quantum field theory. The second difficulty is that

the background includes nonzero R–R gauge fields, specifically the self-dual

five-form field strength that threads the five-sphere with N units of flux.

The RNS formalism is not capable of handling R–R backgrounds, so one

is forced to use the GS formalism. This formalism is notoriously difficult

to quantize, especially if one wants to keep the symmetries of the geometry

manifest.

The type IIB plane-wave

There is a plane-wave limit of AdS5×S5 geometry that can be defined that

gives a space-time of intermediate complexity between AdS and flat space-

time, which is also maximally supersymmetric. In this geometry it is more

difficult to define the duality, because there is not a well-defined dual gauge-

theory. Instead, one has to consider limits of appropriately defined families
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of correlation functions. This can be done analytically, however, and the

duality can be subjected to nontrivial tests. Let us discuss the string theory

side of the story first.

The geometry is a product of two factors, one for the AdS space and one

for the sphere:

ds2(AdS5) = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3), (12.152)

ds2(S5) = R2(cos2 θ dφ2 + dθ2 + sin2 θ dΩ̃2
3). (12.153)

The appropriate limit to consider is an example of a type of limit proposed

by Penrose and therefore called a Penrose limit. The idea is to blow up the

neighborhood of a light-like trajectory in the space-time in such a way as to

obtain a nontrivial limit. Specifically, we wish to focus on the neighborhood

of a point moving around a circumference of the sphere with the speed of

light.

In order to implement the desired Penrose limit, let us define new coor-

dinates as follows:

r = R sinh ρ, y = R sin θ, (12.154)

x+ = t/µ, x− = µR2(φ− t). (12.155)

Here, µ is an arbitrary mass scale introduced so that x± have dimensions

of length. By rescaling x+ and x−, µ could be set equal to one without loss

of generality, but this won’t be done. The coordinate x− has period 2πµR2

as a consequence of its dependence on φ, and so the conjugate (angular)

momentum is P− = J/µR2, where J is an integer. This integer is interpreted

in the dual gauge theory as the R charge associated with an arbitrarily

chosen U(1) subgroup of the SU(4) R symmetry.

Now consider the infinite-radius limit R→∞, holding r, y, x± fixed. This

gives the plane-wave geometry23

ds2 = 2dx+dx− + g++(xI)(dx+)2 +
8∑

I=1

dxIdxI , (12.156)

where

g++(xI) = −µ2(r2 + y2). (12.157)

23 This is a special case of a plane wave. The general definition allows g++ = AIJ (x+)xIxJ . The
term pp-wave is frequently used.
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The radial coordinates r and y are defined by

r2 =
4∑

1

(xI)2 and y2 =
8∑

5

(xI)2. (12.158)

Note that the limit µ→ 0 gives flat ten-dimensional Minkowski space-time.

The dimensionless statement is µα′P− → 0.

As far as the space-time geometry is concerned, there is SO(8) rotational

symmetry in the eight transverse directions. However, this symmetry is

broken to SO(4)×SO(4) by the R–R five-form field strength, which (in the

limit) has the form

F5 ∼ µdx+ ∧ (dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dx5 ∧ dx6 ∧ dx7 ∧ dx8). (12.159)

The limiting solution has just as much symmetry as the original one; it is

still a maximally symmetric space-time. In fact, its supergroup of isometries

is a Wigner–Inönü contraction of the original PSU(2, 2|4) supergroup.

The complicated AdS5 × S5 GS world-sheet action, mentioned above,

simplifies dramatically in the plane-wave limit, especially if one chooses light-

cone gauge x+ = P−τ .24 For this choice, one finds that the action is a

free two-dimensional field theory! The only modification of the flat-space

light-cone gauge world-sheet action, described in Chapter 5, is that the

eight world-sheet bosons xI and the eight world-sheet fermions Sa are now

massive, with mass µ. Thus, the xI , for example, satisfy a two-dimensional

Klein-Gordon equation, rather than a two-dimensional wave equation. To

be explicit, the light-cone gauge world-sheet action takes the form

S =
1

2πα′

∫
d2σ
(1

2
(ẋ2 − x′2 − µ2x2) + iS̄(ρ · ∂ + µΓ∗)S

)
. (12.160)

The matrix Γ∗ = Γ1Γ2Γ3Γ4 = Γ5Γ6Γ7Γ8, where these matrices Γ8 are SO(8)

gamma matrices. Normally, the last product should also contain a factor Γ9.

That is not shown because the chiral spinor S satisfies Γ9S = S. Because

of the matrix Γ∗, the fermion mass term, which arises from the coupling to

F5, breaks the symmetry from SO(8) to SO(4)× SO(4), as expected. This

action has as much supersymmetry as in the flat-space µ = 0 limit.

It is easy to generalize the usual decomposition of the motion of a free

string in harmonic oscillators to this case. Fourier analysis and quantization

give harmonic oscillator operators satisfying

[aIm, a
J†
n ] = δIJδmn m,n ∈ �

, I, J = 1, 2, ..., 8. (12.161)

24 Many authors write P± rather that P∓. These are equivalent in flat space, where the former
notation is usually used. However, the latter is more precise, since momenta are naturally
one-forms.
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The mass terms in the world-sheet action mix left-movers and right-movers.

Therefore, it is convenient to allow mode numbers to run over all integers

rather than to treat left-movers and right-movers separately. In the limit

µ → 0, left-movers and right-movers would decouple and correspond to

positive and negative indices. Note also that the zero modes are described

by harmonic oscillators, rather than continuous momenta pI . This reflects

the fact that g++ acts like a confining quadratic potential restricting motion

into the transverse directions.

The frequency of the nth oscillator is

ωn =
√

1 + (n/µα)2, (12.162)

where α = α′P−. Then the light-cone Hamiltonian, which describes evolu-

tion in τ (and hence x+) is

H`c = µ

∞∑

n=−∞

8∑

I=1

ωna
I†
n a

I
n + fermions. (12.163)

The eigenvalues of this Hamiltonian give the allowed values of P+. The

zero-point energies of the bosons and fermions cancel, so no regularization

is required.

The Fock space is constrained by

∞∑

n=−∞

8∑

I=1

naI†n a
I
n + fermions = 0, (12.164)

which generalizes the usual level-matching condition. This constraint arises

as a consequence of translation symmetry of the spatial world-sheet coordi-

nate.

The dual gauge theory limit

Let us now consider the implications for the dual gauge theory. The Penrose

limit R→∞ corresponds to J,N →∞ with finite

λ′ = g2
YMN/J

2, (12.165)

which is the loop expansion parameter introduced by Berenstein, Maldacena,

and Nastase (BMN). By definition, BMN operators are the class of gauge-

invariant operators of the gauge theory that survive, with finite anomalous

dimension, in the Penrose/BMN limit.

The key duality formula relates the anomalous-dimension operator ∆a of
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a BMN operator to the light-cone gauge energy of the corresponding state

in the plane-wave string theory

∆a = ∆− J ↔ P+ = H`c. (12.166)

Here, ∆ denotes the dimension and J is the U(1) R charge. Note that

both of these become infinite in the limit under consideration, but that

the difference remains finite for BMN operators. Viewed in terms of global

coordinates, so that the dual gauge theory is defined on S3 rather than R3,

∆a can be alternatively interpreted as an energy. For half-BPS states, which

correspond to short representations, the anomalous dimension ∆a vanishes.

The BMN operators, by contrast, are not BPS, but they are kept sufficiently

close to BPS operators so that the anomalous dimension remains finite in

the limit. These operators are characterized by having an R charge J that

scales like N1/2 in the large N limit. For most operators the limit of ∆a

is infinite. Such operators are presumed to decouple in the Penrose/BMN

limit and are therefore not considered.

This duality can be tested perturbatively in three quantities

λ′ ↔ 1/(µα′P−)2, (12.167)

g2 = J2/N ↔ 4πgs(µα
′P−)2, (12.168)

1/J ↔ 1/(µR2P−). (12.169)

In each case, we have written dimensionless gauge-theory quantities on the

left and the corresponding string-theory quantities on the right. The λ′

expansion is the loop expansion in the gauge theory (for correlation functions

of BMN operators), and the g2 expansion is the loop expansion of the string-

theory description.

Since the plane-wave string theory is tractable, it is possible to obtain

results that are exact in their λ′ dependence. In special cases these results

can be reproduced in the dual field theory. Thus, for example, Fock-space

states of the form aI†n a
J†
−n|0〉 correspond to certain single-trace two-impurity

operators in the gauge theory. To leading order in g2 and 1/J , but all orders

in λ′, it has been verified in the gauge theory that, for these operators,

∆a = 2
√

1 + λ′n2 (12.170)

in agreement with expectations based on Eqs (12.162) and (12.163).

Some of the first-order corrections in g2 and 1/J have also been exam-

ined, and agreement with the duality predictions has been found. The g2

corrections are obtained by using the vertex operator of the light-cone gauge
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string field theory. (Its construction is a long story that we won’t pursue

here.) The 1/J corrections are obtained by keeping track of the leading

1/R2 corrections to the Penrose limit. This is straightforward, in principle,

but rather complicated in practice.

The M-theory plane-wave duality

Let us now mention the corresponding results for M-theory. The AdS4×S7

and the AdS7×S4 solutions have identical Penrose limits. This background

turns out to be given by

ds2 = 2dx+dx− + g++(xI)(dx+)2 +
9∑

I=1

dxIdxI , (12.171)

where

g++(xI) = −µ2((r3/3)2 + (r6/6)2). (12.172)

The coordinate r3 is the radial coordinate for three of the xI s and r6 is the

radial coordinate for the other six of them. The transverse symmetry in

this case is SO(3)×SO(6). The M theory four-form field strength takes the

form

F4 ∼ µdx+ ∧ dx1 ∧ dx2 ∧ dx3. (12.173)

The dual gauge theory in this case is a version of Matrix theory. It is a

massive deformation of the original Matrix-theory proposal for a dual de-

scription of M-theory in flat 11-dimensional space-time, which was discussed

in Section 12.2.

