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Preface

The relation between quantum theory and the theory of gravitation is certainly
one of the most outstanding unresolved issues of modern physics. On one side,
quantum theory, in its usual formulation and orthodox interpretation, requires
an ambient non-dynamical spacetime. On the other side, gravity, as described by
general relativity, requires a dynamical geometry of spacetime which is coupled
to all material processes within. This implies that at least one of these theories
cannot be fundamentally correct. Hence, according to general expectation, there
should exist a theory of quantum gravity comprising both previous theories.
Such a theory should make definite predictions where previous theories failed
to do so, like close to the Big Bang or during the radiational decay of Black
Holes. Moreover, a theory of quantum gravity should also clarify the structure
of spacetime at smallest scales. Up to now, no finally worked out theory of
quantum gravity exists. Currently the most promising approaches to such a
theory go under the names of Canonical Quantum Gravity and String Theory.
The purpose of the 271st WE-Heraeus Seminar “Aspects of Quantum Gravity
— From Theory to Experimental Search”, which took place in Bad Honnef from
February 24th to March 1st, 2002, was to discuss issues surrounding quantum
gravity on a level accessible to graduate students. The range of topics spanned
an arc from fundamental questions concerning the notion of “quantisation”,
over the presentation of definite approaches, to the possibility of astrophysical
observations as well as laboratory experiments. We sincerely thank all speakers
for their presentations and especially those who were moreover willing to write
them up for the present volume. Last but not least we thank the Wilhelm and
Else Heraeus Foundation for its generous support, without which this seminar
could not have been realized, and the Physikzentrum for its kind hospitality.

Freiburg, Kéln, and Bremen Domenico Giulini
April 2003 Claus Kiefer

Claus Lammerzahl
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Quantum Gravity — A General Introduction

Claus Kiefer

Institut fiir Theoretische Physik, Universitdt zu Koéln, Ziilpicher Str. 77, 50937 Kdln,
Germany.

Abstract. I give a brief introduction into the general problems of constructing a
theory of quantum gravity, the main approaches, expected applications, as well as
semiclassical approximations and the role of decoherence.

1 Quantum Theory and the Gravitational Field

Quantum theory seems to be a universal framework for physical theories. In
fact, most of the interactions found in Nature are already successfully described
by some quantum theory. The only interaction for which this has not yet been
achieved is gravity. All manifestations of the gravitational field known so far can
be understood from a classical theory — Einstein’s theory of general relativity
(also called ‘geometrodynamics’). It is given by the Einstein-Hilbert action

A

~ 167G

SEH / d*z /=g (R —2A) + boundary term + Sy, , (1)
M

where Sy, denotes the action for non-gravitational fields from which one can

derive the energy-momentum tensor according to

2 48,
V=g dgh(z)

There exist certain ‘uniqueness theorems’ which state that every reasonable the-
ory of the gravitational field must contain general relativity (or its natural gener-
alisation, the Einstein-Cartan theory) in a certain limit, see e.g. [1] for a review.

In spite of its success, there are many reasons to believe that the most fun-
damental theory of gravity is a quantum theory. Unfortunately, no experimental
material is presently available, which would point in a definite direction. The
reasons are therefore of a theoretical nature. The main motivations for quantum
gravity are [1]:

Ty () (2)

e Unification. The history of science shows that a reductionist viewpoint
has been very fruitful in physics. The standard model of particle physics is a
quantum field theory which has united in a certain sense all non-gravitational
interactions. The universal coupling of gravity to all forms of energy would
make it plausible that gravity has to be implemented in a quantum frame-
work, too. Moreover, attempts to construct an exact semiclassical theory,
where gravity stays classical but all other fields are quantum, have failed up

C. Kiefer, Quantum Gravity — A General Introduction, Lect. Notes Phys. 631, 3-13 (2003)
http://www.springerlink.com/ © Springer-Verlag Berlin Heidelberg 2003



4 Claus Kiefer

to now. This demonstrates in particular that classical and quantum concepts
(phase space versus Hilbert space, etc.) are most likely incompatible.

e Cosmology and Black Holes. As the singularity theorems and the ensuing
breakdown of general relativity demonstrate, a fundamental understanding
of the early universe — in particular its initial conditions near the ‘big bang’
— and of the final stages of black-hole evolution requires an encompassing
theory. From the historical analogue of quantum mechanics (which due to
its stationary states has rescued the atoms from collapse) the general ex-
pectation is that this encompassing theory is a quantum theory. It must
be emphasised that if gravity is quantised, the kinematical nonseparability
of quantum theory demands that the whole Universe must be described in
quantum terms. This leads to the concepts of quantum cosmology and the
wave function of the universe, see below.

e Problem of Time. Quantum theory and general relativity (in fact, ev-
ery general covariant theory) contain drastically different concepts of time
(and spacetime). Strictly speaking, they are incompatible. In quantum the-
ory, time is an external (absolute) element, not described by an operator (in
special relativistic quantum field theory, the role of time is played by the
external Minkowski spacetime). In contrast, spacetime is a dynamical object
in general relativity. It is clear that a unification with quantum theory must
lead to modifications of the concept of time. Related problems concern the
role of background structures in quantum gravity, the role of the diffeomor-
phism group (Poincaré invariance, as used in ordinary quantum field theory,
is no longer a symmetry group), and the notion of ‘observables’.

What are the relevant scales on which effects of quantum gravity should be
unavoidable? As has already been shown by Max Planck in 1899, the funda-
mental constants speed of light (c), gravitational constant (G), and quantum of
action (%) can be combined in a unique way (up to a dimensionless factor) to
yield units of length, time, and mass. In Planck’s honour they are called Planck
length, lp, Planck time, tp, and Planck mass, mp, respectively. They are given
by the expressions

h .
Ip = \/7? ~1.62 x 107 cm ®3)
C
! [h
tp =2 = 7(5; ~5.40 x 1074 5 | (4)
C C

h h
mp = — = 50 ~ 217 x 107° g~ 1.22 x 1019 GeV . (5)

The Planck mass seems to be a rather large quantity by microscopic standards.
One has to keep in mind, however, that this mass (energy) must be concentrated
in a region of linear dimension /p in order to see direct quantum-gravity effects.
In fact, the Planck scales are attained for an elementary particle whose Compton
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wavelength is (apart from a factor of 2) equal to its Schwarzschild radius,

; (6)

which means that the spacetime curvature of an elementary particle is non-
negligible. A truly unified theory may of course contain further parameters. An
example is string theory (see next section) where the fundamental ‘string length’
ls appears.

A quantity expressing the ratio of atomic scales to the Planck scale is the
‘fine structure constant of gravity’ defined by

2
. Gmpr - Mpr
Og = =

mpe

2
~ -39

> ) ~5.91 x 1073 (7)
where mp, denotes the proton mass. Its smallness is responsible for the unim-
portance of quantum-gravitational effects on laboratory and astrophysical scales,
and for the separation between micro- and macrophysics. It is interesting that
structures in the universe occur for masses which can be expressed as simple
powers of o, in units of my,, cf. [2]. For example, stellar masses are of the order
ag_3/2mpr, while stellar lifetimes are of the order agg/Qtp. It is also interesting
to note that the size of human beings is roughly the geometric mean of Planck
length and size of the observable universe. It is an open question whether a fun-
damental theory of quantum gravity can provide an explanation for such values,
e.g. for the ratio my,/mp, or not. If not, only an anthropic principle could yield
a — not very satisfying — ‘explanation’.

Below the level of full quantum gravity one can distinguish from a conceptual
point of view at least two other levels. The first, lowest, level deals with quantum
mechanics in external gravitational fields (either described by general relativity
or its Newtonian limit). No back reaction on the gravitational field is taken into
account. This is the only level where experiments exist so far, cf. the contribution
by C. Lammerzahl to this volume. Already in the 1970s, experiments of neutron
interferometry were performed in the gravitational field of the Earth. It was
possible, in particular, to show that the weak equivalence principle holds at the
given level of precision. More recently, gravitational quantum bound states of
neutrons in the field of the Earth have been measured, cf. the contribution by
H. Abele.

The second level concerns quantum field theory in external gravitational
fields. Back reaction can be taken into account in a perturbative sense. Al-
though experimatal data are still lacking, there exist on this level at least pre-
cise predictions. The most important one concerns Hawking radiation for black
holes [3], see e.g. [4] for a detailed review. A black hole radiates with tempera-
ture

hk
= ) (8)
2rkpe
where k is the surface gravity of a stationary black hole which by the no-
hair theorem is uniquely characterised by its mass M, its angular momentum

Th
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J, and its electric charge @. In the particular case of the spherically sym-
metric Schwarzschild black hole one has k = ¢*/4GM = GM/R} and there-
fore

hcd

Ty = —
B SrkpgGM

~ —s (Mo
~6.17 x 10 (M)K 9)
This temperature is unobservationally small for solar-mass (and bigger) black
holes, but may be observable for primordial black holes, cf. the contribution by
B. Carr. It must be emphasised that the expression for Ty contains all funda-
mental constants of nature. One may speculate that this expression — relating the
macroscopic parameters of a black hole with thermodynamic quantities — plays
a similar role for quantum gravity as de Broglie’s relations ¥ = hw and p = hk
once played for the development of quantum theory [5]. Hawking radiation was
derived in the semiclassical limit in which the gravitational field can be treated
classically. According to (9), the black hole loses mass through its radiation and
becomes hotter. After it has reached a mass of the size of the Planck mass (5),
the semiclassical approximation breaks down and the full theory of quantum
gravity should be needed. Black-hole evaporation thus plays a crucial role in any
approach to quantum gravity (see below).

There exists a related effect to (8) in flat Minkowski space. An observer in
uniform acceleration experiences the standard Minkowski vacuum not as empty,
but as filled with thermal radiation with temperature

ha

B cm
o 27‘(]{730

Tou ~4.05x10°2 ¢ { } K. (10)

<2
This temperature is often called the ‘Davies-Unruh temperature’, cf. [4]. For-
mally, it arises from (8) through the substitution of x by a. This can be under-
stood from the fact that horizons are present in both the black-hole case and the
acceleration case. Although (10) seems to be a small effect, it was suggested to
search for it in accelerators or in experiments with ultra-intense lasers, without
definite success up to now.

2 Approaches to Quantum Gravity

As T have already mentioned in the last section, experimental clues for quantum
gravity are elusive. A direct probe of the Planck scale (5) in high-energy experi-
ments would be illusory. In fact, an accelerator of current technology would have
to have the size of several thousand lightyears in order to probe the Planck energy
mpc? ~ 10*° GeV. However, it is imaginable that effects of quantum gravity can
in principle occur at lower energy scales. Possibilities could be non-trivial appli-
cations of the superposition principle for the quantised gravitational field or the
existence of discrete quantum states in black-hole physics or the early universe.
But one might also be able to observe quantum-gravitational correction terms
to established theories, such as correction terms to the functional Schrédinger
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equation in an external spacetime or effective terms violating the weak equiv-
alence principle. Such effects could potentially be measured in the anisotropy
spectrum of the cosmic microwave background radiation or in the forthcoming
satellite tests of the equivalence principle such as STEP, cf. the contribution by
C. Lammerzahl.

