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Preface

The aim in writing this book has been to give a survey of the main applica-
tions of group and representation theory to particle physics. It provides the
essential notions of relativistic invariance, space-time symmetries and inter-
nal symmetries employed in the standard University courses of Relativistic
Quantum Field Theory and Particle Physics. However, we point out that this
is neither a book on these subjects, nor it is a book on group theory.

Specifically, its main topics are, on one side, the analysis of the Lorentz
and Poincaré groups and, on the other side, the internal symmetries based
mainly on unitary groups, which are the essential tools for the understanding
of the interactions among elementary particles and for the construction of the
present theories. At the same time, these topics give important and enlighten-
ing examples of the essential role of group theory in particle physics. We have
attempted to present a pedagogical survey of the matter, which should be
useful to graduate students and researchers in particle physics; the only pre-
requisite is some knowledge of classical field theory and relativistic quantum
mechanics. In the Bibliography, we give a list of relevant texts and mono-
graphs, in which the reader can find supplements and detailed discussions on
the questions only partially treated in this book.

One of the most powerful tools in dealing with invariance properties and
symmetries is group theory. Chapter 1 consists in a brief introduction to group
and representation theory; after giving the basic definitions and discussing the
main general concepts, we concentrate on the properties of Lie groups and Lie
algebras. It should be clear that we do not claim that it gives a self-contained
account of the subject, but rather it represents a sort of glossary, to which
the reader can refer to recall specific statements. Therefore, in general, we
limit ourselves to define the main concepts and to state the relevant theorems
without presenting their proofs, but illustrating their applications with specific
examples. In particular, we describe the root and weight diagrams, which
provide a useful insight in the analysis of the classical Lie groups and their
representations; moreover, making use of the Dynkin diagrams, we present a
classification of the classical semi-simple Lie algebras and Lie groups.

VII



VIII Preface

The book is divided into two parts that, to large extent, are independent
from one another. In the first part, we examine the invariance principles re-
lated to the symmetries of the physical space-time manifold. Disregarding
gravitation, we consider that the geometry of space-time is described by the
Minkowski metric and that the inertial frames of reference of special relativ-
ity are completely equivalent in the description of the physical phenomena.
The co-ordinate transformations from one frame of reference to another form
the so-called inhomogeneous Lorentz group or Poincaré group, which contains
the space-time translations, besides the pure Lorentz transformations and the
space rotations. The introductory and didactic nature of the book influenced
the level of the treatment of the subject, for which we renounced to rigorousness
and completeness, avoiding, whenever possible, unnecessary technicalities.

In Chapter 2 we give a short account of the three-dimensional rotation
group , not only for its important role in different areas of physics, but also as
a specific illustration of group theoretical methods. In Chapter 3 we consider
the main properties of the homogeneous Lorenz group and its Lie algebra.
First, we examine the restricted Lorentz group, which is nothing else that the
non-compact version SO(3, 1) of the rotation group in four dimensions. In
particular we consider its finite dimensional irreducible representations: they
are non unitary, since the group is non compact, but they are very useful, in
particle physics, for the derivation of the relativistic equations. Chapter 4 is
devoted to the Poincaré group, which is most suitable for a quantum mechan-
ical description of particle states. Specifically, the transformation properties
of one-particle and two-particle states are examined in detail in Chapter 5.
In this connection, a covariant treatment of spin is presented and its physical
meaning is discussed in both cases of massive and massless particles. In Chap-
ter 6 we consider the transformation properties of the particle states under
the discrete operations of parity and time reversal, which are contained in
the homogeneous Lorentz group and which have important roles in particle
physics. In Chapter 7, the relativistic wave functions are introduced in con-
nection with one-particle states and the relative equations are examined for
the lower spin cases, both for integer and half-integer values. In particular, we
give a group-theoretical derivation of the Dirac equation and of the Maxwell
equations.

The second part of the book is devoted to the various kinds of internal
symmetries, which were introduced during the extraordinary development of
particle physics in the second half of last century and which had a fundamental
role in the construction of the present theories. A key ingredient was the use
of the unitary groups, which is the subject of Chapter 8. In order to illustrate
clearly this point, we give a historical overview of the different steps of the
process that lead to the discovery of elementary particles and of the properties
of fundamental interactions. The main part of this chapter is devoted to the
analysis of hadrons, i.e. of particle states participating in strong interactions.
First we consider the isospin invariance, based on the group SU(2) and on the
assumption that the members of each family of hadrons, almost degenerate in



Preface IX

mass but with different electric charge, are assigned to the same irreducible
representation. Further analysis of the different kinds of hadrons lead to the
introduction of a larger symmetry, now called flavor SU(3) invariance, which
allowed the inclusion of different isospin multiplets in the same irreducible
representation of the SU(3) group and gave rise to a more complete classifica-
tion of hadrons. Moreover, it provided a hint to the introduction of quarks as
the fundamental constituents of matter. Finally, the analysis of the hadronic
states in terms of quarks lead to the discovery of a new degree of freedom,
called color, that gave a deeper understanding of the nature of strong inter-
actions. It was clear from the very beginning that the flavor SU(3) symmetry
was only approximate, but it represented an important step toward the more
fundamental symmetry of color SU(3).

Chapter 9 is a necessary complement of the previous chapter, since it
describes a further successful step in the development of particle physics,
which is the introduction of gauge symmetry. After reminding the well-known
case of quantum electrodynamics, we briefly examine the field theory based on
the gauge color SU(3) group, i.e. quantum chromodynamics, which provides
a good description of the peculiar properties of the strong interactions of
quarks. Then we consider the electroweak Standard Model, the field theory
based on the gauge SU(2)⊗U(1) group, which reproduces with great accuracy
the properties of weak interactions of leptons and quarks, combined with the
electromagnetic ones. An essential ingredient of the theory is the so-called
spontaneous symmetry breaking, which we illustrate in the frame of a couple
of simple models. Finally, we mention the higher gauge symmetries of Grand
Unification Theories, which combine strong and electroweak interactions.

The book contains also three Appendices, which complete the subject of
unitary groups. In Appendix A, we collect some useful formulas on the rota-
tion matrices and the Clebsh-Gordan coefficients. In Appendix B, the sym-
metric group is briefly considered in connection with the problem of identical
particles. In Appendix C, we describe the use of the Young tableaux for the
study of the irreducible representations of the unitary groups, as a powerful
alternative to the use of weight diagrams.

Each chapter, except the first, is supplied with a list of problems, which
we consider useful to strengthen the understanding of the different topics
discussed in the text. The solutions of all the problems are collected at the
end of the book.

The book developed from a series of lectures that both of us have given
in University courses and at international summer schools. We have benefited
from discussions with students and colleagues and we are greatly indebted to
all of them.

Padova, 2011 Giovanni Costa
Bari, 2011 Gianluigi Fogli



X Preface

Notation

The natural system of units, where h̄ = c = 1, is used throughout the book.
In this system: [length] = [time] = [energy]−1 = [mass]−1.

Our conventions for special relativity are the following. The metric tensor
is given by

gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (0.1)

and the controvariant and covariant four-vectors are denoted, respectively, by

xµ = (x0,x), xµ = gµνx
ν = (x0,−x) . (0.2)

Greek indices run over 0, 1, 2, 3 and Latin indices denote the spacial compo-
nents. Repeated indices are summed, unless otherwise specified.

The derivative operator is given by

∂µ =
∂

∂xµ
=
( ∂

∂x0
,∇
)
. (0.3)

The Levi-Civita tensor ǫ0123 is totally antisymmetric; we choose, as usual,
ǫ0123 = +1 and consequently one gets ǫ0123 = −1.

The complex conjugate, transpose and Hermitian adjoint of a matrix M
are denoted by M∗, M̃ and M † = M̃∗, respectively.
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1

Introduction to Lie groups and their
representations

This Chapter consists of a brief survey of the most important concepts of
group theory, having in mind the applications to physical problems. After a
collection of general notions which apply both to finite and infinite groups,
we shall consider the properties of the Lie groups and their representations.
We shall avoid mathematical rigour and completeness and, in order to clarify
the main aspects, we shall make use of specific examples.

1.1 Basic definitions

The aim of this section is to collect the basic and general definitions of group
theory.

Group - A set G of elements a, b, c, ... is a group if the following four axioms
are satisfied:

1. there is a composition law, called multiplication, which associates with
every pairs of elements a and b of G another element c of G; this operation
is indicated by c = a ◦ b;

2. the multiplication is associative, i.e. for any three elements a, b, c of G:
(a ◦ b) ◦ c = a ◦ (b ◦ c);

3. the set contains an element e called identity, such that, for each element
a of G, e ◦ a = a ◦ e = a;

4. For each element a of G, there is an element a′ contained in G such that
a ◦ a′ = a′ ◦ a = e. The element a′ is called inverse of a and is denoted by
a−1.

Two elements a, b of a group are said to commute with each other if a◦b = b◦a.
In general, the multiplication is not commutative, i.e. a ◦ b 6= b ◦ a.
Abelian group - A group is said to be Abelian if all the elements commute
with one another.

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 1
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_1, 
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction to Lie groups and their representations

Order of the group - The number of elements of a group is called the order
of the group; it can be finite or infinite, countable or non-countable infinite.

Examples

1. Additive group of real numbers. The elements are the real numbers; the composi-
tion law is the addition and the identity element is zero. The group is Abelian and
of infinite non-countable order.
2. Symmetric group. The elements are the permutations of degree n(

1 2 ... n
p1 p2 ... pn

)
.

The set is a (non-commutative) group of order n! and it is usually denoted by Sn.

3. Rotation group. The elements are the rotations in the three-dimensional space.

Each rotation can be characterized by three independent parameters, e.g. the three

Euler angles (α, β, γ).

Subgroup - A subset H of the group G, of elements a′, b′, ..., that is itself a
group with the same multiplication law of G, is said to be a subgroup of G.
A necessary and sufficient condition for H to be a subgroup of G is that, for
any two elements a′, b′ of H, also a′ ◦ b′−1 belongs to H. Every group has two
trivial subgroups: the group consisting of the identity element alone, and the
group itself. A non-trivial subgroup is called a proper subgroup.

Examples

1. The additive group of rational numbers is a subgroup of the additive group of
real numbers.

2. Let us consider the group Sn of permutations of degree n. Each permutation can

be decomposed into a product of transpositions (a transposition is a permutation

in which only two elements are interchanged). A permutation is said to be even or

odd if it corresponds to an even or odd number of transpositions. The set of even

permutations of degree n is a subgroup of Sn (if a and b are two even permutations,

also a ◦ b−1 is even). It is denoted by An and called alternating group.

Invariant subgroup - Let H be a subgroup of the group G. If for each
element h of H, and g of G, the element g ◦h◦g−1 belongs to H, the subgroup
H is said to be invariant.

In connection with the notion of invariant subgroup, a group G is said to be:

Simple - If it does not contain any invariant subgroups;

Semi-simple - If it does not contain any invariant Abelian subgroups.

In the case of continuous groups, finite or discrete invariant subgroups are not
to be taken into account in the above definitions.

Factor group - Let us consider a group G and a subgroup H. Given an
element g, different from the identity e, in G but not in H, we can form the
set G = g ◦ h1, g ◦ h2, ... (where h1, h2, ... are elements of H), which is not a
subgroup since it does not contain the unit element. We call the set g ◦H left
coset of H in G with respect to g. By varying g in G, one gets different cosets.
It can be shown that either two cosets coincide or they have no element in
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common. The elements g1, g2, ... of the group G can be distributed among the
subgroup H and all its distinct cosets g1 ◦ H, g2 ◦ H, ... The group G is a
disjoint union of these sets. In the case in which H is an invariant subgroup,
the sets H, g1 ◦ H, g2 ◦ H ... themselves can be considered as elements of a
group (H plays the role of unit element for this group) with the following
multiplication rule:

(g1 ◦ H) ◦ (g2 ◦ H) = g1 ◦ g2 ◦ H . (1.1)

The group is called factor group and is denoted by G/H. The same considera-
tions hold for the right cosets H◦g. Left and right cosets (g◦H and H◦g) with
respect to the same element g are not necessarily identical; they are identical
if and only if H is an invariant subgroup of G.

Homomorphism - A mapping of a group G onto the group G′ is said to
be homomorphic if it preserves the products. Each element g of G is mapped
onto an element g′ of G′, which is the image of g, and the product g1 ◦ g2 of
two elements of G is mapped onto the product g′1 ◦ g′2 in G′. In general, the
mapping is not one-to-one: several elements of G are mapped onto the same
element of G′, but an equal number of elements of G are mapped onto each
element of G′. In particular, the unit element e′ of G′ corresponds to the set
of elements e1, e2, ... of G (only one of these elements coincides with the unit
element of G), which we denote by E . The subgroup E is an invariant subgroup
of G and it is called kernel of the homomorphism.

Isomorphism - The mapping of a group G onto the group G′ is said to be
isomorphic if the elements of the two groups can be put into a one-to-one
correspondence (g ↔ g′), which is preserved under the composition law. If G
is homomorphic to G′, one can show that the factor group G/E is isomorphic
to G′.
Example

It can be shown that the alternating group An of even permutations is an invariant

subgroup of the symmetric group Sn. One can check that there are only two distinct

left (or right) cosets and that the factor group An/Sn is isomorphic to the group of

elements 1,−1.

Direct product - A group G which possesses two subgroups H1 and H2 is
said to be direct product of H1 and H2 if:

1. the two subgroups H1 and H2 have only the unit element in common;
2. the elements of H1 commute with those of H2;
3. each element g of G is expressible in one and only one way as g = h1 ◦ h2,

in terms of the elements h1 of H1 and h2 of H2.

The direct product is denoted by G = H1 ⊗H2.

Semi-direct product - A group G which possesses two subgroups H1 and
H2 is said to be semi-direct product of H1 and H2 if:
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1. H1 is an invariant subgroup of G;
2. the two subgroups H1 and H2 have only the unit element in common;
3. each element g of G is expressible in one and only one way as g = h1 ◦ h2,

in terms of the elements h1 of H1 and h2 of H2.

The semi-direct product is denoted by G = H1
fs H2.

Representation of a group - Let us consider a finite n-dimensional complex
vector space Ln, and a mapping T which associates with a vector x a new
vector x′ in Ln:

x′ = Tx . (1.2)

T is a linear operator, i.e., for x and y in Ln, and α and β two real numbers,
it satisfies the relation:

T (αx + βy) = αTx + βTy . (1.3)

If the mapping is one-to-one, the inverse operator T−1 exists. For each vector
x in Ln:

T−1Tx = TT−1x = Ix , (1.4)

where the identity operator I leaves all the vectors unchanged.
Let us now consider a group G. If for each element g of G there is a

correponding linear operator T (g) in Ln, such that

T (g1 ◦ g2) = T (g1)T (g2) , (1.5)

we say that the set of operators T (g) forms a linear (n-dimensional) repre-
sentation of the group G. It is clear that the set of operators T (g) is a group
G′ and in general G is homomorphic to G′. If the mapping of is one-to-one,
then G is isomorphic to G′.
Matrix representation - If one fixes a basis in Ln, then the linear trans-
formation performed by the operator T is represented by a n × n matrix,
which we denote by D(g). The set of matrices D(g) for all g ∈ G is called
n-dimensional matrix representation of the group G. Defining an orthonormal
basis e1, e2, ..., en in Ln, the elements of D(g) are given by

T (g)ek =
∑

i

Dik(g)ei (1.6)

and the transformation (1.2) of a vector x becomes:

x′i =
∑

i

Dik(g)xk . (1.7)

The set of vectors e1, e2, ..., en is called the basis of the representation D(g).

Faithful representation - If the mapping of the group G onto the group
of matrices D(g) is one-to-one, the representation D(g) is said to be faithful.
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In other words, different elements of G correspond to different matrices D(g)
and the mapping is isomorphic.

Equivalent representations - If we change the basis of the vector space
Ln, the matrices D(g) of a representation are transformed by a non-singular
matrix S

D′(g) = SD(g)S−1 . (1.8)

The representations D(g) and D′(g) are said to be equivalent and Eq. (1.8)
is called similarity transformation; the two representations are regarded as
essentially the same.

Reducible and irreducible representations - The representation T (g) of
G in Ln is said to be reducible if there exists a non trivial subspace Lm of Ln
which is left invariant by all the operators T (g). If no non-trivial invariant
subspace exists, the representation T (g) is said to be irreducible. In the case
of a reducible representation, it is possible to choose a basis in Ln such that
all the matrices corresponding to T (g) can be written in the form

D(g) =




D1(g) | D12(g)
−−−− | − −−−

0 | D2(g)


 . (1.9)

If also Ln−m is invariant, by a similarity transformation all the matrices D(g)
can be put in block form

D(g) =




D1(g) | 0
−−−− | − −−−

0 | D2(g)


 (1.10)

and the representation is completely reducible. In this case one writes

D(g) = D1(g) ⊕D2(g) (1.11)

and the representation is said to be decomposed into the direct sum of the
two representations D1, D2.

In general, if a representation D(g) can be put in a block-diagonal form in
terms of ℓ submatrices D1(g), D2(g), ...Dℓ(g), each of which is an irreducible
representation of the group G, D(g) is said to be completely reducible. If the
group G is Abelian its irreducible representations are one-dimensional.

A test of irreducibility (for non-Abelian groups) is provided by the follow-
ing lemma due to Schur.

Schur’s lemma - If D(g) is an irreducible representation of the group G, and
if

AD(g) = D(g)A (1.12)

for all the elements g of G, then A is multiple of the unit matrix.
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Unitary representation - A representation of the group G is said to be
unitary if the matrices D(g), for all the elements g of G, are unitary, i.e.

D(g)D(g)† = D(g)†D(g) = I , (1.13)

where D(g)† is the adjoint (i.e. conjugate transposed) or Hermitian conjugate
of D(g). Such representations are very important for physical applications.

Unitary representation of finite groups - In the case of finite groups one
can prove that every representation is equivalent to a unitary representation.
Moreover, every unitary representation is irreducible or completely reducible;
the number of non-equivalent irreducible representations is limited by the
useful formula

N =
∑

i

ni
2 , (1.14)

where N is the order of the group and ni the dimension of the i-th irreducible
representation.

Self-representation (of a matrix group) - The irreducible representation
used to define a matrix group is called sometimes self-representation.

Example

In the case of the symmetric group S3 (N = 3! = 6), there are two one-dimensional

and one two-dimensional non-equivalent irreducible representations.

1.2 Lie groups and Lie algebras

A Lie group combines three different mathematical structures, since it satisfies
the following requirements:

1. the group axioms of Section 1.1;
2. the group elements form a topological space, so that the group is considered

a special case of topological group;
3. the group elements constitute an analytic manifold.

As a consequence, a Lie group can be defined in different but equivalent ways.
Specifically, it can be defined as a topological group with additional analytic
properties, or an analytic manifold with additional group properties.

We shall give a general definition of Lie group and, for this reason, first
we summarize the main concepts that are involved. For complete and detailed
analyses on Lie groups we refer to the books by Cornwell1 and Varadarajan2

and, for more details on topological concepts, to the book by Nash and Sen3.

1 J.F. Cornwell, Group Theory in Physics,
2 V.S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Springer-

Verlag, 1974.
3 C. Nash, S. Sen, Topology and Geometry for Physicists, Academic Press, 1983.

Vol. 1 and 2, Academic Press, 1984.
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Topological space - A topological space S is a non-empty set of elements
called points for which there is a collection T of subsets, called open sets,
satisfying the following conditions:

1. the empty set and the set S belong to T ;
2. the union of any number of sets in T belongs to T ;
3. the intersection of any finite number of sets in T belongs to T .

Hausdorff space - A Hausdorff space is a topological space S with a topology
T which satisfies the separability axiom: any two distinct points of S belong
to disjoint open subsets of T .

Cartesian product of two topological spaces - If S and S′ are two
topological spaces with topologies T and T ′ respectively, the set of pairs
(P, P ′), where P ∈ S and P ′ ∈ S′, is defined to be the Cartesian product
S × S′.
Metric space - An important kind of Hausdorff space is the so-called metric
space, in which one can define a distance function d(P, P ′) between any two
points P and P ′ of S. The distance or metric d(P, P ′) is real and must satisfy
the following axioms:

1. d(P, P ′) = d(P ′, P );

2. d(P, P ) = 0;

3. d(P, P ′) > 0 if P 6= P ′;
4. d(P, P ′) ≤ d(P, P”) + d(P”, P ′) for any three points of S.

Examples

1. Let us consider the n-dimensional Euclidean space Rn and two points P and
P ′ in Rn with coordinates (x1, x2, ..., xn) and (x′

1, x
′
2, ..., x

′
n) respectively. With the

metric defined by

d(P, P ′) =
{ n∑

i=1

(xi − x′
i)

2
}1/2

, (1.15)

one can show that Rn is a metric space, since it satisfies the required axioms.
2. Let us consider the set M of all the m ×m matrices M with complex elements
and, for any two matrices M and M’, let us define the distance

d(M,M′) =
{ m∑

i,j=1

|Mij −M ′
ij |2

}1/2

. (1.16)

Then one can show that the set M is a metric space.

Compact space - A family of open sets of the topological space S is said
to be an open covering of S if the union of its open sets contains S. If, for
every open covering of S there is always a finite subcovering (i.e. a union of a
finite number of open sets) which contains S, the topological space S is said
to be compact. If there exists no finite subcovering, the space S is said to be
non-compact.



8 1 Introduction to Lie groups and their representations

Connected space - A topological space S is connected if it is not the union
of non-empty disjoint open subsets. In order to specify the notion of connect-
edness it is useful to give a definition of path. A path in S from the point x0

to the point x1 is a continuous mapping φ of the interval [0, 1] in R into S
with φ(0) = x0, φ(1) = x1. A closed path or loop is a path for which x0 = x1

and φ(0) = φ(1). There are different kinds of loops: for instance, those which
can be shrunk to a point by a continuous deformation and those for which
the shrinking is not possible. Two loops are equivalent or homotopic if one
can be obtained from the other by a continuous deformation. All equivalent
loops can be collected in an equivalence class. A topological space S in which
any loop can be shrunk to a point by continuous deformation is called simply
connected. If there are n distinct classes of equivalence of closed paths, S is
said to be n-times connected.

Examples

3. A region F of the Euclidean space Rn is compact only if it is finite; otherwise
it is not compact. In fact, for any open covering there is a finite subcovering which
contains F only if F is finite.

4. The space R2 is simply connected; however, a region of R2 with a ”hole” is not

simply connected since loops encircling the hole cannot be shrunk to a point.

Second countable space - A topological space S with topology T is said
to be second countable if T contains a countable collection of open sets such
that every open set of T is a union of sets of this collection. The topological
spaces considered in the Examples 1 and 2 are second countable.

Homeomorphic mapping - Let us consider two topological spaces S and
S′ with topologies T and T ′, respectively. A mapping φ from S onto S′ is
said to be open if, for every open set V of S, the set φ(V ) is an open set of
S′. A mapping φ is continuous if, for every open set V ′ of S′, the set φ−1(V ′)
is an open set of S. Finally, if φ is a continuous and open mapping of S onto
S′, it is called homeomorphic mapping.

Locally Euclidean space - A Hausdorff topological space V is said to be a
locally Euclidean space of dimension n if each point of V is contained in an
open set which is homeomorphic to a subset of Rn. Let V be an open set
of V and φ a homeomorphic mapping of V onto a subset of Rn. Then for
each point P ∈ V there exists a set of coordinates (x1, x2, ..., xn) such that
φ(P ) = (x1, x2, ..., xn); the pair (V, φ) is called a chart.

Analytic manifold of dimension n - Let us consider a locally Euclidean
space V of dimension n, which is second countable, and a homeomorphic
mapping φ of an open set V onto a subset of Rn: if, for every pair of charts
(Vα, φα) and (Vβ , φβ) of V for which the intersection Vα

⋂
Vβ is non-empty,

the mapping φβ ◦φα−1 is an analytic function, then V is an analytic manifold
of dimension n. The simplest example of analytic manifold of dimension n is
Rn itself.
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We are now in the position of giving a more precise definition of a Lie
group.

Lie group - A Lie group G of dimension n is a set of elements which satisfy
the following conditions:

1. they form a group;
2. they form an analytic manifold of dimension n;
3. for any two elements a and b of G, the mapping φ(a, b) = a ◦ b of the

Cartesian product G × G onto G is analytic;
4. for any element a of G, the mapping φ(a) = a−1 of G onto G is analytic.

1.2.1 Linear Lie groups

The Lie groups that are important for physical applications are of the type
known as linear Lie groups, for which a simpler definition can be given.

Let us consider a n-dimensional vector space V over the field F (such
as the field R of real numbers and the field C of complex numbers) and the
general linear group GL(N,F) of N × N matrices. A Lie group G is said to
be a linear Lie group if it is isomorphic to a subgroup G′ of GL(N,F). In
particular, a real linear Lie group is isomorphic to a subgroup of the linear
group GL(N,R) of N ×N real matrices.

A linear Lie group G of dimension n satisfies the following conditions:

1. G possesses a faithful finite-dimensional representation D. Suppose that
this representation has dimension m; then the distance between two ele-
ments g and g′ of G is given, according to Eq. (1.16), by

d(g, g′) =
{ m∑

i,j=1

| D(g)ij −D(g′)ij |2
}1/2

, (1.17)

and the set of matrices D(g) satisfies the requirement of a metric space.
2. There exists a real number δ > 0 such that every element g of G lying in

the open set Vδ, centered on the identity e and defined by d(g, e) < δ, can
be parametrized by n independent real parameters (x1, x2, ..., xn), with
e corresponding to x1 = x2 = ... = xn = 0. Then every element of Vδ
corresponds to one and only one point in a n-dimensional real Euclidean
space Rn. The number n is the dimension of the linear Lie group.

3. There exists a real number ǫ > 0 such that every point in Rn for which

n∑

i=1

xi
2 < ǫ2 (1.18)

corresponds to some element g in the open set Vδ defined above and the
correspondence is one-to-one.
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4. Let us define D(g(x1, x2, ...., xn)) ≡ D(x1, x2, ..., xn) the representa-
tion of each generic element g(x1, x2, ..., xn) of G. Each matrix ele-
ment of D(x1, x2, ...., xn) is an analytic function of (x1, x2, ...., xn) for all
(x1, x2, ...., xn) satisfying Eq. (1.18).

Before giving some examples of linear Lie groups we need a few other
definitions:

Connected Lie group - A linear Lie group G is said to be connected if
its topological S space is connected. According to the definition of connected
space, G can be simply connected or multiply connected. In Chapter 2, we shall
examine explicitly simply and doubly connected Lie groups, such as SU(2)
and SO(3).

Center of a group - The center of a group G is the subgroup Z consisting
of all the elements g ∈ G which commute with every element of G. Then Z
and its subgroups are Abelian; they are invariant subgroups of G and they are
called central invariant subgroups.

Universal covering group - If G is a (multiply) connected Lie group there
exist a simply connected group G̃ (unique up to isomorphism) such that G is
isomorphic to the factor group G̃/K, where K is a discrete central invariant
subgroup of G̃. The group G̃ is called the universal covering group of G.

Compact Lie group - A linear Lie group is said to be compact if its topo-
logical space is compact. A topological group which does not satisfy the above
property is called non-compact.

Unitary representations of a Lie group - The content of the following
theorems shows the great difference between compact and non-compact Lie
groups.

1. If G is a compact Lie group then every representation of G is equivalent to
a unitary representation;

2. If G is a compact Lie group then every reducible representation of G is
completely reducible;

3. If G is a non-compact Lie group then it possesses no finite-dimensional
unitary representation apart from the trivial representation in which
D(g) = 1 for all g ∈ G.

For physical applications, in the case of compact Lie group, one is interested
only in finite-dimensional representations; instead, in the case of non-compact
Lie groups, one needs also to consider infinite-dimensional (unitary) represen-
tations.

We list here the principal classes of groups of N ×N matrices, which can
be checked to be linear Lie groups:

GL(N,C): general linear group of complex regular matrices M (detM 6= 0);
its dimension is n = 2N2.
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SL(N,C): special linear group, subgroup of GL(N,C) with detM = 1; its
dimension is n = 2(N2 − 1).

GL(N,R): general linear group of real regular matrices R (detR 6= 0); dimen-
sion n = N 2.

SL(N,R): special linear group, subgroup of GL(N,R) with detR = 1; dimen-
sion n = N 2 − 1.

U(N): unitary group of complex matrices U satisfying the condition UU † =
U †U = I, where U† is the adjoint of U ; dimension n = N2.

SU(N): special unitary group, subgroup of U (N) with detU = 1; dimension
n = N2 − 1.

O(N): orthogonal group of real matrices O satisfying OÕ = I where Õ is the
transpose of O; dimension n = 1

2
N(N − 1).

SO(N): special orthogonal group or rotation group in N dimensions, subgroup
of O(N) with detO = 1; dimension n = 1

2
N(N − 1).

Sp(N): symplectic group. It is the group of the unitary N × N matrices U
(with N even) which satisfy the condition ŨJU = J ( Ũ is the transpose

of U and J =

(
0 I

−I 0

)
where I is the

N

2
× N

2
unit matrix); dimension

n = 1
2
N(N + 1).

U(ℓ,N − ℓ): pseudo-unitary group of complex matrices U satisfying the con-
dition UgU † = g, where g is a diagonal matrix with elements gkk = 1 for
1 ≤ k ≤ ℓ and gkk = −1 for ℓ+ 1 ≤ k ≤ N . Its dimension is n = N 2.

O(ℓ,N − ℓ): pseudo-orthogonal group of real matrices O satisfying the condi-
tion OgÕ = g; dimension n = 1

2N(N − 1).

All the groups listed above are subgroups of GL(N,C). In particular:

1. the groups U(N), SU(N ), O(N), SO(N), Sp(N) are compact;
2. the groups GL(N), SL(N), U (ℓ,N − ℓ), O(ℓ,N − ℓ) are not compact.

Examples

1. The group SO(3). Its elements can be defined by the orthogonal 3 × 3 matrices
R satisfying

R̃R = I , (1.19)

detR = 1 . (1.20)

The rotation group SO(3) is compact. In fact, its coordinate domain can be identified
with a sphere in the euclidean space R3, i.e. a compact domain. The rotation group
SO(3) is connected: any two points can be connected by a continuous path. However,
not all closed paths can be shrunk to a point; in fact, the group is doubly connected.

2. The group O(3). If one keeps only the orthogonality condition (1.19) and disregard
(1.20), one gets the larger group O(3), which contains elements with both signs
of detR: detR = ±1. The group consists of two disjoint sets, corresponding to
detR = +1 and detR = −1. The first set coincides with the group SO(3), which
is an invariant subgroup of O(3). Then the group O(3) is neither simple nor semi-
simple, while one can prove that SO(3) is simple. The group O(3) is not connected,
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since it is the union of two disjoint sets. These properties are illustrated in Section
2.1.

3. The group SU(2). The elements of the group SU(2) are the 2 × 2 matrices u
satisfying

uu† = u†u = I , (1.21)

detu = 1 . (1.22)

The group SU(2) and all the groups of the type SU(N) are simply connected. One
can show that the groups SO(3) and SU(2) are homomorphic and that SU(2) is the
universal covering group of SO(3). The kernel of the homomorphism is the center
of SU(2), which is the Abelian subgroup Z2 consisting of two elements represented
by the square roots (1,−1) of the identity. The group SO(3) is isomorphic to the
factor group SU(2)/Z2.

4. The Lorentz group. The Lorentz transformations in one dimension (say, along the
x1 axis), are characterized by a real parameter ψ (being coshψ = γ = (1 − β2)−1/2

with β = v/c):
x′

0 = x0 coshψ − x1 sinhψ ,

x′
1 = −x0 sinhψ + x1 coshψ .

(1.23)

One can show that they form a linear Lie group, the one-dimensional Lorentz group
SO(1, 1). This group is non-compact: in fact the parameter ψ varies from −∞ to
+∞, i.e. its domain is not bounded.

1.2.2 Real Lie algebras

In the study of the Lie groups both local and global aspects are important,
but most of the information on the structure of a Lie group comes from the
analysis of its local properties. These properties are determined by the real
Lie algebras; in the case of linear Lie groups, the link between Lie algebras
and Lie groups is provided by the matrix exponential function.

Before going to the real Lie algebras we have to collect some relevant def-
initions and to state a few theorems. Also in this case, we shall not reproduce
the proofs of the theorems, that the reader can find in the quoted reference4.

Matrix exponential function - The exponential form of a m ×m matrix
A is given by the series

eA = 1 +
∞∑

k=1

1

k!
Ak (1.24)

which converges for any m ×m matrix A. We recall that a series of m ×m
matrices

∑∞
k=1A

k converges to a m×m matrix A only if the series of matrix
elements

∑∞
k=1(Ars)

k converges to Ars for all r, s = 1, 2, ...m.

The matrix exponential function possesses the following properties:

4 J.F. Cornwell, Group Theory in Physics, Vol.1 and 2, Academic Press, 1984.
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1.
(
eA
)†

= eA
†

;

2. eA is always non-singular and
(
eA
)−1

= e−A;

3. det(eA) = etrA;

4. if A and B are two m×m matrices that commute:

eAeB = eA+B = eBeA ; (1.25)

5. if A and B do not commute and their entries are sufficiently small, we can
write eAeB = eC , where C is given by an infinite series

C = A+B + 1
2 [A,B] + 1

12 ([A, [A,B]] + [B, [B,A]]) + · · · (1.26)

where the successive terms contain commutators of increasingly higher
order. The above equation is called Baker-Campbell-Hausdorff formula; a
general expression can be found in ref.5.

6. the exponential mapping φ(A) = eA is a one-to-one continuous mapping
of a small neighbourhood of the m ×m zero matrix onto a small neigh-
bourhood of the m×m unit matrix.

One-parameter subgroup of a linear Lie group - Given a linear group G
of m×m matrices, a one-parameter subgroup T is a Lie subgroup of G which
consists of the matrices T (t) depending on a real parameter t such that

T (t)T (t′) = T (t+ t′) (1.27)

for all t, t′ in the interval (−∞,+∞). T (t) is a continuous and differentiable
function of t. Clearly the subgroup T is Abelian. Eq. (1.27) for t′ = 0 implies
that T (0) is the identity.

Every one-parameter subgroup of a linear Lie group of m×m matrices is
formed by exponentiation

T (t) = eωt (1.28)

where

ω =
dT

dt

∣∣∣∣∣
t=0

. (1.29)

In fact, taking the derivative of Eq. (1.27) with respect to t′ and putting
t′ = 0, one gets dT/dt = ωT (t), from which Eq. (1.29) follows.

We can now define a real Lie algebra.

Real Lie algebra - A real Lie algebra L of dimension n ≥ 1 is a real vector
space of dimension n with a composition law called Lie product [a, b] such
that, for every element a, b, c of L:

5 A.A. Sagle, R.E. Walde, An Introduction to Lie Groups and Lie Algebras, Aca-
demic Press, 1973.
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1. [a, b] ∈ L ;

2. [αa+ βb, c] = α[a, c] + β[b, c], with α, β real numbers;

3. [a, b] = −[b, a];

4. [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

The last relation is called Jacoby identity. In the case of a Lie algebra of
matrices the Lie product is the commutator.

Abelian Lie algebra - A Lie algebra is Abelian if [a, b] = 0 for all a, b ∈ L.

Subalgebra of a Lie algebra - A subalgebra L′ of a Lie algebra L is a
subset of elements of L that form a Lie algebra with the same Lie product.

Invariant subalgebra of a Lie algebra - A subalgebra L′ of a Lie algebra
L is said to be invariant if [a, b] = 0 for all a ∈ L′ and all b ∈ L.

From the definition of a linear Lie group G of dimension n it follows that,
in the case in which G is a group of m × m matrices A, there is a one-to-
one correspondence between the matrices A lying close to the identity and
the points in Rn satisfying the condition (1.18). Then one can parametrize
the matrices A as functions A(x1, x2, ...xn) of the coordinates x1, x2, ...xn
satisfying (1.18); by assumption, the elements of A(x1, x2, ...xn) are analytic
functions of x1, x2, ...xn. The n matrices a1, a2, ...an defined by

(ar)ij =
∂Aij
∂xr

∣∣∣∣∣
x1=x2=....=0

(1.30)

(where i, j = 1, 2, ....m; r = 1, 2, ...n) form a basis for a real n-dimensional
vector space, which is the Lie algebra associated to the Lie group G; the
composition law is the commutator. In general, the matrices a1, a2, ...an are
not necessarily real, but the reality condition of a real Lie algebra L requires
that the elements of L be real linear combinations of a1, a2, ...an.
In the physical applications, the quantities a1, a2, ...an are usually referred to
as generators of the Lie algebra L. In general, they are chosen to be hermitian.

Relationship between linear Lie algebras and linear Lie groups - One
can associate a real linear Lie algebra L of dimension n to every linear Lie
group G of the same dimension, as specified by the following theorems.

1. Every element a of a real Lie algebra L of a linear Lie group G is associated
with a one-parameter subgroup of G defined by A(t) = eat for t in the
interval (−∞,+∞).

2. Every element g of a linear Lie group G in some small neighbourhood of
the identity e belongs to a one-parameter subgroup of G.

3. If G is a compact linear Lie group, every element of a connected subgroup
of G can be expressed in the form ea, where a is an element of the corre-
sponding real Lie algebra L. In particular, if G is compact and connected,
every element g of G has the form ea, where a is an element of L.
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Examples

1. The real Lie algebra of SU(N). Let A(t) = eat be a one-parameter subgroup of
SU(N). Since A is a N ×N matrix, which satisfies the conditions A†A = AA† = I
and detA = 1, one gets: a† = −a and tr(a) = 0. Then the real Lie algebra of SU(N)
is the set of all traceless and anti-hermitian N ×N matrices.

2. The real Lie algebra of SL(N,R). The elements of the one-parameter subgroup

are real N ×N matrices A with detA = 1. Then the real Lie algebra of SL(N,R)

is the set of traceless real N ×N matrices.

Adjoint representation of a Lie algebra - Given a real Lie algebra L of
dimension n and a basis a1, a2, ...an for L, we define for any a ∈ L the n× n
matrix ad(a) by the relation

[a, as] =

n∑

p=1

ad(a)psap . (1.31)

The quantities ad(a)ps are the entries of the set of matrices ad(a) which form
a n-dimensional representation, called the adjoint representation of L. This
representation plays a key role in the analysis of semi-simple Lie algebras, as
it will be shown in the next Section.

Structure constants - Let us consider the real Lie algebra L of dimension
n and a basis a1, a2, ...an. Then, since [ar, as] ∈ L, one can write in general

[ar, as] =

n∑

p=1

cprsap . (1.32)

Eqs. (1.31) and (1.32) together imply

{ad(ar)}ps = cprs . (1.33)

The n3 real number cprs are called structure constants of L with respect to the
basis a1, a2, ...an. The structure constants are not independent. In fact, from
the relations which define the real Lie algebra it follows:

cprs = −cpsr
cspqc

t
rs + csqrc

t
ps + csrpc

t
qs = 0 .

(1.34)

It is useful to define the n× n matrix g whose entries are expressed in terms
of the structure constants:

gij =
∑

ℓ,k

cℓikc
k
jℓ . (1.35)

Casimir operators - Let us consider the real vector space V of dimension n
of a semi-simple Lie algebra with basis a1, a2, ...an and composition law given
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by Eq. (1.32). One defines the second-order Casimir operator acting on the
vector space V as

C =
∑

i,j

gijaiaj , (1.36)

where gij is defined in Eq. (1.35). Making use of Eq. (1.32), one can prove
that the Casimir operator commutes with all the elements of the Lie algebra:

[C, ar ] = 0 . (1.37)

In general, for a simple or semi-simple Lie algebra of rank ℓ, one can build ℓ
independent Casimir operators by means of second and higher order products
of the basis elements ar; they can be used to specify the irreducible represen-
tations of the group.

1.3 Semi-simple Lie algebras and their representations

The study of semi-simple Lie algebras is very useful for physical applications,
especially in the field of elementary particle theory. First we give some defi-
nitions.

Simple Lie algebra - A Lie algebra is said to be simple if it is not Abelian
and it has no proper invariant Lie subalgebra.

Semi-simple Lie algebra - A Lie algebra is said to be semi-simple if it is
not Abelian and it has no Abelian invariant Lie subalgebra.

Every semi-simple Lie algebra L is the direct sum of a set of simple Lie
algebras, i.e. there exists a set of invariant simple subalgebras L1,L2, ...Lk
(k ≥ 1) such that

L = L1 ⊕ L2 ⊕ ...⊕ Lk . (1.38)

Simple and semi-simple linear Lie group - A linear Lie group G is simple
(semi-simple) if and only if its real Lie algebra L is simple (semi-simple).

Examples

1. The Lie group SU(N) is simple for all N ≥ 2.

2. The Lie group SO(N) is simple for N = 3 and for N ≥ 5. The group SO(2) is

Abelian and therefore it is not simple and the group SO(4) is semi-simple, but not

simple, since it is homomorphic to SO(3) ⊗ SO(3).

Killing form - The Killing form B(a, b) corresponding to any two elements
a and b of a Lie algebra L of dimension n is defined by the quantity

B(a, b) = tr{ad(a)ad(b)} , (1.39)

where ad(a) and ad(b) are the matrices of a and b in the adjoint representation
of L. Note that if L is a real Lie algebra, all the matrix elements of ad(a) are
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real for each a ∈ L, and in this case B(a, b) is real for all a, b ∈ L. The
quantities Bij defined by

Bij ≡ B(ai, aj) = tr{ad(ai)ad(aj)} , (1.40)

where i, j = 1, 2, ...n and a1, a2, ...an is a basis for L, are seen to coincide,
making use of Eq. (1.33), with the matrix elements gij given in Eq. (1.35).

The Killing form matrix (1.40) provides a criterion for determining if a Lie
algebra L is semi-simple:

Theorem - A real Lie algebra of dimension n is semi-simple if and only if
the matrix given by the Killing forms of Eq. (1.40) is non-degenerate, i.e. if
and only if

det{Bij} 6= 0 . (1.41)

Equivalently, the above condition can be expressed in the form:

det{gij} 6= 0 . (1.42)

Compact semi-simple real Lie algebra - A semi-simple real Lie algebra
L is said to be compact if its Killing form is negative definite, i.e. if for any
element a 6= 0 of L it is B(a, a) < 0. Otherwise the Lie algebra is said to be
non-compact. A connected semi-simple Lie group is compact if and only if its
corresponding Lie algebra is compact.

Cartan subalgebra - A Cartan subalgebra H of a semi-simple Lie algebra
L is a subalgebra of L with the following properties:

1. H is a maximal Abelian subalgebra of L, i.e. every subalgebra of L con-
taining H as a proper subalgebra is not Abelian;

2. the adjoint representation ad(h) of H is completely reducible.

Rank of a semi-simple Lie algebra - The rank of a semi-simple Lie algebra
L is the dimension ℓ of the Cartan subalgebra H. Since H is Abelian, the
irreducible representations are one-dimensional; consequently, the matrices
ad(hk) with k = 1, 2, ...ℓ must be simultaneously diagonalizable.

1.3.1 Classification of real semi-simple Lie algebras

Given a semi-simple real Lie algebra of dimension n, one can find a basis
h1, h2, ...hℓ; e1, e2, ...en−ℓ, which we shall call standard basis, such that

[hi, hj] = 0 (1.43)

and
[hi, ek] = rk(hi)ek , (1.44)
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where the real quantities rk(hi), (with i = 1, 2, ...ℓ and k = 1, 2, ...n− ℓ) can
be considered as the ℓ components of n − ℓ vectors rk, called root vectors or
simply roots.

A theorem states that if rk is a root, also −rk is a root. Then the number
of roots is even, and it is convenient to relabel the roots by rα and r−α = −rα,
with α = 1, 2, ...(n − ℓ)/2 and the corresponding basis by e±α. Accordingly,
Eq. (1.44) can be rewritten in the form

[hi, e±α] = r±αi
e±α (1.45)

where we have adopted the notation r±αi
= r±α(hi).

The set of elements e±α form a subspace of dimension n− ℓ of L which is
called root subspace. It is convenient to consider the Cartan subalgebra H as
a subspace of L corresponding to the zero roots. Altogether there are ℓ zero
roots and n− ℓ non-zero roots.

Choosing, for the sake of convenience, the normalization

(n−ℓ)/2∑

αi,αj=1

(rαi
rαj

+ r−αi
r−αj

) = δij , (1.46)

one can normalize the basis eα, e−α such that

[eα, e−α] =

ℓ∑

i=1

rαi
hi . (1.47)

The other commutators are given by

[eα, eβ] = Nαβ eα+β , (1.48)

which hold if rα+rβ is a non-vanishing root; otherwise the r.h.s. of Eq. (1.48)
is equal to 0. The constants Nαβ can be directly computed once hi and e±α
are known.

The roots satisfy the following useful properties:

1. Reflection property. If rα and rβ are two non-zero roots then

rγ = rβ − 2
rα · rβ
|rα|2

rα (1.49)

is also a root. In other words, the reflection of rβ through the hyperplane
orthogonal to rα gives another root, as illustrated in Fig. 1.1.

2. Integrality property. If rα and rβ are two non-zero roots, then p and q,
defined by

p = 2
rα · rβ
|rα|2

, q = 2
rα · rβ
|rβ |2

, (1.50)

are two integer numbers of the same sign. This means that the projection
of one of the two roots, say rα, on the other root rβ is a half-integral
multiple of |rα|, and viceversa.
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rα

βr

γr

Fig. 1.1. Graphical representation of the root reflection property.

The above properties imply that two non-zero roots rα and rβ satisfy

rα · rβ = 1
2p |rα|2 = 1

2q |rβ |2 = rαrβ cosφ , (1.51)

from which
cos2φ = 1

4
p q (1.52)

and

R =
rα
rβ

=

√
q

p
. (1.53)

Since p and q are integer numbers, we have only 5 possible solutions which
are shown in Table 1.1 (it is sufficient to consider the angles in the interval
0 ≤ φ ≤ π

2
).

Table 1.1. Values of φ and R

(p, q) (0, 1) (1, 1) (2, 1) (3, 1) (2, 2)

φ
π

2

π

3

π

4

π

6
0

R 0 1
√

2
√

3 1

Let us consider the case of real Lie algebras of rank ℓ = 2. Making use
of the reflection property shown in Fig. 1.1, one can build the so-called root
diagrams. The number of roots, including the ℓ zero-roots, gives the dimension
of the algebra.

Examples

1. Case φ =
π

3
, R = 1. One can draw the root diagram shown in Fig 1.2 and obtain

the dimension d = 8. It is the root diagram of the Lie algebra A2 of the group SU(3).
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2. Case φ =
π

4
, R =

√
2. The root diagram is shown in Fig 1.3; the dimension is

d = 10 and the Lie algebra, denoted by B2 corresponds to the group O(5).

3. Case φ =
π

6
, R =

√
3. The root diagram is shown in Fig. 1.4. The dimension is

d = 14 and the Lie algebra corresponds to the so-called exceptional group G2.

rα

βr

π/3

Fig. 1.2. Root diagram of the real Lie algebra A2 of the group SU(3).

rα

βr

π/4

Fig. 1.3. Root diagram of the real Lie algebra B2 of the group O(5).

Dynkin diagrams - They are introduced to get a classification of all the
semi-simple Lie algebras6. Taking into account Table 1.1, they are constructed
as follows. For every simple root place a dot. Since for a simple Lie algebra
the roots are of two sizes, a dark dot is made to correspond to the smaller
root. Let us then consider two adjacent roots in a root diagram: the relevant

6 See e.g. R. N. Cahn, Semi-simple Lie Algebras and their Representations, Ben-
jamin/Cummings Publ. Co., 1984.
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rα

βr

π/6

Fig. 1.4. Root diagram of the real Lie algebra of the group G2.

values of the angle between them are only three, φ = π
3
, π

4
, π

6
. The Dynking

diagrams for the Lie algebras of SU(3), O(5) and G2 are shown in Fig. 1.5,
where the single, double and triple lines indicate the three different angles.

2A 2B 2G

Fig. 1.5. Dynkin diagrams of the real Lie algebras of rank ℓ = 2.

2G

6E

7E

8E

4F

Fig. 1.6. Dynkin diagrams of the exceptional Lie algebras.
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Classification of the semi-simple Lie algebras - It is due to Elie Cartan7.
There are four classes of semi-simple Lie algebras which go from rank ℓ = 1 to
arbitrary large values: they are called classical Lie algebras and are denoted
by Aℓ, Bℓ, Cℓ and Dℓ. Moreover there is a further class, which consists of only
5 kinds of Lie algebras: they are called exceptional algebras and are denoted
by G2, F4, E6, E7 and E8

8. For the sake of completeness we show the Dynking
diagrams of the exceptional Lie algebras in Fig. 1.6.

In Table 1.2 we list the four kinds of classical Lie algebras. From this Table
it appears that some of the groups are homomorphic, since they have the same
Lie algebras. Specifically, one has:

• rank ℓ = 1 : SU(2) ∼ O(3) ∼ Sp(2);

• rank ℓ = 2 : O(5) ∼ Sp(4);

• rank ℓ = 3 : SU(4) ∼ O(6).

1.3.2 Representations of semi-simple Lie algebras and linear Lie
groups

In this Subsection we examine the representations of real semi-simple Lie
algebras and of compact linear Lie groups. In this case, all the representations
can be chosen to be unitary. Moreover, since an important theorem states that
every reducible representation of a semi-simple real Lie algebra is completely
reducible, we can restrict ourselves to unitary and irreducible representations.

The key idea in the theory of representations of semi-simple Lie algebras
is that of weights, which we analyse in the following.

Let us consider a real semi-simple Lie algebra L of dimension n and rank
ℓ and the standard basis h1, h2, ...hℓ; e1, e2, ...en−ℓ which satisfies Eqs. (1.43)
and (1.44). Let D be an irreducible representation (IR) of L of dimension N
and ψ1, ψ2, ...ψN the basis of D in the N-dimensional vector space V . This
basis is choosen in such a way that the ℓ commuting elements hi (i = 1, 2, ...ℓ)
of the Cartan algebra H are simultaneouly diagonalized. Let ψ be one of the
basis vector, which satisfies

hiψ = miψ , (1.54)

where mi is one eigenvalue of hi and ψ is the simultaneous eigenvector of the
set of eigenvalues

m1,m2, ...mℓ . (1.55)

These eigenvalues can be considered the components of a vector m in a ℓ-
dimensional space: it is this vector which is defined to be the weight of the
representation D. The weights have interesting properties, of which we list in
the following the most important ones.

7 It was presented in the thesis: E. Cartan, Sur la structure des groups de transfor-
mations finis et continues, Paris 1894; 2nd. ed. Vuibert, Paris 1933.

8 See e.g. R. N. Cahn, quoted ref.
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Table 1.2. Classical Lie algebras

A B C D

L G n L G n L G n L G n

A1 SU(2) 3 B1 O(3) 3 C1 Sp(2) 3 D1 O(2) 1
g g g g

A2 SU(3) 8 B2 O(5) 10 C2 Sp(4) 10 D2 O(4) 6
g w g g

| || ||
g g w g

A3 SU(4) 15 B3 O(7) 21 C3 Sp(6) 21 D3 O(6) 15
g w g g

| || || |
g g w g

| | | |
g g w g

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Aℓ SU(ℓ+1) (ℓ+2)ℓ Bℓ O(2ℓ+1) (2ℓ+1)ℓ Cℓ Sp(2ℓ) (2ℓ+1)ℓ Dℓ O(2ℓ) (2ℓ−1)ℓ
g w g gg

| || || \/
g g w g

| | | |
g g w g
...

...
...

...
g g w g

| | | |
g g w g

1. Eigenvectors belonging to different weights are orthogonal. More eigen-
vectors may have the same weight; the number of different eigenvectors
corresponding to the same weight is called multiplicity of the weight. If a
weight belongs only to one eigenvector it is called simple.

2. A N -dimensional representation possesses N weights, some of which may
be identical.

3. For any weight m and any root rα, the quantity

k = 2
m · rα
r2α

(1.56)

is an integer, and
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m′ = m − krα (1.57)

is also a weight with the same multiplicity as m. The situation is repre-
sented in Fig. 1.7, where m′ is obtained by reflection of m in the hyper-
plane perpendicular to the root rα.

rα

m

m'

Fig. 1.7. Graphical representation of the reflection property of the weights, according
to Eq. (1.57).

Next we give a few definitions about weights and state a few theorems.

Equivalent weights - Two weights m and m′ are equivalent if one can be
derived from the other by reflection. All the equivalent weights form a class.

Higher weight - The weight m is higher than m′ if the first non-vanishing
component of m − m′ is positive.

Highest weight of a representation - If m is a weight of a representation
of L, such that it is higher than every other weight of the representation, it
is said to be the highest weight of the representation.

Theorem 1 - The highest weight of a representation is simple if the represen-
tation is irreducible. Two representations are equivalent if and only if they
have the same highest weight.

Theorem 2 - For every irreducible representation D of a simple Lie algebra of
rank ℓ there are ℓ fundamental weights

m(1),m(2), ...m(ℓ) , (1.58)

such that the highest weight of each IR is given by the linear combination

M =

ℓ∑

i=1

pim
(i) , (1.59)
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where the coefficients pi are non-negative integers. There exist ℓ IR’s each of
which has a fundamental weight as the highest weight; they are called fun-
damental representations. Starting from these representations, one can derive
all the higher IR’s. For each IR, one can draw a weight diagram, as shown in
the following examples.

Theorem 3 - If D is an IR of a Lie algebra L, also D∗ ((D∗)ij = (Dij)
∗) is

an IR of L, called complex conjugate representation, and its weights are the
negatives of those of D.

Theorem 4 - The weight diagram of the adjoint representation of a Lie algebra
L coincides with the root diagram. Moreover, all the non-zero weights are
simple and the number of zero-weights is equal to the rank ℓ.

In order to determine, in general, the fundamental weights of the IR’s of a
Lie algebra L, as well as the weight multiplicities and dimensions of the IR’s,
it should be necessary to develop the machinery of the representation theory.
We shall not discuss these arguments here; since we are mainly interested
in the IR’s of the SU(N) groups, it will be sufficient to make use of the
Young tableaux. As considered in detail in Appendix C, this method allows to
determine the properties of all the IR’s of SU(N).

Here we limit ourselves to consider an example in the frame of the Lie
algebra of SU(3).

Example

Weight diagrams for the Lie algebra of SU(3).
Making use of the root diagram of SU(3) shown in Fig. 1.2, and of the normalization
condition (1.46), we can write explicitly, in column form, three roots (the other three
are the opposite vectors):

r(1) =
1√
3

(
1

0

)
; (1.60)

r(2) =
1

2
√

3

(
1
√

3

)
; (1.61)

r(3) =
1

2
√

3

(
1

−
√

3

)
. (1.62)

Then, from Eq. (1.56) applied to r(2) and r(3), the following relations are derived:
√

3 (m1 +
√

3m2) = p1 ,
√

3 (m1 −
√

3m2) = p2 , (1.63)

where m1 and m2 are the two components of the weight m and p1, p2 two integer
numbers. Therefore, we can write for m:

m =
1

6

(√
3

1

)
p1 +

1

6

(√
3

−1

)
p2 . (1.64)

The pair of numbers (p1, p2) characterizes each IR, which we shall denote by
D(p1, p2). The dimension of the representation is given by
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N = 1
2
(p1 + 1)(p1 + p2 + 2)(p2 + 1) . (1.65)

The choices (1, 0) and (0, 1) for (p1, p2) correspond, respectively, to the fundamental
weights

m(1) =
1

6

(√
3

1

)
, m(2) =

1

6

(√
3

−1

)
. (1.66)

By use of the reflection property Eq. (1.57), one can build the two corresponding
weight diagrams, reported in Fig. 1.8. The highest weight of the IR D(1, 1) is equal

2m 2m

1m 1m

Fig. 1.8. Weight diagrams of the IR’s 3 and 3̄ of SU(3), which correspond to the
IR D(1, 0) and its conjugate D(0, 1), respectively.

to the root given in Eq. (1.60). The weight diagram is equal to the root diagram of
Fig. 1.2; the dimension is N = 8.

Finally, the IR D(3, 0) corresponds to N = 10. The root diagram is shown in
Fig. 1.9.

Fig. 1.9. Weight diagrams of the IR’s 10 of SU(3).
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The rotation group

In this Chapter we give a short account of the main properties of the three-
dimensional rotation group SO(3) and of its universal covering group SU (2).
The group SO(3) is an important subgroup of the Lorentz group, which will
be considered in the next Chapter, and we think it is useful to give a separate
and preliminary presentation of its properties. After a general discussion of
the general characteristics of SO(3) and SU (2), we shall consider the corre-
sponding Lie algebra and the irreducible representations of these groups. All
the group concepts used in the following can be found in the previous Chapter.

2.1 Basic properties

The three-dimensional rotations are defined as the linear transformations of
the vector x = (x1, x2, x3)

x′i =
∑

j

Rijxj , (2.1)

which leave the square of x invariant:

x′2 = x2 . (2.2)

Explicitly, the above condition gives

∑

i

x′2i =
∑

ijk

RijRikxjxk =
∑

j

x2
j , (2.3)

which implies
RijRik = δjk . (2.4)

In matrix notation Eqs. (2.1) and (2.4) can be written as

x′ = Rx (2.5)

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 27
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_2, 
© Springer-Verlag Berlin Heidelberg 2012
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and
R̃R = I , (2.6)

where R̃ is the transpose of R. Eq. (2.6) defines the orthogonal group O(3);
the matrices R are called orthogonal and they satisfy the condition

detR = ±1 . (2.7)

The condition
detR = +1 (2.8)

defines the special orthogonal group or rotation group SO(3)1. The correspond-
ing transformations do not include space inversions, and can be identified with
pure rotations.

A real matrix R satisfying Eqs. (2.6), (2.8) is characterized by 3 indepen-
dent parameters, i.e. the dimension of the group is 3. One can choose different
sets of parameters: a common parametrization, which will be considered ex-
plicitly in Section 2.4, is in terms of the three Euler angles. Another useful
parametrization consists in associating to each matrix R a point of a sphere
of radius π in the Euclidean space R3 (Fig. 2.1). For each point P inside the
sphere there is a corresponding unique rotation: the direction of the vector
OP individuates the axis of rotation and the lenght of OP fixes the angle φ
(0 ≤ φ ≤ π) of the rotation around the axis in counterclockwise sense. How-
ever, if φ = π, the same rotation corresponds to the antipode P ′ on the surface
of the sphere. We shall come back to this point later. Writing OP = φn where

P’

P’

P

φ
O

π

Fig. 2.1. Parameter domain of the rotation group.

n = (n1, n2, n3) is a unit vector, each matrix R can be written explicitly in
terms of the parameters φ and n1, n2, n3 (only two of the ni are independent,
since

∑
n2
i = 1). With the definitions cφ = cosφ, sφ = sinφ, one can write

explicitly:

1 For a detailed analysis see E.P. Wigner, Group Theory and its applications to the
quantum mechanics of atomic spectra, Academic Press (1959).
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R =




n2
1(1 − cφ) + cφ n1n2(1 − cφ) − n3sφ n1n3(1 − cφ) + n2sφ

n1n2(1 − cφ) + n3sφ n2
2(1 − cφ) + cφ n2n3(1 − cφ) − n1sφ

n1n3(1 − cφ) − n2sφ n2n3(1 − cφ) + n1sφ n2
3(1 − cφ) + cφ


 .

(2.9)
From Eq. (2.9), one can prove that the product of two elements and the inverse
element correspond to analytic functions of the parameters, i.e. the rotation
group is a Lie group.

If one keeps only the orthogonality condition (2.6) and disregard (2.8),
one gets the larger group O(3), which contains elements with both signs,
detR = ±1. The groups consists of two disjoint sets, corresponding to detR =
+1 and detR = −1. The first set coincides with the group SO(3), which is
an invariant subgroup of O(3): in fact, if R belongs to SO(3) and R′ to O(3),
one gets

det(R′RR′−1) = +1 . (2.10)

The group O(3) is then neither simple nor semi-simple, while one can prove
that SO(3) is simple.

The elements with detR = −1 correspond to improper rotations, i.e. ro-
tations times space inversion Is, where

Isx = −x i.e. Is =




−1
−1

−1


 . (2.11)

The element Is and the identity I form a group J which is abelian and
isomorphic to the permutation group S2. It is an invariant subgroup of O(3).
Each element of O(3) can be written in a unique way as the product of a
proper rotation times an element of J , so that O(3) is the direct product

O(3) = SO(3) ⊗ J . (2.12)

It is important to remark that the group SO(3) is compact; in fact its pa-
rameter domain is a sphere in the euclidean space R3, i.e. a compact domain.
From Eq. (2.12) it follows that also the group O(3) is compact, since both the
disjoint sets are compact.

The rotation group SO(3) is connected: in fact, any two points of the
parameter domain can be connected by a continuous path. However, not all
closed paths can be shrunk to a point. In Fig. 2.2 three closed paths are shown.
Since the antipodes correspond to the same point, the path in case b) cannot
be contracted to a point; instead, for case c), by moving P ′ on the surface,
we can contract the path to a single point P . Case c) is then equivalent to
case a) in which the path can be deformed to a point. We see that there are
only two classes of closed paths which are distinct, so that we can say that
the group SO(3) is doubly connected. The group O(3) is not connected, since
it is the union of two disjoint sets.
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P’

P’ P

O

P

O

P

P

O

a) b) c)

Fig. 2.2. Different paths for SO(3).

Since the group SO(3) is not simply connected, it is important to consider
its universal covering group, which is the special unitary group SU (2) of order
r = 3. The elements of the group SU(2) are the complex 2 × 2 matrices u
satisfying

uu† = u†u = I , (2.13)

detu = 1 , (2.14)

where u† is the adjoint (conjugate transpose) of u. They can be written, in
general, as

u =

(
a b

−b∗ a∗

)
(2.15)

where a and b are complex parameters restricted by the condition

|a|2 + |b|2 = 1 . (2.16)

Each matrix u is then specified by 3 real parameters. Defining

a = a0 + ia1 , (2.17)

b = a2 + ia3 , (2.18)

Eq. (2.16) becomes
a2
0 + a2

1 + a2
2 + a2

3 = 1 . (2.19)

The correspondence between the matrices u and the matrices R of SO(3)
can be found replacing the orthogonal transformation (2.5) by

h′ = uhu† , (2.20)

where

h = σ · x =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (2.21)

and σ = (σ1, σ2, σ3) denotes the three Pauli matrices
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σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (2.22)

which satisfy the relation

Tr(σiσj) = 2δij . (2.23)

Making use of eqs. (2.1), (2.20), one can express the elements of the matrix
R in terms of those of the matrix u in the form:

Rij = 1
2
Tr(σiu σju

†) . (2.24)

Since this relation remains unchanged replacing u by −u, we see that for each
matrix R of SO(3) there are two corresponding matrices u and −u of SU (2).

The group SU(2) is compact and simply connected. In fact, if we take the
real parameters a0, a1, a2, a3 to characterize the group elements, we see that
the parameter space, defined by Eq. (2.19), is the surface of a sphere of unit
radius in a 4-dimensional euclidean space. This domain is compact and then
also the group SU (2) is compact. Moreover, all the closed paths on the sur-
face can be shrunk continuously to a point, so that the group SU(2) is simply
connected. Since SU(2) is homomorphic to SO(3) and it does not contain
simply connected subgroups, according to the definition given in Subsection
1.2.1, SU (2) is the universal covering group of SO(3). The kernel of the ho-
momorphism is the invariant subgroup E(I,−I), and then the factor group
SU(2)/E is isomorphic to SO(3).

E’

P

O

P’

E

P’’
Q

Q’

Fig. 2.3. Parameter space for SU(2) and SO(3).

The homomorphism between SO(3) and SU(2) can be described in a pic-
torial way, as shown in Fig. 2.3. The sphere has to be thought of as a 4-
dimensional sphere, and the circle which divides it into two hemispheres as a
three-dimensional sphere. The points E,E′ correspond to the elements I and
−I of SU(2). In general, two antipodes, such as P and P ′, correspond to a pair
of elements u and −u. Since both u and −u correspond to the same element
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of SO(3), the parameter space of this group is defined only by the surface of
one hemisphere; this can be projected into a three-dimensional sphere, and
we see that two opposite points Q,Q′ on the surface (on the circle in Fig. 2.3)
correspond now to the same element of the group.

2.2 Infinitesimal transformations and Lie algebras of the
rotation group

In order to build the Lie algebra of the rotation group, we consider the in-
finitesimal transformations of SO(3) and SU (2) in a neighborhood of the
unit element. There is a one-to-one correspondence between the infinitesimal
transformations of SO(3) and SU(2), so that the two groups are locally iso-
morphic. Therefore, the groups SO(3) and SU (2) have the same Lie algebra.
We can build a basis of the Lie algebra in the following way. We can start
from the three independent elements R1, R2, R3 of SO(3) corresponding to
the rotations through an angle φ around the axis x1, x2, x3 respectively. From
Eq. (2.9) we get

R1 =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ


 , R2 =




cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


 , R3 =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1




(2.25)
and, according to Eq. (1.30), we obtain the generators of the Lie algebra. For
the sake of convenience, we use the definition:

Jk = i
dRk(φ)

dφ

∣∣∣∣∣
φ=0

(k = 1, 2, 3) , (2.26)

so that the three generators are given by

J1 =




0 0 0
0 0 −i
0 i 0


 , J2 =




0 0 i
0 0 0
−i 0 0


 , J3 =




0 −i 0
i 0 0
0 0 0


 . (2.27)

We can take J1, J2, J3 as the basis elements of the Lie algebra; making use
of the relation between linear Lie algebras and connected Lie groups (see
Subsection 1.2.2), the three rotations (2.25) can be written in the form:

R1 = e−iφJ1 , R2 = e−iφJ2 , R3 = e−iφJ3 . (2.28)

In general, a rotation through an angle φ about the direction n is represented
by

R = e−iφJ·n . (2.29)

We have considered the specific case of a three-dimensional representation
for the rotations Ri and the generators Ji; in general, one can consider Ji as
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hermitian operators and the Ri as unitary operators in a n-dimensional linear
vector space. One can check that J1, J2, J3 satisfy the commutation relations

[Ji, Jj ] = iǫijkJk , (2.30)

which show that the algebra has rank 1. The structure constants are given by
the antisymmetric tensor ǫijk, and Eq. (1.35) reduces to

gij = −δij . (2.31)

Since the condition (1.42) is satisfied, the algebra is simple and the Casimir
operator (1.36) becomes, with a change of sign,

C = J2 = J2
1 + J2

2 + J2
3 . (2.32)

The above relations show that the generators Jk have the properties of the
angular momentum operators2.

2.3 Irreducible representations of SO(3) and SU(2)

We saw that the group SO(3) can be defined in terms of the orthogonal trans-
formations given in Eq. (2.1) in a 3-dimensional Euclidean space. Similarly,
the group SU(2) can be defined in terms of the unitary transformations in a
2-dimensional complex linear space

ξ′i =
∑

j

uijξ
j . (2.33)

This equation defines the self-representation of the group. Starting from
this representation, one can build, by reduction of direct products, the higher
irreducible representations (IR’s). A convenient procedure consists in building,
in terms of the basic vectors, higher tensors, which are then decomposed into
irreducible tensors. These are taken as the bases of irreducible representations;
in fact, their transformation properties define completely the representations
(for details see Appendix B).

However, starting from the basic vector x = (x1, x2, x3), i.e. from the
three-dimensional representation defined by Eq. (2.1), one does not get all
the irreducible representations of SO(3), but only the so-called tensorial IR’s
which correspond to integer values of the angular momentum j. Instead, all the
IR’s can be easily obtained considering the universal covering group SU (2).
The basis of the self-representation consists, in this case, of two-component
vectors, usually called spinors3, such as

2 We recall that the eigenvalues of J2 are given by j(j + 1); see e.g. W. Greiner,
Quantum Mechanics, An Introduction, Springer-Verlag (1989).