EXERCISES

EXERCISE 12.11

Starting from the light-cone gauge action in Eq. (12.160), generalize the

analysis given in Chapter 2 to derive the mode expansions of the bosonic

fields and the quantization conditions. Also, derive the corresponding for-

mulas for the fermions.
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SOLUTION

Varying the action gives the equation of motion

(−∂2
τ + ∂2

σ)XI −XI = 0,

where we have set µ = 1 for simplicity. Thus, the mode expansion of XI

can be written in the form

XI(σ, τ) = i

∞∑

n=−∞

1√
2ωnP−

(
e−iωnτaIn − eiωnτa†In

)
e−iknσ,

where

ωn =
√
k2
n + 1 and kn =

n

α′P−
.

The canonical quantization condition

[XI(σ), P J(σ′)] = iδIJδ(σ − σ′),

where

P I(σ, τ) = ẊI(σ, τ)/(2πα′),

gives the standard bosonic oscillator commutation relations in Eq. (12.161).

Similarly, for the fermions the equation of motion is

i(Ṡ + S′†) + Γ∗S = 0.

We have

Sa(σ, τ) =
∞∑

n=−∞

1√
4ωnP−

(
[Γ∗ + ωn − kn]Sane

−iωnτ

+[1− (ωn − kn)Γ∗]S†an e
iωnτ

)
e−iknσ.

Using the canonical quantization condition

{Sa(σ, τ), Sb†(σ′, τ)} = 2πα′δ(σ − σ′),

one obtains standard fermionic oscillator anticommutation relations

{Sam, Sb†n } = δm,nδ
ab m,n ∈ �

.

2
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12.6 Geometric transitions

The gauge theory that is dual to the flux model involving the type IIB super-

string theory on the deformed conifold was discussed earlier in this chapter.

It was emphasized that many other models describing supergravity/gauge

theory duals have been constructed. Some of these dual descriptions can be

obtained by analysis of a geometric transition.

Fig. 12.10. Geometric transitions and flops in M-theory.

The basic idea of a geometric transition is that a gauge theory describing

an open-string sector, that is, a gauge theory on D-branes, is dual to a

flux compactification of a particular string theory in which no D-branes

are present, but fluxes are present instead. In other words, as a modulus is

varied, there is a transition connecting the two descriptions. Many quantities

in the gauge theory, in particular the superpotential, can be computed in

terms of fluxes integrated over suitable cycles. Some of the models that are

related in terms of such a transition are displayed in Fig. 12.10. Let us now

explain the basic idea.

Recall that, in Chapter 9, the conifold was presented as an example of a

noncompact Calabi–Yau manifold that is described as a cone with an S2×S3

base. Two methods to blow up the singularity at the tip of the cone (r = 0)

were discussed. They give the deformed conifold and the resolved conifold.

In the former case the S3 is blown up, while in the later case the S2 is blown

up, so that the resulting geometry is nonsingular. These geometries can be
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related in terms of a conifold transition, in which the S3 shrinks to zero

size and the S2 is blown up. Both geometries play a role in the context

of geometric transitions, which link a series of gauge theory/supergravity

models. These dualities can be checked by computing the corresponding

topological string partition functions.25 This is beyond the scope of this

book, so here we settle for a description of the result.

The first geometric transition described in the lower two boxes of Fig. 12.10

is in the context of the type IIB theory. The precise statement is that the

gauge theory resulting from a system of D5-branes wrapping the S2 of the

resolved conifold undergoes a geometric transition in the strongly coupled

limit in which the S2 shrinks to zero size, but the theory avoids the singular-

ity as an S3 is blowing up. The resulting model has no D-branes but fluxes

that thread through the S3. Since two different geometries are related in

this process, the term geometric transition is used to describe it.

This type IIB process has a type IIA mirror dual, which is illustrated in

the two boxes appearing in the middle of the figure. In the mirror picture

a system of D6-branes wrapping the S3 of the deformed conifold undergoes

a geometric transition in which the S3 shrinks to zero size and an S2 is

blowing up. The resulting closed-string theory has fluxes threading through

the S2 but no branes. Again, there is a duality between an open-string

sector containing D-branes and a closed-string sector containing no branes.

An interesting result emerges once this type IIA theory is lifted to M-

theory. In this process the background becomes a G2-holonomy manifold,

described in terms of a cone with an S3× S̃3 base, as the S2 of the deformed

conifold is lifted to an S3. The 3-sphere S3 has finite size while S̃3 has

vanishing size at the tip of the cone. A so-called flop interchanges S3 and S̃3

leading to M-theory compactified on another G2-holonomy manifold. This

provides an alternative (geometrical) description of the type II geometric

transition, in terms of a flop in M-theory. Using dimensional reduction and

mirror symmetry, the complete duality chain presented in Fig. 12.10 can be

understood.

Geometric transitions provide a beautiful relation between gauge theories

and flux compactifications, similar in spirit to that discussed for the type

IIB theory on the deformed conifold in the previous section. Through a

series of string dualities several different theories can be related in terms

of the duality chain presented in Fig. 12.10. Using further string dualities,

geometric transitions also can be discussed in the context of the heterotic

string theory.

25 An alternative derivation can be obtained from the explicit string-theory backgrounds.
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HOMEWORK PROBLEMS

PROBLEM 12.1

Verify that Eqs (12.4) and (12.5) give a solution of the Killing spinor equa-

tion (12.3).

PROBLEM 12.2

Derive the temperature and entropy per unit p-volume of the nonextremal

black p-brane solution in Eq. (12.31).

PROBLEM 12.3

Derive Eq. (12.41) for the relation between the entropy of a black string

versus an array of black holes discussed in Section 12.1 in the context of the

Gregory–Laflamme instability.

PROBLEM 12.4

The superalgebra SU(M |N) can be represented by supermatrices, as sketched

at the end of Exercise 12.5. They can be written in block form

X =

(
A B

C D

)
,

where A is M ×M hermitian, D is N ×N hermitian and B = C† is M ×N
fermionic. Also, the supertrace vanishes: StrX = trA− trD = 0. Show that

commutation of these matrices defines a closed superalgebra that satisfies

the super Jacobi identities. Explain why a U(1) factor decouples for M = N .

PROBLEM 12.5

Consider SU(N) super Yang–Mills theory for D = 5 with 16 supercharges.

Determine the global R symmetry and the field content of this theory.

PROBLEM 12.6

Derive equation Eq. (12.101) from the three previous equations.

PROBLEM 12.7

Verify that the identification of coordinates in (12.99) relates the Poincaré

patch metric to the global AdS metric.
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PROBLEM 12.8

Derive the field equation following from the action Eq. (12.115). Show that

the solution for this equation is given in terms of Bessel functions whose

asymptotic behavior at z = 0 is of the form φ ∼ zα with α given by

Eq. (12.117).

PROBLEM 12.9

Consider the Born–Infeld action for a single probe D3-brane in an AdS5×S5

background. Show that, when the metric is expressed in terms of a radial

coordinate u = r/α′, all α′ dependence cancels. What do you think is the

significance of this result?

PROBLEM 12.10

The volume ratio in the formula for the AdS radius in Eq. (12.143) is deter-

mined in the dual gauge theory by certain gravitational anomalies that are

analogous to the R-symmetry anomalies considered in the text. In the case

of the conifold, the field theory analysis predicts that Vol(T 1,1) = 16
27Vol(S5).

By computing Vol(T 1,1) show that this is correct.

PROBLEM 12.11

Consider an An−1 singularity obtained by modding � 2 by
�
n

(z1, z2)→ (ωz1, ω
−1z2),

where ω = exp(2πi/n) is an nth root of unity. Consider Nn D5-branes in

the type IIB theory placed at (z1, z2) = (0, 0) and consider the action of�
n to correspond to permuting the Nn branes arranged in n groups of N

D5-branes. Using orbifold techniques, determine which gauge theory lives

on the branes.

PROBLEM 12.12

Consider the type IIB theory on a A2 singularity times a T 2. Describe

what the 1/4 BPS states of the SU(3) N = 4, D = 4 Yang–Mills theory

correspond in this picture. Hint: the three-string junction introduced in

Chapter 8 is relevant.

PROBLEM 12.13

Verify that the M2-brane solution in Section 12.1 is a solution of the field

equations if H satisfies the eight-dimensional Laplace equation and the warp

factor is that in Eq. (12.6). Repeat your calculation for the M5-brane de-

scribed in Section 12.1.
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PROBLEM 12.14

Using Eqs (12.55) to (12.60) show that the explicit form of the action for

Matrix theory takes the form of a sum

L = LY + LA + LG + Lfermi,

as stated in Eq. (12.61). The action for the fluctuations Y is

SY = i
∫
dτ
(

1
2Y

i
1 (∂2

τ − r2)Y i
1 + 1

2Y
i

2 (∂2
τ − r2)Y i

2 + 1
2Y

i
3∂

2
τY

i
3

−√gεa3dεcbdBi
3Y

j
a Y i

b Y
j
c − g

4ε
abeεcdeY i

aY
j
b Y

i
c Y

j
d

)
.

The action for the gauge field is

SA = i
∫
dτ
(

1
2A1(∂2

τ − r2)A1 + 1
2A2(∂2

τ − r2)A2 + 1
2A3∂

2
τA3

+2εab3∂τB
i
3AaY

i
b +
√
gεabc∂τY

i
aAbY

i
c

−√gεa3dεbcdBi
3AaAbY

i
c − g

2ε
abeεcdeAaY

i
bAcY

i
d

)
.

The action for the ghost fields is

SG = i
∫
dτ
(
C∗1(−∂2

τ + r2)C1 + C∗2(−∂2
τ + r2)C2 − C∗3∂2

τC3

+
√
gεabc∂τC

∗
aCbAc −

√
gεa3dεcbdBi

3C
∗
aCbY

i
c

)
.

Finally the action for the fermionic fields is

Sfermi = i
∫
dτ
(
ψT+(∂τ − vτγ1 − bγ2)ψ− +

√
g
2(Y i

1 − iY i
2 )ψT+γ

iψ3

+1
2ψ

T
3 ∂τψ3 +

√
g
2(Y i

1 + iY i
2 )ψT3 γ

iψ− − i
√

g
2(A1 − iA2)ψT+ψ3

+i
√

g
2(A1 + iA2)ψT−ψ3 −√gY i

3ψ
T
+γ

iψ− + i
√
gA3ψ

T
+ψ−

)
.

Derive the explicit form of SY, SA and Sfermi. In this last action new

fermionic fields were introduced

ψ+ =
1√
2

(ψ1 + iψ2) ψ− =
1√
2

(ψ1 − iψ2) .

