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50937 Köln, Germany

Claus Lämmerzahl
Universität Bremen
ZARM
Am Fallturm
28359 Bremen, Germany

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at http://dnb.ddb.de

ISSN 0075-8450
ISBN 3-540-40810-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustra-
tions, recitation, broadcasting, reproduction on microfilm or in any other way, and
storage in data banks. Duplication of this publication or parts thereof is permitted only
under the provisions of the German Copyright Law of September 9, 1965, in its current
version, and permission for use must always be obtained from Springer-Verlag. Violations
are liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

Typesetting: Camera-ready by the authors/editor
Cover design: design & production, Heidelberg

Printed on acid-free paper
54/3141/du - 5 4 3 2 1 0



Lecture Notes in Physics
For information about Vols. 1–586
please contact your bookseller or Springer-Verlag
LNP Online archive: springerlink.com/series/lnp/

Vol.587: D. Heiss (Ed.), Fundamentals of Quantum In-
formation. Quantum Computation, Communication,
Decoherence and All That.

Vol.588: Y. Watanabe, S. Heun, G. Salviati, N. Yamamoto
(Eds.), Nanoscale Spectroscopy and Its Applications to
Semiconductor Research.

Vol.589: A. W. Guthmann, M. Georganopoulos, A. Mar-
cowith, K. Manolakou (Eds.), Relativistic Flows in
Astrophysics.

Vol.590: D. Benest, C. Froeschlé (Eds.), Singularities in
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Preface

The relation between quantum theory and the theory of gravitation is certainly
one of the most outstanding unresolved issues of modern physics. On one side,
quantum theory, in its usual formulation and orthodox interpretation, requires
an ambient non-dynamical spacetime. On the other side, gravity, as described by
general relativity, requires a dynamical geometry of spacetime which is coupled
to all material processes within. This implies that at least one of these theories
cannot be fundamentally correct. Hence, according to general expectation, there
should exist a theory of quantum gravity comprising both previous theories.
Such a theory should make definite predictions where previous theories failed
to do so, like close to the Big Bang or during the radiational decay of Black
Holes. Moreover, a theory of quantum gravity should also clarify the structure
of spacetime at smallest scales. Up to now, no finally worked out theory of
quantum gravity exists. Currently the most promising approaches to such a
theory go under the names of Canonical Quantum Gravity and String Theory.
The purpose of the 271st WE-Heraeus Seminar “Aspects of Quantum Gravity
– From Theory to Experimental Search”, which took place in Bad Honnef from
February 24th to March 1st, 2002, was to discuss issues surrounding quantum
gravity on a level accessible to graduate students. The range of topics spanned
an arc from fundamental questions concerning the notion of “quantisation”,
over the presentation of definite approaches, to the possibility of astrophysical
observations as well as laboratory experiments. We sincerely thank all speakers
for their presentations and especially those who were moreover willing to write
them up for the present volume. Last but not least we thank the Wilhelm and
Else Heraeus Foundation for its generous support, without which this seminar
could not have been realized, and the Physikzentrum for its kind hospitality.

Freiburg, Köln, and Bremen Domenico Giulini
April 2003 Claus Kiefer

Claus Lämmerzahl
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Petr Háj́ıček . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
2 Gauge-Invariant Method in the Canonical Theory

of Generally Covariant Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
3 A Model: Gravitating Shell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
4 Quantum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Primordial Black Holes as a Probe of the Early Universe,
Gravitational Collapse, High Energy Physics
and Quantum Gravity
Bernard J. Carr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
2 Historical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
3 PBHs as a Probe of Primordial Inhomogeneities . . . . . . . . . . . . . . . . . . . . 304
4 PBHs as Probe of Cosmological Phase Transitions . . . . . . . . . . . . . . . . . . 307
5 PBHs as a Probe of a Varying Gravitational Constant . . . . . . . . . . . . . . 310
6 PBHs as a Probe of Gravitational Collapse . . . . . . . . . . . . . . . . . . . . . . . . 311
7 PBHs as a Probe of High Energy Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 312
8 PBHs as a Probe of Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

On the Assignment of Entropy to Black Holes
Daniel Sudarsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2 The Assignment of Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
3 The Schrödinger Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
4 The Problem and the Lessons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333



Contents IX

Part III Experimental Search

Physics with Large Extra Dimensions
and Non-Newtonian Gravity at Sub-mm Distances
Ignatios Antoniadis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
2 Hiding Extra Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
3 Low-Scale Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
4 Gravity Modification and Sub-millimeter Forces . . . . . . . . . . . . . . . . . . . . 350
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Quantum States of Neutrons in the Gravitational Field
and Limits for Non-Newtonian Interaction
in the Range between 1 µm and 10 µm
Hartmut Abele, Stefan Baeßler, Alexander Westphal . . . . . . . . . . . . . . . . . . . . 355
1 A Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
2 Limits for Non-Newtonian Interaction Below 10 µm . . . . . . . . . . . . . . . . . 356
3 The Experiment at the Institut Laue-Langevin . . . . . . . . . . . . . . . . . . . . . 358
4 Gravity and Quantum Mechanics Work Together . . . . . . . . . . . . . . . . . . . 361
5 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

The Einstein Equivalence Principle
and the Search for New Physics
Claus Lämmerzahl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
2 The Einstein Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
3 Implications of the Einstein Equivalence Principle . . . . . . . . . . . . . . . . . . 373
4 Models Which Violate the Einstein Equivalence Principle . . . . . . . . . . . . 375
5 Experimental Tests of the Einstein Equivalence Principle . . . . . . . . . . . . 381
6 New Experimental Devices and Developments . . . . . . . . . . . . . . . . . . . . . . 386
7 EEP and Modern Metrology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394





List of Contributors

Hartmut Abele
Physikalisches Institut
Universität Heidelberg
Philosophenweg 12
69120 Heidelberg
Germany
abele@physi.uni-heidelberg.de

Ignatios Antoniadis
CERN
Theory Division
1211 Geneva 23
Switzerland
Ignatios.Antoniadis@cern.ch

Stefan Baeßler
Physikalisches Institut
Universität Mainz
Staudingerweg 7
55099 Mainz
Germany
stefan.baessler@uni-mainz.de

Bernard J. Carr
Astronomy Unit
Queen Mary
University of London
Mile End Road
London E1 4NS
England
B.J.Carr@qmul.ac.uk

Domenico Giulini
Physikalisches Institut
Universität Freiburg
Hermann–Herder–Str. 3
79104 Freiburg
Germany
giulini@physik.uni-freiburg.de

Petr Háj́ıček
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Quantum Gravity – A General Introduction

Claus Kiefer

Institut für Theoretische Physik, Universität zu Köln, Zülpicher Str. 77, 50937 Köln,
Germany.

Abstract. I give a brief introduction into the general problems of constructing a
theory of quantum gravity, the main approaches, expected applications, as well as
semiclassical approximations and the role of decoherence.

1 Quantum Theory and the Gravitational Field

Quantum theory seems to be a universal framework for physical theories. In
fact, most of the interactions found in Nature are already successfully described
by some quantum theory. The only interaction for which this has not yet been
achieved is gravity. All manifestations of the gravitational field known so far can
be understood from a classical theory – Einstein’s theory of general relativity
(also called ‘geometrodynamics’). It is given by the Einstein-Hilbert action

SEH =
c4

16πG

∫
M

d4x
√−g (R− 2Λ) + boundary term + Sm , (1)

where Sm denotes the action for non-gravitational fields from which one can
derive the energy-momentum tensor according to

Tµν(x) =
2√−g

δSm

δgµν(x)
. (2)

There exist certain ‘uniqueness theorems’ which state that every reasonable the-
ory of the gravitational field must contain general relativity (or its natural gener-
alisation, the Einstein-Cartan theory) in a certain limit, see e.g. [1] for a review.

In spite of its success, there are many reasons to believe that the most fun-
damental theory of gravity is a quantum theory. Unfortunately, no experimental
material is presently available, which would point in a definite direction. The
reasons are therefore of a theoretical nature. The main motivations for quantum
gravity are [1]:

• Unification. The history of science shows that a reductionist viewpoint
has been very fruitful in physics. The standard model of particle physics is a
quantum field theory which has united in a certain sense all non-gravitational
interactions. The universal coupling of gravity to all forms of energy would
make it plausible that gravity has to be implemented in a quantum frame-
work, too. Moreover, attempts to construct an exact semiclassical theory,
where gravity stays classical but all other fields are quantum, have failed up

C. Kiefer, Quantum Gravity – A General Introduction, Lect. Notes Phys. 631, 3–13 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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to now. This demonstrates in particular that classical and quantum concepts
(phase space versus Hilbert space, etc.) are most likely incompatible.

• Cosmology and Black Holes. As the singularity theorems and the ensuing
breakdown of general relativity demonstrate, a fundamental understanding
of the early universe – in particular its initial conditions near the ‘big bang’
– and of the final stages of black-hole evolution requires an encompassing
theory. From the historical analogue of quantum mechanics (which due to
its stationary states has rescued the atoms from collapse) the general ex-
pectation is that this encompassing theory is a quantum theory. It must
be emphasised that if gravity is quantised, the kinematical nonseparability
of quantum theory demands that the whole Universe must be described in
quantum terms. This leads to the concepts of quantum cosmology and the
wave function of the universe, see below.

• Problem of Time. Quantum theory and general relativity (in fact, ev-
ery general covariant theory) contain drastically different concepts of time
(and spacetime). Strictly speaking, they are incompatible. In quantum the-
ory, time is an external (absolute) element, not described by an operator (in
special relativistic quantum field theory, the role of time is played by the
external Minkowski spacetime). In contrast, spacetime is a dynamical object
in general relativity. It is clear that a unification with quantum theory must
lead to modifications of the concept of time. Related problems concern the
role of background structures in quantum gravity, the role of the diffeomor-
phism group (Poincaré invariance, as used in ordinary quantum field theory,
is no longer a symmetry group), and the notion of ‘observables’.

What are the relevant scales on which effects of quantum gravity should be
unavoidable? As has already been shown by Max Planck in 1899, the funda-
mental constants speed of light (c), gravitational constant (G), and quantum of
action (�) can be combined in a unique way (up to a dimensionless factor) to
yield units of length, time, and mass. In Planck’s honour they are called Planck
length, lP, Planck time, tP, and Planck mass, mP, respectively. They are given
by the expressions

lP =

√
�G

c3
≈ 1.62× 10−33 cm , (3)

tP =
lP
c

=

√
�G

c5
≈ 5.40× 10−44 s , (4)

mP =
�

lPc
=

√
�c

G
≈ 2.17× 10−5 g ≈ 1.22× 1019 GeV . (5)

The Planck mass seems to be a rather large quantity by microscopic standards.
One has to keep in mind, however, that this mass (energy) must be concentrated
in a region of linear dimension lP in order to see direct quantum-gravity effects.
In fact, the Planck scales are attained for an elementary particle whose Compton
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wavelength is (apart from a factor of 2) equal to its Schwarzschild radius,

�

mPc
≈ RS ≡ 2GmP

c2
, (6)

which means that the spacetime curvature of an elementary particle is non-
negligible. A truly unified theory may of course contain further parameters. An
example is string theory (see next section) where the fundamental ‘string length’
ls appears.

A quantity expressing the ratio of atomic scales to the Planck scale is the
‘fine structure constant of gravity’ defined by

αg =
Gm2

pr

�c
≡

(
mpr

mP

)2

≈ 5.91× 10−39 , (7)

where mpr denotes the proton mass. Its smallness is responsible for the unim-
portance of quantum-gravitational effects on laboratory and astrophysical scales,
and for the separation between micro- and macrophysics. It is interesting that
structures in the universe occur for masses which can be expressed as simple
powers of αg in units of mpr, cf. [2]. For example, stellar masses are of the order
α

−3/2
g mpr, while stellar lifetimes are of the order α

−3/2
g tP. It is also interesting

to note that the size of human beings is roughly the geometric mean of Planck
length and size of the observable universe. It is an open question whether a fun-
damental theory of quantum gravity can provide an explanation for such values,
e.g. for the ratio mpr/mP, or not. If not, only an anthropic principle could yield
a – not very satisfying – ‘explanation’.

Below the level of full quantum gravity one can distinguish from a conceptual
point of view at least two other levels. The first, lowest, level deals with quantum
mechanics in external gravitational fields (either described by general relativity
or its Newtonian limit). No back reaction on the gravitational field is taken into
account. This is the only level where experiments exist so far, cf. the contribution
by C. Lämmerzahl to this volume. Already in the 1970s, experiments of neutron
interferometry were performed in the gravitational field of the Earth. It was
possible, in particular, to show that the weak equivalence principle holds at the
given level of precision. More recently, gravitational quantum bound states of
neutrons in the field of the Earth have been measured, cf. the contribution by
H. Abele.

The second level concerns quantum field theory in external gravitational
fields. Back reaction can be taken into account in a perturbative sense. Al-
though experimatal data are still lacking, there exist on this level at least pre-
cise predictions. The most important one concerns Hawking radiation for black
holes [3], see e.g. [4] for a detailed review. A black hole radiates with tempera-
ture

TH =
�κ

2πkBc
, (8)

where κ is the surface gravity of a stationary black hole which by the no-
hair theorem is uniquely characterised by its mass M , its angular momentum
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J , and its electric charge Q. In the particular case of the spherically sym-
metric Schwarzschild black hole one has κ = c4/4GM = GM/R2

S and there-
fore

TH =
�c3

8πkBGM
≈ 6.17× 10−8

(
M�
M

)
K . (9)

This temperature is unobservationally small for solar-mass (and bigger) black
holes, but may be observable for primordial black holes, cf. the contribution by
B. Carr. It must be emphasised that the expression for TH contains all funda-
mental constants of nature. One may speculate that this expression – relating the
macroscopic parameters of a black hole with thermodynamic quantities – plays
a similar role for quantum gravity as de Broglie’s relations E = �ω and p = �k
once played for the development of quantum theory [5]. Hawking radiation was
derived in the semiclassical limit in which the gravitational field can be treated
classically. According to (9), the black hole loses mass through its radiation and
becomes hotter. After it has reached a mass of the size of the Planck mass (5),
the semiclassical approximation breaks down and the full theory of quantum
gravity should be needed. Black-hole evaporation thus plays a crucial role in any
approach to quantum gravity (see below).

There exists a related effect to (8) in flat Minkowski space. An observer in
uniform acceleration experiences the standard Minkowski vacuum not as empty,
but as filled with thermal radiation with temperature

TDU =
�a

2πkBc
≈ 4.05× 10−23 a

[cm
s2

]
K . (10)

This temperature is often called the ‘Davies-Unruh temperature’, cf. [4]. For-
mally, it arises from (8) through the substitution of κ by a. This can be under-
stood from the fact that horizons are present in both the black-hole case and the
acceleration case. Although (10) seems to be a small effect, it was suggested to
search for it in accelerators or in experiments with ultra-intense lasers, without
definite success up to now.

2 Approaches to Quantum Gravity

As I have already mentioned in the last section, experimental clues for quantum
gravity are elusive. A direct probe of the Planck scale (5) in high-energy experi-
ments would be illusory. In fact, an accelerator of current technology would have
to have the size of several thousand lightyears in order to probe the Planck energy
mPc

2 ≈ 1019 GeV. However, it is imaginable that effects of quantum gravity can
in principle occur at lower energy scales. Possibilities could be non-trivial appli-
cations of the superposition principle for the quantised gravitational field or the
existence of discrete quantum states in black-hole physics or the early universe.
But one might also be able to observe quantum-gravitational correction terms
to established theories, such as correction terms to the functional Schrödinger



General Introduction 7

equation in an external spacetime or effective terms violating the weak equiv-
alence principle. Such effects could potentially be measured in the anisotropy
spectrum of the cosmic microwave background radiation or in the forthcoming
satellite tests of the equivalence principle such as STEP, cf. the contribution by
C. Lämmerzahl.

A truly fundamental theory should have such a rigid structure that all phe-
nomena in the low-energy regime, such as particle masses or coupling constants,
could be predicted in an unambiguous way. As there is no direct experimental
hint yet, most work in quantum gravity focuses on the attempt to construct a
mathematically and conceptually consistent (and appealing) framework.

There is, of course, no a priori given starting point in the methodological
sense. In this context Chris Isham makes a distinction between a ‘primary the-
ory of quantum gravity’ and a ‘secondary theory’ [6]. In the primary approach,
one starts with a given classical theory and applies heuristic quantisation rules.
This is the approach usually adopted, and it was successful, for example, in
QED. In most cases, the starting point is general relativity, leading to ‘quan-
tum general relativity’ or ‘quantum geometrodynamics’, but one could also start
from another classical theory such as the Brans-Dicke theory. One usually distin-
guishes between ‘canonical’ and ‘covariant’ approaches, where ‘covariant’ refers
here to spacetime diffeomorphisms. The main advantage of both approaches is
that the starting point is given – the classical theory. The main disadvantage is
that one does not arrive immediately at a unified theory of all interactions.

The opposite holds for a ‘secondary theory’. One starts with a fundamental
quantum framework of all interactions and tries to derive (quantum) general
relativity in certain limiting situations, e.g. through an energy expansion. The
most important example here is string theory (M-theory). The main advantage
is that the fundamental quantum theory automatically yields a unification. The
main disadvantage is that the starting point is entirely speculative. The general
meaning of ‘quantisation’ is discussed in the contribution by D. Giulini.

Even if quantum general relativity is superseded by a more fundamental
theory such as string theory, it should be valid as an effective theory in some
appropriate limit. The reason is that far away from the Planck scale, classical
general relativity is the appropriate theory, which in turn must be the classical
limit of an underlying quantum theory. Except perhaps close to the Planck scale
itself, quantum general relativity should be a viable framework (such as QED,
which is also supposed to be only an effective theory). It should also be mentioned
that string theory automatically implements many of the methods used in the
primary approach, such as quantisation of constrained systems and covariant
perturbation theory.

An important question in the heuristic quantisation of a given classical the-
ory is which of the structures in the classical theory should be quantised, i.e.
subjected to the superposition principle, and which should remain as classical (or
absolute, non-dynamical) structures. Isham distinguishes the following hierarchy
of structures [7]:
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Point set of events

topological structure

differentiable manifold

causal structure

Lorentzian structure

Most approaches subject the Lorentzian and the causal structure to quan-
tisation, but keep the manifold structure fixed. This is, however, not the only
possibility. It might be that even the topological structure is fundamentally quan-
tised. According to the Copenhagen interpretation of quantum theory, all these
structures would probably have to stay classical, because they are thought to be
necessary ingredients for the measurement process. For the purpose of quantum
gravity, such a viewpoint is, however, insufficient and probably inconsistent.

Canonical quantum gravity is described in the contribution by T. Thiemann.
Depending on the choice of canonical variables one distinguishes between vari-
ous sub-approaches: quantum geometrodynamics, quantum connection dynam-
ics, and quantum loop dynamics. Its central equations are the quantum con-
straints1

Ĥ⊥Ψ = 0 , (11)
ĤaΨ = 0 , (12)

where (11) is usually referred to as the ‘Wheeler-DeWitt equation’ and (12) as
the ‘momentum’ or ‘diffeomorphism constraints’ (a = 1, 2, 3). The argument of
the wave functional Ψ is the space of all three-dimensional metrics hab(x). Equa-
tions (12) guarantee, however, that Ψ is invariant under infinitesimal diffeomor-
phisms. The real arena is thus the space of all three-geometries (‘superspace’).

There are many problems associated with (11) and (12). Especially interest-
ing from a conceptual point of view is the absence of an external time parameter
t (‘problem of time’). The reason is the dynamical nature that time plays in gen-
eral relativity: on the one hand, it cannot appear as a classical time parameter

1 In some approaches additional gauge constraints occur, see Thiemann’s contribution.
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like in ordinary quantum theory; on the other hand, the uncertainty relation in
gravity forbids the simultaneous specification of three-geometry and second fun-
damental form, so the concept of spacetime is completely lost in the quantum
theory. This is fully analogous to the loss of particle trajectories in quantum
mechanics, see e.g. [1,8] for a detailed discussion and references. An issue related
to the problem of time is the ‘problem of Hilbert space’: it is not known which
Hilbert space, if any, has to be used for the physical degrees of freedom in the
full theory. One therefore treats the quantum constraints (11) and (12) often
pragmatically as differential equations, with boundary conditions being imposed
from physical reasoning.

Quantum general relativity does not necessarily have to be treated in a canon-
ical approach. Alternative methods are the traditional background field method
and path-integral quantisation [1]. In the former, a perturbation is performed
around a four-dimensional background metric, and four-dimensional covariance
with respect to this metric is preserved at each order of perturbation theory. The
theory is perturbatively non-renormalisable, so it loses its predictive power at
high energies. Nevertheless, it is viable as an effective theory at low energies (in
the infrared limit). In this limit one can calculate, for example, quantum gravita-
tional corrections to Newton’s law [1]. Quite generally it is expected that possible
observations of a fundamental theory of quantum gravity can be described on
the level of effective actions, e.g. concerning searches for non-Newtonian grav-
ity or the violation of the weak equivalence principle, cf. the contributions by
I. Antoniadis and C. Lämmerzahl. The path-integral approach is described in
the contribution by R. Loll.

String theory is described in the contribution by T. Mohaupt. In contrast to
quantum general relativity, it automatically yields a unified quantum framework
for all interactions. Until around 1996 most developments in string theory oc-
curred on the perturbative level. One of the main outcomes was that gravity is
inevitable. Other predictions are the occurrence of gauge invariance, supersym-
metry, and the presence of higher dimensions. The theory is envisioned to be
free of infinities.

More recently, the study of non-perturbative aspects has emerged. This is
mostly triggered by the occurrence of D-branes (higher-dimensional objects on
which open strings can end) and the discovery of dualities. They allow to relate
the small-coupling regime of one version of string theory to the large-coupling
regime of another version.

The history of quantum gravity starts with early perturbative attempts by
Leon Rosenfeld in 1929. A brief overview of historical developments can be found
in [9].

3 Quantum Black Holes and Quantum Cosmology

It is expected that two of the main applications of any theory of quantum grav-
ity concerns black holes and cosmology. For black holes, the level of quantum
field theory on a fixed background (Sect. 1) leads to the concept of Hawking
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radiation, see (8) and (9). Connected with this temperature is the occurrence of
the ‘Bekenstein-Hawking entropy’

SBH =
kBA

4G�
, (13)

where A is the surface of the event horizon. The black-hole entropy (13) is
much bigger than the entropy of a collapsing star. The entropy of the Sun, for
example, is S� ≈ 1057, but the entropy of a solar-mass black hole is SBH ≈ 1077,
i.e. twenty orders of magnitudes larger (all entropies are measured in units of
kB). If all matter in the observable Universe were in a single gigantic black hole,
its entropy would be SBH ≈ 10123. Black holes thus seem to be the most efficient
objects for swallowing information.

Due to Hawking radiation, black holes have a finite lifetime. It is given by

τBH ≈
(
M0

mp

)3

tp ≈ 1065
(

M0

M�

)3

years . (14)

It has been speculated that after this time a black hole has evaporated com-
pletely and has left behind only thermal radiation. This would be independent
of any initial state the black hole has started from. Since a thermal state contains
least information, one would then be faced with the information-loss problem.
This is, however, a contentious issue and many arguments have been put forward
in favour of a unitary evolution for the black hole, see e.g. [10]. The final word
on this issue will be said after the full theory of quantum theory is known. Such
a theory should also provide a derivation of (13) by counting microscopic quan-
tum states. Preliminary results have been achieved both within the canonical
approach [11] and string theory [12], cf. the contributions by T. Mohaupt and
D. Sudarsky. Quantum gravity should also provide a detailed understanding of
the final evaporation process and settle the question whether the area of the
event horizon is quantised and, if yes, what its spectrum is.

To get a grip on the fate of the classical singularity, one can discuss exact
models of quantum gravitational collapse. This is done in the contribution by
P. Háj́ıček. He considers a thin spherically-symmetric shell with zero rest mass
that classically collapses into a black-hole singularity. One can, however, con-
struct a unitary quantum theory in which this singularity is avoided. If the shell
is described as a wave packet, the initially purely-collapsing packet turns near
the horizon into a superposition of collapsing and expanding packet and guar-
antees that the wave function is zero at r → 0. For late times the packet will be
fully expanding.

If quantum theory is applied to the universe as a whole, one talks about
quantum cosmology. Since the dominating interaction on large scales is gravity,
this can be described only within a quantum theory of gravity. Models can be
constructed in all existing approaches by making symmetry assumptions such as
homogeneity and isotropy. To discuss just one example, let us consider a closed
Friedmann universe with scale factor (‘radius’) a ≡ eα containing a massive
scalar field φ with mass m. In this case the Wheeler-DeWitt equation (11) can
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be written in suitable units for a wave function ψ(a, φ) – the ‘wave function of
the universe’ – as

Ĥψ ≡
(

�
2 ∂2

∂α2 − �
2 ∂2

∂φ2 + m2φ2e6α − e4α
)

ψ(α, φ) = 0 . (15)

One recognises explicitly the hyperbolic nature (‘wave nature’) of this equation.
The role of intrinsic time is played by α; this becomes evident if further degrees
of freedom are added: they all come with the sign of the kinetic term for φ.

Since no external time parameter t is contained in (11), one cannot pose any
initial conditions with respect to it. Instead, one can specify the wave function
(and its derivative) – in the example (15) – at a fixed value of α. This is the nat-
ural boundary condition for a hyperbolic equation. It has drastic consequences
if one wants to describe a universe that classically expands, reaches a maxi-
mum and recollapses again [5]. Both big bang and big crunch correspond to the
same region in configuration space – the region of α → −∞. They are thus in-
trinsically indistinguishable. The Wheeler-DeWitt equation connects larger scale
factors with smaller scale factors, but not two ends of a classical trajectory. If
one wants to mimick the classical trajectory by a ‘recollapsing’ wave packet,
one has to include both the ‘initial’ and the ‘final’ wave packet into one initial
condition with respect to α. If one of the two packets were lacking, one would
not be able to recover the classical trajectory as an approximation.

There is another interesting feature in the case of recollapsing universes: it
is in general not possible to construct from (15) a wave packet that follows as a
narrow tube the classical trajectory [5]. Therefore, a semiclassical approximation
is not valid all along the trajectory and quantum effects can play a role even far
away from the Planck scale – e.g. at the turning point of the classical universe.

Quantum-cosmological models such as (15) can serve quite generally to dis-
cuss the role of boundary conditions (e.g. the ‘no-boundary condition’ or the
‘tunneling condition’) [8] or issues related to the problem of time. An interesting
question, for example, concerns the origin of the inflationary universe in a theory
of quantum gravity [13].

4 Semiclassical Approximation and Decoherence

In order to bridge the gap between quantum gravity and the limit of quantum
theory in an external background, some kind of approximation scheme must be
devised. This has been discussed in all approaches, and I want to sketch here
only the procedure in quantum geometrodynamics, see [8] for more details and
references.

One method involves a Born-Oppenheimer type of approximation with re-
spect to the Planck mass mP. The situation is formally similar to molecular
physics where the heavy nuclei move slowly, followed adiabatically by the light
electrons. In situations where the relevant scales are much smaller than the
Planck mass, the gravitational kinetic term can be neglected in a first approxi-
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mation. One makes for solutions of (11) the ansatz

Ψ [hab, ϕ] = eim2
PS[hab]Φ[hab, ϕ] , (16)

where ϕ stands symbolically for non-gravitational fields. Inserting this into (11)
and and making an expansion with respect to mP, one finds that S[hab] obeys the
gravitational Hamilton-Jacobi equation. This is known to be equivalent to Ein-
stein’s field equations. In this sense the classical background spacetime emerges
as an approximation (such as geometrical optics emerges as a limit from wave
optics). One can now pick out one classical spacetime from the many classical
solutions (spacetimes) that are described by S[hab]. The ‘matter wave func-
tional’ Φ[hab, ϕ] can then be evaluated on this particular spacetime described
by hab(x, t) and can therefore shortly be labelled Φ(t, ϕ]. If other semiclassical
variables are present (such as the homogeneous field φ in (15)), they are included
in S. The time parameter t is defined from S[hab] as parametrising the classical
trajectory (spacetime) running orthogonally to S[hab] = const. in the space of
three-geometries. In the special case (15) of the Friedmann universe, t is defined
by the scale factor a(t) and the homogeneous scalar field φ(t). It can be shown
from (11) that the time evolution of the state Φ,

∂

∂t
Φ(t, ϕ] =

∫
d3x ḣab(x, t)

δ

δhab(x, t)
Φ[hab(x, t), ϕ] . (17)

is given by a functional Schrödinger equation in the external classical spacetime
found from S[hab],

i�
∂

∂t
Φ(t, ϕ] = ĤmatΦ(t, ϕ] , (18)

where Ĥmat is the matter field Hamiltonian in the Schrödinger picture, para-
metrically depending on (generally nonstatic) metric coefficients of the curved
spacetime background. In this way, the Schrödinger equation for non-gravita-
tional fields has been recovered from quantum gravity as an approximation. A
derivation similar to the above can already be performed within ordinary quan-
tum mechanics if one assumes that the total system is in a ‘timeless’ energy eigen-
state. In fact, Neville Mott had already considered in 1931 a time-independent
Schrödinger equation for a total system consisting of an α-particle and an atom.
If the state of the α-particle can be described by a plane wave (corresponding
in this case to high velocities), one can make an ansatz similar to (16) and de-
rive a time-dependent Schrödinger equation for the atom alone, in which time is
defined by the α-particle.

Higher orders in this Born-Oppenheimer scheme yield quantum-gravitational
correction terms to the Schrödinger equation, which could leave an observational
imprint e.g. in the anisotropy spectrum of the cosmic microwave background.

The ansatz (16) is already special, since it is a product of a pure phase part
depending on gravity with a matter wave function. The i in the Schrödinger
equation (18) has its origin in the choice of this phase. Can this be justified?
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The answer is yes. A crucial role is hereby played by the process of decoherence
[14]. This is the emergence of classical properties through the irreversible inter-
action of a quantum system with its environment. Information about possible
interference effects in the system is delocalised into quantum correlations with
the inaccessible degrees of freedom of the environment and is no longer avail-
able at the system itself. Formally, decoherence is described through the reduced
density matrix of the system obtained by tracing out the irrelevant degrees of
freedom. In the present context these irrelevant variables can be density fluctu-
ations or gravitational waves. Detailed discussions show that states of the form
(16) are most robust against environmental influence and that the variables con-
tained in S[hab] assume quasiclassical properties [5,8,14]. It is also possible along
these lines to understand, at least in principle, the origin of the arrow of time in
our universe from a simple boundary condition in quantum cosmology [5,15].
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matter, edited by I. Bigi and M. Fäßler (World Scientific, Singapore, 2003)



That Strange Procedure Called Quantisation
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Physikalisches Institut, Universität Freiburg, Hermann-Herder-Str. 3,
9104 Freiburg, Germany

Abstract. I discuss the notion of ‘quantisation’ á la Dirac (canonical quantisation)
from a general perspective. It is well known that Dirac’s quantisation rules cannot work
in general. I present this classic no-go result, which is due to Groenewold and van Hove,
with due emphasis on its hypotheses. Finally, I briefly discuss first-class constrained
systems with emphasis on the global-geometric and algebraic apsects.

1 Introduction and Motivation

In my contribution I wish to concentrate on some fundamental issues concerning
the notion of quantisation. Nothing of what I will say is new or surprising to the
experts. My intention is rather a pedagogical one: to acquaint the non-experts
with some of the basic structural results in quantisation theory, which I feel
should be known to anybody who intends to ‘quantise’ something. A central
result is the theorem of Groenewold and van Hove, which is primarily a no-go re-
sult, stating that the most straightforward axiomatisation of Dirac’s informally
presented ‘canonical’ quantisation rules runs into contradictions and therefore
has to be relaxed. The constructive value of this theorem lies in the fact that
its proof makes definite suggestions for such relaxations. This helps to sharpen
ones expectations on the quantisation concept in general, which is particularly
important for Quantum Gravity since here sources for direct physical input are
rather scarce. Expectations on what Quantum Gravity will finally turn out to
be are still diverse, though more precise pictures now definitely emerge within
the individual approaches, as you will hopefully be convinced in the other lec-
tures (see the lectures by Loll, Mohaupt, and Thiemann in this volume) so that
reliable statements about similarities and differences on various points can now
be made. The present contribution deliberately takes focus on a very particular
and seemingly formal point, in order to exemplify in a controllable setting the
care needed in formulating ‘rules’ for ‘quantisation’. At the end I will also briefly
consider constrained systems from a slightly more ‘global’ point of view. Two
appendices provide some technical aspects.

How do you recognize quantum theories and what structural elements distin-
guish them from so-called classical ones? If someone laid down, in mathematical
terms, a theory of ‘something’ before you, what features would you check in
order to answer this question? Or would you rather maintain that this question
does not make good sense to begin with? Strangely enough, even though quan-
tum theories are not only known to be the most successful but also believed to

D. Giulini, That Strange Procedure Called Quantisation, Lect. Notes Phys. 631, 17–40 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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be the most fundamental theories of physics, there seems to be no unanimously
accepted answer to any of these questions. So far a working hypothesis has been
to define quantum theories as the results of some ‘quantisation procedures’ af-
ter their application to classical theories. One says that the classical theory (of
‘something’) ‘gets quantised’ and that the result is the quantum theory (of that
‘something’). This is certainly the way we traditionally understand Quantum
Mechanics and also a substantial part of Quantum Field Theory (for more dis-
cussion on this point, that also covers interesting technical issues, I recommend
[12]). As an exception – to a certain degree – I would list Local Quantum Field
Theory [10], which axiomatically starts with a general kinematical framework
for Poincaré invariant quantum field theories without any a priori reference to
classical theories. Although this can now be generalised to curved spacetimes,
it does not seem possible to eliminate the need of some such fixed (i.e. non-
dynamical) background. Hence this approach does not seem to be able to apply
to background independent dynamical fields, like gravity.

The generally accepted quantisation procedures I have in mind here can be
roughly divided into three groups, with various interrelations:

• Hilbert-space based methods, like the standard canonical quantisation pro-
gramme,

• algebraic methods based on the notion on observables, like �-product quan-
tisation or C∗-algebra methods,

• path integral methods.

Given the success of Quantum Mechanics (QM) it was historically, and still is,
more than justified to take it as paradigm for all other quantum theories (modulo
extra technical inputs one needs to handle infinitely many degrees of freedom).
Let us therefore take a look at QM and see how quantisation may, or may not, be
understood. In doing this, I will exclusively focus on the traditional ‘canonical’
approaches to quantisation.

2 Canonical Quantisation

Historically the rules for ‘canonical quantisation’ where first spelled out by Dirac
in his famous book on QM [3]. His followers sometimes bluntly restated these
rules by the symbolic line,

{· , ·} �→ −i
�

[· , ·] , (1)

which is to be read as follows: map each classical observable (function on phase
space) f to an operator f̂ in a Hilbert space H (typically L2(Q, dµ), where Q
is the classical configuration space and dµ the measure that derives from the
Riemannian metric thereon defined by the kinetic energy) in such a way that
the Poisson bracket of two observables is mapped to −ı/� times the commutator
of the corresponding operators, i.e, ̂{f1, f2} = −ı

�
[f̂1, f̂2] (see e.g. [1], Sect. 5.4).

This is also facetiously known as ‘quantisation by hatting’. But actually Dirac
was more careful; he wrote [3] (my emphasis; P.B. denotes ‘Poisson Brackets’)
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‘The strong analogy between quantum P.B. [i.e. commutators] and
classical P.B. leads us to make the assumption that the quantum
P.B., or at any rate the simpler ones of them, have the same values
as the corresponding classical P.B.s.’

Paul Dirac, 1930

Clearly these words demand a specific interpretation before they can be called
a (well defined) quantisation programme.

2.1 The Classical Stage

Associated to a classical Hamiltonian dynamical system of n degrees of freedom
is a 2n-dimensional manifold, P , the space of states or ‘phase space’ (sometimes
identified with the space of solutions to Hamilton’s equations, if the latter pose a
well defined initial-value problem). Usually – but not always – it comes equipped
with a preferred set of 2n functions, (qi, pi), i = 1 · · ·n, called coordinates and
momenta respectively. In addition, there is a differential-geometric structure
on P , called Poisson Bracket, which gives a suitable subspace F ⊆ C∞(P )
of the space of real-valued, infinitely differentiable functions the structure of
a Lie algebra. See Appendix 1 for more information on the geometric struc-
tures of classical phase space and Appendix 2 for the general definition of a Lie
algebra. Exactly what subspace is ‘suitable’ depends of the situation at hand
and will be left open for the time being. In any case, the Poisson Bracket is a
map

{·, ·} : F × F → F , (2)

which satisfies the following conditions for all f, g, h ∈ F(P ) and λ ∈ R (which
make it precisely a real Lie algebra):

{f, g} = −{g, f} antisymmetry , (3)
{f, g + λh} = {f, g}+ λ{f, h} linearity , (4)
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 Jacobi identity . (5)

In the special coordinates (qi, pi) it takes the explicit form (cf. Appendix 1)

{f, g} :=
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (6)

Independently of the existence of a Poisson Bracket, the space F is a commu-
tative and associative algebra under the operation of pointwise multiplication:

(f · g)(x) := f(x)g(x) . (7)
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This means that the multiplication operation is also a map F ×F → F (simply
denoted by ‘·’) which satisfies the following conditions for all f, g, h ∈ F and
λ ∈ R:

f · g = g · f commutativity , (8)
f · (g + λh) = f · g + λ f · h linearity , (9)
f · (g · h) = (f · g) · h associativity . (10)

The two structures are intertwined by the following condition, which ex-
presses the fact that each map Df : F → F , g �→ Df (g) := {f, g}, is a derivation
of the associative algebra for each f ∈ F :

{f, g · h} = {f, g} · h + g · {f, h} . (11)

The Jacobi identity now implies that (◦ denotes composition) Df ◦Dg−Dg◦Df =
D{f,g}.1 Taken all this together this makes F into a Poisson algebra, whose
abstract definition is as follows:

Definition 1. A Poisson algebra is a vector space V with two maps V ×V → V ,
denoted by ‘{, }’ and ‘·’, which turn V into a Lie algebra (defined by (3-5)) and a
commutative and associative algebra (defined by (8-10)) respectively, such that
(11) holds.

Simply writing the symbol F now becomes ambiguous since it does not in-
dicate which of these different structures we wish to be implicitly understood. I
shall use the convention to let ‘+’ indicate the vector-space structure, (+, {, }) the
Lie-algebra structure, (+, ·) the associative structure, and (+, {, }, ·) the Poisson
structure. To avoid confusion I will then sometimes write:

F for the set , (12)
F(+, {, }) for the Lie algebra , (13)
F(+, ·) for the associative algebra , (14)
F(+, {, }, ·) for the Poisson algebra , (15)

formed by our subset of functions from C∞(P ). Sometimes I will indicate the
subset of functions by a subscript on F . For example, I will mostly restrict P
to be R

2n with coordinates (qi, pi). It then makes sense to restrict to functions
which are polynomials in these coordinates.2 Then the following subspaces will
turn out to be important in the sequel:
1 This can be expressed by saying that the assignment f �→ Df is a Lie homomorphism

from the Lie algebra F to the Lie algebra of derivations on F . Note that the deriva-
tions form an associative algebra when multiplication is defined to be composition,
and hence also a Lie algebra when the Lie product is defined to be the commutator.

2 Recall that you need an affine structure on a space in order to give meaning to the
term ‘polynomial functions’.
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F∞ : C∞-functions, (16)
Fpol : polynomials in q’s and p’s, (17)
Fpol(1) : polynomials of at most first order, (18)
Fpol(2) : polynomials of at most second order, (19)
Fpol(∞,1) : polynomials of at most first order in the p’s

whose coefficients are polynomials in the q’s. (20)

An otherwise unrestricted polynomial dependence is clearly preserved under ad-
dition, scalar multiplication, multiplication of functions, and also taking the
Poisson Bracket (6). Hence Fpol forms a Poisson subalgebra. This is not true
for the other subspaces listed above, which still form Lie subalgebras but not
associative algebras.

2.2 Defining ‘Canonical Quantisation’

Roughly speaking, Dirac’s approach to quantisation consists in mapping certain
functions on P to the set SYM(H) of symmetric operators (sometimes called
‘formally self adjoint’) on a Hilbert space H. Suppose these operators have a
common invariant dense domain D ⊂ H (typically the ‘Schwarz space’), then
it makes sense to freely multiply them. This generates an associative algebra of
operators (which clearly now also contains non-symmetric ones) defined on D.
Note that every associative algebra is automatically a Lie algebra by defining
the Lie product proportional to the commutator (cf. Appendix 2):

[X,Y ] := X · Y − Y ·X . (21)

Since the commutator of two symmetric operators is antisymmetric, we obtain
a Lie-algebra structure on the real vector space of symmetric operators with
invariant dense domain D by defining the Lie product as imaginary multiple
of the commutator; this I will write as 1

i� [·, ·] where � is a real (dimensionful)
constant, eventually to be identified with Planck’s constant divided by 2π.

Note that I deliberately did not state that classical observables should be
mapped to self adjoint operators. Instead I only required the operators to be
symmetric, which is a weaker requirement. This important distinction (see e.g.
[14]) is made for the following reason (see e.g. Sect. VIII in [14] for the math-
ematical distinction): let f̂ be the operator corresponding to the phase-space
function f . If f̂ were self adjoint, then the quantum flow U(t) = exp(itf̂) existed
for all t ∈ R, even if the classical Hamiltonian vector field for f is incomplete (cf.
Appendix 1) so that the classical flow does not exist for all flow parameters in R.
Hence self adjointness seems too strong a requirement for such f whose classical
flow is incomplete (which is the generic situation). Therefore one generally only
requires the operators to be symmetric and strengthens this explicitly for those
f whose classical flow is complete (see below).

A first attempt to mathematically define Dirac’s quantisation strategy could
now consist in the following: find a ‘suitable’ Lie homomorphism Q from a ‘suit-
able’ Lie subalgebra F ′ ⊂ F(+, {, }) to the Lie algebra SYM(H) of symmetric
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operators on a Hilbert space H with some common dense domain D ⊂ H. The
map Q will be called the quantisation map. Note that this map is a priori not
required in any way to preserve the associative structure, i.e. no statement is
made to the effect that Q(f · g) = Q(f) · Q(g), or similar.

To be mathematically precise, we still need to interpret the word ‘suitable’
which occurred twice in the above statement. For this we consider the following
test case, which at first sight appears to be sufficiently general and sufficiently
precise to be able to incorporate Dirac’s ideas in a well defined manner:

1. We restrict the Lie algebra of C∞-Functions on P to polynomials in (qi, pi),
i.e. we consider Fpol(+, {, }).

2. As Hilbert space of states, H, we consider the space of square-integrable
functions R

n → H, where H is a finite dimensional Hilbert space which may
account for internal degrees of freedom, like spin. R

n should be thought of as
‘half’ of phase space, or more precisely the configuration space coordinatised
by the set {q1, · · · , qn}. For integration we take the Lebesgue measure dnq.

3. There exists a map Q : Fpol → SYM(H,D) into the set of symmetric op-
erators on H with common invariant dense domain D. (When convenient
we also write f̂ instead of Q(f).) This map has the property that whenever
f ∈ Fpol has a complete Hamiltonian vector field the operator Q(f) is in fact
(essentially) self adjoint.3

4. Q is linear:

Q(f + λ g) = Q(f) + λQ(g) . (22)

5. Q intertwines the Lie structure on Fpol(+, {, }) and the Lie structure given
by 1

i� [, ] on SYM(H,D):

Q({f, g})) = 1
i� [Q(f),Q(g)]) . (23)

Here � is a constant whose physical dimension is that of p · q (i.e. an ac-
tion) which accounts for the intrinsic dimension of {, } acquired through the
differentiations (cf. (6)). Note again that the imaginary unit is necessary to
obtain a Lie structure on the subset of symmetric operators.

6. Let 1 also denote the constant function with value 1 on P and 1l the unit
operator; then

Q(1) = 1l . (24)

7. The quantisation map Q is consistent with Schrödinger quantisation:

(Q(qi)ψ)(q) = qiψ(q) , (25)
(Q(pi)ψ)(q) = −i�∂qiψ(q) . (26)

3 We remark that the subset of functions whose flows are complete do not form a Lie
subalgebra; hence it would not make sense to just restrict to them.
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One might wonder what is actually implied by the last condition and whether
it is not unnecessarily restrictive. This is clarified by the theorem of Stone and
von Neumann (see e.g. [1]), which says that if the 2n operators Q(qi) and Q(pi)
are represented irreducibly up to finite multiplicity (to allow for finitely many
internal quantum numbers) and satisfy the required commutation relations, then
their representation is unitarily equivalent to the Schrödinger representation
given above. In other words, points 2.) and 7.) above are equivalent to, and
could therefore be replaced by, the following requirement:

7’. The 2n operatorsQ(qi),Q(pi) act irreducibly up to at most finite multiplicity
on H.

Finally there is a technical point to be taken care of. Note that the commu-
tator on the right hand side of (23) – and hence the whole equation – only makes
sense on the subset D ⊆ H. This becomes important if one deduces from (22)
and (23) that

{f, g} = 0 ⇒ [Q(f),Q(g)] = 0 , (27)

i.e. that Q(f) and Q(g) commute on D. Suppose that the Hamiltonian vector
fields of f and g are complete so that Q(f) and Q(g) are self adjoint. Then
commutativity on D does not imply that Q(f) and Q(g) commute in the usual
(strong) sense of commutativity of self-adjoint operators, namely that all their
spectral projectors mutually commute (compare [14], p. 271). This we pose as
an extra condition:

8. If f, g have complete Hamiltonian vector fields and {f, g} = 0; then Q(f)
commutes with Q(g) in the strong sense, i.e. their families of spectral pro-
jectors commute.

This extra condition will facilitate the technical presentation of the following
arguments, but we remark that it can be dispensed with [8].

2.3 The Theorem of Groenewold and van Howe

In a series of papers Groenewold [9] and van Hove [16,15] showed that a canonical
quantisation satisfying requirements 1.–8. does not exist. The proof is instructive
and therefore we shall present it in detail. For logical clarity it is advantageous
to divide it into two parts:

Part 1 shows the following ‘squaring laws’:

Q(q2) = [Q(q)]2 , (28)

Q(p2) = [Q(p)]2 , (29)

Q(qp) = 1
2 [Q(q)Q(p) +Q(p)Q(q)] . (30)

Next to elementary manipulations the proof of part 1 uses a result concerning
the Lie algebra sl(2,R), which we shall prove in Appendix 2. Note that in the



24 Domenico Giulini

canonical approach as formulated here no initial assumption whatsoever was
made concerning the preservation of the associative structure. Points 4. and 5.
only required the Lie structure to the preserved. The importance of part 1 is to
show that such a partial preservation of the associative structure can actually be
derived. It will appear later (cf. Sect. 2.5) that this consequence could not have
been drawn without the irreducibility requirement 7’).

Part 2 shows that the squaring laws lead to a contradiction to (23) on the level
of higher than second-order polynomials.

Let us now turn to the proofs. To save notation we write f̂ instead of Q(f).
Also, we restrict attention to n = 1, i.e. we have one q and one p coordinate on
the two dimensional phase space R

2. In what follows, essential use is repeatedly
made of condition 8 in the following form: assume {f, q} = 0 then (23) and
condition 8 require that f̂ (strongly) commutes with q̂, which in the Schrödinger
representation implies that f̂ has the form (f̂ψ)(q) = A(q)ψ(q), where A(q) is a
Hermitean operator (matrix) in the finite dimensional (internal) Hilbert space H.

Proof of Part 1. We shall present the argument in 7 small steps. Note that
throughout we work in the Schrödinger representation.

i) Calculate q̂2: we have {q2, q} = 0, hence q̂2 = A(q). Applying (23) and
(25) to {p, q2} = −2q gives 1

i� [p̂, q̂2] = −2q̂ and hence A′(q) = 2q (here we
suppress to write an explicit 1l for the unit operator in H), so that

q̂2 = q̂2 − 2e− , (31)

where e− is a constant (i.e. q independent) Hermitean matrix in H.
ii) Calculate p̂2: this is easily obtained by just Fourier transforming the case

just done. Hence

p̂2 = p̂2 + 2e+ , (32)

where e+ is a constant Hermitean matrix in H (here, as in (31), the conven-
tional factor of 2 and the signs are chosen for later convenience).

iii) Calculate q̂p: We apply (23) to 4qp = {q2, p2} and insert the results (31) and
(32):

q̂p = 1
4i� [q̂2, p̂2] = 1

4i� [q̂2, p̂2]− 1
i� [e−, e+] = 1

2 (q̂p̂ + p̂q̂) + h , (33)

where

h := 1
i� [e+, e−] . (34)

In the last step of (33) we iteratively used the general rule

[A,BC] = [A,B]C + B[A,C] . (35)
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iv) Next consider the quantities

h := 1
2 (q̂p̂ + p̂q̂) , (36)

e+ := 1
2 p̂

2 , (37)

e− := − 1
2 q̂

2 . (38)

By straightforward iterative applications of (35) short computations yield

1
i� [e+, e−] = h , 1

i� [h, e±] = ±2 e± , (39)

which show that e±, h furnish a representation of the Lie algebra of sl(2,R)
of real traceless 2× 2 matrices (see Appendix 2 for details).

v) On the other hand, defining

H := q̂p , (40)

E+ := 1
2 p̂

2 , (41)

E− := − 1
2 q̂

2 , (42)

we can directly use (23) to calculate their Lie brackets. This shows that they
also satisfy the sl(2,R) algebra:

1
i� [E+, E−] = H , 1

i� [H,E±] = ±2E± . (43)

vi) Inserting into (43) the results (31-33) now implies that the Hermitean ma-
trices e±, h too satisfy the sl(2,R) algebra:

1
i� [e+, e−] = h , 1

i� [h, e±] = ±2 e± . (44)

vii) Finally we invoke the following result from Appendix 2:

Lemma 1. Let A,B+, B− be finite dimensional anti-Hermitean matrices
which satisfy A = [B+, B−] and [A,B±] = ±2B±, then A = B± = 0.

Applying this to our case by setting A = 1
i�h and B± = 1

i�e± implies

e± = 0 = h . (45)

Inserting this into (31-33) yields (28-30) respectively. This ends the proof of
part 1.

Proof of Part 2. Following [8], we first observe that the statements (28-30) can
actually be generalised: Let P be any real polynomial, then

P̂ (q) = P (q̂) , (46)

P̂ (p) = P (p̂) , (47)

P̂ (q)p = 1
2 (P (q̂)p̂ + p̂P (q̂)) , (48)

P̂ (p)q = 1
2 (P (p̂)q̂ + q̂P (p̂)) . (49)
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To complete the proof of part 2 it is sufficient to prove (46) and (47) for P (x) =
x3, and (48) and (49) for P (x) = x2. This we shall do first. The cases for general
polynomials – which we do not need – follow by induction and linearity. Again
we break up the argument, this time into 5 pieces.

i) We first note that {q, q3} = 0 implies via (23) that q̂ and q̂3 commute.
Since q̂ and q̂3 commute anyway we can write q̂3 − q̂3 = A(q), where A(q)
takes values in the space of Hermitean operators on H.

ii) We next show that A(q) also commutes with p̂. This follows from the
following string of equations, where we indicated the numbers of the equa-
tions used in the individual steps as superscripts over the equality signs:

[q̂3, p̂] 23= i�{̂q3, p} 6= 3i�q̂2 28= 3i�q̂2 35= [q̂3, p̂] . (50)

Hence A(q) equals a q-independent matrix, a, and we have

q̂3 = q̂3 + a . (51)

iii) We show that the matrix a must actually be zero by the following string
of equations:

q̂3 6= 1
3

̂{q3, qp} 23= 1
3i� [q̂3, q̂p] 30,51= 1

3i� [q̂3 + a, 1
2 (q̂p̂ + p̂q̂)]

∗= 1
6i� [q̂3, (q̂p̂ + p̂q̂)] 35= q̂3 , (52)

where at ∗ we used that a commutes with q̂ and p̂. This proves (46) for
P (q) = q3. Exchanging p and q and repeating the proof shows (47) for
P (p) = p3.

iv) Using what has been just shown allows to prove (48) for P (q) = q2:

q̂2p
6= 1

6
̂{q3, p2} 23= 1

6i� [q̂3, p̂2] 46,29= 1
6i� [q̂3, p̂2] 35= 1

2 (q̂2p̂ + p̂q̂2) . (53)

Exchanging q and p proves (49) for P (p) = p2.
v) Finally we apply the quantisation map to both sides of the classical equal-

ity
1
9{q3, p3} = 1

3{q2p, p2q} . (54)

On the left hand side we replace q̂3 and p̂3 with q̂3 and q̂3 respectively and
then successively apply (35); this leads to

q̂2p̂2 − 2i�q̂p̂− 2
3�

21l . (55)

On the right hand side of (54) we now use (48) and (49) to replace q̂2p and
p̂2q with 1

2 (q̂2p̂+ p̂q̂2) and 1
2 (p̂2q̂+ q̂p̂2) respectively and again successively

apply (35). This time we obtain

q̂2p̂2 − 2i�q̂p̂− 1
3�

21l , (56)

which differs from (55) by a term − 1
3�

21l. But according to (23) both ex-
pressions should coincide, which means that we arrived at a contradiction.
This completes part 2 and hence the proof of the theorem of Groenewold
and van Howe.
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2.4 Discussion

The GvH-Theorem shows that the Lie algebra of all polynomials on R
2n cannot

be quantised (and hence no Lie subalgebra of C∞(P ) containing the polynomi-
als). But its proof has also shown that the Lie subalgebra

Fpol(2) := span
{
1, q, p, q2, p2, qp

}
(57)

of polynomials of at most quadratic order can be quantised. This is just the
essence of the ‘squaring laws’ (28-30).

To see that Fpol(2) is indeed a Lie subalgebra, it is sufficient to note that the
Poisson bracket (6) of a polynomial of n-th and a polynomial of m-th order is
a polynomial of order (n + m − 2). Moreover, it can be shown that Fpol(2) is a
maximal Lie subalgebra of Fpol, i.e. that there is no other proper Lie subalgebra
F ′ which properly contains Fpol(2), i.e. which satisfies Fpol(2) ⊂ F ′ ⊂ Fpol.
Fpol(2) contains the Lie subalgebra of all polynomials of at most first order:

Fpol(1) := span {1, q, p} . (58)

This is clearly a Lie ideal in Fpol(2) (not in Fpol), since Poisson brackets between
quadratic and linear polynomials are linear. Fpol(1) is also called the ‘Heisenberg
algebra’. According to the rules (25,26) the Heisenberg algebra was required to
be represented irreducibly (cf. the discussion following (26)). What is so special
about the Heisenberg algebra? First, observe that it contains enough functions
to coordinatise phase space, i.e. that no two points in phase space assign the
same values to the functions contained in the Heisenberg algebra. Moreover, it
is a minimal subalgebra of Fpol with this property. Hence it is a minimal set of
classical observables whose values allow to uniquely fix a classical state (point in
phase space). The irreducibility requirement can then be understood as saying
that this property should essentially also be shared by the quantised observables,
at least up to finite multiplicities which correspond to the ‘internal’ Hilbert space
H (a ray of which is fixed by finitely many eigenvalues). We will have more to
say about this irreducibility postulate below.

The primary lesson from the GvH is that Fpol ⊂ F∞ was chosen too big. It
is not possible to find a quantisation map Q : Fpol(+, {, }) → SYM(H) which
intertwines the Lie structures {, } and 1

i� [, ]. This forces us to reformulate the
canonical quantisation programme. From the discussion so far one might attempt
the following rules

Rule 1. Given the Poisson algebra Fpol(+, {, }, ·) of all polynomials on phase
space. Find a Lie subalgebra Firr ⊂ Fpol(+, {, }) of ‘basic observables’ which ful-
fills the two conditions: (1) Firr contains sufficiently many functions so as to
coordinatise phase space, i.e. no two points coincide in all values of functions in
Firr; (2) Firr is minimal in that respect, i.e. there is no Lie subalgebra F ′

irr properly
contained in Firr which also fulfills (1).

Rule 2. Find another Lie subalgebra Fquant ⊂ Fpol(+, {, }) so that Firr ⊆ Fquant

and that Fquant can be quantised, i.e. a Lie homomorphism Q : Fquant → SYM(H)
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can be found, which intertwines the Lie structures {, } and 1
i� [, ]. Require Q to

be such that Q(Firr) act almost irreducibly, i.e. up to finite multiplicity, on H.
Finally, require that Fquant be maximal in Fpol, i.e. that there is no F ′

quant with
Fquant ⊂ F ′

quant ⊂ Fpol(+, {, }).
Note that the choice of Fquant is generally far from unique. For example,

instead of choosing Fquant = Fpol(2), i.e. the polynomials of at most quadratic
order, we could choose Fquant = Fpol(∞,1), the polynomials of at most linear order
in momenta with coefficients which are arbitrary polynomials in q. A general
element in Fpol(∞,1) has the form

f(q, p) = g(q) + h(q) p (59)

where g, h are arbitrary polynomials with real coefficients. The Poisson bracket
of two such functions is

{f1, f2} = {g1 + h1p, g2 + h2p} = g3 + h3p , (60)

where

g3 = g′
1h2 − g′

2h1 and h3 = h′
1h2 − h1h

′
2 . (61)

The quantisation map applied to f is then given by

f̂ = g(q̂)− i�( 1
2h

′(q̂) + h(q̂) d
dq ) , (62)

where h′ denotes the derivative of h and q̂ and p̂ are just the Schrödinger oper-
ators ‘multiplication by q’ and ‘−i�d/dq’ respectively. The derivative term pro-
portional to h′ is necessary to make f̂ symmetric (an overline denoting complex
conjugation):

[ i
2h

′(q)ψ(q) + ih(q)ψ′(q)]φ(q) = ψ(q) [ i
2h

′(q)φ(q) + ih(q)φ′(q)]

+ (ihψφ)′(q) ,
(63)

where the last term vanishes upon integration. Moreover, a simple computation
readily shows that the map f �→ f̂ indeed defines a Lie homomorphism from
Fpol(∞,1) to SYM(H):

1
i� [f̂1, f̂2] = g3(q)− i�

(
1
2h

′
3(q) + h3(q) ddq

)
= ̂{f1, f2} , (64)

with f1,2 and g3, h3 as in (60) and (61) respectively. Hence (62) gives a quanti-
sation of Fpol(∞,1).

It can be shown ([8], Theorem 8) that Fpol(2) and Fpol(∞,1) are the only maximal
Lie subalgebras of Fpol which contain the Heisenberg algebra Fpol(1). In this sense,
if one restricts to polynomial functions, there are precisely two inextendible
quantisations.
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So far we restricted attention to polynomial functions. Since Fpol is already
too big to be quantised, there is clearly no hope to quantise all C∞ functions
on our phase space R

2n. For general phase spaces P (i.e. not isomorphic to
R

2n) there is generally no notion of ‘polynomials’ and hence no simple way
to characterise suitable Lie subalgebras of F∞(+, {, }). But experience with the
GvH Theorem suggests anyway to conjecture that, subject to some irreducibility
postulate for some minimal choice of Firr ⊂ F∞, there is never a quantisation
of F∞. (A quantisation of all C∞ functions is called full quantisation in the
literature.) Surprisingly there is a non-trivial counterexample to this conjecture:
it has been shown that a full quantisation exists for the 2-torus [6]. One might
first guess that this is somehow due to the compactness of the phase space. But
this is not true, as a GvH obstruction to full quantisation does exist for the
2-sphere [7]. But the case of the 2-torus seems exceptional, even mathematically.
The general expectation is indeed that GvH-like obstructions are in some sense
generic, though, to my knowledge, there is no generally valid formulation and
corresponding theorem to that effect. (For an interesting early attempt in this
direction see [5].) Hence we face the problem to determine Firr and Fquant within
F∞. There is no general theory how to do this. If P is homogeneous, i.e. if
there is a finite dimensional Lie group G (called the ‘canonical group’) that acts
transitively on P and preserves the Poisson bracket (like the 2n translations in
R

2n) one may generate Firr from the corresponding momentum maps. This leads
to a beautiful theory [12] for such homogeneous situations, but general finite
dimensional P do not admit a finite dimensional canonical group G, and then
things become much more complicated.

2.5 The Role of the Irreducibility-Postulate

In this section we wish to point out the central role played by the irreducibility
postulate. We already mentioned in Sect. 2.3 that the GvH theorem could not
have been derived without it. Let us show this by dropping that postulate and
see what happens. This leads to a weaker notion of quantisation which deserves
to be considered in its own right:

Definition 2. Quantisation without the irreducibility postulate (25,26) is called
pre-quantisation.

Given the GvH result, the following is remarkable:

Theorem 1. A prequantisation of the Lie algebra F∞(+, {, }) of all C∞-functions
on R

2n exists.

The proof is constructive by means of geometric quantisation. Let us briefly
recall the essentials of this approach: The Hilbert space of states is taken to be
H = L2(R2n, dnqdnp), i.e. the square integrable functions on phase space (2n
coordinates), instead of configuration space (n coordinates). The quantisation
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map is as follows4:

Q(f) = i�∇Xf
+ f , (66)

where ∇ is a ‘covariant-derivative’ operator, which is

∇ = d + A . (67)

Here d is just the ordinary (exterior) derivative and the connection 1-form, A,
is proportional to the canonical 1-form (cf. (96)) θ := pi dq

i:

A = − i
�
θ = − i

�
pi dq

i . (68)

The curvature, F = dA, is then proportional to the symplectic 2-form ω = dθ:

F = i
�
ω = i

�
dqi ∧ dpi . (69)

If Xf is the Hamiltonian vector field on phase space associated to the phase-space
function f (cf. (91)), then in canonical coordinates it has the form

Xf = (∂pi
f)∂qi − (∂qif)∂pi

. (70)

The map f �→ Xf is a Lie homomorphism from F∞(+, {, }) to the Lie algebra of
vector fields on phase space, i.e. X{f,g} = [Xf , Xg]. The operator f̂ is formally
self-adjoint and well defined on Schwarz-space (rapidly decreasing functions),
which we take as our invariant dense domain D. Explicitly its action reads:

f̂ = i�
(
(∂qif)∂pi

− (∂pi
f)∂qi

)
+

(
f − (∂pi

f)pi
)
, (71)

which clearly shows that all operators are differential operators of at most degree
one. This makes it obvious that a squaring-law in the form f̂ ĝ = f̂g never applies.
For example, for n = 1 we have for q̂, p̂ and their squares:

q̂ = q + i�∂p , q̂2 = q2 + 2i� ∂p , (72)

p̂ = −i�∂q , p̂2 = −p2 − 2i� p∂q . (73)

4 Unlike in ordinary Schrödinger quantisation, where |ψ(q)|2 is the probability den-
sity for the system in configuration space, the corresponding quantity |ψ(q, p)|2 in
geometric quantisation has not the interpretation of a probability density in phase
space. The formal reason being that in geometric quantisation q̂ is not just a mul-
tiplication operator (cf. (72)). For example, if ψ has support in an arbitrary small
neighbourhood U of phase space this does not mean that we can simultaneously
reduce the uncertainties of q̂ and p̂, since this would violate the uncertainty relations
which hold unaltered in geometric quantisation. Recall that the uncertainty relations
just depend on the commutation relations since they derive from the following gen-
erally valid formula by dropping the last term: (〈·〉ψ denotes the expectation value
in the state ψ, [·, ·]+ the anticommutator and f̂0 := f̂ − 〈f̂〉ψ1l):

〈f̂2
0 〉ψ〈ĝ2

0 〉ψ ≥ 1
4

{
|〈[f̂ , ĝ]〉ψ|2 + |〈[f̂0, ĝ0]+〉ψ|2

}
. (65)
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One now proves by direct computation that (66) indeed defines a Lie homomor-
phism:

1
i� [Q(f),Q(g)] = 1

i� [i�∇Xf
+ f , i�∇Xg + g]

= i� [∇Xf
,∇Xg ] + Xf (g)−Xg(f)

= i�
(∇[Xf ,Xg] + F (Xf , Xg)

)
+ 2{f, g}

= i�∇X{f,g} + {f, g} = Q({f, g}) ,

(74)

where we just applied the standard identity for the curvature of the covari-
ant derivative (67): F (X,Y ) = ∇X∇Y − ∇Y∇X − ∇[X,Y ] and also used
−i�F (Xf , Xg) = ω(Xf , Xg) = {f, g} (cf. (94)).

Let us now look at a simple specific example: the linear harmonic oscillator.
We use units where its mass and angular frequency equal 1. The Hamiltonian
function and vector field are then given by:

H = 1
2 (p2 + q2) ⇒ XH = p∂q − q∂p , (75)

whose quantisation according to (66) is

Ĥ = −i� (p∂q − q∂p) + 1
2

(
q2 − p2) . (76)

Introducing polar coordinates on phase space: q = r cos(ϕ) p = r sin(ϕ), the
Hamiltonian becomes

Ĥ = i�∂ϕ + r2

2 cos(2ϕ) . (77)

The eigenvalue equation reads

Ĥψ = Eψ ⇔ ∂ϕψ = − i
�

(
E − r2

2 cos(2ϕ)
)

ψ , (78)

whose solution is

ψ(r, ϕ) = ψ0(r) exp
{
− i

�

(
Eϕ− r2

2 sin(2ϕ)
)}

, (79)

where ψ0 is an arbitrary function in L2(R+, rdr). Single valuedness requires

E = En = n� , n ∈ Z , (80)

with each energy eigenspace being isomorphic to the space of square-integrable
functions on the positive real line with respect to the measure rdr:

Hn = L2(R+, rdr) . (81)

Hence we see that the difference to the usual Schrödinger quantisation is
not simply an expected degeneracy of the energy eigenspaces which, by the
way, turns out to be quite enormous, i.e. infinite dimensional for each energy
level. What is much worse and perhaps less expected is the fact that the energy
spectrum in prequantisation is a proper extension of that given by Schrödinger
quantisation and, in distinction to the latter, that it is unbounded from below.
This means that there is no ground state for the harmonic oscillator in pre-
quantisation which definitely appears physically wrong. Hence there seems to be
some deeper physical significance to the irreducibility postulate than just mere
avoidance of degeneracies.



32 Domenico Giulini

3 Constrained Systems

For systems with gauge redundancies5 the original phase space P does not di-
rectly correspond to the set of (mutually different) classical states. First of all,
only a subset P̂ ⊂ P will correspond to classical states of the system, i.e. the
system is constrained to P̂ . Secondly, the points of P̂ label the states of the sys-
tems in a redundant fashion, that is, one state of the classical system is labeled
by many points in P̂ . The set of points which label the same state form an orbit
of the group of gauge transformations which acts on P̂ . ‘Lying in the same orbit’
defines an equivalence relation (denoted by ∼) on P̂ whose equivalence classes
form the space P̄ := P̂ /∼ which is called the reduced phase space. Its points now
label the classical states in a faithful fashion. Note that it is a quotient-space
of the sub-space P̂ of P and can, in general, therefore not be represented as a
subspace of P .

A straightforward strategy to quantise such a system is to ‘solve’ the con-
straints, that is, to construct P̄ . One could then apply the same methods as
for unconstrained systems, at least as long as P̄ will be a C∞-manifold with a
symplectic structure (cf. Appendix 1).6 In particular, we can then consider the
Poisson algebra of C∞-functions and proceed as for unconstrained systems.

However, in general it is analytically very difficult to explicitly do the quotient
construction P̂ → P̂ /∼ = P̄ , i.e. to solve the constraints classically. Dirac has
outlined a strategy to implement the constraints after quantisation [4]. The basic
mathematical reason why this is considered a simplification is seen in the fact
that the whole problem is now posed in linear spaces, i.e. the construction of
sub- and quotient spaces in the (linear) spaces of states and observables.

Dirac’s ideas have been reviewed, refined, and discussed many times in the
literature; see e.g. the comprehensive textbook by Henneaux and Teitelboim [11].
Here we shall merely give a brief coordinate-free description of how to construct
the right classical Poisson algebra of functions (the ‘physical observables’).

3.1 First-Class Constraints

Let (P, ω) be a symplectic manifold which is to be thought of as an initial phase
space of some gauge system. The physical states then correspond to the points
of some submanifold P̂ ↪→ P . Usually P̂ is characterised as zero-level set of some
given collection of functions, P̂ = {p ∈ P | φα(p) = 0, α = 1, 2, ..., codim(P̂ )},
where codim(P̂ ) := dim(P ) − dim(P̂ ) denotes the codimension of P̂ in P . The
ensuing formulae will then depend on the choice of φα, though the resulting
5 We deliberately avoid the word ‘symmetry’ in this context, since the action of a gauge

group has a completely different physical interpretation than the action of a proper
symmetry; only the latter transforms states into other, physically distinguishable
states. See Sect. 6.3 in [13] for a more comprehensive discussion of this point.

6 In passing we remark that even though P may (and generally is in applications) a
cotangent bundle T ∗Q for some configuration space Q, this need not be true for P̄ ,
i.e. there will be no space Q̄ such that P̄ ∼= T ∗Q̄. For this reason it is important to
develop quantisations strategies that apply to general symplectic manifolds.
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theory should only depend on P̂ and not on its analytical characterisation. To
make this point manifest we just work with the geometric data. As usual, we
shall denote the tangent bundles of P and P̂ by TP and T P̂ respectively. The
restriction of TP to P̂ (which also contains vectors not tangent to P̂ ) is given
by TP |P̂ := {X ∈ TpP | p ∈ P̂}. The ω-orthogonal complement of TpP̂ is now
defined as follows:

T⊥
p P̂ := {X ∈ TpP |P̂ | ω(X,Y ) = 0, ∀Y ∈ TpP} . (82)

Definition 3. A submanifold P̂ ↪→ P is called coisotropic iff T⊥P̂ ⊂ T P̂ .

Since ω is non degenerate we have dimTpP̂ + dimT⊥
p P̂ = dimTpP , hence

dimT⊥
p P̂ = codim P̂ . This means that for coisotropic embeddings i : P̂ ↪→ P

the kernel7 of the pulled-back symplectic form ω̂ := i∗ω on P̂ has the maximal
possible number of dimensions, namely codim P̂ .

Definition 4. A constrained system P̂ ↪→ P is said to be of first class iff P̂ is
a coisotropic submanifold of (P, ω).

From now on we consider only first class constraints.

Lemma 2. T⊥P̂ ⊂ TP |P̂ is an integrable subbundle.

Proof. The statement is equivalent to saying that the commutator of any two
T⊥P̂ -valued vector fields X,Y on P̂ is again T⊥P̂ -valued. Using [X,Y ] = LXY
and formula (93) we have8 [X,Y ] � ω̂ = LX(Y � ω̂)− Y � LX ω̂ = −Y � d(X �
ω̂) = 0, since Y � ω̂ = 0 = X � ω̂ and dω̂ = di∗ω = i∗dω = 0 due to dω = 0.

�

Definition 5. The gauge algebra, Gau, is defined to be the set of all functions
(out of some function class F , usually C∞(P )) which vanish on P̂ :

Gau := {f ∈ F(P ) | f |P̂ ≡ 0} . (83)

Gau uniquely characterises the constraint surface P̂ in a coordinate independent
fashion. In turn, this allows to characterise the constraints algebraically; Gau is
in fact a Poisson algebra. To see this, first note that it is obviously an ideal of
the associative algebra F(+, ·), since any pointwise product with an element in
Gau also vanishes on P̂ . Next we show

Lemma 3. f ∈ Gau implies that Xf |P̂ is T⊥P̂ -valued.

7 The kernel (or ‘null-space’) of a bilinear form f on V is the subspace kernel(f) :=
{X ∈ V | f(X,Y ) = 0, ∀Y ∈ V }.

8 We shall use the symbol 	 to denote the insertion of a vector (standing to the left
of 	) into the first slot of a form (standing to the right of 	). For example, for the
2-form ω, X 	 ω denotes the 1-form ω(X, ·).
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Proof. f |P̂ ≡ 0 ⇒ kernel(df |P̂ ) = kernel((Xf � ω)|P̂ ) ⊇ T P̂ . Hence Xf |P̂ is
T⊥P̂ -valued. �

Now it is easy to see that Gau is also a Lie algebra, since for f, g ∈ Gau we
have

{f, g}|P̂ = Xf (g)|P̂ = Xf � dg|P̂ = Xg � Xf � ω|P̂ = 0 , (84)

where (91) and Lemma 3 was used in the last step. Hence Gau is shown to be
an associative and Lie algebra, hence a Poisson algebra. But note that whereas
it is an associative ideal it is not a Lie ideal. Indeed, for f ∈ Gau and g ∈ F we
have {f, g}|P̂ = Xf (g)|P̂ �= 0 for those g which vary on P̂ in the direction of Xf .

The interpretation of Gau is that its Hamiltonian vector fields generate gauge
transformations, that is, motions which do not correspond to physically existing
degrees of freedom. Two points in P̂ which are on the same connected leaf
of T⊥P̂ correspond to the same physical state. The observables for the system
described by P̂ must therefore Poisson-commute with all functions in Gau. Hence
one might expect the Poisson algebra of physical observables to be given by the
quotient F/Gau. However, since Gau is not a Lie ideal in F the quotient is not
a Lie algebra and hence not a Poisson algebra either. The way to proceed is to
consider the biggest Poisson subalgebra of F which contains Gau as Lie ideal
and then take the quotient. Hence we make the following

Definition 6. The Lie idealiser of Gau ⊂ F is

IGau := {f ∈ F | {f, g}|P̂ = 0, ∀g ∈ Gau} . (85)

IGau is the space of functions which, in Dirac’s terminology [4], are said to weakly
commute with all gauge functions g ∈ Gau; that is, {f, g} is required to vanish
only after restriction to P̂ .

Lemma 4. IGau is a Poisson subalgebra of F which contains Gau as ideal.

Proof. Let f, g ∈ IGau and h ∈ Gau. Then clearly f + g ∈ IGau and also {f ·
g, h}|P̂ = f · {g, h}|P̂ + g · {f, h}|P̂ = 0 (since each term vanishes), hence IGau is
an associative subalgebra. Moreover, using the Jacobi identity, we have

{{f, g}, h}|P̂ = {{h, g}︸ ︷︷ ︸
∈Gau

, f}|P̂ + {{f, h}︸ ︷︷ ︸
∈Gau

, g}|P̂ = 0 , (86)

which establishes that IGau is also a Lie subalgebra. Gau is obviously an asso-
ciative ideal in IGau (since it is such an ideal in F) and, by definition, also a Lie
ideal. Hence it is a Poisson ideal. �

It follows from its very definition that IGau is maximal in the sense that there
is no strictly larger subalgebra in F in which Gau is a Poisson algebra. Now we
can define the algebra of physical observables:
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Definition 7. The Poisson algebra of physical observables is given by

Ophys := IGau/Gau . (87)

Since the restriction to P̂ of a Hamiltonian vector field Xg is tangent to P̂ if
g ∈ Gau (by Lemma 3 and coisotropy), we have

IGau ={f ∈ F | Xg(f)|P̂ = 0,∀g ∈ Gau}
={f ∈ F | Xg|P̂ (f |P̂ ) = 0,∀g ∈ Gau} , (88)

which shows that IGau is the subspace of all functions in F whose restrictions to
P̂ are constant on each connected leaf of the foliation tangent to the integrable
subbundle T⊥P̂ . If the space of leaves is a smooth manifold9 it has a natural
symplectic structure. In this case it is called the reduced phase space (P̄ , ω̄). Ophys

can then be naturally identified with the Poisson algebra of (say C∞-) functions
thereon.

We finally mention that instead of the Lie idealiser IGau we could not have
taken the Lie centraliser

CGau :={f ∈ F | {f, g} = 0, ∀g ∈ Gau}
={f ∈ F | Xg(f) = 0, ∀g ∈ Gau} , (89)

which corresponds to the space of functions which, in Dirac’s terminology [4],
strongly commute with all gauge functions. This space is generally far too small,
as can be seen from the following

Lemma 5. If P̂ is a closed subset of P we have

Span{Xg(p), g ∈ Gau} =

{
T⊥
p P̂ for p ∈ P̂

TpP for p ∈ P − P̂ .
(90)

Proof. For p ∈ P̂ we know from Lemma 3 that Xg(p) ∈ T⊥
p P̂ . Locally we can

always find codim(P̂ ) functions gi ∈ Gau whose differentials dgi (and hence
whose vector fields Xgi

) at p are linearly independent. To see that the Xg(p)
span all of TpP for p �∈ P̂ , we choose a neighbourhood U of p such that U∩P̂ = ∅
(such U exists since P̂ ⊂ P is closed by hypothesis) and β ∈ C∞(P ) such that
β|U ≡ 1 and β|P̂ ≡ 0. Then β · h ∈ Gau for all h ∈ C∞(P ) and (β · h)|U = h|U ,
which shows that Span{Xg(p), g ∈ Gau} = Span{Xg(p), g ∈ C∞(P )} = TpP .

�

This Lemma immediately implies that functions which strongly commute with
all gauge functions must have altogether vanishing directional derivatives outside
9 The ‘space of leaves’ is the quotient space with respect to the equivalence relation

‘lying on the same leaf’. If the leaves are the orbits of a group action (the group of
gauge transformations) then this quotient will be a smooth manifold if the group
action is smooth, proper, and free (cf. Sect. 4.1 of [1]).
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P̂ , that is, they must be constant on any connected set outside P̂ . By continuity
they must be also constant on any connected subset of P̂ . Hence the condition
of strong commutativity is far too restrictive.

Sometimes strong commutativity is required, but only with a somehow pre-
ferred subset φα, α = 1, · · · , codim(P̂ ), of functions in Gau; for example, the
component functions of a momentum map (cf. Sect. 4.2 of [1]) of a group (the
group of gauge transformations) that acts symplectomorphically (i.e. ω-preserv-
ing) on P . The size of the space of functions on P that strongly commute with all
φα will generally depend delicately on the behaviour of the φα off the constraint
surface, and may again turn out to be too small. The point being that even
though the leaves generated by the φα may behave well within the zero-level set
of all φα (the constraint surface), so that sufficiently many invariant (i.e. con-
stant along the leaves) functions exist on the constraint surface, the leaves may
become more ‘wild’ in infinitesimal neighbouring level sets, thereby forbidding
most of these functions to be extended to some invariant functions in a neigh-
bourhood of P̂ in P . See Sect. 3 of [2] for an example and more discussion of this
point.

Appendix 1: Geometry of Hamiltonian Systems

A symplectic manifold is a pair (P, ω), where P is a differentiable manifold and
ω is a closed (i.e. dω = 0) 2-form which is non-degenerate (i.e. ωp(Xp, Yp) =
0, ∀Xp ∈ TpP , implies Yp = 0 for all p ∈ P ). The last condition implies that P
is even dimensional. Let C∞(P ) denote the set of infinitely differentiable, real
valued functions on P and X (P ) the set of infinitely differentiable vector fields
on P . X (P ) is a real Lie algebra (cf. Appendix 2) whose Lie product is the
commutator of vector fields. There is a map X : C∞(P ) → X (P ), f �→ Xf ,
uniquely defined by10

Xf � ω = −df . (91)

The kernel of X in C∞(P ) are the constant functions and the image of X in
X (P ) are called Hamiltonian vector fields. The Lie derivative of ω with respect
to an Hamiltonian vector field is always zero:

LXf
ω = d(Xf � ω) = −ddf = 0 , (92)

where we used the following identity for the Lie derivative LZ with respect to
any vector field Z on forms of any degree:

LZ = d ◦ (Z �) + (Z �) ◦ d . (93)

The map X can be used to turn C∞ into a Lie algebra. The Lie product {·, ·}
on C∞ is called Poisson bracket and defined by

{f, g} := ω(Xf , Xg) = Xf (g) = −Xg(f) , (94)

10 For notation recall footnote 8.
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where the 2nd and 3rd equality follows from (91). With respect to this structure
the map X is a homomorphism of Lie algebras:

X{f,g} � ω = −d{f, g} 94= −d(Xg � Xf � ω)
93,91= −LXg (Xf � ω)
92= [Xf , Xg] � ω .

(95)

One may say that the map X has pulled back the Lie structure from X (P ) to
C∞(P ). Note that (95) also expresses the fact that Hamiltonian vector fields
form a Lie subalgebra of X (P ).

Special symplectic manifolds are the cotangent bundles. Let M be a manifold
and P = T ∗M its cotangent bundle with projection π : T ∗M →M . On P there
exists a naturally given 1-form field (i.e. section of T ∗P = T ∗T ∗M), called the
canonical 1-form (field) θ:

θp := p ◦ π∗|p . (96)

In words, application of θ to Zp ∈ TpP is as follows: project Zp by the differential
π∗, evaluated at p, into TxM , where x = π(p), and then act upon it by p, where
p ∈ π−1(x) = T ∗

xM is understood as 1-form on M . The exterior differential of
the canonical 1-form defines a symplectic structure on P (the minus sign being
conventional):

ω := −dθ . (97)

In canonical (Darboux-) coordinates ({qi} on M and {pi} on the fibres
π−1(x)) one has

θ = pi dq
i and ω = dqi ∧ dpi , (98)

so that

{f, g} =
∑
i

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (99)

In this coordinates the Hamiltonian vector field Xf reads:

Xf = (∂pi
f)∂qi − (∂qif)∂pi

. (100)

It is important to note that Hamiltonian vector fields need not be complete,
that is, their flow need not exist for all flow parameters t ∈ R. For example,
consider P = R

2 in canonical coordinates. The flow map R × P → P is then
given by (t, (q0, p0)) �→ (q(t; q0, p0), p(t; q0, p0)), where the functions on the right
hand side follow through integration of Xf = q̇(t)∂q + ṗ(t)∂p, i.e.

q̇(t) = (∂pf)(q(t), p(t)) and ṗ(t) = −(∂qf)(q(t), p(t)) , (101)

with initial conditions q(0) = q0, p(0) = p0. As simple exercises one readily
solves for the flows of f(q, p) = h(q), f(q, p) = h(p), where h : P → R is some
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C1-function, or for the flow of f(q, p) = qp. All these are complete. But already
for f(q, p) = q2p we obtain

q(t; q0, p0) =
q0

1− q0t
and p(t; q0, p0) = p0 (1− q0t)2 , (102)

which (starting from t = 0) exists only for t < 1/q0 when q0 > 0 and only for
t > 1/q0 when q0 < 0.

Appendix 2: The Lie Algebra of sl(2, R) and the Absence
of Non-trivial, Finite-Dimensional Representations by
Anti-unitary Matrices

Let us first recall the definition of a Lie algebra:

Definition 8. A Lie algebra over F (here standing for R or C) is a vector-space,
L, over F together with a map V × V → V , called Lie bracket and denoted by
[·, ·], such that the following conditions hold for all X,Y, Z ∈ L and a ∈ F:

[X,Y ] = −[Y,X] antisymmetry , (103)
[X,Y + aZ] = [X,Y ] + a[X,Z] linearity , (104)
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 Jacobi identity . (105)

Note that (103) and (104) together imply linearity also in the first entry.
Any associative algebra (with multiplication ‘·’) is automatically a Lie algebra
by defining the Lie bracket to be the commutator [X,Y ] := X ·Y −Y ·X (asso-
ciativity then implies the Jacobi identity). Important examples are Lie algebras
of square matrices, whose associative product is just matrix multiplication.

A sub vector-space L′ ⊆ L is a sub Lie-algebra, iff [X,Y ] ∈ L′ for all X,Y ∈
L′. A sub Lie-algebra is an ideal, iff [X,Y ] ∈ L′ for all X ∈ L′ and all Y ∈ L
(sic!). Two ideals always exist: L itself and {0}; they are called the trivial ideals.
A Lie algebra is called simple, iff it contains only the trivial ideals. A map
φ : L → L′ between Lie algebras is a Lie homomorphism, iff it is linear and
satisfies φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ L. Note that we committed
some abuse of notation by denoting the (different) Lie brackets in L and L′

by the same symbol [·, ·]. The kernel of a Lie homomorphism φ is defined by
kernel(φ) := {X ∈ L | φ(X) = 0} and obviously an ideal in L.

The Lie algebra denoted by sl(2,F) is defined by the vector space of traceless
2× 2 - matrices with entries in F. A basis is given by

H =
(

1 0
0 −1

)
, E+ =

(
0 1
0 0

)
, E− =

(
0 0
1 0

)
. (106)

Its commutation relations are:

[H,E+] = 2E+ , (107)
[H,E−] = −2E− , (108)
[E+, E−] = H . (109)
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The first thing we prove is that sl(2,F) is simple. For this, suppose X =
aE+ + bE− + cH is a member of an ideal I ⊆ sl(2,F). From (107-109) we
calculate

[E+, [E+, X]] = −2bE+ , (110)
[E−, [E−, X]] = −2aE− . (111)

Suppose first b �= 0, then (110) shows that E+ ∈ I. Then (109) implies H ∈ I,
which in turn implies through (108) that E− ∈ I and hence that I = L. Similarly
one concludes for a �= 0 that I = L. Finally assume a = b = 0 and c �= 0 so that
H ∈ I. Then (107) and (108) show that E+ and E− are in I, so again I = L.
Hence we have shown that I = L or I = {0} are the only ideals.

Next consider the Lie algebra u(n) of anti-Hermitean n×n matrices. It is the
Lie algebra of the group U(n) of unitary n × n matrices. If the group SL(2,F)
had a finite-dimensional unitary representation, i.e. if a group homomorphism
D : SL(2,F) → U(n) existed for some n, then we would also have a Lie homo-
morphism D∗ : sl(2,F) → u(n) by simply taking the derivative of the map D
at e (= identity of SL(2,R)). We will now show that, for any integer n ≥ 1,
any Lie homomorphism φ : sl(2,F) → u(n) is necessarily the constant map onto
0 ∈ u(n). In other words, non-trivial Lie homomorphism from sl(2,F) to u(n)
do not exist. On the level of groups this implies that non-trivial (i.e. not map-
ping everything into the identity), finite dimensional, unitary representations of
SL(2,F) do not exist. Note that for F = R and F = C these are (the double
covers of) the proper orthochronous Lorentz groups in 2+1 and 3+1 dimensions
respectively.

To prove this result, assume T : sl(2,F) → u(n) is a Lie homomorphism.
To save notation we write T (H) =: A and T (E±) =: B±. Since T is a Lie
homomorphism we have [A,B+] = 2B+, which implies

trace(B2
+) = 1

2 trace (B+ (AB+ −B+A)) = 0 , (112)

where in the last step we used the cyclic property of the trace. But B+
is anti-Hermitean, hence diagonalisable with purely imaginary eigenvalues
{iλ1, · · · , iλn} with λi ∈ R. The trace on the left side of (112) is then −∑

i λ
2
i ,

which is zero iff λi = 0 for all i, i.e. iff B+ = 0. Hence E+ ∈ kernel(T ), which in
turn implies kernel(T ) = sl(2,F) since the kernel – being an ideal – is either {0}
or all of sl(2,F) by simplicity. This proves the claim, which is stated as Lemma 1
of the main text
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16. Léon van Howe: Sur le problème des relations entre les transformations unitaires
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Lectures on Loop Quantum Gravity

Thomas Thiemann

MPI für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1,
14476 Golm, Germany

Abstract. Quantum General Relativity (QGR), sometimes called Loop Quantum
Gravity, has matured over the past fifteen years to a mathematically rigorous can-
didate quantum field theory of the gravitational field. The features that distinguish it
from other quantum gravity theories are 1) background independence and 2) minimality
of structures.

Background independence means that this is a non-perturbative approach in which
one does not perturb around a given, distinguished, classical background metric, rather
arbitrary fluctuations are allowed, thus precisely encoding the quantum version of Ein-
stein’s radical perception that gravity is geometry.

Minimality here means that one explores the logical consequences of bringing to-
gether the two fundamental principles of modern physics, namely general covariance
and quantum theory, without adding any experimentally unverified additional struc-
tures such as extra dimensions, extra symmetries or extra particle content beyond the
standard model. While this is a very conservative approach and thus maybe not very
attractive to many researchers, it has the advantage that pushing the theory to its
logical frontiers will undoubtedly either result in a successful theory or derive exactly
which extra structures are required, if necessary. Or put even more radically, it may
show which basic principles of physics have to be given up and must be replaced by
more fundamental ones.

QGR therefore is, by definition, not a unified theory of all interactions in the
standard sense, since such a theory would require a new symmetry principle. However,
it unifies all presently known interactions in a new sense by quantum mechanically
implementing their common symmetry group, the four-dimensional diffeomorphism
group, which is almost completely broken in perturbative approaches.

In this contribution we summarize the present status of Canonical Quantum
General Relativity (QGR), also known as “Loop Quantum Gravity”. Our pre-
sentation tries to be precise and at the same time technically not too complicated
by skipping the proofs of all the statements made. These many missing details,
which are relevant to the serious reader, can be found in the notation used in
the recent, close to exhaustive review [1] and references therein. Of course, in
order to be useful as a text for first reading we did not include all the relevant
references here. We apologize for that to the researchers in the field but we hope
that a close to complete list of their work can be found in [1]. Nice reports, treat-
ing complementary subjects of the field and more general aspects of quantum
gravity can be found in [2].

The text is supplemented by numerous exercises of varying degree of diffi-
culty whose purpose is to cut the length of the exposition and to arouse interest

T. Thiemann, Lectures on Loop Quantum Gravity, Lect. Notes Phys. 631, 41–135 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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in further studies. Solving the problems is not at all mandatory for an under-
standing of the material, however, the exercises contain further information and
thus should be looked at even on a first reading.

On the other hand, if one solves the problems then one should get a fairly
good insight into the techniques that are important in QGR and in principle
could serve as a preparation for a diploma thesis or a dissertation in this field. The
problems sometimes involve mathematics that may be unfamiliar to students,
however, this should not scare off but rather encourage the serious reader to
learn the necessary mathematical background material. Here is a small list of
mathematical texts, from the author’s own favourites, geared at theoretical and
mathematical physicists, that might be helpful:

• General
A fairly good encyclopedia is
Y. Choquet-Bruhat, C. DeWitt-Morette, “Analysis, Manifolds and Physics”,
North Holland, Amsterdam, 1989

• General Topology
A nice text, adopting almost no prior knowledge is
J.R. Munkres, “Toplogy: A First Course”, Prentice Hall Inc., Englewood
Cliffs (NJ), 1980

• Differential and Algebraic Geometry
A modern exposition of this classical material can be found in
M. Nakahara, “Geometry, Topology and Physics”, Institute of Physics Pub-
lishing, Bristol, 1998

• Functional Analysis
The number one, unbeatable and close to complete exposition is
M. Reed, B. Simon, “Methods of Modern Mathematical Physics”, vol. 1–4,
Academic Press, New York, 1978
especially volumes one and two.

• Measure Theory
An elementary introduction to measure theory can be found in the beautiful
book
W. Rudin, “Real and Complex Analysis”, McGraw-Hill, New York, 1987

• Operator Algebras
Although we do not really make use of C∗-algebras in this review, we hint
at the importance of the subject, so let us include
O. Bratteli, D.W. Robinson, “Operator Algebras and Quantum Statistical
Mechanics”, vol. 1,2, Springer Verlag, Berlin, 1997

• Harmonic Analysis on Groups
Although a bit old, it still contains a nice collection of the material around
the Peter & Weyl theorem:
N.J. Vilenkin, “Special Functions and the Theory of Group Representa-
tions”, American Mathematical Society, Providence, Rhode Island, 1968

• Mathematical General Relativity
The two leading texts on this subject are
R.M. Wald, “General Relativity”, The University of Chicago Press, Chicago,
1989
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S. Hawking, Ellis, “The Large Scale Structure of Spacetime”, Cambridge
University Press, Cambridge, 1989

• Mathematical and Physical Foundations of Ordinary QFT
The most popular books on axiomatic, algebraic and constructive quantum
field theory are
R.F. Streater, A.S. Wightman, “PCT, Spin and Statistics, and all that”,
Benjamin, New York, 1964
R. Haag, “Local Quantum Physics”, 2nd ed., Springer Verlag, Berlin, 1996
J. Glimm, A. Jaffe, “Quantum Physics”, Springer-Verlag, New York, 1987

In the first part we motivate the particular approach to a quantum theory of
gravity, called (Canonical) Quantum General Relativity, and develop the classical
foundations of the theory as well as the goals of the quantization programme.

In the second part we list the solid results that have been obtained so far
within QGR. Thus, we will apply step by step the quantization programme out-
lined at the end of Sect. 1.3 to the classical theory that we defined in Sect. 1.2.
Up to now, these steps have been completed approximately until step vii) at
least with respect to the Gauss- and the spatial diffeomorphism constraint. The
analysis of the Hamiltonian constraint has also reached level vii) already, how-
ever, its classical limit is presently under little control which is why we discuss
it in part three where current research topics are listed.

In the third part we discuss a selected number of active research areas. The
topics that we will describe already have produced a large number of promising
results, however, the analysis is in most cases not even close to being complete
and therefore the results are less robust than those that we have obtained in the
previous part.

Finally, in the fourth part we summarize and list the most important open
problems that we faced during the discussion in this report.

1 Motivation and Introduction

1.1 Motivation

Why Quantum Gravity in the 21’st Century? Students that plan to get
involved in quantum gravity research should be aware of the fact that in our
days, when financial resources for fundamental research are more and more cut
and/or more and more absorbed by research that leads to practical applications
on short time scales, one should have a good justification for why tax payers
should support any quantum gravity research at all. This seems to be difficult at
first due to the fact that even at CERN’s LHC we will be able to reach energies
of at most 104 GeV which is fifteen orders of magnitude below the Planck
scale which is the energy scale at which quantum gravity is believed to become
important. Therefore one could argue that quantum gravity research in the 21’st
century is of purely academic interest only.

To be sure, it is a shame that one has to justify fundamental research at
all, a situation unheard of in the beginning of the 20’th century which probably
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was part of the reason for why so many breakthroughs especially in fundamental
physics have happened in that time. Fundamental research can work only in
absence of any pressure to produce (mainstream) results, otherwise new, radical
and independent thoughts are no longer produced. To see the time scale on which
fundamental research leads to practical results, one has to be aware that General
Relativity (GR) and Quantum Theory (QT) were discovered in the 20’s and
30’s already but it took some 70 years before quantum mechanics through, e.g.
computers, mobile phones, the internet, electronic devices or general relativity
through e.g. space travel or the global positioning system (GPS) became an
integral part of life of a large fraction of the human population. Where would we
be today if the independent thinkers of those times were forced to do practical
physics due to lack of funding for analyzing their fundamental questions?

Of course, in the beginning of the 20’th century, one could say that physics
had come to some sort of crisis, so that there was urgent need for some revision
of the fundamental concepts: Classical Newtonian mechanics, classical electrody-
namics and thermodynamics were so well understood that Max Planck himself
was advised not to study physics but engineering. However, although from a
practical point of view all seemed well, there were subtle inconsistencies among
these theories if one drove them to their logical frontiers. We mention only three
of them:

1. Although the existence of atoms was by far not widely accepted at the end
of the 19th century (even Max Planck denied them), if they existed then
there was a serious flaw, namely, how should atoms be stable? Accelerated
charges radiate Bremsstrahlung according to Maxwell’s theory, thus an elec-
tron should fall into the nucleus after a finite amount of time.

2. If Newton’s theory of absolute space and time was correct then the speed
of light should depend on the speed of the inertial observer. The fact that
such velocity dependence was ruled out to quadratic order in v/c in the
famous Michelson-Morley experiment was explained by postulating an un-
known medium, called ether, with increasingly (as measurement precision
was refined) bizarre properties in order to conspire to a negative outcome of
the interferometer experiment and to preserve Newton’s notion of space and
time.

3. The precession of mercury around the sun contradicted the ellipses that were
predicted by Newton’s theory of gravitation.

Today we easily resolve these problems by 1) quantum mechanics, 2) special
relativity and 3) general relativity. Quantum mechanics does not allow for con-
tinuous radiation but predicts a discrete energy spectrum of the atom, special
relativity removed the absolute notion of space and time and general relativity
generalizes the static Minkowski metric underlying special relativity to a dynam-
ical theory of a metric field which revolutionizes our understanding of gravity
not as a force but as geometry. Geometry is curved at each point ithiem11n a
manifold proportional to the matter density at that point and in turn curvature
tells matter what are the straightest lines (geodesics) along which to move. The
ether became completely unnecessary by changing the foundation of physics and
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beautifully demonstrates that driving a theory to its logical frontiers can make
extra structures redundant, what one had to change is the basic principles of
physics.1

This historic digression brings us back to the motivation for studying quan-
tum gravity in the beginning of the 21st century. The question is whether fun-
damental physics also today is in a kind of crisis. We will argue that indeed we
are in a situation not dissimilar to that of the beginning of the 20th century: To-
day we have very successful theories of all interactions. Gravitation is described
by general relativity, matter interactions by the standard model of elementary
particle physics. As classical theories, their dynamics is summarized in the classi-
cal Einstein equations. However, there are several problems with these theories,
some of which we list below:

i) Classical-Quantum Inconsistency
The fundamental principles collide in the classical Einstein equations

Rµν − 1
2 R gµν︸ ︷︷ ︸

Geometry (GR, gen. covariance)

= κ Tµν(g)︸ ︷︷ ︸
Matter (Stand.model, QT)

These equations relate matter density in form of the energy momentum
tensor Tµν and geometry in form of the Ricci curvature tensor Rµν . Notice
that the metric tensor gµν enters also the definition of the energy momentum
tensor. However, while the left hand side is described until today only by a
classical theory, the right hand side is governed by a quantum field theory
(QFT). Since complex valued functions and operators on a Hilbert space are
two completely different mathematical objects, the only way to make sense
out of the above equations while keeping the classical and quantum nature of
geometry and matter respectively is to take expectation values of the right
hand side, that is,

Rµν − 1
2Rgµν = κ < T̂µν(g0) >, κ =

8πGNewton

c4

Here g0 is an arbitrary background metric, say the Minkowski metric η =
diag(−1, 1, 1, 1). However, even if the state with respect to which the ex-
pectation value is taken is the vacuum state ψg0 with respect to g0 (the
notion of vacuum depends on the background metric itself, see below), the
right hand side is generically non-vanishing due to the vacuum fluctuations,
enforcing g = g1 �= g0. Hence, in order to make this system of equations
consistent, one could iterate the procedure by computing the vacuum state
ψg1 and reinserting g1 into T̂µν(.), resulting in g2 �= g1 etc. hoping that the
procedure converges. However, this is generically not the case and results in
“run-away solutions” [3].

1 Notice, that the stability of atoms is still not satisfactorily understood even today
because the full problem also treats the radiation field, the nucleus and the electron
as quantum objects which ultimately results in a problem in QED, QFD and QCD
for which we have no entirely satisfactory description today, see below.
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Hence, we are enforced to quantize the metric itself, that is, we need a
quantum theory of gravity resulting in the

R̂µν − 1
2 ĝµν R̂ = κ T̂µν(ĝ)

”Quantum-Einstein-Equations”
(1)

The inverted commas in this equation are to indicate that this equation is
to be made rigorous in a Hilbert space context. QGR is designed to exactly
do that, see Sect. 3.1.

ii) General Relativity Inconsistencies
It is well-known that classical general relativity is an incomplete theory be-
cause it predicts the existence of so-called spacetime singularities, regions in
spacetime where the curvature or equivalently the matter density becomes
infinite [4]. The most prominent singularities of this kind are black hole and
big bang singularities and such singularities are generic as shown in the sin-
gularity theorems due to Hawking and Penrose. When a singularity appears
it means that the theory has been pushed beyond its domain of validity, cer-
tainly when matter collapses it reaches a state of extreme energy density at
which quantum effects become important. A quantum theory of gravity could
be able to avoid these singularities in a similar way as quantum mechanics
explains the stability of atoms. We will see that QGR is able to achieve
this, at least in the simplified context of “Loop Quantum Cosmology”, see
Sect. 3.2.

iii) Quantum Field Theory Inconsistencies
As is well-known, QFT is plagued by UV (or short distance) divergences. The
fundamental operators of the theory are actually not operators but rather
operator-valued distributions and usually interesting objects of the theory
are (integrals of) polynomials of those evaluated in the same point. However,
the product of distributions is, generally, ill-defined. The appearance of these
divergences is therefore, on the one hand, not surprising, on the other hand
it indicates again that the theory is incomplete: In a complete theory there is
no room for infinities. Thus, either the appropriate mathematical framework
has not been found yet, or they arise because one neglected the interaction
with the gravitational field. In fact, in renormalizable theories one can deal
with these infinities by renormalization, that is, one introduces a short dis-
tance cut-off (e.g. by point splitting the operator-valued distributions) and
then redefines masses and coupling constants of the theory in a cut-off de-
pendent way such that they stay finite as the cut-off is sent to zero. This
redefinition is done in the framework of perturbation theory (Feynman dia-
grammes) by subtracting counter terms from the original Lagrangean which
are formally infinite and a theory is said to be renormalizable if the number
of algebraically different such counter terms is finite.
The occurrence of UV singularities is in deep conflict with general relativity
due to the following reason: In perturbation theory, the divergences have
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p k                             p

Fig. 1. One loop correction to the electron propagator in QED

their origin in Feynman loop integrals in momentum space where the in-
ner loop 4-momentum k = (E,P ) can become arbitrarily large, see Fig. 1
for an example from QED (mass renormalization). Now such virtual (off-
shell) particles with energy E and momentum P have a spatial extension
of the order of the Compton radius λ = �/P and a mass of the order of
E/c2. Classical general relativity predicts that this lump of energy turns
into a black hole once λ reaches the Schwarzschild radius of the order of
r = GE/c4. In a Lorentz frame where E ≈ Pc this occurs at the Planck
energy E = EP =

√
�/κc ≈ 1019 GeV or at the Planck length Compton

radius �P =
√

�κ ≈ 10−33 cm. However, when a (virtual) particle turns into
a black hole it completely changes its properties. For instance, if the virtual
particle is an electron then it is able to interact only electroweakly and thus
can radiate only particles of the electrowak theory. However, once a black
hole has formed, also Hawking processes are possible and now any kind of
particles can be emitted, but at a different production rate. Of course, this
is again an energy regime at which quantum gravity must be important and
these qualitative pictures must be fundamentally wrong, however, they show
that there is a problem with integrating virtual loops into the UV regime.
In fact, these qualitative thoughts suggest that gravity could serve as a nat-
ural cut-off because a black hole of Planck length �P should decay within a
Planck time unit tP = �P/c ≈ 10−43 s so that one has to integrate P only
until EP/c. Moreover, it indicates that spacetime geometry itself acquires
possibly a discrete structure since arguments of this kind make it plausible
that it is impossible to resolve spacetime distances smaller than �P, basically
because the spacetime behind an event horizon is in some sense “invisible”.
These are, of course, only hopes and must be demonstrated within a concrete
theory. We will see that QGR is able to precisely do that and its fundamen-
tal discreteness is in particular responsible for why the Bekenstein Hawking
entropy of black holes is finite, see Sects. 2.2, 3.1 and 3.4.