3 Strictly speaking, one should call the basis vectors ξ ”spinors” with respect to
SO(3) and ”vectors” with respect to SU(2).
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ξ =

(
ξ1

ξ2

)
, (2.34)

which transforms according to (2.33), or in compact notation

ξ′ = uξ . (2.35)

We call ξ controvariant spinor of rank 1. In order to introduce a scalar product,
it is useful to define the covariant spinor η of rank 1 and components ηi, which
transforms according to

η′ = ηu−1 = ηu† , (2.36)

so that
ηξ = η′ξ′ =

∑

i

ηiξ
i . (2.37)

In terms of the components ηi:

ηi
′ =

∑

j

u†jiηj =
∑

j

u∗ijηj . (2.38)

Taking the complex conjugate of (2.33)

ξ′∗i =
∑

j

u∗ijξ
∗j , (2.39)

we see that the component ξi transform like ξ∗i, i.e.

ξ∗i ≡ ξi . (2.40)

The representation u∗ is called the conjugate representation; the two IR’s u
and u∗ are equivalent. One can check, using the explicit expression (2.15) for
u, that u and u∗ are related by a similarity transformation

u∗ = SuS−1 , (2.41)

with

S =

(
0 1

−1 0

)
. (2.42)

We see also that the spinor

ξ = S−1ξ∗ =

(−ξ2
ξ1

)
(2.43)

transforms in the same way as ξ. Starting from ξi and ξi we can build all the
higher irreducible tensors, whose transformation properties define all the IR’s
of SU(2). Besides the tensorial representations, one obtains also the spinorial
representations, corresponding to half-integer values of the angular momen-
tum j.
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We consider here only a simple example. The four-component tensor

ζji = ξjξi (2.44)

can be splitted into a scalar quantity

Tr{ζ} =
∑

i

ξiξi (2.45)

and a traceless tensor

ζ̂ji = ξjξi − 1
2δ
j
i

∑

k

ξkξk , (2.46)

where δji is the Kronecker symbol.

The tensor ζ̂ji is not further reducible. It is equivalent to the 3-vector x;

in fact, writing it as a 2 × 2 matrix ζ̂ , it can be identified with the matrix h
defined in (2.21)

ζ̂ = σ · x =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (2.47)

Its transformation properties, according to those of ξ, η, are given by

ζ̂′ = uζ̂u† . (2.48)

Let us consider the specific case

u =

(
e−

1
2 iφ 0

0 e
1
2 iφ

)
. (2.49)

Using for ζ̂ the expression (2.47), we get from (2.49):

x′1 = cosφx1 − sinφx2 ,
x′2 = sinφx1 + cosφx2 ,
x′3 = x3 .

(2.50)

The matrix (2.49) shows how a spinor is transformed under a rotation through
an angle φ and it corresponds to the 3-dimensional rotation

R3 =




cosφ − sinφ 0
sinφ cosφ 0

0 0 1


 (2.51)

given in eq. (2.25). In particular, taking φ = 2π, we get ξ′ = −ξ, i.e. spinors
change sign under a rotation of 2π about a given axis. The angles φ and φ+2π
correspond to the same rotation, i.e. to the same element of SO(3); on the
other hand, the two angles correspond to two different elements of SU (2), i.e.
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to the 2× 2 unitary matrices u and -u. Then to each matrix R of SO(3) there
correspond two elements of SU (2); for this reason, often the matrices u and
-u are said to constitute a ”double-valued” representation4 of SO(3).

In general, we can distinguish two kinds of IR’s

D(u) = +D(−u) , (2.52)

D(u) = −D(−u) , (2.53)

which are called even and odd, respectively. The direct product decomposition
u ⊗ u ⊗ ... ⊗ u, where the self-representation u appears n times, gives rises
to even and odd IR’s according to whether n is even or odd. The even IR’s
are the tensorial representations of SO(3), the odd IR’s are the spinorial
representations of SO(3).

The IR’s are usually labelled by the eigenvalues of the squared angular
momentum operator J2, i.e. the Casimir operator given in Eq. (2.32), which
are given by j(j+ 1), with j integer or half integer. An IR of SO(3) or SU(2)
is simply denoted by D(j); its dimension is equal to 2j+1. Even and odd IR’s
correspond to integer and half-integer j, respectively.

The basis of the D(j) representation consists of (2j + 1) elements, which
correspond to the eigenstates of J2 and J3; it is convenient to adopt the usual
notation | j,m> specified by5

J2 | j,m> = j(j + 1) | j,m> ,

J3 | j,m> = m | j,m> .
(2.54)

Finally, we want to mention the IR’s of O(3). We have seen that the group
O(3) can be written as the direct product

O(3) = SO(3)⊗J , (2.12)

where J consists of I and Is. Since I2
s = I, the element Is is represented by

D(Is) = ±I . (2.55)

According to (2.12), we can classify the IR’s of O(3) in terms of those of
SO(3), namely the D(j)’s. In the case of integer j, we can have two kinds of
IR’s of O(3), according to the two possibilities

D(j)(IsR) = +D(j)(R) , (2.56)

D(j)(IsR) = −D(j)(R) . (2.57)

4 See e.g. J.F. Cornwell, Group Theory in Physics, Vol. 1 and 2, Academic Press
(1984); M. Hamermesh, Group Theory and its Applications to Physical Problems,
Addison-Wesley (1962).

5 M.E. Rose, Elementary Theory of Angular Momentum, John Wiley and Sons
(1957).
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Only the second possibility corresponds to faithful representations, since the
improper rotations IsR are distinguished from the proper rotations R. We
denote the two kinds of IR’s (2.56), (2.57) by D(j+), D(j−), respectively. The
bases of these IR’s are called tensors and pseudotensors; in general, one calls
tensors (scalar, vector, etc.) the basis of D(0+), D(1−), D(2+), ..., and pseu-
dotensors (pseudoscalar, axial vector, etc.) the basis of D(0−), D(1+), D(2−),
etc.

In the case of half-integer j, since the IR’s of SO(3) are double-valued,
i.e. each element R is represented by ±D(j)(R) also for the improper element,
one gets

IsR→ D(j)(IsR) = ±D(j)(R) . (2.58)

Then, for each half-integer j, there is one double-valued IR of O(3).

2.4 Matrix representations of the rotation operators

For the applications in many sectors of physics one needs the explicit expres-
sions of the rotation matrices in an arbitrary representation. Following the
notation established in the literature, it is useful to specify a rotation R in
terms of the so-called Euler angles α, β, γ. For their definition, we consider a
fixed coordinate system (x, y, z). Any rotation R can be regarded as the result
of three successive rotations, as indicated in Fig. 2.4.

O

x′′

α α
β

β

γ

γ

x′′′

x′x y y′ = y′′

z′′= z′′′

y′′′

z = z′

Fig. 2.4. Sequence of rotations that define the three Euler angles α, β and γ. The
planes in which the rotations take place are also indicated.
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1. Rotation Rα ≡ Rα(z) through an angle α (0 ≤ α < 2π) about the z-axis,
which carries the coordinate axes (x, y, z) into (x′, y′, z′ = z);

2. Rotation R′β ≡ Rβ(y
′) through an angle β (0 ≤ β ≤ π) about the y′-axis,

which carries the system (x′, y′, z′) into (x′′, y′′ = y′, z′′);
3. RotationR′′γ ≡ Rγ(z

′′) through an angle γ (0 ≤ γ < 2π) about the z′′-axis,
which carries the system (x′′, y′′, z′′) into (x′′′, y′′′, z′′′ = z′′).

The three rotations can be written in the form

Rα = e−iαJz , R′β = e−iβJy′ , R′′γ = e−iγJz′′ , (2.59)

where Jz, Jy′ and Jz′′ are the components of J along the z, y′ and z′′ axes.
The complete rotation R is then given by:

R(α, β.γ) = R′′γR
′
βRα = e−iγJz′′e−iβJy′ e−iαJz . (2.60)

We leave as an exercise the proof that the three rotations can be carried out
in the same coordinate system if the order of the three rotations in inverted,
i.e. Eq. (2.60) can be replaced by

R(α, β, γ) = RαRβRγ = e−iαJze−iβJye−iγJz . (2.61)

The procedure for determining the rotation matrices, i.e. the matrix rep-
resentations of the rotation operator R, is straightforward, even if the relative
formulae may appear to be rather involved. One starts from the basis | j,m>
given in Eq. (2.54) and considers the effect of a rotation R on it:

R | j,m>=
∑

m′

D
(j)
m′m(α, β, γ) | j,m′> . (2.62)

An element of the rotation matrix D(j) is given by

D
(j)
m′m(α, β, γ) =<j,m′ | e−iαJze−iβJye−iγJz | j,m>= e−iαm

′

d
(j)
m′m(β)e−iγm ,

(2.63)
where one defines

d
(j)
m′m(β) =<j,m′ | e−iβJy | j,m> . (2.64)

There are different ways of expressing the functions djm′m; we report here
Wigner’s expression6:

d
(j)
m′m(β) =

∑

s

(−)s[(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

s!(j − s−m′)!(j +m− s)!(m′ + s−m)!
×

×
(

cos
β

2

)2j+m−m′−2s(
− sin

β

2

)m′−m+2s

,

(2.65)

6 See e.g. M.E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons (1957).
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where the sum is over the values of the integer s for which the factorial argu-
ments are equal or greater than zero.

It is interesting to note that, in the case of integral angular momentum,
the d-functions are connected to the well-known spherical harmonics by the
relation:

dℓm,0(θ) =

√
4π

2ℓ+ 1
Y mℓ (θ, φ)e−imφ , (2.66)

where θ and φ are the angles of the spherical coordinates. In fact, Ymℓ (θ, φ)
represents the eigenfunction corresponding to the state | j,m> of a particle
with orbital angular momentum j = ℓ.

In Appendix A we collect the explicit expressions of the spherical harmon-
ics and the d-functions for the lowest momentum cases.

2.5 Addition of angular momenta and Clebsch-Gordan
coefficients

An important application of the IR’s of the rotation group is related to the
addition of angular momenta and the construction of the relevant orthonormal
bases7.

We start from the IR’s D(j1) and D(j2) and the direct product decompo-
sition

D(j1) ⊗D(j2) = D(j1+j2) ⊕D(j1+j2−1) ⊕ ....⊕D(|j1−j2|) . (2.67)

The IR’s on the r.h.s. correspond to the different values of total angular mo-
menta obtained by the quantum addition rule

J = J1 + J2 , (2.68)

with |J1 − J2| ≤ J ≤ J1 + J2. From the commutation properties of angular
momentum operators, one finds that the eigenvectors

| j1, j2;m1,m2>≡| j1,m1> ⊗ | j2,m2> (2.69)

constitute an orthogonal basis for the direct product representation, while the
eigenvectors

| j1, j2; j,m> (2.70)

are the bases of the IR’s on the r.h.s. of eq. (2.67). One can pass from one
basis to the other by a unitary transformation, which can be written in the
form

7 For a detailed treatment of this subject see e.g.W. Greiner, Quantum Mechanics,
An Introduction, Springer-Verlag (1989) and M. Hamermesh, Group Theory and
its Applications to Physical Problems, Addison-Wesley (1962).
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| j1, j2; j,m>=
∑

m1,m2

C(j1, j2, j;m1,m2,m) | j1, j2;m1,m2> . (2.71)

The elements of the transformation matrix are called Clebsh-Gordan coeffi-
cients (or simply C-coefficients), defined by

C(j1, j2, j;m1,m2,m) =<j1, j2;m1,m2 | j1, j2; j,m> , (2.72)

where m = m1 +m2. With the standard phase convention the C-coefficients
are real and they satisfy the orthogonality relation (replacing m2 by m−m1):

∑

m1

C(j1, j2, j;m1,m−m1)C(j1, j2, j
′;m1,m−m1) = δjj′ . (2.73)

Moreover, the transformation (2.71) is orthogonal, and the inverse transfor-
mation can be easily obtained:

| j1, j2;m1,m2>=
∑

j,m

C(j1, j2, j;m1,m−m1) | j1, j2; j,m> . (2.74)

We report the values of the Clebsh-Gordan coefficients for the lowest values
of j1 and j2 in Appendix A, while for other cases and for a general formula
we refer to specific texbooks8.

In connection with the C-coefficients it is convenient to quote without
proof the Wigner-Eckart theorem which deals with matrix elements of tensor
operators. An irreducible tensor operator of rank J is defined as a set of
(2J +1) functions TJM (where M = −J,−J+1, ..., J −1, J) which transform
under the (2J + 1) dimensional representations of the rotation group in the
following way:

RTJMR
−1 =

∑

M ′

DJ
M ′M (α, β, γ)TJM ′ . (2.75)

The Wigner-Eckart theorem states that the dependence of the matrix element
< j′,m′ | TJM | j,m> on the quantum number M,M ′ is entirely contained
in the C-coefficients:

<j′,m′ | TJM | j,m>= C(j, J, j′;m,M,m′)< j′ | TJ | j> . (2.76)

We note that the C-coefficient vanishes unless m′ = M +m, so that one has
C(j, J, j′;m,M,m′) = C(j, J, j′;m,m′−m). The matrix element on the r.h.s.
of the above equation is called reduced matrix element.

8 See e.g. D.R. Lichtenberg,Unitary Symmetry and Elementary Particles, Academic
Press (1970); M.E. Rose, Elementary Theory of Angular Momentum, John Wiley
and Sons (1957).
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Problems

2.1. Give the derivation of Eq. (2.24) and write explicitly the matrix R in
terms of the elements of the u matrix.

2.2. Consider the Schrödinger equation H |ψ> = E |ψ> in which the Hamil-
tonian H is invariant under rotations. Show that the angular momentum J
commutes with H and then it is conserved.

2.3. The πN scattering shows a strong resonance at the kinetic energy about
200 MeV; it occurs in the P-wave (ℓ = 1) with total angular momentum
J = 3

2 . Determine the angular distribution of the final state.

2.4. Prove the equivalence of the two expressions for a general rotation R
given in Eqs. (2.60) and (2.61).

2.5. Consider the eigenstates | 12 ,± 1
2 > of a particle of spin 1

2 and spin com-
ponents ± 1

2
along the z-axis. Derive the corresponding eigenstates with spin

components along the y-axis by a rotation about the x-axis.





3

The homogeneous Lorentz group

In this Chapter we consider the general properties of the homogeneous Lorentz
transformations. We concentrate here on their group theoretical aspects, which
give insight into the central role played by special relativity in the description
of the elementary particle physics. The restricted Lorentz group (which does

not contain space and time inversions), denoted in the following by L↑+, is
analysed in greater detail. Specifically, we derive the Lie algebra of the group
from its infinitesimal transformations, we introduce the group of unimodu-
lar complex 2 × 2 matrices which is homomorphic to L↑+ being its universal
covering group; finally, we discuss the properties of the finite-dimensional ir-
reducible representations. All the group concepts used in the following can
be found in Chapters 1 and 2, where they are illustrated mainly in terms of
the rotation group, which is a subgroup of L↑+. Keeping in mind the examples
given for the rotation group, one should be able to proceed with little effort
through the material of this Chapter.

3.1 Basic properties

The most general Lorentz transformations are given in terms of the coordinate
transformations connecting any two inertial frames of reference.

We neglect here space-time translations, and consider the general homo-
geneous Lorentz transformations. Following the usual notation of Special
Relativity1, these transformations are defined by

x′
µ

= Λµνx
ν , (3.1)

with the condition
(x′)2 = (x)2 , (3.2)

and are expressed in terms of the controvariant four-vector x of components

1 See e.g. N.K. Glendenning, Special and General Relativity, Springer (2007).

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 43
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_3, 
© Springer-Verlag Berlin Heidelberg 2012
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xµ = (x0, x1, x2, x3) = (ct, x, y, z) , (3.3)

where c is the speed of light.
In Eq. (3.1), the sum from 0 to 3 over the repeated index ν is implied; this

convention will be always used in the following. The square of a four-vector
is defined by

(x)2 = gµνx
µxν = xµxµ = (x0)2 − (x)2 , (3.4)

where the metric tensor gµν = gµν can be written as the 4 × 4 matrix

g = {gµν} =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 (3.5)

and xµ = (x0,−x1,−x2,−x3) is the covariant four-vector.
The condition (3.2) can be written explicitly in terms of (3.1), as

gµνx
′µx′

ν
= gµνΛ

µ
ρΛ

ν
σx

ρxσ = gρσx
ρxσ , (3.6)

which implies
ΛµρgµνΛ

ν
σ = gρσ , (3.7)

or in matrix form
Λ̃gΛ = g . (3.8)

From (3.8) one gets

(det Λ̃)(detΛ) = (detΛ)2 = 1 , (3.9)

i.e.
detΛ = ±1 . (3.10)

Moreover, if we take the ρ = σ = 0 component of (3.7), we get

(Λ0
0)

2 −
3∑

i=1

(Λi0)
2 = 1 , (3.11)

which implies
(Λ0

0)
2 ≥ 1 , (3.12)

i.e.
Λ0

0 ≥ 1 or Λ0
0 ≤ −1 . (3.13)

The homogeneous Lorentz transformations are defined by (3.1) as linear
transformations which leave invariant the quadratic form (3.4); they are com-
pletely characterized by the real 4× 4 matrices Λ which satisfy the condition
(3.8). In the following we show that the matrices Λ form a group, i.e. the
homogeneous Lorentz group, denoted by L, and specify its main properties.
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1. The set L of the matrices Λ, which characterize the homogeneous Lorentz
transformations, is a group. In fact, the properties given in Section 1.1 are
satisfied:
• if Λ1 and Λ2 are elements of L, we can define the product Λ3 = Λ1Λ2

which is an element Λ3 of L:

˜(Λ1Λ2)g(Λ1Λ2) = Λ̃2Λ̃1gΛ1Λ2 = Λ̃2gΛ2 = g , (3.14)

i.e.
Λ̃3gΛ3 = g . (3.15)

• Clearly, the product is associative.
• The identity is the unit matrix I, which belongs to L:

ĨgI = g . (3.16)

• Eq. (3.10) assures that for each element Λ there is the inverse Λ−1;
from (3.8) we get

Λ̃−1gΛ−1 = g , (3.17)

i.e. Λ−1 belongs to L.
2. The group L is isomorphic to the pseudo-orthogonal group O(1, 3) de-

fined in Subsection 1.2.1, i.e. the group of rotations in a four-dimensional
Minkowski space; then L is a linear Lie group of dimension n = 6. In
fact, the matrix Λ depends upon 16 real parameters (the transformations
preserve the reality properties of the four-vector xµ), but they have to
satisfy Eq. (3.8), i.e. 10 independent conditions, so that there are only 6
independent real parameters.

3. The group L is not connected. From Eqs. (3.10) and (3.13) we see that the
group consists of 4 disjoint sets, which are called components, correspond-
ing to the 4 possibilities presented in Table 3.1. This situation corresponds
to the fact that L contains 3 discrete transformations, which are defined
as follows:

• space inversion Is
Isx

µ = gµνx
ν , (3.18)

• time inversion It
Itx

µ = −gµνxν , (3.19)

• space-time inversion Ist = IsIt = ItIs

Istx
µ = −xµ . (3.20)

Together with the identity I, the discrete elements Is, It, Ist form an
Abelian subgroup I of L. This subgroup is not invariant (compare with
the situation of the group O(3) and its Abelian subgroup I, Is in Section
2.1). In fact, while the relation

IstΛ = ΛIst (3.21)
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holds for any Λ, the analogous relation does not hold for Is and It. The
group is not connected since it is the union of disjoint sets; however,
each component is connected since any element can be connected by a
continuous path to any other element in the same component. Among
the four components, only L↑+ is a subgroup of L: it is called the proper
orthochronous or restricted Lorentz group. From Table 3.1 we see that,
taking two arbitrary elements Λ of L and Λ′ of L↑+, ΛΛ′Λ−1 belongs to L↑+,

so that L↑+ is an invariant subgroup of L. Then the group L is isomorphic

to the semi-direct product L↑+ fs I. The other components can be identified

with the cosets of L↑+ in L, which are: IsL↑+, ItL↑+, IstL↑+. This show that
any element of L can be obtained by applying a discrete operation to an
element of L↑+.

Table 3.1. Properties of the four components of the Lorentz group L.

Component detΛ Λ0
0 Discrete transformation

L↑
+ +1 ≥ +1 I

L↑
− −1 ≥ +1 Is = g

L↓
+ +1 ≤ −1 It = −g

L↓
− −1 ≤ −1 Ist = −I

Other subgroups of L can be obtained by combining L↑+ with another

component; the elements of L↑+ and L↓+ form the subgroupL+, which is the

proper Lorentz group; the elements of L↑+ and L↑− form the orthochronous
Lorentz group L↑.

3.2 The proper orthochronous Lorentz group L
↑
+

First we consider some specific examples of Lorentz transformations which are
important in practice and which will be used in the following.

1. Space rotations
A rotation by an angle φ around the first axis x1 is represented by the matrix

R1 =




1 0 0 0
0 1 0 0
0 0 cosφ − sinφ
0 0 sinφ cosφ


 (3.22)

Rotations around the axes x2 and x3 are given by analogous matrices R2 and
R3, respectively (compare with Eq. (2.25)).

A general rotation by an angle φ around a fixed arbitrary direction is
represented by a matrix
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R =




1 | 0
−−− | − −−

0 | Rn


 (3.23)

where Rn is an element of the three dimensional group SO(3) given explicitly

in Eq. (2.9). It is then clear that the rotation group is a subgroup of L↑+.

2.Pure Lorentz transformations
A so-called pure Lorentz transformation with velocity v in the direction of
the axis x1 is given by

L1 =




γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


 (3.24)

where β = v (c = 1), γ = (1 − β2)−
1
2 . It is useful to re-write L1 in terms of a

parameter ψ defined by
γ = coshψ , (3.25)

so that (3.24) becomes

L1 =




coshψ − sinhψ 0 0
− sinhψ coshψ 0 0

0 0 1 0
0 0 0 1


 . (3.26)

Compared with (3.22), L1 looks like a rotation through an imaginary angle
φ = iψ in the (x0, ix1) plane. Similarly, we can write two matrices L2, L3 which
represent pure Lorentz transformations along the axis x2, x3, respectively.

In general, a pure Lorentz transformation corresponding to a velocity v is
represented by the matrix L with matrix elements

Lµν =




coshψ | nj sinhψ
−−−− | − −−−−−−−
−ni sinhψ | δij−ninj(coshψ−1)


 =




γ | βjγ
−−− | − −−−−−−
−βiγ

∣∣ δij− βiβj

β2 (γ−1)




(3.27)
where n = (n1, n2, n3) is the unit vector along β = v/c and γ = coshψ. It
can be obtained from L3 by combining it with the rotation Rn which takes
the axis x3 along n:

L = RnL3R
−1
n . (3.28)

The pure Lorentz transformations, in general, do not form a group; only
the one-dimensional Lorentz transformations, such as (3.26), form a group
(see example 4 in Subsection 1.2.1).

Next we consider some general properties of the group L↑+. At the end of

this Section, it will be shown that a generic transformation Λ of L↑+ can be
obtained as the product
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Λ = LR (3.29)

of a pure Lorentz transformation L times a pure rotation R. We can associate
3 of the 6 parameters characterizing Λ to a rotation, and the other 3 to a
pure Lorentz transformation. The parameter space corresponding to rotations
can be taken as a three-dimensional sphere of radius π (see Fig. 2.1). The
parameter space corresponding to the transformations L can be taken as a
hyperboloid in a four-dimensional euclidean space (see Fig. 3.1): in fact, the
quantity

(x)2 = (x0)2 − (x)2 = const (3.30)

P

O

E0
E0’

φ

O’

S

Σ

hyperplane
containing x

x0

.

Fig. 3.1. Parameter domain of the pure Lorentz transformations.

is invariant under a transformation L. The hyperboloid consists of two
branches inside the light cone, but only the upper one (Σ) is needed if one

consider x0 > 0 (the transformations of L↑+ cannot change the sign of x0).
A pure Lorentz transformation L takes the unit four-vector E0 into E′0; it is
uniquely defined by the point P . For a given φ, P moves on a sphere S (a
circle in Fig. 3.1), and so one needs two more parameters to fix its position on
S. In the Minkowski space, the angle φ becomes imaginary, and it corresponds
to the parameter ψ in Eq. (3.27).

From the topological properties of the parameter space, we can infer the
following properties for the group L↑+:

• the group L↑+ is not compact. In fact, the parameter space Σ is a hyper-
boloid, i.e. a domain which is not compact;
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• the group L↑+ is doubly connected. The subset of the L transformations
is simply connected: in fact, any closed path on Σ can be shrunked to a
point. However, the subset of rotations, which form the subgroup SO(3),

is doubly connected (see Section 2.1), and so is the group L↑+ itself.

The fact that L↑+ is doubly connected leads us to look for its universal

covering group, which is simply connected and homomorphic to L↑+. The sit-
uation is similar to what occurs for the groups SO(3) and SU(2). In analogy
to what shown in Section 2.1 (see, in particular, Eqs. (2.20) and (2.21)), we
associate to each four-vector x = (x0, x1, x2, x3) a 2 × 2 hermitian matrix

X = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (3.31)

where
σµ = (σ0,σ) (3.32)

stands for the set of the unit matrix and the three Pauli matrices (2.22):

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.33)

It is convenient to introduce also the set of matrices

σµ = σµ = (σ0,−σ) ; (3.34)

obviously this definition implies σµ = σµ. One gets easily the relation

Tr(σµσν) = 2gµν , (3.35)

which allows to express xµ as

xµ = 1
2Tr(σµX) . (3.36)

The determinant of X is given by:

detX = (x0)2 − (x)2 = (x)2 . (3.37)

Let us introduce a transformation of X through a unimodular complex matrix
A

X ′ = AXA† , (3.38)

where

A =

(
α β
γ δ

)
, (3.39)

with the condition
detA = αδ − βγ = 1 . (3.40)

From (3.38) we get, since detA = 1,
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(x′)2 = detX ′ = detX = (x)2 . (3.41)

This shows that Eq. (3.38) describes a linear transformation of xµ which
leaves (x)2 invariant, so that it corresponds to a Lorentz transformation Λ.
The connection between the matrices A and Λ is given by

Λµν = 1
2
Tr(σµAσνA

†) . (3.42)

The matrices A given by (3.39), (3.40) form a group denoted by SL(2, C)
(following the notation of Subsection 1.2.1, the symbol L(2, C) refers to linear
transformations in a two-dimensional complex space; S stands for special and
refers to the unimodularity condition). It is clear from Eq. (3.42) that for
each matrix A there is a corresponding Lorentz transformation Λ; viceversa,
for a given Lorentz transformation Λ there are two corresponding matrices A
and −A. In particular, both matrices I and −I in SL(2, C) correspond to the

identity element of L↑+.
The correspondence (3.42) is preserved under multiplication, which proves

the homomorphism between the group L↑+ and SL(2, C). Moreover, it can be
shown that the matrices Λ given by (3.42) satisfy the conditions detΛ = +1,
Λ0

0 ≥ +1. This proves that the group SL(2, C) is homomorphic to the proper

orthochronous Lorentz group L↑+. The proof of these statements is left as an
exercise.

It is instructive to write the matrices A of SL(2, C) in exponential form

A = eS , (3.43)

where the 2 × 2 matrix S has to satisfy the condition

TrS = 0 , (3.44)

since detA = 1. There are 6 independent 2 × 2 traceless matrices: we can
choose the 3 (hermitian) Pauli matrices σk and the 3 anti-hermitian matrices
iσk. In general, the matrix S can be written as the sum S = S1 + S2, where

S1 = − 1
2 iφσ · n and S2 = − 1

2ψ σ · ν , (3.45)

φ and ψ being real parameters with n and ν unit (real) vectors. From
Eq. (3.43) we get two kinds of matrices A:

U = eiS1 = cos 1
2
φ− iσ · n sin 1

2
φ , (3.46)

H = eiS2 = cosh 1
2
ψ − σ · ν sinh 1

2
ψ . (3.47)

It is easy to check that the matrices U are unitary, while the matrices H
are hermitian. Moreover, one can show that the matrix U given in (3.46)
represents a rotation through an angle φ about the n direction (in particular,
taking n = (1, 0, 0) one gets (3.22)), and that the matrix H given in (3.47)
represents a pure Lorentz transformation L with β = ν tanhψ. All this can be
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shown by deducing explicitly the corresponding transformations of xµ from
Eq. (3.38).

The above relations show that a general matrix A of SL(2, C) can be
written as the product

A = HU . (3.48)

Due to the homomorphism between SL(2, C) and L↑+, Eq. (3.48) proves
the decomposition of a Lorentz transformation Λ into the product LR (see
Eq. (3.29)).

Since the matrices U are unitary and unimodular, they form the group
SU(2) considered in Section 2.1, which is a subgroup of SL(2, C). Instead,
the subset of the matrices H is not a group (the product of two hermitian
matrices is not, in general, hermitian), in agreement with what stated about
pure Lorentz transformations.

Since the group SU (2) is simply connected, and so is the set of pure Lorentz
transformations, we can conclude from (3.48) that also the group SL(2, C) is
simply connected; one can convince oneself that it is the universal covering
group of L↑+.

3.3 Lie algebra of the group L
↑
+

We examine here the infinitesimal transformations of the restricted Lorentz
group L↑+, and the generators of the Lie algebra.

First, we consider the subgroup of rotations and the three independent
elements R1(φ), R2(φ), R3(φ) (see (3.23) and (2.25)). The generators of these
rotations are defined, according to (2.26), by

Jk = i
∂Rk
∂φ

∣∣∣∣∣
φ=0

, (3.49)

from which we obtain:

J1 =




0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0


 , J2 =




0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0


 , J3 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 . (3.50)

An infinitesimal rotation about a direction n can be written as

R = I − iδφJ · n (3.51)

where J = (J1, J2, J3), and can be obtained directly from (3.23) with R given
by (2.9). A finite rotation can be written in terms of J by exponentiation (see
Eq. (2.29)):

R = e−iφJ·n . (3.52)
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Similarly, from L1(ψ), L2(ψ), L3(ψ) (see (3.26) and (3.27)), we obtain the
generators of the pure Lorentz transformations:

Kℓ = i
∂Lℓ
∂ψ

∣∣∣∣∣
ψ=0

, (3.53)

i.e.

K1 =




0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0


 ,K2 =




0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0


 ,K3 =




0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0


 . (3.54)

An infinitesimal pure Lorentz transformation L is written as

L = I − iδψK · ν , (3.55)

where K = (K1,K2,K3), ν = v/|v|, and can be obtained directly from (3.27).
Finite pure Lorentz transformations can be obtained by exponentiation in the
form

L = e−iψK·ν . (3.56)

Then a general transformation of L↑+ can be written, according to (3.29),
(3.52), (3.56) as

Λ = e−i(φJ·n+ψK·ν) . (3.57)

One can check, from the explicit expressions given above, that Ji, Ki satisfy
the following commutation relations

[Ji , Jj ] = iǫijkJk ,

[Ki,Kj ] = iǫijkJk ,

[Ji ,Kj ] = iǫijkKk ,

(3.58)

where ǫijk is the completely antisymmetric tensor.

The above commutators define the Lie algebra of the groups L↑+ and
SL(2, C). The quantities Jk(k = 1, 2, 3) and Kℓ(ℓ = 1, 2, 3) form the basis
of the Lie algebra; we shall refer to them as generators of the Lie algebra
of L↑+. The relations (3.57) and (3.58), that we derived making use of the
4-dimensional representation, hold in the general case. We stress the fact that,
while the generators Ji are hermitian (they represent dynamical variables, i.e.
the components of the angular momentum), the generators Ki (see (3.54))
are anti-hermitian.

Eqs. (3.58) show that the Lie algebra has rank 2. In terms of the structure
constants ǫijk, one can check that the Lie algebra is at least semi-simple; in

fact, it is simple, and so is the group L↑+.
By defining the antisymmetric tensor Mµν with components
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(M12,M23,M31) = (J3, J1, J2) ,

(M01,M02,M03) = (K1,K2,K3) ,
(3.59)

the commutators (3.58) can be re-written in a covariant form

[Mλρ,Mµν ] = −i(gλµMρν + gρνMλµ − gλνMρµ − gρµMλν) . (3.60)

From (3.57) and (3.59) it follows that a general transformation of L↑+ can be
written as

Λ = e−
1
2 iω

µνMµν , (3.61)

where ωµν is a real antisymmetric matrix.
In terms of Mµν , one can obtain the following Casimir operators

1
2M

µνMµν = J2 − K2 ,
1
2 ǫ
µνστMµνMστ = −J · K ,

(3.62)

where ǫµνστ = ǫµνστ is the completely antisymmetric tensor in four dimen-
sions. In fact, it can be shown that they commute with all the generators
Mµν .

For the classification of the irreducible representations of L↑+, it is useful
to introduce the linear combinations of Ji,Ki

Mi = 1
2(Ji + iKi) ,

Ni = 1
2(Ji − iKi) ,

(3.63)

which are hermitian. Eqs. (3.58) give in terms of Mi, Ni

[Mi,Mj] = iǫijkMk ,

[Ni, Nj] = iǫijkNk ,

[Mi, Nj ] = 0 .

(3.64)

Moreover one has
[M2,Mj] = 0 ,

[N 2, Nj] = 0 ,
(3.65)

where
M2 =

∑

i

M2
i , N2 =

∑

i

N2
i . (3.66)

Since (3.63) are not real linear combinations of the basic elements, the com-

mutators (3.64) do not define the real Lie algebra of L↑+. However, due to the
analogy with angular momentum, it is convenient to use the eigenvalues of the
hermitian operators M2,M3, N

2, N3 to label the elements of the irreducible
representations.
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3.4 Irreducible representations of the group L
↑
+

We are interested here in the finite-dimensional irreducible representations
(IR’s) of L↑+. As stated in Section 3.2, since L↑+ is a non-compact group, its
finite-dimensional IR’s cannot be unitary. This can be seen explicitly from
Eq. (3.57): since the generators Ki are not hermitian, the matrices Λ are, in
general, not unitary.

The IR’s of L↑+ are usually labelled by the eigenvalues of the Casimir
operators M2, N2 given by (3.66). From (3.64), (3.65) we see that Mi, Ni
behave as the components of two angular momenta M, N. Their eigenvalues
are then given in terms of two numbers j, j′, which can take independently
zero or positive integral or half-integral values. To each pairs of values (j, j′)
there correspond (2j + 1) · (2j′ + 1) eigenstates, which can be taken as the

basis of the IR’s of L↑+ of dimension (2j+1) · (2j′+1). Each element Λ of L↑+
is then represented by D(j,j′)(Λ).

If one restricts oneself to the subgroup of rotations, the representations
are no longer irreducible, and they can be decomposed in terms of the IR’s of
SO(3) as follows:

D(j,j′)(R) = D(j)(R) ⊗D(j′)(R) = D(j+j′)(R) ⊕ ...⊕D(|j−j′|)(R) . (3.67)

As in the case of the group SO(3), we have for L↑+ two kinds of IR’s:
the tensorial representations (j+ j′ = integer) and the spinor representations
(j+ j′ = half-integer). The spinor representations, as discussed in Section 2.3
for SO(3), are double-valued. This feature is due to the fact that the group

L↑+ is doubly connected. All its IR’s can be found by looking for the IR’s of its
universal covering group SL(2, C).

We shall examine in more detail the lowest spinor representations. There
are two IR’s of dimension 2, which are not equivalent: D( 1

2
,0), D(0, 1

2
). In order

to understand this point, we go to the group SL(2, C) and to Eq. (3.42) which
gives the connection between the matrics Λ and A. It is clear that the two
matrices +A, −A correspond to the same matrix Λ. The homomorphism be-
tween SL(2, C) and L↑+ (two-to-one correspondence) explains the occurrence
of both signs; this is the analogue of what seen in Section 2.3 for the SU(2)
and SO(3) groups. However, while for the rotation group a representation
and its complex conjugate are equivalent, in the present case A and A∗ are
not equivalent. In fact, since the matrices A are, in general, not unitary, one
cannot find a similarity transformation relating A to A∗.

Therefore, the matrices A and A∗ constitute two non equivalent irreducible
representations of L↑+, acting on two different two-dimensional vector spaces.
We have then two non equivalent bases, and, in general, two kinds of (con-
trovariant) spinors2, which shall be denoted by ξ and ξ∗ and transform ac-

2 In analogy with the footnote related to eq. (2.34), one should call the basis ξ
”spinor” with respect to L↑

+ and ”vector” with respect to SL(2, C).
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cording to3

ξ′ = Aξ , (3.68)

ξ∗′ = A∗ξ∗ . (3.69)

We can show that the two IR’s defined by (3.68), (3.69) correspond to the two

IR’s D( 1
2
,0), D(0, 1

2
) of L↑+. In fact we remember that a general 2× 2 matrix A

can be written, according to (3.43), (3.45) as

A = e−
1
2
i(φσ·n−iψσ·ν) . (3.70)

Comparison with (3.57) shows that 1
2σi, − 1

2 iσi provide a 2× 2 representation
for the generators Ji, Ki, i.e.

Ji → 1
2σi , Ki → − 1

2 iσi , (3.71)

and, from (3.63), for Mi, Ni,

Mi → 1
2σi , Ni → 0 . (3.72)

The representation given by (3.70) is then equivalent to D( 1
2
,0)(Λ).

Similarly, taking the conjugate A∗ of (3.70), one gets the representation

Ji → − 1
2σ
∗
i , Ki → − 1

2 iσ
∗
i . (3.73)

However, since
σ2σ

∗
i σ2 = −σi , (3.74)

the representation (3.73) is equivalent to

Ji → 1
2σi , Ki → 1

2 iσi , (3.75)

which give
Mi → 0 , Ni → 1

2σi . (3.76)

This shows that the representation provided by A∗ is equivalent to D(0, 1
2
)(Λ).

It is useful to introduce covariant spinors, which transform according to4

(compare with (2.36))

3 Written in terms of the (controvariant) components ξ =
(
ξ1

ξ2

)
, ξ∗ =

(
ξ1̇

ξ2̇

)
,

Eqs. (3.68), (3.69), following the standard notation, become

ξ′
α

= Aα
βξ

β , ξ′
α̇

= A∗α̇
β̇ξ

β̇ .

4 In terms of the (covariant) components η = (η1 η2), η
∗ = (η1̇ η2̇), Eqs. (3.77),

(3.78) become:

η′α = ηβ(A−1)β
α , η′α̇ = ηβ̇(A−1)β̇

α̇ .
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η′ = ηA−1 , (3.77)

η∗′ = η∗(A∗)−1 , (3.78)

and are defined in such a way that the products ηξ, η∗ξ∗ are invariant (scalar

under L↑+).

It is easy to see that a matrix of SL(2, C) exists which relates A and Ã−1

(A and Ã−1 correspond, in fact, to equivalent representations) according to

Ã−1 = CAC−1 , (3.79)

that is
C = ÃCA . (3.80)

The above relation is satisfied by any antisymmetric matrix C, in particular
by

C = iσ2 =
(

0 1
−1 0

)
. (3.81)

Eq. (3.77) can be re-written, using (3.81), as

η̃′ = Ã−1η̃ = CAC−1η̃ , (3.82)

which, compared with eq. (3.68), gives

η̃ = Cξ . (3.83)

This shows that the matrix C transforms controvariant into covariant spinors,
and viceversa. Since C = C∗, the same relations hold between A∗, (A†)−1 and
ξ∗, η∗:

C = A CA† ∗ (3.84)

η̃∗ = Cξ∗ . (3.85)

In conclusion, we have examined the bases of the two lowest spinor represen-
tations, D( 1

2
,0), D(0, 1

2
). In terms of these bases, one can build not only all the

higher spinor representations, but also all the tensorial representations. With
this respect, the spinor IR’s are more fundamental than the tensor IR’s.

Let us consider, as an example, the four-dimensional representation. Its ba-
sis can be taken as the four vector xµ, which transforms according to Eq. (3.1).
We saw that this equation can be replaced by

X ′ = AXA† , (3.38)

where X represents the four vector written as a 2× 2 matrix (see Eq. (3.31)).
We consider now the quantity ξξ†; its transformation properties follow from
Eqs. (3.68), (3.69) :

ξ′ξ′† = Aξξ†A† . (3.86)

,



3.5 Irreducible representations of the complete Lorentz group 57

Then ξξ† transforms in the same way of the four vector X , so it can be taken
as the basis of the four-dimensional IR. It is denoted by D( 1

2
, 1
2
), which is

consistent with the fact that its basis contains both kind of spinors ξ, ξ∗; in
fact, one can write:

D( 1
2
, 1
2
) = D( 1

2
,0) ⊕D(0, 1

2
) . (3.87)

In general, one can obtain higher IR’s by decomposition of direct products; it
can be shown that the following relation holds

D(j1,j2) ⊗D(j′1,j
′
2) = D(j1+j′1,j2+j

′
2) ⊕D(j1+j

′
1−1,j2+j

′
2) ⊕ ...⊕D(|j1−j′1|,|j2−j′2|) .

(3.88)
which is the analogue of the relation (2.67), valid for the rotation group.

Finally, we mention a very important point, on which we shall come back
in Chapter 7. According to Eq. (3.67), we see that an IR of L↑+ contains, in

general, several IR’s of SO(3). We know that each element of the basis of D(j)

describes one of the (2j + 1) states of a particle with spin J . If we want to
keep this correspondence between IR’s and states with definite spin also in
the case of L↑+, we have to introduce supplementary conditions which reduce
the number of independent basis elements.

Going back to (3.67), if we want the basis of D(j,j′) to describe a unique
value of spin (we choose for it the highest value, since the lower ones can be
described by lower IR’s), we have to keep only 2(j + j′) + 1 elements out of
(2j + 1) · (2j′ + 1), so that these can be grouped together to form the basis
of D(j+j′) in SO(3). The number of conditions is then given by 4jj′. For
instance, in the simple case

D( 1
2
, 1
2
)(R) = D(1)(R) ⊕D(0)(R) , (3.89)

we see that a spin 1 particle is described by a four-dimensional basis; so that
one needs a supplementary condition (called in this case Lorentz condition)
to leave only 3 independent elements which describes the 3 different spin 1
states.

3.5 Irreducible representations of the complete Lorentz
group

It was pointed out in Section 3.1 that the complete homogeneous Lorentz
group L, corresponding to the general homogeneous Lorentz transformations,
can be obtained from the group L↑+ by inclusion of the three inversion Is, It,
Ist.

We shall not consider here all kinds of finite-dimensional IR’s of L, but
limit ourselves to specific cases, which are important for physical applications
and which will be used in the following.

First, we examine the transformation properties of the spinors ξ and ξ∗,
bases of the two-dimensional IR’s D( 1

2
,0) and D(0, 1

2
) of L↑+, under the inversion
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operations. From this analysis, one should be able to determine the behaviour
of the higher IR’s of L↑+ under the discrete operations, and, therefore, to build
the IR’s of L.

We shall follow a heuristic approach, starting from the transformation
properties of the matrix (3.31), which we rewrite here

X = σµx
µ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (3.31)

One can check that, under the operations Is, It, Ist, the matrix X transforms
as follows

X
Is−→ X ′ = −CX∗C−1 , (3.90)

X
It−→ X ′ = CX∗C−1 , (3.91)

X
Ist−→ X ′ = −X , (3.92)

where C is the matrix defined by eq. (3.81).
We assume that the quantity ξξ†, which behaves as the matrix X under

a transformation of SL(2, C), has also the same transformation properties
under the discrete operations. Similarly for the quantity η̃η∗. From the above
equations we can then extract the behaviour of ξ, η (and ξ∗, η∗) under Is, It,
Ist, aside from phase ambiguities.

We give here one of the possible choices5

{
ξ

Is−→ iη† ,

η†
Is−→ iξ ,

(3.93)

{
ξ

It−→ η† ,

η†
It−→ −ξ ,

(3.94)

{
ξ

Ist−→ iξ ,

η†
Ist−→ −iη† .

(3.95)

The above transformations show that it is not possible to build scalar and
pseudoscalar quantities using only either ξ, η or ξ∗, η∗, but both kinds of
spinors are needed. In fact, one can easily check that the quantities

η∗ξ∗ + ηξ , (3.96)

η∗ξ∗ − ηξ , (3.97)

are. respectively, scalar and pseudoscalar under space inversion. Making use,
together with the matrices σµ = (σ0,σ), of the conjugate matrices σµ = σµ =

Cσ∗µC
−1 = (σ0,−σ) introduced in Eq. (3.34), one can show that the quantity

5 Only one of the possible choices is given here. For a more complete discussion
see: A.J. Macfarlane, Jour. of Math. Phys. 3 (1962) 1116, and references therein.
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ξ†σµη̃ ± ησµξ
∗ (3.98)

behaves, according to the ± sign, as a vector or a pseudovector.
It is useful to give a more general classification of the IR’s of the or-

thochronous Lorentz group L↑, which contains Is and the subgroup O(3). We

shall denote by D(j1,j2) the IR’s of L↑ to distinguish them from those of L↑+,

denoted by D(j1,j2). The following cases may occur:

a) j1 = j2. Each IR of L↑ corresponds to a definite IR of L↑+. In anal-

ogy with O(3), (see Section 2.3), there are two kinds of IR’s: D(j,j,+) and
D(j,j,−); however, in this case both are faithful. Their difference is under-
stood going to the rotation subgroup O(3): in terms of the IR’s of O(3)
they are decomposed as follows

D(j,j,+) = D(0,+) ⊕D(1,−) ⊕ ...⊕D(2j,±) ,

D(j,j,−) = D(0,−) ⊕D(1,+) ⊕ ...⊕D(2j,∓) .
(3.99)

In the last term, the upper or lower sign is to be taken according to 2j
being even or odd.

b) j1 6= j2, j1 + j2 = integer. Each IR of L↑ contains two IR of L↑+, which
can be decomposed as

D(j1,j2) = D(j1,j2) ⊕D(j2,j1) =

j1+j2∑

j=|j1−j2|
D(j,+) ⊕D(j,−) . (3.100)

c) j1 6= j2, j1 + j2 = half integer. Each IR of L↑ contains, also in this case,

two IR of L↑+, and it is reduced according to

D(j1,j2) = D(j1,j2) ⊕D(j2,j1) =

j1+j2∑

j=|j1−j2|
D(j) . (3.101)

One can understand the meaning of the above decomposition, by noting that
the infinitesimal generators Ji, Ki transform under space inversion as follows

IsJiIs = Ji ,

IsKiIs = −Ki .
(3.102)

Correspondingly, according to Eq. (3.63) Mi, Ni are transformed into each
other, so that the two IR’s D(j1,j2), D(j2,j1) are interchanged under space
inversion. This fact explains why, for ji 6= j2 both D(j1,j2) and D(j2,j1) are
contained in the IR D(j1,j2) of L↑. In particular, as indicated by (3.93), both

lowest spinor representations of L↑+ enter into the lowest IR of L↑, according
to

D( 1
2
,0) = D( 1

2
,0) ⊕D(0, 1

2
) . (3.103)
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Problems

3.1. Derive the generic pure Lorentz transformation (3.27) making use of the
relation (3.28).

3.2. Let us denote by Λ(A) the matrix Λ of L↑+ corresponding to a matrix A
of SL(2, C). Check that the following relation holds Λ(A)Λ(B) = Λ(AB), i.e.
that the correspondence is preserved under multiplication.

3.3. Making use of (3.42), express a generic matrix Λ in terms of the elements
of the matrix A given by (3.39). Show that the matrix Λ(A) so obtained
satisfies the condition detΛ(A) = +1.

3.4. Prove that the element Λ0
0 of the matrix Λ(A) satisfies the condition

Λ0
0(A) ≥ +1.

3.5. Show that the unitary transformation U given by (3.46) corresponds to
the rotation matrix R given by (2.9), (3.23).

3.6. Show that the hermitian matrix H given by (3.47) corresponds to the
pure Lorentz transformation L given by (3.27).

3.7. A generic infinitesimal Lorentz transformation can be written in the
form Λρσ = gρσ + δωρσ with δωρσ real, infinitesimal and antisymmetric:
δωρσ = −δωσρ. Making use of this form and of (3.61) determine the matrix
elements of the generators Mµν and verify (3.59).

3.8. Consider the group SO(4), i.e. the group of proper rotations in a four-
dimensional euclidean space, and its Lie algebra. Discuss its properties and
compare with those of the group L↑+.

3.9. Write explicitly the transformations of the spinors ξ and ξ∗ under: a) a
rotation about the axis x3, b) a pure Lorentz transformation along the axis
x3.

3.10. Given a tensor Tµν , its dual is defined by TDµν = 1
2 ǫµνστT

στ ; a tensor

is selfdual if TDµν = Tµν and anti-selfdual if TDµν = −Tµν. Show that any
antisymmetric tensor Aµν = −Aνµ can be decomposed in the sum of a selfdual

and an anti-selfdual tensor and that both are irreducible under L↑+. Consider
explicitly the case of the electromagnetic field tensor Fµν .

3.11. Show that the bases of the IR’s obtained by the decomposition

D( 1
2
, 1
2
) ⊗D( 1

2
, 1
2
) = D(1,1) ⊕D(1,0) ⊕D(0,1) ⊕D(0,0)

are a traceless symmetric tensor, a selfdual and anti-selfdual anti-symmetric
tensor and a scalar, respectively.
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The Poincaré transformations

In this Chapter, we examine the general properties of the Poincaré group, i.e.
the group of inhomogeneous Lorentz transformations, which are space-time
coordinate transformations between any two inertial frames of reference. Then
we consider those unitary irreducible representations of this group which are
the most suitable for the description of the quantum mechanical states of one
or more particles.

It is well known from special relativity that all inertial frames of reference
are completely equivalent for the description of the physical phenomena; in
fact, the physical laws are the same in all inertial frame or, in other words,
they are invariant under the Poincaré transformations. The importance of the
Poincaré group is related to this invariance principle. We refer to Section 9.2
for a brief discussion on invariance principles, symmetries and conservation
laws.

4.1 Group properties

The inhomogeneous Lorentz transformations, or Poincaré transformations,
connect the space-time coordinates of any two frames of reference whose rel-
ative velocity is constant.

A general Poincaré transformation can be written, as a generalization of
a homogeneous Lorentz transformation (3.1), in the form

x′
µ

= Λµνx
ν + aµ , (4.1)

where aµ (µ = 0, 1, 2, 3) stand for the components of a vector in R4. We shall
denote the above transformation by (a, Λ).

It is easy to see that the transformations (a, Λ) form a group: the so-called
Poincaré group, denoted in the following by P . In particular, the application
of two successive transformations (a1, Λ1), (a2, Λ2) gives

x′ = Λ1x+ a1 , x′′ = Λ2x
′ + a2 = Λ2Λ1x+ Λ2a1 + a2 , (4.2)

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 61
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© Springer-Verlag Berlin Heidelberg 2012
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so that the product of the two transformations is

(a2, Λ2)(a1Λ1) = (a2 + Λ2a1, Λ2Λ1) . (4.3)

Clearly the unit element is (0, I); then from Eq. (4.3) one gets the inverse
element

(a, Λ)−1 = (−Λ−1a, Λ−1) . (4.4)

The group P is characterized by 10 parameters: the 6 parameters of the ho-
mogeneous Lorentz group plus the 4 parameters aµ.

Obviously, the Poincaré group contains, as a subgroup, the homogeneous
Lorentz group L of the transformations (0, Λ); it contains also the subgroup
S of the four dimensional translations(a, I), which is an Abelian invariant
subgroup of P . Any Poincaré transformation can be written in a unique way as
the product of a pure translation and a homogeneous Lorentz transformation

(a, Λ) = (a, I)(0, Λ) , (4.5)

(a, Λ) = (0, Λ)(Λ−1a, I) . (4.6)

This shows that the Poincaré group is the semi-direct product of the two
subgroups:

P = S fs L . (4.7)

We note that the order of the transformations in Eqs. (4.5), (4.6) is important,
since the translations do not commute with the Lorentz transformations. From
the above relations one gets easily the useful result

(0, Λ−1)(a, I)(0, Λ) = (Λ−1a, I) . (4.8)

We know that the group L consists of four disjoint components L↑+, L↑−,

L↓+, L↓−, corresponding to the possible choices of the signs of detΛ and Λ0
0

listed in Table 3.1. Similarly, the group P consists of four disjoint components
P↑+, P↑−, P↓+, P↓−, each of which contains the corresponding component of the
subgroup L.

In this Chapter, we shall limit ourselves to the transformations of P↑+ =

S fs L↑+, which form the proper orthochronous inhomogeneous Lorentz group.

We briefly mention the topological properties of P↑+, which are easily derived
from those of its subgroups:

a) The group P↑+ is non-compact; in fact, it contains the subgroups L↑+ and
S which are both non-compact (the translation group S is clearly non-
compact, since R4 is not compact);

b) The group P↑+ is doubly-connected: it has the same connectedness of its

subgroup L↑+ (specifically of SO(3)). Its universal covering group is defined
by the transformations (a,A), where A is an element of SL(2, C);

c) The group P↑+ is neither simple nor semi-simple, in fact, the translation

group S is an invariant subgroup of P↑+.
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Next we consider the Lie algebra of the group P↑+; its basic elements are

the infinitesimal generators of L↑+ and S.
In general, an infinitesimal translation is given by

(δa, I) = I − iδaµP
µ , (4.9)

introducing four operators Pµ, which are the infinitesimal generators of the
translations. A finite translation is given by exponentiation, as

(a, I) = e−iaµP
µ

. (4.10)

The commutation relations of the infinitesimal generators are easily ob-
tained giving a specific representation of the Lie algebra of P↑+. For this pur-
pose it is convenient to write (a, Λ) as a 5 × 5 matrix

(Λ a

0 1

)
, (4.11)

where the four vector a is written as a column matrix. Eq. (4.2) is then
obtained by matrix product, and Eq. (4.1) can be considered as the transfor-
mation of a vector

y =
(x

1

)
(4.12)

in a five-dimensional space. In fact, it can be re-written as
(x′

1

)
=
(Λ a

0 1

)(x
1

)
=
(Λx+ a

1

)
. (4.13)

Expressing in similar way the infinitesimal transformation (4.9), one can
obtain explicitly

P0 =




0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, P1 =




0 0 0 0 0
0 0 0 0 i
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




, (4.14)

and similarly for P2, P3.
In the same representation, the generators Ji and Ki are replaced by 5×5

matrices, obtained from (3.50) and (3.54) by adding a fifth row and a fifth
column of zeros.

One can check that the following commutation relations hold:

[Pµ, Pν ] = 0 ,

[Ji , P0] = 0 ,

[Ji , Pi ] = 0 ,

[Ji , Pj ] = iǫijkPk ,

[Ki, P0] =−iPi ,
[Ki, Pi ] =−iP0 ,

[Ki, Pj ] = 0 .

(4.15)
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In terms of the antisymmetric tensor Mµν given by (3.59), the above commu-
tators become:

[Pµ, Pν ] = 0 , (4.16)

[Mµν , Pρ] = −i(gµρPν − gνρPµ) , (4.17)

and, together with the commutators

[Mλρ,Mµν ] = −i(gλµMρν+gρνMλµ−gλνMρµ−gρµMλν) , (3.60)

they define the Lie algebra of P↑+.
One can check that the operator

P 2 = PµP
µ (4.18)

commutes with all the generators Pµ, Mµν of the Lie algebra; hence P 2 is an
invariant operator under the Poincaré transformations.

Let us introduce the operator

Wµ = ǫµνστM
νσP τ ; (4.19)

it follows immediately that
WµP

µ = 0 . (4.20)

Moreover, making use of Eqs. (3.60), (4.17), one can obtain the following
commutators

[Pµ,Wν ] = 0 ,

[Mµν ,Wσ] = −i(gνσWµ − gµσWν) ,

[Wµ,Wν ] = iǫµνστW
σP τ .

(4.21)

Finally, one can prove that the operator

W 2 = WµW
µ (4.22)

commutes with all the Pµ and Mµν and hence it is an invariant operator.
The eigenvalues of the invariant operators P 2 and W 2 are used to label the

IR’s of the group; for some classes of IR’s one can have additional invariants.

4.2 Unitary representations of the proper orthochronous
Poincaré group

In the previous Section, we have exhibited a 5-dimensional representation of
the proper orthochronous Poincaré group P↑+, which is not unitary, since both
the generators Pµ and Ki are expressed by non-hermitian matrices. In fact,
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as pointed out in Subsection 1.2.1, since the group P and its subgroup P↑+ are
not compact, no finite-dimensional unitary IR’s exists.

We recall from quantum mechanics1 the well known fact that the infinitesi-
mal generators of translations Pµ can be identified with the energy-momentum
operators. Moreover, the infinitesimal generators Mµν can be identified with
the components of the angular momentum tensor. For physical applications,
we are interested in those IR’s in which the operators Pµ and Mµν are her-
mitian, since they correspond to dynamical variables, i.e. in the unitary, and
hence infinite-dimensional, IR’s of the Poincaré group P . Here we are mainly
concerned with the IR’s of the restricted group P↑+.

Before going to the IR’s of P↑+, we want to review briefly some general
properties of the invariance principles for a quantum mechanical system. Each
state of the system is represented by a vector |Φ> in a Hilbert space. The state
vectors are normalized to unity, to allow the probability interpretation; two
vectors that differ only by a phase represent the same physical state. In fact,
the results of experiments are expressed in terms of transition probabilities

|<Ψ |Φ> |2 (4.23)

between the states |Φ> and |Ψ >, which depend only on the absolute value of
the scalar product between the two states. This shows that each vector in the
set eiα|Φ>, where α is a real number, corresponds to the same physical state.
The collection of all the state vectors of the form eiα|Φ> is called a ray, which
we denote simply by Φ.

An invariance principle, or symmetry operation, of a physical system is a
one-to-one correspondence between two rays Φ and Φ′ (and similarly between
Ψ and Ψ ′), representing physically realizable states, such that the transition
probabilities remain unchanged:

|<Ψ ′|Φ′> |2 = |<Ψ |Φ> |2 . (4.24)

An important theorem due to Wigner2 states that, if Φ→ Φ′ is a symme-
try operation of a physical theory, there exists a linear unitary or antilinear
unitary3 (antiunitary) operator U , determined up to a phase, such that:

Φ′ = UΦ . (4.25)

1 See e.g. S. Weinberg, The Quantum Theory of Fields, Vol. I, Foundations, Cam-
bridge University Press (1995).

2 See e.g. F.R. Halpern, Special Relativity and Quantum Mechanics, Prentice-Hall
(1968).

3 An antilinear unitary operator U is defined by

<UΨ |UΦ> =<Ψ |Φ>∗

U |αΨ + βΦ>= α∗U |Ψ >+β∗U |Φ> .
,



66 4 The Poincaré transformations

In particular, if a physical system is invariant under the transformations
of the Poincaré group, to each element (a, Λ) of P there corresponds a linear
operator U(a, Λ) which transforms the state Φ into

Φ′ = U(a, Λ)Φ , (4.26)

leaving Eq. (4.24) invariant. The operator U (a, Λ) is determined up to a phase;
however, for those Poincaré transformations which are connected with the
identity, such as the transformations of the subgroup P↑+, it can be shown
that it is possible to choose a phase convention such that the product of any
two elements of P↑+ is always given by4:

U (a1, Λ1)U(a2, Λ2) = ±U(a3, Λ3) . (4.27)

The sign ambiguity is related to the fact that the group P is doubly connected,
and it can have double-valued representations.

We stress the fact that the operators U(a, Λ) of P↑+ are unitary. In fact,

for any element (a, Λ) of P↑+ one can find an element (a′, Λ′) such that

(a, Λ) = (a′, Λ′)(a′, Λ′) . (4.28)

Then, from Eq. (4.27):

U (a, Λ) = ±U (a′, Λ′)U(a′, Λ′) . (4.29)

According to Wigner’s theorem, U (a′, Λ′) could be either unitary or antiuni-
tary, but in both cases, since the square of an antiunitary operator is unitary,
U(a, Λ) can only be unitary. Since U(a, Λ) is an arbitrary element of P↑+, it
follows that all the linear operator U(a, Λ) are unitary.

We have thus obtained a representation of the group P↑+ in the Hilbert
space of the state vectors |Φ> in terms of the unitary operators U(a, Λ).

The unitary representation realized by the operators U(a, Λ) is, of course,
infinite-dimensional, since the Hilbert space of the state vectors |Φ> is infinite-
dimensional, but it is, in general, reducible. To obtain the unitary irreducible
representations, one has to find the invariant subspaces, i.e. invariant under
the transformations (a, Λ).

To make this point clear, let us consider a given set of vectors |Φ> in the
Hilbert space. Since the Pµ commute among themselves (see eq. (4.16)), it
would be convenient to start from the vectors |p, ζ>, labelled by the eigen-
values pµ of Pµ and by other, for the moment unspecified, quantum number
ζ:

Pµ|p, ζ >= pµ|p, ζ> . (4.30)

Now we are facing the following problem: the vectors |p, ζ > correponding to
particular points pµ in the momentum space are not normalizable, so that they

4 F.R. Halpern, quoted ref.
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do not belong to the Hilbert space. One can obtain normalizable vectors by
convenient linear superposition of |p, ζ>5. However, for the sake of simplicity,
we shall adopt the normalization in terms of the Dirac delta function, widely
used in the physics literature6 and, with the inclusion of the convenient factor
2p0, define:

<p′, ζ ′|p, ζ>= 2p0 δ
3(p′ − p)δζ′ζ . (4.31)

For a pure translation, from Eq. (4.10), we get

U(a, I) |p, ζ >= e−iaµp
µ |p, ζ> , (4.32)

while, for a homogeneous Lorentz transformation (0, Λ), we obtain

U(0, Λ) |p, ζ>=
∑

ζ′

Qζ′ζ |p′, ζ ′> , (4.33)

where Q is a unitary matrix and

p′
µ

= Λµνp
ν . (4.34)

Eq. (4.34) is obtained from eq. (4.30) and from the relation

U−1(0, Λ)PµU(0, Λ) = ΛµνP
ν , (4.35)

which can be derived from Eqs. (4.8) and (4.9). This shows that the four
operators Pµ transform as the components of a four-vector.

Once more we see that P 2 = PµP
µ is invariant; in fact, we know that P 2

is one of the Casimir operators of the Poincaré group. Its eigenvalues p2, when
p2 = m2 > 0, correspond to the squared total energy in the c. m. system. If
the physical system is a particle, m is the mass of the particle.

The subspace spanned by the vectors |p, ζ > with a given value of p2

is then invariant under the transformations (a, Λ), so that the representation
U(0, Λ) given by (4.33) is, in general, reducible and can be decomposed into an
(infinite) direct sum of representations corresponding to different eigenvalues
m2.

To reduce further the representation, we need to consider also the oper-
ator Wµ (Eq. (4.19)), whose square W 2 is the other Casimir operator of the
Poincaré group. Since the components Wµ commute with Pµ but not among
themselves (Eq. (4.21)), we can diagonalize W 2 and one component, say W3.
Among the quantum numbers ζ labelling the eigenstates |p, ζ> one can then
single out the eigenvalues w3 of W3. For the sake of simplicity, we shall ne-
glect in the following the other unspecified quantum numbers which should
be added to make the set of observables complete.

5 See, e.g., A. Messiah, Quantum Mechanics, North Holland (1962).
6 See e.g. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory,

Addison-Wesley (1995); S. Weinberg, The Quantum Theory of Fields, Vol. I,
Foundations, Cambridge University Press (1995)
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Let us first consider those representations for which p2 = m2 > 0. In that
case p0/|p0|, i.e. the sign of the energy, is also an invariant of the group P↑+.
In the four-momentum space, the eigenstates of p2 = m2 > 0 with p0 > 0,
which correspond to physical states, are represented by the points in the upper
branch of the hyperboloid shown in Fig. 4.1. Under a transformation of P↑+
the representative point moves on the same branch of the hyperboloid.

O
hyperplane
containing p

.
p  > 00

p  < 00

p0

p  = m2 2

p  =|p|0

p  = m2 2

p  = − m2 2 p  = − m2 2

Fig. 4.1. Hyperboloid p2 = m2 in the four-momentum space.

An irreducible representation is characterized by the eigenvalues of P 2,
W 2 and the sign of p0/|p0|; an IR with p0 > 0 is then spanned by the vectors

|p, w3> with p2 = m2 = const., and p0 = +
√

p2 +m2.
The physical meaning of Wµ is made clear by considering explicitly its

components. Using the definitions (3.59), one gets from (4.19)

W0 = P · J , (4.36)

W = P0 J −P × K . (4.37)

It is convenient to go to the rest frame, in which p = 0. In this frame
Eqs. (4.36), (4.37) are equivalent to

Wµ = m(0, J1, J2, J3) , (4.38)

i.e. Wµ reduces essentially to the components of the total angular momentum
J, which is the spin in the case of a particle. A rest frame can then be specified
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by |p̃, j3> , where p̃ = (m,0). According to Eq. (4.38), one gets

W3|p̃, j3> = mj3|p̃, j3> ,

(W )2|p̃, j3> = −m2j(j + 1)|p̃, j3> .
(4.39)

If p2 = 0, one cannot apply the above arguments, since one cannot go
to the rest frame. Since we are interested in the physical case of a massless
particle, we take also w2 = 0 (w2 6= 0 would represent continuous spin values,
as we will see in Section 5.3). However, these two null quantum numbers are
not sufficient to characterize an IR. Taking into account also Eq. (4.20) we
have: p2 = 0, w2 = 0 and wµp

µ = 0. These conditions are satisfied only if the
two four-vectors wµ and pµ are parallel: wµ = λpµ. In terms of operators we
can write7:

Wµ = λPµ , (4.40)

where λ is an invariant. The physical interpretation of λ becomes evident
making use of Eq. (4.36) and of the relation p2 = p2

0:

λ =
W0

P0
=

P · J
P0

=
P · J
|P| . (4.41)

This shows that λ represents the component of the spin along the direction of
motion, which is usually called helicity. In the case p2 = 0, we label the state
vector with the eigenvalues of λ; i.e. by |p, λ> .

The above examples show that the operator Wµ describes the polariza-
tion states of both massive and massless particles; it represent the covariant
generalization of the spin, and it is called, in fact, covariant spin.

We have considered only two kinds of IR’s of P↑+ of physical interest. To
summarize and complete the preceding discussion, we list in the following all
the IR’s of P↑+8:

a) p2 = m2 > 0.
For each pair of values of p2 and w2, there are two IR’s, one for each value
of p0/|p0|. The vector basis of an IR is given by |p, w3> ; in the rest frame
it reduces to the (2j+1)-dimensional basis of the IR of the rotation group,
which corresponds to the (2j + 1) states of polarization.

b) p2 = 0, pµ 6= 0, w2 = 0.
Each IR is characterized by the sign of p0 and by the value (integer or
half-integer) of the helicity λ. For a given momentum pµ and given λ 6= 0,
there exist two independent states (they belong to two independent IR’s),
which correspond to the two different helicities ±λ.

7 Usually we denote operators by capital letters (Pµ, Wµ...) and the corresponding
eigenvalues by small letters (pµ, wµ...).

8 I.M. Gel’fand, R.A. Minlos, Z.Ya. Shapiro, Representations of the Rotations and
Lorentz Groups and Their Applications, Pergamon Press (1963); M.A. Naimark,
Linear Representations of the Lorentz Group, Pergamon Press (1964).
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c) p2 = 0, pµ 6= 0, w2 < 0.
The IR’s are infinite-dimensional also in the spin variable and would cor-
respond to particles with continuous spin.

d) p2 = 0, pµ = 0, w2 < 0.
The unitary IR’s coincide with those of the homogeneous Lorentz group,
and they will not be considered further (they provide a powerful tool for
the study of the analytic properties of the forward scattering amplitude
in the angular momentum variable).

e) p2 < 0.
These IR’s correspond to space-like vectors pµ, so they cannot be used
in the description of physical states (they can be useful, however, in the
study of the analytic properties of the scattering amplitude).