A truly fundamental theory should have such a rigid structure that all phe-
nomena in the low-energy regime, such as particle masses or coupling constants,
could be predicted in an unambiguous way. As there is no direct experimental
hint yet, most work in quantum gravity focuses on the attempt to construct a
mathematically and conceptually consistent (and appealing) framework.

There is, of course, no a priori given starting point in the methodological
sense. In this context Chris Isham makes a distinction between a ‘primary the-
ory of quantum gravity’ and a ‘secondary theory’ [6]. In the primary approach,
one starts with a given classical theory and applies heuristic quantisation rules.
This is the approach usually adopted, and it was successful, for example, in
QED. In most cases, the starting point is general relativity, leading to ‘quan-
tum general relativity’ or ‘quantum geometrodynamics’, but one could also start
from another classical theory such as the Brans-Dicke theory. One usually distin-
guishes between ‘canonical’ and ‘covariant’ approaches, where ‘covariant’ refers
here to spacetime diffeomorphisms. The main advantage of both approaches is
that the starting point is given — the classical theory. The main disadvantage is
that one does not arrive immediately at a unified theory of all interactions.

The opposite holds for a ‘secondary theory’. One starts with a fundamental
quantum framework of all interactions and tries to derive (quantum) general
relativity in certain limiting situations, e.g. through an energy expansion. The
most important example here is string theory (M-theory). The main advantage
is that the fundamental quantum theory automatically yields a unification. The
main disadvantage is that the starting point is entirely speculative. The general
meaning of ‘quantisation’ is discussed in the contribution by D. Giulini.

Even if quantum general relativity is superseded by a more fundamental
theory such as string theory, it should be valid as an effective theory in some
appropriate limit. The reason is that far away from the Planck scale, classical
general relativity is the appropriate theory, which in turn must be the classical
limit of an underlying quantum theory. Except perhaps close to the Planck scale
itself, quantum general relativity should be a viable framework (such as QED,
which is also supposed to be only an effective theory). It should also be mentioned
that string theory automatically implements many of the methods used in the
primary approach, such as quantisation of constrained systems and covariant
perturbation theory.

An important question in the heuristic quantisation of a given classical the-
ory is which of the structures in the classical theory should be quantised, i.e.
subjected to the superposition principle, and which should remain as classical (or
absolute, non-dynamical) structures. Isham distinguishes the following hierarchy
of structures [7]:
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Point set of events

Y

topological structure

Y

differentiable manifold

Y

causal structure

Y

Lorentzian structure

Most approaches subject the Lorentzian and the causal structure to quan-
tisation, but keep the manifold structure fixed. This is, however, not the only
possibility. It might be that even the topological structure is fundamentally quan-
tised. According to the Copenhagen interpretation of quantum theory, all these
structures would probably have to stay classical, because they are thought to be
necessary ingredients for the measurement process. For the purpose of quantum
gravity, such a viewpoint is, however, insufficient and probably inconsistent.

Canonical quantum gravity is described in the contribution by T. Thiemann.
Depending on the choice of canonical variables one distinguishes between vari-
ous sub-approaches: quantum geometrodynamics, quantum connection dynam-
ics, and quantum loop dynamics. Its central equations are the quantum con-
straints’

H,w=0, (11)
Ho¥ =0, (12)

where (11) is usually referred to as the ‘Wheeler-DeWitt equation’ and (12) as
the ‘momentum’ or ‘diffeomorphism constraints’ (a = 1,2, 3). The argument of
the wave functional ¥ is the space of all three-dimensional metrics hqp(x). Equa-
tions (12) guarantee, however, that ¥ is invariant under infinitesimal diffeomor-
phisms. The real arena is thus the space of all three-geometries (‘superspace’).
There are many problems associated with (11) and (12). Especially interest-
ing from a conceptual point of view is the absence of an external time parameter
t (‘problem of time’). The reason is the dynamical nature that time plays in gen-
eral relativity: on the one hand, it cannot appear as a classical time parameter

! In some approaches additional gauge constraints occur, see Thiemann’s contribution.
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like in ordinary quantum theory; on the other hand, the uncertainty relation in
gravity forbids the simultaneous specification of three-geometry and second fun-
damental form, so the concept of spacetime is completely lost in the quantum
theory. This is fully analogous to the loss of particle trajectories in quantum
mechanics, see e.g. [1,8] for a detailed discussion and references. An issue related
to the problem of time is the ‘problem of Hilbert space’: it is not known which
Hilbert space, if any, has to be used for the physical degrees of freedom in the
full theory. One therefore treats the quantum constraints (11) and (12) often
pragmatically as differential equations, with boundary conditions being imposed
from physical reasoning.

Quantum general relativity does not necessarily have to be treated in a canon-
ical approach. Alternative methods are the traditional background field method
and path-integral quantisation [1]. In the former, a perturbation is performed
around a four-dimensional background metric, and four-dimensional covariance
with respect to this metric is preserved at each order of perturbation theory. The
theory is perturbatively non-renormalisable, so it loses its predictive power at
high energies. Nevertheless, it is viable as an effective theory at low energies (in
the infrared limit). In this limit one can calculate, for example, quantum gravita-
tional corrections to Newton’s law [1]. Quite generally it is expected that possible
observations of a fundamental theory of quantum gravity can be described on
the level of effective actions, e.g. concerning searches for non-Newtonian grav-
ity or the violation of the weak equivalence principle, cf. the contributions by
I. Antoniadis and C. Lammerzahl. The path-integral approach is described in
the contribution by R. Loll.

String theory is described in the contribution by T. Mohaupt. In contrast to
quantum general relativity, it automatically yields a unified quantum framework
for all interactions. Until around 1996 most developments in string theory oc-
curred on the perturbative level. One of the main outcomes was that gravity is
inevitable. Other predictions are the occurrence of gauge invariance, supersym-
metry, and the presence of higher dimensions. The theory is envisioned to be
free of infinities.

More recently, the study of non-perturbative aspects has emerged. This is
mostly triggered by the occurrence of D-branes (higher-dimensional objects on
which open strings can end) and the discovery of dualities. They allow to relate
the small-coupling regime of one version of string theory to the large-coupling
regime of another version.

The history of quantum gravity starts with early perturbative attempts by
Leon Rosenfeld in 1929. A brief overview of historical developments can be found
in [9].

3 Quantum Black Holes and Quantum Cosmology

It is expected that two of the main applications of any theory of quantum grav-
ity concerns black holes and cosmology. For black holes, the level of quantum
field theory on a fixed background (Sect. 1) leads to the concept of Hawking
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radiation, see (8) and (9). Connected with this temperature is the occurrence of
the ‘Bekenstein-Hawking entropy’

 kpA

SBH = YTl (13)

where A is the surface of the event horizon. The black-hole entropy (13) is
much bigger than the entropy of a collapsing star. The entropy of the Sun, for
example, is Si ~ 10°7, but the entropy of a solar-mass black hole is Spyy ~ 1077,
i.e. twenty orders of magnitudes larger (all entropies are measured in units of
k). If all matter in the observable Universe were in a single gigantic black hole,
its entropy would be Sy =~ 10'23. Black holes thus seem to be the most efficient
objects for swallowing information.
Due to Hawking radiation, black holes have a finite lifetime. It is given by

Mo\ * Mo \*
TBH ~ <m§) tp ~ 10%° <]Wg> years . (14)

It has been speculated that after this time a black hole has evaporated com-
pletely and has left behind only thermal radiation. This would be independent
of any initial state the black hole has started from. Since a thermal state contains
least information, one would then be faced with the information-loss problem.
This is, however, a contentious issue and many arguments have been put forward
in favour of a unitary evolution for the black hole, see e.g. [10]. The final word
on this issue will be said after the full theory of quantum theory is known. Such
a theory should also provide a derivation of (13) by counting microscopic quan-
tum states. Preliminary results have been achieved both within the canonical
approach [11] and string theory [12], cf. the contributions by T. Mohaupt and
D. Sudarsky. Quantum gravity should also provide a detailed understanding of
the final evaporation process and settle the question whether the area of the
event horizon is quantised and, if yes, what its spectrum is.

To get a grip on the fate of the classical singularity, one can discuss exact
models of quantum gravitational collapse. This is done in the contribution by
P. H4jicek. He considers a thin spherically-symmetric shell with zero rest mass
that classically collapses into a black-hole singularity. One can, however, con-
struct a unitary quantum theory in which this singularity is avoided. If the shell
is described as a wave packet, the initially purely-collapsing packet turns near
the horizon into a superposition of collapsing and expanding packet and guar-
antees that the wave function is zero at » — 0. For late times the packet will be
fully expanding.

If quantum theory is applied to the universe as a whole, one talks about
quantum cosmology. Since the dominating interaction on large scales is gravity,
this can be described only within a quantum theory of gravity. Models can be
constructed in all existing approaches by making symmetry assumptions such as
homogeneity and isotropy. To discuss just one example, let us consider a closed
Friedmann universe with scale factor (‘radius’) ¢ = e® containing a massive
scalar field ¢ with mass m. In this case the Wheeler-DeWitt equation (11) can
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be written in suitable units for a wave function v (a, ¢) — the ‘wave function of
the universe’ — as
82

2
Hy = (hZM - hQ% + m2p?ebr — e4°‘> Y(a,9)=0. (15)

One recognises explicitly the hyperbolic nature (‘wave nature’) of this equation.
The role of intrinsic time is played by «; this becomes evident if further degrees
of freedom are added: they all come with the sign of the kinetic term for ¢.

Since no external time parameter ¢ is contained in (11), one cannot pose any
initial conditions with respect to it. Instead, one can specify the wave function
(and its derivative) — in the example (15) — at a fixed value of «.. This is the nat-
ural boundary condition for a hyperbolic equation. It has drastic consequences
if one wants to describe a universe that classically expands, reaches a maxi-
mum and recollapses again [5]. Both big bang and big crunch correspond to the
same region in configuration space — the region of & — —oo. They are thus in-
trinsically indistinguishable. The Wheeler-DeWitt equation connects larger scale
factors with smaller scale factors, but not two ends of a classical trajectory. If
one wants to mimick the classical trajectory by a ‘recollapsing’ wave packet,
one has to include both the ‘initial’ and the ‘final’ wave packet into one initial
condition with respect to a. If one of the two packets were lacking, one would
not be able to recover the classical trajectory as an approximation.

There is another interesting feature in the case of recollapsing universes: it
is in general not possible to construct from (15) a wave packet that follows as a
narrow tube the classical trajectory [5]. Therefore, a semiclassical approximation
is not valid all along the trajectory and quantum effects can play a role even far
away from the Planck scale — e.g. at the turning point of the classical universe.

Quantum-cosmological models such as (15) can serve quite generally to dis-
cuss the role of boundary conditions (e.g. the ‘no-boundary condition’ or the
‘tunneling condition’) [8] or issues related to the problem of time. An interesting
question, for example, concerns the origin of the inflationary universe in a theory
of quantum gravity [13].

4 Semiclassical Approximation and Decoherence

In order to bridge the gap between quantum gravity and the limit of quantum
theory in an external background, some kind of approximation scheme must be
devised. This has been discussed in all approaches, and I want to sketch here
only the procedure in quantum geometrodynamics, see [8] for more details and
references.