Hint: once you decompose the fields of the theory in terms of Pauli matri-

ces according to Eq. (12.60), use the following decomposition the gamma

matrices appearing in the action Eq. (12.55)

Γ0 = σ3 ⊗ 1116×16, Γi = iσ1 ⊗ γi,
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where σi are Pauli matrices and γi are real and symmetric.

PROBLEM 12.15

Derive the equations of motion that follow from the Dp-brane action in

Eq. (12.18), and show that these equations are solved by Eqs (12.19), (12.20),

(12.21) and the flux given by Eq. (12.22).

PROBLEM 12.16

Generalize Problem 12.15 to show that the nonextremal Dp-branes described

by Eq. (12.31) are nonsupersymmetric solutions to the equations of motion

following from the action Eq. (12.18).

PROBLEM 12.17

Verify that the leading term in the large v large r expansion for Matrix

theory at one-loop is given by Eq. (12.70). Also, verify the numerical coef-

ficient.

PROBLEM 12.18

Show that the fermionic propagator in Eq.(12.66) is a solution to Eq.(12.65).



Bibliographic discussion

In the following we briefly indicate some of the main references for each of

the chapters other than the introductory one. Many more works are listed at

the end than are mentioned in the discussion. The subject is so vast that it is

impossible to include every important contribution. We apologize in advance

for any omissions. Additional bibliographic discussions and references can

be found in the previous books Green, Schwarz and Witten (1987), referred

to as GSW, Polchinski (1998) and Zwiebach (2004). In addition to these,

other previous string theory books include Kaku (1988, 1991, 1999, 2000),

Polyakov (1987b), Lüst and Theisen (1989), Kiritsis (1998), Johnson (2003),

Hori et al. (2003), Douglas et al. (2004) and Szabo (2004).

Most contributions since 1991 have been posted on the eprint archives.

Thus, for example, an article whose listing includes the information E-print

hep-th/9612080 can be found on the internet at http://arxiv.org/abs/hep-

th/9612080. This gives a page containing the abstract of the article as well

as links to PostScript and PDF versions of the entire manuscript.

Chapter 2

While there is an important prehistory that set the scene, discussed in GSW,

string theory begins with the discovery of a four-particle scattering ampli-

tude for open strings in Veneziano (1968). This was rapidly generalized

to multiparticle amplitudes and closed-string amplitudes. The recognition

that these amplitudes actually describe one-dimensional extended objects

(strings) was made independently in Nambu (1970a), Nielsen (1970) and

Susskind (1970).

The formula for the string action as the area of the world sheet was intro-

duced independently in Nambu (1970b), Goto (1971) and Hara (1971). The

690
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harmonic-oscillator operator description of the string spectrum and ampli-

tude was introduced in Fubini, Gordon and Veneziano (1969) and developed

in Fubini and Veneziano (1969, 1970, 1971). The Virasoro constraints first

appear in Virasoro (1970). The central extension (or conformal anomaly)

in the Virasoro algebra was discovered by J. Weis (unpublished). The first

indication of the critical dimension D = 26 was obtained in Lovelace (1971).

Two different proofs of the no-ghost theorem were presented in Brower

(1972) and Goddard and Thorn (1972). The latter is the one described

in the text. The interpretation of the relation between the critical dimen-

sion and the mass of the ground state in terms of zero-point fluctuations

was given in Brink and Nielsen (1973).

Light-cone gauge quantization of the Nambu–Goto action was worked

out in Goddard, Goldstone, Rebbi and Thorn (1973). The string sigma-

model action with an auxiliary two-dimensional world-sheet metric tensor

was constructed independently in Brink, Di Vecchia and Howe (1976) and

Deser and Zumino (1976b). In fact, they also presented the generalization

to the RNS string of Chapter 4.

Review articles describing the developments in the early 1970 s are Alessan-

drini, Amati, Le Bellac and Olive (1971), Schwarz (1973), Veneziano (1974),

Rebbi (1974), Mandelstam (1974) and Scherk (1975). The first five of these

are reprinted in Jacob (1974), and the last one (Scherk) is reprinted in

Schwarz (1985).

Chapter 3

The modern path-integral treatment of string theory was initiated for the

bosonic string in Polyakov (1981a) and for the RNS string in Polyakov

(1981b). This led to an appreciation of the importance of conformal symme-

try and the significance of the conformal anomaly. The Polyakov approach

was developed in Friedan (1984) and Alvarez (1983).

Important original papers developing the techniques of two-dimensional

conformal field theory include Belavin, Polyakov and Zamolodchikov (1984)

and Friedan, Qiu and Shenker (1984). Minimal models, in particular, first

appear in these papers. The construction of conformal field theories associ-

ated with Lie groups was developed in Witten (1983, 1984), while the coset

construction given in the text is based on Goddard, Kent and Olive (1985).

Useful reviews of two-dimensional conformal field theory include Goddard

and Olive (1986), Moore and Seiberg (1989), Lüst and Theisen (1989) and

Ginsparg (1991).
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The BRST symmetry of Becchi, Rouet and Stora (1974, 1976) and Tyutin

(1975) was first applied to string theory in Kato and Ogawa (1983).

The calculation of beta functions of two-dimensional sigma models was ex-

plained in Alvarez-Gaumé, Freedman and Mukhi (1981) and Friedan (1985).

This was applied to the string world-sheet action in the presence of back-

ground fields in Callan, Friedan, Martinec and Perry (1985). The subject is

reviewed in Callan and Thorlacius (1989) and Tseytlin (1989). The linear

dilaton theory is discussed in Chodos and Thorn (1974) and Myers (1987).

Witten’s open-string field theory is presented in Witten (1986).

Chapter 4

The RNS model originated with the construction of a free wave equation

for fermionic strings in Ramond (1971) and the discovery of the interacting

bosonic sector in Neveu and Schwarz (1971). The formalism was devel-

oped further in Neveu, Schwarz and Thorn (1971) clarifying how the super-

Virasoro constraints are implemented. The no-ghost theorem was proved

in Goddard and Thorn (1972), Schwarz (1972) and Brower and Friedman

(1973).

The global world-sheet supersymmetry of the gauge-fixed RNS model

was first explained in Gervais and Sakita (1971). This supersymmetric

theory was understood at about the same time as the discovery of the

four-dimensional super-Poincaré algebra in Gol’fand and Likhtman (1971).

Moreover, the Gervais–Sakita work motivated the construction of super-

symmetric theories in four dimensions in Wess and Zumino (1974). Two-

dimensional superspace was introduced in Fairlie and Martin (1973) and

Montonen (1974), while four-dimensional superspace first appears in Salam

and Strathdee (1974). Following the development of N = 1 supergravity in

four dimensions in Freedman, van Nieuwenhuizen and Ferrara (1976) and

Deser and Zumino (1976a), a locally supersymmetric world-sheet action was

constructed in Brink, Di Vecchia and Howe (1976) and Deser and Zumino

(1976b). This action was utilized in Polyakov (1981b).

Gliozzi, Scherk and Olive (1976, 1977) discovered that, when the ten-di-

mensional RNS string spectrum is projected in the manner described in the

text, the number of bosons and fermions agrees at every mass level, as is

required for unbroken space-time supersymmetry. They also constructed

ten-dimensional super Yang–Mills theory (as well as its various dimensional

reductions and truncations), as did Brink, Schwarz and Scherk (1977).

The application of the BRST formalism to the construction of the fermion
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emission vertex operator was developed in Friedan, Martinec and Shenker

(1986) and Knizhnik (1985). This was not described in this book.

Chapter 5

The formalism with manifest space-time supersymmetry was developed by

Green and Schwarz in the period 1979–84. The light-cone gauge formalism

was found first and utilized to prove the supersymmetry of the GSO pro-

jected theory. In particular, the type I, type IIA and type IIB superstring

theories were identified and named. The spectra of these theories were ana-

lyzed and various amplitudes were computed in Green and Schwarz (1981a,

1981b, 1982). This work is reviewed in Schwarz (1982b) and Green (1984).

Brink and Schwarz (1981) found a covariant and supersymmetric action

for a massless superparticle. This corresponds to the massless limit of the

D0-brane action described in the text. Following the observation that this

action possesses local kappa symmetry in Siegel (1983), Green and Schwarz

(1984a) constructed the covariant superstring action with local kappa sym-

metry. The light-cone gauge results can be obtained by gauge-fixing this

action, but covariant quantization of the GS action has proved elusive.

The history of anomalies in gauge theories is discussed in GSW. Gravi-

tational anomalies in arbitrary dimensions were first systematically investi-

gated in Alvarez–Gaumé and Witten (1984). In particular, it was proved

that the gravitational anomalies cancel in type IIB supergravity and hence

in type IIB superstring theory. Following this, Green and Schwarz (1985)

computed the hexagon diagram contribution to the gauge anomaly in type

I superstring theory and found that the cylinder and Möbius strip contri-

butions cancel for the gauge group SO(32). Using the results of Alvarez–

Gaumé and Witten (1984), Green and Schwarz (1984b) found that all gauge

and gravitational anomalies could cancel provided the gauge group is either

SO(32) or E8×E8. The analysis presented in the text is somewhat simpler

than in the original paper, because it utilizes techniques developed later

in Morales, Scrucca and Serone (1999), Stefanski (1999) and Schwarz and

Witten (2001). Harvey (2005) reviews the subject of anomalies.

Chapter 6

T-duality symmetry is manifest in formulas given in Green, Schwarz and

Brink (1982), but it was first discussed explicitly in Kikkawa and Yamasaki

(1984). The T-duality transformations of constant background fields were
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derived in Buscher (1987, 1988). T-duality was reviewed in Giveon, Porrati

and Rabinovici (1994) and Alvarez, Alvarez-Gaumé and Lozano (1995).

The subject of D-branes originated in works of Dai, Leigh and Polchin-

ski (1989) and Leigh (1989). However, it did not achieve prominence until

Polchinski (1995) pointed out that D-branes in superstring theories carry

R-R charges. Some results were anticipated in Shenker (1991). Other in-

sights into D-brane physics were provided in Bachas (1996) and Douglas,

Kabat, Pouliot and Shenker (1997). The subject of D-branes was reviewed

in Polchinski (1997). Johnson (2003) is a book about D-branes. For reviews

of the properties of non-BPS D-branes see Sen (1999) and Schwarz (2001).