Problems

4.1. Show that the Poincaré transformations (a, Λ) form a group and give the
explicit proof that the translation group S is an invariant subgroup.

4.2. Prove that P 2 and W 2 are invariant operators of the group P↑+.

4.3. Derive the transformation properties of the generators Pµ under L↑+ and
the commutation relations (4.17), making use of the general form

U(a, Λ) = e−iaµP
µ

e−
1
2 iωµνM

µν

of the unitary IR’s of P↑+.

4.4. Derive the transformation properties of the generators Mµν under L↑+
and the commutation relations (3.60) starting from the general form

U(0, Λ) = e−
1
2 iωµνM

µν

of the unitary IR’s of L↑+.

4.5. Making use of the Lorentz transformation which brings the state |p, ζ >
at rest, show that the commutators [Wµ,Wν ] = iǫµνστW

σP τ reduce to
[Ji, Jj ] = iǫijkJk.

4.6. Show that the Lorentz transformations of the form

U(0, Λ) = e−inµW
µ

,

where n is an arbitrary four-vector, leave the eigenvalues pµ of Pµ invariant.
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One particle and two particle states

This Chapter contains a detailed analysis of one-particle physical states, de-
scribed in terms of the unitary IR’s of the restricted Poincaré group P↑+ cor-
responding to p2 = m2 > 0 and p2 = 0, pµ 6= 0. It will be shown that these
IR’s can be obtained from the IR’s of a subgroup of P↑+, which is the three-
dimensional rotation group SO(3) in the case p2 = m2 > 0, and the abelian
group SO(2) of rotations about an axis in the case p2 = 0, pµ 6= 0. In other
words, once we know how the states of a particle transform under these rota-
tions, we know also their transformation properties under P↑+. This important
point will be briefly discussed in more general terms, introducing the concept
of little group. Finally, it will be shown how the two-particle states can be
constructed in terms of one-particle states as IR’s of P↑+.

5.1 The little group

As we have seen in the previous Chapter, one needs, in general, other quantum
numbers, besides the eigenvalues pµ of Pµ, to fully specify the eigenstates
|p, ζ> of a physical system. The set of eigenvectors |p, ζ> of Pµ relative to the
same eigenvalue p form a Hilbert space Hp (improper in the sense specified
in connection with Eq. (4.30)), which is a subspace of the total space Hp2 .

We can show that the spaces Hp corresponding to the four-vector p with
the same value of p2 are all isomorphic to each other (i.e. they are related by
a one-to-one mapping).

Let us consider a fixed four-vector p and a transformation of L↑+, denoted
in the following by Lpp, which brings p into p:

Lpp p = p . (5.1)

The inverse transformation is performed by L−1
pp , which obviously belongs to

L↑+. A unitary representation of P↑+ is defined, in general, by1

1 For the sake of simplicity we shall often write for short U(Λ) instead of U(0, Λ).

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 71
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_5, 
© Springer-Verlag Berlin Heidelberg 2012
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U (Λ)|p, ζ>=
∑

ζ′

Qζ′ζ |p′ = Λp, ζ ′> , (5.2)

while the transformation (5.1) is defined in H by

U(Lpp)|p, ζ>= |p, ζ> . (5.3)

There is some arbitrariness in Eq. (5.1); in fact, the transformation Lpp is not
uniquely defined, since the same result is obtained by multiplying Lpp on the
right by a rotation about p. We can fix Lpp in such a way that U(Lpp) leaves
the quantum number ζ unchanged.

The specific transformation (5.3) is usually called Wigner boost. Since also
U(Lpp)

−1 = U (L−1
pp ) is defined, we see that the mapping between |p, ζ> and

|p, ζ> is one-to-one.
The structure of the Hilbert space H of the state vectors allows one to

obtain in a simple fashion the transformation properties of |p, ζ> under P↑+.
From Eqs. (5.2), (5.3) we get

U(Λ)|p, ζ>= U(Λ)U(Lpp)|p, ζ>=
∑

ζ′

U (Lp′p)Qζ′ζ |p, ζ ′> , (5.4)

so that

U (L−1
p′p)U(Λ)U(Lpp)|p, ζ>= U(L−1

p′pΛLpp)|p, ζ>=
∑

ζ′

Qζ′ζ |p, ζ′> . (5.5)

We see that the matrix Q corresponds to a unitary representation D(R) of

the operation of L↑+:

R = L−1
p′pΛLpp . (5.6)

One can check that this operation leaves the four-vector p invariant; this is
shown graphycally in Fig. 5.1 in the case of a time-like vector p.

The set of transformations R which leave the four-vector p invariant form
a subgroup of L↑+, which is called little group; the operation R is usually
referred to as Wigner rotation.

Eq.( 5.5) can be re-written as

U(R)|p, ζ>=
∑

ζ′

Dζ′ζ(R)|p, ζ ′> , (5.7)

and it provides a representation D(R) of the little group in the subspace Hp,
which is called little Hilbert space.

Eq. (5.4) becomes

U (Λ)|p, ζ>=
∑

ζ′

Dζ′ζ(R)U(Lp′p)|p, ζ ′>=
∑

ζ′

Dζ′ζ(R)|p′, ζ ′> . (5.8)

Including a translation, from Eqs. (4.6) and (4.32) one gets finally
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O
hyperplane
containing p

.

p0

p  = m2 2

p  =|p|0

p
pp’

Lpp
Lp’p

-1
Λ

Fig. 5.1. A Wigner rotation in the four-momentum space. The three points p, p and
p′ lie on the hyperboloid p2 = m2.

U(a, Λ)|p, ζ>= e−ip
′·a∑

ζ′

Dζ′ζ(R)|p′, ζ′> , (5.9)

which provides a unitary IR of P↑+ expressed explicitly in terms of the unitary
representation D(R) of the little group.

Since the little Hilbert spaces Hp corresponding to the four-vector p with
the same value of p2 are all isomorphic, the IR’s D(R) corresponding to any
p obtained from p by a Wigner boost (5.1) are all equivalent. It is easy to
find that the same little group corresponds to each class of four-vectors p, i.e.
time-like, space-like, light-like and null, so that for each class one can make a
convenient choice of a ”standard vector” p. In the following, we shall examine
the cases of time-like and light-like p. In the case of a null vector p = 0, the
little group coincides with L↑+ itself.

5.2 States of a massive particle

As shown in the previous Chapter, the states of a free massive particle
are classified according to the IR’s of the Poincaré group corresponding to
p2 = m2 > 0. In the following, we shall consider only positive energy states,
which will be denoted by |m, s;p, σ>, where s is the spin of the particle and σ
its projection along the x3-axis, defined in the rest frame. They are normalized
according to (compare with Eq. (4.31))

<m, s;p′, σ′|m, s;p, σ>= 2p0δ(p− p′)δσσ′ , (5.10)
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with p0 = +
√

p2 +m2. In the following, we shall drop, whenever possible
without causing ambiguities, the labels (m,σ) which specify the IR, and de-
note a state simply by |p, σ>, or |p, σ>.

Since, in the present case, p is a time-like vector, we can go to the rest
frame of the particle, choosing p̃ = (m,0) as standard vector. The little group
relative to the four-vector p̃ is then sufficient to describe the transformation
properties of the states of a massive particle.

Clearly, the transformations of L↑+ which leave p̃ = (m,0) invariant are the
3-dimensional rotations, so that the little group is SO(3). (The little group of
the covering group SL(2, C) is SU (2)). The state |p̃, σ> transforms under a
pure rotation R according to

U(R)|p̃, σ>=
∑

σ′

D
(s)
σ′σ(R)|p̃, σ′> , (5.11)

where D(s)(R) is the (2s+ 1)-dimensional IR of SO(3).
The Wigner boost Lpp is given by the pure Lorentz transformation Lp

along p, called simply boost, which brings p̃ into p. In fact any other state of
the particle, belonging to an IR of P↑+, can be obtained from a rest state by
a boost Lp

|p, σ>= U(Lp)|p̃, σ> (5.12)

since, as specified in connection with Eq. (5.3), Lp can be fixed in such a way
to leave the quantum numbers σ invariant.

The generic element of the little group follows then from Eq. (5.6), which
in this case becomes

Rp′p = L−1
p′ ΛLp , (5.13)

where p′ = Λp. The transformation properties of a generic states |p, σ> under

P↑+ are obtained by applying Eq. (5.9) to the present case:

U(a, Λ)|p, σ>= e−ip
′·a∑

σ′

D
(s)
σ′σ(R)|p′, σ′> . (5.14)

The above equation provides a unitary IR of P↑+.
In conclusion, it appears quite natural to define a particle as a system with

definite mass and spin, and identify its states with specific unitary IR’s of the
Poincaré group.

In the previous Chapter, we have introduced the helicity for massless par-
ticles. The helicity operator

P · J
|P| . (5.15)

can also be used in the case of massive particles: it represents the component
of the spin along the direction of motion. Also the states of a massive particle
can then be labelled by the helicity eigenvalues. While Lorentz transformations
mix different helicity states, rotations leave helicity invariant, as one can check
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by evaluating the commutators of the operator (5.15) with the infinitesimal
generators of the Lorentz transformations. This makes the use of helicity states
very convenient. In the following, we shall examine this alternative description
for massive one-particle states.

Let us consider a helicity state |p̆, λ> with p̆ = (p0, 0, 0, p3 = |p|) of definite
momentum p along the x3-axis; this state can be related to a rest state |p̃, σ>,
where the spin component σ along x3 coincides with λ, through a boost L3(p)
along the x3-direction

|p̆, λ>= U(L3(p)|p̃, λ> . (5.16)

In general, a helicity state of a particle moving with momentum p along
an arbitrary direction (θ, φ) with respect to the x3-axis can be defined by

|p, λ>= U(Rp)|p̆, λ>= U(Rp)U (L3(p)|p̃, λ> . (5.17)

where Rp represents the rotation which brings p̆ into p = (p0,p).
The above relation allows one to take p̃ as standard vector, so that the

little group is, also in this case, the rotation group SO(3). From the same
relation it appears that a generic Wigner boost is given now by

Lpp̃ = RpL3(p) . (5.18)

The elements of the little group are obtained from Eq. (5.6) in the form

R(λ) = L−1
3 (p′)R−1

p′ ΛRpL3(p) , (5.19)

and the transformation properties of the state |p, λ> under P↑+ are then given
by

U(a, Λ)|p, λ>= e−ip
′·a∑

λ′

D
(s)
λ′λ(R(λ))|p′, λ′> . (5.20)

It is useful to express the helicity states |p, λ> in terms of the spin com-
ponent states |p, σ>. This can be easily obtained from the relation

RpL3(p) = LpRp , (5.21)

which is the analogue of Eq. (3.28). In fact, applying it to a rest state |p̃, λ>,
and making use of Eqs. (5.17), (5.11) and (5.12), one gets

|p, λ>=
∑

σ

D
(s)
σλ(Rp)|p, σ> . (5.22)

Moreover, Eq. (5.21) allows one to re-write Eq. (5.19) in the form

R(λ) = R−1
p′ L

−1
p′ ΛLpRp = R−1

p′ R(σ)Rp , (5.23)

where R(σ) ≡ Rp′p is the Wigner rotation given by (5.13).

The above results can be summarized as follows:
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• The states of a particle with mass m and spin s are completely charac-
terized by the momentum p and either the spin component σ along an
abitrary fixed direction or the helicity λ;

• the rotation group is sufficient to describe the behaviour of a particle state
under a Poincaré transformation in both formalisms.

5.3 States of a massless particle

The description in terms of helicity states becomes essential for massles par-
ticles. In fact, we have seen that the zero-mass states are classified according
to the IR’s of the Poincaré group characterized by λ = P · J/|P|.

It is instructive also in this case to consider the relevant little group. Since
p is now a light-like vector, we can choose it in the form p̆ = (p0, o, o, p3) with
|p3| = p0. It is then clear that spatial rotations around the x3-axis leave p̆
invariant; however, they are not the most general transformations of the little
group.

In the present case, it is easier to look for the Lie algebra of the little group.
In the basis |p̆, λ> of the eigenstates of a massless particle of momentum p̆
and helicity λ, one has W0 = W3 (see Eq. (4.20)) and, from Eq. (4.21), one
gets

[W1,W2] = 0 ,

[W0/P0,W1] = iW2 ,

[W0/P0,W2] = −iW1 .

(5.24)

The above commutators define the Lie algebra of the two-dimensional
Euclidean group, i.e. the group of rotations and translations in a plane. This
is easily recognized by extracting from (4.15) the commutators of P1, P2 and
J3, which are, respectively, the infinitesimal generators of translations and
rotations in the x1-x2 plane:

[P1, P2] = 0 ,

[J3, P1] = iP2 ,

[J3, P2] = −iP1 .

(5.25)

By the formal correspondence

W1 → P1 , W2 → P2 , W0/P0 → J3 , (5.26)

the Lie algebras defined by (5.24) and (5.25) coincide.
Since the four-vectorwµ and pµ are orthogonal (Eq. (4.20)), and pµ is light-

like, wµ can be either light-like or space-like. In the particular basis chosen,
we get

w2 = −w2
1 − w2

2 . (5.27)
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We disregard the case w2 < 0 since it corresponds to a continuous spectrum of
representations, each state being characterized by the eigenvalues of W1 and
W2. These representations seem to have no physical meaning, since they would
describe massless particles with continuous spin. We are then left with the case
w2 = 0, in which wµ and pµ are collinear. From Eqs. (4.40), (4.41) we see that
the correspondence (5.26) holds effectively. However, since W1 = W2 = 0,
only W0/P0 = λ has a non-trivial representation in the given basis. Since
only the infinitesimal generator W0/P0, equivalent to J3, survives, the little
group reduces to the rotation group in a plane, i.e. the abelian group SO(2)
homomorphic to U(1).

All the unitary IR’s are one-dimensional and are given by e−iλα, where λ is
a fixed parameter corresponding to an eigenvalue of helicity and α is the angle
of rotation. Since we require the IR’s of P↑+ to be at most double-valued, the
parameter λ can have only integer or half-integer values. Both positive and
negative values of λ are allowed, and the values +λ and −λ correspond to two
inequivalent representations.

One can derive explicitly the transformation properties of the helicity
states of a massless particle under P↑+, following a procedure analogous to
that used in the massive case. Eq. (5.16) is now replaced by

|p̆, λ>= U(Lp̆p)|p, λ> , (5.28)

where p is a generic standard light-like vector, and a generic helicity state is
obtained by

|p, λ>= U(Rp)|p̆, λ>= U(Rp)U(Lp̆p)|p, λ> , (5.29)

where Rp is also here the rotation which takes p̆ into p. The Wigner rotation
is then given by

R = L−1
p̆′pR

−1
p′ ΛRpLp̆p = R−1

p′ L
−1
p′pΛLppRp , (5.30)

where the second equality follows from Eq. (5.21). The transformation prop-

erties of a state |p, λ> under P↑+ are of the type given in Eq. (5.20); in the
present case, however, the helicity λ remains invariant, so that only the diag-
onal term survives in the sum, and one can simply write

U (a, Λ)|p, λ>= e−ip
′·ae−iλα(p,p′)|p′, λ> , (5.31)

where α(p, p′) represents the rotation angle around the direction of motion,
depending on the initial and final momenta.

Finally, let us conclude with the following analysis, which should clarify the
physical implications of the above considerations about massive and massless
particles, and justifies the fact that a massless particle can have only two
states of polarizations with λ = ±s. Let us consider a state |p, λ = s> of a
particle of mass m, moving along the x3-axis and having the spin parallel to
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the direction of motion. According to Eq. (5.16) this state can be obtained
from the rest state |p̃, λ>

|p, λ>= U (L3(−v))|p̃, λ> , (5.32)

where we have denoted the boost L3(p) as L3(−v) to indicate more explicitly
the velocity v = |p|/p0 relative to the Lorentz transformation.

If a second Lorentz transformation of velocity −v′ along the x2-axis is
applied, we obtain a state

U (L2(−v′))|p, λ>= U (L2(−v′))U(L3(−v))|p̃, λ> , (5.33)

which represent a particle moving vith velocity V along a direction in the
(x2, x3) plane making an angle θ with the x3-axis. We cannot say, however, if
the spin is still parallel to the direction of motion. One can express V and θ in
terms of v, v′ by means of the well-known formulae of relativistic kinematics

V = (v2 + v′2 − v2v′2)
1
2 ,

tan θ =
v′

v(1 − v′2)
1
2

.
(5.34)

On the other hand, the little group matrix corresponding to the Lorentz trans-
formation L2(−v′) is, according to Eq. (5.19),

L−1
3 (−V )R−1

1 (θ)L2(−v′)L3(−v) = R−1
1 (ǫ) , (5.35)

where

tan ǫ =
v′

v
(1 − v2)

1
2 , (5.36)

so that
L2(−v′)L3(−v)R1(ǫ) = R1(θ)L3(−V ) . (5.37)

Making use of Eq. (5.33), from the above relation we get

U (L2(−v′))U(L3(−v))U(R1(ǫ))|p̃, λ = σ> = |p′, λ = σ> . (5.38)

We remark that we have obtained, in this way, a state of a particle mov-
ing with velocity V and spin parallel to the direction of motion. Comparing
Eq. (5.33) with (5.37) we see that the only difference is that the initial state
|p̃, λ> is replaced by the rest state U(R1(ǫ))|p̃, λ>. The rotation through ǫ is
just what we need to align the spin to the linear momentum, and therefore ǫ
can be interpreted as the angle between the spin direction in the state (5.33)
and V. The situation is illustrated in Fig. 5.2 a) and b) for the states defined
by Eqs. (5.33) and (5.38), respectively (the vectors ni and nf indicate the
spin directions in the initial and final states).

The above analysis and in particular Eq. (5.36) provide clear conclusions
about the behaviour of massive and massless particles. If we start from the
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Fig. 5.2. Effects of the Lorentz transformation (5.33) on the momentum and spin
directions of a state |p, λ = s>.

state |p, λ> of Eq. (5.32), representing the particle moving with velocity v
along the x3-axis, then the transformation (5.33) shows how the state appears
in a Lorentz frame in motion with velocity −v′ in the x2 direction.

For a massive particle all values between 0 and θ are allowed for the angle
ǫ: in particular, if v and v′ are small with respect to 1 (velocity of light),
then Eqs. (5.34), (5.36) give ǫ ≈ θ, so that the spin direction is left almost
unchanged by L2(−v′). If, conversely, v is close to 1, Eq. (5.36) gives ǫ ≃ 0,
i.e. the spin remains almost parallel to the direction of motion.

For a massless particle, only the value ǫ = 0 occurs: in this case the Lorentz
transformation maintains the parallelism between spin and linear momentum.
The analogous result can be obtained for the case in which the spin is antipar-
allel to the direction of motion. We can conclude that for a massless particle
there are, in principle, two states of polarization, which transform into each
other by space inversion. Both states are expected to occur in nature for the
same particle, if the theory is invariant under space inversion; otherwise, only
one state may exist.

5.4 States of two particles

We have considered up to now only states of one particle, which transform
according to IR’s of the restricted Poincaré group P↑+. The combination of two
(or more) particles leads to a system which transforms, in general, according

to a reducible representation of P↑+. The simplest description is given by de-
composing the reducible representation into its irreducible components. The
problem is analogous to the one encountered in the non relativistic quantum
mechanics, when one combines two systems of angular momentum J1 and J2.
The combined system contains all the values of angular momentum between
|J1 − J2| and J1 + J2, and its states are decomposed, accordingly, by means
of the Clebsh-Gordan formula for the rotation group. The analogous results
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for the group P↑+ will be analyzed in the following, where we limit ourselves
to the case of massive particles in the spin component formalism.

The two-particle states obtained by combination of the two particles of
four-momentum p1, p2, mass m2

1 = p2
1, m

2
2 = p2

2, spin s1, s2 and spin projec-
tion σ1, σ2, respectively, correspond to the tensor product of two one-particle
states:

|m1,m2, s1, s2;p1,p2, σ1, σ2>= |m1, s1;p1, σ1> |m2, s2;p2, σ2> . (5.39)

According to Eq. (5.14), a general transformation of P↑+ gives

U (a, Λ)|p, σ>= e−ia(p
′
1+p′2) ·

·∑σ′
1σ

′
2
D

(s1)
σ′
1σ1

(L−1
p′1
ΛLp1)D

(s2)
σ′
2σ2

(L−1
p′2
ΛLp2)|p′1, s1, σ′1; p′2, s2, σ′2> .

(5.40)

where we have rewritten |mi, si;pi, σi> as |pi, si, σi>.
One sees from Eq. (5.40) that the translation operator U (a) is already

diagonal; the two-particle state corresponds to the total momentum

P = p1 + p2 . (5.41)

The total mass P 2 has a minimum value equal to (m1 +m2)
2; it may range

from this value to ∞.
For a fixed four-vector P , one can parametrize p1, p2 by the ”relative

barycentric momentum” four-vector

q = q12 = −q21 = 1
2

(
p1 −p2 −

m2
1 −m2

2

P 2
P
)

= p1 −
p1 · P
P 2

P = −p2 +
p2 · P
P 2

P .

(5.42)
The four-vector q lies in the plane defined by p1 and p2 and orthogonal to P :

q · P = 0 , (5.43)

so that one can specify q in terms of two polar angles and its modulus. Its
square is given by

q2 = −λ(m2
1,m

2
2, P

2)

4P 2
. (5.44)

where

λ(Z1, Z2, Z3) = Z2
1 + Z2

2 + Z2
3 − 2(Z1Z2 + Z1Z3 + Z2Z3) . (5.45)

From Eq. (5.42) one gets the inverse formulae

p1 =
P 2 +m2

1 −m2
2

2P 2
P + q , p2 =

P 2 −m2
1 +m2

2

2P 2
P − q . (5.46)
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5.5 The ℓ-s coupling scheme

Let us go now to the rest frame of the compound system defined by P = 0.
The state (5.39) can then be specified by

|P̃ ,q; s1, σ1; s2, σ2> , (5.47)

where P̃ = (E,0), E being the total c.m. energy, and q = (0,q). From this
we can project out the states of well-defined orbital angular momentum

|P̃ , ℓ, µ; s1, σ1; s2, σ2>=

∫
dq̂Y µℓ (q̂)|P̃ ,q; s1, σ1; s2, σ2> , (5.48)

where the Y µℓ (q̂) are the usual spherical harmonics, and q̂ = q/|q|.
We have now to deal with three angular momenta (ℓ, s1, s2) and there are

different coupling schemes that we can use. We follow here the ℓ-s coupling,
in which we first couple the two spins s1, s2 to give a total spin s, and then
s with ℓ to give the total angular momentum J . Using the Clebsch-Gordan
coefficients, we get from Eq. (5.48):

|P̃ , J, j; ℓ, s; s1, s2> =
∑

µσ

∑
σ1σ2

< s1, s2, s;σ1, σ2, σ>< s, ℓ, J ;σ, µ, j> ·
·|P̃ , ℓ, µ; s1, σ1; s2, σ2>=

=
∑

µσ

∑
σ1σ2

< s1, s2, s;σ1, σ2, σ>< s, ℓ, J ;σ, µ, j> ·
·
∫
dq̂Y µℓ (q̂)|P̃ ,q; s1, σ1; s2, σ2> .

(5.49)

The application of a rotation R to the above state gives:

U(R)|P̃ , J, j; ℓ, s; s1, s2> =
∑

µσ

∑
σ1σ′

1

∑
σ2σ′

2

∫
dq̂′Y µℓ (q̂′)·

· < s1, s2, s;σ1, σ2, σ>< s, ℓ, J ;σ, µ, j> ·
·D(s1)

σ′
1σ1

(R)D
(s2)
σ′
2σ2

(R)|P̃ ,q′; s1, σ′1; s2, σ′2> ,

(5.50)

where q′ = Rq.
Making use of the propertes of the Clebsch-Gordan coefficients and of the

rotation matrices, Eq. (5.50) can be re-written as2

U(R)|P̃ , J, j; ℓ, s; s1, s2> =
∑
j′
∑
µ′σ′

∑
σ′
1σ

′
2
D

(J)
j′j (R)

∫
dq̂′Y µ

′

ℓ (q̂′)·
· < s1, s2, s;σ1, σ2, σ>< s, ℓ, J ;σ, µ, j> ·
·|P̃ ,q′; s1, σ′1; s2, σ′2>=

=
∑
j′ D

(J)
j′j (R)|P̃ , J, j′; ℓ, s; s1, s2> ,

(5.51)

2 See F.R. Halpern, Special Relativity and Quantum Mechanics, Prentice-Hall
(1968).
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showing that the states |P̃ , J, j′; ℓ, s; s1, s2> transform according to the IR’s
of the rotation group.

Following a procedure similar to the one used in the derivation of Eq. (5.14),

we get finally for a transformation of P↑+

U (a, Λ)|P, J, j; ℓ, s; s1, s2>= e−iaP
′
∑

j′

D
(J)
j′j (L−1

P ′ ΛLP )|P̃ , J, j′; ℓ, s; s1, s2> ,

(5.52)

which shows that the above states correspond to IR’s of the group P↑+.

Problems

5.1. Show that the Wigner rotations R defined by (5.6) form a group.

5.2. Show explicitly the isomorphism between little groups corresponding to
different standard vectors with the same value of p2, finding the equivalence
relation between their elements.

5.3. Show that the little group of a space-like vector p is the group SO(1, 2)
of Lorentz transformations in a 3-dimensional space-time.

5.4. Evaluate explicitly the Wigner rotation Rp′p given by Eq. (5.13) in the
case in which Λ is a pure Lorentz transformation. What is the meaning of R
in the limit p0 ≫ m, p′0 ≫ m? What is the non-relativistic limit?

5.5. Show that if the generic Lorentz transformation of Eq. (5.13) is a rotation
R, then the corresponding element of the little group is R.

5.6. Find the transformation properties of the helicity states |p, λ> starting
from the transformation properties of the |p, σ> states and taking into account
the relation between them (Eq. (5.22)).

5.7. Show that the one-particle state |p, λ>= |m, s;p, λ> transforms under
a pure rotation R according to

U (R)|p, λ>= e−iλα(p,p′)|p, λ> ,

where p′ = Rp. Find the explicit expression for α(p,p′).

5.8. Show that, when Λ is a pure rotation R, the angle α(p′, p) of Eq. (5.31)
turns out to be the same as in the case of a massive particle.

5.9. Show directly that the little group of a light-like vector is the two-
dimensional Euclidean group.

5.10. Find α(p′, p) of Eq. (5.31) in the case in which Λ is a pure Lorentz
transformation.

5.11. Derive explicitly the little group matrix R1(ǫ) of Eq. (5.35).
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Discrete operations

In this Chapter we shall consider in more detail the properties of the dis-
crete operations Is and It (space inversion and time reversal) which, as seen
previously, belong to the complete Lorentz and Poincaré groups L and P .
The transformation properties of the one- and two-particle states under these
operations will be analyzed, and their physical implications will be discussed.

6.1 Space inversion

In Chapters 3 and 4, we have considered the transformations of the restricted
groups L↑+ and P↑+. We include now the space inversion operator Is, defined by
Eq. (3.18), and consider the larger groups L↑ and P↑, i.e. the orthochronous
groups.

In the four-dimensional IR of L↑, Is is given by:

Is =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 , (6.1)

which coincides, as noticed already in Section 3.1, with the metric tensor g.
It is then easy to compute the commutation relations of Is with the gen-

erators Ji, Ki and Pµ of the Poincaré group1:

1 The commutation relations with P0, Pi are obtained in the 5-dimensional IR of
P , using Eq. (4.14) and replacing (6.1) by the 5 × 5 matrix

Is =

(
g 0
0 1

)
.
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[ Is, Ji ] = 0 ,

{Is,Ki} = 0 ,

[ Is, P0 ] = 0 ,

{Is, Pi} = 0 .

(6.2)

The fact that the Ji commute with Is, i.e. that they are invariant under space
inversion, means that J behaves as an axial vector; on the other hand, the
Ki and Pi anticommute with Is, i.e. they change their sign, so that K and
P transform as polar vectors; finally, P0 behaves as a scalar. This behaviour
under Is is what one expects on physical ground.

The above relations show that Is commutes with any rotation, but not, in
general, with any transformation of L↑ and P↑. We know, however, that each
transformation of the component L↑− of L↑ can be obtained as the product of

a corresponding transformation of L↑+ by Is.
In Section 3.5 we have already analysed the transformation properties

under Is of the bases of the IR’s of L↑+. Here, we consider the effect of space
inversion on one-particle states.

Let us denote by P the linear operator in the Hilbert space, corresponding
to Is: P = U (Is). From the Wigner theorem, P could be either a unitary or
an antiunitary operator. The first choice will appear to be the one consistent
with Eqs. (6.2).

We know that the unitary or antiunitary operator U(Ix) corresponding in
the Hilbert space to a discrete operation Ix, with I2

x = I, is defined up to a
phase. Unless U (Ix) is unitary, it is not possible to fix the phase in such a way
to get U2(Ix) = I. However, one can show that the following relations hold in
general2

U(a, Λ)U (Ix) = U(Ix)U(Ixa, IxΛIx) , (6.3)

U(Ix)U(a, Λ) = U(Ixa, IxΛIx)U(Ix) . (6.4)

They are, obviously, equivalent if U2(Ix) = I.
In particular, taking Ix = Is and Λ = I, and applying Eq. (6.3) to a

one-particle state |p, σ>, one gets:

U (a, I)P |p, σ> = P U(a, I)|p, σ> (6.5)

where a = (a0,−a). If P is unitary, since pa = pa, making use of Eq. (4.32)
(with p0 > 0), Eq. (6.5) becomes:

U(a, I)P |p, σ> = e−ipaP |p, σ> , (6.6)

and, if P is antiunitary,

U(a, I)P |p, σ> = eipaP |p, σ> . (6.7)

2 See F.R. Halpern, Special Relativity and Quantum Mechanics, Prentice-Hall
(1968).
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If P is a symmetry operation of the theory, P |p, σ> must represent a physical
state, and its energy must be positive. Since p = (p0,−p), this condition is
satisfied only by Eq. (6.6), and then P has to be unitary. In this case one can
choose the arbitrary phase of P such that:

P 2 = I . (6.8)

Since P is unitary, Eq. (6.8) makes it hermitian

P = P † , (6.9)

and its eigenvalues η are
η = ±1 . (6.10)

The operator P is therefore related to an observable called parity, with eigen-
values ±1.

Let us now apply P to a state of a massive particle with spin s. We
consider first a rest state; since Is commute with Ji, the spin eigenstates
remain unchanged and one gets independently of σ

P |p̃, σ> = η|p̃, σ> , (6.11)

where the factor η = ±1 is called intrinsic parity of the particle. To go from
a rest state to a state of motion, we use the boost Lp (see Eq. (5.12)):

P |p, σ> = PU(Lp)P
−1P |p̃, σ> = ηPU(Lp))P

−1|p̃, σ> . (6.12)

From Eq. (6.3) one can easily derive

PU (Lp))P
−1 = U(IsLpIs) = U(Lp) , (6.13)

so that Eq. (6.12) becomes

P |p, σ> = η|p, σ> . (6.14)

Care must be taken if one uses the helicity representation |p, λ>. Since
P and J transform as polar and axial vectors, respectively, Eq. (4.41) shows
that the helicity changes sign under parity.

It is customary to introduce the operator of reflection in the (x1, x3) plane

Y = e−iπJ2 P , (6.15)

which clearly commutes with a Lorentz transformation along the x3-axis

Y U(L3(p)) = U(L3(p))Y . (6.16)

Let us now consider the case of a massive particle. The helicity state
|p, λ >≡ |m, s;p, λ >, where p is chosen along the x3-axis without loss of
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generality, can be obtained from a rest state |p̃, λ> by a boost L3(p). From
the above relation we get

Y |p, λ> = Y U(L3(p))|p̃, λ> = U(L3(p))Y |p̃, λ> = η U(L3(p))e
−iπJ2 |p̃, λ> ,

(6.17)
Using the properties of the rotation matrices, Eqs. (A.1), (A.5), one finds

D
(s)
λ′λ(0, π, 0) = d

(s)
λ′λ(π) = (−1)s−λδλ′ −λ , (6.18)

so that, applying the above rotation to the rest frame, Eq. (6.17) becomes

Y |p, λ> = η(−1)s−λ|p,−λ> . (6.19)

Using again Eq. (6.15), one finally obtains

P |p, λ> = η(−1)s−λeiπJ2 |p,−λ> . (6.20)

Usually, if |p, λ> is a helicity state of a particle with momentum p along
x3, the state |p, λ>, corresponding to momentum −p, can be defined by

|p, λ> = (−1)s−λe−iπJ2 |p, λ> . (6.21)

In fact, the rotation e−iπJ2 leaves the helicity unchanged, and transforms p
into p. However, the relative phase of |p, λ>, |p, λ> is not uniquely defined;
one can choose it in such a way that both states |p, λ> and |p, λ> reduce to
the same state-vector in the rest frame.

Following the same arguments leading to Eq. (6.19), one finds

Y |p, λ> = η(−1)s+λ|p,−λ> , (6.22)

so that
P |p, λ> = η(−1)s+λeiπJ2 |p,−λ> . (6.23)

We observe that the sign of λ in the exponent is reversed, since the boost
L3(p) reverses the sign of the helicity. In fact it is

|p, λ> = U (L3(p))|p̃,−λ> , (6.24)

consistently with the definition (6.21). Eq. (6.24) can be easily derived from
Eq. (6.21) if one takes into account that

U(L3(p)) = PU (L3(p))P
−1 = eiπJ2U(L3(p))e

−iπJ2 , (6.25)

where use has been made of Eqs. (6.4), (6.15) and (6.16).
Eqs. (6.20), (6.23) hold also for a massless particle. However, in this case,

the situation is quite different, since rest states do not exist, so that the
definition (6.11) for the intrinsic parity becomes meaningless. We can regard
Eqs. (6.20), (6.23) as a definition of intrinsic parity for a massless particle.
The commutation relation (6.16) assures that η is independent of p.
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We see that Eq. (6.21) relates, when both exist, the two states of opposite
helicity. For instance, both eigenstates corresponding to λ = ±1 exist for the
photon: they describe, as it will be shown in Section 7.3, the two states of
right- and left-handed circular polarization.

In the frame of the Standard Model of electroweak interactions, which is
considered in detail in Sections 9.7 and 9.7.3, neutrinos are strictly massless. It
is usual to identify the neutrino ν as the particle associated with the positron
in the beta-plus decay: a proton in a nucleus decays into a neutron, a positron
and a neutrino. The anti-neutrino ν is then the particle associated with the
electron in the beta-minus process: a neutron in a nucleus decays into a pro-
ton, an electron and an anti-neutrino. Experimentally, it has been observed3

that there is only one eigenstate of helicity for the neutrino ν, which is the
opposite of that of the antineutrino ν, so that ν and ν denote the eigenstates
corresponding to λ = − 1

2
and λ = +1

2
, respectively.

By assuming electron lepton number +1 for electron and neutrino, and
−1 for their antiparticles, within the Standard Model the processes involving
ν and ν are regulated by the conservation of this quantum number. Similar
properties are assigned to the muon and to the tau neutrinos in association
with their corresponding charged leptons, with the introduction of two other
distinct quantum numbers: muon and tau lepton numbers. In general, the
three specific lepton numbers are called lepton flavors; they are conserved in
the frame of the Standard Model.

Actually, however, there is clear experimental evidence of neutrino flavor
oscillation (neutrinos change their flavor during their temporal evolution),
which implies that neutrinos are indeed massive particles, even though we
still ignore their absolute masses. To account for the experimental evidence
which indicates that neutrinos have a mass different from zero, it is necessary
to go beyond the Standard Model.

From the above analysis we see that, among the one-particle states, only
those describing a (massive) particle at rest are eigenstates of parity. The
situation is more interesting for a system of two or more particles in relative
motion, for which one can build parity eigenstates.

We limit ourselves to the states of two massive particles in the ℓ-s coupling
representation given by Eq. (5.49). Let us start with the state (5.47) which
describes the two particles in their c.m. system

|E,q; s1, σ1; s2, σ2> , (5.47)

where E is the total energy and q = 1
2
(p1 − p2) the relative momentum.

Taking into account Eqs. (5.39) and (6.14), we get immediately

P |E,q; s1, σ1; s2, σ2> = η1η2|E,−q; s1, σ1; s2, σ2>; , (6.26)

where η1 and η2 are the intrinsic parities of the two particles.

3 This property was established long ago by a famous experiment: M. Goldhaber,
L. Grodzins and A.W. Sunyar, Phys. Rev. 109, 1015 (1958).
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For a state of definite angular momentum, Eq. (5.48), we then obtain

P |E, ℓ, µ; s1, σ1; s2, σ2> = η1η2
∫
dq̂Y µℓ (q̂)|E,−q; s1, σ1; s2, σ2> =

= η1η2
∫
dq̂Y µℓ (−q̂)|E,q; s1, σ1; s2, σ2> ,

(6.27)

which, making use of the well-known relation

Y µℓ (−q̂) = (−1)ℓY µℓ (q̂) , (6.28)

becomes

P |E, ℓ, µ; s1, σ1; s2, σ2> = η1η2(−1)ℓP |E, ℓ, µ; s1, σ1; s2, σ2> . (6.29)

This shows that the angular momentum eigenstates are also eigenstates of
parity corresponding to the eigenvalue η1η2(−1)ℓ, which is the product of the
intrinsic parities times the parity of the state of relative orbital momentum.
The same result holds for the eigenstates of total angular momentum J ; in
fact, from (6.29), (5.49) we get

P |E, J, j; l, s; s1, s2> = η1η2(−1)ℓ|E, J, j; l, s; s1, s2> . (6.30)

6.2 Parity invariance

We have seen above how the states of one and two particles are transformed
under parity. In particular, the one-particle states at rest are eigenstates of
parity corresponding to the eigenvalues +1 and −1 which define the intrinsic
parity (even and odd, respectively) of the particles. There is, however, some
arbitrariness in the assignment of intrinsic parities.

It is known that parity is conserved to a high degree of accuracy in the
strong and electromagnetic interactions. The meaning of this statement is
that it is possible to assign intrinsic parities to all the particles which have
strong and electromagnetic interactions in such a way that parity is always
conserved in these interactions.

The intrinsic parity can be determined uniquely only for those particles
whose internal quantum numbers, such as baryon number and strangeness,
which are conserved in strong and electromagnetic interactions, are zero.

For instance, in any reaction involving nucleons (proton and neutron), one
has always to deal at least with a pair of them, so that the parity assignment
for the nucleons is only a matter of convention. Because of the two ”supers-
election” rules of charge and baryon number conservation, even the relative
proton-neutron parity is fixed by convention; since proton and neutron belong
to the same iso-spin doublet, it is convenient to assign the same intrinsic parity
to them. The standard convention is to take both proton and neutron to have
even intrinsic parity. Then, the intrinsic parities of all the other non-strange
particles can be deduced from experiment.
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Let us consider, as an example, the classical argument for the determina-
tion of the intrinsic parity of the π− meson from the reaction

π− + d→ n+ n . (6.31)

The deuteron d is a 3S1 state, so that, from (6.30) and the above assignment
for the nucleon parity, we conclude that it has even parity. Parity conservation
in the above reaction then implies:

ηπ · (−1)ℓ = (−1)ℓ
′

, (6.32)

where ℓ and ℓ′ are the relative π-d and n-n orbital angular momenta. It was
shown that the π− is absorbed in an S-wave, i.e. ℓ = 0. Since the spin of d
is 1, and π− has spin zero, angular momentum conservation implies that the
only possible final states in Eq. (6.31) are 3S1,

3P1,
1P1,

3D1. Moreover, the
Fermi-Dirac statistics requires the two neutrons n to be in an antisymmetric
state, so that only 3P1 is possible, i.e. ℓ′ = 1. The above relation fixes the
parity of the π− to be odd.

The intrinsic parity of the photon is also determined to be odd. This is
related to the fact that the photon is a quantum of the electromagnetic field
and its polarization vector behaves as the (polar) vector potential A.

Going to strange particles, one needs to make a further convention. In fact,
now one has to deal always with a pair of two strange particles, and only their
relative parity can be determined. For instance, from the process

π− + p→ K0 + Λ0 . (6.33)

one could determine the relative K0-Λ0 parity; with the convention that Λ0

has even parity as the nucleon, the parity of the K0-meson is then fixed, and
it turns out to be odd. as in the case of the π.

It can be shown that the relative parity of a particle-antiparticle pair is
odd in the case of fermions. and even in the case of bosons. In general, if a
particle-antiparticle system has relative orbital momentum ℓ, its parity is given
by −(−1)ℓ for fermions, and (−1)ℓ for bosons. This follows from the trans-
formation properties under the so-called particle-antiparticle conjugation or
charge conjugation, denoted by C and conserved by strong and electromag-
netic interactions4.

It is well known that parity invariance (as well as charge conjugation) no
longer holds in the case of weak interactions. This means that weak interac-
tions can cause transitions among different parity eigenstates; consequently,
particle states are not strictly parity eigenstates. An example of parity vio-
lation is given by the decay K0 → π+π−; since the spin of K0 is zero, the
π+π− system is in a S-state, and then its parity is even; on the other hand,
the parity of K0 was determined in strong interaction processes to be odd (the
assignment of even parity for K0 would also lead to parity violation, since the

4 See e.g. J..J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley (1967).
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parity of the final state in the decay K0 → π+π−π0 can be determined to be
odd).

A systematic investigation of the validity of parity conservation was under-
taken by Lee and Yang5, who first suggested its possible violation. The first
conclusive evidence that parity is not conserved in weak decays was provided
by the famous experiment of Wu et al.6.

A direct test of parity invariance consists in investigating if particle inter-
actions distinguish between right and left. Parity invariance implies that for
any process there exists the specular one which occurs with the same prob-
ability. If pseudoscalar quantities, such as J · P, have non-zero expectation
values, then parity invariance is violated. The experiment of Wu et al. con-
sists in the detection of a term of the form J · P in the β-decay of polarized
60Co. In fact, they observed an angular distribution for the emitted electron
of the form 1 + αP cos θ, where P is the 60Co polarization, and θ the angle
between the momentum p of the electron and the direction of the polarization
P. Clearly this term describes an up-down asymmetry in the electron angular
distribution; a measure of it is given by the asymmetry parameter α which is
proportional to the velocity of the electron.

A detailed analysis of parity non-conservation in weak interactions is out
of the purposes of this book. We want only to mention here one of the most
striking facts of the violation of parity invariance, i.e. the existence of a left-
handed neutrino and the lack of evidence of a right-handed one.

6.3 Time reversal

In the following, we shall consider the transformation properties of a state
under time reversal, i.e. under the time inversion operation It, Eq. (3.19),
which is contained in the proper groups L+ and P+.

The transformation properties under the space-time inversion Ist, which
is contained only in the full group L and P , will be trivially given in terms of
those under Is and It.

In the four-dimensional IR of L, It is given by

It =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 = −g . (6.34)

The commutation relations of It with the other generators of the Poincaré
group easily follow7:

5 T.D. Lee and C.N. Yang, Phys. Rev. 104, 254 (1956).
6 C.S. Wu et al., Phys. Rev. 105, 1413 (1957).
7 The commutation relations with P0, Pi are obtained using the 5-dimensional IR

of P , where It is given by
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[ It, Ji ] = 0 ,

{It,Ki} = 0 ,

{ It, P0} = 0 ,

[ It, Pi ] = 0 .

(6.35)

Let us denote by T the operator representing It in the Hilbert space:
T = U(It). Should T be unitary, Eqs. (6.35) would mean that the energy
changes sign under time reversal, while the linear and angular momenta re-
main unchanged. This is contrary to the physical interpretation of time rever-
sal.

Applying Eq. (6.3) with Ix = It and Λ = I to the one-particle state |p, σ>,
we get

U (a, I)T |p, σ> = T eipa|p, σ> (6.36)

since the four-vector a is transformed into −a = (−a0,a). Taking into account
that pa = pa, one gets

U(a, I)T |p, σ> = eipaT |p, σ> (6.37)

if T is a unitary operator, and

U(a, I)T |p, σ> = e−ipaT |p, σ> (6.38)

if T is antiunitary. The above equations show that, if time reversal is a sym-
metry operation, in the sense that T |p, σ> is a physical state corresponding
to a positive energy eigenvalue, T has to be an antiunitary operator.

We consider now a massive particle of spin s at rest; its states |p̃, σ> form
the basis of the (2s + 1)-dimensional IR of the rotation group. If one applies
T to one of these states, one obtains again a state of zero linear momentum,
and then a state in the same Hilbert subspace. We can write

T |p̃, σ> =
∑

τ

Cτσ|p̃, τ> , (6.39)

introducing a unitary matrix C, which is determined as follows. Applying a
rotation R on the same state, one gets:

U(R)|p̃, σ> =
∑

ρ

D(s)
ρσ (R)|p̃, ρ> , (6.40)

where D(s)(R) is the (2s+ 1)-dimensional IR of SO(3).
Combining Eqs.(6.39) and (6.40), since T is antiunitary, we get:

TU(R)|p̃, σ> =
∑

ρ

D(s)∗
ρσ (R)T |p̃, ρ> =

∑

ρτ

D(s)∗
ρσ (R)Cτρ|p̃, τ> , (6.41)

It =

(
−g 0

0 1

)
.
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and

U(R)T |p̃, σ> =
∑

ρ

U(R)Cρσ |p̃, ρ> =
∑

ρτ

CρσD
(s)
τρ (R)|p̃, τ> . (6.42)

Taking into account the commutation properties of T with Ji and remem-
bering Eq. (3.52), one gets

TU (R) = U(R)T , (6.43)

and a comparison of Eqs. (6.41), (6.42) gives

D(s)(R)C = CD∗(s)(R) . (6.44)

We know that the two IR’s D(s) and D∗(s) are equivalent (see Section 2.3), so
that Eq. (6.44) corresponds to a similarity transformation. In the case s = 1

2 ,
C can be identified with the inverse of the matrix S given in Eq. (2.42)8

C =

(
0 −1
1 0

)
= −iσ2 = e−iπ

1
2σ2 . (6.45)

The above result can be generalized to an arbitrary spin J as follows

C = e−iπJ2 , (6.46)

so that, making use of (6.18), Eq. (6.39) becomes

T |p̃, σ> = (−1)s−σ|p̃,−σ> . (6.47)

We can extend this equation to states with arbitrary linear momentum, taking
into account Eq. (6.4):

T |p, σ> = TU (Lp)|p̃, σ> = U(Lp)T |p̃, σ> = (−1)s−σ|p,−σ> , (6.48)

with the usual symbol p = (p0,−p).
It should be noted the change σ → −σ in the above equations; in fact, σ is

the third component of the spin, and it must change sign under time reversal.
Since also the components of the linear momentum change their sign, the
helicity remains unchanged under time reversal.

The helicity representation allows us to find out how the states of a masless
particle are modified under time reversal.

Starting from the helicity state |p, λ> of a massive particle, obtained by
a boost L3(p) from a rest state, and making use of Eqs. (6.4) and (6.24), we
get

8 The matrix C is determined aside from a phase factor, which is not fixed by
Eq. (6.44); following the usual conventions we take it equal to 1.
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T |p, λ> = U(L3(p))T |p̃, λ> = (−1)s−λU(L3(p))|p̃,−λ>

= (−1)s−λ|p, λ> .
(6.49)

On the other hand, when applied to a state |p, λ>

T |p, λ> = TU (L3(p))|p̃,−λ> = U(L3(p))T |p̃,−λ> =

= (−1)s+λU (L3(p))|p̃, λ> = (−1)s+λ|p, λ> .
(6.50)

In this form Eqs. (6.49), (6.50) hold also for the states of a massless particle.
The above results indicate a profound difference between the time reversal

and the parity operators. We saw that in the case of P one can choose the
phase in such a way that P 2 = I. Also T 2 must be proportional to the identity
(repeating twice the time reversal operation, one has to recover the original
situation), but one cannot modify the value of T 2 by changing the phase of
T . In fact, suppose that it is replaced by T ′ = eiαT . Since T is anti-unitary,
we get:

T ′2 = eiαTeiαT = eiαe−iαT 2 = T 2 . (6.51)

From Eq. (6.48), we see that

T 2|p, σ> = (−1)s−σT |p,−σ> = (−1)s−σ(−1)s+σ|p, σ> = (−1)2σ|p, σ> .
(6.52)

The eigenvalue of T 2 is +1 in the case of integer spin, and −1 for half-
integer spin. This result correspond to a superselection rule: the states with
T 2 = +1 and T 2 = −1 belong to two Hilbert subspaces which are orthogonal
to each other.

Before closing this Chapter, we want to discuss briefly the physical mean-
ing of time-reversal invariance. Obviously, since T is antilinear, it cannot cor-
respond to any observable. Unlike parity, it cannot give rise to an additional
quantum number. However, time reversal invariance imposes restrictions to
physical processes: if a process occurs, also the reversed process has to occur,
with a rate completely defined in terms of that of the direct one (one has to
take into account the kinematical changes in going from final to initial states).

It was believed that time reversal was an exact symmetry, since the known
interactions define no sense of time’s direction. There is experimental evidence
that strong and electromagnetic interactions are invariant under time reversal,
while weak interactions show a tiny violation. In fact, in 1964 the π+π− decay
of the long-lived K0

2 -meson was observed9; this decay violates CP invariance,
and this indicates also violation of time-reversal invariance, since it is believed
that all interactions are invariant under the combined operation CPT 10.

9 J.H. Christenson, J.W. Cronin, V.L. Fitch, R. Turlay, Phys. Rev. Lett. 13, 138
(1964).

10 For details on C, CP and CPT see e.g.: J.J. Sakurai, Advanced Quantum Mechan-
ics, Addison-Wesley (1967); M.D. Scadron, Advanced Quantum Theory, Springer
Verlag (1979).
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Tests of time-reversal invariance are based on the following fact: if a quan-
tity, which is odd under T , has non-zero expectation value, then it indicates
the violation of the invariance. A test investigated since a long time is based
on the beta-decay of polarized neutrons:

n→ p+ e− + ν . (6.53)

Clearly, the quantity

σn · (pe × pν) = −pp · (σn × pe) , (6.54)

where pe, pn and pp = −pν − pe are the c.m. momenta and σn represents
the direction of the neutron spin, changes its sign under time inversion, while
it is invariant under parity. A detection of asymmetry in the distribution of
recoil protons above and below the σn × pe plane would indicate breakdown
of time-reversal invariance. However, up to now no experiment has been able
to detect such asymmetry. The search is in progress and a new apparatus has
been built for this purpose11.

At present, the only direct detection of a departure from time-reversal

invariance comes from the analysis of the K0K
0

meson system. The first
detection was obtained in 199812. It is a measurement of the difference between
the rate of a process and its inverse, specifically in the comparison of the

probabilities of the K
0

transforming into K0 and of K0 into K
0
.

Problems

6.1. Show how the intrinsic parity of the π0 meson can be determined from
the decay π0 → γγ by measurements of the photon polarization. By similar
measurements one can check that the electron-positron pair has odd rela-
tive parity, since the annihilation process e+e− → 2γ can occur in the 1S0

positronium state.

6.2. Deduce from the observed process K− + He4 → ΛHe
4 + π−, that the

parity of the K− meson is odd, with the assignment ηN = ηΛ = +1 (ΛHe
4

is a ”hyperfragment”, and it is equivalent to a helium atom He4 in which a
neutron is replaced by a Λ0; both He4 and ΛHe

4 have spin zero and even
parity).

6.3. Show that the parity of a three spinless particle state of total angular
momentum J = ℓ+L in its c.m. system is given by η1 ·η2 ·η3 · (−1)ℓ+L, where
ℓ is the relative angular momentum of particles 1 and 2, and L the angular
momentum of particle 3 relative to the c.m. system of 1 and 2.

11 H.P. Mumm et al., Review of Scientific Instruments 75, 5343 (2004).
12 A. Angelopoulos et al. (CPLEAR Collaboration), Phys. Lett. B 444, 43 (1998).
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6.4. The spin and parity of the ρ-meson have been determined to be 1−. Show
that the decays ρ0 → π0π0 and ρ0 → 2γ are forbidden.

6.5. Show that parity invariance implies that the static electric dipole moment
of a particle is zero.

6.6. Show that the decays K+ → π+π0, K+ → π+π+π−, even if the intrinsic
parity of K+ were not known, would indicate violation of parity invariance.

6.7. Discuss how one could detect parity violation in the hyperon decay
Λ0 → p+ π− (Λ0 has spin 1

2 and its parity is assumed to be even).

6.8. Derive from the Maxwell’s equations the transformation properties under
time-reversal of the electric and magnetic fields E and B.

6.9. Show that a non-zero electric dipole static moment of a particle would
indicate, besides parity non-conservation, also violation of time reversal in-
variance.





7

Relativistic equations

In this Chapter, we examine the relativistic wave-functions which are obtained
starting from the one-particle states considered in Chapter 5 and making use
of the IR’s of the orthochronous Lorentz group L↑. We examine the lower
spin cases (0, 1 and 1

2 ) and the corresponding relativistic equations both for
massive and massless particles. Higher integer and half-integer spin cases are
considered for massive particles.

7.1 The Klein-Gordon equation

In Chapter 5 it was shown how the one-particle states can be classified
according to unitary IR’s of the Poincaré group. Let us consider the case
p2 > 0, p0 > 0, i.e. a massive particle with positive energy. Its states
|p, σ > ≡ |m, s;p, σ > form a complete set, so that a generic one particle
state vector |Φ> in the Hilbert space H can be expanded as

|Φ>=
∑

σ

∫
d3p

2p0
Φσ(p)|p, σ> , (7.1)

where p0 = +
√

p2 +m2 and

Φσ(p) = <p, σ|Φ> . (7.2)

If |Φ> is normalized to 1, one gets from (5.10)

∑

σ

∫
d3p

2p0
|Φσ(p)|2 = 1 . (7.3)

The function Φσ(p) has the meaning of probability amplitude and is iden-
tified, in quantum mechanics, with a wave function in momentum space. Since
it corresponds to the eigenvalue p2 = m2, it satisfies the condition (mass-shell
condition)

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 97
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_7, 
© Springer-Verlag Berlin Heidelberg 2012
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(pµp
µ −m2)Φσ(p) = 0 , (7.4)

which is nothing else that the Klein-Gordon equation in momentum space.
The Fourier transform

Φσ(x) =
1

(2π)
3
2

∫
d3p

2p0
Φσ(p)e

−ipx , (7.5)

which defines the wave function in the configuration space, satisfies the Klein-
Gordon equation in the coordinate representation

( +m2)Φσ(x) = 0 , (7.6)

with the usual notation = ∂µ∂
µ.

It is interesting to examine the transformation properties of the wave func-
tion Φσ(p) under P↑+. Since an element of P↑+ transforms the state |Φ> into
U(a, Λ)|Φ>, the transformed wave function can be defined by

Φ′σ(p) =<p, σ |U(a, Λ)|Φ> . (7.7)

From Eqs. (7.1) and (5.14) we obtain

U(a, Λ)|Φ> =
∑

σσ′

∫
d3p

2p0
Φσ(p)e

−ip′aD(s)
σ′σ(L

−1
p′ ΛLp)|p′, σ′> , (7.8)

where p′ = Λp. According to the definition (7.7), one gets

Φ′σ(p) = e−ipa
∑

σ′

D
(s)
σσ′ (L

−1
p ΛLp”)Φσ′(Λ−1p) , (7.9)

where p′′ = Λ−1p.
As for the states of massive particle, the transformation properties of the

wave function Φσ(p) under P↑+ are determined by the IR’s of the rotation
group. For a given spin s, the set Φσ(p), with σ = −s, ...,+s, corresponding
to the (2s + 1)-component wave function, describes completely the physical
system and its transformation properties. This description, however, is not
relativistic covariant. Moreover, while Φσ(p) transforms in a very simple way
under pure rotations, the general transformation (7.9) is formally very simple,
but the explicit dependence on p, p′′ is rather complicated.

In order to get a covariant formalism, we should replace the bases of the
IR’s of the rotation group with those of the finite-dimensional IR’s of the ho-
mogeneous Lorentz group. In this way, the number of components is increased
and, according to the discussion in Section 3.4, supplementary conditions are
needed in order that the basis of an IR D(j,j′) of L↑+ describes a unique value
of the spin. Since it is convenient to deal with wave functions having definite
transformation properties under parity, we shall use the bases of the IR’s of
the orthochronous group L↑, considered in Section 3.5.
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We shall consider here the wave functions for the simplest case of spin
0 and 1. The wave function for a spin zero particle is clearly a scalar (or
pseudoscalar, according to parity) under L↑. It is then described by a function
Φ(p), satisfying the Klein-Gordon equation (7.4), which transforms under an

element (a, Λ) of P↑+, according to Eq. (7.9), as

Φ′(p) = e−ipaΦ(Λ−1p) . (7.10)

The corresponding transformation in the configuration space is obtained by
Fourier transform

Φ′(x) = Φ
(
Λ−1(x+ a)

)
. (7.11)

A particle of spin and parity JP = 1∓ can be described in terms of the
IR D( 1

2 ,
1
2 ,∓) of L↑; the relative wave function transforms as a polar or axial

four-vector Φµ(p). According to Eq. (3.99), we have

D( 1
2 ,

1
2 ,∓) = D(1,±) ⊕D(0,∓) , (7.12)

so that, with respect to the subgroup O(3), Φµ(p) contains also a scalar (or
pseudoscalar) component. One needs, in this case, a supplementary condition
which leaves only three independent components, corresponding to the three
independent states of polarization. It is natural to impose, besides the Klein-
Gordon equation

(p2 −m2)Φµ(p) = 0 , (7.13)

the invariant condition
pµΦ

µ(p) = 0 . (7.14)

We notice that pµΦ
µ is a scalar (or pseudoscalar) quantity. In the rest frame

of the particle, Eq. (7.14) becomes

p0Φ0 = mΦ0 = 0 , (7.15)

showing that the time-like component vanishes. The transformation properties
under an element (a, Λ) of P↑+ are given by

Φ′µ(p) = e−ipaΛµνΦ
ν(Λ−1p) . (7.16)

In the coordinate representation, the above equations become

( +m2)Φµ(x) = 0 , (7.17)

∂µΦ
µ(x) = 0 , (7.18)

Φ′µ(x) = ΛµνΦ
ν
(
Λ−1(x + a)

)
. (7.19)

The general wave function Φµ(x) is usually expanded as follows

Φµ(x) =
1

(2π)
3
2

3∑

λ=1

∫
d3p

2p0
ǫµ(p, λ)

{
a(p, λ)e−ipx + b∗(p, λ)e+ipx

}
, (7.20)
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in terms of the plane wave (positive and negative energy) solutions ∼ e∓ipx.
Since Φµ(x) has only three independent components, we have introduced in
(7.20) three independent four-vectors, ǫµ(p, λ) (λ = 1, 2, 3), usually called
polarization vectors, since they specify the state of polarization. It is possible
to satisfy Eq. (7.14) for each polarization, independently, by choosing

ǫ(p, 1) = (0, 1, 0, 0) ,

ǫ(p, 2) = (0, 0, 1, 0) ,

ǫ(p, 3) =

(
p3

m
, 0, 0,

p0

m

)
,

(7.21)

where, for the sake of simplicity, we have taken the momentum along the
x3-axis. Thus we have

pµǫ
µ(p, λ) = 0 , (7.22)

and the vectors are normalized in such a way that

ǫµ(p, λ)ǫµ(p, ν) = gλν . (7.23)

We see that ǫ(p, λ) correspond to transverse polarization for λ = 1, 2 and to
longitudinal polarization for λ = 3. In the rest frame also the time-component
of ǫ(p, 3) vanishes and the polarization vectors reduce to unit vectors along
the axes x1, x2, x3. It is instructive to consider a generic unit vector n =
(sin θ cosφ, sin θ sinφ, cos θ) corresponding to polarization along a direction
specified by the polar angles θ, φ. One can immediately write the following
proportionality relations with the spherical harmonics Y1(θ, φ):

−√
1
2 (n

1 + in2) ∼ Y 1
1 (θ, φ) ,

√
1
2 (n

1 − in2) ∼ Y −1
1 (θ, φ) ,

n3 ∼ Y 0
1 (θ, φ) .

(7.24)

It is clear that the two combinations (n1 ± in2) of transverse polarizations
correspond to spin component ±1 along x3, and n3 to spin component 0
along x3. In a frame of reference in motion along x3, analogous combinations
can be written in terms of (7.21), corresponding to the helicity eigenvalues ±1
and 0.

7.2 Extension to higher integer spins

The previous considerations can be generalized to the cases of higher integer
spins. The wave function of a massive particle of spin s can be obtained from
the irreducible tensor of rank s

Φµ1µ2...µs(p) , (7.25)



7.3 The Maxwell equations 101

which is completely symmetrical and traceless

gµνΦ
µν...µs (p) = 0 . (7.26)

Moreover, it satisfies the Klein-Gordon equation

(p2 −m2)Φµ1µ2...µs(p) = 0 . (7.27)

Such tensor can be taken as the basis of the IR D( s
2 ,

s
2 ) of L↑+ (we disregard

here parity considerations; parity can be included going to L↑, as indicated
in the previous Section). It reduces with respect to the subgroup SO(3) as
follows (see Eq. (3.67))

D( s
2 ,

s
2 ) = D(s) ⊕D(s−1) ⊕ ...⊕D(0) . (7.28)

The s2 components corresponding to D(0), ..., D(s−1) are eliminated by the
supplementary condition

pµΦ
µµ2...µs(p) = 0 . (7.29)

In the rest frame of the particle, the above condition shows that all components
of the type Φ0µ2...µs , with at least one index µi = 0, vanish. The above
equations can be trivially written in the coordinate representation.

As an example, let us consider the case of spin 2. The wave function is the
symmetrical traceless tensor

Φµν(p) = Φνµ(p) , gµνΦ
µν(p) = 0 , (7.30)

which has 9 independent components, corresponding to spin values 0, 1 and
2. The condition

pµΦ
µν(p) = 0 (7.31)

eliminates the 4 components corresponding to spin 0 and 1.

7.3 The Maxwell equations

The above considerations can be applied, with the appropriate modifications,
to the case of massless particles. We saw in Section 5.3 that, in this case,
there exist at most two distinct states of helicity (i.e. polarization) for a spin
different from zero.

We shall examine only the case of a spin 1 massless particle, specifically
the photon. The wave function, denoted by Aµ(x) in the configuration space,
is still described by a four-vector which satisfies the equations

Aµ(x) = 0 , (7.32)

∂µA
µ(x) = 0 . (7.33)
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In terms of the antisymmetric tensor Fµν defined by

Fµν = ∂µAν(x) − ∂νAµ(x) , (7.34)

they become
∂µF

µν = 0 , (7.35)

i.e. the Maxwell equations in covariant form (the tensor Fµν describes, in fact,
the electromagnetic fields). We note that Eqs. (7.32) and (7.35) are equiva-
lent only if the supplementary condition (7.33), called Lorentz condition, is
satisfied.

In the present case, however, we have to reduce to two the number of
independent components of Aµ(x). One makes use of the fact that the theory
of a massless vector field is invariant under the transformation

Aµ(x) → A′µ(x) = Aµ(x) + ∂µχ(x) , (7.36)

which is called ”gauge transformation of the second kind”. The above trans-
formation, where χ(x) is an arbitrary scalar function, leaves the tensor Fµν(x)
invariant; Eqs. (7.32), (7.33) are also unchanged if χ(x) satisfies the equation

χ(x) = 0 . (7.37)

This condition leaves still a great deal of arbitrariness in the possible choices
of χ(x). By a convenient choice, corresponding to the so-called radiation or
Coulomb gauge, one can impose, besides Eq. (7.33),

∇ ·A(x) = 0 . (7.38)

The physical meaning of Eq. (7.38) becomes clear going to the Fourier trans-
form aµ(k)

Aµ(x) =
1

(2π)
3
2

∫
d3p

2p0
aµ(k)e−ikx , (7.39)

which gives
k · a(k) = 0 . (7.40)

The two independent components of aµ(k) are those perpendicular to the
direction of motion k, and they correspond to the two independent transverse
polarization states of the photon.

As done for the massive vector field, it is convenient to expand Aµ(x) in
terms of the plane wave solutions of the Klein-Gordon equation (we note that
Aµ(x) is a real field)

Aµ(x) =
1

(2π)
3
2

∫
d3k

2k0

3∑

λ=0

ǫµ(k, λ)
{
a(k, λ)e−ikx + a∗(k, λ)e+ikx

}
. (7.41)

In the present case of massless particle, it is convenient to introduce four
polarization vectors ǫ(k, λ), (λ = 0, 1, 2, 3). We choose them in the following
way (taking k along x3):
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ǫ(k, 0) = (1, 0, 0, 0) ,

ǫ(k, 1) = (0, 1, 0, 0) ,

ǫ(k, 2) = (0, 0, 1, 0) ,

ǫ(k, 3) =

(
0, 0, 0,

k3

k0

)
.

(7.42)

Since m = 0, it is no longer possible to satisfy the analogue of Eq. (7.22) for
all λ; in fact, from (7.42) one gets

kµǫ
µ(k, λ) = 0 (λ = 1, 2) ,

kµǫ
µ(k, 0) = +k0 ,

kµǫ
µ(k, 3) = −k0 .

(7.43)

The Lorentz condition (7.33) then implies a simple relation between the lon-
gitudinal and time-like components

a(k, 3) − a(k, 0) = 0 . (7.44)

Using the gauge invariance, we can replace, according to (7.36), Eq. (7.41)
by

A′µ(x) =
1

(2π)
3
2

∫
d3k

2k0

{[
3∑

λ=0

ǫµ(k, λ)a(k, λ) + ikµχ̃(k)

]
e−ikx + c.c.

}
,

(7.45)
where χ̃(k) is defined by

χ(x) =
1

(2π)
3
2

∫
d3k

2k0

{
χ̃(k)e−ikx + χ̃∗(k)e+ikx

}
. (7.46)

Equation (7.45) defines new components a′(k, λ), which are related to a(k, λ)
by

3∑

λ=0

ǫµ(k, λ) {a′(k, λ) − a(k, λ)} = ikµχ̃(k) . (7.47)

This equation is satisfied by

a′(k, λ) = a(k, λ) (λ = 1, 2) ,

a′(k, 0) = a(k, 0) + ik0χ̃(k) ,

a′(k, 3) = a(k, 3) + ik0χ̃(k) ,

(7.48)

and one can choose χ̃(k) in such a way to eliminate both a′(k, 0) and a′(k, 3),
which are equal according to (7.44).
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Then one is left with two independent components, relative to the polar-
ization vectors ǫ(k, 1) and ǫ(k, 2). They represent linear polarizations, along
to the x1 and x2 axes, respectively. Defining, in analogy to (7.24)

ǫ(k,+) = {ǫ(k, 1) + iǫ(k, 2)} ,

ǫ(k,−) = {ǫ(k, 1) − iǫ(k, 2)} ,
(7.49)

we obtain a description in terms of right-handed and left-handed circular po-
larization; they correspond to helicity +1 and −1, respectively.

7.4 The Dirac equation

In the following, we shall derive in detail the relativistic equations for half-
integer spin particles according to the scheme outlined in Section 7.1.

We shall examine here the case of a massive spin 1
2

particle. The appro-

priate IR of the group L↑ is in this case D( 1
2 ,0), which contains, according to

Eq. (3.103), both lowest spinor IR’s of L↑+

D( 1
2
,0) = D( 1

2
,0) ⊕D(0, 1

2
) . (3.103)

As seen in Section 3.4, the bases of these two IR’s of L↑+ consist in the spinors
ξ and η†, and the following correspondence holds

D( 1
2
,0) → A ,

D(0, 1
2
) → (A†)−1 .