One method involves a Born-Oppenheimer type of approximation with re-
spect to the Planck mass mp. The situation is formally similar to molecular
physics where the heavy nuclei move slowly, followed adiabatically by the light
electrons. In situations where the relevant scales are much smaller than the
Planck mass, the gravitational kinetic term can be neglected in a first approxi-
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mation. One makes for solutions of (11) the ansatz
Plhap, @] = " et1Bfhay, ] (16)

where ¢ stands symbolically for non-gravitational fields. Inserting this into (11)
and and making an expansion with respect to mp, one finds that S[hgp] obeys the
gravitational Hamilton-Jacobi equation. This is known to be equivalent to Ein-
stein’s field equations. In this sense the classical background spacetime emerges
as an approximation (such as geometrical optics emerges as a limit from wave
optics). One can now pick out one classical spacetime from the many classical
solutions (spacetimes) that are described by S[hgs]. The ‘matter wave func-
tional” @[hgp, @] can then be evaluated on this particular spacetime described
by hap(x,t) and can therefore shortly be labelled & (¢, ¢]. If other semiclassical
variables are present (such as the homogeneous field ¢ in (15)), they are included
in S. The time parameter ¢ is defined from S[hqs] as parametrising the classical
trajectory (spacetime) running orthogonally to S[hqs] = const. in the space of
three-geometries. In the special case (15) of the Friedmann universe, ¢ is defined
by the scale factor a(t) and the homogeneous scalar field ¢(t). It can be shown
from (11) that the time evolution of the state &,

0

& a(t, 4] = / B by (3, 1) Blhan(x, ), 9] - (17)

_ 0
5hab(X, t)

is given by a functional Schrodinger equation in the external classical spacetime
found from S[hap),

0O (1, g] = A, 0] (18)

where H™a is the matter field Hamiltonian in the Schrédinger picture, para-
metrically depending on (generally nonstatic) metric coefficients of the curved
spacetime background. In this way, the Schrodinger equation for non-gravita-
tional fields has been recovered from quantum gravity as an approximation. A
derivation similar to the above can already be performed within ordinary quan-
tum mechanics if one assumes that the total system is in a ‘timeless’ energy eigen-
state. In fact, Neville Mott had already considered in 1931 a time-independent
Schrédinger equation for a total system consisting of an a-particle and an atom.
If the state of the a-particle can be described by a plane wave (corresponding
in this case to high velocities), one can make an ansatz similar to (16) and de-
rive a time-dependent Schréodinger equation for the atom alone, in which time is
defined by the a-particle.

Higher orders in this Born-Oppenheimer scheme yield quantum-gravitational
correction terms to the Schrédinger equation, which could leave an observational
imprint e.g. in the anisotropy spectrum of the cosmic microwave background.

The ansatz (16) is already special, since it is a product of a pure phase part
depending on gravity with a matter wave function. The i in the Schrédinger
equation (18) has its origin in the choice of this phase. Can this be justified?
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The answer is yes. A crucial role is hereby played by the process of decoherence
[14]. This is the emergence of classical properties through the irreversible inter-
action of a quantum system with its environment. Information about possible
interference effects in the system is delocalised into quantum correlations with
the inaccessible degrees of freedom of the environment and is no longer avail-
able at the system itself. Formally, decoherence is described through the reduced
density matrix of the system obtained by tracing out the irrelevant degrees of
freedom. In the present context these irrelevant variables can be density fluctu-
ations or gravitational waves. Detailed discussions show that states of the form
(16) are most robust against environmental influence and that the variables con-
tained in S[hgp] assume quasiclassical properties [5,8,14]. It is also possible along
these lines to understand, at least in principle, the origin of the arrow of time in
our universe from a simple boundary condition in quantum cosmology [5,15].
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That Strange Procedure Called Quantisation

Domenico Giulini

Physikalisches Institut, Universitdt Freiburg, Hermann-Herder-Str. 3,
9104 Freiburg, Germany

Abstract. I discuss the notion of ‘quantisation’ 4 la Dirac (canonical quantisation)
from a general perspective. It is well known that Dirac’s quantisation rules cannot work
in general. I present this classic no-go result, which is due to Groenewold and van Hove,
with due emphasis on its hypotheses. Finally, I briefly discuss first-class constrained
systems with emphasis on the global-geometric and algebraic apsects.

1 Introduction and Motivation

In my contribution I wish to concentrate on some fundamental issues concerning
the notion of quantisation. Nothing of what I will say is new or surprising to the
experts. My intention is rather a pedagogical one: to acquaint the non-experts
with some of the basic structural results in quantisation theory, which I feel
should be known to anybody who intends to ‘quantise’ something. A central
result is the theorem of Groenewold and van Hove, which is primarily a no-go re-
sult, stating that the most straightforward axiomatisation of Dirac’s informally
presented ‘canonical’ quantisation rules runs into contradictions and therefore
has to be relaxed. The constructive value of this theorem lies in the fact that
its proof makes definite suggestions for such relaxations. This helps to sharpen
ones expectations on the quantisation concept in general, which is particularly
important for Quantum Gravity since here sources for direct physical input are
rather scarce. Expectations on what Quantum Gravity will finally turn out to
be are still diverse, though more precise pictures now definitely emerge within
the individual approaches, as you will hopefully be convinced in the other lec-
tures (see the lectures by Loll, Mohaupt, and Thiemann in this volume) so that
reliable statements about similarities and differences on various points can now
be made. The present contribution deliberately takes focus on a very particular
and seemingly formal point, in order to exemplify in a controllable setting the
care needed in formulating ‘rules’ for ‘quantisation’. At the end I will also briefly
consider constrained systems from a slightly more ‘global’ point of view. Two
appendices provide some technical aspects.

How do you recognize quantum theories and what structural elements distin-
guish them from so-called classical ones? If someone laid down, in mathematical
terms, a theory of ‘something’ before you, what features would you check in
order to answer this question? Or would you rather maintain that this question
does not make good sense to begin with? Strangely enough, even though quan-
tum theories are not only known to be the most successful but also believed to

D. Giulini, That Strange Procedure Called Quantisation, Lect. Notes Phys. 631, 17-40 (2003)
http://www.springerlink.com/ (© Springer-Verlag Berlin Heidelberg 2003
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be the most fundamental theories of physics, there seems to be no unanimously
accepted answer to any of these questions. So far a working hypothesis has been
to define quantum theories as the results of some ‘quantisation procedures’ af-
ter their application to classical theories. One says that the classical theory (of
‘something’) ‘gets quantised’ and that the result is the quantum theory (of that
‘something’). This is certainly the way we traditionally understand Quantum
Mechanics and also a substantial part of Quantum Field Theory (for more dis-
cussion on this point, that also covers interesting technical issues, I recommend
[12]). As an exception — to a certain degree — I would list Local Quantum Field
Theory [10], which axiomatically starts with a general kinematical framework
for Poincaré invariant quantum field theories without any a priori reference to
classical theories. Although this can now be generalised to curved spacetimes,
it does not seem possible to eliminate the need of some such fixed (i.e. non-
dynamical) background. Hence this approach does not seem to be able to apply
to background independent dynamical fields, like gravity.

The generally accepted quantisation procedures I have in mind here can be
roughly divided into three groups, with various interrelations:

e Hilbert-space based methods, like the standard canonical quantisation pro-
gramme,

e algebraic methods based on the notion on observables, like x-product quan-
tisation or C*-algebra methods,

e path integral methods.

Given the success of Quantum Mechanics (QM) it was historically, and still is,
more than justified to take it as paradigm for all other quantum theories (modulo
extra technical inputs one needs to handle infinitely many degrees of freedom).
Let us therefore take a look at QM and see how quantisation may, or may not, be
understood. In doing this, I will exclusively focus on the traditional ‘canonical’
approaches to quantisation.

2 Canonical Quantisation

Historically the rules for ‘canonical quantisation’ where first spelled out by Dirac
in his famous book on QM [3]. His followers sometimes bluntly restated these
rules by the symbolic line,

oo 3 1)
which is to be read as follows: map each classical observable (function on phase
space) f to an operator f in a Hilbert space (typically L?(Q,du), where Q
is the classical configuration space and du the measure that derives from the
Riemannian metric thereon defined by the kinetic energy) in such a way that
the Poisson bracket of two observables is mapped to —1/A times the commutator
of the corresponding operators, i.e, {m} = %[fl, fg] (see e.g. [1], Sect. 5.4).

This is also facetiously known as ‘quantisation by hatting’. But actually Dirac
was more careful; he wrote [3] (my emphasis; P.B. denotes ‘Poisson Brackets’)
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‘The strong analogy between quantum P.B. [i.e. commutators] and
classical P.B. leads us to make the assumption that the quantum
P.B., or at any rate the simpler ones of them, have the same values
as the corresponding classical P.B.s.’

PauL Dirac, 1930

Clearly these words demand a specific interpretation before they can be called
a (well defined) quantisation programme.

2.1 The Classical Stage

Associated to a classical Hamiltonian dynamical system of n degrees of freedom
is a 2n-dimensional manifold, P, the space of states or ‘phase space’ (sometimes
identified with the space of solutions to Hamilton’s equations, if the latter pose a
well defined initial-value problem). Usually — but not always — it comes equipped
with a preferred set of 2n functions, (¢*,p;), i = 1---n, called coordinates and
momenta respectively. In addition, there is a differential-geometric structure
on P, called Poisson Bracket, which gives a suitable subspace F C C*°(P)
of the space of real-valued, infinitely differentiable functions the structure of
a Lie algebra. See Appendix 1 for more information on the geometric struc-
tures of classical phase space and Appendix 2 for the general definition of a Lie
algebra. Exactly what subspace is ‘suitable’ depends of the situation at hand
and will be left open for the time being. In any case, the Poisson Bracket is a
map

{}: FxF—F, (2)

which satisfies the following conditions for all f,g,h € F(P) and A € R (which
make it precisely a real Lie algebra):

{f7 g} = _{97 f} antisymmeter (3)
{fig+ A} ={f, g} + M, h} linearity (4)
{f,{g,h}} + {9, {h, F}} +{h,{f,9}} =0 Jacobi identity . (5)

In the special coordinates (¢°, p;) it takes the explicit form (cf. Appendix 1)

_N~(0f 09 0f 09

Independently of the existence of a Poisson Bracket, the space F is a commu-
tative and associative algebra under the operation of pointwise multiplication:

(f - 9)(x) = f(x)g(x). (7)
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This means that the multiplication operation is also a map F x F — F (simply
denoted by ‘) which satisfies the following conditions for all f,g,h € F and
AeR:

fg=g-f commutativity , (8)
f-(g+Ah)=f-g+Af-h linearity , (9)
f-(g-hy=(f-g9) -h associativity . (10)

The two structures are intertwined by the following condition, which ex-
presses the fact that each map Dy : F — F, g — Dys(g) := {f, 9}, is a derivation
of the associative algebra for each f € F:

{frg-hy ={f 9} -h+g-{fn}. (11)

The Jacobi identity now implies that (o denotes composition) DyoDg—DgoDy =
Dy f,g}.l Taken all this together this makes F into a Poisson algebra, whose
abstract definition is as follows:

DEFINITION 1. A Poisson algebra is a vector space V with two maps VxV — V|
denoted by ‘{,}’ and *-’, which turn V into a Lie algebra (defined by (3-5)) and a
commutative and associative algebra (defined by (8-10)) respectively, such that
(11) holds.