So we see that there is indeed a fundamental inconsistency within the current
description of fundamental physics comparable to the time before the discovery
of GR and QT and its resolution, Quantum Gravity, will revolutionize not only
our understanding of nature but will also drive new kinds of technology that we
do not even dare to dream of today.
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supp(f )

supp(f')

Fig. 2. Spacelike separated regions in Minkowski space

The Role of Background Independence. Given the fact that both QT
and GR were discovered already more than 70 years ago and that people have
certainly thought about quantizing GR since then and that matter interactions
are more or less successfully described by ordinary quantum field theories (QFT),
it is somewhat surprising that we do not yet have a quantum gravity theory. Why
is it so much harder to combine gravity with the principles of quantum mechanics
than for the other interactions? The short answer is that

Ordinary QFT only incorporates Special Relativity.

To see why, we just have to remember that ordinary QFT has an axiomatic
definition, here for a scalar field for simplicity:
WIGHTMAN AXIOMS (Scalar Fields on Minkowski Space)

W1 Poincaré Group P:
∃ continuous, unitary representation Û of P on a Hilbert space H.

W2 Forward Lightcone Spektral Condition:
For the generators P̂µ of the translation subgroup of P holds ηµνP̂

µP̂ ν ≤
0, P̂ 0 ≥ 0.

W3 Existence and Uniqueness of a P-invariant Vacuum Ω:
Û(p)Ω = Ω ∀p ∈ P.

W4 P-Covariance:

φ̂(f) :=
∫

dD+1xf(x)φ̂(x), f ∈ S(RD+1)

φ̂(f1)..φ̂(fn)Ω dense in H and Û(p)φ̂(f)Û(p)−1 = φ̂(f ◦ p).
W5 Locality (Causality):

If supp(f), supp(f ′) spacelike separated (see Fig. 2), then [φ̂(f), φ̂(f ′)] = 0.

It is obvious that due to the presence of the Minkowski background metric η we
have available a large amount of structure which forms the fundament on which
ordinary QFT is built. Roughly, we have the following scheme:
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ηµν
b.-metric

P
symm.-group

Ĥ = P̂ 0

Ham.-operator

(x− y)2 = 0
lightcone

commutation
relations

Ω
ground state

Notice that a generic background metric has no symmetry group at all so that it
is not straightforward to generalize these axioms to QFT on general curved back-
grounds, however, since any metric is pointwise diffeomorphic to the Minkowski
metric, a local generalization is possible and results in the so-called microlocal
analysis in which the role of vacuum states is played by Hadamard states, see
e.g. [5].

The fundamental, radically new feature of Einstein’s theory is that there
is no background metric at all: The theory is background independent.
The lightcones themselves are fluctuating, causality and locality become
empty notions. The dome of ordinary QFT completely collapses.

Of course, there must be a regime in any quantum gravity theory where the
quantum fluctuations of the metric operator are so tiny that we recover the well
established theory of free ordinary quantum fields on a given background metric,
however, the large fluctuations of the metric operator can no longer be ignored
in extreme astrophysical or cosmological situations, such as near a black hole or
big bang singularity.

People have tried to rescue the framework of ordinary QFT by splitting the
metric into a background piece and a fluctuation piece

gµν = ηµν + hµν

↑ ↑ ↑
full metric background (Minkowski) perturbation (graviton)

(2)

which results in a Lagrangean for the graviton field hµν and could in principle
be the definition of a graviton QFT on Minkowski space. However, there are
serious drawbacks:

i) Non-renormalizability
The resulting theory is perturbatively non-renormalizable [6] as could have
been expected from the fact that the coupling constant of the theory, the
Planck area �2P, has negative mass dimension (in Planck units). Even the su-
persymmetric extension of the theory, in any possible dimension has this bad
feature [7]. It could be that the theory is non-perturbatively renormalizable,
meaning that it has a non-Gaussian fix point in the language of Wilson, a
possibility that has recently regained interest [8].
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ii) Violation of Background Independence
The split of the metric performed above again distinguishes the Minkowski
metric among all others and reintroduces therefore a background depen-
dence. This violates the key feature of Einstein’s theory and thus somehow
does not sound correct, we better keep background independence if we want
to understand how quantum mechanics can possibly work together with gen-
eral covariance.

iii) Violation of Diffeomorphism Covariance
The split of the metric performed above is certainly not diffeomorphism
covariant, it breaks the diffeomorphism group down to Poincaré group. Vio-
lation of fundamental, local gauge symmetries is usually considered as a bad
feature in Yang-Mills theories on which all the other interactions are based,
thus already from this point of view perturbation theory looks dangerous. As
a side remark we see that background dependence and violation of general
covariance are synonymous.

iv) Gravitons and Geometry
Somehow the whole idea of the gravitational interaction as a result of gravi-
ton exchange on a background metric contradicts Einstein’s original and fun-
damental idea that gravity is geometry and not a force in the usual sense.
Therefore such a perturbative description of the theory is very unnatural
from the outset and can have at most a semi-classical meaning when the
metric fluctuations are very tiny.

v) Gravitons and Dynamics
All that classical general relativity is about is how a metric evolves in time
in an interplay with the matter present. It is clear that an initially (almost)
Minkowskian metric can evolve to something that is far from Minkowskian
at other times, an example being cosmological big bang situations or the
collapse of initially diluted matter (evolved backwards). In such situations
the assumption being made in (2), namely that h is “small” as compared
to η is just not dynamically stable. In some sense it is like trying to use
Cartesian coordinates for a sphere which can work at most locally.

All these points just naturally ask for a non-perturbative approach to quantum
gravity. This, in turn, could also cure another unpleasant feature about ordinary
QFT: Today we do not have a single example of a rigorously defined interacting
ordinary QFT in four dimensions, in other words, the renormalizable theories
that we have are only defined order by order in perturbation theory but the
perturbation series diverges. A non-perturbative definition, to which we seem
to be forced when coupling gravity anyway, might change this unsatisfactory
situation.

It should be noted here that there is in fact a consistent perturbative descrip-
tion of a candidate quantum gravity theory, called string theory (or M-Theory
nowadays) [9].2 However, in order to achieve this celebrated rather non-trivial
result, expectedly one must introduce extra structure: The theory lives in 10
2 String theory is an ordinary QFT but not in the usual sense: It is an ordinary scalar

QFT on a 2d Minkowski space, however, the scalar fields themselves are coordinates
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(or 11) rather than 4 dimensions, it is necessarily supersymmetric and it has
an infinite number of extra particles besides those that are needed to make the
theory compatible with the standard model. Moreover, at least as presently un-
derstood, again the fundamental new ingredient of Einstein’s theory, background
independence, is violated in string theory. This current background dependence
of string theory is supposed to be overcome once M-Theory has been rigorously
defined.

At present only string theory has a chance to explain the matter content
of our universe. The unification of symmetries is a strong guiding principle in
physics as well and has been pushed also by Einstein in his programme of ge-
ometrization of physics attempting to unify electromagnetism and gravity in
a five-dimensional Kaluza–Klein theory. The unification of the electromagnetic
and the weak force in the electroweak theory is a prime example for the success
of such ideas. However, unification of forces is an additional principle completely
independent of background independence and is not necessarily what a quantum
theory of gravity must achieve: Unification of forces can be analyzed at the purely
classical level3. Thus, the only question is whether the theory can be quantized
before unification or not (should unification of geometry and matter be realized
in nature at all).

We are therefore again in a situation, similar to that before the discovery
of special relativity, where we have the choice between a) preserving an old
principle, here renormalizability of perturbative QFT on background spacetimes
(M,η), at the price of introducing extra structure (extra unification symmetry),
or b) replacing the old principle by a new principle, here non-perturbative QFT
on a differentiable manifold M , without new hypothetical structure. At this
point it unclear which methodology has more chances for success, historically
there is evidence for either of them (e.g. the unification of electromagnetism and
the massive Fermi model is evidence for the former, the replacement of Newton’s
notion of spacetime by special relativity is evidence for the latter) and it is quite
possible that we actually need both ideas. In QGR we take the latter point
of view to begin with since there maybe zillions of ways to unify forces and
it is hard to judge whether there is a “natural one”, therefore the approach is

of the ambient target Minkowski space which in this case is 10 dimensional. Thus, it is
similar to a first quantized theory of point particles. The theory is renormalizable and
presumably even finite order by order in perturbation theory but the perturbation
series does not converge.

3 In fact, e.g. the unified electroweak SU(2)L × U(1) theory with its massless gauge
bosons can be perfectly described by a classical Lagrangean. The symmetry broken,
massive U(1) theory can be derived from it, also classically, by introducing a constant
background Higgs field (Higgs mechanism) and expanding the symmetric Lagrangean
around it. It is true that the search for a massless, symmetric theory was inspired
by the fact that a theory with massive gauge bosons is not renormalizable (so the
motivation comes from quantum theory) and, given the non-renormalizability of
general relativity, many take this as an indication that one must unify gravity with
matter, one incarnation of which is string theory. However, the argument obviously
fails should it be possible to quantize gravity non-perturbatively.
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Fig. 3. QFT on Background Spacetime (M, g0): Actor = Matter; Stage = Geometry
+ Manifold M

purposely conservative because we actually may be able to derive a natural way of
unification, if necessary, if we drive the theory to its logical frontiers. Among the
various non-perturbative approaches available we will choose the canonical one.

Pictorially, one could illustrate the deep difference between a background
dependent QFT and background independent QFT as follows: In Fig. 3 we see
matter in the form of QCD (notice the quark (Q) propagators, the quark-gluon
vertices and the three- and four point gluon (G) vertices) displayed as an actor
in green. Matter propagates on a fixed background spacetime g0 according to
well-defined rules, particles know exactly what timelike geodesics are etc. This
fixed background spacetime g0 is displayed as a firm stage in blue. This is the
situation of a QFT on a Background Spacetime.

In contrast, in Fig. 4 the stage has evaporated, it has become itself an actor
(notice the arbitrarily high valent graviton (g) vertices) displayed in blue as well.
Both matter and geometry are now dynamical entities and interact as displayed
by the red vertex. There are no light cones any longer, rather the causal structure
is a semiclassical concept only. This is the situation of a QFT on a Differential
Manifold and this is precisely what QGR aims to rigorously define.

It is clear from these figures that the passage from a QFT on a background
spacetime to a QFT on a differential manifold is a very radical one: It is like
removing the chair on which you sit and trying to find a new, yet unknown,
mechanism that keeps you from falling down. We should mention here that for
many researchers in quantum gravity even that picture is not yet radical enough,
some proposals require not only to get rid of the background metric g0 but also of
the differential manifold, allowing for topology change. This is also very desired
in QGR but considered as a second step. In 3d QGR also this step could be
completed and the final picture is completely combinatorial.
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Fig. 4. QGR on Differential Manifold M : Actor = Matter + Geometry; Stage = Man-
ifold M

Let us finish this section by stating once more what we mean by Quantum
General Relativity (QGR).

Definition:
(Canonical) Quantum General Relativity (QGR) is an attempt to con-
struct a mathematically rigorous, non-perturbative, background inde-
pendent Quantum Field Theory of four-dimensional, Lorentzian General
Relativity and all known matter in the continuum.
No additional, experimentally unverified structures are introduced. The
fundamental principles of General Covariance and Quantum Theory are
brought together and driven to their logical frontiers guided by mathe-
matical consistency.
QGR is not a unified theory of all interactions in the standard sense since
unification of gauge symmetry groups is not necessarily required in a non-
perturbative approach. However, Geometry and Matter are unified in a
non-standard sense by making them both transform covariantly under
the Diffeomorphism Group at the quantum level.

1.2 Introduction: Classical Canonical Formulation
of General Relativity

In this section we sketch the classical Hamiltonian formulation of general rela-
tivity in terms of Ashtekar’s new variables. There are many ways to arrive at
this new formulation and we will choose the one that is the most convenient one
for our purposes.
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The Hamiltonian formulation by definition requires some kind of split of the
spacetime variables into time and spatial variables. This seems to contradict
the whole idea of general covariance, however, quantum mechanics as presently
formulated requires a notion of time because we interpret expectation values of
operators as instantaneous measurement values averaged over a large number
of measurements. In order to avoid this one has to “covariantize” the interpre-
tation of quantum mechanics, in particular the measurement process, see e.g.
[10] for a discussion. There are a number of proposals to make the canonical
formulation more covariant, e.g.4: Multisymplectic Ansätze [13] in which there
are multimomenta, one for each spacetime dimension, rather than just one for
the time coordinate; Covariant phase space formulations [14] where one works
on the space of solutions to the field equations rather than on the initial value
instantaneous phase space; Peierl’s bracket formulations [15] which covariantize
the notion of the usual Poisson bracket; history bracket formulations [16], which
grew out of the consistent history formulation of quantum mechanics [17], and
which extends the usual spatial Poisson bracket to spacetime.

At the classical level all these formulations are equivalent. However, at the
quantum level, one presently gets farthest within the the standard canonical
formulation: The quantization of the multisymplectic approach is still in its
beginning, see [18] for the most advanced results in this respect; The covariant
phase space formulation is not only very implicit because one usually does not
know the space of solutions to the classical field equations, but even if one
manages to base a quantum theory on it, it will be too close to the classical theory
since certainly the singularities of the classical theory are also built into the
quantum theory; The Peierl’s bracket also needs the explicit space of solutions
to the classical field equations; Also the quantization of the history bracket
formulation just has started, see [19] for first steps in that direction.

Given this present status of affairs, we will therefore proceed with the stan-
dard canonical quantization and see how far we get. Notice that there is no
obvious problem with general covariance: For instance, standard Maxwell the-
ory can be quantized canonically without any problem and one can show that
the theory is Lorentz covariant although the spacetime split into space and time
seems to break the Lorentz group down to the rotation group. This is not at all
the case! It is just that Lorentz covariance is not manifest, one has to do some
work in order to establish Lorentz covariance. Indeed, as we will see, at least at
the classical level we will explicitly recover the four-dimensional diffeomorphism

4 Path integrals [11] use the Lagrangean rather than the Hamiltonian and therefore
seem to be better suited to a covariant formulation than the canonical one, however,
usually the path integral is interpreted as some sort of propagator which makes
use of instantaneous time Hilbert spaces again which therefore cannot be completely
discarded with. At present, this connection with the canonical formulation is not very
transparent, part of the reason being that the path integral is usually only defined in
its Euclidean formulation, however the very notion of analytic continuation in time
is not very meaningful in a theory where there is no distinguished choice of time, see
however [12] for recent progress in this direction.
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group in the formalism, although it is admittedly deeply hidden in the canonical
formalism.

With these cautionary remarks out of the way, we will thus assume that
the four dimensional spacetime manifold has the topology R × σ, where σ is a
three dimensional manifold of arbitrary topology, in order to perform the 3 + 1
split. This assumption about the topology of M may seem rather restrictive,
however, it is not due to the following reasons: (1) According to a theorem due
to Geroch any globally hyperbolic manifold (roughly those that admit a smooth
metric with everywhere Lorentzian signature) is necessarily of that topology.
Since Lorentzian metrics are what we are interested in, at least classically, the
assumption about the topology of M is forced on us. (2) Any four manifold M
has the topology of a countable disjoint union ∪αIα × σα where either Iα are
open intervals and σα is a three manifold or Iα is a one point set and σα is
a two manifold (the latter are the intersections of the closures of the former).
In this most generic situation we thus allow topology change between different
three manifolds and it is even classically an open question how to make this
compatible with the action principle. We take here a practical point of view and
try to understand the quantum theory first for a single copy of the form R× σ
and later on worry how we glue the theories for different σ′s together.

The ADM Formulation. In this nice situation the 3 + 1 split is well known
as the Arnowitt–Deser–Misner (ADM) formulation of general relativity, see e.g.
[4] and we briefly sketch how this works. Since M is diffeomorphic to R× σ we
know that M foliates into hypersurfaces Σt, t ∈ R as in Fig. 5, where t labels
the hypersurface and will play the role of our time coordinate. If we denote the
four dimensional coordinates by Xµ, µ = 0, 1, 2, 3 and the three dimensional
coordinates by xa, a = 1, 2, 3 then we know that there is a diffeomorphism
ϕ : R × σ → M ; (t, x) �→ X = ϕ(t, x) where Σt = ϕ(t, σ). We stress that
the four diffeomorphism ϕ is completely arbitrary until this point and thus the

M

Σ_1
Σ_2

Σ_3

Fig. 5. Foliation of M
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foliation of M is not at all fixed. In fact, when varying the diffeomorphism ϕ
we obtain all possible foliations and the parametrization in terms of σ of each
leaf Σt of the foliation can vary smoothly with ϕ. Consider the tangential vector
fields to Σt given by

Sa(X) := (∂a)ϕ(t,x)=X = (ϕµ,a(t, x))ϕ(t,x)=X ∂µ (3)

Denoting the four metric by gµν we define a normal vector field nµ(X) by
gµνn

µSνa = 0, gµνn
µnν = −1. Thus, while the tangential vector fields depend

only on the foliation, the normal vector field depends also on the metric. Let us
introduce the foliation vector field

T (X) := (∂t)ϕ(t,x)=X = (ϕµ,t(t, x))ϕ(t,x)=X ∂µ (4)

and let us decompose it into the basis n, Sa. This results in

T = Nn + UaSa (5)

where N is called the lapse function while UaSa is called the shift vector field.
The arbitrariness of the foliation is expressed in the arbitrariness of the fields
N,Ua. We can now introduce two symmetric spacetime tensor fields (∇ is the
unique, torsion free covariant differential compatible with gµν)

qµν = gµν + nµnν , Kµν = qµρqνσ∇ρnσ (6)

called the intrinsic metric and the extrinsic curvature respectively which are
spatial, that is, their contraction with n vanishes. Thus, their full informa-
tion is contained in their components with respect to the spatial fields Sa, e.g.
qab(t, x) = [qµνSµaS

ν
b ](X(t, x)). In particular,

Kab(t, x) =
1

2N
[q̇ab − LUqab] (7)

contains information about the velocity of qab. Here L the Lie derivative. The
metric gµν is completely specified in terms of qab, N, Ua as one easily sees by
expressing the line element ds2 = gµνdX

µ dXν in terms of dt, dxa.

Exercise 1.
Recall the definition of the Lie derivative and verify that Kµν is indeed symmetric and
that formula (7) holds.
Hint: A hypersurface Σt can be defined by the solution of an equation of the form
τ(X) = t. Conclude that nµ ∝ ∇µτ and use torsion-freeness of ∇.

The Legendre transformation of the Einstein-Hilbert action

S =
1
κ

∫
M

d4X
√
|det(g)|R(4) (8)

with qab, N, Ua considered as configuration coordinates in an infinite dimensional
phase space is standard and we will not repeat the analysis here, which uses the
so - called Gauss - Codazzi equations.
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Here we are considering for simplicity only the case that σ is compact without
boundary, otherwise (8) would contain boundary terms. The end result is

S =
1
κ

∫
R

dt

∫
σ

d3x{q̇abP ab + ṄP + ṄaPa − [λP + λaPa + UaVa + NC]} , (9)

where

P ab =
κδS

δqab
=

√
det(q)[qacqbd − qabqcd]Kcd (10)

and P, Pa are the momenta conjugate to qab, N, Ua respectively. Thus, we have
for instance the equal time Poisson brackets

{P ab(t, x), P cd(t, y)} = {qab(t, x), qcd(t, y)} = 0
{P ab(t, x), qcd(t, y)} = κδa(cδ

b
d)δ(x, y) (11)

where (.)(ab) := [(.)ab + (.)ba]/2 denotes symmetrization. The functions C, Va
which depend only on qab, P

ab are called the Hamiltonian and Spatial Diffeomor-
phism constraint respectively for reasons that will become obvious in a moment.
Their explicit form is given by

Va = −2qacDbP
bc

C =
1√

det(q)
[qacqbd − 1

2
qabqcd]P abP cd −

√
det(q)R (12)

where D is the unique, torsion-free covariant differential compatible with qab and
R is the curvature scalar associated with qab.

The reason for the occurrence of the Lagrange multipliers λ, λa is that the
Lagrangean (8) is singular, that is, one cannot solve all the velocities in terms
of momenta and therefore one must use Dirac’s procedure [20] for the Legendre
transform of singular Lagrangeans. In this case the singularity structure is such
that the momenta conjugate to N,Ua vanish identically, whence the Lagrange
multipliers which when varied give the equations of motion P = Pa = 0. The
equations of motion with respect to the Hamiltonian (i.e. Ḟ := {H,F} for any
functional F of the canonical coordinates)

H =
∫

d3x[λP + λaPa + UaVa + NC] (13)

for N,Ua reveal that N,Ua are themselves Lagrange multipliers, i.e. completely
unspecified functions (proportional to λ, λa) while the equations of motion for
P, Pa give Ṗ = −C, Ṗa = −Va. Since P, Pa are supposed to vanish, this requires
C = Va = 0 as well. Thus we see that the Hamiltonian is constrained to vanish
in GR! We will see that this is a direct consequence of the four dimensional
diffeomorphism invariance of the theory.

Now the equations of motion for qab, P
ab imply the so-called Dirac (or hy-

persurface deformation) algebra

{V (U), V (U ′)} = κV (LUU ′)
{V (U), C(N)} = κC(LUN)
{C(N), C(N ′)} = κV (q−1(NdN ′ −N ′dN)) , (14)
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where e.g. C(N) =
∫
d3xNC. These equations tell us that the condition H =

Va = 0 is preserved under evolution, in other words, the evolution is consistent!
This is a non-trivial result. One says, the Hamiltonian and vector constraint form
a first class constraint algebra. This algebra is much more complicated than the
more familiar Kac-Moody algebras due to the fact that it is not an (infinite)
dimensional Lie algebra in the true sense of the word because the “structure
constants” on the right hand side of the last line in (14) are not really constants,
they depend on the phase space. Such algebras are open in the the terminology
of BRST [21] and about their representation theory only very little is known.

Exercise 2.
Derive (14) from (11).
Hint: Show first that the Poisson bracket between local functions which contain spatial
derivatives is simply the spatial derivatives applied to the Poisson bracket. Since the
Poisson bracket of local functions is distributional recall that derivatives of distributions
are defined through an integration by parts.

Since the variables P, Pa drop out completely from the analysis and N,Ua

are Lagrange multipliers, we may replace (9) by

S =
1
κ

∫
R

dt

∫
σ

d3x{q̇abP ab − [UaVa + NH]} (15)

with the understanding that N,Ua are now completely arbitrary functions which
parameterize the freedom in choosing the foliation. Since the Hamiltonian of
GR depends on the completely unspecified functions N,Ua, the motions that
it generates in the phase space M coordinatized by (P ab, qab) subject to the
Poisson brackets (11) are to be considered as pure gauge transformations. The
infinitesimal flow (or motion) of the canonical coordinates generated by the
corresponding Hamiltonian vector fields on M has the following form for an
arbitrary tensor tab built from qab, P

ab

{V (U), tab}EOM = κ(LU tab)
{C(N), tab}EOM = κ(LNntab) , (16)

where the subscript EOM means that these relations hold for generic functions
on M only when the vacuum equations of motion (EOM) R

(4)
µν −R(4)gµν/2 = 0

hold. Equation (16) reveals that Diff(M) is implemented also in the canonical
formalism, however, in a rather non-trivial way: The gauge motions generated
by the constraints can be interpreted as four-dimensional diffeomorphisms only
when the EOM hold. This was to be expected because a diffeomorphism orthogo-
nal to the hypersurface means evolution in the time parameter, what is surprising
though is that this evolution is considered as a gauge transformation in GR. Off
the solutions, the constraints generate different motions, in other words, the set
of gauge symmetries is not Diff(M) everywhere in the phase space. This is not
unexpected: The action (8)narray is obviously Diff(M) invariant, but so would be
any action that is an integral over a four-dimensional scalar density of weight one
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M

Fig. 6. Constraint submanifold M and gauge orbit [m] of m ∈ M in M

formed from polynomials in the curvature tensor and its covariant derivatives.
This symmetry is completely insensitive to the specific Lagrangean in question, it
is kinematical. The dynamics generated by a specific Lagrangean must depend
on that Lagrangean, otherwise all Lagrangeans underlying four dimensionally
diffeomorphism invariant actions would equal each other up to a diffeomorphism
which is certainly not the case (consider for instance higher derivative theories).
In particular, that dynamics is, a priori, completely independent of Diff(M). As
a consequence, Dirac observables, that is, functions on M which are gauge in-
variant (have vanishing Poisson brackets with the constraints), are not simply
functionals of the four metric invariant under four diffeomorphisms because they
must depend on the Lagrangean. The set of these dynamics dependent gauge
transformations does not obviously form a group as has been investigated by
Bergmann and Komar [22]. The geometrical origin of the hypersurface defor-
mation algebra has been investigated in [23]. Torre and Anderson have shown
that for compact σ there are no Dirac observables which depend on only a finite
number of spatial derivatives of the canonical coordinates [24] which means that
Dirac observables will be highly non-trivial to construct.

Let us summarize the gauge theory of GR in Fig. 6: The constraints C =
Va = 0 define a constraint submanifold M within the full phase space M. The
gauge motions are defined on all of M but they have the feature that they
leave the constraint submanifold invariant, and thus the orbit of a point m in
the submanifold under gauge transformations will be a curve or gauge orbit [m]
entirely within it. The set of these curves defines the so-called reduced phase
space and Dirac observables restricted to M depend only on these orbits. Notice
that as far as the counting is concerned we have twelve phase space coordinates
qab, P

ab to begin with. The four constraints C, Va can be solved to eliminate four
of those and there are still identifications under four independent sets of motions
among the remaining eight variables leaving us with only four Dirac observables.
The corresponding so-called reduced phase space has therefore precisely the two
configuration degrees of freedom of general relativity.
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Gauge Theory Formulation. We can now easily introduce the shift from the
ADM variables qab, P

ab to the connection variables introduced first by Ashtekar
[25] and later somewhat generalized by Immirzi [26] and Barbero [27]. We in-
troduce su(2) indices i, j, k, .. = 1, 2, 3 and co-triad variables eja with inverse eaj
whose relation with qab is given by

qab := δjke
j
ae
k
b (17)

Defining the spin connection Γ ja through the equation

∂ae
j
b − Γ cabe

j
c + εjklΓ

k
a e

l
b = 0 , (18)

where Γ cab are the Christoffel symbols associated with qab we now define

Aja = Γ ja + βKabe
b
j , Ea

j =
√

det(q)eaj /β , (19)

where β ∈ C−{0} is called the Immirzi parameter. In this article we only consider
real valued and positive β. Finally we introduce the SU(2) Gauss constraint

Gj := ∂aE
a
j + εjklA

k
aE

b
l (20)

with εjkl the structure constants of su(2) which we would encounter in the
canonical formulation of any SU(2) gauge theory. As one can check, modulo
Gj = 0 one can then write C, Va in terms of A,E as follows

Va = F j
abE

b
j ,

C =
F j
abεjklE

a
jE

b
l√|det(E)| + More , (21)

where F = 2(dA + A ∧ A) is the curvature of A and “More” is an additional
term which is more complicated but can be treated by similar methods as the
one displayed.

We then have the following theorem [25].

Theorem 2.
Consider the phase space M coordinatized by (Aja, E

b
j ) with Poisson brackets

{Ea
j (x), Eb

k(y)} = {Aja(x), Akb (y)} = 0, {Ea
j (x), Akb (y)} = κδab δ

k
j δ(x, y) (22)

and constraints Gj , C, Va. Then, solving only the constraint Gj = 0 and deter-
mining the Dirac observables with respect to it leads us back to the ADM phase
space with constraints C, Va.

The proof of the theorem is non-trivial and tedious and can be found in the
notation used here in [1]. Alternatively one can find directions for a proof
in the subsequent exercise. In particular, this works only because the Gauss
constraint is in involution with itself and the other constraints, specifically
{G,G} ∝ G, {G,V } = {G,H} = 0.
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Exercise 3.
i) Prove theorem 2.

Hint: Express qab, P ab in terms of Aja, Eaj by using (17), (18), (19), and (20) and
check that the Poisson brackets, with respect to (22), among the solutions qab =
sab[A,E], P ab = Sab[A,E] equal precisely (11) modulo terms proportional to Gj .

ii) Define G(Λ) :=
∫
σ
d3xΛjGj , D(U) :=

∫
σ
Ua[Va−AjaGj ], and [Λ,Λ′]j = εjklΛ

k(Λ′)l.
Verify the following Poisson brackets

{G(Λ), G(Λ′)} = κG([Λ,Λ′])

{G(Λ), V (U)} = 0

{D(U), D(U ′)} = κD([U,U ′]) (23)

and conclude that the Hamiltonian vector fields of G(Λ) and D(U) respectively
generate SU(2) gauge transformations and spatial diffeomorphisms of σ respec-
tively.
Hint: Show first that

{G(Λ/κ), Aja(x)} = −Λj,a + εjklΛ
kAla

{D(U/κ), Aja(x)} = UbAja,b + Ub,aA
j
b (24)

to conclude that A transforms as a connection under infinitesimal gauge trans-
formations and as a one-form under infinitesimal diffeomorphisms. Consider then
gt(x) := exp(tΛjτj/(2κ)) and ϕt(x) := cU,x(t) where t �→ cU,x(t) is the unique
integral curve of U through x, that is, ċU,x(t) = U(cU,x(t)), cU,x(0) = x. Recall
that the usual transformation behaviour of connections and one-forms under finite
gauge transformations and diffeomorphisms respectively is given by (e.g. [28])

Ag = −dgg−1 + Adg(A)

Aϕ = ϕ∗A , (25)

where A = Ajadx
aτj/2, Adg(.) = g(.)g−1 denotes the adjoint representation of

SU(2) on su(2) and ϕ∗ denotes the pull-back map of p-forms and iτj are the Pauli
matrices so that τjτk = −δjk12 + εjklτl. Verify then that (24) is the derivative at
t = 0 of (25) with g := gt, ϕ := ϕt. Similarly, derive that E transforms as an
su(2)-valued vector field of density weight one. (Recall that a tensor field t of some
type is said to be of density weight r ∈ R if t

√| det(s)|−r is an ordinary tensor
field of the same type where sab is any non-degenerate symmetric tensor field).

From the point of view of the classical theory we have made things more com-
plicated: Instead of twelve variables q, P we now have eighteen A,E. However,
the additional six phase-space dimensions (per spacepoint) are removed by the
first class Gauss constraint which shows that working on our gauge theory phase
space is equivalent to working on the ADM phase space. The virtue of this ex-
tended phase space is that canonical GR can be formulated in the language of
a canonical gauge theory where A plays the role of an SU(2) connection with
canonically conjugate electric field E. Besides the remark that this fact could
be the starting point for a possible gauge group unification of all four forces we
now have access to a huge arsenal of techniques that have been developed for
the canonical quantization of gauge theories. It is precisely this fact that has
enabled steady progress in this field in the last fifteen years while one was stuck
with the ADM formulation for almost thirty years.



62 Thomas Thiemann

1.3 Canonical Quantization Programme
for Theories with Constraints

Refined Algebraic Quantization (RAQ). As we have seen, GR can be
formulated as a constrained Hamiltonian system with first class constraints. The
quantization of such systems has been considered first by Dirac [20] and was later
refined by a number of authors. It is now known under the name refined algebraic
quantization (RAQ). We will briefly sketch the main ideas following [29].

i) Phase Space and Constraints
The starting point is a phase space (M, {., .}) together with a set of first
class constraints CI and possibly a Hamiltonian H.

ii) Choice of Polarization
In order to quantize the phase space we must choose a polarization, that
is, a Lagrangean submanifold C of M which is called configuration space.
The coordinates of C have vanishing Poisson brackets among themselves. If
M is a cotangent bundle, that is, M = T ∗Q then it is natural to choose
Q = C and we will assume this to be the case in what follows. For more
general cases, e.g. compact phases spaces one needs ideas from geometrical
quantization, see e.g. [30]. The idea is that (generalized, see below) points of
C serve as arguments of the vectors of the Hilbert space to be constructed.

iii) Preferred Kinematical Poisson Subalgebra
Consider the space C∞(C) of smooth functions on C and the space V ∞(C) of
smooth vector fields on C. The vertical polarization of M, that is, the space
of fibre coordinates called momentum space, generates preferred elements of
V ∞(C) through (vp[f ])(q) := ({p, f})(q) where we have denoted configura-
tion and momentum coordinates by q, p respectively and v[f ] denotes the
action of a vector field on a function. The pair C∞(C)× V∞(C) forms a Lie
algebra defined by [(f, v), (f ′, v′)] = (v[f ′]−v′[f ], [v, v′]) of which the algebra
B generated by elements of the form (f, vp) forms a subalgebra. We assume
that B is closed under complex conjugation which becomes its ∗-operation
(involution).

iv) Representation Theory of the Corresponding Abstract ∗-Algebra
We are looking for all irreducible ∗-representations π : B → L(Hkin) of B as
linear operators on a kinematical Hilbert spaceHkin such that the ∗-relations
becomes the operator adjoint and such that the canonical commutation re-
lations are implemented, that is, for all a, b ∈ B

π(a)† = π(a∗)
[π(a), π(b)] = i�π([a, b]) . (26)

Strictly speaking, (26) is to be supplemented by the domains on which the
operators are defined. In order to avoid this one will work with the subalge-
bra of C∞(C) formed by bounded functions, say of compact support and one
will deal with exponentiated vector fields in order to obtain bounded oper-
ators. Irreducibility is a physically meaningful requirement because we are
not interested in Hilbert spaces with superselection sectors and the reason
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for why we do not require the full Poisson algebra to be faithfully repre-
sented is that this is almost always impossible in irreducible representations
as stated in the famous Groenewald–van Hove theorem (compare Giulini’s
contribution to this volume). The Hilbert space that one gets can usually
be described in the form L2(C, dµ) where C is a distributional extension of C
and µ is a probability measure thereon. A well-known example is the case of
free scalar fields on Minkowski space where C is some space of smooth scalar
fields on R

3 vanishing at spatial infinity while C is the space of tempered
distributions on R

3 and µ is a normalized Gaussian measure on C.
v) Selection of Suitable Kinematical Representations

Certainly we want a representation which supports also the constraints
and the Hamiltonian as operators which usually will limit the number of
available representations to a small number, if possible at all. The con-
straints usually are not in B unless linear in momentum and the expressions
ĈI := π(CI), Ĥ = π(H) will involve factor ordering ambiguities as well as
regularization and renormalization processes in the case of field theories. In
the generic case, ĈI , Ĥ will not be bounded and ĈI will not be symmetric.
We will require that Ĥ is symmetric and that the constraints are at least
closable, that is, they are densely defined together with their adjoints. It is
then usually not too difficult to find a dense domain Dkin ⊂ Hkin on which
all these operators and their adjoints are defined and which they leave in-
variant. Typically Dkin will be a space of smooth functions of rapid decrease
so that arbitrary derivatives and polynomials of the configuration variables
are defined on them and such spaces naturally come with their own topology
which is finer than the subspace topology induced from Hkin whence we have
a topological inclusion Dkin ↪→ Hkin.

vi) Imposition of the Constraints
The two step process in the classical theory of solving the constraints CI = 0
and looking for the gauge orbits is replaced by a one step process in the quan-
tum theory, namely looking for solutions l of the equations ĈI l = 0. This is
because it obviously solves the constraint at the quantum level (in the cor-
responding representation on the solution space the constraints are replaced
by the zero operator) and it simultaneously looks for states that are gauge
invariant because ĈI is the quantum generator of gauge transformations.
Now, unless the point {0} is in the common point spectrum of all the ĈI ,
solutions l to the equations ĈI l = 0 ∀ I do not lie in Hkin, rather they are
distributions. Here one has several options, one could look for solutions in the
space D′

kin of continuous linear functionals on Dkin (topological dual) or in
the space D∗

kin of linear functionals on Dkin with the topology of pointwise
convergence (algebraic dual). Since certainly Hkin ⊂ D′

kin ⊂ D∗
kin let us

choose the latter option for the sake of more generality. The topology on
Hkin is finer than the subspace topology induced from D∗

kin so that we obtain
a Gel’fand triple or Rigged Hilbert Space

Dkin ↪→ Hkin ↪→ D∗
kin . (27)
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This a slight abuse of terminology since the name is usually reserved for the
case that Dkin carries a nuclear topology (generated by a countable family
of seminorms separating the points) and that D∗

kin is its topological dual.
We are now looking for a subspace D∗

phys ⊂ D∗
kin such that for its elements

l holds

[Ĉ ′
I l](f) := l(Ĉ†

If) = 0 ∀ f ∈ Dkin, ∀I . (28)

The prime on the left hand side of this equation defines a dual, anti-linear
representation of the constraints on D∗

kin. The reason for the adjoint on the
right hand side of this equation is that if l would be an element of Hkin then
(28) would be replaced by

[Ĉ ′
I l](f) :=< ĈI l, f >kin=< l, Ĉ†

If >kin=: l(Ĉ†
If) ∀ f ∈ Dkin, ∀I , (29)

where < ., . >kin denotes the kinematical inner product, so that (28) is the
natural extension of (29) from Hkin to D∗

kin.
vii) Anomalies

Since we have a first class constraint algebra, we know that classically
{CI , CJ} = fIJ

KCK for some structure functions fIJ
K which depend in

general on the phase space point m ∈ M. The translation of this equation
into quantum theory is then plagued with ordering ambiguities, because the
structure functions turn into operators as well. It may therefore happen that,
e.g.

[ĈI , ĈJ ] = i�ĈK f̂IJ
K = i�{[ĈK , f̂IJ

K ] + f̂IJ
KĈK} (30)

and it follows that any l ∈ D∗
phys also solves the equation ([ĈK , f̂IJ

K ])′l = 0
for all I, J . If that commutator is not itself a constraint again, then it follows
that l solves more than only the equations Ĉ ′

I l = 0 and thus the quantum
theory has less physical degrees of freedom than the classical theory. This
situation, called an anomaly, must be avoided by all means.

viii) Dirac Observables and Physical Inner Product
Since generically Hkin ∩ D∗

phys = ∅, the space D∗
phys cannot be equipped

with the scalar product < ., . >kin. It is here where Dirac observables come
into play. A strong Dirac observable is an operator Ô on Hkin which is, to-
gether with its adjoint, densely defined on Dkin and which commutes with
all constraints, that is, [Ô, ĈI ] = 0 for all I. We require that Ô is the quan-
tization of a real valued function O on the phase space and the condition
just stated is the quantum version of the classical gauge invariance condition
{O,CI} = 0 for all I. A weak Dirac observable is the quantum version of the
more general condition {O,CI}|CJ

= 0∀J = 0 ∀I and simply means that the
space of solutions is left invariant by the natural dual action of the operator
Ô′D∗

phys ⊂ D∗
phys (compare Giulini’s contribution to this volume).

A physical inner product on a subset Hphys ⊂ D∗
phys is a positive definite

sesquilinear form < ., . >phys with respect to which the Ô′ become self-
adjoint operators, that is, Ô′ = (Ô′)� where the adjoint on Hphys is denoted
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by �. Notice that [Ô′
1, Ô

′
2] = ([Ô1, Ô2])′ so that commutation relations on

Hkin are automatically transferred to Hphys which then carries a proper ∗-
representation of the physical observables. The observables themselves will
only be defined on a dense domain Dphys ⊂ Hphys and we get a second
Gel’fand triple

Dphys ↪→ Hphys ↪→ D∗
phys. (31)

In fortunate cases, for instance when the ĈI are mutually commuting self-
adjoint operators on Hkin, all we have said is just a fancy way of stating the
fact that Hkin has a direct integral decomposition

Hkin =
∫ ⊕

S

dν(λ)Hλ (32)

over the spectrum S of the constraint algebra with a measure ν and eigen-
spaces Hλ which are left invariant by the strong observables and therefore
Hphys = H0. In the more general cases that are of concern to us, more work
is required.

ix) Classical Limit
It is by no means granted that the representation Hphys that one finally
arrived at carries semiclassical states, that is states ψ[m] labelled by gauge
equivalence classes [m] of points m ∈ M with respect to which the Dirac
observables have the correct expectation values and with respect to which
their relative fluctuations are small, that is, roughly speaking

∣∣∣∣∣
< ψ[m], Ô

′ψ[m] >phys

O(m)
− 1

∣∣∣∣∣� 1 and

∣∣∣∣∣
< ψ[m], (Ô′)2ψ[m] >phys

(< ψ[m], Ô′ψ[m] >phys)2
− 1

∣∣∣∣∣� 1.

(33)

Only when such a phase exists are we sure that we have not constructed some
completely spurious sector of the quantum theory which does not admit the
correct classical limit.

Selected Examples with First Class Constraints. In the case that a theory
has only first class constraints, Dirac’s algorithm [20] boils down to the following
four steps:

1. Define the momentum pa conjugate to the configuration variable qa by (Leg-
endre transform)

pa := ∂S/∂q̇a , (34)

where S is the action.
2. Equation (34) defines pa as a function of qa, q̇a and if it is not invertible to

define the q̇a as a function of qa, pa we get a collection of so-called primary
constraints CI , that is, identities among the qa, pa. In this situation one says
that S or the Lagrangean is singular.
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3. Using that qa, pa have canonical Poisson brackets, compute all possible Pois-
son brackets CIJ := {CI , CJ}. If some CI0J0 is not zero when all CK vanish,
then add this CI0J0 , called a secondary constraint, to the set of primary
constraints.

4. Iterate 3) until the CI are in involution, that is, no new secondary constraints
appear.

In this report we will only deal with theories which have no second class
constraints, so this algorithm is all we need.

Exercise 4.
Perform the quantization programme for a couple of simple systems in order to get a
feeling for the formalism:

1. Momentum Constraint
M = T ∗

R
2 with standard Poisson brackets among qa, pa; a = 1, 2 and constraint

C := p1. Choose Hkin = L2(R2, d2x), Dkin = S(R2), D∗
kin = S ′(R2) (spaces of

functions of rapid decrease and tempered distributions respectively).
Solution: Dirac observables are the conjugate pair q2, p2, Hphys = L2(R, dx2).
Hint: Work in the momentum representation and conclude that the general solution
is of the form lf (p1, p2) = δ(p1)f(p2) for f ∈ S ′(R).

2. Angular Momentum Constraint
M = T ∗

R
3 with standard Poisson brackets among qa, pa; a = 1, 2, 3 and con-

straints Ca := εabcx
bpc. Check the first class property and choose the kinematical

spaces as above with R
2 replaced by R

3.
Solution: Dirac observables are the conjugate pair r :=

√
δabqaqb ≥ 0, pr =

δabq
apb/r, the physical phase space is T ∗

R+ and Hphys = L2(R+, r
2dr) where r̂ is

a multiplication operator and p̂r = i� 1
r
d
dr
r with dense domain of symmetry given

by the square integrable functions f such that f is regular at r = 0.
Hint: Introduce polar coordinates and decompose kinematical wave functions into
spherical harmonics. Conclude that the physical Hilbert space this time is just the
restriction of the kinematical Hilbert space to the zero angular momentum sub-
space, that is, Hphys ⊂ Hkin. The reason is of course that the spectrum of the Ĉa
is pure point (discrete).

3. Relativistic Particle
Consider the Lagrangean L = −m√−ηµν q̇µq̇ν where m is a mass parameter, η is
the Minkowski metric and µ = 0, 1, .., D. Verify that the Lagrangean is singular,
that is, the velocities q̇µ cannot be expressed in terms of the momenta pµ =
∂L/∂q̇µ which gives rise to the mass shell constraint C = m2 + ηµνpµpν . Verify
that this happens because the corresponding action is invariant under Diff(R),
that is, reparameterizations t �→ ϕ(t), ϕ̇(t) > 0. Perform the Dirac analysis for
constraints and conclude that the system has no Hamiltonian, just the Hamiltonian
constraint C which generates reparameterizations on the kinematical phase space
M = T ∗

R
D+1 with standard Poisson brackets. Now choose kinematical spaces as

in 1. with R
2 replaced by R

D+1.
Solution: Conjugate Dirac observables are

Qa = qa − q0pa√
m2 + δabpapb

(35)
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and

Hphys = L2(RD, dDp) (36)

on which q̂0 = 0.
Hint: Work in the momentum representation and conclude that the general so-
lution to the constraints is of the form lf = δ(C)f(p0,p). Now notice that the
δ-distribution can be written as a sum of two δ-distribution corresponding to the
positive and negative mass shell and choose f to have support in the former.
This example has features rather close to those of general relativity.

4. Maxwell Theory
Consider the action for free Maxwell-theory on Minkowski space and perform the
Legendre transform. Conclude that there is a first class constraint C = ∂aE

a

(Gauss constraint) with Lagrange multiplier A0 and a Hamiltonian

H =
1
2

∫

R3
d3x(EaEb +BaBb) , (37)

where Ea = Ȧa − ∂aA0 is the electric field and Ba = εabc∂bAc the magnetic one.
Verify that the Gauss constraint generates U(1) gauge transformations A �→ A−df
while Ea is gauge invariant. Choose Hkin to be the standard Fock space for three
massless, free scalar fields Aa and as Dkin, D∗

kin the finite linear span of n-particle
states and its algebraic dual respectively.
Solution: Conjugate Dirac observables are the transversal parts of A,E respec-
tively, e.g. Ea⊥ = Ea − ∂a

1
∆
∂bE

b where ∆ is the Laplacian on R
3. The physical

Hilbert space is the standard Fock space for two free, massless scalar fields corre-
sponding to these transversal degrees of freedom.
Hint: Fourier transform the fields and compute the standard annihilation and
creation operators ẑa(k), ẑ†

a(k) with canonical commutation relations. Express
the Gauss constraint operator in terms of them and conclude that the gauge
invariant part satisfies ẑa(k)ka = 0. Introduce ẑI(k) = ẑa(k)eaI (k) where
e1(k), e2(k), e3(k) := k/||k|| form an oriented orthonormal basis. Conclude that
physical states are states without longitudinal excitations and build the Fock space
generated by the ẑ†

1(k), ẑ†
2(k) from the kinematical vacuum state.

2 Mathematical and Physical Foundations
of Quantum General Relativity

2.1 Mathematical Foundations

Polarization and Preferred Poisson Algebra B. The first two steps of
the quantization programme were already completed in Sect. 1.2: The phase
space M is coordinatized by canonically conjugate pairs (Aja, E

a
j ) where A is

an SU(2) connection over σ while E is a su(2)-valued vector density of weight
one over σ and the Poisson brackets were displayed in (22). Strictly speaking,
since M is an infinite dimensional space, one must supply M with a manifold
structure modelled on some Banach space but we will skip these functional
analytic niceties here, see [1] for further information. Also we must specify the
principal fibre bundle of which A is the pull-back by local sections of a globally
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defined connection, and we must specify the vector bundle associated to that
principal bundle under the adjoint representation of which E is the pull-back by
local sections. Again, in order not to dive too deeply into fibre bundle theoretic
subtleties, we will assume that the principal fibre bundle is trivial so that A,E
are actually globally defined. In fact, for the case of G = SU(2) and dim(σ) = 3
one can show that the fibre bundle is necessarily trivial but for the generalization
to the generic case we again refer the reader to [1].

With these remarks out of the way we may begin by defining a polarization.
The fact that GR has been casted into the language of a gauge theory suggests
the choice C = A, the space of smooth SU(2) connections over σ.

The next question then is how to choose the space C∞(A). Since we are
dealing with a field theory, it is not clear a priori what smooth or even differen-
tiable means. In order to give precise meaning to this, one really has to equip
A with a manifold structure modelled on a Banach space. This is because one
usually says that a function F : A → C is differentiable at A0 ∈ A provided
that there exists a bounded linear functional DFA0 : TA0(A) → C such that
F [A0 + δA] − F [A0] − DFA0 · δA vanishes “faster than linearly” for arbitrary
tangent vectors δA ∈ TA0(A) at A0. (The proper way of saying this is using the
natural Banach norm on T (A).) Of course, in physicist’s notation the differential
DFA0 = (δF/δA)(A0) is nothing else than the functional derivative. Using this
definition it is clear that polynomials in Aja(x) are not differentiable because
their functional derivative is proportional to a δ-distribution as it is clear from
(22). Thus we see that the smooth functions of A have to involve some kind of
smearing of A with test functions, which is generic in field theories.

Now this smearing should be done in a judicious way. The function F [A] :=∫
σ
d3xF a

j (x)Aja(x) for some smooth test function F a
j of compact support is cer-

tainly smooth in the above sense, its functional derivative being equal to F j
a

(which is a bounded operator if F is e.g. an L2 function on σ and the norm
on the tangent spaces is an L2 norm). However, this function does not trans-
form nicely under SU(2) gauge transformations which will make it very hard to
construct SU(2) invariant functions from them. Here it helps to look up how
physicists have dealt with this problem in ordinary canonical quantum Yang-
Mills gauge theories and they found the following, more or less unique solution
[31]: Given a curve c : [0, 1] → σ in σ and a point A ∈ A we define the holon-
omy or parallel transport A(c) := hc,A(1) ∈ SU(2) as the unique solution to the
following ordinary differential equation for functions hc,A : [0, 1] → SU(2)

dhc,A(t)
dt

= hc,A(t)Aja(c(t))
τj
2
ċa(t) , hc,A(0) = 12 . (38)

Exercise 5.
Verify that (38) is equivalent with

A(c) = P · exp
(∫

c

A

)
= 12 +

∞∑
n=1

∫ t

0
dt1

∫ 1

t1

dt2 . . .

∫ 1

tn−1

A(t1)..A(tn) , (39)
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where P denotes the path ordering symbol which orders the curve parameters from
left to right according to their value beginning with the smallest one and A(t) :=
Aja(c(t))ċa(t)τj/2.

With this definition it is not difficult to verify the following transformation
behaviour of A(c) under gauge transformations and spatial diffeomorphisms re-
spectively (recall (25)):

Ag(c) = g(b(c))A(c)g(f(c))−1 and Aϕ(c) = A(ϕ−1(c)) (40)

where b(c), f(c) denote the beginning and final point of a curve respectively.
Thus, the behaviour under gauge transformations is extremely simple which
makes it easy to construct gauge invariant functions, for instance the Wilson
loop functions Tr(A(c)) where c is a closed curve, that is, a loop. This is the
reason why QGR is also denoted as Loop Quantum Gravity. That holonomies
also transform very naturally under spatial diffeomorphisms as depicted in the
second equation of (40) has the following mathematical origin: A connection is
in particular a one-form, therefore it is naturally integrated (smeared) over one-
dimensional submanifolds of σ. Here natural means without using a background
metric. Now the holonomy is not really the exponential of

∫
c
A but almost as

shown in (39). Thus, holonomies are precisely in accordance with our wish to
construct a background independent quantum field theory. Moreover, the simple
transformation behaviour under diffeomorphisms again makes it simple to con-
struct spatially diffeomorphism invariant functions of holonomies: These will be
functions only labelled by diffeomorphism invariance classes of loops, but these
are nothing else than knot classes. Thus QGR has an obvious link with topo-
logical quantum field theory (TQFT) [32] which makes it especially attractive
and was one of the major motivations for Jacobson, Rovelli and Smolin to con-
sider Wilson loop functions for canonical quantum gravity [33]. Finally one can
show [34] that the holonomies separate the points of A, i.e. they encode all the
information that is contained in a connection.

The fact that the holonomy smears A only one-dimensionally is nice due to
the above reasons but it is also alarming because its functional derivative is cer-
tainly distributional and thus does not exist in an a priori mathematical sense.
However, in order to obtain a well-defined Poisson algebra it is not necessary to
have smooth functions of A, it is only sufficient. The key idea idea is that if we
smear also the electric fields E then we might get a non-distributional Poisson
algebra. By inspection from (22) it is clear that E has to be smeared in at least
two dimensions in order to achieve this. Now again background independence
comes to our help: Let εabc be the totally skew, background independent tensor
density of weight −1, that is, εabc = δ1

[aδ
2
b δ

3
c] where [..] denotes total antisym-

metrization. Then (∗E)jab := Ej
ab := Ec

j εabc is a 2-form of density weight 0.
Therefore E is naturally smeared in two dimensions. Notice that the smearing
dimensions of momenta and configuration variables add up to the dimension of
σ, they are dual to each other which is a generic phenomenon for any canonical



70 Thomas Thiemann

theory in any dimension. We are therefore led to consider the electric fluxes

Ej(S) =
∫
S

∗Ej , (41)

where S is a two-dimensional, open surface. It is easy to check that E(S) :=
Ej(S)τj has the following transformation behaviour

Eg(S) =
∫
S

Adg(∗E) and Eϕ(S) = E(ϕ−1(S)). (42)

Thus, while the transformation under spatial diffeomorphisms is again simple,
the one under gauge transformations is not. However, the idea is that the Ej(S)
are the basic building blocks for more complicated functions of E which are
already gauge invariant. The prototype of such a function is the area functional
for a parameterized surface XS : D → σ, D ⊂ R

2

Ar(S) :=
∫
D

d2u
√

det(X∗
Sq). (43)

Exercise 6.
Define nSa := εabcX

b
S,u1X

c
S,u2 and verify that (43) coincides with

Ar(S) := β

∫

D

d2u
√

(Eaj nSa )(Ebjn
S
b ) , (44)

where β is the Immirzi parameter.

It is clear that Ej(S) =
∫
D

d2uEa
j n

S
a so that the area functional can be written

as the limit of a Riemann sum, over small surfaces that partition S, of functions
of the electric fluxes for those small surfaces.

Let us see whether the Poisson bracket between an electric flux and a holon-
omy is well-defined. Actually, let us be slightly more general and introduce the
following notion: Let us loosely think for the moment of a graph γ as a collec-
tion of a finite number of smooth, compactly supported, oriented curves, called
edges e, which intersect at most in their end points, which are called vertices v.
We denote by E(γ), V (γ) the edge and vertex set of γ respectively. A precise
definition will be given in Sect. 2.1.

Definition 9.
Given a graph γ we define

pγ : A → SU(2)|E(γ)|; A �→ (A(e))e∈E(γ). (45)

A function f : A → C is said to be cylindrical over a graph γ, if there exists a
function fγ : SU(2)|E(γ)| → C such that f = fγ ◦ pγ . We denote by Cylnγ , n =
0, 1, ..,∞ the set of n-times continuously differentiable cylindrical functions over
γ and by Cyln the set functions which are cylindrical over some γ with the same
differentiability type. Here we say that f = fγ ◦ pγ ∈ Cylnγ if and only if fγ
is n-times continuously differentiable with respect to the standard differential
structure on SU(2)|E(γ)|.
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S

n^S

e_in

e_out

e_trans, σ=−1

e_trans, σ=+1

Fig. 7. Intersection structure of surfaces with edges

Our Poisson Algebra will be based on the set of functions Cyl∞ which certainly
form an Abelean Poisson subalgebra. Our next task will be to compute the
Poisson bracket between a flux and an element of Cyl∞. In order to compute
this we will use the chain rule (f ∈ Cyl∞γ )

{Ej(S), f}(A) =
∑

e∈E(γ)

[
∂fγ({he′}e′∈E(γ))

∂(he)AB
{Ej(S), (he)AB}]|he′=A(e′) (46)

so that the bracket will be well-defined once the bracket between a holonomy
and a flux is well-defined. To compute this the intersection structure of e with
S is somewhat important. In order to simplify the notation, we notice that we
can always take γ to be adapted to S, that is, every edge e belongs to one of the
following three types:

a) e ∈ Eout(γ) ⇔ e ∩ S = ∅.
b) e ∈ Ein(γ) ⇔ e ∩ S = e.
c) e ∈ Etrans(γ) ⇔ e ∩ S = b(e).

This can be achieved by subdividing edges into a finite number of segments and
inverting their orientation if necessary as depicted in Fig. 7 (strictly speaking,
this is true only if S is compactly supported, open, oriented and analytic). We
also need to introduce the function σ(S, e) which vanishes for e ∈ Ein(γ)∪Eout(γ)
and which is ±1 for e ∈ Etrans(γ) if the orientations of S and e agree or disagree
respectively. The easiest case is e ∈ Etrans(γ), σ(S, e) = 1. We find

{Ej(S), A(e)} = κ

∫
D

d2u nSa (u)
∫ 1

0
dsėa(s)δ(XS(u), e(s))A(es)

τj
2
A(es)−1A(e)

(47)
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where es(t) := e(st). Noticing that the support of the δ-distribution is at XS(u) =
e(0) which is an interior point of S but a boundary point of e, a careful analysis
reveals that (47) reduces to

{Ej(S), A(e)} =
κ

4
τjA(e). (48)

With this result, (46) can be written in the compact form

{Ej(S), f}(A) =
κ

4

∑
e∈E(γ)

σ(S, e)[Rjefγ ]|he′=A(e′) (49)

where we have defined the right invariant vector fields

(Rjefγ)({he′}e′∈E(γ)}) := (
d

dt
)t=0fγ({he′}e′ 	=e, etτjhe). (50)

We can now define the vector fields vjS on Cyl∞ by vjS [f ] := {Ej(S), f} and
arrive at the Poisson ∗-algebra B generated by the vjS , f ∈ Cyl∞ with involution
defined by complex conjugation through the general formula [(f, v), (f ′, v′)] =
(v[f ′]− v′[f ], [v, v′]).

Exercise 7.
Fill the gaps between Eqs.(46) and (49).
Hint: Use formula 39 in order to derive (47), then expand XS(u) − e(t) around u = u0

defined by XS(u0) = e(0) and t = 0 to linear order in u−u0 and sufficiently high order
in t to arrive at (48). (Notice that e is only transversal, so ė(0) may be tangential to S
in e(0)!) Verify that the end result coincides with (49).

So we see that we arrive at a well defined algebra B by smearing the momenta
in two dimensions. Could we also smear them in three dimensions? The answer
is negative: Consider a one-parameter family of surfaces t �→ St and define
Ej({S}) :=

∫
dt Ej(St). Then f �→ {Ej(S), f} maps f out of Cyl∞ because it

involves an integral over t and thus depends on an uncountably infinite number
of edges rather than a finite number. Thus this algebra would not be closed so
that if we would like to stick with at least countably infinite graphs then we are
forced to stick with two dimensional smearings of the electric fluxes!

Representation Theory of B and Suitable Kinematical Representa-
tions. The representation Theory of B has been considered only rather recently
[35] and the analysis is not yet complete. However, if one sticks to irreducible rep-
resentations for which 1) the flux operators are well-defined and self-adjoint (in
other words, the corresponding one parameter unitary groups are weakly con-
tinuous) and 2) the representation is spatially diffeomorphism invariant, then
the unique solution to the representation problem is the representation which
we describe in this section.
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This representation is of the form H0 = L2(A, dµ0) where A is a certain
distributional extension of A and µ0 is a probability measure thereon. The most
elegant description of this Hilbert space uses the theory of C∗-algebras [36] but
fortunately there is a purely geometric description available [37] which is easier
to access for the beginner. In what follows we assume for simplicity that σ is
an oriented, connected, simply connected smooth manifold. One can show that
each smooth manifold admits at least one analytic structure (i.e. the atlas of
charts consists of real analytic maps) and we assume to have picked one once
and for all.

Curves, Paths, Graphs, and Groupoids.

Definition 10.

i) By a curve c we mean a map c : [0, 1] → σ which is piecewise analytic,
continuous, oriented and an embedding (does not come arbitrarily close to
itself). It is automatically compactly supported. The set of curves is denoted
C in what follows.

ii) On C we define maps ◦, (.)−1 called composition and inversion respectively
by

[c1 ◦ c2](t) =

{
c1(2t) for t ∈ [0, 1

2 ]
c2(2t− 1) for t ∈ [ 12 , 1]

(51)

if f(c1) = b(c2) and

c−1(t) = c(1− 2t). (52)

iii) By a path p we mean an equivalence class of curves c which differ from each
other by a finite number of reparameterizations and retracings, that is, c ∼ c′

if there either exists a map t �→ f(t), ḟ(t) > 0 with c = c′◦f or we may write
c, c′ as compositions of segments in the form c = s1 ◦s2, c′ = s1 ◦s3 ◦s−1

3 ◦s2
(and finite combinations of such moves). Notice that a curve induces its
orientation and its end points on its corresponding path. The set of paths is
denoted by P.

iv) By a graph γ we mean a finite collection of elements of P. We may break
paths into pieces such that γ can be thought of as a collection of edges
e ∈ E(γ), that is, paths which have an entire analytic representative and
which intersect at most in their end points v ∈ V (γ) called vertices. The set
of graphs is denoted by Γ .

These objects are depicted in Fig. 8.
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Fig. 8. Paths and graphs

Exercise 8.

a) Despite the name, composition and inversion does not equip C with a group struc-
ture for many reasons. Verify that composition is not associative and that the
curve c ◦ c−1 is not simply b(c) but rather a retracing. Moreover, contemplate that
C does not have a unit and that not every two elements can be composed.

b) Define composition and inversion of paths by taking the equivalence class of the
compositions and inversions of any of their representatives and check that this
definition is well defined. Check that then composition of paths is associative and
that p ◦ p−1 = b(p). However, P still does not have a unit and still not every two
elements can be composed.

c) Let Obj:= σ and for each x, y ∈ σ let Mor(x, y) := {p ∈ P : b(p) = x, f(p) = y}.
Recall the mathematical definition of a category and conclude that P is a category
in which every morphism is invertible, that is, a groupoid.

d) Define the relation ≺ on Γ by saying that γ ≺ γ′ if and only if every e ∈ E(γ) is
a finite composition of the e′ ∈ E(γ′) and their inverses. Verify that ≺ equips Γ
with the structure of a directed set, that is, for each γ, γ′ ∈ Γ we find γ′′ ∈ Γ such
that γ, γ′ ≺ γ′′.
Hint: For this to work, analyticity of the curve representatives is crucial. Smooth
curves can intersect in Cantor sets and thus define graphs which are no longer
finitely generated. Show first that this is not possible for analytic curves.

e) Given a curve c with path equivalence class p; notice that for the holonomy with
respect to A ∈ A holds A(c) = A(p). Contemplate that, in particular, every group
is a groupoid and that every connection A ∈ A qualifies as a groupoid homomor-
phism, that is, A : P → SU(2); p �→ A(p) with

A(p ◦ p′) = A(p)A(p′) and A(p−1) = (A(p))−1 . (53)

The fact that holonomies are really defined on paths rather than curves and that
holonomies are characterized algebraically by 53 makes the following definition
rather natural.

Definition 11.
The quantum configuration space is defined as the set A := Hom(P, SU(2)) of
all algebraic, arbitrarily non-continuous groupoid morphisms.

Here non-continuous means that in contrast to A ∈ A for an element A ∈ A it is
possible that A(p) = 1 varies discontinuously as we vary p continuously. Thus,
A can be thought of as a distributional extension of A.
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Topology on A. So far A is just a set. We now equip it with a topology. The
idea is actually quite simple. Recall the maps (45) which easily extend from A
to A and maps A into SU(2)|E(γ)|. Now SU(2)|E(γ)| is a compact Hausdorff
topological group5 in its natural manifold topology and we would like to exploit
that. Thus we are motivated to consider the spaces Xγ := Hom(γ, SU(2)|E(γ)|)
where γ is considered as a subgroupoid of Γ with objects V (γ) and morphisms
generated by the e ∈ E(γ). The map

Xγ → SU(2)|E(γ)|; xγ �→ {xγ(e)}e∈E(γ) (54)

identifies Xγ with G|E(γ)| since xγ ∈ Xγ is already defined by which values it
takes on the e ∈ E(γ) and we may thus use this identification in order to equip
Xγ with a compact Hausdorff topology. Now consider the uncountably infinite
product

X∞ :=
∏
γ∈Γ

Xγ (55)

A standard result from general topology, Tychonov’s theorem, tells us that the
smallest topology on X∞ such that all the maps pγ : X∞ → Xγ ; (xγ)γ∈Γ �→ xγ
are continuous is a compact Hausdorff topology6. Now we would like to identify
A with X∞ through the restriction map

Φ′ : A → X∞; A �→ (xγ := A|γ = pγ(A))γ∈Γ (56)

However, that map cannot be surjective because the points of A satisfy the
following constraint which encodes the algebraic properties of a generalized con-
nection: Let γ ≺ γ′ and define the graph restriction maps

pγ′γ : Xγ′ → Xγ ; xγ′ �→ (xγ′)|γ (57)

which satisfy the compatibility condition

pγ′′γ = pγ′γ ◦ pγ′′γ′ for γ ≺ γ′ ≺ γ′′ (58)

Then automatically

pγ′γ(A|γ′) = A|γ (59)

We are therefore forced to consider the subset of X∞ defined by

X := {(xγ)γ∈Γ ∈ X∞; pγ′γ(x′
γ) = xγ ∀ γ ≺ γ′} (60)

5 Here it is crucial that G = SU(2) is compact and thus for non-real Immirzi parameter
all of what follows would be false.

6 Recall that we know the topology on a space when we know a base of open sets from
which we obtain all open sets by arbitrary unions and finite intersections. Since the
preimages of open sets under continuous functions are open by definition, we obtain
a topology once we know which functions are continuous.
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Exercise 9.

i) Show that the maps (57) are continuous surjections.
Hint: Exploit the identification of the Xγ with powers of SU(2) and the continuity
of multiplication and inversion in groups to establish continuity. To establish sur-
jectivity use the fact that each edge e of γ contains an edge e′

e of γ′ as a segment
such that the e′

e do not overlap each other. Now given xγ set xγ′(e′
e) = xγ(e) and

extend trivially away from the e′
e. Check that this defines an element of Xγ′ .

ii) Show that X is a closed subset of X∞.
Hint: Since X is not a metric space we must work with nets and show that every
net of points xα ∈ X which converges in X∞ actually converges in X. Using the
definition of the topology on X∞, show that this is equivalent to showing that
the pγ(xα) = xαγ converge to points xγ which satisfy (59) and verify this using
continuity of the pγ′γ just established.

The surjectivity of the pγ′γ qualifies X as the so-called projective limit of the
Xγ , a mathematical structure which is independent of our concrete context once
we have a directed index set Γ at our disposal and surjective projections which
satisfy the compatibility condition (58).

Now another standard result from topology now tells us that X, being the
closed subset of a compact Hausdorff space, is a compact Hausdorff space in the
subspace topology and the question arises whether

Φ : A → X; A �→ (xγ := A|γ = pγ(A))γ∈Γ (61)

is a bijection. Injectivity is fairly easy to see while surjectivity is a little bit
tricky.

Exercise 10.
Show that (61) is a bijection.
Hint: Given x ∈ X and p ∈ P choose any γp ∈ Γ such that p ∈ γp and define Ax by
Ax(p) := xγp(p). Show that this definition is well defined using the directedness of Γ
and that Ax is a groupoid homomorphism.

Let us collect these results in the following theorem [38].

Theorem 3.
The space A equipped with the weakest topology such that the maps pγ of (45)
are continuous, is a compact Hausdorff space.

The value of this result is that it gives us a powerful tool for constructing mea-
sures on A.

Measures on A. A powerful theorem due to Riesz and Markov, sometimes called
the Riesz representation theorem, tells us that there is a one-to-one correspon-
dence between the positive linear functionals Λ on the algebra C(A) of continu-
ous functions on a compact Hausdorff space A and (regular, Borel) probability
measures µ thereon through the simple formula

Λ(f) :=
∫

A
dµ(A) f(A) (62)
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One says Λ is represented by f . Here a linear functional is called positive if
Λ(|f |2) ≥ 0 for any f ∈ C(A). A function algebra on a compact space can
be equipped with the sup-norm ||f || := supA∈A |f(A)| which evidently has the
so-called C∗-property ||ff || = ||f ||2 so that (w.l.g. we may take C(A) to be
complete w.r.t. the norm) C(A) is a C∗-algebra. A standard result in functional
analysis reveals that positive linear functionals on C∗-algebras are automatically
continuous, |Λ(f)| ≤ Λ(1) ||f || and if we choose the normalization of Λ to be
Λ(1) = 1 then µ is a probability measure.

In order to specify the measure µ0 that we are interested in, it is there-
fore enough to specify a positive linear functional Λ0. The most elegant way of
defining Λ0 is through the following definition.

Definition 12.

i) Given a graph γ, label each edge e ∈ E(γ) with a triple of numbers (je,me, ne)
where je ∈ { 1

2 , 1,
3
2 , 2, ..} is a half-integral spin quantum number and me, ne ∈

{−je,−je + 1, .., je} are magnetic quantum numbers. A quadruple

s := (γ, j := {je}e∈E(γ),m := {me}e∈E(γ),n := {ne}e∈E(γ)) (63)

is called a spin network (SNW). We also write γ(s) etc. for the entries of a
SNW.

ii) Choose once and for all one representative ρj , j > 0 half integral, from each
equivalence class of irreducible representations of SU(2). Then

Ts : A → C; A �→
∏

e∈E(γ)

[
√

2je + 1[ρje(A(e))]mene
] (64)

is called the spin-network function (SNWF) of s. Here [ρj(.)]mn denotes the
matrix elements of the matrix valued function ρj(.).

An example of a SNW, which can be arbitrarily large and with vertices of arbi-
trarily high valence, is given in Fig. 9. The original motivation for the definition
of spin network functions [40] in loop quantum gravity was the fact that they
are linearly independent in contrast to the Wilson loop functions which suf-
fer from the so-called Mandelstam identities. For SU(2) matrices h, h′ they are
Tr(h) Tr(h′) = Tr(hh′) + Tr(h(h′)−1) and Tr(h) = Tr(h−1) which leads to an
infinite tower of identities of the form

[Tr(A(α1)) Tr(A(α2))]Tr(A(α1)) = Tr(A(α1))[Tr(A(α2)) Tr(A(α1))] (65)

depending on how we bracket the product of traces involving the three loops
α1, α2, α3 with a common base point. The SNWF’s remove these cumbersome
identities first by labelling functions by edges rather than loops and secondly by
the simple observation that a tensor product of (fundamental) representations
can be uniquely decomposed into irreducibles (Clebsh-Gordon decomposition).
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Fig. 9. A SNW. Orientations and magnetic quantum numbers are suppressed

Theorem 4.
The uniform (Ashtekar–Lewandowski) measure µ0 is uniquely defined by the
positive linear functional [39]

Λ0(Ts) :=

{
1 for s = (∅,0,0,0)
0 otherwise

(66)

Exercise 11.
i) Recall the representation theory of SU(2) from the quantum mechanics of angular

momentum and verify that the SNWF are indeed linearly independent.
ii) Verify that Λ0 is a positive linear functional.

Hint: Using the Stone–Weierstrass theorem, show first that the finite linear com-
binations of SNWF are dense in C(A). By continuity of Λ0 it is therefore sufficient
to check positivity on finite linear combinations

f =
N∑
n=1

znTsn , N < ∞, zn ∈ C (67)

with sn mutually different SNW’s. To see this, verify that Λ0(TsTs′) = 0 for s �= s′

by using the Clebsh–Gordon formula j⊗ j′ ≡ (j+ j′) ⊕ (j+ j′ − 1) ⊕ ..⊕ (|j− j′|).
iii) A fundamental theorem for the representation theory of compact groups is due to

Peter and Weyl [41]. For SU(2) it amounts to saying that the functions

Tjmn : SU(2) → C; h �→
√

2j + 1[ρj(h)]mn (68)
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form an orthonormal basis for the Hilbert space L2(SU(2), dµH) where µH is the
normalized Haar measure on SU(2) (the unique normalized measure which in-
variant under inversion as well as left and right translation in SU(2)). Based on
this result, show that the SNWF form an orthonormal basis for the Hilbert space
L2(A, dµ0).

Let us summarize the results of the exercise in the following theorem [40].

Theorem 5.
The kinematical Hilbert space Hkin := L2(A, dµ0) defined by (66) is non-separ-
able and has the SNWF’s Ts as orthonormal basis.

Representation Property. So far we did not verify that Hkin is a representation
space for our ∗-algebra B of basic operators. This will be done in the present
section. Indeed, until today no other irreducible representation of the holonomy-
flux algebra has been found (except if one allows also infinite graphs [42]).

By theorem (6) the subspace of finite linear combinations of SNWF’s is
dense in Hkin with respect to the L2 norm. On the other hand, we notice
that the definition of Cyl∞(A) simply extends to Cyl∞(A) and that finite
linear combinations of SNWF’s form a subspace of Cyl∞(A). Thus, we may
choose Dkin := Cyl∞(A) and obtain a dense, invariant domain of B as we
will see shortly. We define a representation of the holonomy-flux algebra by
(f ′ ∈ Cyl∞(A), f ∈ Cyl∞(A), A ∈ A)

[π(f) · f ′](A) := (f ′f)(A)
[π(vjS) · f ](A) = [π(vjS)π(f) · 1](A) = [([π(vjS), π(f)] + π(f)π(Ej(S))) · 1](A)

:= i�[π(vjS [f ]) · 1](A) = i�(vjS [f ])(A). (69)

Thus π(f) is a multiplication operator while π(vjS) is a true derivative operator,
i.e. it annihilates constants. Notice that the canonical commutation relations are
already obeyed by construction, thus we only need to verify the ∗-relations and
the fact that π(vjS) annihilates constants will be crucial for that.

The π(f) are bounded multiplication operators (recall that smooth, i.e. in
particular continuous, functions on compact spaces are uniformly bounded, that
is, have a sup-norm) so that the adjoint is complex conjugation, therefore there
is nothing to check. As for π(vjS) we notice that given two smooth cylindrical
functions on A we always find a graph γ over which both of them are cylindrical
and which is already adapted to S.

Exercise 12.
Let f be cylindrical over γ. Verify that

Λ0(f) =
∫

SU(2)|E(γ)|

∏
e∈E(γ)

dµH(he)fγ({he}e∈E(γ)). (70)

Hint: Write f as a (Cauchy limit of) finite linear combinations of SNWF’s and verify
that (70) coincides with (66).
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Using the explicit expression (49) and the result of exercise 12 it is easy to see
that the symmetry condition < f, π(vjS)f ′ >kin=< π(vjS)f, f ′ >kin is equivalent
with the condition

< F,RjF ′ >L2(SU(2),dµH)= − < RjF, F ′ >L2(SU(2),dµH) (71)

for any F, F ′ ∈ C∞(SU(2)) and Rj is the right invariant vector field on SU(2).
However, µH is by definition invariant under left translations and Rj is a gen-
erator of left translations in SU(2) so the result follows. This shows that Dkin
is contained in the domain of π(vjS)† and that the restriction of the adjoint to
Dkin coincides with π(vjS). That Dkin is actually a domain of (essential) self-
adjointness requires a little bit more work but is not difficult to see, e.g. [1].

Finally, let us verify that the representation is irreducible. By definition, a
representation is irreducible if every non-zero vector is cyclic and a vector Ω is
cyclic if the set of vectors π(a)Ω, a ∈ B is dense. Now the vector Ω = 1 is cyclic
because the vectors π(f)Ω = f, f ∈ Cyl∞ are already dense. Given an arbitrary
element ψ ∈ Hkin we know that it is a Cauchy limit of finite linear combinations
of spin network functions. Thus, if we can show that we find a sequence an ∈ B
such that π(an)ψ converges to Ω, then we are done. It is easy to see (exercise)
that this problem is equivalent to showing that any F ∈ L2(F, dµH) can be
mapped by the algebra formed out of right invariant vector fields and smooth
functions on SU(2) to the constant function.

Exercise 13.
Check that this is indeed the case.
Hint: Show first that it is sufficient to establish that any polynomial p of the

a, b, c, d, ad− bc = 1 for h =
(
a b
c d

)
∈ SU(2) can be mapped to the constant function.

Show then that suitable linear combinations of the Rj , j = 1, 2, 3 with coefficients
in C∞(SU(2)) produce the derivatives ∂a, ∂b, ∂c and convince yourself that aNp is a
polynomial in a, b, c for sufficiently large N .

Let us collect these results in the following theorem [43].

Theorem 6.
The relations (69) define an irreducible representation of B on Hkin.

Thus, the representation space Hkin constructed satisfies all the requirements
that qualify it as a good kinematical starting point for solving the quantum con-
straints. Moreover, the measure µ0 is spatially diffeomorphism invariant as we
will see shortly and together with the uniqueness result quoted at the beginning
of this section, this is the only representation with that property. There are,
however, doubts on physical grounds whether one should insist on a spatially
diffeomorphism invariant representation because the smooth and even analytic
structure of σ which is encoded in the spatial diffeomorphism group should not
play a fundamental role at short scales if Planck scale physics is fundamentally
discrete. In fact, as we will see later, QGR predicts a discrete Planck scale struc-
ture and therefore the fact that we started with analytic data and ended up



Lectures on Loop Quantum Gravity 81

with discrete (discontinuous) spectra of operators looks awkward. Therefore, on
the one hand, we should keep in mind that other representations are possibly
better suited in the final picture; on the other hand, there is no logical contra-
diction within the present formulation and in fact in 2+1 gravity one has a final
combinatorial description while one started with analytical structures as well.

2.2 Quantum Kinematics

In this section we discuss the complete solution of the Gauss and Vector con-
straint as well as the quantization of kinematical, geometrical operators that
measure the length, area and volume of coordinate curves, surfaces and regions
respectively. We call these results kinematical because the Gauss and Vector con-
straint do not generate dynamics, this is the role of the Hamiltonian constraint
which we will discuss in the third part. Moreover, the kinematical geometrical
operators do not commute with the Vector constraint or the Hamiltonian con-
straint and are therefore not Dirac observables. However, as we will show, one
can turn these operators easily into Dirac observables, at least with respect to
the Vector constraint, and the fact that the spectrum is discrete is robust under
those changes.

The Space of Solutions to the Gauss and Spatial Diffeomorphism Con-
straint. Recall the transformation behaviour of classical connections A ∈ A
under SU(2) gauge transformations and spatial diffeomorphisms (40). These
equations trivially lift from A to A and we may construct corresponding opera-
tors as follows: Let G := Fun(Σ,SU(2)) be the set of local gauge transformations
without continuity requirement and consider the set Diffω(Σ) of analytic diffeo-
morphisms. We are forced to consider analytic diffeomorphisms as otherwise we
would destroy the analyticity of the elements of Γ . These two groups have a
natural semi-direct product structure that has its origin in the algebra (23) and
is given by

[G � Diffω(Σ)]× [G � Diffω(Σ)] → [G � Diffω(Σ)] (72)
[g, ϕ] · [g′, ϕ′] = [g(g′ ◦ ϕ−1), ϕ ◦ ϕ′] . (73)

Exercise 14.
Verify (72).
Hint: Define [g, id] ·A := Ag, [id, ϕ] ·A := Aϕ and [g, ϕ] ·A := [g, id] · ([id, ϕ] ·A).

We now define representations

Û : G → B(Hkin); g �→ Û(g)
V̂ : Diffω(Σ) → B(Hkin); ϕ �→ V̂ (ϕ) (74)

densely on f = p∗
γfγ ∈ Dkin by

[Û(g)f ](A) := fγ({g(b(e)) A(e) g(f(e))−1}e∈E(γ)})
[V̂ (ϕ)f ](A) := fγ({A(ϕ−1(e))}e∈E(γ)}) . (75)
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Fig. 10. Action of Spatial Diffeomorphisms on SNW’s

Here B(.) denotes the bounded operators on a Hilbert space. This definition of
course comes precisely from the classical formula (40). The action of a diffeomor-
phism on a SNWF Ts is therefore simply by mapping the graph γ(s) to ϕ−1(s)
while the labels je,me, ne are carried from e to ϕ−1(e) as depicted in Fig. 10.

Then the following theorem holds [43].

Theorem 7.
The relations (75) define a unitary representation of the semi-direct product
kinematical group G � Diffω(Σ).

Exercise 15.
Prove theorem (7).
Hint: Check unitarity on the SNWF basis using the bi-invariance of the Haar measure.
That (75) holds can be traced back to exercise 14.

The unitarity of the kinematical gauge group implies invariance of the mea-
sure µ0 and thus supplies additional motivation for the representation space
Hkin. Notice that the statement that (75) defines a representation in particular
means that the kinematical constraint algebra is free of anomalies. This should
be contrasted with string theory where the anomaly sits also in the spatial dif-
feomorphism group (e.g. Diff(S1) for the closed string) unless one chooses the
critical dimension D = 25(9) for the bosonic (supersymmetric) string.

Let us now solve the kinematical constraints. By definition, we are supposed
to find algebraic distributions l ∈ D∗

kin which satisfy

l(Û(g)f) = l(V̂ (ϕ)f) = l(f) ∀ g ∈ G, ϕ ∈ Diffω(Σ), f ∈ Dkin . (76)

Now it is not difficult to see that any element of D∗
kin can be conveniently written

in the form

l(.) =
∑
s

cs < Ts, . >kin , (77)

where cs are complex valued coefficients and the uncountably infinite sum ex-
tends over all possible SNW’s. The general solution to (76) is then easy to de-
scribe: Invariance under G means that for fixed γ the coefficients cγ,j,m,n have
to be chosen, as j,m,n vary, in such a way that at each vertex of γ the resulting
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function is gauge invariant. That is, if j1, .., jn are the labels of edges incident
at v, then the cs have to arrange themselves to a projector on the trivial rep-
resentations contained in the tensor product j1 ⊗ .. ⊗ jn. Such a projector is
also called intertwiner in the mathematical literature. For SU(2) this leads to
the theory of Clebsh-Gordon coefficients, 6j-symbols etc. As for Diffω(Σ) we see
that cϕ(γ),j,m,n must be independent of ϕ, therefore cϕ,j,m,n depends only on
the generalized knot class of γ! We say generalized because, as we will see later
on, the physically relevant graphs are those with self-intersections while classical
knot theory deals only with smooth curves.

One may ask whether one should already define a physical inner product
with respect to the Gauss and spatial Diffeomorphism constraint and then solve
the Hamiltonian constraint in a second, separate step on that already partly
physical Hilbert space . While such a Hilbert space can indeed be constructed
[43] it is of no use for QGR because the Hamiltonian constraint cannot leave
that Hilbert space invariant as we see from the second equation in (14) and we
must construct the physical inner product from the full solution space to all
constraints. However, at least with respect to the kinematical constraints the
full quantization programme including the question of observables has already
been completed except for the analysis of the classical limit.

Kinematical Geometrical Operators. We will restrict ourselves to the de-
scription of the area operator the classical expression of which we already wrote
in (43) and (44).

In order to quantize Ar(S) one starts from (44) and decomposes the analyti-
cal, compactly supported and oriented surface S or, equivalently, its preimage D
under XS into small pieces SI . Then the exact area functional is approximated
by the Riemann sum

Ar({S}) = β
∑
I

√
Ej(SI)2 . (78)

This function is easily quantized because Êj(SI) = i�vjs is a self-adjoint operator
so that the sum over j of its squares is positive semi-definite, hence its square
root is well-defined. Let us denote the resulting, partition dependent operator
by Âr({S}). Now one can show that the (strong) limit as the partition is sent
to the continuum exists [44] and a partition independent operator Âr(S) results
[44].

Theorem 8.
The area functional admits a well-defined quantization Âr(S) on Hkin with the
following properties:

i) Âr(S) is positive semidefinite, (essentially) self-adjoint with Cyl2(A) as do-
main of (essential) self-adjointness.

ii) The spectrum Spec(Âr(S)) is pure point (discrete) with eigenvectors being
given by finite linear combinations of spin network functions.
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iii) The eigenvalues are given explicitly by

λj1,j2,j12 =
β�2P
4

√
2j1(j1 + 1) + 2j2(j2 + 1)− j12(j12 + 1)

j12 ∈ {j1 + j2, j1 + j2 − 1, .., |j1 − j2|} , (79)

where j1, j2 are spin quantum numbers and �2P = �κ is the Planck area. The
spectrum has an area gap (smallest non-vanishing eigenvalue) given by

λ0 = β�2P

√
3

4
. (80)

iv) Spec(Âr(S)) contains information about the topology of S, for instance it
matters whether ∂S = ∅ or not.

Exercise 16.
Verify that the area gap is indeed given by (80) and check that the distance between
subsequent eigenvalues rapidly decreases as j1, j2 → ∞. Can one give an asymptotic
formula for N(A), the number of eigenvalues (discarding multiplicity) in the interval
[A− �2P, A+ �2P]? Thus, a correspondence principle, important for the classical limit is

valid. If the spectrum would only consist of the main series λj = �2P
2

√
j(j + 1) which

one obtains for j1 = j2 = j, j12 = 0 then such a correspondence principle would
certainly not hold which is, e.g., relevant for the black body spectrum of the Hawking
radiation.

Theorem 8 is an amazing result for several reasons:

A) First of all, the expression for Ar(S) depends non-polynomially, not even
analytically on the product Ea

j (x)Eb
j (x), x ∈ S. Now Ea

j (x) becomes an
operator valued distribution in the quantum theory and products of distri-
butions at the same point are usually badly divergent. However, Âr(S) is
perfectly well-defined! This is the first pay-off for sticking to a rigorous and
background independent formalism!

B) Although S, γ,Σ, .. are analytical, the spectrum Spec(Âr(S)) is discrete. In
other words, suppose we are measuring the area of a sheet of paper with a
spin-network state. As long as the sheet does not cut an edge of the graph, the
area eigenvalue is exactly zero no matter how “close” the edge and the sheet
are. We have put the word “close” in inverted commas because this word
has no meaning: Since there is no background metric, we do not know what
close means, only diffeomorphism invariant notions have a meaning such as
“the edge is cut” or “the edge is not cut”. However, once the edge is cut the
area eigenvalue jumps at least by the area gap. This strongly hints that the
microscopical geometry is really distributional (discontinuous) and that we
have a discrete Planck scale structure, the role of the atoms of geometry being
played by the one-dimensional (polymer-like) excitations labelled by SNW’s.
One may speculate that this discrete structure is fundamental and that the
analyticity assumptions that we began with should be unimportant, in the
final picture everything should be only combinatorial. The smooth geometry
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that we are familiar with at macroscopic scales is merely a result of coarse
graining, for instance in order that a SNWF labelled with spin j = 1/2 on
every edge assigns to our sheet of paper its area of about 100cm2, an order
of 1068 edges of the SNW have to cut the sheet!

C) Qualitatively similar results apply to the volume operator V̂ol(R) [44,45] and
the length operator L̂en(c) [46] whose classical expressions are given by

Vol(R) =
∫
R

d3x
√

det(q) and Len(c) =
∫
c

√
qabdxadxb. (81)

D) These kinematical operators are certainly not Dirac observables because they
are not even spatially diffeomorphism invariant (but SU(2) invariant) since
the objects R,S, c are just coordinate submanifolds of Σ. Thus, one may
wonder whether the properties of the spectrum just stated have any sig-
nificance at all. The answer is believed to be affirmative as the following
argument shows: For instance, instead of Vol(R) consider

VolEM =
∫
Σ

d3x
√

det(q) θ

(
qab√
det(q)

[EaEb + BaBb]

)
, (82)

where we have coupled a Maxwell field to GR with electromagnetic fields
Ea, Eb and θ is the step function. The physical meaning of (82) is that it
measures the volume of the region where the electromagnetic field energy
density is non-vanishing and it is easy to check that (82) is actually spatially
diffeomorphism invariant! Now in QGR the argument of the step function
can be given a meaning as an operator (valued distribution) as we will see
in the next section and the theta function of an operator can be defined
through the spectral theorem. Since the spectrum of the θ-function consists
only of {0, 1}, the spectrum of (82) should actually coincide with that of
V̂ol(R) [47]. A similar argument should also be valid with respect to Dirac
observables commuting with the Hamiltonian constraint.

E) The existence of the area gap is also at the heart of the finiteness of the
Bekenstein–Hawking entropy of black holes as we will see.

3 Selected Areas of Current Research

3.1 Quantum Dynamics

The Hamiltonian constraint C of QGR is, arguably, the holy grail of this approach
to quantum gravity, therefore we will devote a substantial amount of space to
this subject. In fact, unless one can quantize the Hamiltonian constraint, literally
no further progress can be made so that it is important to know what its status
is. From the explicit, non-polynomial expression (21) it is clear that a well-
defined operator version of this object will be extremely hard to obtain and in
fact this had been the major obstacle in the whole approach until the mid 90’s.
In particular, within the original ADM formulation only formal results were
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available. However, since with the new connection formulation also the non-
polynomial kinematical operators of the previous section could be constructed,
chances might be better.

At this point we include a brief account of the historical development of the
subject in order to avoid confusion as one looks at older papers:
Originally one chose the Immirzi parameter as β = ±i and considered C̃ =√

det(q) rather than C because then C̃ is actually a simple polynomial of only
fourth order (the “More” term disappears). Polynomiality was considered as
mandatory. There were three problems with this idea:

1) The non-polynomiality was shifted from C into the reality conditions A+Ā =
2Γ (E) where the spin connection Γ is now a highly non-polynomial function
of E. The operator version of this equation should be very hard to implement.

2) If A is complex, then we are dealing with an SL(2,C) bundle rather than an
SU(2) bundle. Since SL(2,C) is not compact, the mathematical apparatus
of Sect. 2 is blown away.

3) Even formal trials to quantize C̃ resulted in either divergent, or background
dependent operators.

In [27] it was suggested to keep β real which solves problems 1) and 2), however,
then C̃ becomes even more complicated and anyway problem 3) is not cured.
Finally in [48] it was shown that non-polynomiality is not necessarily an obstacle,
even better, it is actually required in order to arrive at a well-defined operator:
It was established that the reason for problem 3) is that C̃ is a scalar density
of weight two while it was shown that only density weight one scalars have a
chance to be quantized rigorously and background independently. Therefore the
currently accepted point of view is that β should be real and that one uses the
original unrescaled C rather than C̃.

A Possible New Mechanism for Avoiding UV Singularities in Back-
ground Independent Quantum Field Theories. Before we go into more
details concerning [48], let us give a heuristic explanation just why it happens
that QGR may cure UV problems of QFT, making the connection with the issue
of the density weight just mentioned. Consider classical Einstein–Maxwell the-
ory on M = R×σ in its canonical formulation, then the Hamiltonian constraint
gains an extra matter piece given for unit lapse N = 1 by

HEM =
1

2e2

∫
σ

d3x

Density weight -1︷ ︸︸ ︷
qab√
det(q)

[EaEb + BaBb]︸ ︷︷ ︸
Density weight +2

. (83)

Exercise 17.
Starting from the Lagrangean

L = − 1
4e2

√
| det(g)|FµνFρσgµρgνσ , (84)
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where F = 2dA is the spacetime curvature of the Maxwell connection A with unit
cm−1 and e is the electric charge in units such that α = �e2 is the dimensionless fine-
structure constant, perform the Legendre transform. With the electric field Ea being
the momentum conjugate to the spatial piece Aa of A verify that the “Hamiltonian” is
given by −A0G+NaV ′

a+NC′ where G = ∂aE
a is the Gauss law, V ′

a = FabE
b and C′ is

the integrand of (83) with Ba = εabcFbc/2 the magnetic field. Check that G′ generates
U(1) gauge transformations while V ′

a generates spatial diffeomorphisms where Aa, Ea

transform as a one-form and a vector density of weight one respectively. Confirm that
also Ba is a vector density of weight one.

As the exercise reveals, the geometry factor in (83) is a symmetric covariant
tensor of rank two of density weight −1 due to the factor

√
det(q) in the denom-

inator while the matter part is a symmetric contravariant tensor of rank two of
density weight +2. That the resulting scalar has net density weight is +1 is no
coincidence but a direct consequence of the diffeomorphism invariance or back-
ground independence of any matter theory coupled to gravity: only the integral
over σ of a scalar density of weight +1 is spatially diffeomorphism invariant.

We can now quantize (83) in two ways:

1) In the first version we notice that if g = η is the Minkowski metric, that
is, qab = δab then (83) reduces to the ordinary Maxwell Hamiltonian on
Minkowski space. Thus we apply the formalism of QFT on a background
spacetime, in this case Minkowski space, because we have fixed qab to the
non-dynamical C-number field δab which is not quantized at all.

2) In the second version we keep qab dynamical and quantize it as well. Thus
we apply QGR, a background independent quantization. Now qab becomes a
field operator q̂ab and the statement that the metric is flat can at most have a
semiclassical meaning, that is, the expectation value of q̂ab in a gravitational
state is close to δab.

Let us now sketch how these two different quantizations are performed and
exactly pin-point how it happens that the first quantization is divergent while
the second is finite.

1) QFT on a background spacetime
As we have said, the metric qab = δab is now no longer a dynamical entity
but just becomes a complex number. What we get is the usual Maxwell
Hamiltonian operator

ĤM =
1

2e2

∫
Σ

d3x δab[ÊaÊb + B̂aB̂b] . (85)

Notice the crucial difference with (83): The net density weight of the operator
valued distribution in the integral is now +2 rather than +1! By switching off
the metric as a dynamical field we have done a severe crime to the operator,
because the net density weight +2 will be remembered by the operator in
any faithful representation of the canonical commutation relations and leads
to the following problem: The only coordinate density of weight one that one
can construct is a δ-distribution (and derivatives thereof), thus for instance
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the operator Êa(x) is usually represented as a functional derivative which
one can rewrite formally as

αδ/δAa(x) = α
∑
y∈Σ

δ(x, y)∂/∂Aa(y) . (86)

The right hand side of (86) is a sum over terms each of which consists
of a well-defined operator Ya(y) = ∂/∂Aa(y) and a distributional prefac-
tor δ(x, y). It is for this reason that expressions of the form Êa(x)Êb(x)
cannot be well-defined since we get products of distributions supported at
the same point x and which result in divergent expressions of the form∑
y,z δ(x, y)δ(x, z)Ya(y)Yb(z) =

∑
y δ(x, y)2Ya(y)Yb(y). The density weight

two is correctly encoded in the term δ(x, y)2 = δ(0, 0)δ(x, y) which, how-
ever, is meaningless.
These heuristic arguments can of course be made precise: (85) is quantized
on the Fock space HFock and one obtains

ĤM = : ĤM : + �

∫
Σ

[
√
−∆xδ(x, y)]x=y︸ ︷︷ ︸

UV Singularity

. (87)

Here the colons stand for normal ordering. The UV (or short distance) sin-
gularity is explicitly identified as the coincidence limit x = y of the integrand
in the normal ordering correction. Therefore ĤM is ill-defined on HFock. No-
tice that even if the integrand would be finite, the integral suffers from an
IR (or large volume) singularity if σ is not compact which comes from the
fact that we are dealing with an infinite number of degrees of freedom. This
singularity is, in contrast to the UV singularity, physical since it captures
the vacuum energy of the universe which is of course infinite if the volume
is.

2) QFT coupled to QGR
This time we keep the metric as a dynamical variable and quantize it. Thus
instead of (85) we obtain something of the form

ĤEM =
1

2e2

∫
Σ

d3x
q̂ab√
det(q)

[ÊaÊb + B̂aB̂b] . (88)

This time the net density weight is still +1. Now while the expression (86)
is still valid and implies that there will be a product of δ-distributions in
the numerator coming from the matter operator valued distributions, there
is also a δ-distribution in the denominator due to the factor

√
det(q) which

comes about as follows: As we already mentioned in Sect. 2.2 the volume
functional in (81) admits a well-defined quantization of the form

V̂ol(R)Ts = �3P
∑

v∈V (γ(s))∩R
V̂vTs , (89)
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where V̂v is a well-defined, dimensionless operator (not an operator valued
distribution!) built from the vector fields vjS . Since Vol(R) is the integral
over R of

√
det(q) we conclude that

√
det(q) admits a quantization as an

operator valued distribution, namely

√̂
det(q)(x)Ts = �3P

∑
v∈V (γ(s))

δ(x, v)V̂vTs. (90)

Now certainly (88) cannot be quantized on the Hilbert space Hkin ⊗HFock
because HFock depends on a background metric (for instance through the
Laplacian ∆) which is not available to us. However, we may construct a
background independent Hilbert space H′

kin for Maxwell theory which is
completely identical to our Hkin, just that SU(2) is replaced by U(1) [48].
In H′

kin the role of spin network states is played by charge network (CNW)
states, that is, edges e are labelled by integers ne (irreducibles of U(1). Let
us denote CNW’s by c = (γ,n = {ne}e∈E(γ)) and CNWF’s by T ′

c. Then a
basis for the Einstein-Maxwell theory kinematical Hilbert space Hkin⊗H′

kin
is given by the states Ts ⊗ T ′

c.
Now something very beautiful happens, which is not put in by hand but
rather is a derived result: A priori the states Ts, T

′
c may live on different

graphs, however, unless the graphs are identical, the operator automatically
(88) annihilates Ts ⊗ T ′

c [49]. This is the mathematical manifestation of the
following deep physical statement: Matter can only exist where geometry is
excited. Indeed, if we have a gravitational state which has no excitations in
a coordinate region R then the volume of that region as measured by the
volume operator is identically zero. However, if a coordinate region has zero
volume, then it is physically simply not there, it is empty space. Summarizing,
the operator (88) is non-trivial only if γ(s) = γ(c).
With this being understood, let us then sketch the action of (88) on our
basis. One finds heuristically

ĤEMTs ⊗ T ′
c = mP

∑
v∈V (γ)

∑
e,e′∈E(γ),e∩e′=v

× (91)

×
∫
Σ

d3x
[ q̂e,e′

V̂v

1
δ(x, v)︸ ︷︷ ︸

↑

Ts

]
⊗ [

δ(x, v)︸ ︷︷ ︸
↑

︸ ︷︷ ︸
Cancellation

δ(y, v)Y eY e′
T ′
c]x=y

]
,

where mP =
√

�/κ is the Planck mass. Here q̂e,e′ and Y e are well-defined,
dimensionless operators (not distribution valued!) on Hkin and H′

kin respec-
tively built from the right invariant vector fields Rje, Re that enter the defini-
tion of the flux operators as in (49) and its analog for U(1). The product of
δ-distributions in the numerator of (91) has its origin again in the fact that
the matter operator has density weight +2 certainly also in this representa-
tion and therefore has to be there, so nothing is swept under the rug! The
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δ-distribution in the denominator comes from (90) and correctly accounts
for the fact that the geometry operator has density weight −1. Again we
have a coincidence limit x = y which comes from a point splitting regular-
ization and which in the background dependent quantization gave rise to the
UV singularity. Now we see what happens: One of the δ-distributions in the
numerator gets precisely cancelled by the one in the denominator leaving us
with only one δ-distribution correctly accounting for the fact that the net
density weight is +1. The integrand is then well-defined and the integral can
be performed resulting in the finite expression

ĤEMTs ⊗ T ′
c =

∑
v∈V (γ)

∑
e,e′∈E(γ),e∩e′=v

×
[
q̂e,e′

V̂v
Ts

]
⊗ [Y eY e′

T ′
c]x=y . (92)

Notice that finite here means non-perturbatively finite, that is, not only fi-
nite order by order in perturbation theory (notice that in coupling gravity
we have a highly interacting theory in front of us). Thus, comparing our
non-perturbative result to perturbation theory the result obtained is com-
parable to showing that the perturbation series converges! Notice also that
for non-compact σ the expression (92) possibly has the physically correct IR
divergence coming from a sum over an infinite number of vertices.

Exercise 18.
Recall the Fock space quantization of the Maxwell field and verify (87).

This ends our heuristic discussion about the origin of UV finiteness in QGR.
The crucial point is obviously the density weight of the operator in question
which should be precisely +1 in order to arrive at a well-defined, background
independent result: Higher density weight obviously leads to more and more
divergent expressions, lower density weight ends in zero operators.