(7.50)

In Section 3.5 it was noticed that the two IR’s are interchanged into one
another by space inversion.

The above considerations lead naturally to the introduction of a four-
component (Dirac) spinor defined by

ψ =

(
ξ

η†

)
. (7.51)

We write explicitly its transformation properties under L↑+:

ψ → ψ′ = S(Λ)ψ , (7.52)

where

S(Λ) =

(
A 0

0 (A†)−1

)
, (7.53)

and under space inversion (see Eq. (3.93))
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ψ → ψ′ =

(
ξ′

η†
′

)
= i

(
0 I

I 0

)(
ξ

η†

)
. (7.54)

We shall now investigate the connection with the one particle states |p, σ>,
where in this case σ = ± 1

2 .
According to Eq. (7.1), we can define a two-component (spinor) wave func-

tion Φσ(p), satisfying the mass-shell condition (7.4). Its transformation prop-

erties under P↑+ are given by (7.9), which we rewrite here, neglecting transla-
tions for the sake of simplicity,

Φ′σ(p) =
∑

σ′

D
( 1
2 )

σσ′(L
−1
p ΛLp′′)Φσ′(Λ−1p) , (7.55)

where p′′ = Λ−1p.
It is more convenient to introduce the following spinor wave-function1

φτ (p) =
∑

σ

Dτσ(Lp)Φσ(p) . (7.56)

From this definition and Eq. (7.55), one can derive the transformation prop-

erties of φτ (p) under L↑+:

φ′τ (p) =
∑

ρ

Dτρ(Λ)φρ(Λ
−1p) . (7.57)

Note that φτ (p) transforms in a much simpler way than Φσ(p): in fact
Eq. (7.57) is the analogue of (7.16) for the two-dimensional IR D( 1

2
,0)(Λ)

of L↑+.
Together with φτ (p), we define another spinor wave function

χτ (p) =
∑

σ

Dτσ(L
†
p

−1
)Φσ(p) . (7.58)

Its transformation properties under L↑+ are obtained from (7.16), taking into

account the unitarity of D( 1
2
)(L−1

p ΛLp′′)

χ′τ (p) =
∑

ρ

Dτρ(Λ
†−1

)χρ(Λ
−1p) . (7.59)

From the correspondence (7.50) we see that the two-component wave func-
tions φτ (p) and χτ (p) transform as the spinors ξ and η†, respectively. A four-
component (Dirac) wave function is then defined by

1 Here and in the following we denote simply by D(Λ) an element of the IR

D( 1
2

,0)(Λ) of L↑
+. D(Λ), in general, is not unitary and D(Λ†−1

) is an element of

the IR D(0, 1
2
)(Λ). For a pure rotation R, D(R) reduce to the unitary IR D( 1

2
)(R)

of SO(3).
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ψ(p) =

(
φ(p)

χ(p)

)
, (7.60)

which transforms similarly to (7.52) under L↑+, i.e.

ψ′(p) = S(A)ψ(Λ−1p) . (7.61)

The two spinor wave functions φ(p) and χ(p) are not independent, but
they are related to one another. In terms of ψ(p), this relation becomes the
Dirac equation. In fact, let us write Eqs. (7.56), (7.58) in matrix form

φ(p) = D(Lp)Φ(p) ,

χ(p) = D(L†p
−1

)Φ(p) .
(7.62)

Eliminating Φ(p) one gets

φ(p) = D(Lp)D(L†p)χ(p) , (7.63)

or
χ(p) = D(L†p

−1
)D(L−1

p )φ(p) . (7.64)

From the correspondence (7.50) and the explicit expression (3.70), i.e.

D(Lp) = e−
1
2ψσ·n , (7.65)

where n = p/|p|, coshψ = γ = p0/m, Eqs. (7.63), (7.64) become

φ(p) =
1

m
(p0 − σ · p)χ(p) , (7.66)

χ(p) =
1

m
(p0 + σ · p)φ(p) . (7.67)

The above equations can be written in compact form, in terms of the Dirac
spinor (7.60). Introducing the four matrices

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi

−σi 0

)
, (7.68)

and the notation
6p = γµpµ , (7.69)

one gets
( 6p−m)ψ(p) = 0 , (7.70)

which is the Dirac equation.
The four γ-matrices satisfy the anticommutation relations

γµγν + γνγµ = 2gµν , (7.71)
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and the hermiticity (and anti-hermiticity) properties

γ0† = γ0 , γi
†

= −γi . (7.72)

These properties are abstracted from the explicit expression (7.68), which
represents only a particular choice. Another useful choice is that in which γ0

is diagonal

γ0′ =

(
I 0

0 −I

)
, γi

′
= γi =

(
0 σi

−σi 0

)
. (7.73)

The representations (7.68), (7.73) are related by

γµ′ = V γµV −1 , (7.74)

where

V =
1√
2

(
I I

−I I

)
. (7.75)

In general, the γ-matrices are defined by (7.71) and it is not necessary, for
many purposes, to use a specific representation.

One can check that the Dirac equation (7.70) is invariant under a Lorentz
(in general Poincaré) transformation, provided the γ-matrices satisfy the con-
dition

S−1(Λ)γµS(Λ) = Λµνγ
ν , (7.76)

where the matrix S(Λ) is defined by Eqs. (7.52) and (7.53).
The adjoint spinor, defined by

ψ(p) = ψ†(p)γ0 , (7.77)

satisfies the equation
ψ(p)(6p−m) = 0 , (7.78)

The corresponding Dirac equations for the coordinate space wave functions
ψ(x) and ψ(x) are given by

(iγµ∂µ −m)ψ(x) = 0 , (7.79)

ψ(x)(iγµ
←
∂ µ −m) ≡ i∂µψ(x)γµ −mψ(x) = 0 , (7.80)

as one can easily check making use of the Fourier transform (7.5).
Finally, we list the transformation properties of the Dirac spinor ψ(x)

under the discrete operations. They are obtained from (7.60) and the trans-
formation properties of ξ and η† given in Section 3.5. We first define a fifth
matrix2

2 Definitions which differ by a factor (−1) or (±i) can be found in the literature.
The choice (7.81) corresponds to a hermitian matrix.
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γ5 = γ5 = iγ0γ1γ2γ3 , (7.81)

which satisfies
γµγ5 + γ5γµ = 0 (7.82)

and, in the representation (7.68), is given explicitly by

γ5 =

(
I 0

0 −I

)
. (7.83)

Then we get (with p = (p0,−p))

ψ(p)
Is−→ ψ′(p) = iγ0ψ(p) , (7.84)

ψ(p)
It−→ ψ′(p) = −γ0γ5ψ(−p) , (7.85)

ψ(p)
Ist−→ ψ′(p) = iγ5ψ(−p) . (7.86)

In terms of the spinor ψ(p), one can build bilinear quantities with a definite
transformation properties under L↑, as follows

scalar ψ(p)ψ(p) ,

pseudoscalar ψ(p)γ5ψ(p) ,

four−vector ψ(p)γµψ(p) ,

pseudo−vector ψ(p)γ5γ
µψ(p) ,

antisymmetric tensor ψ(p)[γµ, γν ]ψ(p) .

(7.87)

7.5 The Dirac equation for massless particles

In the case of a masless particle, the Dirac equation (7.70) becomes

6pψ(p) = 0 . (7.88)

Since ψ(p) satisfies the Klein-Gordon Eq. (7.4) with m = 0, we have

(p02 − p2)ψ(p) = 0 , (7.89)

i.e. p0 = ±|p|.
In terms of the two-component spinors φ(p) and χ(p), Eq. (7.88) can be

splitted into two equations

(p0 + σ · p)φ(p) = 0 , (7.90)

(p0 − σ · p)χ(p) = 0 , (7.91)



7.5 The Dirac equation for massless particles 109

The two-component spinors are eigenfunctions of helicity λ = σ · p/|p|. For
positive energy p0 = +|p|, one gets

σ · p
|p| φ(p) = −φ(p) , (7.92)

σ · p
|p| χ(p) = +χ(p) , (7.93)

i.e. φ(p) corresponds to the eigenvalue λ = −1 and χ(p) to λ = +1. The two
eigenvalues are interchanged for the negative energy solutions p0 = −|p|.

As mentioned already in Section 6.1, there is clear experimental evidence
that the neutrino has negative helicity, i.e. spin antiparallel to the momentum
p. If we choose, by convention, the neutrino to be the particle, we have to
describe it with the wave-function φ(p) satisfying Eq. (7.90) with p0 = +|p|.
Its antiparticle, the antineutrino, will be described by the solution of Eq. (7.90)
corresponding to p0 = −|p|, and positive helicity. We assume that neutrinos
are massless; this is a good approximation for the present purposes, since their
masses are much smaller than the electron mass.

We see that a neutrino-antineutrino pair can be described in terms of the
two-components spinor Eq. (7.90), which is called Weyl equation. Since φ(p)

corresponds to the IR D( 1
2
,0) of L↑+, it is clear that the two-component theory

is not invariant under parity. In fact, a state with p0 = +|p| and λ = −1 is
transformed under parity (p → −p, σ → σ) into a state with p0 = +|p| and
λ = +1, which does not exist for the two-component spinor φ(p). This descrip-
tion is consistent with the experimental evidence: neutrinos and antineutrinos
appear only in the helicity eigenstates −1 and +1, respectively.

The Weyl two-component theory is equivalent to a Dirac description, in
which the four-component spinors are required to satisfy a specific condition.
One can easily verify that the linear combinations

ψR(p) = 1
2
(I + γ5)ψ(p) =

(
φ(p)

0

)
(7.94)

and

ψL(p) = 1
2 (I − γ5)ψ(p) =

(
0

χ(p)

)
(7.95)

which are solutions of the Dirac equation (7.88) have the required properties.
They are eigenfunctions of γ5 corresponding to the two eigenvalues +1 and −1,
which are denoted as positive and negative chirality, respectively. The above
relation is easily obtained using the explicit expression (7.83) for γ5. Dirac
spinors of the type (7.94) and (7.95) are selected by imposing the condition

1
2(I ∓ γ5)ψ(p) = 0 , (7.96)
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which is clearly invariant under the restricted Lorentz group L↑+.
For massless particles, helicity coincides with chirality and is relativistic

invariant, i.e. it is not affected by a Lorentz boost. However, for massive
particles, helicity and chirality must be distinguished. In particular, mass
eigenstates have no definite chirality but they can be simultaneously helicity
eigenstates.

In the case of neutrinos, the difference between helicity and chirality eigen-
values is of the order of (mν/|p|)2 and, in practice, it can be neglected since
the neutrino masses are very small in comparison with the usual values of the
momentum.

7.6 Extension to higher half-integer spins

The previous analysis of spin 1
2 particles can be extended to massive fermions

with higher spin following two main approaches. In the first approach, due
to Fierz and Pauli3, the wave function is a higher rank spinor built from the
spinors ξ and η†, which are the bases of the IR’s D( 1

2
,0) and D(0, 1

2
), while

in the second, due to Rarita and Schwinger4, the wave function has mixed
transformation properties, i.e. it transforms as a Dirac spinor and a completely
symmetric tensor; supplementary conditions are applied in both approaches.

We shall follow the Rarita-Schwinger formalism and consider explicitly the
case of spin 3

2 . In this case, the wave function is described by a set of four
Dirac spinors

ψµ =




ψµ1

ψµ2

ψµ3

ψµ4




(µ = 0, 1, 2, 3) , (7.97)

which, in turn, can be considered the components of a four-vector. They satisfy
the Dirac equation

(6p−m)ψµ(p) = 0 , (7.98)

and one has to impose
γµψ

µ(p) = 0 . (7.99)

The spin-tensor ψµ(p) corresponds to the basis of the direct product repre-
sentation

D( 1
2
, 1
2
) ⊗

(
D( 1

2
,0) ⊕D(0, 1

2
)
)

= D(1, 1
2
) ⊕D( 1

2
,1) ⊕D( 1

2
,0) ⊕D(0, 1

2
) , (7.100)

3 H. Fierz and W. Pauli, Proc. Roy. Soc. A173, 211 (1939).
4 W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).
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so that it contains, besides the spin 3
2

part, also a spin 1
2

part (see Eq. (3.103)).
The latter part is eliminated by the condition (7.99). In fact, the quantity

γ5γµψ
µ(p) (7.101)

behaves as a Dirac spinor and one can easily show that it satisfies the Dirac
equation; it is clearly eliminated by the condition (7.99). From (7.98) and
(7.99) the condition

pµψ
µ(p) = 0 (7.102)

follows. It can be obtained by multiplying Eq. (7.98) on the left by γµ and
making use of the anticommutation properties (7.71).

One can check that the independent components are four, which is the
right number needed for the description of the spin 3

2 states. We know that,
in the rest frame of the particle, a Dirac spinor reduces to a two-component
spinor, e.g. to φ(p) if one choose p0 > 0. Making use of the representation
(7.73) for the γ-matrices, Eq. (7.99) gives

(
φ0 − σ · χ
χ0 − σ · φ

)
= 0 . (7.103)

Since at rest χ = 0, for p0 > 0 we get

φ0 = 0 ,

σiφ
i = 0 ,

(7.104)

so that we are left with only 2 × 2 independent components.
Following a similar approach, one can obtain the wave function for higher

half-integer spin cases. We introduce the spin-tensor ψµ1...µs , completely sym-
metrical in the tensor indeces µ1...µs. It satisfies the Dirac equation

( 6p −m)ψµ1...µs(p) = 0 (7.105)

and the supplementary condition

γµψ
µµ2...µs(p) = 0 . (7.106)

From the above equations one can easily derive the conditions

pµψ
µµ2...µs(p) = 0 (7.107)

and
gµνψ

µν...µs(p) = 0 . (7.108)

The first condition is obtained by the same procedure indicated for (7.99),
and the traceless condition is simply obtained by multiplying Eq. (7.106) on
the left by γν and using the symmetry of ψµ1...µs and the anticommutation
relations of the γ-matrices. With respect to the tensor components we see
that the above conditions (7.107), (7.108) are those needed to describe the
integer spin s (see Section 7.2). Then, the spin-tensor ψµ1...µs corresponds to
the combination of spin s and spin 1

2 : the total spin can be s + 1
2 and s − 1

2 ,
but the lower value is eliminated by the condition (7.107).
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Problems

7.1. Discuss the alternative possibility of describing the wave function of a
spin 1 particle in terms of the IR D(1,0) of L↑+.

7.2. Show that the wave equation (7.17) and the supplementary condition
(7.18) are equivalent to the so-called Proca equations

∂µf
µν +m2Φν = 0 where fµν = ∂µΦν − ∂νΦµ .

7.3. Check the Lorentz covariance of the Dirac equation making use of
Eq. (7.76).

7.4. Derive explicitly S(Λ) of Eq. (7.76) in the form

S(Λ) = e−
1
4 iσµνω

µν

with σµν = 1
2
i[γµ, γν ] .

7.5. Show that the bilinear quantities (7.87) have the stated transformation
properties under L↑.

7.6. Determine the behaviour under time reversal of the bilinear quantities
(7.87).
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Unitary symmetries

This Chapter is devoted to the analysis of some applications of group theory to
particle physics and, in particular, to the wide use of unitary groups and their
representations. Their role has been extremely important in the investigation
of the particle interactions, since they led to the discovery of hidden sym-
metries and new invariance principles which have, in general, no analogues in
classical physics and which provide the basic frame for all theoretical schemes.

8.1 Introduction

The investigation of the structure of matter shows a hierarchy of levels, each of
which is, to some extent, independent of the others. At the first level, ordinary
matter is described in terms of atoms composed of nuclei and electrons; at a
smaller scale, atomic nuclei reveal their structure, which is described in terms
of nucleons (protons and neutrons); at a much smaller scale, even nucleons
appear to be composed of more fundamental objects: the quarks. To go from
the level of nucleons to that of quarks took a few decades of the last century
and required a lot of theoretical and experimental endeavor and investigations.

Group theory and symmetry principles were applied to the description
of the phenomena in all levels of matter; in particular, they were extensively
applied to the study of atomic nuclei and elementary particles. We think that,
for understanding the importance of group theory for physics, it is very useful
to give a brief historical review of the different steps through which the physics
of elementary particles passed and developed.

We shall concentrate in the following on several aspects at the level of ele-
mentary particles, from nucleons to quark, where the use of unitary symmetry
has been extremely useful.

With the study of cosmic ray interactions and the advent of high energy
accelerators, lot of new particles were discovered: some seemed to be excited
states of nucleons and pions; others showed new strange properties, and they
were called strange particles. A new quantum number, called strangeness and
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denoted by S, was assigned to these particles to distinguish them from nucle-
ons and pions characterized by S = 0. All these particles were participating
in strong interactions and they were denoted as hadrons. A striking feature of
hadrons is that they occur in small families of particles with approximately
equal masses. The members of each family are very few (no more than four);
they have the same spin, parity, strangeness, etc. and they differ only in their
electric charges. This fact suggests to classify the different families accord-
ing to the lower representations of SU(2). In analogy with the ordinary spin,
the concept of isotopic spin (or isospin), first introduced by Heisenberg, was
employed to describe the new internal symmetry, interpreted as charge inde-
pendence of the strong forces. This symmetry would be exact in the absence
of electromagnetic interactions, but it can be applied with a very good ap-
proximation to nuclear and particle reactions, since the electric charge effects
are much weaker than those of strong interactions.

The analysis of the hadronic spectra of hadrons revealed a higher sym-
metry which provided a deeper insight in the classification and properties
of hadrons. Different isospin multiplets with different values of S could be
grouped in higher multiplets of dimensionalities 8 and 10. Each component of
the multiplet was identified by two quantum numbers, i.e. the electric charge
and the strangeness, and therefore one was looking for a group of rank 2, con-
taining the isospin SU(2) group as a subgroup. The right choice was the SU(3)
group, introduced independently by Gell-Mann and Ne’eman, and whose irre-
ducible representations could accomodate all known families of hadrons. The
SU(3) symmetry appeared as an approximate and broken symmetry, but it
was very useful because also its breaking could be described in terms of group
representations.

First, one arrived, from the analysis of the structure of the hadron mul-
tiplets, to the introduction of three quarks as the fundamental constituents
of matter. These quarks, named up, down and strange, explained the ori-
gin of the approximate mass degeneracy of the members of each multiplet,
since these quarks are much lighter than the typical hadron scale. Each quark
was identified by a specific quantum number, called flavor, and consequently
the symmetry group was named flavor SU(3). Then other peculiar features
of the hadron multiplets required the introduction of an additional property
of quarks, called color, and of a more fundamental symmetry, i.e. the color
SU(3), which up to now seems to be an exact symmetry.

In the following, after a general discussion of the different kinds of sym-
metries employed in the theory of elementary particles, we shall examine in
detail the unitary symmetries, based on the unitary groups. First of all, we
shall consider the group U(1) and its role in describing the conservation of ad-
ditive quantum numbers. Then we shall consider the isospin SU(2) symmetry,
which was applied successfully both to nuclear and particle physics, and the
flavor SU(3) symmetry with which it was possible to classify all ordinary and
strange hadrons. As already pointed out, they are approximate symmetries,
emerging from the approximate mass degeneracy of the hadronic states.



8.2 Generalities on symmetries of elementary particles 115

Besides the three quarks, which are the basic ingredient of the flavor SU(3)
symmetry, later experimental discoveries indicated the existence of new heav-
ier quarks, first of all the charm quark. This led to the introduction of higher
approximate symmetry groups, such as SU(4); however, they were of limited
utility, due to the large mass differences involved and, consequently, to a big
symmetry breaking. A different extension of SU(3) was the combination of
the flavor symmetry with the ordinary spin SU(2) symmetry in the hybrid
group SU(6). Even if nowadays these extensions have lost most of their in-
terest, they had an important role in the development of the particle theory
and, since they represent useful applications of the unitary groups, we shall
discuss them briefly.

On the other hand, it was the approximate flavor SU(3) symmetry which
lead indirectly to the introduction of the exact color SU(3) symmetry. We
shall examine this symmetry in a separate Section, deferring the discussion of
its implications to the next Chapter.

8.2 Generalities on symmetries of elementary particles

It is well known that the symmetry properties of a mechanical system, ex-
pressed as invariance under the transformations of a group, lead to physical
implications for the quantum mechanical states of the system.

As discussed in detail in Chapter 5, the states of one or more particles
in the Hilbert space are described in terms of the IR’s of the Poincaré group
P . This follows from the assumption that the physical systems are invariant
under any Poincaré transformations, i.e. space-time translations, rotations and
Lorentz transformations, which we can define as geometrical transformations.
In particular, the states of a massive particle are denoted by |m, s;p, σ> or
simply |p, σ>.

Let us suppose for a moment that we are dealing with a larger group
P ⊗G, where P is the Poincaré group and G a compact group whose transfor-
mations do not involve space-time coordinates or spin, and whose generators
Qα (α = 1, 2, . . . , n) commute with those of the Poincaré group

[Qα, Pµ] = 0 , (8.1)

[Qα,Mµν ] = 0 . (8.2)

In particular, defining M2 = P 2, one has

[Qα,M
2] = 0 . (8.3)

In the Hilbert space, the transformations of the group G will be described
by unitary operators, and the generators Qα by hermitian operators which
satisfy a Lie algebra

[Qα, Qβ] = cαβγQγ . (8.4)
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The states in the Hilbert space can be labelled by the eigenvalues of the
Casimir operator and of other additional commuting operators. We denote by
λ the set of these eigenvalues and by |λ> the corresponding eigenstates.

In the direct product Hilbert space, the quantum states will be described
by

|m, s;p, σ> ⊗ |λ> , (8.5)

where now |λ> is the basis of a IR of G of dimension nλ. It follows immediately,
from the assumption (8.3), that the states represented by (8.5) are a set of
nλ states with the same mass and the same spin, i.e. they are a set of nλ
degenerate states.

We call the above type of symmetry an exact internal symmetry; it implies
degeneracy among the states of the system.

On the other hand, symmetries imply conservation laws which, in turn,
imply that transitions between different states are forbidden if the quantum
numbers are not conserved: then one has selection rules. The situation is
summarized s follows:

Symmetry group → degeneracy of quantum states → multiplets
↓↑

Conservation laws → vanishing matrix elements → selection rules
↓↑

Tensor operators → Wigner-Eckart theorem → intensity rules

If the dynamics of a mechanical system is known and, in particular, if
one knows its Lagrangian, one knows also its invariance properties under the
transformations of a symmetry group G. Then one can construct conserved
quantities, making use of the well-known Noether’s theorem 1 and, following
the arrows, deduce all the implications of the symmetry.

However, since a dynamical theory of elementary particles is not available,
we have no symmetry principle to start from. On the other hand, we can
observe that particles occur in multiplets, that certain reactions are forbidden,
and that there are indications of the existence of intensity rules. One can infer
that there are degeneracies, conservation laws, and therefore an underlying
invariance principle. In other words, the arrows are followed in the opposite
direction; one then discovers new quantum numbers which are conserved, and
a group of transformations under which the interactions should be invariant.
All this will help to build a model possessing this kind of symmetry, and
eventually to formulate, step by step, the Lagrangian of the theory.

In the above, we have assumed to deal with exact symmetries. However,
in most cases, it occurs that the symmetry is only approximate; therefore, the
commutator (8.3) is no longer zero:

[Qα,M
2] 6= 0 . (8.6)

1 See Section 10.2 and references therein.
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One says that the symmetry is broken, but often the breaking is small and,
moreover, it follows a specific pattern, i.e. the operator M2, no longer a scalar
under G, contains additional terms with specific tensor transformation prop-
erties. Correspondingly, mass splittings appear among the members of the
same multiplet, so that the states, in general, are no longer degenerate. If the
splittings are not too large, symmetry is still a useful concept, even if it is
only an approximate symmetry.

Other kinds of symmetries, which it would not be appropriate to call in-
ternal, were used in particle physics, e.g. those for which the generators Qα
do not commute with all the Mµν :

[Qα,Mµν ] 6= 0 . (8.7)

Embedding in a group H an internal group G and a subgroup of P , one
can have the following situation: the IR’s of H contain now different values
of spin. We have then a sort of hybrid symmetry where internal quantum
numbers and space-time variables are mixed. We shall not examine this kind
of symmetry in detail, but limit ourselves to mention the model based on
the group SU(6), which combines the internal symmetry SU(3) with the spin
symmetry SU(2). It was considered with much interest in the middle of the
sixties of last century, but it was only partially successful since it applied only
to static, non-relativistic situations.

All these symmetries correspond to invariance properties under global
transformations. Except for a few exact symmetries based on the group U(1),
those based on higher groups are, in general, approximate, but they are use-
ful for the classification of hadrons, for obtaining mass formulae and other
symmetry relations.

A different kind of symmetries, based on a different use of unitary groups,
was introduced at the same time in field theory. They are called gauge symme-
tries, because they imply invariance under local transformations. They played
a fundamental role in building the field theory of elementary particles. These
symmetries will be discussed in Chapter 9.

8.3 U(1) invariance and Additive Quantum Numbers

We consider here the symmetries corresponding to the group U(1) and related
to additive quantum numbers which are conserved in the reactions among
elementary particles, and some of which were discovered from the appearance
of selection rules.

Let us consider, to be specific, the electric charge. Charge is described by
a Hermitian operator Q in the Hilbert space, and its eigenvalues by q. Let us
consider the eigenvalue equation

Q|Φ>= q|Φ> . (8.8)
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In particular, the state of a particle with charge q, according to Eq. (8.5), is
denoted by |m, s;p, σ> ⊗ |q>, or in short notation simply by |p, σ, q>.

We know that electric charge is strictly conserved, so that states with
different charges do not mix. This conservation property corresponds to the
set of transformations

|Φ′>= e−iλq|Φ> . (8.9)

In fact, since not even the relative phase can be measured, we can introduce
a unitary operator

U = e−iλQ (8.10)

and the unitary transformations

|Φ′>= U |Φ> , (8.11)

which give rise to equivalent states.
Suppose that |Φ> is a momentum eigenstate

Pµ|Φ>= pµ|Φ> , (8.12)

so that, in particular, denoting by H the Hamiltonian, one has

H |Φ>= p0|Φ> . (8.13)

Invariance under the transformation (8.11) implies:

UHU−1|Φ′>= p0|Φ′> , (8.14)

and if |Φ> is eigenstate also of Q, |Φ′> will differ only for a phase from |Φ>,
so that

UHU−1 = H . (8.15)

Using an infinitesimal transformation,

U = 1 − iλQ , (8.16)

we get the commutation relation

[H,Q] = 0 , (8.17)

which is the quantum mechanical formulation of the conservation principle of
electric charge.

The transformations (8.10) form a one-parameter (Abelian) group. It is
the group of one-dimensional unitary transformations, denoted by U(1). Its
irreducible representations are all one-dimensional and consist in the phase
e−iλq.

As in the case of electric charge, the conservation of other additive quan-
tum numbers can be expressed in terms of phase transformations, correspond-
ing to U(1) invariance. We know that there are in nature other kinds of
”charges” which are believed to be conserved, such as the baryon number.
Other charges, such as the hypercharge, are approximately conserved. We list
in the following some of the known additive quantum numbers.
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• Electric charge. The validity of the conservation principle of the electric
charge is based on the experimental value of the lifetime of the electron,
for which there is the lower limit of 4.6 × 1026 years (at 90% C.L.).

• Baryon number. The introduction of this conserved quantum number is
based on the stability of the proton: the experimental lower limit for its
mean life is of the order of 1032 years2. Baryon number B is a quantum
number associated with strongly interacting fermions (baryons); it is taken
equal to +1 for baryons and to −1 for antibaryons. However, it is generally
believed that the baryon number is not strictly conserved, but that it
should be violated at extremely high energies. As a consequence, the proton
would not be stable, as predicted by the Grand Unified Theories. The
violation of baryon number is required also by the Big Bang model, in
order to explain how the present matter-antimatter asymmetry can be
originated from a symmetrical initial state.

• Lepton number. The analysis of the reactions among leptons gives evidence
for three lepton numbers, which up to now appear to be conserved in
the charged lepton decays, but violated in neutrino oscillations. They are
denoted by Le, Lµ, Lτ and are attributed, respectively, to the lepton pairs
(νe, e

−), (νµ, µ
−), (ντ , τ

−). Their eigenvalues are +1 for particles and −1
for antiparticles.
The quantity L = Le + Lµ + Lτ is a good quantum number which, how-
ever, is violated in Grand Unified Theories, in analogy with the baryon
number. Its violation is also required to provide a reasonable mechanism
for generating the neutrino masses, but the question is still open.

• Hypercharge. This quantum number was introduced in connection with the
meta-stability of some kind of hadrons, such as hyperons andK-mesons. It
is conserved in strong interactions, but it is violated by weak interactions.
It is defined by Y = S + B, where B is the baryon number and S a
new additive quantum number called strangeness. The hypercharge was a
key ingredient in the classification of hadrons, but now we know that S
corresponds to only one of the six different flavors related to the six kinds
of quarks.

In general, strictly conserved quantum numbers give rise to absolute se-
lection rules. Suppose that there is no matrix element connecting states with
different charges. As pointed out already, it is not possible to determine the
common phase of a set of state vectors, but only the relative phase can be
measured. However, if we have invariance under a phase transformation, it
means that not even the relative phase can be measured. A physical state
cannot be a superposition of states with different charges; in other words, all
physical states must be always eigenstates of charge. We have then different
Hilbert subspaces, and different sets of state vectors belonging to different

2 The Review of Particle Physics; C. Amsler et al., Phys. Lett. B 667, 1 (2008).
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subspaces have non-measurable relative phase. We say that there is a super-
selection rule that forbids to compare phases of various state vectors: this is
the case of electric charge.

8.4 Isospin invariance

Strong interactions of elementary particles exhibit important symmetries, the
discovery of which is a step forward in the understanding of their properties.
In this Section we examine the so-called isospin invariance, which is described
in terms of the group SU(2).

One of the most striking features of hadrons is that they occur in multi-
plets, each element of a multiplet having the same spin and parity, and roughly
the same mass. This occurrence of sets of approximately degenerate states sug-
gests a symmetry principle. One is led to introduce a group of invariance and
to describe the multiplets in terms of the irreducible representations (IR’s) of
this group. The group transformations interchange the elements of a multiplet
among themselves, thus implying invariance laws. The success of this scheme
lies on the fact that such invariance laws have been found to hold even if only
approximately. Since one can characterize the various classes of fundamental
interactions by coupling constants that differ in order of magnitude, one can
assume that the symmetry holds exactly within the domain of some of the
interactions, while the others are responsible for the symmetry breaking.

All hadrons can then be classified in charge multiplets, and the elements
of a given multiplet differ only for the electromagnetic properties (they have
same spin, parity, flavor, etc., but different electric charge). The masses of
the particles in a multiplet are very close: their differences (of the order of a
few MeV) are attributed to the electromagnetic interactions. Some example,
relative to the lightest mesons and baryons, are given in Table 8.1.

If we imagine to switch off the electromagnetic interactions, any element
of a given multiplet becomes equivalent to any other element. In other words,
each multiplet contains a set of degenerate states, and it corresponds to an IR
of the symmetry group.

The symmetry group is SU(2): in fact, one is looking for a compact group
of rank 1 with finite and unitary IR’s, since there is only a quantum observable,
the electric charge, to specify the members of each set of degenerate states. and
no more. There are three groups satisfying these requirements: SU(2), SO(3)
and Sp(2). SU(2) and Sp(2) are isomorphic to each other, and homomorphic
to SO(3). Since the latter is not simply connected and it has also double-valued
representations, it is more convenient to choose SU(2). The above arguments
are of mathematical character; of course one can check a posteriori if SU(2)
is a symmetry of nature, by comparing its prediction with the experimental
observations.
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Table 8.1. Some multiplets of hadrons.

kind of multiplet particles JP Y = B + S

singlet Λ0 1
2

+
0

n p 1
2

+
+1

doublet
Ξ−Ξ0 1

2

+ −1
Baryons
(B = 1) triplet Σ+Σ0Σ− 1

2

+
0

quadruplet ∆++∆+∆0∆− 3
2

+
+1

singlet η 0− 0

K+K0 0− +1
Mesons
(B = 0)

doublet
K−K

0
0− −1

triplet π+π0π− 0− 0

8.4.1 Preliminary considerations

The group SU(2) and its IR’s have been examined in Chapter 2, in con-
nection with space rotations. For the sake of convenience, we rewrite in the
following some of the formulae given already in Sections 2.2 and 2.3. We de-
note here by Ii(i = 1, 2, 3) the generators of the Lie algebra which, in the
self-representation, are given by

Ii = 1
2σi , (8.18)

in terms of the three Pauli matrices (2.22). They satisfy the commutation
relations

[Ii, Ij ] = iǫijkIk , (8.19)

and

[I2, Ii] = 0 with I2 =

3∑

i=1

I2
i . (8.20)

Each element of SU(2) is a 2 × 2 unitary unimodular matrix and can be
written as (the αi’s are three real parameters)

U = e

−i
3∑

i=1

αiσi

. (8.21)
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The Ii’s are linear operators with the same formal properties of the angu-
lar momentum operators; they are called isospin operators. In analogy with
ordinary spin, one diagonalizes I2 and the third component I3.

Each IR is characterized by the eigenvalue I(I + 1) of I2 (the Casimir
operator of the group) and is denoted by D(I). The dimension of D(I) is
(2I + 1) and corresponds to the (2I + 1) eigenvalues of I3. The basis of D(I)

is a vector of component |I; I3> ≡ ξI3I in a (2I + 1)-dimensional space.
We denote by ξ and ξ∗ the two-component bases of the self-representation

U and of the conjugate representation U∗. They are given by

ξ ≡
(
ξ1

ξ2

)
, ξ∗ ≡

(
ξ1

ξ2

)
, (8.22)

and they transform according to

ξ → ξ′ = Uξ i.e. ξ′a =
2∑

b=1

Uabξ
b , (8.23)

and

ξ∗ → ξ′
∗

= U∗ξ∗ i.e. ξ′a =

2∑

b=1

U∗abξb . (8.24)

We recall (see Section 2.3) that the two representations U and U∗ are equiv-
alent, since they are related by a similarity transformation

U∗ = SUS−1 , (8.25)

with

S = iσ2 =

(
0 1

−1 0

)
. (8.26)

The matrix S = iσ2 plays the role of metric tensor and it is identified with
the antisymmetric tensor ǫab = ǫab. It follows that the vector

ξ = S−1ξ∗ =

(
−ξ2
ξ1

)
(8.27)

defined by Eq. (2.43) has the same transformation properties of ξ, i.e.

ξ → ξ ′ = Uξ (8.28)

and its components are given by

ξ a = −ǫabξb . (8.29)

The bases of the higher IR’s, ζI3I , are constructed starting from ξa and ξa;
equivalently one can make use of only one kind of vectors, say ξa. The general
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method is described in Appendix C: one takes the direct product of the bases
of two (or more) IR’s and decomposes it into the direct sum of irreducible
tensors.

In this connection, let us recall the direct product expansion

D(I) ⊗D(I′) = D(I+I′) ⊕D(I+I′−1) ⊕ · · · ⊕D(|I−I′|) . (8.30)

The basic element for the representation D(I) ⊗D(I′) is given by the tensor

ζI3I · ζI
′
3

I′ . (8.31)

This tensor describes a set of eigenstates of I2, I ′2, I3, I ′3. It is more useful
to obtain a set of eigenstates of I2, I3, and I2, I ′2, where I is given by the
usual addition law of angular momenta:

I = I + I′ . (8.32)

The corresponding eigenstates form the bases of the IR’s on the r.h.s. of
Eq. (8.30) and are given by

ζI3I (I, I ′) =
∑

I3,I′3

<I3, I
′
3|I, I3> ζI3I ζ

I′3
I′ , (8.33)

where the quantities

<I3, I
′
3|I, I3>≡<I, I ′, I; I3, I

′
3, I3> (8.34)

are the Clebsch-Gordan coefficients. They are the same coefficients used in
the addition of angular momenta and they are tabulated, for a few cases, in
Appendix A.

As a relevant case, let us consider the direct product decomposition

D( 1
2 ) ⊗D( 1

2 ) = D(1) ⊕D(0) . (8.35)

Let us consider the tensor ζab = ξaξb: one can identify an antisymmetric

ζ[ab] =
1√
2
(ξ1ξ2 − ξ2ξ1) (8.36)

and a symmetric part

ζ{ab} =





ξ1ξ1

1√
2
(ξ1ξ2 + ξ2ξ1)

ξ2ξ2

, (8.37)

the factor 1√
2

being introduced for normalization. Since the symmetry proper-

ties of the tensors are invariant under the unitary group, then one can identify
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ζ [ab] as the basis of the D(0) (I = 0, I3 = 0) and ζ{ab} as the basis of the D(1)

(I = 1, I3 = +1, 0,−1). In this way the decomposition (8.35) corresponds, in
terms of basic tensors, to

ζab = ξaξb = ζ [ab] + ζ{ab} . (8.38)

Let us now consider the mixed tensor ζab; it can be decomposed as follows

ζab = ξaξb = ζ̂ab + 1
2
δabTr(ζcc′) , (8.39)

where the trace 1
2
Tr(ζ) is invariant and the traceless tensor

ζ̂ab = ξaξb − 1
2δ
a
bξ
cξc , (8.40)

is irreducible. They are the bases of the same IR’s D(0) and D(1), respectively.
In fact, the tensors ζab and ζab are equivalent, since

ζab = ξaξb = ǫbcξ
aξc = ǫbcζ

ac , (8.41)

and in particular

1
2
δabTr(ζcc′) = ǫbcζ

[ac] , ζ̂ab = ǫbcζ
{ac} . (8.42)

8.4.2 Isospin classification of hadrons

The classification of the elementary particles into isospin multiplets is now
easily carried out by identifying each multiplet as the basis of a IR of SU (2).
If one wants to take into account also the baryon number B, one has to go
from SU(2) to U(2) which is locally isomorphic to SU(2) ⊗ U (1): the phase
transformations of U (1) are related to an additive quantum number, identified
in this case with B. We note that in going from a IR of U(2) to the conjugate
IR, B changes sign.

Let us consider the nucleon N (B = 1), which consists of the two states
p, n: it can be identified with the basis of the self-representation of SU (2)

N =

(
p

n

)
. (8.43)

The antinucleon N (B = −1) can be associated to the conjugate repre-
sentation (8.27)

N =

(−n
p

)
, (8.44)

i.e. N has the same transformation properties of N .
The charge of each element of the multiplet is related to the third compo-

nent I3 through the well-known Gell-Mann-Nishijima formula 3.

3 T. Nakano and N. Nishijima, Progr. Theor. Phys. 10, 581 (1955); M. Gell-Mann,
Nuovo Cimento 4, 848 (1956).
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A phenomenological Lagrangian for strong interactions, expressed in terms
of non-strange and strange hadrons, must be invariant under two different
phase transformations: one for the conservation of the electric charge Q, and
the other for the conservation of the baryonic number B. Assuming isospin
invariance, the former is equivalent to the invariance under rotations around
the I3 axis in the isospin space plus the invariance under a further phase
transformation, which can be expressed as the conservation of the hypercharge
Y = B + S, satisfying Eq. (8.45).

Q = I3 + 1
2 (B + S) = I3 + 1

2Y , (8.45)

where S is the strangeness and Y the hypercharge.
The situation is similar for the two doublets of K and K mesons

K =

(
K+

K0

)
, K =

(
−K0

K−

)
, (8.46)

which have Y = +1 and Y = −1, respectively.
Let us consider now the two nucleon NN system. It corresponds to the

tensor N aN b, so that, according to Eqs. (8.36) and (8.37), we identify the
(normalized) states

I = 0 I3 = 0 1√
2
(pn− np) ,

I = 1





I3 = +1 pp

I3 = 0 1√
2
(pn+ np)

I3 = −1 nn

.
(8.47)

The nucleon-antinucleon NN system can be described in terms of the
decomposition of the mixed tensor N aNb (Eqs. (8.39) and (8.44)):

I = 0 I3 = 0 1√
2
(pp+ nn) ,

I = 1





I3 = +1 − pn

I3 = 0 1√
2
(pp − nn)

I3 = −1 np

.
(8.48)

The η meson is an isosinglet (I = 0). Since it has the same quantum num-
bers of the (I = 0) NN , taking into account the decomposition in Eq. (8.39),
one can make the identification

η =
1√
2
Tr (ζab) . (8.49)

The π meson is an isotriplet (I = 1). It has the same quantum numbers
of the (I = 1) NN system, so that it can be described in terms of the tensor



126 8 Unitary symmetries

πab = ζ̂ab = ξaξb − 1
2
δabξ

cξc = 1√
2
(σi)

a
bπ
i , (8.50)

where in the last term we have introduced the isovector π of components

πi = 1√
2
Tr(πσi) , (8.51)

normalized so that
πabπ

b
a = πiπi . (8.52)

In matrix form, taking into account the correspondence between the quantum
numbers of π±, π0 and those of the NN states, one gets

π =

(
1
2
(ξ1ξ1 − ξ2ξ2) ξ1ξ2

ξ2ξ1
1
2(ξ2ξ2 − ξ1ξ1)

)
=

( 1√
2
π0 π+

π− − 1√
2
π0

)
, (8.53)

and, by comparison with Eq. (8.51),

π± = 1√
2
(π1 ∓ iπ2) ,

π0 = π3 .
(8.54)

Finally, the πN system can be described on the basis of the decomposition

D(1) ⊗D( 1
2) = D( 1

2) ⊕D( 3
2 ) . (8.55)

and the states can be classified in a doublet (I = 1
2 , I3 = ± 1

2 ) and a quadruplet
(I = 3

2
, I3 = ± 3

2
,± 1

2
)

I = 1
2





I3 = 1
2

√
1
3 pπ

0 −
√

2
3 nπ

+

I3 = − 1
2

√
2
3
pπ− −

√
1
3
nπ0

,

I = 3
2





I3 = 3
2 pπ+

I3 = 1
2

√
2
3
pπ0 +

√
1
3
nπ+

I3 = − 1
2

√
1
3 pπ

− +
√

2
3 nπ

0

I3 = − 3
2

nπ−

,

(8.56)

where use has been made of Eq. (8.33) and of the Tables of the Clebsch-Gordan
coefficients of Appendix A.

Following similar procedure, one can classify all hadrons into isospin mul-
tiplets with any flavour quantum numbers. At first sight, all this appears as
a formal game. Physics enters when one assumes that strong interactions de-
pend on the total isospin I of the system and not on the third component I3; in
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other words, that strong interactions are charge independent. This invariance
property is equivalent to the conservation of the total isotopic spin: the third
component is also conserved, since it is related to the charge by Eq. (8.45).

Charge independence means, for instance, that for a system of two nu-
cleons, instead of four possible amplitudes corresponding to the four charge
states, there are only two amplitudes, corresponding to the isospin singlet
and the isospin triplet. Similarly, in a system of a nucleon and a pion, strong
interactions distinguish only between the I = 1

2 and the I = 3
2 states.

In general, charge independence means that, given a set of particles, what
matters for strong interactions are only the symmetry properties of the states,
and not their difference in the electric charge.

Let us finally remark that in the framework of exact SU(2) symmetry,
particles which belong to the same multiplet are to be considered as identical:
then a generalized Pauli principle applies in this case.

As a specific example of isospin invariance, we consider the pion-nucleon
scattering. In general, in terms of the scattering S-matrix, isospin invariance
means that the S operator commutes with isospin

[S, Ii] = 0 , (8.57)

i.e. S connects states with same I and I3.
Moreover, introducing the shift (raising and lowering) operators

I± = I1 ± iI2 , (8.58)

one gets
[S, I±] = 0 , (8.59)

and one can show that

I±|I, I3> = C±(I, I3)|I, I3 ± 1> , (8.60)

where C± is a coefficient which is not necessary to specify here.
From Eq. (8.59) it follows

<I3|S|I3> = <I3 + 1|S|I3 + 1> , (8.61)

i.e. the S-matrix elements do not depend on the third component of the I-spin.
As a physical consequence, the reaction between two particles of isospin I

and I ′ is completely described in terms of a number of independet S-matrix
elements or amplitudes equal to the number of IR’s into which the direct
product D(I)⊗D(I′) is decomposed. This number is, in general, much smaller
than the number of charge states.

For instance, in the case of the π −N system, one needs only two ampli-
tudes, A1, A3, corresponding to the transition between states of isospin I = 1

2 ,
I = 3

2 , respectively. Each given state of charge can be expressed in terms of
the total isospin states, according to (see Table A.3 in Appendix A)
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pπ+ = ξ
3/2
3/2 ,

pπ− =
√

1
3
ξ
−1/2
3/2 −

√
2
3
ξ
−1/2
1/2 ,

nπ0 =
√

2
3 ξ
−1/2
3/2 +

√
1
3 ξ
−1/2
1/2 .

(8.62)

We shall now write the amplitudes and cross sections for some specific
reactions in Table 8.2. They are simply obtained by expressing the initial and
final states in terms of the isospin eigenstates and taking into account that
the latter are orthogonal.

Table 8.2. Analysis of some reactions in terms of I-spin amplitudes.

reaction amplitude cross section

π+p→ π+p A3 ∼ |A3|2

π−p→ π−p 1
3
A3 + 2

3
A1 ∼ 1

9
|A3 + 2A1|2

π−p→ π0n
√

2
3
A3 −

√
2

3
A1 ∼ 2

9
|A3 −A1|2

8.5 SU(3) invariance

In this Section we examine the so-called SU (3) symmetry which was proposed
independently by Murray Gell-Mann and Yuval Ne’eman4 in 1964 to account
for the regularity appearing in the spectrum of hadrons.

In order to understand the role of this symmetry in the development of
particle physics, it is useful to make some historical remarks. In fact, even if
nowadays this symmetry has lost part of its interest, it was very important
in indicating the right way for the discovery of the hidden properties of the
subnuclear world.

We know that strong interactions are responsible for the nuclear forces;
in fact, they bind nucleons (protons and neutrons) in atomic nuclei. In 1935
Hideki Yukawa formulated the hypothesis that strong interactions are medi-
ated by scalar (spin zero) bosons5. The pion (π±, π0), discovered in 19476,
appeared to be this hypothetical particle. Its mass was found to be mπ ≈ 140
MeV, in agreement with the range of the interaction ∼ 1.4 × 10−13 cm.

4 M.Gell-Mann and Y. Ne’eman, The Eightfold Way, Benjamin, New York (1964).
5 H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).
6 C. M. G. Lattes, H. Muirhead, G. P. S. Occhialini, and C. F. Powell, Nature 159,

694 (1947).
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For a few years, the world of strongly interacting particles was limited to
nucleons and pions. But, with the advent of high energy accelerators, a large
variety of others particles was discovered during the decades 1950 and 1960.
They are named hadrons (for strongly interacting particles), and they are
separated into baryons and mesons, in correspondence with half-integer and
integer spin, respectively. Among the baryons, some look like excited states of
the nucleons (which we shall call ordinary particles), while others require the
introduction of a new quantum number, called strangeness and denoted by S.
The situation is analogous in the case of mesons: some appears to be of the
same type of the pions, while others, called strange mesons, possess a value of
S different from zero. As mentioned in Subsection 8.3, the strangeness S was
often replaced by the hypercharge Y = S+B, where B is the baryon number.

At the time of the introduction of the SU (3) symmetry, only these two
kinds of hadrons were known. Later on, other types of hadrons were discovered,
which required the introduction of extra additive quantum numbers, as it will
be briefly discussed in the following.

The spectrum of ordinary and strange baryons and mesons consists in
hundreds of states with increasing values of mass and spin (s = 1

2
, 3

2
, 5

2
, ...

for baryons, and s = 0, 1, 2, ... for mesons). A peculiar regularity was soon
manifested in the spectrum of these states: both baryons and mesons can
be grouped into multiplets, the components of each multiplet being close in
mass, and having the same spin and parity. Baryons appear in singlets, octets
and decuplets; mesons only in singlets and octets. It was this property which
led to the introduction of the group SU(3) and to the hadron classification
according to the so-called eightfold way.

In this Section, we shall discuss the properties of the group SU(3) and its
physical applications.

8.5.1 From SU(2) to SU(3)

Looking at a table of hadrons7, one notices immediately peculiar regularities.
One can distribute hadrons in supermultiplets, made up of isospin multiplets,
characterized by the same baryon number, spin, parity. One needs now a higher
degree of abstraction to claim for a symmetry principle, since particle belong-
ing to the same supermultiplet have rather large mass differences (even of
the order of few hundreds MeV). The symmetry one is looking for is badly
broken, and there is no known interaction which causes the breaking as the
electromagnetic interaction in the case of isospin. To extend the analogy, one
should invent two subclasses of interactions: superstrong and medium strong:
if only the former were present (by switching off the latter) one would obtain
completely degenerate multiplets of states and the symmetry would be exact.
However, such a separation is artificial, and it is by no means necessary for
the use of a broken symmetry.

7 The Review of Particle Physics; C. Amsler et al., Phys. Lett. B 667, 1 (2008).
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If one limits oneself to consider only ordinary and strange hadrons, the
different isospin multiplets in a supermultiplet are characterized, in general,
by different values of the hypercharge Y . The introduction of this additive
quantum number was made in order to explain the so-called associate produc-
tion, and to take into account the paradox between the strong interactions of
pairs of strange hadrons and the very slow hadron decays, i.e. the very long
lifetimes. The strangeness S, or equivalently the hypercharge Y = S + B, is
assumed to be conserved in strong interactions and violated in weak interac-
tions, which are responsible for the decays. A value for Y can be assigned to
each hadron, as can be seen in the few examples given in Table 8.1.

Then each element of a supermultiplet is characterized by two internal
quantum numbers: I3, the third component of the isospin, and Y , the hyper-
charge, which are related to the electric charge by the Gell-Mann Nishijima
formula, already given in Eq. (8.45)

If one assumes that there is an underlying symmetry group G such that the
observed supermultiplets can be classified according to its irreducible repre-
sentations, one has to look for a group of rank 2 (it must have two commuting
generators corresponding to I3 and Y ).

The group G must contain SU (2) as a subgroup. Keeping to a compact,
simple group, we could have, in principle, the following choices (see Table 1.2):
SU(3), Sp(4), O(5) (Sp(4) and O(5) have the same algebra, i.e. they are
homomorphic) and G2. One then looks for the lowest IR’s of these groups:
one needs to know, besides the dimension of each IR, its content in terms of
the IR’s of SU(2). The situation for the lowest IR’s is described in Table 8.3.

Table 8.3. SU(2) content of the groups SU(3), O(5), Sp(4), G2.

group dimension of the lowest IR’s (isospin content)(∗)

SU(3) 1(0), 3
(
0, 1

2

)
, 6
(
0, 1

2
, 1
)
, 8
(
0, 1

2
, 1

2
, 1
)
, 10

(
0, 1

2
, 1, 3

2

)

O(5) 1(0), 4
(

1
2
, 1

2

)
, 5 (0, 0, 1), 10 (0, 1, 1, 1), 14 (0, 0, 0, 1, 1, 2)

Sp(4) 1(0), 4
(
0, 0, 1

2

)
, 5
(
0, 1

2
, 1

2

)
, 10

(
0, 0, 0, 1

2
, 1

2
, 1
)
, 14

(
0, 1

2
, 1

2
, 1, 1, 1

)

G2 1(0), 7
(

1
2
, 1

2
, 1
)
, 14

(
0, 0, 0, 1, 3

2
, 3

2

)
, 27

(
0, 1

2
, 1

2
, 1, 1, 1, 3

2
, 3

2
, 2
)

(∗) We notice that the dimensions of the IR’s of O(5) and Sp(4) are the same; they
differ, however, according to the usual conventions, with respect to their SU(2)
content.

The data show that hadrons occur in multiplets of dimension 1, 8 and
10; so that the only candidate for G is SU (3). Moreover, the isospin content
exhibited by the hadron multiplets agrees with what required by SU (3).
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Of course, these features are not sufficient to prove that SU(3) has some-
thing to do with Nature. In fact, one has to examine its physical consequences,
but, before going to physics, we shall make a short mathematical digression.

8.5.2 Irreducible representations of SU(3)

For a discussion of the SU(3) classification of hadrons, we need to know the
irreducible representations of this group.

A very useful tool in determining the SU(3) IR’s and their SU(2) content
is provided by the use of the Young tableaux. A short account of this technique
is given in the Appendices B and C, to which we shall refer for details.

SU(3) is the group of unitary unimodular 3× 3 matrices. Denoting by U
a generic element, it must satisfy the relations

U †U = I i.e. (U †)αβU
β
γ = δαγ , (8.63)

detU = 1 i.e. ǫα′β′γ′Uα
′

αU
β′

βU
γ′

γ = ǫαβγ , (8.64)

where ǫαβγ is the completely antisymmetric tensor (ǫ123 = 1) and sum over
identical (lower and upper) indeces is implied.

From the above conditions it follows that the generic element U depends
on 8 real independent parameters. The basic element of the self-representation
is the controvariant vector

ξ =



ξ1

ξ2

ξ3


 , (8.65)

transforming as

ξ′ = Uξ i.e. ξ′α = Uαβξ
β . (8.66)

A covariant vector is defined by the quantity

η = (η1 η2 η3) , (8.67)

which transforms according to

η′ = ηU † i.e. η′α = ηβU
†β
α . (8.68)

One can show immediately that the quantity

ηξ = ηαξ
α (8.69)

is invariant under the group transformations.
We notice that the quantity

ξ† =
(
ξ1
∗
ξ2
∗
ξ3
∗)

, (8.70)
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transforms as a covariant vector and its components can be denoted by ξα.
A higher tensor ζαβγ is defined by the transformation properties

ζ′ αβγ... = UαρU
β
σU

γ
τ . . . ζ

ρστ... , (8.71)

and it can be built in terms of the ξα components

ζ′ αβγ... = ξαξβξγ . . . . (8.72)

It can be taken as element of the basis of the direct product representation
U⊗U⊗U . . ., which is reducible. The decomposition of this representation into
a sum of irreducible representations can be carried out by decomposing the
reducible tensor ζ ′ αβγ... into irreducible ones. The reduction of a tensor can be
easily performed making use of the following circumstance (see Appendix C):
a tensor having the symmetry properties of a Young tableau is irreducible.
For instance, a tensor of third rank can be decomposed as follows

ζαβγ = ζ{αβγ} + ζ{αβ}γ + ζ{αγ}β + ζ [αβγ] . (8.73)

Under each term we have drawn the corresponding Young tableau: {αβ . . .}
and [αβ . . .] indicate respectively complete symmetry and antisymmetry among
the indeces α, β, . . .. Each tensor on the r.h.s. of Eq. (8.73) identifies a IR of
the group SU(3).

Eq. (8.71) does not define the most general tensor, which can have mixed

(both covariant and controvariant) indeces ζαβ...κλ... and transforms as

ζ′ µν...στ... = UµαU
ν
βζ
αβ...
κλ...U

†κ
σU
†λ
τ . (8.74)

We note that the tensors δαβ and ǫαβγ = ǫαβγ are invariant (see Eqs. (8.63)
and (8.64)).

We remark that one can obtain all the IR’s of SU(3) starting from only
one kind of tensors, say controvariant, without needing mixed tensors. We
limit ourselves here to a simple example. Let us consider the second rank
mixed tensor ζαβ = ξαξβ . Clearly its trace ζαα is invariant, so that it can be
decomposed as follows

ζαβ = 1
3
δαβζ

γ
γ +

(
ζαβ − 1

3
δαβζ

γ
γ

)
, (8.75)

where the traceless tensor

ζ̂α
β

= ζαβ − 1
3δ
α
βζ
γ
γ (8.76)
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is irreducible. We see that it is equivalent to the tensor ζ{µν}σ appearing in
Eq. (8.73), since ǫβγδ is invariant, and one can write:

ζαβ = ǫβγδζ
{αγ}δ . (8.77)

We note that the two tensors ζ̂αβ and ζ{αβ}γ are no longer equivalent in
going from SU(3) to the group U(3) which is locally isomorphic to SU (3) ⊗
U(1); in fact the tensor ǫαβγ is no longer invariant. U(3) is employed when one
wants to take into account also the baryon number B, which can be related to
U(1); the two IR’s of U(3) corresponding to ζ̂αβ and ζ{αβ}γ are distinguished
by the eigenvalue of B which can be taken to be 0 and 1.

In general, each irreducible tensor, and therefore each IR of SU(3), is
characterized by a Young tableau. A general Young tableau for SU (3) has at
most three rows consisting of λ1, λ2, λ3 boxes

︸ ︷︷ ︸ ︸ ︷︷ ︸
p2 p1

λ1

λ2

λ3

but the two numbers
p1 = λ1 − λ2

p2 = λ2 − λ3
(8.78)

are sufficient to characterize the IR (in practice, the 3-box columns can be
erased in all tableaux).

We recall Eq. (C.29) from Appendix C, which gives the dimension of the
IR (i.e. the number of independent components of the basic tensor):

N = 1
2 (p1 + 1) (p2 + 1) (p1 + p2 + 2) . (8.79)

Usually a IR is denoted by D(p1, p2). In general, for p1 6= p2 (suppose
p1 > p2) there are two different IR’s with the same dimension: D(p1, p2) and
D(p2, p1). They can be simply denoted by N and N , respectively The N
representation is called conjugate to N ; if p1 = p2, N = N and the IR is said
to be self-conjugate.

In Table 8.4 we list the lowest IR’s of SU(3) which are most important
for the applications to hadron physics.

In general, one can distinguish three classes of IR’s of SU (3), in correspon-
dence with the numbers k = 0, 1, 2 (modulo 3) of boxes of the related Young
tableaux. Alternatively, for each D(p1, p2) one can define triality the number

τ = p1 − p2 . (8.80)
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Table 8.4. Lowest IR’s of SU(3) of physical interest.

IR N or N Young tableau basic tensor

D(0, 0) 1 s ǫαβγ

D(1, 0) 3 ξα

D(0, 1) 3 ξα

D(1, 1) 8 ζ{αβ}γ or ζ̂α
β

D(3, 0) 10 ζ{αβγ}

D(0, 3) 10 ζ{αβγ}

D(2, 2) 27 ζ{αβγδ}{µν}

We give also a list of direct product decompositions into IR’s, which are
useful for applications; they can be easily obtained following the rules given
in Appendix C.

3 ⊗ 3 = 1 ⊕ 8 ,

3 ⊗ 3 = 3 ⊕ 6 ,

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ,

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27 ,

8 ⊗ 10 = 8 ⊕ 10 ⊕ 27 ⊕ 35 ,

10 ⊗ 10 = 1 ⊕ 8 ⊕ 27 ⊕ 64 .

(8.81)

The numbers p1, p2 are sufficient to characterize the IR’s of SU(3) and the
basic irreducible tensors; however, we need to specify also the components of
a given tensor. This can be done specifying the SU (2) content of the IR’s. It
is clear that SU(3) contains the subgroup SU(2). In fact one can single out
three different SU (2) subgroups, as it will be discussed in Subsection 8.5.5.
We associate a subgroup SU(2) to isospin and U(1) to hypercharge, and we
make use of the subgroup SU(2)I ⊗ U(1)Y .

A IR of SU(3) is no longer irreducible when considered as a representation
of the subgroup SU (2)I ⊗U(1)Y , but it can be decomposed into a direct sum
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of IR’s of this subgroup. We give here the decompositions of the IR’s of SU(3)
which are more important in particle physics:

8 = (2, 1) ⊕ (1, 0) ⊕ (3, 0) ⊕ (2,−1) ,

10 = (4, 1) ⊕ (3, 0) ⊕ (2,−1) ⊕ (1,−2) ,

10 = (4,−1) ⊕ (3, 0) ⊕ (2, 1) ⊕ (1, 2) ,

27 = (3, 2) ⊕ (4, 1) ⊕ (2, 1) ⊕ (5, 0) ⊕ (3, 0)⊕
⊕(1, 0) ⊕ (4,−1)⊕ (2,−1) ⊕ (3,−2) .

(8.82)

The first number in parenthesis gives the dimension of the IR of SU (2)I ,
and therefore specifies completely the IR, i.e. the isospin; the second num-
ber gives directly, by convenient choice of the scale, the hypercharge of each
isospin multiplet. With the same convention, one gets for the fundamental
representations:

3 =
(
2, 1

3

)
⊕
(
1,− 2

3

)
,

3 =
(
2,− 1

3

)
⊕
(
1, 2

3

)
.

(8.83)

8.5.3 Lie algebra of SU(3)

Before going to the SU(3) classification of hadrons, it is convenient to consider
the general properties of its Lie algebra. In analogy with SU (2), one can write
the elements of the SU (3) group in the form

U = exp

{
i

8∑

k=1

akλk

}
, (8.84)

in terms of eight 3×3 traceless hermitian matrices λk and eight real parameters
ak.

One can easily convince oneself that there exist 8 independent matrices of
this type, for which it is convenient to choose the following form introduced
by Gell-Mann:

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

√
1
3




1 0 0
0 1 0
0 0 −2


 .

(8.85)

where the matrices λ1, λ2, λ3 are nothing else that the three Pauli matrices
bordered with a row and a column of zeros.



136 8 Unitary symmetries

The λ matrices satisfy the following commutation and anticommutation
relations:

[λi, λj ] = 2ifijkλk , (8.86)

{λi, λj} = 2dijkλk + 4
3δij1 , (8.87)

the completely antisymmetric coefficients fijk (structure constants of the Lie
algebra) and the completely symmetric ones dijk being given in Table 8.5.

Table 8.5. Coefficients fijk and dijk.

(ijk) fijk (ijk) dijk (ijk) dijk

123 1 118 1√
3

355 1
2

147 1
2

146 1
2

366 - 1
2

156 - 1
2

157 1
2

377 - 1
2

246 1
2

228 1√
3

448 - 1

2
√

3

257 1
2

247 - 1
2

558 - 1

2
√

3

345 1
2

256 1
2

668 - 1

2
√

3

367 - 1
2

338 1√
3

778 - 1

2
√

3

458
√

3
2

344 1
2

888 - 1√
3

678
√

3
2

The following relations are also very useful:

Tr (λαλβ) = δαβ , (8.88)

Tr ([λα, λβ ]λγ) = 4ifαβγ , (8.89)

Tr ({λα, λβ}λγ) = 4dαβγ . (8.90)

Similarly to the case of SU (2), the generators of SU (3), in the self-
representation, are defined by

Fi = 1
2
λi . (8.91)

They satisfy the commutation relations

[Fi, Fj ] = ifijkFk . (8.92)

Out of the 8 generators Fi, only 2 are diagonalized, F3, F8: this corresponds
to the fact that the algebra of SU(3) has rank 2. We know that the IR’s of
SU(3) are characterized by two parameters: given an IR, it is convenient to
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use the eigenvalues of F3 and F8 (which correspond to the third component
I3 of the isospin and to the hypercharge Y ) to label the basic elements of the
IR. The eigenvalues of I3 and Y are given, in the 3-dimensional representation
D(1, 0), by the following identification:

I3 = F3 , (8.93)

Y = 2√
3
F8 . (8.94)

From these, one can obtain the eigenvalues of I3 and Y for the higher
IR’s8; for the cases of interest they can be obtained from Eq. (8.82).

It is convenient to make use of a graphical representation of the IR’s of
SU(3), namely of the weight diagrams considered in Subsection 1.3.2. To each
element of an IR we associate a two-dimensional weight, whose components
are the eigenvalues of F3 and F8. If the dimensionality of the IR is n, we have
then n weights (some of which may be zero), which can be drawn in a plane.
In this way, one obtains for each IR a regular pattern, which characterizes
the representation. For convenience, we give on the axes the eigenvalues of I3
and Y : however, in order to preserve the symmetry of the weight diagram,

the scale units of I3 and Y axes are taken in the ratio 1 :
√

3
2 .

The diagrams corresponding to the lower representations are shown in
Figs. 8.1 and 8.2. The point inside a small circle in Fig. 8.2 stands for two
degenerate components.

8.5.4 SU(3) classification of hadrons

As anticipated in Subsection 8.5.1, the analysis of the hadron spectrum shows
that SU(3) is a group of approximate symmetry for strong interactions. It
appears that all mesons (with spin-parity JP = 0−, 1−, 1+, 2+, . . .) can be

arranged in octets and singlets, and all baryons (JP = 1
2

+
, 3

2

+
, 1

2

−
, 3

2

−
, . . .)

into singlets, octets and decuplets.
In Figs. 8.3 and 8.4 we represent the lowest meson (JP = 0−) and baryon

(JP = 1
2

+
) states. They are stable under strong interactions and decay via

weak and electromagnetic interactions, except for the proton which is abso-
lutely stable.

Besides the weight diagrams, we represent also the split levels of the octets:
the numbers on the right are the experimental values of the masses (in MeV).

8 Given the three-dimensional IR for the generators Fi, it is easy to obtain the
matrix Fi in any other IR by the following procedure. For a given IR we consider
the irreducible tensor written in terms of products of the type ξαξβξγ . . . Then
the matrix elements of Fi can be obtained making use of the relation

Fiξ
αξβξγ . . . = (Fiξ

α) ξβξγ . . .+ ξα
(
Fiξ

β
)
ξγ . . . + ξαξβ (Fiξ

γ) . . .+ . . .

= (Fi)
α

α′ ξ
α′

ξβξγ . . . + ξα (Fi)
β

β′ ξ
β′

ξγ . . .+ ξαξβ (Fi)
γ

γ′ ξ
γ′

. . .+ . . .
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Fig. 8.1. Weight diagrams for the IR’s 3 and 3.
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Fig. 8.2. Weight diagrams for the IR’s 8 and 10.
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Fig. 8.3. Weight diagram and mass levels of the meson 0− octet.
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Fig. 8.4. Weight diagram and mass levels of the baryon 1
2

+
octet.

In the meson octet particle-antiparticle pairs appear, and have, therefore, the
same masses. An antibaryon octet corresponds to the baryon octet, with the
same masses, and opposite Y , B quantum numbers.

As discussed in Subsection 8.4.2, one assumes that, in the absence of elec-
tromagnetic interactions, there is a degeneracy among the masses of each
isospin multiplet: the numbers above the intermediate lines in the graphs cor-
respond to the average values. If SU(3) were an exact symmetry, all the levels
in an octet would be degenerate, i.e. all the members of the octet would have
the same mass (a rough estimate of the average value is indicated in Figs. 8.3
and 8.4).

In Fig. 8.5 we show another important multiplet, namely the decuplet of

the 3
2

+
baryons. For the sake of simplicity, the actual splitting of the levels

due to the electromagnetic interactions is not reported in the figure.

Y

I3

∆− ∆0 ∆+ ∆++

Σ*+Σ*− Σ*0

Ξ*− Ξ*0

Ω−

1385

1238

1530

1675

1385

∆

Σ*

Ω

Ξ*

Fig. 8.5. Weight diagram and mass levels of the baryon 3
2

+
decuplet.
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For completeness, we show also the states of the octet of the vector mesons
1− in Fig. 8.6. There are two I = 0 vector mesons: ω and φ, and without
further information one cannot decide which should be included in the octet.
This point will be discussed later.

Y

I3

ρ+ω−ϕ

K*0 K*+

K*−
K*0

ρ− ρ0

892

1020

770

783

K*

ρ
ω

ϕ

Fig. 8.6. Weight diagram and mass levels of the vector meson 1− octet.

This type of classification was proposed by Gell-Mann and Ne’eman and
it is known as the eightfold way9.

We note that the multiplets 1, 8 and 10 correspond to IR’s of zero triality.
The direct products of IR’s of this class give rise to other IR’s of zero triality.
One would expect that hadronic states, which correspond to baryon-meson or
mesonic resonances, should belong also to multiplets higher than octets and
decuplets. In fact, according to Eqs. (8.81), one has

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27 . (8.95)

It was proposed by Gell-Mann and Zweig10 that one can associate fictitious
particles - called quarks - to the IR 3, and the corresponding antiparticles, i.e.
antiquarks, to the 3. The product decompositions

3 ⊗ 3 = 1 ⊕ 8 , (8.96)

3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10 (8.97)

suggest that mesons are constituted by a quark-antiquark pair and baryons by
three quarks. The three quarks are called up, down and strange; we shall denote
the quark triplet by q = (u, d, s), and the antiquark triplet by q = (u, d, s);
they are fitted in the weight diagrams of Fig. 8.1, as shown in Fig. 8.7.