Chan–Paton charges were introduced to describe U(N) symmetry in the

very early days of string theory in Paton and Chan (1969), but it took more

than another quarter century until Witten (1996a) pointed out that these

rules describe coincident D-branes. In the interim Neveu and Scherk (1972)

noted that the Chan–Paton symmetry is a local gauge symmetry. The Chan–

Paton construction was generalized to orthogonal and symplectic groups in

Schwarz (1982a) and Marcus and Sagnotti (1982).

The generalization of the Dirac quantization condition to p-branes was dis-

covered independently in Nepomechie (1985) and Teitelboim (1986a, 1986b).

The fact that D-brane charges should be understood mathematically as K-

theory classes was pointed out in Minasian and Moore (1997) and elucidated

in Witten (1998c) and Hořava (1999). Sen (1998c, 1998d, 1999) also con-

tributed important insights.

The appearance of the Born–Infeld action as an effective action in string

theory is due to Fradkin and Tseytlin (1985a, 1985b, 1985c). It was ex-

tended to superstrings in Callan, Lovelace, Nappi and Yost (1997, 1998).

Kappa-symmetric D-brane actions were constructed by several groups: Ced-

erwall, von Gussich, Nilsson and Westerberg (1997), Aganagic, Popescu and

Schwarz (1997a, 1997b), Bergshoeff and Townsend (1997) and Cederwall,

von Gussich, Nilsson, Sundell and Westerberg (1997). The study of non-

abelian Born–Infeld theory in string theory was pioneered in Tseytlin (1997).

The work on the nonabelian world-volume theory of coincident D-branes,

and the discovery of the Myers effect, is contained in Myers (1999). Re-

views of Born–Infeld theory and brane dynamics include Giveon and Ku-

tasov (1999) and Tseytlin (2000).

Chapter 7

Shortly after Green and Schwarz (1984b) showed that an anomaly-free su-

persymmetric theory in ten dimensions could have SO(32) or E8 × E8
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gauge symmetry, the heterotic string theory was constructed in Gross, Har-

vey, Martinec and Rohm (1985a, 1985b, 1986). They presented both the

fermionic and the bosonic constructions. Some of the mathematical back-

ground required for the bosonic construction had been explained previously

for physicists in Goddard and Olive (1985).

Toroidal compactification of the heterotic string was first studied in Narain

(1986). The associated moduli space, parametrized by constant background

fields, was identified in Narain, Sarmadi and Witten (1987). This was de-

scribed in terms of a low-energy effective action in Maharana and Schwarz

(1993).

Chapter 8

The action for eleven-dimensional supergravity was constructed in Crem-

mer, Julia and Scherk (1978). The type IIA supergravity action is obtained

by dimensional reduction of eleven-dimensional supergravity. The formulas

given in the text differ somewhat from those in the literature. The effec-

tive action for type I supergravity coupled to super Yang–Mills theory was

constructed in Bergshoeff, de Roo, de Wit and Van Nieuwenhuizen (1982)

and Chapline and Manton (1983). This was supplemented by some higher-

dimension terms required for anomaly cancellation in Green and Schwarz

(1984b). Type IIB supergravity was constructed in Schwarz and West

(1983), Schwarz (1983) and Howe and West (1984). The heterotic string

effective action and its S-duality relationship to the type I supergravity ac-

tion was given in Witten (1995).

Electric-magnetic duality symmetry in Yang–Mills theory was first pro-

posed in Montonen and Olive (1977). The conjecture was sharpened to

N = 4 theories in Osborn (1979). The subject is reviewed in Harvey (1997).

The notion of S-duality in string theory was first conjectured in Font,

Ibañez, Lüst and Quevedo (1990) for the heterotic string compactified on

T 6. This was pursued in subsequent years in Sen (1994a, 1994b) and Schwarz

(1993). The duality was explained for N = 2 gauge theories in Seiberg and

Witten (1994a, 1994b). Hull and Townsend (1995) proposed the SL(2,
�

)

S-duality of type IIB superstring theory as well as the En(
�

) U-duality gen-

eralizations. Evidence for the S-duality relationship between type I super-

string theory and the SO(32) heterotic string theory was given in Polchinski

and Witten (1996).

The proposal that type IIA superstring theory becomes 11-dimensional

at strong coupling was made in Townsend (1995) and Witten (1995). This

relationship had been hinted at in Duff, Howe, Inami and Stelle (1987),
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which related the 11-dimensional supermembrane of Bergshoeff, Sezgin and

Townsend (1987, 1988) to the ten-dimensional type IIA GS string. The

term M-theory was introduced by Witten in 1995 lectures given at the IAS.

The 11-dimensional interpretation of the strongly coupled E8×E8 heterotic

string is due to Hořava and Witten (1996a, 1996b).

The use of the duality between M-theory on T 2 and type IIB superstring

theory on S1 as a way of understanding the S-duality of the type IIB the-

ory was given in Aspinwall (1996) and Schwarz (1996a, 1996b). The ex-

istence of an infinite SL(2,
�

) multiplet of type IIB strings is pointed out

in Schwarz (1995). An interpretation as bound states was given in Wit-

ten (1996a). Review articles discussing M-theory and superstring dualities

include Townsend (1996b), Schwarz (1997), Vafa (1997), Sen (1998b) and

Obers and Pioline (1999).

Chapter 9

Kaluza (1921) and Klein (1926) proposed unifying electromagnetism and

Einstein’s theory of gravity in four dimensions by compactifying five-dimen-

sional Einstein gravity on a circle. The generalization and application of

this idea to 11-dimensional supergravity was an active subject in the early

1980 s. Reviews of Kaluza–Klein supergravity include Duff, Nilsson and

Pope (1986), Townsend (1996b) and Overduin and Wesson (1997).

Compactification of string theory with an internal six-dimensional Calabi–

Yau manifold was given in Candelas, Horowitz, Strominger and Witten

(1985). The literature on Calabi–Yau manifolds is very large. Some ba-

sics appears in chapter 16 of GSW and Candelas (1987). A more elaborate

discussion appears in Hübsch (1992). An advanced and detailed description

is given in Hori et al. (2003). Orbifolds were first introduced in Dixon,

Harvey, Vafa and Witten (1985, 1986), and their CFT description was de-

veloped in Dixon, Friedan, Martinec and Shenker (1987). Reviews of special

holonomy manifolds include Joyce (2000), Acharya and Gukov (2004) and

Gubser (2004).

The local constraints imposed by N = 2, D = 4 supersymmetry were

derived in special coordinates in De Wit, Lauwers and van Proeyen (1985).

A global description of special geometry was developed in Strominger (1990).

The form of the prepotential and the geometry of the moduli space of Calabi–

Yau manifolds were derived in Candelas, De la Ossa, Green and Parkes

(1991) using mirror symmetry. In the same paper, it was shown that conifold

singularities appear in the moduli space of classical string vacua. The first

evidence of mirror symmetry was found in Candelas, Lynker and Schimmrigk
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(1990) and Greene and Plesser (1990). Strominger, Yau and Zaslow (1996)

interpreted mirror symmetry in terms of T-duality.

Strominger (1995) showed that massless black holes coming from branes

wrapped around the supersymmetric cycles introduced in Becker, Becker

and Strominger (1995) give nonperturbative corrections to the low-energy

effective action, and that the singularity pointed out in Becker, Becker and

Strominger (1995) is lifted. This was explored further in Greene, Morrison

and Strominger (1995).

The duality between M-theory on K3 and the heterotic string on T 3 was

one of many dualities introduced in Witten (1995). F-theory was introduced

in Vafa (1996) following related studies of cosmic strings in Greene, Shapere,

Vafa and Yau (1990).

Chapter 10

Flux compactifications were introduced in Strominger (1986) and De Wit,

Smith and Hari Dass (1987) as a generalization of conventional Calabi–Yau

compactifications. Such compactifications include a warp factor, so that the

ten-dimensional metric is no longer a direct product of the external and in-

ternal space-time. No-go theorems implied that in most cases such theories

reduce to ordinary Calabi–Yau compactifications. However, with the devel-

opment of nonperturbative string theory and M-theory, it became evident

that the no-go theorems could be circumvented. Flux compactifications were

first studied in the context of M-theory in Becker and Becker (1996) and in

the context of F-theory in Dasgupta, Rajesh and Sethi (1999). Giddings,

Kachru and Polchinski (2002) explained how flux compactifications can give

a large hierarchy of scales. Graña (2006) reviews flux compactifications.

Gukov, Vafa and Witten (2001) made it evident that flux compactifica-

tions can lead to a solution of the moduli-space problem, since a nonvanish-

ing potential for the moduli fields is generated. This led to the introduction

of the string theory landscape, which describes a huge number of possible

string theory vacua, in Susskind (2003). Their properties were analyzed in

Douglas (2003) using statistical methods. Flux compactifications are dual

supergravity descriptions of confining gauge theories, as was pointed out in

Klebanov and Strassler (2000) and Polchinski and Strassler (2000). The idea

that a brane-world scenario provides an alternative to compactification was

introduced in Randall and Sundrum (1999b).

The application of flux compactifications to cosmology is an active area of

research. Kachru, Kallosh, Linde and Trivedi (2003) discussed the construc-

tion of long-lived metastable de Sitter vacua, and Kachru, Kallosh, Linde,
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Maldacena, McAllister and Trivedi (2003) discussed the application to in-

flation. Review articles on string cosmology include Linde (1999), Quevedo

(2002) and Danielsson (2005).

Chapter 11

The general relativity textbooks Wald (1984) and Carroll (2004) provide

useful background. Bekenstein (1973) proposed that the entropy of black

holes should be proportional to the area of the event horizon. The discovery

of black-hole radiation in Hawking (1975) confirmed previous indications

in Bardeen, Carter and Hawking (1973) of the thermodynamic behavior of

black holes. The information loss problem, which implies a possible break-

down of quantum mechanics, was pointed out in Hawking (1976). A sta-

tistical derivation of black-hole entropy using string theory techniques was

given first in Strominger and Vafa (1996). Review articles describing this

and other aspects of black holes in string theory are Sen (1998b), Maldacena

(1998a), Peet (2001) and Mathur (2006).