Simply writing the symbol F now becomes ambiguous since it does not in-
dicate which of these different structures we wish to be implicitly understood. I
shall use the convention to let ‘4’ indicate the vector-space structure, (+, {, }) the
Lie-algebra structure, (+, -) the associative structure, and (+, {, },) the Poisson
structure. To avoid confusion I will then sometimes write:

F for the set, (12)
F(+,{,}) for the Lie algebra, (13)
F(+,-) for the associative algebra, (14)
F(+,{,},) for the Poisson algebra, (15)

formed by our subset of functions from C'°°(P). Sometimes I will indicate the
subset of functions by a subscript on F. For example, I will mostly restrict P
to be R?" with coordinates (¢%,p;). It then makes sense to restrict to functions
which are polynomials in these coordinates.? Then the following subspaces will
turn out to be important in the sequel:

! This can be expressed by saying that the assignment f ++ Dy is a Lie homomorphism
from the Lie algebra F to the Lie algebra of derivations on F. Note that the deriva-
tions form an associative algebra when multiplication is defined to be composition,
and hence also a Lie algebra when the Lie product is defined to be the commutator.

2 Recall that you need an affine structure on a space in order to give meaning to the
term ‘polynomial functions’.
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E. :  C°°-functions, (16)
Foor :  polynomials in ¢’s and p’s, (17)
Foy : Dpolynomials of at most first order, (18)
FEoz : polynomials of at most second order, (19)
Fool(oo,1y © Polynomials of at most first order in the p’s

whose coefficients are polynomials in the ¢’s. (20)

An otherwise unrestricted polynomial dependence is clearly preserved under ad-
dition, scalar multiplication, multiplication of functions, and also taking the
Poisson Bracket (6). Hence %, forms a Poisson subalgebra. This is not true
for the other subspaces listed above, which still form Lie subalgebras but not

associative algebras.

2.2 Defining ‘Canonical Quantisation’

Roughly speaking, Dirac’s approach to quantisation consists in mapping certain
functions on P to the set SYM(#H) of symmetric operators (sometimes called
‘formally self adjoint’) on a Hilbert space H. Suppose these operators have a
common invariant dense domain D C H (typically the ‘Schwarz space’), then
it makes sense to freely multiply them. This generates an associative algebra of
operators (which clearly now also contains non-symmetric ones) defined on D.
Note that every associative algebra is automatically a Lie algebra by defining
the Lie product proportional to the commutator (cf. Appendix 2):

X,Y]:=X-Y-Y-X. (21)

Since the commutator of two symmetric operators is antisymmetric, we obtain
a Lie-algebra structure on the real vector space of symmetric operators with
invariant dense domain D by defining the Lie product as imaginary multiple
of the commutator; this I will write as :-[,-] where A is a real (dimensionful)
constant, eventually to be identified with Planck’s constant divided by 2.

Note that I deliberately did not state that classical observables should be
mapped to self adjoint operators. Instead I only required the operators to be
symmetric, which is a weaker requirement. This important distinction (see e.g.
[14]) is made for the following reason (see e.g. Sect. VIII in [14] for the math-
ematical distinction): let f be the operator corresponding to the phase-space
function f. If f were self adjoint, then the quantum flow U (t) = exp(itf) existed
for all t € R, even if the classical Hamiltonian vector field for f is incomplete (cf.
Appendix 1) so that the classical flow does not exist for all flow parameters in R.
Hence self adjointness seems too strong a requirement for such f whose classical
flow is incomplete (which is the generic situation). Therefore one generally only
requires the operators to be symmetric and strengthens this explicitly for those
f whose classical flow is complete (see below).

A first attempt to mathematically define Dirac’s quantisation strategy could
now consist in the following: find a ‘suitable’ Lie homomorphism @ from a ‘suit-
able’ Lie subalgebra F' C F(+,{,}) to the Lie algebra SYM(#H) of symmetric
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operators on a Hilbert space H with some common dense domain D C H. The
map Q will be called the quantisation map. Note that this map is a priori not
required in any way to preserve the associative structure, i.e. no statement is
made to the effect that Q(f - g) = Q(f) - Q(g), or similar.

To be mathematically precise, we still need to interpret the word ‘suitable’

which occurred twice in the above statement. For this we consider the following
test case, which at first sight appears to be sufficiently general and sufficiently
precise to be able to incorporate Dirac’s ideas in a well defined manner:

1.

2.

7.

We restrict the Lie algebra of C°°-Functions on P to polynomials in (¢*, p;),
i.e. we consider E, (+,{, }).

As Hilbert space of states, H, we consider the space of square-integrable
functions R™ — §), where §) is a finite dimensional Hilbert space which may
account for internal degrees of freedom, like spin. R™ should be thought of as
‘half’ of phase space, or more precisely the configuration space coordinatised
by the set {¢', - ,¢"}. For integration we take the Lebesgue measure d"q.

. There exists a map Q : %, — SYM(H, D) into the set of symmetric op-

erators on H with common invariant dense domain D. (When convenient
we also write f instead of Q(f).) This map has the property that whenever
f € %, has a complete Hamiltonian vector field the operator Q(f) is in fact
(essentially) self adjoint.?

Q is linear:

Qf +rg) = Q(f) +AQ(g). (22)

. Q intertwines the Lie structure on %, (+, {,}) and the Lie structure given

by &[,] on SYM(#, D):

Q{f.9}) = H[Q(f). Q) - (23)

Here h is a constant whose physical dimension is that of p - ¢ (i.e. an ac-
tion) which accounts for the intrinsic dimension of {, } acquired through the
differentiations (cf. (6)). Note again that the imaginary unit is necessary to
obtain a Lie structure on the subset of symmetric operators.

. Let 1 also denote the constant function with value 1 on P and 1 the unit

operator; then
Q(1)=1. (24)

The quantisation map Q is consistent with Schrédinger quantisation:

(Qa")¥)(a) = ¢'¥(a), (25)
(Qpi)¥)(q) = —ihdy:1(q). (26)

3 We remark that the subset of functions whose flows are complete do not form a Lie
subalgebra; hence it would not make sense to just restrict to them.
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One might wonder what is actually implied by the last condition and whether
it is not unnecessarily restrictive. This is clarified by the theorem of Stone and
von Neumann (see e.g. [1]), which says that if the 2n operators Q(q*) and Q(p;)
are represented irreducibly up to finite multiplicity (to allow for finitely many
internal quantum numbers) and satisfy the required commutation relations, then
their representation is unitarily equivalent to the Schrédinger representation
given above. In other words, points 2.) and 7.) above are equivalent to, and
could therefore be replaced by, the following requirement:

7. The 2n operators Q(q"), Q(p;) act irreducibly up to at most finite multiplicity
on H.

Finally there is a technical point to be taken care of. Note that the commu-
tator on the right hand side of (23) — and hence the whole equation — only makes
sense on the subset D C H. This becomes important if one deduces from (22)
and (23) that

{f,9y=0=1[Q(f), Q9] =0, (27)

i.e. that Q(f) and Q(g) commute on D. Suppose that the Hamiltonian vector
fields of f and g are complete so that Q(f) and Q(g) are self adjoint. Then
commutativity on D does not imply that Q(f) and Q(g) commute in the usual
(strong) sense of commutativity of self-adjoint operators, namely that all their
spectral projectors mutually commute (compare [14], p.271). This we pose as
an extra condition:

8. If f,¢ have complete Hamiltonian vector fields and {f, g} = 0; then Q(f)
commutes with Q(g) in the strong sense, i.e. their families of spectral pro-
jectors commute.

This extra condition will facilitate the technical presentation of the following
arguments, but we remark that it can be dispensed with [8].

2.3 The Theorem of Groenewold and van Howe

In a series of papers Groenewold [9] and van Hove [16,15] showed that a canonical
quantisation satisfying requirements 1.-8. does not exist. The proof is instructive
and therefore we shall present it in detail. For logical clarity it is advantageous
to divide it into two parts:

Part 1 shows the following ‘squaring laws’:
Q¢*) = [Qa))*, (28)
Qr*) = [Q)*, (29)
Qgp) = $[Q(9)Qp) + Qp)Q(a)] - (30)

Next to elementary manipulations the proof of part 1 uses a result concerning
the Lie algebra sl(2,R), which we shall prove in Appendix 2. Note that in the
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canonical approach as formulated here no initial assumption whatsoever was
made concerning the preservation of the associative structure. Points 4. and 5.
only required the Lie structure to the preserved. The importance of part 1 is to
show that such a partial preservation of the associative structure can actually be
derived. It will appear later (cf. Sect.2.5) that this consequence could not have
been drawn without the irreducibility requirement 7).

Part 2 shows that the squaring laws lead to a contradiction to (23) on the level
of higher than second-order polynomials.

Let us now turn to the proofs. To save notation we write f instead of Q(f).
Also, we restrict attention to n = 1, i.e. we have one ¢ and one p coordinate on
the two dimensional phase space R2. In what follows, essential use is repeatedly
made of condition8 in the following form: assume {f,q} = 0 then (23) and
condition 8 require that f (strongly) commutes with ¢, which in the Schrédinger
representation implies that f has the form (fw)(q) = A(q)¥(q), where A(q) is a
Hermitean operator (matrix) in the finite dimensional (internal) Hilbert space .

Proof of Part 1. We shall present the argument in 7 small steps. Note that
throughout we work in the Schrédinger representation.

= 0, hence q = A(q). Applying (23) and
L5 q ] = —2§ and hence A'(q) = 2q (here we
for the unit operator in £)), so that

i) Calculate qAQ: we have {q2,q}

(25) to {p,q*} = —2q gives 5
suppress to write an explicit 1

=42, (31)
where e_ is a constant (i.e. ¢ independent) Hermitean matrix in .

ii) Calculate pAQ: this is easily obtained by just Fourier transforming the case
just done. Hence

P2 =+ 2, (32)

where e is a constant Hermitean matrix in $) (here, as in (31), the conven-
tional factor of 2 and the signs are chosen for later convenience).

iii) Calculate gp: We apply (23) to 4qp = {¢?, p?} and insert the results (31) and
(32):

~ ~2 AQ]

@ = 21?07 = 257 — e er] = L(@p+5d) +h,  (33)

where
bim lerre ], (34)
In the last step of (33) we iteratively used the general rule

[A, BC] = [A, B|C + B[A,C]. (35)
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vi)

vii)
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Next consider the quantities
h = 5(dp+pq), (36)
€4 = %ﬁQa (37)
e == —1g%. (38)

By straightforward iterative applications of (35) short computations yield

wlese-l=h, glhes]=+2es, (39)

which show that e, h furnish a representation of the Lie algebra of sl(2,R)
of real traceless 2 x 2 matrices (see Appendix 2 for details).
On the other hand, defining

H = gp, (40)
E+ = %p2a (41)
B_ = —1¢, (42)

we can directly use (23) to calculate their Lie brackets. This shows that they
also satisfy the si(2,R) algebra:

HEw, B ]=H, §[H Ey=+2E,. (43)

Inserting into (43) the results (31-33) now implies that the Hermitean ma-
trices e, h too satisfy the sl(2,R) algebra:

%[by ei] =42 et .

Finally we invoke the following result from Appendix 2:

ey, el =0, (44)

LEMMA 1. Let A, B,,B_ be finite dimensional anti-Hermitean matrices
which satisfy A = [B4, B_] and [A, By] = £2By, then A = By = 0.