Sketch of a Possible Quantization of the Hamiltonian Constraint. We
now understand intuitively why the rescaled Hamiltonian constraint C̃ had no
chance to be well-defined in the quantum theory: It is similar to (87) due to its
density weight +2. The same factor 1/

√
det(q) that was responsible for making

(88) finite also makes the original, non-polynomial, unrescaled Hamiltonian con-
straint C = C̃/

√
det(q) finite. We will now proceed to some details how this is

done, avoiding intermediate divergent expressions such as in (91).
The essential steps can already be explained for the first term in (21) so let

us drop the “More” term and consider only the integrated first term

CE(N) =
1
κ

∫
Σ

d3xN
F j
abεjklE

a
kE

b
l√|det(E)| . (93)

Let us introduce a map

R : Σ → O(σ); x �→ Rx (94)
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where O(Σ) denotes the set of open, compactly supported, connected and simply
connected subsets of Σ and Rx ∈ O(Σ) is constrained by the requirement that
x ∈ Rx. We define the volumes of the Rx by

V (x) := Vol(Rx) =
∫
Rx

d3y
√
|det(E)|(y) . (95)

Then, up to a numerical prefactor we may write (93) in the language of differ-
ential forms and in terms of a Poisson bracket as

CE(N) =
1
κ2

∫
Σ

NTr(F ∧ {A, V }) . (96)

Exercise 19.
Verify that (95) is really the volume of Rx and (96).

The reasoning behind (96) was to move the factor 1/
√

det(q)(x) from the de-
nominator into the numerator by using a Poisson bracket. This will avoid the
δ-distribution in the denominator as in (91) and has the additional advantage
that

√
det(q) now appears smeared over Rx so that one obtains an operator, not

a distribution. Thus, the idea is now to replace the function V (x) by the well-
defined operator V̂ol(Rx) and the Poisson bracket by a commutator divided by
i�. The only thing that prevents us from doing this is that the operators Aja, F

j
ab

do not exist on Hkin. However, they can be regularized in terms of holonomies
as follows:
Given tangent vectors u, v ∈ Tx(σ) we define one parameter homotopies of paths
and loops of triangle topology

ε �→ puε,x, αuvε,x (97)

respectively with b(puε,x) = b(αuvε,x) = x and (ṗuε,x)x = (α̇uvε,x)x+ = εu, (α̇uvε,x)x− =
−εv (left and right derivatives at x). Then for smooth connections A ∈ A the
Ambrose–Singer theorem tells us that

lim
ε→0

1
ε
[A(puε,x)− 1] = uaAa(x), lim

ε→0

1
ε2

[A(αuvε,x)− 1] =
1
2
uavbFab(x) . (98)

Exercise 20.
Verify (98) by elementary means, using directly the differential equation (38).
Hint:
For sufficiently small ε we have up to ε2 corrections puε,x(t) = x+ εtu and

αuvε,x(t) = x+ ε





tu , t ∈ [0, 1]
u/3 + (t− 1)(v − u) , t ∈ [1, 2]
(3 − t)v , t ∈ [2, 3].

Thus, given a triangulation τε of σ, that is, a decomposition of σ into tetrahedra
∆ with base points v(∆), edges pI(∆), I = 1, 2, 3 of ∆ of the type puε,v starting
at v and triangular loops αIJ(∆) = pI(∆) ◦ aIJ(∆)pJ(∆)−1 of the type αuvε,v
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where the arcs aIJ(∆) comprise the remaining three edges of ∆, it is easy to
show, using (98), that up to a numerical factor

Cτε

E (N) =
1
κ2

∑
∆∈τε

N(v(∆))
∑
IJK

εIJKTr(A(αIJ(∆)A(pK(∆)){A(pK(∆))−1, V (v)}

(99)

tends to CE(N) as ε→ 0 (in this limit the triangulation gets finer and finer).

Exercise 21.
Verify this statement.

The expression (99) can now be readily quantized on Hkin because holonomies
and volume functionals are well-defined operators. However, we must remove the
regulator ε in order to arrive at a quantization of (96). Now the regulator can
be removed in many inequivalent ways because there is no unique way to refine
a triangulation. Moreover, we must specify in which operator topology Ĉτε(N)
converges. The discussion of these issues is very complicated and the interested
reader is referred to [48] for the detailed arguments that lead to the following
solution:

i) Triangulation
First of all we define the operator explicitly on the SNW basis Ts. In order
for the refinement limit to be non-trivial, it turns out that the triangulation
must be refined in such a way that γ(s) ⊂ τε for sufficiently small ε. This
happens essentially due to the volume operator which has non-trivial action
only at vertices of graphs. Thus the refinement must be chosen depending on
s. This is justified because classically all refinements lead to the same limit.
One might worry that this does not lead to a linear operator, however, this
is not the case because it is defined on a basis.

ii) Operator Topology
The limit ε→ 0 exists in the following sense:
Let D∗

Diff ⊂ D∗
kin be the space of solutions of the diffeomorphism constraint.

We say that a family of operators Ôε converges to an operator Ô on Hkin in
the uniform-weak-Diff∗-topology provided that for each δ > 0 and for each
l ∈ D∗

Diff , f ∈ Dkin there exists ε(δ) > 0 independent of l, f such that

|l([Ôε − Ô]f)| < δ ∀ε < ε(δ) . (100)

This topology is of course motivated by physical considerations: Since the
operator is unbounded, the uniform (i.e. operator norm) topology is too
strong. The strong or weak topologies (pointwise convergence in Hilbert
space norm or as matrix elements) give a trivial (zero) limit (exercise!).
Thus one is naturally led to ∗ topologies. The maximal dual space on which
to build a topology would be D∗

kin but one can check that the limit does
not exist even pointwise in D∗

kin. Thus one is looking for suitable subspaces
thereof. The natural, physically motivated choice is, of course, the spaceD∗

Diff



Lectures on Loop Quantum Gravity 93

which is singled out by the spatial diffeomorphism constraint. The reason
for why have required uniform convergence in (100) is that this excludes the
existence of the limit for larger spaces D∗

Diff ⊂ D∗
� ⊂ D∗

kin.

The end result is

Ĉ†
E(N) = mP

∑
v∈V (γ(s))

N(v)
∑

e, e′, e′′ ∈ E(γ(s))
e ∩ e′ ∩ e′′ = {v}

×

× {Tr([A(αγ(s),v,e,e′)− (A(αγ(s),v,e,e′))−1]A(pγ(s),v,e′′)[A(pγ(s),v,e′′)−1, V̂v])
+cyclic permutation in{e, e′, e′′}} Ts . (101)

The meaning of the loops αγ,v,e,e′ and paths pγ,v,e′′ that appear in this sum over
vertices and triples of edges incident at them is best explained in the follow-
ing Fig. 11. Their precise specification makes use of the axiom of choice and is
diffeomorphism covariant, that is, for ϕ ∈ Diffω(Σ), e.g. the loops αγ,v,e,e′ and
αϕ(γ),ϕ(v),ϕ(e),ϕ(e′) are analytically diffeomorphic. Moreover, the arcs aγ,v,e,e′ de-
fined by

αγ,v,e,e′ = pγ,v,e ◦ aγ,v,e,e′ ◦ p−1
γ,v,e′ (102)

are such that also γ ∪ aγ,v,e,e′ and ϕ(γ)∪ aϕ(γ),ϕ(v),ϕ(e),ϕ(e′) are analytically dif-
feomorphic. The adjoint in (101) is due to the fact that CE(N) is classically

v,e')

a(γ ,v,e,e')

α(γ, v,e,e')

v

e

e'

e''

γ,p(

Fig. 11. Meaning of the loop, path and arc assignment of the Hamiltonian constraint.
Notice how a tetrahedron emerges from those objects, making the link with the trian-
gulation. The broken lines indicate possible other edges or continuations thereof
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real-valued, so we are quantizing CE(N) as well. The operator (101) is not sym-
metric, however, its adjoint is densely defined on Dkin and it is therefore closable.
Usually one requires real valued functions to become self-adjoint operators be-
cause then by the spectral theorem the spectrum (possible measurement values)
is a subset of the real line. However, this argument is void when we are only
interested in the kernel of the operator (“zero eigenvalue”).

Exercise 22.
Verify that Ĉ†

E(N) is not symmetric but it is, together with ĈE(N), densely defined
on Dkin. Show that if real valued constraints CI form a Poisson algebra {CI , CJ} =
fIJ

KCK with non-trivial, real valued structure functions such that {fIJ K , CK}{CL=0}
�= 0, then ĈI , f̂IJ

K must not be both symmetric in order for the quantum algebra to
be free of anomalies. Conclude that the failure of (101) to be symmetric is likely to be
required for reasons of consistency.

The fact the loop αγ,v,e,e′ is not shrunk to v as one would expect is of course due
to our definition of convergence, in fact, an arbitrary loop assignment (γ, v, e, e′)
�→ αγ,v,e,e′ that has the same diffeomorphism invariant characteristics is allowed,
again because in a diffeomorphism invariant theory there is no notion of “close-
ness” of αγ,v,e,e′ to v. Notice that the operator ĈE(N) is defined on Hkin using
the axiom of choice and not on diffeomorphism invariant states as it is sometimes
misleadingly stated in the literature [50]. In fact, it cannot be because the dual
operator Ĉ ′

E(N) defined by

[Ĉ ′
E(N)l](f) := l(Ĉ†

E(N)f) (103)

for all f ∈ Dkin, l ∈ D∗
kin does not preserve D∗

Diff as is expected from the classical
Poisson algebra {V,C} ∝ C �= V . If one wants to take this dual point of view
then one is forced to introduce a larger space D∗

� which is preserved but which
does not solve the diffeomorphism constraint and is therefore unphysical. This
has unnecessarily given rise to a large amount of confusion in the literature and
should be abandoned.

As we have said, the loop assignment is to a very large extent arbitrary at
the level of Hkin and represents a serious quantization ambiguity, it cannot even
be specified precisely because we are using the axiom of choice. However, at the
level of Hphys this ambiguity evaporates to a large extent because all choices
that are related by a diffeomorphism result in the same solution space to all
constraints defined by elements l ∈ D∗

Diff which satisfy in addition

[Ĉ ′
E(N)l](f) = l(Ĉ†

E(N)f) = 0 ∀ N ∈ C∞
0 (Σ), f ∈ Dkin , (104)

where C∞
0 (Σ) denotes the smooth functions of compact support. Thus the so-

lution space D∗
phys will depend only on the spatially diffeomorphism invariant

characteristics of the loop assignment which can be specified precisely [48], it
essentially characterizes the amount by which the arcs knot the original edges
of the graph. Besides this remaining ambiguity there are also factor ordering
ambiguities but no singularities some of which are discussed in [51].
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Let us list without proof some of the properties of this operator:

i) Matter Coupling
Similar Techniques can be applied to the case of (possibly supersymmetric)
matter coupled to GR [48].

ii) Anomaly-Freeness
The constraint algebra of the Hamiltonian constraint with the spatial dif-
feomorphism constraint and among each other is mathematically consis-
tent. From the classical constraint algebra {V,C} ∝ C we expect that
V̂ (ϕ)Ĉ†

E(N)V̂ (ϕ)−1 = ĈE(ϕ∗N) for all diffeomorphisms ϕ. However, this
is just the statement of the loop assignment being diffeomorphism covari-
ant which can be achieved by making use of the axiom of choice. Next, from
{C,C} ∝ V we expect that the dual of [Ĉ†

E(N), Ĉ†
E(N ′)] = [ĈE(N ′), ĈE(N)]†

annihilates the elements of D∗
Diff . This can be explicitly verified [48]. We

stress that [Ĉ†
E(N), Ĉ†

E(N ′)] is not zero, the algebra of Hamiltonian con-
straints is not Abelean as it is sometimes misleadingly stated in the literature.
The commutator is in fact explicitly proportional to a diffeomorphism.

iii) Physical States
There is a rich space of rigorous solutions to (104) and a precise algorithm
for their construction has been developed [48].

iv) Intuitive Picture
The Hamiltonian constraint acts by annihilating and creating spin degrees
of freedom and therefore the dynamical theory obtained could be called
“Quantum Spin Dynamics (QSD)” in analogy to “Quantum Chromody-
namics (QCD)” in which the Hamiltonian acts by creating and annihilating
colour degrees of freedom. In fact we could draw a crude analogy to Fock
space terminology as follows: The (perturbative) excitations of QCD carry a
continuous label, the mode number k ∈ R

3 and a discrete label, the occupa-
tion number n ∈ N (and others). In QSD the continuous labels are the edges
e and the discrete ones are spins j (and others). So we have something like
a non-linear Fock representation in front of us.
Next, when solving the Hamiltonian constraint, that is, when integrating
the Quantum Einstein Equations, one realizes that one is not dealing with
a (functional) partial differential equation but rather with a (functional)
partial difference equation. Therefore, when understanding coordinate time
as measured how for instance volumes change, we conclude that also time
evolution is necessarily discrete. Such discrete time evolution steps driven
by the Hamiltonian constraint assemble themselves into what nowadays is
known as a spin foam. A spin foam is a four dimensional complex of two
dimensional surfaces where each surface is to be thought of as the world
sheet of an edge of a SNW and it carries the spin that the edge was carrying
before it was evolved7.
Another way of saying this is that a spin foam is a complex of two-surfaces
labelled by spins and when cutting a spin foam with a spatial three-surface Σ

7 Thus, a spin foam model can be thought of as a background independent string
theory!
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Fig. 12. Emergence of a spin foam from a SNW by the action of the Hamiltonian
constraint

one obtains a SNW. If one uses two such surfaces Σt, Σt+TP where TP = �P/c
is the Planck time then one rediscovers the discrete time evolution of the
Hamiltonian constraint. These words are summarized in Fig. 12.

While these facts constitute a promising hint that the Hilbert space Hkin
could in fact support the quantum dynamics of GR, there are well-taken con-
cerns about the physical correctness of the operator Ĉ†

E(N):

The problem is that one would like to see more than that the commutator of
two dual Hamiltonian constraints annihilates diffeomorphism invariant states,
one would like to see something of the kind

[Ĉ†
E(N), Ĉ†

E(N ′)] = i�2P
̂

[
∫
Σ

d3x[NN ′
,a −N,aN ′]qabVb]. (105)

The reason for this is that then one would be sure that Ĉ†
E(N) generates the

correct quantum evolution. While this requirement is not necessary, it is certainly
sufficient and would be reassuring8. There are two obstacles that prevent us from
rewriting the left hand side of (105) in terms of the right hand side.

1) The one parameter groups s �→ V̂ (ϕus ) of unitarities where ϕus are the one
parameter groups of diffeomorphisms defined by the integral curves of a
vector field u are not weakly continuous, therefore a self-adjoint generator
V̂ (u) that we would like to see on the right hand side of (105) simply does
not exist.

8 Example: Suppose that Ca are the angular momentum components for a particle in in
R

3 with classical constraint algebra {Ca, Cb} = εabcCc. Introduce polar coordinates
and define the non-self adjoint operators Ĉ1 = i�∂/∂θ, Ĉ2 = i�∂/∂φ, Ĉ3 = 0.
Then the quantum constraint algebra is Abelean and does not at all resemble the
classical one, however, the physical states are certainly the correct ones, functions
that depend only on the radial coordinate.
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Exercise 23.
Recall Stone’s theorem about the existence of the self-adjoint generators of weakly con-
tinuous one-parameter unitary groups and verify that V̂ (ϕus ) is not weakly continuous
on Hkin.

2) One can quantize the right hand side of (105) by independent means and
it does annihilate D∗

Diff [48], however, that operator does not resemble the
left hand side in any obvious way. The reason for this is that even classi-
cally it takes a A4 page of calculation in order to rewrite the Poisson bracket
{CE(N), CE(N ′)} as in (105) with Va given by (21). The manipulations that
must be performed in order to massage the Poisson bracket into the desired
form involve a) integrations by part, b) writing Fab in terms of Aa, c) deriva-
tives of

√
det(q), d) multiplying fractions by functions in both numerator

and denominator, e) symmetry arguments in order to see that certain terms
cancel etc. (exercise!). These steps are obviously difficult to perform with
operators.

In summary, there is no mathematical inconsistency, however, there are
doubts about the physical correctness of the Hamiltonian constraint operator
presently proposed although no proof exists so far that it is necessarily wrong.
In order to make progress on this issue, it seems that we need to develop first
a semiclassical calculus for the theory, more precisely, we need coherent states
so that expectation values of operators and their commutators can be replaced,
up to � corrections, by their classical values and Poisson brackets respectively
for which then the manipulations listed in 2) above can be carried out. If that is
possible, and the outcome of these calculations is the expected one, possibly after
changing the operator by making use of the available quantization ambiguities,
then one would be able to claim that one has indeed constructed a quantum
theory of GR with the correct classical limit. Only then can one proceed to solve
the theory, that is, to construct solutions, the physical inner product and the
Dirac observables. The development of a semiclassical calculus is therefore one
of the “hot” research topics at the moment.

Another way to get confidence in the quantization method applied to the
Hamiltonian constraint is to study model systems for which the answer is known.
This has been done for 2+1 gravity [48] and for quantum cosmology to which
we turn in the next section.

3.2 Loop Quantum Cosmology

A New Approach To Quantum Cosmology. The traditional approach to
quantum cosmology consists in a so-called mini-superspace quantization, that
is, one imposes certain spacetime Killing symmetries on the metric, plugs the
symmetric metric into the Einstein Hilbert action and obtains an effective action
which depends only on a finite number of degrees of freedom. Then one canon-
ically quantizes this action. Thus one symmetrizes before quantization. These
models are of constant interest and have natural connections to inflation. See
e.g. [52] for recent reviews.
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What is not perfect about these models is that 1) not only do they switch
off all but an infinite number of degrees of freedom, but 2) also the quantization
method applied to the reduced model usually is quite independent from that
applied to the full theory. A fundamental approach to quantum cosmology will be
within the full theory and presumably involves the construction of semiclassical
physical states whose probability amplitude is concentrated on, say a Friedmann–
Robertson–Walker (FRW) universe. This would cure both drawbacks 1) and
2). At the moment we cannot really carry out such a programme since the
construction of the full theory is not yet complete. However, one can take a
more modest, hybrid approach, where while dealing only with a finite number
of degrees of freedom one takes over all the quantization machinery from the
full theory! Roughly speaking, one works on the space Hkin of the full theory
but considers only states therein which satisfy the Killing symmetry. Hence one
symmetrizes after quantization which amounts to considering only a finite subset
of holonomies and fluxes. This has the advantage of leading to a solvable model
while preserving pivotal structures of the full theory, e.g. the volume operator
applied to symmetric states will still have a discrete spectrum as in the full
theory while in the traditional approaches it is continuous. Such a programme
has been carried out in great detail by Bojowald in a remarkable series of papers
[53] and his findings are indeed spectacular, should they extend to the full theory:
It turns out that the details of the quantum theory are drastically different from
the traditional minisuperspace approach. In what follows we will briefly describe
some of these results, skipping many of the technical details.

Spectacular Results. Consider the FRW line element (in suitable coordinates)

ds2 = −dt2 + R(t)2[
dr2

1− kr2 + r2dΩ2
2 ] =: −dt2 + R(t)2q0

abdx
adxb. (106)

The universe is closed/flat/open for k = 1/0/ − 1. The only dynamical degree
of freedom left is the so-called scale factor R(t) which describes the size of the
universe and its conjugate momentum. The classical big bang singularity cor-
responds to the fact that the Einstein equations predict that limt→0 R(t) = 0
at which the metric (106) becomes singular and the inverse scale factor 1/R(t)
blows up (the curvature will be ∝ 1/R(t)2 so this singularity is a true curvature
singularity).

We are interested in whether the curvature singularity 1/R→∞ exists also
in the quantum theory. To study this we notice that for (85) det(q) = R6 det(q0).
Hence, up to a numerical factor this question is equivalent to the question
whether the operator corresponding to 1/ 6

√
det(q), when applied to symmet-

ric states, is singular or not. However, we saw in the previous section that one
can trade a negative power of det(q) by a Poisson bracket with the volume
operator. In [53] precisely this, for the Hamiltonian constraint, essential quan-
tization technique is applied which is why this model tests some aspects of the
quantization of the Hamiltonian constraint. Now it turns out that this opera-
tor, applied to symmetric states, leads to an operator 1̂

R which is diagonalized
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Fig. 13. Spectrum of the inverse scale factor

by (symmetric) SNWF’s and the spectrum is bounded ! In Fig. 13 we plot the
qualitative behaviour of the eigenvalues �Pλj as a function of j where j is the
spin label of a gauge invariant SNWF with a graph consisting of one loop only
(that only such states are left follows from a systematic analysis which defines
what a symmetric SNWF is). One can also quantize the operator R̂ and one sees
that its eigenvalues are essentially given by j�P up to a numerical factor. Thus
the classical singularity corresponds to j = 0 and one expects the points λj�p
at the values 1/j on the curve �P/R. Evidently the spectrum is discrete (pure
point) and bounded, at the classical singularity it is finite. In other words, the
quantum universe never decreases to zero size. For larger j, in fact already for
R of the order of ten Planck lengths and above, the spectrum follows the classi-
cal curve rather closely hinting at a well-behaved classical limit (correspondence
principle).

Even more is true: One can in fact quantize the Hamiltonian constraint by
the methods of the previous section and solve it exactly. One obtains an eighth
order difference equation (in j). The solution therefore depends non-trivially
on the initial condition. What is surprising, however, is the fact that only one
set of initial conditions leads to the correct classical limit, thus in loop quan-
tum cosmology initial conditions are derived rather than guessed. One can even
propagate the quantum Einstein equations through the classical singularity and
arrives at the picture of a bouncing universe.

Finally one may wonder whether these results are qualitatively affected by
the operator ordering ambiguities of the Hamiltonian constraint. First of all one
finds that these results hold only if one orders the loop in (101) to the left of the
volume operator as written there. However, one is not forced to work with the
holonomy around that loop in the fundamental representation of SU(2), there is
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some flexibility [51] and one can choose a different one, say j0. It turns out that
the value j0 influences the onset of classical behaviour, that is, the higher j0 the
higher the value j(j0) from which on the spectrum in Fig. 13 lies on the curve
1/j. Now this is important when one couples, say scalar matter because the
operator 1̂

R enters the matter part of the Hamiltonian constraint and modifies
the resulting effective equation for R(t) in the very early phase of the universe
and leads to a quantum gravity driven inflationary period whose duration gets
larger with larger j0!

Thus, loop quantum cosmology not only confirms aspects of the quantiza-
tion of the Hamiltonian constraint but also predicts astonishing deviations from
standard quantum cosmology which one should rederive in the full theory.

3.3 Path Integral Formulation: Spin Foam Models

Spin Foams from the Canonical Theory. Spin Foam models are the fusion
of ideas from topological quantum field theories and loop quantum gravity, see
e.g. [54] for a review, especially the latest, most updated one by Perez. The idea
that connects these theories is actually quite simple to explain at an heuristic
level:

If we forget about 1) all functional analytic details, 2) the fact that the
operator valued distributions corresponding to the Hamiltonian constraint Ĉ(x)
do not mutually commute for different x ∈ σ and 3) that the Hamiltonian
constraint operators Ĉ(N) are certainly not self-adjoint, at least as presently
formulated, then we can formally write down the complete space of solutions to
the Hamiltonian constraint as a so-called “rigging map” (see e.g. [1])

η̄ : Dkin → D∗
phys; f �→ δ[Ĉ] f := [

∏
x∈Σ

δ(Ĉ(x)) f ] (107)

(where η̄ = c.c · η is the complex conjugate of the actual anti-linear rigging
map). Here the δ-distribution of an operator is defined via the spectral theo-
rem (assuming the operator to be self-adjoint). Notice that we do not need to
order the points x ∈ σ as we assumed the Ĉ(x) to be mutually commuting for
the moment and only under this assumption it is true that, at least formally
η̄[f ](Ĉ(N)f ′) = 0 (exercise)9. Now we use the formula δ(x) =

∫
R

dk
2π e

ikx to write
the functional δ-distribution δ[Ĉ] as a path integral

δ[Ĉ] =
∫

N ′
[DN ]eiĈ(N) , (108)

where we have neglected an infinite constant as usual in this formal business.
Here N ′ is the space of lapse functions at a fixed time. Let us introduce also the
9 At an even more formal level η̄[f ] is also a solution in the non-commuting case if, as is

the case with the currently proposed Ĉ, the algebra with the spatial diffeomorphism
constraint closes
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space of lapses with arbitrary time dependence Nt1,t2 in t ∈ [t1, t2]. Then, up to
an infinite constant one can verify that

δ[Ĉ] =
∫

N t2
t1

[DN ]ei
∫ t2

t1
dt

∫
Σ
d3xN(x,t)Ĉ(x) . (109)

The rigging map machinery then tells us that the scalar product on the image
of the rigging map is simply given by

< η̄(f), η̄(f ′) >phys:=< f, η̄(f ′) >kin=
∫

N t2
t1

[DN ] < f, ei
∫ t2

t1
dtĈ(Nt)f ′ >kin .

(110)

This formula looks like a propagator formula, that is, like a transition amplitude
between an initial state f ′ on Σt1 and a final state f on Σt2 after a multi-fingered
time evolution generated by Ĉ(Nt). In fact, if we use the Taylor expansion of
the exponential function and somehow regularize the path integral then the
expansion coefficients < Ts, Ĉ(Nt)nT ′s′ >kin can be interpreted as probability
amplitude of the evolution of the SNW state T ′

s′ to reach the SNW state Ts after
n time steps (recall Fig. 12).

Now by the usual formal manipulations that allow us to express a unitary
operator ei(t2−t1)Ĥ as a path integral over the classical pase space M (the rig-
orous version of which is the Feynman–Kac formula, e.g. [56]) one can rewrite
(110) as

< η̄(f), η̄(f ′) >phys=
∫

[DN DN DΛ DA DE] < f, eiSf ′ >kin , (111)

where S is the Einstein-Hilbert action written in canonical form in terms of the
variables A,E, that is

S =
∫

R

dt

∫
Σ

d3x{ȦjaEa
j − [−ΛjGj + NaVa + NC]} (112)

and we have simultaneously included also projections on the space of solutions
to the Gauss and vector constraint. Now the action (112) is the 3+1 split of the
following covariant action

S =
∫
M

{ΩIJ ∧ [εIJKL − β−1ηIKηJK ]eK ∧ eL} (113)

discovered in [57] where β is the Immirzi parameter. Here ΩIJ is the (antisym-
metric) curvature two-form of an (antisymmetric) SL(2,C) connection one-form
ωIJ with Lorentz indices I, J,K, .. = 0, 1, 2, 3, η is the Minkowski metric and eI

is the co-tetrad one-form. The first term in (113) is called the Palatini action
while the second term is topological (a total differential modulo the equations
of motion). The relation between the four-dimensional fields ωIJµ , eIµ (40 compo-
nents) and the three-dimensional fields Aja, E

a
j , Λ

j , N,Na (25 components) can
only be established if certain so-called second class constraints [20] are solved.
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Spin Foams and BF-Theory. Thus, it is formally possible to write the inner
product between physical states as a covariant path integral for the classical
canonical action and using only the kinematical inner product, thus providing
a bridge between the covariant and canonical formalism. However, this bridge
is far from being rigorously established as we had to perform many formal,
unjustified manipulations. Now rather than justifying the steps that lead from
Ĉ to (111) one can turn the logic upside down and start from a manifestly
covariant formulation and derive the canonical formulation. This is the attitude
taken by people working actively on spin foam models. Thus, let us forget about
the topological term in (113) and consider only the Palatini term. Then the
Palatini action has precisely the form of a BF-action

SBF =
∫
M

ΩIJ ∧BIJ (114)

just that the (antisymmetric) two-form field BIJ is not arbitrary (it would have
36 independent components), it has to come from a tetrad with only 16 inde-
pendent components, that is, it has to be of the form εIJKLeK ∧ eL.

Exercise 24.
Show that the condition that B comes from a tetrad is almost10 equivalent to the
simplicity constraint

εIJKLB
IJ
µνB

KL
ρσ = cεµνρσ (115)

for some spacetime scalar density c of weight one.

The reasoning is now as follows: BF-theory without the constraint (115) is a
topological field theory, that is, it has no local degrees of freedom. Therefore
quantum BF-theory is not really a QFT but actually a quantum mechanical
system and can therefore be handled much more easily than gravity. Let us now
write an action equivalent to the Palatini action given by

S′
P [ω,B, Φ] = SBF [ω,B] + SI [B,Φ]

SI [B,Φ] :=
∫
M

ΦµνρσεIJKLB
IJ
αβB

KL
γδ [δαµδ

β
ν δ

γ
ρ δ
δ
σ −

1
4!

εαβγδεµνρσ] , (116)

where the Lagrange multiplier Φµνρσ [58] is a four dimensional tensor density of
weight one, symmetric in the index pairs (µν) and (ρσ) and antisymmetric in
each index pair. Thus, Φ has (6 ·7)/2 = 21 independent components of which the
totally skew component is projected out in (116), leaving us with 36− 16 = 20
independent components. Hence the Euler Lagrange equations for Φ precisely
delete the amount of unwanted degrees of freedom in B and impose the simplicity
constraint. Hence, classically S′

P [Ω,B,Φ] and SP [Ω, e] are equivalent. Thus, if we
write a path integral for S′

P and treat the Lagrange multiplier term SI in (116)
as an interaction Lagrangean (a perturbation) to BF-theory, then we can make
use of the powerful techniques that have been developed for the path integral
quantization for BF-theory and its perturbation theory.
10 Another solution is BIJ = eI ∧ eJ but this possibility is currently not discussed.
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Exercise 25.

i) Write the Euler Lagrange equations for BF-theory and conclude that the solutions
consist of flat connections ω and gauge invariant B− fields. Conclude that ω can
be gauged to zero by SL(2,C) transformations locally and that then B is closed,
that is, locally exact by Poincaré’s theorem. Now, verify that the BF-action is not
only invariant under local SL(2,C)-transformations but also under

BIJ = �→ BIJ + (D ∧ θ)IJ = BIJ + dθIJ + ωI K ∧ θKJ + θIK ∧ ωK J (117)

for some sl(2,C) valued one-form θ and that therefore also B can be gauged to
zero locally.
Hint: Use the Bianchi identity for Ω.

ii) Perform the Legendre transformation and conclude that there are as many first
class constraints as canonical pairs so that again at most a countable number of
global degrees of freedom can exist.

One may wonder how it is possible that a theory with less kinematical degrees
of freedom has more dynamical (true) degrees of freedom. The answer is that
BF-theory has by far more symmetries than the Palatini theory, thus when
constraining the number of degrees of freedom we are freezing more symmetries
than we deleted degrees of freedom.

Let us now discuss how one formulates the path integral corresponding to
the action (116). It is formally given by

KP (Σt1 , Σt2) =
∫

[Dω DB DΦ]eiS
′
P [ω,B,Φ] , (118)

where Σt1 , Σt2 denote suitable boundary conditions specified in more detail be-
low. Suppose we set Φ = 0, then (118) is a path integral for BF-theory and the
integral over B results in the functional δ-distribution δ[Ω] imposing the flat-
ness of ω. Now flatness of a connection is equivalent to trivial holonomy along
contractible loops by the Ambrose–Singer theorem. If one regularizes the path
integral by introducing a triangulation τ of M , then δ[F ] can be written as∏
α δ(ω(α), 1) where the product is over a generating system of independent,

contractible loops in τ and δ(ω(α), 1) denotes the δ-distribution on SL(2,C)
with respect to the Haar measure. Since SL(2,C) is a non-compact group, the
δ-distribution is a direct integral over irreducible, unitary representations rather
than a direct sum as it would be the case for compact groups (Peter&Weyl
theorem). Such representations are infinite dimensional and are labelled by a
continuous parameter ρ ∈ R

+
0 and a discrete parameter n ∈ N

+
0 . Thus, one ar-

rives at a triangulated spin foam model: For a fixed triangulation one integrates
(sums) over all possible “spins” ρ (n) that label the generating set of loops
(equivalently: the faces that they enclose) of that triangulated four manifold.
The analogy with the state sum models for TQFT’s is obvious.

Now what one does is a certain jump, whose physical implication is still not
understood: Instead of performing perturbation theory in SI one argues that
formally integrating over Φ and thus imposing the simplicity constraint is equiv-
alent to the restriction of the direct integral that enters the δ-distributions to
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simple representations, that is, representations for which either n = 0 or ρ = 0.
In other words, one says that the triangulated Palatini path integral is the same
as the triangulated BF path integral restricted to simple representations. To
motivate this argument, one notices that upon canonical quantization of BF
theory on a triangulated manifold the B field is the momentum conjugate to
ω and if one quantizes on a Hilbert space based on sl(2,C) connections using
the Haar measure (similar as we have done for SU(2) for a fixed graph), its
corresponding flux operator B̂IJ(S) becomes a linear combination of right in-
variant vector fields RIJ on SL(2,C). Now the simplicity constraint becomes the
condition that the second Casimir operator RIJRKLεIJKL vanishes. However,
on irreducible representations this operator is diagonal with eigenvalues nρ/4.
While this is a strong motivation, it is certainly not sufficient justification for
this way of implementing the simplicity constraint in the path integral because
it is not clear how this is related to integrating over Φ.

In any case, if one does this then one arrives at (some version of) the
Lorentzian Barrett–Crane model [59]. Surprisingly, for a large class of trian-
gulations τ the amplitudes

Kτ
P (Σt1 , Σt2) := [

∫
[Dω DB]eiSBF [ω,B]]|simplereps. (119)

actually converge although one integrates over a non-compact group! This is
a non-trivial result [60]. The path integral is then over all possible representa-
tions that label the faces of a spin foam and the boundary conditions keep the
representations on the boundary graphs, that is, spin networks fixed (SL(2,C)
reduces to the SU(2) on the boundary). This also answers the question of what
the boundary conditions should be.

There is still an open issue, namely how one should get rid of the regulator
(or triangulation) dependence. Since BF-theory is a topological QFT, the ampli-
tudes are automatically triangulation independent, however, this is certainly not
the case with GR. One possibility is to sum over triangulations and a concrete
proposal of how to weigh the contributions from different triangulations comes
from the so-called field theory formulation of the theory [61]. Here one reformu-
lates the BF-theory path integral as the path integral for a scalar field on a group
manifold which in this case is a certain power of SL(2,C). The action for that
scalar field has a free piece and an interaction piece and performing the pertur-
bation theory (Feynman graphs!) for that field theory is equivalent to the sum
over BF-theory amplitudes for all triangulated manifolds with precisely defined
weights. This idea can be straightforwardly applied also to our context where
the restriction to simple representations is realized by imposing corresponding
restrictions (projections) on the scalar field.

Summarizing, spin foam models are a serious attempt to arrive at a covariant
formulation of QGR but many issues are still unsettled, e.g.:

1. There is no clean equivalence with the Hamiltonian formulation as we have
seen. Without that it is unclear how to interpret the spin foam model ampli-
tude and whether it has the correct classical limit. In order to make progress
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on the issue of the classical limit, model independent techniques for con-
structing “causal spin foams” [62] with a built in notion of quantum causal-
ity and renormalization methods [63], which should allow in principle the
derivation of a low energy effective action, have been developed.

2. The physical correctness of the Barrett–Crane model is unclear. This is em-
phasized by recent results within the Euclidean formulation [64] which sug-
gest that the classical limit is far off GR since the amplitudes are dominated
by spin values close to zero. This was to be expected because in the defini-
tion of the Barrett–Crane model there is a certain flexibility concerning the
choice of the measure that replaces [Dω DB] at the triangulated level and
the result [64] indicates that one must gain more control on that choice.

3. It is not even clear that these models are four-dimensionally covariant: One
usually defines that the amplitudes for a fixed triangulation are the same for
any four - diffeomorphic triangulation. However, recent results [65] show that
this natural definition could result nevertheless in anomalies. This problem
is again related to the choice of the measure just mentioned.

Thus, substantially more work is required in order to fill in the present gaps but
the results already obtained are very promising indeed.

3.4 Quantum Black Holes

Isolated Horizons. Any theory of quantum gravity must face the question
whether it can reproduce the celebrated result due to Bekenstein and Hawk-
ing [66] that a black hole in a spacetime (M, g) should account for a quantum
statistical entropy given by

SBH =
Ar(H)
4�2P

, (120)

where H denotes the two-dimensional event horizon of the black hole. This result
was obtained within the framework of QFT on Curved SpaceTimes (CST) and
should therefore be valid in a semiclassical regime in which quantum fluctuations
of the gravitational field are negligible (large black holes). The most important
question from the point of view of a microscopical theory of quantum gravity is,
what are the microscopical degrees of freedom that give rise to that entropy. In
particular, how can it be within a quantum field theory with an infinite number
of degrees of freedom, that this entropy, presumably a measure for our lack of
information of what happens behind the horizon, comes out finite.

In [67] the authors performed a bold computation: For any surface S and
any positive number A0 they asked the question how many SNW states there
are in QGR such that the area operators eigenvalues lie within the interval
[A0− �2P, A0 + �2P]. This answer is certainly infinite because a SNW can intersect
S in an uncountably infinite number of different positions without changing the
eigenvalues. This divergence can be made less severe by moding out by spatial
diffeomorphisms which we can use to map these different SNW onto each other
in the vicinity of the surface. However, since there are still an infinite number
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of non-spatially diffeomorphic states which look the same in the vicinity of the
surface but different away from it, the answer is still divergent. Therefore, one has
to argue that one must not count information off the surface, maybe invoking the
Hamiltonian constraint or using the information that S = H is not an arbitrary
surface but actually the horizon of a black hole. Given this assumption, the result
of the, actually quite simple counting problem came rather close to (120) with
the correct factor of 1/4.

Thus the task left is to justify the assumptions made and to make the entropy
counting water-tight by invoking the information that H is a black hole horizon.
The outcome of this analysis created a whole industry of its own, known under
the name “isolated horizons”, which to large part is a beautiful new chapter
in classical GR. In what follows we will focus only on a tiny fraction of the
framework, mostly concentrating on the ingredients essential for the quantum
formulation. For reviews see [68] which also contain a complete list of references
on the more classical aspects of this programme, the pivotal papers concerning
the quantum applications are [69].

By definition, an event horizon is the external boundary of the part of M that
does not lie in the past of null future infinity J+ in a Penrose diagramme. From
an operational point of view, this definition makes little sense because in order
to determine whether a candidate is an event horizon, one must know the whole
spacetime (M, g) which is never possible by measurements which are necessarily
local in spacetime (what looks like an eternal black hole now could capture some
dust later and the horizon would change its location). Thus one looks for some
local substitute of the notion of an event horizon which captures the idea that
the black hole has come to some equilibrium state at least for some amount of
time. This is roughly what an isolated horizon ∆ is, illustrated in Fig. 14.

More in technical details we have the following.

Definition 13.
A part ∆ of the boundary ∂M of a spacetime (M, g) is called an isolated horizon,
provided that

1) ∆ ≡ R× S2 is a null hypersurface and has zero shear and expansion11.
2) The field equations and matter energy conditions hold at ∆.
3) g is Lie derived by the null generator l of ∆ at ∆.

The canonical formulation of a field theory on a manifold M with boundary
∆ must involve boundary conditions at ∆ in order that the variation principle
be well-defined (the action must be functionally differentiable). Such boundary
conditions usually give birth to boundary degrees of freedom [70] which would
normally be absent but now come into being because (part of the) gauge transfor-
mations are forced to become trivial at ∆. In the present situation what happens

11 Recall the notions of shear, expansion and twist of a congruence of vector fields in
connection with Raychaudhuri’s equation.
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Fig. 14. An isolated horizon ∆ boundary of a piece M (shaded) of spacetime also
bounded by spacelike hypersurfaces Σ1, Σ2. Radiation γ may enter or leave M and
propagate into the singularity before or after the isolated horizon has formed but must
not cross ∆. An intersection of a spacelike hypersurface Σ with ∆ is denoted by H
which has the topology of a sphere

is that the boundary term is actually a U(1) Chern-Simons action12

SCS =
A0

πβ

∫
∆

W ∧ dW =
∫

R

dt

∫
H

d2yεIJ [ẆIWJ + Wt(dW )IJ ] , (121)

where W is a U(1) connection one form and H = S2 = Σ ∩∆ is a sphere. The
relation between the bulk fields Aja, E

a
j and the boundary fields WI , I = 1, 2 is

given by

X∗
HAj = Wrj and [X∗

H(∗E)j ]rj = − A0

2πβ
dW , (122)

where XH : H → Σ is the embedding of the boundary H of Σ into Σ and
rj is an arbitrary but fixed unit vector in su(2) which is to be preserved under
SU(2) gauge transformations at ∆ and therefore reduces SU(2) to U(1). The
number A0 is the area of H as measured by g which turns out to be a constant
12 It was observed first in [71] that general relativity in terms of connection variables

and in the presence of boundaries leads to Chern–Simons boundary terms.
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of the motion as a consequence of the field equations. The existence of rj is a
consequence of definition (13) and ∗E is the natural metric independent two-form
dual to E.

Entropy Counting. One now has to quantize the system. This consists of
several steps whose details are complicated and which we will only sketch in
what follows.

i) Kinematical Hilbert Space
The bulk and boundary degrees of freedom are independent of each other,
therefore we choose Hkin = HΣkin ⊗HHkin where both spaces are of the form
L2(A, dµ0) just that the first factor is for an SU(2) bundle over Σ while the
second is for an U(1) bundle over H.

ii) Quantum Boundary conditions
Equation (122) implies, in particular, that in quantum theory we must have
schematically

[
̂[X∗
H(∗E)j ]rj

]
⊗ idHH

kin
= idHΣ

kin
⊗

[
− A0

2πβ
d̂W

]
. (123)

Now we have seen in the bulk theory that we have discussed in great detail
throughout this review, that ∗E is an operator valued distribution which
must be smeared by two-surfaces in order to arrive at the well-defined electric
fluxes. Since (123) is evaluated at H, this flux operator will non-trivially act
only on SNWF’s Ts which live in the bulk but intersect H in punctures
p ∈ H ∩ γ(s). Now the distributional character of the electric fluxes implies
that the left hand side of (123) is non-vanishing only at those punctures.
Thus the curvature of W is flat everywhere except for the punctures where
it is distributional.
Consider now SNWF’s Ts of the bulk theory and those of the boundary
theory T ′

c. Then ̂[X∗
H(∗E)j ]rj ] acts on Ts like the z-component of the angular

momentum operator and will have distributional eigenvalues proportional to
the magnetic quantum numbers me of the edges with punctures p = e ∩H
and spin je where me ∈ {−je,−je + 1, .., je}.

iii) Implementation of Quantum Dynamics at ∆

It turns out that ̂X∗
H(∗E)j ]rj and d̂W are the generators of residual SU(2)

gauge transformations close to XH(H) and of U(1) on H respectively. Now
these residual SU(2) transformations are frozen to U(1) transformations by
rj and the most general situation in order for a state to be gauge invariant
is that these residual SU(2) transformations of the bulk theory and the
U(1) transformations of the boundary theory precisely cancel each other. It
turns out that this cancellation condition is precisely given by the quantum
boundary condition (123). Thus the states that solve the Gauss constraint
are linear combinations of states of the form Ts ⊗ T ′

c where the boundary
data of these states are punctures p ∈ P where p ∈ γ(s) ∩ H, the spins
jp = jep of edges e ∈ E(γ(s)) with ep ∩H = p and their magnetic quantum
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numbers mp = mep . However, due to the specific features of the geometrical
quantization of Chern-Simons theories [72] the mp cannot be specified freely,
they have to satisfy the constraint

∑
p∈P

2mp = 0 mod k, k =
A0

4π�2P
, (124)

where k is called the level of a Chern Simons theory which is constrained
to be an integer due to Weil’s quantization obstruction cocycle criterion of
geometric quantization [30] and comes about as follows: The T ′

c are actually
fixed to be Θ-functions of level k labelled by integers ap which satisfy the
gauge invariance condition

2mp = −ap mod k,
∑
p

ap = 0 mod k. (125)

Next, the spatial diffeomorphism constraint of the bulk theory tells us that
the position of the punctures on H are not important, important is only
their number.
Finally, one of the boundary conditions at ∆ implies that the lapse becomes
trivial N = 0 at H if Ĉ(N) is to generate an infinitesimal time reparameter-
ization13. Thus, luckily we can escape the open issues with the Hamiltonian
constraint as far as the quantum dynamics at H is concerned.

We can now come to the issue of entropy counting. First of all we notice that
Ar(H) is a Dirac observable because H is invariant under Diff(H) and N = 0 at
H. Given n punctures with spins jl, l = 1, .., N the area eigenvalue for H is

λ(n, j) = 8π�2Pβ
n∑
n=1

√
jl(jl + 1). (126)

Now the physical Hilbert space is of the form

Hphys = ⊕n,j,m,a=k−2m HBn,j,m ⊗HBHn,j,m ⊗HHn,a , (127)

where HBHn,j,m describes bulk degrees of freedom10.eps at H corresponding to the
black hole (finite dimensional), HBn,j,m describes bulk degrees of freedom away
from H and finally HHn,a describes Chern–Simons degrees of freedom which are
completely fixed in terms of m due to reasons of gauge invariance (125). The
situation is illustrated in Fig. 15. Let δ > 0 and let SA0,δ be the set of eigenstates

13 This does not mean that the lapse of a classical isolated horizon solution must vanish
at S, rather there is a subtle difference between gauge motions and symmetries for
field theories with boundaries [70] where in this case symmetries map solutions to
gauge inequivalent or equivalent ones respectively, if N|H �= 0 or N|H = 0 respec-
tively.
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Fig. 15. Punctures, spins, magnetic quantum numbers and entropy counting. Only the
relevant boundary data are shown, the bulk information is traced over

ψn,j,m ∈ HBHn,j,m of the area operator such that the eigenvalue lies in the interval
[A0 − δ, A0 + δ] and NA0,δ their number. Define the density matrix

ρ̂BH = idB ⊗

 1
N A0,δ

∑
ψ∈SA0,δ

|ψ >< ψ|

⊗ idH . (128)

The quantum statistical entropy from this microcanonical ensemble is given by

SBH = −Tr(ρ̂BH ln(ρ̂BH)) = ln(NA0,δ) . (129)

Thus we just need to count states and the answer will be finite because the area
operator has an area gap.

Exercise 26.
Estimate NA0,δ from above and below taking into account the constraint (124) and
that k is an integer (purely combinatorial problem!).

The result of the counting problem is that SBH is indeed given by (120) to
leading order in A0 (there are logarithmic corrections) for δ ≈ �2P provided that

β =
ln(2)
π
√

3
. (130)

Here the numbers ln(2),
√

3 comes from the fact that the configurations with low-
est spin jl = 1/2 make the dominant contribution to the entropy with eigenvalue
∝ βn

√
3 ≈ A0 and number of states given by NA0,δ ≈ 2n that is, two Boolean
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degrees of freedom per puncture [73]. This provides an explicit explanation for
the origin of the entropy. Now fixing β at the value (130) would make little sense
would it be different for different types of black hole (that is, in presence of
different matter, charges, rotation, other hair,..). However, this is not the case!

In summary, the analysis sketched above provides a self-contained derivation
of SBH within QGR. The result is highly non-trivial because it was not to be
expected from the outset that Loop Quantum Gravity, classical GR and Chern
Simons theory would interact in such a harmonic way as to provide the expected
result: Chern–Simons theory is very different from QGR and still they have an
interface at H. The result applies to astrophysically interesting black holes of
the Schwarzschild type and does not require supersymmetry. Nevertheless, the
calculation still has a semiclassical input because the presence of the isolated
horizon is fed in at the classical level already. It would be more satisfactory to
have a quantum definition of an (isolated) horizon but this is a hard task and
left for future research. Another unsolved problem then is the calculation of the
Hawking effect from first principles.

3.5 Semiclassical Analysis

The Complexifier Machinery for Generating Coherent States. Let us
first specify what we mean by semiclassical states.

Definition 14.
Let be given a phase space M, {., .} with preferred Poisson subalgebra O of
C∞(M) and a Hilbert space H, [., .] together with an operator subalgebra Ô of
L(H). The tripleM, {., .},O is said to be a classical limit of the tripleH, [., .], Ô
provided that there exists an (over)complete set of states {ψm}m∈M such that
for all O,O′ ∈ O the infinitesimal Ehrenfest property

∣∣∣∣∣
< Ô >m

O(m)
− 1

∣∣∣∣∣� 1 ,

∣∣∣∣∣
< [Ô, Ô′] >m

i�{O,O′}(m)
− 1

∣∣∣∣∣� 1 (131)

and the small fluctuation property
∣∣∣∣∣
< Ô2 >m

< Ô >2
m

− 1

∣∣∣∣∣� 1 (132)

holds at generic14 points in M. Here < . >m:=< ψm, .ψm > /||ψm||2 denotes
the expectation value functional.

For systems with constraints, strictly speaking, semiclassical states should be
physical states, that is, those that solve the constraints because we are not
interested in approximating gauge degrees of freedom but only physical observ-
ables. Only then are the predictions (� corrections to the classical limit) of the
14 The set of points where (131), (132) are violated should have small Liouville measure.
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theory reliable. In the present situation with QGR, however, we are more inter-
ested in constructing kinematical semiclassical states for the following reason:
As we have shown, the status of the physical correctness of the Hamiltonian
constraint operator Ĉ is unsettled. We would therefore like to test whether it
has the correct classical limit. This test is obviously meaningless on states which
the Hamiltonian constraint annihilates anyway. For the same reason it also does
not make sense to construct semiclassical states which are at least spatially dif-
feomorphism invariant because the Hamiltonian constraint does not leave this
space invariant.

The key question then is how to construct semiclassical states. Fortunately,
for phase spaces which have a cotangent bundle structure as is the case with
QGR, a rather general construction guideline is available [74], the so-called Com-
plexifier Method, which we will now sketch:

Let (M, {., .}) be a phase space with (strong) symplectic structure {., .} (no-
tice thatM is allowed to be infinite dimensional). We will assume thatM = T ∗C
is a cotangent bundle. Let us then choose a real polarization ofM, that is, a real
Lagrangean submanifold C which will play the role of our configuration space.
Then a loose definition of a complexifier is as follows:

Definition 15.
A complexifier is a positive definite function 15 C on M with the dimension of
an action, which is smooth a.e. (with respect to the Liouville measure induced
from {., .}) and whose Hamiltonian vector field is everywhere non-vanishing on
C. Moreover, for each point q ∈ C the function p �→ Cq(p) = C(q, p) grows
stronger than linearly with ||p||q where p is a local momentum coordinate and
||.||q is a suitable norm on T ∗

q (C).
In the course of our discussion we will motivate all of these requirements.

The reason for the name complexifier is that C enables us to generate a
complex polarization of M from C as follows: If we denote by q local coordinates
of C (we do not display any discrete or continuous labels but we assume that
local fields have been properly smeared with test functions) then

z(m) :=
∞∑
n=0

in

n!
{q, C}(n)(m) (133)

define local complex coordinates of M provided we can invert z, z̄ for m :=
(q, p) where p are the fibre (momentum) coordinates of M. This is granted at
least locally by definition 15. Here the multiple Poisson bracket is inductively
defined by {q, C}(0) = q, {q, C}(n+1) = {{q, C}(n), C} and makes sense due to
the required smoothness. What is interesting about (133) is that it implies the
following bracket structure

{z, z} = {z̄, z̄} = 0 (134)

15 For the rest of this section C will denote a complexifier function and not the Hamil-
tonian constraint.
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while {z, z̄} is necessarily non-vanishing. The reason for this is that (133) may
be written in the more compact form

z = e−iLχC q = ([ϕtχC
]∗q)t=−i , (135)

where χC denotes the Hamiltonian vector field of C, L denotes the Lie derivative
and ϕtχC

is the one-parameter family of canonical transformations generated by
χC . Formula (135) displays the transformation (133) as the analytic extension
to imaginary values of the one parameter family of diffeomorphisms generated
by χC and since the flow generated by Hamiltonian vector fields leaves Poisson
brackets invariant, (134) follows from the definition of a Lagrangean submanifold.
The fact that we have continued to the negative imaginary axis rather than
the positive one is important in what follows and has to do with the required
positivity of C.

The importance of this observation is that either of z, z̄ are coordinates of a
Lagrangean submanifold of the complexificationMC, i.e. a complex polarization
and thus may serve to define a Bargmann-Segal representation of the quantum
theory (wave functions are holomorphic functions of z). The diffeomorphism
M → CC; m �→ z(m) shows that we may think of M either as a symplectic
manifold or as a complex manifold (complexification of the configuration space).
Indeed, the polarization is usually a positive Kähler polarization with respect to
the natural {., .}-compatible complex structure on a cotangent bundle defined
by local Darboux coordinates, if we choose the complexifier to be a function of p
only. These facts make the associated Segal-Bargmann representation especially
attractive.

We now apply the rules of canonical quantization: a suitable Poisson algebra
O of functions O on M is promoted to an algebra Ô of operators Ô on a Hilbert
space H subject to the condition that Poisson brackets turn into commutators
divided by i� and that reality conditions are reflected as adjointness relations,
that is,

[Ô, Ô′] = i� ̂{O,O′}+ o(�), Ô† = ˆ̄O + o(�) , (136)

where quantum corrections are allowed (and in principle unavoidable except if
we restrict O, say to functions linear in momenta). We will assume that the
Hilbert space can be represented as a space of square integrable functions on (a
distributional extension C of) C with respect to a positive, faithful probability
measure µ, that is, H = L2(C, dµ) as it is motivated by the real polarization.

The fact that C is positive motivates to quantize it in such a way that it
becomes a self-adjoint, positive definite operator. We will assume this to be the
case in what follows. Applying then the quantization rules to the functions z in
(133) we arrive at

ẑ =
∞∑
n=0

in

n!

[q̂, Ĉ](n)

(i�)n
= e−Ĉ/�q̂eĈ/�. (137)
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The appearance of 1/� in (137) justifies the requirement for C/� to be dimen-
sionless in definition 15. We will call ẑ annihilation operator for reasons that will
become obvious in a moment.

Let now q �→ δq′(q) be the δ-distribution with respect to µ with support at
q = q′. (More in mathematical terms, consider the complex probability measure,
denoted as δq′dµ, which is defined by

∫
δq′dµf = f(q′) for measurable f). Notice

that since C is non-negative and necessarily depends non-trivially on momenta
(which will turn into (functional) derivative operators in the quantum theory),
the operator e−Ĉ/� is a smoothening operator. Therefore, although δq′ is certainly
not square integrable, the complex measure (which is probability if Ĉ · 1 = 0)

ψq′ := e−Ĉ/�δq′ (138)

has a chance to be an element ofH. Whether or not it does depends on the details
of M, {., .}, C. For instance, if C as a function of p at fixed q has flat directions,
then the smoothening effect of e−Ĉ/� may be insufficient, so in order to avoid
this we required that C is positive definite and not merely non-negative. If C
would be indefinite, then (138) has no chance to make sense as an L2 function.

We will see in a moment that (138) qualifies as a candidate coherent state
if we are able to analytically extend (138) to complex values z of q′ where the
label z in ψz will play the role of the point in M at which the coherent state is
peaked. In order that this is possible (and in order that the extended function is
still square integrable), (138) should be entire analytic. Now δq′(q) roughly has
an integral kernel of the form ei(k,(q−q

′)) (with some pairing < ., . > between
tangential and cotangent vectors) which is analytic in q′ but the integral over
k, after applying e−Ĉ/�, will produce an entire analytic function only if there is
a damping factor which decreases faster than exponentially. This provides the
intuitive explanation for the growth requirement in definition 15. Notice that
the ψz are not necessarily normalized.

Let us then assume that

q �→ ψm(q) := [ψq′(q)]q′→z(m) = [e−Ĉ/�δq′(q)]q′→z(m) (139)

is an entire L2 function. Then ψm is automatically an eigenfunction of the an-
nihilation operator ẑ with eigenvalue z since

ẑψm = [e−Ĉ/�q̂δq′ ]q′→z(m) = [q′e−Ĉ/�δq′ ]q′→z(m) = z(m)ψm , (140)

where in the second step we used that the delta distribution is a generalized
eigenfunction of the operator q̂. But to be an eigenfunction of an annihilation
operator is one of the accepted definitions of coherent states!

Next, let us verify that ψm indeed has a chance to be peaked at m. To see
this, let us consider the self-adjoint (modulo domain questions) combinations

x̂ :=
ẑ + ẑ†

2
, ŷ :=

ẑ − ẑ†

2i
(141)
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whose classical analogs provide real coordinates for M. Then we have automat-
ically from (140)

< x̂ >m:=
< ψm, x̂ψm >

||ψm||2 =
z(m) + z̄(m)

2
=: x(m) (142)

and similar for y. Equation (142) tells us that the operator ẑ should really
correspond to the function m �→ z(m), m ∈M.

Now we compute by similar methods that

< [δx̂]2 >m:=
< ψm, [x̂− < x̂ >m]2ψm >

||ψm||2 =< [δŷ]2 >m=
1
2
| < [x̂, ŷ] >m | ,

(143)

so that the ψm are automatically minimal uncertainty states for x̂, ŷ, moreover
the fluctuations are unquenched (equal each other). This is the second motivation
for calling the ψm coherent states. Certainly one should not only check that
the fluctuations are minimal but also that they are small as compared to the
expectation value, at least at generic points of the phase space, in order that the
quantum errors are small.

The infinitesimal Ehrenfest property

< [x̂, ŷ] >z

i�
= {x, y}(m) + O(�) (144)

follows if we have properly implemented the canonical commutation relations
and adjointness relations. The size of the correction, however, does not follow
from these general considerations but the minimal uncertainty property makes
small corrections plausible. Condition (144) supplies information about how well
the symplectic structure is reproduced in the quantum theory.

For the same reason one expects that the peakedness property

|< ψm, ψm′ > |2
||ψm||2 ||ψm′ ||2 ≈ χKm

(m′) (145)

holds, where Km is a phase cell with center m and Liouville volume ≈√
< [δx̂]2 >m< [δŷ]2 >m and χ denotes the characteristic function of a set.
Finally one wants coherent states to be overcomplete in order that every state

in H can be expanded in terms of them. This has to be checked on a case by case
analysis but the fact that our complexifier coherent states are for real z nothing
else than regularized δ distributions which in turn provide a (generalized) basis
makes this property plausible to hold.

Exercise 27.
Consider the phase space: M = T ∗

R = R
2 with standard Poisson brackets {q, q} =

{p, p} = 0, {p, q} = 1 and configuration space C = R. Consider the complexifier
C = p2/(2σ) where σ is a dimensionful constant such that C/� is dimensionless. Check
that it meets all the requirements of definition 15 and perform the coherent state
construction displayed above.
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Hint: Up to a phase, the resulting, normalized coherent states are the usual ones for
the harmonic oscillator with Hamiltonian H = (p2/m+mω2q2)/2 with σ = mω. Verify
that the states ψm are Gaussian peaked in the configuration representation with width√

�/σ around q = q0 and in the momentum representation around p = p0 with width√
�σ where m = (p0, q0).

As it has become clear from the discussion, the complexifier method gives a
rough guideline, but no algorithm, in order to arrive at a satisfactory family of
coherent states, there are things to be checked on a case by case basis. On the
other hand, what is nice is that given only one input, namely the complexifier C,
it is possible to arrive at a definite and constructive framework for a semiclassical
analysis. It is important to know what the classical limit of Ĉ is, otherwise, if
we have just an abstract operator Ĉ then the map m �→ z(m) is unknown and
an interpretation of the states in terms of M is lost.

Application to QGR. Let us now apply these ideas to QGR. Usually the
choice of C is strongly motivated by a Hamiltonian, but in QGR we have none.
Therefore, at the moment the best we can do is to play with various proposals for
Ĉ and to explore the properties of the resulting states. For the simplest choice
of Ĉ [75] those properties have been worked out more or less completely and we
will briefly describe them below.

The operator Ĉ is defined by its action on cylindrical functions f = p∗
γfγ by

Ĉ

�
f = −p∗

γ [
1
2
[

∑
e∈E(γ)

l(e)[Rje/2]2] fγ ] =: p∗
γ [Ĉγfγ ] , (146)

where the positive numbers l(e) satisfy l(e ◦ e′) = l(e) + l(e′) and l(e−1) = l(e)
and Rje are the usual right invariant vector fields.

Exercise 28.
Recall the definition of the maps pγ′γ for γ ≺ γ′ from Sect. 2.1 and check that the Ĉγ
are consistently defined, that is, Ĉγ′ ◦ p∗

γ′γ = p∗
γ′γ ◦ Ĉγ .

This choice is in analogy to the harmonic oscillator where the quantum complex-
ifier is essentially the Laplacian −(d/dx)2. The classical limit of (146) depends
in detail on the function l which is analogous to the parameter �/σ for the case
of the harmonic oscillator. For instance [74], one can choose a) three families of
foliations s �→ HI

s , I = 1, 2, 3 of σ by two dimensional surfaces HI
s such that

there is a bijection (s1, s2, s3) �→ x(s) := [∩IHI
sI ] ∈ σ and b) a partition P I

s of
the HI

s into small surfaces S and define

C =
1

2a2κ

∫
R

ds

3∑
I=1

∑
S∈P I

s

[Ar(S)]2 (147)
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where Ar(S) is again the area functional and a is a dimensionful constant
of dimension cm1. The function l for this example is then roughly16 l(e) =
(β�P)2

a2

∫
ds

∑
I

∑
S∈P I

s
χS(e) where χS(e) = 1 if S ∩ e �= ∅ and vanishes other-

wise.
The δ-distribution with respect to the measure µ0 can be written as the sum

over all SNW’s (exercise!)

δA′(A) =
∑
s

Ts(A′)Ts(A) (148)

with resulting coherent states

ψAC(A) =
∑
s

e− 1
2

∑
e∈E(γ(s)) l(e)je(je+1)Ts(AC)Ts(A) , (149)

where the SL(2,C) connection AC is defined by

AC[A,E] =
∞∑
n=0

in

n!
({A,C}(n))[A,E] . (150)

Thus we see that in this case the symplectic manifold given as the cotangent
bundle M = T ∗A over the space of SU(2) connections is also naturally given as
the complex manifold AC of SL(2,C) connections. From the general discussion
above it now follows that the classical interpretation of the annihilation operators

ÂC(e) := e−Ĉ/�Â(e)eĈ/� (151)

is simply the holonomy of the complex connection AC(e).
In order to study the semiclassical properties of these states we consider their

cut-offs ψAC,γ for each graph γ defined on cylindrical functions f = p∗
γfγ by

< ψAC , f >kin=:< ψAC,γ , f >kin . (152)

Now, (if we work at the non-gauge invariant level,) one can check that

ψAC,γ(A) =
∏

e∈E(γ(s)

ψ
l(e)
AC(e)(A(e)) , (153)

where for any g ∈ SL(2,C), h ∈ SU(2) we have defined

ψtg(h) :=
∑
j

(2j + 1)e−tj(j+1)/2χj(gh−1) . (154)

Exercise 29.
Verify, using the Peter&Weyl theorem, that for g ∈ SU(2) we have ψ0

g(h) = δg(h), the
16 This formula gets exact in the limit of infinitely fine partition, at finite coarseness,

it is an approximation to the exact, more complicated formula.
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δ-distribution with respect to L2(SU(2), dµH). Conclude that (154) is just the analytic
extension of the heat kernel e−t∆/2 where ∆ is the Laplacian on SU(2). Thus the states
(154) are in complete analogy with those for the harmonic oscillator, just that R was
replaced by SU(2) and the complexification C of R by the complexification SL(2,C) of
SU(2). In this form, coherent states on compact gauge groups were originally proposed
by Hall [76].

The analysis of the semiclassical properties of the states ψAC,γ on Hkin can
therefore be reduced to that of the states ψtg on L2(SU(2), dµH). We state here
without proof that the following properties could be proved [75]: I) Overcom-
pleteness, II) expectation value property, III) Ehrenfest property, IV) peakedness
in phase space, V) annihilation operator eigenstate property, VI) minimal un-
certainty property and VII) small fluctuation property. Thus, these states have
many of the desired properties that one requires from coherent states.

In the following graphic we display as an example the peakedness properties
of the analog of (154) for the simpler case of the gauge group U(1), the case of
SU(2) is similar but requires more plots because of the higher dimensionality of
SU(2). Thus g0 = eph0 ∈ U(1)C = C − {0}, p ∈ R, h0 ∈ U(1) and u ∈ U(1)
where we parameterize u = eiφ, φ ∈ [−π, π). Similarly, g = ep1u, p1 ∈ R. We
consider in Fig. 16 the peakedness in the configuration representation given by
the probability amplitude

u = eiφ �→ jtg0(u) = |ψtg0(u)|2/||ψtg0 ||2 (155)

at h0 = 1, p ∈ [−5, 5]. In Fig. 17 the phase space peakedness expressed by the
overlap function

g = ep1u �→ it(g, g0) =
| < ψtg, ψ

t
g0 > |2

||ψtg||2 ||ψtg0 ||2
(156)

is shown at fixed p = 0, h0 = 1 for p ∈ [−5, 5], u ∈ U(1). We have made use of
the fact (exercise!) that ψg0(u) and < ψg, ψg0 > respectively depend only on the

Fig. 16. Probability amplitude u �→ jtg0(u) at p ∈ [−5, 5], h0 = 1
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Fig. 17. Overlap function g �→ itg0(g) at p = 0, h0 = 1 for p1 ∈ [−5, 5], u ∈ U(1)

Fig. 18. Resolution of a neighbourhood of the peak of the function g �→ itg0(g) at
p = 0, h0 = 1

combinations g0u
−1 = ep0hu−1 and ḡg0 = ep+p1u−1h0 respectively. Therefore,

peakedness at u = h0 or g = g0 = eph0 respectively for any h0 is equivalent to
peakedness at u = 1 or at g = ep0 respectively for h0 = 1. Both plots are for the
value t = 0.001 and one clearly sees the peak width of

√
t ≈ 0.03 when resolving

those plots around the peak as in Fig. 18, which has a close to Gaussian shape
just like the harmonic oscillator coherent states have. As a first modest appli-
cation, these states have been used in order to analyze how one would obtain, at
least in principle, the QFT’s on CST’s (Curved SpaceTime) limit from full QGR
in [49]. In particular, it was possible to perform a detailed calculation concerning
the existence of Poincaré invariance violating dispersion relations of photon prop-
agation within QGR which were discussed earlier at a more phenomenological
level in the pioneering papers [77]: The idea is that the metric field is a collection
of quantum operators which are not mutually commuting. Therefore it should
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be impossible to construct a state which is peaked on, say the Minkowski metric,
and which is a simultaneous eigenstate of all the metric operator components, in
other words, there should be no such thing as a Poincaré-invariant state in full
QGR17, already because such an object should be highly background dependent.
The best one can construct is a coherent state peaked on the Minkowski metric.
The small fluctuations that are encoded in that state influence the propagation
of matter and these tiny disturbances could accumulate to measurable sizes in
so-called γ-ray burst experiments [78] where one measures the time delay of pho-
tons of higher energy as compared to those of lower energy as they travel over
cosmological distances as a result of the energy dependence of the speed of light.
If such an effect exists then it is a non-perturbative one because perturbatively
defined QFT’s on Minkowski space are by construction Poincaré invariant (recall
e.g. the Wightman axioms from Sect. 1.1).

These are certainly only first moderate steps. The development of the semi-
classical analysis for QGR is still in its very beginning and there are many
interesting and new mathematical and physical issues that have to be settled
before one can seriously attack the proof that, for instance, the Hamiltonian
constraint of Sect. 3.1 has the correct classical limit or that full QGR reduces to
classical GR plus the standard model in the low energy regime.

3.6 Gravitons

The Isomorphism. The reader with a strong background in ordinary QFT
and/or string theory will have wondered throughout these lectures where in QGR
the graviton, which plays such a prominent role in the perturbative, background
dependent approaches to quantum gravity, resides. In fact, if one understands the
graviton, as usually, as an excitation of the quantum metric around Minkowski
space, then there is a clear connection with the semiclassical analysis of the
previous section: One should construct a suitable coherent state which is peaked
on the gauge invariant phase space point characterizing Minkowski space and
identify suitable excitations thereof as gravitons. It is clear that at the moment
such graviton states from full QGR cannot be constructed, because we would
need first to solve the Hamiltonian constraint.

However, one can arrive at an approximate notion of gravitons through the
quantization of linearized gravity: Linearized gravity is nothing else than the
expansion of the full GR action around the gauge variant initial data (E0)aj =
δaj , (A0)ja = 0 to second order in E − E0, A which results in a free, classical
field theory with constraints. In fact, the usual notion of gravitons is precisely

17 This seems to contradict the fact that we are even interested in four dimensionally
diffeomorphism invariant states and the fact that the Poincaré group should be a tiny
subgroup thereof. However, this is not the case because we require the states only to
be invariant under diffeomorphisms which are pure gauge and those have to die off
at spatial infinity. Poincaré transformations are therefore not gauge transformation
but symmetries and what we are saying is that there are no Poincaré symmetric,
diffeomorphism gauge invariant states.
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the ordinary Fock space quantization of that classical, free field theory [79]. In
order to see whether QGR can possibly accommodate these graviton states,
Varadarajan in a beautiful series of papers [80] has carried out a polymer like
quantization of that free field theory on a Hilbert spaceHkin which is in complete
analogy to that for full QGR, the only difference being that the gauge group
SU(2) is replaced by the gauge group U(1)3. While there are certainly large
differences between the highly interacting QGR theory and linearized gravity,
one should at least be able to gain some insight into the the answer to the
question, how a Hilbert space in which the excitations are one dimensional can
possibly describe the Fock space excitations (which are three dimensional).

The problem of describing gravitons within linearized gravity by polymer like
excitations is mathematically equivalent to the simpler problem of describing the
photons of the ordinary Fock Hilbert space HF of Maxwell theory by polymer
like excitations within a Hilbert space HP = L2(A, dµ) where A is again a space
of generalized U(1) connections with some measure µ thereon. Thus, we describe
the latter problem in some detail since it requires less space and has the same
educational value.

The crucial observation is the following isomorphism I between two different
Poisson subalgebras of the Poisson algebra on the phase space M of Maxwell
theory coordinatized by a canonical pair (E,A) defined by a U(1) connection
A and a conjugate electric field E: Consider a one-parameter family of test
functions of rapid decrease which are regularizations of the δ-distribution, for
instance

fr(x, y) =
e− ||x−y||2

2r2

(
√

2πr)3
, (157)

where we have made use of the Euclidean spatial background metric. Given a
path p ∈ P we denote its distributional form factor by

Xa
p (x) :=

∫ 1

0
dt ṗa(t)δ(x, p(t)) . (158)

The smeared form factor is defined by

Xa
p,r(x) :=

∫
d3yfr(x, y)Xa

p (y) =
∫ 1

0
dt ṗa(t)fr(x, p(t)) , (159)

which is evidently a test function of rapid decrease. Notice that a U(1) holonomy
maybe written as

A(p) := ei
∫
d3xXa

p (x)Aa(x) (160)

and we can define a smeared holonomy by

Ar(p) := ei
∫
d3xXa

p,r(x)Aa(x) . (161)
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Likewise we may define smeared electric fields as

Ea
r (x) :=

∫
d3yfr(x, y)Ea(y) . (162)

If we denote by q the electric charge (notice that in our notation α = �q2 is the
fine structure constant), then we obtain the following Poisson subalgebras: On
the one hand we have smeared holonomies but unsmeared electric fields with

{Ar(p), Ar(p′)} = {Ea(x), Eb(y)} = 0, {Ea(x), Ar(p)} = iq2Xa
p,r(x)Ar(p)

(163)

and on the other hand we have unsmeared holonomies but smeared electric fields
with

{A(p), A(p′)} = {Ea
r (x), Eb

r(y} = 0, {Ea
r (x), A(p)} = iq2Xa

p,r(x)hp . (164)

Thus the two Poisson algebras are isomorphic and also the ∗ relations are isomor-
phic, both Ea(x), Ea

r (x) are real valued while both A(p), Ar(p) are U(1) valued.
Thus, as abstract ∗- Poisson algebras these two algebras are indistinguishable
and we may ask if we can find different representations of it. Even better, notice
that Ar(p)Ar(p′) = Ar(p ◦ p′), Ar(p)−1 = Ar(p−1) so the smeared holonomy
algebra is also isomorphic to the unsmeared one. Hence there is an algebra ∗-
isomorphism I defined on the generators by Ir(hp) = hp,r, Ir(Er) = E. One
must also show that the Ar(p) are still algebraically independent as are the A(p)
[80].

Induced Fock Representation with Polymer-Excitations. Now we know
that the unsmeared holonomy algebra is well represented on the Hilbert space
Hkin = L2(A, dµ0) while the smeared holonomy algebra is well represented on
the Fock Hilbert space HF = L2(S ′, dµF ) where S ′ denotes the space of diver-
gence free, tempered distributions and µF is the Maxwell-Fock measure. These
measures are completely characterized by their generating functional

ωF (Âr(p)) := µF (Ar(p)) = e− 1
4α

∫
d3xXa

p,r(x)
√−∆−1

Xb
p,rδab (165)

since finite linear combinations of the hp,r are dense inHF [80]. Here ∆ = δab∂a∂b
denotes the Laplacian and we have taken a loop p rather than an open path so
that Xp,r is transversal. Also unsmeared electric fields are represented through
the Fock state ωF by

ωF (Âr(p)Êa(x)Âr(p′)) = −α

2
[Xa

p,r(x)−Xa
p′,r(x)]ωF (ĥp◦p′,r) (166)

and any other expectation value follows from these and the commutation rela-
tions.

Since ωF defines a positive linear functional we may define a new represen-
tation of the algebra A(p), Ea

r by
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ωr(Â(p)) := ωF (Âr(p)) and ωr(Â(p)Êa
r (x)Â(p′)) := ωF (Âr(p)Êa(x)Âr(p′))

(167)

called the r-Fock representation. In other words, we have ωr = ωF ◦ Ir.
Since ωr is a positive linear functional on C(A) by construction there exists

is a measure µr on A that represents ωr in the sense of the Riesz representation
theorem (recall 62). In [81] Velhinho showed that the one-parameter family of
measures µr are expectedly mutually singular with respect to each other and
with respect to the uniform measure µ0 (that is, the support of one measure is
a measure zero set with respect to the other and vice versa).

Result 1: There is a unitary transformation between any of the Hilbert spaces
Hr and their images under Ir in the usual Fock space HF . Since finite linear
combinations of the Ar(p) for fixed r are still dense in HF [80], there exists
indeed a polymer like description of the usual n-photon states.

Recall that the Fock vacuum ΩF is defined to be the zero eigenvalue coherent
state, that is, it is annihilated by the annihilation operators

â(f) :=
1√
2α

∫
d3xfa

[
4
√−∆Âa − i( 4

√−∆)−1Êa
]
, (168)

where fa is any transversal smearing field. We then have in fact that ωF (.) =<
ΩF , .ΩF >HF

. (For readers familiar with C∗-algebras this means that ΩF is the
cyclic vector that is determined by ωF through the GNS construction.) The idea
is now the following: From (167) we see that we can easily answer any question
in the r-Fock representation which has a preimage in the Fock representation,
we just have to replace everywhere Ar(p), Ea(x) by A(p), Ea

r (x). Since in the
r-Fock representations only exponentials of connections are defined, we should
exponentiate the annihilation operators and select the Fock vacuum through the
condition

eiâ(f)ΩF = ΩF . (169)

In particular, choosing f =
√

2α( 4
√−∆)−1Xp,r for some loop p we get

e
∫
d3xXa

p,r[iÂa+(
√−∆)−1Êa]ΩF = ΩF . (170)

Using the commutation relations and the Baker–Campell–Hausdorff formula one
can write (170) in terms of Âr(p) and the exponential of the electric field ap-
pearing in (170) times a numerical factor. The resulting expression can then be
translated into the r-Fock representation. Denoting the translated expression by
I−1
r (eiâ(f)) we now ask the question, whether there exists a state Ωr ∈ Hkin =

L2(A, dµ0) such that I−1
r (eiâ(f))Ωr = Ωr. Remarkably, expanding Ωr into the

charge network basis introduced in Sect. 3.1 one finds a (up to a multiplicative
constant) unique solution given by

Ωr =
∑
c

e− α
2

∑
e,e′∈E(γ(c))G

r
e,e′ne(c)ne′ (c)Tc , (171)
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where c = (γ(c), {ne(c)}e∈E(γ(c))) denotes a charge network (the U(1) analogue
of a spin network) and

Gr
e,e′ =

∫
d3xXa

e,r

√−∆
−1

Xb
e′,rδ

T
ab , (172)

where δTab = δab − ∂a∆
−1∂b denotes the transverse projector.

Exercise 30.
Fill in the gaps that lead from (170) to (172).

Let us discuss this result. First of all, (171) is not normalizable with respect
to the inner product on Hkin and neither are the images of n-photon states or
coherent states from HF . This seems to indicate that the space Hkin does not
play any role for physically interesting states. However, in [74] it was shown
that this is not the case: It turns out, that, given a suitable regularization, that
one can indeed obtain the expectation values such as ωr(A(p)) from the formal
expression

ωr(A(p)) :=
< Ωr, A(p)Ωr >

||Ωr||2 , (173)

where both numerator and denominator are infinite but the fraction is finite.
Result 2: The polymer images of photon states can be obtained as certain

limits of states from Hkin which therefore is a valid starting point in order to
obtain physically interesting representations.

Moreover, as can be expected from the similarity between the formulas (172)
and (149) (for AC = 0 corresponding to vacuum E = A = 0 in the present case),
the states Ωr also arise from a complexifier, given in this case by

C =
1

2q2

∫
R3

d3x[Ea
r

√−∆
−1

Eb
r ]δab . (174)

Result 3: The complexifier framework is also able to derive images of n-
photon states and usual Fock coherent states from the universal input of a com-
plexifier.

We conclude that at least for the linearized theory the question posed at
the beginning of this section could be answered affirmatively: There is indeed
a precise framework available for how to accommodate graviton states into the
framework of loop quantum gravity. This is a promising result and should have
an analog in the full theory.

4 Selection of Open Research Problems

Let us summarize the most important open research problems that have come
up during the discussion in these lectures.
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i) Hamiltonian Constraint and Semiclassical States
The unsettled correctness of the quantum dynamics is the major roadblock to
completing the quantization programme of QGR. In order to make progress
a better understanding of the kinematical semiclassical sector of the theory
is necessary.

ii) Physical Inner Product
Even if we had the correct Hamiltonian constraint and the complete space
of solutions, at the moment there is no really good idea available of how
to construct a corresponding physical inner product because the constraint
algebra is not a Lie algebra but an open algebra in the BRST sense so
that techniques from rigged Hilbert spaces are not available. A framework
for such open algebras must be developed so that an inner product can be
constructed at least in principle.

iii) Dirac Observables
Not even in classical general relativity do we know enough Dirac observ-
ables. For QGR they are mandatory for instance in order to select an inner
product by adjointness conditions and in order to arrive at an interpretation
of the final theory. A framework of how to define Dirac observables, at least
in principle, even at the classical level, would be an extremely important
contribution.

iv) Covariant Formulation
The connection between the Hamiltonian and the Spin Foam formulation is
poorly understood. Without such a connection e.g. a proof of covariance of
the canonical formulation on the one hand and a proof for the correct classical
limit of the spin foam formulation on the other cannot be obtained using the
respective other formulation. One should prove a rigorous Feynman–Kac like
formula that allows to switch between these complementary descriptions.

v) QFT on CST’s and Hawking Effect from First Principles
The low energy limit of the theory in connection with the the construction
of semiclassical states must be better understood. Once this is done, funda-
mental issues such as whether the Hawking effect is merely an artefact of an
invalid description by QFT’s on CST’s while a quantum theory of gravity
should be used or whether it is a robust result can be answered. Similar
remarks apply to the information paradoxon associated with black holes etc.

vi) Combinatorial Formulation of the Theory
The description of a theory in terms of smooth and even analytic struc-
tures curves, surfaces etc. at all scales in which the spectra of geometrical
operators are discrete at Planck scales is awkward and cannot be the most
adequate language. There should be a purely combinatorial formulation in
which notions such as topology, differential structure etc. can only have a
semiclassical meaning.

vii) Avoidance of Classical and UV Singularities
That certain classical singularities are absent in loop quantum cosmology
and that certain operators come out finite in the full theory while in the
usual perturbative formulation they would suffer from UV singularities are
promising results, but they must be better understood. If one could make
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contact with perturbative formulations and pin-point exactly why in QGR
the usual perturbative UV singularities are absent then the theory would gain
a lot more respect in other communities of high energy physicists. There must
be some analog of the renormalization group and the running of coupling
constants that one usually finds in QFT’s and CST’s. Similar remarks apply
to the generalization of the loop quantum cosmology result to the full theory.

viii) Contact with String (M)-Theory
If there is any valid perturbative description of quantum gravity then it
is almost certainly string theory. It is conceivable that both string theory
and loop quantum gravity are complementary descriptions but by them-
selves incomplete and that only a fusion of both can reach the status of a
fundamental theory. To explore these possibilities, Smolin has launched an
ambitious programme [82] which to our mind so far did not raise the interest
that it deserves18. The contact arises through Chern–Simons theory which
is part of both Loop Quantum Gravity and M-Theory [83] (when considered
as the high energy limit of 11 dimensional Supergravity). Another obvious
starting point is the definition of M-Theory as the quantum supermembrane
in 11 dimensions [84], a theory that could be obtained as the quantization
of the classical supermembrane by our non-perturbative methods. Finally, a
maybe even more obvious connection could be found through the so-called
Pohlmeyer String [85] which appears to be a method to quantize the string
non-perturbatively, without supersymmetry, anomalies or extra dimensions,
by working directly at the level of Dirac observables which are indeed possible
to construct explicitly in this case.

We hope to have convinced the reader that Loop Quantum Gravity is an active
and lively approach to a quantum theory of gravity which has produced already
many non-trivial results and will continue to do so in the future. There are still
a huge number of hard but fascinating problems to be solved of which the above
list is at most the tip of an iceberg. If at least a tiny fraction of the readers would
decide to dive into this challenging area and help in this endeavour, then these
lectures would have been successful.

Acknowledgements

We thank the Heraeus-Stiftung and the organizers, Domenico Giulini, Claus
Kiefer and Claus Lämmerzahl, for making this wonderful and successful meeting
possible and the participants for creating a stimulating atmosphere through long
and deep discussions, very often until early in the morning in the “Bürgerkeller”.
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would need to include an introduction to M-Theory into these lectures which would
require too much space. The interested reader is referred to the literature cited.
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N. Barros e Sá: Hamiltonian analysis of general relativity with the Immirzi param-
eter. Int. J. Mod. Phys. D 10, 261 (2001) [gr-qc/0006013]

58. L. Freidel, K. Krasnov, and R. Puzio: BF description of higher dimensional gravity
theories. Adv. Theor. Math. Phys. 3, 1289 (1999) [hep-th/9901069]

59. J.W. Barrett, L. Crane: “Relativistic spin networks and quantum gravity”. J. Math.
Phys. 39, 3296 (1998) [gr-qc/9709028]

60. J.C. Baez and J.W. Barrett: Integrability of relativistic spin networks. gr-
qc/0101107;
A. Perez and C. Rovelli: Spin foam model for Lorentzian general relativity. Phys.
Rev. D 63, (2001) 041501, [gr-qc/0009021];
L. Crane, A. Perez, and C. Rovelli: A finiteness proof for the Lorentzian state sum
spin foam model for quantum general relativity. gr-qc/0104057;
L. Crane, A. Perez, and C. Rovelli: Perturbative finiteness in spin-foam quantum
gravity. Phys. Rev. Lett. 87, 181301 (2001)

61. D.V. Boulatov: Mod. Phys. Lett. A 7, 1629 (1992);
H. Ooguri: Mod. Phys. Lett. A 7, 2799 (1992)

62. F. Markopoulou and L. Smolin: Causal evolution of spin networks. Nucl. Phys. B
508, 409 (1997) [gr-qc/9702025];
F. Markopoulou: Dual formulation of spin network evolution. gr-qc/9704013;
F. Markopoulou and L. Smolin: Quantum geometry with intrinsic local causality.
Phys. Rev. D 58, 084032 (1998) [gr-qc/9712067];
F. Markopoulou: The internal description of a causal set: What the universe like
from inside. Commun. Math. Phys. 211, 559 (2000) [gr-qc/9811053];
F. Markopoulou: Quantum causal histories. Class. Quant. Grav. 17, 2059 (2000)
[hep-th/9904009];
F. Markopoulou: An insider’s guide to quantum causal histories. Nucl. Phys. Proc.
Suppl. 88, 308 (2000) [hep-th/9912137]

63. F. Markopoulou: An algebraic approach to coarse graining. hep-th/0006199
64. J.C. Baez, J.D. Christensen, T.R. Halford, and D.C. Tsang: Spin foam mod-

els of Riemannian quantum gravity. Class. Quant. Grav. 19, 4627 (2002) [gr-
qc/0202017];
A. Perez: Spin foam quantization of Plebanski’s action. Adv. Theor. Math. Phys.
5 947 (2002) [gr-qc/0203058]

65. M. Bojowald and A. Perez: Spin foam quantization and anomalies. In preparation



Lectures on Loop Quantum Gravity 133

66. J.D. Bekenstein: Black holes and entropy. Phys. Rev. D 7, 2333 (1973);
J.D. Bekenstein: Generalized second law for thermodynamics in black hole physics.
Phys. Rev. D 9, 3292 (1974);
S.W. Hawking: Particle creation by black holes. Commun. Math. Phys. 43, 199
(1975)

67. K. Krasnov: On statistical mechanics of gravitational systems. Gen. Rel. Grav. 30,
53 (1998) [gr-qc/9605047];
C. Rovelli: Black hole entropy from loop quantum gravity. Phys. Rev. Lett. 77,
3288 (1996) [gr-qc/9603063]

68. A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan, J. Lewandowski, and
J. Wisniewski: Isolated horizons and their applications. Phys. Rev. Lett. 85, 3564
(2000) [gr-qc/0006006];
A. Ashtekar: Classical and quantum physics of isolated horizons. Lect. Notes Phys.
541, 50 (2000);
A. Ashtekar: Interface of general relativity, quantum physics and statistical me-
chanics: Some recent developments. Ann. Phys. 9, 178 (2000) [gr-qc/9910101]

69. A. Ashtekar, A. Corichi, and K. Krasnov: Isolated horizons: The classical phase
space. Adv. Theor. Math. Phys. 3, 419 (2000) [gr-qc/9905089];
A. Ashtekar, J. C. Baez, and K. Krasnov: Quantum geometry of isolated horizons
and black hole entropy. Adv. Theor. Math. Phys. 4, 1 (2001) [gr-qc/0005126]

70. T. Regge and C. Teitelboim: Role of surface integrals in the Hamiltonian formula-
tion of general relativity. Ann. Phys. 88, 286 (1974)

71. L. Smolin: Linking topological quantum field theory and non-perturbative quantum
gravity”. J. Math. Phys. 36, 6417 (1995) [gr-qc/9505028]

72. S. Axelrod, S.D. Pietra, and E. Witten: Geometric quantization of Chern-Simons
gauge theory. J. Diff. Geom. 33, 787 (1991)

73. G. ’t Hooft: The Holographic Principle: Opening Lecture. In Basics and Highlights
in Fundamental Physics, Opening Lecture Erice 1999. [hep-th/0003004]

74. T. Thiemann: Reality conditions inducing transforms for quantum gauge field the-
ories and quantum gravity. Class. Quantum Grav. 13, 1383 (1996) [gr-qc/9511057];
T. Thiemann: An account of transforms on A/G. Acta Cosmologica 21, 145 (1995)
[gr-qc/9511049];
T. Thiemann: Gauge field theory coherent states (GCS): I. General properties.
Class. Quant. Grav. 18 2025 (2001) [hep-th/0005233];
T. Thiemann: Complexifier coherent states for quantum general relativity. [gr-
qc/0206037]

75. T. Thiemann: Quantum spin dynamics (QSD): VII. Symplectic structures and con-
tinuum lattice formulations of gauge field theories. Class. Quant. Grav. 18, 3293
(2001) [hep-th/0005232];
T. Thiemann and O. Winkler: Gauge field theory coherent states (GCS): II.
Peakedness properties. Class. Quant. Grav. 18, 2561 (2001) [hep-th/0005237];
T. Thiemann and O. Winkler: Gauge field theory coherent states (GCS): III. Ehren-
fest theorems. Class. Quantum Grav. 18 (2001) 4629-4681, [hep-th/0005234];
H. Sahlmann, T. Thiemann, and O. Winkler: Coherent states for canonical quan-
tum general relativity and the Infinite tensor product extension. Nucl. Phys. B
606, 401 (2001) [gr-qc/0102038]

76. B.C. Hall: Journ. Funct. Analysis 122, 103 (1994);
B.C. Hall and J.J. Mitchell: Coherent states on spheres. J. Math. Phys. 43, 1211
(2002) [quant-ph/0109086];



134 Thomas Thiemann

B.C. Hall and J.J. Mitchell: The large radius limit for coherent states on spheres.
quant-ph/0203142

77. G. Amelino-Camelia: Are we at dawn with quantum gravity phenomenology? Lect.
Notes Phys. 541, 1 (2000) [gr-qc/9910089];
G. Amelino-Camelia, John R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, and S.
Sarkar: Potential sensitivity of gamma ray burster observations to wave dispersion
in vacuo. Nature 393, 763 (1998) [astro-ph/9712103];
R. Gambini and J. Pullin: Nonstandard optics from quantum spacetime. Phys.
Rev. D 59 124021 (1999) [gr-qc/9809038];
R. Gambini and J. Pullin: Quantum gravity experimental physics? Gen. Rel. Grav.
31, 1631 (1999);
J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia: Quantum gravity corrections to
neutrino propagation. Phys. Rev. Lett. 84, 2318 (2000) [gr-qc/9909079];
J. Alfaro, H.A. Morales-Tecotl, and L.F. Urrutia: Loop quantum gravity and light
propagation. Phys. Rev. D 65, 103509 (2002) [hep-th/0108061]

78. S.D. Biller et al.: Phys. Rev. Lett. 83, 2108 (1999)
79. A. Ashtekar, C. Rovelli, and L. Smolin: Gravitons and loops. Phys. Rev. D 44,

1740 (1991) [hep-th/9202054]
80. M. Varadarajan: Fock representations from U(1) holonomy algebras. Phys. Rev. D

61, 104001 (2000) [gr-qc/0001050];
M. Varadarajan: Photons from quantized electric flux representations. Phys. Rev.
D 64, 104003 (2001) [gr-qc/0104051];
M. Varadarajan: Gravitons from a loop representation of linearized gravity. Phys.
Rev. D 66, 024017 (2002) [gr-qc/0204067]

81. J. Velhinho: Invariance properties of induced Fock measures for U(1) holonomies.
Commun. Math. Phys. 227, 541 (2002) [math-ph/0107002]

82. L. Smolin: Strings as Perturbations of Evolving Spin Networks. Nucl. Phys. Proc.
Suppl. 88, 103 (2000) [hep-th/9801022]¿;
L. Smolin: A holographic formulation of quantum general relativity. Phys. Rev. D
61, 084007 (2000) [hep-th/9808191];
L. Smolin: Towards a background independent approach to M theory. hep-
th/9808192;
L. Smolin: The cubic matrix model and duality between strings and loops. [hep-
th/0006137];
L. Smolin: A candidate for a background independent formulation of M theory.
Phys. Rev. D 62, 086001 (2000) [hep-th/9903166];
L. Smolin: The exceptional Jordan algebra and the matrix string. hep-th/0104050;
Y. Ling and L. Smolin: Eleven-dimensional supergravity as a constrained topolog-
ical field theory. Nucl. Phys. B 601, 191 (2001) [hep-th/0003285];
Y. Ling and L. Smolin: Supersymmetric Spin networks and quantum supergravity.
Phys. Rev. D 61, 044008 (2000) [hep-th/9904016];
Y. Ling and L. Smolin: Holographic formulation of quantum supergravity. Phys.
Rev. D 63, 064010 (2001) [hep-th/0009018]

83. L. Smolin: M Theory as a matrix extension of Chern-Simons theory. Nucl. Phys.
B 591 227 (2000) [hep-th/0002009];
L. Smolin: Quantum gravity with a positive cosmological constant. hep-th/0209079

84. R. Helling and H. Nicolai. Supermebranes and matrix theory. hep-th/9809103
85. K. Pohlmeyer: A group theoretical approach to the quantization of the free rela-

tivistic closed string. Phys. Lett. B 119, 100 (1982);



Lectures on Loop Quantum Gravity 135

K. Pohlmeyer and K.H. Rehren: Algebraic properties of the invariant charges of
the Nambu-Goto theory. Commun. Math. Phys. 105, 593 (1986);
K. Pohlmeyer and K.H. Rehren: The algebra formed by the charges of the Nambu-
Goto theory: Identification of a maximal abelean subalgebra. Commun. Math.
Phys. 114, 55 (1988);
K. Pohlmeyer and K.H. Rehren: The algebra formed by the charges of the Nambu-
Goto theory: Their geometric origin and their completeness. Commun. Math. Phys.
114, 177 (1988);
K. Pohlmeyer: The invariant charges of the Nambu-Goto theory in WKB approx-
imation. Commun. Math. Phys. 105, 629 (1986);
K. Pohlmeyer: The algebra formed by the charges of the Nambu-Goto theory:
Casimir elements. Commun. Math. Phys. 114, 351 (1988);
K. Pohlmeyer: Uncovering the detailed structure of the algebra formed by the in-
variant charges of closed bosonic Strings Moving in (1+2)-Dimensional Minkowski
space. Commun. Math. Phys. 163, 629 (1994);
K. Pohlmeyer: The invariant charges of the Nambu-Goto theory: Non-additive
composition laws. Mod. Phys. Lett. A 10, 295 (1995);
K. Pohlmeyer: The Nambu-Goto theory of closed bosonic strings moving in (1+3)-
dimensional Minkowski space: The quantum algebra of observables. Ann. Phys. 8,
19 (1999) [hep-th/9805057];
K. Pohlmeyer and M. Trunk: The invariant charges of the Nambu-Goto theory:
Quantization of non-additive composition laws. hep-th/0206061;
G. Handrich and C. Nowak: The Nambu-Goto theory of closed bosonic strings
moving in (1+3)-dimensional Minkowski space: The construction of the quantum
algebra of observables up to degree five. Ann. Phys. 8, 51 (1999) [hep-th/9807231];
G. Handrich: Lorentz covariance of the quantum algebra of observables: Nambu-
Goto strings in 3+1 dimensions. Int. J. Mod. Phys. A 17, 2331 (2002);
G. Handrich, C. Paufler, J.B. Tausk, and M. Walter: The representation of the
algebra of observables of the closed bosonic string in 1+3 dimensions: Calculation
to order �

7. math-ph/0210024;
C. Meusburger and K.H. Rehren: Algebraic quantization of the closed bosonic
string. math-ph/0202041



A Discrete History of the Lorentzian Path
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Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht

Abstract. In these lecture notes, I describe the motivation behind a recent formu-
lation of a non-perturbative gravitational path integral for Lorentzian (instead of the
usual Euclidean) space-times, and give a pedagogical introduction to its main features.
At the regularized, discrete level this approach solves the problems of (i) having a well-
defined Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to
convergent sums over geometries. Although little is known as yet about the existence
and nature of an underlying continuum theory of quantum gravity in four dimensions,
there are already a number of beautiful results in d = 2 and d = 3 where continuum
limits have been found. They include an explicit example of the inequivalence of the
Euclidean and Lorentzian path integrals, a non-perturbative mechanism for the cancel-
lation of the conformal factor, and the discovery that causality can act as an effective
regulator of quantum geometry.

1 Introduction

The desire to understand the quantum physics of the gravitational interactions
lies at the root of many recent developments in theoretical high-energy physics.
By quantum gravity I will mean a consistent fundamental quantum description
of space-time geometry (with or without matter) whose classical limit is general
relativity. Among the possible ramifications of such a theory are a model for the
structure of space-time near the Planck scale, a consistent calculational scheme
to compute gravitational effects at all energies, a description of (quantum) geom-
etry near space-time singularities and a non-perturbative quantum description
of four-dimensional black holes. It might also help us in understanding cosmo-
logical issues about the beginning (and end?) of our universe, although it should
be said that some questions (for example, that of the “initial conditions”) are
likely to remain outside the scope of any physical theory.

From what we know about the quantum dynamics of the other fundamental
interactions it seems eminently plausible that also the gravitational excitations
should at very short scales be governed by quantum laws, so why have we so
far not been able to determine what they are? – One obvious obstacle is the
difficulty in finding any direct or indirect evidence for quantum gravitational
effects, be they experimental or observational, which could provide a feedback
for model-building. A theoretical complication is that the outstanding problems
mentioned above require a non-perturbative treatment; it is not sufficient to
know the first few terms of a perturbation series. This is true for both conven-
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tional perturbative path integral expansions of gravity or supergravity1 and a
perturbative expansion in the string coupling in the case of unified approaches.
One avenue to take is to search for a non-perturbative definition of such a theory,
where the initial input of any fixed “background metric” is inessential (or even
undesirable), and where “space–time” is determined dynamically. Whether or
not such an approach necessarily requires the inclusion of higher dimensions and
fundamental supersymmetry is currently unknown. As we will see in the course
of these lecture notes, it is perfectly conceivable that one can do without.

Such a non-perturbative viewpoint is very much in line with how one proceeds
in classical general relativity, where a metric space-time (M, gµν) (+matter)
emerges only as a solution to the Einstein equations

Rµν [g]− 1
2
gµνR[g] + Λgµν = −8πGNTµν [Φ], (1)

which define the classical dynamics on the space M(M), the space of all metrics
on a given differentiable manifold M . The analogous question I want to address
in the quantum theory is

Can we obtain “quantum space-time” as a solution to a set of non-
perturbative quantum equations of motion on a suitable quantum ana-
logue of M(M) or rather, of the space of geometries, Geom(M) :=
M(M)/Diff(M)?

This is not a completely straightforward task. Whichever way we want to pro-
ceed non-perturbatively, if we give up the privileged role of a flat, Minkowskian
background space–time on which the quantization is to take place, we also have
to abandon the central role usually played by the Poincaré group, and with it
most standard quantum field-theoretic tools for regularization and renormaliza-
tion. If one works in a continuum metric formulation of gravity, the symmetry
group of the Einstein action is instead the group Diff(M) of diffeomorphisms on
M , which in terms of local charts are simply the smooth invertible coordinate
transformations xµ �→ yµ(xµ).2

I will in the following describe a particular path integral approach to quantum
gravity, which is non-perturbative from the outset in the sense of being defined
on the “space of all geometries” (to be defined later), without distinguishing any
background metric structure (see also [1,2] for related reviews). This is closely
related in spirit with the canonical approach of loop quantum gravity [3] and its
more recent incarnations using so-called spin networks [4,5], although there are
1 Of course, we already know that in these cases a quantization based on a decom-

position gµν(x) = ηMink
µν +

√
GN hµν(x), for a linear spin-2 perturbation around

Minkowski space leads to a non-renormalizable theory.
2 One should not get confused here by the fact that in gauge formulations of gravity

which work with vierbeins eaµ instead of the metric tensor gµν , one has an additional
local invariance under SO(3,1)-frame rotations, i.e. elements of the Lorentz group,
in addition to diffeomorphism invariance. Nevertheless, this formulation is still not
invariant under global Lorentz- or Poincaré-transformations.
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significant differences in methodology and attitude. “Non-perturbative” means
in a covariant context that the path sum or integral will have to be performed
explicitly, and not just evaluated around its stationary points, which can only
be achieved in an appropriate regularization. The method I will employ uses a
discrete lattice regularization as an intermediate step in the construction of the
quantum theory. However, unlike in lattice QCD, the lattice and its geomet-
ric properties will not be part of a static background structure, but dynamical
quantities, as befits a theory of quantum geometry.

2 Quantum Gravity from Dynamical Triangulations

In this section I will explain how one may construct a theory of quantum gravity
from a non-perturbative path integral, and what logic has led my collaborators
and me to consider the method of Lorentzian dynamical triangulations to achieve
this. The method is minimal in the sense of employing standard tools from quan-
tum field theory and the theory of critical phenomena and adapting them to the
case of generally covariant systems, without invoking any symmetries beyond
those of the classical theory. At an intermediate stage of the construction, we
use a regularization in terms of simplicial “Regge geometries”, that is, piecewise
linear manifolds. In this approach, “computing the path integral” amounts to
a conceptually simple and geometrically transparent “counting of geometries”,
with additional weight factors which are determined by the Einstein action. This
is done first of all at a regularized level. Subsequently, one searches for interest-
ing continuum limits of these discrete models which are possible candidates for
theories of quantum gravity, a step that will always involve a renormalization.
From the point of view of statistical mechanics, one may think of Lorentzian dy-
namical triangulations as a new class of statistical models of Lorentzian random
surfaces in various dimensions, whose building blocks are flat simplices which
carry a “time arrow”, and whose dynamics is entirely governed by their intrinsic
geometric properties.

Before describing the details of the construction, it may be helpful to recall
the path integral representation for a (one-dimensional) non-relativistic particle
[6]. The time evolution of the particle’s wave function ψ may be described by
the integral equation

ψ(x′′, t′′) =
∫
R

G(x′′, x′; t′′, t′)ψ(x′, t′), (2)

where the propagator or Feynman kernel G is defined through a limiting proce-
dure,

G(x′′, x′; t′′, t′) = lim
ε→0

A−N
N−1∏
k=1

∫
dxk ei

∑N−1
j=0 εL(xj+1,(xj+1−xj)/ε). (3)

The time interval t′′ − t′ has been discretized into N steps of length ε = (t′′ −
t′)/N , and the right-hand side of (3) represents an integral over all piecewise
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Fig. 1. A piecewise linear particle path contributing to the discrete Feynman propa-
gator

linear paths x(t) of a “virtual” particle propagating from x′ to x′′, illustrated in
Fig. 1.