The above interpretation of hadrons as composite systems of quarks would
imply that quarks are particles with fractional values of baryon number B,

9 M. Gell-Mann and Y. Ne’eman, The Eightfold Way, Benjamin, New York (1964).
10 M. Gell-Mann, Phys. Lett. 8 (1964) 214; G. Zweig, CERN Reports TH 401, TH

402 (1964), unpublished.
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Y

I3

d u

s

I3

Y

u d

s

Fig. 8.7. Triplet of quarks and antiquarks.

hypercharge Y and electric charge Q. The internal quantum numbers for the
two q and q triplets are summarized in Table 8.6 (see Eq. (8.83)). Moreover,
they are assumed to have spin 1

2
.

Table 8.6. Quantum numbers of quarks and antiquarks.

B S Y I I3 Q

u 1
3

0 1
3

1
2

1
2

2
3

d 1
3

0 1
3

1
2

- 1
2

- 1
3

s 1
3

-1 - 2
3

0 0 - 1
3

u - 1
3

0 - 1
3

1
2

- 1
2

- 2
3

d - 1
3

0 - 1
3

1
2

1
2

1
3

s - 1
3

+1 2
3

0 0 1
3

For the present purposes, it is sufficient to consider the introduction of
quarks as a useful mathematical device. However, several independent exper-
iments provided indirect evidence of their existence inside hadrons11, so that
quarks are considered as real particles, even if they never appear in free states,
but always bound inside hadrons.

Multiplets not fitting in the above scheme (e.g. decuplets of mesons, or
baryons belonging to the IR 27) are called exotic; they would require the
addition of extra qq pairs to their constituents. The evidence for such states
is still controversial.

11 G. Sterman et al., Rev. Mod. Phys. 67, 157 (1995).
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Let us now consider the octets in more details. It is very useful to describe
them as 3 × 3 matrices, making use of the λ-matrices.

First we express the traceless tensor ζ̂αβ (Eq. (8.76)) in terms of q, q by
making the identification

(ξα) → q =



u
d
s


 , (ξα) → q =

(
u d s

)
. (8.98)

One obtains in this way

ζ̂ =




1
3
(2uu− dd− ss) ud us

du 1
3(−uu+ 2dd− ss) ds

su sd 1
3
(−uu− dd+ 2ss)


 . (8.99)

Let us now consider the case of the octet of pseudoscalar JP = 0− mesons.
Since the octet corresponds to the traceless tensor ζ̂αβ , we can write the 0−

states in the matrix form

P =




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 . (8.100)

In fact strange mesons are easily recognized by their quantum numbers
(Y = ±1), pions by their isospin classification (see Eq. (8.53)) and the re-
maining piece, taking into account the normalization, as the η meson.

This procedure gives immediately the quark content of the different
mesons; in particular, one has

π0 = 1√
2

(
uu− dd

)
, (8.101)

η = 1√
6

(
uu+ dd− 2ss

)
. (8.102)

For the other mesons, the quark content is immediately read off by com-
parison of (8.100) with (8.99); for convenience, the explicit expressions are
given in Table 8.7.

It is known that a ninth pseudoscalar meson exists: it is the η′ (958) with
I = 0, Y = 0. It can be considered an SU (3) 0− singlet; then its quark content
is given by

η′ = 1√
3

(
uu+ dd+ ss

)
. (8.103)

We notice that there is no difference between the quantum numbers of η and
η′, but η has a lower mass than η′. We shall see in Subsection 8.5.7 that the
physical states contain a small mixing between η and η′.

Another octet is represented by the 1− vector mesons (see Fig. 8.6)
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V =




1√
2
ρ0 + 1√

6
ω8 ρ+ K∗+

ρ− − 1√
2
ρ0 + 1√

6
ω8 K∗0

K∗− K
∗0 − 2√

6
ω8


 . (8.104)

Experimentally, nine 1− vector mesons are known, two of which, ω and φ,
with the same quantum numbers, I = Y = 0. At this stage, in the absence
of a criterion for discriminate between them, we denote with ω8 the isoscalar
member of the octet and introduce an isoscalar (1−) SU (3) singlet

ω1 = 1√
3

(
uu+ dd+ ss

)
, (8.105)

leaving open the problem of the correspondence between ω1, ω8 and the phys-
ical states ω, φ. The quark content of the vector mesons is the same of the
scalar ones, as indicated in Table 8.7.

Table 8.7. Quark content of the lowest meson states.

0− octet 1− octet qq structure

K+ K∗+ us

K0 K∗0 ds

π+ ρ+ ud

π0 ρ0 1√
2

(
uu− dd

)

η ω8
1√
6

(
uu+ dd− 2ss

)

π− ρ− du

K
0

K
∗0

sd

K− K∗− su

Once we have built an octet as a 3 × 3 matrix, we can forget about the
quark content exhibited in (8.99), and use directly (8.100) and the graphical

representations of Fig. 8.3 and Fig. 8.4. We can then write for the 1
2

+
baryon

octet

B =




1√
2
Σ0 + 1√

6
Λ0 Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ0 n

Ξ− Ξ0 − 2√
6
Λ0


 . (8.106)

An alternative way of representing the meson and baryon octets is in terms
of eight-component vectors P i, V i, Bi (i = 1, . . . , 8), by identifying
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P = 1√
2
λiP

i , V = 1√
2
λiV

i , B = 1√
2
λiB

i , (8.107)

where the sum over i from 1 to 8 is implied, and the normalization conditions

PαβPβ
α = P iPi , VαβVβα = V iVi , BαβBβα = BiBi , (8.108)

are satisfied.
The relations (8.107) can be inverted taking into account Eq. (8.88)

Pi = 1√
2
Tr (Pλi) , Vi = 1√

2
Tr (Vλi) , Bi = 1√

2
Tr (Bλi) , (8.109)

from which12

P1 = 1√
2
(π+ + π−) , P4 = 1√

2
(K+ +K−) , P6 = 1√

2
(K0 +K

0
) , P3 = π0 ,

P2 = 1√
2
(π+ − π−) , P5 = 1√

2
(K+ −K−) , P7 = 1√

2
(K0 −K

0
) , P8 = η ,

(8.110)
and similarly for the Vi and Bi.

A complete description of the meson and baryon octets P and B should
require the introduction of the baryon number B which would differentiate
the two octets. Then one should go from SU (3) to U(3): as already noticed,

the IR’s tensor ζ̂αβ and ζ{αβ}γ , which are equivalent for SU(3), correspond to
inequivalent IR’s of U(3). In the frame of U (3), only P , for which B = 0, can

be described by ζ̂αβ , while B (B = 1) is described by the tensor ζ{αβ}γ . From
this tensor, one can obtain immediately the quark content of the baryons.
Since the states have mixed symmetry, one gets two solutions relative to the
possibility of symmetrizing according to the two standard Young tableaux.
The two solutions are listed in Table 8.8 for all members of the octet.

For sake of completeness, it is convenient to give also the 1
2 antibaryon

(B = −1) octet

B =




1√
2
Σ

0
+ 1√

6
Λ

0
Σ
−

Ξ
−

Σ
+ − 1√

2
Σ

0
+ 1√

6
Λ

0
Ξ

0

p n − 2√
6
Λ

0


 . (8.111)

Finally, we consider the 3
2

+
baryon decuplet, which, according to Table 8.4,

corresponds to the completely symmetric tensor ζ{αβγ}. Each member of the
decuplet, given the values of I3 and Y , can be immediately identified with a
component of the tensor, and each component can be expressed in terms of
quarks. The explicit expressions are reported in Table 8.9.

12 Eqs. (8.107) show that the set of λ-matrices, with respect to the index i, has the
same transformation properties of an octet.
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Table 8.8. Quark content of the JP = 1
2

+
baryon octet.

baryon symmetric antisymmetric
in the first pair of quarks in the first pair of quarks

p 1√
6
(2uud − udu− duu) 1√

2
(udu− duu)

n 1√
6
(udd− dud− 2ddu) 1√

2
(udd− dud)

Σ+ 1√
6
(usu+ suu− 2uus) 1√

2
(suu− usu)

Σ0 1√
12

(usd+sud+dsu+sdu−2uds−2dus) 1
2
(sud− usd+ sdu− dsu)

Λ0 1
2
(usd+ sud− dsu− sdu) 1√

12
(2uds−2dus+sdu−dsu+usd−sud)

Σ− 1√
6
(dsd+ sdd− 2dds) 1√

2
(sdd− dsd)

Ξ0 1√
6
(2ssu− uss− sus) 1√

2
(sus− uss)

Ξ− 1√
6
(2ssd− dss− sds) 1√

2
(sds− dss)

Table 8.9. Quark content of the JP = 3
2

+
baryon decuplet.

baryon quark content

∆++ uuu

∆+ 1√
3
(uud+ udu+ duu)

∆0 1√
3
(udd+ dud+ ddu)

∆− ddd

Σ∗+ 1√
3
(uus+ usu+ suu)

Σ∗0 1√
6
(uds+ usd+ dus+ dsu+ sud+ sdu)

Σ∗− 1√
3
(dds+ dsd+ sdd)

Ξ∗0 1√
3
(uss+ sus+ ssu)

Ξ∗− 1√
3
(dss+ sds+ ssd)

Ω− sss
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8.5.5 I-spin, U-spin and V -spin

For the classification of hadrons, we made use of the SU (2) isospin subgroup
of SU(3). We want to point out that there are alternative ways, besides the
use of I and Y , of labelling the states of an SU (3) multiplet.

In fact, one can identify three different subgroups SU(2) in SU(3). In the
set of the 8 λ-matrices one can indeed find three subsets which generates
SU(2) subgroups; obviously these subsets do not commute among them.

We know already that the matrices

Ii = 1
2
λi (i = 1, 2, 3) (8.112)

can be taken as the generators of the isospin group SU(2)I . One can immedi-
ately check from Eq. (8.86) and Table 8.5 that they satisfy the commutation
relations

[Ii, Ij ] = iǫijkIk , (8.113)

[Ii, Y ] = 0 . (8.114)

Let us define two other sets:

U1 = 1
2λ6 ,

U2 = 1
2λ7 ,

U3 = 1
4

(√
3λ8 − λ3

)
,

(8.115)

and
V1 = 1

2λ4 ,

V2 = 1
2λ5 ,

V3 = 1
4

(
λ3 +

√
3λ8

)
.

(8.116)

Using again Eq. (8.86) and Table 8.5 for the fijk coefficients, we get

[Ui, Uj ] = iǫijkUk , (8.117)

[Vi, Vj ] = iǫijkVk , (8.118)

which show that also Ui and Vi generate SU (2) subgroups (denoted in the
following by SU(2)U and SU(2)V ). For this reason, besides the isospin I or I-
spin, one defines the U -spin and the V -spin; in analogy with the shift operators
I± = I1 ± iI2 (Eq. (8.58)), we define also the operators U± = U1 ± iU2 and
V± = V1 ± iV2. Their action is represented in Fig. 8.8.

What is the use of these sets of generators? Let us consider first the U -
spin. Its introduction is particularly useful, since the Ui’s commute with the
electric charge Q defined in (8.45)

[Ui, Q] = 0 , (8.119)
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3I

I
+

V
+

U
+

I−

V− U−

Y

Fig. 8.8. Action of the shifts operator I±, U±, V± in the plane (Y, I3).

as can be checked immediately. Expressing U3 in terms of I3 and Y (Eqs. (8.91),
(8.93), (8.94)) one gets

U3 = 1
2

(
3
2Y − I3

)
. (8.120)

The above relation holds, in general, for any representation of SU(3). We

examine here the 1
2

+
baryon octet, described by the weight diagram of Fig. 8.4.

In the same weight diagram shown in Fig. 8.9 one can individuate two axes
U3 and −Q obtained by rotation of the I3, Y axes through an angle 5

6π (one

has to remember that the actual I3 and Y scales are in the ratio 1 :
√

3
2

).

Y

I3

pn

Ξ − Ξ 0

Σ +Σ− Σ 0

Λ0

Q
U3

Fig. 8.9. I-spin and U -spin for the baryon octet.

Everything said in the case of SU(2)I can be repeated for SU(2)U by
simply replacing the isospin multiplets (characterized by the hypercharge Y )
with the U -spin multiplets (characterized by the electric charge Q). Since one
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is dealing explicitly with Q, the use of the subgroup SU(3)U is very convenient
in the case of electromagnetic interactions.

Let us consider in more detail the baryon octet (the same considerations
can be applied to the meson octet). Looking at Fig. 8.9, we see that the octet
consists in two U -spin doublets (Σ+, p and Ξ−, Σ−), one triplet and one
singlet. Some care is needed in going from the I-spin multiplets (Σ+, Σ0,
Σ−) and Λ0 to the corresponding U -spin multiplets, which we shall denote
by (Ξ0, Σ0

u, n) and Λ0
u. The connection between Σ0

u, Λ
0
u and Σ0, Λ0 can be

obtained as follows.
From the third of Eqs. (8.109) we get

B3 ≡ Σ0 = 1√
2
Tr (Bλ3) ,

B8 ≡ Λ0 = 1√
2
Tr (Bλ8) .

(8.121)

The states Σ0
u and Λ0

u are obtained performing the rotation described in
Fig. 8.9

Σ0
u ≡ B′3 = 1√

2
Tr (Bλ′3) ,

Λ0
u ≡ B′8 = 1√

2
Tr (Bλ′8) ,

(8.122)

where
λ′3 = − 1

2λ3 +
√

3
2 λ8 ,

λ′8 =
√

3
2
λ3 + 1

2
λ8 .

(8.123)

Comparing Eqs. (8.122) and (8.123), one obtains

Σ0
u = − 1

2
Σ0 +

√
3

2
Λ0 ,

Λ0
u =

√
3

2 Σ
0 + 1

2Λ
0 .

(8.124)

This analysis in terms of U -spin can be extended to the other multiplets
of SU(3), making use of the U3, Q axes in the weight diagrams. For instance,

in the case of the baryon 3
2

+
decuplet (see Fig. 8.5), one obtains the following

decomposition in terms of SU(2)U multiplets:

U = 0 , Q = 2 (∆++) ,

U = 1
2 , Q = 1

(
∆+, Σ∗+

)
,

U = 1 , Q = 0
(
∆0, Σ∗0, Ξ∗0

)
,

U = 3
2 , Q = −1

(
∆−, Σ∗−, Ξ∗−, Ω−

)
.

(8.125)

On similar lines, one could carry out the analysis of the V -spin. In this
case one uses the eigenvalues of V3 and Y ′ = I3 − 1

2Y to label the components
of the SU(3) multiplets. A graphical interpretation is shown in Fig. 8.10,
which is the analogue of Fig. 8.9: V3 and Y ′ correspond to the orthogonal
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Y

I3

pn

Ξ − Ξ 0

Σ +Σ− Σ 0

Λ0

Y’

V3

Fig. 8.10. I-spin and V -spin for the baryon octet.

axes obtained from (I3, Y ) by rotation through an angle 2
3
π. The use of the

V -spin is limited to the weak interactions of hadrons.
Finally, we report in Fig. (8.11) the values of the matrix elements of the

shift operators I±, U±, V± between two states of the baryon octet 1
2

+
. Their

explicit calculation is proposed in Problem 8.6.

pn

Ξ − Ξ 0

Σ +Σ− Σ 0

Λ0

1

1

1

1

−1

1

3
2

3
2

3
2

3
2

0 0

2 2

−
2
1

2
1

2
1

2
1−

Fig. 8.11. Values of the matrix elements of the shift operators I±, U±, V± between
two states of the baryon octet 1

2

+
. The dotted lines join the various states to the

singlet.

8.5.6 The use of SU(3) as exact symmetry

We shall illustrate here, with some simple examples, the use of SU (3) in
elementary particle physics.
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One can have two kinds of applications, depending on whether one assumes
exact SU(3) invariance, or approximate invariance in which the symmetry
breaking occurs according to a definite pattern. It is clear that the predictions
obtained from exact symmetry will be rather approximate, since we know from
the start that the mass differencs among components of a multiplet are not
at all negligible. However, in the limit of very high energy, one would expect
that these differences should become less important.

Let us consider an example of this type, which is a generalization of what
mentioned in Subsection 8.4.2 for the isospin case, namely the meson-baryon
reactions

Pα + Bβ = P ′γ + B′δ , (8.126)

where Pα, P ′γ and Bβ, B′δ are members of the 0− meson and 1
2

+
baryon octet,

respectively. The M + B system belongs to the basis of the direct product
representation 8 × 8, which is decomposed as follows (see Eqs. (8.81))

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27 . (8.127)

In this decomposition two octets appear, which can be distinguished by their
symmetry (8s) and antisymmetry (8a) with respect to the two starting octets
(P and B). Assuming exact invariance, only the amplitudes corresponding to
the following transitions can be different from zero:

1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

? ? ?@@R��	 ? ? ?
.

1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

Then, all possible processes summarized by Eq. (8.126) can be described in
terms of eight invariant amplitudes:

A1, A8ss, A8aa, A8sa, A8as, A10, A10, A27 . (8.128)

This number is reduced to seven by using time reversal invariance which
requires A8sa = A8as since the octets are the same in the initial and final
states.

The invariant amplitudes referred to specific isospin and hypercharge
states (physical amplitudes) can be expressed in terms of the SU(3) am-
plitudes following a procedure analogous to what done for SU(2). One makes
use of expansions in terms of SU (3) Clebsch-Gordan coefficients, which can
be written as product of SU(2) Clebsch-Gordan coefficients and the so-called
isoscalar factors.

These coefficients are not reproduced here. Comprehensive tables are found
in the book by Lichtenberg13 or in the original papers14. We refer to the same

13 Unitary Symmetry and Elementary Particles , Academic Press,
(1970).

14 J.J. de Swart, Review of Modern Physics 35, 916 (1961); P. McNamee and F.
Chilton, Rev. of Mod. Phys. 36, 1005 (1964).

D.B. Lichtenberg,
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book also for the Wigner-Eckart theorem, which can be extended without
difficulties from SU(2) to SU (3).

By expressing, in the above example, the physical amplitudes in terms
of the seven amplitudes (8.128), one gets relations (intensity rules) of the
following type:

A (π+p→ K+Σ+) = A (K+p→ K+p) − A (π+p→ π+p) ,

A (K−p→ π−Σ+) = A (K−p→ K−p) −A (π−p→ π−p) .
(8.129)

Indeed, the above example is simply a consequence of U -invariance. Detailed
analysis of two-body reactions can be found in Chapter IV of the book by
Gourdin15.

As a second example of exact symmetry, we shall briefly discuss the prob-
lem of meson-baryon coupling (BBP), B and P being SU(3) octets. In this
occasion we shall illustrate the usefulness of the matrix description of the
meson and baryon octets. The interaction Lagrangian has to be invariant un-
der SU(3), i.e. it has to behave as the one-dimensional 1 IR. According to
Eq. (8.127), if we first combine B and B we obtain two octets, each of which
can be contracted with the P-octet to give the 1 IR. This shows that the
interaction Lagrangian contains, in general, two independent parameters. It
is usual to identify the two octets with the symmetrical and antisymmetrical
combinations, called F and D respectively: starting from B and B given by
Eqs. (8.106), (8.111) we can distinguish

[
B,B

]α
β

=
(
BB
)α
β
−
(
BB
)α
β
, (8.130)

{B,B}αβ =
(
BB
)α
β

+
(
BB
)α
β
, (8.131)

where (
BB
)α
β

= BαγB
γ

β . (8.132)

By contraction with P given by Eq. (8.100), one gets, as far as only the SU(3)
structure is concerned, an effective interaction Lagrangian of the form

Lint =
√

2
{
gFTr

(
P [BB]

)
+ gDTr

(
P{BB}

)}
=

=
√

2 g
{
(1 − α)Tr

(
P [BB]

)
+ αTr

(
P({BB}

)}
,

(8.133)

where
gF = g(1 − α) , gD = g α , (8.134)

the so-called D/F ratio being defined by

D/F =
gD
gF

=
α

1 − α
. (8.135)

15 Unitary Symmetries and their applications to high energy physics
North Holland (1967).
M. Gourdin,
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We can rewrite Eq. (8.133) in terms of the Pi, Bi components, making use of
Eqs. (8.107) and of the properties of the λ-matrices given in Subsection 8.5.3:

Lint =
√

2 g
{

(1 − α)
(
BFkB

)
Pk + α

(
BDkB

)
Pk

}
, (8.136)

where we have introduced two sets of matrices, Fk and Dk (k = 1, . . . , 8),
defined by:

(Fk)ij = −ifijk , (8.137)

(Dk)ij = dijk . (8.138)

It can be shown that the F -matrices satisfy the commutation relations (8.92));
indeed, they are nothing else that the SU(3) generators expressed in the
adjoint 8-dimensional representation.

On the other hand, the D-matrices satisfy the commutation relations

[Fi, Dj] = ifijkDk ; (8.139)

they do not provide a representation of the SU(3) Lie algebra, but they trans-
form as an octet. Moreover, one can prove the useful relation

Di = 2
3dijkFjFk . (8.140)

Going back to Eq. (8.136), one easily sees that, by expressing P and B in
terms of meson and baryon states, one gets terms of the type:

Lint = g
{
α
[
pp− nn+ 2√

3

(
Σ

0
Λ0 − Λ

0
Σ0
)
− Ξ

0
Ξ0 +Ξ

−
Ξ−
]
π0 + . . .

+ (1 − α)
[
pp− nn+ 2Σ

+
Σ+ − 2Σ

−
Σ− + Ξ

0
Ξ0 −Ξ

−
Ξ−
]
π0 + . . .

}
,

(8.141)
so that gD = gα is the coupling constant relative to ppπ0.

The ratio D/F of Eq. (8.135) occurs in any situation in which three octets
are combined to form a scalar. Thus all the BBP couplings are usually ex-
pressed as function of g and D/F .

The above procedure can be applied, mutatis mutandis, to all 8 ⊗ 8 ⊗ 8
couplings, such as VPP , VVV , P and V being the pseudoscalar and vector
meson octets.

Finally, we point out that all the couplings of the type DBP , D being the
baryon decuplet, can be described in terms of only one constant. In fact, one
can write

Lint = g′ Tr
(
ǫαδλDαβγBβδP

γ
λ

)
, (8.142)

and this correponds to the fact that, in the decomposition 8 ⊗ 8, the IR 10
appears only once.
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8.5.7 The use of SU(3) as broken symmetry

We present in the following some interesting applications of SU(3) as a broken
symmetry. Of course, useful results are obtained by making specific assump-
tions about the symmetry breaking pattern.

a) Gell-Mann - Okubo mass formulae 16

We have often pointed out that the states of an SU (3) multiplet present,
in general, large mass differences. Such mass splittings indicate that the be-
haviour of the mass operator M deviates appreciably from that of a scalar

under SU(3). A relation which is very well satisfied for the masses of the 1
2

+

baryon octet follows from the assumption

M(8) = m0Tr
(
BB
)
+ 1

2m1Tr
(
{B,B}λ8

)
− 1

2m2Tr
(
[B,B]λ8

)
, (8.143)

The first term gives obviously the same value for the eight baryons; the
other two terms give rise to symmetry breaking: they transform as the eighth
component (I = 0, Y = 0) of an octet. The form (8.143) is justified by the
following reasons:

• One assumes exact isospin invariance (the electromagnetic mass differences
are neglected), so that M behaves as a scalar (I = 0) under SU (2)I .

• All terms in M correspond to Y = 0 (no mixing between different hyper-
charge states must occur since Y is conserved);

• A I = 0, Y = 0 component can be found in the SU(3) IR’s of the type
D(p, p) such as 1, 8, 27, etc.. One considers the lowest non-trivial case,
i.e. the octet; according to Eq. (8.127) there are two independent ways of
building an octet from two others. Eqs. (8.130), (8.131) identify the two
combinations.

Following the same procedure used to obtain Eq. (8.136) from (8.133),
Eq. (8.143) can be written as

M(8) = m0

(
BB

)
+m1

(
BD8B

)
+m2

(
BF8B

)
. (8.144)

We know from Eq. (8.94) that F8 =
√

3
2 Y and it can be shown, by using

(8.140), that
D8 = 1√

3

[
I(I + 1) − 1

4
Y 2
]
− 1√

3
. (8.145)

Then Eq. (8.144) can be replaced by
(
Bm8B

)
with

m8(I, Y ) = a+ bY + c
[
I(I + 1) − 1

4Y
2
]
, (8.146)

where a, b and c are independent parameters.

16 The eightfold way , Benjamin, New York (1964);
S. Okubo, Progr. of Theor. Phys. 27, 949 (1962).
M. Gell-Mann and Y. Ne’eman,
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The 1
2

+
octet contains four isospin multiplets (N ,Σ, Λ,Ξ); the correspond-

ing masses can be related by eliminating the three unknown parameters. One
gets the famous relation

1
2

(
mN +mΞ

)
= 1

4

(
3mΛ +mΣ

)
, (8.147)

which is well satisfied by the experimental values, the discrepancy being less
than 1%.

A similar mass formula can be used for the meson octets. In this case the
masses of the two isospin doublets are the same, since they are antiparticles
of each other. This implies that for mesons one has to put b = 0 in (8.146).
Moreover, it is customary to use squared mass relations, rather than linear
ones (this could be related to the fact that the mass term in the Lagrangian
is linear for baryons and quadratic for mesons).

For the 0− octet one gets

m2
K = 1

4m
2
π + 3

4m
2
η , (8.148)

which is satisfied experimentally within few %, but with less precision than
(8.147).

In the case of the 3
2

+
decuplet D, in agreement to the fact that 8 appears

only once in the decomposition 10 ⊗ 10 (8.81) one has to write, instead of
(8.143),

M(10) = m′0
(
DαβγDαβγ

)
+m′1

(
DαβγDαβδ(λ8)

γ
δ

)
. (8.149)

In terms of the decuplet components one obtains

m(10)(I, Y ) = m′0 + a′Y , (8.150)

which gives for the 3
2

+
decuplet the equal spacing mass formula

mΩ −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −m∆ , (8.151)

very well satisfied experimentally17.
Finally, we note that Eq. (8.146) can be shown to hold, in general, for any

multiplet18; it reduces to the simpler form (8.150) for the IR’s with triangular
weight diagram such as 10, for which I and Y are related by

17 It is interesting to point out that the existence and the properties of the Ω−

particle (JP = 3
2

+
, mass ∼ 1685 MeV, decay through weak interaction to Ξ0π−,

Ξ−π0 and Λ0K− and not through strong interactions as the other members of
the decuplet) were exactly predicted: see M. Gell-Mann, Proc. of the Int. Conf.
on High Energy Physics, CERN (1962), p. 805. A particle with such properties
was discovered two years later (see V.E. Barnes et al., Phys. Rev. Lett. 12, 204
(1964).

18 S. Okubo, Progr. of Theor. Phys. 27, 949 (1962).
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I = 1 + 1
2
Y . (8.152)

b) φ-ω mixing

The mass relation (8.146) is not satisfactory when applied to the case of the
1− vector mesons. The experimental situation is the following: there are two
isodoublets K∗ and K

∗
, an isotriplet, ρ, and two isosinglets, ω (783) and φ

(1020). Neither ω nor φ satisfies the mass formula, which would predict an
isoscalar ω8 (930), its mass being given by

m2
8 = 1

3

(
2m2

K∗ −m2
ρ

)
. (8.153)

One can imagine that ω and φ, which have the same quantum numbers,
do not represent pure SU(3) octet (ω8) and singlet (ω1) states, but they are,
instead, the orthogonal mixtures

ω = sin θ ω8 + cos θ ω1 ,

φ = cos θ ω8 − sin θ ω1 .
(8.154)

This kind of mixing is indeed allowed by the symmetry breaking introduced
in connection with the Gell-Mann − Okubo mass formula. Due to the ω1−ω8

mixing, the (squared) mass matrix contains off-diagonal terms:

m2 =

(
m2

8 m2
18

m2
18 m2

1

)
. (8.155)

The physical states ω and φ correspond to the diagonalization of m2. One
gets easily the following relations

m2
φ +m2

ω = m2
1 +m2

8 ,
(
m2

18

)2
= m2

1m
2
8 −m2

φm
2
ω .

(8.156)

and

tan 2θ =
2m2

18

m2
8 −m2

1

. (8.157)

They are sufficient, together with Eq. (8.153), to determine the mixing angle
θ, which turns out to be θ = 39 ± 1◦. We note that the value sin θ = 1√

3
corresponds to the so-called ideal mixing, for which the quark content of the
two states in Eq. (8.154) become

ω = 1√
2
(uu+ dd)

φ = ss .
(8.158)

An independent determination of this parameter, consistent with this value,
can be obtained in terms of the branching ratio (ω → e+e−)/(φ→ e+e−)19.

19 R.F. Dashen and D.H. Sharp, Phys. Rev. 133 B, 1585 (1964).



156 8 Unitary symmetries

If one extends the same mixing mechanism to the pseudoscalar meson
octet, η should not be considered a pure octet state, but taken as a mixed
state with the η′ (958) meson. The corresponding mixing angle is θ = 10±1◦.

c) Electromagnetic mass differences

The SU(3) breaking interaction introduced in connection with Eq. (8.143)
is isospin conserving, so that members of a given isospin multiplet are still
degenerate. However, all isospin multiplets exhibit mass splittings, which are
assumed to be of electromagnetic origin.

The form of the electromagnetic interactions is known exactly, and there-
fore one knows also their structure with respect to SU (3).

We point out that the electric charge Q, in the IR 3, is given by (see
Eq. (8.123))

Q = 1√
3
λ′8 = 1

2
λ3 + 1

2
√

3
λ8 . (8.159)

From this we can infer that the photon, which is coupled with Q, transforms
as the U = 0 component of an octet. From the point of view of isospin, it
contains both an isoscalar and an isovector term transforming, respectively,
as the I = 0 and the I = 1, I3 = 0 components of an octet. From Eq. (8.119))
it follows also that the electromagnetic interactions conserve U -spin.

Then the electromagnetic mass splitting δm can depend only on U and Q
and the general mass operator can be written as

m = m(I, Y ) + δm(U,Q) . (8.160)

In the case of the 1
2

+
octet (Fig. 8.9) one gets immediately

δmp = δmΣ+ , δmn = δmΞ0 , δmΣ− = δmΞ− , (8.161)

and (8.160) gives
δmn − δmp = mn −mp

δmΞ− − δmΞ0 = mΞ− −mΞ0

δmΣ+ − δmΣ− = mΣ+ −mΣ−

(8.162)

Combining (8.161) and (8.162), we obtain the Coleman-Glashow relation

mn −mp +mΞ− −mΞ0 = mΣ− −mΣ+ , (8.163)

which is in excellent agreement with the observed values. This agreement in-
dicates that the interference between strong and electromagnetic interactions
can be neglected, at least in connection with the above equations.

Similar conclusions can be obtained in the case of the 3
2

+
decuplet. In the

case of the meson octets, the analogue of Eq. (8.163) is merely a consequence
of CPT and contains no information on U -spin invariance.

d) Magnetic moments

Interesting relations can be obtained also among the magnetic moments of the

baryons of the 1
2

+
octet. We assume, in general, that the magnetic moment
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transforms as the electric charge Q ≈ λ′8, i.e. as the U = 0 component of an

octet. The situation is analogous to that of Eq. (8.143). For the baryon 1
2

+

octet we can write

µ = µ1Tr
(
{B,B}λ′8

)
+ µ2Tr

(
[B,B]λ′8

)
. (8.164)

However, without making use of the above formula, one can get several rela-
tions in a simpler way. First of all, one obtains the following relation among
the members of the Σ isotriplet:

µΣ+ + µΣ− = 2µΣ0 , (8.165)

making use only of the SU (2)I transformation properties.
Moreover, recalling that Q commutes with the U -spin generators (see

Eq. (8.119)), one can conclude that the baryons belonging to the same U -spin
multiplet have the same magnetic moment. Looking at Fig. 8.9 and expressing
Σ0
u and Λ0

u in terms of Σ0 and Λ0 (Eq. (8.124)), one obtains

µp = µΣ+ , µΞ− = µΣ− , µn = µΞ0 , (8.166)

and
µn = 3

2
µΛ0 − 1

2
µΣ0 , µΣ0 − µΛ0 = 2√

3
µΣ0Λ0 , (8.167)

where µΣ0Λ0 is the transition magnetic moment responsible for the electro-
magnetic decay Σ0 → Λ0γ.

Finally, from Eq. (8.164), one can get two more relations

µΛ0 = 1
2µn , µp + µn = −µΣ− . (8.168)

All the magnetic moments of the 1
2

+
baryon octet can then be expressed

in terms of only µp and µn
20. The experimental values are in reasonable

agreement with these relations.

8.6 Beyond SU(3)

In this section we shall consider different kinds of extensions of the flavor
SU(3) symmetry. First of all, we shall discuss the problem of the quark statis-
tics, i.e. the fact that the baryon states appear always symmetric with respect
to the constituent quark exchange. In order to save the Fermi-Dirac statistics,
hidden degrees of freedom were introduced in terms of a second independent
SU(3) group, so that the symmetry of the hadronic states was extended to
the group SU(3) ⊗ SU(3).

A further insight in the structure of the hadronic states was obtained by
combining the flavor SU(3) group with the ordinary spin SU(2) group, with

20 S. Coleman, S.L. Glashow, Phys. Rev. Lett. 6, 423 (1961).
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the introduction of the SU (6) group which embeds the subgroup SU(3) ⊗
SU(2).

Finally, we shall mention the extension of the flavor SU (3) group to the
higher group SU(4), that was introduced after the discovery of a new class of
hadrons implying the existence a forth quark.

8.6.1 From flavor SU(3) to color SU(3)

The introduction of quarks solved the puzzle of the lack of evidence of exotic
hadrons that cannot be described as (qq̄) and (qqq) states, and then with
values of isospin and hypercharge higher than those included in octets for
mesons and in octets and decuplets for baryons21.

Mowever, a second puzzle appeared from a closer analysis of the baryon
spectrum: how can there be three identical spin 1

2
quarks in the same quantum

state? In this situation the Pauli principle would be violated.
This question arose from the observation of the state ∆++ (with S = 3

2 ,
Sz = 3

2
and positive parity) and similarly for ∆− and Ω−, which are compo-

nents of the decuplet represented in Fig. 8.5, and which should be composed
of three identical quarks of u, d and s type, respectively. Each of the three
quarks has spin component Sz = 1

2 and orbital momentum ℓ = 0 (there are
indeed other baryon multiplets with higher spin that require orbital momenta

different from zero, but it is reasonable to assume ℓ = 0 for the decuplet 3
2

+
,

having the lowest mass values).
The solution of this puzzle is based on the hypothesis that each quark pos-

sesses extra quantum numbers, which correspond to those of another SU(3).
To make a distinction between the two symmetry groups, one uses whimsical
names: flavor and color. With respect to the first group, denoted by SU (3)f ,
quarks belong to a triplet with three different flavors: u, d, s. With respect to
the second group, denoted by SU(3)c , each quark belongs to another triplet,
with three different colors: q1, q2, q3 (they are named red, white and blue, and
we use the notation 1 = red, 2 = white, 3 = blue). Then the states quoted
above become compatible with the Pauli principle:

∆++ ≡ (u1, u2, u3) , ∆− ≡ (d1, d2, d3) , Ω− ≡ (s1, s2, s3) , (8.169)

21 However, observation of new heavy mesons, with masses of the order of 3875 MeV,
were observed a few years ago (S.-K. Choi et al. (Belle Collaboration), Phys. Rev.
Lett. 91, 26200 (2003); B.Aubert et al. (BaBar Collaboration), Phys. Rev. D73:
011101 (2006)); they were interpreted as diquark-antidiquark states: X(cuc̄ū)
and X(cdc̄d̄). Recently also new mesons with non-zero electric charge and masses
about 4430 MeV have been observed (S.-K. Choi et al., Belle Collaboration, Phys.
Rev. Lett. 100: 142001 (2008)) and interpreted as Z(cuc̄d̄). If such interpretations
were well established, these results would demonstrate the existence of exotic
states. For theoretical considerations and other possible interpretations see e.g.:
L. Maiani, A.D. Polosa and V. Riquer, Phys. Rev. Lett. 99, 182003 (2007) and
references therein.
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provided they are completely antisymmetric in the (1,2,3) indeces.
In conclusion, one assumes that there are nine different quarks, which can

be collected in a 3 × 3 matrix (rows refer to color and columns to flavor)

qαi =




u1 u2 u3

d1 d2 d3

s1 s2 s3


 , (8.170)

which corresponds to the (3, 3) IR of the group SU(3)f ⊗ SU (3)c.
We remark that the symmetric quark model assumes the existence of only

one set of the 3-quark states allowed with the introduction of color. In fact,
in this model, a baryon can be defined as totally antisymmetric in the color
indices i, j, k (singlet with respect to SU(3)c), and then globally symmetric
in all the other variables (flavor indices, spin, angular momentum) α, β, γ:

Bαβγ =
∑

i,j,k

ǫijkqαi q
β
j q
γ
k . (8.171)

This situation corresponds to the so-called quark statistics.
For mesons, there would be 81 possible qq states; however, also in this

case, one assumes that the physical states are color singlets, so that only 9
states are left

Mα
β =

∑

i

qiβq
α
i . (8.172)

In conclusion, we point out that the fundamental property of hadrons
(including possible exotic states) is that of being color singlets, i.e. the SU (3)c
quantum numbers remain always hidden.

Let us finally stress that the introduction of the group SU(3)c has been the
starting point for the construction of the field theory of strong interactions,
as it will be discussed in the next chapter.

8.6.2 The combination of internal symmetries with ordinary spin

The first idea of combining the internal symmetry of the isospin group SU (2)I
with the ordinary spin group SU(2)S is due to Wigner22, who introduced the
group SU(4) as an approximate symmetry of nuclei. The four nucleon states
p(+ 1

2 ), p(− 1
2), n(+ 1

2 ), n(− 1
2 ) (we have indicated, in parentheses, the value of

the spin component Sz = ± 1
2
) are assigned to the fundamental IR of SU (4),

and the higher IR’s provide a classification of the nuclear states23.
In analogy with this application to nuclear physics, the group SU(6),

which contains the subgroup SU(3) f⊗ SU (2) , was applied to particleS

22 E. Wigner, Phys. Rev. 51, 25 (1937).
23 F.J. Dyson, Symmetry Groups in Nuclear and Particle Physics, Benjamin, New

York (1966).
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physics24 in order to take into account also the ordinary spin in the clas-
sification of the lowest hadron states which do not require orbital excitations
(ℓ = 0).

In Table 8.10 we exhibit the lowest IR’s and their content with respect to
the subgroup SU (3) ⊗ SU (2).

Table 8.10. Decomposition of some IR’s of SU(6) in terms of SU(3) ⊗ SU(2).

SU(6) SU(3) ⊗ SU(2)

6 (3, 2)

6 (3, 2)

20 (8, 2) ⊕ (1, 4)

35 (8, 1) ⊕ (8, 3) ⊕ (1, 3)

56 (10, 4) ⊕ (8, 2)

70 (10, 2) ⊕ (8, 4) ⊕ (8, 2) ⊕ (1, 2)

The classification of hadrons in multiplets of SU (6) is very simple if one
refers to the quark model. The six quark states u(± 1

2
), d(± 1

2
), s(± 1

2
) are

assigned to the self-representation 6, and the basic vector is denoted by ζA

with A = (α, a), where the two indeces α and a are relative to SU (3)f and
SU(2)S , respectively (see Appendix C).

In terms of the SU (6) representations, one writes the analogues of the
product decompositions 3 ⊗ 3 and 3 ⊗ 3 ⊗ 3 of SU(3):

6 ⊗ 6 = 1 ⊕ 35 (8.173)

⊗ = s ⊕

and

6 ⊗ 6 ⊗ 6 = 56 ⊕ 70 ⊕ 70 ⊕ 20 (8.174)

⊗ ⊗ = ⊕ ⊕ ⊕

24 F. Gürsey, A. Pais and L. Radicati, Phys. Rev. Lett. 13, 173 (1964).
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Under each IR we have drawn the corresponding Young tableau, in order to
exhibit the symmetry properties of the qq and 3q-states.

According to the above decompositions, one would expect that mesons are
classified in the IR’s 1 and 35 of SU(6), and baryons in 56, 70 and 20. But,
by looking at the decompositions of these representations in terms of those of
the subgroup SU(3)f ⊗SU (2)S , one arrives at the following conclusions. The
(lowest) meson states considered in connection with SU(3) fit nicely in 35: in
fact, this IR contains a spin 0 octet and a spin 1 nonet (8 + 1). With respect
to the baryon states, the spin 1

2 octet and the 3
2 decuplet fit nicely in 56. The

interpretation given above for the lowest states in terms of S-wave qq and 3q
systems accounts also for the right parity, which is odd for mesons, since the

relative qq parity is odd (JP = 0−, 1−), and even for baryons (JP = 1
2

+
, 3

2

+
).

We would like to stress that, according to Eq. (8.171), only the 56 multi-
plet is allowed by the quark statistics (in the absence of orbital momentum),
since it is completely symmetric in the flavor and spin degrees of freedom, and
then it must be completely antisymmetric in color ( SU (3)c singlet). This is
a further confirmation of the quark statistics; moreover also the baryon octet,
which has mixed symmetry with respect to SU (3)f , becomes completely sym-
metric when combined with the mixed symmetric spin 1

2
state. Other baryon

multiplets, for which the spin-parity (JP ) values require the introduction of
orbital momenta, can be assigned to the IR’s 70 and 20 provided their states
are globally symmetric in the flavor, spin and orbital momentum degrees of

freedom. For instance, a set of SU(3)f multiplets with JP = 1
2

−
, 3

2

−
and

5
2

−
can be fitted in the 70-supermultiplet with orbital momentum ℓ = 1 and

configuration (1s)2(2p).
Even if the SU (6) model can provide only an approximate description

of the hadronic states, since it is intrinsically non-relativistic, it gave rise
to interesting relations among hadron masses and magnetic moments. The
SU(3)f mass Eq. (8.146) can be extended with an additional spin term25:

m(I, Y, S) = a+ bY + c
[
I(I + 1) − 1

4
Y 2
]
+ dS(S + 1) . (8.175)

In particular, it gives rise to the relations

mΩ −mΞ∗ = mΞ∗ −mΣ∗ = mΣ∗ −m∆ = mΞ −mΣ (8.176)

for baryon masses, and

m2
K∗ −m2

K = m2
ρ −m2

π (8.177)

for meson masses. Both types of relations are well satisfied.
We refer to the original papers26 for other interesting results obtained for

the nucleon magnetic moments and for the ideal mixing between the vector
mesons ω and φ.

25 F. Gürsey, A. Pais and L. Radicati, Phys. Rev. Lett. 13, 173 (1964).
26 See F. J. Dyson, Symmetry Groups in Nuclear and Particle Physics, Benjamin,

New York (1966).
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8.6.3 Extensions of flavor SU(3)

In the previous Sections, we made reference to the situation before 1974, until
when there was evidence only for three flavor quarks (u, d, s). Two more types
of quarks were discovered in the next few years, denoted by c for charm and b
for bottom, and later on a sixth type of quark: t for top. The quark c was first
introduced for theoretical reasons27, to provide an explanation for a peculiar
feature of the weak neutral current, which appeared to be flavor conserving,
while the charged weak currents violate flavor.

A new type of hadron, requiring the introduction of a new quantum num-
ber called charm, was discovered in 1974. It was discovered independently
in two different laboratories, Stanford28 and Brookhaven29, and it was ob-
served immediately afterward also at Frascati30. It received two different
names and since then it is denoted by J/ψ. All the experimental informa-
tion is in agreement with the interpretation of this new hadron, which is a
boson with JP = 1−, as a bound state of a quark-antiquark cc pair.

The existence of the b quark was inferred from the discovery in 1977, at
the Fermi National Laboratory, of a new type of heavy meson31, denoted by
Υ , which had to carry a new quantum number, called beauty, and interpreted
as a bound state of a quark-antiquark bb state.

The sixth quark, the top t, was discovered in 1995 at the Fermi National
Laboratory32 and it was found to be, as expected, much heavier that the other
quarks. In Table 8.11 we give the values of the masses of the six quarks33.

Due to the very large mass differences, it would be completely useless
to extend the flavor SU(3)f group by including the complete set of the six
quarks. However, the extension limited to the four lightest quarks (u, d, s, c)
received some attention. The triplet given in Eq. (8.65) is replaced by

ξ =




u
d
s
c


 , (8.178)

which can be assigned to the self-representation 4 of the flavor group SU(4)
This group was used in the literature for a classification of the new charmed
hadrons, that were discovered after the appearance of the J/ψ boson. A new
quantum number C was introduced to identify the new class of hadrons; the
value C = 1 was assigned to the charm quark c.

27 S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).
28 J.J. Aubert et al., Phys. Rev. Lett. 33, 1404 (1974).
29 J.E. Augustin et al., Phys. Rev. Lett. 33, 1406 (1974).
30 C. Bacci et al., Phys. Rev. Lett. 33, 1408 (1974).
31 S.W. Herb et al., Phys. Rev. Lett. 39, 252 (1977).
32 F. Abe et al., Phys. Rev. Lett. 74: 2626 (1995);

S. Abachi et al., Phys. Rev. Lett. 74: 2632 (1995).
33 The Review of Particle Physics, C. Amsler et al., Phys. Lett. B 667, 1 (2008).
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Table 8.11. The six quarks

Name Symbol Q Mass (MeV)

up u 2
3

1.5 ÷ 3

down d - 1
3

3 ÷ 7

charmed c 2
3

∼ 1.25 × 103

strange s - 1
3

∼ 95

top t 2
3

∼ 1.7 × 105

bottom b - 1
3

∼ 4.2 × 103

In terms of the subgroup SU (3)f⊗U(1)C the quartet in Eq. (8.178) reduces
to

4 = (3, 0) ⊕ (1, 1) , (8.179)

where (3, 0) represents the quark triplet with C = 0 and (1, 1) the c-quark
with C = 1. The electric charge of the charmed quark, which is equal to 2

3
,

requires the modification of the Gell-Mann Nishijima relation in the form

Q = I3 + 1
2
(B + S + C) . (8.180)

For the hypercharge, we make the choice Y = 0, which corresponds to

Y = B + S − 1
3C , (8.181)

so that Eq. (8.180) can be written in the form

Q = I3 + 1
2Y + 2

3C . (8.182)

The above choice for Y gives rise to charmed hadrons with fractional values
of hypercharge, but it is convenient since it corresponds to regular weight
diagrams in the (I3, Y, C) space. For instance, the quark quartet can be rep-
resented by a regular tetrahedron as shown in Fig 8.12.

Extending to SU(4) the hadron quark structure qq and qqq, mesons and
baryons will be classified in terms of 4 ⊗ 4 and 4 ⊗ 4 ⊗ 4, respectively34.
According to the usual decompositions, one gets:

34 For details on the hadron classification in SU(4) see: M.K. Gaillard, B.W. Lee
and J.L. Rosner, Rev. of Mod. Phys. 47, 277 (1975).
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Fig. 8.12. Quark multiplet in SU(4).

4 ⊗ 4 = 1 ⊕ 15 (8.183)

⊗ = s ⊕

and

4 ⊗ 4 ⊗ 4 = 20 ⊕ 20′ ⊕ 20′ ⊕ 4 (8.184)

⊗ ⊗ = ⊕ ⊕ ⊕

In terms of the subgroup SU (3)f ⊗ SU (2)c, we have the following decompo-
sitions

15 = (8, 0) ⊕ (1, 0) ⊕ (3, 1) ⊕ (3,−1) ,

20′ = (8, 0) ⊕ (6, 1) ⊕ (3, 1) ⊕ (3, 2) ,

20 = (10, 0)⊕ (6, 1) ⊕ (3, 2) ⊕ (1, 3) .

(8.185)

We see that the SU (3) meson octets and nonets fit into 15, the baryon octets
into 20′ and the baryon decuplets into 20; these SU(4) multiplets contain
various charmed SU (3) multiplets. In particular, the representations 20′ of the
1
2

+
baryon octet and 20 of the 3

2

+
baryon decuplet are reported in Fig. 8.13

and Fig. 8.14, respectively.
Concerning mesons, we limit ourselves to illustrate the classification of

mesons in the 15-multiplet. The lower 0− meson states are indicated in
Fig. 8.15, following the usual35 nomenclature adopted for the charmed states.

35 The Review of Particle Physics; C. Amsler et al., Phys. Lett. B 667, 1 (2008).
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Fig. 8.15. Meson 15-multiplet of SU(4).

The vector 1− mesons, as the 0− ones, can be fitted into the 15-multiplet.
We denote by F ∗, D∗, F

∗
, D
∗

the vector counterparts of the pseudoscalar
mesons F , D, F , D indicated in figure. The Q = Y = 0 members of the 1⊕15
multiplet are of particular interest, because of their relevance with the J/ψ
and the particles of the same family. We define the vector states

ω′1 = 1
2
(uu+ dd+ ss+ cc) ,

ω8 = 1√
6
(uu+ dd− 2ss) ,

ω15 = 1
2
√

3
(uu+ dd+ ss− 3cc) .

(8.186)

The following mixing between ω15 and ω′1

ω1 = sin θ′ ω15 + cos θ′ ω′1 ,

ψ = cos θ′ ω15 − sin θ′ ω′1
(8.187)

gives rise, with sin θ′ = 1
2

, to a pure cc state and an SU(3) singlet ω1:

ψ = cc ,

ω1 = 1
2ω15 +

√
3

2 ω
′
1 .

(8.188)

Moreover, by combining ω1 and ω8 according to the ideal mixing, one can
finally obtain the states given in Eq. (8.158), which we rewrite here:

ω = 1√
2
(uu+ dd) ,

φ = ss .
(8.189)

One can say that the above situation corresponds to an ideal mixing also in
SU(4); the IR’s 1 and 15 have to be considered together and one has a 16
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multiplet of vector mesons. The new bosons of the J/ψ family are interpreted
as bound cc states; since they have C = 0, one can refer to them as hidden
charm states.

In conclusion, a simple look at Table 8.11 indicates that the SU (2) symme-
try, which involves the quarks u, d, is a good symmetry, only slightly broken by
the small mass difference of the two quarks. The mass differences are greater
in the case of the three quarks u, d, s involved in SU (3), but, since they are
smaller than the typical hadron scale, the symmetry is approximate but still
useful in relating different properties of hadrons, as discussed in the previous
sections.

Going beyond SU(3) can be useful mainly for hadron classification, since
the quark mass differences are very large and the hypothetical symmetries
SU(n) with n > 3 are badly broken. On one hand, investigations on hadron
spectra are performed for classifying mesons and baryons with beauty (i.e.
with a constituent bottom quark)36. On the other hand, several theoretical
models, based on different groups, have been formulated with the attempt of
reproducing the quark mass spectrum, which is part of the so-called flavor
problem. However, up to now, the success is rather limited.

A more successful approach was obtained in the unification of the funda-
mental interactions, going from global to local gauge groups, in the frame of
quantum field theory. The main result of this approach will be illustrated in
the next Chapter.

Problems

8.1. Assuming charge independence, determine the ratio of the cross-sections
relative to the two processes

p+ d → π0 + 3He , p+ d → π+ + 3H ,

where the deuteron d is taken as iso-singlet and (3He, 3H) as iso-doublet.

8.2. Express the amplitudes for the processes

π+π+ → π+π+ , π+π− → π+π− , π+π− → π0π0 , π0π0 → π0π0 ,

in terms of the indepemdent isospin amplitudes.

8.3. Find the expression of the SU (2) generators in the three-dimensional
IR starting from their expression in the two-dimensional IR (Ii = 1

2
σi) and

making use of Eq. (8.37).

36 The heavy bottom quark b has been included in an SU(4) group based on the

subset of quarks (u, d, s, b) for the classification of the 1
2

+
baryons with beauty in

a 20′ multiplet. Recently, the Ω−
b (ssb) state has been observed: V.M.Arbazov et

al., The DO Collaboration, Phys. Rev. Lett. 101, 232002 (2008).
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8.4. From the usual form of the matrix elements of the SU(2) generators in
the three-dimensional representation

(Ii)jk = −iǫijk
obtain the basis in which I3 is diagonal and the basic elements are identified
with the pion states π+, π0, π−. By constructing the raising and lowering
operators I±, show that

I±π
0 =

√
2π±.

8.5. Prove the decomposition into IR’s of the direct products 8 ⊗ 8, 8 ⊗ 10,
10 ⊗ 10 given in Eq. (8.81), and give the SU(2)I ⊗ U(1) content for each IR.

8.6. Introduce the shift operators

I± = I1 ± iI2 , U± = U1 ± iU2 , V± = V1 ± iV2 .

Find their commutation relations and their action on the relevant states.
Use them to obtain Eq. (8.124), i.e. the combinations of Σ0 and Λ0 which
correspond to Σ0

u and Λ0
u.

8.7. From U-spin invariance derive the relation between the amplitudes of the
decays

π0 → 2γ , η0 → 2γ .

8.8. Derive explicitly the ω − φ mixing angle θ (Eq. (8.157)) and show that
it can be related to the branching ratio of the decays

ω → e+e− , φ→ e+e− .

8.9. Find explicitly, on the basis of U-spin invariance, the relations reported
in Eq. (8.167), i.e.

µn = 3
2µΛ0 − 1

2µΣ0 , µΣ0 − µΛ0 = 2√
3
µΛ0Σ0

8.10. Find the eigenvalue of the Casimir operator F 2 =
∑
i FiFi for the ad-

joint IR of SU (3). Use this eigenvalue to verify Eq. (8.145).

8.11. From the definition of the Fk and Dk matrices (Eqs. (8.137), (8.138)),
verify Eqs. (8.92), (8.139), (8.140).

8.12. A particular version of the quark model assumes a very strong binding
in the symmetric S-wave qq (diquark) state. What are the consequences of
this hypothesis on the spectrum of baryons in the frame of the SU(6) model?
Discuss also the meson states obtained by combining a diquark with an an-
tidiquark.

8.13. Discuss the classification of the low-lying meson and baryon states in
term of SU(8), which includes SU(4) and the spin group SU(2)S .

8.14. Consider the group SU(4) for the classification of the 1
2

+
hadrons con-

taining the quarks u, d, s, b and compare with what is described in Subsec-
tion 8.6.3 for charmed hadrons. How have Eqs. (8.180) and (8.181) to be
modified?
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Gauge symmetries

In this Chapter we examine the gauge groups, in which the parameters of the
group transformations are continuous functions of the space-time coordinates;
in other words, the global transformations considered up to now, in which the
group parameters are space-time constants, are replaced by local ones. The
gauge groups are extensively used in quantum field theory and, specifically,
in the field theory of elementary particles.

9.1 Introduction

In the previous chapter we have considered in details some examples of uni-
tary symmetries based on groups of global or rigid transformations: in this
case the group parameters are constant in space-time and the transformations
produce a rigid and simultaneous change in the whole space-time domain in
which the physical system is defined. We showed that the use of this kind of
transformation groups was extremely fruitful in the investigation of the sym-
metry properties of the fundamental interactions and in the classification of
the elementary and compound particles. However, the invariance under such
transformations is not sufficient to build a dynamical theory of elementary
particles, in which one can evaluate cross sections for different processes and
lifetimes for different decay modes. For this purpose, the introduction of a
new kind of transformations, the so-called gauge transformations, was of fun-
damental importance.

The promotion of global to local transformations has deep implications,
as we shall see in the following. Our considerations will be formulated in the
frame of field theory, mainly at the classical level; specific problems require the
use of quantum field theory, but we shall limit ourselves to a simple treatment,
quoting convenient references for more details. The invariance under gauge
transformations requires the introduction of gauge vector fields, which are
interpreted as the quanta mediating the interactions among the fermions that
are the fundamental constituents of matter. We know that there are four kinds

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 169
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9_9, 
© Springer-Verlag Berlin Heidelberg 2012
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of fundamental interactions: electromagnetic, weak, strong and gravitational,
but only the first three are relevant for particle physics, below the Planck
energy scale1.

As a first example of gauge field theory we shall consider the case of Quan-
tum Electrodynamics (QED), which is based on the Abelian group U (1)Q; it
contains a single gauge vector field, which represents the photon. QED is a
very successful theory, which has been tested with very high precision, since
the theoretical calculations, based on higher order radiative corrections, have
been matched by increasingly accurate experiments.

It is not surprising that a description of the other interactions of elemen-
tary particles requires to replace the group U(1) by larger gauge groups which
allow more vector particles. It is natural to go from the group U(1) to non-
Abelian groups, and this generalization produces profound changes. Among
the non-Abelian gauge field theories, first introduced by Yang and Mills2, we
shall examine the case of Quantum Chromodynamics (QCD), which is based
on the gauged version of the color SU(3)c group, considered in the previous
chapter. QCD describes the strong interactions of quarks, mediated by eight
vector bosons called gluons, which correspond to the eight generators of SU(3).
It is believed that these gauge symmetry is exact and remains unbroken at
least up to extremely high energies.

Another kind of symmetry was discovered from the study of condensed
matter and it was very important in the understanding of the nature of weak
interactions. It is based on the mechanism of the so-called spontaneous sym-
metry breaking (SSB), an expression which refers to the following situation:
the Lagrangian of the system is invariant under a specific gauge symmetry, but
the solutions of the equations of motion (in particular, the lowest energy state,
i.e. the vacuum) possess a lower symmetry. In this process, some of the fields,
including the gauge vector bosons, which are massless in the Lagrangian, will
acquire a mass.

The mechanism was applied to the process of unification of the fundamen-
tal interactions. In the so-called Standard Model, weak and electromagnetic
interactions have been unified at a certain energy scale, called Fermi scale3, of

1 The Planck scale is related to the Newton gravitational constant GN . It indicates
the order of magnitude of the energy at which gravitational interactions become
of order 1:

GNM
2/r

Mc2
∼ 1 . (9.1)

This implies, assuming for r the natural unit of lenght, r = h̄/Mc,

MPlanck =
(GN

h̄c

)− 1
2 = 1.22 × 1019 GeV . (9.2)

2 C.N. Yang, R. Mills, Phys. Rev. 96, 191 (1954).
3 The Fermi scale is related to the Fermi coupling constant of weak interactions:

(GF )−1/2 = 3.4 × 103 GeV.
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the order of 103 GeV, in a gauge field theory based on the group SU (2)⊗U(1).
It contains four vector fields, three of which acquire mass through the SSB
mechanism and they correspond to the vector bosons mediating the weak
interactions; the fourth remains massless and describes the photon.

There are theoretical speculations and some experimental hints that the
electroweak and the strong interactions may be unified at a much higher en-
ergy scale, and several Grand Unified Theories, based on larger gauge groups,
have been proposed. After a discussion of the Standard Model, the simplest
example of grand unification will be considered at the end of the Chapter.

9.2 Invariance under group transformations and
conservation laws

Before going to the specific gauge theories which describe the different particle
interactions, we want to re-examine in more detail the invariance properties
of physical systems under group transformations and their connection with
conservation laws, that we have already considered in Chapter 8.

The correspondence between conservation laws and symmetry properties
represents one of the major outcomes of the applications of group theory to
physics. The invariance of the laws of nature under space translations of the
coordinate frame of reference leads to the conservation of momentum, while
their invariance with respect to time translation leads to the conservation
of energy. Invariance under rotation of the coordinate system about an ar-
bitrary axis implies the conservation of angular momentum. Equivalence of
left-handed and right-handed coordinate systems leads to conservation of par-
ity. Equivalence of all frames of reference in uniform relative motion leads to
the Lorentz transformations and to the laws of special relativity.

All these symmetries and invariance properties are of geometrical kind.
In particle physics, the so-called internal symmetries cannot be described
in geometrical terms, but they are extremely important in relating observed
particle states to representations of certain Lie groups, and in connecting
some dynamical aspects of particle interactions. The analysis of this kind of
symmetries and their relevance for the study of elementary particles has been
the main subject of Chapter 8.

The relationship between symmetries and conservation laws is expressed,
in mathematical terms, by the well-known Noether’s theorem. We reproduce
the main steps of the proof of the theorem in classical field theory, in view of
the applications considered in the next sections.

Let us consider a physical system described by a Lagrangian L; in a lo-
cal field theory, L is expressed as a spatial integral of a Lagrangian density
L(φ, ∂µφ), which is a function of a single field4 φ(x) and its derivatives ∂µφ(x).

4 The extension to the case of more fields is straightforward; see J.D. Bjorken,
S.D. Drell, Relativistic Quantum Fields, McGraw-Hill Book Company (1965).
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The fundamental quantity is the action5, defined by

S =

∫
Ldt =

∫
L(φ, ∂µφ)d4x . (9.3)

According to the principle of least action, the evolution of the system between
two times t1 and t2 corresponds to an extremum (normally a minimum), i.e.

δS = 0 . (9.4)

This condition gives rise to the Euler-Lagrange equation, which is the equation
of motion of the system:

∂µ

(
∂L

∂(∂µφ)

)
− ∂L
∂φ

= 0 . (9.5)

Noether’s theorem is based on the analysis of the continuous transforma-
tion of the field φ(x); an infinitesimal variation can be written as

φ(x) → φ′(x) = φ(x) + δφ(x) , (9.6)

where δφ(x) is an infinitesimal deformation of the field. This transformation is
a symmetry of the system if it leaves the action (9.3), and therefore the Euler-
Lagrange equation, invariant. However, the principle of least action, Eq. (9.4),
does not require δL = 0 since a sufficient condition is that δL is equal to a
four-divergence:

δL(x) = ∂µIµ(x) . (9.7)

In fact, the four-divergence gives rise, in the four-dimensional integral of
Eq. (9.3), to a surface term which does not affect the derivation of the Euler-
Lagrange equation6. Specifically, one gets

δL =
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ) =

(
∂L
δφ

− ∂µ
∂L

∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
.

(9.8)
The first term in the above equation corresponds to the Euler-Lagrange equa-
tion and therefore is equal to zero. Then, taking into account Eq. (9.7), we
can identify the second term with ∂µIµ obtaining the current

jµ(x) =
∂L

∂(∂µφ)
δφ− Iµ , (9.9)

which satisfies the condition

5 For a detailed discussion, we refer to: M.E. Peskin, D.V. Schrőder, An Introduction
to Quantum Field Theory, Addison-Wesley Publishing Company (1995).

6 The surface contribution vanishes by appropriate boundary conditions of the field
φ(x) and its derivatives. See e.g.: J.D. Bjorken and S.D. Drell, Relativistic Quan-
tum Fields, McGraw-Hill Book Company (1965).
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∂µj
µ(x) = 0 . (9.10)

The vanishing of the four divergence of jµ leads to a conservation law in
integral form, since the quantity

Q =

∫
j0(x)d3x , (9.11)

where the integral is carried over all the space, is constant in time. In fact, by
integration of Eq. (9.10) over all the space, one gets

dQ

dt
=

∫
∂0j

0(x)d3x = −
∫

∇ · j(x)d3x = 0 . (9.12)

It is useful to consider a couple of specific examples.

A - Space-time translation
In this case, the infinitesimal transformation is

xµ → xµ + ǫµ , (9.13)

where ǫµ is an infinitesimal constant four-vector. The corresponding variation
of the field φ is given by

δφ(x) = φ(x+ ǫ) − φ(x) = ǫµ∂µφ(x) . (9.14)

The Lagrangian density L is a scalar, so that one gets in a similar way

δL = ǫµ∂µL = ǫν∂µ(g
µ
νL) . (9.15)

By inserting the two previous quantities into Eq. (9.8), we obtain:

∂µT
µν = 0 , (9.16)

with

T µν =
∂L

∂(∂µφ)
∂νφ− gµνL . (9.17)

This expression is called the energy-momentum tensor. One of the conserved
quantity is the Hamiltonian H of the system (φ̇ ≡ ∂0φ):

H =

∫
T 00d3x =

∫ (
∂L
∂φ̇

φ̇− L
)
d3x , (9.18)

which corresponds to the total energy. The other three conserved quantities
(i = 1, 2, 3)

P i =

∫
T 0id3x = −

∫
∂L
∂φ̇

∂iφ d3x (9.19)

are interpreted as the components of the linear momentum P.
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B - Phase transformation
In the case of a complex field φ, the Lagrangian density is hermitian and then
invariant under the phase transformation:

φ→ eiαφ, φ∗ → e−iαφ∗ , (9.20)

where α is a real constant. For an infinitesimal value of α one has:

δφ = iαφ, δφ∗ = −iαφ∗ . (9.21)

The Lagrangian density of a complex scalar field is given by

L = ∂µφ
∗∂µφ− µ2φ∗φ , (9.22)

from which, making use of Eq. (9.5), one gets the Klein-Gordon equation
(compare with Eq. (7.17)):

( +µ2)φ(x) = 0 .. (9.23)

One can easily check that the four-divergence of the current

jµ = i(φ∗∂µφ− φ∂µφ∗) (9.24)

is zero, and the conserved ”charge” (constant in time) is given by:

Q = i

∫
(φ∗φ̇− φ φ̇∗)d3x . (9.25)

It is also useful to consider the case of the spinor Lagrangian density

L = ψ(x)(iγµ∂µ −m)ψ(x) , (9.26)

where ψ(x) = ψ†(x)γ0. It gives rise to the Dirac equation, already considered
in Eq. (7.79):

(iγµ∂µ −m)ψ(x) = 0 , (9.27)

and to the equation for the conjugate spinor

ψ(x)(iγµ
←
∂ µ +m) = 0 . (9.28)

In this case the ”conserved” current is

jµ(x) = ψ(x)γµψ(x) , (9.29)

and the conserved charge is:

Q =

∫
ψ†(x)γµψ(x)d3x . (9.30)
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9.3 The gauge group U(1) and Quantum
Electrodynamics

In Section 8.3 we have examined a few examples of conserved quantum num-
bers based on the global symmetry U(1). We want to discuss here the deep
implications of promoting U(1) to a local symmetry, i.e. to a continuous set
of local phase transformations.

In order to explain the main difference in going from global to local trans-
formations, we consider a simple example taken from quantum field theory.
We start from the Lagrangian density (9.26)

L0(x) = ψ(x)(iγµ∂µ −m)ψ(x) , (9.31)

where ψ(x) stands here for the free electron field. If α is a real constant, L0(x)
is invariant under the global phase transformation

ψ(x) → eiαψ(x) , (9.32)

the conjugate transformation being applied to the conjugate field ψ(x) =
ψ†(x)γ0. It is well known that this invariance leads to the conservation of an
additive quantum number, which is identified with the total electric charge
(9.30).

The invariance no longer holds if the constant α is replaced with a function
α(x) depending on the space-time co-ordinate x. Invariance under the local
transformation

ψ(x) → eiα(x)ψ(x) , (9.33)

would require a peculiar modification in Eq. (9.31): the usual derivative has
to be replaced with the so-called covariant derivative Dµ

∂µψ(x) → Dµψ(x) = [∂µ − ieAµ(x)]ψ(x) , (9.34)

where e is the absolute value of the electron charge and Aµ(x) a four-vector
field which is assumed to transform according to

Aµ(x) → Aµ(x) +
1

e
∂µα(x) . (9.35)

At the level of the Lagrangian, this corresponds to the addition of an interac-
tion term,

eψ(x)γµψ(x)Aµ , (9.36)

which couples the electron current to the four-vector field Aµ(x), to be inter-
preted as the electromagnetic potential. In order to complete the expression
of the Lagrangian density, one has to add the free electromagnetic term

Lem0 = − 1
4Fµν(x)F

µν (x) , (9.37)

where
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Fµν = ∂µAν − ∂νAµ (9.38)

is the electromagnetic field tensor, thus obtaining the complete Lagrangian
density in the form

L(x) = ψ(x)(iγµ∂µ −m)ψ(x) − 1
4Fµν(x)F

µν (x) + eψ(x)γµψ(x)Aµ. (9.39)

This is nothing else that the well-known Lagrangian density of a charged
spinor field interacting with the electromagnetic field, i.e. the Lagrangian of
Quantum Electrodynamics (QED), which is clearly invariant under the gauge
transformations (9.33) and (9.35). It is important to point out that a mass
term of the type m2AµA

µ would break the gauge symmetry and then it is not
allowed, in agreement with the fact that the field Aµ represents the photon,
which is massless.