Applying this to our case by setting A = %f) and By = %ei implies
er =0= f) .

Inserting this into (31-33) yields (28-30) respectively. This ends the proof of
part 1.

(45)

Proof of Part 2. Following [8], we first observe that the statements (28-30) can
actually be generalised: Let P be any real polynomial, then

P(q) = P(), (46)
P(p) = P(p), (47)
Plg)p = L(P(@)p+ PP()) . (48)
P(p)q = 5(P(p)q +iP(p)) (49)
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To complete the proof of part 2 it is sufficient to prove (46) and (47) for P(z) =
23, and (48) and (49) for P(x) = 2. This we shall do first. The cases for general
polynomials — which we do not need — follow by induction and linearity. Again
we break up the argument, this time into 5 pieces.

i)

ii)

iii)

iv)

We first note that {¢,¢*} = 0 implies via (23) that ¢ and (?3 commute.

Since ¢ and ¢ commute anyway we can write q/\3 — @3 = A(q), where A(q)
takes values in the space of Hermitean operators on $).

We next show that A(g) also commutes with p. This follows from the
following string of equations, where we indicated the numbers of the equa-
tions used in the individual steps as superscripts over the equality signs:

(%, 5] 2 in{e®, p} < 3ing? = 3ing® 2 [¢°,7)]. (50)
Hence A(q) equals a g-independent matrix, a, and we have
¢ =¢+a. (51)

We show that the matrix a must actually be zero by the following string
of equations:

@ = M apt 2 553 ) "E 2 16° + a3 (a5 + pa)]
= 6t @ +pa) E ¢, (52)

where at * we used that a commutes with ¢ and p. This proves (46) for
P(q) = ¢*. Exchanging p and ¢ and repeating the proof shows (47) for
P(p) =p°.
Using what has been just shown allows to prove (48) for P(q) = ¢*:

?p = §{d 0?2} = glad p?] = gRldd 0% = 5@ +0d%) . (53)
Exchanging ¢ and p proves (49) for P(p) = p?.
Finally we apply the quantisation map to both sides of the classical equal-
ity

H{d0°y = H{p.p?a} (54)

On the left hand side we replace (;5 and pAd with ¢% and ¢® respectively and
then successively apply (35); this leads to

G*p* — 2ihgp — %hQ]l. (55)

On the right hand side of (54) we now use (48) and (49) to replace (]/2}9 and
p2q with %(QZﬁ +p¢?) and %(]32@—1—@]32) respectively and again successively
apply (35). This time we obtain

¢*p* — 2ihgp — th*1, (56)

which differs from (55) by a term —$h*1. But according to (23) both ex-
pressions should coincide, which means that we arrived at a contradiction.
This completes part 2 and hence the proof of the theorem of Groenewold
and van Howe.
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2.4 Discussion

The GvH-Theorem shows that the Lie algebra of all polynomials on R?" cannot
be quantised (and hence no Lie subalgebra of C*°(P) containing the polynomi-
als). But its proof has also shown that the Lie subalgebra

Fo =span{1,q,p,¢*,p*, qp} (57)

of polynomials of at most quadratic order can be quantised. This is just the
essence of the ‘squaring laws’ (28-30).

To see that %, is indeed a Lie subalgebra, it is sufficient to note that the
Poisson bracket (6) of a polynomial of n-th and a polynomial of m-th order is
a polynomial of order (n + m — 2). Moreover, it can be shown that %, is a
mazimal Lie subalgebra of %, i.e. that there is no other proper Lie subalgebra
F' which properly contains %), i.e. which satisfies F, ) C F' C K.

Foorzy contains the Lie subalgebra of all polynomials of at most first order:

Fow :=span{l,q,p} . (58)

This is clearly a Lie ideal in %, (not in %, ), since Poisson brackets between
quadratic and linear polynomials are linear. %, is also called the ‘Heisenberg
algebra’. According to the rules (25,26) the Heisenberg algebra was required to
be represented irreducibly (cf. the discussion following (26)). What is so special
about the Heisenberg algebra? First, observe that it contains enough functions
to coordinatise phase space, i.e. that no two points in phase space assign the
same values to the functions contained in the Heisenberg algebra. Moreover, it
is a minimal subalgebra of %, with this property. Hence it is a minimal set of
classical observables whose values allow to uniquely fix a classical state (point in
phase space). The irreducibility requirement can then be understood as saying
that this property should essentially also be shared by the quantised observables,
at least up to finite multiplicities which correspond to the ‘internal’ Hilbert space
$ (a ray of which is fixed by finitely many eigenvalues). We will have more to
say about this irreducibility postulate below.

The primary lesson from the GvH is that %, C E, was chosen too big. It
is not possible to find a quantisation map Q : %, (+,{,}) — SYM(H) which
intertwines the Lie structures {,} and [,]. This forces us to reformulate the
canonical quantisation programme. From the discussion so far one might attempt
the following rules

Rule 1. Given the Poisson algebra %, (+,{, },-) of all polynomials on phase
space. Find a Lie subalgebra %, C %, (+,{, }) of ‘basic observables’ which ful-
fills the two conditions: (1) ., contains sufficiently many functions so as to
coordinatise phase space, i.e. no two points coincide in all values of functions in
Fov; (2) ., is minimal in that respect, i.e. there is no Lie subalgebra £’ properly
contained in %, which also fulfills (1).

Rule 2. Find another Lie subalgebra E,... C Ko (+,9{,}) so that £, C E, ..
and that Z,.,. can be quantised, i.e. a Lie homomorphism Q : E,... — SYM(H)
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can be found, which intertwines the Lie structures {,} and :-[,]. Require Q to
be such that Q(Z%,) act almost irreducibly, i.e. up to finite multiplicity, on H.
Finally, require that %,... be maximal in %, i.e. that there is no %' . with
Tanane € Tt C Foa(H,{, )

Note that the choice of E,... is generally far from unique. For example,
instead of choosing E,... = %oy, i-e. the polynomials of at most quadratic
order, we could choose ... = Foi(e,1), the polynomials of at most linear order
in momenta with coefficients which are arbitrary polynomials in gq. A general
element in %, ;) has the form

fla,p) =g(q) +h(g)p (59)

where g, h are arbitrary polynomials with real coefficients. The Poisson bracket
of two such functions is

{f1, fo} = {g1 + hap, g2 + hap} = g3 + hap, (60)

where
/ ! !/ !
g3 = g1ha —gohi and hz = hjho — hihjy. (61)

The quantisation map applied to f is then given by

o~

f=9(@) —ih(z0' (@) + h(q) 7). (62)

where I’ denotes the derivative of h and ¢ and p are just the Schrodinger oper-
ators ‘multiplication by ¢’ and ‘—ifhid/dq’ respectively. The derivative term pro-
portional to A’ is necessary to make fsymmetric (an overline denoting complex
conjugation):

(51 (9)¢(q) +ih(9)¢' ()] ¢(q

I
<
—
S
G

=
S
=
S
+

=

ih(q)¢'(q)] (63)

where the last term vanishes upon integration. Moreover, a simple computation

readily shows that the map f — f indeed defines a Lie homomorphism from
Fooroo.1y 10 SYM(H):

P

L ol = gal@) — ik ($h5(0) + hsla) ) = (i, b (64)

with f12 and g3, hg as in (60) and (61) respectively. Hence (62) gives a quanti-
sation of F (o 1y-

It can be shown ([8], Theorem 8) that %, and % 1) are the only maximal
Lie subalgebras of %, which contain the Heisenberg algebra %.,,. In this sense,
if one restricts to polynomial functions, there are precisely two inextendible
quantisations.
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So far we restricted attention to polynomial functions. Since %, is already
too big to be quantised, there is clearly no hope to quantise all C*° functions
on our phase space R?". For general phase spaces P (i.e. not isomorphic to
R?") there is generally no notion of ‘polynomials’ and hence no simple way
to characterise suitable Lie subalgebras of F_(+, {, }). But experience with the
GvH Theorem suggests anyway to conjecture that, subject to some irreducibility
postulate for some minimal choice of %, C X, there is never a quantisation
of E,. (A quantisation of all C* functions is called full quantisation in the
literature.) Surprisingly there is a non-trivial counterexample to this conjecture:
it has been shown that a full quantisation exists for the 2-torus [6]. One might
first guess that this is somehow due to the compactness of the phase space. But
this is not true, as a GvH obstruction to full quantisation does exist for the
2-sphere [7]. But the case of the 2-torus seems exceptional, even mathematically.
The general expectation is indeed that GvH-like obstructions are in some sense
generic, though, to my knowledge, there is no generally valid formulation and
corresponding theorem to that effect. (For an interesting early attempt in this
direction see [5].) Hence we face the problem to determine %, and E,,.,, within
.. There is no general theory how to do this. If P is homogeneous, i.e. if
there is a finite dimensional Lie group G (called the ‘canonical group’) that acts
transitively on P and preserves the Poisson bracket (like the 2n translations in
R?") one may generate %, from the corresponding momentum maps. This leads
to a beautiful theory [12] for such homogeneous situations, but general finite
dimensional P do not admit a finite dimensional canonical group G, and then
things become much more complicated.

2.5 The Role of the Irreducibility-Postulate

In this section we wish to point out the central role played by the irreducibility
postulate. We already mentioned in Sect. 2.3 that the GvH theorem could not
have been derived without it. Let us show this by dropping that postulate and
see what happens. This leads to a weaker notion of quantisation which deserves
to be considered in its own right:

DEFINITION 2. Quantisation without the irreducibility postulate (25,26) is called
pre-quantisation.

Given the GvH result, the following is remarkable:

THEOREM 1. A prequantisation of the Lie algebra E_(+, {, }) of all C*°-functions
on R?" exists.