The attractor mechanism was introduced in Ferrara, Kallosh and Stro-

minger (1995). Our presentation follows Denef (2000). Black-ring solutions

were found in Emparan and Reall (2002). The conjecture relating micro-

scopic degeneracies to the topological string was proposed in Ooguri, Stro-

minger and Vafa (2004). The subject is reviewed in Pioline (2006). Our

discussion of microscopic black holes follows Dabholkar, Denef, Moore and

Pioline (2005).

Chapter 12

Black p-brane solutions were constructed in Horowitz and Strominger (1996).

Relevant reviews include Townsend (1996b), Duff (1996) and Stelle (1998).

Matrix theory was introduced in Banks, Fischler, Shenker and Susskind

(1997). The discrete light-cone quantization interpretation for finite N was

proposed in Susskind (1997). Reviews of matrix theory include Bigatti and

Susskind (1997), Taylor (1998), Banks (1998) and Bilal (1999). An expla-

nation of why Matrix theory is correct was given in Seiberg (1997) and

Sen (1998a). Matrix string theory was formulated in Dijkgraaf, Verlinde

and Verlinde (1997). Berenstein, Maldacena and Nastase (2002) gave a

generalization of matrix theory that describes M-theory in a plane-wave

background.

The large-N expansion of U(N) gauge theory was given in ’t Hooft (1974).

The AdS/CFT correspondence was spelled out in the landmark paper Mal-
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dacena (1998). There had been earlier hints of such a connection in Malda-

cena and Strominger (1997a, 1997b) and Douglas, Polchinski and Strominger

(1997). Some aspects of AdS/CFT also appear in Klebanov (1997), Gubser,

Klebanov and Tseytlin (1997) and Gubser and Klebanov (1997). Impor-

tant details were elucidated in Gubser, Klebanov and Polyakov (1998) and

Witten (1998b). A detailed review of the AdS/CFT correspondence and

related topics was given in Aharony, Gubser, Maldacena, Ooguri and Oz

(2000). Some recent developments, not discussed in the text, include Kaza-

kov, Marshakov, Minahan and Zarembo (2004), Lin, Lunin and Maldacena

(2004), Beisert and Staudacher (2005) and Hofman and Maldacena (2006).

The field theory dual of type IIB superstring theory on AdS5× T 1,1, that

is, the conifold, was identified in Klebanov and Witten (1998). The duality

cascade associated with the addition of fractional branes was explained in

Klebanov and Strassler (2000) building on the earlier works Polchinski and

Strassler (2000), Klebanov and Nekrasov (2000) and Klebanov and Tseytlin

(2000).

Blau, Figueroa-O’Farrill, Hull and Papadopoulos (2002a) discovered that

type IIB superstring theory admits a maximally supersymmetric plane-wave

solution. Metsaev (2002) showed the world-sheet action for this background

becomes a free theory in the light-cone GS formalism. The plane-wave

limit of the AdS/CFT duality was introduced in Berenstein, Maldacena and

Nastase (2002).

Geometric transitions were first discussed in Gopakumar and Vafa (1999).

They have been used in the study of large-N limits in Vafa (2001) and

Maldacena and Nuñez (2001b) among others.
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Poincaré algebra, 56

compactification, 5
F-theory

on K3, 427, 433
heterotic string

on a Calabi–Yau three-fold, 357, 374, 387,
415, 418

on a three-torus, 420
with flux, 508

M-theory
on a G2 manifold, 433, 434, 436
on a Spin(7) manifold, 438
on a Calabi–Yau four-fold, 461, 499
on a Calabi–Yau three-fold, 401, 405, 410
on K3, 419, 423
with conical singularity, 436

on a circle, 188, 190, 193, 198, 199, 202, 209,



Index 729

211, 214, 234, 244, 271, 329, 330, 333,
337, 339

toroidal, 265, 266, 268, 270, 274, 275, 278,
280, 287, 288, 291, 340, 345, 397

type IIA superstring
on a Calabi–Yau three-fold, 400, 402
on K3, 424–426

type IIB superstring
on a Calabi–Yau three-fold, 400, 402, 403,

408, 498, 502
on K3, 426, 454
with flux, 480

warped, 355, 456
with branes, 376
with flux, 13, 458

complex geometry, 449
complex projective space, 369, 453

Fubini–Study metric, 369
Kähler potential, 369

complex structure, 90, 448, 513
deformations, 370, 388, 391
moduli, 590
moduli space, 391, 589

Kähler potential, 391, 397
prepotential, 393

complexified Kähler form, 390, 401
confinement, 611, 663

of N = 1 gauge theory, 675
conformal anomaly, 7, 49, 62, 66

cancellation, 76
ghost contribution, 76

conformal compactification, 60
conformal dimension, 64, 106

of bosonic ghosts, 142
of conserved currents, 70
of free fermion, 141
of ghost fields, 75
of minimal model fields, 72
of primary field, 107
of vertex operator, 85, 86, 88, 108

conformal field, 64
conformal field theory, 15, 58

anomalous dimensions, 653
correlation functions, 651
energy–momentum tensor, 652
Euclideanized, 651
in three dimensions, 643
scaling dimension, 653
state–operator correspondence, 67, 85, 655

conformal fixed point, 650
conformal flatness, 59
conformal group
D dimensions, 59, 61, 612
conformal weights, 668
inversion, 60
restricted, 62
two dimensions, 61, 62

conformal isometry group, 91
conformal symmetry

anomaly, 658
conformal transformation, 60

infinitesimal, 61, 74
special, 60, 62

conical singularity, 360, 670
conifold, 354, 487–489, 669, 671, 675, 684, 687

deformed, 488, 490, 496, 498, 673, 675, 684
with wrapped D6-branes, 685

geometry, 489, 491
isometry group, 489
Kähler form, 548
resolved, 488, 490, 684

with wrapped D5-branes, 685
singularity, 403, 404, 454, 487, 488, 490, 497
transition, 357, 385, 403, 487, 685
warped, 492, 674
with fluxes, 491

coordinate singularity, 554, 559
correlation functions, 73

generating function, 652
coset-space theory, 69
cosmic censorship conjecture, 550, 551, 558
cosmic fluids, 528
cosmic microwave background (CMB), 527,

530
polarization, 538
scalar perturbations, 538
spectral indices, 539
tensor perturbations, 538

cosmic strings, 537, 543
cosmological constant, 15, 84, 474, 482, 528,

547
in brane-world scenario, 494
positive, 504, 505
problem, 377, 439, 503, 522

coupling constant
N = 4 super Yang–Mills, 642
N = 4 super Yang–Mills theory, 323
’t Hooft, 639, 650
11-dimensional, 304
effective, 639
gravitational, 301, 310

in four dimensions, 499
heterotic string, 335, 344, 420

in seven dimensions, 422
of gauge unification, 519, 520
open string, 233, 639
QED, 8
S-duality transformation, 323
string, 8, 11, 85, 90, 227, 311
super Yang–Mills in D = 10, 318
type I superstring, 325
type IIA superstring, 307, 310, 331, 643
type IIB superstring, 327, 427, 492
Yang–Mills in five dimensions, 636

covariantly constant spinor, 363, 376
critical density, 529
critical dimension, 7, 47

of RNS string, 129
critical string, 47, 76
cross-cap, 82, 178
cross-cap state, 171
cubic invariant



730 Index

with E6,6 symmetry, 570
current algebra, 274
SO(32), 292
bosonic representation, 286
fermionic representation, 263
level-one, 292

curvature tensor, 446
curvature two-form, 173
cycle, 388, 443

ADE classification on K3, 423
collapsing, 485, 497
degenerate, 415, 420, 423, 497
holomorphic, 408
on a Riemann surface, 95
on a torus, 341
special Lagrangian, 404, 407, 408, 414, 415
supersymmetric, 357, 404, 405, 407–409,

414, 435, 436, 464
three-dimensional, 392
two-dimensional, 373
vanishing, 404
with flux, 457
wrapped by a D-brane, 483, 485

cylinder, 31, 170, 171, 178, 361

Dp-brane, 188
D-branes, 8, 11, 14, 83, 109, 164, 171, 187,

194, 250
bosonic actions with background fields, 237
extremal black, 617
half-BPS, 208, 228, 230

T-duality transformation, 209, 210
non-BPS, 208
nonabelian actions, 239
nonextremal black, 619
space-time filling, 8, 195, 221
tension of, 233
type I, 223
world-volume actions, 229

with κ symmetry, 230
D-instanton, 207, 405
D0-branes, 149, 150, 206, 611, 626

action, 149, 185
kappa symmetry, 152

coincident, 241
mass, 235
non-BPS, 223

D3-branes
charge, 483
extremal black, 619
fractional, 672
near-extremal black, 658

entropy of, 659
temperature of, 659

nonextremal black, 620
D6-branes, 206, 332, 437
D8-branes, 207, 225, 246
Dabholkar–Harvey states, 600
dark energy, 15, 84, 532
dark matter, 417, 531
DBI action, 233, 246

in static gauge, 236, 247
de Rham cohomology, 363, 442
de Sitter space, 375, 480, 503, 613, 664
Dedekind η function, 431, 601, 608
deficit angle, 360, 428
deformed conifold, 490, 673, 675, 684
density perturbations, 538
descendant operator, 656
descendant state, 68
descent equations, 174, 178, 184, 186
diffeomorphism, 30
dilatino, 137, 175
dilaton, 11, 53, 81, 137, 618
dimensional reduction, 307
dimensional regularization, 631
Dirac algebra

for a Kähler manifold, 466
in D dimensions, 125
in two dimensions, 110

Dirac matrices
3 + 8 decomposition, 462
4 + 6 decomposition, 512
in six dimensions, 379
in two dimensions, 110, 164

Dirac quantization condition, 205, 207, 214,
215, 343

p-brane generalization, 207, 215
for M-branes, 353
modified, 521

Dirac roof genus, 174
Dirac string, 215
Dirac–Ramond equation, 128
Dirichlet boundary condition, 8, 33, 164, 187,

193, 622
discrete light-cone quantization (DLCQ), 626
Dolbeault cohomology groups, 449
Dolbeault operators, 449
domain wall, 673
dS/CFT duality, 613, 664
dual Coxeter number, 69
dual lattice, 277
duality