In conclusion, the example of QED teaches us that, while the invariance
under the global transformation (9.32) implies the conservation of the elec-
tric charge, the invariance under the local transformation (9.33) requires the
introduction of a massless vector field which plays the role of carrier of the
interaction. Let us note that this result,in the case of QED, is to some extent
tautological, since it does not add anything new to the theory: the introduc-
tion of the covariant derivative of Eq. (9.34) is nothing else that the quantum
form of the substitution pµ → pµ−eAµ, which introduces the electromagnetic
interaction at the classical level. But the relevant point is that the approach
of requiring local gauge invariance is the general way of introducing the in-
teraction in terms of new vector fields also in those cases in which a classical
counterpart of the interaction does not exists. We will see the consequences
of this approach in the next Sections.

9.4 The gauge group SU(3) and Quantum
Chromodynamics

The conclusion reached in the previous Section can be extended to a more
general case. Let us consider a quantum field theory which is invariant under
a gauge group G, i.e. the group transformations are imposed locally. It can be
shown that, if the group G is of order r, i.e. if it has r generators, then the
invariance under the local transformations of G requires the introduction of
r massless vector fields, transforming as the adjoint representation of G. We
shall not reproduce the proof of this theorem here, but we refer to specific
textbooks for details7. In general, the group G is non-Abelian and this fact
implies profound changes in the corresponding field theory, with respect to
the Abelian case of QED. Non-Abelian gauge theories, the first of which was

7 See e.g. M.E. Peskin, D.V. Schrőder, An Introduction to Quantum Field Theory,
Addison-Wesley Publishing Company (1995).



9.4 The gauge group SU(3) and Quantum Chromodynamics 177

built by Yang and Mills8, have been extensively used in particle physics, as
we shall see in the following.

In this Section we apply the above rule to the color group SU(3)c. We saw
in Subection 8.6.1 that the introduction of the color group solves the puzzle of
quark statistics, but it does not solve a further puzzle: why all hadron states
are color singlets, and there is no evidence of hadrons with open color? Or,
in other words, why quarks are always bound in colorless hadrons states and
do not appear as free particles? The quantum field theory based on the color
group SU(3)c, and called for this reason Quantum Chromodynamics (QCD),
provides a reasonable solution to this puzzle, even if it cannot be considered
yet as a rigorous proof 9.

In the following, we summarize some of the main properties of QCD10,
which is the present theory of strong interactions. The Lagrangian density for
the free quark fields is a simple generalization of Eq. (9.31):

L0(x) =
∑

j

qj(x)(iγµ∂µ −mj)q
j(x) , (9.40)

where the sum is over the quark flavors (j = 1, 2, ...6) and q denotes a triplet
of SU(3)c

q =



q1
q2
q3


 . (9.41)

L0 is invariant under the global transformation

q(x) → Uq(x) , (9.42)

where U is an element (3 × 3 matrix) of SU(3)c.
However, if one imposes that SU(3)c is a group of local gauge transforma-

tions
q(x) → U(x)q(x) , (9.43)

the group elements become functions of x, and they can be written explicitly
in terms of the λ matrices (8.85) and of 8 real functions αk(x)

U(x) = exp
{
i
∑

k

αk(x)λk

}
. (9.44)

The invariance under these local transformations requires the introduction of
8 real fields called gluons and denoted by Gαµ(x), where µ is the Lorentz index

8 C.N. Yang and R.Mills, Phys.Rev.96, 191 (1954).
9 M.E. Peskin, D.V. Schrőder, quoted ref.; S.Weinberg, The Quantum Theory of

Fields - Vol. II. Modern Applications, Cambridge University Press, (1996).
10 D.J. Gross and F. Wilczek, Phys.Rev. D8, 3633 (1973); H. Frizsch and M. Gell-

Mann, Proceed. of the XVI Intern. Conf. on High Energy Physics, Chicago (1972).
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and α specifies the elements of an octet of SU(3)c. They can be included in a
3 × 3 Hermitian traceless matrix, defined by

Gµ(x) =
∑

α

Gαµ(x) 1
2λα = G†µ(x) . (9.45)

The gauge invariant Lagrangian density is given by the following expression

L(x) =
∑

j

q̄j(x)(iγµDµ −mj)q
j(x) − 1

2
Tr(GµνG

µν) , (9.46)

where Dµ is the covariant derivative

∂µ → Dµ = ∂µ + igsGµ(x) , (9.47)

and gs denotes the strong coupling constant between quarks and gluons. The
last term in Eq. (9.46) contains the field strength Gµν , given by

Gµν = ∂µGν − ∂νGµ + igs[Gµ, Gν ] , (9.48)

where the presence of the commutator is a consequence of the non-Abelian
character of the gauge group. One can show that the above expression is
invariant under the transformations

qj(x) → U(x)qj(x) , (9.49)

and

Gµ(x) → U(x)Gµ(x)U†(x) +
i

gs
(∂µU(x))U †(x) . (9.50)

It is instructive to make a comparison between QCD, which is a non-
Abelian gauge field theory based on the group SU (3), and QED, Abelian
gauge theory based on the group U (1). For this comparison, it is useful to
re-write Eqs. (9.46) and (9.48) in a more explicit form:

L(x) =
∑

j

qj(x)
[
iγµ(∂µ + igsG

α
µ(x)1

2
λα) −mj

]
qj(x) − 1

4
Gαµν(x)G

µν
α (x) ,

(9.51)
and

Gαµν = ∂µG
α
ν (x) − ∂νG

α
µ(x) − gsfαβγG

β
µ(x)G

γ
ν (x) . (9.52)

The main difference is the following: while photons are electrically neutral
and therefore there is no direct coupling among themselves in the Lagrangian,
gluons are color octets, they carry color charges and there are direct couplings
among them in the Lagrangian. The quark-gluon and gluon-gluon couplings
are represented in Fig. 9.1; we note that only the first coupling has a QED
analogue, while there are no analogues for the two others. This feature, which
is a consequence of the different properties of the two gauge groups, makes
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gab

q
a

q
b

gab

gca

gbc

gca

gab

gac

gba

Fig. 9.1. Gluon vertices in QCD. Since gluons are color-anticolor pairs, also three-
gluons and four-gluons vertices are present, besides the qqg vertex, analogous to the
qqγ vertex in QED. Color indices are also indicated.

a big difference between electron and quark interactions in their high energy
behavior.

In order to understand this fact, one should analyze the renormalization
properties of the two couplings: the electric charge e and the strong coupling
gs. We shall not perform here a detailed analysis, which is outside the scope
of this book, but limit ourselves to a simple semi-qualitative discussion. It is
well known that the bare coupling constants which appear in the Lagrangians
are renormalized by higher order corrections, so that one has to deal with
effective couplings which depend on the energy scale, or better on the mo-
mentum transfer q2 = −µ2. Then the coupling constants are replaced by
running couplings11. While a generic coupling g(µ2), which is a function of
µ2, is logarithmically divergent when evaluated in perturbation theory, the
difference of its values at two different scales is finite:

g(µ2) − g(µ′2) = finite . (9.53)

A change in scale is called scale or conformal transformation; the set of these
transformations is called renormalization group12. It was first realized by Gell-
Mann and Low13 that, by changing the effective energy scale from a value µ,
one can define the theory at another scale, and it is a similar replica of itself.
One obtains the so-called renormalization group equation14

dg

d lnµ
= β(g), (9.54)

and the important point is that the function β(g) depends only on the pa-
rameters of the theory, such as the couplings, but not on the scale µ. The

11 See e.g. F. Halzen, A.D. Martin, Quarks and Leptons: An Introductory Course in
Modern Particle Physics, John Wiley & Sons (1984); M.E. Peskin, D.V. Schrőder,
quoted ref.; S. Weinberg, quoted ref.

12 N.N. Bogoliubov and D.V. Shirkov, The Theory of Quantized Fields, Interscience,
New York (1959).

13 M. Gell-Mann and F. Low, Phys. Rev. 95, 1330 (1954).
14 H. Georgi, H.R. Quinn, S. Weinberg, Phys. Rev. Lett. 33, 451 (1974).
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function β(g), evaluated by a perturbative calculation at the lowest order for
g(µ2) ≪ 1, is given by

β(g) =
1

4π
bg3 +O(g5), (9.55)

where the coefficient b is determined by the structure of the gauge group and
by the group assignment of the fields of the theory. From Eqs. (9.54), (9.55)
and with the definition

α(µ2) =
g2(µ2)

4π
, (9.56)

we obtain the equation which gives the variation of the coupling with the
squared momentum

1

α(Q2)
=

1

α(µ2)
− b ln

Q2

µ2
, (9.57)

where, for the sake of convenience, we have introduced the positive quantity
Q2 = −q2.

Let us consider a fixed value of µ2 while varying Q2. In the case b > 0, the
coupling α(Q2) increases logarithmically with Q2. Specifically, in the case of
QED, one gets for the electromagnetic coupling αem:

1

αem(Q2)
=

1

αem(µ2)
− 1

3π
ln
Q2

µ2
. (9.58)

The effective electric charge increases with Q2, i.e. with decreasing distance.
This result can be interpreted in the following way: the bare charge is screened
by the presence of virtual e+e− pairs, but going to smaller distances one
penetrates the polarization cloud and the screening effect is reduced. The
variation of αem with Q2 is very small: from the low-energy value of the fine-
structure constant α ≈ 1

137
, one gets the value ≈ 1

128
at Q ≈ 250 GeV; this

behavior has been tested experimentally.
In the case b < 0 we get instead

lim
Q2→∞

α(Q2) → 0 , (9.59)

which means that, by increasing Q2, and correspondingly the energy, the
coupling decreases and tends to zero for Q2 → ∞. This situation is called
asymptotic freedom, and it is what happens in the case of QCD15. In this
case, the coefficient b in Eq. (9.57) is given by b = 7/4π, so that one obtains
for the strong interaction coupling αs = g2

s/4π :

1

αs(Q2)
=

1

αs(µ2)
+

7

4π
ln
Q2

µ2
. (9.60)

15 D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973); H.D. Politzer, Phys.
Rev. Lett. 30, 1346 (1973).
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In conclusion, the coupling αs(Q
2) decreases with increasing Q2, so that,

for high Q2 (i.e. short distances), perturbation theory is valid. This peculiar
feature has been confirmed by the deep inelastic scattering of high-energy
electrons and neutrinos by protons. At high energy, the proton reveals its
structure: it is made of free point-like constituents, called partons, which are
valence quarks, virtual quark-antiquark pairs and gluons (for a review see for
instance ref16).

On the other hand, for very small Q2 values (i.e large distances), the
coupling αs becomes very strong, and this explains the impossibility of pulling
quarks apart. This behavior would explain the confinement of colored quarks
inside hadrons; perturbation theory cannot be used, but this conjecture is
supported by lattice calculations. The Q2 dependence of αs has been checked
experimentally.

9.5 The mechanism of spontaneous symmetry breaking

The approach followed for the construction of the field theory of strong in-
teractions cannot be applied, even with the appropriate modifications, to the
case of weak interactions.

It was well known that the original Fermi theory of weak interactions is not
renormalizable. Even if one assumes that the weak interactions are mediated
by massive intermediate vector bosons, the theories one can build are, in
general, not renormalizable. The condition for building a gauge theory, as in
the cases of QED and QCD, is that the gauge vector bosons are massless, but
this appears to be in contrast with the short range nature of weak interactions
which requires the exchange of heavy bosons.

It was only by means of the so-called mechanism of spontaneous symmetry
breaking (SSB) that the solution of the problem was found. This mechanism,
first introduced by Higgs17 for explaining specific phenomena occurring in
condensed matter physics, was the new key ingredient for building a renor-
malizable field theory of weak interactions.

Before applying this mechanism to the realistic case, we prefer, for didactic
reasons, to consider two simple examples in order to illustrate the central
point of the mechanism without being involved with other, non essential,
technicalities.

9.5.1 Spontaneous symmetry breaking of a discrete symmetry

Let us consider the Lagrangian density of a real scalar field,

L = T − V = 1
2∂µφ∂

µφ− V (φ) , (9.61)

16 G. Sterman et al., Rev. Mod. Phys. 67, 157 (1995)
17 P.W. Higgs, Phys. Rev. Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966).
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where V (φ), usually called potential, contains the mass and the self-interaction
terms. In its simplest form, it is given by

V (φ) = 1
2µ

2φ2 + 1
4λφ

4 , (9.62)

with λ > 0 to ensure the existence of a spectrum of stable bound states. Due
to the form of the potential, the Lagragian is seen to satisfy the reflection
symmetry φ→ −φ. In general, we can assume this symmetry property for the
Lagrangian and consider the potential (9.62) as the first two terms of a power
expansion of a generic V (φ).

We want to analyze the properties of the ground state, i.e. the lowest
energy state of the system, which corresponds to the vacuum state.

In the case µ2 > 0, the behavior of the potential is given in Fig. 9.2:
the Lagrangian (9.61) describes a scalar field of mass µ, with the ground state
identified by φ = 0. The excited levels can be obtained through a perturbative
expansion around φ = 0, and are related to the self-interaction term 1

4λφ
4,

which corresponds to the minimal coupling, represented by a four-particle
vertex. The reflection symmetry is manifest.

V(φ)

φ

Fig. 9.2. Case of a discrete symmetry: the potential V (φ) for µ2 > 0.

The situation is, however, completely different if we assume µ2 < 0. The
term 1

2
µ2, in fact, cannot be interpreted as a mass term, and the potential,

on the basis of the minimum condition

∂V (φ)

∂φ
= φ(µ2 + λφ2) = 0 , (9.63)

exhibits now two minima, located at

φmin = ±v with v =

√
−µ

2

λ
, (9.64)

whereas φ = 0 is now a relative maximum. The behavior of V (φ) for µ2 < 0
is reported in Fig. 9.3.
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V(φ)

φ-v v

Fig. 9.3. Case of a discrete symmetry: the potential V (φ) for µ2 < 0.

If now we want to describe the spectrum of the system, we have to choose
one of the two minima as ground state and then perturb the system starting
from the minimum we have chosen. Let us choose for example φ = +v as
ground state and shift the field φ(x) in such a way that the ground state
occurs at the zero of the new field η(x):

φ(x) → η(x) + v . (9.65)

By applying the shift (9.65) to the Lagrangian density (9.61), we find for it
the new form

L′ = 1
2∂µη∂

µη − v2λη2 − vλη3 − 1
4λη

4 + constant terms . (9.66)

Considering now L′ as the Lagrangian which describes the system, one can
see that the new field η(x) has the mass

mη =
√

2v2λ =
√

−2µ2 . (9.67)

since the term η2 exhibits the right sign. Moreover, it is possible, at least in
principle, to derive the spectrum of the physical states through a perturbative
expansion, taking η(x) = 0 as the physical ground state (vacuum) of the
system.

Seemingly, the reflection symmetry is lost in L′, since it contains a term
η3, which changes its sign under the reflection η(x) → −η(x). However, the
change of variables from φ(x) to η(x) has no physical relevance, but the initial
symmetry of the Lagrangian density L is no longer manifest in L′. It is usual to
say that the symmetry is hidden; its only manifestation is the relation among
the coefficients of the three terms of the potential in L′, which depend only
on the two parameters µ2 and λ of the potential in Eq. (9.61). In fact, the
Lagrangian densities L and L′ are completely equivalent; it is only the specific
choice of the ground state that breaks the symmetry, and this is called the
mechanism of spontaneous symmetry breaking. For a clarification of this point
we refer to the next subsection, where the present situation is generalized to
the case of a continuous symmetry.
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9.5.2 Spontaneous symmetry breaking of a continuous global
symmetry

Let us consider now the case in which the symmetry is a continuous global
symmetry, as in the model corresponding to the scalar version of the spinor
electrodynamics, described in Sect. 9.3. We start then with the Lagrangian
density (9.22) of a complex scalar field φ(x), to which we add a self-coupling
term:

L = (∂µφ)∗(∂µφ) − µ2φ∗φ− λ(φ∗φ)2 . (9.68)

This Lagrangian is invariant under the global transformations of the group
U(1)

φ(x) → eiα φ(x) , φ∗(x) → e−iαφ∗(x) , (9.69)

and we know that this invariance property gives rise to an additive conserved
quantity, usually interpreted as the electric charge of the system.

As in the case of a discrete symmetry, it is useful to define the last two
term in Eq. (9.68) as the potential of the system:

V (φ) = µ2|φ|2 + λ|φ|4 . (9.70)

In the case µ2 > 0, the usual minimum of the potential, obtained from the
equation

dV

d|φ| = 2µ2|φ| + 4λ|φ|3 = 0 , (9.71)

is given by |φ|min = 0, as it is shown in Fig. 9.4.

V(φ)

φ
1

φ2

Fig. 9.4. The potential V (φ) for µ2 > 0.

However, if the peculiar case µ2 < 0 were occurring, |φ| = 0 would become
a relative maximum and the minimum would be obtained for

|φ|2min = −µ
2

2λ
. (9.72)
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In fact, as it is shown in Fig. 9.5, the above equation represents a continuum
set of solutions, since the phase of φ at the minimun is completely arbitrary:

φmin = |φ|mine
iγ . (9.73)

The case µ2 < 0 is not unrealistic, since the renormalization procedure re-
places the constant µ2 appearing in the Lagrangian density (9.68) by a func-
tion µ2(Q2), which can change its sign at a certain energy scale.

V(φ)

φ1

φ2

η
ξ

Fig. 9.5. The potential V (φ) for µ2 < 0.

The solution given by Eq. (9.73) represents an infinite set of degenerate
vacuum states: the choice of a particular vacuum state gives rise to sponta-
neous symmetry breaking. Since the Lagrangian (9.68) is invariant under the
phase transformations (9.69), any specific value of γ is equally good and, for
the sake of convenience, we choose the value γ = 0. Then, by writing

φ =
1√
2
{φ1(x) + iφ2(x)} , (9.74)

the minimum of the potential is given by

(φ1)min =

√
−µ2

λ
≡ v . (9.75)

The quantity v is called vacuum expectation value (v.e.v.) of the scalar field.
As in the case of the discrete symmetry, we shift the two fields φ1, φ2 according
to our choice of the minimum:

φ1(x) = η(x) + v ,

φ2(x) ≡ ξ(x) ,
(9.76)

and the Lagrangian density L of Eq. (9.68) takes the form
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L′ = 1
2
∂µη∂

µη+ 1
2
∂µξ∂

µξ− 1
2
(−2µ2)η2− 1

4
λ(η2 +ξ2)2−λv(η2 +ξ2)η . (9.77)

The Lagrangian densities L and L′ given in Eqs. (9.68) and (9.77) are
expressed in terms of different variables, but they are completely equivalent.
In principle, the use of either L or L′ should give the same physical results;
however, this would be true only if one could get an exact solution of the
theory. In fact, in general, since exact solutions are not available, one has to
use perturbation theory, and the situation for approximate solutions is rather
different. In the case µ2 < 0, one cannot start from the Lagrangian density L
and perform a perturbation expansion about the value φ(x) = 0 (as in the case
µ2 > 0), since this value corresponds to an unstable configuration and pertur-
bation theory would give meaningless results. Instead, starting from L′, one
can treat the interaction terms by perturbation about the stable configuration
φ(x) = (φ1)min.

Let us compare more closely the two expressions of L and L′. The first
expression, considered in the case µ2 > 0, contains a complex scalar field φ (or,
equivalently, two real fields φ1 and φ2) with squared mass µ2; the second one,
to be used in the case µ2 < 0, contains a real scalar field η(x) with squared
mass m2

η = −2µ2 = 2λv2, and a massless real scalar field ξ. The shifted field
η(x) represents the quantum excitations, above the constant background value
v, along the radial direction; the field ξ(x) represents a massless mode, and it
corresponds to excitations occurring along the flat direction of the potential.

If we consider the case in which the parameter µ2 changes continuously
with the energy scale from positive to negative values, we can describe the
change of the behavior of the system as a phase transition. The transition
occurs from a state which is invariant under the transformations (9.69) of
the group U(1) to a new state in which this invariance is lost; as a conse-
quence, the additive quantity, previously interpreted as electric charge, looses
its meaning and it is no longer conserved. This is a simple example of a general
situation in which the spontaneous symmetry breaking (SSB) of a continuous
symmetry occurs in a transition accompanied by the appearance of massless
scalar bosons called Goldstone bosons.

The appearance of Goldstone bosons in the SSB of a continuous symmetry
is a consequence of the so-called Goldstone theorem18. At first sight, the pres-
ence of massless bosons makes it difficult to apply the SSB mechanism to a
realistic theory of weak interactions mediated by massive vector bosons. Then
one has to find a way that allows to evade the Goldstone theorem. Indeed,
this way exists and it is realized in the case in which the global symmetry is
promoted to a gauge symmetry.

18 J. Goldstone, Nuovo Cimento 19, 154 (1961); Y. Nambu, Phys. Rev. Lett. 4, 380
(1960).
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9.5.3 Spontaneous symmetry breaking of a gauge symmetry: the
Higgs mechanism

As we will see in the following, the Goldstone theorem is evaded in the case
of gauge theories, in which the scalar fields interact with gauge vector fields.
This is the famous Higgs mechanism, which we illustrate in the frame of the
simple model, based on the group U(1), considered above. We start from the
Lagrangian (9.68), but replace the Eqs. (9.69) by the local transformations

φ(x) → eiα(x) φ(x) , φ∗(x) → e−iα(x)φ∗(x) . (9.78)

The invariance under these transformations requires the introduction of the
covariant derivative

∂µφ(x) → Dµφ(x) = [∂µ + ieAµ(x)]φ(x) , (9.79)

where Aµ(x) is the vector field with transformation property defined in
Eq. (9.35)19. Then Eq. (9.68) is replaced by

L(φ,Aµ) = (Dµφ)∗Dµφ− V (φ) − 1
4
FµνF

µν , (9.80)

where, as usual, Fµν = ∂µAν − ∂νAµ. Eq. (9.80) can be rewritten in the form

L(φ,Aµ) = ∂µφ
∗∂µφ− V (φ) − 1

4FµνF
µν − ejµAµ , (9.81)

in terms of the current

jµ = i(φ∗ ∂µφ− φ∂µφ∗) . (9.82)

Eqs. (9.80), (9.81) correspond, for µ2 > 0, to the Lagrangian density of
the scalar electrodynamics, i.e. of a charged scalar field coupled with the
electromagnetic field. Since the first two terms in Eq. (9.81) are the same
as those in Eq. (9.68), the mechanism of SSB can occur also in the present
case for µ2 < 0. Making use of the notation given in Eq. (9.76) and with
m2
η = −2µ2, Eq. (9.81) can be expressed in the form

L = 1
2∂µη∂

µη + 1
2∂µξ∂

µξ − 1
2m

2
ηη

2 − 1
4λ(η2 + ξ2)2 (9.83)

−λv(η2 + ξ2)η − 1
4FµνF

µν + 1
2e

2v2AµA
µ

+ 1
2e

2AµA
µ(η2 + ξ2 + 2vη) − e(η∂µξ + ξ∂µη)A

µ + ev∂µξA
µ .

We point out an important result: the vector field Aµ, which is massless
before the SSB, acquires a mass different from zero: this is a simple example
of the Higgs mechanism. The value of the mass is determined by

19 We note that, in the present case, we have changed the sign of the charge e with
respect to that of the spinor electrodynamics.
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mA = ev , (9.84)

i.e. by the coupling constant times the v.e.v. of the scalar field.
However, one has to check that the number of the degrees of freedom re-

mains the same before and after the transition. In the first phase the field
Aµ is massless and transversal (two degrees of freedom), while, in the second
phase, it becomes massive and therefore it acquires also a longitudinal compo-
nent (three degrees of freedom). This additional degree corresponds to the ξ
field, which becomes unphysical and it is ”eaten” by the vector field: in other
words, the Goldstone boson disappears and it is replaced by the longitudinal
component of the vector field. On the other hand, the η field is physical and
massive: it is called Higgs boson.

The unphysical field can be eliminated by adopting a different parametriza-
tion for the scalar field φ(x):

φ(x) =
1√
2
eiξ(x)/v

[
η(x) + v

]
, (9.85)

with η(x) and ξ(x) real scalar fields. By applying the local gauge transforma-
tions

φ(x) → φ′(x) = e−iξ(x)/vφ(x) = 1√
2

[
η(x) + v

]
,

Aµ(x) → A′µ(x) = Aµ(x) +
1

ev
∂µξ(x) ,

(9.86)

the Lagrangian (9.83) takes the form

L′′ = 1
2∂µη∂

µη − 1
2m

2
ηη

2 − 1
4FµνF

µν + 1
2m

2
AAµA

µ + 1
2e

2AµA
µη2

+e2vAµA
µη − 1

4
λη4 − λvη3 ,

(9.87)

in which the field ξ(x) has disappeared.
In conclusion, we would like to formulate the Goldstone theorem and the

Higgs mechanism for a general case, without giving the proof20.
A system, for which the Lagrangian is invariant under the transformations

of a group G, can have eigenstates which posses a lower symmetry, correspond-
ing to that of a subgroup G′ of G. In general, if n and n′ are the numbers of
generators of G and G′, respectively, the phenomenon of SSB is characterized
by the appearance of n − n′ Goldstone bosons. This is the content of the
general Goldstone theorem.

In the case of a local gauge theory, in which the Lagrangian is invariant
under the local gauge group G, there are n massless gauge vector fields. In the
process of SSB in which the unbroken symmetry is G′, the n − n′ Goldstone
bosons are ”eaten” by n − n′ vector fields which become massive, while the
remaining n′, corresponding to the generators of the subgroup G′, remain
massless.

20 J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).
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Before applying this mechanism to the theory of weak interactions, we
would like to make a digression on the approximate symmetries considered in
Chapter 9, which can be obtained by the QCD Lagrangian making use of the
SSB mechanism.

9.6 Spontaneous breaking of the chiral symmetry of
QCD

As an example of spontaneous symmetry breaking it interesting to examine
the approximate chiral symmetry of QCD. Let us consider the Lagrangian
density of QCD, Eq. (9.46), taking into account only the terms containing the
color triplets with up and down flavors

L = u(x)(iγµDµ −mu)u(x) + d(x)(iγµDµ −md)d(x) + ... (9.88)

Since the masses of the u and d are very small in comparison with the other
heavier quarks, as shown in Table 8.11, it is reasonable to consider the ap-
proximate case in which the two lightest quarks are massless. Then we can
rewrite Eq. (9.88) in the form

L =
(
u(x), d(x)

)
(iγµDµ)

(
u(x)

d(x)

)
... = q(x)(iγµDµ)q(x)... , (9.89)

where q stands here for the quark (flavor) doublet

q =

(
u

d

)
. (9.90)

The Lagrangian (9.89) is clearly invariant under the isospin group SU(2)I ,
with the generators Ii = 1

2σi, defined in Subsection 8.4.1. Since the mass terms
have been eliminated, there are no couplings between left-handed and right-
handed quarks

qL = 1
2
(1 − γ5)q , qR = 1

2
(1 + γ5)q . (9.91)

Therefore the Lagrangian (9.89) is symmetric under the separate chiral isospin
transformations of the direct product of two commuting SU(2) groups

SU(2)L ⊗ SU(2)R . (9.92)

The corresponding generators

ILi = 1
2 (1 − γ5)Ii , IRi = 1

2 (1 + γ5)Ii , (9.93)

which act respectively on qL and qR, satisfy the commutation relations
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[ILi, ILj ] = iǫijkILk ,

[IRi, IRj ] = iǫijkIRk ,

[ILi, IRj ] = 0 .

(9.94)

The group (9.92) has an SU(2) subgroup with generators

Ii = IRi + ILi , (9.95)

which is the usual isospin group SU (2)I . Moreover, it has another SU (2)
subgroup, which we denote by SU (2)A, with generators

IAi = IRi − ILi . (9.96)

The generators of SU (2)I and SU (2)A satisfy the commutation relations

[Ii, Ij ] = iǫijkIk ,

[Ii, IAj ] = iǫijkIAk ,

[IAi, IAj ] = iǫijkIk .

(9.97)

From the Lagrangian (9.89), according to Noether’s theorem (Section 9.2),
one can derive two conserved currents:

jµL = iqLγ
µILqL , jµR = iqRγ

µIRqR , (9.98)

where IL, IR are three-vectors with components (9.93). The sum of jL and jR
gives the vector isospin current

jµV = iqγµIq , (9.99)

while the difference gives the axial-vector isospin current

jµA = iqγµγ5Iq = iqγµIAq , (9.100)

where I = IR + IL and IA = IR − IL. The currents of Eqs. (9.99) and (9.100)
are conserved, i.e. they satisfy the conditions

∂µj
µ
V = 0 , ∂µj

µ
A = 0 . (9.101)

The charges associated to these currents are defined by the operators

I =

∫
d3xj0V IA =

∫
d3xj0A , (9.102)

that, with the chosen normalization of the currents, satisfy the same commu-
tation relations (9.97) of the matrices Ii, IAi.

However, while the transformations generated by the isospin I operator
are manifest symmetries of the strong interactions, those generated by the
axial-vector charge IA do not correspond to any symmetry of hadrons. In
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fact, such a symmetry would require that, for any one-hadron state |h >,
there should be a degenerate state IA|h > with the same spin and internal
quantum numbers, but with opposite parity. The hadron spectrum does not
show the existence of parity doubling. While SU (2)I is a good symmetry, the
SU(2)A symmetry appears to be broken.

In 1960, Nambu and Jona-Lasinio21 formulated the hypothesis that the
chiral symmetry is spontaneously broken. Let us suppose that the chiral sym-
metry SU(2)L ⊗ SU(2)R is spontaneously broken down to SU (2)I and ex-
amine the consequences of this hypothesis. The breaking is expected to occur
through condensate of quark-antiquark pairs, characterized by a nonzero vac-
uum expectation value of the scalar operator

< 0 | qq | 0 > = < 0 | qLqR + qRqL | 0 > 6= 0 . (9.103)

The v.e.v. indicates that the two quark helicities get mixed, and so the u and
d quarks acquire effective masses as they move through the vacuum.

By Goldstone’s theorem, the breaking of the symmetry associated to the
axial-vector charges leads to three massless Goldstone bosons, with the same
quantum numbers of the broken generators IA. Then they have spin zero,
isospin I = 1, negative parity.

The fact that the up and down quarks have non-zero masses indicates
that the chiral symmetry is only approximate, so that its breaking entails the
existence of approximately massless Goldstone bosons. The real spectrum of
hadrons does not contain massless particles, but there is an isospin triplet of
relatively light mesons, the pions, which would correspond to the Goldstone
bosons.

In conclusion, we have shown that the isospin symmetry of strong inter-
actions can be derived from the QCD Lagrangian: it is not a fundamental
symmetry linking up and down quarks, but it is an approximate symmetry
related to the fact that the masses mu and md in (9.88) are small compared
with the effective scale of hadrons.

Replacing in the Lagrangian (9.89) the quark doublet (9.90) by the triplet

q =



u
d
s


 , (9.104)

one gets a chiral SU (3)L⊗SU (3)R symmetry; this symmetry would be spon-
taneously broken down to the flavor SU(3)f with the appearance of an octet
of pseudoscalar Goldstone bosons. They would be interpreted as the meson
octet (8.100), containing, besides the π-meson, the K-meson and the η. The
interpretation of the flavor symmetry is similar to that given for the isospin
SU(2)I symmetry. However, the fact that the mass ms of the strange quark
s is much bigger than mu and md, even if smaller than the strong interaction

21 Y. Nambu and G. Jona-Lasinio, Phys.Rev.122, 345 (1960)
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scale, indicates that the approximate SU(3)f symmetry is less good than the
isospin symmetry.

9.7 The group SU(2) ⊗ U(1) and the electroweak
interactions

In Section 9.5 we mentioned that the present theory of weak interactions is a
gauge field theory based on the mechanism of spontaneous symmetry breaking.
In this Section we develop this subject by considering the main properties
of weak interactions, their connection to the electromagnetic ones and the
possibility of describing the two kinds of interactions in terms of a unified
gauge theory, based on the group SU (2)⊗U(1). The spontaneous breaking of
the gauge symmetry through the Higgs mechanism is assumed to take place.
In this way one is able to reproduce not only the right V-A structure of the
weak charged interactions mediated by massive vector bosons and the vector
structure of the electromagnetic interactions mediated by a massless photon,
but also to describe the weak neutral currents in a consistent way with the
experimental observations. Moreover, the same mechanism of SSB plays the
fundamental role of giving mass to the fermions fields. They are massless in
the starting Lagrangian, owing to their group assignment and to the gauge
symmetry, and their masses are generated through their couplings with the
Higgs fields.

9.7.1 Toward the unification of weak and electromagnetic
interactions

Before examining the structure of the gauge group, the gauge vector bosons
and their couplings to leptons and quarks, we need a few preliminary consid-
erations.

The fundamental fermions are the quarks and the leptons. There are six
quarks (u, d, s, c, b, t), which are listed in Table 8.11. One assigns to each of
them a different flavor, as well as one of the three different colors. All quarks
participate in strong, weak and electromagnetic interactions.

The leptons do not carry color, since they do not participate in strong in-
teractions, but only in weak and electromagnetic interactions. There are three
charged leptons (e−, µ−, τ−) and three neutral ones, the neutrinos (νe, νµ, ντ ),
which, being neutral, interact only weakly. Leptons can be arranged in three
pairs, each containing a charged lepton and a neutrino, identified by a specific
lepton number (Le, Lµ, Lτ ). We list the six leptons in Table 9.122.

22 In the Table there is no indication about neutrino masses. Let us remind that,
in the Standard Model, neutrinos are assumed to be massless, this choice being
mainly dictated by the appearance in the experiments of only left-handed neu-
trinos (and right-handed anti-neutrinos). However, the observed phenomenon of
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Table 9.1. The six leptons

Name Symbol Q Mass (MeV)

e-neutrino νe 0

electron e −1 0.511

µ-neutrino νµ 0

muon µ −1 105.66

τ -neutrino ντ 0

tau τ −1 1776.84

As it is well known, the first phenomenological model of weak interactions
was formulated by Fermi23 in order to explain the nuclear β-decay; it consists
of a four-fermion contact interaction. Later on, the current-current interaction
Lagrangian

L = 4√
2
GF j

µ(x)j†µ(x) (9.105)

was proposed24. In the above equation, GF is the Fermi coupling constant25

and the current jµ(x) is of V −A type, i.e. it is the difference between a vector
and an axial-vector term26.

The Lagrangian (9.105) describes the charged current interactions as the
product of a charge-raising with a charge-lowering current and it applies to
all hadronic and leptonic processes: it exhibits the universality of the weak
interactions. In order to clarify its implications, let us consider the specific
case of the lepton current, limiting ourselves here to the (νe, e

−) pair (the
explicit expressions for the lepton and quark currents will be examined later,
in the Subsection 9.7.3).

The electron currents can be written in the form

neutrino oscillations indicates indirectly that neutrinos are massive particles. This
feature will be briefly discussed in Subsection 9.7.3.

23 E. Fermi, Z. Phys. 88, 161 (1934).
24 R.P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958); E.C.G. Sudarshan

and R.E. Marshak, Phys.Rev. 109, 1860 (1958).
25 The coupling constant GF has the dimension of a square mass and its value is

given approximately by GFm
2
p ≃ 105, where mp is the proton mass.

26 The numerical factor 4√
2

contains the factor 1√
2

of historical origin, introduced as
a normalization factor when the axial term γ5 was added. The factor 4 is generally
introduced in such a way as to express the charged currents (9.106) in terms of
the helicity projection operator 1

2
(1 − γ5).
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jµ(x) = ν̄e(x)γµ
1
2
(1 − γ5)e(x) = ν̄eL

(x)γµeL(x) ,

j†µ(x) = ē(x)γµ
1
2(1 − γ5)νe(x) = ēL(x)γµνeL

(x) : .
(9.106)

They correspond to a change of the electric charge ∆Q = ±1 and contain
only the left-handed fields, eL = 1

2
(1 − γ5)e and νeL

= 1
2
(1 − γ5)νe.

By introducing EL as a doublet of the two left-handed fields,

EL =

(
νe

e−

)

L

, (9.107)

one can rewrite the currents (9.106) in the form

j(±)
µ (x) = EL(x)γµI±EL(x) , (9.108)

making use of the isospin shift operators I± = I1 ± iI2, where Ii (i = 1, 2, 3)
stand for the isospin generators. In the present case, they are expressed in
the self-representation and are identified by Ii = 1

2
σi in terms of the usual

Pauli matrices; they are referred to as the components of a weak isospin. In
this way, we have implicitly introduced an SU(2) group for the left-handed
leptons, which we denote by SU(2)L.

The assumed SU(2) structure, however, requires in principle also the pres-
ence of a neutral component, related to the third generator I3. Indeed, this
appeared to be the case, since it turned out that the charged currents are not
sufficient to describe all the weak interaction reactions, since it was discovered
that also weak neutral currents (∆Q = 0) exist. Then it seems natural to add
a neutral partner to the charged ones:

j(3)µ (x) = EL(x)γµI3EL(x) , (9.109)

by completing in this way a weak isospin triplet of weak currents:

j(i)µ (x) = EL(x)γµIiEL(x) . (9.110)

The phenomenological analysis, however, revealed that the structure of the
physical neutral current is not so simple, since it must contain also the right-
handed fields, specifically the right-handed component of the electron field
eR = 1

2
(1 + γ5)e (whereas from the experimental evidence, we are induced to

assume that neutrinos are left-handed only).
Since we have introduced three currents, there must be three vector bosons

coupled to them, and the minimal gauge theory should be based on the group
SU(2)L. However, the presence of right-handed fields in the neutral current
indicates that, in order to describe also the couplings of the right-handed
fields, one has to enlarge the gauge symmetry beyond SU(2)L. At this point
it is useful to introduce also the electromagnetic current (9.29), which contains
both left- and right-handed fields. In the case of the electron, it can be written
as follows in terms of the electric charge operator Q:
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jemµ = ē(x)γµQe(x) = ēL(x)γµQeL(x) + ēR(x)γµQeR(x) . (9.111)

with the convention that the eigenvalues of Q are expressed in units of the
elementary charge e taken with positive sign (so that Q = −1 in the case of
the electron).27

If now we express the electric charge Q by the same relation (8.45) used
in the formalism of the isotopic spin (in other words, we impose the same
relation between Q and weak isospin used for the description of the strong
isospin),

Q = I3 + 1
2
Y , (9.112)

we complete the list of the operators that describe both the electromagnetic
and the weak interactions with the introduction of a weak hypercharge Y ,
whose eigenvalues are chosen in such a way to get the right values for Q.
Going from the operators to the corresponding currents, Eq. (9.111) can be
written in the form

jemµ = j(3)µ + 1
2 j
Y
µ , (9.113)

with the introduction of the hypercharge weak current, which, for the (νe, e
−)

pair, can be written as

jYµ = EL(x)γµY EL(x) + eR(x)γµY eR(x) , (9.114)

with the assignment Y = −1 for the left-handed isospin doublet EL and
Y = −2 and for the right-handed isospin singlet eR.

The electromagnetic current appears in this way a combination of the
neutral component of the weak isospin current and of the hypercharge current.
This feature suggests that also the physical weak neutral current will appear

as a linear combination of the same two currents, j
(3)
µ and jYµ . We will see

that this is indeed the case in the next Subsections.
In conclusion, the above considerations lead to base the gauge theory on

the group
G = SU (2)L ⊗ U(1)Y , (9.115)

the gauge group U(1)em, which describes the electromagnetic interactions,
being properly included in G. For the sake of completeness, we report here the
commutation rules of the generators of G,

[Ii, Ij ] = iǫijkIk ,

[Ii, Y ] = 0 ,
(9.116)

27 This means that in order to write the electromagnetic current with its numerical
value, we have to multiply jem

µ by the coupling constant e, identified with the
absolute numerical value of the electric charge. In a similar way, the charged
weak currents need to be multiplied by suitable weak couplings g and g′, as we
will see later.
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which are obviously the same of the analogous generators used in the strong
interaction case.

We are now in the position of specifying the ingredient of the gauge theory.
Since the group G of Eq. (9.115) has four generators, two of which appear both
in the weak and in the electromagnetic currents, one can argue that the gauge
theory will include both interactions. Weak and electromagnetic interactions
are unified within the so-called electroweak theory.

9.7.2 Properties of the gauge bosons

We denote by Aiµ(i = 1, 2, 3) and Bµ the gauge fields corresponding, respec-
tively, to the generators Ii and Y . The short range nature of the interactions
requires the vector bosons to be massive and this fact, as already mentioned
in Section 9.5, prevents the renormalization of the field theory. The solution of
the problem is based on the concept of spontaneous symmetry breaking (SSB)
and on the Higgs mechanism. The successful gauge field theory was formulated
independently by Glashow, Salam and Weinberg28; it is called the Standard
Model of electroweak interactions. n fact, a gauge theory, based on the Higgs
mechanism, which is consistent with all phenomenological requirements, can
be built only by including both weak and electromagnetic currents. Few years
later, it was proved that the theory is indeed renormalizable29.

Out of the four gauge fields Aiµ, Bµ, three of them (or rather linear combi-
nations of them) acquire mass and can be identified with the physical bosons
W± and Z0. The remaining fourth combination, representing the photon,
must remain massless, so that the SSB must keep unbroken a U(1) subgroup
of G, which turns out to be the subgroup U(1)Q.

In order to implement the Higgs mechanism, it is necessary to introduce
a set of scalar fields. The minimum choice consists in a doublet of complex
fields

φ =

(
φ+

φ0

)
, (9.117)

with I = 1
2 and Y = 1. This choice not only breaks both SU (2)L and U (1)Y ,

but allows to couple in a simple way Higgs and fermion fields through Yukawa-
type couplings, as we will see in the next Subsection.

The terms of the Lagrangian which contain the gauge vectors and the
scalar fields are the following

Lgauge = (Dµφ)†Dµφ− V (φ†φ) − 1
4
F iµνF

i,µν − 1
4
BµνB

µν , (9.118)

where

28

29 G. ’t Hooft, Nucl. Phys. B3, 167 (1971); G. ’t Hooft and M. Veltman, Nucl. Phys.
B44, 189 (1972).

S.L. Glashow, Nucl. Phys. 22, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1269
(1967);  A. Salam, Proceedings of the VIII Nobel Symposium, ed. N. Svartholm;
Almquist and Wiksells (1968), p.367.
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V (φ†φ) = µ2φ†φ+ λ(φ†φ)2 , (9.119)

F iµν = ∂µA
i
ν − ∂νA

i
µ + gǫijkA

j
µA

k
ν , (9.120)

Bµν = ∂µBν − ∂νBµ (9.121)

and
Dµ = ∂µ − igIiA

i
µ − ig′ 12Y Bµ . (9.122)

The constants g and g′ specify the couplings of the gauge fields of the groups
SU(2)L and U(1)Y , respectively, to all the other fields of the theory.

Generalizing the procedure of the Higgs mechanism described in Subsec-
tion 9.5.3, we summarize here the main steps. The minimum of the potential
(9.119), for µ2 < 0, is given by

(φ†φ)min = −µ
2

2λ
≡ 1

2
v2 . (9.123)

However, since the electric charge Q is conserved, only the neutral component
φ0 can have non-vanishing v.e.v. It is convenient to rewrite Eq. (9.117) in the
form

φ =
1√
2



φ+

1 + iφ+
2

φ0
1 + iφ0

2


 (9.124)

and make the following choice:

φmin =
1√
2

(
0

v

)
, (9.125)

while the other components of φ have vanishing v.e.v.’s. The Higgs mechanism
assures that the three Goldstone bosons (corresponding to the fields φ+

1 , φ+
2

and φ0
2) are absorbed by the three gauge fields that become massive. With a

convenient choice of the gauge, that is the so-called unitary gauge30, one can
get rid of the unphysical fields, and only one physical field h(x) is left:

φ(x) → φ′(x) =
1√
2

(
0

v + h(x)

)
. (9.126)

Finally, the Lagrangian (9.118) reduces to:

Lgauge = 1
2
∂µh∂

µh− 1
2
m2h2 − 1

4
F iµνF

i,µν − 1
4
BµνB

µν +

+ 1
8
v2g2

(
A(1)
µ A(1),µ +A(2)

µ A(2),µ
)

+ (9.127)

+ 1
8v

2
(
g2A(3)

µ A(3),µ + g′2BµB
µ − 2gg′A(3)

µ Bµ
)

+ interaction terms .

30 M.E. Peskin and D.V. Schroeder, quoted ref.
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We see that mass terms have been originated for the gauge fields. Let
us consider separately charged and neutral fields. For the first ones, it is
convenient to define new fields which carry definite charge, i.e.

W (±)
µ = 1√

2

(
A(1)
µ ∓ iA(2)

µ

)
. (9.128)

Taking into account the squared mass term expected for a charged vector field

M2
WW

(+)
µ W (−)µ, we find the mass

MW = 1
2vg . (9.129)

The last explicit term in Eq. (9.127) refers to the two neutral vector bosons.

One sees that the fields A
(3)
µ and Bµ get mixed, so that, in order to identify

the physical fields, one needs to diagonalize the squared mass matrix

1
4
v2

(
g2 −gg′

−gg′ g′2

)
. (9.130)

One eigenvalue is equal to zero, while the other, by comparing it with the
squared mass term expected for a neutral vector field M2

ZZµZ
µ, gives

MZ = 1
2
v
√
g2 + g′2 , (9.131)

which represents the mass of the neutral vector boson. The eigenvectors cor-
responding to the zero and MZ eigenvalues can be written in the form

Aµ = cos θwBµ + sin θwA
(3)
µ ,

Zµ = − sin θwBµ + cos θwA
(3)
µ .

(9.132)

where we have introduced the weak (Weinberg) mixing angle, which can be
taken as a free parameter of the theory and is related to the couplings by the
relation

cos θw =
g√

g2 + g′2
. (9.133)

We see that the scheme we have followed predicts MW < MZ , since, by
comparing Eqs. (9.129) and (9.131), one finds

MW

MZ
= cos θw . (9.134)

However, the ratioMW /MZ depends on the specific choice made for the Higgs
fields. Eq. (9.134) corresponds to the case of the minimal choice, i.e. the
doublet of Eq. (9.124). In general, one gets

M2
W

M2
Z

= ρ cos2 θw , (9.135)
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where ρ is a phenomenological parameter, depending on the representations
of the Higgs fields one adopts (compare with Problem 9.5). At present the
experimental data prefer ρ ≃ 1, which is an indication in favor of the Standard
Model in its minimal form (only one or more Higss doublets). But we cannot
exclude contributions from Higgs multiplets other than doublets with small
relative weight due to higher masses.

In conclusion, in the minimal version of the Standard Model the sector of
the Lagrangian (9.118), which refers to the masses and couplings of the gauge
fields, contains three free parameters: g, g′ and v or, equivalently, g, v and θw.
These parameters can be determined from experimental quantities, as it will
be indicated in the next Subsection. Another important prediction, not yet
confirmed, is the existence of the scalar boson h, which is called Higgs boson.
Its squared mass is given by

m2
h = 2v2λ , (9.136)

but its value cannot be determined since the parameter λ is completely un-
known. Experimentally, there is the lower limit mh > 114 GeV, found in the
LEP collider experiments at CERN31, and the physicist community expects
that the Higgs boson will be discovered soon at LHC.

9.7.3 The fermion sector of the Standard Model

The inclusion of quarks and leptons in the Standard Model requires their
specific assignment to the IR’s of the group SU(2)L⊗U(1)Y . For both leptons
and quarks, the left-handed fields are assigned to doublets of SU(2)L, and the
right-handed to singlets. In Tables 9.2 and 9.3 we list the quantum numbers
(weak I3, weak Y and Q) of a lepton pair and of a quark pair. There are three
generations of leptons and quarks, and the classification is the same for all of
them.

The inclusion of all these fermions requires the addition of several terms
in the electroweak Lagrangian. In the following, we give the expressions for a
generic fermion field ψ(x).

First of all, one needs a kinetic term which includes the coupling of the
fermion field with the gauge fields

Lf = ψLiγ
µDL

µψL + ψRiγ
µDR

µ ψR , (9.137)

where ψL and ψR stand for an SU (2) doublet and a singlet, respectively, and
the covariant derivatives are given by

31 Direct searches set the lower limit mh > 114.4 GeV at 95% C.L.; combin-
ing this limit with the precision electroweak measurements, the upper bound
mh < 186 GeV at 95% C.L. was obtained (The LEP Working Group for Higgs
Boson Searches, Phys. Lett. B565, 61 (2003)). Searches for Higgs bosons are under
way at the Tevatron at Fermilab (see e.g. T. Aaltonen et al., CDF Collaboration,
Phys. Rev. Lett. 104, 061802 (2010)).
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Table 9.2. Lepton classification

Symbol I I3 Q Y

νe
1
2

1
2

0 −1

e−L
1
2

− 1
2

−1 −1

e−R 0 0 −1 −2

Table 9.3. Quark classification

Symbol I I3 Q Y

uL
1
2

1
2

2
3

1
3

dL
1
2

− 1
2

− 1
3

1
3

uR 0 0 2
3

4
3

dR 0 0 − 1
3

− 2
3

DL
µ = ∂µ − igIiA

i
µ(x) − ig′ 12Y Bµ(x) (9.138)

and
DR
µ = ∂µ − ig′ 1

2
Y Bµ(x) . (9.139)

Making use of the expressions (9.128) and (9.132), one can obtain, from the
above equations, the couplings of the fermion fields with the physical gauge

vector fields W
(±)
µ , Z0

µ and Aµ, which can be written in the following form

Lcoupl =
g√
2

(
j(+)µ
w W (+)

µ + j(−)µ
w W (−)

µ

)
+

g

cos θw
jµNCZ

0
µ + ejµemAµ , (9.140)

where we have identified the electric charge in terms of the couplings g and
g′, or equivalently in terms of one of them and the mixing angle θw:

e =
gg′√
g2 + g′2

= g sin θW = g′ cos θW . (9.141)

The Lagrangian (9.140) contains the weak charged current

j(±)µ
w = ψLγ

µI±ψL (9.142)

and the electromagnetic current jµem defined in Eq. (9.111). The weak neu-
tral current jNCµ is coupled to the massive neutral vector boson Z0

µ with the
coupling

gN =
g

cos θw
=

e

sin θw cos θw
; (9.143)
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it is called physical neutral current and it is given by

jNCµ = j(3)µ − sin2 θwj
em
µ . (9.144)

The above relation solves the problem of finding the structure of the weak
neutral current and allows to identify the couplings of a generic fermion field
ψ(x) to the vector boson Z0

µ in terms of its third isospin component I3 and
its charge Q, according to:

jNCµ = ψLγµI3ψL − sin2 θw ψγµQψ . (9.145)

By comparing with the expected V − A structure expressed in terms of two
generic couplings cV and cA

jNCµ = ψγµ
1
2

(
cV − cAγ5

)
ψ , (9.146)

one obtains the couplings cV , cA of each fermion f in terms of the eigenvalues
of I3 and Q according to:

cV = I3 − 2 sin2 θwQ , (9.147)

cA = I3 . (9.148)

The extraordinary agreement between the experimental estimate of the fermion
couplings in the different neutral current interactions and the prediction of
the Standard Model decreed the success of the theory.

It is useful to give the explicit expressions of the weak currents for the first
generation of leptons and quarks (similar expression can be written for the
fermions of the other two generations):

j(+)µ
w = νeγ

µ 1
2
(1 − γ5)e+ uγµ 1

2
(1 − γ5)d , (9.149)

j(−)µ
w = eγµ 1

2 (1 − γ5)νe + dγµ 1
2(1 − γ5)u , (9.150)

jµZ = νeγ
µ 1

2
(1 − γ5)νe − eγµ 1

2
(1 − γ5)e+

+ uγµ 1
2 (1 − γ5)u − dγµ 1

2 (1 − γ5)d+ (9.151)

− 2 sin2 θw
(

2
3
uγµu− 1

3
dγµd− eγµe

)
.

In the Lagrangian (9.140) the coupling of the W± bosons with the charged
currents is simply given by 1√

2
g. If now we introduce explicitly the W propa-

gator, we can compare the low energy limit of the charged current interaction
described by the Lagrangian (9.140) with the current-current interaction de-
scribed by the Lagrangian (9.105): in this way the Fermi coupling constant
GF can be related to the constant g and to the W mass MW by the relation

GF =

√
2g2

8M2
W

=
1√
2 v2

. (9.152)
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From the experimental values of e, GF and sin2 θw (the last quantity obtained
from the analysis of the weak neutral current at low energy), one can determine
the three parameters of the theory, and finally the values of the masses (9.129)
and (9.131). With v ≃ 250 GeV and sin2 θW ≃ 0.23, one finds MW ≃ 80 GeV
and MZ ≃ 91 GeV. The discovery32 of the two bosons W± and Z0 at CERN
in 1983 confirmed these predictions, and this completed the success of the
Standard Model.

Finally, in order to complete the Lagrangian of the Standard Model, one
has to add the terms which couple the fermion fields with the scalar doublet,
which are usually referred to as Yukawa terms. We show here only the struc-
ture of a typical term; limiting to the first generation (qL stands for the uL-dL
doublet), one has

LYuk = fq(qLφdR) + f ′q(qLφ̃uR) , (9.153)

where

φ̃ = iτ2φ
∗ =

(
φ0

−φ−
)
, (9.154)

and fq, f
′
q are two dimensionless coupling constants. We remark that no mass

term is present in the Lagrangian, owing to the gauge invariance and to the
different assignments of left-handed and right-handed fermions. The fermion
masses are generated by the v.e.v. of the scalar field and they are given by an
expression of the type

mq = 1
2fq v or m′q = 1

2f
′
q v . (9.155)

The complete expression of the Yukawa Lagrangian density is given by

LYuk =
∑

i,j

[
fij
(
qiLφd

j
R

)
+ f ′ij

(
qiLφ̃ u

j
R

)]
, (9.156)

where each of the indices (i, j) refers to one of the three quark generations.
We note that there is a different coupling constant for each pair of quarks, and
these constants are free parameters, not determined by the theory. Therefore
one gets two non-diagonal mass matrices for the up- and d-type quarks, which
we denote by M (u) and M (d). These matrices can be diagonalized by means
of two unitary matrices UL,R and DL,R, as follows

M
(u)
diag = U†LM

(u)UR , M
(d)
diag = D†LM

(d)DR . (9.157)

and Eq. (9.156) can be expressed in terms of the mass eigenstates with the
substitutions

uiL,R → U ijL,Ru
j
L,R , (9.158)

diL,R → Dij
L,Rd

j
L,R . (9.159)

32 G. Arnison et al., Phys. Lett. B122, 103 (1983); Phys. Lett. B126, 398 (1983);
M. Banner et al., Phys. Lett. B122, 476 (1983); P. Bagnaia et al., Phys. Lett.
B129, 130 (1983).
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Let us now introduce these substitutions in the quark terms of the weak
charged current (9.142), obtaining

j
(+)µ
quark = uiLγ

µ(U†LDL)ijdjL . (9.160)

The unitary matrix V = U†LDL is the well-known CKM (Cabibbo, Kobayashi,
Maskawa) mixing matrix33, which contains three angles and a CP-violating
phase. The effect of this matrix is to mix the flavors in the weak charged
current that exhibits explicitly flavor-changing terms. On the other hand, one
can easily check, due to the unitarity of the U and D matrices, that the quark
terms of the weak neutral current are flavor-conserving.

It is useful to consider the simple case of two generations ((u, d) and (c, s)).
In this case the matrix V contains only one free parameter, the so-called
Cabibbo angle θc (sin θc ≃ 0.22) and it is usually written as

V =

(
cos θc sin θc

− sin θc cos θc

)
. (9.161)

Then the explicit expression for the weak charged current follows from
Eq. (9.160):

j
(+)µ
quark = uLγ

µ(cos θcdL + sin θcsL) + cLγ
µ(− sin θcdL + cos θcsL) . (9.162)

In the case of leptons, since the Standard Model contains only left-handed
neutrinos, mass terms are generated only for charged leptons; they are of the
type

LYuk = fℓ(ℓLφeR) , (9.163)

with additional coupling constants fℓ, while neutrinos remain massless. How-
ever, the rather recently observed phenomenon of neutrino oscillations34, ex-
perimentally verified at a high level of accuracy, implies that neutrinos are
massive particles. More precisely, neutrinos of given flavor, νe, νµ, ντ behave
as linear combinations of three eigenstates of mass, ν1, ν2, ν3, whose different
evolution in time, due to the mass differences, give rise to oscillations. Neu-
trino mass eigenstates and flavor eigenstates are related by a mixing matrix,

33 N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and K. Maskawa,
Progr. Theor. Phys. 49, 652 (1973).

34 The first evidence of neutrino oscillations has been obtained by the Su-
perkamiokande Collaboration from the observation of the zenith angle depen-
dence of their atmospheric neutrino data: Super-Kamiokande Collaboration, Y.
Fukuda et al., Phys. Rev. Lett. 81, 1562 (1998). Neutrino oscillations have been
observed also for solar neutrinos, as the result of the interpretation of the solar
neutrino data related to the so-called ”Solar neutrino problem”. Experiments per-
formed with ”terrestrial” neutrinos, i.e neutrinos coming from artificial sources,
have confirmed the oscillation phenomenon. For a report on these subjects see
for example G.L. Fogli et al., Global analysis of three-flavor neutrino masses and
mixings, Progr. Part. Nucl. Phys. 57, 742 (2006).
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in analogy with the quark mixing case. At present, we know with a good pre-
cision the two mass differences, but still ignore the absolute neutrino masses.
We know only that these values are very small, much smaller than the masses
of the charged leptons. In particular, there is an upper limit35 for the mass of
the νe of the order of 2 eV.

It is clear that, in order to accommodate massive neutrinos in the theory,
the Standard Model has to be extended either including right-handed neutri-
nos and/or extra scalar Higgs fields. Different mechanisms have been proposed
which justify the absence, at present energies, of right-handed neutrinos and
give possible explanation of the smallness of the neutrino masses. Moreover,
it remains still open the possibility that neutrinos behave as Majorana parti-
cles, i.e. that they are coincident with their own antiparticles. We do not enter
here in a detailed descriptions of these topics, that are discussed in specialized
textbooks and review papers36.

Before leaving this Subsection we would like to discuss briefly the problem
of renormalization, mentioned in Section 9.5. In general, this problem arises
in the quantization of a classical field theory. In quantum field theories, one
makes use of perturbation expansion that allows to evaluate higher order cor-
rections37. In general, these corrections are invalidated by the appearance of
infinities which, however, can be hidden in the re-definition of the parameters
defined in the Lagrangian (such as masses, coupling constants, etc.). Then the
final results are finite and can be compared with the experimental data. This
situation occurs in the so-called renormalizable theories, such as QED, QCD
and the electroweak standard theory.

Other theories are not renormalizable, since one cannot eliminate all the
divergent terms, thus preventing the possibility of obtaining finite results. This
may happen in gauge theories which contain both vector and axial-vector cur-
rents, such as in the case of the electroweak Standard Model. In this kind of

35 Two experiments, the Mainz and Troitsk experiments, have proved that if the
neutrino rest mass is non-zero, it is, respectively, less than 2.3 eV (C. Kraus et
al., Eur. Phys. J. C 40, 447 (2005)) and 2.5 eV (V.M. Lobashev, Nucl. Phys. A
719, 153c (2003)). Further decrease of this limit is out of the possibilities of those
experiments. There is however a project, KATRIN, that, with an analogical spec-
trometer of considerably larger dimensions, will be presumably able to determine
the upper limit of the neutrino mass at the level of 0.3 eV (see for example
C. Weinheimer, Neutrino mass from β decay, Proc. of the Neutrino Oscillation
Workshop (NOW 2006), Conca Specchiulla, Otranto, Italy, 9−15 September 2006.
P. Bernardini, G.L. Fogli, E. Lisi eds., Nucl. Phys. Proc. Suppl. 168, 1 (2007)).

36 R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Physics and Astrophysics,
World Scientific (2003); M. Fukugita and T. Yanagida, Physics of Neutrinos and
Applications to Astrophysics, Springer-Verlag (2003); C. Giunti and C.W. Kim,
Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press
(2007).

37 See e.g. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley Publishing Company (1995); S. Weinberg, The Quantum Theory
of Fields - Vol. II. Modern Applications, Cambridge University Press, 1996.
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theories, it was shown that some anomalies appear, which spoil the gauge
symmetry of the Lagrangian thus preventing the application of the renormal-
ization procedure. Specifically, it is the case of the so-called ABJ anomaly38,
also called chiral anomaly, which depends on the set of fermion fields that are
present in the Lagrangian, Therefore the only safe and acceptable theories
are those that are anomaly free, in which the anomalies are absent or the
anomalous contributions are cancelled among themselves. This requirement
imposes severe constraints in the construction of gauge theories of elementary
particles.

At one loop level, the Feynman diagrams that can give rise to anomalies
are of the type represented in Fig. 9.6, where the triangle fermion loop is
coupled at its vertices, through the gauge bosons, either to one axial current
and two vector currents, or to three axial currents. It is remarkable that the
condition for anomaly cancellation depends only on the group structure of the
theory and on the fermion assignment.

γ

γν

γµ

γ

γαγ5
0Ζ >

>

>

Fig. 9.6. Example of Feynman graph giving rise to an anomalous contribution. Two
vector currents (two photons) are coupled through a triangular fermion loop to an
axial current (the axial part of the coupling of a Z0 vector boson).

In fact, the condition for absence of anomalies is given by39:

Tr
(
γ5{Tα, Tβ}Tγ

)
= 0 , (9.164)

where Tα, Tβ , Tγ are generators of the Lie algebra of the gauge group, which
couple the gauge bosons with the fermion fields. The γ5 matrix in Eq. (9.164)
shows that the anomaly is associated with chiral currents: it gives a factor −1
for left-handed fermion and +1 for right-handed ones. The trace is taken over
the group representations which include all the fermions of the theory.

In the case of the electroweak Standard Model, the generators are the
isospin components Ii and the hypercharge Y , and the fermions are assigned
to isospin doublets (I = 1

2
) and singlets (I = 0). Since, in the case of doublets,

one has
38 S. Adler, Phys. Rev. 177, 2426 (1969); J.S. Bell, R. Jackiw, Nuovo Cimento 60A,

47 (1969).
39 H. Georgi and S.L. Glashow, Phys. Rev. D6, 429 (1972).
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Ii = 1
2
σi , Tr(Ii) = 0 , {Ii, Ij} = 1

2
δij , (9.165)

the only non trivial conditions imposed by Eq. (9.164) are:

Tr(Y ) = 0 and Tr(Y 3) = 0 , (9.166)

where the first trace is taken over the fermion isospin doublets only, and the
second over both isospin singlets and doublets. Looking at the Tables 9.2
and 9.3 and taking into account that there are three colored quarks for each
flavor, one can check that the above conditions are satisfied. The electroweak
Standard Model is anomaly free and one realizes that color is a necessary
ingredient for satisfying this requirement.

Finally, we want to mention that the inclusion of QCD, with the extension
of the electroweak gauge group to SU(3)c ⊗ SU(2)L ⊗U(1)Y , could generate
anomalous triangle graphs with one or two vertices coupled to gluons, but it
is easy to show that the conditions (9.166) are sufficient to avoid all anomalies
also in this case.

9.8 Groups of Grand Unification

Combining what we discussed in the Subsections (9.4) and (9.7), we see that
the field theory of elementary particles is based on the group

GSM = SU(3)c ⊗ SU (2)L ⊗ U(1)Y . (9.167)

The group SU(3)c describes the strong interactions of quarks, which interact
with the 8 colored gluons; the group SU(2)L⊗U(1)Y describes the electroweak
interactions of quarks and leptons, which generate, through the Higgs mech-
anism, the masses of quarks and charged leptons.

In spite of the success of both QCD and the electroweak theory, the model
presents still some unsatisfactory features:

• The unification is incomplete: there are three independent couplings (gs,
g, g′) and also the electroweak unification is not complete, since the ratio
g′/g is a free parameter.

• The electric charge is not a generator of the group GSM, and there is no
theoretical motivation for the fact that the charge of the proton is exactly
equal to the charge of the positron.

• The theory has too many free parameters; e.g. there are no relations among
the fermion masses.

On the other hand, all quarks and leptons can be grouped in three gener-
ations (or families) which show the same structure. Each generation contains
a charged lepton and its neutrino partner; three colored quarks of up type
and three of down type. These considerations lead to the idea of the existence
of a higher symmetry, which should be valid at extremely high energies and
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should unify all the fundamental interactions (except gravity); it would be
broken down at lower energies to the symmetry described by the group GSM.
On this idea, several Grand Unified Theories (GUT’s) were proposed. The
simplest one is based on the unitary group SU (5), which contains the group
GSM of Eq.(9.167) as a subgroup40.

In order to classify the fundamental fermions in the IR’s of SU (5), it is
sufficient to consider only the left-handed fields ψL (the right-handed fields
ψR are assigned to the conjugate representations). Each generation of quarks
and leptons contains 15 independet fields, that can be assigned to the repre-
sentation

15 = 5 + 10 . (9.168)

In fact, writing explicitly the decompositions of 5 and 10 in terms of the
subgroup SU(3) ⊗ SU(2),

5 = (1, 2) + (3, 1) (9.169)

10 = (3, 2) + (3, 1) + (1, 1) , (9.170)

it is easy to verify that the two IR’s can accommodate the fermions of each
generation, by identifying as follows their respective content in terms of left-
handed fields:

(νe, e
−)L , (d1, d2, d3)L , (9.171)

(u1, u2, u3; d1, d2, d3)L , (u1, u2, u3)L , (e+)L . (9.172)

The advantages of the model based on the unification group SU (5) are
summarized in the following.

First, the electric charge is a generator of the group, and it is represented
by a traceless matrix. In the case of the representation 5, one gets the relations

Qe− + 3Qd = 0 → Qd = 1
3
Qe− = − 1

3
, (9.173)

and, since the up quark is the isospin (I3 = + 1
2
) partner of the down quark,

Qu = Qd + 1 = 2
3
. (9.174)

The fractional electric charges of quarks (2
3

and − 1
3
) result as a consequence

of the existence of three colors. The above relations explain the identity of
the electric charge of the proton (uud bound system) and the charge of the
positron.

Second, the behavior with the energy scale of the three effective couplings
(gs, g, g

′) indicate that they converge, at very high energy, towards the same
region. In order to clarify this point, we consider again Eq. (9.57), which we
rewrite here for αi (i=1,2,3):

40 H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32, 438 (1974); H. Georgi,
H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 32, 451 (1974).
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1

αi(Q2)
=

1

αi(µ2)
− bi ln

Q2

µ2
. (9.175)

The gauge couplings α1, α2, α3 are relative to the subgroups U(1), SU (2) and
SU(3), respectively:

α1 =
5

3

g′2

4π
, α2 =

g2

4π
, α3 =

g2
s

4π
. (9.176)

The factor 5
3 in the definition of α1 is introduced for normalizing the three

couplings in a consistent way for grand unification41. We point out that the
fine structure constant αem of QED is given by

1

αem
=

1

α2
+

5

3

1

α1
. (9.177)

The values of the coefficients bi relative to the three subgroups are given by42:

bi =



b1

b2

b3


 = − 1

4π




0
22
3

11


 +

Nf
6π




1

1

1


 +

NH
4π




1
10
1
6

0


 , (9.178)

where Nf is the number of quark flavors and NH the number of scalar (Higgs)
doublets (NH = 1 in the minimal SM ). The values of the three couplings are
known at low energies; by extrapolation from these values to higher and higher
energies, one obtains the straight lines represented in the left panel of Fig. 9.7.
We see that there are two different points of interception, so that the three
couplings, even if they are getting close to each other, do not unify at a single
point.