The prefactor A−N is a normalization and L denotes the Lagrange function
of the particle. Knowing the propagator G is tantamount to having solved the
quantum dynamics. This is the simplest instance of a path integral, and is often
written schematically as

G(x′, t′;x′′, t′′) =
∫
Dx(t) eiS[x(t)], (4)

where Dx(t) is a functional measure on the “space of all paths”, and the expo-
nential weight depends on the classical action S[x(t)] of a path. Recall also that
this procedure can be defined in a mathematically clean way if we Wick-rotate
the time variable t to imaginary values t �→ τ = it, thereby making all integrals
real [7].

Can a similar strategy work for the case of Einstein gravity? As an analogue of
the particle’s position we can take the geometry [gij(x)] (ie. an equivalence class
of spatial metrics) of a constant-time slice. Can one then define a gravitational
propagator

G([g′
ij ], [g

′′
ij ]) =

∫
Geom(M)

D[gµν ] eiS
Einstein[gµν ] (5)

from an initial geometry [g′] to a final geometry [g′′] (Fig. 2) as a limit of some
discrete construction analogous to that of the non-relativistic particle (3)? And
crucially, what would be a suitable class of “paths”, that is, space–times [gµν ]
to sum over?

Setting aside the question of the physical meaning of an expression like (5),
gravitational path integrals in the continuum are extremely ill-defined. Clearly,
defining a fundamental theory of quantum gravity via a perturbation series
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Fig. 2. The time-honoured way [8] of illustrating the gravitational path integral as the
propagator from an initial to a final spatial boundary geometry

in the gravitational coupling does not work because of its perturbative non-
renormalizability. So, is there a chance we might simply be able to do the integra-
tion

∫ D[gµν ] in a meaningful way? Firstly, there is no obvious way to parametrize
“geometries”, which means that in practice one always has to start with gauge-
covariant fields, and gauge-fix. Unfortunately, this gives rise to Faddeev–Popov
determinants whose non-perturbative evaluation is exceedingly difficult. A simi-
lar problem already applies to the action itself, which is by no means quadratic,
no matter what we choose as our basic fields. How then can the integration over
exp(iS) possibly be performed? Part of the problem is clearly also the complex
nature of this integrand, with no obvious choice of a Wick rotation in the context
of a theory with fluctuating geometric degrees of freedom. Secondly, since we are
dealing with a field theory, some kind of regularization will be necessary, and
the challenge here is to find a procedure that does not violate diffeomorphism-
invariance.

In brief, the strategy I will be following starts from a regularized version of
the space Geom(M) of all geometries. A regularized path integral G(a) can be
defined which depends on an ultraviolet cutoff a and is convergent in a non-
trivial region of the space of coupling constants. Taking the continuum limit
corresponds to letting a → 0. The resulting continuum theory – if it can be
shown to exist – is then investigated with regard to its geometric properties and
in particular its semiclassical limit.

3 Brief Summary of Discrete Gravitational Path Integrals

Trying to construct non-perturbative path integrals for gravity from sums over
discretized geometries is not a new idea. The approach of Lorentzian dynamical
triangulations draws from older work in this area, but differs from it in several
significant aspects as we shall see in due course.

Inspired by the successes of lattice gauge theory, attempts to describe quan-
tum gravity by similar methods have been popular on and off since the late 70’s.
Initially the emphasis was on gauge-theoretic, first-order formulations of gravity,
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Fig. 3. The phase diagram of three- and four-dimensional Euclidean dynamical trian-
gulations

usually based on (compactified versions of) the Lorentz group, followed in the
80’s by “quantum Regge calculus”, an attempt to represent the gravitational
path integral as an integral over certain piecewise linear geometries (see [9] and
references therein), which had first made an appearance in approximate descrip-
tions of classical solutions of the Einstein equations. A variant of this approach
by the name of “dynamical triangulation(s)” attracted a lot of interest during the
90’s, partly because it had proved a powerful tool in describing two-dimensional
quantum gravity (see the textbook [10] and lecture notes [11] for more details).

The problem is that none of these attempts have so far come up with con-
vincing evidence for the existence of an underlying continuum theory of four-
dimensional quantum gravity. This conclusion is drawn largely on the basis of
numerical simulations, so it is by no means water-tight, although one can make
an argument that the “symptoms” of failure are related in the various approaches
[12]. What goes wrong generically seems to be a dominance in the continuum
limit of highly degenerate geometries, whose precise form depends on the ap-
proach chosen. One would of course expect that non-smooth geometries play a
decisive role, in the same way as it can be shown in the particle case that the
support of the measure in the continuum limit is on a set of nowhere differen-
tiable paths. However, what seems to happen in the case of the path integral for
four-geometries is that the structures obtained are too wild, in the sense of not
generating, even at coarse-grained scales, an effective geometry whose dimension
is anywhere near four.

The schematic phase diagram of Euclidean dynamical triangulations shown
in Fig. 3 gives an example of what can happen. The picture turns out to be
essentially the same in both three and four dimensions: the model possesses
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infinite-volume limits everywhere along the critical line kcrit
3 (k0), which fixes

the bare cosmological constant as a function of the inverse Newton constant
k0 ∼ G−1

N . Along this line, there is a critical point kcrit
0 (which we now know to

be of first order in d = 3, 4) below which geometries generically have a very large
effective or Hausdorff dimension. (In terms of geometry, this means that there are
a few vertices at which the entire space-time “condenses” in the sense that almost
every other vertex in the simplicial space-time is about one link-distance away
from them.) Above kcrit

0 we find the opposite phenomenon of “polymerization”:
a typical element contributing to the state sum is a thin branched polymer, with
one or more dimensions “curled up” (an image familiar to string theorists!) such
that its effective dimension is around two.

Why this happens was, at least until recently, less clear, although it has
sometimes been related to the so-called conformal-factor problem. This problem
has to do with the fact that the gravitational action is unbounded below, causing
potential havoc in Euclidean versions of the path integral. This will be discussed
in more detail below in Sect. 5.2, but it does lead directly to the next point.
Namely, what all the above-mentioned approaches have in common is that they
work from the outset with Euclidean geometries, and associated Boltzmann-
type weights exp(−Seu) in the path integral. In other words, they integrate over
“space-times” which know nothing about time, light cones and causality. This
is done mainly for technical reasons, since it is difficult to set up simulations
with complex weights and since until recently a suitable Wick rotation was not
known.

“Lorentzian dynamical triangulations”, first proposed in [13] and further
elaborated in [14,15] tries to establish a logical connection between the fact
that non-perturbative path integrals were constructed for Euclidean instead of
Lorentzian geometries and their apparent failure to lead to an interesting con-
tinuum theory. Is it conceivable that we can kill two birds with one stone, ie.
cure the problem of degenerate quantum geometry by taking a path integral
over geometries with a physical, Lorentzian signature? Remarkably, this is in-
deed what happens in the quantum gravity theories in d < 4 which have already
been studied extensively. The way in which Lorentzian dynamical triangulations
overcome the problems mentioned above is the subject of the Sect. 5.

4 Geometry from Simplices

The use of simplicial methods in general relativity goes back to the pioneering
work of Regge [16]. In classical applications one tries to approximate a classical
space-time geometry by a triangulation, that is, a piecewise linear space obtained
by gluing together flat simplicial building blocks, which in dimension d are d-
dimensional generalizations of triangles. By “flat” I mean that they are isometric
to a subspace of d-dimensional Euclidean or Minkowski space. We will only be
interested in gluings leading to genuine manifolds, which therefore look locally
like an Rd. A nice feature of such simplicial manifolds is that their geometric
properties are completely described by the discrete set {l2i } of the squared lengths
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Fig. 4. Positive (a) and negative (b) space-like deficit angles δ

of their edges. Note that this amounts to a description of geometry without the
use of coordinates. There is nothing to prevent us from re-introducing coordinate
patches covering the piecewise linear manifold, for example, on each individual
simplex, with suitable transition functions between patches. In such a coordinate
system the metric tensor will then assume a definite form. However, for the
purposes of formulating the path integral we will not be interested in doing this,
but rather work with the edge lengths, which constitute a direct, regularized
parametrization of the space Geom(M) of geometries.

How precisely is the intrinsic geometry of a simplicial space, most impor-
tantly, its curvature, encoded in its edge lengths? A useful example to keep in
mind is the case of dimension two, which can easily be visualized. A 2d piecewise
linear space is a triangulation, and its scalar curvature R(x) coincides with the
so-called Gaussian curvature. One way of measuring this curvature is by parallel-
transporting a vector around closed curves in the manifold. In our piecewise-flat
manifold such a vector will always return to its original orientation unless it has
surrounded lattice vertices v at which the surrounding angles did not add up to
2π, but

∑
i⊃v αi = 2π − δ, for δ �= 0, see Fig. 4. The so-called deficit angle δ

is precisely the rotation angle picked up by the vector and is a direct measure
for the scalar curvature at the vertex. The operational description to obtain the
scalar curvature in higher dimensions is very similar, one basically has to sum
in each point over the Gaussian curvatures of all two-dimensional submanifolds.
This explains why in Regge calculus the curvature part of the Einstein action is
given by a sum over building blocks of dimension (d − 2) which are simply the
objects dual to those local two-dimensional submanifolds. More precisely, the
continuum curvature and volume terms of the action become

1
2

∫
R

ddx
√
|det g|(d)R −→

∑
i∈R

V ol(ith (d− 2)−simplex) δi , (6)

∫
R

ddx
√
|det g| −→

∑
i∈R

V ol(ith d−simplex) (7)

in the simplicial discretization. It is then a simple exercise in trigonometry to
express the volumes and angles appearing in these formulas as functions of the
edge lengths li, both in the Euclidean and the Minkowskian case.



A Discrete History of the Lorentzian Path Integral 145

The approach of dynamical triangulations uses a certain class of such sim-
plicial space-times as an explicit, regularized realization of the space Geom(M).
For a given volume Nd, this class consists of all gluings of manifold-type of a
set of Nd simplicial building blocks of top-dimension d whose edge lengths are
restricted to take either one or one out of two values. In the Euclidean case
we set l2i = a2 for all i, and in the Lorentzian case we allow for both space-
and time-like links with l2i ∈ {−a2, a2}, where the geodesic distance a serves
as a short-distance cutoff, which will be taken to zero later. Coming from the
classical theory this may seem a grave restriction at first, but this is indeed not
the case. Firstly, keep in mind that for the purposes of the quantum theory we
want to sample the space of geometries “ergodically” at a coarse-grained scale of
order a. This should be contrasted with the classical theory where the objective
is usually to approximate a given, fixed space-time to within a length scale a.
In the latter case one typically requires a much finer topology on the space of
metrics or geometries. It is also straightforward to see that no local curvature
degrees of freedom are suppressed by fixing the edge lengths; deficit angles in
all directions are still present, although they take on only a discretized set of
values. In this sense, in dynamical triangulations all geometry is in the gluing of
the fundamental building blocks. This is dual to how quantum Regge calculus is
set up, where one usually fixes a triangulation T and then “scans” the space of
geometries by letting the li’s run continuously over all values compatible with
the triangular inequalities.

In a nutshell, Lorentzian dynamical triangulations give a definite meaning to
the “integral over geometries”, namely, as a sum over inequivalent Lorentzian
gluings T over any number Nd of d-simplices,

∫
Geom(M)

D[gµν ] eiS[gµν ] LDT−→
∑
T∈T

1
CT

eiS
Regge(T ), (8)

where the symmetry factor CT = |Aut(T )| on the right-hand side is the order of
the automorphism group of the triangulation, consisting of all maps of T onto
itself which preserve the connectivity of the simplicial lattice. I will specify below
what precise class T of triangulations should appear in the summation.

It follows from the above that in this formulation all curvatures and volumes
contributing to the simplicial Regge action come in discrete units. This is again
easily illustrated by the case of a two-dimensional triangulation with Euclidean
signature, which according to the prescription of dynamical triangulations con-
sists of equilateral triangles with squared edge lengths +a2. All interior angles
of such a triangle are equal to π/3, which implies that the deficit angle at any
vertex v can take the values 2π − kvπ/3, where kv is the number of triangles
meeting at v. As a consequence, the Einstein-Regge action assumes the simple
form3

3 Strictly speaking, the expression (9) in d ≥ 3 is only correct for the Euclidean or
the Wick-rotated Lorentzian action. In the Lorentzian case one has several types of
simplices of a given dimension d, depending on how many of its links are time-like.
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Fig. 5. The two types of Minkowskian four-simplices in four dimensions

SRegge(T ) = κd−2Nd−2 − κdNd, (9)

where the coupling constants κi = κi(λ,GN ) are simple functions of the bare
cosmological and Newton constants in d dimensions. Substituting this into the
path sum in (8) leads to

Z(κd−2, κd) =
∑
Nd

e−iκdNd

∑
Nd−2

eiκd−2Nd−2
∑

T |Nd,Nd−2

1
CT

. (10)

The point of taking separate sums over the numbers of d- and (d−2)-simplices in
(10) is to make explicit that “doing the sum” is tantamount to the combinatorial
problem of counting triangulations of a given volume and number of simplices
of co-dimension two (corresponding to the last summation in (10)).4 It turns
out that at least in two space-time dimensions the counting of geometries can
be done completely explicitly, turning both Lorentzian and Euclidean quantum
gravity into exactly soluble statistical models.

5 Lorentzian Nature of the Path Integral

It is now time to explain what makes our approach Lorentzian and why it there-
fore differs from previous attempts at constructing non-perturbative gravita-
tional path integrals. The simplicial building blocks of the models are taken to
be pieces of Minkowski space, and their edges have squared lengths +a2 or −a2.
For example, the two types of four-simplices that are used in Lorentzian dynam-
ical triangulations in dimension four are shown in Fig. 5. The first of them has
four time-like and six space-like links (and therefore contains 4 time-like and 1
space-like tetrahedron), whereas the second one has six time-like and four space-
like links (and contains 5 time-like tetrahedra). Since both are subspaces of flat
space with signature (− + ++), they possess well-defined light-cone structures
everywhere.

Only after the Wick rotation will all links be space-like and of equal length (see
later). Nevertheless, I will use this more compact form for ease of notation.

4 The symmetry factor CT is almost always equal to 1 for large triangulations.
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t
Fig. 6. At a branching point associated with a spatial topology change, light-cones get
“squeezed”

In general, gluings between pairs of d-simplices are only possible when the
metric properties of their (d − 1)-faces match. Having local light cones implies
causal relations between pairs of points in local neighbourhoods. Creating closed
time-like curves will be avoided by requiring that all space-times contributing to
the path sum possess a global “time” function t. In terms of the triangulation
this means that the d-simplices are arranged such that their space-like links all
lie in slices of constant integer t, and their time-like links interpolate between
adjacent spatial slices t and t + 1. Moreover, with respect to this time, we will
not allow for any spatial topology changes5.

This latter condition is always satisfied in classical applications, where
“trouser points” like the one depicted in Fig. 6 are ruled out by the require-
ment of having a non-degenerate Lorentzian metric defined everywhere on M (it
is geometrically obvious that the light cone and hence gµν must degenerate in at
least one point along the “crotch”). Another way of thinking about such config-
urations (and their time-reversed counterparts) is that the causal past (future)
of an observer changes discontinuously as her worldline passes near the singular
point (see [17] and references therein for related discussions about the issue of
topology change in quantum gravity).

Of course, there is no a priori reason in the quantum theory to not relax some
of these classical causality constraints. After all, as I stressed right at the outset,
path integral histories are not in general classical solutions, nor can we attribute
any other direct physical meaning to them individually. It might well be that
one can construct models whose path integral configurations violate causality
in this strict sense, but where this notion is somehow recovered in the resulting
continuum theory. What the approach of Lorentzian dynamical triangulations

5 Note that if we were in the continuum and had introduced coordinates on space-time,
such a statement would actually be diffeomorphism-invariant.
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has demonstrated is that imposing causality constraints will in general lead to a
different continuum theory. This is in contrast with the intuition one may have
that “including a few isolated singular points will not make any difference”. On
the contrary, tampering with causality in this way is not innocent at all, as was
already anticipated by Teitelboim many years ago [18].

I want to point out that one cannot conclude from the above that spatial
topology changes or even fluctuations in the space-time topology cannot be
treated in the formulation of dynamical triangulations. However, if one insists
on including geometries of variable topology in a Lorentzian discrete context,
one has to come up with a prescription of how to weigh these singular points
in the path integral, both before and after the Wick rotation. Maybe this can
be done along the lines suggested in [19]; this is clearly an interesting issue for
further research.

Having said this, we next have to address the question of the Wick rotation, in
other words, of how to get rid of the factor of i in the exponent of (10). Without
it, this expression is an infinite sum (since the volume can become arbitrarily
large) of complex terms whose convergence properties will be very difficult to
establish. In this situation, a Wick rotation is simply a technical tool which – in
the best of all worlds – enables us to perform the state sum and determine its
continuum limit. Of course, the end result will have to be Wick-rotated back to
Lorentzian signature.

Fortunately, Lorentzian dynamical triangulations come with a natural notion
of Wick rotation, and the strategy I just outlined can be carried out explicitly
in two space-time dimensions, leading to a unitary theory (see Sect. 5.1 below).
In higher dimensions we do not yet have sufficient analytical control of the
continuum theories to make specific statements about the inverse Wick rotation.
Since we use the Wick rotation at an intermediate step, one can ask whether
other Wick rotations would lead to the same result. Currently this is a somewhat
academic question, since it is in practice difficult to find such alternatives. In
fact, it is quite miraculous we have found a single prescription for Wick-rotating
in our regularized setting, and it does not seem to have a direct continuum
analogue (for more comments on this issue, see [20,21]).

Our Wick rotation W in any dimension is an injective map from Lorentzian-
to Euclidean-signature simplicial space-times. Using the notation T for a sim-
plicial manifold together with length assignments l2s and l2t to its space- and
time-like links, it is defined by

Tlor = (T, {l2s = a2, l2t = −a2}) W�→ Teu = (T, {l2s = a2, l2t = a2}). (11)

Note that we have not touched the connectivity of the simplicial manifold T ,
but only its metric properties, by mapping all time-like links of T into space-like
ones, resulting in a Euclidean “space-time” of equilateral building blocks. It can
be shown [15] that at the level of the corresponding weight factors in the path
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integral this Wick rotation6 has precisely the desired effect of rotating to the
exponentiated Regge action of the Euclideanized geometry,

eiS(T lor) W�→ e−S(T eu). (12)

The Euclideanized path sum after the Wick rotation has the form

Zeu(κd−2, κd) =
∑
T

1
CT

e−κdNd(T )+κd−2Nd−2(T )

=
∑
Nd

e−κdNd

∑
T |Nd

1
CT

eκd−2Nd−2(T )

=
∑
Nd

e−κdNd eκ
crit
d (κd−2)Nd × subleading(Nd). (13)

In the last equality I have used that the number of Lorentzian triangulations
of discrete volume Nd to leading order scales exponentially with Nd for large
volumes. This can be shown explicitly in space-time dimension 2 and 3. For
d = 4, there is strong (numerical) evidence for such an exponential bound for
Euclidean triangulations, from which the desired result for the Lorentzian case
follows (since W maps to a strict subset of all Euclidean simplicial manifolds).

From the functional form of the last line of (13) one can immediately read off
some qualitative features of the phase diagram, an example of which appeared
already earlier in Fig. 3. Namely, the sum over geometries Zeu converges for val-
ues κd > κcrit

d of the bare cosmological constant, and diverges (ie. is not defined)
below this critical line. Generically, for all models of dynamical triangulations
the infinite-volume limit is attained by approaching the critical line κcrit

d (κd−2)
from above, ie. from inside the region of convergence of Zeu. In the process of
taking Nd → ∞ and the cutoff a → 0, one obtains a renormalized cosmological
constant Λ through

(κd − κcrit
d ) = aµΛ + O(aµ+1). (14)

If the scaling is canonical (which means that the dimensionality of the renor-
malized coupling constant is the one expected from the classical theory), the
exponent is given by µ = d. Note that this construction requires a positive bare
cosmological constant in order to make the state sum converge. Moreover, by
virtue of relation (14) also the renormalized cosmological constant must be posi-
tive. Other than that, its numerical value is not determined by this argument, but
by comparing observables of the theory which depend on Λ with actual physical
measurements.7 Another interesting observation is that the inclusion of a sum
6 To obtain a genuine Wick rotation and not just a discrete map, one introduces a

complex parameter α in l2t = −αa2. The proper prescription leading to (12) is then
an analytic continuation of α from 1 to −1 through the lower-half complex plane.

7 The non-negativity of the renormalized cosmological coupling may be taken as a
first “prediction” of our construction, which in the physical case of four dimensions
is indeed in agreement with current observations.
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over topologies in the discretized sum (13) would lead to a super-exponential
growth of at least ∝ Nd! of the number of triangulations with the volume Nd.
Such a divergence of the path integral cannot be compensated by an additive
renormalization of the cosmological constant of the kind outlined above.

There are of course ways in which one can sum divergent series of this type,
for example, by performing a Borel sum. The problem with these stems from
the fact that two different functions can share the same asymptotic expansion.
Therefore, the series in itself is not sufficient to define the underlying theory
uniquely. The non-uniqueness arises because of non-perturbative contributions
to the path integral which are not represented in the perturbative expansion.8

In order to fix these uniquely, an independent, non-perturbative definition of
the theory is necessary. Unfortunately, for dynamically triangulated models of
quantum gravity, no such definitions have been found so far. In the context
of two-dimensional (Euclidean) quantum gravity this difficulty is known as the
“absence of a physically motivated double-scaling limit” [22]. The same issue has
recently been revived in d = 3 [23], where the situation is not any better.

Lastly, obtaining an interesting continuum limit may or may not require an
additional fine-tuning of the inverse gravitational coupling κd−2, depending on
the dimension d. In four dimensions, one would expect to find a second-order
transition along the critical line, corresponding to local gravitonic excitations.
The situation in d = 3 is less clear, but results obtained so far indicate that no
fine-tuning of Newton’s constant is necessary [24,25].

Before delving into the details, let me summarize briefly the results that have
been obtained so far in the approach of Lorentzian dynamical triangulations. At
the regularized level, that is, in the presence of a finite cutoff a for the edge
lengths and an infrared cutoff for large space-time volume, they are well-defined
statistical models of Lorentzian random geometries in d = 2, 3, 4. In particu-
lar, they obey a suitable notion of reflection-positivity and possess selfadjoint
Hamiltonians.

The crucial questions are then to what extent the underlying combinatorial
problems of counting all d-dimensional geometries with certain causal proper-
ties can be solved, whether continuum theories with non-trivial dynamics exist
and how their bare coupling constants get renormalized in the process. What
we know about Lorentzian dynamical triangulations so far is that they lead to
continuum theories of quantum gravity in dimension 2 and 3. In d = 2, there is
a complete analytic solution, which is distinct from the continuum theory pro-
duced by Euclidean dynamical triangulations. Also the matter-coupled model
has been studied. In d = 3, there are numerical and partial analytical results
which show that both a continuum theory exists and that it again differs from its
Euclidean counterpart. Work on a more complete analytic solution which would
give details about the geometric properties of the quantum theory is under way.
In d = 4, the first numerical simulations are currently being set up. The challenge
here is to do this for sufficiently large lattices, to be able to perform meaningful

8 A field-theoretic example would be instantons and renormalons in QCD.
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measurements. So far, we cannot make any statements about the existence and
properties of a continuum theory in this physically most interesting case.

5.1 In Two Dimensions

The two-dimensional case serves as a nice illustration of the objectives of the
approach, many of which can be carried out in a completely explicit manner
[13]. There is just one type of building block, a flat Minkowskian triangle with
two time-like edges of squared edge lengths l2t = −a2 and one space-like edge
with l2s = a2. We build up a causal space-time from strips of unit height ∆t = 1
(see Fig. 7), where t is an integer-valued discrete parameter that labels sub-
sequent spatial slices, i.e. simplicial submanifolds of codimension 1 which are
constructed from space-like links only. In the two-dimensional case these sub-
spaces are one-dimensional. We choose periodic boundary conditions, such that
the spatial “universes” are topologically spheres S1 (other boundary conditions
are also possible, leading to a slight modification of the effective quantum Hamil-
tonian [26,27]). A spatial geometry at given t is completely characterized by its
length l(t) ∈ {1, 2, 3, . . . }, which (in units of the lattice spacing a) is simply the
number of spatial edges it contains.

One simplification occurring in two dimensions is that the curvature term in
the Einstein action is a topological invariant (and that therefore does not depend
on the metric), given by

∫
M

d2x
√
|det g|R = 2πχ, (15)

where χ denotes the Euler characteristic of the two-dimensional space-time M .
Since we are keeping the space-time topology fixed, the exponential of i times
this term is a constant overall factor that can be pulled out of the path integral
and does not contribute to the dynamics. Dropping this term, we can write the
discrete path integral over 2d simplicial causal space-times as

Gλ(lin, lout; t) =
∑

causal T
lin,lout,t

e−iλN2 Wick−→
∑
W (T )

lin,lout,t

e−λ̃N2 , (16)

t

t+1

t+2

+a2

−αa2

Fig. 7. Two strips of a 2d Lorentzian triangulation, with spatial slices of constant t
and interpolating future-oriented time-like links
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where the weight factors depend now only on the cosmological (volume) term,
and λ̃ differs from λ by a finite positive numerical factor. Each history entering
in the discrete propagator (16) has an in-geometry of length lin, an out-geometry
of length lout, and consists of t steps. An important special case is the propagator
for a single step, which in its Wick-rotated form reads9

Gλ̃(l1, l2; t = 1) = 〈l2|T̂ |l1〉 = e−λ̃(l1+l2)
∑

T :l1→l2

1 ≡ e−λ̃(l1+l2) 1
l1 + l2

(
l1 + l2

l1

)
.

(17)

The second equation in (17) defines the transfer matrix T̂ via its matrix elements
in the basis of the (improper) length eigenvectors |l〉. Knowing the eigenvalues of
the transfer matrix is tantamount to a solution of the general problem by virtue
of the relation

Gλ̃(l1, l2; t) = 〈l2|T̂ t|l1〉. (18)

Importantly, the propagator satisfies the composition property

Gλ̃(l1, l2; t1 + t2) =
∞∑
l=1

Gλ̃(l1, l; t1)lGλ̃(l, l2; t2), (19)

where the sum on the right-hand side is over a complete set of intermediate
length eigenstates.

Next, we look for critical behaviour of the propagator Gλ̃ (that is, a non-
analytic behaviour as a function of the renormalized coupling constant) in the
limit as a→ 0. Since there is only one coupling, the phase diagram of the theory
is just one-dimensional, and illustrated in Fig. 8. As can be read off from the
explicit form of the propagator,

Gλ̃ =
∑
N2

e−λ̃N2
∑
T |N2

1 =
∑
N2

e−(λ̃−λ̃crit)N2 × subleading(N2), (20)

the discrete sum over 2d geometries converges above some critical value λ̃crit > 0,
and diverges for λ̃ below this point. In order to attain a macroscopic physical
volume 〈V 〉 := 〈a2N2〉 in the a→ 0 limit, one needs to approach λ̃crit from above.

G converges

λ
λ
~

~

G diverges

crit
0

Fig. 8. The 1d phase diagram of 2d Lorentzian dynamical triangulations

9 This is the “unmarked” propagator, see [13,11] for details.
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It turns out that to get a non-trivial continuum limit, the bare cosmological
coupling constant has to be fine-tuned canonically according to

λ̃− λ̃crit = a2Λren + O(a3). (21)

Note that the numerical value of λ̃crit will depend on the details of the discretiza-
tion (for example, the building blocks chosen; see [26] for alternative choices), the
so-called non-universal properties of the model which do not affect the quantum
dynamics of the final continuum theory. At the same time, the counting variables
l and t are taken to infinity while keeping the dimensionful quantities L := al
and T := at constant. The renormalized propagator is then defined as a function
of all the renormalized variables,

GΛ(L1, L2;T ) := lim
a→0

aνGλ̃crit+a2Λ

(L1

a
,
L2

a
;
T

a

)
, (22)

which also contains a multiplicative wave function renormalization. The final
result for the continuum path integral of two-dimensional Lorentzian quantum
gravity is obtained by an inverse Wick rotation of the continuum proper time T
to iT from the Euclidean expression and is given by

GΛ(Lin, Lout;T ) = e− coth(i
√
ΛT )

√
Λ(Lin+Lout)

√
ΛLinLout

sinh(i
√
ΛT )

I1

(
2
√
ΛLinLout

sinh(i
√
ΛT )

)
,

(23)

where I1 denotes the Bessel function of the first kind.
What is the physics behind this functional expression? In two dimensions,

there is not much “physics” in the sense that the classical Einstein equations
are empty. This renders meaningless the question of a classical limit of the 2d
quantum theory; whatever dynamics there is will be purely “quantum”. Figure 9
shows a typical two-dimensional quantum universe: the compactified direction
is “space”, and the vertical axis is “time”. It illustrates the typical development
of the ground state of the system over time, as generated by a Monte-Carlo
simulation of almost 19.000 triangles.

Since the theory has been solved analytically, we also know the explicit form
of the effective quantum Hamiltonian, namely,

Ĥ = −L
d2

dL2 − 2
d

dL
+ ΛL. (24)

This operator is selfadjoint on the Hilbert space L2(R+, LdL) and generates a
unitary evolution in the continuum proper time T . The Hamiltonian consists of
a kinetic term in the single geometric variable L (the size of the spatial universe)
and a potential term depending on the renormalized cosmological constant. Its
spectrum is discrete,

En = 2(n + 1)
√
Λ, n = 0, 1, 2, . . . (25)
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Fig. 9. A typical two-dimensional Lorentzian space-time, with volume N2 = 18816 and
a total proper time of t = 168 steps

and one can compute various expectation values, for example,

〈L〉n =
n + 1√

Λ
, 〈L2〉n =

3
2

(n + 1)2

Λ
. (26)

Since there is just one dimensionful constant, with [Λ] = length−2, all dimen-
sionful quantities must appear in appropriate units of Λ.

Another useful way of characterizing the continuum theory is via certain
critical exponents, which in the case of gravitational theories are of a geometrical
nature. The Hausdorff dimension dH describes the scaling of the volume of a
geodesic ball of radius R as a function of R. This very general notion can be
applied to a fixed metric space, but for our purposes we are interested in the
ensemble average over the entire “sum over geometries”, that is, the leading-
order scaling behaviour of the expectation value10

〈V (R)〉 ∝ RdH . (27)

The Hausdorff dimension is a truly dynamical quantity, and is not a priori
the same as the dimensionality of the building blocks that were used to construct
10 For the Lorentzian theory, “geodesic distance” refers to the length measurements

after the Wick rotation.
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the individual discrete space-times in the first place. It may even depend on the
length scale of the radial distance R. Remarkably, dH can be calculated analyt-
ically in both Lorentzian and Euclidean 2d quantum gravity (see, for example,
[28]). The latter, also known as “Liouville gravity”, can be obtained by per-
forming a sum over arbitrary triangulated Euclidean two-geometries (with fixed
topology S2), and not just those which correspond to a Wick-rotated causal
Lorentzian space-time. One finds

dH = 2 (Lorentzian) and dH = 4 (Euclidean). (28)

The geometric picture associated with the non-canonical value of dH in the Eu-
clidean case is that of a fractal geometry, with wildly branching “baby universes”.
This branching behaviour is incompatible with the causal structure required in
the Lorentzian case, and the geometry of the Lorentzian quantum ground state
is much better behaved, although it is by no means smooth as we have already
seen.

We conclude that the continuum theories of 2d quantum gravity with Eu-
clidean and Lorentzian signature are distinct. They can be related by a somewhat
complicated renormalization procedure which one may think of as “integrating
out the baby universes” [29], which is not at all as simple as “sticking a factor
of i in the right place”. In a way, this is not unexpected in view of the fact that
(the spaces of) Euclidean and Lorentzian geometries are already classically very
different objects. I am not claiming that from the point of view of 2d quantum
gravity, one signature is better than the other. This seems a matter of taste,
since neither theory describes any aspects of real nature. Nevertheless, what we
have shown is that imposing causality constraints at the level of the individual
histories in the path integral changes the outcome radically, a feature one may
expect to generalize to higher dimensions.

Let me comment at this point about the role of the integer t which labels the
time steps in the propagator (18) and its higher-dimensional analogues. In the
first place, it is one of the many discrete parameters that label the regularized
space-times in a coordinate-invariant way. In any given Minkowskian building
block, one may introduce proper-time coordinates whose value coincides (up
to a constant factor depending on the type of the building block) with the
discrete time t on the spatial slices. However, this is where the analogue with
continuum proper time ends, since it is in general impossible to extend such
coordinate patches over more than one time step, because of the presence of
curvature singularities. Next, there is no claim that the propagator with respect
to t or its continuum analogue T has a distinguished physical meaning, despite
being invariantly defined. Nevertheless, we do believe strongly that it contains
all physical information about the “quantum geometry”. In other words, all
observables and propagators (which may depend on other notions of “time”)
can in principle be computed from our propagator in t.11 This can of course be
difficult in practice, but this is only to be expected.
11 A related result has already been demonstrated for the proper-time propagator in

two-dimensional Euclidean quantum gravity [30].



156 Renate Loll

Coming from Euclidean quantum gravity, there are specific reasons for look-
ing at the behaviour of the matter-coupled theory in two dimensions. The cou-
pling of matter fields to Lorentzian dynamical triangulations can be achieved
in the usual manner by including for each given geometry T in the path inte-
gral a summation over all matter degrees of freedom on T , resulting in a double
sum over geometric and matter variables. For example, adding Ising spins to 2d
Lorentzian gravity is described by the partition function

Z(λ, βI) =
∑
N2

e−λN2
∑
causal

T ∈TN2

∑
{σi=±1}

e
βI
2

∑
<ij> σiσj , (29)

where the last sum on the right is over the spin configurations of the Ising model
on the triangulation T . The analogous model on Euclidean triangulations has
been solved exactly [31], and its continuum matter behaviour is characterized
by the critical exponents

α = −1, β = 0.5, γ = 2, (Euclidean) (30)

for the specific heat, the magnetization and the magnetic susceptibility respec-
tively. These differ from the ones found for the Ising model on a fixed, flat lattice,
the so-called Onsager exponents. The transition here is third-order, reflecting the
influence of the fractal background on which the matter is propagating.

The same Ising model, when coupled to Lorentzian geometries according to
(29), has not so far been solved exactly, but its critical matter exponents have
been determined numerically and by means of a diagrammatic high-T expansion
[32] and agree (within error bars) with the Onsager exponents, that is,

α = 0, β = 0.125, γ = 1.75. (Lorentzian) (31)

So, interestingly, despite the fluctuations of the geometric ensemble evident in
Fig. 9, the conformal matter behaves as if it lived on a static flat lattice. This
indicates a certain robustness of the Onsager behaviour in the presence of such
fluctuations. Does it also imply there cannot be any back-reaction of the matter
on the geometry? In order to answer this question, Lorentzian quantum gravity
was coupled to “a lot of matter”, in this case, eight copies of Ising models [33].
The partition function is a direct generalization of (29). For a given triangulation,
there are 8 independent Ising models, which interact with each other only via
their common interaction with the ensemble of geometries.

Looking again at a typical “universe”, depicted in Fig. 10, its geometry is now
significantly changed in comparison with the case without matter. Part of it is
squeezed down to a spatial universe of minimal size, with the remainder forming
a genuinely extended space-time. A measurement of the critical behaviour of the
matter on this piece of the universe again produces values compatible with the
Onsager exponents!12 This is a very interesting result from the point of view
12 The same would of course not hold for the degenerate part of the space-time which

is effectively one-dimensional.
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Fig. 10. A typical two-dimensional Lorentzian geometry in the presence of eight Ising
models, for volume N2 = 73926 and a total proper time t = 333

of Liouville gravity, which does not seem to produce meaningful matter-coupled
models beyond a central charge of one, the famous c = 1 barrier. (A model with
n Ising spins corresponds to central charge c = n/2.) We conclude that causal
space-times are better carrier spaces for matter fields in 2d quantum gravity.

5.2 In Three Dimensions

Having discovered the many beautiful features of being Lorentzian in two di-
mensions, the next challenge is to solve the dynamically triangulated model
in three dimensions and understand the geometric properties of the continuum
theory it gives rise to. This will bring us a step closer to our ultimate goal, the
four-dimensional quantum theory.

Despite its reputation as an “exactly soluble theory”, many aspects of quan-
tum gravity in 2+1 dimensions remain to be understood. There is still an unre-
solved tension between (i) the gauge (Chern-Simons) formulation in which the
constraints can be solved in a straightforward way before or after quantization,
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leading to a quantized finite-dimensional phase space, and (ii) a path integral
formulation in terms of “gµν” which seems just about as intractable as the four-
dimensional theory, and is power-counting non-renormalizable.

Since Lorentzian dynamical triangulations are really a regularized and non-
perturbative version of the latter, a solution of the model should help to bridge
this gap. Part of the trouble with gravitational path integrals is the “conformal-
factor problem”, which makes its first appearance in d = 3.13 The conformal part
of the metric, ie. the mode associated with an overall scaling of all components of
the metric tensor, contributes to the action with a kinetic term of the wrong sign.
This is most easily seen by considering just the curvature term of the Einstein
action,

S =
∫

ddx
√
g(R + . . . ), (32)

and performing a conformal transformation gµν → g′
µν = eφgµν on the metric.

This is not a gauge transformation and leads to a change

S → S′ =
∫

ddx
√

g′(−(∂0φ)2 + . . . ) (33)

in the action, with the anticipated negative kinetic term for the conformal field φ.
In the perturbative theory, this is not a real problem since the conformal term can
be isolated explicitly and eliminated. However, the ensuing unboundedness of the
action spells potential trouble for any non-perturbative geometric path integral
(that is either Euclidean from the outset, or has been Euclideanized by a suitable
Wick rotation), since the Euclidean weight factors exp(−S) =exp(φ̇2 + . . . ) can
become arbitrarily large. We will see that this problem arises in our approach
too, and how it is resolved non-perturbatively.

First to some basics of Lorentzian dynamical triangulations in three dimen-
sions. The construction of space-time manifolds is completely analogous to the
2d case. Slices of constant integer t are now two-dimensional space-like, equilat-
eral triangulations of a given, fixed topology (2)Σ, and time-like edges interpolate
between adjacent slices t and t + 1. The building blocks are given by two types
of tetrahedra: one of them has three space-like and three time-like edges, and
shares its space-like face with a slice t =const, the other has four time-like and
two space-like edges, the latter belonging to two distinct adjacent spatial slices
(Fig. 11). We often denote the different tetrahedral types by the numbers of
vertices (n,m) they have in common with two subsequent slices, which in three
dimensions can take the values (3,1) (together with its time inverse (1,3)) and
(2,2). Within a given sandwich ∆t = 1, a (2,2)-tetrahedron can be glued to other
(2,2)’s, as well as to (3,1)- and (1,3)-tetrahedra, but a (1,3) can never be glued
directly to a (3,1), since their triangular faces do not match.

13 A more detailed account of the history of this problem in quantum gravity can be
found in [20].
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(3,1)

(1,3) (2,2)

t

t+1

Fig. 11. The three types of tetrahedral building blocks used in 3d Lorentzian gravity

The simplicial action after the Wick rotation reads

S = −κ1N1(T ) + κ3N3(T ) ≡ N3(T )
(
−κ1

N1(T )
N3(T )

+ κ3

)
, (34)

where the latter form is useful in the discussion of Monte-Carlo simulations,
which are usually performed at (approximately) constant volume. The phase
structure of the 3d model with spherical spatial topology, (2)Σ = S2, has been
determined with the help of numerical simulations [24]. As expected, there is
a critical line κcrit

3 (κ1). After fine-tuning to this line, there is no further phase
transition14 along it as a function of the inverse Newton coupling κ1.

Where is our conformal-mode problem? If we keep the total volume N3 fixed,
the Euclidean action is not actually unbounded, but because of the nature of our
regularization restricted by the range of the “order parameter” ξ := N1/N3 which
kinematically can only take values in the interval [1, 5/4] [15]. This by no means
implies we have removed the problem by hand. Firstly, one can explicitly identify
configurations which minimize the action (34) and, secondly, the unboundedness
could well be recovered upon taking the continuum limit. However, what happens
dynamically is that even in the continuum limit (as far as can be deduced from
the simulations [24,35]), ξ stays bounded away from its “conformal maximum”,
which means that the quantum theory of Lorentzian 3d gravity is not dominated
by the dynamics of the conformal mode. Configurations with minimal action
exist, but they are entropically suppressed. This is clearly a non-perturbative
effect which involves not just the action, but also the “measure” of the path
integral. A similar argument of a non-perturbative cancellation between certain
Faddeev-Popov determinants and the conformal divergence can be made in a
gauge-fixed continuum computation [20].15

14 The first simulations did report a first-order transition at large κ1, but this was
presumably a numerical artefact; upon slightly generalizing the class of allowed ge-
ometries, this transition has now disappeared [34].

15 Of course, since the continuum path integral cannot really be done (strictly speaking,
not even in two dimensions), the cancellation argument has to rely on certain (plau-
sible) assumptions about the behaviour of the path integral under renormalization.
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0 5 10 15 20 25 30

Fig. 12. A typical three-dimensional universe, represented as a distribution of two-
volumes N2(t) of spatial slices at proper times t ∈ [0, 32], at k0 = 5.0

This result is reassuring, because it shows that (Euclideanized) path integrals
are not doomed to fail, if only they are set up properly and non-perturbatively.
It also agrees with the expectation one has from canonical treatments of the
theory where it is obvious that the conformal mode is not a propagating degree
of freedom.

What can we say about the quantum dynamics of 3d Lorentzian gravity
and the geometry of its ground state? Fig. 12 shows a snapshot of a typical
“universe” produced by the Monte-Carlo simulations. The only variable plotted
as a function of the discrete time t is the two-volume of a spatial slice. What has
been determined are the macroscopic scaling properties of this universe; they
are in agreement with those of a genuine three-dimensional compact space-time,
its time extent scaling ∝ N

1/3
3 and its spatial volume ∝ N

2/3
3 .

Current efforts are directed at trying to analyze the detailed microscopic
geometric properties of the quantum universe, its effective quantum Hamilto-
nian, and at gaining an explicit analytic understanding of the conformal-factor
cancellation. One important question is how exactly the conformal mode decou-
ples from a propagator like G(g(in), g(out)), although it appears among the labels
parametrizing the in- and out-geometries g. One does not in general expect to
be able to make much progress in solving a three-dimensional statistical model
analytically. However, we anticipate some simplifying features in the case of pure
three-dimensional gravity, which is known to describe the dynamics of a finite
number of physical parameters only.
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There are two main strands of investigation, one for space-times R×S2 and
using matrix model techniques, and the other for space-times R × T 2 with flat
toroidal spatial slices. An observation that is being used in both is the fact that
the combinatorics of the transfer matrix, crucial to the solution of the full prob-
lem, is encoded in a two-dimensional graph. The transfer matrix T̂ , defined in
analogy with (17), describes all possible transitions from one spatial 2d triangu-
lation to the next. Such a transition is nothing but a three-dimensional sandwich
geometry [t, t + 1], and is completely characterized by the two-dimensional pat-
tern that emerges when one intersects this geometry at the intermediate time
t + 1/2. One associates with each time-like triangle a coloured edge where the
triangle meets the (t + 1/2)-surface. A blue edge belongs to a triangle whose
base lies in the triangulation at time t, and a red edge denotes an upside-down
triangle with base at t + 1. The intersection pattern can therefore be viewed as
a combined tri- and quadrangulation, made out of red triangles, blue triangles,
and squares with alternating red and blue sides.

Graphs of this type, or equivalently their duals, are also generated by the
large-N limit of a hermitian two-matrix model with partition function

Z(α1, α2, β) =
∫

dAN×N dBN×N e−N Tr( 1
2A

2+ 1
2B

2−α1A
3−α2B

3−βABAB). (35)

The cubic and quartic interaction terms in the exponent correspond to the tri-
and four-valent intersections of the dual bi-coloured spherical graph character-
izing a piece of space-time. In fact, as was shown in [36], the matrix model gives
an embedding of the gravitational model we are after, since it generates more
graphs than those corresponding to regular three-dimensional geometries. Inter-
estingly, from a geometric point of view these can be interpreted as wormhole
configurations. Some explicit examples are shown in Fig. 13; the graphs consist
of squares since they are taken from a “pyramid” variant of three-dimensional
gravity, cf. footnote 16. Blue and red edges are in these pictures represented by
solid and dashed lines.

The matrix model has been solved analytically for the diagonal case α1 = α2

[37], and its second-order phase transition separates the phase where wormholes
are rare from that where they are abundant.16 One therefore concludes that
Lorentzian gravity as given by dynamical triangulations should correspond to
the former.

It turns out that to extract information about the quantum Hamiltonian of
the system, one must consider the off-diagonal case where the two α-couplings
are different. Only in that case can one distinguish which part of the intersection
graph comes from “below” (time t) and which from “above” (time t + 1). The
colouring of the two-dimensional graph is really the memory of the original
three-dimensional nature of the problem. It turns out that even for α’s which
16 More precisely, these results apply to a variant of (35) where the cubic terms A3 and
B3 have been replaced by quartic terms A4 and B4. Geometrically, this corresponds
to using pyramids instead of the tetrahedral building blocks, a difference that is
unlikely to affect the continuum theory.
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(a) (b)

Fig. 13. Examples of quadrangulations at t+ 1/2 corresponding to wormholes at time
t. Shrinking the dashed links to zero, one obtains the two-geometries at the bottom.
The thick dashed lines at the top are contracted to points where wormholes begin or
end

differ only infinitesimally, this is a highly non-trivial problem. Making a natural
ansatz for the analytic structure of the eigenvalue densities that appear in the
partition function, a consistent set of equations has now been found, which will
hopefully yield more details about the effective Hamiltonian of the quantum
system [38]. Since there are no non-trivial Teichmüller parameters in the sphere
case, what one might expect on dimensional grounds is a differential operator in
the two-volume V2 of the kind [34]

Ĥ = −c1GNV2
d2

dV 2
2
− c2ΛV2, (36)

where the ci are numerical constants.
A second direction of attack are cosmological models of 3d gravity. They are

symmetry-reduced in the sense that only a restricted class of spatial geometries is
allowed at integer values of t, and also additional conditions may be imposed on
the interpolating three-dimensional Lorentzian geometries. All models studied
so far have flat tori as their spatial slices, the simplest case with a non-trivial
physical configuration space, spanned by two real Teichmüller parameters (apart
from the two-volume of the spatial slices). Flat two-dimensional tori can be
obtained by suitably identifying the boundaries of a piece of the triangulated
plane. Since we are working with equilateral triangles, this amounts to a piece of
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regular triangulation where exactly six triangles meet at every (interior) vertex
point.

Even if the spatial slices have been chosen as spaces of constant curvature, this
still leaves a number of possibilities of how the space-time in between can be filled
in. One extreme choice would be to allow any intermediate three-geometry. By
this we would probably not gain much in terms of simplifying the model, which
obviously is a major motivation behind going “cosmological”. By contrast, the
first model studied had very simple interpolating geometries. The most trans-
parent realization of this model is in terms of (4,1)- and (1,4)-pyramids rather
than the (3,1)- and (1,3)-tetrahedra (a modification we already encoutered in
the discussion of the matrix model), so that the spatial slices at integer-t are
regular square lattices [39]. The corresponding 2d building blocks of the inter-
section graph at half-integer t are now blue squares, red squares and – as before
– red-and-blue squares. If the (cut-open) tori at times t1 = t and t2 = t + 1
consist of li columns and mi rows, i = 1, 2, any allowed intersection pattern
is a rectangle of size (l1 + l2) × (m1 + m2). An example is shown in Fig. 14.
The trouble with this simple model is that it does not have enough entropy: the
number of possible interpolating sandwiches between two neighbouring spatial
slices is given by

entropy ∝
(

l1 + l2
l1

)(
m1 + m2

m1

)
, (37)

which is roughly speaking the square of the entropy of the two-dimensional
Lorentzian model, cf. (17). This is not enough in the sense that the number of
“microstates” in a piece of space-time ∆t = 1 scales asymptotically only with the
linear size of the tori, ie. like exp(c·length). Such a behaviour cannot “compete”
with the exponential damping exp(c′·area) coming from the cosmological term

l1 + l2

m
1

+
m

2

t

t+ 1

t+ 1
2

Fig. 14. The cosmological “pyramid model” has regular slices at both integer and
half-integer times.
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in the action. Thus, the only space-times that will not be exponentially damped
in the continuum limit will be those whose spatial slices are essentially one-
dimensional. This clearly is a limit that has nothing to do with the description
of 3d quantum geometries we are after. In particular, the model is unsuitable
for studying the conformal-mode cancellation.

I have included a discussion of this model because it suggests a potential prob-
lem for the path integral in models that impose severe symmetry constraints be-
fore quantization. Prime examples of this are continuum mini-superspace models
with only a finite number of dynamical degrees of freedom, whose path integral
formulations are riddled with difficulties. Lorentzian dynamically triangulated
models are more flexible concerning the imposition of such constraints.

The next cosmological model I will consider has also flat tori at integer-t, but
allows for more general geometries in between the slices. As a consequence, it
does not suffer from the problem described above. The easiest way of describing
the geometry of this so-called hexagon model is by specifying the intersection
patterns at half-integer t. One such pattern can be thought of as a tiling of
a regular piece of a flat equilateral triangulation with three types of coloured
rhombi. The colouring of the rhombi again encodes the orientation in three
dimensions of the associated tetrahedral building block. A blue rhombus stands
for a pair of (3,1)-tetrahedra, glued together along a common time-like face,
a red rhombus for a pair of (1,3)-tetrahedra, and the rhombus with alternating
blue and red sides is a (distorted) representation of a (2,2)-tetrahedron. Opposite
sides of the regular triangular “background lattice” are to be identified to create
the topology of a two-torus. The beautiful feature of this model is the fact that
any complete tiling of this lattice by matching rhombic tiles automatically gives
rise to flat two-tori on the two spatial boundaries of the associated sandwich
[t, t + 1] [40].

After the Wick rotation, the one-step propagator of this model can be written
as

G(g(1), g(2);∆t = 1) ≡ 〈g(2)|T̂ |g(1)〉 = C(g(1), g(2)) e−S(g(1),g(2)). (38)

We note here a distinguishing property of the hexagon model, namely, a factor-
ization of G into a Boltzmann weight exp(−S) and a combinatorial term C which
counts the number of distinct sandwich geometries with fixed toroidal bound-
aries g(1) and g(2), both of which depend on the boundary data only, and not
on the details of the three-dimensional triangulation of its interior. The leading
asymptotics of the entropy term is determined by the combinatorics of a model
of so-called vicious walkers. The walkers are usually represented by an ensemble
of paths that move up a tilted square lattice, taking steps either diagonally to
the left or to the right, in such a way that at most one path passes through any
one lattice vertex.

The paths of the hexagon model are sequences of rhombi that have been
put down on the background lattice so they lie on one of their sides (types B
and C in Fig. 15). Because of the toroidal boundary conditions, such B-C-paths
wind around the background lattice in the “vertical direction” (on figures such
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AB

C

Fig. 15. A rhombus can be put onto the triangular background lattice with three
different orientations, A, B or C
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Fig. 16. An example of a periodic tiling of the triangular background lattice. The
shaded region is a B-C-path with winding number (0,1)

as Fig. 16), which for the purposes of solving the 2d statistical model of vicious
walkers we may think of as the time direction. The transfer matrix of this model
can be diagonalized explicitly. Let us denote the number of vicious-walker paths
by w/2, the width of the background lattice by l + w and its height (in time
direction) by m, all in lattice units. It turns out that for the simplest version of
the model we can set m = l without loss of generality. We are now interested in
the number N (l, w) which solves the following combinatorial problem:

Given two even integers l and w, how many ways N (l, w) are there of
drawing w/2 non-intersecting paths of winding number (0, 1) (in the
horizontal and vertical direction) onto a tilted square lattice of width
l+w and height l, with periodic boundary conditions in both directions?

Denoting by λ = (λ1, . . . , λw/2), λi ∈ {0, 2, 4, . . . , l + w ≡ 0}, the vector of
positions of the vicious walkers along the horizontal axis, the eigenvectors of the
transfer matrix have the form

Ψ(λ) =
1√
w
2 !

det[zλi
j ], 1 ≤ i, j ≤ w

2
, (39)
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where the complex numbers zj are given by

zj = eiπ
kj

l+w eiπ
w−2
l+w , 0 ≤ k1 < k2 · · · < kw/2 ≤ l + w

2
− 1. (40)

This result can be understood by observing that for a single walker in the same
representation, taking a step to the right (left) is represented by a multiplication
(division) by z, that is,

Ψ(λ) = zλ =⇒ zΨ(λ) = zλ+1 ≡ Ψ(λ + 1). (41)

The expression (39) is an appropriately antisymmetrized and normalized version
for the case of several walkers. In this representation, the transfer matrix17 takes
the form

T̂VW =
w/2∏
i=1

( 1
zi

+ 2 + zi
)
. (42)

The final result in the limit as both l, w →∞, with a fixed ratio α := w
l+w , is to

leading order given by

N (l, w) = C(α)
lw
2 , C(α) = exp

[
2
α

∫ α/2

0
dy log(2 cosπy)

]
. (43)

This shows that the hexagon model has indeed enough entropy, since the number
of possible intermediate geometries scales exponentially with the area, and not
just with the linear dimension of the tori involved.

Another attractive feature of the model is that the Teichmüller parameters
τ(t) = τ1(t) + iτ2(t) of the spatial tori at time t can be written explicitly as
functions of the discrete variables describing the Lorentzian simplicial space-
time. It turns out that the real parameter τ1 is not dynamical, so that the wave
functions of the model are labelled by just two numbers, the two-volume v(t)
and τ2(t).18 Expanding the euclideanized action for small ∆t = a, one finds

S = λ̃v − k̃a2v
(( v̇

v

)2
−

( τ̇2
τ2

)2)
+ . . . , (44)

where λ̃ and k̃ are proportional to the bare cosmological and inverse Newton’s
constants. This has the expected modular-invariant form, with a standard kinetic
term for τ2, and one with the wrong sign for the area v. Of course, this is our
old friend, the (global) conformal mode!

What we are after is the “effective action”, containing contributions from
both (44) and the state counting, namely,

Seff := S − log(entropy) = v(λ̃− C)+ ??? (45)

17 This is the transfer matrix corresponding to a “double step” in time; a single step
would lead to a position vector with odd λi’s.

18 The model can be generalized to have non-trivial τ1 by allowing for B-C-paths with
higher winding numbers [41].
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In order to say anything about the cancellation or otherwise of the conformal
divergence, we need more than just the leading-order term (43) of the entropy
of the hexagon model. Unlike the exponential term, these subleading terms are
sensitive to the colouring of the intersection graph, and efforts are under way to
solve the corresponding vicious-walker problem [41].

5.3 Beyond Three Dimensions

As already mentioned earlier, there is not much to report at this stage on the
nature of the continuum limit in the physical case of four dimensions. The
first Monte-Carlo simulations are just being set up, but any conclusive state-
ments are likely to involve a combination of analytical and numerical argu-
ments. Also it should be kept in mind that, unlike in previous simulations of
four-dimensional Euclidean dynamical triangulations, the space-times involved
here are not isotropic. Measurements of two-point functions, say, will be sensitive
to whether the distances are time- or space-like, and therefore more computing
power will be necessary to achieve a statistics comparable to the Euclidean case.

One way of making progress in four dimensions will be by studying geome-
tries with special symmetries, along the lines of the 3d cosmological models
discussed above. It should be noted that popular symmetry reductions, such
as spherical or cylindrical symmetry, cannot be implemented exactly because of
the nature of our discretization. They can at best be realized approximately,
which in view of the results of the previous subsection may be a good thing
since it will ensure that a sufficient number of microstates contributes to the
state sum. An important application in this context is the construction of a
path integral for spherical black hole configurations. Already the formulation
of the problem has a number of challenging aspects, for example, the inclusion
of non-trivial boundaries, an explicit realization of the (near-)spherical symme-
try, and of a “horizon finde”, some of which have been addressed and solved in
[42,43]. It will be extremely interesting to see what Lorentzian dynamical trian-
gulations have to say about the famous thermodynamic properties of quantum
black holes from a non-perturbative point of view. These questions are currently
under study.

6 Brief Conclusion

As we have seen, the method of Lorentzian dynamical triangulations constitutes
a well-defined regularized framework for constructing non-perturbative theories
of quantum gravity. Technically, they can be characterized as regularized sums
over simplicial random geometries with a time arrow and certain causality prop-
erties. In dimension d < 4, interesting continuum limits have been shown to exist.
Their geometric properties have been explored, almost exhaustively in two, and
partly in three dimensions. Both are examples of Lorentzian quantum gravita-
tional theories which as continuum theories are inequivalent to their Euclidean
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counterparts, and the relation between the two is not that of some simple an-
alytic continuation of the form t �→ it. The origin of the discrepancy between
quantum gravity with Euclidean and Lorentzian signature lies in the absence of
causality-violating branching points for geometries in the latter. Since in dimen-
sion d ≥ 3, the approach of Euclidean dynamical triangulations seems to have
serious problems, I am greatly encouraged by the fact that the 3d Lorentzian
model is better behaved. Of course, it still needs to be verified explicitly that
the imposition of causality conditions is indeed the correct remedy to cure the
four-dimensional theory of its apparent diseases. One step in that direction will
be to show that the non-perturbative cancellation mechanism for the conformal
divergence is also present in d = 4.

Two warnings may be in order at this point. Firstly, there is a priori noth-
ing discrete about the quantum gravitational theories this method produces.
Its “discreteness” refers merely to the intermediate regularization that was cho-
sen to make the non-perturbative path sums converge.19 In particular, there is
nothing in the construction suggesting the presence of any kind of “fundamental
discreteness”, as has been found in canonical models of four-dimensional quan-
tum gravity [44–46]. Secondly, one should refrain from trying to interpret the
discrete expressions of the regularized model as some kind of approximation of
the “real” quantum theory before one has shown the existence of a continuum
limit which (at least in dimension four) is an interacting theory of geometric
degrees of freedom.

In conclusion, I have described here a possible path for constructing a non-
perturbative quantum theory of gravity, by applying standard tools from both
quantum field theory and the theory of critical phenomena to theories of fluctu-
ating geometry. Investigation of the continuum theories in two and three space-
time dimensions has already led to exciting new insights into the relation between
the Lorentzian and Euclidean quantum theories, and ways of understanding and
resolving the conformal sickness of gravitational path integrals, as well as bring-
ing in new tools from combinatorics and statistical mechanics. I hope this has
convinced you that the method of Lorentzian dynamical triangulations stands a
good chance of throwing some light on the ever-elusive quantization of general
relativity!
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Introduction to String Theory

Thomas Mohaupt

Friedrich-Schiller Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Abstract. We give a pedagogical introduction to string theory, D-branes and p-brane
solutions.

1 Introductory Remarks

These notes are based on lectures given at the 271-th WE-Heraeus-Seminar
‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string
theory for students and interested researches. No previous knowledge of string
theory is assumed. The focus is on gravitational aspects and we explain in some
detail how gravity is described in string theory in terms of the graviton excitation
of the string and through background gravitational fields. We include Dirichlet
boundary conditions and D-branes from the beginning and devote one section to
p-brane solutions and their relation to D-branes. In the final section we briefly
indicate how string theory fits into the larger picture of M-theory and mention
some of the more recent developments, like brane world scenarios.

The WE-Heraeus-Seminar ‘Aspects of Quantum Gravity’ covered both main
approaches to quantum gravity: string theory and canonical quantum gravity.
Both are complementary in many respects. While the canonical approach stresses
background independence and provides a non-perturbative framework, the cor-
nerstone of string theory still is perturbation theory in a fixed background ge-
ometry. Another difference is that in the canonical approach gravity and other
interactions are independent from each other, while string theory automatically
is a unified theory of gravity, other interactions and matter. There is a single
dimensionful constant and all couplings are functions of this constant and of
vacuum expectation values of scalars. The matter content is uniquely fixed by
the symmetries of the underlying string theory. Moreover, when formulating the
theory in Minkowski space, the number of space-time dimensions is fixed. As
we will see, there are only five distinct supersymmetric string theories in ten-
dimensional Minkowski space.

The most important feature of string perturbation theory is the absence of
UV divergencies. This allows one to compute quantum corrections to scatter-
ing amplitudes and to the effective action, including gravitational effects. More
recently, significant progress has been made in understanding non-perturbative
aspects of the theory, through the study of solitons and instantons, and through
string dualities which map the strong coupling behaviour of one string theory to
the weak coupling behaviour of a dual theory. Moreover, string dualities relate

T. Mohaupt, Introduction to String Theory, Lect. Notes Phys. 631, 173–251 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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all five supersymmetric string theories to one another and lead to the picture of
one single underlying theory, called M-theory. So far, only various limits of this
theory are known, while the problem of finding an intrinsic, non-perturbative
and background-independent definition is unsolved. One expects that M-theory
has an underlying principle which unifies its various incarnations, presumably
a symmetry principle. One of the obstacles on the way to the final theory is
that it is not clear which degrees of freedom are fundamental. Besides strings,
also higher-dimensional p-branes play an essential role. Moreover, there is an
eleven-dimensional limit, which cannot be described in terms of strings.

Our presentation of string theory will be systematic rather than follow the
path of historical development. Nevertheless we feel that a short historical note
will be helpful, since many aspects which may seem somewhat ad hoc (such as
the definition of interactions in Sect. 3) become clearer in their historical con-
text. The story started with the Veneziano amplitude, which was proposed as
an amplitude for meson scattering in pre-QCD times. The amplitude fitted the
known experimental data very well and had precisely the properties expected
of a good scattering amplitude on the basis of S-matrix theory, the bootstrap
program and Regge pole theory. In particular it had a very special soft UV be-
haviour. Later work by Y. Nambu, H.B. Nielsen and L. Susskind showed that the
Veneziano amplitude, and various generalizations thereof could be interpreted as
describing the scattering of relativistic strings. But improved experimental data
ruled out the Veneziano amplitude as a hadronic amplitude: it behaved just to
softly in order to describe the hard, partonic substructures of hadrons seen in
deep inelastic scattering. J. Scherk and J. Schwarz reinterpreted string theory
as a unified theory of gravity and all other fundamental interactions, making
use of the fact that the spectrum of a closed string always contains a massless
symmetric tensor state which couples like a graviton. This led to the develop-
ment of perturbative string theory, as we will describe it in Sects. 2–4 of these
lecture notes. More recently the perspective has changed again, after the role of
D-branes, p-branes and string dualities was recognized. This will be discussed
briefly in Sects. 5 and 6.

From the historical perspective it appears that string theory is a theory which
is ‘discovered’ rather than ‘invented’. Though it was clear from the start that
one was dealing with an interesting generalization of quantum field theory and
general relativity, the subject has gone through several ‘phase transitions’, and its
fundamental principles remain to be made explicit. This is again complementary
to canonical quantum gravity, where the approach is more axiomatic, starting
from a set of principles and proceeding to quantize Einstein gravity.

The numerous historical twists, our lack of final knowledge about the funda-
mental principles and the resulting diversity of methods and approaches make
string theory a subject which is not easy to learn (or to teach). The 271-th WE-
Heraeus-Seminar covered a broad variety of topics in quantum gravity, ‘From
Theory to Experimental Search’. The audience consisted of two groups: gradu-
ate students, mostly without prior knowledge of string theory, and researchers,
working on various theoretical and experimental topics in gravity. The two lec-
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tures on string theory were supposed to give a pedagogical introduction and to
prepare for later lectures on branes worlds, large extra dimensions, the AdS-CFT
correspondence and black holes. These lecture notes mostly follow the lectures,
but aim to extend them in two ways. The first is to add more details to the
topics I discussed in the lectures. In particular I want to expand on points which
seemed to be either difficult or interesting to the audience. The second goal is to
include more material, in order to bring the reader closer to the areas of current
active research. Both goals are somewhat contradictory, given that the result is
not meant to be a book, but lecture notes of digestable length. As a compromise
I choose to explain those things in detail which seemed to be the most important
ones for the participants of the seminar, hoping that they represent a reason-
able sample of potential readers. On the other side several other topics are also
covered, though in a more scetchy way. Besides summarizing advanced topics,
which cannot be fully explained here, I try to give an overview of (almost) all
the new developements of the last years and to indicate how they fit into the
emerging overall picture of M-theory.

The outline of the lectures is as follows: Sects. 2–4 are devoted to perturbative
aspects of bosonic and supersymmetric string theories. They are the core of the
lectures. References are given at the end of the sections. String theory has been a
very active field over several decades, and the vast amount of existing literature
is difficult to oversee even for people working in the field. I will not try to
give a complete account of the literature, but only make suggestions for further
reading. The basic references are the books [1–5], which contain a huge number of
references to reviews and original papers. The reader interested in the historical
developement of the subject will find information in the annotated bibliography
of [1]. Section 5 gives an introduction to non-perturbative aspects by discussing
a particular class of solitons, the p-brane solutions of type II string theory.
Section 6 gives an outlook on advanced topics: while Sects. 6.1–6.3 scetch how
the five supersymmetric string theories fit into the larger picture of M-theory,
Sect. 6.4 gives an overview of current areas of research, together with references
to lecture notes, reviews and some original papers.

2 Free Bosonic Strings

We start our study of string theories with the bosonic string. This theory is a
toy-model rather than a realistic theory of gravity and matter. As indicated by
its name it does not have fermionic states, and this disqualifies it as a theory
of particle physics. Moreover, its ground state in Minkowski space is a tachyon,
i.e., a state of negative mass squared. This signals that the theory is unstable.
Despite these shortcomings, the bosonic string has its virtues as a pedagogi-
cal toy-model: whereas we can postpone to deal with the additional techniques
needed to describe fermions, many features of the bosonic string carry over to
supersymmetric string theories, which have fermions but no tachyon.
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2.1 Classical Bosonic Strings

We start with a brief overview of classical aspects of bosonic strings.

Setting the Stage. Let us first fix our notation. We consider a fixed background
Pseudo-Riemannian space-timeM of dimension D, with coordinates X = (Xµ),
µ = 0, . . . , D−1. The metric is Gµν(X) and we take the signature to be ‘mostly
plus’, (−)(+)D−1.

The motion of a relativistic string inM is described by its generalized world-
line, a two-dimensional surface Σ, which is called the world-sheet. For a single
non-interacting string the world-sheet has the form of an infinite strip. We in-
troduce coordinates σ = (σ0, σ1) on the world-sheet. The embedding of the
world-sheet into space-time is given by maps

X : Σ −→M : σ −→ X(σ) . (1)

The background metric induces a metric on the world-sheet:

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
Gµν , (2)

where α, β = 0, 1 are world-sheet indices. The induced metric is to be distin-
guished from an intrinsic metric hαβ on Σ. As we will see below, an intrinsic
metric is used as an auxiliary field in the Polyakov formulation of the bosonic
string.

A useful, but sometimes confusing fact is that the above setting can be viewed
from two perspectives. So far we have taken the space-time perspective, inter-
preting the system as a relativistic string moving in space-timeM. Alternatively
we may view it as a two-dimensional field theory living on the world-sheet, with
fields X which take values in the target-space M. This is the world-sheet per-
spective, which enables us to use intuitions and methods of two-dimensional field
theory for the study of strings.

Actions. The natural action for a relativistic string is its area, measured with
the induced metric:

SNG =
1

2πα′

∫
Σ

d2σ|detGαβ |1/2 . (3)

This is the Nambu-Goto action, which is the direct generalization of the action
for a massive relativistic particle. The prefactor (2πα′)−1 is the energy per length
or tension of the string, which is the fundamental dimensionful parameter of the
theory. We have expressed the tension in terms of the so-called Regge slope α′,
which has the dimension (length)2 in natural units, c = 1, � = 1. Most of the
time we will use string units, where in addition we set α′ = 1

2 .
The Nambu-Goto action has a direct geometric meaning, but is technically

inconvenient, due to the square root. Therefore one prefers to use the Polyakov
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action, which is equivalent to the Nambu-Goto action, but is a standard two-
dimensional field theory action. In this approach one introduces an intrinsic
metric on the world-sheet, hαβ(σ), as additional datum. The action takes the
form of a non-linear sigma-model on the world-sheet,

SP =
1

4πα′

∫
Σ

d2σ
√
hhαβ∂αX

µ∂βX
νGµν(X) , (4)

where h = |dethαβ |.
The equation of motion for hαβ is algebraic. Thus the intrinsic metric is

non-dynamical and can be eliminated, which brings us back to the Nambu-Goto
action. Since

Tαβ :=
(
2πα′√h

)−1 δSP

δhαβ
= ∂αX

µ∂βXµ − 1
2
hαβ∂γX

µ∂γXµ (5)

is the energy momentum of the two-dimensional field theory defined by (4), we
can interpret the equation of motion of hαβ as the two-dimensional Einstein equa-
tion. The two-dimensional metric is non-dynamical, because the two-dimensional
Einstein-Hilbert action is a topological invariant, proportional to the Euler num-
ber of Σ. Thus its variation vanishes and the Einstein equation of (4) coupled to
two-dimensional gravity reduces to Tαβ = 0. Note that the energy-momentum
tensor (5) is traceless, hαβTαβ = 0. This holds before imposing the equations of
motion (‘off shell’). Therefore Tαβ has only two independent components, which
vanish for solutions to the equations of motion (‘on shell’). Since the trace of the
energy-momentum tensor is the Noether current of scale transformations, this
shows that the two-dimensional field theory (4) is scale invariant. As we will see
below, it is in fact a conformal field theory.

The Polyakov action has three local symmetries. Two are shared by the
Nambu-Goto action, namely reparametrizations of the world-sheet:

σα −→ σ̃α(σ0, σ1) . (6)

The third local symmetry is the multiplication of the metric hαβ by a local,
positive scale factor,

hαβ(σ) −→ eΛ(σ)hαβ(σ) . (7)

This transformation is called a Weyl transformation by physicists, while mathe-
maticians usually use the term conformal transformation. The three local sym-
metries can be used to gauge-fix the metric hαβ . The standard choice is the
conformal gauge,

hαβ(σ) != ηαβ , where (ηαβ) = Diag(−1, 1) . (8)

While this gauge can be imposed globally on the infinite strip describing the
motion of a single non-interacting string, it can only be imposed locally on more
general world-sheets, which describe string interactions. We will discuss global
aspects of gauge fixing later.
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The conformal gauge does not provide a complete gauge fixing, because (8)
is invariant under a residual symmetry. One can still perform reparametrizations
under which the metric only changes by a local, positive scale factor, because this
factor can be absorbed by a Weyl transformation. Such conformal reparametriza-
tions are usually called conformal transformations by physicists. Note that the
same term is used for Weyl transformations by mathematicians. A convenient
way to characterize conformal reparametrizations in terms of coordinates is to
introduce light cone coordinates,

σ± = σ0 ± σ1 . (9)

Then conformal reparametrization are precisely those reparametrizations which
do not mix the light cone coordinates:

σ+ −→ σ̃+(σ+) , σ− −→ σ̃−(σ−) . (10)

Thus we are left with an infinite-dimensional group of symmetries, which in
particular includes scale transformations.

Equations of Motion, Closed and Open Strings, and D-Branes. In order
to proceed we now specialize to the case of a flat space-time, Gµν = ηµν , where
ηµν = Diag(−1,+1, . . . ,+1). In the conformal gauge the equation of motion for
X reduces to a free two-dimensional wave equation,

∂2Xµ = ∂α∂αX
µ = 0 . (11)

Note that when imposing the conformal gauge on the Polyakov action (4), the
equation of motion for hαβ , i.e. Tαβ = 0, becomes a constraint, which has to be
imposed on the solutions of (11).

The general solution of (11) is a superposition of left- and right-moving waves,

Xµ(σ) = Xµ
L(σ+) + Xµ

R(σ−) . (12)

However, we also have to specify boundary conditions at the ends of the string.
One possible choice are periodic boundary conditions,

Xµ(σ0, σ1 + π) = Xµ(σ0, σ1) . (13)

They correspond to closed strings. A convenient parametrization of the solution
is:

Xµ(σ) = xµ + 2α′pµσ0 + i
√

2α′
∑
n 	=0

αµn
n

e−2inσ+
+ i

√
2α′

∑
n 	=0

α̃µn
n

e−2inσ−
. (14)

Reality of Xµ implies: (xµ)� = xµ and (pµ)� = pµ and (αµm)� = αµ−m and
(α̃µm)� = α̃µ−m. Here � denotes complex conjugation. While xµ is the position of
the center of mass of the string at time σ0, pµ is its total momentum. Thus, the
center of mass moves on a straight line in Minkowski space, like a free relativistic



Introduction to String Theory 179

particle. The additional degrees of freedom are decoupled left- and right-moving
waves on the string, with Fourier components αµm and α̃µm.

When not choosing periodic boundary conditions, the world-sheet has bound-
aries and we have open strings. The variation of the world-sheet action yields a
boundary term, δS # ∫

∂Σ
dσ0∂1X

µδXµ. The natural choice to make the bound-
ary term vanish are Neumann boundary conditions,

∂1X
µ|σ1=0 = 0 , ∂1X

µ|σ1=π = 0 . (15)

With these boundary conditions, momentum is conserved at the ends of the
string. Left- and right-moving waves are reflected at the ends and combine into
standing waves. The solution takes the form

Xµ(σ) = xµ + 2α′pµσ0 + i
√

2α′
∑
n 	=0

αµn
n

e−inσ0
cos(nσ1) . (16)

There is, however, a second possible choice of boundary conditions for open
strings, namely Dirichlet boundary conditions. Here the ends of the string are
kept fixed:

Xµ|σ1=0 = xµ(1) , Xµ|σ1=π = xµ(2) . (17)

With these boundary conditions the solution takes the form

Xµ(σ) = xµ(1) + (xµ(2) − xµ(1))
σ1

π
+ i

√
2α′

∑
n 	=0

αµn
n

e−inσ0
sin(nσ1) . (18)

More generally we can impose Neumann boundary conditions in the time and
in p space directions and Dirichlet boundary conditions in the other directions.
Let us denote the Neumann directions by (Xm) = (X0, X1, . . . , Xp) and the
Dirichlet directions by (Xa) = (Xp+1, . . . , XD−1).

The most simple choice of Dirichlet boundary conditions is then to require
that all open strings begin and end on a p-dimensional plane located at an
arbitrary position Xa = xa(1) along the Dirichlet directions. Such a plane is called
a p-dimensional Dirichlet-membrane, or D-p-brane, or simply D-brane for short.
While the ends of the strings are fixed in the Dirichlet directions, they still can
move freely along the Neumann directions. The world-volume of a D-p-brane is
(p+1)-dimensional. The Neumann directions are called the world-volume or the
parallel directions, while the Dirichlet directions are called transverse directions.

An obvious generalization is to introduce N > 1 such D-p-branes, located
at positions xa(i), where i = 1, . . . , N , and to allow strings to begin and end on
any of these. In this setting the mode expansion for a string starting on the i-th
D-brane and ending on the j-th is:

Xm(σ) = xm + 2α′pmσ0 + i
√

2α′
∑
n 	=0

αmn
n

e−inσ0
cos(nσ1) ,

Xa(σ) = xa(i) + (xa(j) − xa(i))
σ1

π
+ i

√
2α′

∑
n 	=0

αan
n

e−inσ0
sin(nσ1) . (19)
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(One might also wonder about Dirichlet boundary conditions in the time direc-
tion. This makes sense, at least for Euclidean space-time signature, and leads to
instantons, called D-instantons, which we will not discuss in these lectures.)

Dirichlet boundary conditions have been neglected for several years. The rea-
son is that momentum is not conserved at the ends of the strings, reflecting that
translation invariance is broken along the Dirichlet directions. Therefore, in a
complete fundamental theory the D-branes must be new dynamical objects, dif-
ferent from strings. The relevance of such objects was only appreciated when it
became apparent that string theory already includes solitonic space-time back-
grounds, so called (‘RR-charged’) p-Branes, which correspond to D-branes. We
will return to this point later.

Promoting the D-branes to dynamical objects implies that they will interact
through the exchange of strings. This means that in general they will repulse or
attract, and therefore their positions become dynamical. But there exist many
static configurations of D-branes (mainly in supersymmetric string theories),
where the attractive and repulsive forces cancel for arbitrary distances of the
branes.

2.2 Quantized Bosonic Strings

The definition of a quantum theory of bosonic strings proceeds by using stan-
dard recipies of quantization. The two most simple ways to proceed are called
‘old covariant quantization’ and ‘light cone quantization’. As mentioned above,
imposing the conformal gauge leaves us with a residual gauge invariance. In light
cone quantization one fixes this residual invariance by imposing the additional
condition

X+ != x+ + p+σ+ , i.e. , α+
m

!= 0 , (20)

where X± = 1√
2
(X0 ± XD−1) are light cone coordinates in space-time. Then

the constraints Tαβ = 0 are solved in the classical theory. This yields (non-
linear) expressions for the oscillators α−

n in terms of the transverse oscillators
αin, i = 1, . . . D − 2. In light cone coordinates the world-sheet is embedded into
space-time along the X0, XD−1 directions. The independent degrees of freedom
are the oscillations transverse to the world sheet, which are parametrized by
the αin. One proceeds to quantize these degrees of freedom. In this approach
unitarity of the theory is manifest, but Lorentz invariance is not.

In old covariant quantization one imposes the constraints at the quantum
level. Lorentz covariance is manifest, but unitarity is not: one has to show that
there is a positive definite space of states and a unitary S-matrix. This is the
approach we will describe in more detail below.

One might also wonder about ‘new covariant quantization’, which is BRST
quantization. This approach is more involved but also more powerful than old
covariant quantization. When dealing with advanced technical problems, for ex-
ample the construction of scattering amplitudes involving fermions in superstring
theories, BRST techniques become mandatory. But this is beyond the scope of
these lectures.
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The Fock Space. The first step is to impose canonical commutation relations
on Xµ(σ) and its canonical momentum Πµ(σ) = ∂0X

µ(σ). In terms of modes
one gets

[xµ, pν ] = iηµν , [αµm, ανn] = mηµνδm+n,0 . (21)

For closed strings there are analogous relations for α̃µm. The reality conditions of
the classical theory translate into hermiticity relations:

(xµ)† = xµ , (pµ)† = pµ , (αµm)† = αµ−m . (22)

While the commutation relations for xµ, pν are those of a relativistic particle,
the αµm satisfy the relations of creation and annihilation operators of harmonic
oscillators, though with an unconventional normalization.

To proceed, one constructs a Fock space F on which the commutation rela-
tions (21) are represented. First one chooses momentum eigenstates |k〉, which
are annihiliated by half of the oscillators:

pµ|k〉 = kµ|k〉 , αµm|k〉 = 0 = α̃µm|k〉 , m > 0 . (23)

Then a basis B of F is obtained by acting with creation operators:

B = {αµ1
−m1

· · · α̃ν1−n1
· · · |k〉 | ml, nl > 0} . (24)

A bilinear form on F which is compatible with the hermiticity properties (22)
cannot be positive definite. Consider for example the norm squared of the state
αµ−m|k〉:

〈k|(αµ−m)+αµ−m|k〉 ∼ ηµµ = ±1 . (25)

However, the Fock space is not the space of physical states, because we still have
to impose the constraints. The real question is whether the subspace of physical
states contains states of negative norm.

The Virasoro Algebra. Constraints arise when the canonical momenta of a
system are not independent. This is quite generic for relativistic theories. The
most simple example is the relativistic particle, where the constraint is the mass
shell condition, p2 + m2 = 0. When quantizing the relativistic particle, physical
states are those annihilated by the constraint, i.e., states satisfying the mass
shell condition:

(p2 + m2)|Φ〉 = 0 . (26)

When evaluating this in a basis of formal eigenstates of the operator xµ, one
obtains the Klein-Gordon equation, (∂2 + m2)Φ(x) = 0, where Φ(x) = 〈x|Φ〉 is
interpreted as the state vector in the x-basis. This is a clumsy way to approach
the quantum theory of relativistic particles, and one usually prefers to use quan-
tum field theory (‘second quantization’) rather than quantum mechanics (‘first
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quantization’). But in string theory it turns out that the first quantized formula-
tion works nicely for studying the spectrum and computing amplitudes, whereas
string field theory is very complicated.

Proceeding parallel to the case of a relativistic particle one finds that the
canonical momentum is Πµ = ∂0X

µ. The constraints are

Πµ∂1Xµ = 0 , ΠµΠµ + ∂1X
µ∂1Xµ = 0 . (27)

In the Polyakov formulation they are equivalent to Tαβ = 0. It is convenient
to express the constraints through the Fourier components of Tαβ . Passing to
light cone coordinates, the tracelessness of Tαβ , which holds without using the
equation of motion or imposing the constraints, implies

T+− = 0 = T−+ . (28)

Thus we are left with two independent components, T++ and T−−, where T±± #
∂±Xµ∂±Xµ. For closed strings, where ∂±Xµ are periodic in σ1, we expand T±±
in a Fourier series and obtain Fourier coefficients Lm, L̃m, m ∈ Z. For open
strings, observe that σ1 → −σ1 exchanges ∂+Xµ and ∂−Xµ. Both fields can
be combined into a single field, which is periodic on a formally doubled world-
sheet with −π ≤ σ1 ≤ π. In the same way one can combine T++ with T−−.
By Fourier expansion on the doubled world-sheet one then obtains one set of
Fourier modes for the energy-momentum tensor, denoted Lm. This reflects that
left- and right-moving waves couple through the boundaries.

The explicit form for the Lm in terms of oscillators is

Lm =
1
2

∞∑
n=−∞

αm−n · αn , (29)

with an analogous formula for L̃m for closed strings. We have denoted the con-
traction of Lorentz indices by ‘·’ and defined αµ0 = 1

2p
µ = α̃µ0 for closed strings

and αµ0 = pµ for open strings. In terms of the Fourier modes, the constraints are
Lm = 0 and, for closed strings, L̃m = 0. Translations in σ0 are generated by L0
for open and by L0 + L̃0 for closed strings. These functions are the world-sheet
Hamiltonians. The Lm satisfy the Witt algebra,

{Lm, Ln}P.B. = i(m− n)Lm+n , (30)

where {·, ·}P.B. is the Poisson bracket. For closed strings we have two copies
of this algebra. The Witt algebra is the Lie algebra of infinitesimal conformal
transformations. Thus the constraints reflect that we have a residual gauge sym-
metry corresponding to conformal transformations. Since the constraints form
a closed algebra with the Hamiltonian, they are preserved in time. Such con-
straints are called first class, and they can be imposed on the quantum theory
without further modifications (such as Dirac brackets).

In the quantum theory the Lm are taken to be normal ordered, i.e., annihi-
lation operators are moved to the right. This is unambigous, except for L0. We
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will deal with this ordering ambiguity below. The hermiticiy properties of the
Lm are:

L†
m = L−m . (31)

The operators Lm satisfy the Virasora algebra:

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0 . (32)

The Virasoro algebra is a central extension of the Witt algebra. On our Fock
space F the central charge c takes the value

c = ηµνηµν = D , (33)

i.e., each space-time dimension contributes one unit. Since the Poisson brackets
of Lm in the classical theory just give the Witt algebra, this dependence on the
number of dimensions is a new property of the quantum theory. The extra central
term occuring at the quantum level is related to a normal ordering ambiguity
of commutators with m + n = 0. This results in a new ‘anomalous’ term in the
algebra. In the context of current algebras such terms are known as Schwinger
terms.

Imposing the Constraints, or, Why D = 26? In the classical theory the
constraints amount to imposing Lm = 0 on solutions. Imposing this as an op-
erator equation on the quantum theory is too strong. In particular it is not
compatible with the algebra (32). What can be imposed consistently is that
matrix elements of the Lm vanish between physical states, 〈Φ1|Lm|Φ2〉 = 0.
Conversely this condition singles out the subspace of physical states, Fphys ⊂ F .
Using the hermiticity properties of the Lm, this is equivalent to the statement
that the positive Virasoro modes annihilate physical states,

Lm|Φ〉 = 0 , m > 0 ,

(L0 − a)|Φ〉 = 0 , (34)

for all |Φ〉 ∈ Fphys. Note that we have introduced an undetermined constant
a into the L0-constraint. As mentioned above this operator has an ordering
ambiguity. We take L0 to be normal ordered and parametrize possible finite
ordering effects by the constant a. Since L0 is the Hamiltonian, this might be
considered as taking into account a non-trivial Casimir effect. In the case of
closed strings there is a second set of constraints involving the L̃m.

The Virasoro operators L−m, m > 0 still act non-trivially on physical states
and create highest weight representations of the Virasoro algebra. This corre-
sponds to the fact that we still have residual gauge symmetries. Therefore it is
clear that Fphys is not the physical Hilbert space. Fphys is not positive definite,
but contains null states (states of norm zero) and, depending on the number of
space-time dimensions, also states of negative norm. A positive definite space
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of states can be constructed if negative norm states are absent, such that Fphys
is positive semi-definite, and if null states are orthogonal to all physical states.
Then one can consistently identify physical states |Φ〉 that differ by null states
|Ψ〉,

|Φ〉 # |Φ〉+ |Ψ〉 , (35)

and define the Hilbert space by

H = Fphys/{Null states} . (36)

The working of this construction crucially depends on the values of D and a.
This is the contents of the so-called no-ghost theorem, which can be summarized
as follows:

1. D = 26 and a = 1. The construction works as described above. The resulting
theory is known as the critical (bosonic) string theory, D = 26 is the critical
dimension. Physical states differing by a null states differ by a residual gauge
transformation and represent the same state in the Hilbert space. We will
see explicit examples below.

2. D > 26. The physical subspace Fphys always contains states of negative
norm and no Hilbert space H can be constructed. There is no bosonic string
theory for D > 26.

3. D ≤ 25. Naively one expects such theories to be unitary, because we can just
truncate the unitary critical string theory and this cannot introduce states
of negative norm. Nevertheless one does not obtain a consistent quantum
theory by truncation. When studying scattering amplitudes at the loop level
one finds poles corresponding to unphysical negative norm states and there
is no unitary S-matrix. Thus truncations of the critical string do not yield
unitary theories.
But there is an alternative to truncation, known as Liouville string theory
or non-critical string theory. This theory exists in D < 26, at the price that
the quantum theory has a new degree of freedom, the Liouville mode. (This
is most obvious in a path integral formulation.) The resulting theory is much
more complicated than the critical string, because its world-sheet theory is
interacting even for a flat target space. For this theory much less is known
than about the critical string. However, there are arguments indicating that
the non-critical string is equivalent to the critical string in a non-trivial
background.

We will only consider critical string theories in the following. Also note that the
above analysis applies to strings in flat space-time, with no background fields.
When switching on a non-trivial dilaton background, this can modify the central
charge of the world-sheet conformal field theory, and, hence, the dimension of
space-time. But this topic is beyond the scope of these lectures.

The Spectrum of the Bosonic Closed String. We can now identify the
physical states by imposing the constraints. Let us consider closed strings. We
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first look at the two constraints

(L0 − 1)|Φ〉 = 0 , (L̃0 − 1)|Φ〉 = 0 . (37)

The operator L0 can be rewritten as

L0 = 1
8p

2 + N . (38)

As mentioned above the operator L0 is the normal ordered version of (29) with
m = 0. The original and the normal ordered expression formally differ by an
infinite constant. Subtracting this constant introduces a finite ambiguity, which
was parametrized by a. Unitarity then fixes a = 1. The oscillator part of L0 is

N =
∞∑
n=1

α−n · αn . (39)

N is called the number operator, because

[N,αµ−m] = mαµ−m . (40)

Since the total momentum is related to the mass of the string by M2 + p2 = 0,
the constraints (37) determine the mass of a physical states in terms of the
eigenvalues of N and of its right-moving analogue Ñ . (We denote the operators
and their eigenvalues by the same symbol.) We now use the above decomposition
of L0, take the sum and difference of the constraints (37) and reintroduce the
Regge slope α′ = 1

2 by dimensional analysis:

α′M2 = 2(N + Ñ − 2) ,

N = Ñ . (41)

The first equation is the mass formula for string states, whereas the second
equation shows that left- and right-moving degrees of freedom must contribute
equally to the mass.

Let us list the lightest states satisfying these constraints:

Occupation Mass State

N = Ñ = 0 α′M2 = −4 |k〉
N = Ñ = 1 α′M2 = 0 αµ−1α̃

ν
−1|k〉

N = Ñ = 2 α′M2 = 4 αµ−2α̃
ν
−2|k〉

αµ−2α̃
ν
−1α̃

ρ
−1|k〉

αµ−1α
ν
−1α̃

ρ
−2|k〉

αµ−1α
ν
−1α̃

ρ
−1α̃

σ
−1|k〉

(42)

The most obvious and disturbing fact is that the ground state is a tachyon,
i.e., a state of negative mass squared. Since the mass squared of a scalar cor-
responds to the curvature of the potential at the critical point, we seem to be
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expanding around a maximum rather then a minimum of the potential. This sig-
nals that the bosonic closed string quantized in flat Minkowski space is unstable.
It is a very interesting question whether there is a minimum of this potential
which provides a stable ground state. Since the tachyon acquires a vacuum ex-
pectation value in this minimum, this is referred to as tachyon condensation.
But since we will be mostly interested in superstring theories, where tachyons
are absent, we will simply ignore the fact that our toy model has a tachyon.

The first excited state is massless, and on top of it we find an infinite tower
of states with increasing mass. Since the mass scale of string theory presumably
is very large, we will focus on the massless states. So far we only imposed the
constraints (37). The other constraints

Lm|Φ〉 = 0 , L̃m|Φ〉 = 0 , m > 0 , (43)

impose conditions on the polarizations of physical states. For the tachyon one
gets no condition, while for the first excited level the constraints with m = 1 are
non-trivial. Forming a general linear combination of basic states,

ζµνα
µ
−1α̃

ν
−1|k〉 , (44)

the constraints (43) imply

kµζµν = 0 = kνζµν . (45)

Since ζµν is the polarization tensor, we see that only states of transverse po-
larization are physical. To obtain the particle content, we have to extract the
irreducible representations of the D-dimensional Poincaré group contained in
physical ζµν . There are three such representations: the traceless symmetric part
describes a graviton Gµν , the trace part corresponds to a scalar, the dilaton Φ,
and the third representation is an antisymmetric tensor Bµν . In order to dis-
entangle the trace part, one needs to introduce an auxiliary vector k, with the
properties:

k · k = 0 , k · k = −1 . (46)

(k is the momentum vector.) The polarization tensors of the graviton, dilaton
and antisymmmetric tensor are:

ζGµν = ζ(µν) − 1
D − 2

ζρρ (ηµν − kµkν − kνkµ) ,

ζΦµν =
1

D − 2
ζρρ (ηµν − kµkν − kνkµ) ,

ζBµν = ζ[µν] , (47)

where ζ(µν) = 1
2 (ζµν + ζνµ) and ζ[µν] = 1

2 (ζµν − ζνµ) are the symmetric and
antisymmetric parts of ζµν . Note that the prefactor 1/(D − 2) is needed in order
that the trace part is physical. Using explicit choices for k, k one can check
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that ζGµν is the polarization tensor of a plane wave and transforms as a traceless
symmetric tensor under transverse rotations.

As we discussed above, physical states are only defined up to the addition of
null states, |Φ〉 ∼ |Φ〉 + |Ψ〉. In the case at hand adding null states corresponds
to adding states of longitudinal polarization, according to:

ζ(µν) ∼ ζ(µν) + kµζν + ζµkν

ζ[µν] ∼ ζ[µν] + kµξν − ξµkν . (48)

ζµ and ξµ are arbitrary vectors orthogonal to the momentum kµ. Adding null
states can be understood as a residual gauge transformation parametrized by
ζµ, ξµ. By taking Fourier transforms we see that these are the standard gauge
invariances of a graviton and of an antisymmetric tensor, respectively:

Gµν ∼ Gµν + ∂µΛν + ∂νΛµ ,

Bµν ∼ Bµν + ∂µAν − ∂νAµ . (49)

A graviton is defined by taking the gravitational action and expanding the met-
ric around a flat background. The gauge transformations are then infinitesimal
reparametrizations which, in a flat background, act according to (49) on the met-
ric. Note that our gauge transformations Λµ, Aµ have a vanishing divergence, be-
cause the corresponding polarization vectors are orthogonal to the momentum.
The reason is that the Virasoro constraints automatically impose a generalized
Lorenz gauge.

Thus far our identification of the symmetric traceless part of the state (44)
as a graviton is based on the fact that this state has the same kinematic prop-
erties as a graviton in Einstein gravity. We will see later, after analyzing string
interactions, that this extends to the dynamical properties.

Finally it is interesting to compare the results of old covariant quantization
to those obtained in light cone quantization. In light cone quantization unitarity
is manifest, but the Lorentz algebra of the quantum theory has an anomaly
which only cancels in the critical dimension D = 26. Moreover, the normal
ordering constant must take the value a = 1. Independently, the same value
of a is obtained when computing the Casimir energy of the ground state using
ζ-function regularization. One virtue of light cone quantization is that one can
write down immediately all the physical states. A basis is provided by all states
which can be created using transverse oscillators,

αi1−m1
· · · α̃j1−n1

· · · |k〉 , (50)

where i1, . . . , j1, . . . = 1, . . . , D − 2. What remains is to group these states
into representations of the D-dimensional Poincaré group. Massless states are
classified by the little group SO(D − 2). Since all states manifestly are tensors
with respect to this subgroup, one immediately sees that the massless states
are a graviton (traceless symmetric tensor), dilaton (trace) and antisymmetric
tensor. For massive states the little group is the full rotation subgroup SO(D−
1). Using Young tableaux it is straightforward to obtain these from the given
representations of SO(D − 2).
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Open Strings. Having treated the closed bosonic string in much detail, we
now describe the results for open strings. One finds the same critical dimension,
D = 26, and the same value of the normal ordering constant, a = 1. The
constraints read:

(L0 − 1)|Φ〉 = 0 , Lm|Φ〉 = 0 , m > 0 . (51)

L0 can be decomposed as L0 = 1
2p

2 + N , where N is the number operator. The
L0-constraint gives the mass formula:

α′M2 = N − 1 . (52)

Therefore the lowest states are:

Occupation Mass State

N = 0 α′M2 = −1 |k〉
N = 1 α′M2 = 0 ζµα

µ
−1|k〉

N = 2 α′M2 = 1 ζµνα
µ
−1α

ν
−1|k〉

ζµα
µ
−2|k〉

(53)

The other constraints impose restrictions on the polarizations. Whereas the
groundstate is a tachyonic scalar, the massless state has the kinematic prop-
erties of a gauge boson: its polarization must be transverse,

ζµk
µ = 0 , (54)

and polarizations proportional to kµ correspond to null states,

ζµ ∼ ζµ + αkµ . (55)

This is the Fourier transform of a U(1) gauge transformation,

Aµ ∼ Aµ + ∂µχ . (56)

Whereas massless closed string states mediate gravity, massless open string states
mediate gauge interactions.

Chan-Paton Factors. Open string theory has a generalization which has non-
abelian gauge interactions. One can assign additional degress of freedom to the
ends of the string, namely charges (‘Chan-Paton factors’) which transform in
the fundamental and anti-fundamental (complex conjugated) representation of
the group U(n). The massless states then take the form

ζµα
µ
−1|k, a, b〉 , (57)
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where a is an index transforming in the fundamental representation [n] of U(n),
whereas b transforms in the anti-fundamental representation [n]. Since

[n]× [n] = adj U(n) , (58)

the massless states transform in the adjoint of U(n) and can be interpreted
as U(n) gauge bosons. (As for the graviton, we have only seen the required
kinematic properties so far. But the interpretation is confirmed when studying
interactions.)

Note that U(n) is the only compact Lie group where the adjoint represen-
tation is the product of the fundamental and anti-fundamental representation.
Therefore the construction precisely works for these groups.

Non-oriented Strings. There is a further modification which leads to non-
oriented strings. These are obtained from the theories constructed so far by a
projection. Both closed and open bosonic string theories are symmetric under
world-sheet parity, which is defined as a reflection on the world-sheet:

Ω : σ1 −→ π − σ1 = −σ1 modulo π . (59)

Since Ω is an involution, Ω2 = 1, the spectrum can be organized into states with
eigenvalues ±1:

Ω|N, k〉 = (−1)N |N, k〉 , (60)
Ω|N, Ñ, k〉 = |Ñ ,N, k〉 . (61)

Here |N, k〉 is an open string state with momentum k and total occupation
number N and |N, Ñ, k〉 is a closed string state with momentum k and total left
and right occupation numbers N, Ñ .

Non-oriented strings are defined by keeping only those states which are in-
variant under Ω. The resulting theories are insensitive to the orientation of the
world-sheet. Let us look at the effect of this projection on the lowest states. For
open strings we are left with:

Occupation Mass State

N = 0 α′M2 = −1 |k〉
N = 1 α′M2 = 0 −
N = 2 α′M2 = 1 ζµνα

µ
−1α

ν
−1|k〉

ζµα
µ
−2|k〉

(62)
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All states with odd occupation numbers are projected out, including the gauge
boson. For closed strings we obtain:

Occupation Mass State

N = Ñ = 0 α′M2 = −4 |k〉
N = Ñ = 1 α′M2 = 0 ζ(µν)α

µ
−1α̃

ν
−1|k〉

N = Ñ = 2 α′M2 = 4 ζ(µν)α
µ
−2α̃

ν
−2|k〉

ζ(µρνσ)α
µ
−1α

ν
−1α̃

ρ
−1α̃

σ
−1|k〉

(63)

Only states which are left-right symmetric survive. At the massless level the
antisymmetric tensor is projected out, whereas the graviton and dilaton are
kept.

Chan-Paton Factors for Non-oriented Strings. The above construction
can be generalized to open strings with Chan-Paton factors. In this case the two
representations assigned to the ends of the strings must be equivalent. One can
define a generalized involution Ω′, which combines world-sheet parity with an
action on the Chan-Paton indices,

Ω′|N, a, b〉 = ε(−1)N |N, b, a〉 , (64)

where ε = ±1. The projection is Ω′|N, a, b〉 != |N, a, b〉. There are two inequiva-
lent choices of the projection. For ε = 1, the indices a, b must transform in the
fundamental representation of SO(n). Since the adjoint of SO(n) is the anti-
symmetric product of the fundamental representation with itself, the massless
vector state transforms in the adjoint. More generally, states at even (odd) mass
level transform as symmetric (antisymmetric) tensors.

The other choice is ε = −1. Then a, b transform in the fundamental of
USp(2n) (the compact form of the symplectic group). Our normalization is such
that USp(2) # SU(2). Since the adjoint of USp(2n) is the symmetric product
of the fundamental representation with itself, the massless vector transforms in
the adjoint. More generally, states at even (odd) mass level transform as anti-
symmetric (symmetric) tensors.

D-Branes. Finally we can consider open strings with Dirichlet boundary con-
ditions along some directions. Consider first oriented open strings ending on a
D-p-brane located at xa(1). The ground state is tachyonic. The massless state of
an open string with purely Neumann condition is a D-dimensional gauge bo-
son αµ−1|k〉. Now we impose Dirichlet boundary conditions along the directions
a = p+1, . . . , D−1, so that the string can only move freely along the Neumann
directions m = 0, 1, . . . , p. The relevant kinematic group is now the world-volume
Lorentz group SO(1,p). The massless states are a world-volume vector,

αm−1|k〉 , m = 0, 1, . . . ,p (65)
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and D− p− 1 scalars,

αa−1|k〉 , a = p + 1, . . . ,D− 1 . (66)

The scalars correspond to transverse oscillations of the brane. Changing the
position of the brane corresponds to changing the vacuum expectation values of
the scalars. The effective action of the massless modes is given, to leading order
in α′, by the dimensional reduction of the D-dimensional Maxwell action to p+1
dimensions. The full effective action is of Born-Infeld type.

Next consider N parallel D-p-branes, located at positions xa(i). The new fea-
ture of this configuration is that there are strings which start and end on different
branes. For such strings there is an additional term in the mass formula, which
accounts for the stretching:

α′M2 = N − 1 +
( |x(i) − x(j)|

2π
√
α′

)2

. (67)

Here x(i) is the position of the i-th brane. (Remember that the tension of the
string is (2πα′)−1.) Due to the normal ordering constant, the ground state be-
comes tachyonic if two branes come close enough. This signals an instability of
the D-brane configuration. As already mentioned this might lead to interesting
dynamics (tachyon condensation, decay of D-branes), but we will not discuss
this here. Instead, we focus on features shared by D-branes in supersymmetric
string theories. The states at the first excited level become massless precisely if
the corresponding D-branes are put on top of each other. Each of the N branes
already carries a U(1) gauge theory: the massless modes of strings beginning
and ending at the same brane give N vectors and N · (D− p− 1) scalars. For N
coinciding branes we get additional N ·(N−1) vectors and N ·(N−1)·(D−p−1)
scalars. Combining all massless states one gets one vector and D− p− 1 scalars
in the adjoint representation of the non-abelian group U(N). This suggests that
the D-brane system describes a U(N) gauge theory with an adjoint Higgs mech-
anism. The Higgs mechanism is realized geometrically: Higgs expectation values
correspond to the distances between branes, and the masses can be understood in
terms of stretched strings. Again, this interpretation, which is based on analyz-
ing the spectrum is confirmed when studying interactions. Besides Chan-Paton
factors, D-branes are a second possibility to introduce non-abelian gauge groups.
In fact Chan-Paton factors are related to D-branes through T-duality, but we
will not be able to discuss this in these lectures.