F-theory/heterotic string, 427
heterotic/type IIA superstring, 424
heterotic/type IIB superstring, 426
M-theory/SO(32) superstring, 343
M-theory/heterotic string, 420
M-theory/type IIA superstring, 330
M-theory/type IIB superstring, 339
type I/SO(32) heterotic, 324

duality cascade, 674
Dynkin diagrams, 423, 424
G2, 434
ADE, 423
ADE groups, 423
Spin(8), 163

dyon, 205
dyonic black holes, 590

effective action
low-energy, 170, 229, 296, 300, 301, 317, 386



Index 731

anomaly analysis, 171
breakdown of, 403
five-dimensional, 405, 407, 658
for D-branes, 231, 638
four-dimensional, 354, 416, 456, 499, 519
heterotic, 320, 321, 456, 519
M-theory, 329, 617
one-loop, 629
two-loop, 630, 631
type I, 319
type IIA, 184, 211
type IIB, 327, 480
with background fields, 628

quantum, 173
effective coupling constant, 639

scale dependence of, 639
effective potential, 84, 195, 386, 504, 534
effective supergravity theories, 301
Eguchi–Hanson space, 367, 435, 453

Hodge numbers, 368
metric, 367

Einstein space, 670
Einstein tensor, 550
Einstein–Hilbert action

corrections to, 603
in D dimensions, 301, 550

electric flux, 457, 615
electric–magnetic duality
N = 2 super Yang–Mills theory, 324
N = 4 super Yang–Mills theory, 323

electromagnetism, 5
electroweak scale, 4
eleventh dimension, 11, 181, 643

size of, 11
elliptic fibration

Calabi–Yau four-fold, 433
Calabi–Yau three-fold, 455
K3 manifold, 432, 433

elliptic modular function, 429
end-of-the-world 9-branes, 302, 335
energy–momentum tensor

for ghosts, 76, 80, 107
for Kac–Moody algebra, 69
holomorphic component, 63
of RNS string, 119
OPE, 66, 73
open-string, 39
world-sheet, 27, 30, 32, 34, 39

central charge, 69
conformal transformation of, 66
modes of, 62, 63, 73
of coset theory, 70
vanishing of, 41

enhanced gauge symmetry, 246, 273, 274, 284,
285, 287, 288, 295, 422

E8, 261
SO(2N), 223
SU(2)× SU(2), 271, 273
SU(2)4, 285
SU(3)× SU(3), 286
USp(2N), 223

at singularities of K3, 436
enhanced supersymmetry, 151
equation of state, 527
Euclideanized time, 562
Euler characteristic, 31, 82, 83, 442, 667

of Calabi–Yau four-fold, 484
of Riemann surface, 83

Euler’s theorem, 641
event horizon, 550, 553, 556

area of, 563
topology of, 596, 621

exact form, 442
exceptional-holonomy manifolds, 357, 433
exterior derivative, 78, 102, 441

F-theory, 427
K3 compactification, 433
on Calabi–Yau four-fold, 475

Faddeev–Popov ghosts, 75, 142
fermi field

free, 66
fermionization, 67
Feynman diagrams

anomalous, 170
in anti-de Sitter space, 652
in large-N gauge theory, 641, 667
in Matrix theory, 628, 630, 632
in quantum field theory, 6
in string theory, 8, 83, 171
in Witten’s string field theory, 105

Feynman path integral, 7
fibration
T 3, 414, 415, 425, 437
circle, 413
elliptic, 432, 455, 483
K3, 437

Fierz transformation, 380, 513
in any dimension, 545
in ten dimensions, 157, 185
in two dimensions, 114

fine-structure constant, 8
first quantization, 36
first superstring revolution, 8
fixed point, 97, 221, 271, 273, 335, 360, 361,

367, 372, 435, 455
flat potential, 84, 198, 273
flatness problem, 531, 534
flop, 685
flow to the infrared, 674
flux

five-form, 618, 640
four-form, 615
imaginary self-dual three-form, 484
quantization, 457, 524

in heterotic M-theory, 521
self-dual five-form, 481

flux compactification, 13, 458
tadpole-cancellation constraint, 524
type IIB theory, 480

flux quantization, 457
fractional D3-branes, 491, 672



732 Index

Friedmann equation, 528
Friedmann–Robertson–Walker (FRW) metric,

528
Fubini–Study metric, 453
fundamental form, 513
fundamental region, 93
fuzzy two-sphere, 241

G-parity, 134–136, 138
gauge anomalies, 169
gauge field
n-form, 204

gauge hierarchy problem, 459, 493, 496
gauge symmetry
E8 × E8, 263
En, 226
SO(2N), 225
SO(32), 222
SO(N), 251
SU(N), 251, 638
U(1)N , 251
U(N), 196, 225
USp(32), 222
enhancement of, 271

gaugino condensation, 417, 675
general relativity, 1, 3
generations, 418, 456
geodesic equation, 23
geometric transition, 613, 684
ghost fields, 75

OPE of, 75
ghost number, 77, 78
ghost-number operator, 79, 80
giant graviton, 660
global time coordinate, 646
gluino condensation, 504, 521
Goldstone boson, 201
Goldstone fermion, 236
grand unification, 259, 356, 416

gauge group, 374
Grassmann algebra, 117
Grassmann coordinates, 113
Grassmann integration, 115
Grassmann numbers, 110
graviphoton, 589, 603
gravitational anomalies, 173
gravitational collapse, 599
gravitational waves, 538
gravitino, 137, 175

in 11 dimensions, 303
graviton, 8, 53, 137

in 11 dimensions, 302
Green–Schwarz counterterm, 179
Gregory–Laflamme instability, 621, 686
ground state

of Ramond sector, 125
GS superstring

action with world-sheet metric, 161
equations of motion, 161
light-cone gauge, 160

action, 162, 163

equations of motion, 162
quantization, 164

quantization, 160
GSO projection, 133, 135, 136

Hagedorn temperature, 52
half hypermultiplet, 300
half-BPS states, 298
harmonic forms, 364, 444, 450
harmonic oscillators, 36
Hawking radiation, 564, 586
Hawking–Page phase transition, 663
heavy Z bosons, 418
hermitian metric, 449
heterotic M-theory, 337, 518

anomaly cancellation, 470
heterotic string theory
E8 × E8, 259

strong coupling limit, 334, 518
SO(16)× SO(16), 292
SO(32), 254
Spin(32)/ � 2, 259
as M5-brane wrapped on K3, 421
Calabi–Yau compactification, 374
fermionic construction, 252
in eight dimensions, 433
in five dimensions, 427
in seven dimensions, 420
in six dimensions, 424
massless spectrum, 257
supergravity approximation, 376

heterotic three-form field strength
Bianchi identity, 511

hexagon diagram anomaly, 170
hidden sector, 416
Higgs mechanism, 298
highest-weight state, 67, 107
Hirzebruch L-function, 175
Hodge ?-operator, 445
Hodge diamond, 364
Hodge dual, 445
Hodge numbers, 363, 364, 449
holographic duality, 15, 612, 648

energy/radius correspondence, 651
holomorphic n-form, 363
holomorphic cycles, 408
holomorphic three-form, 371, 589
holonomy group, 215, 378, 447
G2, 357, 434
SU(3), 378, 379
SU(4), 463
SU(n), 356, 363
Spin(7), 357, 438
USp(2n), 366

homology, 441
horizon problem, 531, 534
horizon size, 534
Hubble length, 532
Hubble parameter, 528
Hubble redshift law, 530
hybrid inflation, 535, 536, 543
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hypermultiplet, 300, 400, 670

infinite-momentum frame, 626
inflation, 16, 531

brane–brane, 539
brane-antibrane, 540
chaotic, 534
exit from, 536, 543
hybrid, 535, 543
in string theory, 539, 542
number of e-foldings, 537
power-law, 535
slow-roll, 540

inflationary cosmology, 532
inflaton, 533, 535

potential, 539
information loss, 564
inner horizon, 558
instanton contributions, 405, 407, 606
intersection numbers

of three-cycles, 392
of two-forms, 396

isometry of compact dimensions, 251
isotopic spin, 196

K-theory, 211, 214, 223
K3 manifold, 366

elliptic fibration, 432
Euler characteristic, 368
harmonic two-forms, 453
Hodge diamond, 368
Hodge numbers, 368
in complex projective space, 370
intersections of two-cycles, 423
Kähler-structure deformations, 419
moduli space, 419
orbifold limit, 367
singularities, 423

ADE classification, 423
Kähler cone, 390
Kähler form, 372, 449

complexified, 390
Kähler manifold, 364, 449

volume form, 371
Kähler potential, 450, 453, 589

for type IIB flux compactification, 498
for type IIB moduli, 485
of complex-structure moduli space, 392

Kähler structure
deformations, 388, 395
moduli space, 395

Kähler potential, 395
prepotential, 396

Kähler transformation, 394, 502
Kac–Moody algebra, 68
SU(2), 281
level, 69
representation by free fermi fields, 264

Kaluza–Klein 5-brane, 334, 337
Kaluza–Klein compactification, 5, 251, 354

excitation number, 188, 189, 279

fractional, 199
excitations, 190, 267, 330, 331, 333, 626,

646, 651, 657, 661
on a five-sphere, 656

on a five-sphere, 653
Kaluza–Klein monopole, 333
kappa symmetry

D-brane actions, 230, 234
gauge fixing, 236
M2-brane, 406
of D0-brane action, 152, 185
of GS world-sheet action, 156, 158

Kerr black hole, 573
Killing spinor, 306, 614, 642
Killing spinor equation, 376, 461, 477, 493,

516, 614, 615, 686
Killing vector, 306, 553, 642
Klebanov–Strassler model, 459
Klein bottle, 82, 170, 171, 178
Kruskal diagram, 555
Kruskal–Szekeres coordinates, 554

Laplace operator, 444
Large Hadron Collider (LHC), 4, 459, 496, 552
large-N expansion, 639, 641, 667
large-N limit, 639, 641, 657

entropy density, 660
lattice, 278
E8 × E8, 286
E8, 286, 294
Spin(32)/ � 2, 287, 294
dual, 277
even, 278
even self-dual, 277, 288

Euclidean, 286
integral, 278
self-dual, 278
unimodular, 278

Lefschetz decomposition, 467, 469, 486, 500
left-movers, 34
Legendre transform, 604
leptons, 4
level-matching condition, 43, 190
Levi–Civita connection, 23, 446
Lichnerowicz equation, 389, 453
Lie algebra
E6, 416, 417
E8 × E8, 9, 94, 179–181, 186, 222, 250, 254,