A great improvement of the situation can be obtained by replacing the SM
that we have considered with a supersymmetric version. Supersymmetry was
introduced about 30 years ago; it is now a general ingredient of all present
particle theories, including string theories. It is based on an extension of the
Lie algebra of a gauge group, such as GSM and SU(5), to a ”graduate” Lie
algebra which contains, besides the usual generators, also spinor generators,
which transform as spinors with respect to the Poincaré group. The analysis
of supersymmetry is beyond the scope of this book, and we indicate, instead,
a few references in which the subject is described in great detail43.

Here we limit ourselves to a few qualitative considerations. Supersymmetry
implies that all known particles possess supersymmetric partners having oppo-
site statistics. In the supersymmetric (SUSY) version of the SM, all particles

41 H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 32, 451 (1974).
42 M.B. Einhorn and D.R. Jones, Nucl. Phys. B196, 475 (1982).
43 D. Bailin, A. Love, Supersymmetric Gauge Field Theory and String Theory, In-

stitute of Physics Publishing, London (1994); S. Weinberg, The Quantum Theory
of Fields -Vol.III, Supersymmetry, Cambridge University Press (2000).
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Fig. 9.7. Behavior of the inverse of the three running coupling constants αi in terms
of ln(Q) ≈ lnE. On the left panel the evolution is estimated within the Standard
Model: the unification of the three couplings at a well-defined energy is not reached.
The unification is instead obtained in the Minimal Supersymmetric Standard Model,
as it is reported on the right panel.

are doubled, in the sense that each multiplet is replaced by a supermultiplet
which contains both fermion and bosons whose spin differs by 1

2
. Specifically,

quarks and leptons (S = 1
2 ) have scalar (S = 0) partners (squarks and slep-

tons); gauge bosons (S = 1) have fermionic partners (S = 1
2
), called gauginos;

finally, the Higgs boson (S = 0) has a (S = 1
2
) partner, the Higgsino. Super-

symmetry would require that a particle and its partner have the same mass;
however, since no supersymmetric partner has been discovered so far, super-
symmetry has to be broken, and one expects that its breaking occurs at not
too high energy (around or slightly above the Fermi energy scale, of the order
of a few hundreds GeV).

Even if supersymmetry has not been established by experiments, it is a
constant ingredient of the present theories; in particular, the SUSY version of
the SM leads to some advantages and theoretical improvements. First, super-
symmetry provides a solution to the so-called problem of hierarchy, i.e. the
problem of understanding how the electroweak scale, not protected by a sym-
metry, can be stable in front of the quadratic higher order corrections, which
would take the scalar particle mass to the extremely high scale energy of grand
unification. In supersymmetric theories one gets a cancellation among higher
order corrections, and the divergence is reduced to a logarithmic behavior.

A second interesting feature is that the behavior of the running couplings is
modified by the presence of the supersymmetric partners and it does indicate a
unification of the three couplings. In the MSSM, the minimal supersymmetric
version of the SM (which contains the particles listed above and one additional
Higgs doublet), the values of the bi coefficients given in Eq. (9.178) are replaced
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by:

bi =



b1

b2

b3


 = − 1

4π




0

6

9


 +

Nf
4π




1

1

1


 +

NH
4π




3
10
1
2

0


 . (9.179)

The corresponding behavior of the running couplings is represented in the
right panel of Fig. 9.7 and it shows the interesting property of unification, as
first pointed out in 199144.

Whether supersymmetry exists in Nature and possesses the expected prop-
erties, will be hopefully discovered by the forthcoming experiments at the
Large Hadron Collider (LHC) at CERN.

Among other consequences of the SU(5) model, we quote a general char-
acteristic feature of GUT’s: the fact that quarks and leptons are in the same
group representation indicates that they can be interchanged among each
other, and this leads to the prediction that the proton is no longer stable, but
it can decay, fortunately with a very long life-time. The experimental searches
of this effect in the big undergound laboratories may confirm, in the future,
this kind of prediction.

We remark that the GUT based on SU (5) contains only massless neutrino,
as in the Standard Model. To implement non-vanishing neutrino masses, one
has to extend the theory, including more fields: either other fermion fields,
like right-handed neutrinos, or other Higgs, like scalar iso-triplets.

Other GUT’s have been proposed, based on higher groups, such as SO(10)
and E6. In particular, models based on the orthogonal group SO(10) can
accommodate quarks and leptons of each generation in the single IR 16, and
this representation can accommodate also a right-handed neutrino νR. It is
worthwhile to mention that the gauge theories based on SO(10) and E6 are
automatically anomaly free.

In this chapter, we have not taken into account the gravitational interac-
tions. This is due to the fact that they play practically no role, in particle
physics, in the region of accessible energies. In fact, they become important
only at the Planck scale, around 1019 GeV. A complete theory of particles
would require also the unification of gravity with the other interactions. Un-
fortunately, one is faced with a severe theoretical difficulty, that of combin-
ing, in the frame of quantum field theory, general relativity with quantum
mechanics. All the attempts to find a solution in this direction failed; gauge
field theories, which include gravitational interactions, were constructed, but
they are non-renormalizable.

The only real solution was found going beyond the usual field theory, in
which particles are point-like, to the string theories, in which the fundamental
constituents are one-dimensional vibrating strings. In these theories, a neces-
sary ingredient is supersymmetry, which leads to the formulation of superstring

44 U. Amaldi, W. de Boer, H. Fuerstennau, Phys. Lett. B260, 447 (1991).
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theory45. A necessary tool is provided by group theory; the elimination of all
possible anomalies requires that superstrings live in a ten-dimensional space-
time, and that the internal symmetry groups are either SO(32) or E8 ⊗ E8.
Even if no realistic model, which could be confronted with experimental infor-
mation, has been produced up to now, superstring theory is widely and deeply
investigated, since it has the attractive feature of unifying all the fundamental
interactions.

Problems

9.1. Give the explicit proof of the invariance of the QCD Lagrangian (9.46)
under the gauge transformations (9.49) and (9.50).

9.2. The Lagrangian density

L =
∑

i

{ 1
2
∂µφi∂

µφi − 1
2
µ2φ2

i − 1
4
λ(φiφi)

2} ,

where the φi(x)’s stand for a set of N real fields, is invariant under the orthog-
onal group O(N). Considering the case µ2 < 0 in which the symmetry can be
spontaneously broken, determine the symmetry of the ground state and the
number of Goldstone bosons.

9.3. Evaluate the leading contribution to the low energy νe−electron scatter-
ing amplitude due to the W± exchange in the Standard Model, and compare
it with the amplitude obtained from the effective Lagrangian (9.105); derive
the relation (9.152) between the Fermi coupling constant GF and the gauge
coupling constant g. For the same process, derive also the contribution to the
scattering amplitude due to the Z0 exchange.

9.4. Consider the electroweak Standard Model based on the gauge group
SU(2)L ⊗ U(1)Y and include, besides the usual complex scalar doublet φ of
Eq. (9.117), a real scalar triplet Ψ with I = 1, Y = 0 and v.e.v. < Ψ0>0= V .

Determine the mass ratioMW /MZ and compare it with Eq. (9.134). Could
the scalar triplet alone produce the required breaking SU (2)I ⊗ U (1)Y →
U(1)Q?

9.5. Consider the relation (9.135), in which the ratio of the two squared vector
boson masses depends also on the phenomenological parameter ρ. Assuming
that several Higgs fields hℓ(x) belonging to different representations of the
gauge group contribute to the SSB, show that ρ can be expressed as a function
of the weak isospin Iℓ and hypercharge Yℓ of the Higgs fields in the form

ρ =

∑
ℓ v

2
ℓ [Iℓ(Iℓ + 1) − 1

4
Y 2
ℓ ]

1
2

∑
ℓ v

2
ℓY

2
ℓ

.

45 See e.g. M.B. Green, J.H. Schwarz & E. Witten, Superstring theory - Volume I,
Introduction, Cambridge University Press (1987).
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9.6. The so-called Left-Right Symmetric Model is based on the gauge group
SU(2)L⊗SU(2)R⊗U(1)Y , with generators IL, IR and Y , and electric charge
defined by Q = I3L + I3R + 1

2Y . It contains an extra triplet of vector gauge
fields (Aiµ)R = (1, 3, 0) with the same coupling g, in addition to the vector

gauge fields of the Standard Model: (Aiµ)L = (3, 1, 0) and Bµ = (1, 1, 0). Left-
handed and right-handed fermions are assigned symmetrically to doublets of
SU(2)L and SU (2)R, respectively.

Consider the simple version of the scalar sector containing two complex
scalar doublets φL = (2, 1, 1) and φR = (1, 2, 1) and suppose that the scalar
potential has a minimum for < φ0

L>0 = vL and < φ0
R>0 = vR. Evaluate the

masses of the vector bosons with the hypothesis vR ≫ vL.

9.7. In the SU(5) GUT model, the gauge vector bosons are assigned to the
adjoint representation 24. Decompose this representation into the IR’s of the
subgroupGSM = SU (3)c⊗SU(2)L⊗U(1)Y and identify the vector gauge mul-
tiplets corresponding to this subgroup. Exhibit the quantum numbers (electric
charge Q and hypercharge Y ) of the extra multiplets contained in 24.

9.8. In the SU(5) GUT model the SSB from SU(5) to GSM = SU(3)c ⊗
SU(2)L⊗U(1)Y is accomplished by a scalar potential which contains a scalar
field Ψ in the adjoint representation 24 and which has a minimum for a v.e.v.
< Ψ>0 6= 0.

What is the form of < Ψ >0 required to produce the desired breaking, if
Ψ is written as a 5 × 5 traceless tensor? What is the spectrum of the vector
gauge bosons after the SSB?

In order to implement a second stage of breaking from GSM to SU(3)c ⊗
U(1)Q it is necessary to introduce another scalar field with v.e.v. different
from zero. Which is the minimal choice?



A

Rotation matrices and Clebsch-Gordan
coefficients

In this Appendix we collect some formulae that are useful for specific applica-
tions of the rotation group discussed in Chapter 2. First we give the explicit
expressions of the functions djm′m and of the spherical harmonics for the lowest
angular momentum values. Then we report a few tables of Clebsch-Gordan
coefficients which are used in the addition of angular momenta.

A.1 Reduced rotation matrices and spherical harmonics

The reduced rotation matrix d
(j)
m′m(β) enter the rotation matrix D(j)(α, β, γ)

according to (see Eq. (2.63))

D
(j)
m′m(α, β, γ) = 〈j,m′|e−iαJze−iβJye−iγJz |j,m〉 = e−iαm

′

d
(j)
m′m(β)e−iγm ,

(A.1)
where one defines:

d
(j)
m′m(β) = 〈j,m′|e−iβJy |j,m〉 . (A.2)

The general expression proposed by Wigner for the d-functions1 is given
in Eq. (2.65), that we report again here for the sake of completeness:

d
(j)
m′m(β) =

∑

s

(−)s[(j +m)!(j −m)!(j +m′)!(j −m′)!]1/2

s!(j − s −m′)!(j +m− s)!(m′ + s−m)!
×

×
(

cos
β

2

)2j+m−m′−2s(
− sin

β

2

)m′−m+2s

,

(A.3)

where the sum is over the values of the integer s for which the factorial argu-
ments are equal or greater than zero.

1 See e.g. M.E. Rose, Elementary Theory of Angular Momentum, John Wiley and
Sons, 1957.
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We give here a few general properties:

djm′m(0) = δm′,m , (A.4)

djm′m(π) = (−)j−mδm′,−m , (A.5)

djm′m(β) = djmm′(−β) , (A.6)

djm′m(−β) = (−)m
′−mdjm′m(β) , (A.7)

and list the explicit expressions of the matrices for the lowest angular mo-
menta2 d

1
2 and d1:

d
1
2 =




cos β
2

− sin β
2

sin β
2 cos β2


 , (A.8)

d1 =




1
2 (1 + cosβ) − 1√

2
sinβ 1

2 (1 − cosβ)

1√
2

sinβ cosβ − 1√
2

sinβ

1
2
(1 − cosβ) 1√

2
sinβ 1

2
(1 + cosβ)


 , (A.9)

together with the most relevant matrix elements of the d
3
2 (the other matrix

elements being easily deduced on the basis of the symmetry properties given
above):

d
3/2
3/2,3/2 = 1

2
(1 + cosβ) cos

β

2
, d

3/2
3/2,1/2 = −

√
3

2
(1 + cosβ) sin

β

2
,

d
3/2
3/2,−1/2

=
√

3
2

(1 − cosβ) cos
β

2
, d

3/2
3/2,−3/2

= − 1
2
(1 − cosβ) sin

β

2
,

d
3/2
1/2,1/2 = 1

2 (3 cosβ − 1) cos
β

2
, d

3/2
1/2,−1/2 = − 1

2 (3 cosβ + 1) sin
β

2
.

(A.10)

Finally we give the expressions of the spherical harmonics Y mℓ limiting
ourselves to the case ℓ = 13:

Y 0
1 =

√
3

4π
cos θ , Y 1

1 = −
√

3

8π
sin θeiφ , Y −1

1 =

√
3

8π
sin θe−iφ . (A.11)

2 A more complete list can be found in: The Review of Particle Physics, C. Amsler
et al., Physics Letters B 667, 1 (2008).

3 For ℓ = 2 see the reference quoted above.
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A.2 Clebsch-Gordan coefficients

We report in the following the values of the Clebsch-Gordan coefficients
C(j1, j2, j;m1,m2,m) defined in Eq. (2.72), where j is the eigenvalue of the
total angular momentum J = J1 + J2 and m = m1 +m2 the corresponding
component along the x3-axis. We limit ourselves only to the cases j2 = 1

2 ,
very often useful in the calculations. The coefficients for higher values of j2
can be found in the quoted references.

In Table A.1 we report the coefficients C(j1, j2, j;m1,m2,m), for any value
of j1 and j2 = 1

2
.

Table A.1. Clebsch-Gordan coefficients C(j1,
1
2
, j;m1,m2, m).

j m2 = 1
2

m2 = − 1
2

j1 + 1
2

√
j1 +m1 + 1

2j1 + 1

√
j1 −m1 + 1

2j1 + 1

j1 − 1
2

−
√
j1 −m1

2j1 + 1

√
j1 +m1

2j1 + 1

The specific cases (j1 = 1
2
, j2 = 1

2
) and (j1 = 1, j2 = 1

2
) are given in the

Tables A.2 and A.3, respectively.

Table A.2. Clebsch-Gordan coefficients C( 1
2
, 1

2
, j;m1,m2,m).

j

l
l

l
ll

m2
1
2

− 1
2

m1

1
2

1 1√
2

1

− 1
2

1√
2

1

1
2

0 1√
2

0

− 1
2

− 1√
2

0
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Table A.3. Clebsch-Gordan coefficients C(1, 1
2
, j;m1,m2,m).

j

l
l

l
ll

m2
1
2

− 1
2

m1

1 1
√

1
3

3
2

0
√

2
3

√
2
3

−1
√

1
3

1

1 0
√

2
3

1
2

0 −
√

1
3

√
1
3

−1 −
√

2
3

0

In Table A.4 we report the coefficients C(j1, 1, j;m1,m2,m), for any value
of j1 and j2 = 1.

Table A.4. Clebsch-Gordan coefficients C(j1, 1, j;m1,m2, m).

j m2 = 1 m2 = 0 m2 = −1

j1 + 1
√

(j1+m1+1)(j1+m1+2)
(2j1+1)(2j1+2)

√
(j1−m1+1)(j1+m1+1)

(2j1+1)(j1+1)

√
(j1−m1+1)(j1−m1+2)

(2j1+1)(2j1+2)

j1 −
√

(j1+m1+1)(j1−m1)
2j1(j1+1)

m1√
j1(j1+1)

√
(j1−m1+1)(j1+m1)

2j1(j1+1)

j1 − 1
√

(j1−m1−1)(j1−m1)
2j1(2j1+1)

−
√

(j1−m1)(j1+m1)
j1(2j1+1)

√
(j1+m1)(j1+m1−1)

2j1(2j1+1)

Finally, the specific case (j1 = 1, j2 = 1) is given in Tables A.5.
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Table A.5. Clebsch-Gordan coefficients C(1, 1, j;m1,m2,m).

j

l
l

l
ll

m2 1 0 −1

m1

1 1
√

1
2

√
1
6

2 0
√

1
2

√
2
3

√
1
2

−1
√

1
6

√
1
2

1

1 0
√

1
2

√
1
2

1 0 −
√

1
2

0
√

1
2

−1 −
√

1
2

−
√

1
2

0

1 0 0
√

1
3

0 0 0 −
√

1
3

0

−1
√

1
3

0 0





B

Symmetric group and identical particles

In this Appendix we examine briefly the symmetry properties of identical
particles, which have to be taken into account when dealing with more particle
states. This symmetry appears only in quantum mechanics, and it is related
to the fact that particles of the same kind are to be considered absolutely
indistinguishable from one another.

B.1 Identical particles

Suppose we have a system of n particles of the same kind, e.g. protons, not
interacting among each other. A state of the system could be represented in
terms of one-particle states:

|a1b2c3 . . . zn> = |a1> |b2> |c3> . . . |zn> , (B.1)

where a1, b2, . . . correspond to the dynamical variables of the first, second,
. . . particle, respectively. The fact that the n particles are identical has as a
consequence that a transition from the above state to the state e.g.

|a2b1c3 . . . zn>= |a2> |b1> |c3> . . . |zn> , (B.2)

obtained by interchanging particles 1 and 2, could not be observable by any
means. It is then necessary to describe the situation represented by Eqs. (B.1)
and (B.2) in terms of the same state.

More generally, we want to have a situation in which any permutation
(built by repeated interchanges of two particles) among the n identical parti-
cles leads essentially to the same state of the system. The process of permuting
the particles will be represented by a linear operator P in the Hilbert space.

Since the n particles are indistinguishable, the Hamiltonian H of the sys-
tem will be a symmetrical function of the dynamical variables of the n parti-
cles, and then it will commute with the permutation operator

G. Costa and G. Fogli, Symmetries and Group Theory in Particle Physics, 219
Lecture Notes in Physics 823, DOI: 10.1007/978-3-642-15482-9, 
© Springer-Verlag Berlin Heidelberg 2012



220 B Symmetric group and identical particles

[P,H] = 0 . (B.3)

This means that a state which has initially some symmetry property (e.g. it
is totally symmetric under P ) will always conserve this symmetry.

B.2 Symmetric group and Young tableaux

In order to study in general the possible symmetry properties (under P ) of
the quantum mechanical states, it is convenient to make use of the symmetric
group. We summarize briefly here the relevant properties of this group.

As defined in Section 1.1, the symmetric group Sn is the group of permu-
tations of n objects. Each permutation can be decomposed into a product
of transpositions (i.e. permutations in which only two elements are inter-
changed).

The order of the group is n!. We recall a useful theorem of finite groups:
the sum of the squares of the dimensions of the IR’s equals the order of the
group.

We want now to make a correspondence between the IR’s of the group Sn
and the so-called Young tableaux.

Let us start with the states of two identical particles. The only possi-
ble permutation is the transposition P12 and one can build two independent
states, respectively symmetrical and antisymmetrical1:

|Φs> = |12> +|21> = (1 + P12)|12> = S12|12> ,

|Φa> = |12> −|21> = (1 − P12)|12> = A12|12> ,
(B.4)

where we have introduced the symmetrizing and antisymmetrizing operators

S12 = (1 + P12) ,

A12 = (1 − P12) .
(B.5)

We can take |Φs> and |Φa> as bases of the two non equivalent (one-
dimensional) IR’s of S2, which are (1, 1) and (1,−1). A convenient notation
is given in terms of the diagrams

for (1, 1) , for (1,−1) ,

which are particular Young tableaux, whose general definition will be given
later.

Before giving the rules for the general case, let us consider explicitly the
case of three identical particles. In principle we have 6 different states

1 In the following the compact notation |123 . . .>= |a1b2c3 . . .> will be used.
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|Φ1> = S123|123> , |Φ4> = A23S12|123> ,

|Φ2> = A123|123> , |Φ5> = A23S13|123> ,

|Φ3> = A13S12|123> , |Φ6> = A12S13|123> ,

(B.6)

where
S123 = 1 + P12 + P13 + P23 + P13P12 + P12P13 ,

A123 = 1 − P12 − P13 − P23 + P13P12 + P12P13 .
(B.7)

In fact, there are only 4 independent states: one is totally symmetric, one
totally antisymmetric, and two have mixed symmetry. They correspond to
the (3 box) Young tableaux in Table B.1. To each Young tableau one can
associate an IR of S3. Moreover, one can also know the dimension of each
IR, looking at the ”standard arrangement of a tableau” or ”standard Young
tableau”. Let us label each box with the numbers 1, 2, 3 in such a way that
the numbers increase in a row from left to right and in a column from top to
bottom. We see from the Table that there is only a standard tableau for each
of the first two patterns, and two different standard tableaux for the last one.
The number of different standard arrangements for a given pattern gives the
dimension of the corresponding IR.

Table B.1. Young tableaux and IR’s of S3.

Young tableaux Symmetry Standard tableaux IR dimension Young operator

totally symmetric 1 2 3 1 S123

totally antisymmetric

1

2

3

1 A123

mixed symmetry 1 2

3

1 3

2
2 A13S12, A12S13

To each standard tableau we can associate one of the symmetry operators
(or Young operators) used in Eqs. (B.6), (B.7). We note that we have one-
dimensional IR’s for the totally symmetric and antisymmetric cases, which
means that the corresponding states are singlets, and a two-dimensional IR
in the case of mixed symmetry, which corresponds to a doublet of degenerate
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states2. One can check that this result agrees with the rule of finite groups
mentioned above: in fact 3! = 1 + 1 + 22.

The above example can be easily extended to the case of n identical parti-
cles. In this case the group is Sn and one has to draw all Young tableaux
consisting of n boxes. Each tableau is identified with a given partition
(λ1, λ2, . . ., λn) of the number n (i.e.

∑
i λi = n), ordering the λi in such

a way that
λ1 ≥ λ2 ≥ . . . ≥ λn . (B.8)

The corresponding Young tableau

. . .

. . .

λ1

λ2

λ3

λ4

. . .

. . .

has λi boxes in the i-th row. Then for each tableau one finds all standard
arrangements. Each Young tableau corresponds to an IR of Sn, and the di-
mension of the IR is equal to the number of different standard arrangements.

To each IR there corresponds a n-particle state with a different symmetry
property, and the dimension of the IR gives the degeneracy of the state.

In order to obtain the state with the required symmetry property from the
state (B.1), we introduce a Young operator for each standard Young tableau
τ :

Yτ =

(
∑

col

Aν

)(
∑

rows

Sλ

)
, (B.9)

where Sλ is the symmetrizer corresponding to λ boxes in a row and Aν the
antisymmetrizer corresponding to ν boxes in a column, the two sums being
taken for each tableau over all rows and columns, respectively.

The explicit expressions for Sλ and Aν have already been given by (B.5)
and (B.7) in the simplest cases λ ≤ 3, ν ≤ 3. In general, they are defined by

Sλ =
∑

p

(
1 2 . . . λ
p1 p2 . . . pλ

)
, (B.10)

Aν =
∑

p

ǫp

(
1 2 . . . ν
p1 p2 . . . pν

)
, (B.11)

2 According to Eq. (B.6), one would expect two distinct two-dimensional IR’s,
corresponding to the mixed symmetry states |Φ3>, |Φ4>, |Φ5>, |Φ6>. However,
the two IR’s can be related to one another by a similarity transformations, i.e.
they are equivalent.
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where
∑
p indicates the sum over all permutations and ǫp = + or − in corre-

spondence to an even or odd permutation (a permutation is even or odd if it
contains an even or odd number of transpositions).

The state with the symmetry of the τ standard Young tableau is obtained
by means of

|Φτ>= Yτ |a1b2 . . . zn> . (B.12)

Particular importance have the states which are totally symmetrical or
totally antisymmetrical, because they are those occurring in nature. They
correspond to the Young tableaux consisting of only one row or one column,
so that they are simply given by

|Φs> = Sn|a1b2 . . . zn> , (B.13)

|Φa> = An|a1b2 . . . zn> . (B.14)

An assembly of particles which occurs only in symmetrical states (B.13) is
described by the Bose-Einstein statistics. Such particles occur in nature and
are called bosons. A comparison between the Bose statistics and the usual clas-
sical (Boltzmann) statistics (which considers particles distinguishable) shows
e.g. that the probability of two particles being in the same state is greater in
Bose statistics than in the classical one.

Let us examine the antisymmetrical state (B.14). It can be written in the
form of a determinant 



a1 a2 . . . an
b1 b2 . . . bn
. . . . . . . . . . . .
z1 z2 . . . zn


 . (B.15)

It then appears that if two of the states |a>, |b>, . . ., |zn> are the same,
the state (B.14) vanishes. This means that two particles cannot occupy the
same state: this rule corresponds to the Pauli exclusion principle. In general,
the occupied states must be all independent, otherwise (B.15) vanishes. An
assembly of particles which occur only in the antisymmetric states (B.14) is
described by the Fermi-Dirac statistics. Such particles occur in nature: they
are called fermions.

Other quantum statistics exist which allow states with more complicated
symmetries than the complete symmetry or antisymmetry. Until now, how-
ever, all experimental evidence indicates that only the Bose and the Fermi
statistics occur in nature; moreover, systems with integer spin obey the Bose
statistics, and systems with half-integer spin the Fermi statistics. This con-
nection of spin with statistics is shown to hold in quantum field theory (spin-
statistics theorem), in which bosons and fermions are described by fields which
commute and anticommute, respectively, for space-like separations.

Then, unless new particles obeying new statistics are experimentally de-
tected, all known particles states belong to the one-dimensional representation
of the symmetric group. We note, however, that the states of n-particles have
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to be singlet (totally symmetric or totally antisymmetric) under permutations
of all variables (space-time coordinates, spin, internal quantum numbers); if
one takes into account only a subset of variables, e.g. the internal ones, a state
can have mixed symmetry. In this case, one has to make use of the other – in
general higher dimensional – IR’s of the symmetric group Sn.



C

Young tableaux and irreducible representations
of the unitary groups

In this Appendix we illustrate the use of the Young tableaux in the construc-
tion of tensors which are irreducible with respect to the group U(n) of unitary
transformations.

The main property on which the method is based, and which will not be
demonstrated here, is that the irreducible tensors can be put in one-to-one
correspondence with the IR’s of the symmetric group; these are associated, as
pointed out in Appendix B, to the different Young tableaux.

On the other hand, since the irreducible tensors are bases of the IR’s of
the group U (n), one can go from the Young tableaux to the IR’s of the group
U(n) itself.

The method can be used, in general, for the group GL(n,C) of linear
transformations, but we shall limit here to the groups U(n) and SU (n) which
are those considered in Chapter 81. In the following, the main properties will
be illustrated by examples which have physical interest.

C.1 Irreducible tensors with respect to U(n)

Let us consider a n-dimensional linear vector space; its basic elements are
controvariants vectors defind by sets of n complex numbers ξα (α = 1, 2, . . . , n)
and denoted by:

ξ ≡




ξI

ξ2

...

ξn


 , (C.1)

The group U(n) can be defined in terms of unitary transformations

1 For the extension of the method to GL(n, C) see e.g. M. Hamermesh ”Group
theory and its applications to physical problems”, Addison-Wesley (1954).
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ξ → ξ′ = Uξ i.e. ξ′α = Uαβξ
β , (C.2)

where
U†U = I i.e. (U†)αβU

β
γ = δαγ . (C.3)

We define covariant vector the set of n complex numbers ηα (α =
1, 2, . . . , n)

η ≡ (η1 η2 . . . ηn) , (C.4)

which transforms according to

η → η′ = ηU † i.e. η′α = ηβ(U
†)βα . (C.5)

It follows that the quantity

ξ† = (ξ1 ξ2 . . . ξn ) , (C.6)

where
ξα ≡ (ξα)

∗
, (C.7)

transforms as a covariant vector.
It is also immediate to check that the scalar product

ηξ = ηaξ
a (C.8)

is invariant under the group transformations.
A general mixed tensor ζαβ...µν... where α, β, . . . are controvariant and µ, ν, . . .

covariant indeces, is defined by the transformation property

ζ′ αβ...µν... = Uαα′U
β
β′ . . . ζ

α′β′...
µ′ν′... (U

†)µ
′

µ(U
†)ν

′

ν . . . . (C.9)

We note, in passing, that the tensor δαβ is invariant under U(n).
A general tensor of the type given above is, in general, reducible. Let us

first consider, for the sake of simplicity, a tensor of the type ζαβγ... with r
indeces of controvariant type only: clearly, it corresponds to the basis of the
direct product representation

U ⊗ U ⊗ . . .⊗ U , (C.10)

where U appears r times. In order to reduce ζαβγ... into the irreducible tensors
which are bases of the IR’s of U(n) we make use of the Young tableaux.

We build all the different standard Young tableaux with r boxes, as defined
in Appendix B. To each standard tableau τ we associate a Young operator Yτ
as defined in (B.9).

By applying the operator Yτ to the tensor ζ = ζαβ..., one gets a tensor
θ = θαβ... which has the permutation symmetry of the corresponding standard
tableau:

θ = Yτζ . (C.11)



C.1 Irreducible tensors with respect to U(n) 227

One can show, in general, that the Young operators Yτ commute with the
transformations of the group U(n). Then one can write

(U ⊗U ⊗ . . .)θ = (U ⊗U ⊗ . . .)Yτ ζ = Yτ (U ⊗U ⊗ . . .)ζ = Yτ ζ
′ = θ′ . (C.12)

This result can be understood if one considers a tensor as product of
basic vectors ζαβ... = ξαξβ . . .. Now the transformations of the product do
not depend on the order in which the vectors are taken. This means that
the transformations of U(n) commute with the operations of permutations of
the individual vectors, and therefore that they do not change the symmetry
character of a tensor.

The meaning of Eq. (C.12) is that the subspace spanned by the tensor θ
is invariant under the transformations of U(n). Therefore, the tensor θ can be
taken as the basis of a IR of the group U(n).

Taking into account all the possible Young operators Yτ , i.e. all possible
standard tableaux, one can then decompose the tensor ζ into the irreducible
tensors Yτ ζ and, therefore, the reducible representation (C.10) into the IR’s
contained in it, the dimension of each IR being equal to the number of inde-
pendent components of the irreducible tensor.

Example 1
Let us consider the third order tensor

ζα1α2α3 = ξα1ξα2ξα3 , (C.13)

where ξαi is a generic component of the vector ξ defined by Eq. (C.2). Taking
into account the standard Young tableaux with three boxes (see Appendix B),
we obtain easily the following decomposition

ζα1α2α3 = ζ{α1α2α3} ⊕ ζ{α1α2}α3 ⊕ ζ{α1α3}α2 ⊕ ζ[α1α2α3] , (C.14)

i.e.

⊗ ⊗1 2 3 = 1 2 3 ⊕ 1 2
3

⊕ 1 3
2

⊕ 1
2
3

Each index αi goes from 1 to n; the number of components of a tensor cor-
responds to the different ways of taking all the independent sets (α1, α2, α3)
with given permutation properties. With the help of a little bit of combina-
torics, one can determine the dimension N of the different kinds of tensors in
(C.14):

ζ{αβγ} N =

(
n+ 3 − 1

3

)
=

1

6
n(n+ 1)(n+ 2) , (C.15)

ζ{αβ}γ N =
1

3
n(n2 − 1) , (C.16)
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ζ [αβγ] N =

(
n
3

)
=

1

6
n(n− 1)(n− 2) . (C.17)

Let us now consider a mixed tensor, such as ζαβ...µν... defined by Eq. (C.9).
In this case one has to apply the above procedure independently to the up-
per (controvariant) and lower (covariant) indeces. In other words, one has to
symmetrize the tensor, according to all possible Young standard tableaux, in
both the upper and lower indeces, independently. Moreover, one has to take
into account that a further reduction occurs, for a mixed tensor, due to the
invariance of the tensor δαβ. In fact, a tensor ζαβ...µν... , already symmetrized, can
be further reduced according to

δµαζ
αβ...
µν... = ζαβ...αν... , (C.18)

and in order to get irreducible tensors, one has to contract all possible pairs of
upper and lower indeces, and separate the ”trace” from the traceless tensors.
An example will suffice, for our purpose, to clarify the situation.

Example 2
Let us consider the (n × n)-component mixed tensor ζαβ = ξαξβ . It can be
decomposed in the form

ζαβ = ζ̂αβ +
1

n
δαβξ

γξγ , (C.19)

i.e. in the trace Trζ = ξγξγ and the traceless tensor

ζ̂αβ = ζαβ −
1

n
δαβξ

γξγ , (C.20)

which has n2 − 1 components.

C.2 Irreducible tensors with respect to SU(n)

The matrices U of the group SU(n) satisfy the further condition

detU = 1 , (C.21)

which can be written also in the form

ǫβ1...βn
Uβ1

α1
. . . Uβn

αn
= ǫα1...αn

, (C.22)

with the introduction of the completely antisymmetric tensor

ǫα1α2...αn
= ǫα1α2...αn , (C.23)

the only components different from zero being those obtained by permuta-
tions from ǫ12...n = +1, equal to +1 or −1 for even and odd permutations,
respectively.
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Eq. (C.22) shows that the tensor ǫ is invariant under the group SU(n).
This means that the corresponding IR is the identity (one-dimensional) rep-
resentation. It is interesting to note that the corresponding standard Young
tableau consists of a column of n boxes:

ǫ
α1α2...αn −→ = s

...

From this fact, useful important properties are derived for the irreducible
tensors of SU (n) (which hold, in general, for the unimodular group SL(n,C)).
Making use of the antisymmetric tensor ǫ, one can transform covariant indeces
into controvariant ones, and viceversa; for example one can write

ǫα1α2...αn ζ̂β1
α1

= θβ1[α2...αn] . (C.24)

In this way, one can transform all mixed tensors into one kind of tensors, say
controvariant. In fact, one can show that all the IR’s of SU(n) can be obtained
starting only from one kind of tensors, e.g. ζαβ....

In particular, the covariant vector ξα is transformed through

ξα1 = ǫα1α2...αn
ζ[α2...αn] , (C.25)

i.e. into the (n − 1)-component tensor ζ [α2...αn], which corresponds to a one-
column Young tableau with (n− 1) boxes.

A Young tableau (with r boxes) employed for the IR’s of U (n) or
SU(n) is identified by a set of n integer (λ1, λ2 . . . λn) with the conditions
λ1 ≥ λ2 . . . ≥ λn,

∑n
i=1 λi = r.

In fact, the maximum number of boxes in a column is n, since column
means complete antisymmetrization and each index α of a tensor can go from
1 to n.

However, in the case of SU(n) the use of the invariant tensor ǫα1α2...αn

shows that, from the point of view of the IR’s and irreducible tensors, each
Young tableau can be replaced by one in which all complete (n boxes) columns
are erased.

......

......

......

λ1

λ2

λ3

λn−1

λn

=⇒ ......

......

......

p1

p2

p3

pn−1
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Each IR of SU (n) is then specified by a set of (n − 1) integers (p1,
p2 . . . pn−1), the relation between the two sets λi and pi being

p1 = λ1 − λ2 ,

p2 = λ2 − λ3 ,
.
.
.
pn−1 = λn−1 − λn .

(C.26)

It can be shown that the dimension of the IR of SU(n) identified by the
set pi is given by

N =
1

1!2! . . . (n− 1)!
(p1 + 1)(p1 + p2 + 2) . . . (p1 + . . .+ pn−1 + n− 1)·
·(p2 + 1)(p2 + p3 + 2) . . . (p2 + . . .+ pn−1 + n− 2)·
. . . . . . . . .

·(pn−2 + 1)(pn−2 + pn−1 + 2)·
·(pn−1 + 1) .

(C.27)
In particular, one gets for SU(2)

N = p1 + 1 , (C.28)

and for SU (3)
N = 1

2(p1 + 1)(p1 + p2 + 2)(p2 + 1) . (C.29)

We point out that in the case of U(n), while the dimension of any IR is
still given by Eq. (C.27), the set (p1, p2 . . . pn−1) is no longer sufficient to
identify completely the IR. For U (n) one needs to know also the number of
boxes of the tableau corresponding to the set (λ1, λ2 . . . λn), i.e. the integer
r =

∑
i λi. This fact can be interpreted in the following way: the groups U (n)

and SU(n) are related by

U(n) = SU (n) ⊗ U(1) , (C.30)

and one can associate to the group U(1) an additive quantum number. Fixing
this quantum number for the vector ξα to a given value, say ρ, the value
for a controvariant tensor ξα1α2...αr is rρ. The value for the covariant vector,
according to Eq. (C.7) is −ρ.

Moreover, in the case of U(n), controvariant and covariant indeces cannot
be transformed into each others, and, in general, irreducible tensors which are
equivalent with respect to SU (n) will not be equivalent with respect to U(n).
The same will occur for the corresponding IR’s.

Given a Young tableau defined by the set (p1, p2 . . . pn−1), it is useful to
introduce the adjoint Young tableau defined by (pn−1, pn−2 . . . p1): it corre-
sponds to the pattern of boxes which, together with the pattern of the first
tableau, form a rectangle of n rows. For example, for SU(3), the following
tableaux are adjoint to one another since
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and satisfy .

Given an IR of SU (n) corresponding to a Young tableau, the adjoint IR is
identified by the adjoint tableau; the two IR’s have the same dimensionality
(see Eq. (C.27)), but are in general inequivalent (they are equivalent only for
SU(2))).

A Young tableau is self-adjoint if it coincides with its adjoint, and the
corresponding IR is called also self-adjoint. For SU(3), e.g., the octet, corre-
sponding to the tableau

is self-adjoint.

Fundamental representations are said the IR’s which correspond to set
(p1, p2 . . . pn−1) of the type

{
pi = 1
pj = 0 (j 6= i)

. (C.31)

SU(n) then admits n − 1 fundamental representations, identified by the
tableaux with only one column and number of boxes going from 1 to n− 1.

It is useful to distinguish different classes of IR’s for the group SU(n).
In the case of SU (2), as we know already from the study of the rotation
group in Chapter 2, there are two kinds of IR’s, the integral and half-integral
representations, corresponding to even and odd values of p1 (p1 gives, in this
case, just the number of boxes in the Young tableaux; in terms of the index j
of the D(j) it is p1 = 2j).

For n > 2, given the total number r of boxes in a tableau, we define the
number k:

k = r − ℓn , (C.32)

where ℓ and k are non-negative integers such that

0 ≤ k ≤ n− 1 . (C.33)

For SU(n), one can then distinguish n classes of IR’s, corresponding to
the values k = 0, 1, . . . n− 1. Each fundamental IR identifies a different class.

It is interesting to note that the direct product of two IR’s of classes k1

and k2 can be decomposed into IR’s which belong all to the class k = k1 + k2

(modulo n). In particular, product representations of class k = 0 contain only
IR’s of the same class k = 0.

This fact is related to the followinge circumstance: the group SU (n) con-
tains as invariant subgroup the abelian group Zn (of order n) which consists in
the n-th roots of unity. With respect to the factor group SU(n)/Z(n), the only
IR’s which are single-valued are those of class k = 0; the other IR’s of SU (n)
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(class k 6= 0) are multi-valued representations. This is clearly a generalization
of what happens for SU(2) and SO(3).

C.3 Reduction of products of irreducible representations

It is useful to give a general recipe for the reduction of the direct product of
IR’s of SU (n). A simple example is provided already by Eq. (C.14).

The recipe is based on the analysis of the construction of irreducible tensors
and can be expressed as follows. Given two Young tableaux, insert in one of
them the integer k, (k = 0, 1, . . . n− 1) in all the boxes of the k-th row, e.g.

...
...

...
...

1 1 1 1 1 1 1
2 2 2 2 2
3 3 3 3

k k k

Then enlarge the other tableau by attaching in all ”allowed” ways successively
the boxes of type 1, those of type 2, etc. In each step, the following conditions
have to be fulfilled:

a) Each tableau must be a proper tableau: no row can be longer than any
row above it, and no column exists with a number of boxes > n.

b) The numbers in a row must not decrease from left to right: only different
numbers are allowed in a column and they must increase from top to
bottom.

c) Counting the numbers n1, n2, . . . nk . . . of the boxes of type 1, 2, . . . k . . .
row by row from the top, and from right to left in a row, the condition
n1 ≥ n2 . . . ≥ nk . . . must be satisfied.

The above procedure is illustrated by a simple example.

Example 3
Suppose we have to decompose the direct product 8⊗ 8, where 8 is the eight-
dimensional IR of SU(3). Making use of the Young tableaux, we can write

⊗ 1 1
2

=
1

1 2

⊕ 1
1

2

⊕ 1
2

1

⊕ 11

2

⊕ 1
1 2

⊕ 11
2

In the tableaux on the r.h.s., we can get rid of the complete (3 boxes)
columns, and the numbers (p1, p2) of boxes in the remaining two rows identify
completely the IR’s into which the direct product is decomposed.
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Labelling each IR by the dimension N (see Eq. (C.29)), and the corre-
sponding adjoint IR by N , one has:

⊗ = r ⊕ ⊕ ⊕ ⊕ ⊕

8 ⊗ 8 = 1 ⊕ 8 ⊕ 8 ⊕ 10 ⊕ 10 ⊕ 27

C.4 Decomposition of the IR’s of SU(n) with respect to
given subgroups

It is a well known fact that a representation, which is irreducible with respect
to a group G, is in general reducible with respect to one of its subgroups H.
It is then useful to decompose this representation into the IR’s of H.

We are mainly interested in subgroups of the type SU(ℓ) ⊗ SU (m) of
SU(n), where either ℓ+m = n or ℓ ·m = n. The corresponding decomposition
will give authomatically the content of an IR of SU(n) in terms of IR’s of the
subgroup SU(m) with m < n.

We shall consider the two cases separately.

a) ℓ+m = n

Let us start from the controvariant vector of SU(n) ξA (A = 1, 2, . . . n). We
can split it in the following way

ξA = δAα(ξα, 0) + δAa(0, ξ
a) ; 1 ≤ α ≤ ℓ , ℓ+ 1 ≤ a ≤ n , (C.34)

i.e.

ξ = x+ y =




ξ1

ξ2

...
ξℓ

0
...
0




+




0
0
...
0
ξℓ+1

...
ξn




, (C.35)

The two vectors x = (ξα, 0) and y = (0, ξa) are the bases of the self IR’s
of SU(ℓ) and SU (m), respectively.

In terms of Young tableaux the decomposition (C.34) corresponds to

=
(

,
s

)
⊕
(

s

,

)

n = (ℓ , 1) ⊕ (1 , m) ,
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where the tableaux in parenthesis refer to SU(ℓ) and SU (m), respectively.
For a general tensor, we can proceed in the following way. We split the

corresponding Young tableau into two pieces in such a way that each piece
is an allowed Young tableau relative to the subgroups SU(ℓ) or SU(m). We
perform all allowed splittings: all pairs of the sub-Young tableaux so obtained
correspond to irreducible tensors and then to IR’s of the subgroup SU (ℓ) ⊗
SU(m).

The procedure is illustrated by the two following examples:

Example 4.
Let us consider the IR’s of SU(6) corresponding to the Young tableaux

,

whose dimensions, according to Eqs. (C.15) and (C.17), are 56 and 20, re-
spectively. Their decomposition with respect to the subgroup SU (4)⊗ SU(2)
is obtained by writing

=
(

,
s

)
⊕
(

,

)
⊕
(

,

)
⊕
(

s

,

)

56 = (20 , 1) ⊕ (10 , 2) ⊕ (4 , 3) ⊕ (1 , 4)

where the first tableau in parenthesis refers to SU(4) and the second to SU (2).
In a similar way

=
(

,
s

)
⊕
(

,

)
⊕
(

,

)

20 = (4 , 1) ⊕ (6 , 2) ⊕ (4 , 1)

Under the tableaux we have written the dimension of the corresponding IR.
We note that, in the case of SU (2), the Young tableau consisting of a column
of two boxes corresponds to the identity, and a column of three boxes is not
allowed.
Example 5
Let us consider now the same IR’s of SU(6) and their decomposition with
respect to the group SU (3) ⊗ SU (3). One obtains in this case:
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=
(

,
s

)
⊕
(

,

)
⊕
(

,

)
⊕
(

s

,

)

56 = (10 , 1) ⊕ (6 , 3) ⊕ (3 , 6) ⊕ (1 , 10)

and

=
(

,
s

)
⊕
(

,

)
⊕
(

,

)
⊕
(

s

,

)

20 = (1 , 1) ⊕ (3 , 3) ⊕ (3 , 3) ⊕ (1 , 1)

As a byproduct of the above recipe, taking m = 1 (ℓ = n − 1), one can
obtain immediately the content of an IR of SU(n) in terms of the IR’s of
SU(n− 1).

b) ℓ ·m = n

In this case the index A of the vector component ξA can be put in the one-to-
one correspondence with a pair of indeces (α, a) (α = 1, . . . , ℓ; a = ℓ+1, . . . , n),
i.e.

ξA = xαya or ξ = x⊗ y , (C.36)

where

x =




x1

x2

...
xℓ


 , y =




y1

y2

...
ym


 , (C.37)

and in terms of the corresponding Young tableaux

=
(

,

)

n = (ℓ , m)

For a general tensor ξABC... we consider the corresponding Young tableau,
which specifies the symmetry properties of the indeces A,B,C . . .. Each index
is split into a pair of indeces according to the rule (C.36): A = (α, a), B =
(β, b), C = (γ, c), . . .. Then we consider pairs of Young tableaux which refer
independently to symmetry properties of the sets of indeces (α, β, γ, . . .) and
(a, b, c, . . .). However, one has to keep only those pairs of Young tableaux
such that the global symmetry in (A,B,C, . . .) corresponding to the original
tableau is preserved.



236 C Young tableaux and irreducible representations of the unitary groups

Example 6
Let us consider again the IR’s 56 and 20 of SU(6) and their decomposition
with respect to the group SU (3)⊗ SU(2). We can write

=
(

,

)
⊕
(

,

)
A B C α β γ a b c α β

γ
a b
c

56 = (10 , 4) ⊕ (8 , 2)

and

=
(

,

)
⊕
(

,

)A
B
C

α
β
γ

a b c α β
γ

a c
b

20 = (1 , 4) ⊕ (8 , 2)

For the sake of convenience the boxes in the tableaux have been labelled with
different letters. The order in which they are written is immaterial, provided
the symmetry is preserved by the correspondence A ↔ (α, a), B ↔ (β, b),
C ↔ (γ, c). Moreover, each pair of tableaux must appear only once.

Finally we remind that only allowed Young tableaux have to be included.
For instance, in the general case SU(ℓ) ⊗ SU(m), with ℓ ≥ 3, m ≥ 3, the
previous decompositions would be replaced by:

=
(

,

)
⊕
(

,

)
⊕
(

,

)

=
(

,

)
⊕
(

,

)
⊕
(

,

)

Obviously, the last term in each decomposition is not allowed in the case
m = 2.



Solutions

Problems of Chapter 2

2.1 Making use of the definition (2.20), Eq. (2.21) can be written as

∑

k

σkx
′
k =

∑

kj

σkRkjxj =
∑

j

uσju
†xj .

Multiplying the above expression on the left by σi and taking the trace, one
gets:

Rij = 1
2
Tr(σiuσju

†).

Finally, inserting the expressions of the Pauli matrices (2.22) and of the u
matrix (2.15), one obtains:

R =




ℜ(a2 − b2) −ℑ(a2 + b2) −2ℜ(a∗b)
ℑ(a2 − b2) ℜ(a2 + b2) −2ℑ(ab)

2ℜ(ab) 0 |a|2 − |b|2


 .

2.2 Let us denote by U(R) the unitary operator in the Hilbert space cor-
responding to the rotation R. If H is invariant under rotations and |ψ > is
a solution of the Schrödinger equation, also U(R)|ψ > is a solution and H
commutes with U(R). Then, according to Eq. (2.29), an infinitesimal rotation
is given by R ≃ 1 − iφJ · n and we get: [H, Jk] = 0, with k = 1, 2, 3.

2.3 The πN states corresponding to the resonant states with J = 3
2 and

Jz = ± 1
2
, making use of the Eq. (2.71), can be written as:

∣∣∣1, 1
2 ; 3

2 ,+
1
2 > = C

(
1, 1

2 ,
3
2 ; 0, 1

2 ,
1
2

)∣∣0, 1
2 >+C

(
1, 1

2 ,
3
2 ; 1,− 1

2 ,
1
2

)∣∣1,− 1
2 >

and
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∣∣∣1, 1
2 ; 3

2 ,− 1
2 >= C

(
1, 1

2 ,
3
2 ; 0,− 1

2 ,− 1
2)
∣∣0,− 1

2 >+C
(
1, 1

2 ,
3
2 ; 1,− 1

2 ,
1
2 )
∣∣− 1, 1

2 >

where all the states on the r.h.s. are understood to be referred to the case
j1 = ℓ = 1, j2 = s = 1

2
.

Inserting the explicit values of the CG-coefficients and the expressions
for the spherical harmonics Y 0

1 and Y −1
1 (see Table A.3 and Eq. (A.11) in

Appendix A), the final πN states can be represented by
∣∣∣1, 1

2
; 3

2
,+ 1

2
> ∼

√
2 cos θ |α> − 1√

2
eiφ sin θ |β> ,

and ∣∣∣1, 1
2 ; 3

2 ,− 1
2 > ∼

√
2 cos θ |β > + 1√

2
e−iφ sin θ |α> .

where |α>, |β> stand for the spin 1
2 states with sz = +1

2 and − 1
2 , respectively.

Projecting each state onto itself, one gets the angular distribution, which
appears in the differential cross-section

dσ

dΩ
∼ |A 3

2
|2{1 + 3 cos2 θ},

where A 3
2

is the πN scattering amplitude in the J = 3
2

state.

2.4 We start from Eq. (2.60), which we re-write here

R = R′′γR
′
βRα = e−iγJz”e−iβJy′ e−iαJz ,

and make use of the appropriate unitary transformations R′κ = URκU
−1 that

express each of the first two rotations in terms of the same rotation as seen
in the previous coordinate system. Specifically,

e−iγJz” = e−iβJy′ e−iγJz′eiβJy′ ,

and
e−iβJy′ = e−iαJze−iβJyeiαJz .

By inserting the above expressions in the first relation and taking into account
a similar expression for e−iγJz′ , one gets Eq. (2.61).

2.5 We denote by

ζ+ =

(
1

0

)
and ζ− =

(
0

1

)

the two eigenstates |1
2
,+ 1

2
> and | 1

2
,− 1

2
> and apply to them the rotation

exp
{
i
π

2

σ1

2

}
= 1 cos(π4 ) + iσ1 sin(π4 ) =

√
1
2

(
1 i

i 1

)
.
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Then we obtain the requested (normalized) eigenstates:

ξ+ =
√

1
2

(
1

i

)
and ξ− =

√
1
2

(
i

1

)
.

Problems of Chapter 3

3.1 Starting from the general rotation (2.9), one can derive the rotation Rn

which transforms the unit vector along the x3-axis into the generic vector n
of components (n1, n2, n3). Written in terms of the components of n, it reads

Rn =




1 − (n1)
2

1 + n3
− n1n2

1 + n3
n1

− n1n2

1 + n3
1 − (n2)

2

1 + n3
n2

−n1 −n2 n3




.

By assuming n = β/|β| and introducing the rotation Rn as a 4× 4 matrix in
Eq. (3.28), one can easily derive Eq. (3.27).

3.2 Making use of Eq. (3.42), one gets

Λµν(AB) = 1
2Tr

[
σµABσν(AB)†

]
= 1

2Tr
[
A†σµABσνB

†]

and

[Λ(A)Λ(B)]
µ
ν = Λµρ(A)Λρν(B) = 1

4 Tr
[
A†σµAσρ

]
Tr
[
σρBσνB

†]

The identity Λ(AB) = Λ(A)Λ(B) follows immediately from the property of
the trace

∑

µ

Tr [Gσµ] Tr [σµH] = 2 Tr [GH ]

valid for two arbitrary matrices G and H, and which can be easily checked. As
an immediate consequence of the proved identity, one gets [Λ(A)]−1 = Λ(A−1).

3.3 By inserting (3.39) into Eq. (3.42) one obtains the explicit expression
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Λ(A) = 1
2 ·




|α|2 + |β|2 αβ∗ + βα∗ i(−αβ∗ + βα∗ |α|2 − |β|2
+|γ|2 + |δ|2 +γδ∗ + δγ∗ −γδ∗ + δγ∗) +|γ|2 − |δ|2

αγ∗ + βδ∗ αδ∗ + βγ∗ i(−αδ∗ + βγ∗ αγ∗ − βδ∗

+γα∗ + δβ∗ +γβ∗ + δα∗ −γβ∗ + δα∗) +γα∗ − δβ∗

i(αγ∗ + βδ∗ i(αδ∗ + βγ∗ αδ∗ − βγ∗ i(αγ∗ − βδ∗

−γα∗ − δβ∗) −γβ∗ − δα∗) −γβ∗ + δα∗ −γα∗ + δβ∗)

|α|2 + |β|2 αβ∗ + βα∗ i(−αβ∗ + βα∗ |α|2 − |β|2
−|γ|2 − |δ|2 −γδ∗ − δγ∗ +γδ∗ − δγ∗) −|γ|2 + |δ|2




which can be written as the product of two matrices, as follows

Λ(A) = 1
2




α β γ δ
γ δ α β

−iγ −iδ iα iβ
α β −γ −δ


 ·




α∗ β∗ −iβ∗ α∗

β∗ α∗ iα∗ −β∗
γ∗ δ∗ −iδ∗ γ∗

δ∗ γ∗ iγ∗ −δ∗




The calculation of the determinant (making use of the minors of the second
order) gives, since detA = 1,

detΛ(A) = 1
16

[
−4i(detA)2

] [
4i(detA†)2

]
= 1

3.4 From the previous problem one gets

Λ0
0(A) = 1

2

(
|α|2 + |β|2 + |γ|2 + |δ|2

)

and one can write

Λ0
0(A) = 1

4

(
|α+ δ∗|2 + |α− δ∗|2 + |β + γ∗|2 + |β − γ∗|2

)
≥

≥ 1
4

(
|α+ δ∗|2 − |α− δ∗|2 + |β + γ∗|2 − |β − γ∗|2

)
=

= Re(αδ − βγ) .

Taking into account that

detA = αδ − βγ = 1 ,

one has Λ0
0(A) ≥ 1.

3.5 If one takes the matrix A of the particular form

U = cos 1
2φ− iσ · n sin 1

2φ ,

Eq. (3.38) becomes
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X ′ = σµx
′µ = (cos 1

2φ− iσ · n sin 1
2φ)σµx

µ (cos 1
2φ+ iσ · n sin 1

2φ) =

= x0 + σ · x cos2 1
2
φ+ (σ · n)(σ · x)(σ · n) sin2 1

2
φ−

−i sin 1
2φ cos 1

2φ [(σ · n)(σ · x) − (σ · x)(σ · n)] .

Making use of the well-known identity

(σ · a)(σ · b) = a · b + iσ · (a × b) ,

the above relation becomes

x0′ + (σ · x′) = x0 + σ · {(n · x)n + cosφ [x − (n · x)n] + sinφ(n × x)} ,

which clearly represents the application of the rotation matrix given by the
Eqs. (3.23), (2.9) to the four-vector x = (x0,x).

3.6 Taking for A the matrix

H = cosh 1
2ψ − σ · n sinh 1

2ψ ,

Eq. (3.38) becomes

X ′ = σµx
′µ = (cosh 1

2ψ − σ · n sinh 1
2ψ)σµx

µ (cosh 1
2ψ − σ · n sinh 1

2ψ) =

= x0 coshψ − n · x sinhψ+

+σ ·
{
x − (n · x)n + n

[
(n · x) coshψ − x0 sinhψ

]}
.

The above relation corresponds to the transformations

x0′ = x0 coshψ − n · x sinhψ ,

x′ = x − (n · x)n + n
[
(n · x) coshψ − x0 sinhψ

]
.

which are immediately identified with the application of the pure Lorentz
matrix (3.27) to the four-vector x.

3.7 First let us check that an infinitesimal Lorentz transformation can be
written in the form

Λρσ = gρσ + δωρσ with δωρσ = −δωσρ .

The condition (3.7) gives

(
gµρ + δωµρ

)
gµν (gνσ + δωνσ) = gρσ ,

i.e. δωρσ = −δωσρ. Next, let us consider an infinitesimal transformation ob-
tained from (3.61):
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Λρσ = gρσ − 1
2 iδω

µν(Mµν)
ρ
σ .

If we compare this expression of Λρσ with the one given above, we get imme-
diately

(Mµν)
ρ
σ = i (gµ

ρgνσ − gν
ρgµσ) .

Writing explicitly Mµν in matrix form, one gets the six independent matrices
Ji, Ki given in (3.50) and (3.54).

3.8 According to the definition given in Section 1.2, SO(4) is the group of
four-dimensional real matrices α satisfying the condition:

αα̃ = 1 , detα = 1 .

The group leaves invariant the lenght of a four-vector xµ (µ = 1, 2, 3, 4) in a
four-dimensional euclidean space. Using the notation

x2 = δµνx
µxν ,

where δµν is the Kronecker symbol, one gets in fact:

(x′)2 = δµνx
′µx′

ν
= δµνα

µ
ρα

ν
σx

ρxσ = (x)2 .

For this reason, SO(4) can be regarded as the group of rotations in a four-
dimensional space; they are proper rotations since the group contains only
unimodular matrices (detα = 1).

In analogy with Problem 3.7, the infinitesimal transformation of SO(4)
can be written as

αµν = δµν + ǫµν .

where ǫµν = −ǫνµ (the group is characterized by six parameters, since its
order is 6), as can be easily checked from the condition αα̃ = 1.

One can find the infinitesimal generators Jµν by writing

αρσ = δρσ − 1
2 iǫ

µν(Jµν)
ρ
σ ,

so that:
(Jµν)

ρ
σ = i (δρµδνσ − δρνδµσ) .

From these, one can obtain the commutation relations

[Jµν , Jρσ] = −i (δµρJνσ − δµσJνρ − δνρJµσ + δνσJµρ) .

Let us now introduce the following linear combinations

Mi = 1
2 (Ji4 + Jjk) ,

(i, j, k = 1, 2, 3 and cyclic permutations)
Ni = − 1

2 (Ji4 − Jjk) .
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Since these combinations are real, also the quantities Mi, Ni, as Jµν , can be
taken as basic elements of the Lie algebra of SO(4). It is easy to verify that
the commutators of Jµν , expressed in terms of Mi, Ni, become:

[Mi,Mj ] = iǫijkMk ,

[Ni, Nj ] = iǫijkNk ,

[Mi, Nj ] = 0 ,

The quantities Mi and Ni can be considered as the components of two inde-
pendent angular momentum operators M and N; each of them generates a
group SO(3). Then the group SO(4) correponds to the direct product

SO(4) ∼ SO(3) ⊗ SO(3) .

This correspondence is not strictly an isomorphism, due to the arbitrariness
in the choice of the signs for the two subgroups SO(3). It is instructive to

compare the above properties of SO(4) with those given for L↑+. In particular,
the IR’s of SO(4) can still be labelled by the eigenvaslues of the Casimir
operators M2 and N2 (see Section 3.4); however, the IR D(j,j′)(α) of SO(4),
which is of order (2j + 1)(2j′ + 1), is now unitary since the group SO(4) is

compact, in contrast with the finite IR’s of the non-compact group L↑+, which
are not unitary.

3.9 From Eq. (3.70) one gets the following representation for a rotation about
x3 and a pure Lorentz transformation along x3

A(R3) = e−
1
2
iφσ3 =

(
e−

1
2
iφ 0

0 e
1
2
iφ

)
, A(L3) = e−

1
2
ψσ3 =

(
e−

1
2
ψ 0

0 e
1
2
ψ

)
.

The relative transformations of the spinor ξ are given from (3.68) and are

{
ξ′1 = e−

1
2
iφ ξ1

ξ′2 = e
1
2
iφ ξ2

,

{
ξ′1 = e−

1
2
ψ ξ1

ξ′2 = e
1
2
ψ ξ2

,

respectively. The transformations of the spinor ξ∗, according to (3.69), are
given by the complex conjugate relations.

3.10 Any antisymmetric tensor can always be decomposed as

Aµν = 1
2

(
Aµν +ADµν

)
+ 1

2

(
Aµν −ADµν

)
.

where the dual tensor ADµν = 1
2 ǫµνστA

στ is clearly anti-symmetric. The two

tensor
(
Aµν +ADµν

)
and

(
Aµν −ADµν

)
are selfdual and anti-selfdual, respec-

tively, since (ADµν)
D = Aµν (remember that 1

2ǫ
µνστ ǫµναβ = gσαg

τ
β−gσβgτα).
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If A′µν is the transformed of Aµν under an element of L↑+, the transformed of

ADµν is A′Dµν = 1
2ǫµνστA

′στ ; so that the selfdual and anti-selfdual tensors are

irreducible under L↑+.

The electromagnetic field tensor Fµν and its dual FD
µν

are given in terms
of the field components Ei, Bi by

Fµν =




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0




, FD
µν

=




0 −B1 −B2 −B3

B1 0 −E3 E2

B2 E3 0 −E1

B3 −E2 E1 0




,

We see that the selfdual and anti-selfdual tensors correspond to the field
combinations Ei −Bi and Ei +Bi, respectively.

3.11 As seen in Section 3.4, the four-vector xµ is the basis of the IR D( 1
2 ,

1
2 )

of L↑+. The basis of the direct product representation D( 1
2 ,

1
2 ) ⊗ D( 1

2 ,
1
2 ) can

then be taken to be the tensor xµyν . This tensor is not irreducible and one
can decompose it in the following way:

xµyν =
{

1
2 (xµyν + yµxν) − 1

4(x · y)
}

+ 1
2 (xµyν − yµxν) + 1

4 (x · y) .

It is easy to check that each of the terms on the r.h.s (the 9-component
traceless symmetric tensor, the 6-component anti-symmetric tensor and the
trace) transform into itself under L↑+. Moreover, we learnt from Problem 3.10
that the anti-symmetric tensor can be decomposed further into two irreducible
3-component tensors. One gets in this way four irreducible tensors. It is natural
to take them as the bases of the IR’s D(1,1), D(0,0), D(1,0) and D(0,1), which
have, respectively, dimensions 9, 1, 3, and 3.

Problems of Chapter 4

4.1 The composition law of the Poincaré group is given by Eq. (4.2). One
must show that the group properties given in Section 1.1 are satisfied. The
multiplication is associative:

(a3, Λ3) [(a2, Λ2)(a1, Λ1)] = [a3 + Λ3(a2 + Λ2a1), Λ3Λ2Λ1] =
= (a3 + Λ3a2, Λ3Λ2) (a1, Λ1) =
= [(a3, Λ3)(a2, Λ2)] (a1, Λ1) .

The identity is (0, I) and the inverse of (a, Λ) is (−Λ−1a, Λ−1). In fact:
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(a, Λ)(−Λ−1a, Λ−1) = (a − ΛΛ−1a, ΛΛ−1) = (0, I) ,

(−Λ−1a, Λ−1)(a, Λ) = (−Λ−1a+ Λ−1a, Λ−1Λ) = (0, I) .

In order to show that the translation group S is an invariant subgroup, it
is required that, for any translation (b, I) and any element (a, Λ) of P↑+, the
product

(a, Λ)(b, I)(a, Λ)−1 ,

is a translation. In fact, one gets immediately:

(a, Λ)(b, I)(−Λ−1a, Λ−1) = (a+ Λb, Λ)(−Λ−1a, Λ−1) = (Λb, I) .

4.2 We have to show that P 2 and W 2 commute with all the generators of
P↑+, i.e. with Pµ and Mµν . First, making use of the commutation relations
(4.16) and (4.17), we get

[P 2, P ν ] = [PµP
µ, P ν ] = 0 ,

[P 2,Mµν ] = gστ [P
σP τ ,Mµν ] = gστ [P

σ,Mµν ]P τ + gστP
σ[P τ ,Mµν ] =

= igστ (g
µσP ν − gνσPµ)P τ + igστP

σ(gµτP ν − gντPµ) =

= 2i[Pµ, P ν ] = 0 .

Then, making use of (4.21), we obtain

[W 2, Pµ] = [WνW
ν , Pµ] = 0 ,

[W 2,Mµν ] = gστ [W
σ,Mµν ]W τ + gστW

σ[W τ ,Mµν ] = −2i[Wµ,W ν ] = 0 .

4.3 Writing explicitly the translation in (4.8), one gets

U−1(Λ)e−ia
µPµU (Λ) = e−i(Λ

−1)µ
νa

νPµ = e−ia
µΛµ

νPν ,

where U(Λ) stands for U(0, Λ). In the case of an infinitesimal translation, one
obtains

U−1(Λ)PµU(Λ) = Λµ
νPν ,

which coincides with Eq. (4.35). Making use explicitly of the Lorentz trans-
formation (3.61), one gets for ωµν infinitesimal

[Mµν , Pρ] = −(Mµν)ρ
σPσ ,

which are equivalent to the commutation relations (4.17) when one takes into
account the expression of (Mµν)ρ

σ
derived in Problem 3.7.
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4.4 Starting from

U (Λ′) = e−
i
2ω

µνMµν ,

and assuming ωµν infinitesimal, one gets

U(Λ)U(Λ′)U (Λ−1) = I − i

2
ωµνU (Λ)MµνU

−1(Λ) = I − i

2
ωαβMαβ ,

where ωαβ is given by

gαβ + ωαβ = (ΛΛ′Λ−1)αβ = Λαµ(g
µ
ν + ωµν)Λ

ν
β = gαβ + ΛαµΛ

ν
βω

µ
ν .

One then obtains

U(Λ)MµνU
−1(Λ) = ΛαµΛ

β
νMαβ ,

which are the transformation properties of a tensor of rank two.
Taking also for U(Λ) a generic infinitesimal transformation, one gets

[Mµν ,Mρσ] = −(Mρσ)
α
µMαν − (Mρσ)

β
νMµβ ,

which corresponds to the commutation relation (3.60), as can be seen by use
of the explicit expression of (Mµν)

ρ
σ derived in Problem 3.7.

4.5 The operators Wµ transform as Pµ, i.e. according to (4.35):

W ′µ = U−1(Λ)WµU(Λ) = Λµ
νWν .

We use for Λ the pure Lorentz transformation L−1
p which brings a state |p, ζ>

at rest; its explicit expression is obtained immediately from (3.27) by changing
the sign of the space-like components:

L−1
p =




p0

m

pi

m

−pj
m

δij −
pipj

m(p0 +m)


 .

One then obtains

W ′0 =
1

m

(
p0W0 + piWi

)
= 0 (see Eq. (4.20)) ,

W ′i =
1

m

(
−piW0 −

pip
jWj

p0 +m

)
+Wi = Wi −

pi
po +m

W0 .

Let us write the following commutator

[W ′i ,W
′
j ] = [Wi,Wj ] −

pi
p0 +m

[W0,Wj ] −
pj

p0 +m
[Wi,W0] .
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With the definition Jk =
1

m
W ′k, making use of (4.21) and having in mind that

the operators are applied to momentum eigenstates |p, ζ>, one gets

[Ji, Jj ] = iǫijkJk .