The above construction can be extended to non-oriented strings, where other
gauge groups occur. There are various other generalizations, which allow one to
construct and study various gauge theories using strings and D-branes. These
techniques are known as ‘D-brane engineering’ of field theories. Besides being
of interest for the study of field theories through string methods, D-branes are
important for understanding string theory itself. As we will see later, D-branes
are actually solitons of string theory. Thus we are in the privileged position of
knowing the exact excitation spectrum around such solitons in terms of open
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strings. This can be used, for example, to compute the entropy and Hawking
radiation of black holes.

Another application of D-branes goes under the name of ‘brane worlds’ or
‘brane universes’ or ‘models with large extra dimensions’. As we have seen, D-
branes enable one to localize gauge interactions and matter on a lower-dimension-
al submanifold of space-time. This leads to models with space-dimensions where
only gravity (closed strings) but not standard model matter (open strings) can
propagate. Empirical limits on the size of the dimensions transverse to the brane
only come from gravity, which is much weaker than all other interactions. There-
fore such dimensions can be quite large, even up to about 1 mm. This is in
contrast to limits on extra dimensions which are accessible to standard model
interactions. Here the experimental limits are set by the scale resolvable in cur-
rent accelerator experiments.

Brane world models are nowadays popular in both particle physics and cos-
mology. In particular, they can be used to construct models where the fundamen-
tal gravitational scale is of order 1 TeV. We will come back to these applications
of D-branes in Sect. 6.

2.3 Further Reading

The material covered in this section can be found in all of the standard textbooks
on string theory [1–5]. Dirichlet boundary conditions and D-branes are only
covered by the more recent ones [3,4].

3 Interacting Bosonic Strings

So far we have not specified how strings interact. One might expect that this
can be done by adding interaction terms to the world-sheet action. However,
we have to respect the local symmetries of the Polyakov action, which severely
restricts our options. In particular, contact interactions, which are frequently
used in describing non-fundamental string-like objects such as polymers, are
not compatible with Weyl invariance. Admissible interacting world-sheet actions
include marginal deformations of the Polyakov action, i.e., deformations which
preserve Weyl invariance. One such deformation replaces the flat space-time
metric by a curved one. As expected intuitively, such an action does not describe
interactions among strings, but strings moving in a non-trivial background. The
same is true when replacing the Polaykov action by more general conformal field
theories.

How then do we define interactions? We will give a heuristic discussion in the
next section. The resulting scattering amplitudes are Lorentz covariant, unitary
and UV finite. They include the Veneziano amplitude and its cousins, which
historically started the subject.

For definiteness we will focus in the following on closed oriented strings. The
generalization to other string theories will be indicated briefly.
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3.1 Heuristic Discussion

Intuitively, interactions between strings are described by world-sheets which con-
nect a given initial configuration of strings to a final configuration. One can
draw several such world-sheets, which differ by their topologies. Comparing to
the similar treatment of point particles by graphs, we realize that while graphs
have vertices, the world-sheets connecting strings are manifolds without distin-
guished interaction points. This leads to the expectation that string interactions
are less singular then those of point particles, which is indeed confirmed by the
final result of the construction. Moreover, it indicates that one does not have
any freedom in defining interactions. For particles, we can assign couplings to
vertices which depend on the species of the particles meeting at the vertex. For
strings the interaction is encoded in the topology of the world-sheet and there
is no such freedom. There is one fundamental interaction, which couples three
closed strings, and all we can do is to assign a coupling constant κ to it.

Next, we restrict ourselves to finding transition amplitudes between asymp-
totic states in the infinite past and future. An asymptotic in- or out-going state
is represented by a semi-infinite cylinder. When mapping this to a punctered
disc, the asymptotic state is represented by the puncture. This leads to the idea
that we can represent the asymptotic state by a local operator of the world-sheet
field theory. Such operators are called vertex operators. Note that they do not
describe interactions. Instead, the vertex operator VΦ(σ) describes the creation
or annihilation of the string state |Φ〉 at the position σ on the world-sheet. That
is, they allow us to assign a copy of the space of physical states to every point of
the world-sheet. As we will see below, there is indeed a natural one-to-one map
between physical states |Φ〉 and local operators of the world-sheet field theory.

After replacing the world-sheet punctures by insertions of vertex operators
we are left with compact closed surfaces. The topologies of such surfaces are
classified by their genus g ≥ 0, or equivalently, by their Euler number χ = 2−2g.
Here g = 0 is the two-sphere, and g = 1 is the torus. The general genus g surface
Σg is obtained from the sphere by attaching g handles. The handles play the
role of loops in Feynman diagrams. When considering an interaction process on
Σg involving M external states, we find M − χ fundamental string interactions
and have to assign a factor κM−χ.

We now postulate that a scattering amplitude involving M external states is
given by

A(1, . . . ,M) =
∞∑
g=0

κM−χA(1, . . . ,M)g , (68)

where A(1, . . . ,M)g is the contribution of Σg. This is a perturbative expression
in the string coupling κ. As usual for theories with a single coupling, the expan-
sion in the coupling coincides with the expansion in loops, which in our case is
the expansion in the genus g.

The genus g contribution is defined to be

A(1, . . . ,M)g = 〈V1 · · ·VM 〉g , (69)
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where

Vi =
∫
Σg

d2σi
√
hVi(σi) (70)

are the so-called integrated vertex operators, which are obtained by integrating
the vertex operators Vi(σi) over the world sheet. (Though our notation might
suggest otherwise, we do not require that Σg can be covered by one set of co-
ordinates, which is of course impossible for compact Σg. We just use a local
representative of the integrand for notational purposes.) In (69) we compute
the correlation function of the vertex operators Vi(σi) on Σg in the world-sheet
quantum field theory defined by the Polyakov action and integrate over the posi-
tions of the vertex operators. The result is interpreted as a scattering amplitude
of string states in space-time, with the in- and out-states represented by the
vertex operators.

Note that it is not possible to introduce arbitrary weight factors between
the contributions of different genera. The reason is that unitarity requires that
scattering amplitudes factorize into the amplitudes of subprocesses whenever
an intermediate state is on-shell. In fact, in the old days of string theory this
was used to construct the perturbative expansion by seewing together tree am-
plitudes. However, this approach is more cumbersome then the Polyakov path
integral approach that we will describe here.

3.2 Vertex Operators

We now take a closer look at the vertex operators. Observe that the scattering
amplitudes defined by (68,69,70) must be invariant under reparametrizations of
the world-sheets. In particular the local vertex operators Vi(σi) must transform
such that (70) is invariant. When imposing the conformal gauge, it still must
transform in a specific way under conformal transformations σ± → σ̃±(σ±).
In conformal field theory fields which transform covariantly under conformal
transformations are called primary conformal fields. A primary conformal field
of weights (h, h) is an object that transforms like a contravariant tensor field of
rank (h, h):

Ṽ (σ̃+, σ̃−) =
(
dσ+

dσ̃+

)h(
dσ−

dσ̃−

)h
V (σ+, σ−) . (71)

Invariance of (70) implies that vertex operators of physical states must be pri-
mary conformal fields of weights (1, 1). This property is equivalent to imposing
the Virasoro constraints (41) on physical states. States assigned to a point P
of Σ are constructed from vertex operators by applying them to a ground state
|0〉P ,

|Φ〉 = VΦ(P )|0〉P . (72)

To make contact with the space Fphys constructed in Sect. 2.2, one parametrizes
Σ in the vicinity of P by a semi-infinity cylinder with P being the asymptotic
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point σ0 → −∞. Intuitively this describes an ingoing state created in the infinite
past. Then,

|Φ〉 = lim
σ0→−∞

VΦ(σ)|0〉 , (73)

where |0〉 := |k = 0〉 is the (unphysical) zero-momentum state with occupation
numbers N = 0 = Ñ in F .

To indicate how this works in practice, we now specify the vertex operators
for the lowest states. Consider the operator

V (σ) =: eikµX
µ

: (σ) , (74)

where : · · · : indicates normal ordering. Applying this operator we find

lim
σ0→−∞

: eikµX
µ

: (σ)|0〉 = eikµx
µ |0〉 = |k〉 , (75)

where we have used that eikµx
µ |0〉 is an eigenstate of pµ with eigenvalues kµ. One

can show that (74) has weights ( 1
8k

2, 1
8k

2). Thus it has weights (1, 1) if k2 = 8,
which is the physical state condition M2 = −8 for the tachyonic ground state of
the closed string. (We have set α′ = 1

2 .)
The vertex operator for the first excited level is

V (σ) =: ζµν∂+Xµ∂−XνeikρX
ρ

: (σ) . (76)

This has weights (1, 1) if

k2 = 0 , kµζµν = 0 = kνζµν , (77)

which is precisely the physical state condition for the state

ζµνα
µ
−1α̃

ν
−1|k〉 . (78)

More generally, vertex operators of the form

V (σ) =: ζµ1···ν1···∂m1
+ Xµ1 · · · ∂n1− Xν1 · · · eikρX

ρ

: (σ) (79)

generate states of the form

ζµ1···ν1···α
µ1
−m1

· · · α̃ν1−n1
· · · |k〉 . (80)

3.3 Interactions in the Path Integral Formalism

The next step is to explain in more detail how the amplitudes (68)–(70) are
defined and how they are computed in practice. As usual one can use either the
path integral (Lagrangian) or the operator (Hamiltonian) formulation. We will
use Polyakov’s path integral formulation. This has the advantage of immediately
providing explicit formal expressions for correlation functions. The mathematical
complications of defining the interacting quantum theory are hidden in the path
integral measure. We will not discuss this in full detail, but mention and illustrate
the most important points.
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The Path Integral. We now turn to the Polyakov path integral, which is one
way to give a precise meaning to (68). In this approach the correlation func-
tion (69) is computed by functional methods. Intuitively we integrate over all
paths that strings can take in space-time. However, in order to have a well de-
fined path integral, we need to study the theory in Euclidean signature, both on
the world-sheet and in space-time. A Euclidean formulation of the world-sheet
theory is needed to have a well defined functional integral for the world-sheet
field theory. In particular, we want to have well defined world-sheet metrics on
general surfaces Σg, which is not possible for Lorentzian signature. Second, one
also has to work in Euclidean space-time, in order to have a standard Gaus-
sian integral for the ‘time’ coordinate X0. Wick-rotating X0 can be interpreted
as continuing to unphysical Euclidean momenta and polarizations. As we have
seen in our discussion of vertex operators the string coordinates Xµ are always
contracted with momenta and polarizations. Physical scattering amplitudes are
thus obtained by computing (68) in the Euclidean theory and evaluating the re-
sult for physical momenta and polarizations. This uses the analycity properties
expected to hold for any relativistic unitary scattering amplitude. For tree-level
amplitudes one can study how the Wick rotation works explicitly, by comparing
to results obtained by operator methods.

Our starting point is the Polyakov action on a world-sheet Σ with positive
definite metric hαβ and local complex coordinate z,

SP =
1

4πα′

∫
Σ

d2z
√
hhαβ∂αX

µ∂βXµ . (81)

The quantum theory is now defined by summing over all topologies of Σ and
integrating over Xµ and hαβ :

A(1, . . . ,M) =
∞∑
g=0

κM−χNg

∫
DXµDhαβe

−SP [X,h]V1 · · ·VM , (82)

where Vi are the integrated vertex operators of the physical states and Ng are
normalization factors needed to define the path integral. The Vi depend on Xµ

through the local vertex operators Vi(σi), while the world-sheet metric enters
through the integration over σi.

One expects that one can properly define and compute the expression (82),
because the integration over Xµ is Gaussian (in flat space-time) and hαβ is non-
dynamical. This turns out to be true, though several interesting complications
arise. Let us consider the integration over hαβ . Since we can locally impose the
conformal gauge,

hαβ = δαβ , (83)

we expect that we can use the Faddeev-Popov method and trade the integration
over the metric for an integration over reparametrizations and the Weyl factor.
As long as these are symmetries, the corresponding integration factorizes and can
be absorbed in the normalization factor Ng. The first obstruction encountered is
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that there is a conformal anomaly when the quantum theory based on (81) lives
on a curved world-sheet. This has the consequence that the integration over the
Weyl factor does not factorize in general. One option is to accept it as a new,
purely quantum degree of freedom: this is non-critical string theory, also called
Liouville string theory, because the dynamics of the Weyl factor is given by the
Liouville action. The other option is to observe that the anomaly is proportional
to D − 26, and therefore cancels for D = 26 space-time dimensions. This is the
critical string theory we study in these lectures.

Moduli and Modular Transformations. The next point is that the gauge
(83) cannot be imposed globally. All that can be achieved is to map hαβ to a
metric of constant curvature,

hαβ
!= ĥαβ [τ ] . (84)

As indicated, Σg in general possesses a continuous family of such metrics, para-
metrized by moduli τ = (τ1, . . . ). The space of constant curvature metrics on a
two-dimensional closed compact surface is isomorphic to the space of complex
structures. By reparametrizations and Weyl transformations we cannot change
the complex structure of the metric but we can map it to the unique representa-
tive (84) of the complex structure class which has constant curvature. Then the
path integral over all metrics reduces to a finite-dimensional integral over the
space Mg of complex structures. The dimension of this space is known from the
Riemann-Roch theorem. For g = 0 the complex structure is unique, and every
metric can be mapped to the standard round metric on the sphere. For g > 1
there is a non-trivial moduli space,

dimCMg = 1 , for g = 1 ,

dimCMg = 3g − 3 , for g > 1 . (85)

After carrying out the integration over the metric, amplitudes take the form

A(1, . . . ,M) =
∞∑
g=0

κM−χN ′
g

∫
Mg

dµ(τ )
∫

DXµe−SP [X,ĥ]J(ĥ)V1 . . . VM . (86)

N ′
g are normalization factors needed to deal with the Xµ-integration and J(ĥ)

is the Faddeev-Popov determinant, which one can rewrite as a functional inte-
gral over Faddeev-Popov ghost fields. As indicated the Xµ-integral depends on
the moduli through the world-sheet metric ĥαβ = ĥαβ(τ ). One finds that the
measure dµ(τ ) for the moduli is the natural measure on the space of complex
structures, the so-called Weil-Petersson measure.

The precise characterization of the moduli space has further interesting de-
tails. We examplify this with the two-torus. We can represent a torus as a paral-
lelogram in the complex plane with opposite sides identified. Since the complex
structure does not depend on the overall volume, we can restrict ourselves to
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parallelograms with edges 0, 1, τ, τ +1, where Im(τ) > 0. In one complex dimen-
sion holomorphic maps are conformal maps, and vice versa. Thus the complex
structure is varied by moving τ in the upper half-plane,

H = {τ ∈ C | Im(τ) > 0} . (87)

This is the modulus we are looking for. H has a metric of constant negative
curvature, the Poincaré metric,

dµ(τ) =
d2τ

(Im(τ))2
. (88)

With this Sl(2,R)–invariant metric, H is the symmetric space Sl(2,R)/SO(2).
However, H is not our moduli space, because it overcounts complex structures.
On H the group Sl(2,R) acts from the right. Taking τ as coordinate, the oper-
ation is

τ −→ aτ + b

cτ + d
, where


a b

c d


 ∈ Sl(2,R) . (89)

The subgroup Sl(2,Z) maps parallelograms to parallelograms which define the
same torus, because they form basic cells of the same lattice in H. Such transfor-
mations are called modular transformations. Their action on the torus is given by
cutting the torus along a non-contractible loop, twisting and regluing. This cor-
responds to a large reparametrization which cannot be continously connected
to the identity. Clearly, we have to require that string amplitudes are invari-
ant under such large reparametrizations. This implies a consistency condition,
known as modular invariance: the τ -integral in (86) must be invariant under
modular transformations. This condition becomes non-trivial when considering
more general background geometries or string theories with fermions.

The moduli space is obtained by restricting to a fundamental domain F of
the action of Sl(2,Z) on H. By modular invariance we can consistently restrict
the τ -integration to such an F . The standard choice is found by looking at the
action of the two generators of Sl(2,Z),

τ → τ + 1 , τ → −1
τ

. (90)

Therefore the most convenient choice is

F = {τ ∈ H| − 1
2 ≤ Im(τ) < 1

2τ , |τ | ≥ 1} (91)

(with certain identifications along the boundary).
Modular invariance has deep consequences for the short distance behaviour

of string theory. In fact, modular invariance is what makes closed string theories
UV finite. To illustrate how this works, note that a one-loop amplitude in closed
string theory takes the form

AString
1−loop ∼

∫
F

d2τ

(Im(τ))2
F (τ) . (92)
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An analogous expression for one loop amplitudes in quantum field theory is given
by Schwinger’s proper time parametrization,

AQFT
1−loop ∼

∫ ∞

ε

dt

t
f(t) , (93)

where t is the proper time and ε is an UV cutoff. In this formulation UV di-
vergencies occur at short times t → 0. In string theory Im(τ) plays the role
of proper time, and potential UV divergencies occur for Im(τ) → 0. However,
by restricting to the fundamental domain we have cut out the whole dangerous
region of small times and high momenta. This confirms the intuitive idea that
strings should have a particularly soft UV behaviour, because the theory has
a minimal length scale, which works like a physical UV cutoff. Note that one
still has IR divergencies. In bosonic string theory one has divergencies related to
the tachyon, which show that the theory is unstable in Minkowski space. This
problem is absent in supersymmetric string theories. In addition one can have
IR divergencies related to massless states. Since there is only a finite number of
massless string states, this problem has the same character as in field theory.

Also note that the modular transformation τ → −1/τ maps the UV region
of H to its IR region. Thus, modular transformations map UV divergencies to
IR divergencies and enable us to reinterpret them in terms of low energy physics
(namely, intermediate massless states which go on-shell).

For higher genus surfaces Σg with g > 1 the story is similar, but more
complicated. There is an analogue of the upper half plane, which is called Siegels
upper half plane and has complex dimension g(g+1)

2 . Since there are only 3g− 3
complex moduli, this space contains more parameters then needed for g ≥ 4.
The Teichmüller space is embedded in a complicated way into Siegel’s upper
half plane. On top of this there is a modular group which has to be divided out.

Global Conformal Transformations. The integration over complex struc-
ture moduli in (86) reflects that surfaces with g > 0 have metrics that cannot
be related by reparametrizations. Therefore there is a finite left-over integration
when replacing the integral over metrics by an integral over reparametrizations.
For g < 2 one has in addition the reciprocal phenomenon: these surfaces have
global conformal isometries. This means that there are reparametrizations which
do not change the metric, implying an overcounting of equivalent contributions
in (86). Formally this is taken care of by the normalization factors N ′

0, N
′
1. The

overcounting yields a multiplicative factor, which is the volume of the group of
conformal isometries. This has to be cancelled by the normalization factors. For
g = 0 the conformal group is Sl(2,C) and has infinite volume. Thus one has to
formally divide out an infinite constant. For g = 1 the conformal group is U(1)2,
and has a volume which depends on the complex structure modulus τ of the
world-sheet. This factor is crucial for world-sheet modular invariance.

The systematic approach is to treat the global conformal isometries as a
residual gauge invariance and to apply the Faddeev-Popov technique.Then the
volumes of residual gauge groups are properly taken care of. So far we have been
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sloppy about how and when to carry out the integration over the positions of
the vertex operators. The proper order is as follows: one first carries out the Xµ-
integration to obtain a correlation function on a world-sheet of given topology
and complex structure:

〈V1(z1, z1) · · · 〉g,τ = N ′
g

∫
DXe−SP [X,ĥ(τ )]J(ĥ(τ ))V1(z1, z1) · · · . (94)

Next one integrates over the positions of the vertex operators. For g < 2 one
treats the global conformal isometries by the Faddeev Popov method. The result
is

〈V1 · · · 〉g,τ =
∫

dµ(z1, z1, . . . )〈V1(z1, z1) · · · 〉g,τ , (95)

where dµ(z1, z1, . . . ) for g < 2 is a measure invariant under the global isometries.
For g = 0 the measure vanishes if less than three vertex operators are present.

This reflects the infinite volume of the global conformal group: by Sl(2,C) trans-
formations one can map three points on the sphere to three arbitrary prescribed
points. Thus, the Sl(2,C) symmetry can be used to keep three vertex operators
at fixed positions. In other words the first three integrations over vertex opera-
tors compensate the infinite volume of the global conformal group that one has
to divide out. For less than three vertex operators one cannot compensate this
infinite normalization factor and the result is zero. Thus, the integrated zero-,
one- and two-point functions vanish. This implies that at string tree level the
cosmological constant and all tadpoles diagrams vanish.

The final step in evaluating (86) is to integrate over complex structures and
to sum over topologies:

A(1, . . . ,M) =
∞∑
g=0

κM−χ(g)
∫

Mg

dµ(τ )〈V1 . . . 〉g,τ . (96)

Through the vertex operators, A(1, . . . ,M) is a function of the momenta kµi and
polarization tensors ζµ1···

i of the external states.

Graviton Scattering. Though we cannot go through the details of a calcula-
tion here, we would like to discuss the properties of string scattering amplitudes
in a particular example. Our main interest being gravity, we choose the scat-
tering of two massless closed string states. The corresponding external states
are

ζ(i)
µνα

µ
−1α̃

ν
−1|k(i)〉 , (97)

with i = 1, 2, 3, 4. The resulting amplitude takes the following form:

AString
4 = κ2 Γ (−α′

4 s)Γ (−α′

4 t)Γ (−α′

4 u)
Γ (1 + α′

4 s)Γ (1 + α′

4 t)Γ (1 + α′

4 u)
·K(ζ(i), k(i)) . (98)
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Here s, t, u are the Mandelstam variables

s = −(k(1) + k(2))2 , t = −(k(2) + k(3))2 , u = −(k(1) + k(3))2 (99)

and K(ζ(i), k(i)) is the kinematic factor, a complicated function of momenta and
polarizations that we do not display.

Scattering amplitudes have poles whenever an intermediate states can be
produced as a real physical state. Unitarity requires that the residue of the pole
describing such a resonance is the product of the amplitudes of the subprocesses
through which the intermediate state is produced and decays. In this way the
pole structure of amplitudes is related to the particle spectrum of the theory.

The amplitude (98) has poles when the argument of one of the Γ -functions
in the numerator takes a non-positive integer value,

−α′

4
x = 0,−1,−2, . . . , where x = s, t, u . (100)

Comparing to the mass formula of closed strings,

α′M2 = 2(N + Ñ − 2) , (101)

we see that the poles precisely correspond to massless and massive string states
with N = Ñ = 1, 2, 3, . . . . There is no pole corresponding to the tachyon (N =
0) in this amplitude, because the tachyon cannot be produced as a resonance
for kinematic reasons. When computing the amplitude for tachyon scattering
instead, one also finds a tachyon pole.

The particular pole structure of (98) and of related string amplitudes was
observed before the interpretation of the amplitudes in terms of strings was
known. In the late 1960s it was observed experimentally that hadronic resonances
obey a linear relation between the spin and the square of the mass, called Regge
behaviour. This behaviour was correctly captured by the Veneziano amplitude,
which has a structure similar to (98) and describes the scattering of two open
string tachyons. The Regge behaviour was the clue for the interpretation of the
Veneziano amplitudes and its cousins in terms of strings.

To see that string states show Regge behaviour, consider the truncation of
string theory to four space-time dimension (which is consistent at tree level).
Closed string states with level N = Ñ have spins J ≤ 2N , because the spin J
representation of the four-dimensional Lorentz group is the traceless symmetric
tensor of rank J . Open string states have spins J ≤ N . The states lie on lines in
the (M2, J)–plane, which are called Regge trajectories. The closed string Regge
trajectories are given by

αclosed(M2) = α′
closedM

2 + αclosed(0) , (102)

where

α′
closed =

α′

4
, αclosed(0) = 1, 0,−1, . . . . (103)
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String states correspond to those points on the Regge trajectories where
α′

closed(M2) = N + Ñ . States with the maximal possible spin J = 2N = N +
Ñ for a given mass lie on the leading Regge trajectory αclosed(0) = 1. Since
α′ determines the slope of the trajectories, it is called the Regge slope. The
corresponding expressions for open strings are:

αopen(M2) = α′
openM

2 + αopen(0) , (104)

where

α′
open = α′ , αopen(0) = 1, 0,−1, . . . . (105)

The resonances found in open string scattering lie on the corresponding Regge
trajectories.

When computing scattering amplitudes in terms of Feynman diagrams in
field theory, individual diagrams only have poles in one particular kinematic
channel, i.e., in the s-channel or t-channel or u-channel. The full scattering am-
plitude, which has poles in all channels, is obtained by summing up all Feynman
diagrams. In (closed oriented) string theory there is only one diagram in each
order of perturbation theory, which simultanously has poles in all channels. The
total amplitude can be written as a sum over resonances in one particular chan-
nel, say the s-channel. This is consistent with the existence of poles in the other
channels, because there is an infinite set of resonances. When instead writing
the amplitude in the form (98), it is manifestly symmetric under permutations
of the kinematic variables s, t, u. This special property was called ‘duality’ in the
old days of string theory (a term that nowadays is used for a variety of other,
unrelated phenomena as well).

Another important property of (98) and other string amplitudes is that they
fall off exponentially for large s, which means that the behaviour for large ex-
ternal momenta is much softer than in any field theory. This is again due to the
presence of an infinite tower of excitations. Since loop amplitudes can be con-
structed by sewing tree amplitudes, this implies that the UV behaviour of loop
diagrams is much softer than in field theory. This lead to the expectation that
string loop amplitudes are UV finite, which was confirmed in the subsequent
development of string perturbation theory.

Though we did not explicitly display the kinematic factor K(ζ(i), k(i)) we
need to emphasize one of its properties: it vanishes whenever one of the external
states is a null state. As we learned above, null states have polarizations of the
form

ζ(i)
µν = k(i)

µ ξ(i)
ν + k(i)

ν ζ(i)
µ (106)

and are gauge degrees of freedom. They have to decouple from physical scattering
amplitudes, as it happens in the above example. This property is called ‘on shell
gauge invariance’, because it is the manifestation of local gauge invariance at
the level of scattering amplitudes. It can be proven to hold for general scattering
amplitudes.
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If we take the polarization tensors of the external states to be symmetric and
traceless, then (98) describes graviton–graviton scattering. So far our identifica-
tion of this string state with the graviton was based on its kinematic properties.
Since Einstein gravity is the only known consistent interaction for a second rank,
traceless symmetric tensor field (‘massless spin–2–field’), we expect that this
also holds dynamically. We will now check this explicitly. In the field theoretical
perturbative approach to quantum gravity one starts from the Einstein-Hilbert
action,

S =
1

2κ2

∫
dDx

√
gR (107)

and expands the metric around flat space

gµν(x) = ηµν + κψµν(x) . (108)

The field ψµν(x) is the graviton field. Expanding (107) in κ one gets a compli-
cated non-polynomial action for ψ that one quantizes perturbatively. The result-
ing theory is non-renormalizable, but tree diagrams can be consistently defined
and computed. In particular one can compute graviton–graviton scattering at
tree level and compare it to the string amplitude (98). Denoting the field theory
amplitude by AFTh

4 , the relation is

AString
4 =

Γ (1− α′

4 s)Γ (1− α′

4 t)Γ (1− α′

4 u)
Γ (1 + α′

4 s)Γ (1 + α′

4 t)Γ (1 + α′

4 u)
AFTh

4 . (109)

In the limit α′ → 0, which corresponds to sending the string mass scale to
infinity, the string amplitude reduces to the field theory amplitude:

lim
α′→0

AString
4 = AFTh

4 . (110)

At finite α′ string theory deviates from field theory. The correction factor in (109)
contains precisely all the poles corresponding to massive string states, whereas
the massless poles are captured by the field theory amplitude. One can construct
an effective action which reproduces the string amplitude order by order in α′.
At order α′ one obtains four-derivative terms, in particular terms quadratic in
the curvature tensor,

Seff =
1

2κ2

∫
dDx

√
g(R + α′c1RµνρσRµνρσ + · · ·+O((α′)2)) , (111)

where c1 is a numerical constant. The α′-expansion of the effective action is an
expansion in derivatives. It is valid at low energies, i.e., at energies lower than
the scale set by α′, where corrections due to massive string scales are small.

Obviously, it is very cumbersome to construct the effective action by match-
ing field theory amplitudes with string amplitudes. In practice one uses symme-
tries to constrain the form of the effective action. This is particularly efficient for
supersymmetric actions, which only depend on a few independent parameters
or functions, which can be extracted from a small number of string amplitudes.
A different technique, which often is even more efficient, is to study strings in
curved backgrounds, and, more generally, in background fields.
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3.4 Strings in Curved Backgrounds

So far we only discussed strings in flat backgrounds. Let us now consider the case
of a curved background with Riemannian metric Gµν(X). Then the Polyakov
action takes the form of a non-linear sigma-model

SP =
1

4πα′

∫
d2σ

√
hhαβ∂αX

µ∂βX
νGµν(X) . (112)

As emphasized above, the local Weyl invariance

hαβ → eΛ(σ)hαβ (113)

is crucial for the consistency of string theory, since the construction of states,
vertex operators and amplitudes is based on having a conformal field theory on
the world-sheet. If the space-time metric is curved, then the Weyl invariance of
the classical action (112) is still manifest. But at the quantum level it becomes
non-trivial and imposes restrictions on Gµν(X). In the non-linear sigma-model
defined by (112) one can define a modified beta function β, which measures the
violation of local Weyl invariance. In order to have local Weyl invariance this
function must vanish,

β = 0 . (114)

Since Gµν(X) are the field-dependent couplings of the non-linear sigma-model,
the beta function β is a functional of Gµν(X). It can be computed perturbatively,
order by order in α′. The dimensionless expansion parameter is the curvature
scale of the target space (i.e., space-time) measured in units of the string length√
α′.

The leading term in this expansion is:

β
G

µν = − 1
2π

Rµν . (115)

Thus the space-time background has to be Ricci-flat, i.e., it satisfies the vacuum
Einstein equation. The condition imposed on the background field by local Weyl
invariance on the world-sheet is its space-time equation of motion. This relation
between world-sheet and space-time properties holds for other background fields
as well and can be used as an efficient method to construct effective actions. One
can also compute the α′-corrections to (115):

β
G

µν = − 1
2π

(
Rµν +

α′

2
RµαβγR

αβγ
ν

)
. (116)

The corresponding α′-corrections to the Einstein-Hilbert action take the form
(111).

At this point we need to reflect a little bit on how gravity is described in string
theory. So far we have seen that it enters in two ways: first, there is a graviton
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state ζ(µν)α
µ
−1α̃

ν
−1|k〉 in the string spectrum. Second, there is a background met-

ric Gµν(X). If gravity is described consistently, then these two objects must be
related. To explore this we expand Gµν(X) around flat space,

Gµν(X) = ηµν + κψµν(X) , (117)

and observe that the action (112) is related to the Polyakov action in flat space
by

SP [Gµν ] = SP [ηµν ] + κV [ψµν ] , (118)

where

V [ψµν ] =
1

4πα′

∫
d2σ

√
hhαβψµν(X)∂αXµ∂βX

ν . (119)

Taking the Fourier transform of ψµν(X) we obtain

V [ψµν ] =
1

4πα′

∫
dDk

∫
d2σ

√
hVψ(k, ψ̃(k)) , (120)

where

Vψ(k, ψ̃(k)) = ψ̃µν(k)∂αXµ∂αXνeikρX
ρ

(121)

is the graviton vertex operator with polarisation tensor ψ̃µν(k).
Thus the curved space action SP [Gµν ] is obtained by deforming the flat space

action SP [ηµν ] by the graviton vertex operator. Since both actions must be con-
formal, V [ψ] must be a so-called exactly marginal operator of the world-sheet
field theory. These are the operators which generate deformations of the action
while preserving conformal invariance. A necessary condition is that V [ψ] must
be a marginal operator, which means it has weights (0, 0) with respect to the
original action. Such operators have the correct weight for being added to the
action and generate infinitesimal deformations which preserve conformal invari-
ance. Note that it is not guaranteed that a marginal operator is still marginal in
the infinitesimally deformed theory. Only those marginal operators which stay
marginal under deformation generate finite deformations of a conformal field
theory and are called exactly marginal (or truly marginal).

If the integrated vertex operator V [ψ] has weights (0, 0), then the vertex op-
erator (121) must have weights (1, 1). This is the condition for a vertex operator
to create a physical state. The resulting conditions on momenta and polarization
are

k2 = 0 , kµψ̃
(µν) = 0 , (122)

which we now recognize as the Fourier transforms of the linearized Einstein
equation. This the free part of the equations of motion for the graviton and
characterizes its mass and spin.
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Marginal operators are not necessarily exactly marginal. The flat space action
defines a free field theory on the world-sheet, which is conformally invariant at
the quantum level. Thus V [ψ] is exactly marginal if and only if the curved
space action SP [Gµν ] is conformally invariant. By the beta–function analysis,
this is equivalent to the full vacuum Einstein equation for the metric Gµν , plus
corrections in α′. This is the full, non-linear equation of motion for the graviton
string state.

In order to understand the relation between the graviton string state and
the background metric even better we use (118) to relate amplitudes computed
using the curved space action SP [Gµν ] and the flat space action SP [ηµν ]:

〈V1 · · ·VM 〉G = 〈V1 · · ·VMeV [ψ]〉η (123)

The operator eV [ψ] generates a coherent state of gravitons in flat space. This
can be seen as follows: in quantum mechanics (think of the harmonic oscilla-
tor) coherent states are defined as states with minimal Heisenberg uncertainty.
They are eigenstates of annihilation operators and can be constructed by ex-
ponentiating creation operators. The resulting states are not eigenstates of the
number operator but are superpositions of states with all possible occupation
numbers. In (123) the role of the creation operator is played by the graviton
vertex operator.

In quantum field theory, coherent states are the states corresponding to clas-
sical fields. For example, in quantum electrodynamics a classical electrodynamic
field can be represented as a coherent state of photons. Similarly, in gravity a
curved metric (modulo global properties) can be described as a coherent state
of gravitons in the Minkowski vacuum. This is realized in the above formula,
where the amplitudes in the curved background can be computed equivalently
by inserting the vertex operator for a coherent state of gravitons into the flat
space amplitude. This is a manifestation of background independence: though
we need to pick a particular background to define our theory, other backgrounds
are different states in the same theory. Since consistent backgrounds must satisfy
the equations of motion, one also calls them solutions of string theory. In this
terminology different background geometries are different solutions of the single
underlying string theory.

3.5 Effective Actions

In the last section we have seen that the equation of motion of the metric/graviton
can be obtained from an effective action. Such effective actions are very conve-
nient, because they allow us to describe string states in terms of D-dimensional
field theory. Effective actions are obtained in an expansion in α′ and therefore
their use is limited to scales below the string scale. But given that the string
scale probably is very large, they are extremely useful to extract particle physics
or gravitational physics from string theory. Therefore they play a major role in
string theory. We have also seen that there are two methods for deriving effective
actions: the matching of string theory amplitudes with field theory amplitudes
and solving the conditions for Weyl invariance β = 0 in a non-trivial background.
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So far we found that the Einstein-Hilbert action is the leading part of the
effective action for the graviton. We have seen that the closed string has two
further massless modes, the dilaton Φ and the antisymmetric tensor field Bµν .
We can now switch on the corresponding non-trivial background fields. The total
world-sheet action is:

S = SP [G] + S[B] + S[Φ] . (124)

Here SP [G] is the action (112),

S[B] =
1

4πα′

∫
d2σεαβ∂αX

µ∂βX
νBµν(X) (125)

and

S[Φ] =
1
4π

∫
d2σ

√
hR(2)(h)Φ(X) . (126)

Here εαβ is the totally antisymmetric world-sheet tensor density and R(2)(h) is
the Ricci scalar of the world-sheet metric. Note that the dilaton action is higher
order in α′.

The beta-function for the dilaton starts with a term proportional to (D−26)
and has α′-correction proportional to derivatives of Φ. The leading term of the
beta-function corresponds to a cosmological constant in the effective action.
When considering string theory around backgrounds with constant dilaton, the
only solution to the dilaton beta-function equation is to work in the critical di-
mension D = 26. We will only consider such backgrounds here, and therefore the
cosmological term in the effective action vanishes. But let us note that there are
known exact solutions to the beta-function equations with non-constant dilaton.
These describe exact string backgrounds with D �= 26.

Let us now return to the dilaton term of the world-sheet action. When eval-
uated for constant dilaton, (126) is proportional to the Euler number of the
world-sheet. For a Euclidean closed string world-sheet of genus g we have:

χ =
1
4π

∫
Σg

d2z
√
hR(2)(h) = 2− 2g . (127)

Therefore shifting the dilaton by a constant a,

Φ(X) → Φ(X) + a (128)

has the effect of shifting the total action (124) by a constant proportional to the
Euler number:

S → S + aχ(g) . (129)

For the corresponding partition function this is equivalent to rescaling the cou-
pling by ea:

Z =
∞∑
g=0

κ−χ(g)
∫

DXDhe−S −→
∞∑
g=0

(κea)−χ(g)
∫

DXDhe−S . (130)
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This shows that the coupling constant κ and vacuum expectation value 〈Φ〉 of the
dilaton are not independent. To clarify the physical meaning of both quantities,
we now investigate the effective action of the massless modes. The conditions
for Weyl invariance of (124) are the Euler-Lagrange equation of the following
effective action:

SStrFr
tree =

1
2κ2

∫
dDx

√
Ge−2Φ

(
R(G)− 1

12
HµνρH

µνρ + 4∂µΦ∂µΦ +O(α′)
)

.

(131)

This way of parametrizing the effective action is called the string-frame. The
string-frame metric Gµν is the metric appearing in the world-sheet action (112).
The field strength of the antisymmetric tensor field is

Hµνρ = 3! ∂[µBνρ] , (132)

where [µνρ] denotes antisymmetrization.
Concerning the dilaton we note that its vacuum expectation value is not

fixed by the equations of motion. Like in the partition function (130), shifting
the dilaton by a constant is equivalent to rescaling the coupling. In order to
determine the relation of the string coupling constant κ to the physical gravi-
tational coupling κphys one has to perform a field redefinition that transforms
the gravitational term in (131) into the standard Einstein-Hilbert action. The
coefficient in front of this term is the physical gravitational coupling.

The transformation which achieves this is the following Weyl rescaling of the
metric:

gµν := Gµνe
− 4

D−2 (Φ−〈Φ〉) . (133)

Expressing everything in terms of the Einstein frame metric gµν one obtains:

SEinstFr
tree =

1
2κ2

phys

∫ √
g

(
R(g)− 1

12
e−8 Φ−〈Φ〉

D−2 HµνρH
µνρ

− 4
D − 2

∂µΦ∂µΦ +O(α′)
)

. (134)

The physical gravitational coupling is

κphys = κe〈Φ〉 . (135)

Since the coupling κ can be rescaled by shifting Φ, it can be set to an arbitrary
value. This is used to fix κ:

κ
!= (α′)

D−2
4 . (136)

(Note that the D-dimensional gravitational couplings κ, κphys have dimension
(length)D−2/2.) Since κphys and α′ are related by the vacuum expectation value
of the dilaton we see that there is only one fundamental dimensionful parameter
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in string theory, which we can take to be either the gravitational coupling κphys
or the string scale set by α′. They are related by the vacuum expectation value of
the dilaton, which classically is a free parameter labeling different ground states
in one theory. Defining the dimensionless string coupling constant by

gS = e〈Φ〉 , (137)

we have the relation

κphys = (α′)
D−2

4 gS . (138)

The effective actions (131,134) have been constructed to leading order in α′

and at tree level in the string coupling gS . Loop corrections in gS can be ob-
tained, either by considering loop amplitudes or from the contribution of higher
genus world-sheets to the Weyl anomaly (Fischler-Susskind mechanism). One
might expect that loop corrections generate a potential for the dilaton and lift
the vacuum degeneracy. But for the bosonic string one does not know the stable
ground state, because of the tachyon. In supersymmetric string theories tachyons
are absent, but no dilaton potential is created at any loop level. Thus the value
of the string coupling remains a free parameter. This is (part of) the problem
of vacuum degeneracy of superstring theories. Since the flatness of the dilaton
potential is a consequence of supersymmetry, the solution of the vacuum degen-
eracy problem is related to understanding supersymmetry breaking.

For practical applications, both the string frame effective action and the
Einstein frame effective action (and their higher-loop generalizations) are needed.
The string frame action is adapted to string perturbation theory and has a
universal dependence on the dilaton and on the string coupling:

SStrFr
g−loop ∼ g−2+2g

S . (139)

The Einstein frame action is needed when analyzing gravitational physics, in
particular for solutions of the effective action that describe black holes and
other space-time geometries. Note that concepts such as the ADM mass of an
asymptotically flat space-time are tied to the gravitational action written in the
Einstein frame. The relation between the Einstein frame metric and the string
frame metric is non-trivial, because it involves the dilaton, which in general is a
space-time dependent field. Therefore various quantities, most importantly the
metric itself, can take a very different form in the two frames. For example one
metric might be singular wheras the other is not. In order to decide whether a
field configuration is singular or not, one has of course to look at all the fields,
not just at the metric. If the metric is singular in one frame but not in the other,
then the dilaton must be singular.

3.6 Interacting Open and Non-oriented Strings

We now indicate how the above results extend to open and non-oriented strings.
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Open Strings. The world-sheets describing the interactions of open strings
have two kinds of boundaries: those corresponding to the initial and final strings
and those corresponding to the motions of string endpoints. Boundaries corre-
sponding to external strings can be mapped to punctures and are then replaced
by vertex operators. The boundaries corresponding to the motions of string
endpoints remain. They are the new feature compared to closed strings. Pertur-
bation theory for open strings can then be developed along the same lines as for
closed strings. Instead of closed oriented surfaces it involves oriented surfaces
with boundaries, and the vertex operators for open string states are inserted at
on the boundaries.

Again there is one fundamental interaction, which couples three open strings,
and we assign to it a coupling constant κo. The most simple world-sheet, analo-
gous to the sphere for closed strings, is the disc. It is leading in the expansion in
κo and describes scattering at tree level. The computation of tree level scattering
amplitudes confirms the interpretation of the massless state as a gauge boson.
The resulting effective action, to leading order in α′, is the Maxwell or, with
Chan-Paton factors, the Yang-Mills action. It receives higher order corrections
in α′ and one can show that the resulting actions are of Born-Infeld type.

Higher order diagrams in open string perturbation theory correspond to sur-
faces with more than one boundary component. They are obtained from the disc
by removing discs from the interior. Each removal of a disc corresponds to an
open string loop. The one loop diagram is the annulus.

One can also introduce a coupling of two open strings to one closed string
with coupling κoc and consider theories of open and closed strings. Unitarity
then implies that the three couplings κo, κoc, κ are not independent. To see this
consider first a disc diagram with two open string vertex operators at the bound-
aries and two closed string vertex operators in the interior. This amplitude can
be factorized with an intermediate closed string. Looking at string interactions
we see that one has one interaction between three closed strings and one be-
tween one closed and two open strings. Therefore the amplitude is proportional
to κκoc. The amplitude can also be factorized with an intermediate open string.
This time one sees two interactions involving two open and one closed string.
Therefore the amplitude is proportional to κ2

oc. Comparing both forms of the
amplitude we deduce

κ # κoc (140)

(the numerical factor has to be determined by explicit computation).
Next consider the open string one loop diagram, the annulus. Putting two

vertex operators on each boundary one can again factorize it with either a closed
or an open intermediate state. This way one finds

κ # κ2
o . (141)

Note that the above amplitude does not involve external closed string states.
This indicates an important property of open string theories: the coupling to
closed strings is not optional, but mandatory. When computing open string loop
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diagrams, one finds that they have poles which correspond to closed string states.
Therefore consistency of open string theories at the quantum level requires the
inclusion of closed strings. This means in particular that every consistent quan-
tum string theory has to include gravity. The relation between open and closed
strings becomes obvious when one realizes that the annulus is topologically equiv-
alent to the cylinder. While the annulus intuitively is the open string one loop
diagram, the cylinder is the closed string propagator. This is reflected by the
properties of the corresponding string amplitudes, which can be written either
as a sum over poles corresponding to open strings (open string channel) or as a
sum over poles corresponding to closed strings (closed string channel).

The UV finiteness of closed string theories is due to modular invariance. Open
string world-sheets do not have a modular group. The role of modular invari-
ance is played by another property, called tadpole cancellation. The underlying
observation is that the cancellation of divergencies between different diagrams
is equivalent to the vanishing of the dilaton tadpole. It turns out that tadpole
cancellation cannot be realized in a theory of oriented open and closed strings.
In theories of non-oriented open and closed strings tadpole cancellation fixes
the gauge group to be SO(2D/2). For bosonic strings the critical dimension is
D = 26 and the gauge group must be SO(8192). Since the primary problem of
bosonic strings is the tachyon, it is not clear whether tadpole cancellation plays
a fundamental role there. But for type I superstrings this is the condition which
makes the theory finite.

Since we only discussed orientable world-sheets so far, we next collect some
properties of the world-sheets of non-oriented strings.

Non-oriented Strings. Theories of non-oriented strings are obtained by keep-
ing only states which are invariant under world-sheet parity. Since such theories
are insensitive to the orientation of the world–sheet one now has to include
non-orientable world-sheets. Theories of closed non-oriented strings involve ori-
entable and non-orientable surfaces without boundaries, whereas theories of open
and closed non-oriented strings involve in addition orientable and non-orientable
world-sheets with boundaries. Let us summarize which types of world-sheets oc-
cur in string theory, depending on boundary conditions and orientability of the
world-sheet:

Strings Surfaces

boundaries orientable

open closed oriented non-oriented without with yes no

x − x − x − x −
x x x − x x x −
x − − x x − x x

x x − x x x x x

(142)
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The simplest example of a non-orientable surface without boundary is the
real projective plane RP2, which is obtained from R2 by adding a circle at
infinity, such that every line through the origin in R2 intersects the circle in
one point. Equivalently, RP2 is obtained from the disc by identifying antipodal
points on its boundary. Thus, RP2 is a closed, but non-orientable surface, and
it is a world-sheet occuring in theories of closed non-oriented strings. It is useful
to note that RP2 can be obtained from the sphere, which is the tree-level world-
sheet already familiar from oriented closed strings, by the following procedure:
start with the sphere, remove a disc, (realize that the result is a disc itself,) then
identify antipodal points on the resulting boundary. This operation is called
‘adding a crosscap’. By iterating this process we get an infinite series of new
non-orientable surfaces. For example, by adding a second crosscap we get the
Klein bottle. As we discussed above, there is a similar operation that generates
all orientable closed surfaces from the sphere: adding a handle. By adding both
handles and crosscaps we can generate all closed surfaces, orientable and non-
orientable. In fact, it is sufficient to either add handles (generating all orientable
surfaces) or to add crosscaps (generating all non-orientable surfaces). The reason
is that adding a crosscap and a handle is equivalent to adding three crosscaps.

When considering theories of non-oriented open strings one has to add world-
sheets with boundaries. These are obtained from the world-sheets of closed
strings by removing discs. For example, removing one disc from RP2 gives the
Möbius strip. As we discussed in the last section, the couplings between open
strings, κo, and between open and closed strings, κog, are related to the closed
string coupling κ by unitarity. The order of a given world-sheet in string pertur-
bation theory is κ−χ(g,b,c), where the Euler number is now determined by the
number g of handles, the number b of boundary components and the number c
of crosscaps:

χ(g, b, c) = 2− 2g − b− c . (143)

Let us write down explicitly the first few world-sheets:

g b c χ Surface Coupling

0 0 0 2 Sphere κ−2

0 1 0 1 Disc κ−1

0 0 1 1 Real projective plane κ−1

1 0 0 0 Torus κ0

0 0 2 0 Klein bottle κ0

0 2 0 0 Annulus = cylinder κ0

0 1 1 0 Möbius strip κ0

(144)
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3.7 Further Reading

Vertex operators and the Polyakov path integral are discussed in all the standard
textbooks [1–4]. A very nice introduction to the use of conformal field theory in
string theory is provided by [6]. A more detailed introduction to the Polyakov
path integral can be found in [8]. For an extensive review of this subject, see
[7]. A pedagogical treatment of the mathematical ingredients needed to treat
higher genus surfaces can be found in [10], whereas [9] discusses the Polyakov
path integral from the mathematicians point of view.

4 Supersymmetric Strings

The bosonic string does not have fermionic states and therefore it cannot be used
as a unified theory of particle physics and gravity. One way to introduce fermionic
states is an extension known as the Ramond-Neveu-Schwarz string (RNS string).
In this model one introduces new dynamical fields ψµ = (ψµA) on the world-
sheets, which are vectors with respect to space-time but spinors with respect to
the world-sheet. We will suppress the world-sheet spinor indices A = 1, 2 most of
the time. Surprisingly, the presence of such fields, when combined with a certain
choice of boundary conditions, yields states which are spinors with respect to
space-time, as we will see below.

The RNS model contains space-time bosons and fermions, but still has a
tachyonic ground state. One then observes that there are projections of the
spectrum which simultanously remove the tachyon and make the theories space-
time supersymmetric. A closer inspection shows that these projections are not
optional, but required by consistency at the quantum level. This way one obtains
three consistent supersymmetric strings theories, called type I, type IIA and type
IIB. Finally there are also two so-called heterotic string theories, which are the
result of a hybrid construction, combining type II and bosonic strings. This
makes a total of five supersymmetric string theories.

4.1 The RNS Model

We now discuss the classical and quantum properties of the RNS string, pro-
ceeding along the same lines as we did for the bosonic string.

The RNS Action. The action of the RNS model is obtained from the Polyakov
action by extending it to an action with supersymmetry on the world-sheet. Note
that world-sheet supersymmetry is different from, and does not imply, supersym-
metry in space-time. The action of the RNS model is constructed by extending
the Polyakov action (4) to an action with local world-sheet supersymmetry.
This action also has local Weyl symmetry, and further local fermionic symme-
tries which make it locally superconformal. We will not need its explicit form
here. The analogue of the conformal gauge is called superconformal gauge. In
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this gauge the action reduces to

SRNS =
1

4πα′

∫
Σ

d2σ
(
∂αX

µ∂αXµ + i ψ
µ
ρα∂αψµ

)
. (145)

The fields ψµ = (ψµA) are Majorana spinors with respect to the world-sheet and
vectors with respect to space-time, while ρα = (ραAB) are the two-dimensional
spin matrices. We will usually suppress the world-sheet spinor index A,B = 1, 2.
The action (145) is invariant under global world-sheet supersymmetry transfor-
mations:

δXµ = εψµ , δψµ = −i ραε∂αXµ . (146)

The equations of motion are:

∂2Xµ = 0 , ρα∂αψ
µ = 0 . (147)

To these one has to add the constraints, which arise from the locally superconfor-
mal action. In this action the supersymmetric partner of the world-sheet metric
is a vector-spinor, the gravitino. This field is non-dynamical in two dimensions
and is set to zero in the superconformal gauge. The equation of motion for the
metric implies that the energy-momentum tensor vanishes on shell:

Tαβ = ∂αX
µ∂βXµ +

i

2
ψ
µ
ρ(α∂β)ψµ − Trace = 0 . (148)

The equation of motion for the gravitino implies that the world-sheet supercur-
rent Jα vanishes on shell:

Jα =
1
2
ρβραψ

µ∂βXµ = 0 . (149)

In order to solve the equation of motion for ψµ it is convenient to choose the
following spin matrices:

ρ0 =


0 i

i 0


 , ρ1 =


0 −i

i 0


 . (150)

Using the chirality matrix ρ = ρ0ρ1 we see that the components ψµ± of ψµ,
defined by

ψµ =


ψ−

ψ+


 (151)

with respect to the basis (150) are Majorana-Weyl spinors. The equations of
motion decouple,

∂−ψµ+ = 0 , ∂+ψµ− = 0 , (152)
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and have the general solution

ψµ+ = ψµ+(σ+) , ψµ− = ψµ−(σ−) . (153)

Next we have to specify the boundary conditions. Requiring the vanishing of the
boundary terms when varying the action implies:

(ψµ−δψµ− − ψµ+δψµ+)
∣∣
σ1=0 = (ψµ−δψµ− − ψµ+δψµ+)

∣∣
σ1=π . (154)

For open strings we take

ψµ+(σ0, σ1 = 0) = ψµ−(σ0, σ1 = 0) (155)
ψµ+(σ0, σ1 = π) = ±ψµ−(σ0, σ1 = π) . (156)

This couples ψµ+ and ψµ− at the boundaries. Depending on the choice of sign
in (156) one gets Ramond boundary conditions (‘+’ sign) or Neveu-Schwarz
boundary conditions (‘−’ sign). One can use the same doubling trick that we
used to obtain the Fourier expansion for bosonic open strings. Setting

ψµ(σ0, σ1) :=




ψµ−(σ0,−σ1) if− π ≤ σ1 ≤ 0 ,

ψµ+(σ0, σ1) if 0 ≤ σ1 ≤ π ,
(157)

we find that ψ is periodic for R(amond)-boundary conditions and antiperiodic
for N(eveu-)S(chwarz)-boundary conditions on the doubled world-sheet. Consis-
tency at the loop level requires that both types of boundary conditions have to
be included. The Hilbert space has both an NS-sector and an R-sector.

For closed strings we can make ψ+ and ψ− either periodic (R-boundary
conditions) or antiperiodic (NS-boundary conditions):

ψµ+(σ0, σ1 = π) = ±ψµ+(σ0, σ1 = 0) , (158)
ψµ−(σ0, σ1 = π) = ±ψµ−(σ0, σ1 = 0) . (159)

Since ψµ+ and ψµ− are independent, one has four different choices of fermionic
boundary conditions: R-R, NS-R, R-NS, NS-NS. Again considerations at the
loop level require that all four sectors have to be included.

We can now write down solutions of (152) subject to the boundary conditions
that we admit. For open strings we use the doubling trick and Fourier expand
(157). For R-boundary conditions one obtains,

ψµ∓ =
1√
2

∑
n∈Z

dµne
−inσ∓

, (160)

while for NS-boundary conditions the result is:

ψµ∓ =
1√
2

∑
r∈Z+ 1

2

bµr e
−irσ∓

. (161)
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For closed strings R-boundary conditions in the right-moving sector we get:

ψµ− =
∑
n∈Z

dµne
−2inσ−

, (162)

while with NS-boundary conditions this becomes

ψµ− =
∑

r∈Z+ 1
2

bµr e
−2irσ−

. (163)

The Fourier coefficients of the left-moving fields are denoted d̃µn and b̃µr , respec-
tively.

Likewise, one obtains Fourier coefficients of the energy momentum tensor Tαβ
and of the supercurrent Jα. For open strings the Fourier coefficients of J+, J− (in
the doubled intervall) are denoted Fm in the R-sector and Gr in the NS-sector.
For closed strings the Fourier modes of J+ are denoted Fm, Gr, while those of
J− are F̃m and G̃r. The Fourier components of T++ and T−− are denoted as
before.

Covariant Quantization of the RNS Model. The covariant quantization of
the RNS model proceeds along the lines of the bosonic string. We will consider
open strings for definiteness. The canonical commutation relations of the αµm are
as before. The fermionic modes satisfy the canonical anticommutation relations

{bµr , bνs} = ηµνδr+s,0 (164)

in the NS-sector and

{dµm, dνn} = ηµνδm+n,0 (165)

in the R-sector. (For closed strings there are analogous relations for the second
set of of modes.)

The Virasoro generators get contributions from both the bosonic and the
fermionic oscillators, Lm = L

(α)
m + L

(NS)/(R)
m . The bosonic part L

(α)
m is given

by (29), while the contributions from the fermionic oscillators in the respective
sectors are:

L(NS)
m =

1
2

∞∑
r=−∞

(r +
1
2
m) br · bm+r , (166)

L(R)
m =

1
2

∞∑
n=−∞

(n +
1
2
m) dn · dm+n . (167)

The explicit formulae for the modes of the supercurrent are:

Gr =
∞∑

n=−∞
α−n · br+n , (168)

Fm =
∞∑

n=−∞
α−n · dm+n . (169)
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The modes of Tαβ and Jα generate a supersymmetric extension of the Vira-
soro algebra. In the NS sector this algebra takes the form

[Lm, Ln] = (m− n)Lm+n +
D

8
(m3 −m)δm+n,0 , (170)

[Lm, Gr] = (
1
2
m− r)Gm+r , (171)

{Gr, Gs} = 2Lr+s +
D

2
(r2 − 1

4
)δr+s,0 , (172)

while in the R-sector one finds

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0 , (173)

[Lm, Fn] = (
1
2
m− n)Fm+n , (174)

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n,0 . (175)

The subspace of physical states Fphys ⊂ F is found by imposing the corre-
sponding super Virasoro constraints. In the NS-sector the constraints are:

Ln|Φ〉 = 0 , n > 0 ,

(L0 − a)|Φ〉 = 0 ,

Gr|Φ〉 = 0 , r > 0 . (176)

Absence of negative norm states is achieved for

D = 10 and a =
1
2

. (177)

(Like for bosonic strings there is the option to have a non-critical string theory
with D < 10, which we will not discuss here.) Thus the critical dimension has
been reduced to 10.

In the R-sector the constraints are:

Ln|Φ〉 = 0 , n > 0 ,

(L0 − a)|Φ〉 = 0 ,

Fn|Φ〉 = 0 , n ≥ 0 . (178)

Note that there is no normal ordering ambiguity in F0. Since F 2
0 = L0 we

conclude a = 0. The critical dimension is 10, as in the NS-sector:

D = 10 and a = 0 . (179)

Let us construct explicitly the lowest states of the open string in both sectors.
In the NS-sector the basic momentum eigenstates satisfy

αµm|k〉 = 0 , m > 0 , (180)
bµr |k〉 = 0 , r > 0 (181)
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and the constraint (L0 − 1
2 )|Φ〉 = 0 provides the mass formula:

α′M2 = N − 1
2

, (182)

where we reinstated α′. The number operator gets an additional term N (b) com-
pared to (39), which counts fermionic oscillations:

N (d) =
∞∑

r=1/2

r b−r · br , (183)

[N, bµ−r] = r bµ−r . (184)

Now we can list the states:

Occupation Mass State

N = 0 α′M2 = − 1
2 |k〉

N = 1
2 α′M2 = 0 bµ−1/2|k〉

N = 1 α′M2 = 1
2 bµ−1/2b

ν
−1/2|k〉

αµ−1|k〉
N = 3

2 α′M2 = 1 bµ−1/2b
ν
−1/2b

ρ
−1/2|k〉

αµ−1b
ν
−1/2|k〉

bµ−3/2|k〉

(185)

Thus the NS-sector of the open string consists of space-time bosons and has a
tachyonic ground state. The massless state is a gauge boson.

The basic momentum eigenstates in the R-sector are defined by:

αµm|k〉 = 0 , m > 0 , (186)
dµm|k〉 = 0 , m > 0 . (187)

The constraint L0|Φ〉 = 0 yields the mass formula

α′M2 = N . (188)

The number operator gets an additional fermonic contribution

N (d) =
∞∑
m=1

m d−m · dm . (189)

The zero modes dµ0 of the fermionic fields play a distinguished role. Their algebra
is, up to normalization, the Clifford algebra Cl(1, 9):

{dµ0 , dν0} = ηµν . (190)
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The unique irreducible representation of this algebra is the spinor representation
of the Lorentz group SO(1, 9). Introducing standard Clifford generators γµ =√

2dµ0 , the generators of the spinor representation are σµν = 1
4 [γµ, γν ]. Since the

dµ0 are real, this representation is the 32-dimensional Majorana representation,
denoted [32].

The zero modes dµ0 commute with the number operator. Therefore the states
in the R-sector organize themselves into spinor representations of the Lorentz
group. This is how space-time spinors are described in the RNS model. To con-
struct the states, we denote the ground state of the R-sector by

|a〉 , a = 1, . . . , 32 = 2D/2 , (191)

where a transforms in the [32] representation. Then the first states are:

Occupation Mass State

N = 0 α′M2 = 0 |a〉
N = 1 α′M2 = 1 dµ−1|a〉

αµ−1|a〉

(192)

The constraints Ln|Φ〉 = 0 (n > 0) and the new constraints Fn|Φ〉 = 0 (n ≥ 0)
impose restrictions on the polarization. For example, F0|a〉 = 0 is easily seen to
be the Fourier transform of the massless Dirac equation and reduces the number
of independent components by a factor 1

2 . Excited states are obtained by acting
with creation operators αµ−m, dµ−m on the gound state. Since the product of a
tensor representation of the Lorentz group with a spinor representation always
gives spinor representations, we see that all states in the R-sector are space-time
spinors.

The GSO Projection for Open Strings. The RNS model solves the problem
of describing space-time fermions but still has a tachyon. Gliozzi, Scherk and
Olive observed that one can make a projection of the spectrum, which removes
the tachyon. Moreover, the resulting spectrum is supersymmetric in the space-
time sense. This so-called GSO projection is optional at the classical level, but
it becomes mandatory at the quantum level, as we will discuss below.

The GSO projector in the NS-sector is defined as follows:

P
(NS)
GSO = −(−1)

∑∞
r=1/2 b−r·br . (193)

Imposing P
(NS)
GSO

!= 1, one projects out all the states which contain an even
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number of bµ−r creation operators. This in particular removes the tachyon. The
GSO projector in the R-sector is

P
(R)
GSO = γ(−1)

∑∞
m=1 d−m·dm , (194)

where γ is the ten-dimensional chirality operator. On the ground state |a〉 of
the R-sector the projection P

(R)
GSO|Φ〉 != 1 removes one chirality of the spinor.

This is consistent, because in ten space-time dimensions the irreducible spinor
representations are Majorana-Weyl spinors. The [32] representation decomposes
according to

[32] = [16]+ + [16]− . (195)

With the GSO projection one only keeps one chirality (which we have taken to
be the [16]+, for definiteness):

|a〉 = |a+〉+ |a−〉 −→ |a+〉 , (196)

where a+ = 1, . . . , 16 is a Majorana-Weyl index.
At the massive level just projecting out one chirality would not be consistent,

as massive particles cannot be chiral. The projection with (194) keeps states
which either have ‘+’ chirality and an even number of dµ−m creation operators
or ‘−’ chirality and an odd number of dµ−m creation operators.

By writing down the first few states one can easily verify that after the
projection the NS-sector and R-sector have an equal number of states, and that
the massive states in the R-sector combine into full (non-chiral) massive Lorentz
representations.

Checking the equality of states at every mass level is done by computing the
one-loop partition function. Moreover, one can construct explicitly the represen-
tation of the ten-dimensional super Poincaré algebra on the physical states. This
is done using BRST techniques and lies beyond the scope of these lectures. Here
we restrict ourselves to noting that the ground state of the open string, after
GSO projection, is a ten-dimensional vector supermultiplet:

{bµ−1/2|k〉 , |a+〉} . (197)

Spectrum and GSO Projection for Closed Strings. Let us next study the
spectrum of closed RNS strings. The masses of states are determined by

α′M2 = 2(N − ax + Ñ − ãx) ,

N − ax = Ñ − ãx , (198)

with normal ordering constants aR = 0 = ãR and aNS = 1
2 = ãNS .
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We start by listing the first states in the NS-NS sector:

Occupation Mass States

N = Ñ = 0 α′M2 = −2 |k〉
N = Ñ = 1

2 α′M2 = 0 bµ−1/2b̃
ν
−1/2|k〉

N = Ñ = 1 α′M2 = 2 αµ−1α̃
ν
−1|k〉

αµ−1b̃
ν
−1/2b̃

ρ
−1/2|k〉

bµ−1/2b
ν
−1/2α̃

ρ
−1|k〉

bµ−1/2b
ν
−1/2b̃

ρ
−1/2b̃

σ
−1/2|k〉

(199)

All these states are bosons, and at the massless level we recognize the graviton,
the dilaton and the antisymmetric tensor.

In the R-R sector, the ground state transforms in the [32]×[32] representation
and is denoted |a, ã〉. The first states are

Occupation Mass State

N = Ñ = 0 α′M2 = 0 |a, ã〉
N = Ñ = 1 α′M2 = 2 αµ−1α̃

ν
−1|a, ã〉

dµ−1α̃
ν
−1|a, ã〉

αµ−1d̃
ν
−1|a, ã〉

dµ−1d̃
ν
−1|a, ã〉

(200)

The product of two spinor representations is a vector-like representation. There-
fore the states in the R-R sector are bosons. In more detail, the [32] × [32]
representation is the direct sum of all the antisymmetric tensor representations
of rank zero to ten. Using the ten-dimensional Γ -matrices we can decompose a
general massless state into irreducible representations:

|ΦRR〉 = (Fδaã + FµΓ
µ
aã + FµνΓ

µν
aã + · · · )|a, ã〉 . (201)

By evaluating the remaining constraints F0|ΦRR〉 = 0 = F̃0|ΦRR〉 one obtains
the conditions

kµ1Fµ1µ2...µn
= 0 and k[µ0Fµ1µ2...µn] = 0 , (202)

which are the Fourier transforms of the equation of motion and Bianchi identity
of an n-form field strength:

d � F(n) = 0 and dF(n) = 0 . (203)

The physical fields are antisymmetric tensor gauge fields or rank n−1. Note that
in contrast to the antisymmetric NS-NS field, the states in the R-R sector (and
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the corresponding vertex operators) describe the field strength and not the gauge
potential. When analyzing interactions one finds that there are no minimal gauge
couplings but only momentum couplings of these fields (i.e. couplings involving
the field strength). In other words the perturbative spectrum does not contain
states which are charged under these gauge fields. This is surprising, but a closer
analysis shows that the theory has solitonic solutions which carry R-R charge.
These so called R-R charged p-branes turn out to be an alternative description
of D-branes.

Now we turn to the NS-R sector. The first states are:

Occupation Mass State

N = 1
2 , Ñ = 0 α′M2 = 0 bµ−1/2|ã〉

N = 3
2 , Ñ = 1 α′M2 = 4 αµ−1b

ν
−1/2α̃

ρ
−1|ã〉

bµ−1/2b
ν
−1/2b

ρ
−1/2α̃

σ
−1|ã〉

αµ−1b
ν
−1/2d̃

ρ
−1|ã〉

bµ−1/2b
ν
−1/2b

ρ
−1/2d̃

µ
−1|ã〉

(204)

The massless state is a product of a vector [D] and a spinor [2D/2]. It decomposes
into a vector-spinor and a spinor:

[D]× [2D/2] = [(D − 1)2D/2] + 2D/2 . (205)

Therefore this state and all other states in the NS-R sector are space-time
fermions. The spectrum of the R-NS sector is obtained by exchanging left- and
right-moving fermions.

We observe that the massless states contains two vector-spinors. The only
known consistent interaction for such fields is supergravity. There these fields
are called gravitini. They sit in the same supermultiplet as the graviton, they
are the gauge fields of local supertransformations and couple to the conserved
supercurrent. The spectrum of the closed RNS model is obviously not super-
symmetric. This suggests that we have to make a projection in order to obtain
consistent interactions. This brings us to the GSO projection for closed strings,
which makes the spectrum supersymmetric and removes the tachyon. The GSO
projection is applied both in the left-moving and in the right-moving sector. In
the R-sectors one has to decide which chirality one keeps. There are two in-
equivalent projections of the total spectrum: one either takes opposite chiralities
of the R-groundstates (type A) or the same chiralities (type B). The resulting
theories are the type IIA and type IIB superstring. Let us look at their massless
states. The NS-NS sectors of both theories are identical. The states

bµ−1/2b̃
ν
−1/2|k〉 (206)
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are the graviton Gµν , the dilaton Φ, and the antisymmetric tensor Bµν . The
number of on-shell states is 8 · 8 = 64. The ground states of the R-R sectors are:

|a+, ã−〉 (type A) , (207)
|a+, ã+〉 (type B) . (208)

In both cases we have 8 · 8 = 64 on-shell states. Again we can decompose these
representations into irreducible antisymmetric tensors. For type IIA we get a
two-form and a four-form field strength, corresponding to a one-form and a
three-form potential:

IIA : Aµ , Aµνρ . (209)

There is also a zero-form field strength which has no local dynamics. It corre-
sponds to the so-called massive deformation of IIA supergravity, which is almost
but not quite a cosmological constant. (In the effective action the corresponding
term is a dimensionful constant multiplied by the dilaton. This is as close as one
can get to a cosmological constant in ten-dimensional supergravity.)

In the IIB theory one has a one-form, a three-form and a selfdual five-form
field strength. The corresponding potentials are:

IIB : A , Aµν , Aµνρσ . (210)

The massless states in the NS-R sector and R-NS sector are:

IIA : bµ−1/2|ã−〉 b̃µ−1/2|a+〉 , (211)

IIB : bµ−1/2|ã+〉 b̃µ−1/2|a+〉 , (212)

The total number of fermionic states is 128 in both cases. The decomposition
into irreducible representations gives two vector-spinors, the gravitini, and two
spinors, called dilatini. For type IIA they have opposite chiralities, whereas for
type IIB they have the same chiralities. The corresponding space-time fields are:

IIA : ψµ+ , ψµ− , ψ+ , ψ− ,

IIB : ψµ+(1) , ψµ+(2) , ψ+(1) , ψ+(2) . (213)

All together we get the field content of the type IIA/B supergravity multiplet
with 128 bosonic and 128 fermionic on-shell states. The IIA theory is non-chiral
whereas the IIB theory is chiral. The massive spectra are of course non-chiral,
and, moreover, they are identical.

4.2 Type I and Type II Superstrings

We will now begin to list all consistent supersymmetric string theories. A priori,
we have the following choices: strings can be (i) open or closed, (ii) oriented
or non-oriented, (iii) one can make the GSO projection, with two inequivalent
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choices (type A and B) for closed strings and (iv) one can choose gauge groups for
open strings: U(n) for oriented and SO(n) or Usp(2n) for non-oriented strings.

We have already seen that not all combinations of these choices are consistent
at the quantum level. Since theories of open strings have closed string poles in
loop diagrams, we can either have closed or closed and open strings. The next
restriction comes from modular invariance. On the higher genus world-sheets
of closed oriented strings, one has to specify boundary conditions around every
handle. Since modular invariance maps one set of boundary conditions to others,
these choices are not independent. It turns out that one has to include both NS-
and R-boundary conditions around every handle, but one has the freedom of
choosing relative signs between different orbits of action of the modular group
on the set of boundary conditions. There are four possible choices. Two of them
correspond to the IIA and IIB superstrings. The other two choices are non-
supersymmetric theories without fermions, known as type 0A and 0B, which we
will not discuss here.

Type IIA and IIB are theories of oriented closed strings. Can we construct
supersymmetric string theories with oriented closed and open strings? The states
of the oriented open string fall into representations of the minimal N = 1 super-
symmetry algebra in D = 10. This algebra has 16 supercharges, which transform
as a Majorana-Weyl spinor under the Lorentz group. In ten dimensions there are
two further supersymmetry algebras, called N = 2A and N = 2B. They have 32
supercharges which either combine into two Majorana-Weyl spinors of opposite
chirality (A) or into two Majorana-Weyl spinors of the same chirality (B). The
states of the oriented closed string form multiplets of the N = 2A or N = 2B
supersymmetry algebra. In particular one has two gravitini, which must couple
to two independent supercurrents. Therefore oriented open and closed strings
cannot be coupled in a supersymmetric way. One can also show that any such
theory has divergencies, due to the presence of dilaton tadpoles.

Next we have to consider non-oriented strings. A theory of non-oriented
closed strings can be obtained by projecting the type IIB theory onto states in-
variant under world-sheet parity. (IIA is not invariant under world-sheet parity,
because the R-groundstates have opposite chirality.) This theory has divergen-
cies, which are related to the non-vanishing of dilaton tadpole diagrams. One
can also see from the space-time point of view that this theory is inconsistent:
the massless states form the N = 1 supergravity multiplet, which is chiral. Pure
N = 1 supergravity has a gravitational anomaly, which can only be cancelled by
adding precisely 496 vector multiplets.

Therefore we have to look at theories with non-oriented closed and open
strings. Tadpole cancellation precisely occurs if the gauge group is chosen to
be SO(2D/2) = SO(32). This is one of the gauge groups for which gravitational
anomalies cancel. The other anomaly-free gauge groups are E8×E8, E8×U(1)248

and U(1)496, which, however, cannot be realized through Chan-Paton factors.
Thus there is one supersymmetric string theory with non-oriented closed and
open strings and gauge group SO(32). This is the type I superstring.
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Let us construct the massless spectrum of this theory. The closed string sector
is obtained by projecting the IIB theory onto states invariant under world-sheet
parity. Parity acts by exchanging left- and right-moving quantities:

αµm ↔ α̃µm , bµr ↔ b̃µr , dµm ↔ d̃µm , |a+〉 ↔ |ã+〉 . (214)

The action on the R-R ground state is:

|a+, ã+〉 ↔ −|ã+, a+〉 . (215)

The ‘−’ sign reflects that one exchanges two fermionic states. (To make this
precise one needs to construct the so-called spin fields Sa, Sã which generate the
R-groundstates from the NS-groundstate. This can be done in the framework of
BRST quantization, which we did not introduce here.)

We can now write down the massless states of the type IIB string which
are invariant under world-sheet parity and survive the projection. In the NS-NS
sector we find

NS-NS :
1
2

(
bµ−1/2b̃

ν
−1/2 + bν−1/2b̃

µ
−1/2

)
|k〉 . (216)

Therefore the Bµν field is projected out and we are left with the graviton Gµν

and dilaton Φ. In the R-R sector the invariant massless state is:

R-R :
1
2

(|a+, ã+〉 − |ã+, a+〉) . (217)

Thus only the antisymmetric part of the tensor product of the two Majorana-
Weyl spinors survives the projection. This corresponds to the three-form field
strength Fµνρ, as is most easily seen by computing the dimensions of the repre-
sentations. Thus the two-form R-R gauge field Aµν survives the projection.

In the NS-R and R-NS one finds the following invariant state:

R-NS/NS-R :
1
2

(
bµ−1/2|ã+〉+ b̃µ−1/2|a+〉

)
. (218)

Therefore one gravitino ψµ+ and one dilatino ψµ are kept.
In the NS-sector of the open string we get massless vectors Aiµ, which trans-

form in the adjoint representations of SO(32): i = 1, . . . ,dim(adjSO(32)) = 496.
The R-sector contains massless spinors ψi which combine with the vectors to
form vector supermultiplets.

Combining the massless states of the closed and open string sector we get
the field content of N = 1 supergravity coupled to Super-Yang-Mills theory with
gauge group SO(32).

4.3 Heterotic Strings

There is yet another construction of supersymmetric string theories. It is a hybrid
construction, which combines the bosonic string with the type II superstring and
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is called the heterotic string. The right-moving sector is taken from the type II
superstring, whereas the left-moving sector is taken from the bosonic string. To
get a modular invariant theory, the sixteen extra left-moving coordinates have
to be identified periodically,

XI # XI + wI(i) , I = 1, . . . , 16 . (219)

The vectors w(i) = (wI(i)), i = 1, . . . , 16 generate a sixteen-dimensional lattice
Γ16. Modular invariance requires that Γ16 is an even self-dual lattice. Modulo
rotations, there are only two such lattices, the root lattice of E8 × E8 and the
lattice generated by the roots and the weights of one of the Majorana-Weyl
spinor representations of SO(32). Thus, there are two different heterotic string
theories.

The bosonic massless states come from the NS-sector and take the form

αµ−1b̃
ν
−1/2|k〉 (220)

αI−1b̃
ν
−1/2|k〉 (221)

eik(i)
I xI

L b̃ν−1/2|k〉 . (222)

Here αI−1 are the oscillators corresponding to the sixteen extra left-moving di-
rections. The vectors k(i) = (k(i)

I ) are discrete momentum vectors in the extra
dimensions. The above states are massless if the vectors k(i) have norm-squared
two. The two lattices Γ16 have 480 such vectors, corresponding to the roots of
E8 × E8 and SO(32), respectively. Together with the states generated by the
internal oscillators one gets bosons in the adjoint representations of theses two
groups. The massless fermionic states are obtained by replacing b̃ν−1/2|k〉 by the
R-ground state |a+〉. In total one gets the N = 1 supergravity multiplet plus
vector multiples in the adjoint representation of E8 × E8 or SO(32).

The massless sectors of the five supersymmetric string theories correspond
to four different supergravity theories. The type I and the heterotic string with
gauge group SO(32) have the same massless spectrum, but their massive spectra
and interactions are different.

Let us summarize the essential properties of the five supersymmetric string
theories:

Type open/closed? oriented? chiral? supersymmetry gauge group

I both no yes N = 1 SO(32)

II A closed yes no N = 2A −
II B closed yes yes N = 2B −

Heterotic closed yes yes N = 1 E8 × E8

Heterotic closed yes yes N = 1 SO(32)

(223)
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4.4 Further Reading

Supersymmetric string theories are discussed in all of the standard textbooks
[1–5]. To prove the necessity of the GSO projection and the consistency of the
heterotic string as a perturbative quantum theory one needs properties of the
multiloop path integral [7]. A paedagogical treatment of the relation between
the GSO projection and boundary conditions in the path integral can be found
in [6].

5 p-Branes in Type II String Theories

In this section we discuss a class of solitons of the type II string theories, which
turn out to be alternative descriptions of the D-branes introduced earlier.

5.1 Effective Actions of Type II String Theories

The effective actions for the massless states of type IIA/B superstring theory are
the corresponding type IIA/B supergravity actions. Since we will be interested in
bosonic solutions of the field equations, we will only display the bosonic parts.
The effective action for the fields in the NS-NS sector is the same for both
theories. Moreover it is identical to the effective action of the bosonic string:

SNS−NS =
1

2κ2

∫
d10x

√−Ge−2Φ
(
R + 4∂µΦ∂µΦ− 1

12
HµνρH

µνρ

)
. (224)

The R-R sectors consist of antisymmetric tensor gauge fields. For an (n − 1)
form gauge potential A(n−1) with field strength F(n) = dA(n−1) the generalized
Maxwell action is

S # −1
2

∫
F(n) ∧ �F(n) = −1

2

∫
dDx

√−G|F(n)|2 , (225)

where

|F(n)|2 :=
1
n!

Fµ1···µn
Fµ1···µn . (226)

In the effective R-R actions one has in addition Chern-Simons terms.
In the IIA theory the R-R fields are A(1) and A(3). It is convenient to define

a modified field strength

F̃(4) = dA(3) −A(1) ∧H(3) , (227)

where H(3) = dB(2) is the field strength of the antisymmetric NS-NS tensor field.
Then the R-R action is the sum of a Maxwell and a Chern-Simons term:

SIIA
R−R = − 1

4κ2

∫
d10x

√−G
(
|F(2)|2 + |F̃(4)|2

)

− 1
4κ2

∫
B(2) ∧ F(4) ∧ F(4) . (228)
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The massless R-R fields of IIB string theory are A(0), A(2) and A(4). Again
it is useful to define modified field strengths

F̃(3) = F(3) −A(0) ∧H(3) ,

F̃(5) = F(5) − 1
2
A(2) ∧H(3) +

1
2
B(2) ∧ F(3) . (229)

Since F̃(5) must be selfdual, the kinetic term (225) vanishes and does not give a
field equation. The simplest way out is to impose the selfduality condition only
at the level of the equation of motion. Then one can use the action

SIIB
R−R = − 1

4κ2

∫
d10x

√−G

(
|F(1)|2 + |F̃(3)|2 +

1
2
|F̃(5)|2

)

− 1
4κ2

∫
A(4) ∧H(3) ∧ F(3) . (230)

The correct covariant equations of motion result when varying the action and
imposing selfduality of F̃(5) afterwards.

5.2 R-R Charged p-Brane Solutions

The type II effective actions have static solutions which are charged under the R-
R gauge fields. The solution charged under A(p+1) has p translational isometries.
From far it looks like a p-dimensional membrane and therefore one calls it a p-
brane solution or just a p-brane.

For 0 ≤ p ≤ 2 the solution has the following form:

ds2
Str = H−1/2(r)

(−dt2 + (dx1)2 + · · ·+ (dxp)2
)

+H1/2(r)
(
(dxp+1)2 + · · ·+ (dx9)2

)
,

F(p+2) = dH−1(r) ∧ dt ∧ dx1 ∧ · · · ∧ dxp ,

e−2Φ = H(p−3)/2(r) , (231)

where

r2 = (xp+1)2 + · · ·+ (x9)2 , (232)

and H(r) is a harmonic function of the transverse coordinates (xp+1, . . . , x9):

∆⊥H =
9∑

i=p+1

∂i∂iH = 0 . (233)

We require that the solution becomes asymptotically flat at transverse infinity
and normalize the metric such that it approaches the standard Minkowski metric.
This fixes

H(r) = 1 +
Qp

r7−p . (234)
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Qp measures the flux of the R-R field strength at transverse infinity. A convenient
way to parametrize it is:

Qp = Npcp , cp =
(2π)7−p

(7− p)ω8−p
(α′)

7−p
2 gS . (235)

Np is a constant, which a priori is real, but will turn out later to be an integer.
Therefore cp is the fundamental quantum of R-R p-brane charge. ωn is the
volume of the n-dimensional unit sphere,

ωn =
2π(n+1)/2

Γ
(
n+1

2

) . (236)

Besides geometrical factors, Qp contains the appropriate power of α′ to give it
the correct dimension. gS is the dimensionless string coupling. Note that in the
above solution for the dilaton we have subtracted the dilaton vacuum expectation
value from Φ.

The metric used in this solution is the string frame metric, as indicated by
the subscript. (The effective action was also given in the string frame.) Using
(133) we can find the corresponding Einstein frame metric:

ds2
Einst = −H

p−7
8 (r)

(−dt2 + (dx1)2 + · · ·+ (dxp)2
)

+H
p+1
8 (r)

(
(dxp+1)2 + · · ·+ (dx9)2

)
. (237)

The above solution is most easily understood as a generalization of the ex-
treme Reissner-Nordström solution of four-dimensional Einstein-Maxwell theory.
Let us review its properties.

The isometry directions t, x1, . . . , xp are called longitudinal or world-volume
directions, the others transverse directions. Since the solution has translational
invariance, it has infinite mass, as long as one does not compactify the world-
volume directions. However, the tension Tp (the energy per world volume) is
finite. Since the solution becomes asymptotically flat in the transverse directions,
the tension can be defined by a generalization of the ADM construction of general
relativity. Concretely, the tension of a p-brane can be extracted from the Einstein
frame metric by looking at the leading deviation from flatness:

g00 = −1 +
16πG(D)

N Tp
(D − 2)ωD−2−prD−3−p + · · · = −1 +

16πG(10)
N Tp

8ω8−pr7−p + · · · (238)

The Schwarzschild radius rS of the brane is:

rD−3−p
S =

16πG(D)
N Tp

(D − 2)ωD−2−p
. (239)

Since there is only one independent dimensionful constant, which we take to
be α′, we can express the ten-dimensional Newton constant G

(10)
N in terms of α′

and the dimensionless string coupling gS :

G
(10)
N = 8π6(α′)4g2

S . (240)
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Since Newton’s constant is related to the physical gravitational coupling by

8πG(D)
N = κ2

(D),phys (241)

in any dimension, this corresponds to replacing the conventional choices (136,
138) by κ2 != 64π7(α′)4 and κ2

phys = 64π7(α′)4g2
S .

Using (238) we can compute the tension of the p-brane solution (231):

Tp =
Np

gS(α′)
p+1
2 (2π)p

. (242)

For r → 0 the solution (231) has a null singularity, that is a curvature
singularity which is lightlike and coincides with an event horizon. The p-brane
(231) is the extremal limit of a more general black p-brane solution, which has a
time-like singularity along a p-dimensional surface and a regular event horizon. In
the extremal limit, the singularity and the even horizon coincide. This behaviour
is similar to the Reissner-Nordström black hole. The behaviour of the black p-
brane in the extremal limit is slightly more singular, because for the extremal
Reissner-Nordström black hole singularity and horizon do not coinicide. But
since the singularity of the p-brane solution is not naked, we can think about
it as describing an extended charged black hole. The charge (density) carried
under the gauge field A(p+1) can be read off from the asymptotic behaviour of
the field strength,

F01...p # Qp

r8−p . (243)

Instead of Qp we can use a redefined charge, which has the dimension of a
tension:

Q̂p =
1

2κ2

∮
S8−p

�F(p+2) , (244)

which gives

Q̂p = Np
µp
gS

, µp =
1

(2π)p(α′)
p+1
2

. (245)

We now observe that tension and charge are equal:

Tp = Q̂p . (246)

More generally, black p-brane solutions satisfy the Bogomol’nyi bound

Tp ≥ Q̂p . (247)

This inequality guarantees the existence of an event horizon, just as for charged
black holes.
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A feature that distinguishes our solutions from Reissner-Nordström type
black holes is that one also has a non-trivial scalar, the dilaton.

The extremal solution has a multicentered generalization. When replacing
H(r) by

H(x⊥) = 1 +
N∑
i=1

|Q(i)
p |

|x⊥ − x
(i)
⊥ |7−p

, (248)

one still has a static solution, provided that all the charges Q
(i)
p have the same

sign. Here x⊥ = (xp+1, . . . , x9) and x
(i)
⊥ is the position of (the horizon of) the

i-th p-brane. It is remarkable that the solution is static for arbitrary positions
x

(i)
⊥ , because this implies that the gravitational attraction and the ‘electrostatic’

repulsion cancel for arbitrary distances. (If one flips the sign of one charge, one
has to flip the corresponding tension, which makes the solution unphysical.)
Systems of extremal Reissner-Nordström black holes have the same properties.
The corresponding multi-centered solutions are known as Majumdar-Papapetrou
solutions.

The remarkable properties of these (and other related) solutions can be un-
derstood in terms of supersymmetry. The solution (231) is a supersymmetric
solution, i.e., it has Killing spinors. Killing spinors are the supersymmetric ana-
logues of Killing vectors v(x), which satisfy

Lv(x) Ψ(x)|Ψ0(x) = 0 , (249)

where L is the Lie derivative. Here Ψ(x) collectively denotes all the fields, and
Ψ0(x) is the particular field configuration, which is invariant under the transfor-
mation generated by the vector field v(x). In supergravity theories one can look
for field configurations Ψ0(x) which are invariant under supersymmetry trans-
formations. From the action one knows the supersymmetry variations of all the
fields, δε(x)Ψ(x), where the spinor (field) ε(x) is the transformation parameter.
Then one can plug in a given field configuration Ψ0(x) and check whether the
variation vanishes for a specific choice of ε(x):

δε(x) Ψ(x)|Ψ0(x) = 0 . (250)

Since the supersymmetry transformations involve derivatives of ε(x), this is a
system of first order differential equations for ε(x). Solutions of (250) are called
Killing spinors.

The type II superalgebras have 32 independent real transformation param-
eters, which organize themselves into two Majorana-Weyl spinors εi(x). The
equation (250) fixes the space-time dependence of the εi(x). For the p-brane one
finds

εi(x) = g
1/4
tt (x)ε(0)

i , (251)

where the constant Majorana-Weyl spinors ε
(0)
i , i = 1, 2 are related by

ε
(0)
2 = Γ 0 · · ·Γ pε(0)

1 . (252)
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Since half of the components of the ε
(0)
i is fixed in terms of the other half, we

see that we have 16 independent solutions, i.e., 16 Killing spinors. The maximal
number of Killing spinors equals the number of sypersymmetry transformation
parameters, which is 32 in type II theory. Solutions with the maximal number of
Killing spinors are invariant under all supersymmetry transformations. They are
the analogues of maximally symmetric spaces in Riemannian geometry, which
by definition have as many isometries as flat space. One example of a maximally
supersymmetric solution of type II theory is flat ten-dimensional Minkowski
space. Here the Killing spinor equation is solved by all constant spinors. The
p-brane solution (231) has 16 Killing spinors, and only is invariant under half of
the supersymmetry transformations. Solutions with residual supersymmetry are
called BPS solutions, and solutions which preserve half of the supersymmetry
are called ‘ 12 BPS solutions’.

The Bogomol’nyi bound (247) can be shown to follow from supersymmetry.
In this context it is then also called the BPS bound. In theories where the
supersymmetry algebra contains central charges, (247) is a relation between the
mass or tension of a state and its central charge. In our case the charges carried
under the R-R gauge fields are such central charges. The representations of the
supersymmetry algebra fall into distinct classes, depending on whether they
saturate the bound or not. Representations which saturate the bound are called
short representations or BPS representations. Since BPS states have the minimal
tension possible for their charge they are absolutely stable. This minimization
of energy also accounts for the existence of static multicentered solutions.

So far we have restricted ourselves to p-brane solutions with 0 ≤ p ≤ 2.
There is a second class, where the solution (231) and the other formulae take
the same form, but with p replaced by p̃ with 4 ≤ p̃ ≤ 6. The field strength Fp̃+2
in equation (231) is the �–dual of Fp+2 = dAp+1. Since Fp̃+2 = �Fp+2 implies
p+ p̃+ 4 = D = 10, each of the so-called electric solutions with p = 0, 1, 2 has a
dual magnetic solution with p̃ = 6, 5, 4.

There is also a solution with p = 3. The five-form gauge field is selfdual,
and the solution for F5 is from (231) by adding the �-dual of the right-hand
side of the equation. The solutions for the metric and for the dilaton are not
modified. Note that for p = 3 the dilaton is constant. The three-brane solution
is not singular at r = 0. Instead one has a regular horizon, and the geometry
is asymptotic to AdS5 × S5. This geometry has 32 Killing spinors and is fully
supersymmetric. The interior of this geometry is isometric to the exterior, in
particular it is non-singular. Since the field strength is selfdual, the three-brane
carries an equal amount of electric and magnetic charge (it is not only dyonic,
carrying both electric and magnetic charge, but selfdual).

Electric and magnetic charges are subject to a generalized Dirac quantization
condition, which can be found by generalizing either the Dirac string or the Wu-
Yang construction known from four-dimensional magnetic monopoles. In our
conventions the condition is:

(2π)7g2
S(α′)4 Q̂pQ̂p̃ ∈ 2πZ . (253)
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This fixes the possible magnetic charges in terms of the electric charges. Using
T-duality and S-duality one can fix the electric and magnetic charge units. T-
duality is a symmetry that can be proven to hold in string perturbation theory.
It acts on our solutions by transforming p-branes into (p±1)-branes. In this way
one can relate the tensions and charges of all R-R charged p-branes. S-duality
is a conjectured non-perturbative symmetry of IIB string theory. It relates the
R-R one-brane to a solution which describes the fundamental IIB string. This
way one relates the fundamental unit of R-R one-brane charge to the charge
carried by a fundamental IIB string under the NS-NS B-field. The resulting R-
R p-brane charge units are given by µp (245) and satisfy Dirac quantization
in a minimal way: µpµp̃(2π)7(α′)4 = 2π. Thus Np in (245) is an integer which
counts multiples of the fundamental R-R charge. When using Qp instead of Q̂p

to measure charges then cp as defined in (235) is the unit charge.
We now summarize the R-R charged p-brane solutions of type II string the-

ories:

Theory R-R potential electric sol. magnetic sol.

IIA A(1) p = 0 p = 6

IIB A(2) p = 1 p = 5

IIA A(3) p = 2 p = 4

IIB A(4) p = 3 (selfdual)

(254)

The R-R p-brane solutions have properties which qualify them as solitons:
They are static, stable (BPS bound), regular (no naked singularities) solutions
of the field equations and have finite tension. The three-brane has an addi-
tional property familiar from two-dimensional solitons: it interpolates between
two vacua, Minkowski space at infinity and AdS5 × S5 at the event horizon.
(We call AdS5 × S5 a vacuum, because it is maximally supersymmetric.) For
solitons one expects that the tension depends on the coupling as T ∼ 1/g2.
This is, for example, what one finds for monopoles in Yang-Mills-Higgs theories.
In this respect the R-R p-branes show an unusal behaviour as their tension is
proportional to the inverse coupling, Tp ∼ 1/gS , see (242). This behaviour is in
between the one expected for a soliton T ∼ 1/g2

S and the one of a fundamental
string, T ∼ 1, which is independent of the coupling.

One clue to this unexpected behaviour is that the fundamental coupling of
three closed strings is – up to a constant – the square of the coupling of three open
strings, see (141). Thus a R-R p-brane has the coupling dependence expected
for a soliton in a theory of open strings. The type II string theories, as defined
so far, are theories of oriented closed strings. Consider now an extension where
one adds to the theory open strings with Dirichlet boundary conditions along p
directions. If we manage to identify the corresponding D-p-branes with the R-R
p-brane solutions, this provides a description of type II string theory in these
solitonic backgrounds.
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5.3 p-Branes and D-Branes

Surprising as it may be, the identification of R-R p-branes and D-branes can
be supported by convincing arguments. Let us compare the known properties of
these objects. R-R p-branes preserve half of supersymmetry and can be located
at arbitrary positions in transverse space. The same is true for D-branes with p =
0, 2, 4, 6 in type IIA and p = 1, 3, 5 in type IIB string theory. The corresponding
Killing spinors are constant and are given by (252). The translational symmetries
trivially agree. These D-p-branes are BPS states and since the central charge
associated with a BPS state with Killing spinors (252) is precisely the R-R
charge, they must carry R-R charge. A crucial quantitative test is to compute
the R-R charge carried by a single D-p-brane. To do so one has to compute the
force due to exchange of R-R gauge fields between to D-p-branes.

One first computes an annulus diagram with Dirichlet boundary conditions
on both boundaries. This diagram can be factorized in two ways: either as a sum
over intermediate open strings, or as a sum over intermediate closed strings. In
the closed string channel the diagram can be visualized as a cylinder (closed
string propagator) ending on the two D-branes. In this picture it is obvious that
one measures the total force between the D-branes resulting from the exchange
of arbitrary closed string states. This amplitude vanishes, which tells us that the
total force vanishes, as expected for a BPS state. To extract the long range part of
the force one takes the two D-branes to be far apart and expands the amplitudes
in the masses of the closed string states. Then the exchange of massless states
dominates. In detail one finds an attractive force due to graviton and dilaton
exchange which is cancelled exactly by a repulsive force due to exchange of rank
(p + 1) tensor gauge fields. The static R-R forces correspond to a generalized
Coulomb potential,

VR−R =
Qp

rD−p−3 =
Qp

r7−p . (255)

It turns out that one D-p-brane carries precisely one unit of R-R p-brane charge,

Qp = cp =
(2π)7−p

(7− p)ω8−p
(α′)

7−p
2 gS . (256)

This shows that one should identify a R-R p-brane of charge Npcp with a system
of Np D-p-branes. People also have computed various other quantities, including
the low energy scattering, absorption and emission (encoded in the so-called
greybody factors) of various strings states on R-R p-branes and D-p-branes, and
the low velocity interactions between p-branes and D-branes. All these tests have
been successful.

Since p-branes are extended supergravity solutions with non-trivial space-
time metric, whereas D-branes are defects in flat space-time, we should of course
be more precise in what we mean by identification. We have seen that both kinds
of objects have the same charges, tensions and low energy dynamics. They have
the same space-time and supersymmetries and saturate the same BPS bound.
Thus they seem to represent the same BPS state of the theory, but in different
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regions of the parameter space. A description in terms of Np D-branes works
within string perturbation theory. In presence of D-branes the effective string
loop counting parameter is NpgS instead of gS . The reason is as follows: as we
have seen in Sect. 3 each boundary component gives rise to a factor gS in scat-
tering amplitudes. In a background with D-branes every boundary component
can end on each of the Np D-branes and therefore gS always occurs multiplied
with Np. Since we are interested in describing macroscopic objects with large
Np, we need to impose that NpgS is small in order to apply perturbation theory.

Thus we are in the perturbative regime if

NpgS � 1 . (257)

Using the Schwarzschild radius (239) we see that this equivalent to

rS �
√
α′ , (258)

which means that the gravitational scale is much smaller then the string scale.
This explains why one does not see any backreaction of the D-branes on the
space-time in string perturbation theory. D-branes have a finite tension and
couple to gravity, but the deviation from flat space caused by backreaction is
only seen at scales of the order rS . The only length scale occuring in string
perturbation theory is

√
α′ and this is the minimal scale one can resolve when

probing D-branes with strings.
The R-R p-branes are solutions of the type II effective actions. These are

valid at string tree level and therefore we need to be in the perturbative regime
(of the closed string sector), gS < 1. Moreover we have neglected α′-corrections,
which become relevant when the curvature, measured in string units, becomes
large. The condition for having small curvature is

rS %
√
α′ , (259)

or, equivalently,

NpgS % 1 , (260)

which is opposite to (257, 258). The p-brane solution is valid in the regime of
the low energy effective field theory, where stringy effects can be neglected.

Between the two regimes one can interpolate by changing the string coupling
gS , while keeping the charge Np fixed. In general it is not clear that one can
believe in the results of such interpolations. But in our case we know that the
p-brane/D-brane is the object of minimal tension for the given charge. As a
BPS state it sits in a special BPS multiplet. There is no mechanism compatible
with supersymmetry through which this state could decay or become a non-BPS
state. Besides these arguments, various quantities have been computed in both
regimes and agree with one another.

In string perturbation theory one also has D-branes with p > 6. Therefore
one might wonder whether the corresponding objects also exist as p-branes.
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The answer is yes, though these so-called large branes have somewhat different
properties than the other branes. For example the seven- and eight-brane are
not flat in the transverse dimensions. The reason is that there are no harmonic
functions in transverse space that become constant at infinity (this is similar to
black holes in D < 4). The seven-brane carries magnetic charge under the IIB R-
R scalar A. Its electric partner is a (−1)-brane, the D-instanton. The eight-brane
does not have a local source. It is a domain wall solution which separates regions
where the IIA mass parameter (which is similar to a cosmological constant) takes
different values. The nine-brane is flat space.

5.4 Further Reading

The type II effective actions and the corresponding p-brane solutions can be
found in the book [3]. For extensive reviews of BPS-branes in supergravity and
string theory, see [11,47,13,12].

6 Outlook

In this final section we give an outlook on more recent developments.

6.1 Eleven-Dimensional M-Theory

Besides the R-R charged p-branes, type II string theories contain various other
BPS solutions. Since all these carry central charges of the supersymmetry alge-
bra, they can be constructed systematically. The other string theories also have
their BPS solitons. Combining perturbative string theory with the knowledge
about the BPS states one can show that the strong coupling behaviour of any of
the five string theories can be described consistently by a dual theory. Moreover,
one can interrelate all five superstring theories by such string dualities. These
dualities have not been fully proven yet, but one has compared various accessible
quantities and all these tests have been successful. The dualities give a coherent
picture where all perturbative string theories are limits of one single underlying
theory.

This is by now a huge subject, which deserves a separate set of lectures.
Here we will only illustrate it by reviewing Witten’s analysis [18] of the strong
coupling behaviour of type IIA string theory. Consider the spectrum of finite
mass objects in IIA string theory. It starts with the massless IIA supergravity
multiplet, then comes an infinite series of excited string states with masses (198),

α′M2 ∼ N , (261)

where N = 1, 2, . . . . As further finite mass objects the theory contains states
with N0 D-0-branes, with masses (242),

α′M2 ∼ N0

gS
. (262)
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(One can show that there are no bound states at threshold, so the states
with N0 > 1 are N0-particle states.) In the perturbative regime, gS � 1, the
D-0-branes are very heavy. But when extrapolating to strong coupling, gS →∞,
they become much lighter than any perturbative excitation. Since the D-0-branes
are BPS-states, we know that the mass formula (262) is not modified at strong
coupling. For very large gS one gets a quasi-continuum of D-0-brane states above
the massless supergravity multiplet. The collective modes of a D-0-brane sit in
a so-called short multiplet of the IIA supersymmetry algebra. Short multiplets
are special massive multiplets which saturate the BPS bound. They have less
components than generic massive multiplets. The multiplet of the D-0-brane is
a massive version of the supergravity multiplet: it has the same number of states
and the same spin content. Thus the low energy, strong coupling spectrum looks
like the Kaluza-Klein spectrum obtained by dimensional reduction of an eleven-
dimensional theory. The only candidate is eleven-dimensional supergravity, the
unique supersymmetric theory in eleven dimensions. When comparing the low
energy, strong coupling spectrum of IIA string theory to the Kaluza-Klein spec-
trum of eleven-dimensional supergravity one finds that both agree, provided one
relates the string coupling to the radius R11 of the additional space dimension
according to,

g2
S =

(
R11

LPl

)3

(263)

and the string scale α′ to the eleven-dimensional Planck length LPl according
to:

α′ =
L3

Pl

R11
. (264)

The eleven-dimensional Planck length is defined through the eleven-dimensional
gravitational coupling by: κ2

(11) = L9
Pl. The relation between the eleven-dimen-

sional metric and the IIA string frame metric is:

ds2
11 = e2Φ/3 (

ds2
IIA,Str + (dx11 −Aµdx

µ)2
)

, (265)

where Φ is the IIA dilaton and the Kaluza-Klein gauge field Aµ becomes the
R-R one form.