259, 263, 274, 286, 320, 338, 416
Cartan matrix, 294

E8, 181, 186, 259, 335, 336
E6 × SU(3) embedding, 417
SO(10)× SU(4) embedding, 418
SU(5)× SU(5) embedding, 418

En, 226
En,n, 345
G2, 434
SL(2,

�
), 42

SO(16)× SO(16), 261
SO(32), 9, 94, 222, 250, 254, 274, 320
SU(3)× SU(2)× U(1), 4
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dual Coxeter number, 69
exceptional, 434

light-cone coordinates, 48
light-cone gauge, 49

for RNS string, 130
quantization, 48

linear-dilaton vacuum, 98, 100
Liouville field theory, 99
local counterterm, 178
local Lorentz symmetry, 172
local Lorentz transformation

infinitesimal, 173
local supersymmetry

of superparticle action, 145
localized gravity, 493
Lorentz anomaly, 49
Lorentz group

in D dimensions, 110
in four dimensions, 300, 379
in ten dimensions, 254
in two dimensions, 111

Lorentz transformations, 38
generators, 44, 51, 56

in NS sector, 146
infinitesimal, 30

loss of quantum coherence, 564

M-theory, 12, 184, 296, 329, 625
higher-dimension terms, 421
K3 compactification, 419

dual heterotic description, 420
nongeometric duality, 347, 636
on a Calabi–Yau four-fold, 461

M2-brane, 307, 332
as instanton, 521
as source of flux, 472
Euclidean, 405
extremal black, 615

near-horizon geometry, 616
kappa symmetry, 406

M5-brane, 184, 307, 332, 353
extremal black, 615

near-horizon geometry, 617
wrapped on K3, 421

magnetic flux, 457
four-form, 616

magnetic monopole, 205, 214, 531
Majorana representation, 136, 153

in two dimensions, 111
Majorana spinor, 153, 185

in two dimensions, 110
Majorana–Weyl spinor

in ten dimensions, 136, 137
in two dimensions, 111

manifold
G2 holonomy, 433, 685

singularities, 436
Spin(7) holonomy, 438
Calabi–Yau, 356, 447
complex, 448
hyper-Kähler, 366, 447

Kähler, 364, 447, 449
pseudo-Riemannian, 444
quaternionic Kähler, 447
real, 440
Riemannian, 444
special holonomy, 447

mass gap, 663
of N = 1 gauge theory, 675

mass-energy density, 527
mass-shell condition, 39, 50
massless superparticle, 144
Matrix theory, 13, 330, 611, 625

action, 627, 688
bosonic propagator, 629
fermionic propagator, 629, 637
Feynman rules, 628
in plane-wave space-time, 682
one-loop effective action, 629, 689
toroidal compactification, 635
two-loop effective action, 630

matter, 527
maximally symmetric space-time, 374

Riemann tensor, 374
Maxwell field, 81
Maxwell theory, 204

field equations, 205
membrane, 17, 19, 307, 335, 405–407, 438
metric tensor, 444
minimal model, 71
mirror symmetry, 357, 411

circle, 413
torus, 413
type IIA and type IIB, 412, 685

mixed ensemble, 605
modified Bessel function, 602
modular form

of weight eight, 286
modular invariance, 94, 286
modular transformation, 94, 431
moduli fields, 84, 387, 456
moduli space

metric, 391
of Calabi–Yau three-fold, 386
of complex structures, 91, 391
of heterotic string vacua, 287, 420
of K3 manifolds, 419

elliptically fibered, 433
of Kähler structures, 395
of M-theory vacua, 346
of Riemann surfaces, 90
of string compactifiations, 526
of torus, 96, 274, 284, 651
of vacua, 84
product structure, 391

moduli stabilization, 499
by nonperturbative effects, 503
in heterotic M-theory, 521

moduli-space problem, 13, 456
Moebius strip, 82, 170, 171, 178, 415
Myers effect, 241, 660



Index 735

naked singularity, 551, 558
Nambu–Goto action, 7, 24, 26, 27, 155
Narain lattice, 287
naturalness, 523
near-horizon geometry, 561
near-horizon limit, 559
negative pressure, 532
negative-norm states, 37, 120
Neumann boundary condition, 8, 32, 164, 192
Neveu–Schwarz boundary condition, 123
Newton’s constant, 6

for weakly coupled heterotic string, 519
in D dimensions, 554
in four dimensions, 2
in heterotic M-theory, 520

Nijenhuis tensor, 380, 448, 513, 517
no-go theorem, 480, 482, 503
Noether current, 38
Noether method, 37, 119, 121
noncritical string, 47, 98
nonrelativistic limit, 20, 27
nonrenormalizability, 2, 301
nonrenormalization theorem, 474
normal ordering, 41, 66
NS–NS fields, 227, 245

type IIB, 313
NS–NS sector, 124, 137, 168, 184, 227, 237

type I, 221
type IIB, 220

NS–NS two-form, 327, 390, 470
nucleosynthesis, 530
null hypersurface, 556
number operator

bosonic string, 43
NS sector, 126
R sector, 125

open string, 32
coupling constant, 639

open-string spectrum
NS sector, 131
R sector, 132

operator product expansion (OPE), 64–66, 72
bosonic ghosts, 142
contour-integral evaluation, 65
free fermi fields, 66, 141, 264
ghost fields, 75
Kac–Moody algebra, 68, 264, 281
super-Virasoro, 141

orbifold, 358
blow-up, 455
circle, 359
complex plane, 360
heterotic string, 454
of S5, 670
supersymmetry breaking, 362
torus, 362, 367, 372
twisted states, 361
untwisted states, 361

orientifold plane, 171, 178, 222, 250
orientifold projection, 9, 220, 226

outer horizon, 558

p-brane, 7, 17, 19
tension of, 7, 19

parallel transport, 510
parity

violation, 169, 170, 175
world-sheet, 220–222, 224, 226

partition function, 91, 275, 287–289, 293, 652,
663, 685

partons, 626
Peccei–Quinn symmetry, 396, 397
Penrose diagram, 646
Penrose limit, 678

1/R2 corrections, 682
perfect fluid, 527
perimeter law, 661
period matrix, 96
perturbation theory, 8
Pfaffian, 577
phase transition

confinement/deconfinement, 661, 664
Hawking–Page, 663

physical-state conditions
bosonic string, 44
in the NS sector, 127
in the R sector, 127

picture-changing operators, 144
Planck brane, 495
Planck length, 6

in 11 dimensions, 304, 310
Planck mass, 6
plane-wave space-time, 677

M-theory, 682
BMN Matrix theory, 682

type IIB, 677, 678
light-cone gauge Hamiltonian, 680
light-cone gauge quantization, 682
light-cone gauge world-sheet action, 679
two-impurity states, 681

Poincaré coordinates, 646
Poincaré duality, 443, 451
Poincaré transformations, 30, 38
Poincaré–Hopf index theorem, 464
point particle, 18, 21

massive, 149
supersymmetric, 150, 152

Poisson bracket, 35
Poisson resummation formula, 276, 288, 290,

608
Polyakov action, 26
Polyakov path integral, 90
Pontryagin class, 183, 471
potential

quark-antiquark, 661
power-law inflation, 535
pp-wave, 678
prepotential, 393, 396, 602, 606

for complex structure moduli space, 393, 394
for Kähler structure moduli space, 396
holomorphic, 400, 603
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homogeneity equation, 603, 604
tree-level, 605

pressure, 527
primary field, 64, 107
primary operator, 656
primitive form, 467
primitivity condition, 467, 475, 479
probe graviton, 632
projective plane, 82
pseudo-Riemannian manifold, 444
PST auxiliary field, 314
puncture, 91
pure gravity
D = 3, 301

pure spinor, 160

Q-bit, 648
quadratic Casimir number, 69
quantum chromodynamics (QCD), 2, 610
quantum effective action, 173
quantum electrodynamics (QED), 8
quantum field theory, 1
quantum mechanics, 1

breakdown of, 550
quark-gluon plasma, 664
quarks, 4
quarter-BPS states, 298, 687
quartic invariant

with E7,7-symmetry, 576
quaternionic-Kähler manifold, 400, 401

R symmetry, 641
SO(8), 644
SU(4), 641, 657, 666, 669
U(1), 665, 671
USp(4), 426

� 2, 675
� 2M , 674
anomaly, 657, 673, 676
breaking of, 673
current, 673

R–R sector, 124, 137, 168, 179, 187, 221, 229,
313

charge, 208, 211, 225, 228, 405, 524, 620
9-brane, 212

fields, 168, 211, 229, 237, 238, 241, 245, 311,
314, 318, 425, 617, 618, 677

type I, 223
five-form, 642, 679

flux, 677
tadpoles, 222
two-form, 327, 674
type I, 221
type IIA, 207
type IIB, 207
zero-form, 427, 481

radial modulus, 458, 502
radial ordering, 64
radiation, 527
Ramond boundary condition, 123
Randall–Sundrum construction, 495

red-shift factor, 649
reduced Planck mass, 528
Regge slope parameter, 34
Reissner–Nordström black hole, 557

entropy of, 564
extremal for D = 4, 558
extremal for D = 5, 559

entropy of, 570
temperature of, 565

relevant perturbation, 655
renormalizability, 301
renormalization group equation, 649
renormalization-group flow, 673, 675
resolved conifold, 490, 684
restricted conformal group, 62
RHIC collider, 664
Ricci form, 382, 451
Ricci tensor, 351, 446, 607, 670
Ricci-flat metric, 333, 363, 366, 378, 382, 384
Riemann curvature tensor, 446
Riemann surface, 8, 83, 89

canonical homology basis, 95
first homology group, 95
genus one, 92
genus zero, 91
higher-genus, 95
holomorphic one-forms, 95

Riemann zeta function, 50
Riemann–Roch theorem, 91
Riemann–Schottky problem, 96
Riemannian geometry, 444
Riemannian manifold, 444
right-movers, 34
Rindler space, 647
RNS string, 110

BRST charge, 143
nilpotency, 143, 147

BRST symmetry, 142
closed-string spectrum, 136
energy–momentum tensor, 119
Euclideanized world-sheet action, 140
NS boundary condition, 123
NS–NS sector, 137
open-string spectrum, 131
R–R sector, 137
supercurrent, 119