The proof is constructive by means of geometric quantisation. Let us briefly
recall the essentials of this approach: The Hilbert space of states is taken to be
H = L*(R?", d"qd"p), i.e. the square integrable functions on phase space (2n
coordinates), instead of configuration space (n coordinates). The quantisation
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map is as follows?:
Qf) =iVx, + [, (66)
where V is a ‘covariant-derivative’ operator, which is
V=d+A. (67)

Here d is just the ordinary (exterior) derivative and the connection 1-form, A,
is proportional to the canonical 1-form (cf. (96)) 6 := p; dg':

A=—10=—ip;dq . (68)
The curvature, F' = dA, is then proportional to the symplectic 2-form w = df:
F=iw=1dg" Ndp;. (69)

If X s is the Hamiltonian vector field on phase space associated to the phase-space
function f (cf. (91)), then in canonical coordinates it has the form

X5 = (0p, f)0gi — (04i [)Op, - (70)

The map f — X is a Lie homomorphism from ZE_(+, {, }) to the Lie algebra of
vector fields on phase space, i.e. X4 = [Xf, Xy]. The operator f is formally
self-adjoint and well defined on Schwarz-space (rapidly decreasing functions),
which we take as our invariant dense domain D. Explicitly its action reads:

f: Zh((aq’f)a;m - (amf)aql) + (f - (8P1f)p2) ’ (71)

which clearly shows that all operators are differential operators of at most degree
one. This makes it obvious that a squaring-law in the form f§ = fg never applies.
For example, for n = 1 we have for ¢, p and their squares:

q=q+ihd,, ¢*= ¢°+2ihd,, (72)

p = —ihd,,  p?=—p* —2ihpd,. (73)
4 Unlike in ordinary Schrédinger quantisation, where |¢(g)|? is the probability den-
sity for the system in configuration space, the corresponding quantity |4 (g, p)|? in
geometric quantisation has not the interpretation of a probability density in phase
space. The formal reason being that in geometric quantisation ¢ is not just a mul-
tiplication operator (cf. (72)). For example, if ¢ has support in an arbitrary small
neighbourhood U of phase space this does not mean that we can simultaneously
reduce the uncertainties of ¢ and p, since this would violate the uncertainty relations
which hold unaltered in geometric quantisation. Recall that the uncertainty relations
just depend on the commutation relations since they derive from the following gen-
erally valid formula by dropping the last term: ({-),, denotes the expectation value
in the state v, [-, -]+ the anticommutator and fori=f— (f)¢ 1):

(TRt > {107 Dol + (Uor ol ol } (65)
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One now proves by direct computation that (66) indeed defines a Lie homomor-
phism:
L1Q()).Q9)] = L [ihVx, + f,ihVx, +g]
=i [Vx,,Vx, ]+ Xr(g9) — X4(f)
= ih (Vix, x,1 + F(Xf, Xg)) +2{f. g}
= ith(f,g} + {fa g} = Q({fag}) ,
where we just applied the standard identity for the curvature of the covari-
ant derivative (67): F(X,Y) = VxVy — VyVx — V[xy] and also used
—ihF(Xs, Xy) =w(Xr, Xy) ={f, g} (cf. (94)).
Let us now look at a simple specific example: the linear harmonic oscillator.

We use units where its mass and angular frequency equal 1. The Hamiltonian
function and vector field are then given by:

H=1p"+¢") = Xy =pd,—q0,, (75)

(74)

whose quantisation according to (66) is
H = —ih (pd, — 48,) + 5 (¢ = »°) - (76)

Introducing polar coordinates on phase space: ¢ = rcos(¢) p = rsin(p), the
Hamiltonian becomes

H = ihd, + % cos(2¢) . (77)
The eigenvalue equation reads
y =By & 0.0 =4 (B- 5 cos(29) v, (78)
whose solution is
¥(r.¢) = vo(r) exp {4 (B — 5 sin(20)) | . (79)
where g is an arbitrary function in L?(R,,rdr). Single valuedness requires
E=E,=nh, nelZ, (80)

with each energy eigenspace being isomorphic to the space of square-integrable
functions on the positive real line with respect to the measure rdr:

H, = L*(Ry,rdr). (81)

Hence we see that the difference to the usual Schrodinger quantisation is
not simply an expected degeneracy of the energy eigenspaces which, by the
way, turns out to be quite enormous, i.e. infinite dimensional for each energy
level. What is much worse and perhaps less expected is the fact that the energy
spectrum in prequantisation is a proper extension of that given by Schrodinger
quantisation and, in distinction to the latter, that it is unbounded from below.
This means that there is no ground state for the harmonic oscillator in pre-
quantisation which definitely appears physically wrong. Hence there seems to be
some deeper physical significance to the irreducibility postulate than just mere
avoidance of degeneracies.
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3 Constrained Systems

For systems with gauge redundancies® the original phase space P does not di-
rectly correspond to the set of (mutually different) classical states. First of all,
only a subset P c P will correspond to classical states of the system, i.e. the
system is constrained to P. Secondly, the points of P label the states of the Sys-
tems in a redundant fashion, that is, one state of the classical system is labeled
by many points in P. The set of points which label the same state form an orbit
of the group of gauge transformations which acts on P. ‘Lying in the same orbit’
defines an equivalence relation (denoted by ~) on P whose equivalence classes
form the space P := P /~ which is called the reduced phase space. Its points now
label the classical states in a faithful fashion. Note that it is a quotient-space
of the sub-space P of P and can, in general, therefore not be represented as a
subspace of P.

A straightforward strategy to quantise such a system is to ‘solve’ the con-
straints, that is, to construct P. One could then apply the same methods as
for unconstrained systems, at least as long as P will be a C°°-manifold with a
symplectic structure (cf. Appendix 1).6 In particular, we can then consider the
Poisson algebra of C'°°-functions and proceed as for unconstrained systems.

However, in general it is analytically very difficult to explicitly do the quotient
construction P — ]5/ ~ = P, i.e. to solve the constraints classically. Dirac has
outlined a strategy to implement the constraints after quantisation [4]. The basic
mathematical reason why this is considered a simplification is seen in the fact
that the whole problem is now posed in linear spaces, i.e. the construction of
sub- and quotient spaces in the (linear) spaces of states and observables.

Dirac’s ideas have been reviewed, refined, and discussed many times in the
literature; see e.g. the comprehensive textbook by Henneaux and Teitelboim [11].
Here we shall merely give a brief coordinate-free description of how to construct
the right classical Poisson algebra of functions (the ‘physical observables’).

3.1 First-Class Constraints

Let (P,w) be a symplectic manifold which is to be thought of as an initial phase
space of some gauge system. The physical states then correspond to the points
of some submanifold P < P. Usually P is characterised as zero-level set of some
given collection of functions, P = {p € P | ¢o(p) = 0, a = 1,2, ..., codim(P)},
where codim(P) := dim(P) — dim(P) denotes the codimension of P in P. The
ensuing formulae will then depend on the choice of ¢, though the resulting

® We deliberately avoid the word ‘symmetry’ in this context, since the action of a gauge
group has a completely different physical interpretation than the action of a proper
symmetry; only the latter transforms states into other, physically distinguishable
states. See Sect. 6.3 in [13] for a more comprehensive discussion of this point.

5 In passing we remark that even though P may (and generally is in applications) a
cotangent bundle T*@Q for some configuration space Q, this need not be true for P |
i.e. there will be no space Q such that P = T*Q. For this reason it is important to

develop quantisations strategies that apply to general symplectic manifolds.
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theory should only depend on P and not on its analytical characterisation. To
make this point manifest we just work with the geometric data. As usual, we
shall denote the tangent bundles of P and P by TP and TP respectively. The
restriction of TP to P (which also contains vectors not tangent to P) is given
by TP|s := {X € T,P | p € P}. The w-orthogonal complement of T}, P is now
defined as follows:

T+P:={X € T,P|; |w(X,Y) =0, VY € T,P}. (82)

DEFINITION 3. A submanifold P < P is called coisotropic iff T-P c TP.

Since w is non degenerate we have dimTpP + dimTpLP = dim7,P, hence
dim T;-FA’ = codim P. This means that for coisotropic embeddings 7 : Pop

the kernel” of the pulled-back symplectic form w:=1"w on P has the maximal
possible number of dimensions, namely codim P.

DEFINITION 4. A constrained system P < P is said to be of first class iff Pis
a coisotropic submanifold of (P,w).

From now on we consider only first class constraints.

LEMMA 2. TP C TP|s is an integrable subbundle.

Proof. The statement is equivalent to saying that the commutator of any two
T+ P-valued vector fields X, Y on P is again T P-valued. Using [X,Y] = LxY
and formula (93) we have® [X,Y]|FO=Lx(YF&)-YFLxo=-YFd(XH+
w)=0,sinceY+Fo=0=X+F& and do = di*w = i*dw = 0 due to dw = 0.

O

DEFINITION 5. The gauge algebra, Gau, is defined to be the set of all functions
(out of some function class F, usually C*°(P)) which vanish on P:

Gau:={f € F(P)| fl» =0}. (83)

Gau uniquely characterises the constraint surface P in a coordinate independent
fashion. In turn, this allows to characterise the constraints algebraically; Gau is
in fact a Poisson algebra. To see this, first note that it is obviously an ideal of
the associative algebra F(+, ), since any pointwise product with an element in
Gau also vanishes on P. Next we show

LEMMA 3. f € Gau implies that Xy|s Is T+ P-valued.

" The kernel (or ‘null-space’) of a bilinear form f on V is the subspace kernel(f) :=
(X eV |f(X,Y)=0, VY € V}.

8 We shall use the symbol I to denote the insertion of a vector (standing to the left
of ) into the first slot of a form (standing to the right of ). For example, for the
2-form w, X F w denotes the 1-form w(X,-).
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Proof. flp = 0 = kernel(df|s) = kernel((X; + w)|s) 2 TP. Hence X|s is
T+ P-valued. O

Now it is easy to see that Gau is also a Lie algebra, since for f,g € Gau we
have

{f:9}e = X5(9)le = X dglo = Xy - Xy Fwlp =0, (84)

where (91) and Lemma3 was used in the last step. Hence Gau is shown to be
an associative and Lie algebra, hence a Poisson algebra. But note that whereas
it is an associative ideal it is not a Lie ideal. Indeed, for f € Gau and g € F we
have {f,g}|» = Xt(g)|» # 0 for those g which vary on P in the direction of X .

The interpretation of Gau is that its Hamiltonian vector fields generate gauge
transformations, that is, motions which do not correspond to physically existing
degrees of freedom. Two points in P which are on the same connected leaf
of TP correspond to the same physical state. The observables for the system
described by P must therefore Poisson-commute with all functions in Gau. Hence
one might expect the Poisson algebra of physical observables to be given by the
quotient F/Gau. However, since Gau is not a Lie ideal in F the quotient is not
a Lie algebra and hence not a Poisson algebra either. The way to proceed is to
consider the biggest Poisson subalgebra of F which contains Gau as Lie ideal
and then take the quotient. Hence we make the following

DEFINITION 6. The Lie idealiser of Gau C F is
Toww = {f € F|{f, g}ls =0, Vg € Gau}. (85)

Tcau is the space of functions which, in Dirac’s terminology [4], are said to weakly
commute with all gauge functions g € Gau; that is, {f, g} is required to vanish
only after restriction to P.

LEMMA 4. 7., is a Poisson subalgebra of F which contains Gau as ideal.

Proof. Let f,g € Zg., and h € Gau. Then clearly f + g € Zs., and also {f -
g, hte = f-{g,h}s+9g-{f h}s =0 (since each term vanishes), hence Z,,, is
an associative subalgebra. Moreover, using the Jacobi identity, we have

{{fvg}7h}|P:{{hvg}af}‘P+{{fah}7g}|P:03 (86)
€Gau €Gau

which establishes that Z,, is also a Lie subalgebra. Gau is obviously an asso-
ciative ideal in Zg,, (since it is such an ideal in F) and, by definition, also a Lie
ideal. Hence it is a Poisson ideal. O

It follows from its very definition that Zg,, is maximal in the sense that there
is no strictly larger subalgebra in F in which Gau is a Poisson algebra. Now we
can define the algebra of physical observables:
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DEFINITION 7. The Poisson algebra of physical observables is given by

Ophys = IGau/Gau . (87)

Since the restriction to P of a Hamiltonian vector field X ¢ is tangent to Pif
g € Gau (by Lemma 3 and coisotropy), we have

Toaw ={f € F| X4(f)|s =0,Vg € Gau}

(88)

={f € F | X4lp(fls) = 0,Vg € Gau},
which shows that Zg,, is the subspace of all functions in F whose restrictions to
P are constant on each connected leaf of the foliation tangent to the integrable
subbundle T+ P. If the space of leaves is a smooth manifold® it has a natural

symplectic structure. In this case it is called the reduced phase space (P, @). O,py.
can then be naturally identified with the Poisson algebra of (say C'°°-) functions
thereon.