This indicates that the strong coupling limit of IIA string theory is an eleven-
dimensional theory, called M-theory. We do not have enough information to give
a complete definition, but we know that M-theory has eleven-dimensional su-
pergravity as its low energy limit. There must be additional degrees of freedom,
because eleven-dimensional supergravity is not consistent as a quantum theory.
Even without a complete definition of M-theory, one can find more evidence for
the duality. Eleven-dimensional supergravity has BPS solitons, which properly
reduce under dimensional reduction to the solitons of IIA string theory. In par-
ticular it has a supersymmetric membrane solution, called the M-2-brane, which
reduces to the fundamental IIA string.
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6.2 String Dualities

Let us now consider the other string theories. What about type IIB? The theory
has maximal supersymmetry, and its massless spectrum cannot be obtained by
dimensional reduction from a higher-dimensional supersymmetric theory. The
only obvious possibility is that it is selfdual, which means that the strong and
weak coupling limits take the same form. One can show that inverting the cou-
pling, gS → g−1

S , preserves the form of the action and is a symmetry of the BPS
spectrum if one simultanously interchanges the fundamental IIB string with the
D-1-brane. The strong coupling limit is again a IIB string theory, with solitonic
strings (D-1-branes) now playing the role of the fundamental objects. The trans-
formation relating weak and strong coupling is called S-duality and works the
same way as the Montonen-Olive duality in four-dimensional N = 4 Super-Yang-
Mills theory. It has also been verified that S-duality is respected by instanton
corrections to string amplitudes.

In a similar way, the strong coupling limit of the type I string is the heterotic
string with gauge group SO(32), and vice versa. We already saw that both theo-
ries have the same massless spectra, while the perturbative massive spectra and
interactions were different. Both theories cannot be selfdual (for example, invert-
ing the string coupling does not preserve the form of the effective action). But
once solitonic BPS states are included, the BPS spectra are equal and reversing
the coupling relates the two effective actions. The heterotic SO(32) string is
identified with the D-1-brane of type I.

What is left is to determine the strong coupling behaviour of the E8 × E8
heterotic string. This turns out to be again eleven-dimensional M-theory but this
time compactified on an interval instead of a circle. The interval has two ten-
dimensional boundaries, on which ten-dimensional vector multiplets with gauge
group E8 are located. This is also known as Horava-Witten theory.

Let us summarize the strong-coupling limits of the five supersymmetric string
theories:

String theory Strong coupling dual

IIA M-theory on circle

IIB IIB

I Heterotic SO(32)

Heterotic SO(32) I

Heterotic E8 × E8 M-theory on intervall

(266)

These dualities fall into two classes: either one has a relation between strong and
weak coupling. This is called S-duality. Or the coupling is mapped to a geomet-
ric datum, the radius of an additional dimension. There is a third type of string
duality, which leads to further relations between string theories. It is called T-
duality and relates weak coupling to weak coupling, while acting non-trivially
on the geometry. Since weak coupling is preserved, one can check that T-duality
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is preserved in perturbation theory. By T-duality, the IIA string theory com-
pactified on a circle of radius R is equivalent to IIB string theory compactified
on a circle of inverse radius in string length units, R̃ = α′

R . One can take the
decompactification limit and obtain ten-dimensional IIB theory as the zero ra-
dius limit of compactified IIA theory and vice versa. In the same way one can
relate the two heterotic string theories. When acting on open strings, T-duality
exchanges Neumann boundary conditions with Dirichlet boundary conditions.
Therefore the T-dual of type I string theory is a theory containing open strings
which are coupled to D-branes. Though one might consider this as a solitonic
sector of type I theory, it is sometimes called type I’ theory. Let us summarize
the T-duals of the five supersymmetric string theories:

String theory T-dual theory

IIA IIB

IIB IIA

I I’

Heterotic SO(32) Heterotic E8 × E8

Heterotic E8 × E8 Heterotic SO(32)

(267)

Finally there is yet another relation between IIB string theory and type
I. Type IIB has supersymmetric D-9-branes. These D-branes are space-filling,
they correspond to adding open strings with Neumann boundary conditions in all
directions. From our earlier discussion we know that the only consistent coupling
between open and closed superstrings is a non-oriented theory with gauge group
SO(32), namely type I. This can be realized as a configuration in IIB string
theory, where one adds 32 D-9-branes together with additional non-dynamical
objects, so-called orientifold planes, which reverse world-sheet parity. Type I
string theory is an ‘orientifold’ of type IIB. More generally, after introducing D-
branes and orientifolds, the type I, IIA and IIB string theories can be considered
as one theory in different backgrounds, which can be transformed into another by
T-duality and orientifolding. The type I’ theory, which we introduced above as
the T-dual of type I, can also be obtained as an orientifold of type IIA. Therefore
type I’ and type I theory are also called type IA and type IB.

Thus we see a bigger picture emerging once we include the BPS solitons of the
five supersymmetric string theories. All theories are related to one another and to
eleven-dimensional M-theory, and all strong couplings limits can be consistently
described. Therefore one believes today that the different string theories are
perturbative limits of one single underlying theory. Due to the role of D-branes
and since there is an eleven-dimensional limit, which cannot be described by
perturbative string theory, one prefers to call it M-theory.
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6.3 Further Reading

String dualities and how they relate the five supersymmetric string theories to
one another are discussed in the book [3] and in various lectures notes. The paper
[48] gives a nice overview of the various dualities that we mentioned above. The
lectures [46] approach the subject from the side of effective supergravity theories
and string compactifications, whereas [47] is an introduction to supergravity
which also covers branes and string dualities. Other lecture notes on string theory
and string dualities are [49–51].

T-duality, which we only mentioned briefly in these lectures is reviewed at
length in [16]. The role of combined T- and S-dualities, then called U-dualities,
in string and M-theory compactifications is reviewed in [17]. D-branes and their
applications are discussed in [52,53]. For a recent review of open strings, see
[19]. The lectures [14] are devoted to the description of BPS black holes in string
theory. They also cover the ten-dimensional brane solutions of type II string
theories and how they are related by T- and S-duality. BPS solutions of eleven-
dimensional supergravity (M-branes) and their relation to the brane solutions of
type II string theory are explained in [12].

6.4 Lightning Review of Further TOPICS

Let us finally mention areas of active research together with some references,
which might be useful for the interested reader.

What Is M-Theory? So far M-theory was characterized by its relation to var-
ious perturbative string theories and through its eleven-dimensional low energy
limit, supergravity. The fundamental open question is how to define M-theory
without recourse to a particular background, perturbation theory or particular
limits. The recent developments show that besides strings also various branes
have to be taken into account as dynamical objects. The question which remains
open is which of these objects are truly fundamental. When considering all p-
branes as equally fundamental as strings, one immediately faces the problems
of how to quantize higher-dimensional objects. Among p-branes, strings (p = 1)
and particles (p = 0) are singled out, because their world-volume theories are
free as long as the background geometry is flat. This underlies the power of string
perturbation theory. The situation is completely different for higher-dimensional
branes (p > 1), where the world-volume theory is a complicated interacting the-
ory, even in a flat background. Therefore no analogon of string perturbation
theory for these objects has been developed so far. Alternatively, one particular
kind of brane might be the fundamental object, whereas all others are obtained
by dimensional reduction or as solitons. There are two candidates for which
concrete proposals have been made: the supermembrane and the D-0-brane.

The Supermembrane. Eleven-dimensional supergravity has a solitonic two-
brane solution, called the supermembrane or the M-2-brane. The three-dimension-
al action for the collective modes of this solution contains a Nambu-Goto term
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and Wess-Zumino term, which describe the coupling to gravity and to the three-
form gauge field of eleven-dimensional supergravity. One can then try to treat
this membrane as a fundamental object in an analogous way to the fundamental
string in string theory. Moreover, one can get back the IIA string by dimensional
reduction. Supermembrane theory is much more complicated than string theory,
because the world-volume theory does not become free in a flat background, as
discussed above. Also note that there is no local Weyl invariance for p-branes
with p �= 1. Therefore there is no conformal world volume action and no analogon
of the Polyakov formulation.

At the WE-Heraeus-Seminar, supermembrane theory was the subject of lec-
tures by Hermann Nicolai. A pedagogical introduction to the subject, which also
covers the relation to other approaches to M-theory is provided by his Trieste
lectures [55].

Matrix Theory. In the matrix-theory formulation of M-theory, also called
M(atrix) theory, the D-0-brane is the fundamental object. More precisely, there is
a conjecture due to Banks, Fischler, Shenker and Susskind [22], which claims that
eleven-dimensional M-theory in the infinite momentum frame is given exactly by
the limit N → ∞ of the supersymmetric U(N) quantum mechanics describing
a system of N D-0-branes.

M(atrix) theory can be viewed as an alternative formulation of supermem-
brane theory, since the finite–N–M(atrix) model Hamiltonian is an approxima-
tion of the supermembrane Hamiltonian. In M(atrix) theory multi-membrane
states are described by clusters of D-0-branes. Conversely, D-0-branes are con-
tained in supermembrane theory as Kaluza-Klein modes of the eleven-dimensional
supergravity multiplet, which consists of the zero-mass states of the supermem-
brane. Besides [55], lectures on M(atrix) theory are [56–58].

Black Holes. While the fundamental definition of M-theory remains to be
found, string theory and D-branes have been applied to a variety of problems
in gravity, field theory and particle physics. One of the most prominent applica-
tions is the description of black holes through D-branes, which elaborates on the
relation between D-branes and p-brane solutions discussed in Sect. 5. Starting
from p-branes in ten dimensions one can obtain four-dimensional black holes by
dimensional reduction. Performing the same reduction with the corresponding
D-brane configuration, one gets a description of the system where the micro-
scopic degrees of freedom are known. This can be used to compute the entropy
of the black hole: one counts the number N of microstates, i.e., excitations of
the system, which belong to the same macrostate, i.e., the same total energy,
charge and angular momementum:

S = logN . (268)

In practice the statistical entropy N is evaluated asymptotically for very large
black hole mass.
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The result can be compared to the Bekenstein-Hawking entropy of the black
hole, which is given in terms of the area A of the event horizon,

SBH =
A

4
. (269)

One finds that the two entropies agree, S = SBH, which confirms that the D-
brane picture correctly captures the microscopic degrees of freedom of the black
hole [23]. As mentioned above S is evaluated asymptotically, but we would like
to stress that the resulting S matches exactly with the Bekenstein-Hawking
entropy. This is in contrast to other approaches, where both entropies have the
same dependence on parameters, while the numerical prefactor of the statistical
cannot be determined precisely.

One can also compute and compare sub-leading contributions to both en-
tropies. Corrections to the statistical entropy have been computed for Calabi-
Yau compactifications of type II string theory and eleven-dimensional M-theory
[25,26], see also [27]. These match precisely with corrections to the macroscopic
black hole entropy, which are due to higher curvature terms in the effective
action [28,29]. These higher curvature terms modify the entropy in two ways.
The first is an explicit modification of the black hole solution and, hence, of the
area A. The second is a modification of the area law (269). As pointed out by
R. Wald [24], the validity of the first law of black hole mechanics in presence
of higher curvature terms requires a modified definition of black hole entropy.
(The first law of black hole mechanics formulates the conservation of energy. It
expresses adiabatic changes of the mass to changes in terms of parameters of
the black hole solution.) Both effects, the explicit change of the solution and the
modified definition of the entropy, change the entropy in a complicated way, but
the combined correction is relatively simple and precisely matches the statistical
entropy. This is reviewed in [15].

Besides entropy, the D-brane picture has been used to compute Hawking
radiation and greybody factors (see [61,44] for review and references). This is
possible for branes which are close to the BPS limit. In the D-brane picture
one can compute the emission, absorption and scattering of closed string states
by a D-brane. Again one finds agreement with a semiclassical treatment of the
corresponding black hole solutions. Note, however, that the method only applies
to D-branes and p-branes which are close to the BPS limit. The generalization
to generic black holes remains an open problem, though various proposals have
been made. One idea, which applies to black holes without R-R charge, is a
correspondence principle between black holes and fundamental strings [30,31].
The idea is that a black hole evaporates through Hawking radiation until its
size reaches the string scale where it converts into a highly excited fundamental
string. This is supported by the observation that the entropies of black holes and
fundamental strings of equal mass match precisely when the Schwarzschild radius
equals the string length. Another idea [32] is to use string dualities to map four-
(and five-)dimensional black holes to three-dimensional black holes (BTZ black
holes [33]). Three-dimensional gravity does not have local degrees of freedom,
because the action is a total derivative. If the space-time has boundaries one



Introduction to String Theory 243

gets boundary degrees of freedom which can be described by a two-dimensional
conformal field theory. Treating the horizon as a boundary, this can be used
to compute the statistical entropy of three-dimensional black holes [34]. The
dualities that one needs to connect these three-dimensional to four-dimensional
black holes are slightly more general then those mentioned so far. In particular
they change the asymptotic geometry of space-time, so that one can map a
higher-dimensional black hole to a lower-dimensional one (times an internal,
compact space). One can argue that these transformations do not change the
thermodynamic properties. Moreover one finds explicitly that the Bekenstein-
Hawking entropy of the four-dimensional Schwarzschild black hole is matched by
the state counting of the dual three-dimensional black hole. A related approach
is to use dualities to map Schwarzschild black holes to brane configurations
[35]. Finally, the microscopic entropy of Schwarzschild black holes has also been
computed using Matrix theory, see [58] for review and references.

The most general and most promising approach to generic black holes is the
AdS-CFT correspondence [38–40]. This correspondence and its generalizations
relate D-dimensional gravitational backgrounds to (D − 1)–dimensional field
theories. One of the roots of this idea is the so-called holographic principle [36,37],
which claims that the physics beyond the horizon of a black hole can be described
in terms of a field theory associated with its horizon. The D-brane picture of
black holes can be viewed as a realization of this idea, because here the interior
region of the black hole has disappeared, while interactions of the exterior region
with the black hole are described as interactions between closed strings in the
bulk with open strings on the brane. A more general version of the holographic
principle is that gravity can always be described in terms of a lower-dimensional
field theory. The AdS-CFT correspondence, which we briefly describe below, can
be viewed as an attempt to realize this idea.

More about black holes in string theory can be found in [14] and in other
reviews of the topic including [59–62,44,63,15,58] and Sect. 14.8 of [3].

The AdS-CFT Correspondence and Its Generalizations. The AdS-CFT
correspondence is another consequence of the relation between D-branes and p-
brane solutions. Its most simple version is obtained by considering a system of N
D-3-branes and taking the limit α′ → 0, while NgS and R/α′ are kept fixed. Here
gS is the string coupling and R the characteristic scale of separation between
the branes. In the D-brane picture gravity and massive string excitations decou-
ple and one is left with the effective theory of the massless open string modes,
which is a four-dimensional N = 4 supersymmetric U(N) gauge theory in the
large N limit. The corresponding limit in the p-brane regime is the near horizon
limit, where the geometry takes the form AdS5×S5. The low energy excitations
are described by supergravity on AdS5. This observation motivated Maldacena’s
conjecture [38]: five-dimensional supergravity on AdS5 is a dual description of
four-dimensional N = 4 supersymmetric U(N) gauge theory, the latter being
a conformal field theory. AdS5 has an asymptotic region which can be identi-
fied with (the conformal compactification of) four-dimensional Minkowski space.



244 Thomas Mohaupt

This is called the boundary, and the conformal field theory is located there. One
finds a correspondence between fields φ(x(5)) of the bulk supergravity theory
and operators O(x(4)) of the Yang-Mills theory on the boundary. (Here x(5) are
coordinates on the five-dimensional bulk and x(4) are coordinates on the four-
dimensional boundary.) A quantitative version of the conjecture, due to Gubser,
Klebanov, Polyakov [39] and Witten [40], states that the generating functional
for the correlators of operators O(x(4)) with sources φ0(x(4)) is given by the par-
tition function of the supergravity theory, evaluated in the background φ(x(5))
with boundary values φ(x5)|Boundary = φ0(x(4)), according to:

〈
e
∫
d4xφ0(x(4))O(x(4))

〉
= Z

(
φ(x(5))

)
. (270)

There are various generalizations of this basic form of the correspondence,
which relate other gravitational backgrounds to other gauge theories. One partic-
ular extension of the AdS-CFT correspondence relates five-dimensional domain
wall geometries to renormalization group flows in non-conformal gauge theories.
In this setup the coordinate transverse to the domain wall corresponds to the en-
ergy scale of the gauge theory [41,42]. More recently, maximally supersymmetric
gravitational wave backgrounds have moved to the center of interest [43].

Extensive reviews of the AdS-CFT correspondence can be found in [44]
and [45].

Brane Worlds. D-branes provide a new option for model building in particle
physics. One can localize some or all matter and gauge fields of the standard
model on a three-brane, while gravity propagates in the higher-dimensional bulk.
Such models have the interesting feature that the size of the extra dimensions can
be quite large, even in the sub-mm range. Moreover one can have a fundamental
(higher-dimensional) Planck scale of 1 TeV, which provides a new approach
to the gauge hierarchy problem. A low gravitational scale of 1 TeV leads to
spectacular predictions, like the mass production of black holes at the LHC.
Therefore brane worlds have been a main activity in the string and particle
physics community over the last years. One should stress here that though TeV-
scale gravity is possible within string theory, it is not predicted.

There is a huge variety of brane world models, which range from phenomeno-
logical models to models with explicit realization in string or M-theory, see for
example [64–69]. In one variant, the so-called Randall-Sundrum model (RS II
model [68], to be precise), the extra dimensions are curved in such a way that
gravity is confined on the brane in a similar way as matter fields. This opens
the possibility of extra dimensions which are arbitrarily large, though invisible
at low energies.

At the WE-Heraeus Seminar brane worlds were the subject of the lectures
given by I. Antoniadis and A. Barvinsky, while J. Gundlach reviewed tests of
Newton’s law at short distances. A nice review of mass scales and the possible
sizes of extra dimensions in string theory can be found in [20]. Experimental
signatures of large extra dimensions are discussed in [21]. One particular type
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of brane worlds, which occur in Calabi-Yau compactifications of Horava-Witten
theory, is reviewed in [70]. The lectures [72] give an introduction to brane worlds
and warped compactifications.

Compactifications and Phenomenology. D-branes and p-branes have con-
siderably extended the framework of string compactifications, which aim to ex-
plain how our four-dimensional world is embedded into the fundamental ten-
or eleven-dimensional theory. Whereas ten years ago string phenomenology was
synonymous with the study of the heterotic E8×E8 string, compactified on com-
plex three-dimensional Calabi-Yau manifolds, one now has various other options
to consider. Besides brane worlds one can study compactifications where part of
the standard model particles are not string modes but descend from p-branes
wrapped on internal p-cycles. Switching on background fluxes of antisymmet-
ric tensor fields, one obtains warped compactifications, where the characteristic
length scale of four-dimensional space-time becomes dependent on the position
in the internal space. A particular class of non-perturbative IIB backgrounds
can be described purely geometrically in terms of so-called F-Theory.

The central problem of string compactifications is still the problem of vacuum
degeneracy. As we have seen, the vacuum expectation value of the dilaton is not
fixed at string tree level. In supersymmetric theories this holds to all orders in
perturbation theory. Similarly, string compactifications in general have several
scalar fields, called moduli, which parametrize the shape and size of the internal
manifold and enter into the couplings of the effective field theory. The vacuum
expectation values of these fields are not fixed, as long as supersymmetry is
unbroken. This ruins the predictive power that the theory has in principle, and
leads to continuous families of degenerate vacua. Once supersymmetry is broken
the moduli get fixed, but there is a number of issues to be addressed: one needs
to understand the dynamical mechanism behind supersymmetry breaking, which
requires to understand the theory non-perturbatively. The potential generated
for the dilaton and for the moduli should have stable vacua and no runaway
behaviour. One needs sufficiently large masses or sufficiently small couplings for
the moduli to avoid contradiction with empirical data. Moreover, in string theory
supersymmetry is closely related to the absence of the tachyon, which one does
not want to reintroduce. One also wants that supersymmetry breaking occurs
at a specific scale, the most popular scenario being low energy supersymmetry
where the supersymmetric partners have masses of about 1 TeV. D-branes, p-
branes and other new developments have added a variety of new ways to address
these problems, but a definite solution remains to be found.

String compactifications on Calabi-Yau manifolds are reviewed in [71]. Lec-
tures on warped compactifications and brane worlds can be found in [72]. F-
theory is for example explained in [49]. For an introduction to string and M-
theory particle phenomenology, see for example [73,74].

Geometric and D-Brane Engineering, D-Branes, and Non-commutative
Field Theory. In addition to the AdS-CFT correspondence, string theory has
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led to other new approaches to gauge theories and other field theories. In geo-
metric engineering [77] one starts from branes wrapped on cycles in an internal
space, which typically is a Calabi-Yau manifold, whereas in D-brane engineering
[78] one studies D-brane configurations in a non-compact space-time. In both
cases one takes a low energy limit (similar to the one discussed above in the
context of the AdS-CFT correspondence) to decouple gravity.

Another direction stimulated by string theory and D-branes is gauge theory
on non-commutative space-times. As mentioned in the lectures, the effective
action for a D-brane is of Born-Infeld type. It has been argued that this can be
reformulated as a Yang-Mills theory on a non-commutative world volume, with
a deformation parameter which is determined by the bulk Bµν field of the closed
string sector [79].

Geometric engineering is reviewed in [75,76], while gauge theory on non-
commutative space-times is reviewed in [80]. For extensive lectures on D-branes,
see [52,53].

Cosmology. Whereas string compactifications usually aim at finding four-
dimensional Minkowski space with a realistic particle spectrum from string the-
ory, one should of course try to do better. Cosmological solutions of string theory
should shed light on the issue of the initial singularity, describe an inflationary
phase (or an alternative mechanism which takes care of the problems of the old
hot big bang model), further describe the post-inflationary phase and explain
the smallness of the cosmological constant. These problems have been mostly
neglected by string theorists for a long time, but nowadays they find increasing
interest, due to both new cosmological data and new theoretical developments.
In particular branes have been invoked for either providing the mechanism for
inflation or for providing an alternative to inflation.

Reviews of string cosmology can be found in [81–83].

The Challenge from de Sitter Space. Since there is empirical evidence in
favour of a small, positive cosmological constant, there has been a considerable
interest in string theory in de Sitter space over the last few years. De Sitter
space is a challenge for several reasons. First, most successful applications of
string theory to gravity depend on supersymmetry, but supersymmetry is com-
pletely broken in presence of a positive cosmological constant. Second, de Sitter
space has cosmological horizons, and the perturbative formalism which works for
Minkowski space as explained in Sect. 3 cannot be applied. Therefore de Sitter
space requires a significant step beyond that framework. For a review see [54].

Tachyon Condensation and String Field Theory. As observed several
times in these lectures, the appearance of tachyons is a generic feature of string
theories when there is no supersymmetry. Since the mass squared of a scalar
particle is given by the curvature of its potential at the stationary point one is
expanding around, this shows that one tries to expand the theory around a local
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maximum of the potential. Depending on the global form of the potential, the
theory might be unstable, or it might be that the scalar field rolls to a minimum.
This is referred to as tachyon condensation.

Tachyons do not only occur in the ground state of bosonic string theories, but
also in D-branes configurations which are not BPS states (non-BPS D-branes
systems are reviewed in [84]). Work starting with a paper by A. Sen [85] provided
strong evidence that tachyon condensation occurs in unstable non-BPS config-
urations of D-branes. Such systems have tachyonic open string states which
condense. The resulting stable vacuum is the closed string vacuum, whereas the
D-branes have decayed and therefore open strings are absent. This work makes
use of string field theory, which for a long time was mostly neglected, because it
is very complicated and was believed of little practical use. The renewed interest
in string field theory might bring us one step forward towards a non-perturbative
and background-independent formulation of M-theory.
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2. D. Lüst and S. Theisen: Lectures on String Theory (Springer, Berlin Heidelberg
1989)

3. J. Polchinski: String Theory (Cambridge University Press, Cambridge 1998)
4. M. Kaku: Introduction to Superstrings and M-Theory (Springer, Berlin Heidelberg

2000)
5. M. Kaku: Conformal Fields and M-Theory (Springer, Berlin Heidelberg 2000)
6. P. Ginsparg: ‘Applied Conformal Field Theory’. In: Fields, Strings and Critical

Phenomena, Les Houches Summer School in Theoretical Physics, Session 49, Les
Houches, France, June 28–August 5, 1988, ed. by E. Brezin and J. Zinn-Justin
(North-Holland, Amsterdam 1990)

7. E. D’Hoker and D.H. Phong: Rev. Mod. Phys. 60, 917 (1988)
8. S. Weinberg: ‘Covariant Path-Integral Approach to String Theory’. In: Strings

and Superstrings, 3rd Jerusalem Winter School for Theoretical Physics, Jerusalem,
Israel, December 30, 1985–January 9, 1986, ed. by S. Weinberg and T. Piran
(World Scientific, Singapore 1988)

9. S. Albeverio, J. Jost, S. Paycha and S. Scarlatti: A Mathematical Introduction to
String Theory (Cambridge University Press, Cambridge 1997)



248 Thomas Mohaupt

10. M. Schlichenmaier: An Introduction to Riemann Surfaces,Algebraic Curves and
Moduli Spaces (Springer, Berlin Heidelberg 1989)

11. K.S. Stelle: ‘BPS Branes in Supergravity’. In: High Energy Physics and Cosmology
1997, ICTP Trieste Workshop, Trieste, Italy, June 2–July 11, 1997. ed. by E.
Gava, A. Masiero, K.S. Narain, S. Randjbar-Daemi, G. Senjanovic, A. Smirnov,
Q. Shafi. (World Scientific, Singapore 1998). Preprint: hep-th/9803116

12. P.K. Townsend: ‘M-Theory from its Superalgebra’. In: Strings, Branes and Dual-
ities, NATO Advanced Study Institute, Cargese, France, May 26–June 14, 1997,
ed. by L. Beaulieu, P. DiFrancesco, M. Douglas, V. Kazakov, M. Picco, P. Windey.
(Kluwer, Dordrecht 1999). Preprint: hep-th/9712004

13. M.J. Duff: ‘Supermembranes’. Preprint: hep-th/9611203
14. T. Mohaupt: Class. Quant. Grav. 17, 3429 (2000)
15. T. Mohaupt: Fortschr. Phys. 49, 1 (2001)
16. A. Giveon, M. Porrati and E. Rabinovici: Phys. Rept. 244 44 (1994). Preprint:

hep-th/9401139
17. N.A. Obers and B. Pioline: Phys. Rept. 318, 113 (1999). Preprint: hep-th/9809039
18. E. Witten: Nucl. Phys. B 433 85 (1995). Preprint: hep-th/9503124
19. C. Angelantonj and A Sagnotti: ‘Open Strings’, Preprint: hep-th/0204089
20. I. Antoniadis: ‘Mass Scales in String and M-Theory’. In: Superstrings and Re-

lated Matters, ICTP Trieste Workshop, Trieste, Italy, March 22–30, 1999, ed. by
B. Green, J. Louis, K.S. Narain, S. Randjbar-Daemi (World Scientific, Singapore
2000)

21. I. Antoniadis and K. Benakli: Int. J. Mod. Phys. A 15, 4237 (2000). Preprint:
hep-ph/0007226

22. T. Banks, W. Fischler, S.H. Shenker and L. Susskind: Phys. Rev. D 55, 5112 (1997)
hep-th/9610043

23. A. Strominger and C. Vafa: Phys. Lett. B 379, 99 (1996)
24. R.M. Wald: Phys. Rev. D 48, 3427 (1993)
25. J. Maldacena, A. Strominger and E. Witten: JHEP 9712, 002 (1997)
26. C. Vafa: Adv. Theor. Math. Phys. 2, 207 (1998)
27. G.L. Cardoso, B. de Wit and T. Mohaupt: Nucl. Phys. B 567, 87 (2000)
28. G.L. Cardoso, B. de Wit and T. Mohaupt: Phys. Lett. B 451, 309 (1999)
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Abstract. These notes consist of three parts. The first one contains the review of pre-
vious work on a gauge-invariant Hamiltonian dynamics of generally covariant models.
The method is based on the exclusive use of gauge-invariant variables, the so-called
Dirac observables, and on privileged dynamical symmetries such as the asymptotic time
translation. The second part applies the method to the model of spherically symmet-
ric thin shell of light-like substance in its own gravitational field following a paper by
C. Kiefer and myself. A natural set of Dirac observables is chosen and the Hamiltonian
defined by the time translation symmetry is calculated. In the third part, my con-
struction of a version of quantum mechanics for the model is reviewed. The quantum
evolution is unitary in spite of the classical theory containing black and white holes
and singularities. The wave packet describing the quantum shell contracts, bounces and
reexpands. The state of the quantum horizon is a linear combination of the “white”
and “black” (past and future) apparent horizons.

1 Introduction

The issue of gravitational collapse includes not only the theory of black holes
and of their classical and quantum properties, but also the serious problem of
singularities. We believe that the singularities can be cured by quantum theory,
but not by any semiclassical approximation thereof. The classical solutions near
the singularity have to be changed strongly. New ideas concerning singularities
are likely to influence the theory of black holes, too.

The rejection of WKB approximations forces us to use another kind of ap-
proximative schema. Simplified models constitute a promising alternative. Our
method of dealing with the problem will, therefore, employ simplified models
and a kind of effective theory of gravity. It does not worry about the final form
of a full-fledged theory of quantum gravity. This need not be a completely un-
reasonable approach. Even if the ultimate quantum gravity theory were known,
most calculations would still be performed by an approximation schema within
some effective theory and for simplified models, such as the method of effective
quantum theory in QCD. Another example of the method of simplified models
used successfully today is the theory of atomic spectra which belongs, strictly
speaking, to the field of quantum electrodynamics. Still, an infinite number of
degrees of freedom can be safely frozen and the Schrödinger equation applied.
Such methods can give useful hints for the gravitational collapse also because of
the fact that the mainstay of the black hole geometry is formed by the purely
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dependent degrees of freedom of the gravitational field (uniqueness theorems!),
and these degrees of freedom have no proper quantum character of their own.

The model we work with is a spherically symmetric thin shell. Historically,
the first physicist to use shells in quantum theory seems to be Dirac [1]. We
shall try to do justice to the model and to take it absolutely seriously. There
is no point in rushing towards prejudiced conceptions disregarding all kinds of
problems that may emerge on the way.

These lecture notes are to explain in a coherent way a number of ideas scat-
tered in various papers, but they also contain some new results. Section 2 gives a
general account of some gauge-invariant methods in the canonical theory of gen-
erally covariant systems, whose spiritual fathers are Dirac, Bergmann, Kuchař,
and Rovelli. New seems to be the observation that many conceptual and prac-
tical problems admit a solution if one restricts oneself to asymptotically flat
models. This is a natural framework for the gravitational collapse. The asymp-
totic structure defines a decomposition of the full diffeomorphism group into
the gauge group, the group of asymptotic symmetries and the rest that can
be ignored. A physically meaningful choice of a complete set of gauge-invariant
quantities – the so-called Dirac observables – is also provided by the structure.
The asymptotic symmetries determine a gauge-invariant dynamics. In this way,
some aspects of the notorious problem of time are dealt with.

Section 3 starts with an application of the methods to the model of a sin-
gle, spherically symmetric, thin shell of light-like matter surrounded by its own
gravitational field. The study of the space of the corresponding solutions to Ein-
stein equations leads to the identification of a complete set of Dirac observables.
Thus, the basic observables are found independently of the asymptotic structure
in this (lucky) case, but they can still be considered as asymptotic properties of
the system. The canonical theory of the shell due to Louko, Whiting, and Fried-
man is utilized to calculate the Poisson brackets of the observables and to find
the generators of the asymptotic symmetries. The main new point is a careful
description of asymptotic frames.

Finally, a quantum theory of the model is constructed in Sect. 4. The method
of choice is the group-theoretical quantization because the phase space has a
complicated boundary and the group quantization has been invented to deal
with such a situation. The results are rather surprising: some quantum shells
contract, cross their Schwarzschild radius inwards, bounce at the centre without
creating a singularity, cross their Schwarzschild radius outwards, and re-expand
to the infinity from which they originally came. This is no joke! It is possible
because the quantum Schwarzschild radius is a mixture of black and white hole
states. It is amusing that an old calculation [2] based on a very different technique
has come to somewhat similar results. A couple of ideas are listed of how these
results could be reconciled with the “observational evidence for black holes”
in astrophysics. An interesting problem for future research arises: what is the
nature of quantum geometry?
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2 Gauge-Invariant Method in the Canonical Theory of
Generally Covariant Systems

The present section attempts to give a general account of some new methods
that have been developed in a couple of recent years. It is also a description
of a project. It contains many claims without proofs. Those of these claims
that make sense for finite dimensional systems have been proved and discussed
extensively in [3] and [4] for general finite dimensional systems. The rest of the
claims without proofs have hitherto been proved only for a few special cases, one
of which will be described in the next section.

2.1 Space of Solutions, Gauge Group, and Asymptotic Symmetries

Mathematically, any generally covariant system is constituted by a set Ψ of
geometrical objects (fields, and submanifolds such as particles or shells) on a
background manifold M. The set Ψ always includes a Lorentzian metric g on
M; it is sufficient to consider Ψ as consisting just of g in order to understand
all manipulations with Ψ in this lecture. Details about complicated systems
are explained in [5] and [6]. The background M has just a topological and
differential structure (bare manifold without boundary) and has the meaning of
a spacetime manifold. It can be of any dimension, but we assume here that it is
four-dimensional. Several different backgrounds can be needed for one generally
covariant system. For example, all three-dimensional manifolds that admit a
Riemannian metric can play the role of Cauchy surfaces in general relativity;
different topologies of Cauchy surface define different background manifolds.

The object Ψ has to satisfy a dynamical equation on M (such as Einstein
equations for g). We allow for a domain DΨ of Ψ in M where the solution is well
defined to be a proper subset ofM. General covariance is the following property.
Let DiffM be the diffeomorphism group of M and let (M, Ψ) be a spacetime
that solves the dynamical equation. Then (M, ϕ∗Ψ) is another solution for any
ϕ ∈ DiffM. The symbol ϕ∗ denotes the push forward of all geometrical objects
collected within Ψ by ϕ. For example, letM admit a global coordinate chart and
let {Xµ} denote some global coordinates on M; the action of a diffeomorphism
ϕ on a metric field gµν(X) has the following result:

(ϕ∗g)µν(X) = gρσ
(
Y (X)

) ∂Y ρ

∂Xµ

∂Y σ

∂Xν
, (1)

where the functions Y ρ(X) are defined by ϕ and define the action of ϕ in terms
of the coordinates {Xµ}:

Y ρ(X) = Xρ
(
ϕ−1(X)

)
. (2)

The map ϕ∗ is an “active” transformation so that e.g. ϕ∗g is a different field
on M than g is, in general. If Ψ and ϕ are such that ϕ∗Ψ = Ψ , then we say that
Ψ admits a spacetime symmetry ϕ. The reason why we prefer to work with active
transformations rather than coordinate transformations is a technical one: active
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transformations can be globally defined even if there are no global coordinate
charts. In consequence of that, they form groups so that the whole powerful
apparatus of group theory can be applied.

We shall restrict ourselves to the special case of systems with asymptotically
flat solutions. There are coordinate free methods (due to Penrose) to decide
whether or not a spacetime is asymptotically flat (see, e.g., [7] or [8]). Then
there is a universal asymptotic boundary ∂asM carrying an asymptotic structure
that can be considered as common to all such solutions. For example, asymp-
totically flat solutions to Einstein equations all have the same scri, which has
a geometrical structure that is richer than just the topological and differential
one. This structure posses a symmetry group that we call Gas

1. We shall not
go into detail here, but we shall give a more complete account for an example
later. The asymptotic structure enables to select standard asymptotical frames
of reference at ∂asM that are also common to all solutions and are inhabitated
by asymptotic observers.

One can try to give a more precise account of these ideas as follows. Let Γ̄
be the space of all asymptotically flat solutions on M. We assume that there is
a subspace Γ̃ ⊂ Γ̄ and a subgroup G of DiffM with the following properties.

1. For each Ψ ∈ Γ̃ , the spacetime (M, Ψ) can be conformally extended to
(M̄Ψ , Ψ) by attaching a scri IΨ to M and a neighbourhood ĨΨ of IΨ in
M̄Ψ . Then there is a diffeomorphism ΦΨ : ĨΨ �→ M̄0, such that ΦΨ maps IΨ
onto I, where M̄0 is the conformal compactification of Minkowski spacetime
and I is the scri of M̄0.

2. Let ϕ ∈ G, Ψ ∈ Γ̃ , Ψ ′ = ϕ∗Ψ and U = ΦΨ ĨΨ ∩ ΦΨ ′ ĨΨ ′ . Then ϕ can be
differentiably extended to IΨ and ϕΨ : U �→ U defined by ϕΨ = ΦΨ ′ ◦ ϕ ◦
Φ−1
Ψ induces a map ϕΨ |I on I of Minkowski spacetime that preserves the

asymptotic structure and is an element of the asymptotic symmetry group
Gas, ϕΨ |I ∈ Gas.

3. For given ϕ ∈ G, ϕΨ |I is independent of Ψ . In this way, there is a well-defined
map πas : G �→ Gas, and we assume that πas is onto. It follows that this map
is a homeomorphism if it exists. Let us define the gauge group G0 of the
system to be the kernel of πas. It follows that G0 is a normal subgroup of G.

4. For each ϕ ∈ G0 and Ψ ∈ Γ̃ , the extension of ϕ to IΨ is an odd-parity
supertranslation2 on IΨ .

If this procedure works, then it is surely non unique. For example, I can be
chosen to lie in a “different corner” of M. We suppose that the non-uniqueness
can either be limited by some suitable additional requirements or that it will not
manifest itself in physical results.

1 For example, a symmetry of the geometrical structure of flat spacetime is an isometry
of the spacetime; the symmetry group of it is the Poincaré group.

2 Justification for this assumption must be taken from the canonical theory of the next
subsection; this shows how tentative and preliminary status the present subsection
has.
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The quotient Γ := Γ̃ /G0 is the physical phase space. (To be a full-fledged
phase space, it has to be equipped with a symplectic structure.) Let us denote
the projection of the quotient by πsol : Γ̃ �→ Γ̃ /G0.

Let ϕ1 ∈ G \ G0. Consider the action of ϕ1 on a point Ψ1 of an orbit γ of
G0 in Γ̃ . Clearly, ϕ1∗Ψ lies in another orbit γ′ and γ′ �= γ. Let Ψ2 ∈ γ and
Ψ2 �= Ψ1. Does ϕ1∗Ψ2 lie in the same orbit as ϕ1∗Ψ1? It does because G0 is a
normal subgroup of G. Hence ϕ1 sends orbits into orbits. Further, let ϕ2 be from
the same class of G/G0 as ϕ1 is. Then ϕ2 also sends γ into γ′. Since Gas can be
identified with the factor group G/G0, this shows that the asymptotic symmetry
group acts on the physical phase space.

Consider a surface σ in Γ̃ that cuts each orbit exactly once. Such a surface
is called a section of the quotient Γ̃ /G0. Each section of Γ̃ /G0 breaks the gauge
group and can, therefore, be called covariant gauge fixing. A section σ can also
be described as follows. Let Xµ be coordinates on M and oA coordinates on Γ .
Then, for the special case that Ψ = g, σ determines the set of functions

gµν(o,X), (3)

that is, metric components with respect to the coordinates Xµ at the point g of
intersection between σ and the orbit given by the coordinates oi. The coordinates
Xµ can be arbitrary and the same section can so be represented by different sets
of functions (3). This is why the gauge fixing is called “covariant.” Observe also
that no global coordinate chart is necessary to describe σ.

Transformations between two different gauge fixings is constituted by a set
of diffeomorphisms ϕ(o), one for each orbit γ determined by coordinates oi. Such
gauge transformations are common in every gauge theory. For example, in elec-
trodynamics, one often uses the so-called Coulomb gauge. This is defined by a
differential equation for the components of the potential. One also uses the so-
called axial gauge that is defined by an algebraic equation for the potential. The
transformation between these two gauges must, therefore, depend on the poten-
tial in a rather complicated and non-local way. Quantum field theory constructed
in a given gauge cannot be made invariant with respect to all field dependent
gauge transformations. One hopes to overcome this difficulty by working with
gauge-invariant quantities.

Similarly, for generally covariant systems, the two quantum theories con-
structed in two different gauges that are related by a field dependent transfor-
mation are not unitarily equivalent, unless they are limited to relations between
Dirac observables [43].

Let o ∈ Γ and Ψ(o) = σ ∩ π−1
sol o. It is a simple exercise to show that there

is an element ϕo in each class of G/G0 such that ϕo∗Ψ(o) ∈ σ; if Ψ(o) does not
admit any spacetime symmetry, then ϕo is even unique! Thus, given a gauge
fixing, we find a (o-dependent) extension of each asymptotic symmetry to the
whole of M. Even if gauge (and, in general, o-) dependent, this extension is a
practical tool that will be used later.
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2.2 Phase Space

We assume now thatM has the structure Σ×R and that the dynamical equation
admits a well-posed Cauchy problem on the manifold Σ. Let us denote a Cauchy
datum for the solution Ψ by (ΨΣ , ΠΣ), where ΨΣ and ΠΣ are some geometric
objects on Σ. We assume that a Riemannian metric 3gkl with the meaning of the
first fundamental form of Σ belongs to ΨΣ and a symmetric tensor field Kkl with
the meaning of the second fundamental form of Σ belongs to ΠΣ . We assume
further that (Σ, 3g) is asymptotically Euclidean. This involves the existence
of a special coordinate patch in Σ such that the corresponding components of
all objects within ΨΣ and ΠΣ satisfy suitable fall-off asymptotic conditions, so-
called Cauchy data asymptotic conditions (CDAC). Different examples of CDAC
are given in [9] and in [8], Sect. 5.4.

For generally covariant systems, the objects ΨΣ and ΠΣ must satisfy some
particular conditions (mostly differential equations) in order to constitute an
initial datum for a solutions. These equations are called constrains.

The phase space P of the system is a manifold, the points of which are all
unconstrained Cauchy data. It carries a symplectic structure Ω̄, which defines
Poisson brackets. We assume that such a space can be constructed. For example,
3gkl and

πkl :=
√

Det(3g)(3gkl 3grs − 3gkr 3gls)Krs (4)

are canonically conjugated variables for the case that Ψ = g [10].
We assume further that all constrained data form a submanifold C of P,

called constraint surface: each point of C is a Cauchy datum for a solution and
each Cauchy datum for a solution lies in C.

There is an important relation “∼” between points of C that can be defined
as follows. The points p1 and p2 are said to satisfy p1 ∼ p2 if the solutions Ψ1
and Ψ2 determined by them satisfy

Ψ2 = ϕ∗Ψ1 (5)

for some ϕ ∈ G0. We assume that “∼” is an equivalence relation. (For general
relativity, this has been shown in [11]). The equivalence class of points at C are
called c-orbits and denoted by λ. Each c-orbit determines a class of G0-equivalent
solutions and vice versa. Hence, the quotient C/λ is the physical phase space
defined in Sect. 2.1:

Γ = C/λ. (6)

The quotient projection of the constraint surface C to the physical phase space
Γ will be denoted by πphs.

Let the constraint functionals

H[ΨΣ , ΠΣ ;x), Hk[ΨΣ , ΠΣ ;x), (7)

where k = 1, 2, 3 and x ∈ Σ, define the constraint surface C by H = 0 and Hk =
0. It seems that they can be chosen for all generally covariant systems so that
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they obey the so-called Dirac algebra [12], see also [13]: Let xk be coordinates,
N (x) a scalar and N k(x) a vector fields on Σ; the fields N (x) and N k(x) are
called lapse and shift, respectively. Let N := (N ,N 1,N 2,N 3) and

H[N ] :=
∫
Σ

d3x
(N (x)H(x) +N k(x)Hk(x)

)
. (8)

Then

{H[N 1],H[N 2]} = H[N ] , (9)

where

N = N k
1 ∂kN2 −N k

2 ∂kN1 , (10)
N k = N l

1∂lN k
2 −N l

2∂lN k
1 + 3gkl(N1∂lN2 −N2∂lN1) . (11)

This implies that the Poisson brackets of the constraints vanish at the constraint
surface; such a constraint surface is called first class [14], [15]. However, (9) holds
only if the lapse and shift fields satisfy some fall-off conditions (see [9]), called
gauge group asymptotic conditions (GGAC). An unexpected result of [9] is that
N need not approach zero asymptotically in order to satisfy (GGAC) but can
contain arbitrary odd-parity supertranslations.

The lapse and shift fields can even approach linear functions of coordinates
asymptotically. This corresponds to infinitesimal Poincaré transformations at
infinity (cf. [16] and [9]). The condition that N → N∞, where N∞ represents
the asymptotic behaviour of N corresponding to an element of the Lie algebra
of Poincaré group is called Poincaré group asymptotic condition (PGAC); the
form of N∞ as a function on Poincaré algebra is given in [16] and [9]. The corre-
sponding functionals H[N ] are not differentiable (their variations lead to surface
integrals at infinity) or are not even convergent. This can be improved by adding
surface terms at infinity to them that we denote by H∞[N∞]: the functional
form of H∞[N∞] is given in [16] and [9]. An analysis of similar surface terms
for the null-infinity is given in [8]. The expressions H[N ] +H∞[N∞] have finite
values on constraint surface and generate asymptotic Poincaré transformation3.

Observe that the CDAC form a part of the definition of the phase space,
while GGAC and PGAC help define some transformations on this phase space.
In particular, the CDAC must be preserved in all transformations satisfying the
GGAC or PGAC, see [9]. In this way, the set of all lapse and shift fields is
divided into those that are associated with infinitesimal gauge transformations,
infinitesimal dynamical symmetries and the rest that is not interesting. Again,
the gauge N ’s form a large subset of the symmetry N ’s. What is the relation
between this Cauchy surface picture and the spacetime picture of Sect. 2.1?
We believe that such a relation can be found using the technique invented by
3 The surface terms may be uniquely determined (except for additive constants) by

boundary conditions imposed on the dynamics of the fields at the surface. For a
finite surface, this has been shown by [17].
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Kuchař, the so-called Kuchař variables (embeddings, see Sect. 2.4). In particular,
the CDAC must be related to asymptotic conditions imposed on the embeddings.
An example of how this may work will be given in the next section.

If N satisfies the GGAC, the transformation generated by H[N ] in the phase
space shifts the points of C along c-orbits, and any point of a given c-orbit can
be reached in this way from any other point of it. This is the reason to call λ a
c-orbit (constraints orbit).

For any first class constraint surface, there is a unique way of how the sym-
plectic structure Ω̄ of the phase space P defines a symplectic structure Ω on the
physical phase space Γ : First step is to pull back the two-form Ω̄ to C. The result
is a two-form Ω̃. The form Ω̃ is degenerated along c-orbits; it is not a symplectic
form, but it is closed (dΩ̃ = 0, where d denotes the external differentiation). The
second step is a proof that there is a unique symplectic form Ω on Γ such that
the pull back of it by the projection πphs to C is Ω̃. In this way, we finally obtain
the full-fledged physical phase space (Γ,Ω).

2.3 Observables and Dynamical Symmetries

The action of the gauge group has been quotiented away from the physical phase
space, so it is a gauge-invariant structure. Functions on it are called observables:

o : Γ �→ R . (12)

The central idea of the gauge-invariant method described by these lectures is
to answer all physically interesting questions by manipulating quantities defined
on the physical phase space, such as observables. To interpret or justify such
manipulations, we need the connection of Γ to the larger spaces C, P and Γ̃ .

Each observable o determines a function õ on C by

õ := o ◦ πphs . (13)

Clearly, all such functions must be constant along c-orbits:

{õ,H[N ]} = 0 (14)

for all N that satisfy GGAC; they are called Dirac observables [14]. Examples
of Dirac observable are the quantities H[N ] + H∞[N∞] for all fields N that
satisfy PGAC, see [9].

Let {oi} be some coordinates on Γ ; they form a complete set of observables.
Similarly, the corresponding functions õi form complete set of Dirac observables.
One needs complete sets with some additional properties to quantize by a gauge-
invariant way, and one needs still more observables to describe all interesting
properties of the quantum system. This will be shown later by an example.
The idea of basing quantization of gravity on complete sets of Dirac observables
encounters a difficulty: there is no single quantity of this kind known in general
relativity, for example in the case when the Cauchy surface is compact [18], [19].
Even if it were known, it would be non-local [20]. In the asymptotically flat case,
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however, two complete sets are known: they are associated with the asymptotic
in- and out-fields. They have been described, within a perturbation theory, by
DeWitt (“asymptotic invariants”) [21], and for the exact theory by Ashtekar
(“radiative modes”) [22]. We propose to work out a theory for this favorable
case first and then to see if anything can be done for the other cases.

Let h̄ : P �→ P be a map that preserves the symplectic form Ω̄ (symplec-
tomorphism) and the constraint surface C in P. Such a map is called extended
dynamical symmetry (extended to the extended phase space P). We use the word
“dynamical” to distinguish it from spacetime symmetries.

Clearly, such a map h̄ induces a map of the constraint surface onto itself:
h̃ := h̄|C and h̃ : C �→ C. The most important properties of h̃ are: it preserves the
form Ω̃ and maps the c-orbits onto c-orbits. Such a map h̃ is called dynamical
symmetry. Each dynamical symmetry h̃ induces a map h : Γ �→ Γ that preserves
the symplectic structure Ω, so h is a symplectomorphism of the physical phase
space (Γ,Ω).

An infinitesimal extended dynamical symmetry dh is generated via Poisson
brackets by a function −H̄dt : P �→ P (the sign is chosen for later convenience).
The restriction H̃ of H̄ to C is a Dirac observable and so it defines a unique
function H on the physical phase space Γ . The function −Hdt generates the
infinitesimal symplectomorphism dh in Γ that is induced by dh, for proofs, see
[9], [3] and [4]. (We denote infinitesimal maps by a symbol composed from “d”
and a letter; the letter itself has no further meaning.)

The infinitesimal transformations generated by (H[N ] + H∞[N∞])dt are
dynamical symmetries for all N satisfying PGAC. Their Poisson brackets at
the constraint surface form the Lie algebra of Poincaré group [9]. They have in
general non-vanishing Poisson brackets with other Dirac observables generating
a non-trivial dynamics for them. We shall give an interpretation of this dynamics
in the next two subsections.

2.4 Transversal Surfaces

A transversal surface T is a submanifold of C that intersects each c-orbit exactly
once and transversally; T is a section of the quotient C/λ. Each transversal
surface inherits a two-form ΩT from C by pull back of Ω̃ to T by the injection
map of T into C. It is not only closed but also non-degenerate, so (T , Ω̃) is
a symplectic manifold (see also [9], where transversal surface is called “gauge
condition”).

The projection πphs maps T to Γ and its restriction πphs|T is actually a
bijection having an inverse. The map πphs|T can be shown to be a symplecto-
morphism of the spaces (T , ΩT ) and (Γ,Ω). Thus, each transversal surface is a
“model” of the physical phase space. If we wish to calculate Ω in the coordinates
{oi}, then we just have to calculate ΩT in the coordinates {õi}.

An important issue is the relation between a transversal surface T and
Cauchy surfaces in solution space-times. Such a relation is provided by a gauge
fixing σ. As it has been shown above, σ can be represented as a set of functions
Ψ(o,X), where {oi} are coordinates on Γ and Xµ coordinates on M. Consider
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the spacetime
(M, Ψ(o,X)

)
; a Cauchy surface in such a spacetime can be de-

scribed by an embedding X̂(o) : Σ �→ M given by the set of functions Xµ(o, x).
Having these functions and the solution Ψ(o,X), we can calculate the corre-
sponding Cauchy datum (ΨX̂(o), ΠX̂(o)) and so determine a point at C. More
specifically, this point lies at the c-orbit λ(o) corresponding to the point o ∈ Γ :
λ(o) = π−1

phso. In this way, there is a unique point (ΨX̂(o), ΠX̂(o)) at C for each λ,
and this defines a transversal surface T .

Let us denote the resulting map that sends the set of embeddings {X̂(o)} to
the transversal surface T by χσ:

χσ{X̂(o)} = T . (15)

The functions Ψ(o,X) and X(o, x) must be sufficiently smooth or else T would
be rather jumpy.

One can show that χσ can even be a bijection between the space of embedding
sets {X(o, x)} and the space of transversal surfaces T . The condition is that
the solutions Ψ(o,X) do not admit any spacetime symmetry [5]. Then each
transversal surface and σ determine together a set of embeddings {X(o, x)}, one
embedding for each solution spacetime

(M, Ψ(o,X)
)
:

{X(o, x)} = χ−1
σ T . (16)

One can say that, given a gauge, each transversal surface defines a many-finger-
time instant in each solution spacetime. Transversal surfaces can, therefore, also
be called many-finger-time levels.

An interesting point is that the variables oi and {X(o, x)} – coordinates on
the physical phase space and a set of embeddings, one for each solution – form
a coordinate system on C if a gauge σ is specified. They are called generalized4

Kuchař variables, and they constitute a useful tool for many calculations because
they provide a neat division of variables into gauge, physical and dependent
degrees of freedom on one hand and a bridge between the four-dimensional and
the three-dimensional pictures on the other.

2.5 Time Evolution

Dirac observables are constant along whole solutions and so they are not only
gauge invariant but a kind of integrals of motion. It seems that their dynamics
is trivial: they just stay constant. Bergmann [18] characterized that as “frozen
dynamics”.

However, as early as 1949, Dirac [25] has put forward a theory of time evolu-
tion that is based on transversal surfaces and symmetries and that leads to a non
trivial time evolution of Dirac observables. The idea is that a physically sensible
evolution results if the “pure” dynamics (such as staying constant) is compared
with a fiducial “zero” dynamics defined by a symmetry. The account presented
here is a generalization [3], [4] of Dirac theory. It can also be understood as an
4 The embeddings introduced originally by Kuchař [23], [24] were o-independent.
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illustration of the discovery [26] that the Hamiltonian dynamics needs a frame
of reference and that different frames lead to differently looking time evolutions
of one and the same system, see also [8].

Let h̃ be dynamical symmetry and T a transversal surface. Then h̃T = T ′ is
another transversal surface and h̃ is a symplectomorphism between the spaces
(T , ΩT ) and (T ′, ΩT ′). Thus, h̃ can shift many-finger-time levels.

Suppose a one-dimensional group of extended dynamical symmetries h̄(t) is
given; t is the parameter of the group, h̄(t1) · h̄(t2) = h̄(t1+t2). Let the generator
of the group be −H̄, and let the induced groups and generators on C and Γ be
denoted by h̃(t), h(t) and −H. We use the group h̃(t) to build up a reference
system in C with respect to which we shall describe the motion represented by
c-orbits in a similar way as the particle world lines in Minkowski spacetime are
described by their coordinates in an inertial frame.

Let T be a transversal surface. Define Tt := h̃(t)T0. These surfaces form a
one-dimensional family that we denote by {Tt}. The family determines a subset
ηλ(t) of any c-orbit λ by

ηλ(t) := Tt ∩ λ . (17)

The curve ηλ(t) lies in λ and is one-dimensional in spite of λ being itself many
(or even infinitely many) dimensional. We call ηλ(t) a trajectory of the system
with respect to the family {Tt}.

Let õ0 be a Dirac observable representing some measurement done at the time
level5 T0. The values of the function õ0|T0 on T0 give results of measurement at
each point of T0, that is, at each instantaneous state of the system.

We define the same measurement at the time Tt to be represented by Dirac
observable õt := õ0 ◦ h̃(−t). The function õt is the image of õ0 by the map h̃(t):
it gives the same results at the states that are related by the symmetry:

õt
(
h̃(t)p

)
= õ0(p) (18)

for any point p ∈ C. Actually, the set {õt|t ∈ R} of Dirac observables is a special
case of Rovelli’s “evolving constants of motion” [27].

Now, we are ready to define the time evolution.

Definition
Time evolution is the change in the results of the same measurement done at
different times along a dynamical trajectory of the system.

Clearly, these results are given by the function õt
(
ηλ(t)

)
for the measurement

represented by {õt|t ∈ R} and the trajectory λ. The function can be written in
two ways.

5 Indeed, a given Dirac observable cannot, in general, be measured anywhere on the
constraint surface but only in a neighbourhood of a transversal surface that belongs
to the definition of the observable, see [4].
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Schrödinger Picture. By substituting from the definition of õt, we have

õt
(
ηλ(t)

)
= õ0

(
h̃(−t)ηλ(t)

)
. (19)

Let us define

ξ̃λ(t) := h̃(−t)ηλ(t) ; (20)

ξ̃λ(t) is a curve in T0 and can be viewed as a “time-dependent state of the
system.” Then we can write

õt
(
ηλ(t)

)
= õ0|T0

(
ξ̃λ(t)

)
. (21)

The measurement is represented by a single (time-independent) Schrödinger ob-
servable õ0|T0 .

Heisenberg Picture. Since õt is a Dirac observable for each t, it is constant along
c-orbits, and we find

õt
(
ηλ(t)

)
= õt

(
ηλ(0)

)
. (22)

All quantities can again be taken at T0:

õt
(
ηλ(t)

)
= õt|T0

(
ηλ(0)

)
. (23)

Now, the state is described by a single point ηλ(0) at T0 (time independence)
while the measurement is described by a set of functions õt|T0 on T0, constituting
a time-dependent Heisenberg observable {õt|T0 |t ∈ R}.

The dynamical equation for the Schrödinger state ξ̃(t) or the Heisenberg
observable {õt|T0 |t ∈ R} can be calculated with the following results: The Schrö-
dinger state ξ̃(t) is an integral curve in (T0, ΩT0) of the Hamiltonian vector field
dH̃|#T0

of H̃|T0 :

dξ̃λ(t)
dt

= dH̃|#T0
. (24)

The Heisenberg observable {õt|T0} must satisfy the differential equation

dõt|T0

dt
= {dõt|T0 , H̃|T0}Ω|T0

, (25)

where {·, ·}Ω|T0
is the Poisson bracket of (T0, ΩT0).

All definitions and equations hitherto written down depend on the choice
of T0. This leads to the impression that our dynamics depends not only on the
chosen symmetry group h̃(t) but also on T0. This impression may be strengthened
if one reads Dirac’s paper. However, Dirac’s choice of the group was related to
his choice of the surface. Here, these two choices are independent.
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Actually, the exposition given as yet has aimed at some physical interpreta-
tion of the final result, which comes only now: The symplectomorphism πphs|T0

maps the equations (24) and (25) at T0 to the following equations at Γ ,

dξλ
dt

= dH# (26)

and

dot
dt

= {ot, H}Ω , (27)

where

ξλ(t) := πphs|T0 ξ̃λ(t) , õt|T0 = ot ◦ πphs|T0 . (28)

Equations (26) and (27) have the same form for any choice of T0 and depend
only on the group h(t).

The symmetry group h(t) is to be chosen as a suitable subgroup of the
asymptotic symmetries. To be sure, asymptotic symmetries cannot be extended
to the whole of M in a unique way (a gauge-dependent extension has been
constructed at the end of Sect. 2.1). However, the action of such extended map
on a gauge-invariant quantity does not depend on the way it has been extended.
The dynamics constructed in this way is, therefore, gauge invariant and it seems
to be physically sound.

3 A Model: Gravitating Shell

This section will illustrate the notions and methods introduced in the preceding
one. At the same time, the dynamics of the shell will be given a form that will
be suitable for quantization.

3.1 Space of Solutions, Gauge Group, and Asymptotic Symmetries

The model consists of a spherically symmetric thin shell of light-like matter sur-
rounded by its own gravitational field. Hence, there are two geometrical objects
in Ψ̄ : a metric gµν describing the gravitational field and a three-dimensional
light-like surface S̄ that is a trajectory of the shell. The background manifold
M̄ is R

3×R, where R
3 is the manifold of Cauchy surface. The dynamical equa-

tions are Einstein’s and matter equations. Any solution Ψ̄ can be constructed by
sticking together a piece of Schwarzschild solution of mass parameter M with
the meaning of gravitational radius, and a piece of Minkowski spacetime, along a
spherically symmetric null hypersurface so that the points with the same radius
coordinate cover each other (see, e.g., [6]).

The spherical symmetry enables us to reduce the dimension of the problem by
two. The effective spacetime can be considered as the space of the rotation group
orbits; the background manifold M is R × R+, where R+ := (0,∞). The four-
dimensional metric decomposes into a two-dimensional metric gAB on M and
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a scalar field R on M (radius of the rotation group orbit). The shell trajectory
becomes a curve S. These are the three geometrical objects in Ψ .

Luckily, for this simple model, all solutions can be explicitly written down.
Thus, we can make a list of all physically different solutions to a basis of our
analysis. The list can best be given in a particular gauge determined by a covari-
ant gauge fixing σ. To specify σ, we choose the coordinates U and V on M with
ranges U ∈ R and V ∈ (U,∞). The boundary of M (that does not belong to it)
consists of three pieces: ∂0M given by the equation V = U , with a coordinate
T0 := (U + V )/2, T0 ∈ R, ∂+M defined by the limit V → ∞ and described by
coordinate U∞ = U , U∞ ∈ R, and ∂−M defined by the limit U → −∞ and
described by coordinate V∞ = V , V∞ ∈ R. With respect to the fixed coordinates
U and V , we set conditions on the components of the representative metric,
scalar field and shell trajectory as follows (for more detail and motivation, see
[6] and [28]).

1. The coordinates U and V are double null coordinates:

ds2 = −A(U, V )dUdV . (29)

2. For out-going shells, S is defined by U = const, and the coordinate U coin-
cides with a retarded time at ∂+M.

3. For in-going shells, S is defined by V = const, and the coordinate V coincides
with an advanced time at ∂−M.

4. The functions A(U, V ) and R(U, V ) are continuous at the shell.

Then the representative solutions can be described as follows (see [6] and [28]).
We introduce a parameter η with two values +1 and −1 to define the direction
of radial motion of the shell: expanding for η = +1 and contracting for η = −1.

Out-Going Shell. (η = +1).

1. The shell trajectory is given by

U = w , (30)

w ∈ R being a measurable parameter: the retarded arrival time of the out-
going shell.

2. Left from the shell, U > w, the two-metric A(U, V ) and the scalar field
R(U, V ) are given by

A = 1 , R =
−U + V

2
. (31)

3. Right from the shell, U < w, they are given by

A =
1

κ(f+)eκ(f+)

−w + V

4M
exp

(−U + V

4M

)
, (32)

and

R = 2Mκ(f+) , (33)
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where

f+ =
(−w + V

4M
− 1

)
exp

(−U + V

4M

)
. (34)

The Kruskal function κ is defined by its inverse

κ−1(x) = (x− 1)ex (35)

on the interval x ∈ (0,∞).
At the shell,

lim
U→w−

f+ = κ−1
(−w + V

4M

)
, (36)

hence, we have R → (−w + V )/2 and A→ 1 and the metric is continuous, but
its derivatives have a jump. In this way, these coordinates carry the differential
structure C1 that is determined by the metric. The stress-energy tensor of the
shell matter can be calculated by the formula given in [29]. Let us denote this
solution by Ψ+(M,w;U, V ).

The boundary R→ 0 is given by V → U for U > w and by f+ → −1 or

V → w + 4Mκ

[
− exp

(
U − w

4M

)]
(37)

for U < w. The curve defined by the right-hand side of (37) is space-like running
from the point (U, V ) = (w,w) to the point (U, V ) = (−∞, w + 4M). It is
the boundary of the open domain DΨ in M where the representative solution
(M, Ψ+) is well defined. The curve V = w + 4M is the horizon, R = 2M .

In-Going Shell. (η = −1).

1. The shell trajectory is given by

V = w ; (38)

w ∈ R is the advanced departure time of the in-going shell.
2. Left from the shell, V < w, the two-metric A(U, V )and the scalar field

R(U, V ) are given by

A = 1 , R =
−U + V

2
. (39)

3. Right from the shell, V > w, they are given by

A =
1

κ(f−)eκ(f−)

−U + w

4M
exp

(−U + V

4M

)
, (40)

and

R = 2Mκ(f−) , (41)

where

f− =
(−U + w

4M
− 1

)
exp

(−U + V

4M

)
. (42)
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Let us denote this solution by Ψ−(M,w;U, V ). Again, the metric is continuous
at the shell. The boundary of the domain DΨ is given by the equation f− = −1.
Observe that the solutions Ψ−(M,w;U, V ) fill in the lower corner of M and so
every point of the manifold M is used by both solutions Ψ+(M,w;U, V ) and
Ψ−(M,w;U, V ).

The first employment of our list is the specification of the physical phase
space. It has two components, Γ+ and Γ− corresponding to η = +1 and η = −1.
They have both the manifold structure of R+×R, where M ∈ R+ and w ∈ R. M
and w can serve as coordinates on Γη. It is not yet clear that these coordinates
are regular; this ought to follow from the regularity of the symplectic form of the
physical phase space written with respect of these coordinates. The symplectic
form cannot be inferred from our list of solutions and will be calculated later.

The group of general four-dimensional diffeomorphisms can also be reduced
by the symmetry: we admit only diffeomorphisms that commute with rotations
so that the rotation group orbits are mapped onto such orbits. Clearly, regular
centre points are sent only to regular centre points – so that the regular centre
is invariant – while a spherical orbit can be sent to any spherical orbit. Hence,
the reduced group is DiffM for our two-dimensional background manifold M.

The second employment of the solution list given above is to find symmetries
of the system. The symmetries will help us to decompose the group DiffM, to
define the most important observables and to construct the dynamics. To find
the symmetries, we observe that some pairs of our representative solutions are
isometric or conformally related to each other. For each such pair, there is a
unique element of DiffM that implements the relation.

Time Shifts. Clearly, the solutions Ψη(M,w;U, V ) and Ψη(M,w + t;U, V ) are
isometric for any t ∈ R, M , w and η. The corresponding diffeomorphism ϕH(t)
is given by

ϕH(t) : (U, V ) �→ (U + t, V + t) (43)

For example, if η = +1, the shell is sent to U = w + t, the new metric and the
scalar are, for U > w + t,

A = 1 , R =
−U + V

2
, (44)

while, for U < w + t,

A =
1

κ(f ′
+)eκ(f ′

+)

−w − t + V

4M
exp

(−U + V

4M

)
, (45)

and

R = 2Mκ(f ′
+) , (46)

where

f ′
+ =

(−w − t + V

4M
− 1

)
exp

(−U + V

4M

)
. (47)
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Hence, these are just the fields (31)–(34) with w �→ w + t. The proof for η = −1
is analogous. Observe that the map ϕH(t) is well defined everywhere on M and
independent of the parameters η, M and w. Hence, all such maps form a one-
dimensional group GH with parameter t. The group acts on the physical phase
space: ϕH(t) : (M,w) �→ (M,w+ t). Finally, its action can be uniquely extended
to the boundary:

U∞ �→ U∞ + t , V∞ �→ V∞ + t , T0 �→ T0 + t . (48)

Dilatations. Clearly, the solutions Ψη(M,w;U, V ) and Ψη(esM, esw;U, V ) are
conformally related for all s ∈ R, η, M and w. On the other hand, they are sent
into each other by a composite map

(
ϕD(s), ω

(
ϕD(s)

))
, where

ϕD(s) : (U, V ) �→ (esU, esV ) (49)

is a diffeomorphism and

ω
(
ϕD(s)

)
: gµν �→ e2sgµν (50)

is a constant conformal deformation (CCD) that acts only on the (four-dimen-
sional) metric: it scales the two-dimensional metric gAB by e2s and the scalar
field R by es.

Actually, the dilatation is nothing but a rescaling: all quantities with a di-
mension are rescaled by the corresponding power of es. The coordinates U and V
have acquired their scale from the metric through the gauge fixing. The Newton
constant G must also be rescaled: G �→ e2sG!

To see that the map (49) makes the job, let us restrict ourselves to the case
η = +1 and study the action of the map on the objects in the spacetime defined
by (31)–(34). The metric is transformed by ϕD(s)∗ to

ds2 = −e−2sA(e−sU, e−sV )dUdV , (51)

the scalar field to

R = R(e−sU, e−sV ) (52)

and the shell position changes as follows

w �→ esw . (53)

Thus, for U > esw, the new metric A is e−2s and the new scalar R is

e−s−U + V

2
; (54)

for U < esw, the new metric A is

A =
e−2s

κ(f ′
+)eκ(f ′

+)

−wes + V

4Mes
exp

(−U + V

4Mes

)
(55)
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and the scalar R,

R = 2Mκ(f ′
+) , (56)

where

f ′
+ =

(−wes + V

4Mes
− 1

)
exp

(−U + V

4Mes

)
. (57)

The subsequent CCD by e2s brings A and R to

A = 1 , R =
−U + V

2
(58)

for U > wes, to

A =
1

κ(f ′
+)eκ(f ′

+)

−wes + V

4Mes
exp

(−U + V

4Mes

)
(59)

and

R = 2Mesκ(f ′
+) , (60)

for U < wes, and the shell stays at U = wes. But the fields (58)–(60) are just
the same as (31)–(34) except for M being changed to Mes and w to wes.

We observe that the map
(
ϕD(s), ω

(
ϕD(s)

))
is well defined on the whole

M and independent of η, M and w. Since each CCD commutes with any dif-
feomorphism, the dilatations form a one-dimensional group GD with parameter
s. The part ϕD(s) form themselves a group GDϕ that is a subgroup of DiffM.
The dilatations act on the physical phase space:(

ϕD(s), ω
(
ϕD(s)

))
: (η,M,w) �→ (η, esM, esw) . (61)

Finally, dilatations act on the boundary

U∞ �→ esU∞ , V∞ �→ esV∞ , T0 �→ esT0 . (62)

The time shifts and dilatations generate a group. Each element of the group
can be obtained in a unique way as a dilatation followed by a time shift. Let us
write it in the form

(
ϕH(t), ϕD(s), ω

(
ϕD(s)

))
. If the action of the constituent

maps on, say, the parameter w is taken into account, the following composition
law can be found

(
ϕH(t1), ϕD(s1), ω

(
ϕD(s1)

))× (
ϕH(t2), ϕD(s2), ω

(
ϕD(s2)

))
=(

ϕH(t1 + es1t2), ϕD(s1 + s2), ω
(
ϕD(s1 + s2)

))
.

It shows that the group has the structure of semi-direct product of the multi-
plicative R+ with the additive R abelian groups (t ∈ R, es ∈ R+). This group is
usually called affine group A on R. The time shifts form a normal subgroup of
A: they play the role of the abelian factor in the semi-direct product.
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Time Reversal. The two solutions Ψη(M,w;U, V ) and Ψ−η(M,−w;U, V ) are
isometric. The isometry is implemented by the diffeomorphism ϕI defined by

ϕI : (U, V ) �→ (−V,−U) . (63)

It is well-defined everywhere in M and independent of η, M and w. Its action
on the boundary is

U∞ �→ −V∞ , V∞ �→ −U∞ , T0 �→ −T0 , (64)

and that on the physical phase space is

I : (η,M,w) �→ (−η,M,−w) . (65)

The full group of symmetries generated by all three kinds of maps is denoted
by Gσ. The index σ is to remind that the action of the group on M has been
obtained with the help of our solution list that represents the gauge fixing σ; a
different gauge fixing would lead to different action on M. However, the action
of Gσ on the physical phase space as well as some aspects of its action on the
boundary are gauge independent. So is the group structure of Gσ, which is that
of the affine group AI with inversion.

The action of Gσ on the boundary ∂M defines a group of boundary trans-
formations that will be denoted by Gb. The group Gb consists of pure diffeomor-
phisms (not polluted by any CCD’s). Each element of Gσ determines a unique
element of Gb and this map between Gσ and Gb is an isomorphism because Gσ

acts truly on the boundary.
There is one point about the structure of Gb that will be useful later: the

subgroup generated by time shifts and the time reversal is invariant (normal).
Hence, there is a homeomorphism πD of Gb onto the factor group, which is
GDϕ, πD : Gb �→ GDϕ. This means that the amount of dilatation hidden in any
element of Gb is well-defined.

Decomposition of DiffM. Let us choose a subgroup G of DiffM according to
the following rules. The diffeomorphism ϕ is an element of G if

1. the map ϕ has a differentiable extension to the boundary of M. Hence, it
defines a map ϕb : ∂M �→ ∂M,

2. The action of ϕ on the boundary coincides with that of an element of the
symmetry group Gσ, i.e., ϕb ∈ Gb.

The group G is a proper subgroup of DiffM. It is the only part of DiffM that is
interesting for the physics of the system. It is easy to check that the map πb : G �→
Gb, the existence of which follows from the above definition, is a homeomorphism
(preserves multiplication). The kernel G0 of πb is a set of elements of G that is
mapped by πb to the identity of Gb. Such a kernel must be a normal subgroup
of G. The group G0 is the gauge group of the system.

The group G itself needs a correction by CCD’s at those elements that can
be said to contain dilatation. The amount of dilatation in ϕ ∈ G is obviously
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given by πDπbϕ. Hence, the pairs
(
ϕ, ω(πDπbϕ)

)
are symmetries of our system.

They form a group with the same structure as G because CCD’s commute with
diffeomorphisms. Let us denote the group by Gc (c for corrected).

The action of the symmetry group Gc on the boundary has a gauge-invariant
aspect. This can be revealed after attaching the scri to the solutions. Consider, for
example, the spacetime

(M, Ψ+(M,w;U, V )
)
. The I+(+1,M,w) of this space-

time is one-dimensional and a coordinate Ũ can be chosen along it so that the
difference Ũ2− Ũ1 gives the interval of retarded time along I+(+1,M,w). In the
spherically symmetric case, such an interval is uniquely determined. However, Ũ
clearly contains more information than just that about intervals: an origin of Ũ
has also been chosen. This origin is the only non-trivial remainder, in the spher-
ically symmetric case, of what can be called asymptotic frame. In an analogous
way, an inertial coordinate system in Minkowski spacetime contains not only
information about Minkowski interval (metric), but also that on the underlying
inertial frame.

Let us attach I+(+1,M,w) so that

Ũ = U∞ . (66)

This is, in any case, possible because U∞ is a retarded time along ∂+M for the
spacetime

(M, Ψ+(M,w;U, V )
)

so that the intervals match. However, (66) rep-
resents also a judicious choice of origins, that is, asymptotic frames, for each so-
lution Ψ+(M,w;U, V ). The idea behind the choice is that w keeps the role of the
retarded arrival time of the out-going shells also with respect to I+(+1,M,w).
We shall see later how this choice of frame of asymptotic reference influences the
form of the asymptotic action of the symmetry group and the calculation of the
symplectic form.

At ∂−M, where U → −∞ and V ∈ (u + 4M,∞), we must recover
the Schwarzschild advanced time Ṽ as a function of V in order to attach
I−(+1,M,w). An easy calculation yields:

Ṽ = V∞ + 4M ln
(−w + V∞

4M
− 1

)
, V∞ = w + 4Mκ

[
exp

(
Ṽ

4M

)]
. (67)

As V ∈ (w+4M,∞), Ṽ runs through R. The advanced time interval is just Ṽ2−
Ṽ1. Equation (67) replaces (66) and determines the attachment of I−(+1,M,w)
to the spacetime

(M, Ψ+(M,w;U, V )
)
. Observe that I−(+1,M,w) takes only a

part of ∂−M.
Finally, I0(+1,M,w) is a “stretched” space-like infinity i0: it has the struc-

ture of R and the coordinate T∞ on it can be defined as limit point of a constant
Schwarzschild time T = T∞ surfaces. Such surfaces are defined in the coordinates
U and V by

U + Ṽ (V )
2

= T∞ . (68)
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We obtain from (67):

U

2
+

V

2
+ 2M ln

(−w + V

4M
− 1

)
= const (69)

as U → −∞ and V →∞. The surfaces are defined by the functions
(
U(R), V (R)

)
:

U = −R− 2M ln
(

R

2M
− 1

)
+ T∞ (70)

and

V = w + 4Mκ

[
exp

(
T∞ + R

4M

)√
R

2M
− 1

]
. (71)

The Schwarzschild time interval is the difference T∞2 − T∞1. Again (67)–(71)
not only imply that the intervals as calculated from Ṽ or T∞ match with inter-
vals calculated from the geometry of

(M, Ψ+(M,w;U, V )
)
. They also represent

choices of origins, i.e., asymptotic frames, at I−(+1,M,w) and I0(+1,M,w),
for each solution Ψ+(M,w;U, V ).

The relation between the origins of the three spaces I+, I− and I0 corre-
sponding to one Schwarzschild spacetime (i.e., for a fixed M) can be set by a
geometric convention. For example, the three surfaces Ũ = 0, Ṽ = 0 and T∞ = 0
(if the coordinates Ũ , Ṽ and T∞ are extended into the spacetime as null or max-
imal surfaces) can be required to intersect all at a sphere of radius R = 2Mκ(1).
This is the convention we use for each η, M and w. In this way, the retarded
arrival time w can also be calculated by a standardized way from the description
of the dynamics of the shell in an extended frame associated with I− and I0.
This is important for the action of time shifts as well as for the calculation of the
Liouville form. The dependence of the geometric convention on the parameters
η and M influences the form of asymptotic action of dilatations and the time
reversal.

The attachment of I+(−1,M,w), I−(−1,M,w) and I0(−1,M,w) to the
spacetimes

(M, Ψ−(M,w;U, V )
)

is entirely analogous and can be skipped.
We observe that the scries have not, in general, a fixed position in the back-

ground manifold M. This is due to the gauge fixing σ. Any gauge fixing implies
also a definition of points (events) of M by some of their geometrical proper-
ties. For example, at the point (U, V ), two light-like surfaces meet that have a
particular geometrical meaning. The point at scri can also be defined by some
geometrical properties. The latter definition does not coincides with a limit of
the former in our case. This does not lead to any problems, if one does not try
to use the definition of points inside M in an improper way: it is not gauge
invariant and has not much physical meaning.

On the other hand, we can use the gauge fixing to calculate a lot of useful,
gauge invariant results. For example, we can determine how the group Gc acts
on the scri. Clearly, Gc acts there only via Gb so that, for example, G0 must
act trivially, leaving all points of scri invariant. For general ϕ ∈ G, a simple



276 Petr Háj́ıček

calculation reveals the following pattern. Let the diffeomorphism ϕ acts on the
physical phase space as follows

ϕ : (η,M,w) �→ (η,M ′, w′) , (72)

that is, ϕ does not contain any time reversal. Then

ϕb : I+(η,M,w) �→ I+(η,M ′, w′) (73)

and the map is a bijection between the two scries. The same claim holds for
I− and I0. For example, the scri I−(+1,M,w) has a past end point at ∂−M
with the value Vpast of the coordinate V , Vpast = w + 4M . The time shift ϕH(t)
sends V to V + t, hence Vpast �→ Vpast + t, and this is the past end point of
I−(+1,M,w + t).

Similarly, the time reversal

I : I+(η,M,w) �→ I−(−η,M,−w) , (74)

etc., defines a bijection between the two scries.
Actually, we are going to identify all I+’s considering the points with the

same value of the coordinate Ũ as equal. This gives a common I+ for all solutions.
Similarly, common I− and I0 can be defined. This structure is very important
for the interpretation of the theory. We assume that observers are living at this
common scri and are using the common frames (origins of time).

The definition of the common scri given above, together with the equations
such as (73) and (74), imply that the group Gc acts on the common scri. This
action is not difficult to calculate. The result is:

ϕH(t) : (Ũ , Ṽ , T∞) �→ (Ũ + t, Ṽ + t, T∞ + t) ,

ϕD(s) : (Ũ , Ṽ , T∞) �→ (Ũes, Ṽ es, T∞es) , (75)
ϕH(t) : (Ũ , Ṽ , T∞) �→ (−Ṽ ,−Ũ ,−T∞) .

The fact that the action of the time shift by t shifts all coordinates Ũ , Ṽ and
T∞ by the same amount is the consequence of the judicious choice of origins.
Similarly, the homogeneous action of the dilatations is due to correlations of our
choices of frames for all different values of the parameter M .

Clearly, the group Gc acts transitively on Γ . If the symplectic structure of the
physical phase space Γ were known, the functions generating the infinitesimal
transformations of the group could be found. Then the dynamics based on the
time shifts could be constructed.

3.2 Canonical Theory

The variables η, M and w can play the role of Dirac observables, but we do not
know what are their Poisson brackets. In the present section, we calculate the
brackets. We start from a Hamiltonian action principle for null shells and reduce
it to physical phase space applying the technique invented by Kuchař.
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The Action. As a Hamiltonian action principle that implies the dynamics of
our system, we take the action Eq. (2.6) of [30] (see also [31]). Let us briefly
summarize the relevant formulae. The spherically symmetric metric is written
in the form:

ds2 = −N2dτ2 + Λ2(dρ + Nρdτ)2 + R2dΩ2 , (76)

the shell is described by its radial coordinate ρ = r and its conjugate momentum
p. The action reads

S0 =
∫

dτ

[
pṙ +

∫
dρ(PΛΛ̇ + PRṘ−H0)

]
, (77)

and the Hamiltonian is

H0 = NH+ NρHρ + N∞E∞ , (78)

where N and Nρ are the lapse and shift functions, H and Hρ are the constraints,

H = G
(
ΛP 2

Λ

2R2 −
PΛPR

R

)
+

1
G

(
RR′′

Λ
− RR′Λ′

Λ2 +
R′2

2Λ
− Λ

2

)

+
ηp
Λ

δ(ρ− r) , (79)

Hρ = PRR
′ − P ′

ΛΛ− pδ(ρ− r) , (80)

and the prime or dot denote the derivatives with respect to ρ or τ . The term
N∞E∞ is the remainder of H∞[N∞] (see Sect. 2.2) in the case of rotational
symmetry. N∞ := limρ→∞ N(ρ) and E∞ is the ADM mass (see [30]). In the
Schwarzschild spacetime with mass parameter M and asymptotic Schwarzschild
time T∞, it holds that

N∞E∞ =
1
G

MṪ∞ . (81)

The term can then be transfered from the Hamiltonian to the part of action
containing time derivatives – the so-called Liouville form, see [32].

The Hamiltonian constraint function H is written in a way that differs from
[30] and [6] in that its dependence on the Newton constant G becomes visible.
This is necessary in order that the scaling properties6 of H are manifest, H �→
e−sH. Observe that the rescaling of H cannot be implemented by a canonical
transformation: all function that might be tried to generate such rescaling had
vanishing Poisson brackets with G. This does not mean, however, that vacuum
Einstein equations are not invariant under dilatation (cf. [33]). In our case, the
geometric sector alone (see Sect. 3.1) as well as the matter sector alone, are
invariant under dilatation, but the whole theory is not: the relation between
geometry and matter involves the Newton constant.
6 To reveal the scaling behaviour, units must be chosen so that � = c = 1, but G �= 1!
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The “volume” variables Λ, R, PΛ, PR, N and Nρ are the same as in [30]
and [6]. The meaning of the variables Λ, R, N and Nρ can be inferred from the
spacetime metric (76). The momenta conjugate to the configuration variables Λ
and R can be calculated from the action S0 by varying it with respect to PΛ and
PR:

PΛ = − R

GN
(Ṙ−NρR′) , (82)

and

PR = − Λ

GN
(Ṙ−NρR′)− R

GN
[Λ̇− (NρΛ)′] . (83)

Some differentiability conditions at the shell are important in order that
proper equations of motion are obtained by varying the action. One can assume
as in [30] that the gravitational variables are smooth functions of ρ, with the
exception that N ′, (Nρ)′, Λ′, R′, PΛ and PR may have finite discontinuities
at isolated values of ρ. The coordinate loci of the discontinuities are smooth
functions of τ for each shell. This follows from (i) the conditions at shell points
which are the same as in [30] and (ii) from the corresponding choice of foliation:
the metric with respect to coordinates τ and ρ may be piecewise smooth and
everywhere continuous.

The Liouville Form at the Constraint Surface. Our aim is to calculate the
Poisson brackets between Dirac observables such as M and w. We can employ the
property of the pull-back ΘC of the Liouville form Θ to the constraint surface C
that it depends only on the Dirac observables as it has been explained in Sect. 2
(see also [9], [3] and [4]). Its external differential then defines the symplectic form
of the physical phase space, which determine the brackets. Observe further that
the pull-back ΘC , if integrated over τ , gives the action of the reduced system.
Indeed, if one solves the constraints, only the Liouville form remains from the
action S0.

Thus, we have to transform the Liouville form to the variables M , w and a set
of observable-dependent embeddings; these variables form a coordinate system
on the constraint surface for each case η = +1 and η = −1.

An important point is to specify the family of embeddings that will be used.
The embeddings are given by

U = U(o, ρ), V = V (o, ρ) , (84)

where U and V are the coordinates defined in Sect. 2.1. These functions have to
satisfy several conditions.

1. As Σ is space-like, U and V are null and increasing towards the future, we
must have U ′ < 0 and V ′ > 0 everywhere.

2. At the regular centre, the four-metric is flat and the three-metric is to be
smooth. This implies, for all o’s, that U ′(o, 0) = −V ′(o, 0) in addition to
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the condition U(o, 0) = V (o, 0). This follows from T ′(U(o, 0), V (o, 0)) = 0
and means that Σ must run parallel to T = const in order to avoid conical
singularities. Here, T = (U + V )/2 is the time of the inertial system at the
centre.

3. At the space-like infinity, the four-metric is the Schwarzschild metric. We
require that the embedding approaches the Schwarzschild-time-constant sur-
faces T = const, and that ρ becomes the Schwarzschild curvature coordinate
R asymptotically. More precisely, the behaviour of the Schwarzschild coor-
dinates T and R along each embedding U(o, ρ), V (o, ρ) must satisfy

T (ρ) = T∞ + O(ρ−1), (85)
R(ρ) = ρ + O(ρ−1) . (86)

The asymptotic coordinate T∞ is a gauge-invariant quantity and it possesses
the status of an observable. It follows then from (70) and (71) that the
embeddings must depend on η, M and w.

4. At the shell (ρ = r) we require U(o, ρ) and V (o, ρ) to be C∞ functions of
ρ. In fact, as the four-metric is continuous in the coordinates U and V , but
not smooth, only the C1-part of this condition is gauge invariant. Jumps in
all higher derivatives are gauge dependent, but the condition will simplify
equations without influencing results.

The Liouville form of the action (37) can be written as follows:

Θ = pṙ− 1
G

MṪ∞ +
∫ ∞

0
dρ (PΛΛ̇ + PRṘ) . (87)

We can now start to transform (87) into Kuchař variables. It is advantageous to
let first the double-null coordinates U and V arbitrary and the Dirac observables
oi, i = 1, . . . , 2n unspecified. We just need to know that the metric and the
embeddings depends on oi:

A = A(U, V ; o) , R = R(U, V ; o) , U = U(o, ρ) , V = V (o, ρ) . (88)

For any double-null gauge, the equations

4RR,UV + 4R,UR,V + A = 0 , (89)
AR,UU −A,UR,U = 0 , (90)
AR,V V −A,VR,V = 0 (91)

represent the condition that the transformation is performed at the constraint
surface Γ (cf. [6], Eqs. (32)–(34)).

The transformation formulae for Λ, R, N and Nρ can be read off the metric:

R = R
(
U(o, ρ), V (o, ρ), o

)
, (92)

Λ =
√−AU ′V ′ , (93)

N = − U̇V ′ − V̇ U ′

2U ′V ′
√−AU ′V ′ , (94)

N ρ =
U̇V ′ + V̇ U ′

2U ′V ′ . (95)
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The transformation of the momenta PR and PΛ are obtained from their defini-
tions (82) and (83), into which (92)–(95) are substituted:

GPΛ =
R√−AU ′V ′ (R,UU ′ −R,V V ′) , (96)

GPR = R,UU
′ −R,V V ′ +

RA,U
2A

U ′ − RA,V
2A

V ′ +
R

2
U ′′

U ′ −
R

2
V ′′

V ′ . (97)

The transformation of the shell variable r follows from the obvious relations

U(o, r) = w , V (o, r) = w , (98)

each valid in one of the cases η = +1 or η = −1. Finally, the value of the momen-
tum p at the constraint surface can be found if the differentiability properties of
the volume functions at the shell are used and the coefficients at the δ-functions
in the constraints (79) and (80) are compared (for details see [6]):

p = −ηR∆r(R′) = −GΛ∆r(PΛ) , (99)

where ∆r(f) denotes a jump in the function f across the shell at the point ρ = r.
The form (87) can be divided into a boundary part (the first two terms on

the right-hand side) and the volume parts. Each volume part is associated with
a particular component of the space cut out by the shell; it has the form

∫ b

a

dρ (PΛΛ̇ + PRṘ) , (100)

where a and b are values of the coordinate ρ at the boundary of the volume.
There are only two cases, a = 0, b = r and a = r, b = ∞.

Since the pull-back of the Liouville form cannot depend on the volume vari-
ables U(o, ρ) and V (o, ρ), its volume part must be, after the transformation,
given by

Θb
a|C =

∫ b

a

dρ [(fU̇ + gV̇ + hiȯ
i)′ + ϕ̇] , (101)

cf. [6]. Comparing the coefficients at the dotted and primed quantities in (100)
and (101) leads to partial differential equations for the functions f , g and hi [6]
and one can show that (89)–(91) are the integrability conditions for these partial
differential equations.

In such a way, ΘC can be transformed to a sum of boundary terms. These
terms can be calculated and simplified if the transformation equations for the
shell variables and the properties of the embeddings at the boundary points are
used. It is a lengthy and rather technical calculation that is not very interesting
for us now; it has been described in detail in [6] and, especially, [28]. We skip it
and quote only the final results:

η = +1 : Θ|C = − 1
G

Mẇ ; η = −1 : Θ|C = − 1
G

Mẇ . (102)
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Only one aspect of the calculation deserves mentioning. This is the cancellation
of the term −(M/G)Ṫ∞ in the Liouville form (87) by a term coming from the
volume part (100). The cancellation is again a result of our judicious choice of
asymptotic frames as described in Sect. 3.1: the variable T∞ enters the calcula-
tion via (70) and (71) that are implied by the choice.

At this stage, it is advantageous to introduce new variables for the description
of the Dirac observables, that is, for the matter sector in our case: let us define,
for η = +1:

pu := −M

G
, u := w , (103)

and for η = −1,

pv := −M

G
, v := w . (104)

Observe that the momenta pu and pv have the meaning of negative energy and
scale in accord with this meaning as e−s. The rescaling of p’s, together with the
rescaling by es of u and v, can be implemented canonically.

The desired Poisson brackets can be written down immediately:

{u, pu} = 1 , {v, pv} = 1 . (105)

the generator of the infinitesimal time shift is pudt or pvdt and that of dilatation
is puuds or pvvds.

In [28], a general method of integration of the differential equations for the
functions f , g and hi has been developed and a formula generalizing (102) to a
system containing any number of in-going and any number out-going shell and
the due shell intersections (Kouletsis formula) has been written down.

The reduced action that contains only the physical degrees of freedom is, if
η = +1,

S+ =
∫

dτpuu̇ , (106)

and if η = −1,

S− =
∫

dτpv v̇ . (107)

These actions imply the equations of motion

pu = const , v = const (108)

or

pv = const , v = const , (109)

as they are to be.
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Merging In- and Out-Going Dynamics. In this subsection, the two reduced
action principles for the out-going and in-going dynamics of the shell will be
recognized as a result of reduction of a single merger action. The merger action
gives a complete account of all motions of the shell on the background manifold
M. The merging is a step of certain significance for our quantum theory.

Consider the action (106) for out-going shells. The variables pu and u do
not contain the full information about where the shell is in M. The function
u(τ) is the value of only one coordinate U of the shell for the value τ of the
time parameter. For a complete description, v(τ) would have to be added. For
a solution trajectory, u(τ) is constant, but v(τ) can be arbitrary: it depends on
the choice of the parameter τ and so it can be considered as a gauge variable in
a reparametrization-invariant formalism. Hence, a valid extension of the action
(106) is

S̄+ =
∫

dτ(puu̇ + pv v̇ − n+pv) , (110)

where n+ is a Lagrange multiplier that enforces the vanishing of the momentum
pv conjugate to the gauge variable v. The meaning of n+ transpires from the
equation

v̇ = n+ (111)

obtained by varying S̄+ with respect to pv. Thus, n+ measures the rate of τ with
respect to the parameter 2t: for any out-going shell, we have

t =
1
2
(
u + v(τ)

)
, (112)

where t is the time of the inertial frame defined by the regular centre R = 0 and,
at the same time, it coincides with the parameter of the time-shift group.

We can define another Lagrangian multiplier n by

n+ = npu , (113)

because pu is always non-zero in the case η = +1. The multiplier n measures the
rate of τ with respect to the “physical parameter”: the corresponding tangent
vector to particle trajectory coincides with the contravariant four-momentum of
the particle.

An analogous extension S̄− of S−, (107) is

S̄− =
∫

dτ(puu̇ + pv v̇ − n−pu) , (114)

and we can switch to n defined by n− = npv now.
The merger action is

S̄ =
∫

dτ(puu̇ + pv v̇ − npupv) . (115)
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It contains both cases as the two possible solutions of the constraint

pupv = 0 : (116)

if pv = 0, we obtain the case η = +1, and if pu = 0, η = −1.
The two variables u and v determine the position of the shell in M uniquely.

The generator of the time translation is pu+pv, the value of which is the negative
of the total energy E = M/G of the system, and the generator of the dilatation
is puu + pvv.

The new phase space has non-trivial boundaries:

pu ≤ 0, pv ≤ 0 , (117)

−u + v

2
> 0 , (118)

pv = 0 , U ∈ (−∞, u) , V > u− 4puκ
(
− exp

u− U

4pu

)
, (119)

and

pu = 0 , V ∈ (v,∞) , U < v + 4pvκ
(
− exp

V − v

4pv

)
. (120)

The boundaries defined by inequalities (119) and (120) are due to the singularity.
Equations (119) and (120) limit the values of U and V that can be used for
embeddings.

The two dynamical systems defined by the actions (77) and (115) are equiv-
alent: each maximal dynamical trajectory of the first, if transformed to the new
variables, gives a maximal dynamical trajectory of the second and vice versa.

The variables u, v, pu and pv span the effective phase space of the shell.
They contain all true degrees of freedom of the system. One can observe that
the action (115) coincides with the action for free motion of a zero-rest-mass
spherically symmetric (light-like) shell in flat spacetime. Such a dynamics is
complete because there is no geometric singularity at the value zero of the radius
of the shell, (−u + v)/2, and this point can be considered as a harmless caustic
so that the light can re-expand after passing through it. The dynamics of the
physical degrees of freedom by itself is, therefore, regular.

It might seem possible to extend the phase space of the gravitating shell,
too, in the same way so that the in-going and the out-going sectors are merged
together into one bouncing solution. However, such a formal extension of the
dynamics (115) is not adequate. The physical meaning of any solution written
in terms of new variables is given by measurable quantities of geometrical or
physical nature, which include now also the curvature of spacetime. These ob-
servables must be expressed as functions on the phase space. They can of course
be transformed between the phase spaces of the two systems (77) and (115).
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They cannot be left out from any complete description of a system, though they
are often included only tacitly: an action alone does not define a system. This
holds just as well for the action (77) as for (115).

Let us consider these observables. Equations (31)–(34) and (39)–(42) can
be used to show that the curvature of the solution spacetime diverges at the
boundary defined by (119) for pv = 0 and by (120) for pu = 0. It follows that
the observable quantities at and near the “caustic” are badly singular and that
there is no sensible extension of the dynamics defined by action (115) to it, let
alone through it. This confirms the more or less obvious fact that no measur-
able property (such as the singularity) can be changed by a transformation of
variables.

The action for the null dust shell is now written in a form which can be
taken as the starting point for quantization. Surprisingly, it will turn out that
a quantum theory can be constructed so that it is singularity-free. This will be
shown in the next section.

4 Quantum Theory

In this section, we shall construct a quantum theory of our model. Of course,
there is no unique construction of a quantum theory for any given classical model.
We just show that there is a singularity-free, unitary quantum mechanics of the
shell. The account in this section follows [34] adding a few new ideas.

4.1 Group Quantization

To quantize the system defined by the action (115), we apply the so-called group-
theoretical quantization method [35]. There are three reasons for this choice.
First, the method as modified for the generally covariant systems by Rovelli [36]
(see also [37] and [38]) is based on the algebra of Dirac observables of the system;
dependent degrees of freedom don’t influence the definition of Hilbert space.
Second, the group method has, in fact, been invented to cope with restrictions
such as (117) and (118). By and large, one has to choose a set of observables that
form a Lie algebra; this algebra has to generate a group of symplectomorphisms
that has to act transitively in the phase space respecting all boundaries. In this
way, the information about the boundaries is built in the quantum mechanics.
Finally, the method automatically leads to self-adjoint operators representing all
observables. In particular, a self-adjoint extension of the Hamiltonian is obtained
in this way, and this is the reason that the dynamics is unitary.

To begin with, we have to find a complete set of Dirac observables. Let us
choose the functions pu, pv, Du := upu and Dv := vpv. Observe that u alone
is constant only along out-going shell trajectories (pu �= 0), and v only along
in-going ones (pv �= 0), but upu and vpv are always constant. The only non
vanishing Poisson brackets are

{Du, pu} = pu, {Dv, pv} = pv. (121)
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This Lie algebra generates a group Q2 of symplectic transformations of the
phase space that preserve the boundaries pu = 0 and pv = 0. Q2 is the Cartesian
product of two copies of the affine group A on R.

The group A generated by pu and Du has three irreducible unitary represen-
tations. In the first one, the spectrum of the operator p̂u is [0,∞), in the second,
p̂u is the zero operator, and in the third, the spectrum is (−∞, 0], see [39]. Thus,
we must choose the third representation; this can be described as follows (details
are given in [39]).

The Hilbert space is constructed from complex functions ψu(p) of p ∈ [0,∞);
the scalar product is defined by

(ψu, φu) :=
∫ ∞

0

dp

p
ψ∗
u(p)φu(p), (122)

and the action of the generators p̂u and D̂u on smooth functions is

(p̂uψu)(p) = −pψu(p), (D̂uψu)(p) = −ip
dψu(p)

dp
. (123)

Similarly, the group generated by pv and Dv is represented on functions ψv(p);
the group Q2 can, therefore, be represented on pairs

(
ψu(p), ψv(p)

)
of functions:

p̂u

(
ψu(p), ψv(p)

)
=

(
−pψu(p), 0

)
, (124)

p̂v

(
ψu(p), ψv(p)

)
=

(
0,−pψv(p)

)
, (125)

D̂u

(
ψu(p), ψv(p)

)
=

(
−ip

dψu(p)
dp

, 0
)
, (126)

D̂v

(
ψu(p), ψv(p)

)
=

(
0,−ip

dψv(p)
dp

)
. (127)

This choice guarantees that the Casimir operator p̂up̂v is the zero operator on
this Hilbert space, and so the constraint is satisfied. The scalar product is
((

ψu(p), ψv(p)
)
,
(
φu(p), φv(p)

))
=

∫ ∞

0

dp

p

(
ψ∗
u(p)φu(p) + ψ∗

v(p)φv(p)
)
. (128)

Let us call this representation R2. Observe that this representation of the group
A × A is not irreducible. It is, however, irreducible for the group extended by
the time reversal because its representative swaps the invariant subspaces. The
representationR2 has a well-defined meaning as a quantum theory of our system.
In it, the out-going shells are independent of the in-going ones. The dynamics
of each kind of shells is complete for itself. One could study this dynamics by
defining a position operator r̂(t) in a natural way similar to what will be done
later and one would find that the in-going shells simply proceed through r = 0
into negative values of r. Analogous holds, in the time reversed order, for the
out-going shells.
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Handling the inequality (118) is facilitated by the canonical transformation:

t = (u + v)/2, r = (−u + v)/2, (129)
pt = pu + pv, pr = −pu + pv. (130)

The constraint function then becomes pupv = (p2
t − p2

r)/4.
The function ptδt generates, via Poisson brackets, the infinitesimal time shift

in (t, r)-space, t �→ t+δt, r �→ r, and prδr generates an r-shift, t �→ t, r �→ r+δr.
We introduce also the observables

D := Du + Dv = tpt + rpr , (131)

and

J := −Du + Dv = rpt + tpr . (132)

The function Dδs generates a dilatation in the (t, r)-space, t �→ t + tδs, r �→
r + rδs, and Jδv generates a boost, t �→ t + rδv, r �→ r + tδv. What do these
transformations with our half-plane r > 0? The transformations generated by pt
and D preserve the boundary while those by pr and J do not. Hence, only the
subgroup Q1 of Q2 generated by pt and D respects the inequality (118).