Routhian, 634

S-branes, 220, 613, 622
in field theory, 622
in string theory, 623

S-duality, 10, 323
D = 4 heterotic, 606
N = 4 super Yang–Mills, 636
type I/SO(32) heterotic, 324, 352
type IIA/heterotic, 426
type IIB/type IIB, 327, 571, 576, 650

Sasaki–Einstein space, 671, 676
Lp,q,r, 676
T 1,1, 671, 676
Y p,q, 676
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scalar curvature, 447
scalar potential

flux compactification
M-theory on a Calabi–Yau four-fold, 502
type IIB on a Calabi–Yau three-fold, 502

no-scale type, 503
with nonperturbative terms, 504

scale factor, 528, 535
scale invariance, 649
scale transformation, 60
Schwarzian derivative, 66
Schwarzschild black hole, 552

in D dimensions, 553
in Kruskal–Szekeres coordinates, 555
temperature of, 563

Schwarzschild radius, 553
second law of thermodynamics, 563
second superstring revolution, 10, 403
Seiberg duality, 674
self-dual charge, 208
self-dual field strength, 313
self-dual radius, 209
short supermultiplet, 297
Siegel upper half plane, 96
sigma-model action

for p-brane, 29
for string, 26, 27, 30

simplicial homology, 443
simply-connected manifold, 364
simply-laced Lie groups, 69, 422
singularities
ADE classification, 360
AN , 360, 436
DN , 373
blow-up, 367, 368, 373, 435

slow-roll
approximation, 535
conditions, 535
inflation, 540
parameters, 535, 539, 540

small black holes, 599
source graviton, 632
special conformal transformation, 60
special coordinates, 392
special geometry, 391, 394, 589

homogeneous coordinates, 393
inhomogeneous coordinates, 393

special Lagrangian cycle, 404, 589
special Lagrangian submanifold, 407
special-Kähler manifold, 400, 401, 589
spin connection, 172, 305, 445, 446

embedding in the gauge group, 417
spin manifold, 378, 447
Spin(1,1), 111
Spin(8), 162, 169

Clebsch–Gordon coefficients, 166
Dynkin diagram, 163
spinors, 133, 136, 162
triality symmetry, 163
vector, 136

spurious states, 44

standard big-bang model (SBB), 530
standard model, 4, 355
standard-model brane, 495
state–operator correspondence, 67, 85, 655
static gauge, 27, 233, 236
stationary metric, 553
Stokes’ theorem, 215, 217, 443, 451
string charge, 227
string coupling constant, 11, 85, 90, 227, 324

in six dimensions, 426
nonperturbative effects, 357
T-duality mapping, 210
type IIA, 310

string field theory, 100
Chern–Simons action, 104
cubic string interaction, 105
gauge transformation, 103
in light-cone gauge, 682

string geometry, 411
string length scale, 6, 34, 310
string perturbation theory, 89
string sigma-model action, 26, 27, 30
string tension, 34
string theory landscape, 459, 522
string world sheet, 6

topology, 8
stringy exclusion principle, 660
strong nuclear force, 2
submanifold

special Lagrangian, 408
super Yang–Mills theory
N = 2 for D = 4, 670
N = 4 for D = 4, 636, 638, 640
θ term, 650
in terms of N = 1 superfields, 666
multi-trace operators, 656
planar approximation, 641
S-duality, 650
single-trace operators, 656

in 0 + 1 dimensions, 627
in ten dimensions, 157, 176, 626

super-Poincaré algebra, 112, 149
super-Virasoro algebra

constraints, 118
generators, 126
in the NS sector, 127
in the R sector, 127
operator-product expansions, 141
superspace formulation, 141

superalgebra
OSp(1 | 2), 128
OSp(6, 2|4), 644
OSp(8|4), 644
PSU(2, 2|4), 640, 667
SU(1, 1 | 1), 128

supercharges, 114
superconformal algebra
SU(2, 2|1), 671

superconformal field theory, 612
chiral primary operator, 655

superconformal gauge theory, 670, 671
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superconformal symmetry, 76, 118, 612
representations, 655
supercharges, 668

superconnection, 211
supercovariant derivative, 114
supercurrent

holomorphic, 141
of RNS world-sheet theory, 119, 121

superfields, 113
supergraviton, 330, 626
supergravity
N = 1 for D = 10, 176, 179
N = 1 for D = 6, 182
N = 2 for D = 10, 137
N = 2 for D = 4, 400, 588
N = 8 for D = 4, 400, 576
N = 8 for D = 5, 567
heterotic, 320

action, 320
supersymmetry transformations, 321

in 11 dimensions, 15, 139, 159, 167, 302,
461, 614

action, 304
Freund–Rubin solution, 351
quantum correction, 469
supersymmetry transformations, 305

type I, 317
action, 318
supersymmetry transformations, 319

type IIA, 307
action, 311
supersymmetry transformations, 311

type IIB, 313, 480
SL(2,

�
) symmetry, 315

action, 314, 317
self-dual five-form, 313
supersymmetry transformations, 315

supermatrices, 668
supertrace, 668

supermembrane, 159
superparticle

massive, 149, 150, 152
massless, 144, 185
quantization, 145

superpotential, 665, 666, 672
for complex-structure moduli, 474, 485
for type IIB flux compactification, 497

superspace
for world sheet, 113
supersymmetry transformations, 149
ten-dimensional, 148

superstring cosmology, 15, 460, 526
superstring theory, 4, 109
p-branes, 7
Green–Schwarz formulation, 148
RNS formulation, 109
types of, 9

supersymmetric cycle, 357, 404, 435
supersymmetric grand unification, 356, 418
supersymmetric state, 382
supersymmetry, 4, 109

D = 4, N = 1, 355
algebra
N -extended, 297
N = 1, 298
N = 2, 300

breaking, 4
of world sheet, 112
space-time, 4
transformations, 112, 114

supersymmetry-breaking solutions, 501
supertrace, 668
symplectic coordinates, 589
symplectic modular group, 96, 392, 589

T-duality, 10, 187, 190
O(16 + n, n; � ), 287
O(n, n; � ), 269
closed bosonic string, 188
for NS–NS background fields, 227, 281
for R–R background fields, 229
heterotic string, 295
in light-cone GS formulation, 218
open bosonic string, 193
relation to mirror symmetry, 413

tachyon, 51, 53, 109
tachyon condensation, 587
tadpole-cancellation condition, 212, 469, 470,

483
Taub–NUT metric, 333, 352, 579

multi-center, 334, 437, 455
tensor supermultiplet, 421
three-form gauge field

in 11 dimensions, 304
three-string junction, 329, 687
threshold bound states, 331, 626
topological string theory, 603, 613, 685
topology change, 462
toric geometry, 371
toroidal compactification, 265

bosonic string, 266
level-matching condition, 267
modular invariance, 274
moduli space, 270
with background fields, 267

heterotic string, 287
type II superstrings, 273, 291

torsion, 312, 321, 508, 509, 547
torus, 31, 92, 170

complex-structure moduli space, 397
modular parameter, 92
periods of, 92

translation symmetry, 38
triangle diagram anomaly, 170
twisted sector, 221, 318, 359, 361, 584
two-dimensional Ising model, 72
two-form gauge field, 81, 137
type I superstring theory, 83, 165, 170, 176,

220
anomaly cancellation, 176
closed, 165
gauge groups, 176
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open, 164, 166
world-sheet topologies, 178

type I ′ theory, 224, 246
type II superstring theory

GS world-sheet action, 155
kappa symmetry, 156

spectrum, 167
type IIA superstring theory

Calabi–Yau compactification, 400
D0-branes, 330
D6-brane, 332
K3 compactification, 424

mirror symmetry, 425
S-duality, 426

strong coupling limit, 330
type IIB superstring theory, 175

(p, q) 5-branes, 329
(p, q) strings, 327
7-branes, 329, 428, 429
anomaly cancellation, 175
Calabi–Yau compactification, 400
D3-brane, 329
K3 compactification, 426
string webs, 329
three-string junction, 329, 687

U-duality, 345, 636
E3( � ), 347
En( � ), 346
E6,6, 567, 570
E7,7, 576

ultraviolet divergences, 2, 7
absence of, 83
cancellation, 83

unitarity bound, 672
universal hypermultiplet, 401
unoriented string, 83, 196, 220, 221

vacuum energy density, 15, 84, 527
vacuum selection

problem of, 14
vanishing cycle, 404
vector supermultiplet, 204
D = 10, 257, 261
D = 3, 473
D = 4, N = 4, 400
D = 4, N = 2, 400

massive, 300
E8, 181
SO(32), 258
U(N), 239

Verma module, 68
vertex operator, 85

integrated, 87
of tachyon, 85
unintegrated, 87
with ghosts, 86

vielbein, 444
Virasoro algebra, 40, 57

classical, 61
generators, 39, 40

operator product expansions, 140
Volkov–Akulov theory, 236
volume of unit n-sphere, 554

Wald’s formula, 603, 609
warp factor, 462

of warped conifold, 493
warped compactification, 355, 456

of the heterotic theory, 508
of the type IIB theory, 480

warped conifold
geometry of, 492

warped geometry, 457, 461, 612
warped metric, 461

type IIB compactification, 481
wave equation, 32
web of dualities, 12, 296
weighted complex projective space, 371
Wess–Zumino consistency conditions, 173
Wess–Zumino–Witten model, 69
Weyl symmetry, 89
Weyl transformations, 30
white hole, 555
Wigner–Inönü contraction, 679
Wilson line, 198, 288, 295, 418
Wilson-loop operator, 661
winding number, 188

fractional, 199
WMAP, 538
world line, 6
world-sheet action

with ghost fields, 76
cosmological constant term, 28, 31, 99
light-cone coordinates, 33
metric, 7, 26

conformally flat, 89
with fermions, 110
with local supersymmetry, 120

world-sheet parity, 220, 226
projection, 221

world-sheet topology, 6, 8

Yang–Mills theory, 4, 11
anomalies, 173
field strength, 102, 172
gauge field, 172
gauge transformation, 103, 172
in three dimensions, 662

finite temperature, 663
large-N expansion, 639
multi-trace operators, 656
planar approximation, 641
single-trace operators, 656
with N = 4 supersymmetry, 15, 298, 323,

636, 640, 641, 657, 687

zero-norm spurious states, 45, 129
zero-point energy, 133, 146, 257
zeta-function regularization, 50, 146
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