The calculation is straightforward but lengthy: for simplicity we fix i = 1,
j = 2:

[W ′1,W
′
2] =

= −i(W0p3 − p0W3) +
ip1

p0 +m
(W1p3 − p1W3) +

ip2

p0 +m
(W2p3 − p2W3) =

= −iW0p3 + iW3

(
p0 − p2

1 + p2
2

p0 +m

)
+ i

p3

p0 +m
(W1p1 +W2p2) =

= −iW0p3 + imW3 − i
p3

p0 +m

(
W ipi

)
=

= im

(
W3 −

p3

p0 +m
W0

)
= imW ′3 . q. d. e.

4.6 From the identity (see Eqs. (4.19), (3.61)),

U(Λ) = e−in
σWσ = e−

1
2 in

σǫσρµνP
ρMµν

= e−
1
2 iωµνM

µν

,

it follows
ωµν = ǫσρµνn

σpρ ,

which shows that the given transformation belongs to L↑+ (the operators are
considered acting on a one-particle state |p, ζ >). The matrix elements of Λ
are then

Λµν = gµν + ωµν = gµν + ǫσρµνnσpρ ,

so that
p′µ = Λµνp

ν = pµ + ǫσρµνnσpρpν = pµ ,

as follows from the antisymmetry of the Levi-Civita tensor.

Problems of Chapter 5

5.1 We note that the generic element of the little group of a given four-
vector p depends on Λ and p (p2 = p2), arbitrarily chosen in L↑+ and Hp2 ,
respectively. It is then easy to show that the set of elements R satisfies the
group properties.
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a) Product:

Ra = R(Λa, pa) = L−1
p′ap

ΛaLpap
with p′a = Λapa ,

Rb = R(Λb, pb) = L−1
p′

b
pΛbLpbp

with p′b = Λbpb ,

RbRa = L−1
p′

b
pΛbLpbp

L−1
p′ap

ΛaLpap
=

= L−1
p′

b
pΛbaLpap

= R(Λba, pa) with p′b = Λbapa .

It is easy to check that the product is associative.

b) Identity: it corresponds to the choice Λ = I; in fact

R(I, p) = L−1
pp Lpp = I .

c) Inverse: it is given by:

R−1 =
(
L−1
p′pΛLpp

)−1

= L−1
pp Λ

−1Lp′p =

= R
(
Λ−1, p′

)
with p′ = Λp .

5.2 We suppose that a different standard vector p′ has been fixed, instead of
p, belonging to the little Hilbert space Hp2 (i.e. p ′2 = p2 = p2). Then for any
given element R = R(Λ, p) of the little group of p we can build

R′ = L−1
p p′

RL
p p′

,

which is the element of the little group of p′ corresponding to Λ and p. In fact,
we can invert Eq. (5.6) as follows

Λ = Lp′pR(Λ, p)L−1
p p = L

p′p′
R′L−1

p p′
,

so that
R′ = L−1

pp′ΛLpp′ = R′(Λ, p) .
There is a one-to-one correspondence between R(Λ, p) and R′(Λ, p), which is
preserved under multiplication:

R′2R′1 = L−1R2LL
−1R1L .

Therefore there is an isomorphism between the two little groups relative to
the standard vectors p and p′. One can remove the restrictions that p and p′

are in the same little Hilbert space, keeping in mind that the little group of
a standard vector p is the little group also of any standard vector cp (c 6= 0),
being

R(cp) = cp if R(p) = p .
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Combining the results, we notice that the isomorphism is extended to all little
groups of vectors in the same class, i.e. time-like, space-like and light-like.

5.3 From what proved in the previous problem, the little group is defined by
any standard vector p in the class. Let us choose the vector p = (0, 0, 0, p3):
it is clear that any rotation about the third axis (i.e. in the (1, 2) plane), any
pure Lorentz transformation in the (1, 2) plane, and any combination of such
rotations and pure Lorentz transformations leave the chosen standard vector
unchanged. In fact, the required transformation matrices must be a subset of
L↑+ (i.e. Λ̃gΛ = g and detΛ = +1) satisfying the condition Λp = p. Then such
matrices have the form

Λ =




λ | 0
−−− | − −−

0 | 1


 ,

where λ is a 3 × 3 matrix which satisfies the condition

λ̃gλ = g , detλ = 1 with g =




1
−1

−1


 .

It is easy to check that the set of the matrices λ can be identified with the
group SO(1, 2) (for the definition, see Section 1.2). We note that the trans-
formations of this group leave invariant the quantity (x0)2 − (x1)2 − (x2)2.

5.4 We start from the explicit expression for a generic pure Lorentz trans-
formation (see Eq. (3.27))

L =




γ | γβj
−−−−− | − −−−−−−

−γβi
∣∣∣ δij−

βiβj
β2

(γ−1)


 ,

and of the particular ones

Lp =




p0

m

∣∣ − pj
m

−−−−−
∣∣ − −−−−−−

pi

m

∣∣∣ δij −
pipj

m(p0 +m)




and

L−1
p′ =




p′0

m

∣∣ p′j
m

−−−−−
∣∣ −−−−−−−

− p′i

m

∣∣∣ δij −
p′ip′j

m(p′0 +m)




.
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After some algebra, making use of the relation p′ = Lp, one obtains

Rp′p = L−1
p′ LLp =

=




1 | 0
−−−|− −−−−−−−−−−−−−−−−−−−−−−−−−

0
∣∣∣ δij −

βiβj
β2

(γ−1) +
γβipj
p0+m

− γp′iβj
p′0+m

+
(γ−1)p′ipj

(p0+m)(p′0+m)


 (a) .

When applied to p, Rp′p gives

(Rp′p)
i
j p

j =
p0 + γm

p′0 +m
p′i + γmβi .

In the ultrarelativistic limit (p0 ≫ m, p′0 ≫ m) this corresponds to

(Rp′p)
i
j

pj

p0
=
p′i

p′0
,

so that Rp′p represents the rotation of the velocity vector (note that |p|/p0 ≃
|p′|/p′0 ≃ 1).

In the non-relativistic limit one gets simply (Rp′p)
i
j ≃ δij and there is no

rotation at all.
It is instructive to express Rp′p in terms of the 2 × 2 representation of L,

Lp, L
−1
p′ . In this case one has

L = e−
1
2ασ·e , Lp = e−

1
2ψσ·n , Lp′ = e−

1
2ψ

′
σ·n′

,

where

coshα = γ , coshψ =
p0

m
, coshψ′ =

p′0

m
,

and

e =
β

|β| , n =
p

|p| , n′ =
p′

|p′| .

Then we can write

Rp′p = e
1
2ψ

′
σ·n′

e−
1
2ασ·ee−

1
2ψσ·n ,

which, with some algebra, can be expressed in the form

Rp′p =
1

cosh ψ′

2

{
cosh

α

2
cosh

ψ

2
+ sinh

α

2
sinh

ψ

2
[(e · n) + iσ · (e× n)]

}
.

If one write
Rp′p = e−

1
2 θσ·ν ,

one can determine the angle θ and the direction ν through the relations
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cos
θ

2
=

1

cosh
ψ′

2

{
cosh

α

2
cosh

ψ

2
+ sinh

α

2
sinh

ψ

2
(e · n)

}
,

(b)

sin
θ

2
ν = − 1

cosh
ψ′

2

sinh
α

2
sinh

ψ

2
(e × n).

5.5 In the present case Eq. (5.13) becomes

Rp′p = L−1
p′ RLp , with p′ = Rp i.e. p′ 0 = p0, |p′| = |p| .

One can write (see Eq. (5.21)):

Lp = RpL3(p)R
−1
p ,

where R−1
p is a rotation which transforms p along the direction of the x3-axis,

and L3(p) is the boost along the x3-direction. Analogously

Lp′ = Rp′L3(p
′)R−1

p′ ,

with L3(p
′) = L3(p) since |p| = |p′|. Making use of the above relations, one

gets
Rp′p = Rp′L−1

3 (p′)R−1
p′ RRpL3(p)R

−1
p ,

and, since R−1
p′ RRp is a rotation about the x3-axis (a vector along x3 is not

transformed) and therefore it commutes with the boost L3(p), one has the
desired results

R = Rp′R−1
p′ RRpR

−1
p = R .

5.6 From Eqs. (5.22) and (5.14), one gets

U(a, Λ)|p, λ> = U (a, Λ)
∑

σ

D
(s)
σλ (Rp)|p, σ> =

= e−ip
′a
∑

σ

D
(s)
σλ (Rp)

∑

σ′

D
(s)
σ′σ

(
L−1
p′ ΛLp

)
|p′, σ′> =

= e−ip
′a
∑

σ′

D
(s)
σ′λ

(
L−1
p′ ΛLpRp

)
|p′, σ′> =

= e−ip
′a
∑

σ′

D
(s)
σ′λ

(
Rp′R−1

p′ L
−1
p′ ΛLpRp

)
|p′, σ′> .

Making use of (5.21) and again of (5.22), one finally gets
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U(a, Λ)|p, λ> = e−ip
′a
∑

σ′λ′

D
(s)
σ′λ′(Rp)D

(s)
λ′λ

(
L−1

3 (p′)R−1
p′ ΛRpL3(p)

)
|p′, σ′>=

= e−ip
′a
∑

λ′

D
(s)
λ′λ

(
L−1

3 (p′)R−1
p′ ΛRpL3(p)

)
|p′, λ′> ,

which concides with Eq. (5.20).

5.7 The transformation properties of |p, λ> under a rotation are given by
Eq. (5.20), where the little group matrices are of the type

R = L−1
3 (p′)R−1

p′ RRpL3(p) ,

with p′ = Rp. We observe that R−1
p′ RRp is a rotation about the x3-axis (in

fact, it leaves unchanged the vectors along this axis), which commutes with
a boost along the same axis (see (3.58)). Then, since L3(p

′) = L3(p) (being
|p| = |p′|), the little group matrix reduces just to that rotation

R = R−1
p′ RRp .

Now we use for R the explicit expression (2.9) of a generic rotation in terms of
an angle φ and a unit vector n. An explicit expression for Rp can be obtained
in the form (it corresponds to n3 = 0)

Rp =




(1 − cos θ) sin2 β + cos θ −(1 − cos θ) sinβ cosβ sin θ cosβ

−(1 − cos θ) sin β cosβ (1 − cos θ) cos2 β + cos θ sin θ sinβ

− sin θ cosβ − sin θ sinβ cos θ


 ,

and one has

Rp




0
0
|p|


 =




|p| sin θ cosβ
|p| sin θ sin β

|p| cos θ


 .

One can express Rp′ in the same form, introducing two angles θ′ and β′. The
rotation Rp′ can also be expressed in terms of θ, β and n, φ making use of
the condition

Rp′




0
0
|p|


 = RRp




0
0
|p|


 .

In fact, with the notation S = RRp the above relation gives sin θ′ cosβ′ = S13,
sin θ′ sin β′ = S23, cos θ′ = S33, so that one can write (compare with the
expression given in Problem 3.1)
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Rp′ =




S2
23

1 + S33
+ S33 − S13S23

1 + S33
S13

− S13S23

1 + S33

S2
13

1 + S33
+ S33 S23

−S13 −S23 S33




.

Performing the product R = R−1
p′ S one then obtains

R =




cosα − sinα 0

sinα cosα 0

0 0 1


 .

where

cosα =
S11 + S22

1 + S33
, sinα =

S21 − S12

1 + S33
.

Finally, expressing the elements of the matrix S in terms of the parameters θ,
φ and n, one finds2, after a lenghty calculation, the following expression for
the rotation R:

e−ia =
(1 + cos θ) sinφ+ p̂0 · (p̂ × n) − i(p̂0 + p̂) · n(1 − cosφ)

(1 + cos θ) sinφ+ p̂0 · (p̂ × n) + i(p̂0 + p̂) · n(1 − cosφ)
,

where
p̂0 = (0, 0, 1) , p̂ = (sin θ cosβ, sin θ sinβ, cos θ) .

It is interesting to note that, in the specific case n = (0, 0, 1), the above
relation, as expected, reduces to the identity α = φ.

5.8 We can consider the little group matrix given by Eq. (5.30) taking for Λ
a rotation R:

R = R−1
p′ L

−1
p′pRLppRp = L−1

p̆′pR
−1
p′ RRpLp̆p , (p′ = Rp) .

Since R−1
p′ RRp is a rotation about the x3-axis, it commutes with any boost

along the same axis; moreover, since p′ = Rp, one has p̆′ = p̆. The two boosts
cancel and one gets

R = R−1
p′ RRp ,

as in the case of a massive particle (see Problem 5.5).

5.9 We can take p = (ρ, 0, 0, ρ) as standard vector. The element E of the
little group has to satisfy the conditions

2 See F.R. Halpern, Special Relativity and Quantum Mechanics, Prentice Hall, 1968,
p. 102.
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E p = p , ẼgE = g , detE = +1 .

By applying the above conditions to a generic 4 × 4 real matrix, E can be
written in terms of 3 independent real parameters, which are conveniently
denoted by x, y and cosα. A sign ambiguity is eliminated by the condition
detE = +1. The final expression of the matrix E is the following:

E =




1+ 1
2 (x

2+y2) −(x cosα+y sinα) x sinα−y cosα − 1
2 (x

2+y2)

−x cosα − sinα x

−y sinα cosα y
1
2(x

2+y2) −(x cosα+y sinα) x sinα−y cosα 1− 1
2 (x

2+y2)


 .

If we introduce a two-dimensional vector r and a rotation R of the form

r =

(
x

y

)
, R =

(
cosα − sinα

sinα cosα

)
,

the matrix E can be written in the form

E =




1 + 1
2r

2 −r̃R − 1
2r

2

−r R r
1
2r

2 −r̃R 1 − 1
2r

2


 .

The elements (r,R) form a group with the composition law

(r2, R2)(r1, R1) = (r2 +R2r1, R2R1) ,

which is analogous to Eq. (4.3), except that now r is two-dimensional and R
is a 2 × 2 matrix with the condition RR̃ = I. The group is then the group of
translations and rotations in a plane, which is called Euclidean group in two
dimensions.

It is easy to find the generators from three independent infinitesimal trans-
formations, i.e. translation along x, y and rotation in the (x, y) plane:

J3 =




0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0


 , Π1 =




0 −i 0 0
−i 0 0 i
0 0 0 0
0 −i 0 0


 , Π2 =




0 0 −i 0
0 0 0 0
−i 0 0 i
0 0 −i 0


 ,

Their commutation relations are given by

[Π1, Π2] = 0 ,

[J3, Π1] = iΠ2 ,

[J3, Π2] = −iΠ1 ,

in agreement with Eq. (5.25).
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5.10 The generic element of the little group, which is the two-dimensional
Euclidean group, is given by Eq. (5.30), with Λ taken as a pure Lorentz trans-
formation L. Accordingly, it can be written as

E = L−1
p̆′pR

−1
p′ LRpLp̆p , (a)

where the general form for E has been obtained in Problem 5.9 in terms
of a rotation and a two-dimensional translation. In principle, since we are
interested only in the rotation (see Section 5.3), we could neglect the trans-
lation from the beginning. Moreover, one can realize that the two boosts are
irrelevant for the calculation of the rotation angle. However, for the sake of
completeness, we perform the full calculation. Assuming

p = (ρ, 0, 0, ρ) , p̆ = (|p|, 0, 0, |p|) , p̆′ = (|p′|, 0, 0, |p′|) ,
from the condition

Lp̆pp = p̆ ,

one gets

Lp̆p =




1 + δ2

2δ
0 0

1 − δ2

2δ

0 1 0 0

0 0 1 0

1 − δ2

2δ
0 0

1 + δ2

2δ




with δ =
ρ

|p| ,

with Lp̆p′ of the same form in terms of δ′ =
ρ

|p′| .
The rotation Rp can be written in the form (compare with Problem 3.1)

Rp =




1 − (n1)
2

1 + n3
− n1n2

1 + n3
n1

− n1n2

1 + n3
1 − (n2)

2

1 + n3
n2

−n1 −n2 n3




in terms of the components of n = p/|p|, and similarly for Rp′ expressed in
terms of n′ = p′/|p′|.

Performing the matrix product in (a), taking for L a generic Lorentz trans-
formation of the type (3.27), one gets the matrix E, in the form reported in
Problem 5.9. In particular, the parameters x and y of the translation are given
by

x = E1
3 =

γδ

1 + n′3
[β1 − (β · n′)n′1 − k′2]

y = E2
3 =

γδ

1 + n′3
[β2 − (β · n′)n′2 − k′1]
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and the rotation angle α by

cosα = E1
1 = 1 − 1

(1 + n3)(1 + n′3)
γ − 1

β2
k3k
′
3 ,

sinα = E2
1 =

1

(1 + n3)(1 + n′3)

[
1

γ

γ − 1

β2
(k3 + k′3 + γβ3k3) + γn′3k3

]
,

where

k = β × n , k′ = β × n′ =
δ′

δ
k .

5.11 Instead of performing the products in Eq. (5.35), we make use of
Eqs. (5.21) and (5.13) that allow to rewrite R−1

1 (ǫ) in the form

R−1
1 (ǫ) = R−1

1 (θ)L−1
p′ L2(−v′)L3(−v) = R−1

1 (θ)Rp′p ,

where we have

p = (p0, 0, 0, |p|) with
(
p0 = γm , |p| = p0v = βγm

)

and

p′ = L2(−v′)p = (γp0, 0,−γp0v′, |p|) i.e. p′ = (γγ′m, 0 , β′γγ′m, βγm) .

In the above relations the usual definitions of the relativistic parameters γ, γ′

and β, β′ in terms of v and v′ are adopted.
Then we evaluate Rp′p according to Eq. (a) of Problem 5.4; in the present

case Rp′p reduces to a rotation about the x1-axis through the angle δ. One
finds

cos δ =
γ + γ′

1 + γγ′
=
p0 + γm

p′0 +m
,

sin δ =
βγβ′γ′

1 + γγ′
=

γ|p|v′
p′0 +m

.

It follows

tan δ =
γ|p|v′
p0 + γm

=
βγβ′γ′

γ + γ′
=

ββ′√
1 − β2 +

√
1 − β′2

,

and from R−1
1 (δ)R1(θ), making use of Eq. (5.34), one gets

tan ǫ = tan(θ − δ) =
v′

v

√
1 − v2 .

We note that the same result for tan δ can be obtained directly from the
formulae (b) of Problem 5.4, that we re-write here as
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cos
δ

2
=

1

cosh
ψ′

2

[
cosh

α

2
cosh

ψ

2
− sinh

α

2
sinh

ψ

2
(e · n)

]

sin
δ

2
ν =

1

cosh
ψ′

2

sinh
α

2
sinh

ψ

2
(e × n) ,

by identifying the Wigner rotation as

Rp′p = e
1
2ψ

′
σ·n′

e−
1
2ασ·ee−

1
2ψσ·n = L−1

p′ L2(−v′)L3(−v) ,

where now n = (1, 0, 0), e = (0, 1, 0) and

coshψ = γ , coshα = γ′ , coshψ′ = γγ′ .

By applying the previous relations one easily obtains ν = (1, 0, 0) and the
expression of tan δ reported above.

Problems of Chapter 6

6.1 Knowing that the spin of the π0 is zero, the quantities which enter the
matrix element of the decay π0 → γγ are the relative momentum k of the two
photons in the c.m. system and their polarization (three-component) vectors
ǫ1 and ǫ2. The matrix element is linear in the vectors ǫ1 and ǫ2, and it must
be a scalar quantity under rotations.

One can build the two combinations, which are scalar and pseudoscalar
under parity, respectively, and therefore correspond to even and odd parity
for the π0:

ǫ1 · ǫ2 , k · ǫ1 × ǫ2 .

In the first case, the polarization vectors of the two photon tend to be parallel,
in the second case, perpendicular to each other. These correlations can be
measured in terms of the planes of the electron-positron pairs in which the
photons are converted, and then one can discriminate between the two cases.
The parity of the π0 was determined in this way to be odd (see R. Plano et
al., Phys. Rev. Lett. 3, 525 (1959)).

The positronium is an e+e− system in the state 1S0 (spin zero and S-wave):
since ℓ = 0, the parity of this state is determined by the intrinsic parity. The
situation is similar to the case of the π0; a measurement would detect that the
polarization vectors of the two photons produced in the annihilation tend to
be perpendicular, corresponding to the case of odd relative parity for electron
and positron.
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6.2 Knowing that all the particles in the reactionK−+He4 → ΛH
4+π0 have

spin zero, angular momentum conservation implies that the orbital momentum
is the same in the initial and final states. Then, the parity of the He4 and

ΛH
4 being the same, the occurrence of the above reaction is in itself a proof

that the parity of K− is the same of that of π0, i.e. odd.

6.3 The system of particles 1 and 2 can be considered a single particle of
spin ℓ and intrinsic parity η12 = η1η2(−1)ℓ. The parity of the total system is
simply given by the product:

η = η3η12(−1)L = η1η2η3(−1)ℓ+L .

6.4 In the decay ρ0 → π0π0, the two spinless pions would be in a state of
orbital momentum ℓ = 1, and therefore antisymmetric under the exchange of
the two π0. This state is not allowed by Bose statistics, which require that
the two identical pions can be only in symmetrical state.

In a similar way, in the decay ρ0 → γγ the final state must be symmetric
under the interchange of the two photons. Then we have to build a matrix
element in terms of the two polarization vectors ǫ1, ǫ2 and of the relative
momentum k of the two γ’s in the c.m. frame. The matrix element is linear in
ǫ1, ǫ2, symmetric under the two γ exchange (i.e. under ǫ1 ↔ ǫ2 and k ↔ −k)
and it transforms as a vector (since the spin of the ρ0 is 1). Out of the three
independent combinations of ǫ1, ǫ2, k which transform as vectors, i.e.

ǫ1 × ǫ2 , (ǫ1 · ǫ2)k and (k · ǫ2) ǫ1 − (k · ǫ1) ǫ2 ,

only the last one is symmetric; however it is excluded by the transversality
condition (k · ǫ1 = k · ǫ2 = 0) required by electromagnetic gauge invariance.
Therefore the decay is forbidden.

6.5 We notice that the electric dipole moment of a particle is proportional to
its spin. For a spin 1

2 particle (the electron e, for instance) one has µe = µeσ
which is an axial vector (it does not change under parity, see Eq. (6.2)). The
Hamiltonian of the particle in an external electric field E contains the inter-
action term HI = −µeσ · E, which is pseudoscalar, since E is a polar vector.
The existence of an electric dipole moment would then indicate violation of
parity.

6.6 From Problem 6.3 and the assignment JP = 0− for the π-meson, we can
determine the parity of the J = 0 π+π+π− state; in fact, if ℓ is the relative
momentum of the two identical π+, ℓ must be even and J = ℓ + L implies
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that also L is even. The parity is then given by −(−1)ℓ+L = −1. On the other
hand, the system π+π0 must have parity +1, being J = ℓ = 0. Then the
K+ would decay into two systems of opposite parity. The occurrence of these
decays, since the K+ has spin zero and a definite parity (JP = 0−), shows
that parity is violated.

6.7 In general, in order to detect parity violation, one has to look for some
quantity which is odd under parity (e.g. pseudoscalar); a non-vanishing ex-
pectation value of this quantity indicates that parity is violated. Suppose that
the Λ0 hyperon has been produced in the reaction π−+p = Λ0 +K0; one can
determine the normal versor to the production plane

n =
pπ × pΛ
|pπ × pΛ|

,

where pπ and pΛ are the momenta of the incident π− and of the outgoing Λ0,
respectively. The quantity

n · k
|k| = cos θ ,

where k is the momentum of the π− in the decay Λ0 → π− + p, is clearly
pseudoscalar; it was found that the average value of cos θ is different from zero
(which means asymmetry with respect to the production plane), and therefore
that parity is violated in the decay.

The appearance of the cos θ can be understood by noting that, if parity
is not conserved, the Λ0 (JP = 1

2
+) can decay both in a JP = 1

2
− (S-wave)

and in a JP = 1
2
+ (P -wave) π−p state; the interference between the S- and

P -waves gives rise to the cos θ term.

6.8 The Maxwell equations, in natural units (h̄ = c = 1), are:

∇ · E = ρ , ∇ · B = 0 ,

∇ × B = j +
∂E

∂t
, ∇ × E = −∂B

∂t
.

The last equation shows that the vectors E and B behave in opposite ways
under time reversal. From the usual definitions of the charge density ρ and
the current density j, one realizes that ρ is unchanged under time reversal,
while the current density changes direction: j → −j. Therefore, assuming that
the Maxwell equations are invariant under time reversal, one has E → E and
B → −B.

6.9 As discussed in Problem 6.5, the interaction Hamiltonian is given by
HI = −µeσ · E. Since under time reversal σ → −σ, E → E, this interaction
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term changes its sign under time reversal. The presence of an electric dipole
moment would then indicate, besides parity violation, non-invariance under
time reversal.

Problems of Chapter 7

7.1 The IR’s D(1,0) and D(0,1) of L↑+ are irreducible also with respect to
the rotation group SO(3): within this subgroup they are both equivalent to
D(1), so that they describe a vector particle. In a covariant description, a
three-vector is then replaced by a selfdual (or an anti-selfdual) antisymmetric
tensor (see also Problems 3.10, 3.11).

7.2 By differentiation of the antisymmetric tensor fµν one gets

∂µf
µν = ∂µ∂

µΦν − ∂µ∂
νΦµ = Φν − ∂ν∂µΦ

µ = −m2Φν ,

which are the Proca equations. Conversely, by differentiation of the Proca
equations

∂ν(∂µf
µν +m2Φν) = ∂ν∂µf

µν +m2∂νΦ
ν = 0

the subsidiary condition ∂νΦ
ν = 0 follows, since fµν is antisymmetric. If the

subsidiary condition is now used in Proca equations, one gets

∂µ(∂
µΦν − ∂νΦµ) +m2Φν = Φν − ∂ν∂µΦ

µ +m2Φν = 0 ,

which is the Klein-Gordon equation (7.17).
We observe that the above equivalence no longer holds if m = 0, since the

condition m 6= 0 is used in the derivation.

7.3 Under a Lorentz transformation x′µ = Λµνx
ν , the Dirac equation (7.79)

(iγµ∂µ−m)ψ(x) = 0 (a)

will be transformed into

(iγ′µ∂′µ−m)ψ′(x′) = 0 , (b)

where ψ′(x′) = S(Λ)ψ(x) (see Eq. (7.52)), and

∂µ = Λνµ∂
′
ν

(
∂µ ≡ ∂

∂xµ
, ∂′ν ≡ ∂

∂x′ν

)
.
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The matrices γ′µ in (b) are equivalent to the matrices γµ in (a) up to a unitary
transformation, so that we can simply replace γ′ by γ (see J.D. Bjorken and
S.D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York, 1964,
p.18). Making use of the above relations, Eq. (a) becomes

iΛνµSγ
µS−1∂′νψ

′(x′) −mψ′(x′) = 0 ,

which coincides with Eq. (b), if one makes use of

ΛνµSγ
µS−1 = γν i.e. S−1γνS = Λνµγ

µ .

7.4 Let us start from the infinitesimal Lorentz transformations written as
(compare with Problem 3.7)

Λρσ = gρσ + δωρσ with δωρσ = −δωσρ ,

and assume for S(Λ) the infinitesimal form

S = I − i

4
σµνδω

µν ,

where σµν are six 4 × 4 antisymmetric matrices. Inserting both the above
infinitesimal transformations into Eq. (7.76), at the first order one finds

i

4
δωµν(σµνγ

α − γασµν) = δωαβγ
β ,

that, taking into account the antisymmetry of the δωµν , can be rewritten in
the form

[γα, σµν ] = 2i(gαµγν − gανγµ) ,

satisfied by

σµν =
i

2
[γµ, γν ] .

7.5 Under a Lorentz transformation (neglecting for simplicity the argument
x) the spinor ψ transforms as

ψ → ψ ′ = Sψ ,

so that for ψ ′ one gets

ψ ′ = ψ†γ0S−1 = ψS−1 .

Then, for the scalar quantity, it follows immediately:

ψ ′ψ′ = ψS−1Sψ = ψψ . (a)
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For the pseudoscalar quantity, one obtains:

ψ ′γ5ψ
′ = ψS−1γ5Sψ ,

and, since

S−1γ5S = iS−1γ0γ1γ2γ3S = iΛ0
µΛ

1
νΛ

2
σΛ

3
τγ

µγνγσγτ =

= iǫµνστΛ0
µΛ

1
νΛ

2
σΛ

3
τγ

0γ1γ2γ3 = (detΛ)γ5 ,

it follows

ψ ′γ5ψ
′ = (detΛ)ψγ5ψ . (b)

Space inversion corresponds to detΛ = −1, so that ψγ5ψ behaves as a pseu-
doscalar under L↑.

A quantity that transforms as a four-vector satisfies the relation

ψ ′γµψ′ = ψS−1γµSψ = Λµνψγ
νψ . (c)

Similarly, one finds that ψγ5γ
µψ transforms as a pseudo-vector and

ψ[γµ, γν ]ψ (d)

as an antisymmetric tensor.

7.6 From Eq. (7.85) one gets

ψ
It−→ ψ ′ = ψγ5γ

0 .

Then the transformation properties under time reversal of the quantities (7.87)
can be easily derived as follows:

ψψ −→ −ψγ5γ
0γ0γ5ψ = −ψψ , (a)

ψγ5ψ −→ −ψγ5γ
0γ5γ

0γ5ψ = ψγ5ψ , (b)

ψγµψ −→ −ψγ5γ
0γµγ0γ5ψ =





ψγ0ψ (µ = 0) ,

−ψγkψ (µ = k = 1, 2, 3) ,
(c)

ψγ5γ
µψ −→ −ψγ5γ

0γ5γ
µγ0γ5ψ =





−ψγ5γ
0ψ (µ = 0) ,

ψγ5γ
kψ (µ = k = 1, 2, 3) ,

(d)

ψγµγνψ −→ −ψγµγνψ . (e)
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Problems of Chapter 8

8.1 The state |p d > is a pure |I = 1
2
, I3 = 1

2
> state. Since the pion is an

isotriplet and 3He and 3H form an isodoublet with I3 = 1
2 and I3 = − 1

2 ,
respectively, the final states can have either I = 1

2
or I = 3

2
. Making use of

the relevant Clebsh-Gordan coefficients (see Table A.3), one gets

|π+ 3H > = |1, 1> ⊗ |12 ,− 1
2 > =

√
1
3 |32 , 1

2 > +
√

2
3 | 12 , 1

2> ,

|π0 3He> = |1, 0> ⊗ |12 , 1
2> =

√
2
3 | 32 , 1

2> −
√

1
3 | 12 , 1

2 > .

From isospin invariance, one obtains for the S-matrix elements:

<π+ 3H|S |p d> =
√

2
3
A 1

2
,

<π0 3He|S |p d> = −
√

1
3 A 1

2
,

where A 1
2

is the amplitude for pure I = 1
2

state. Then the ratio of the relative
cross-sections is:

R =
σ(p d→ π+ 3H)

σ(p d → π0 3He)
= 2 .

8.2 Since the pion is an isotriplet, we have three independent isospin am-
plitudes: A0, A1, A2, which refer to I = 0, 1, 2, respectively. The isospin
analysis of the various states, making use of the Clebsh-Gordan coefficients
(see Section A.2 of Appendix A), gives

|π+π+> = |2, 2 > ,

|π+π−> =
√

1
6
|2, 0> +

√
1
2
|1, 0> +

√
1
3
|0, 0> ,

|π0 π0 > =
√

2
3
|2, 0> −

√
1
3
|0, 0> .

Then one obtains

<π+π+|S |π+π+> = A2 ,

<π+π−|S |π+π−> = 1
6
A2 + 1

2
A1 + 1

3
A0 ,

< π0 π0|S |π+π−> = 1
3
A2 − 1

3
A0 ,

< π0 π0|S |π0 π0> = 2
3
A2 + 1

3
A0 .

8.3 By identifying the basis of the IR D(1) with
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x1 = ξ1ξ1 ,

x2 = 1√
2
(ξ1ξ2 + ξ2ξ1) ,

x3 = ξ2ξ2 ,

and taking into account the trasformation properties of the controcovariant
vector ξ under Ii = 1

2σi, i.e.

I1

(
ξ1

ξ2

)
= 1

2

(
ξ2

ξ1

)
, I2

(
ξ1

ξ2

)
= i 1

2

(−ξ2
ξ1

)
, I3

(
ξ1

ξ2

)
= 1

2

(
ξ1

−ξ2
)
,

one can apply them independently to the factors of the products which appear
in x1, x2, x3. For example, one obtains

I1x
1 = I1(ξ

1ξ1) = (I1ξ
1)ξ1 + ξ1(I1ξ

1) = 1
2 (ξ2ξ1 + ξ1ξ2) = 1√

2
x2 ;

similarly

I1x
2 = 1√

2
(x1 + x3) ,

I1x
3 = 1√

2
x2 ,

and analogously for I2 and I3. From these relations the following matrix struc-
ture of the generators in the three-dimensional IR can be easily derived:

I1 = 1√
2




0 1 0
1 0 1
0 1 0


 , I2 = i 1√

2




0 −1 0
1 0 −1
0 1 0


 , I3 =




1 0 0
0 0 0
0 0 −1


 .

8.4 From Eqs. (8.54) it is easy to find the matrix S which transforms the
vector π = (π1, π2, π3) into the vector of components π+, π0, π−:

S =
√

1
2




−1 i 0

0 0
√

2
1 i 0


 .

By transforming, by a similarity transformation, the usual form of the SU(2)
generators

(Ii)jk = −iǫijk ,
one finds the expressions for I1, I2, I3 given in the solution of the previous
problem, so that π+, π0, π− are eigenstates of I3 with eigenvalues +1, 0, −1,
respectively. By introducing the raising and lowering operators I± = I1 ± iI2,
given explicitly by

I+ =
√

2




0 1 0
0 0 1
0 0 0


 , I− =

√
2




0 0 0
1 0 0
0 1 0


 .
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it is easy to verify:
I±π

0 =
√

2π± .

8.5 Following the recipe given in Appendix C, we obtain the following de-
compositions, besides the 8 ⊗ 8, already reported in Section C.3:

⊗ = ⊕ ⊕ ⊕

8 ⊗ 10 = 35 ⊕ 27 ⊕ 10 ⊕ 8 ,

⊗ = ⊕ ⊕ ⊕ s

10 ⊗ 10 = 64 ⊕ 27 ⊕ 10 ⊕ 1 .

Let us now examine the SU(2)I⊗U (1)Y content of some of the above IR’s.
We start with the IR’s 8 and 10, obtained from the decomposition of the prod-
uct 3⊗3⊗3. It is convenient to make use of the strangeness S since the U(1)Y
counts the non-strange S = 0 and the strange (S = −1) quarks. We obtain:

=
(

, s

)
⊕
(

,
)
⊕

(
s ,

)
⊕
(

,
)

8 = (2, S = 0) ⊕ (3,−1) ⊕ (1,−1) ⊕ (1,−2) ,

=
(

, s

)
⊕
(

,
)
⊕
(

,
)

⊕
(

s ,
)

10 = (4, S = 0) ⊕ (3,−1) ⊕ (2,−2) ⊕ (1,−3) .

Since each quark has B = 1
3
, in the present case we have Y = S +B = S + 1,

and the above relations, in terms of Y , read

8 = (2, Y = 1) ⊕ (3, 0) ⊕ (1, 0) ⊕ (2,−1) ,

10 = (4, Y = 1) ⊕ (3, 0) ⊕ (2,−1) ⊕ (1,−2) .

Next we consider the representation 27:
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27 = (3, S = 0) ⊕ (2,−1) ⊕ (4,−1)⊕ (1,−2) ⊕ (3,−2)⊕ (5,−2) ⊕ (2,−3)⊕
⊕ (4,−3) ⊕ (3,−4) .

Taking into account that the initial tableau contains 6 boxes, we can go from
S to Y by means of Y = S +B = S + 2. Then we get:

27 = (3, Y = 2) ⊕ (2, 1) ⊕ (4, 1) ⊕ (1, 0) ⊕ (3, 0) ⊕ (5, 0) ⊕ (2,−1)⊕
⊕ (4,−1) ⊕ (3,−2) .

Similarly:

35 = (5, Y = 2) ⊕ (6, 1) ⊕ (4, 1) ⊕ (5, 0) ⊕ (3, 0) ⊕ (4,−1)⊕ (2,−1) ⊕
⊕ (3,−2) ⊕ (1,−2) ⊕ (2,−3)

and

64 = 27 ⊕ (4, 3) ⊕ (5, 2) ⊕ (6, 1) ⊕ (7, 0) ⊕ (6,−1) ⊕ (5,−2) ⊕ (4,−3) .

8.6 According to their definition, it is easy to find the following commutation
relations among the shift operators:

[I3, I±] = ±I± , [Y, I±] = 0 ,

[I3, U±] = ∓ 1
2U± , [Y, U±] = ±U± ,

[I3, V±] = ± 1
2
V± , [Y, V±] = ±V± ,

and

[I+, I−] = 2I3 , [U+, U−] = 2U3 = 3
2Y − I3 , [V+, V−] = 2V3 = 3

2Y + I3 ,

[I±, U±] = ±V± , [I∓, V±] = ±U± , [U±, V∓] = ±I∓ ,

[I+, U−] = [I+, V+] = [U+, V+] = 0 .

It follows that I±, U± and V± act as raising and lowering operators, specifi-
cally:

I± connects states with ∆I3 = ±1, ∆Y = 0 ;

U± connects states with ∆I3 = ∓ 1
2
, ∆Y = ±1 (∆Q = 0) ;

V± connects states with ∆I3 = ± 1
2 , ∆Y = ±1 (∆S = ∆Q) .

This action on the states in the (I3, Y ) plane has been shown in Fig. 8.8. For
each IR, all states can be generated, starting from whatever of them, by a
repeated application of the shift operators.

In order to obtain the matrix elements between two given states, it is usual
to fix the relative phase according to
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I±|I, I3, Y > = [I ∓ I3)(I ± I3 + 1)]
1
2 |I, I3 ± 1, Y > , (a)

V±|V, V3, Q> =
∑

I′ a
±(I, I ′, I3, Y )|I ′, I3 ± 1

2
, Y ± 1> , (b)

by requiring the coefficients a± always real non-negative numbers3. Let us
note that at this point the action of U± is uniquely fixed by the commuta-
tion relations. The following convention is also adopted, which connects the
eigenstates of two conjugate IR’s D(p1, p2), D(p2, p1):

|(p1, p2); I, I3, Y >
∗ = (−1)I3+ Y

2 |(p1, p2); I,−I3,−Y > .

Let us now consider the 8 IR, whose isospin eigenstates are represented in

Fig. 8.11 in terms of the 1
2

+
baryon octet. Making use of the previous con-

vention, it is easy to find the matrix elements of the shift operators reported
in the figure.

The transition operated by I± are expressed by:

I− p = n , I− Λ
0 = 0 , I−Σ

0 =
√

2Σ− .

which can be easily derived from Eq. (a). The action of the V± operators can
be obtained making use of the commutation relations and of Eq. (b), e.g.

V− p = a−0 Λ
0 + a−1 Σ

0

with a−0 , a−1 both positive and normalized according to

(a−0 )2 + (a−1 )2 = 1 ;

then from
[I−, V−] = 0 ,

being
I−V− p = a−1

√
2Σ− , V−I− p = Σ− ,

one finds

V− p =
√

3
2 Λ

0 + 1√
2
Σ0 .

Let us now consider U± and the Σ0
u, Λ

0
u combinations of the Σ0, Λ0 states.

Assuming, in analogy with the isospin eigenstates,
√

2Σ0
u = U− n ,

from
U− = [V−, I+]

one finds

U− p = V− p− I+Σ
− =

[√
3
2 Λ

0 + 1√
2
Σ0
]
−

√
2Σ0 =

√
3
2 Λ

0 − 1√
2
Σ0 ,

3 J.J. de Swart, Rev. of Mod. Phys. 35, 916 (1963).
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so that, accordingly with Eq. (8.124),

Σ0
u =

√
3
2
Λ0 − 1√

2
Σ0 ,

Λ0
u being the orthogonal combination.

In a similar way one can derive the matrix elements of the shift operators
for the decuplet.

8.7 We recall that the photon is U-spin singlet (U = 0). On the other hand,
π0 and η0 are superpositions of U = 0 (η0

U ) and U = 1, U3 = 0 (πU0 ) states; in
analogy with Eq. (8.124) one has

π0
U = − 1

2
π0 +

√
3

2
η0 ,

η0
U =

√
3

2
π0 + 1

2
η0 ,

i.e.
π0 = − 1

2π
0
U +

√
3

2 η
0
U ,

η0 =
√

3
2
π0
U + 1

2
η0
U .

Only the η0
U term can contribute to the decays π0 → 2γ and η0 → 2γ;

therefore, the corresponding amplitudes satisfy the relation

A(π0 → 2γ) =
√

3A(η0 → 2γ)

Taking into account the phase space corrections, the ratio of the decay widths
is given by

Γ (π0 → 2γ)

Γ (η0 → 2γ)
=

1

3

(
mη

mπ

)3

.

8.8 We recall Eq. (8.154):

ω = cos θ ω1 + sin θ ω8 ,

φ = − sin θ ω1 + cos θ ω8 ,

i.e.
(
ω
φ

)
= R(θ)

(
ω1

ω8

)

with

R(θ) =

(
cos θ sin θ

− sin θ cos θ

)
.
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The two mass matrices

M2
ω1,ω8

=

(
m1

2 m18
2

m18
2 m8

2

)
, M2

ω,φ =

(
mω

2 0
0 mφ

2

)

are connected by
R(θ)M2

ω1,ω8
R−1(θ) = M2

ω,φ

from which Eqs. (8.156) and (8.157) follow.
The two reactions ω → e+e−, φ → e+e− occur through an intermediate

photon, and
ω1 6→ γ , ω8 → γ ,

since γ transforms as the U = Q = 0 component of an octet. Then, neglecting
the phase space correction, one obtains for the ratio of the decay amplitudes:

A(ω → e+e−)

A(φ→ e+e−)
= tan θ .

8.9 Taking into account Eq. (8.124) one gets, from U-spin invariance:

µΣ0
u

= <Σ0
u|µ |Σ0

u> = <− 1
2
Σ0 +

√
3

2
Λ0|µ | − 1

2
Σ0 +

√
3

2
Λ0> =

= 1
4
µΣ0 + 3

4
µλ0 −

√
3

2
µΛ0Σ0 ,

<Σ0
u|µ |Λ0

u> = <− 1
2
Σ0 +

√
3

2
Λ0|µ |

√
3

2
Σ0 + 1

2
Λ0> =

=
√

3
4
µΣ0 +

√
3

4
µΛ0 + 3

2
µΛ0Σ0 .

The required relations follow immediately from the above equations.

8.10 We can write the Casimir operator in terms of the shift operators (see
Problem 8.6) and of I3, Y , in the form

F 2 = FiFi = 1
2{I+, I−} + 1

2{U+, U−} + 1
2{V+, V−} + I2

3 + 3
4Y

2 .

Since F 2 is an invariant operator, its eigenvalue in a given IR can be obtained
by applying it to a generic state. It is convenient to take into account the
so-called maximum state, ψmax, defined as the state with the maximum eigen-
value of I3. It is easy to verify that for each IR there is only one such a state,
with a specific eigenvalue of Y . Moreover, because of its properties

I+ψ = V+ψ = U−ψ = 0 .

Looking at the eight dimensional IR, ψmax corresponds to the eigenvalues 1
and 0 for I3 and Y , respectively. Since
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I+I−ψmax = 2ψmax , U+U−ψmax = ψmax , V+V−ψmax = ψmax ,

I2
3ψmax = ψmax , Y 2ψmax = 0 ,

the eigenvalue of F 2 in the adjoint IR is 3. Making use of the definition of
F 2 and of its eigenvalue, Eq. (8.145) is then checked, once Eqs. (8.140) and
(8.94) are taken into account.

More generally, it is possible to obtain the expression of the eigenvalues
of F 2 in terms of the two integers p1 and p2 which characterize a given IR.
Since p1 and p2 represent the number of times that the representations 3 and
3 are present in the direct product from which D(p1, p2) is obtained, then the
maximun eigenvalue of I3 is given by

I3ψmax = 1
2(p1 + p2)ψmax ,

while the eigenvalue of Y is

Y ψmax = 1
3
(p1 − p2)ψmax .

From the commutation relations of the shifting operators, one obtains:

{ I+ , I−}ψmax = I+I−ψmax = [I+, I−]ψmax = 2I3ψmax = (p1 + p2)ψmax ,

{U+, U−}ψmax = U−U+ψmax = [U+, U−]ψmax = −2U3ψmax = p2ψmax ,

{V+, V−}ψmax = V+V−ψmax = [V+, V−]ψmax = 2V3ψmax = p1ψmax .

By inserting these relations in the expression of F 2, one finds the general
expression for its eigenvalues:

1
3
(p2

1 + p2
2 + p1p2) + p1 + p2 .

8.11 By inserting the λ matrices in the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0

and making use of the commutation relations (8.86), one finds:

fjℓk[λi, λk] + fℓik[λj , λk] + fijk[λℓ, λk] = 0 .

By multiplying by λm and taking the traces according to the relation (8.89),
one obtains the identity

fjℓkfikm+fℓikfjkm+fijkfℓkm = 0 , (a)

and, taking into account the definition (8.137), one gets the commutation
relations (8.92)

[Fi, Fj ] = ifijkFk .
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In analogous way, making use of the identity

[A, {B,C}] = {[A,B], C} + {[A,C], B} ,

and of the relations (8.89) and (8.90), one finds

djkℓfiℓm = fijℓdℓkm + fikℓdℓjm , (b)

which, taking into account the definitions (8.137) and (8.138), corresponds to
Eq. (8.139):

[Fi, Dj] = ifijkDk .

By multiplying the previous relation by −ifijℓ and summing over (i, j) one
finds

−ifijℓ[Fi, Dj ] = F 2Dℓ , (c)

where F 2 = FiFi is the quadratic Casimir operator in the adjoint D(1, 1) rep-
resentation; it is equal to 3 times the unit matrix (make use of the expression
obtained for F 2 in Problem 8.10 with p1 = p2 = 1). On the other hand, the
l.h.s., making use of the relation (b) and of the symmetry properties of the f
and d coefficients, can be written in the form:

−ifijℓ[Fi, Dj] = 2F 2Dk−dℓmn{Fm, Fn} = 2F 2Dℓ−2dℓmnFmFn . (d)

By comparison of (c) and (d) one gets

F 2Dℓ = 2dℓmnFmFn ,

which coincides with Eq. (8.140).

8.12 In SU (6) the diquark states d correspond to

6 ⊗ 6 = 21 ⊕ 15 ,

so that the S-wave symmetric states belong to the IR 21. Its content in term
of the subgroup SU (3)⊗ SU(2)S is given by

21 = (6, 3) ⊕ (3, 1) .

The baryon states will be described as bound dq systems:
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21 ⊗ 6 = 56 ⊕ 70 .

Including a relative d− q orbital momentum L, one can easily verify that the
symmetric states belong to the multiplets (56, L+

even) and (70, L−odd), which
are the only ones definitively established.

On the other hand, if one build the dd mesons, one obtains lots of exotic
states. In fact, according to

21 ⊗ 21 = 1 ⊕ 35 ⊕ 405 ,

one gets, besides the IR 1 and 35, the SU(6) multiplet 405 whose SU(3) ⊗
SU(2)S content is:

405 = (1 + 8 + 27, 1)⊕ (8 + 8 + 10 + 10 + 27, 3)⊕ (1 + 8 + 27, 5) .

8.13 Taking into account the spin, the four quarks (u, d, s, c) belong to the
IR 8 of SU(8), which corresponds, in term of the subgroup SU (4)⊗ SU(2)S ,
to

8 = (4, 2) .

The meson states are assigned to the representation

8 ⊗ 8̄ = 1 ⊕ 83 ,

and the 83-multiplet has the following content in terms of the above subgroups:

83 = (15, 1) ⊕ (15 + 1, 3) .

We see that one can fit into the same multiplet both the 15 pseudoscalar
mesons (K, K, π, η, F , D, F , D) and the 16 vector mesons (K∗, K

∗
, ρ, ω, φ,

F ∗, D∗, F
∗
, D
∗
), where F ∗ and D∗ are the vector couterparts of the scalar

mesons F and D.
The baryon states are classified according to the IR’s:

8 ⊗ 8 ⊗ 8 = 120 ⊕ 168 ⊕ 168 ⊕ 56 .

The lowest S-wave states can be fitted into the completely symmetric IR 120:
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120 = (20, 4) ⊕ (20′, 2) .
(

,

) (
,

)

The content of the other two IR’s is given by;

168 = (20, 2)⊕ (20′, 4) ⊕ (20′, 2) ⊕ (4̄, 2)

56 = (20′, 2) ⊕ (4̄, 4) .

8.14 In analogy with the strangeness S (S = −1 for the s-quark), a quantum
number b is introduced for beauty (b = −1 for the b-quark). Then the Gell-
Mann Nishijima formula (8.45) is replaced by (compare with Eqs. (8.180),
(8.181))

Q = I3 + 1
2 (B + S + b) and Y = B + S + b .

The 0− b-mesons can be assigned to the 15-multiplet of SU (4) and the
situation is analogous to that represented in Fig. 8.15 (replacing C by −b):
there are an iso-doublet B+(ub), B0(db) and an iso-singlet B0

s(sb), all with

b = 1, and the corresponding antiparticles with b = −1: B−(ub), B
0
(db) and

B
0

s(sb).
The situation for the 1− b-mesons is similar to that of the charmed ones:

they should be assigned to a 15 + 1 multiplet with a mixing giving rise to a
pure Y (bb) state, which is the analogue of the J/ψ(cc) state.

The 1
2

+
b-baryons can be assigned to the 20′ multiplet (we limit ourselves

to this case, since many of these states have been observed experimentally)
and the situation is the following (where q stands for u or d):

• Baryons with b = −1: a triplet Σb(qqb), a doublet Ξb(qsb) and two singlets
Λb(udb) and Ωb(ssb).

• Baryons with b = −2: a doublet Ξbb(qbb) and a singlet Ωbb(sbb).

Problems of Chapter 9

9.1 We rewrite here the Lagrangian (9.46)

L(x) =
∑

j

q̄j(x)(iγµDµ −mj)q
j(x) − 1

2
Tr(GµνG

µν),
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where Dµ is the covariant derivative

∂µ → Dµ = ∂µ + igsGµ(x) ,

and Gµν the field strength

Gµν = ∂µGν − ∂νGµ + igs[Gµ, Gν ] ,

and require its invariance under the transformation

q(x) → U (x)q(x).

In order to obtain the invariance of the first term of L, we write the transfor-
mation properties to the quantity Dµq(x):

(Dµq(x))
′ = U(Dµq(x)) = U∂µq + igsUGµq.

and require that they correspond with what we expect from its invariance

(Dµq(x))
′ = (∂µ + igsG

′
µ)Uq = (∂µU)q + U∂µq + igsG

′
µUq.

A comparison of these two relations gives the required transformation prop-
erties of Gµ

G′µ = UGµU
† +

i

gs
(∂µU )U† ,

which coincide with Eq. (9.50).
We can prove the invariance of the second term in L by considering the

following commutator:

[Dµ, Dν ]q(x) = [∂µ + igsGµ , ∂ν + igsGν ]q(x) =

= igs(∂µGν − ∂νGµ)q(x) − g2
s [Gµ, Gν ]q(x).

Comparing with the expression of the field strength Gµν , we obtain the rela-
tion

Gµν = − i

gs
[Dµ, Dν ].

From this relation we can derive the transformation properties of the field
strength Gµν

igsG
′
µν = [D′µ, D

′
ν ] = [UDµU

†, UDνU
†] = U [Dµ, Dν ]U

† = igsUGµνU
† .

It follows

Tr(GµνG
µν) = Tr(UGµνU

†UGµνU†) = Tr(GµνG
µν),

which concludes the proof of the gauge invariance of the Lagrangian.
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9.2 If we adopt the compact notation

Φ =




φ1

φ2

...
φN




L can be written in the form

L = 1
2∂µΦ̃ ∂

µΦ− V (Φ2) ,

where
V (Φ2) = 1

2µ
2Φ2 + 1

4λΦ
4

is the ”potential” and

Φ2 = Φ̃Φ =

N∑

i=1

φ2
i .

The minimum of the potential corresponds to the v.e.v.

(Φ2)0 = −µ
2

λ
= v2 ,

and one can choose a coordinate system such that

(Φ)0 =




0
...
0
v


 .

With the definition

Φ(x) =




ξ1(x)
...

ξN−1(x)
η(x) + v


 .

L can be rewritten in the form

L = 1
2∂
µη ∂µη − 1

2

N−1∑

i=1

∂µξi ∂µξi + µ2η2 − 1
4λη

4 − 1
4λ

N−1∑

i=1

ξ4i − 1
2λη

2
N−1∑

i=1

ξ2i .

Only the field η(x) has a mass different from zero, with the value m2
η = −2µ2,

while the N − 1 fields ξi(x) are massless: they are the Goldstone bosons.
According to the Goldstone theorem, their number is equal to n − n′, where
n = N(N−1)/2 and n′ = (N−1)(N−2)/2 are the numbers of generators of the
groupO(N) and of the subgroupO(N−1), respectively; in fact, n−n′ = N−1.
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9.3 The leading W±-exchange contribution to the νee
− invariant scattering

amplitude is given by:

M(W±) =
( g

2
√

2

)2 [
ν̄eγ

µ(1 − γ5)e
−igµν

q2 −M2
W

ēγν(1 − γ5)νe
]

and, since the momentum transfer satisfies the condition q2 ≪M2
W , one can

write:

M(W±) ≈ −i g2

8M2
W

[
ν̄eγ

µ(1 − γ5)e
][
ēγµ(1 − γ5)νe

]
.

Starting from the Fermi Lagrangian (9.105), one obtains a similar expression:

the only difference is that the factor g2

8M2
W

is replaced by GF√
2
, so that the

requested relation is the following:

GF =
g2

4
√

2M2
W

=
1√
2v2

.

The analogous contribution due to the Z0-exchange is given by

M(Z0) ≈ −i g2

8M2
Z cos2 θw

[
ν̄eγ

µ(1 − γ5)νe
][
ēγµ(1 − γ5)e+ 4 sin2 θw ēγµe

]
.

The ratio between the couplings of the neutral and the charged current is then
given by (comparing with Eq. (9.135))

ρ =
M2
W

M2
Z cos2 θw

= 1 .

9.4 The real scalar triplet and its v.e.v. can be written as follows

Ψ =



Ψ1

Ψ2

Ψ3


 , <Ψ >0 =




0
V
0




and we have to include in the Lagrangian (9.118) the additional terms

1
2
(DµΨ̃)(DµΨ) − V (Ψ2) ,

where in particular, being Yψ = 0,

DµΨ = ∂µΨ − igIiA
i
µΨ .

The contribution to the vector boson masses comes from the covariant
derivative when the fields are shifted and are substituted by their v.e.v.’s.
Concerning the field Ψ , its contribution is then given by

1
2
[(DµΨ̃)(DµΨ)]0 .
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However, this term contributes only to the mass of the charged bosons: in fact,
since the Ψ component which develops the v.e.v. different from zero must be
a neutral component, from the assumption YΨ = 0 we get also I3,Ψ = 0.
Accordingly

1
2
[(DµΨ̃)(DµΨ)]0 = 1

2
g2V 2

(
I1,ΨA

(1)
µ + I2,ΨA

(2)
µ

)†(
I1,ΨA

(1)µ + I2,ΨA
(2)µ
)

=

= 1
4
g2V 2

[
I−W (−)

µ + I+W (+)
µ

][
I+W (+)µ + I−W (−)µ

]
=

= 1
4g

2V 2
[
I+I− + I−I+

]
W (+)
µ W (−)µ =

= 1
4g

2V 22
{
I2Ψ − I2

3,Ψ

}
= 1

2g
2V 2 IΨ (IΨ + 1) = g2V 2 .

since I3,Ψ = 0 and Ψ is a triplet (IΨ = 1) of weak isospin. This contribu-
tion must be added to the term 1

4
g2v2 coming from the isospin doublet Φ of

Eq. (9.125): we see that the value of MW of the Standard Model is modified
into

M ′W = 1
2g
√
v2 + 4V 2 .

The mass MZ is not changed, so that the ratio MW /MZ is replaced by

M ′W
MZ

=
g√

g2 + g′2

√
1 + 4

V 2

v2
.

If only the triplet Ψ were present in the scalar sector, only SU(2)L would be
broken and the vacuum symmetry would be U(1)I3⊗U(1)Y . As a consequence,
only the charged vector fields W±µ acquire mass different from zero, while the

two fields A
(3)
µ and Bµ remain massless.

9.5 Let us generalize the Lagrangian density Lgauge of Eq. (9.118) by intro-
ducing several Higgs fields φℓ. The terms contributing to the masses of the
vector bosons and to their couplings with the Higgs fields are given by

∑

ℓ

{[
gIi,ℓA

i
µ + g′ 12YℓBµ

]
φℓ

}†{[
gIi,ℓA

i
µ + g′ 12YℓB

µ
]
φℓ

}
.

This expression can be rewritten in terms of the physical fields, introducing

the charged vector fields W
(±)
µ of Eq. (9.128), the neutral fields Aµ and Zµ

through the relations (9.132), and the operators I± = I1 ± iI2. For the terms
in the second bracket, we obtain
{[
gIi,ℓA

i
µ+g

′ 1
2YℓB

µ
]
φℓ

}
=
{
g
[
I+
ℓ W

(+)
µ +I−ℓ W

(−)
µ

]
φℓ +

+ 1√
g2+g′2

[
gg′(I3ℓ+ 1

2Yℓ)Aµ+(g2I3,ℓ−g′2 1
2Yℓ)Zµ

]
φℓ

}
.

We suppose that each Higgs field φℓ develops a vacuum expectation value
different from zero, defined by 1√

2
vℓ, where vℓ must correspond to a neutral
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component of φℓ, otherwise also the electromagnetic gauge invariance would
be broken. This means, on the basis of the relation (9.112), that for each v.e.v.
vℓ one gets I3,ℓ + 1

2Yℓ = 0, independently of the specific representation of φℓ.
It follows that the coefficient of the e.m. field Aµ goes to zero (Aµ is massless,
as required) and the previous relation becomes

{
1√
2
g
[
I+
ℓ W

(+)
µ + I−ℓ W

(−)
µ

]
−
√
g2 + g′2 1

2
YℓZµ

}
φℓ .

Finally, introducing the v.e.v. vℓ, we get

Lmass = 1
2

∑

ℓ

v2
ℓ

{
1
2
g2
[
I+
ℓ I
−
ℓ + I−ℓ I

+
ℓ

]
W (+)
µ W (−)µ + (g2 + g′2)1

4
Y 2
ℓ ZµZ

µ
}

=

= 1
2

∑

ℓ

v2
ℓ

{
g2
[
Iℓ(Iℓ + 1) − 1

4
Y 2
ℓ

]]
W (+)
µ W (−)µ + (g2 + g′2) 1

4
Y 2
ℓ ZµZ

µ
}
,

and, by taking the ratio of the two squared masses, we obtain the required
expression

ρ =

∑
ℓ v

2
ℓ [Iℓ(Iℓ + 1) − 1

4
Y 2
ℓ ]

1
2

∑
ℓ v

2
ℓY

2
ℓ

.

9.6 The Lagrangian contains two terms

(DLµΦL)†(DL
µΦL) + (DRµΦR)†(DR

µΦR) ,

where
(DL,R)µ = ∂µ − ig 1

2
τi(A

i
L,R)µ − 1

2
ig′Bµ .

Introducing the charged vector fields

(W±L,R)µ = 1√
2

[
(A1

L,R)µ ∓ i(A2
L,R)µ

]
,

one obtains

(DL,R)µΦL,R = − i
2

{
g(W+

L,R)µ

(
vL,R

0

)
− 1√

2

[
g(A3

L,R)µ + g′Bµ
]( 0

vL,R

)}
.

It follows that all the charged vector bosons become massive with masses
given by

MWL
= 1

2
gvL , MWR

= 1
2
gvR .

Since there is no experimental evidence of other vector bosons besides those
of the Standard Model, one must assume : vR ≫ vL.

For the squared masses of the neutral gauge bosons we obtain the matrix

M2 = 1
4
g2v2

R




y 0 −κy
0 1 −κ

−κy −κ (1 + y)κ2


 ,
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where

κ =
g′

g
and y =

v2
L

v2
R

.

Since detM2 = 0, one eigenvalue is equal to zero. For the other two eigenval-
ues, in the case vR ≫ vL, one gets the approximate values:

M2
1 ≈ 1

4g
2v2
L

1 + 2κ

κ2 + 1
, M2

2 ≈ 1
4g

2v2
R(κ2 + 1) .

9.7 Let us consider first the IR 5 of SU (5); its content in terms of the
subgroup SU(3) ⊗ SU (2), according to Eq. (9.169), is given by

5 = (1, 2)−1 + (3, 1)− 2
3
,

where the subscripts stand for the values of Y which can be read from Ta-
bles 9.2 and 9.3.

The IR 24 can be obtained by the direct product

5 ⊗ 5 = 1 ⊕ 24

and its content in terms of the subgroup GSM follows from the above relation:

24 = (8, 1)0 ⊕ (1, 1)0 ⊕ (1, 3)0 ⊕ (3, 2)− 5
3
⊕ (3, 2)+ 5

3
.

Let us define

(3̄, 2)+ 5
3
→
(
X1 X2 X3

Y1 Y2 Y3

)
.

From the usual relation Q = I3 + 1
2Y we obtain the electric charges of the X

and Y particles:
Q(Xi) = 4

3 , Q(Yi) = 1
3 .

The multiplet (3, 2)− 5
3

contains the antiparticlesX and Y which have opposite
values ofQ. These particles are called lepto-quarks because they have the same
quantum numbers of the lepton-quark pairs. They mediate new interactions
which violate baryon and lepton numbers.

9.8 We recall the decomposition of the 24-multiplet Φ in terms of the sub-
group GSM = SU (3)c ⊗ SU(2)L ⊗ U(1)Y :

24 = (1, 1)0 ⊕ (1, 3)0 ⊕ (8, 1)0 ⊕ (3, 2)−5/3 ⊕ (3̄, 2)+5/3 ,

and write Φ as a 5×5 traceless tensor. It is than clear that, in order to preserve
the GSM symmetry, the v.e.v. < Φ >0 must behave as (1, 1)0 and then it must
have the following form
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<Φ>0 =




a

a

a

b

b




and, since the matrix is traceless, it can be written as

<Φ>0 = V




1
1

1
− 3

2
− 3

2




The vacuum symmetry is GSM ; therefore the 12 gauge vectors fields of GSM
remain massless, and the other twelve acquire mass: they are the multiplets
(3, 2) and (3, 2) considered in Problem 9.7.

In order to break also

GSM → SU(3)c ⊗ U(1)Q

one needs a scalar multiplet containing the doublet φ of the Standard Model.
The minimal choice is then a field

φ5 ∼ (3, 1) ⊕ (1, 2)

with v.e.v. which transforms as the neutral component of (1,2).
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2
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baryons, 143
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invariance, 88
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Phase transition, 186
Planck scale, 170
Poincaré group, 61

generators, 63
Lie algebra, 63
subgroup of translations, 62
unitary representations, 64

Poincaré transformations, 61
Polarization

circular, 104
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Polarization vectors
for a massive vector field, 100
for the electromagnetic field, 102

Principle of least action, 172
Problem of hierarchy, 209
Proca equations, 112
Proper orthochronous Lorentz group
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Casimir operator, 53
generators of the Lie algebra of, 52
irreducible representations, 54
Lie algebra of, 51
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space rotations, 46
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Quantum Chromodynamics (QCD), 177
Quantum Electrodynamics (QED), 176
Quark, 140

antiquark, 140
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charm, 162
confinement, 181
content of baryons, 145
content of mesons, 143
quark statistics, 159
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Radiation or Coulomb gauge, 102
Rarita-Schwinger formalism, 110
Renormalization group, 179
Representation, 4

adjoint, 6
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direct sum of, 5
equivalent, 5
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matrix, 4
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self-representation, 6
unitary, 6

Root, 18
root diagrams, 19

Rotation group, 2, 27
generators of the Lie algebra, 32
conjugate representation of, 34
functions dj

m′m, 38
generators of, 32
infinitesimal transformations of, 32
Lie algebra of, 32
rotation matrix D(j), 38
spherical harmonics, 39
structure constants of the Lie algebra,
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Rotations, 27

improper rotations, 29
rotation matrices, 37, 213

Running couplings, 179

Scale transformation, 179
Schur’s lemma, 5
Selection rules, 116
Semi-direct product, 3
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root diagrams, 18
weight diagrams, 25

Shift operators, 127
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SL(N,C), 11
SL(N,R), 11
SO(3), 28

irreducible representations of, 33
Lie algebra of, 32
tensorial representations, 33

SO(N), 11
Sp(N), 11
Space inversion, 83
Spherical harmonics, 100, 213
Spin 3

2
states, 111

Spinor wave functions, 105
Spontaneous symmetry breaking (SSB),

181
of a continuous symmetry, 184
of a discrete symmetry, 181
of a gauge symmetry, 187

Standard Model of electroweak
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States of a massive particle, 73
States of a massless particle, 76
States of two particles, 79
ℓ-s coupling, 81

Statistics
Bose-Einstein, 223
Fermi-Dirac, 223

Strangeness, 113, 119, 125
String theories, 210
Strong coupling constant, 178
Strong interactions, 128
Structure constants, 15
SU(2), 30, 120

irreducible representations of, 33
Lie algebra of, 32
spinorial representations, 34

SU(2)⊗U(1), 192
SU(3), 128
Fi generators, 136
λ matrices, 135
dijk coefficients, 136

fijk coefficients, 136
broken symmetry, 153
classification of hadrons, 137
decuplets, 137
electromagnetic mass differences, 156
exact symmetry, 149
ideal mixing, 155
isosinglet mixing, 155
Lie algebra, 135
magnetic moments, 156
meson-baryon couplings, 151
octets, 137
SU(2) subgroups, 146
triality, 133, 140
weight diagrams, 137

SU(4), 162
SU(3)f ⊗ U(1)C , 163
hadron classification, 163

SU(6), 159
SU(3)f ⊗ SU(2)S , 159
hadron classification, 160
mass relations, 161

SU(N), 11
decomposition of IR’s with respect to

SU(ℓ) ⊗ SU(m), 233
dimension of IR’s, 230
irreducible tensors, 228
reduction of direct product of IR’s,

232
Subgroup, 2

direct product of, 3
invariant, 2
semi-direct product of, 3

Supermultiplets, 129
Superselection rule, 93, 120
Supersymmetry, 208
Supplementary conditions, 57
Symmetric group, 2, 220
Symmetry breaking, 120
Symmetry operation, 65

Time reversal, 90
Topological space, 7

Cartesian product of two, 7
compact, 7
connected, 8
Hausdorff, 7
metric, 7
second countable, 8
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U(1), 117
U(3), 133
U(N), 11

irreducible tensors, 225
U-spin, 146

U-spin multiplets, 148
Unitary operator, 66
Unitary representation, 6
Universal covering group, 10

V-spin, 146
Vacuum expectation value (v.e.v.), 185

W mass, 198
Weak charged current, 200
Weak interactions, 130

Fermi theory of, 181
universality of, 193

Weak neutral current, 200
Weight, 22

weight diagrams, 25
Weyl equation, 109
Wigner boost, 74
Wigner rotation, 72
Wigner-Eckart theorem, 40

Young operator, 222
Young tableaux, 131, 132, 220

self-adjoint, 231
standard, 227

Yukawa terms, 202

Z mass, 198
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