The representation R2 of Q2 can be decomposed into the direct sum of two
equivalent representations of Q1. This representation of Q1 will be denoted by
R1 and it will serve as our definitive quantum mechanics. Let us stress that
this quantum mechanics does not describe a subsystem of the physical system
described with the representationR2. The representationR1 can be described as
follows: The states are determined by complex functions ϕ(p) on R+; the scalar
product (ϕ,ψ) is

(ϕ,ψ) =
∫ ∞

0

dp

p
ϕ∗(p)ψ(p); (133)

let us denote the corresponding Hilbert space by K. The representatives of the
above algebra are

(p̂tϕ)(p) = −pϕ(p), (134)
(p̂2
rϕ)(p) = p2ϕ(p), (135)

(D̂ϕ)(p) = −ip
dϕ(p)
dp

, (136)

(Ĵ2ϕ)(p) = −p
dϕ(p)
dp

− p2 d
2ϕ(p)
dp2 . (137)

There are also well-defined operators for p2
r and J2 because, in the representation

R2, the identities p̂2
r = p̂2

t and Ĵ2 = D̂2 hold.
An important observation is that R1 is a representation of the group of

asymptotic symmetries as described in Sect. 3.1. Another important observation
is that the quantum mechanics R2 describes two discoupled degrees of freedom,
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namely the in- and out-going shells, while R1 describes a system with a single
degree of freedom: the in- and out-going motions have been coupled into one
motion. Let us study, what is this motion.

First, we have to construct a time evolution. For that, we use the time shift
symmetry generated by p̂t. The operator −p̂t has the meaning of the total energy
E = M/G of the system. We observe that it is a self-adjoint operator with a
positive spectrum and that it is diagonal in our representation. The parameter
t of the unitary group Û(t) that is generated by −p̂t is easy to interpret: t
represents the quantity that is conjugated to pt in the classical theory and this
is given by (129). Hence, Û(t) describes the evolution of the shell states, for
example, between the levels of the function (U + V )/2 on M.

The missing piece of information of where the shell is on M is carried by the
quantity r of (129). We shall define the corresponding position operator in three
steps.

First, we observe that r itself is not a Dirac observable, but the boost J is,
and that the value of J at the surface t = 0 coincides with rpt. It follows that
the meaning of the Dirac observable Jp−1

t is the position at the time t = 0. This
is in a nice correspondence with the Newton-Wigner construction [40] on one
hand, and with the notion of evolving constants of motion by Rovelli [27] on the
other.

Second, we try to make Jp−1
t into a symmetric operator on our Hilbert space.

However, in the representation R1, only Ĵ2 is meaningful. Let us then chose the
following factor ordering for J2p−2

t :

r̂2 :=
1√
p
Ĵ

1
p
Ĵ

1√
p

= −√p
d2

dp2

1√
p
. (138)

Other choices are possible; the above one makes r̂2 essentially a Laplacian and
this simplifies the subsequent mathematics. Indeed, we can map K unitarily to
L2(R+) by sending each function ψ(p) ∈ K to ψ̃(p) ∈ L2(R+) as follows:

ψ̃(p) =
1√
p
ψ(p). (139)

Then, the operator of squared position r̃2 on L2(R+) corresponding to r̂2 is

r̃2ψ̃(p) =
1√
p
r̂2

(√
pψ̃(p)

)
= −d2 ˜ψ(p)

dp2 = −∆̃ψ̃(p). (140)

Third, we have to extend the operator r̂2 to a self-adjoint one. The Lapla-
cian on the half-axis possesses a one-dimensional family of such extensions [41].
The parameter is α ∈ [0, π) and the domain of ∆̃α is defined by the boundary
condition at zero:

ψ̃(0) sinα + ψ̃′(0) cosα = 0. (141)
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The complete system of normalized eigenfunctions of ∆̃α can then easily be
calculated:

ψ̃α(r, p) =

√
2
π

r cosα cos rp− sinα sin rp√
r2 cos2 α + sin2 α

; (142)

if α ∈ (0, π/2), there is one additional bound state,

ψ̃α(b, p) =
1√

2 tanα
exp(−p tanα), (143)

so that

−∆̃αψ̃α(r, p) = r2ψ̃α(r, p), (144)
−∆̃αψ̃α(b, p) = − tan2 α ψ̃α(r, p). (145)

The corresponding eigenfunctions ψα of the operator r̂2
α are:

ψα(r, p) =

√
2p
π

r cosα cos rp− sinα sin rp√
r2 cos2 α + sin2 α

, (146)

and we restrict ourselves to α ∈ [π/2, π], so that there are no bound states and
the operator r̂ is self-adjoint. Indeed, r̃ is the square root of −∆̃α, hence its
eigenvalue for the bound state is imaginary.

To restrict the choice further, we apply the idea of Newton and Wigner [40].
First, the subgroup of Q0 that preserves the surface t = 0 is to be found. This is,
in our case, UD(s) generated by the dilatation D. Then, in the quantum theory,
the eigenfunctions of the position at t = 0 are to transform properly under this
group; this means that the eigenfunction for the eigenvalue r is to be transformed
to that for the eigenvalue e−sr, for each s and r. The dilatation group generated
by D̂ acts on a wave function ψ(p) as follows:

ψ(p) �→ UD(s)ψ(p) = ψ(e−sp), (147)

where UD(s) is an element of the group parameterized by s. Applying UD(s) to
ψα(r, p) yields

UD(s)ψα(r, p) = e−s/2
√

2p
π

r cosα cos(e−srp)− sinα sin(e−srp)√
r2 cos2 α + sin2 α

. (148)

The factor e−s/2 in the resulting functions of p keeps the system δ-normalized.
Let α = π/2; then

UD(s)ψπ/2(r, p) = e−s/2ψπ/2(e−sr, p). (149)

Similarly, for α = π,

UD(s)ψπ(r, p) = e−s/2ψπ(e−sr, p), (150)
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but such a relation can hold for no other α from the interval [π/2, π], because
of the form of the eigenfunction dependence on r. Now, Newton and Wigner
require that

UD(s)ψ(r, p) = e−s/2ψ(e−sr, p). (151)

Then all values of α except for α = π/2 and α = π are excluded.
We have, therefore, only two choices for the self-adjoint extension of r̂2:

ψ(r, p) :=

√
2p
π

sin rp, r ≥ 0, (152)

and

ψ(r, p) :=

√
2p
π

cos rp, r ≥ 0. (153)

Let us select the first set, (152); by that, the construction of a position operator
is finished. The construction contains a lot of choice: the large factor-ordering
freedom, and the freedom of choosing the self-adjoint extension.

Another observable that we shall need is η̂; this is to tell us the direction of
motion of the shell at the time zero, having the eigenvalues +1 for all purely out-
going shell states, and −1 for the in-going ones. In fact, in the classical theory,
η = −sgnpr, but pr does not act as an operator on the Hilbert space K, only p2

r,
and the sign is lost.

Consider the classical dilatation generator D = tpt + rpr. It is a Dirac ob-
servable; at t = 0, its value is rpr. Thus, for positive r, the sign of −D at t = 0
has the required value. Hence, we have the relation:

sgnD = −ηt=0. (154)

The eigenfunctions ψa(p) of the operator D̂ are solutions of the differential
equation:

D̂ψa(p) = aψa(p). (155)

The corresponding normalized system is given by

ψa(p) =
1√
2π

pia. (156)

Hence, the kernels P±(p, p′) of the projectors P̂± on the purely out- or in-going
states are:

P+(p, p′) =
∫ 0

−∞
daψa(p)

ψ∗
a(p

′)
p′ , P−(p, p′) =

∫ ∞

0
daψa(p)

ψ∗
a(p

′)
p′ (157)

so that

(η̂0ψ)(p) =
∫ ∞

0
dp′[P+(p, p′)− P−(p, p′)]ψ(p′). (158)

The observables p̂t, D̂, r̂0 and η̂0 will suffice to work out a number of inter-
esting predictions.
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4.2 Motion of Wave Packets

We shall work with the family of wave packets on the energy half-axis that are
defined by

ψκλ(p) :=
(2λ)κ+1/2√

(2κ)!
pκ+1/2e−λp, (159)

where κ is a positive integer and λ is a positive number with dimension of length.
Using the formula

∫ ∞

0
dp pne−νp =

n!
νn+1 , (160)

which is valid for all non-negative integers n and for all complex ν that have a
positive real part, we easily show that the wave packets are normalized,

∫ ∞

0

dp

p
ψ2
κλ(p) = 1. (161)

Observe that ψκλ(p) = ψκ1(λp). The theory has been constructed so that
it is scale invariant. The rescaling p �→ λp does not change the scalar product.
The meaning of the parameter λ is, therefore, a scale: all energies concerning
the packet will be proportional to λ−1, all times and all radii to λ.

The expected energy,

〈E〉κλ :=
∫ ∞

0

dp

p
pψ2

κλ(p), (162)

of the packet can be calculated by the formula (160) with the simple result

〈E〉κλ =
κ + 1/2

λ
. (163)

The (energy) width of the packet can be represented by the mean quadratic
deviation (or dispersion),

〈∆E〉κλ :=
√
〈E2〉κλ − 〈E〉2κλ , (164)

which is

〈∆E〉κλ =
√

2κ + 1
2λ

. (165)

In the Schrödinger picture, the time evolution of the packet is generated by
−p̂t:

ψκλ(t, p) = ψκλ(p)e−ipt. (166)
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Let us calculate the corresponding wave function Ψκλ(r, t) in the r-representation,

Ψκλ(t, r) :=
∫ ∞

0

dp

p
ψκλ(t, p)ψ(r, p), (167)

where the functions ψ(r, p) are defined by (152). Formula (160) then yields:

Ψκλ(t, r) =
1√
2π

κ!(2λ)κ+1/2√
(2κ)!

[
i

(λ + it + ir)κ+1 −
i

(λ + it− ir)κ+1

]
. (168)

It follows immediately that

lim
r→0

|Ψκλ(t, r)|2 = 0. (169)

The scalar product measure for the r-representation is just dr because the eigen-
functions (152) are normalized, so the probability to find the shell between r and
r + dr is |Ψκλ(t, r)|2dr.

Our first important result is, therefore, that the wave packets start away from
the center r = 0 and then are keeping away from it during the whole evolution.
This can be interpreted as the absence of singularity in the quantum theory:
no part of the packet is squeezed up to a point, unlike the shell in the classical
theory.

Observe that the equation Ψκλ(t, 0) = 0 is not a result of an additional
boundary condition imposed on the wave function. It follows from the dynamics
we have constructed. The nature of the question that we are studying requires
that the wave packets start in the asymptotic region so that their wave function
vanishes at r = 0 for t → −∞; this is the only condition put in by hand. The
fact that the dynamics preserves this equation is the property of the self-adjoint
extensions of the Hamiltonian and the position operators.

Again, λ can be used to re-scale the radius, r = λρ and the time, t = λτ
with the result

Ψκλ(λτ, λρ) =
1√
λ
Ψκ1(τ, ρ) . (170)

The factor 1/
√
λ is due to the scalar product in the r-representation being

(
Φ(r), Ψ(r)

)
=

∫ ∞

0
drΦ∗(r)Ψ(r) =

∫ ∞

0
dρ
√
λΦ∗(ρ)

√
λΨ(ρ) , (171)

so that
√
λΨ(λρ) is λ-independent.

A more tedious calculation is needed to obtain the time dependence 〈rt〉κλ
of the expected radius of the shell,

〈rt〉κλ :=
∫ ∞

0
dr r|Ψκλ(t, r)|2. (172)

The results that can be calculated analytically are (we skip the calculations;
for details, see [34]):

〈rt〉κλ = 〈r−t〉κλ ∀κ, λ , t , (173)
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that is all packets are time reversal symmetric. There is the minimal expected
radius 〈r0〉κλ at t = 0,

〈r0〉κλ =
1
π

22κ(κ!)2

(2κ)!
κ + 1
κ

λ

κ + 1/2
> 0 . (174)

Let us turn to the asymptotics t→ ±∞. We obtain for both cases t→ ±∞
and all λ and κ:

〈rt〉κλ ≈ |t|+ O(t−2κ). (175)

We can also calculate the spread of the wave packet in r by means of the
r̂-dispersion 〈∆rt〉κλ. The calculation of 〈r2〉κλ is much easier than that of 〈r̂〉κλ
because r̂2 is a differential operator in p-representation:

〈r2〉κλ = −λ2
∫ ∞

0

dq

q
ψ∗
κ1(q, τ)

(
−√q

∂2

∂q2

1√
q
ψκ1(q, τ)

)
, (176)

where q = λp. This gives

〈r2
t 〉κλ = t2 +

λ2

2κ + 1
. (177)

For κ% 1, we can use the asymptotic expansion for the Γ -function to obtain

22κ+1(κ!)2

(2κ)!
=

√
2π(2κ + 1)− 1

4

√
2π

2κ + 1
+ O(κ−3/2) ; (178)

that gives

〈r0〉κλ = λ

[
1√
πκ

+ O(κ−3/2)
]

. (179)

Then, the spread of the packet for large κ is

〈∆r0〉κλ = λ

[√
π − 2

κ
+ O(κ−3/2)

]
. (180)

We observe that the spread is of the same order as the expected value. At
t→ ±∞,

〈∆r±∞〉κλ = λ

[
1√

2κ + 1
+ O(t−2κ+1)

]
. (181)

Hence, the asymptotic spread is nearly equal to the spread at the minimum.
This can be due to the light-like nature of the shell matter.

A further interesting question about the motion of the packets is about the
portion of a given packet that moves in – is purely in-going – at a given time t.
The portion is given by ‖P̂−ψκλ‖2, where P̂− is the projector defined in Sect. 4.1.
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If we write out the projector kernel and make some simple rearrangements in
the expression of the norm, we obtain:

‖P̂−ψκλ‖2 =
∫ ∞

−∞
dq′

∫ ∞

−∞
dq′′

(∫ ∞

0
daψ∗

a(e
q′

)ψa(eq
′′
)
)

ψ∗
κλ(t, e

q′′
)ψκλ(t, eq

′
),

(182)

where the transformation of integration variables p′ and p′′ to eq
′
and eq

′′
in the

projector kernels has been performed. The further calculation can be found in
[34]. The results are:

‖P̂−ψκλ‖2t=0 = 1/2 , ‖P̂−ψκλ‖2t→−∞ = 1 , ‖P̂−ψκλ‖2t→∞ = 0 . (183)

Hence, we have one-to-one relation between in- and out-going states at the time
of the bounce, while there are only in-going, or only out-going states at the
infinity.

The obvious interpretation of these formulae is that the quantum shell always
bounces at the center and re-expands.

The result that the quantum shell bounces and re-expands is clearly at odds
with the classical idea of black hole forming in the collapse and preventing
anything that falls into it from re-emerging. It is, therefore, natural to ask
if the packet is squeezed enough so that an important part of it comes un-
der its Schwarzschild radius. We can try to answer this question by comparing
the minimal expected radius 〈r0〉κλ and its spread 〈∆r0〉κλ with the expected
Schwarzschild radius 〈rH〉κλ and its spread 〈∆rH〉κλ for the wave packet. For
the Schwarzschild radius, we have

〈rH〉κλ = 2GM̄κλ = (2κ + 1)
L2

P

λ
, (184)

where LP is the Planck length, and

〈∆rH〉κλ = 2G〈∆M〉κλ =
√

2κ + 1
L2

P

λ
. (185)

We are to ask the question: for which λ and κ does the following inequality hold:

〈r0〉κλ + 〈∆r0〉κλ < 〈rH〉κλ − 〈∆rH〉κλ . (186)

If it holds, then the most of the packet becomes squeezed beyond the most of
the Schwarzschild radius. From (179) and (180), we obtain

λ2

L2
P

(
1√
π

+
√
π − 2

)
< (2κ + 1)

√
κ−

√
κ(2κ + 1) . (187)

Clearly, if λ ≈ LP, then the inequality holds for any large κ (starting from
κ = 2). For larger λ, κ must be (λ/LP)4/3× larger. Hence, we must go to Planck
regime in order that the packets cross their Schwarzschild radius.

To summarize: The packet can, in principle, fall under its Schwarzschild
radius. Even in such a case, the packet bounces and re-expands.

This apparent paradox will be explained in the next section.
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4.3 Grey Horizons

In this section, we try to explain the apparently contradictory result that the
quantum shell can cross its Schwarzschild radius in both directions. The first
possible idea that comes to mind is simply to disregard everything that our model
says about Planck regime. This may be justified, because the model can hardly
be considered as adequate for this regime. Outside Planck regime, however, the
shell bounces before it reaches its Schwarzschild radius and there is no paradox.
However, the model is mathematically consistent, simple, and solvable; it must,
therefore, provide some mechanism to make the horizon leaky. We shall study
this mechanism in the hope that it can work in more realistic situations, too.

To begin with, we have to recall that the Schwarzschild radius is the radius
of a non-diverging null hyper-surface; anything moving to the future can cross
such a hyper-surface only in one direction. The local geometry is that of an
apparent horizon. (Whether or not an event horizon forms is another question;
the answer to it also depends on the geometry near the singularity [42]). However,
as Einstein’s equations are invariant under time reversal, there are two types
of Schwarzschild radius: that associated with a black hole and that associated
with a white hole. Let us call these Schwarzschild radii (or apparent horizons)
themselves black and white. The explanation of the paradox that follows from
our model is that quantum states can contain a linear combination of black and
white (apparent) horizons, and that no event horizon ever forms. We call such
a combination a grey horizon.

The existence of grey horizons can be shown as follows. The position and
the “colour” of a Schwarzschild radius outside the shell is determined by the
spacetime metric. For our model, this metric is a combination of purely gauge
and purely dependent degrees of freedom, and so it is determined, within the
classical version of the theory, by the physical degrees of freedom through the
constraints.

The metric can be calculated along a Cauchy surface Σ that intersect the
shell with total energy E, direction of radial motion η, and the radius r. The
result of this calculation (see [34]) is: If the shell is contracting, η = −1, then
any space-like surface containing such a shell can at most intersect an out-going
apparent horizon at the radius R = 2GE. Analogous result holds for η = +1,
where the shell is expanding: the apparent horizon is then in-going. The horizon
radius is determined by the equation RH = 2GE, and the horizon will cut Σ
if and only if RH > r. We can assign the value +1 (−1) to the horizon that is
out- (in-)going and denote the quantity by c (colour: black or white hole). To
summarize:

1. The condition that an apparent horizon intersects Σ is r < 2GE.
2. The position of the horizon at Σ is RH = 2GE.
3. The colour c of this horizon is c = η.

In this way, questions about the existence and colour of an apparent horizon
outside the shell are reduced to equations containing dynamical variables of the
shell. In particular, the result that c = η can be expressed by saying that the
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shell always creates a horizon outside that cannot block its motion. All that
matters is that the shell can bounce at the singularity (which it cannot within
the classical theory).

These results can be carried over to quantum mechanics after quantities
such as 2GE − r and η are expressed in terms of the operators describing the
shell. Then we obtain a “quantum horizon” with the “expected radius” 2G〈E〉
and with the “expected colour” 〈η〉 to be mostly black at the time when the
expected radius of the shell crosses the horizons inwards, neutrally grey at the
time of the bounce and mostly white when the shell crosses it outwards.

This proof has, however, two weak points. First, the spacetime metric on
the background manifold is not a gauge invariant quantity; although all gauge
invariant geometrical properties can be extracted from it within the classical
version of the theory, this does not seem to be possible in the quantum theory
[43]. Second, calculating the quantum spacetime geometry along hyper-surfaces
of a foliation on a given background manifold is foliation dependent. For exam-
ple, one can easily imagine two hyper-surfaces Σ and Σ′ belonging to different
foliations, that intersect each other at a sphere outside the shell and such that
Σ intersects the shell in its in-going and Σ′ in its out-going state. Observe that
the need for a foliation is only due to our insistence on calculating the quantum
metric on the background manifold.

The essence of these problems is the gauge dependence of the results of the
calculation. However, it seems that this dependence concerns only details such as
the distribution of different hues of grey along the horizon, not the qualitative
fact that the horizon exists and changes colour from almost black to almost
white. Still, a more reliable method to establish the existence and properties of
grey horizons might require another material system to be coupled to our model;
this could probe the spacetime geometry around the shell in a gauge-invariant
way.

4.4 Concluding Remarks

Comparison of the motion of wave packets of Sect. 4.2 with the classical dy-
namics of the shell as described in Sect. 3.1 shows a notable difference. Whereas
all classical shells cross their Schwarzschild radius and reach the singularity in
some stage of their evolution, the quantum wave packets never reach the sin-
gularity, but always bounce and re-expand; some of them even manage to cross
their Schwarzschild radius during their motion. This behaviour is far from be-
ing a small perturbation around a classical solution if the classical spacetime is
considered as a whole. Even locally, the semi-classical approximation is not valid
near the bouncing point. It is surely valid in the whole asymptotic region, where
narrow wave packets follow more or less the classical trajectories of the shell.

The most important question, however, concerns the validity of the semi-
classical approximation near the Schwarzschild radius. We have seen that the
geometry near the radius can resemble the classical black hole geometry in the
neighbourhood of the point where the shell is crossing the Schwarzschild radius
inwards. Then, the radius changes its colour gradually and the geometry becomes
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very different from the classical one. Finally, near the point where the shell
crosses the Schwarzschild radius outwards, the radius is predominantly white
and the quantum geometry can be again similar to the classical geometry, this
time of a white hole horizon.

If the change of colour is very slow, then the neighbourhood of the inward
crossing where the classical geometry is a good approximation can be large. It
seems that a sufficiently large scattering time would allow for arbitrarily slow
change of colour. We cannot exclude, therefore, that the quantum spacetime con-
tains an extended region with the geometry resembling its classical counterpart
near a black hole horizon. This can be true even if the quantum spacetime as a
whole differs strongly from any typical classical collapse solution.

One can even imagine the following scenario (which needs a more realistic
model than a single thin shell). A quantum system with a large energy collapses
and re-expands after a huge scattering time. The black hole horizon phase is
so long that Hawking evaporation becomes significant and must be taken into
account in the calculation. It does then influence the scattering time and the
period of validity of the black hole approximation. The black hole becomes very
small and only then the change of horizon colour becomes significant. The white
hole stage is quite short and it is only the small remnant of the system that,
finally, re-expands. The whole process can still preserve unitarity. In fact, this
is a scenario for the issue of Hawking evaporation process. It is not excluded by
the results of the present paper.

One can also consider the following conception. At and under the Schwarz-
schild radius, the local spacetime geometry for a white Schwarzschild radius
is very, and measurably, different from that of a black one. However, outside
the Schwarzschild radius, the local geometries of both cases are isometric to
each other so that the isometry need not contain the time reversal. Hence, the
quantum geometry outside a very grey horizon need not actually differ from the
classical geometry around a black hole (locally) very much.

All these speculations must be investigated and made more precise. If an
observer staying at the radius RB measures the proper time ∆T (RB) be-
tween the shell wave packet crossing his position in and out, then of course

lim
RB→∞

∆T (RB) = ∞. In the collision theory, one considers, therefore, some

standard collision with ∆sT (RB) and takes the limit only after the subtraction,

lim
RB→∞

(
∆T (RB)−∆sT (RB)

)
. (188)

This limit, if finite, is called time delay [44]. A particularly difficult example is
Coulomb scattering, for which the divergence in ∆T (RB) involves not only linear,
but also logarithmic terms. This is due to the long range of Coulomb potential
and is, therefore, called infrared divergence. One can still find a subtraction for
the Coulomb case because the logarithmic term depends only on charges and so
has the same leading part for a whole class of scattering processes.

In our case, there are also logarithmic terms, but they depend on the energy
of the shell (energy is the charge for gravitation). No reasonable subtraction
seems, therefore, possible. One had better work at a finite radius RB all time.
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To calculate our ∆T (RB), one has to use the quantum geometry outside the
shell.

But what is the quantum geometry? In the classical version of general relativ-
ity, a metric tensor field written in particular coordinates contains all information
about local geometric properties. A change in the coordinates does not lead to
any change of these properties because they can be calculated from the trans-
formed metric. In a quantum theory, however, coordinate transformations is a
delicate issue. Let us turn to our simple system to see why. We have chosen the
coordinates U and V that are uniquelly determined for each solution by means
of their geometric properties. The components A(U, V ) and R(U, V ) of the four-
metric with respect to these coordinates are geometric quantities themselves.
Nobody wants to deny that the quantities A(η,M,w;U, V ) and R(η,M,w;U, V )
are Dirac observables for each fixed value of U and V : they are then just func-
tions of η, M and w, which are Dirac observables. In the quantum theory, one
can try to promote these quantities to operators by replacing η, M and w by the
corresponding quantum operators and by choosing a suitable factor ordering.
Let us suppose that the quantities Â(U, V ) and R̂(U, V ) obtained in this way
are well defined operators for each value of U and V . Can we not calculate all
geometric properties near each point (U, V ) from these operators?

Problems emerge if we choose to work with a different set of geometric co-
ordinates. Let us, for example, pass to the Schwarzschild coordinates T and R;
near infinity, they are a very natural choice. Again, we can work out the form
of the metric components g00(η,M,w;T,R) and g11(η,M,w;T,R) for each so-
lution and try to construct the operators ĝ00(T,R) and ĝ11(T,R) from them. Is
there any transformation within the quantum theory analogous to the classical
coordinate transformation and providing a basis for a proof that the local ge-
ometric properties calculated from Â(U, V ) and R̂(U, V ) are the same as those
calculated from ĝ00(T,R) and ĝ11(T,R)? A problem is that the transformation
between {U, V } and {T,R} is field dependent. Indeed, for η = +1, it is given
by (70) and (71). The right-hand sides depend not only on T∞ (which coincides
with our T here) and R, but also on M and w (the full transformation depends
also on η). Hence, if we assume that the quantities T and R are just parameters,
then the quantities U and V are operators and vice versa. However, the quan-
tities T and R are parameters in the operators ĝ00(T,R) and ĝ11(T,R) and the
quantities U and V are parameters in Â(U, V ) and R̂(U, V ).

It seems, therefore, that there is a problem of principle in addition to the
factor-ordering problem to transform the operators Â(U, V ) and R̂(U, V ) to
ĝ00(T,R) and ĝ11(T,R). The conclusion is that quantum geometry cannot be
described in a coherent manner analogous to the differential geometry, see also
[43].

At the present stage, we try to calculate each geometric property for itself.
Thus, in his PhD thesis, M. Ambrus, to whom I owe all my knowledge about
collision theory, tries to define and calculate the scattering times. Another at-
tempt is to define quantum geometry in a similar way as the classical geom-
etry is defined: by properties of test particles. This might work even near the
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Schwarzschild and zero radius. Thus, we are trying with I. Kouletsis to quantize
an analogous system containing two shells and to use the second shell as a spy
probing the quantum geometry created by the first one. For some preliminary
results see [45], [28] and [46].

The calculations of this paper are valid only for null shells. Similar calcula-
tions for massive shells have been performed in [47]. There has been re-expansion
and unitarity for massive shells if the rest mass has been smaller than the Planck
mass (10−5 g). It is very plausible that the interpretation of these results is sim-
ilar to that given in the present paper. Thus, we can expect the results valid at
least for all “light” shells. There is, in any case, a long way to any astrophysi-
cally significant system and a lot of work is to be done before we can claim some
understanding of the collapse problem.
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5. P. Háj́ıček and J. Kijowski: Phys. Rev. D 61, 024037 (2000)
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Primordial Black Holes as a Probe of Cosmology
and High Energy Physics

Bernard J. Carr
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Abstract. Recent developments in the study of primordial black holes (PBHs) will be
reviewed, with particular emphasis on their formation and evaporation. PBHs could
provide a unique probe of the early Universe, gravitational collapse, high energy physics
and quantum gravity. Indeed their study may place interesting constraints on the
physics relevant to these areas even if they never formed.

1 Introduction

Hawking’s discovery in 1974 that black holes emit thermal radiation due to
quantum effects was surely one of the most important results in 20th century
physics. This is because it unified three previously disparate areas of physics
- quantum theory, general relativity and thermodynamics - and like all such
unifying ideas it has led to profound insights. Although not strictly an application
of quantum gravity theory, the theme of this meeting, it might be regarded as
a conceptual first step in that direction. Also there is a natural link in that the
final stage of black hole evaporation, when the black hole is close to the Planck
mass, can only be understood with a proper theory of quantum gravity.

In practice, only “primordial black holes” which formed in the early Universe
could be small enough for Hawking radiation to be important. Such a black hole
will be referred to by the acronym “PBH”, although this should not be confused
with the acronym for “Physikzentrum Bad Honnef”, the institute hosting this
meeting! Interest in PBHs goes back nearly 35 years and some of the history
of the subject will be reviewed in Sect. 2. As will be seen, interest was much
intensified as a result of Hawking’s discovery. Indeed, although it is still not
definite that PBHs ever formed, it was only through thinking about them that
Hawking was led to his remarkable insight. Thus the discovery illustrates that
studying something may be useful even if it does not exist!

Of course, the subject is much more interesting if PBHs did form and their
discovery would provide a unique probe of at least four areas of physics: the
early Universe; gravitational collapse; high energy physics; and quantum grav-
ity. The first topic is relevant because studying PBH formation and evaporation
can impose important constraints on primordial inhomogeneities, cosmological
phase transitions (including inflation) and varying–G models. These topics are
covered in Sects. 3, 4, and 5, respectively. The second topic is discussed in Sect. 6
and relates to recent developments in the study of “critical phenomena” and the
issue of whether PBHs are viable dark matter candidates. The third topic arises

B.J. Carr, Primordial Black Holes as a Probe of Cosmology and High Energy Physics, Lect. Notes
Phys. 631, 301–321 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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because PBH evaporations could contribute to cosmic rays, whose energy dis-
tribution would then give significant information about the high energy physics
involved in the final explosive phase of black hole evaporation. This is covered
in Sect. 7. The fourth topic arises because it has been suggested that quantum
gravity effects could appear at TeV scale and this leads to the intriguing possi-
bility that small black holes could be generated in accelerators experiments or
cosmic ray events. As discussed in Sect. 8, this could have striking observational
consequences. Although such black holes are not technically “primordial”, this
possibility would have radical implications for PBHs themselves.

2 Historical Overview

It was realized many years ago that black holes with a wide range of masses could
have formed in the early Universe as a result of the great compression associated
with the Big Bang. A comparison of the cosmological density at a time t after
the Big Bang with the density associated with a black hole of mass M shows that
PBHs would have of order the particle horizon mass at their formation epoch:

MH(t) ≈ c3t

G
≈ 1015

(
t

10−23 s

)
g. (1)

PBHs could thus span an enormous mass range: those formed at the Planck
time (10−43s) would have the Planck mass (10−5g), whereas those formed at 1 s
would be as large as 105M�, comparable to the mass of the holes thought to
reside in galactic nuclei. By contrast, black holes forming at the present epoch
could never be smaller than about 1M�.

Zeldovich & Novikov [119] first derived (1) but they were really considering
“retarded cores” rather than black holes and Hawking [54] was the first person
to realize that primordial density perturbations might lead to gravitational col-
lapse on scales above the Planck mass. For a while the existence of PBHs seemed
unlikely since Zeldovich & Novikov [119] had pointed out that they might be ex-
pected to grow catastrophically. This is because a simple Newtonian argument
suggests that, in a radiation-dominated universe, black holes much smaller than
the horizon cannot grow much at all, whereas those of size comparable to the
horizon could continue to grow at the same rate as it throughout the radiation
era. Since we have seen that a PBH must be of order the horizon size at forma-
tion, this suggests that all PBHs could grow to have a mass of order 1015M�
(the horizon mass at the end of the radiation era). There are strong observa-
tional limits on how many such giant holes the Universe could contain, so the
implication seemed to be that very few PBHs ever existed.

However, the Zeldovich-Novikov argument was questionable since it neglected
the cosmological expansion and this would presumably hinder the black hole
growth. Indeed myself and Hawking were able to disprove the notion that PBHs
could grow at the same rate as the particle horizon by demonstrating that there
is no spherically symmetric similarity solution which represents a black hole
attached to an exact Friedmann model via a sound-wave [22]. Since a PBH
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must therefore soon become much smaller than the horizon, at which stage
cosmological effects become unimportant, we concluded that PBHs cannot grow
very much at all (cf. [12,80]).

The realization that small PBHs might exist after all prompted Hawking to
study their quantum properties. This led to his famous discovery [55] that black
holes radiate thermally with a temperature

T =
�c3

8πGMk
≈ 10−7

(
M

M�

)−1

K, (2)

so they evaporate on a timescale

τ(M) ≈ G2M3

�c4
≈ 1064

(
M

M�

)3

y. (3)

Only black holes smaller than 1015g would have evaporated by the present epoch,
so (1) implies that this effect could be important only for black holes which
formed before 10−23s.

Despite the conceptual importance of this result, it was bad news for PBH
enthusiasts. For since PBHs with a mass of 1015g would be producing photons
with energy of order 100 MeV at the present epoch, the observational limit
on the γ-ray background intensity at 100 MeV immediately implied that their
density could not exceed 10−8 times the critical density [101]. Not only did
this render PBHs unlikely dark matter candidates, it also implied that there
was little chance of detecting black hole explosions at the present epoch [103].
Nevertheless, it was realized that PBH evaporations could still have interesting
cosmological consequences. In particular, they might generate the microwave
background [120] or modify the standard cosmological nucleosynthesis scenario
[98] or contribute to the cosmic baryon asymmetry [3]. PBH evaporations might
also account for the annihilation-line radiation coming from the Galactic centre
[99] or the unexpectedly high fraction of antiprotons in cosmic rays [73]. PBH
explosions occurring in an interstellar magnetic field might also generate radio
bursts [105]. Even if PBHs had none of these consequences, studying such effects
leads to strong upper limits on how many of them could ever have formed and
thereby constrains models of the early Universe.

Originally it was assumed that PBHs would form from initial inhomogeneities
but in the 1980s attention switched to several new formation mechanisms. Most
of the mechanisms were associated with various phase transitions that might
be expected to occur in the early Universe and there was particular interest in
whether PBHs could form from the quantum fluctuations associated with the
many different types of inflationary scenarios. Indeed it soon became clear that
there are many ways in PBHs serve as a probe of the early Universe and, even
if they never formed, their non-existence gives interesting information [20]. In
this sense, they are similar to other “relicts” of the Big Bang, except that they
derive from much earlier times.

In the 1990s work on the cosmological consequences of PBH evaporations was
revitalized as a result of calculations by my PhD student Jane MacGibbon. She
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realized that the usual assumption that particles are emitted with a black-body
spectrum as soon as the temperature of the hole exceeds their rest mass is too
simplistic. If one adopts the conventional view that all particles are composed of
a small number of fundamental point-like constituents (quarks and leptons), it
would seem natural to assume that it is these fundamental particles rather than
the composite ones which are emitted directly once the temperature goes above
the QCD confinement scale of 250 MeV. One can therefore envisage a black
hole as emitting relativistic quark and gluon jets which subsequently fragment
into leptons and hadrons [83,85] and this modifies the cosmological constraints
considerably [84]

Over the last decade PBHs have been assigned various other cosmological
roles. Some people have speculated that PBH evaporation, rather than proceed-
ing indefinitely, could cease when the black hole gets down to the Planck mass
[13,30]. In this case, one could end up with stable Planck mass relics, which would
provide dark matter candidates [7,25,82]. Although most gamma-ray bursts are
now known to be at cosmological distances, it has been proposed that some
of the short period ones could be nearby exploding PBHs [10,28]. Solar mass
PBHs could form at the quark-hadron phase transition and, since some of these
should today reside in our Galactic halo, these have been invoked to explain the
microlensing of stars in the Magellanic Clouds [64,66,115].

3 PBHs as a Probe of Primordial Inhomogeneities

One of the most important reasons for studying PBHs is that it enables one to
place limits on the spectrum of density fluctuations in the early Universe. This
is because, if the PBHs form directly from density perturbations, the fraction
of regions undergoing collapse at any epoch is determined by the root-mean-
square amplitude ε of the fluctuations entering the horizon at that epoch and the
equation of state p = γρ (0 < γ < 1). One usually expects a radiation equation
of state (γ = 1/3) in the early Universe. In order to collapse against the pressure,
an overdense region must be larger than the Jeans length at maximum expansion
and this is just

√
γ times the horizon size. On the other hand, it cannot be larger

than the horizon size, else it would form a separate closed universe and not be
part of our Universe [22].

This has two important implications. Firstly, PBHs forming at time t should
have of order the horizon mass given by (1). Secondly, for a region destined to
collapse to a PBH, one requires the fractional overdensity at the horizon epoch
δ to exceed γ. Providing the density fluctuations have a Gaussian distribution
and are spherically symmetric, one can infer that the fraction of regions of mass
M which collapse is [18]

β(M) ∼ ε(M) exp
[
− γ2

2ε(M)2

]
(4)

where ε(M) is the value of ε when the horizon mass is M . The PBHs can have
an extended mass spectrum only if the fluctuations are scale-invariant (i.e. with
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ε independent of M). In this case, the PBH mass spectrum is given by [18]

dn/dM = (α− 2)(M/M∗)−αM−2
∗ ΩPBHρcrit , (5)

where M∗ ≈ 1015g is the current lower cut-off in the mass spectrum due to
evaporations, ΩPBH is the total density of the PBHs in units of the critical
density (which itself depends on β) and the exponent α is determined by the
equation of state:

α =
(

1 + 3γ
1 + γ

)
+ 1 . (6)

α = 5/2 if one has a radiation equation of state (γ=1/3), as expected. This means
that the integrated mass density of PBHs larger than M falls off as M−1/2, so
most of the PBH density is contained in the smallest ones.

Many scenarios for the cosmological density fluctuations predict that ε is at
least approximately scale-invariant but the sensitive dependence of β on ε means
that even tiny deviations from scale-invariance can be important. If ε(M) de-
creases with increasing M , then the spectrum falls off exponentially and most of
the PBH density is contained in the smallest ones. If ε(M) increases with increas-
ing M , the spectrum rises exponentially and - if PBHs were to form at all - they
could only do so at large scales. However, the microwave background anisotropies
would then be larger than observed, so this possibilty can be rejected.

The current density parameter ΩPBH associated with PBHs which form at a
redshift z or time t is related to β by [18]

ΩPBH = βΩR(1 + z) ≈ 106β

(
t

s

)−1/2

≈ 1018β

(
M

1015g

)−1/2

, (7)

where ΩR ≈ 10−4 is the density parameter of the microwave background and we
have used (1). The (1 + z) factor arises because the radiation density scales as
(1+z)4, whereas the PBH density scales as (1+z)3. Any limit on ΩPBH therefore
places a constraint on β(M) and the constraints are summarized in Fig. 1, which
is taken from Carr et al. [25]. The constraint for non-evaporating mass ranges
above 1015g comes from requiring ΩPBH < 1 but stronger constraints are asso-
ciated with PBHs smaller than this since they would have evaporated by now
[19]. The strongest one is the γ-ray limit associated with the 1015g PBHs evapo-
rating at the present epoch [101]. Other ones are associated with the generation
of entropy and modifications to the cosmological production of light elements
[98]. The constraints below 106g are based on the (uncertain) assumption that
evaporating PBHs leave stable Planck mass relics, in which case these relics are
required to have less than the critical density [7,25,82].

The constraints on β(M) can be converted into constraints on ε(M) using (4)
and these are shown in Fig. 2. Also shown here are the (non-PBH) constraints
associated with the spectral distortions in the cosmic microwave background
induced by the dissipation of intermediate scale density perturbations and the
COBE quadrupole measurement. This shows that one needs the fluctuation am-
plitude to decrease with increasing scale in order to produce PBHs and the lines
corresponding to various slopes in the ε(M) relationship are also shown in Fig. 2.
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Fig. 1. Constraints on β(M)

Fig. 2. Constraints on ε(M)
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4 PBHs as Probe of Cosmological Phase Transitions

Many phase transitions could occur in the early Universe which lead to PBH
formation. Some of these mechanisms still require pre-existing density fluctua-
tions but in others the PBHs form spontaneously even if the Universe starts off
perfectly smooth. In the latter case, β(M) depends not on ε(M) but on some
other cosmological parameter.

4.1 Soft Equation of State

Some phase transitions can lead to the equation of state becoming soft (γ << 1)
for a while. For example, the pressure may be reduced if the Universe’s mass is
ever channelled into particles which are massive enough to be non-relativistic.
In such cases, the effect of pressure in stopping collapse is unimportant and the
probability of PBH formation just depends upon the fraction of regions which
are sufficiently spherical to undergo collapse; this can be shown to be [70]

β = 0.02 ε13/2 . (8)

The value of β is now much less sensitive to ε than indicated by (4) and most of
the PBHs will be smaller than the horizon mass at formation by a factor ε3/2.
For a given spectrum of primordial fluctuations, this means that there may just
be a narrow mass range - associated with the period of the soft equation of state
- in which the PBHs form. In particular, this could happen at the quark-hadron
phase transition since the pressure may then drop for a while [66].

4.2 Collapse of Cosmic Loops

In the cosmic string scenario, one expects some strings to self-intersect and form
cosmic loops. A typical loop will be larger than its Schwarzschild radius by the
inverse of the factor Gµ, where µ is the mass per unit length. If strings play a
role in generating large-scale structure, Gµ must be of order 10−6. Hawking [57]
showed that there is always a small probability that a cosmic loop will get into a
configuration in which every dimension lies within its Schwarzschild radius and
he estimated this to be

β ∼ (Gµ)−1(Gµx)2x−2 , (9)

where x is the ratio of the loop length to the correlation scale. If one takes x to
be 3, ΩPBH > 1 for Gµ > 10−7, so he argued that one overproduces PBHs in the
favoured string scenario. Polnarev & Zemboricz [102] obtained a similar result.
However, ΩPBH is very sensitive to x and a slight reduction could still give an
interesting value [17,41,86]. Note that spectrum (5) still applies since the holes
are forming with equal probability at every epoch.
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4.3 Bubble Collisions

Bubbles of broken symmetry might arise at any spontaneously broken symmetry
epoch and various people, including Hawking, suggested that PBHs could form as
a result of bubble collisions [32,58,78]. However, this happens only if the bubble
formation rate per Hubble volume is finely tuned: if it is much larger than the
Hubble rate, the entire Universe undergoes the phase transition immediately and
there is not time to form black holes; if it is much less than the Hubble rate,
the bubbles are very rare and never collide. The holes should have a mass of
order the horizon mass at the phase transition, so PBHs forming at the GUT
epoch would have a mass of 103g, those forming at the electroweak unification
epoch would have a mass of 1028g, and those forming at the QCD (quark-hadron)
phase transition would have mass of around 1M�. Only a phase transition before
10−23s would be relevant in the context of evaporating PBHs.

4.4 Inflation

Inflation has two important consequences for PBHs. On the one hand, any PBHs
formed before the end of inflation will be diluted to a negligible density. Inflation
thus imposes a lower limit on the PBH mass spectrum:

M > Mmin = MPl

(
TRH

TPl

)−2

, (10)

where TRH is the reheat temperature and TPl ≈ 1019 GeV is the Planck tem-
perature. The CMB quadrupole measurement implies TRH ≈ 1016GeV, so Mmin
certainly exceeds 1g. On the other hand, inflation will itself generate fluctuations
and these may suffice to produce PBHs after reheating. If the inflaton potential
is V (φ), then the horizon-scale fluctuations for a mass-scale M are

ε(M) ≈
[

V 3/2

M3
PlV

′

]
H

(11)

where a prime denotes d/dφ and the right-hand-side is evaluated for the value
of φ when the mass-scale M falls within the horizon.

In the standard chaotic inflationary scenario, one makes the “slow-roll” and
“friction-dominated” asumptions:

ξ ≡
(
MPlV

′

V

)2

� 1, η ≡ M2
PlV

′′

V
� 1 . (12)

Usually the exponent n characterizing the power spectrum of the fluctuations,
|δk|2 ≈ kn, is very close to but slightly below 1:

n = 1 + 4ξ − 2η ≈ 1. (13)

Since ε scales as M (1−n)/4, this means that the fluctuations are slightly increasing
with scale. The normalization required to explain galaxy formation (ε ≈ 10−5)



Primordial Black Holes 309

Fig. 3. Constraints on spectral index n in terms of reheat time t1.

would then preclude the formation of PBHs on a smaller scale. If PBH formation
is to occur, one needs the fluctuations to decrease with increasing mass (n > 1)
and this is only possible if the scalar field is accelerating sufficiently fast:

V ′′/V > (1/2)(V ′/V )2. (14)

This condition is certainly satisfied in some scenarios [23] and, if it is, (4) implies
that the PBH density will be dominated by the ones forming immediately after
reheating. Since each value of n corresponds to a straight line in Fig. 2, any par-
ticular value for the reheat time t1 corresponds to an upper limit on n. This limit
is indicated in Fig. 3, which is taken from Carr et al. [25] apart from a correction
pointed out by Green & Liddle [47]. Similar constraints have now been obtained
by several other people [15,72]. The figure also shows how the constraint on n is
strengthened if the reheating at the end of inflation is sufficiently slow for there
to be a dust-like phase [49]. PBHs have now been used to place constraints on
many other sorts of inflationary scenarios - supernatural [104], supersymmetric
[44], hybrid [40,68], oscillating [110], preheating [9,34,38,50] and running mass
[79] - as well as a scenarios in which the inflaton serves as the dark matter [81].

Bullock & Primack [16] and Ivanov [63] have questioned whether the Gaus-
sian assumption which underlies (4) is valid in the context of inflation. So long as
the fluctuations are small (δφ/φ << 1), as certainly applies on a galactic scale,
this assumption is valid. However, for PBH formation one requires δφ/φ ∼ 1,
and, in this case, the coupling of different Fourier modes destroys the Gaussian-
ity. Their analysis suggests that β(M) is much less than indicated by (4) but it
still depends very sensitively on ε.
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Not all inflationary scenarios predict that the spectral index should be con-
stant. Hodges & Blumenthal [61] pointed out that one can get any form for
the fluctuations whatsoever by suitably choosing the form of V (φ). For example,
(11) suggests that one can get a spike in the spectrum by flattening the potential
over some mass range (since the fluctuation diverges when V ′ goes to 0). This
idea was exploited by Ivanov et al. [64], who fine-tuned the position of the spike
so that it corresponds to the microlensing mass-scale.

5 PBHs as a Probe of a Varying Gravitational Constant

The PBH constraints would be severely modified if the value of the gravitational
“constant” G was different at early times. The simplest varying-G model is
Brans-Dicke (BD) theory [14], in which G is associated with a scalar field φ
and the deviations from general relativity are specified by a parameter ω. A
variety of astrophysical tests currently require |ω| > 500, which implies that the
deviations can only ever be small [113]. However, there exist generalized scalar-
tensor theories [11,97,112] in which ω is itself a function of φ and these lead to
a considerably broader range of variations in G. In particular, it permits ω to
be small at early times (allowing noticeable variations of G then) even if it is
large today. In the last decade interest in such theories has been revitalized as a
result of early Universe studies. Extended inflation explicitly requires a model in
which G varies [78] and, in higher dimensional Kaluza-Klein-type cosmologies,
the variation in the sizes of the extra dimensions also naturally leads to this
[39,74,88].

The behaviour of homogeneous cosmological models in BD theory is well
understood [6]. They are vacuum-dominated at early times but always tend
towards the general relativistic solution during the radiation-dominated era. This
means that the full radiation solution can be approximated by joining a BD
vacuum solution to a general relativistic radiation solution at some time which
may be regarded as a free parameter of the theory. However, when the matter
density becomes greater than the radiation density at around 105y, the equation
of state becomes dustlike (p = 0) and G begins to vary again.

The consequences of the cosmological variation of G for PBH evaporation
depend upon how the value of G near the black hole evolves. Barrow [4] intro-
duces two possibilities: in scenario A, G everywhere maintains the background
cosmological value (so φ is homogeneous); in scenario B, it preserves the value it
had at the formation epoch near the black hole even though it evolves at large
distances (so φ becomes inhomogeneous). On the assumption that a PBH of
mass M has a temperature and mass-loss rate

T ∝ (GM)−1, Ṁ ∝ (GM)−2, (15)

with G = G(t) in scenario A and G = G(M) in scenario B, Barrow & Carr
[5] calculate how the evaporation constraints summarized in Fig. 1 are modified
for a wide range of varying-G models. The question of whether scenario A or
scenario B is more plausible has been studied in several papers [21,43,52,65] but
is still unresolved.
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6 PBHs as a Probe of Gravitational Collapse

The criterion for PBH formation given in Sect. 3 is rather simplistic and not
based on a detailed calculation. The first numerical studies of PBH formation
were carried out by Nadezhin et al. [92]. These roughly confirmed the criterion
δ > γ for PBH formation, although the PBHs could be somewhat smaller than
the horizon. In recent years several groups have carried out more detailed hy-
drodynamical calculations and these have refined the δ > γ criterion and hence
the estimate for β(M) given by (4). Niemeyer & Jedamzik [96] find that one
needs δ > 0.8 rather than δ > 0.3 to ensure PBH formation and they also find
that there is little accretion after PBH formation, as expected theoretically [22].
Shibata & Sasaki [108] reach similar conclusions.

A particularly interesting development has been the application of “critical
phenomena” to PBH formation. Studies of the collapse of various types of spher-
ically symmetric matter fields have shown that there is always a critical solution
which separates those configurations which form a black hole from those which
disperse to an asymptotically flat state. The configurations are described by
some index p and, as the critical index pc is approached, the black hole mass is
found to scale as (p− pc)η for some exponent η. This effect was first discovered
for scalar fields [26] but subsequently demonstrated for radiation [35] and then
more general fluids with equation of state p = γρ [75,90].

In all these studies the spacetime was assumed to be asymptotically flat.
However, Niemeyer & Jedamzik [95] have recently applied the same idea to study
black hole formation in asymptotically Friedmann models and have found similar
results. For a variety of initial density perturbation profiles, they find that the
relationship between the PBH mass and the horizon-scale density perturbation
has the form

M = KMH(δ − δc)γ , (16)

where MH is the horizon mass and the constants are in the range 0.34 < γ < 0.37,
2.4 < K < 11.9 and 0.67 < δc < 0.71 for the various configurations. Since M → 0
as δ → δc, this suggests that PBHs may be much smaller than the particle hori-
zon at formation and it also modifies the mass spectrum [45,48,76,117]. However,
it is clear that a fluid description must break down if they are too small and
recent calculations by Hawke & Stewart [53] show that black holes can only form
on scales down to 10−4 of the horizon mass.

There has also been interest recently in whether PBHs could have formed at
the quark-hadron phase transition at 10−5s because of a temporary softening of
the equation of state then. Such PBHs would naturally have the sort of mass
required to explain the MACHO microlensing results [66]. If the QCD phase
transition is assumed to be of 1st order, then hydrodynamical calculations show
that the value of δ required for PBH formation is indeed reduced below the value
which pertains in the radiation case [67]. This means that PBH formation will be
strongly enhanced at the QCD epoch, with the mass distribution being peaked
around the horizon mass. One of the interesting implications of this scenario is
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the possible existence of a halo population of binary black holes [93]. With a full
halo of such objects, there could then be 108 binaries inside 50 kpc and some
of these could be coalescing due to gravitational radiation losses at the present
epoch. If the associated gravitational waves were detected, it would provide a
unique probe of the halo distribution [62].

7 PBHs as a Probe of High Energy Physics

We have seen that a black hole of mass M will emit particles like a black-body
of temperature [56]

T ≈ 1026
(
M

g

)−1

K ≈
(

M

1013 g

)−1

GeV. (17)

This assumes that the hole has no charge or angular momentum. This is a
reasonable assumption since charge and angular momentum will also be lost
through quantum emission but on a shorter timescale than the mass [100]. This
means that it loses mass at a rate

Ṁ = −5× 1025
(
M

g

)−2

f(M) g s−1 (18)

where the factor f(M) depends on the number of particle species which are light
enough to be emitted by a hole of mass M , so the lifetime is

τ(M) = 6× 10−27f(M)−1
(
M

g

)3

s. (19)

The factor f is normalized to be 1 for holes larger than 1017 g and such holes
are only able to emit “massless” particles like photons, neutrinos and gravitons.
Holes in the mass range 1015 g < M < 1017 g are also able to emit electrons,
while those in the range 1014 g < M < 1015 g emit muons which subsequently
decay into electrons and neutrinos. The latter range includes, in particular, the
critical mass for which τ equals the age of the Universe. If the total density
parameter is 1, this can be shown to be M∗ = 4.4 × 1014h−0.3g where h is the
Hubble parameter in units of 100 [84].

Once M falls below 1014g, a black hole can also begin to emit hadrons.
However, hadrons are composite particles made up of quarks held together by
gluons. For temperatures exceeding the QCD confinement scale of ΛQCD = 250−
300 GeV, one would therefore expect these fundamental particles to be emitted
rather than composite particles. Only pions would be light enough to be emitted
below ΛQCD. Since there are 12 quark degrees of freedom per flavour and 16
gluon degrees of freedom, one would also expect the emission rate (i.e. the value
of f) to increase dramatically once the QCD temperature is reached.

The physics of quark and gluon emission from black holes is simplified by a
number of factors. Firstly, one can show that the separation between successively
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Fig. 4. Instantaneous emission from a 1 GeV black hole. Plotted is the number of
particles emitted per time for energy interval in appropriate units.

emitted particles is about 20 times their wavelength, which means that short
range interactions between them can be neglected. Secondly, the condition T >
ΛQCD implies that their separation is much less than Λ−1

QCD ≈ 10−13cm (the
characteristic strong interaction range) and this means that the particles are
also unaffected by strong interactions. The implication of these three conditions
is that one can regard the black hole as emitting quark and gluon jets of the
kind produced in collider events. The jets will decay into hadrons over a distance
which is always much larger than GM , so gravitational effects can be neglected.
The hadrons may then decay into astrophysically stable particles through weak
and electomagnetic decays.

To find the final spectra of stable particles emitted from a black hole, one
must convolve the Hawking emission spectrum with the jet fragmentation func-
tion. This gives the instantaneous emission spectrum shown in Fig. 4 for a
T = 1 GeV black hole [85]. The direct emission just corresponds to the small
bumps on the right. All the particle spectra show a peak at 100 MeV due to pion
decays; the electrons and neutrinos also have peaks at 1 MeV due to neutron
decays. In order to determine the present day background spectrum of parti-
cles generated by PBH evaporations, one must first integrate over the lifetime
of each hole of mass M and then over the PBH mass spectrum [85]. In doing
this, one must allow for the fact that smaller holes will evaporate at an earlier
cosmological epoch, so the particles they generate will be redshifted in energy
by the present epoch.
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Fig. 5. Spectrum of particles from uniformly distributed PBHs

If the holes are uniformly distributed throughout the Universe, the back-
ground spectra should have the form indicated in Fig. 5. All the spectra have
rather similar shapes: an E−3 fall-off for E > 100 MeV due to the final phases
of evaporation at the present epoch and an E−1 tail for E < 100 MeV due to
the fragmentation of jets produced at the present and earlier epochs. Note that
the E−1 tail generally masks any effect associated with the mass spectrum of
smaller PBHs which evaporated at earlier epochs [19].

The situation is more complicated if the PBHs evaporating at the present
epoch are clustered inside our own Galactic halo (as is most likely). In this case,
any charged particles emitted after the epoch of galaxy formation (i.e. from PBHs
only somewhat smaller than M∗) will have their flux enhanced relative to the
photon spectra by a factor ξ which depends upon the halo concentration factor
and the time for which particles are trapped inside the halo by the Galactic
magnetic field. This time is rather uncertain and also energy-dependent. At
100 MeV one has ξ ∼ 103 for electrons or positrons and ξ ∼ 104 for protons and
antiprotons. MacGibbon & Carr [84] first used the observed cosmic ray spectra
to constrain ΩPBH but their estimates have recently been updated.

7.1 Gamma-Rays

Recent EGRET observations [109] give a γ-ray background of

dFγ
dE

= 7.3(±0.7)× 10−14
(

E

100 MeV

)−2.10±0.03

cm−3GeV−1 (20)
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between 30 MeV and 120 GeV. Carr & MacGibbon [24] showed that this leads
to an upper limit

ΩPBH ≤ (5.1± 1.3)× 10−9h−2, (21)

which is a refinement of the original Page-Hawking limit, but the form of the
spectrum suggests that PBHs do not provide the dominant contribution. If PBHs
are clustered inside our own Galactic halo, then there should also be a Galactic γ-
ray background and, since this would be anisotropic, it should be separable from
the extragalactic background. The ratio of the anisotropic to isotropic intensity
depends on the Galactic longtitude and latitude, the ratio of the core radius to
our Galactocentric radius, and the halo flattening. Wright claims that such a
halo background has been detected [114]. His detailed fit to the EGRET data,
subtracting various other known components, requires the PBH clustering factor
to be (2− 12)× 105h−1, comparable to that expected.

7.2 Antiprotons

Since the ratio of antiprotons to protons in cosmic rays is less than 10−4 over
the energy range 100 MeV − 10 GeV, whereas PBHs should produce them in
equal numbers, PBHs could only contribute appreciably to the antiprotons [111].
It is usually assumed that the observed antiproton cosmic rays are secondary
particles, produced by spallation of the interstellar medium by primary cosmic
rays. However, the spectrum of secondary antiprotons should show a steep cut-
off at kinetic energies below 2 GeV, whereas the spectrum of PBH antiprotons
should increase with decreasing energy down to 0.2 GeV, so this provides a
distinct signature [73].

MacGibbon & Carr originally calculated the PBH density required to explain
the interstellar antiproton flux at 1 GeV and found a value somewhat larger than
the γ-ray limit [84]. More recent data on the antiproton flux below 0.5 GeV comes
from the BESS balloon experiment [118] and Maki et al. [89] have tried to fit
this data in the PBH scenario. They model the Galaxy as a cylindrical diffusing
halo of diameter 40 kpc and thickness 4-8 kpc and then using Monte Carlo
simulations of cosmic ray propagation. A comparison with the data shows no
positive evidence for PBHs (i.e. there is no tendency for the antiproton fraction
to tend to 0.5 at low energies) but they require the fraction of the local halo
density in PBHs to be less than 3 × 10−8 and this is stronger than the γ-ray
background limit. A more recent attempt to fit the observed antiproton spectrum
with PBH emission comes from Barrau et al. [8] and is shown in Fig. 6. A key test
of the PBH hypothesis will arise during the solar minimum period because the
flux of primary antiprotons should be enhanced then, while that of the secondary
antiprotons should be little affected [91].

7.3 PBH Explosions

One of the most striking observational consequences of PBH evaporations would
be their final explosive phase. However, in the standard particle physics picture,
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Fig. 6. Comparison of PBH emission and antiproton data from Barrau et al.

where the number of elementary particle species never exceeds around 100, the
likelihood of detecting such explosions is very low. Indeed, in this case, observa-
tions only place an upper limit on the explosion rate of 5× 108pc−3y−1 [1,107].
This compares to Wright’s γ-ray halo limit of 0.3 pc−3y−1 and the Maki et al.
antiproton limit of 0.02 pc−3y−1.

However, the physics at the QCD phase transition is still uncertain and the
prospects of detecting explosions would be improved in less conventional particle
physics models. For example, in a Hagedorn-type picture, where the number of
particle species exponentiates at the quark-hadron temperature, the upper limit
is reduced to 0.05 pc−3y−1 [37]. Cline and colleagues have argued that one might
expect the formation of a QCD fireball at this temperature [27] and this might
even explain some of the short period γ-ray bursts observed by BATSE [28].
They claim to have found 42 candidates of this kind and the fact that their
distribution matches the spiral arms suggests that they are Galactic. Although
this proposal is speculative and has been disputed [46], it has the attraction
of making testable predictions (eg. the hardness ratio should increase as the
duration of the burst decreases). A rather different way of producing a γ-ray
burst is to assume that the outgoing charged particles form a plasma due to
turbulent magnetic field effects at sufficiently high temperatures [10].
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Some people have emphasized the possibility of detecting very high energy
cosmic rays from PBHs using air shower techniques [31,51,77]. However, re-
cently these efforts have been set back by the claim of Heckler [59] that QED
interactions could produce an optically thick photosphere once the black hole
temperature exceeds Tcrit = 45 GeV. In this case, the mean photon energy is
reduced to me(TBH/Tcrit)1/2, which is well below TBH, so the number of high
energy photons is much reduced. He has proposed that a similar effect may op-
erate at even lower temperatures due to QCD effects [60]. Several groups have
examined the implications of this proposal for PBH emission [29,69]. However,
these arguments should not be regarded as definitive since MacGibbon et al.
claim that QED and QCD interactions are never important [87].

8 PBHs as a Probe of Quantum Gravity

In the standard Kaluza-Klein picture, the extra dimensions are assumed to be
compactified on the scale of the Planck length. This means that the influence of
these extra dimensions only becomes important at an energy scale of 1019GeV
and this is also presumably the scale on which quantum gravity effects become
significant. In particular, such effects are only important for black hole evapo-
rations once the black hole mass gets down to the Planck mass of 10−5g. Con-
ceivably, this could result in black hole evaporation ceasing, so that one ends up
with stable Planck-mass relics, and this leads to the sort of “relics” constraints
indicated in Figs. 1, 2, and 3. Various non-quantum-gravitational effects (such as
higher order corrections to the gravitational Lagrangian or string effects) could
also lead to stable relics [25] but the relic mass is always close to the Planck
mass.

In “brane” versions of Kaluza-Klein theory, some of the extra dimensions can
be much larger than the Planck length and this means that quantum gravity
effects may become important at a much smaller energy scale. If the internal
space has n dimensions and a compact volume Vn, then Newton’s constant GN

is related to the higher dimensional gravitational constant GD and the value of
the modified Planck mass MPl is related to the usual 4-dimensional Planck mass
M4 by the order-of-magnitude equations:

GN ∼ GD

Vn
, Mn+2

Pl ∼ M2
4

Vn
. (22)

The same relationship applies if one has an infinite extra dimension but with
a “warped” geometry, provided one interprets Vn as the “warped volume”. In
the standard model, Vn ∼ 1/Mn

4 and so MPl ∼ M4. However, with large extra
dimensions, one has Vn >> 1/Mn

4 and so MPl << M4. In particular, this might
permit quantum gravitational effects to arise at the experimentally observable
TeV scale.

If this were true, it would have profound implications for black hole formation
and evaporation since black holes could be generated in accelerator experiments,
such as the Large Hadron Collider (LHC). Two partons with centre-of-mass



318 Bernard J. Carr

energy
√
s will form a black hole if they come within a distance corresponding

to the Schwarzschild radius rS for a black hole whose mass MBH is equivalent
to that energy [33,42,106]. Thus the cross-section for black hole production is

σBH ≈ πr2
SΘ(

√
s−Mmin

BH ) , (23)

where Mmin
BH is the mass below which the semi-classical approximation fails. Here

the Schwarzschild radius itself depends upon the number of internal dimensions:

rS ≈ 1
MPl

(
MBH

MPl

)1/(1+n)

, (24)

so that σBH ∝ s1/(n+1). This means that the cross-section for black hole produc-
tion in scattering experiments goes well above the cross-section for the standard
model above a certain energy scale and in a way which depends on the number
of extra dimensions.

The evaporation of the black holes produced in this way will produce a char-
acteristic signature [33,42,106] because the temperature and lifetime of the black
holes depend on the number of internal dimensions:

TBH ≈ n + 1
rS

, τBH ≈ 1
MPl

(
MBH

MPl

)(n+3)/(n+1)

. (25)

Thus the temperature is decreased relative to the standard 4-dimensional case
and the lifetime is increased. The important qualitative effect is that a large
fraction of the beam energy is converted into transverse energy, leading to large-
multiplicity events with many more hard jets and leptons than would otherwise
be expected. In principle, the formation and evaporation of black holes might
be observed by LHC by the end of the decade and this might also allow one to
experimentally probe the number of extra dimensions. On the other hand, this
would also mean that scattering processes above the Planck scale could not be
probed directly because they would be hidden behind a black hole event horizon.

Similar effects could be evident in the interaction between high energy cos-
mic rays and atmospheric nucleons. Nearly horizontal cosmic ray neutrinos would
lead to the production of black holes, whose decays could generate deeply pen-
etrating showers with an electromagnetic component substantially larger than
that expected with conventional neutrino interactions. Several authors have stud-
ied this in the context of the Pierre Auger experiment, with event rates in excess
of one per year being predicted [2,36,106]. Indeed there is a small window of
opportunity in which Auger might detect such events before LMC.

It should be stressed that the black holes produced in these processes should
not themselves be described as “primordial” since they do not form in the early
Universe. On the other hand, it is clear that the theories which predict such
processes will also have profound implications for the formation and evaporation
of those black holes which do form then. This is because, at sufficiently early
times, the effects of the extra dimensions must be cosmologically important.
However, these effects are not yet fully understood.
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9 Conclusions

We have seen that PBHs could provide a unique probe of the early Universe,
gravitational collapse, high energy physics and quantum gravity. In the “early
Universe” context, particularly useful constraints can be placed on inflationary
scenarios and on models in which the value of the gravitational “constant” G
varies with cosmological epoch. In the “gravitational collapse” context, the ex-
istence of PBHs could provide a unique test of the sort of critical phenomena
discovered in recent numerical calculations. In the “high energy physics” con-
text, information may come from observing cosmic rays from evaporating PBHs
since the constraints on the number of evaporating PBHs imposed by gamma-ray
background observations do not exclude their making a significant contribution
to the Galactic flux of electrons, positrons and antiprotons. Evaporating PBHs
may also be detectable in their final explosive phase as gamma-ray bursts if suit-
able physics is invoked at the QCD phase transition. In the “quantum gravity”
context, the formation and evaporation of small black holes could lead to ob-
servable signatures in cosmic ray events and accelerator experiments, provided
there are extra dimensions and provided the quantum gravity scale is around a
TeV.
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Abstract. The range of validity of the usual identification of the black hole entropy
with the area of the horizon is considered from a general point of view. The situation is
then revised in the light of an example in which the actual presence of the event horizon
on a given hypersurface depends on a quantum event which occurs in the future of the
given hypersurface. This situation indicates that there is something fundamental that
is missing in our current ideas about the nature of a theory of quantum gravity, or,
alternatively, that there is something fundamental that we do not understand about
entropy in general, or at least in its association with black holes.

1 Introduction

It is well known by now that the laws of black hole mechanics seem to indicate
a deep connection between gravitation, thermodynamics and quantum mechan-
ics [1]. In this regard the black hole entropy is thought to play a central role
regarding possible clues about the nature of the quantum theory of gravitation.
The laws of Black Hole Mechanics together with Hawking’s discovery [2] of the
thermal radiation, of quantum mechanical origin, by black holes has lead to the
identification of the black hole area and its entropy.

We must keep in mind the difference in the two levels at which entropy
can be analyzed, the thermodynamical and the statistical mechanical. At the
thermodynamical level, one does not connect the microscopic description of the
system with its macroscopic one, while in the statistical mechanical approach one
can in principle evaluate directly the quantities like the entropy of the system
starting from the theory of the relevant microscopic degrees of freedom. For
instance, starting from the Hamiltonian of a set of non-interacting elementary
“atoms” one finds, trough a systematic calculation, all thermodynamic functions
for an ideal gas. Thus, the evaluation of the entropy of a black hole by statistical
mechanical methods and a comparison with the “ known” value, has for a long
time been considered as a fundamental test of proposed theories of quantum
gravity, and as a key method to distinguishing between them.

It is then to a certain degree a disappointment (as far as the usefulness of the
test to distinguish between theories is concerned) that currently the two most
popular approaches towards a theory of quantum gravity, the String Theory
approach [3] and the Loop Quantum Gravity approach [4], have, each within a
somehow restricted domain, achieved success in recovering the S = A/4 result
(in this work we will use units in which G = c = � = kB = 1).
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It is thus natural to consider more complex situations and see how the dif-
ferent approaches manage the challenge. This is certainly a path that many
researchers in the area are eagerly exploring. Here we will consider a situation
which is in some sense an extreme manifestation of this approach, and which
seems to indicate that there is either something fundamentally wrong with a
large class of approaches towards a theory of quantum gravity, including both
the String Theory approach and the Loop Quantum Gravity approach, or there
is something fundamental about entropy, and in particular, the assignment of
entropy to black holes that is beyond our current understanding. The discussion
here is mostly based on previous work carried out in collaboration with R. Sorkin
[5] and A. Corichi [6].

2 The Assignment of Entropy

Let us start by considering the issue in a general setting: Under what condi-
tions is the assignment of entropy appropriate, i.e. when?, to what?, and based
on what data? do we expect to assign an entropy? (See [7] for a general analy-
sis of the conceptual issues). Let us concentrate, unless otherwise specified, on
the statistical mechanical entropy Sstat, as opposed to the thermodynamical en-
tropy Sthermo, as the first is obviously more fundamental than the second. Next
one can address the issue of whether it is the Gibbs or the Boltzman entropy
what one should be considering. Recall that Gibbs entropy is associated with
an ensemble of systems, while the Boltzman Entropy is associated with a single
system whose state is specified only up to a certain limited precision that defines
the “mesostate”. In practice, both rely in the introduction of a coarse graining
defining a certain volume in phase space, or the distribution of the ensemble over
such volume, of which entropy is a measure. Thus we will not further specify the
particular notion of Sstat we are talking about.

The main points we want to make here are the following:

(i) Entropy should be assigned in every situation, not only to equilibrium, (or
quasi-equilibrium) situations. Otherwise the second law would lose much of
its predictive power: One would not be able to argue, for instance that an iso-
lated system tends towards equilibrium as a result of the tendency of entropy
to increase, if entropy is not defined in the intermediate, non-equilibrium sit-
uations. Furthermore, one would not be able to rule out perpetual motion
machines, simply on the grounds of this law, since one could certainly pro-
pose a machine that avoids passing trough an equilibrium situation, and
thus never having an entropy associated to it. Finally, one expects the laws
of physics to have a Markovian nature, in the sense that their predicting
power should not increase with the knowledge of the past together with the
present as opposed to the knowledge of the present alone. If it were the case
that entropy was defined only in certain situations, and at the present time
a certain (isolated) system did not have an entropy defined, we would not be
able to rule out its possible evolution towards a situation where its entropy
would be S0, but if we knew that in the past its entropy was S1 > S0 we
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would be able to rule out such evolution. It is very unlikely that other phys-
ical laws would restore the “Markovianness” of physics because, as far as we
know, the second law is the only law of nature containing an explicit arrow
of time (with the exception of some details of the weak interaction that are
not expected to play a role in the issue at hand).
The arguments above also indicate that:

(ii) the entropy should be associated with an instantaneous situation (or, more
generally, with a situation localized in time), rather than, say, with the full
world path (or history) of a system, for otherwise the predictive power of
the second law will disappear. In the general relativistic context this means
that entropy should be associated with a space-like hypersurface.
Moreover, as already mentioned, entropy should be assigned to a state of the
system (together with a certain coarse graining) so that it is, in a general
sense, assigned to “a description” of the state of the system rather than
to the instantaneous real (although perhaps unknown) state of the system
and thus has its fundamental significance deeply rooted on an information
theoretical setting [8].
Let us note, and warn the reader, that there seems to exits a certain degree
of confusion associated with the fact that in a thermodynamical formalism
there is in general no explicit procedure to evaluate the entropy of a config-
uration that is far from equilibrium, a fact that is sometimes misinterpreted
as indicating that under those conditions the entropy might not be defined.
This is incorrect. Indeed, one of the advantages of statistical mechanics over
thermodynamics is that it gives us in principle a procedure to evaluate the
entropy of out of equilibrium configurations. Consider, for instance, a gas
inside a box, for which the number density and energy density are given at
time t in terms of certain functions of the position (corresponding to a situ-
ation far from equilibrium). Imagine, moreover, that we are given a certain
coarse graining indicating the margin of error incurred in the determination
of these functions. Based on the theory of the relevant microscopic degrees
of freedom, in this case the kinetic theory of gases, one considers the set of
all the microscopic configurations compatible with the data, and, by taking
the logarithm of the volume of this set, one can evaluate the corresponding
Sstat. Note, however, that in this situation we do not expect the result to be
a simple function of a few macroscopic parameters, such as the total main
energy of the gas and volume of the box.
Let us now consider the specific case of the entropy assignment for a black
hole. Recall that the similarity between the laws of black hole mechanics
together with the discovery that (stationary) black holes would radiate with
a thermal spectrum whose temperature is proportional to the black hole’s
surface gravity, have lead to the identification of a quarter of the area A
of the black hole horizon with its entropy. The issue we need to address is
under what circumstances should we expect this identification to hold?
To start with, the study of several gedanken experiments involving sending
ordinary matter endowed with its ordinary entropy into black holes, indicate
that the so–called generalized entropy S∗ = S′+A/4 satisfies the generalized
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second law in the sense that S∗ is a non-decreasing function “of time”, de-
spite all attempts to find counterexamples [9]. This together with the first law
leave little doubt that the identification should be valid at least in station-
ary and quasi-stationary situations. How about non-stationary situations?
On the one hand we have the so called “Area Theorem” [10], stating that
(under certain reasonable conditions) the total area of the event horizon’s in-
tersection with a given Cauchy hypersurface, is always greater or equal than
the corresponding intersection area for any earlier Cauchy hypersurface. This
suggests that the identification should be valid also in non-stationary situ-
ations. On the other hand, as mentioned before, we would not normally
expect that the entropy of a non-equilibrium configuration should be given
by a simple function of a single macroscopic parameter such as A/4. How-
ever, we must recognize the possibility that, in some respects, black holes
might be, at the fundamental level, “much simpler objects” than, say, a gas
cloud, and that for such objects these kind of simple relations might remain
valid even outside equilibrium. Moreover, if there was an independent quan-
tity (i.e. the purported expression for Sstat), different and independent from
A/4, satisfying, as does A/4, the non-decreasing property, we would be in a
very strange situation where, in contrast with what happens with ordinary
systems, there would be two independent objects indicating the same arrow
of time.
It is then clear that things could become very strange unless we maintain
that

(iii) the identification of the horizon area and the black hole entropy should be
valid always (admittedly, there could be correction terms when the curvature
reaches the Plank scale, but this issue is not connected with the situation
we will be examining).

3 The Schrödinger Black Hole

We consider next a situation which, together with the discussion above, will
leads us to remarkable conclusions about the theory of quantum gravity or,
alternatively, to retreat from some of the positions (i), (ii), and (iii) already
outlined and argued for. The example will involve a certain similarity with the
famous “Schödinger Cat”, and thus the name “Schrödinger Black Hole” we are
giving to it.

Consider a static spherically symmetric thin shell of mass M , in a similarly
static, spherically symmetric asymptotically flat space-time. The shell is fitted
with a quantal device that at time t = 0 (according to an internal clock) will
make a random choice between triggering (with probability p) or not (with prob-
ability q = 1− p) the collapse of the shell, which would result in the formation
of a black hole. More concretely, imagine the shell as made of two thin massless
concentric spherical reflecting walls separated by a small distance, with electro-
magnetic radiation confined between them. The triggering device is connected
to a mechanism that makes the internal wall of the shell transparent to radiation
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when it is activated (this could be done for instance using polarized radiation
and Polaroid material for the shells). Next we describe the quantum triggering
mechanism: We want to ensure the synchronization on the change in the trans-
parency of the different parts of the internal spherical wall without having to
delay the collapse for a time comparable to the light travel time across the shell
after the quantum mechanical decision has been made. This can be achieved,
for instance, at two opposite points of the shell by using an EPR device as our
trigger mechanism: Take a zero spin particle at the center of the shell, which
then decays into two photons. Let’s fit the internal wall with detectors that
will measure the helicity of the photons and give each of them instructions to
change the transparency if the photon it detects has positive helicity, but not
if it has negative helicity (in this particular case we have p = q = 1/2 but the
scheme can be easily generalized adjusting the corresponding phases, to achieve
any chosen value of p ∈ [0, 1]). In this way, a coordinated collapse of the shell
will start at opposite points in the shell, without the need to propagate signals
across the shell after the quantum choice is made. One can easily extend this
synchronization to the entire shell by means of correlated many-particle states.

The metric outside the thin shell is, of course, the Schwarzschild metric:

ds2 = −
(

1− 2
GM

r

)
dt2 +

(
1− 2

GM

r

)−1

dr2 + r2dΩ2 (1)

for r ≥ Rshell, and the metric inside it is the Minkowski metric:

ds2 = −dT 2 + dR2 + R2dΩ2 (2)

for R ≤ Rshell. We approximate the shell as infinitely thin. The matching of the
exterior coordinates (t, r) with the interior coordinates (T,R) can be deduced
from the requirement that the metric induced on the shell from the exterior
space-time must coincide with that induced from the interior space-time; while
the trajectory of the shell (in the case where it does move) can be deduced from
the requirement that it move at the speed of light, see [11].

The motion of the shell be given by specifying the functions rshell = R(1)(t),
in terms of the exterior coordinates, r, t, and Rshell = R(2)(T ), in terms of the
interior coordinates, R, T .

A simple analysis [5] leads to rshell = Rshell, or in other words, to R(1)(t) =
R(2)(T ) and

[(
1− 2

M

R

)
−

(
1− 2

M

R

)−1 (
dR

dt

)2
]
dt2 =

[
1−

(
dR

dT

)2
]
dT 2 . (3)

We choose the coordinates so that the “quantum measurement” occurs at
T = t = 0. Then for t, T < 0 the shell is static and we have R = R0, where R0
is the initial radius of the shell. In this case, we obtain from (3)

T =
√

1− 2
M

R0
t . (4)
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If the shell fails to collapse, then Eq.4 remains true for all time. On the other
hand, if the shell collapses as a null shell starting at t = 0, we can obtain (for
T ,t ≥ 0) both T and t as functions of R from the condition that both sides of
Eq.3 vanish, i.e. that the induced metric on the shell be degenerate. From the
right hand side of this equation we obtain R(T ) = R0−T , and from its left hand
side we find

R(t)−R0 + 2M log
(
R(t)− 2M
R0 − 2M

)
= −t , (5)

where we have used the initial condition R(t = 0) = R0.
We next note that, although the collapsing shell will cross the Schwarzschild

radius at t = +∞, T = R0−2M , in fact, the horizon will be formed earlier than
that. Consider a light signal starting at the center of the shell at T = T1 and
traveling radially outwards. It will be able to escape to infinity iff it reaches the
shell before the collapse has occurred. That is, it must reach the shell while one
still has Rshell > 2M . The signal travels according to R = T −T1, whence it will
meet the shell when T−T1 = R(T ) = R0−T , that is to say, at T = (1/2)(R0+T1),
at which time Rshell = (1/2)(R0−T1). So, the signal will escape iff T1 < R0−4M .
If we take, for example, the initial shell radius to be R0 = 3M , then the signal
must leave the center with T1 < −M to be able to escape, and the origin at
T > −M is already inside the horizon, if it turns out that the collapse is in fact
triggered at T = 0.

To summarize, the locus of the horizon at times earlier than T = 0 depends
on what happens at T = 0. If there is no collapse, there is of course no horizon.
If the collapse occurs at T = 0 then the locus of the horizon at earlier times is
given by

T −R = R0 − 4M . (6)

Consider now a Cauchy hypersurface Σtc defined by the condition t = tc
(with tc < 0) outside the shell and by the corresponding condition T = Tc =
(1−2M/R0)1/2tc inside the shell. What is the area Atc of the intersection of the
horizon with Σtc? If we choose tc > −(4M − R0)(1− 2M/R0)−1/2 and assume
that at t = 0 the collapse is in fact triggered, then we will have

Atc = 4πR2
c = 4π

(
4M −R0 +

√
1− 2

M

R0
tc

)2

. (7)

For example, if we choose R0 = 3M , then we will have a non-vanishing area for
tc > −√3M (if the collapse is triggered) and its value will be

Atc = 4π
(
M +

1√
3
tc

)2

(8)

so that for, say, tc = −(
√

3/2)M we will have Atc = πM2. Of course, if at
t = 0 the collapse is not triggered, we will have Atc = 0. Note that by taking R0
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sufficiently close to 2M we can have, assuming that it is possible, in principle, to
build a shell arbitrarily close to the Schwarzschild radius, a nonzero intersection
of Σtc with the horizon as early as desired in exterior time tc; however, we
will always have Tc > −(4M − R0) > −2M when we have such a non-zero
intersection. In all these situations, the area Atc will be bounded by 16πM2, of
course.

Note that we have chosen a foliation of the space-time that seems very natu-
ral and which, in particular, is orthogonal to the static Killing field in the region
where such field is present. One cannot claim that every conceivable foliation
exhibits the same anticipatory behavior as the two we have studied above. How-
ever, the classical second law requires the entropy to increase along an arbitrarily
well-defined foliation, and if such result is to emerge from the quantum grav-
itational second law it is natural to expect the latter will have to share that
feature. Thus the existence of even one foliation along which the horizon forms
before the quantum choice is made should be enough to establish the physical
significance of the situation been considered here.

I must mention an interesting issue that arose during this meeting, namely
whether the setup envisioned here can, in principle, be constructed out of the
materials that we find in nature? That is, whether the spherical shells that
must contain the electromagnetic radiation can be made sufficiently light so
the calculations presented here are not seriously affected. Although this is an
interesting point we do not think that it can have any bearing on the discussion
at hand, as we can always place a much heavier and solid shell Sext outside our
double shell, which will have no effect on the geometry interior to it, and the only
thing we need to ensure is that such a shell has not lead to a collapsed situation
(the total mass must be bounded by twice it radius). From Sext we can hang
now ropes to sustain the interior (which is the part sustaining higher stresses) of
our original shell in order to ensure that it can withstand the radiation pressure.
Indeed we can think of the ropes being supported at infinity and do without
Sext. Ropes subjected to precisely the same type of conditions are considered in
examples designed to provide gedanken tests of the generalized second law [9].

Finally we note that despite the similarity of the situation considered here
with that of the “Schödinger Cat”, there is also a big difference between the two
situations: according to the basic principles of quantum mechanics the ambiguity
in the magnitude of the horizon area (at tc) in the above example, is completely
objective in nature. That is, it is not that “we avoid finding out” whether a
horizon exists or not, but that it is objectively impossible for anyone to find
out, given access only to information available on the given hypersurface.

4 The Problem and the Lessons

Let us consider what entropy should we assign (as dictated by (i) and (ii)) to
the instantaneous situation corresponding to the hypersurface Σtc? Following
(iii) we would like to assign in this case an entropy given by 1/4 the area of
the intersection of the event horizon with Σtc (plus the entropy of the radiation



330 Daniel Sudarsky

itself which we regard as negligible and which has in any event the same value
for both of the two alternative developments). But this quantity does not have a
definite value! This in itself should make us pause and reassess our convictions.

We can continue the analysis of the situation by noting that the fact that with
probability p the horizon area is given by Eq.7, and with probability q = 1 − p
its value is 0, there is obvious and natural expectation is for the corresponding
entropy:

Stc = p× Atc
4

+ q × 0 + S′ (9)

where S′ is the entropy of associated with the radiation in the shell and other
small corrections. We have in fact provided supporting evidence that this should
be the entropy associated with the example considered here, including a direct
calculation using a sum over histories approach [5], together with the assump-
tion that the standard identification of event horizon and entropy holds in the
“normal” circumstances.

Now, let us see what lessons can we extract from this example. Suppose for
a moment that we are in the possession of a fully satisfactory theory of quan-
tum gravity that is canonical in the sense of describing every physical situation
in terms of operators representing canonical variables in a Hilbert space and
representing the possible states of the system at any given time (we are assum-
ing that there would be a relativistic version of “a given time”, which could be
some generalization of “a given hyprsurface”). These types of theories include
both of the most popular candidates for a theory of Quantum Gravity: String
Theory and Loop Quantum Gravity. Now, let us imagine how would we proceed
with one such theory, to obtain the expression for the entropy associated with
Σtc . Recall, that as in the case of the inhomogeneous cloud of dust mentioned
in Sect. 2, we are supposed to consider the set of microscopic states, presum-
ably described by our QTG, that are compatible (to within a certain margin
of precision, presumably provided together with the data) with the macroscopic
description of the state of the system. Then, we should evaluate the entropy by
taking for instance the logarithm of the number of such microstates. We note,
that the macroscopic description of the state of the system in our case is given
by the initial data induced on Σtc by the space-time described in our example,
and by the state of the matter fields describing the radiation, and the other
pieces of the setup including the quantum mechanical triggering device. As such
the description is as complete as it can be, but is still not enough to determine
whether or not there is a black hole horizon intersecting the hypersurface, and
moreover such determination is forbidden by the principles of quantum theory
and thus, it is also impossible to make such determination in terms of our QTG.
Moreover, if we are to recover, in some approximation, the result of (9), the
number of such states will depend very strongly on p. However, the value of p
is associated, within the data on Σtc , only with an energetically insignificant
value of a quantum mechanical phase. Needless is to say, that no theory with
this strange characteristic has been proposed so far, and that certainly this is
not a feature of either String Theory or of Loop Quantum Gravity. Finally, it is
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worth pointing out that, when taking the limit p→ 1, our situation reduces to a
standard type of dynamical black hole, because in every ordinary collapse lead-
ing to the development of an event horizon, the locus of the latter is influenced
to some degree by the matter that will eventually participate in the collapse.
It is thus natural to expect that in such limit the evaluation of the number of
corresponding states in the Quantum Theory, would reduce to a calculation that
is in principle similar to the ones that have been carried out to date, admittedly,
within a more restricting set of assumptions.

Thus we have, apparently, been lead to the conclusion that the successful
theory of Quantum Gravity must be of a non-canonical type, and in particular
that it should be very different from the currently favored candidates. However,
we must as always recognize that such conclusion is certainly no stronger than
the assumptions we have made. We might want to consider which ones want to do
without. As we have argued, i) and ii) would call into question the foundations
of the statistical mechanical approach to the derivation of thermodynamics. We
might , on the other hand, want to consider giving up on these, but only within
the context of black hole physics, but this would mean we would be calling into
question the applicability of statistical mechanics to black hole physics and thus
we would be taking the foundations out from under the successes in this field
of the two approaches to the QTG, which is, after all, what presumably we are
trying to preserve with such a drastic steep). We might consider giving up on
iii), and take the position that we should rely not on the event horizon, but
on some other concept of horizon, which in simple circumstances coincides with
the former. This seems to be the position favored by many colleagues and it
certainly cannot be dismissed. However if one wants to make progress one must
actively look for such an appropriate alternative concept . Lets us review then
the existing options and name some of the reasons that they do not provide fully
satisfactory choices.

I) The first possibility, is to replace the Event Horizon by the Apparent Horizon.
This option has very serious problems, since it is known to be discontinuous
for dynamical situations like a collapsing star [12]. Furthermore, it is known
that even the Schwarzschild space-time contains Cauchy hypersurfaces with
no Apparent Horizons [13].

II) The second alternative, provided by the Isolated Horizons, is particularly
interesting for several reasons. First, it has been shown that for quasi-
stationary processes, the (quasi-local) Horizon Mass satisfies a first law in
which the entropy is proportional to the horizon area. Secondly, there exists
a calculation of the Statistical Mechanical Entropy that recovers the “stan-
dard result” S = A/4 for various types of black holes [14]. This formalism is
in fact a generalization of the standard stationary scenario to certain physi-
cally realistic situations, in which one does not require the exterior region to
be in equilibrium. Nevertheless, the whole approach is based on the assump-
tion that the horizon itself is in internal equilibrium. In particular, its area
has to be constant, and nothing can “fall into the horizon”. In this regard,
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isolated horizons as presently understood, are not fully satisfactory since the
formalism is not defined and does not work in general, dynamical, situations.
Moreover, there are situations in which one is faced with the occurrence of
several isolated horizons, intersecting a single hypersurface, one within the
other, and one must decide to single out the one to which entropy is to be
assigned. We can take the view that this should be the outermost horizon, but
this seems to be just an add hoc choice, unless it is argued that the selection is
the natural one associated with the fact that we are specifying the “exterior”
observers to be the ones with respect to which entropy is assigned. This view
would be natural if we take the position that the assignment of entropy is
related to the coarse graining, which is partially specified by pointing out
the region from which information is available to the observer. However, this
point of view would conflict with the fact that the isolated horizons are not
good indicators of such regions, basically because their definition is purely
local and thus not fully based on causal relations.
Isolated horizons are well defined for equilibrium situations. If some matter
or radiation falls into the horizon, the previously isolated horizon ∆0 will
cease to be isolated, and (one intuitively expects) there will be in the fu-
ture a new isolated horizon ∆1, once the radiation has left and the system
has reached equilibrium again. One would like to have a definition of hori-
zon that interpolates between these two isolated horizons ∆0 and ∆1, such
that the physical situation can be described as a generalized horizon that
“grows” whenever matter falls in. There is a natural direction for this no-
tion of horizon, and this leads us to the third possibility, namely, Trapping
Horizons.

III) In a series of papers, Hayward [15] has been able to show that there exists
(at least in the spherically symmetric case) a dynamical (as opposed to
quasi-stationary) first law, for a (quasi-local) energy that, however, does
not coincide with the Horizon energy of the isolated horizons formalism
(in the static limit). There exists also a second law, for the area of the
trapping horizon, where a particular foliation of the space-like horizon is
chosen. However, we face the problem that, by definition, these horizons can
be specified only when the full space-time is available: given a point in space-
time, the issue of whether or not it lies on a marginally trapped 2-surface
( a key issue to determine whether the point lies or not on the Trapping
Horizon), can not in general, be fully ascertained until the whole space-time
(where the rest of the 2-surface is to be located) is given. This option is
also problematic because the trapping horizons are in general space-like and
thus there is no guarantee that a given hypersurface would not intersect
the horizon in several disconnected components thus leading to the same
problem of in-definition that was mentioned in connection with option II).
Moreover, in this case the horizon can even be tangent to the hypersurface
which is an extreme version of the previous problem. The fact that all this
objections can be raised against this option, has its origin in the fact that the
trapping horizon is not a surface defined on the grounds of causality alone.
Thus the exiting alternatives to the Event Horizon, do not seem to provide
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satisfactory options, but is certainly not apriori clear that such option can
not be constructed.

In conclusion, the issues associated with the assignment of entropy to the
Schrödinger Black Hole seems to give a very strong indication that we must
give up, either on the QTG of the canonical type, or on the foundations of
statistical mechanics, at least as it applies to black holes, or, minimally, that
there is something fundamental that we do not understand about these issues.

Acknowledgements

I would like to thank A. Ashtekar, R. Sorkin, R. Wald, A. Corichi, and several of
the colleagues attending this meeting for the many interesting discussions about
this subject. This work was in part supported by DGAPA-UNAM Grant No.
112401 and by CONACyT grant 32272-E.

References

1. See for example R.M. Wald: The Thermodynamics of Black Holes, Living Reviews
in Relativity 2001-6, Preprint gr-qc/9912119; R.M. Wald: Quantum Field The-
ory in Curved Spacetime and Black Hole Thermodynamics, (University of Chicago
Press, 1996) and references therein

2. S.W. Hawking: Particle creation by black holes, Commun. Math. Phys. 43, 199
(1975)

3. A. Strominger and C. Vafa: Microscopic origin of the Bekenstein-Hawking entropy,
Phys. Lett. B 379, 99 (1996); J. Maldacena and A. Strominger: Statistical entropy
of four-dimensional extremal black holes, Phys. Rev. Lett. 77 428-429 (1996); G.
Horowitz: Quantum States of Black Holes, in R. Wald (ed.): Black Holes and
Relativistic Stars, Chicago University Press, 1998

4. A. Ashtekar, J. Baez, A. Corichi, K. Krasnov: Quantum Geometry and Black
Hole Entropy, Phys. Rev. Lett. 80, 904 (1998); A. Ashtekar, J. Baez, K. Krasnov:
Quantum Geometry of Isolated Horizons and Black Hole Entropy, Adv. Theor.
Math. Phys. 4, 1 (2001), gr-qc/0005126

5. R. Sorkin and D. Sudarsky: Large Fluctuations in the Horizon Area and what they
can tell us about Entropy and Quantum Gravity, Class. Quantum Grav. 16, 3835
(1999)

6. A. Corichi and D. Sudarsky: When is S = 1/4A, submitted to Modern Physics
Letters A

7. Penrose O.: Foundations of Statistical Mechanics, (Pergamon Press, Oxford, 1970)
8. C.E. Shanon and W. Weaver: The Mathematical Theory of Communications (Univ.

of Illinois Press, Urbana, 1949)
9. S. Gao and R.M. Wald: The physical process’ version of the first law and the

generalized second law for charged and rotating black holes, Phys. Rev. D 64,
084020 (2001), gr-qc/0106071

10. P T. Chrusciel, E. Delay, G.J. Galloway, and R. Howard: The area theorem,
gr-qc/0001003

11. For the classical analysis of collapsing shells see W. Israel: Nuovo Cim. 44 b, 1
(1966); W. Israel: Phys. Rev. 153, 1388 (1967)



334 Daniel Sudarsky

12. S.W. Hawking: The Event Horizon, in Black Holes, eds. DeWitt and DeWitt (Gor-
don and Breach, 1973)

13. R. Wald and V. Iyer: Trapped surfaces in the Schwarzschild geometry and cosmic
censorship, Phys. Rev. D 44, R 3719 (1991)

14. A. Ashtekar, C. Beetle, S. Fairhurst: Isolated Horizons: a generalization of Black
Hole Mechanics. Class. Quant. Grav. 16, L1-L7 (1999); A. Ashtekar, C. Beetle, S.
Fairhurst: Mechanics of Isolated Horizons. Class. Quant. Grav. 17, 253 (2000); A.
Ashtekar, A. Corichi, K. Krasnov: Isolated Horizons: The Classical Phase Space.
Adv. Math. Theor. Phys. 3, 419 (2000), gr-qc/9905089

15. S. Hayward: Black Holes: New Horizons. Talk Given at the 9th Marcel Grossman
Meeting. Preprint gr-qc/0008071; S. Hayward: Quasilocal first law of black-hole
dynamics, Class. Quantum Grav. 17, 2153 (2000); S. Hayward: Dynamic black
hole entropy, Phys. Lett. A 256, 347 (1999); S. Hayward: General laws of black
hole dynamics, Phys. Rev. D 49, 6467 (1994); S. Hayward: Spin coefficient form
of the new laws of black hole dynamics, Class. Quant. Grav. 11, 3025 (1994)



Physics with Large Extra Dimensions and
Non-Newtonian Gravity at Sub-mm Distances

Ignatios Antoniadis

CERN, Theory Division, CH–1211, Geneva 23, Switzerland��

Abstract. The recent understanding of string theory opens the possibility that the
string scale can be as low as a few TeV. The apparent weakness of gravitational in-
teractions can then be accounted by the existence of large internal dimensions, in
the submillimeter region. Furthermore, our world must be confined to live on a brane
transverse to these large dimensions, with which it interacts only gravitationally. In my
lectures, I describe this scenario which gives a new theoretical framework for solving
the gauge hierarchy problem and the unification of all interactions. I also discuss its
main properties and implications for observations at both future particle colliders, and
in non-accelerator gravity experiments. Such effects are for instance the production
of Kaluza–Klein resonances, graviton emission in the bulk of extra dimensions, and a
radical change of gravitational forces in the submillimeter range.

1 Introduction

Look in front of you. Now on your side. Next on the top. These are the known
spatial dimensions of the Universe: there are just three. Have you ever won-
dered about the origin of this number? Have you ever thought if there are new
dimensions that can escape our observation?

In all physical theories, the number of dimensions is a free parameter fixed
to three by observation, with one exception: string theory, which predicts the
existence of six new spatial dimensions. This is the only known theory today
that unifies the two great discoveries of 20th century: quantum mechanics, de-
scribing the behavior of elementary particles, and Einstein’s General Relativity,
describing gravitational phenomena in our Universe.

String theory replaces all elementary point-particles that form matter and
its interactions with a single extended object of vanishing width: a tiny string.
Thus, every known elementary particle, such as the electron, quark, photon or
neutrino, corresponds to a particular vibration mode of the string (see Fig. 1).
The diversity of these particles is due to the different properties of the corre-
sponding string vibrations.

Until now, there is no experimental confirmation of string theory. String
theorists feel though that the situation may be similar to the one of Einstein’s
General Relativity before 1919, when its first experimental test has arrived in the
occasion of a total eclipse of sun. String physicists believe today in string theory,
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Fig. 1. In string theory, the elementary constituent of matter is a miniscule string,
having vanishing width but finite size. It can be open with free ends (upper part), or
closed (lower part). Its vibration modes, like the ones shown above in two dimensions,
correspond to various elementary particles

mainly for theoretical reasons, because it provides a framework for unification of
all interactions including gravity. However, some precise experimental tests are
necessary to decide whether this theory describes the physical reality.

1.1 Small Dimensions

How can it be tested? If our universe has really six additional dimensions, we
should observe new phenomena related to the existence of these dimensions.
Why nobody has detected them until now? String theorists had an answer for
a long time: because the size of the new dimensions is very small, in contrast to
the size of the other three that we know, which is infinitely large.

An infinite and narrow cylinder for example is a two-dimensional space, with
one dimension forming a very small cycle: one can move infinitely far away
along the axis, while one returns back at the same point when moving along the
orthogonal direction (see Fig. 2). If one of the three known dimensions of space
was small, say of millimeter size, we would be flat and, while we could move
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Fig. 2. A small dimension of space may have two different forms. It may close back to
itself: in the surface of a cylinder, the dimension transverse to its axis forms a closed
cycle. But it may also form an interval, like the thickness of a box: it is impossible
to go out of the box, since there is nothing there, not even vacuum. Obviously, it is
impossible to draw really extra dimensions within our space

freely towards left or right, forward or backward, it would be impossible to do
more than a few millimeters up or down where space ends.

For a long time, string physicists thought that the six extra dimensions were
extremely small, having the smallest possible size of physics, associated to the
Planck length ∼ 10−35 meters. In fact, strings were introduced to describe grav-
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itation whose strength becomes important and comparable to the strength of
the other three fundamental interactions (electromagnetic, nuclear strong and
weak) at very short distances, of the order of the Planck length. It was then
natural to assume that the size of the extra dimensions should be of the same
order. In this case, the manifestation of new phenomena associated to the extra
dimensions are by far out of experimental reach, at least in particle accelerators.
Indeed, the Large Hadron Collider (LHC) which is the biggest accelerator under
construction at CERN will explore short distances, only up to 10−19 meters.

The situation changed drastically recently. During the last three years, more
and more theorists examine the possibility that the new dimensions of string
theory may be much larger than we thought in the past [1,2]. These ideas lead
in particular to experimental tests of string theory that can be performed at
TEVATRON and LHC, or at future colliders.

1.2 Supersymmetry Breaking and TeV Dimensions

The first indication of large extra dimensions in string theory came in 1988
from studies of the problem of supersymmetry breaking [3,4]. Supersymmetry is
believed to be a new fundamental symmetry of matter which renders the masses
of elementary particles compatible with gravitation. In fact, in a quantum theory
without supersymmetry, the presence of gravity, which is much weaker than the
other interactions, introduces a new high energy scale, the Planck mass ∼ 1019

GeV, which attracts all masses of elementary particles to become 1016 times
heavier than their observed values: this is the so-called mass hierarchy problem.

One of the main predictions of supersymmetry is that every known elemen-
tary particle has a partner, called superparticle. However, since none of these
superparticles have ever been produced in accelerators, they should be heavier
than the observed particles. Supersymmetry should therefore be broken. On the
other hand, protection of the mass hierarchy requires that its breaking scale, i.e.
the mass splitting between the masses of ordinary particles and their partners,
cannot be larger than a few TeV. They can therefore be produced for instance
at LHC, which will test the idea of supersymmetry.

Assuming that supersymmetry breaking in string theory arises by the process
of compactification of the extra dimensions (i.e. from their intrinsic geometry
and topology), one can show that its energy breaking scale is tied to the size
of these dimensions [3,4]. Thus, a breaking scale in the TeV region would imply
the existence of an extra dimension of size ∼ 10−18 meters. This was one of the
few general predictions of string theory which has the chance to be testable in
the next generation of particle experiments in the near future.

At that time however, this result was not taken seriously. The reason was
rather due to a theoretical prejudice to evade invalidating the only computa-
tions we could do. Even now, string theory can be studied in most cases only
approximately, namely in perturbation theory. More precisely, computations can
be performed if strings interact weakly. The strength of string interactions is
controlled by a parameter, called string coupling, which increases when extra
dimensions become large. Therefore, when their size is larger than 10−35 meters
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Fig. 3. If there is an extra dimension of size 10−18 meters, felt by the electroweak
interactions, LHC should produce the first KK states of the photon and of the Z
boson. We can then detect the electron-positron pairs produced by the disintegration
of these states. The number of the expected events is computed as a function of the
energy of the pair in GeV. From highest to lowest: excitation of photon+Z, photon and
Z boson

the approximations of perturbative computations do not hold. Thus, the above
result has been interpreted negatively. Namely, that supersymmetry breaking
could not arise by compactification and remained as an open question.

Two years later specific models were proposed, where perturbative compu-
tations were possible in part of the theory, even in the presence of large extra
dimensions of size of 10−18 meters [1]. This was achieved as a result of conditions
imposed to prevent power corrections to low-energy couplings. For gauge cou-
plings, this amounts to the vanishing of the corresponding β-functions, which, for
instance, is the case when the so-called Kaluza–Klein (KK) modes are organized
in multiplets of N = 4 supersymmetry, containing for every massive spin-1 exci-
tation, 2 Dirac fermions and 6 scalars. Examples of such models are provided by
orbifolds. In this class of models, the new dimensions form small intervals with
our world localized at their ends. The mediators of interactions on the other
hand can propagate in the bulk (along the intervals). The study of the physical
consequences of these models was performed subsequently in [5–7]. Their main
characteristics is the production of the KK states in particle accelerators (see
Fig. 3).
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If for instance the photon propagates along an extra dimension, one should
observe a tower of massive particles with the same properties as the photon but
with a mass that becomes larger as the size of the extra dimension is getting
smaller. It follows, that for a size of order 10−18 meters, an energy of order of a
few TeV would be sufficient to produce them. Thus, the existence of such dimen-
sions is testable in LHC. Moreover, these models contain a very light particle
that mediates new attractive forces at short distances of the order of a fraction
of millimeter, which can be tested in table-top experiments that measure the
Newton’s law [8] (see Fig. 4). Despite this progress, there was little interest in
models with large dimensions because of theoretical reasons related to the large
string coupling problem.