We finally mention that instead of the Lie idealiser Z,, we could not have

taken the Lie centraliser

CGau ::{f 6 f | {f? g} = O? Vg G Ga’u} (89)
={f e F| X4(f) =0, Vg € Gau},

which corresponds to the space of functions which, in Dirac’s terminology [4],
strongly commute with all gauge functions. This space is generally far too small,
as can be seen from the following

LEMMA 5. If P is a closed subset of P we have

TPLP forp € p

. (90)
T,P forpe P—-P.

Span{X,(p), g € Gau} = {

Proof. For p € P we know from Lemma 3 that Xq(p) € T;-}s. Locally we can

always find codim(P) functions g; € Gau whose differentials dg; (and hence
whose vector fields X,,) at p are linearly independent. To see that the X (p)
span all of T, P for p & P, we choose a neighbourhood U of p such that UnP =10
(such U exists since P C P is closed by hypothesis) and § € C*°(P) such that
Bly =1 and Bl = 0. Then 3-h € Gau for all h € C°(P) and (8- h)|y = h|v,
which shows that Span{X,(p),g € Gau} = Span{X,(p),g € C*(P)} =T, P.

O

This Lemma immediately implies that functions which strongly commute with
all gauge functions must have altogether vanishing directional derivatives outside

9 The ‘space of leaves’ is the quotient space with respect to the equivalence relation
‘lying on the same leaf’. If the leaves are the orbits of a group action (the group of
gauge transformations) then this quotient will be a smooth manifold if the group
action is smooth, proper, and free (cf. Sect.4.1 of [1]).
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P, that is, they must be constant on any connected set outside P. By continuity
they must be also constant on any connected subset of P. Hence the condition
of strong commutativity is far too restrictive.

Sometimes strong commutativity is required, but only with a somehow pre-
ferred subset ¢, @ = 1,--- 7codim(lf’)7 of functions in Gau; for example, the
component functions of a momentum map (cf. Sect.4.2 of [1]) of a group (the
group of gauge transformations) that acts symplectomorphically (i.e. w-preserv-
ing) on P. The size of the space of functions on P that strongly commute with all
0o will generally depend delicately on the behaviour of the ¢, off the constraint
surface, and may again turn out to be too small. The point being that even
though the leaves generated by the ¢, may behave well within the zero-level set
of all ¢, (the constraint surface), so that sufficiently many invariant (i.e. con-
stant along the leaves) functions exist on the constraint surface, the leaves may
become more ‘wild’ in infinitesimal neighbouring level sets, thereby forbidding
most of these functions to be extended to some invariant functions in a neigh-
bourhood of P in P. See Sect. 3 of [2] for an example and more discussion of this
point.

Appendix 1: Geometry of Hamiltonian Systems

A symplectic manifold is a pair (P,w), where P is a differentiable manifold and
w is a closed (i.e. dw = 0) 2-form which is non-degenerate (i.e. w,(X,,Y,) =
0, VX, € T,P, implies Y, = 0 for all p € P). The last condition implies that P
is even dimensional. Let C°°(P) denote the set of infinitely differentiable, real
valued functions on P and X(P) the set of infinitely differentiable vector fields
on P. X(P) is a real Lie algebra (cf. Appendix 2) whose Lie product is the
commutator of vector fields. There is a map X : C*°(P) — X(P), f — Xy,
uniquely defined by!?

Xpbw=—df. (91)

The kernel of X in C*°(P) are the constant functions and the image of X in
X (P) are called Hamiltonian vector fields. The Lie derivative of w with respect
to an Hamiltonian vector field is always zero:

LXfwzd(Xfl—w):—ddf:O, (92)

where we used the following identity for the Lie derivative Lz with respect to
any vector field Z on forms of any degree:

Ly=do(ZF)+ (ZF)od. (93)

The map X can be used to turn C* into a Lie algebra. The Lie product {,-}
on C is called Poisson bracket and defined by

{f, 9} = w(Xy, Xy) = Xp(9) = =Xo(f), (94)

10 For notation recall footnote 8.
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where the 2nd and 3rd equality follows from (91). With respect to this structure
the map X is a homomorphism of Lie algebras:

X Fw=—d{f.g} = —d(X,F X;Fw)

=Ly, (X w) (95)
(X5, X, Fw.

I1e
M

One may say that the map X has pulled back the Lie structure from X' (P) to
C°(P). Note that (95) also expresses the fact that Hamiltonian vector fields
form a Lie subalgebra of X (P).

Special symplectic manifolds are the cotangent bundles. Let M be a manifold
and P = T*M its cotangent bundle with projection = : T*M — M. On P there
exists a naturally given 1-form field (i.e. section of T*P = T*T*M), called the
canonical 1-form (field) 6:

by = pormly. (96)

In words, application of § to Z,, € T, P is as follows: project Z,, by the differential
7., evaluated at p, into T, M, where z = 7(p), and then act upon it by p, where
p € 7 1(x) = T M is understood as 1-form on M. The exterior differential of
the canonical 1-form defines a symplectic structure on P (the minus sign being
conventional):

wi=—df. (97)

In canonical (Darboux-) coordinates ({¢'} on M and {p;} on the fibres
7~1(x)) one has

0=p;d¢® and w=dg' Adp;, (98)
so that
B of dg Of 9g
{M};@Mm%mi. (99)
In this coordinates the Hamiltonian vector field X reads:
Xf = (6pzf)aqL - (8q’f)6pz . (100)

It is important to note that Hamiltonian vector fields need not be complete,
that is, their flow need not exist for all flow parameters ¢ € R. For example,
consider P = R? in canonical coordinates. The flow map R x P — P is then
given by (¢, (g, 00)) — (¢(t; qo, Po), P(t; @0, Po)), Where the functions on the right
hand side follow through integration of Xy = ¢(¢)0q + p(t)0p, i.e.

q(t) = (3pf)(q(t),p(t)) and p(t) = —(94f)(q(t), p(t)), (101)

with initial conditions ¢(0) = ¢o, p(0) = p,. As simple exercises one readily
solves for the flows of f(q,p) = h(q), f(g,p) = h(p), where h : P — R is some
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Cl-function, or for the flow of f(q,p) = gp. All these are complete. But already
for f(q,p) = ¢*p we obtain

qo
1 —qot

q(t; 4o, po) = and  p(t; o, Po) = Po (1 — qot)?, (102)

which (starting from ¢ = 0) exists only for ¢ < 1/¢, when ¢, > 0 and only for
t > 1/q, when ¢, < 0.

Appendix 2: The Lie Algebra of sl(2,R) and the Absence
of Non-trivial, Finite-Dimensional Representations by
Anti-unitary Matrices

Let us first recall the definition of a Lie algebra:

DEFINITION 8. A Lie algebra over F (here standing for R or C) is a vector-space,
L, over F together with a map V' x V — V| called Lie bracket and denoted by
[+, -], such that the following conditions hold for all X,Y,Z € L and a € F:

[X,Y] =-[Y, X] antisymmetry , (103)
[X,)Y +aZ] =[X,Y]+a[X, 7] linearity , (104)
(X, [V, Z)|+ [Y,[Z,X]] +|Z,[X,Y]] =0  Jacobi identity . (105)

Note that (103) and (104) together imply linearity also in the first entry.
Any associative algebra (with multiplication ‘) is automatically a Lie algebra
by defining the Lie bracket to be the commutator [X,Y]:= XY —Y - X (asso-
ciativity then implies the Jacobi identity). Important examples are Lie algebras
of square matrices, whose associative product is just matrix multiplication.

A sub vector-space L' C L is a sub Lie-algebra, iff [X,Y] € L’ for all X, Y €
L’. A sub Lie-algebra is an ideal, iff [X,Y] € L' for all X € L’ and all Y € L
(sic!). Two ideals always exist: L itself and {0}; they are called the trivial ideals.
A Lie algebra is called simple, iff it contains only the trivial ideals. A map
¢ : L — L' between Lie algebras is a Lie homomorphism, iff it is linear and
satisfies ¢([X,Y]) = [¢(X),¢(Y)] for all X, Y € L. Note that we committed
some abuse of notation by denoting the (different) Lie brackets in L and L'
by the same symbol [-,]. The kernel of a Lie homomorphism ¢ is defined by
kernel(¢) := {X € L | ¢(X) = 0} and obviously an ideal in L.

The Lie algebra denoted by si(2,F) is defined by the vector space of traceless
2 x 2 - matrices with entries in F. A basis is given by

i (00 m- (). e-(20). am

Its commutation relations are:
[H,Ey] = 2E,, (107)
[H,E_] = —2E_, (108)
[E+,E_] =H. (109)
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The first thing we prove is that si(2,F) is simple. For this, suppose X =
aFEy + bE_ + cH is a member of an ideal I C sl(2,F). From (107-109) we
calculate

By, [E+, X]] = —2bE, (110)
[E_,[E_,X]] = —2aE_. (111)

Suppose first b # 0, then (110) shows that E, € I. Then (109) implies H € I,
which in turn implies through (108) that E_ € I and hence that I = L. Similarly
one concludes for a # 0 that I = L. Finally assume a = b = 0 and ¢ # 0 so that
H € I. Then (107) and (108) show that F; and E_ are in I, so again I = L.
Hence we have shown that I = L or I = {0} are the only ideals.

Next consider the Lie algebra u(n) of anti-Hermitean n x n matrices. It is the
Lie algebra of the group U(n) of unitary n x n matrices. If the group SL(2,TF)
had a finite-dimensional unitary representation, i.e. if a group homomorphism
D : SL(2,F) — U(n) existed for some n, then we would also have a Lie homo-
morphism D, : sl(2,F) — u(n) by simply taking the derivative of the map D
at e (= identity of SL(2,R)). We will now show that, for any integer n > 1,
any Lie homomorphism ¢ : sl(2,F) — u(n) is necessarily the constant map onto
0 € u(n). In other words, non-trivial Lie homomorphism from si(2,F) to u(n)
do not exist. On the level of groups this implies that non-trivial (i.e. not map-
ping everything into the identity), finite dimensional, unitary representations of
SL(2,F) do not exist. Note that for F = R and F = C these are (the double
covers of) the proper orthochronous Lorentz groups in 2+1 and 341 dimensions
respectively.

To prove this result, assume 7T : sl(2,F) — u(n) is a Lie homomorphism.
To save notation we write T'(H) =: A and T(F1) =: Byx. Since T is a Lie
homomorphism we have [A, By] = 2B, which implies

trace(B}) = trace (B; (ABy — ByA)) =0, (112)

where in the last step we used the cyclic property of the trace. But B
is anti-Hermitean, hence diagonalisable with purely imaginary eigenvalues
{iX1, -+ ,iX,} with A; € R. The trace on the left side of (112) is then — Y, A?,
which is zero iff \; = 0 for all ¢, i.e. iff By = 0. Hence E € kernel(7"), which in
turn implies kernel(T) = si(2, F) since the kernel — being an ideal — is either {0}
or all of s/(2,F) by simplicity. This proves the claim, which is stated as Lemma 1
of the main text
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Lectures on Loop Quantum Gravity

Thomas Thiemann

MPI fiir Gravitationsphysik, Albert-Einstein-Institut, Am Miihlenberg 1,
14476 Golm, Germany

Abstract. Quantum General Relativity (QGR), sometimes called Loop Quantum
Gravity, has matured over the past fifteen years to a mathematically rigorous can-
didate quantum field theory of the gravitational field. The features that distinguish it
from other quantum gravity theories are 1) background independence and 2) minimality
of structures.