Fig. 4. In his ‘Principia’ of 1687, Isaac Newton explained that the gravitational attrac-
tion between two bodies is proportional to the product of their masses and the inverse
square of their distance. The success of this law was spectacular, in particular for the
description of the planets motion. At short distances, however, the validity of this law
is not tested experimentally. The strongest bounds were obtained using the torsion
pendulum shown in the figure, that tested the validity of Newton’s law down to 0.2
millimeters. Thus, the size of extra dimensions where gravity propagates is constrained
by this value, but allows them to exist at shorter distances, e.g. at 0.01 millimeter. By
improving the sensitivity of the measurements, one should then see violations of New-
tonian gravity at these distances. The weakness of gravity complicates considerably
the experiments: there are several sources of background noise due to other forces that
should be eliminated using appropriate devices. At very short distances, one should
consider even the Casimir attraction due to fluctuations of the vacuum
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1.3 String Dualities

We thus arrived in 1996, when it was realized that the string size ls = M−1
s is a

free parameter of the theory, with a priori no relation to the Planck length [9]. In
particular, it could be as large as 10−18 meters which is just below the limiting
distance that can be probed by present experiments [10]. In order to understand
the change of situation, let us return a couple of years earlier. All the works
discussed until now were in the context of the so-called heterotic string theory.
On the other hand, there were in total five consistent string theories! Four of
them contain only closed strings that form closed loops; the other contains also
open strings with ends that move freely with the speed of light; besides, all these
theories do not have the same amount of supersymmetry.

This multiplicity of theories was creating a problem, since string theory was
supposed to provide a unified framework of all physical theories. Thus, one of the
five string theories had to be the right one to describe nature, but which one?
The answer has been provided in 1994: all of them simultaneously. Following the
works of several groups and in particular of Witten, it was realized that every
known string theory describes a particular limit of an underlying more general
fundamental theory that can be defined in eleven dimensions of spacetime, called
M-theory [11].

This discovery made an important progress but did not solved all problems.
The main achievement was the connection of the five string theories due to
the existence of duality symmetries. One type of these symmetries relates two
theories with mutually inverse string couplings. Thus, to solve a problem in
the context of some theory with large coupling, it is sufficient to perform an
appropriate duality transformation. One obtains then a new problem in the
context of a dual theory which has a small coupling, the inverse of the former.
The new problem can be solved in perturbation theory of the small coupling.
Finally, the resulting solution can be transformed back using the inverse duality
transformation that takes us in the first theory. Since computations with large
coupling became effectively possible, the road was open to study models with
extra dimensions much larger than the Planck length.

1.4 The Universe on a Membrane

A particularly attractive scenario is when the string scale is in the TeV region,
which stabilizes the mass hierarchy problem without need of supersymmetry [2].
A possible realization of this idea without experimental conflict is in models
possessing large extra dimensions along which only gravity propagates: gravity
appears to us very weak at macroscopic scales because its intensity is spread in
the “hidden” extra dimensions. On the other hand, at TeV energies, it becomes
comparable in strength with the other interactions, i.e. 1032 times stronger than
what we believed in the past. In order to increase the gravitational force without
contradicting present observations, one has to introduce at least two such extra
dimensions of size that can be as large as a fraction of a millimeter. At these
distances, gravity should start deviate from Newton’s law, which may be possible
to explore in laboratory experiments [12] (see Fig. 4).
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Fig. 5. In the type I string models we consider, our Universe contains, besides the three
known spatial dimensions (reduced here to a single orange line), some extra dimensions
longitudinal to our world brane (here only one is shown on the grey plane) along which
the mediators of gauge interactions described by open strings propagate, as well as
some transverse dimensions (here only one again) where only gravity described by
closed strings can propagate. Moreover, matter is localized everywhere and propagates
only in our three dimensions. The longitudinal extra dimensions have the string size
of the order of 10−18 meters, while the size of the transverse dimensions varies in the
range of 10−12 meters and a fraction of a millimeter

A convenient perturbative framework realizing this idea is one of the five
string theories, called type I, that contains simultaneously closed and open
strings [2,13,14]. Our universe should be localized on a hypersurface, i.e. a mem-
brane extended in p spatial dimensions with p < 7, called p-brane (see Fig. 5).
Closed strings describe gravity and propagate in all nine dimensions of space:
in those extended along the p-brane, as well as in the transverse ones. On the
contrary, the endpoints of open strings describing the other (gauge) interactions
are confined on the p-brane.

Obviously, our p-braneworld must have at least the three known dimensions
of space. But it may contain more: as opposed to the transverse dimensions
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Fig. 6. Missing energy due to graviton emission in the LHC experiment, as a function of
the fundamental scale M(4+n) of quantum gravity that propagates in n large transverse
dimensions. It is produced together with a hadronic jet that one detects in the collision
of the two proton beams. The figure shows the expected cross-section for n = 2 and
n = 4 extra dimensions, together with the background (horizontal dotted-dashed line)
coming from other known sources

that interact with us only gravitationally, the “longitudinal” to the brane extra
dimensions can be “seen” by the light at sufficiently high energies, giving rise to
the production of massive KK particles in accelerators (see Fig. 3).

On the other hand, the existence of the extra large (sub)millimeter dimen-
sions, transverse to our p-brane universe, guarantee that gravitational interac-
tions appear to us very weak at macroscopic distances, larger that a millimeter.
The size of these transverse dimensions varies from a fraction of millimeter (in
the case of two) to a Fermi (10−14 meters, in the case of six). Their characteristic
signal in particle colliders is graviton emission into the bulk, leading to missing
energy that escapes detection [2,15] (see Fig. 6).

1.5 New versus Old Models

As mentioned before, heterotic string models with large dimensions suffer from
a strong coupling problem. When the size of some internal dimensions becomes
much larger than the heterotic string length, the string coupling becomes strong
invalidating most of the perturbative computations. Now these models may be
studied upon an appropriate duality transformation in perturbation theory. Sur-
prisingly, it turns out that most of the old models are in fact equivalent to the
recent ones with open strings and transverse dimensions [16]. In addition, by
varying the number of large dimensions in the old models, one discovers, due to



346 Ignatios Antoniadis

duality, an alternative way to lower the string scale at the TeV, and thus, ac-
counting for the hierarchy without supersymmetry. In these models, there are no
extra large transverse dimensions but still the gravitational force is very weak: it
is fixed by the value of the string coupling, which in this case is an independent
free parameter of the theory [16,17]. These models have a natural realization in
the context of another string theory, called type II.

2 Hiding Extra Dimensions

2.1 Compactification on Tori and Kaluza–Klein States

There is a simple and elegant way to hide the extra dimensions: compactifi-
cation. It is simple because it relies on an elementary observation. Suppose
that the extra dimensions form, at each point of our four-dimensional space,
a D-dimensional torus of volume (2π)DR1R2 · · ·RD. The (4 + D)-dimensional
Poincaré invariance is replaced by a four-dimensional one times the symmetry
group of the D-dimensional space which contains translations along the D extra
directions. The (4+D)-dimensional momentum satisfies the mass-shell condition
P 2

(4+D) = p2
0 − p2

1 − p2
2 − p2

3 −
∑
i p

2
i = m2

0 and looks from the four-dimensional
point of view as a (squared) mass M2

KK = p2
0 − p2

1 − p2
2 − p2

3 = m2
0 +

∑
i p

2
i .

Assuming periodicity of the wave functions along each compact direction, one
has pi = ni/Ri which leads to

M2
KK ≡M2

n = m2
0 +

n2
1

R2
1

+
n2

2

R2
2

+ · · ·+ n2
D

R2
D

, (1)

with m0 being the higher-dimensional mass and ni non-negative integers. The
states with

∑
i ni �= 0 are called KK states. It is clear that getting aware of the ith

extra dimension would require experiments that probe at least an energy of the
order of min(1/Ri) with sizable couplings of the KK states to four-dimensional
matter.

Let us discuss further some properties of the KK states that will be useful for
us below. We parametrize the “internal” D-dimensional box by yi ∈ [−πRi, πRi],
i = 1, · · · , D while the four-dimensional Minkowski spacetime is spanned by the
coordinates xµ, µ = 0, · · · , 3. It is useful to choose for the KK wave functions
the basis:

Φαn,e(xµ, yi) = Φα(xµ)
∏
i

[
(1− ei) cos

(niyi
Ri

)
+ ei sin

(niyi
Ri

)]
, (2)

where the vector n = (n1, n2, · · · , nD) gives the energy of the state following
(1) while e = (e1, · · · , eD) with ei = 0 or 1 corresponds to a choice of cosine or
sine dependence in the coordinate yi, respectively. The index α refers to other
quantum numbers of Φ.
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2.2 Orbifolds and Localized States

The simplest example of the models we will be using are obtained by gauging
the Z2 parity: yi → −yi mod 2πRi. This leads to compactification on segments of
size πRi. In general, the consistency of this “orbifold” projection implies that the
Z2 space parity should be associated with a Z2 action on the internal quantum
numbers α of Φ. As a result one has the following properties:

• Only states invariant under this Z2 are kept while the others are projected
out. There are two classes of states left in the theory: those for which
Φ(even)(xµ) is even under the Z2 action and ei = 0 and those for which
Φ(odd)(xµ) is odd and ei = 1. It is important to notice that the latter are not
present as light four-dimensional states i.e. they have

∑
i ni �= 0 and thus

always correspond to higher KK states.
• At the boundaries yi = 0, πR fixed by the Z2 action, new states Φ(loc)(xµ)

have to be included. These “twisted” states are localized at the fixed points.
They can not propagate in the extra dimension and thus have no KK exci-
tations.

• The odd bulk states Φ(odd)(xµ) (ei = 1) have a wave function which vanishes
(the sin(niyi

Ri
) in (1)) at the boundaries. Their coupling to localized states

involves a derivative along yi. For example three boson interactions of the
form ∂iφ

(odd))φ(loc)φ(loc) can be non-vanishing.
• The even states, in contrast, can have non-derivative couplings to localized

states. The gauge couplings for instance are given by:

gn =
√

2
∑
n

exp

(
− ln δ

∑
i

n2
i l

2
s

2R2
i

)
g0 (3)

where ls ≡M−1
s is the string length and δ > 1 is a model dependent number

(δ = 2D in the case of Z2’s). The
√

2 comes from the relative normaliza-
tion of the cos(niyi

Ri
) wave function with respect to the zero mode while the

exponential damping is a result of tree-level string computations.
• Here we are interested in string vacua where gauge degrees of freedom are

localized on (3 + d‖) + 1-dimensional subspaces: (3 + d‖)-branes. From the
point of view of (3 + d‖) + 1-dimensions the gauge bosons behave as “un-
twisted” (not localized) particles. In contrast, there are two possible choices
for light matter fields. In the first case, they arise from light modes of open
strings with both ends on the (3+d‖)-branes, thus in their interactions they
conserve momenta in the d‖ directions. In the second case, they live on the
intersection of the (3 + d‖)-branes with some other branes that do not con-
tain the d‖ directions in their worldvolume. These states are localized in
the d‖-dimensional space and do not conserve the momenta in these direc-
tions. They have no KK excitations and behave as the Z2 twisted (boundary)
states of heterotic strings on orbifolds. The boundary states couple to all KK-
modes of gauge fields as described by (3). These couplings violate obviously
momentum conservation in the compact directions and make all massive KK
excitations unstable.
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Use of compactification is an elegant way to hide extra dimensions because
some of the quantum numbers and interactions of the elementary particles could
be accounted for by the topological and geometrical properties of the internal
space. For instance chirality, the number of families in the standard model, gauge
and supersymmetry breaking as well as as some selection rules in the interactions
of light states could be reproduced through judicious choice of more complicated
internal spaces.

3 Low-Scale Strings

In ten dimensions, every superstring theory has two parameters: a mass (or
length) scale Ms (or ls), and a dimensionless string coupling gs given by the
vacuum expectation value (VEV) of the dilaton field e<φ> = gs, on which we
impose the weakly coupled condition gs < 1. Compactification to lower dimen-
sions introduces other parameters describing for instance volumes and shapes of
the internal space. The D-dimensional compactification volume VD will always
be chosen to be bigger than unity in string units, VD ≥ lDs . This choice can
always be done by an appropriate T-duality transformation which inverts the
compactification radius.

Upon compactification in D = 4 dimensions, the above parameters determine
the values at the string scale of the four-dimensional (4d) Planck mass (or length)
MP (lP = M−1

P ) and gauge coupling gYM that for phenomenological purposes
should have the correct strength magnitude. For instance, generically the four-
dimensional Planck mass can be expressed as

M2
P #

M6
s V6

g2
s

M2
s , (4)

where V6 is the six-dimensional internal volume felt by gravitational interactions
while the four-dimensional gauge coupling can be written as

1
g2
YM

# Md
s Vd
gqs

, (5)

where Vd is the d-dimensional internal volume felt by gauge interactions.
In the past, weakly coupled heterotic strings were providing the most promis-

ing framework for phenomenological applications. In this case, the standard
model was considered as descending from the ten-dimensional E8 gauge sym-
metry, and we have Vd = V6, d = 6 and q = 2. Taking the ratio of the two
equations, one finds M2

s /M
2
P ∼ g2

YM. Requiring gYM ∼ O(1), it was concluded
that both the string scale Ms and the compactification scale R−1 ≡ V

−1/6
6 had

to lie just below the Planck scale, at energies ∼ 1018GeV, far out of reach of any
near future experiment.

The situation changed during recent years when it was discovered that string
theory provides classical solutions (vacua) where gauge degrees of freedom live
on subspaces i.e. d < D = 6 along with the possibility of q �= 2. For instance,
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(d, q) = (d‖, 1) in type I and (d, q) = (2, 0) in type II or weakly coupled heterotic
strings with small instantons. In these cases, it is an easy exercise to check that
both the string and compactification scales can be made arbitrarily low.

The possibility of decreasing the string scale offers new insights on the physics
beyond the standard model. For instance, a string scale at energies as low as TeV,
would, in addition to the plethora of experimental signatures, provide a solution
to the problem of gauge hierarchy alternative to supersymmetry or technicolor.
The hierarchy in gauge symmetry versus fundamental (cut-off) scales is then
nullified as the two are of the same order [2].

3.1 Type I String Theory and D-Branes

Type I is a ten-dimensional theory of closed and open unoriented strings. Closed
strings describe gravity, while gauge interactions are described by open strings
whose ends are confined to propagate on p-dimensional sub-spaces defined as Dp-
branes. The internal space has 6 compactified dimensions, p−3 ≡ d‖ longitudinal
and 9− p transverse to the Dp-brane.

The gauge and gravitational interactions appear at different orders in string
loops perturbation theory, leading to different powers of gs in the corresponding
effective action:

SI =
∫

d10x
1

g2
s l

8
s

R+
∫

dp+1x
1

gsl
p−3
s

F 2 , (6)

The 1/gs factor in front of the gauge kinetic terms corresponds to the lowest
order open string diagram represented by a disk.

Upon compactification in four dimensions, the Planck length and gauge cou-
plings are given to leading order by

1
l2P

=
V‖V⊥
g2
s l

8
s

,
1

g2
YM

=
V‖

gsl
p−3
s

, (7)

where V‖ (V⊥) denotes the compactification volume longitudinal (transverse) to
the Dp-brane. From the second relation above, it follows that the requirements of
weak coupling gYM ∼ O(1), gs < 1 imply that the size of the longitudinal space
must be of order of the string length (V‖ ∼ lp−3

s ), while the transverse volume
V⊥ remains unrestricted. Using the longitudinal volume in string units v‖ >∼ 1,
and assuming an isotropic transverse space of n = 9− p compact dimensions of
radius R⊥, we can rewrite these relations as:

M2
P =

1
g4
YMv‖

M2+n
s Rn⊥ , gs = g2

YMv‖ . (8)

From the relations (8), it follows that the type I string scale can be chosen
hierarchically smaller than the Planck mass at the expense of introducing extra
large transverse dimensions that are felt only by the gravitationally interacting
light states, while keeping the string coupling weak [2]. The weakness of 4d
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gravity compared to gauge interactions (ratio MW /MP ) is then attributed to
the largeness of the transverse space R⊥/ls.

An important property of these models is that gravity becomes (4 + n)-
dimensional with a strength comparable to those of gauge interactions at the
string scale. The first relation of (8) can be understood as a consequence of the
(4 + n)-dimensional Gauss law for gravity, with

G
(4+n)
N = g4

YMl2+ns v‖ (9)

the Newton’s constant in 4 + n dimensions.
Taking the type I string scale Ms to be at 1 TeV, one finds a size for the

transverse dimensions R⊥ varying from 108 km, .1 mm (10−3 eV), down to .1
Fermi (10 MeV) for n = 1, 2, or 6 large dimensions, respectively. This shows
that while n = 1 is excluded, n ≥ 2 is allowed by present experimental bounds
on gravitational forces [12]. Thus, in these models, gravity appears to us very
weak at macroscopic scales because its intensity is spread in the “hidden” extra
dimensions. At short distances, gravity should start deviate from Newton’s law,
which may be possible to explore in laboratory experiments (see Fig. 4).

4 Gravity Modification and Sub-millimeter Forces

Besides the spectacular experimental predictions in particle accelerators, string
theories with large volume compactifications and/or low string scale predict also
possible modifications of gravitation in the sub-millimeter range, which can be
tested in “table-top” experiments that measure gravity at short distances. There
are three categories of such predictions:

(i) Deviations from the Newton’s law 1/r2 behavior to 1/r2+n, for n extra
large transverse dimensions, which can be observable for n = 2 dimensions
of (sub)-millimeter size. This case is particularly attractive on theoretical
grounds because of the logarithmic sensitivity of Standard Model couplings
on the size of transverse space [14], which allows to determine the desired
hierarchy [18], but also for phenomenological reasons since the effects in par-
ticle colliders are maximally enhanced [15]. Notice also the coincidence of
this scale with the possible value of the cosmological constant in the uni-
verse that recent observations seem to support.

(ii) New scalar forces in the sub-millimeter range, motivated by the problem of
supersymmetry breaking, and mediated by light scalar fields ϕ with masses
[19,8,2,20]:

mϕ #
m2

susy

MP
# 10−4 − 10−6 eV , (10)

for a supersymmetry breaking scale msusy # 1− 10 TeV. These correspond
to Compton wavelengths in the range of 1 mm to 10 µm. msusy can be either
the KK scale 1/R if supersymmetry is broken by compactification [8,19],
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or the string scale if it is broken “maximally” on our world-brane [2,20]. A
model independent and universal attractive scalar force is mediated by the
radius modulus (in Planck units)

ϕ ≡ lnR , (11)

with R the radius of the longitudinal (‖) or transverse (⊥) dimension(s),
respectively. In the former case, the result (10) follows from the behavior of
the vacuum energy density Λ ∼ 1/R4

‖ for large R‖ (up to logarithmic correc-
tions). In the latter case, supersymmetry is broken primarily on the brane
only, and thus its transmission to the bulk is gravitationally suppressed,
leading to masses (10). Note that in the case of two-dimensional bulk, there
may be an enhancement factor of the radion mass by lnR⊥Ms # 30 which
decreases its wavelength by roughly an order of magnitude [18].
The coupling of the radius modulus (11) to matter relative to gravity can
be easily computed and is given by:

√
αϕ =

1
m

∂m

∂ϕ
; αϕ =




∂ lnΛQCD

∂ lnR
# 1

3 for R‖

2n
n + 2

= 1− 1.5 for R⊥
, (12)

where m denotes a generic physical mass. In the upper case of a longitudinal
radius, the coupling arises dominantly through the radius dependence of the
QCD gauge coupling [8], while in the lower case of transverse radius, it can
be deduced from the rescaling of the metric which changes the string to the
Einstein frame and depends on the dimensionality of the bulk n (varying
from α = 1 for n = 2 to α = 1.5 for n = 6) [18]. Moreover, in the case of
n = 2, there may be again model dependent logarithmic corrections of the
order of (gs/4π) lnRMs # O(1). Such a force can be tested in microgravity
experiments and should be contrasted with the change of Newton’s law due
to the presence of extra dimensions that is observable only for n = 2 [12].
In principle there can be other light moduli which couple with even larger
strengths. For example the dilaton, whose VEV determines the (logarithm
of the) string coupling constant, if it does not acquire large mass from some
dynamical supersymmetric mechanism, can lead to a force of strength 2000
times bigger than gravity [21].

(iii) Non universal repulsive forces much stronger than gravity, mediated by pos-
sible abelian gauge fields in the bulk [22,23]. Such gauge fields may acquire
tiny masses of the order of M2

s /MP , as in (10), due to brane localized anoma-
lies [23]. Although the corresponding gauge coupling is infinitesimally small,
gA ∼ Ms/MP # 10−16, it is still bigger than the gravitational coupling
∼ E/MP for typical energies E of the order of the proton mass, and the
strength of the new force would be 106 − 108 stronger than gravity. This is
an interesting region which will be soon explored in micro-gravity experi-
ments (see Fig. 7). Note that in this case the supernova constraints impose
that there should be at least four large extra dimensions in the bulk [22].
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Fig. 7. Limits on non-Newtonian forces at short distances, compared to new forces
mediated by the graviton in the case of two large extra dimensions, and by the radion

In Fig. 7 we depict the actual information from previous, present and upcom-
ing experiments [18]. The vertical axis is the strength, α, of the force relative
to gravity; the horizontal axis is the Compton wavelength, λ, of the exchanged
particle. The solid lines indicate the present limits from the experiments indi-
cated. The excluded regions lie above these solid lines. Measuring gravitational
strength forces at such short distances is quite challenging. The most important
background is the van der Waals force which becomes equal to the gravitational
force between two atoms when they are about 100 microns apart. Since the van
der Waals force falls off as the 7th power of the distance, it rapidly becomes negli-
gible compared to gravity at distances exceeding 100 µm. The dashed thick lines
give the expected sensitivity of the present and upcoming experiments, which
will improve the actual limits by roughly two orders of magnitude, while the
horizontal dashed lines correspond to the theoretical predictions for the gravi-
ton in the case of two large extra dimensions and for the radion in the case of
transverse radius.

5 Conclusions

Clearly, today, these theories exist only in our imagination. However, we look
forward at the next generation of high energy experiments and in particular at
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the most powerful machine, the LHC at CERN. I am convinced, as the major-
ity of my colleagues, that LHC will play a very important role for the future
of high-energy physics of fundamental interactions. In fact, it is designed since
last decade to explore the origin of mass of elementary particles and to test, in
particular, the idea of supersymmetry, looking for the production of superpar-
ticles. We now hope that this accelerator may discover more spectacular and
“exotic” phenomena, such as the existence of large extra dimensions of space
and of fundamental strings.
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Abstract. Quantum states in the Earth’s gravitational field can be observed, when
ultra-cold neutrons fall under gravity. In an experiment at the Institut Laue-Langevin
in Grenoble, neutrons are reflected and trapped in a gravitational cavity above a hor-
izontal mirror. The population of the ground state and the lowest states follows, step
by step, the quantum mechanical prediction. An efficient neutron absorber removes
the higher, unwanted states. The quantum states probe Newtonian gravity on the mi-
crometer scale and we place limits for gravity-like forces in the range between 1 µm
and 10 µm.

1 A Quantum System

Quantum physics is a fascinating but subtle subject. The subtlety of the quantum
system described here arises from the fact, that gravity appears very weak in our
universe. Quantum theory and gravitation affect each other, and, when neutrons
become ultra-cold, the fall experiment of Galileo Galilei shows quantum aspects
of the subtle gravity force in that sense that neutrons do not fall continuously.
We find them on different levels, when they come close to a reflecting mirror
for neutrons [1]. Of course, such bound states with discrete energy levels are
expected when the graviational potential is larger than the energy of the particle.
Here, the quantum states have pico-eV energy, a value that is smaller by many
orders of magnitude compared with an electromagnetically bound electron in a
hydrogen atom, opening the way to a new technique for gravity experiments, for
neutron optics, neutron detection and measurements of fundamental properties.

A side-effect of this experiment is its sensitivity for gravity-like forces at
length scales below 10 µm. In light of recent theoretical developments in higher
dimensional field theory [2–4], gauge fields can mediate forces that are 1010

to 1012 times stronger than gravity at submillimeter distances, exactly in the
interesting range of this experiment and might give a signal in an improved
setup.

The idea of observing quantum effects occuring when ultracold neutron are
stored on a plane was discussed long ago by V.I. Lushikov and I.A. Frank [5].

H. Abele, S. Baeßler, and A. Westphal, Quantum States of Neutrons in the Gravitational Field and
Limits for Non-Newtonian Interaction, Lect. Notes Phys. 631, 355–366 (2003)
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An in some aspects similar experiment was discussed by H. Wallis et al. [6] in
the context of trapping atoms in a gravitational cavity. Retroreflectors for atoms
have used the electric dipole force in an evanescent light wave [7,8] or they are
based on the gradient of the magnetic dipole interaction, which has the advantage
of not requiring a laser [9]. A neutron mirror makes use of the strong interaction
between nuclei and an ultracold neutron, resulting in an effective repulsive force:
Neutrons propagate in condensed matter in a matter similar to the propagation
of light but with a neutron refractive index less than unity. Thus, one considers
the surface of matter as constituting a potential step of height V . Neutrons
with transversal energy E⊥ < V will be totally reflected. Ultra-cold neutrons
(UCN) are neutrons that, in contrast to faster neutrons, are retro-reflected from
surfaces at all angles of incidence. When the surface roughness of the mirror is
small enough, the UCN reflection is specular.

Neutron mirrors are interesting because they can be used to store neutrons,
to focus neutrons, or even to build a Fabry Perot interferometer for neutron de
Broglie waves. UCN storage bottle experiments have improved our knowledge
about the neutron lifetime significantly or, together with the Ramsey method
of separated oscillating fields, they have been used for a search for an electric
dipole moment of the neutron.

2 Limits for Non-Newtonian Interaction Below 10 µm

Discussions about deviations from the inverse square law for gravity have become
popular in the past few years [10]. A new effective interaction coexisting with
gravity would modify the Newtonian potential. On the assumption that the form
of the non-Newtonian potential is given by the Yukawa expression, for masses
mi and mj and distance r the modified Newtonian potential V (r) is having the
form

V (r) = −G
mi ·mj

r

(
1 + α · e−r/λ

)
, (1)

where λ is the Yukawa distance over which the corresponding force acts and α is
a strength factor in comparison with Newtonian gravity. G is the gravitational
constant. For a neutron with mass mn, the gravitational force of the mass mE
of the entire Earth with radius RE lead to a free fall acceleration

g =
GmE

R2
E

=
4π ·GρR3

E

3R2
E

=
4
3
πGρRE . (2)

When a neutron approaches the mirror, the mass of this extended source might
modify g, when strong non-Newtonian forces are present. For small neutron
distances z from the mirror, say several micrometers, we consider the mirror
as an infinite half-space with mass density ρ. By replacing the source mass mi

by dmi and integrating over dmi, the Yukawa-like term λ modified Newtonian
potential V ′(r) is having the form

V ′(z, λ) = 2π ·mnραλ
2G · e−|z|/λ (3)
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Fig. 1. Limits for non-Newtonian gravity: Strength |α| vs. Yukawa length scale λ.
a Experiments with neutrons place limits for |α| in the range 1 µm < λ < 10 µm.
b Constraints from previous experiments [11–15] are adapted from [14]

and the non-Newtonian acceleration g′ as a function of distance z is given by

g′(z, λ) = 2π · ραλG · e−|z|/λ . (4)

As a consequence, the ratio is

g′

g
(z, λ) =

3
2
α · λ

RE
· e−|z|/λ. (5)

For z = λ = 10 µm and α = 1, the ratio g′/g is about 10−12. Figure 1a shows
the present status of an experimental search for gravity-like forces below 10 µm.
The results of a fit of potential equation (3) to the measured data (see Figs. 5
and 6) yields predictions for 90% confidence level exclusion bounds on α and λ.
These limits from this neutron mirror experiment are shown in Fig. 1a. They
are the best known in the range 1 µm < λ < 3 µm and exclude for the first time
gravity-like short-ranged forces at 1 µm with strength α > 1012. The limit for
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strength α at 10 µm is 1011 (Fig. 1a)). For the theoretical biased uncertainty
due to the neutron absorber (see Sect. 3.2), we give an estimate of one order of
magnitude. In future experiments, these limits will be strongly improved by an
enhanced setup and improved statistics by new UCN sources as a Monte Carlo
simulation shows. Previous constraints [11–15] on both λ and α are shown in
Fig. 1b.

The method with neutrons has some advantages. Electromagnetic interac-
tions at micrometer distances, serious sources of systematic error in distance
force measurements, are effectively suppressed. The neutron carries no electric
charge and direct electrostatic forces are ruled out. Yet, it bears a very tiny mag-
netic moment µn of roughly 0.5 · 10−3 ·µB . This magnetic moment can induce a
magnetic mirror force onto a neutron that hovers close to the surface of a body.
Further, a neutron moving with the velocity v sees an induced electrostatic force,
that is essentially some kind of Lorentz force and thus an effect of the order of
v/c. Both effects can be evaluated to yield electrodynamic energy shifts. With
permittivity ε and permeability µ, the order of magnitude is

∆EE,v ∼ ε0 · ε− 1
ε

· µ
2
0 · µ2

n

48π
· v

2

z3 ∼ 10−26 · 10−12 eV (6)

∆EB ∼ µ− 1
µ

· µ0

16π
· µ

2
n

z3 ∼ 10−13 · 10−12 eV (7)

for v ∼ 10 m/s and z ∼ 10 µm. Thus, these effects can completely be neglected,
since they are by far subgravitational in strength.

Motivations for gravity experiments come from frameworks for solving the
hierarchy problem in a way of bringing quantum gravity down to the TeV scale.
In such frameworks the Standard Model fields are localized on a 3-brane in a
higher dimensional space by the presence of new dimensions of submillimeter
size [2]. At the expected sensitivity, a number of gravity-like phenomena emerge.
For example, a hypothetical gauge field can naturally have miniscule gauge cou-
pling g4 ∼ 10−16 for 1 TeV, independent of the number of extra dimensions [3].
If these gauge fields couple to a neutron with mass mn, the ratio of the repulsive
force mediated by this gauge field to the gravitational attraction is [3]

Fgauge

Fgrav
∼ g2

4

Gm2
n

∼ 106
( g4

10−16

)2
. (8)

With g4 = 10−16 as a lower bound, these gauge fields can result in repulsive
forces of million or billion times stronger than gravity at micrometer distances,
exactly in the range of interest.

3 The Experiment at the Institut Laue-Langevin

3.1 From Hot to Ultracold

Neutrons are produced in a spallation source or a research reactor. At produc-
tion, these neutrons are very hot; the energy is about 2 MeV corresponding to
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Fig. 2. ucn source

1010 degrees Centigrade. On the other side of the scale, the gravity experiment
uses neutrons having 1018 times less energy in the pico-eV range (see Table 1).
In a first step, spallation or fission neutrons thermalize in a heavy water tank
at a temperature of 300 K. The thermal fluxes are distributed in energy accord-
ing to Maxwellian law. At the Institut Laue-Langevin (ILL), cold neutrons are
obtained in a second moderator stage from a 25 K liquid deuterium cold mod-
erator near the core of the 57 MW uranium reactor. These cold neutrons have a
velocity spectrum in the milli-eV energy range. For particle physics, a new beam
line with a flux of more than 1010 cm−2s−1 over a cross section of 6 cm× 20 cm
is available.

Ultra-cold neutrons are taken from the low energy tail of the cold Maxwellian
spectrum. They are guided vertically upwards by a neutron guide (Fig. 2). The
curved guide, which absorbs neutrons above a threshold energy, acts as a low-
velocity filter for neutrons. Neutrons with a velocity of up to 50 m/s arrive at a
rotating nickel turbine. Colliding with the moving blades of the turbine, ultra-
cold neutrons exit the turbine with a velocity of several meters per second. They
are then guided to several experimental areas. The exit window of the guide for
the gravity experiment has a rectangular shape with the dimensions of 100 mm×
10 mm. At the entrance of the experiment, a collimator absorber system cuts
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Table 1. From hot to ultracold: neutrons at the ILL

fission thermal cold ultracold this

neutrons neutrons neutrons neutrons experiment

Energy 2 MeV 25 meV 3 meV 100 neV 1.4 peV

Temperature 1010 K 300 K 40 K 1 mK -

Velocity 107 m/s 2200 m/s 800 m/s 5 m/s v⊥ ∼ 2 cm/s

Fig. 3. Sketch of the setup: a classical view: neutron trajectories, b quantum view:
plane waves and Airy functions

down on the neutrons to a adjustable transversal velocity corresponding to an
energy in the pico-eV range.

3.2 The Setup

Figure 3 shows a schematic view of the setup: Neutrons pass through the mirror
absorber system eventually detected by a 3He-counter. The experiment itself is
mounted on a polished plane granite stone with a passive antivibration table
underneath. This stone is leveled with piezo translators. Inclinometers together
with the piezo translators in a closed loop circuit guarantee leveling with an
absolute precision better than 10 µrad. Either one solid block with dimensions
10 cm× 10 cm× 3 cm or two solid blocks with dimensions 10 cm× 6 cm× 3 cm
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Table 2. Eigenenergies and classical turning points for neutrons, atoms and electrons,
a comparison

Neutron 4Helium 85Rubidium 133Cesium Electron

E1 [peV ] 1.4 2.3 6.2 7.2 0.12

E2 [peV ] 2.5 3.9 11.0 12.7 0.20

z1 [µ] 13.7 5.5 0.7 0.5 2061

z2 [µ] 24.0 9.5 1.2 0.9 3604

composed of optical glass serve as mirrors for UCN neutron reflection. Small
angle X-ray studies [16] determined the roughness of the surface to be σ = 2.2
± 0.2 nm and the associated lateral correlation length to be ζ = 10 ± 2 µm.
The plane can thus be regarded as a pattern that varies in height with 2 nm
on a scale of 10 µm. Since the de Broglie wavelength of the neutrons is in the
range of 40 nm to 100 nm, the neutrons do see a surface that is essentially
flat. A neutron-absorber is placed above the first mirror. The absorber consists
of a rough glass plate coated with an Gd-Ti-Zr alloy by means of magnetron
evaporation. The absorbing layer is 200 nm thick. The surface of the absorber
was parallel to the surface of the mirror. The absorber roughness and correlation
length was measured with an atomic force microscope to be σ = 0.75 µm and ζ
= 5 µm respectively. Neutrons that hit the absorber surface are either absorbed
in the alloy or scattered out of the experiment at large angles. The efficiency of
removing these fast unwanted neutrons is 93%. The collimation system in front
of the mirror absorber system is adjusted in that way, that classical trajectories
of neutrons entering the experiment have to hit the mirror surface at least two
times. After the second mirror we placed a 3He counter for neutron detection.
More information about the setup can be found in [17].

4 Gravity and Quantum Mechanics Work Together

4.1 Theoretical Description

The neutrons fall under gravity onto the mirror. The calculation of the energy
eigenvalues of the vertical motion of the neutrons in the mirror-absorber system
is a nice example of quantum mechanics. In fact, we have two theoretical de-
scriptions for the transmission of neutrons. The first one is the well known WKB
method. Usually, the accuracy of WKB quantization is 20% for the ground state,
whereas the accuracy increases for higher levels. A similar calculation of energy
levels for the gravitational field with the WKB method can also be found in [6].
We can compare the WKB result with an exact analytical solution using Airy-
functions. Taking the neutron-absorber into account, the agreement of the two
methods is significantly better than 10%. We start calculations from the one
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dimensional stationary Schrödinger equation,

− �
2

2m
( Ψ + V (z) = EΨ (9)

with wave function Ψ for energy E and the potential

V (z) =

{
mgz for z ≥ 0 ,

∞ for z < 0 ,
(10)

ignoring the absorber for now. m is the mass of the neutron and g is the ac-
celeration in the earth’s gravitational field. The quantum mechanical treatment
of reflecting neutron mirror, made from glass, is simple. The glass potential is
essential real because of the small absorption cross section of glass and with V
= 100 neV large compared with transversal energy E⊥. Therefore, the potential
V is set to infinity at z = 0. The quantum mechanical description follows in
part [6]. It is convenient to use a scaling factor

ζ =
z

z0
with z0 =

(
�

2

2m2g

)1/3

. (11)

Solutions of (9) for Ψ are obtained with an Airy function

Ψn(ζ) = Ai(ζ − ζn) . (12)

The displacement ζn of the n-th eigenvector has to coincide with the n-th zero
of the Airy function (Ai(-ζn)=0) to fulfill the boundary condition Ψn(0) = 0 at
the mirror. Eigenfunctions (n > 0) are

Ai(ζ − ζn) (13)

with corresponding eigenenergies

En = mgzn (14)

and

zn = z0

(
3π
2

(
n− 1

4

))2/3

. (15)

zn corresponds to the turning point of a classical neutron trajectory with energy
En. For example, Energies of the lowest levels (n = 1, 2, 3, 4) are 1.44 peV, 2.53
peV 3.42 peV and 4.21 peV. The corresponding classical turning points zn are
13.7 µm, 24.1 µm, 32.5 µm and 40.1 µm (see Table 2).

ρ = CΨ∗Ψ (16)

is the neutron density and can be interpreted as the probability to detect a
neutron at height z above the mirror, see Fig. 4. C is a constant.



Quantum States of Neutrons in the Gravitational Field 363

Fig. 4. Neutron density above the mirror for states #1 to #4

In principle it is possible to visualize this neutron density distribution. The
distribution is measurable with a nuclear track neutron detector having at the
moment a spatial resolution of about 3 to 4 µm [18]. The nuclear track detectors is
made out of CR39 plastic coated with 5mg/cm2 235UF4. Nuclear fission converts
a neutron into a detectable track on CR39. The tracks can be visualized with
a standard optical microscope after chemical treatment. The typical diameter
of such a track is around 1.5 µm with a length of about 10 µm. Competing
reactions from γ rays or alpha particles have a smaller track signature and as a
consequence, background from these reactions is practically zero. The automatic
readout of the CR39 detector was done in the CHORUS group at CERN. [18].
The microscope MICOS2 is normally used to scan radiated emulsion plates in
a search for neutrino oscillation. The rectangular stage of the microscope can
be moved by step motors with a reproducibility of 1 µm. The focal length of
the microscope is adapted to a CCD camera. The resolution in terms of one
pixel is approximately 0.34 µm. An image analysis program detects the tracks
on CR39. Having followed the tracks in depth of CR39, the impact point of the
fission product on CR39 was found and the spatial resolution of the detector
was significantly improved.

The population of the ground state and lowest state follows the quantum me-
chanical prediction. Higher, unwanted states are removed by the rough neutron
absorber made up of an alloy of Ti, Zn and Gd.

4.2 Observation of Quantum States

Signatures of quantum states in the gravitational field of the earth are observed
in the following way: A 3He counter measures the total neutron transmission T ,
when neutrons are traversing the mirror absorber-system as described in Sect. 2.
The transmission is measured as a function of the absorber height h and thus as
a function of neutron energy since the height acts as a selector for the vertical
energy component E⊥, see Fig. 3). The solid data points, plotted in Fig. 5, show
the measured number of transmitted neutrons for an absorber height h from zero
up to 160 µm. From the classical point of view, the transmission T of neutrons is
proportional to the phase space volume allowed by the absorber. It is governed
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Fig. 5. Data vs. classical expectation

by a power law T ∼ hn and n = 1.5. The solid line in Fig. 5 shows this classical
expectation.

Above an absorber height of about 60 µm, the measured transmission is in
agreement with the classical expectation but below 50 µm, a deviation is clearly
visible. From quantum mechanics, we easily understand this behavior: Ideally,
we expect a stepwise dependence of T as a function of h. If h is smaller than
the spatial width of the lowest quantum state, then T will be zero. When h
is equal to the spatial width of the lowest quantum state then T will increase
sharply. A further increase in h should not increase T as long as h is smaller than
the spatial width of the second quantum state. Then again, T should increase
stepwise. At sufficiently high slit width one approaches the classical dependence
and the stepwise increase is washed out. Figure 6 shows details of the quantum
regime below an absorber height of h = 50 µm. The data follow this expectation
as described: No neutrons reach the detector below an absorber height of 15 µm
as explained before. Then above an absorber height of 15 µm, we expect the
transmission of ground-state neutrons resulting in an increase in count rate.
The expectation in this case is shown in a solid line and agrees nicely with the
data. The χ2 is 56 for 35 degrees of freedom for one fit parameter, the neutron
flux [20]. The expectation for neutrons behaving as classical particles is shown
in a dotted line. The classical expectation for neutron transmission is in clear
disagreement with the data (open circle). Especially, no neutrons are transmitted
for an absorber height between zero and fifteen micrometer.
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Fig. 6. Data and quantum expectation

5 Summary

In this experiment, gravitational bound quantum states have been seen for the
first time. The experiment shows that, under certain conditions, neutrons do not
follow the classical Galileian expectation when reflected from neutron mirrors.
The measurement does well agree with a simple quantum mechanical descrip-
tion of quantum states in the earth’s gravitational field together with a mirror-
absorber system. We conclude that the measurement is in agreement with a
population of quantum mechanical modes. Further, the spectrometer operates
on an energy scale of pico-eVs and suitably prepared mirrors can usefully be
employed in measurements of fundamental constants or in a search for non-
Newtonian gravity. The present data constrain Yukawa-like effects in the range
between 1 µm and 10 µm. This work has been funded in part by the German
Federal Ministry (BMBF) under contract number 06 HD 854 I and by INTAS
under contract number 99-705.
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Abstract. One strategy for searching for effects due to quantum gravity (QG) is to
employ the Einstein Equivalence Principle (EEP) as an operational tool. The EEP,
consisting of the Universality of Free Fall, the Universality of the Gravitational Red-
shift, and Local Lorentz Invariance, implies on the one hand that gravity has to be
described by a space-time metric (pseudo-Riemannian Geometry) and on the other
hand that the equations of motion for particles or quantum fields possess a specific
structure compatible with the metrical structure of gravity. Therefore, any deviation
from that structure of the dynamical equations of matter is related to a deviation
from the metrical structure of gravity. As one consequence, any “new physics” will be
accompanied by a breakdown of the validity of the EEP. We now take the EEP as
guiding principle for the search for possible QG effects. Various proposed QG effects
are then classified according to the various violations of the EEP, which is then used
for a comparison with the present experimental status.

1 Introduction

There are many reasons that suggest that gravity has to be quantized [1]. One
reason is that if all matter fields are quantized then all fields that are produced
by these matter fields have to be quantized, too. Otherwise, at least within
the existing theoretical schemes, inconsistencies may occur. Further reasons are
that within purely classical General Relativity (GR) under very general and
physically plausible circumstances singularities will occur. One way to avoid
singularities may be a quantum description of gravity. For completeness one
should mention that despite of these reasons there is also the option that gravity
and the quantum domain remain completely disconnected so that gravity does
not need to be quantized. However, the general accepted opinion is that gravity
and quantum theory should go through some synthesis.

There are two main directions along which the quantization of gravity is
looked for: The canonical quantization of gravity and string theory. In a sense,
both approaches are complementary. The canonical quantization scheme starts
from the geometric view of gravity and tries to quantize the gravitational field in
form of the space-time metric or other related variables. During this process, the
specific properties of matter are completely ignored, as is the case in Einstein’s
field equations, where matter is summarized in an energy-momentum tensor
without specifying the nature of the existing matter. String theory, on the other
side, starts from a specific unified concept of particles and interactions in flat

C. Lämmerzahl, The Einstein Equivalence Principle and the Search for New Physics, Lect. Notes
Phys. 631, 367–400 (2003)
http://www.springerlink.com/ c© Springer-Verlag Berlin Heidelberg 2003
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space-time, and adds the gravitational interaction which then may depend on
the particles it acts on.

It has also been discussed whether a quantization of the gravitational field is
sufficient. Perhaps also the notion of an event, that is, a point in the differentiable
manifold, should be quantized [2,3]. One approach in this direction is the ansatz
of a non-commutative geometry.

However, as far as the experimental search for possible quantum gravity
effects is concerned, the effect one is searching for can be described within the
ordinary conceptual framework of fields/particles on a differential manifold. Any
“new physics” then will appear as a deviation from the usual physical laws. This
is obvious because in a low energy limit the usual physical concepts should come
out, as, for example, for small velocities the Galilei group results from the Lorentz
group or Newtonian gravity is the weak field and low velocity limit of Einstein’s
theory of gravity. Consequently, any new effect in these examples comes in first
by small deviations from the Galilei group or from Newton’s gravitational theory.

It has been shown that the low energy limit of QG theories always lead
to small deviations from standard physics, mainly due to the appearance of
extra scalar fields that are dynamical. These fields couple to the ”bare” coupling
constants like Newton’s gravitational constant G or the fine structure constant
α. This makes these constants effectively dynamical, that is, time and position
dependent. Furthermore, Local Lorentz Invariance is found to be violated.

After having recognized that QG predicts some deviations from standard
physics the next question is how to characterize ’standard physics’. In our con-
text, standard physics is characterized by the Einstein Equivalence Principle
(EEP). The EEP first implies that gravity has to be described by a pseudo-
Riemannian geometry (gravity is a metric theory) and second gives a formal
frame for the description all matter fields and interactions. By specifying a mat-
ter field, the structure of the corresponding field equation follows from the EEP.
Furthermore, the EEP is stated in terms that are directly related to experimental
experience. Therefore, the EEP is a tool to derive essential features of standard
physics and serves as an operational guiding principle in the experimental search
for new physics.

We also want to emphasize that the EEP, though being very fundamental for
the general construction of theories, also bears importance for daily life, Fig. 1.
The validity of the EEP is directly related to metrology, that is, for example,
to the uniqueness of time-keeping or the uniqueness of the definition of other
physical units. Also for the Global Positioning System GPS, neglecting GR or
Special Relativity (SR) might give daily errors of the order of 10 km. And the
high precision observation of the motion of the surface of the Earth with an
accuracy of cm, which is at the limit of the present confirmation of SR and GR,
can help in the modelling of the Earth and in predicting e.g. Earthquakes.

In this contribution we first describe the EEP, then show most of its implica-
tions, present models that lead to violations of the EEP, and give a list of tests of
the EEP. At the end we expand a bit the importance of the EEP for metrology,
that is, for the task to prepare, reproduce and compare physical units.
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Fundamental physics

Application in daily life

frame-
theory

Astrophysics
Cosmology

Atomic
physics

High energy
physics

SR and GR: Physics of the EEP

Geodesy GPS Metrology Telecom-
munikation

Fig. 1. The importance of GR and SR in fundamental physics and in daily life or,
equivalently, the possible influence of “new physics”

2 The Einstein Equivalence Principle

The EEP is a collection of principles that results in the present day formulation
of relativistic physics including SR and GR as well as the Maxwell and the Dirac
equation. That means, the validity of the EEP implies the validity of SR, the
metrical structure of GR and the form of the equations for the electromagnetic
field and for spin-1

2 quantum particles. However, the EEP is not enough to
derive Einstein’s field equations. For that, more input is needed, like the Strong
Equivalence Principle. A scheme of how to arrive at Einstein’s field equations
within a metrical framework is provided by the PPN-formalism [4].

To be more precise, the EEP consists of [4]

1. The principle of the Universality of Free Fall (UFF), which means that all
pointlike, structureless particles fall in a gravitational field along the same
path,

2. the principle of Local Lorentz Invariance (LLI) which means that in small
regions (the region must be small enough so that tidal effects can be neglected
with respect to the effects under consideration) SR is valid1, and

3. the principle of the Universality of the Gravitational Redshift (UGR) which
means that all experiments, prepared with the same initial and boundary
conditions, give the same results irrespective of where and when they are
carried out.

1 There is a huge set of publications on a precise mathematical and operational mean-
ing of this point, see e.g. [5] for an early reference.
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(Locale Lorentz Invariance)
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The important point of the EEP is, that it is expressed directly in terms of
experimentally testable statements. Thus, it is an operational principle. That
means, only if a certain set of experiments yields specific results, then gravity
has to be a metric theory, the equations for the electromagnetic field must be of
Maxwellian form, the Dirac equation must have their standard form, etc.

The tests of the EEP, and their corresponding meaning, are:

1. Tests of the UFF:
By testing the UFF one explores whether all constituents of a macroscopic
body, that is protons, electrons, neutrons (or the underlying quarks), that
is, all forms of rest masses, behave in a gravitational field in the same way. It
is certainly an astonishing physical fact that all particles ”know” how other
particles behave in the gravitational field. In principle, these tests must be
carried through for all materials. Since, due to E = mc2, the electromag-
netic, weak, and strong interactions also contribute to the rest mass, UFF
also controls the behaviour of these interactions in gravitational fields. In
a certain theoretical frame these contributions are in general smaller than
”pure” violations of the UFF due to e.g. an anomalous gravitational masses.

2. Tests of the UGR:
These tests explore whether all kinds of clocks based on non-gravitational
physics (gravitationally driven periodic systems like the motion of planets
around the sun are excluded) possess constant mutual frequency ratios ir-
respective of their position and time. Since the gravitational field may be
different for different space-time points, this means again that all interac-
tion between particles behave in the same way under changes of the gravi-
tational fields. Because a violation of the UFF by the participating particles
also would destroy the validity of UGR, UFF and UGR are deeply linked.
However, in a first approximation, UFF is connected with the rest mass and
UGR with the interactions.
A (hypothetical) violation of the UGR would mean that the physical laws de-
pend on the time and the position of the laboratory. As an example, assume
that the strength of the electric force between two charges depends on time.
Since a force is always measured by comparison with another force (or inter-
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action), which usually is defined by electromagnetism and quantum mechan-
ics, this means that the electromagnetic coupling constant, the fine structure
constant, depends on time. This, in turn, then leads to time-dependent fre-
quency ratios between various clocks, like resonators and atomic clocks. Con-
sequently, the temporal or spatial variation of physical constants is deeply
connected with a violation of UGR.
Furthermore, if a violation of the UFF is due to a position-dependent scalar
function, then this can be related to a violation of the UGR [6]. That means,
UGR-tests are also tests of UFF, and vice versa. General arguments then give
that the precision of the determination of the gravitational redshift must be
10−10 in order to compete with current UFF tests. See also [7,8] for general
considerations of connections of UFF and UGR within string theory inspired
dilaton models. In [9] a connection between a varying fine structure constant
and violations of UFF is outlined.

3. Tests of LLI
In order to experimentally verify SR one has to carry through the following
set of experiments:
(a) Test of the universality of the limiting speed of all particles. This includes

that all particles possess as maximum speed the speed of light. Only
if all phenomena possess the same limiting velocity, causality can be
geometrized. That this is the case is again highly non-trivial. As for the
UFF and UGR, all particles ”know” about a specific property of all other
particles.

(b) Test of the independence of the speed of light from the velocity of the
source. As a consequence, this is then also valid for the limiting velocities
of all particles.

(c) Test of the isotropy of the speed of light.
(d) Tests of the independence of speed of light from the velocity of the lab-

oratory.
(e) Test of the time dilation given by the Lorentz factor γ = 1/

√
1− v2.

All the above described tests are either direct comparisons between two par-
ticles or between two clocks: Tests of the UFF, of the universality of the speed
of light, and of the independence of the speed of light from the velocity of the
source just compare the velocity of different particles. Since these comparisons
are carried through at same space-time events, there is no need for synchroniza-
tion or for transporting some physical units. These comparisons are null tests
and are completely independent from any theoretical model or framework.

The second set of tests, namely test of the UGR, of the isotropy of the
speed of light, of the independence of the speed of light from the velocity of
the laboratory, and of the relativistic time dilation are comparisons between
different clocks. The first three of these tests compare two clocks of different
physical nature in the same state of motion at the same position, see Fig. 2. The
last compares two identical clocks possessing different velocities.

Though the comparison of clocks means that one just measures the ratio
of two frequencies that is independent of any time unit, the description and
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Clock 1
ν1

Clock with a
hypothetical anomal

dependence on velocity,
orientation, and position

Clock 2
ν2

Clock with a different
hypothetical anomal

dependence on velocity,
orientation and position

×
Comparison
ν2 − ν1

Fig. 2. General scheme for testing parts of SR and GR with clocks, namely the UGR,
isotropy and velocity independence of the speed of light

experimental maintenance of clocks needs theoretical and experimental effort.
Clocks based on resonators, for example, need, if high precision is required,
very careful thermal and mechanical stabilization. In the case of atomic clocks,
external stray fields have to be under very precise control. That means, that one
has to use already some laws of physics in order to prepare these clocks. Only with
a careful order-of-magnitude analysis of the physics needed for establishing the
clocks compared to the laws one is testing, one can avoid logical inconsistencies.
Furthermore, if clocks are used for searching for anomalous effects violating the
EEP, the result can be interpreted consistently only if also the clock is described
as a whole within this EEP-violating model.

Furthermore, from the available high-precision clocks one can infer the kind of
information one may get from the corresponding clock-comparison experiments.
Such clocks are

1. Atomic clocks based on electronic hyperfine transitions. They are character-
ized by energy levels of the form E = α2f(α) where α is the fine structure
constant and where f(α) is a Casimir correction factor and depends on the
corresponding transition. An external field needed in order to split energy
levels.

2. Atomic clocks based on nuclear transitions. These “clocks” are not used
in practice as primary clocks. However, these transitions are used e.g. in
Hughes–Drever experiments in order to search for LLI violations. The tran-
sitions are characterized by a nuclear fine structure constant αn. Again one
has to apply an external magnetic field.

3. Resonators. Here the frequency is defined by microwave or optical frequencies
in a resonator. Since the length of the resonator is given by Bohr’s radius,
it scales linearly with the fine structure constant. Therefore, the frequencies
possess a different α-dependence than atomic clocks. A direct comparison
gives information about a hypothetical time-dependence of α which violates
UGR [75].
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4. Molecular clocks. The rotation or vibration of molecules also define a fre-
quency which depends on the fine structure constant but also on the ratio
of the electron-to-proton-mass: E ∼ f(α,me/mp).

Consequently, by comparison of these various clocks one may get information
about the constancy of α, αn and me/mp. Furthermore, since in all these clocks
characteristic directions are involved (atomic clocks need some external electric
or magnetic field, the geometry of resonators in general possess a symmetry
axis, and molecules possess some axis of rotation or direction of vibration) a
comparison of clocks with different intrinsic directions represent also tests of the
rotation invariance of physics (tests of the isotropy of space, of which Michelson–
Morley tests are the realization in the electromagnetic domain).

3 Implications of the Einstein Equivalence Principle

All interactions are discovered and characterized by the influence on matter.
This is also true for the gravitational interaction. The EEP consists of state-
ments about the properties of matter in gravitational fields from which we can
conclude the properties of that field. That means, the EEP first very strictly
restricts the equations for the electromagnetic field and for point particles or
quantum fields. It is only through the specific properties of the dynamics of
matter (point particles or fields) that gravity can be restricted to be describable
solely by means of a space-time metric. Therefore, we first have to analyze the
dynamics of particles and fields prescribed by the EEP and then we can de-
fine the gravitational field as that field which couples universally to matter and
deduce the properties of this gravitational field.

Roughly speaking, the UFF implies the geometrization of the gravitational
interaction since no particle properties influence the dynamics, LLI implies the
existence of a metric tensor at each space-time point, and, finally, UGR implies
that there are no scalar or other fields leading to different metrics at different
space-time points.

3.1 Matter

As already stated, the EEP not only restricts the structure of the gravitational
field but in a first step the structure of dynamical equations like the equation of
motion for point particles, for quantum fields or of the electromagnetic field. For
example no coupling to the curvature is allowed because curvature terms will
not vanish when restricting the experiment to small regions where the dynam-
ical equations are assumed to acquire their SR form. It should be emphasized
that this holds only for the equations governing observed quantities, like the
electromagnetic field. It is well known from Maxwell equations minimally cou-
pled to gravity that the equations governing the vector potential couples to the
curvature. The same also appears in field theory: Here the requirement that the
fundamental solution of a scalar field equation has the same form as in SR leads
to a conformal coupling, that is, to a curvature term in the field equation [10].
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Point Particles. If we accept that in any situation the position and velocity
is enough to determine the path of a structureless particle, then the equation of
motion is, in general, given by ẍµ+ H̃µ(p, x, ẋ) = 0, where p denotes all effective
parameters (charge-to-mass ratio q/m, deviation of the ratio of the gravitational
to inertial mass from unity mg/mi − 1, etc.) characterizing the particle under
consideration2. By taking p → 0 (either in a continuous or discrete way and
leaving the masses finite) we may define that part of H̃ which is independent of
p, Hµ(x, ẋ) = limp→0 H̃µ(p, x, ẋ). Then the equation of motion may be written
as ẍµ + Hµ(x, ẋ) + Ĥµ(p, x, ẋ) = 0 with Ĥµ = H̃µ − Hµ. That part which is
independent of any parameters p we identify as gravitational interaction. Ĥµ is
identified with nongravitational interactions. These terms are not present either
if the corresponding charges are zero (neutral particles) or if there is no non-
gravitational field. In this case we have, per definition, UFF. We used the UFF
as a means to identify the gravitational interaction.

In a second step, LLI introduces at each point a frame with a Minkowskian
metric. This is physically represented by the motion of light rays (up to a con-
formal factor).

Now we further consider structureless particles which are either neutral or
which move in an interaction-free region. The equation of motion then must have
the form ẍµ = Hµ(x, ẋ) with no parameter noticing any property of the particle.
According to LLI, there is a frame so that the equation of motion acquires the
SR form ẍµ

∗= 0. In this frame we also have the Minkowski metric. There cannot
be any coupling of the particles to curvature like Rµν ẋ

ν because such terms
are present in any frame. The transformation of ẍµ = 0 to an arbitrary frame
then yields an autoparallel equation vν∂νv

µ + Γµνρv
νvρ = αvµ where α is an

undetermined function. Furthermore, the Minkowski metric will transform to a
metrical tensor gµν . The compatibility of this autoparalell with SR then leads to
a Weylian connection [11,12]. Furthermore, the condition of UGR in the form of
a uniqueness of a transport of light clocks then reduces the Weylian connection
to a Riemannian one.

Consequently, for point particles the EEP reduces all possible gravitational
interactions to the one described by a Riemannian geometry.

Matter Fields. Also the standard Dirac equation can be derived with the help
of the EEP. Assuming the conservation of probability, the requirements of LLI
leads to a system of first order partial differential equations, which have the form
of a slightly generalized Dirac equation. Adding the principle of UGR one then
arrives at the usual Dirac equation in pseudo-Riemannian space-time [13].

The Maxwell Field. It has been shown by Ni [14] that only a modest gener-
alization of Maxwell’s equations is compatible with the UFF. The modification
2 We exclude non-scalar properties of particles because this will considerably compli-

cate the procedure because then one has to take the dynamics of these properties
into account which increases the equations of motion under consideration.
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consists of an addition of χεabcdFabFcd to the usual Lagrangian for the Maxwell
field where χ is a pseudoscalar field and εabcd the totally antisymmetric Levi–
Civita tensor3. However, this term violates LLI because it induces a precession
of the polarization of plane waves. This indeed represents a violation of LLI be-
cause corresponding propagation phenomena induced by the propagation of light
do not show such a precession. Requiring LLI then forbids such a precession and
thus this extra term. Therefore, EEP implies the ordinary Maxwell equations.

3.2 The Gravitational Field

The gravitational field is now defined through the equations of motion of the
various matter fields. The only gravitational interaction, which remain in the
dynamical equations of point particles, the Maxwell and the Dirac field, is given
by a space-time metric. This metric then is called the gravitational field. Gravity
then is described mathematically by a pseudo-Riemannian geometry [4].

4 Models Which Violate the Einstein Equivalence
Principle

4.1 Quantum Gravity Induced Violations of the EEP

String Theory Induced Violations of the UFF. The prediction [17,18] is
that the UFF, in terms of the Eötvös parameter (20) below, might be violated
at the order 10−15 or even at the order 10−13 [19]. This is very well in the range
of the space mission MICROSCOPE [20] scheduled for 2006.

Loop Gravity Induced Violations of LLI.

Modifications of the Maxwell Equations. In loop gravity, averaging over some
quasiclassical quantum state, a so-called “weave”-state, which includes the state
of the geometry as well as of the electromagnetic field, gives the effective Maxwell
equations [21] (see also [22])

0 = ∇×B − ∂tE + ϑ1∇×B

+ ϑ2∆(∇×B) + ϑ3∆B + ϑ4∇× (B2B) + . . . (1)
0 = ∇×E + ∂tB + ϑ1∇×E + ϑ2∆(∇×E) + ϑ3∆E + . . . , (2)

3 One should distinguish between Lorentz invariance and Lorentz covariance: Lorentz
covariance means the formal covariance of all expressions under Lorentz transfor-
mation, Lorentz invariance means that the result of all experiments are the same in
all frames provided all initial and boundary conditions in each frame are identical.
Therefore, a Lorentz covariant theory may break Lorentz invariance. As an example,
applying an equivalence principle of the form that e.g. the Dirac equation should
acquire its special relativistic form in a particular frame, allows a coupling to space-
time torsion [15,16] what clearly introduces distinguished space-time directions.
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where the ϑi are coefficients depending on ratios of the Planck length and a
length characterizing the quasiclassical gravitational quantum state. If one in-
troduces the plane wave ansatz E = E0e

i(k·x−ωt) and B = B0e
i(k·x−ωt) and

neglects the nonlinearities, then one gets the dispersion relations

ω = |k|
(
1 + θ̃1 + θ̃2|k|2 ± θ̃3|k|

)
(3)

with other θ̃s. The ± corresponds to different polarization states. Moreover,
dispersion occurs so that from this dispersion relation one can e.g. derive the
group velocity of photons and analyze the time of arrival of signals from distant
stars according to frequency or polarization.

There are two points which need to be discussed: First, with (2) also a ho-
mogeneous Maxwell equation is modified and, second, the appearance of higher
order derivatives means that there are photons that propagate with infinite ve-
locity.

1. The deviation from the homogeneous Maxwell equations has the important
consequence that the unique description of charged particle interference is
no longer true. If quantum mechanical equations are minimally coupled to
the electromagnetic potential, that is by the replacement ∂ → ∂ − ie

�cA,
then the phase shift in charged particle interferometry is δφ = ie

�c

∮
C
A for a

closed path C. If one applies Stokes’ law in the case of a trivial space-time
topology in that region, then this is equivalent to δφ = ie

�c

∫
F with F = dA

where integration is over some 2-dimensional surface bounded by the closed
path C. The fact that the result should not depend on the chosen surface is
secured by the homogeneous Maxwell equations dF = 0.
Since the form of (2) is incompatiple with dF=0, one must consider nonmin-
imal couplings in order to provide unique predictions for charged particle
interference.

2. The appearance of higher order spatial derivatives implies that in the cor-
responding frame of reference there are photons propagating with infinite
velocity. As a consequence, Lorentz-invariance is violated.

3. It is clear that the appearance of higher order spatial derivatives also implies
the appearance of higher order time derivatives in other frames of reference.

Modifications of the Dirac Equation. In the same manner as for the Maxwell
equation, one can derive the modified Dirac equation [23,24]. The effective Dirac
equation has the form

iγ̃a∂aψ − m̃ψ − γ̃ab∂a∂bψ = 0 , (4)

where γ̃a = γa+κ1G1(LPL/L)+κ2G2(LPL/L)2 + . . . are the usual Dirac matri-
ces γa with QG corrections (κi are coefficients of order 1, Gi are some matrices,
and LPl and L are the Planck length and a length characterizing the semiclassi-
cal gravitational quantum state, respectively), and m̃ = m

(
1 + µ1m(LPL/L) +

µ2(LPL/L)2+. . .
)
, and γ̃ab = γab

(
λ1(LPL/L) + λ2(LPL/L)2 + . . .

)
where again

µi and λi are parameters of order unity, and γab is some set of matrices.
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This kind of equation can be used in order to discuss the time-of-arrival of
neutrons [23,25] or can be confronted with Hughes–Derever experiments [26,27].
The result of the latter paper is that modifications linear in the Planck length
are questionably.

String Theory Induced Violations of LLI.

Modifications of Maxwell Equations. In string theory the gravitational field is
given by D-branes which interact with propagating photons via an effective recoil
velocity ū [28]. This recoil effect appears as a modified space-time metric, which
influences the Maxwell equations. These equations are then given by

∇ ·E + ū · ∂tE = 0 ∇ ·B = 0 (5)

∇×B − (1− ū2)∂tE + ū× ∂tB + (ū ·∇)E = 0 ∇×E = −∂tB . (6)

In this approach the homogeneous equations remain unmodified. The resulting
wave equations are

0 = �E − 2(ū ·∇)∂tE (7)
0 = �B − 2(ū ·∇)∂tB (8)

which leads to the dispersion relation

ω = ±k + (ū · k) +O(ū2) . (9)

The corresponding group velocity for light is

c = ±k

k
+ ū . (10)

From string theoretical considerations, the recoil velocity ū can be shown to
depend linearly on the energy ω of the photon, ū ∼ ω. Therefore, in this case
we obtain an energy dependent group velocity of the photons.

Modifications of the Dirac Equation. String theory induced modifications of the
effective Dirac equation [29] have the form

iγa∂aψ − ūaγ0i∂aψ −mψ = 0 . (11)

Also this equation can be confronted with spectroscopic results [30] with the
result that first order corrections coming out from (11) are unlikely to be present.

4.2 LLI Violations from Non-commutative Geometry

It has been shown [31] that non-commuative geometry in general leads to vio-
lations of LLI described in general by an extension of the standard model (see
below). In a non-commutative framework the commutator of coordinates xµ is
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[xµ, xν ] = iθµν where θµν is real and antisymmetric. The main argument em-
ployed in [31] is that due to the Seiberg–Witten map stating that there is a cor-
respondence between a non-commutative gauge theory and a conventional gauge
theory, non-commutative models must lie within an extension of the standard
model. They applied the Seiberg–Witten map to the model of non-commutative
QED and, after restricting to quadratic terms, arrived at an effective Lagrangian,
which is within the model given by sum of (16) and (19) together with a coupling
term that we will describe below. The violations of LLI are directly related to
the coefficients θµν .

The General Structure of Modified Dispersion Relations. In both cases,
that is in (3) and (9), the general structure of dispersion relation for the propa-
gation in one direction reads [32]

k2c2 = E2

(
1 + ξ

(
E

EQG

)
+O

(
E

EQG

)2
)

. (12)

where E is the energy of the photon. The parameter ξ depends on the underlying
theory and can be derived to be ∼ 3/2 for string theory [33] and ∼ 4 for loop
gravity [22]. The quantum gravity energy scale EQG is, of course, of the order
of the Planck energy EP so that for ordinary light which possesses an energy
of the order 1 eV the correction term E/EQG is of the order 10−28. From the
above dispersion relation we derive the velocity of light

cQG = c

(
1− ξ

E

EQG

)
. (13)

Therefore, the difference of the velocity of light for high energy photons and low
energy photons, ∆c = c(E)− c(E → 0) is given by

∆c

c
= ξ

E

EQG
. (14)

Exactly this quantity has been suggested to be observed for astrophysical events.

String Theory Induced Violation of the UGR. Violations of the UGR
induced by string theory have been considered within a dilaton model by Damour
[7,8].

4.3 General Models Violating EEP

Bi-metric Models. Bi-metric models describe the possibility that the limiting
velocities of different kinds of particles may differ. Thus they are test theories
for the universality of the velocity of light. If the speed of light is not universal
then is also has as consequence that the isotropy of the speed of light and its
independence from the velocity of the laboratory also will be violated.
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The most elaborate model of this kind is the THεµ-formalism [34,35,4]. It is
based on the Lagrangian

S = m0

∫ √
T −Hẋ2dt +

1
8π

∫ (
εE2 − 1

µ
B2

)
d4x + q

∫
A · ẋdt + q

∫
A0dt ,

(15)

where ẋ is the coordinate velocity of a point particle with mass m and charge
q, E and B the electric and magnetic field, A0 and A the scalar and vector
potential. T , H, ε, and µ are the parameters of this theory which are all unity
in standard physics.

From a quick sight at this equations it is clear that the limiting velocity of
the point particles is cp =

√
T/H while the velocity of photons is cem =

√
εµ.

Only if the mechanical parameters T and H are related to the electromagnetic
parameters ε and µ, both velocities are equal. It is also clear that the Lagrangian
(15) is written in a preferred frame characterized by the isotropy of both limiting
velocities. In moving frames the difference between these two velocities depends
on the direction.

For constant parameters T , H, ε, and µ this is a one-parameter test theory
for describing tests of SR. This parameter is δ = cp/cem =

√
T/(Hεµ). By

replacing the point particle part in the Lagrangian by a corresponding Dirac–
Lagrangian a lot of experiments including tests of UGR and LLI can be described
[36,35,37,38,4].

Ni–Haugan–Kostelecky-Formalism. A huge generalization of the THεµ-
ansatz consists in the consideration of general constitutive laws between the
electromagnetic field strengths E and B and the electromagnetic excitations D
and H. To the knowledge of the author, Ni [39,14,40] was the first who consid-
ered this as a general starting point for the confrontation of the consequences
with observations. The starting point is to replace the Lagrange density of the
electromagnetic field according to

L = − 1
16π

ηacηbdFabFcd −→ L = − 1
16π

(
ηacηbd + λabcd

)
FabFcd , (16)

where λabcd is an additional tensor possessing the symmetries of the Riemann-
tensor. This tensor is assumed to describe the properties of the vacuum. The
homogeneous Maxwell equations are still valid. Due to this, the totally anti-
symmetric part of λabcd transforms into total divergence, and the double trace
amounts to a rescaling of the charge in the case that there is a coupling to
matter, so that there are 19 parameters related to a violation of LLI.

With the general constitutive law Gab = (ηacηbd + λabcd)Fcd the inhomoge-
neous Maxwell equations are

∂bG
ab = 4πja . (17)

These equations have been used by Ni [39,14] to derive general conditions for
the validity of the UFF for electromagnetic bound systems. Haugan and Kauff-
mann [41] used this in order to derive constraints on these coefficients from
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astrophysical observations. The most general analysis of consequences of these
LLI-violating terms is due to Kostelecky and Mewes [42,43] who analyzed astro-
physical data leading to estimates λabcd ≤ 10−30 for 10 of the 19 components, and
showed how to treat data from laboratory experiments like Michelson–Morley
experiments. First analyses of recent laboratory experiments in this test theory
have been carried through by Lipa et al [44] and Müller and coworkers [45].
While the first paper gives estimates λabcd ≤ 10−13 resp. 10−9 for four linear
combinations of the other 9 coefficients, the latter achieved λabcd ≤ 10−13 resp.
10−9 for all individual coefficients but one linear combination.

In more general models one starts with the equation of motion instead of
using a variation principle. The most general Maxwell equation linear in the
field and the derivative is given by [46,47]

(ηacηbd + χabcd)∂bFcd + χacdFcd = 4πja . (18)

Here, χabcd = χab[cd] possesses 96 and χacd = χa[cd] 24 degrees of freedom. A first
consequence of this general ansatz is that charge conservation is no longer true
which has a severe impact in the standard formalism of physics. However, there
seems to be no really good test of charge conservation (see below) and, further-
more, recently some papers discussed charge non-conservation models originating
in higher dimensional brane theories where the charge may escape from our 4-
dimensional world through higher dimensions [48]. Also its relation to the EEP
has been discussed [49]. Charge non-conservation is encoded in the coefficients

χ(ab)cd and
0
χacd where in

0
χ the totally antisymmetric part has been removed.

Generalized Dirac Equation. The above-mentioned generalization of the
THεµ-formalism has also a counterpart on the side of the particles, namely the
generalized Dirac equation. Such generalized Dirac equations have the form

iγµ∂µψ −Mψ = 0 , (19)

where γµ are not assumed to fulfill a Clifford algebra. A substantial part of
LLI-violating effects of this kind of equations is due to the non-Clifford parts of
the γ-matrices. Together with the generalized Maxwell equation (17) this is also
called the ’extended standard model’. In GR, the matrix M consists of the mass
scalar and the spinor connection. In our generalized Dirac equation additional
terms will spoil LLI and also UGR.

To the knowledge of the author, generalized Dirac equations and their con-
sequences for particle dynamics have first been discussed by Liebscher [50], also
[51]. An early discussion of the generalized Dirac equation with respect to tests
of hypothetical violations of LLI is [52], recent discussion are due to Kostelecky
and coworkers [53–58].
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5 Experimental Tests
of the Einstein Equivalence Principle

According to the principles underlying the EEP, the tests of it or, equivalently,
the search for new physics can be classified along the following lines:

• Tests of the UFF
• Tests of the UGR
• Tests of LLI

– Test of the universality of c
– Test of the independence of the c from the velocity of the source
– Test of the isotropy of c
– Test of the independence of c from the velocity of the laboratory
– Test of time dilation

5.1 Test of the Universality of Free Fall

Usually, tests of the UFF are described within a Newtonian framework: In the
system where the gravitating body is at rest, the force acting on a test body,
miẍ, where mi is the inertial mass, is given by the gravitational force −mg∇U ,
where mg is the gravitational mass of the test body and U the Newtonian po-
tential. The path of the test body can be determined from the acceleration
−ẍ = (mg/mi)∇U . If the ratio mg/mi is the same for all test bodies, then the
path will also be the same. By renormalizing the Newtonian potential by a con-
stant, we then have ẍ = −∇U . A hypothetical violation of the UFF is encoded
in the Eövös ratio η defined as

η = 2
ẍ2 − ẍ1

ẍ2 + ẍ1
= 2

(mg/mi)2 − (mg/mi)1
(mg/mi)2 + (mg/mi)1

, (20)

where the indices 1 and 2 denote two different test bodies. The UFF implies
η = 0.

The best test gives η ≤ 10−12 [59]. There are two space mission under way,
the French MICROSCOPE mission [20] that is scheduled for 2005 but may be
delayed for a year due to financial reductions in space programs, and the STEP
project [60]. These missions want to test the UFF to a precision of 10−15 and
10−18, respectively. In principle, UFF should be tested with all pairs of test
bodies. Due to new predictions [61] the UFF has recently been probed for small
distances [62,63].

5.2 Test of the Universality of the Gravitational Redshift

Absolute Measurement. In GR the gravitational red shift is given by

ν(x1) =
(

1− U(x1)− U(x0)
c2

)
ν(x0) , (21)
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where ν(x0) is the frequency of a clock at position x0 and ν(x1) is the frequency
of this clock measured by an identical clock at position x1. This relation has
been tested with a space-borne Hydrogen maser compared with a ground H-
maser with an accuracy of 7 · 10−5 [64,65].

Clock Comparison. In the above formula no reference is made to the used
clock. In the case that the gravitational red shift is not universal, the frequencies
of the various types of clocks at different positions in the gravitational field will
depend on the type of the clock:

ν(x1) =
(

1− (1 + αclock)
U(x1)− U(x0)

c2

)
ν(x0) . (22)

In the framework of GR, αclock = 0 for all clocks, such as atomic clocks, optical
and microwave resonators, H-maser, quartz crystal, etc. If the redshift depends
on the type of clock and we move two different clocks together in the gravitational
field, then the ratio of the frequencies of these two clocks is

νclock1(x1)
νclock2(x1)

≈
(

1− (αclock2 − αclock1)
U(x1)− U(x0)

c2

)
νclock1(x0)
νclock2(x0)

. (23)

For a violation of the UGR we get a position dependent frequency ratio which is
proportional to the difference of the gravitational potential difference U(x1) −
U(x0). If αclock2 = αclock1, then this frequency ratio is independent of the posi-
tion of the two clocks, and the constant factor αclock can be absorbed into the
Newtonian potential, leading to (21).

The best tests of the UGR have been carried through by comparing an H-
maser and a Cs atomic fountain clock over one year. Both are located at the same
position on the surface of the Earth and experience, due to the annual elliptical
motion of the Earth, the varying gravitational potential of the sun which is of
the order ∆U/c2 ∼ 7 · 10−10. The result is |αH−maser − αfountain| ≤ 2.1 · 10−5

[66]. Other tests compare the frequency of a Cesium atomic clock and that
defined by a microwave resonator which leads to |αCs−αcavity| ≤ 2 ·10−2 [67]. A
comparison between electronic Iodine states and a cavity yields |αIod−αcavity| ≤
2 ·10−2 [68]. The space mission ACES [69] comparing an H-maser and an atomic
fountain clock on the ISS in the varying gravitational potential of the sun, aims
to improve the presently best test by at least one order what is a consequence
of the fact that the free fall condition in space will considerably improve the
working conditions of the atomic fountain clock (see below p. 388). Furthermore,
since the above results depend on the value of the experienced difference of the
gravitational potential, space missions like SPACETIME [70] and OPTIS [71]
will give huge improvements. While OPTIS compares an H-maser, atomic ion
clocks and clocks based on optical resonators in an high elliptic orbit around the
Earth, SPACETIME uses three ion clocks in an identical environment and aims
at exploiting the huge potential difference of ∆U/c2 = 3·10−7 when approaching
the sun up to 5 solar radii. As a result, UGR may be tested to an accuracy of
10−10.
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Since a violation of UGR can be related to charge non-conservation, we report
about its status of experimental verification.

Charge Non-conservation. One way to treat charge non-conservation experimen-
tally is to look for the probability that an electron, carrying a charge e, may just
disappear or be created during scattering processes in high energy accelerators.
The underlying model is that an electron decays into a neutral particle and a
photon e → n + γ. For these kind of processes the probability was found to be
less than 5.3 · 10−21 y−1 [72].

Another aspect of charge conservation is the equality of charges of the elec-
tron and the proton. This can be proven with great accuracy by testing the
neutrality of atoms or molecules. The corresponding estimates state that the
relative difference between the electron and proton charge |(qe − qp)/qe| is less
than 2 · 10−19 [73]. It is clear that even for equal electron and proton charges
the absolute charge may vary in time. In principle, this may be proven by ob-
serving a spring connecting two, say, equally charged bodies. For a varying,
non-conserved charge the spring should expand with time, if the charge de-
creases. However, since also the physics of the spring heavily depends on the
electromagnetic properties of matter, this requires a very thorough analysis. A
more simpler version of this can be found in atomic physics where obviously
charge non-conservation influences the binding energy of electron in the field
of the nucleus what results in a time-dependence of the fine structure constant
α = e2/�c.

If we assume that charge is not conserved, then the charge of all parti-
cles depends on time so that especially for the charge of the electron and the
proton de/dt �= 0 which then implies for the fine structure constant α̇/α =
2α(1/e)(de/dt). If we assume a specific time-dependence of the form de/dt = ζe,
then dα/α = 2ζ. Thus experiments on the time-dependence on the fine-structure
constant give estimates on ζ or, in terms of the general model (18), on compo-

nents of χ(ab)cd and
0
χabc.

A measurement of a hypothetical time dependence of the fine structure con-
stant can be obtained by comparing different time or length standards which
depend in a different way on α (see page 372). For example, the in the recent
experiment [74] a Cs and a Rb atomic fountain clock, both based on hyper-
fine transitions with different α-dependence, were compared over five years. The
comparison resulted in α̇/α ≤ 1.6 · 10−15 y−1, so that ζ ≤ 8 · 10−16. In two new
proposals [75,76] using resonators, more specific, monolithic resonators for opti-
cal modes and whispering gallery modes in a single resonator, respectively, it is
claimed that it might be possible to test the time-independence of α below the
10−15 level. Together with the tests of the equality of the electron and proton
charge, tests of the constancy of the fine structure constant provide the best
direct experimental proof of charge conservation.
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5.3 Test of Local Lorentz Invariance

While it is clear that for a description of tests of UFF and UGR one has to
modify the equations of motion of the test particles and test clocks, the situation
is different for SR. Here one may choose between kinematical and dynamical
test theories. Kinematical test theories, based on the analysis of Robertson [77]
and Mansouri and Sexl [78–80] (see also the review [81]), compare the physics
in two differently moving and differently oriented laboratories. Dynamical test
theories examine the structure of the laws of physics. Kinematical test theories
are more basic in the sense that they describe the behaviour of distinguished
physical phenomena (e.g. light) with respect to given rods and clocks which,
in a constructive approach to a physical theory, at the beginning are given by
definition and thus cannot be analyzed using physical theories (simply because
they not yet exist at that stage)4. In a later stage, after having explored physical
laws, one may analyze these rods and clocks with the help of these laws. Then
one may ask how these objects behave if these laws are modified. This is the task
of the dynamical test theories. In the end, dynamical test theories are superior
to kinematical test theories because these theories describe all objects, even the
measuring apparatus.

Within the kinematical framework of Robertson [77] and Mansouri and Sexl
[78–80] the velocity of light is given by

c(v, ϑ) = c0

(
1 + A

v2

c20
+ B cos2 ϑ

v2

c20
+O

(
v4

c40

))
, (24)

where v is the velocity of the laboratory with respect to a preferred frame which
one chooses as the frame in which the cosmic microwave background radiation
appears to be isotropic. c0 is the velocity of light in the preferred frame. A
and B are two parameters which vanish in SR. In addition, the time dilation is
described as

γ(v) =
1√

1− v′2/c20

(
1 +

1
2
α

(v + v′)2

c20
+O

(
v4

c40

))
, (25)

where v′ is the velocity of the clock with respect to the laboratory. Again, α
vanishes in SR. Equations (24) and (25) require three independent test in order
to fix A, B, and α. As a prerequisite, the Robertson-Mansouri-Sexl test theory
requires the independence of the speed of light from the velocity of the source.

In dynamical test theories of the Ni–Haugan–Kostelecky type the velocity of
light again depends on the orientation and a velocity. The velocity of light can
be calculated from the dispersion relation resulting from the modified Maxwell

4 However, at least for the existing kinematical test theories one nevertheless needs
some physical information ”from the outside”, namely the velocity with respect to
some preferred frame. What we take as preferred frame depends on our knowledge
about the universe. These test theories are not intrinsically complete.
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equations (17)

ω =

(
1− 1

2
k̃α

α ±
√

1
2
k̃αβ k̃αβ − 1

4
(k̃αα)2

)
|k|+O(λ2) , (26)

where k̃αβ = λαβγδkαkβ/|k|2| [43]. The velocity of light then is given by

c(v, ϑ) = c0 (1 + A sinϑ + B cosϑ + C sin(2ϑ) + D cos(2ϑ)) , (27)

where the coefficients A, ..., D depend on the velocity with respect to an under-
lying coordinate system which in this case is chosen as the coordinate system of
the solar system [43] (see also [44] for an application of this to the analysis of a
recent experiment). The more complicated orientation dependence is due to the
tensorial character of the LLI violation λabcd. For the time dilation one needs
also to calculate the influence of the modified Maxwell equations on the atomic
spectra. In this test theory, too, the independence of the speed of light from the
velocity of the source is a prerequisite.

Test of Universality of c. The universality of the maximum velocity of parti-
cles has been tested for various pairs of particles. For a comparison of electrons
with photons and of photons with different frequencies in the laboratory one
achieves the 10−6 level for the relative velocity difference |(v1 − v2)/v1| [82–84].
Astrophysical observations of neutrinos and photons from supernovae gives a
level of 10−8 [85–87]. High energy cosmic rays are discussed in [88–90]. Another
aspect of the universality of c is the non-occurence of birefringence: in vacuum
the velocity of light should be independent of the polarization. This has been
confirmed by astrophysical observation with high accuracy [43] from which 10
of the 19 components λabcd could be estimated to be smaller than 2 · 10−32

(the other 9 components will be constrained by Michelson–Morley experiments).
More indirect nuclear spectroscopical (Hughes–Drever) tests give a 10−22 level
for the maximum difference of photon and proton speed [91,92].

Test of Independence of c from the Velocity of the Source. One of the
most distinctive and contra-intuitive statements of SR is that the velocity of
light is independent from the velocity of the source. A possible violation may
be expressed as c′ = c + κv where κ is a parameter which has to be determined
experimentally. In a Galilean framework κ = 1, in SR κ = 0. The most impres-
sive experiment demonstrating this is from Alväger et al. [93] where the source
of photons possesses a velocity of 99.975 % of the velocity of light. The emitted
photons still propagate with the velocity of light within κ ≤ 10−6. Better es-
timates can be achieved from astrophysical observations of binary systems [94]
leading to a κ ≤ 10−9.

Test of Isotropy of c. The isotropy of the velocity of light is subject to
the famous Michelson–Morley experiments. The presently most precise test has
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been performed by Müller et al. [45] and gives |δϑc/c| ≤ 4 · 10−15. In terms
of the Robertson–Mansouri–Sexl parameters this means |B| ≤ 4 · 10−9 and for
remaining 9 parameters of the extended standard model |λabcd| ≤ 10−15. Other
recent experiments are [95,44].

Since light, which properties are tested in these experiments, is a consequence
of Maxwell’s equations, any modification in the speed of light must be related
to a modification of Maxwell’s equation. Since the properties of the interferome-
ter arms or the resonators are also strongly influenced by electrodynamics, their
porperties may be modified, too. Indeed, it has been shown in two models [47,45]
of modified Maxwell equations that an accompanying anomalous behaviour of
the length of the interferometer arm or of the cavity may compensate or enhance
the signal indicating an hypothetical anisotropy of the speed of light. Further-
more, also LLI-violations of the Dirac equation may contribute to an anomalous
behaviour of the interferometer or cavity [96]

Test of Independence of c from the Velocity of the Laboratory. This
part of the relativity principle has been tested first by Kennedy and Thorndike.
The presently most precise test is due to Wolf et al. [95] and gives |A| ≤ 3.1·10−7.
Another recent experiment is [68]5.

Test of Time Dilation. Time dilation is the only non-null test of SR because
one has to determine the Lorentz factor 1/

√
1− v2 experimentally. Deviations

from this factor in terms of a parameter α in γ(v) = (1 + 1
2αv

2)/
√

1− v2 have
ben limited to |α| ≤ 2 · 10−7 recently [98].

6 New Experimental Devices and Developments

Here we describe a few experimental devices that have been developed in the
last years and possess the capability to contribute a lot to improvements of
experiments searching for new physics.

6.1 Atom Interferometry

Though atomic iterferometry has been implemented only a bit more than ten
years ago, it already provides e.g. the best gyroscopes. High precision atomic in-
terferometry is based on an effective laser cooling of atoms down to temperatures
5 It should be noted that in terms of the variation of the velocity of light for varying

velocities of the laboratory, δvc/c, the old 1990 experiment by Hils and Hall [97]
is better than the present tests. The difference is that Hils and Hall were able to
measure for a few days only, while the measurements of Braxmaier et al [68] took
approximately one year. Consequently, the change in the velocity which is essential
in estimating the parameter A in (24), could be chosen as twice the velocity of the
Earth around the Sun while Hils and Hall were restricted to twice the rotational
velocity of the Earth’s surface around its own axis.
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in the µK domain corresponding to velocities of the order of cm/s. These low ve-
locities are necessary for long interaction times thereby increasing the accuracy.
The use of laser beams as beam splitters has the advantage of being not influ-
enced by the gravitational or inertial field, as it is the case for the beam splitters
in neutron interferometry. Within an Newtonian framework, acceleration and
rotation gives as phase shift in an atom interferometer

δφ = k · g T 2 + k · (Ω × 〈v〉)T 2 , (28)

where k is the wave vector of the laser field, g the (gravitational or inertial)
acceleration, Ω the angular velocity, 〈v〉 the expectation value of the velocity
of atoms entering the interferometer and T the interaction time. Therefore, the
UFF is clearly represented by this phase shift [99]. If the inertial and gravitational
mass are different, then this first term will be modified to (mg/mi)k · g T 2.
Atomic interferometry has confirmed the UFF in the quantum domain to the
order of 10−9. It is astonishing that (28) is an exact quantum result though there
appears no � in it.

Further improvements are expected by using Bose–Einstein condensates as a
coherent source for atoms.

6.2 Atomic Clocks

There are various atomic clocks available: H-maser, Rb- and Cs-clocks, and ion
clocks based on Hg+, Yb+, or Cd+, see e.g. [100,101] for reviews. The accuracy
of a clock is based essentially on the line-width of the atomic transition and on
the time of interaction with an external oscillator which reads out the frequency.
A narrow line-width is related to long-living atomic states that are provided by
hyperfine states. These transitions possess frequencies in the microwave range
(several 10 GHz). The interaction time should be 1 ms or longer.

Atomic Clocks. Clocks like the conventional Cs atomic clock consist of an
atomic beam which, during its flight, is interrogated by some microwaves for a
certain interaction time. Due to gravity, a relatively high beam velocity must be
chosen, so the interaction time is limited to about 1 ms. Due to this limitation and
further unwanted effects like stray fields, Doppler broadening, etc., the accuracy
of such clocks is of the order 10−14. For a detailed discussion, see [101]. The
today’s definition of the second is based on the Cs clock.

H-Maser. H-Masers are based on the coupling of the hyperfine transition of the
ground state of the Hydrogen atom which has a lifetime of about 1 second, to the
radiation of a resonator. The frequency is 1.420 405 751 Hz and the instability of
this clock is of the order 10−15. H-Masers are used worldwide for the definition
of time and have been used in the first gravity space mission GP-A [64,65].
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Ion Clocks. Ion clocks are also based on hyperfine transitions of ions which are
stored in traps and which are therefore isolated from many disturbing influences.
The instability of this kind of clocks approaches the 10−16-level [102]. This means
that within 1 billion years the clock may be wrong by 1 s. Ion clocks may be
used in space missions like SPACETIME [70,69] or OPTIS [71].

Atomic Fountain Clock. Atomic fountain clocks use laser-cooled atoms. Dur-
ing a ballistic flight these atoms interact with separated fields in a Ramsey set-up.
Due to the controlled flight of the atoms interaction times of up to 1 s on Earth
can be obtained. This can be increased considerably in space where the atoms
do not fall out of the apparatus. The corresponding project PHARAO on the
ISS [103,69] is near completion.

6.3 Ultrastable Cavities

Cavities are made of stable materials and define a length standard. This lenght
is read out by a laser frequency stabilized (”locked”) to a resonance of the cavity.
With ν = nc/L the information of the length L of the cavity is transformed to
a frequency which can be measured with higher accuracy than lengths. Conse-
quently, resonators are a realization of light clocks. Here, the velocity of light c
plays an important role. It is clear that it is crucial to prohibit the cavity from
any thermal expansion or distortions due to external forces like acceleration,
rotation or gravity gradients. Furthermore, precise control of the laser frequency
to the resonance frequency of the cavity is required. This can be controlled by
means of the so-called Pound-Drever-Hall technique where one measures the
modulation of the reflected or transmitted beam that.

For cryogenic optical resonators [104] the stability which can be achieved is
δL/L ≤ 6 · 10−16 [105] what, for a resonator of typical length of 5 cm, is about
1/100 of the radius of the proton.

6.4 Frequency Comb

Since most of the tests of the principles of relativity depend on clock comparison,
a high precision technique for comparing frequencies of various ranges is manda-
tory. For a comparison of microwave and optical frequencies, which differ by up
to 6 orders of magnitude, the recently invented frequency comb is the appropriate
technique, see [106] for an overview. This technique, being simpler, cheaper, and
more accurate than previous methods, can be used e.g. in Kennedy–Thorndike
tests and test of the UGR. Corresponding tests are under development at the
University of Düsseldorf.

7 EEP and Modern Metrology

Metrology is the definition, preparation, transport, and comparison of physical
units like the second, the meter and the kilogram. It can be viewed as the basis for
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all modern physics: without the possibility to make very precise measurements
no progress in physics is conceivable. For example, in order to prove the predicted
dynamics of a certain physical phenomenon, a precise time-keeping is required.

Since all physical units are represented themselves by some physical phe-
nomena, a measurement always consists of the comparison of two physical phe-
nomena of the same kind, like e.g. the measurement of the dynamics of the
Earth compared with the dynamics of an atomic clock. The important point is
therefore the reproducibility and stability of physical units. The reproducibility
of units based on quantum effects is arbitrarily good while the reproducibility of
a macroscopic meter stick or of a unit of mass is of the order 10−6 and therefore
not applicable for really high precision measurements. In fact, the uncertainty
in the definition of the mass unit (and in the homogeneity of the used masses)
is the main obstruction for precise measurements of the gravitational constant.
However, basing units on quantum effects also means that one relies on a cer-
tain structure of quantum mechanics. As we have seen, this structure is deeply
related to the validity of the EEP.

7.1 Ideal Rods and Clocks

In order to explore the laws of physics and to perform tests of foundations of
theories one has to measure or prepare certain quantities like time and length.
The first step always consists of the definition of certain quantities like the second
or the meter at a certain instant and at some position. The next step then is to
transport this unit to other places. A complete theory always defines a way to
transport these units. For example, within SR and GR one can design a transport
of length and time standards with light rays and freely falling particles only. It
has been shown in the axiomatic approach to GR (and thus also to SR) using
light rays and freely falling particles (those obeying the UFF) only [11], that
by means of Schild’s ladder [11,107] or Perlick’s construction [108] it is possible
to uniquely transport a length or the eigentime along a path. For more general
theories the uniqueness will be lost. In a Weylian model of gravity, for example,
the transport of a length scale depends on the path and thus on the history of,
e.g., the meter stick, see e.g. [108]. As a consequence, modern metrology with its
task of unique definition, reproduction, and transport of physical units is deeply
connected with SR and GR.

Another point is that though the above constructions need no other objects
than those given by the theory, these transport prescriptions of time and length
standards are not always practical procedures because they may not be real-
izable with the accuracy needed today. The length and time standards, which
are realized today with the highest internal accuracy, are provided by atomic
clocks and solids. In order to describe these standards, one needs more than just
light rays and particles, namely the equations of motion for electromagnetic and
quantum fields.

Another definition and transport of a certain length scale is provided by
quantum equations for massive particles, e.g. the Dirac equation. The Dirac
equation introduces the Compton–wavelength and its transport along quasiclas-
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sical trajectories. Though the reproducibility of this length standard is very high,
the Compton wavelength cannot be related to frequencies with high accuracy.
Therefore, also this ideal standard is again not a practical one.

From these examples it is also clear that the unique availability of physical
units is a matter of the physical dynamics. This is the case, because all physical
standards are more or less defined by complicated physical objects that evolve
in time according to the underlying physical laws.

7.2 The System of Units

The first worldwide accepted units of time, length and mass were provided by
the revolution of the Earth around its axis resulting in the Universal Time scales
(of various types according to the kind of averaging), by a meter stick realized
as a metallic bar having the length defined as one ten-millionth of the distance
between the pole and the equator, and a mass unit made, like the meter, of
platinum-iridium. The definition of time suffers from the irregularities of the
motion of the Earth (the length of the day, for example, increases by around 2
seconds every century compared with a time-scale defined by more stable Quartz
oscillators). In 1956, the Ephemeris Time, based on the Earth’s orbital motion
around the Sun, was chosen as definition for time: The second was the 1/31 556
925.9747 part of the year 1900. The problems with the definitions of length and
mass were that a direct comparison of these macroscopic prototypes is nor very
accurate, and that the intrinsic stability of these prototypes are not known. Each
material, for example, experiences some ageing. Indeed, there is an unexplained
drift of the various mass prototypes during the last decades.

A first step in improving this system of units was to replace the Universal
Time by atomic time. This was a natural development since atomic clocks were
much more precise than the astrophysically defined time unit. Therefore, during
the 17th General Conference of Weights and Measures in 1983 one defined the
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of the second and of the meter depends on the validity of the EEP. A replacement of
the mechanical definition of the Ampere or other quantities also requires conventional
quantum theory and Maxwell theory and thus the validity of the EEP

second as the time that is needed by 9192631770 periods of the hyperfine transi-
tion of the ground level of 133Cs. Therefore time was defined in terms of a highly
reproducible quantum phenomenon. However, in order to combine all the atomic
clocks around the Earth (which is advantageous since by enlarging the number
of clocks, the precision of time-keeping will increase, and since astrophysical ob-
servations with distant telescopes, for example, need synchronization) Special
and General Relativity is needed: We need Special Relativity for the synchro-
nization procedure on a rotating reference frame (Sagnac effect), and we need
General Relativity in order to account for different counting rates at different
gravitational potentials (gravitational redshift). The result is the terrestrial co-
ordinate time which is a model extracted from the reading of all the clocks on
the surface of the Earth and which now represents the time in a non-rotating
observer located at the center of the Earth. It is well known that time provided
by the GPS also needs relativistic corrections.

The next step was to replace the unit of length by a much more reproducible
phenomenon. In a first step this was done in 1960 by defining the meter as
1 650 763.73 wavelengths of the red 2p10−5d5 transition of Krypton. This length
could be reproduced with an accuracy of 3·10−10. The disadvantage was that the
coherence length of that radiation was smaller than one meter, which made it
difficult to be compared with the old standard. Later on, during the mentioned
conference in 1983, the constancy of the speed of light was used in order to
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base the meter on time. Accordingly, the meter is now given as the distance
light travels within the 299792458th part of a second. This can be realized very
precisely using interferometry of laser beams. Therefore, with the help of Special
Relativity, the length unit was replaced by a quantum phenomenon. Obviously,
this definition breaks down if Special Relativity will be proven to be wrong, i.e.,
if the velocity of light depends on the orientation of the velocity of the laboratory
or if the usual dispersion relation for light is modified.

The replacement of the definition of the kilogram by some quantum procedure
is under way in various groups. One idea is to use a fixed number of atoms in a Si
one-crystal. In principle, this is a well-defined, exactly reproducible procedure.
However, counting the number of crystal lattices is not very practical so that one
has to use optical techniques in order to measure the geometry of e.g. a sphere of
a Si-crystal. That means that the kg will be based on the second. Another idea
is to use the Watt balance which connects a mass unit and Planck’s constant
�, and to replace the definition of mass by a definition of �. Then � receives a
defined value and the kilogram will be derived from it. Since the Watt balance
relates mechanical power to electrical power with the help of the quantum Hall
and the Josephson effect, again the Maxwell equations and the laws underlying
quantum mechanics are involved.

A general task of modern metrology is to base all units on quantum me-
chanically defined and thus highly reproducible quantities. Beside the second
and the meter, this has been done already for the electric resistance (measured
in Ohm) and the electric potential difference (measured in Volt), based on the
von-Klitzing and the Josephson-constant, respectively. Furthermore, the current
can be based on the electronic charge and the second. Again, the validity of the
standard Maxwell and quantum equations is a prerequisite for the consistent
realization of this task.

7.3 Consequences of a Violation of the EEP

From this outline one can see immediately that the full system of units in its
present (and proposed) form is compatible only if the present physical theories
are correct, that is, if the EEP is valid. If, for example, SR is violated and the
velocity of light is not isotropic, then the definition of length in general will not
be unique in the following sense: For a given unit of time we may prepare two
different length units in different directions. If we rotate these units of length,
then they will in general not coincide if the velocity of light depends on the
direction, that is, the unit of length prepared in the direction in which the
velocity of light is larger will be smaller than the other one. One may think of
an effect that internal forces of the material realization of the length standard
may compensate for this effect. But one cannot expect this to happen for all
materials in the same manner.

Another example is the uniqueness of the velocity of light: Let us assume that
the velocity of light is different from the characteristic velocity appearing in the
Dirac equation. Then the fine structure constant α as derived from spectroscopy
by α =

√
2RyλC, where Ry is the Rydberg constant and λC the Compton
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wavelength of the electron, will be different from the fine structure constant
which can be derived from the quantum Hall effect by α = c/(2RK) where RK
is the von Klitzing constant [112]. This again amounts to a non-uniqueness in
the definition of length.

8 Conclusion

We showed that the implications of the Einstein Equivalence Principle are two-
fold: First, the EEP strongly restricts the structure of the equations of mo-
tion for all types of matter fields, as for example the Dirac equation, and non-
gravitational interactions like the Maxwell equations, and it fixes the structure
of the gravitational field to be described by a metric field or a related quantity.
The EEP is not sufficient to derive Einstein’s field equation. Second, since the
EEP determines the structure of standard physics, any deviation from standard
physics should show up in violations of the EEP. Consequently, any search for
violations of the EEP or any experimental improvement of the validity of the
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principles underlying EEP is very important for any theoretical scheme trying to
go beyond the standard physics. Furthermore, the EEP also has very practical
consequences in the sense that only for standard physics the today’s scheme of
metrology will give a consistent set of physical units needed to measure physical
effects and compare theoretical predictions with experiments.

QG effects that fall outside the scope of the EEP and thus are not treated
here, are

• Modifications of Newton’s potential (see I. Antoniadis’s lecture on page 337
and H. Abele’s lecture on page 355).

• Time-dependent Newton’s gravitational constant G, see e.g. [113].
• QG induced modifications of the dispersion relation leading to the GZK-

cutoff presently very much discussed in astrophysics, see e.g. [114,115].
• QG induced noise in interferometers [116].
• QG induced decoherence in quantum matter, e.g. [117–119].
• QG induced fluctuation of the light cone [32].
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