Background independence means that this is a non-perturbative approach in which
one does not perturb around a given, distinguished, classical background metric, rather
arbitrary fluctuations are allowed, thus precisely encoding the quantum version of Ein-
stein’s radical perception that gravity is geometry.

Minimality here means that one explores the logical consequences of bringing to-
gether the two fundamental principles of modern physics, namely general covariance
and quantum theory, without adding any experimentally unverified additional struc-
tures such as extra dimensions, extra symmetries or extra particle content beyond the
standard model. While this is a very conservative approach and thus maybe not very
attractive to many researchers, it has the advantage that pushing the theory to its
logical frontiers will undoubtedly either result in a successful theory or derive exactly
which extra structures are required, if necessary. Or put even more radically, it may
show which basic principles of physics have to be given up and must be replaced by
more fundamental ones.

QGR therefore is, by definition, not a unified theory of all interactions in the
standard sense, since such a theory would require a new symmetry principle. However,
it unifies all presently known interactions in a new sense by quantum mechanically
implementing their common symmetry group, the four-dimensional diffeomorphism
group, which is almost completely broken in perturbative approaches.

In this contribution we summarize the present status of Canonical Quantum
General Relativity (QGR), also known as “Loop Quantum Gravity”. Our pre-
sentation tries to be precise and at the same time technically not too complicated
by skipping the proofs of all the statements made. These many missing details,
which are relevant to the serious reader, can be found in the notation used in
the recent, close to exhaustive review [1] and references therein. Of course, in
order to be useful as a text for first reading we did not include all the relevant
references here. We apologize for that to the researchers in the field but we hope
that a close to complete list of their work can be found in [1]. Nice reports, treat-
ing complementary subjects of the field and more general aspects of quantum
gravity can be found in [2].

The text is supplemented by numerous exercises of varying degree of diffi-
culty whose purpose is to cut the length of the exposition and to arouse interest

T. Thiemann, Lectures on Loop Quantum Gravity, Lect. Notes Phys. 631, 41-135 (2003)
http://www.springerlink.com/ (© Springer-Verlag Berlin Heidelberg 2003
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in further studies. Solving the problems is not at all mandatory for an under-
standing of the material, however, the exercises contain further information and
thus should be looked at even on a first reading.

On the other hand, if one solves the problems then one should get a fairly
good insight into the techniques that are important in QGR and in principle
could serve as a preparation for a diploma thesis or a dissertation in this field. The
problems sometimes involve mathematics that may be unfamiliar to students,
however, this should not scare off but rather encourage the serious reader to
learn the necessary mathematical background material. Here is a small list of
mathematical texts, from the author’s own favourites, geared at theoretical and
mathematical physicists, that might be helpful:

o General
A fairly good encyclopedia is
Y. Choquet-Bruhat, C. DeWitt-Morette, “Analysis, Manifolds and Physics”,
North Holland, Amsterdam, 1989

e General Topology
A nice text, adopting almost no prior knowledge is
J.R. Munkres, “Toplogy: A First Course”, Prentice Hall Inc., Englewood
Cliffs (NJ), 1980

o Differential and Algebraic Geometry
A modern exposition of this classical material can be found in
M. Nakahara, “Geometry, Topology and Physics”, Institute of Physics Pub-
lishing, Bristol, 1998

e Functional Analysis
The number one, unbeatable and close to complete exposition is
M. Reed, B. Simon, “Methods of Modern Mathematical Physics”, vol. 14,
Academic Press, New York, 1978
especially volumes one and two.

e Measure Theory
An elementary introduction to measure theory can be found in the beautiful
book
W. Rudin, “Real and Complex Analysis”, McGraw-Hill, New York, 1987

e Operator Algebras
Although we do not really make use of C*-algebras in this review, we hint
at the importance of the subject, so let us include
O. Bratteli, D.W. Robinson, “Operator Algebras and Quantum Statistical
Mechanics”, vol. 1,2, Springer Verlag, Berlin, 1997

e Harmonic Analysis on Groups
Although a bit old, it still contains a nice collection of the material around
the Peter & Weyl theorem:
N.J. Vilenkin, “Special Functions and the Theory of Group Representa-
tions”, American Mathematical Society, Providence, Rhode Island, 1968

o Mathematical General Relativity
The two leading texts on this subject are
R.M. Wald, “General Relativity”, The University of Chicago Press, Chicago,
1989
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S. Hawking, Ellis, “The Large Scale Structure of Spacetime”, Cambridge
University Press, Cambridge, 1989

e Mathematical and Physical Foundations of Ordinary QFT
The most popular books on axiomatic, algebraic and constructive quantum
field theory are
R.F. Streater, A.S. Wightman, “PCT, Spin and Statistics, and all that”,
Benjamin, New York, 1964
R. Haag, “Local Quantum Physics”, 2nd ed., Springer Verlag, Berlin, 1996
J. Glimm, A. Jaffe, “Quantum Physics”, Springer-Verlag, New York, 1987

In the first part we motivate the particular approach to a quantum theory of
gravity, called (Canonical) Quantum General Relativity, and develop the classical
foundations of the theory as well as the goals of the quantization programme.

In the second part we list the solid results that have been obtained so far
within QGR. Thus, we will apply step by step the quantization programme out-
lined at the end of Sect. 1.3 to the classical theory that we defined in Sect. 1.2.
Up to now, these steps have been completed approximately until step vii) at
least with respect to the Gauss- and the spatial diffeomorphism constraint. The
analysis of the Hamiltonian constraint has also reached level vii) already, how-
ever, its classical limit is presently under little control which is why we discuss
it in part three where current research topics are listed.

In the third part we discuss a selected number of active research areas. The
topics that we will describe already have produced a large number of promising
results, however, the analysis is in most cases not even close to being complete
and therefore the results are less robust than those that we have obtained in the
previous part.

Finally, in the fourth part we summarize and list the most important open
problems that we faced during the discussion in this report.

1 DMotivation and Introduction

1.1 Motivation

Why Quantum Gravity in the 21’st Century? Students that plan to get
involved in quantum gravity research should be aware of the fact that in our
days, when financial resources for fundamental research are more and more cut
and/or more and more absorbed by research that leads to practical applications
on short time scales, one should have a good justification for why tax payers
should support any quantum gravity research at all. This seems to be difficult at
first due to the fact that even at CERN’s LHC we will be able to reach energies
of at most 10* GeV which is fifteen orders of magnitude below the Planck
scale which is the energy scale at which quantum gravity is believed to become
important. Therefore one could argue that quantum gravity research in the 21’st
century is of purely academic interest only.

To be sure, it is a shame that one has to justify fundamental research at
all, a situation unheard of in the beginning of the 20’th century which probably
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was part of the reason for why so many breakthroughs especially in fundamental
physics have happened in that time. Fundamental research can work only in
absence of any pressure to produce (mainstream) results, otherwise new, radical
and independent thoughts are no longer produced. To see the time scale on which
fundamental research leads to practical results, one has to be aware that General
Relativity (GR) and Quantum Theory (QT) were discovered in the 20’s and
30’s already but it took some 70 years before quantum mechanics through, e.g.
computers, mobile phones, the internet, electronic devices or general relativity
through e.g. space travel or the global positioning system (GPS) became an
integral part of life of a large fraction of the human population. Where would we
be today if the independent thinkers of those times were forced to do practical
physics due to lack of funding for analyzing their fundamental questions?

Of course, in the beginning of the 20’th century, one could say that physics
had come to some sort of crisis, so that there was urgent need for some revision
of the fundamental concepts: Classical Newtonian mechanics, classical electrody-
namics and thermodynamics were so well understood that Max Planck himself
was advised not to study physics but engineering. However, although from a
practical point of view all seemed well, there were subtle inconsistencies among
these theories if one drove them to their logical frontiers. We mention only three
of them:

1. Although the existence of atoms was by far not widely accepted at the end
of the 19th century (even Max Planck denied them), if they existed then
there was a serious flaw, namely, how should atoms be stable? Accelerated
charges radiate Bremsstrahlung according to Maxwell’s theory, thus an elec-
tron should fall into the nucleus after a finite amount of time.

2. If Newton’s theory of absolute space and time was correct then the speed
of light should depend on the speed of the inertial observer. The fact that
such velocity dependence was ruled out to quadratic order in v/c in the
famous Michelson-Morley experiment was explained by postulating an un-
known medium, called ether, with increasingly (as measurement precision
was refined) bizarre properties in order to conspire to a negative outcome of
the interferometer experiment and to preserve Newton’s notion of space and
time.

3. The precession of mercury around the sun contradicted the ellipses that were
predicted by Newton’s theory of gravitation.

Today we easily resolve these problems by 1) quantum mechanics, 2) special
relativity and 3) general relativity. Quantum mechanics does not allow for con-
tinuous radiation but predicts a discrete energy spectrum of the atom, special
relativity removed the absolute notion of space and time and general relativity
generalizes the static Minkowski metric underlying special relativity to a dynam-
ical theory of a metric field which revolutionizes our understanding of gravity
not as a force but as geometry. Geometry is curved at each point ithiemlln a
manifold proportional to the matter density at that point and in turn curvature
tells matter what are the straightest lines (geodesics) along which to move. The
ether became completely unnecessary by changing the foundation of physics and
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beautifully demonstrates that driving a theory to its logical frontiers can make
extra structures redundant, what one had to change is the basic principles of
physics.!

This historic digression brings us back to the motivation for studying quan-
tum gravity in the beginning of the 21st century. The question is whether fun-
damental physics also today is in a kind of crisis. We will argue that indeed we
are in a situation not dissimilar to that of the beginning of the 20th century: To-
day we have very successful theories of all interactions. Gravitation is described
by general relativity, matter interactions by the standard model of elementary
particle physics. As classical theories, their dynamics is summarized in the classi-
cal Einstein equations. However, there are several problems with these theories,
some of which we list below:

i) Classical-Quantum Inconsistency
The fundamental principles collide in the classical Einstein equations

Ry — % R g = K T (9)
———
Geometry (GR, gen. covariance) Matter (Stand.model, QT)

These equations relate matter density in form of the energy momentum
tensor T}, and geometry in form of the Ricci curvature tensor R,, . Notice
that the metric tensor g,,,, enters also the definition of the energy momentum
tensor. However, while the left hand side is described until today only by a
classical theory, the right hand side is governed by a quantum field theory
(QFT). Since complex valued functions and operators on a Hilbert space are
two completely different mathematical objects, the only way to make sense
out of the above equations while keeping the classical and quantum nature of
geometry and matter respectively is to take expectation values of the right
hand side, that is,
R, — %Rg,w = Kk <Tu(g)> K= &TGIC\I%M

Here gy is an arbitrary background metric, say the Minkowski metric n =
diag(—1,1,1,1). However, even if the state with respect to which the ex-
pectation value is taken is the vacuum state 4, with respect to go (the
notion of vacuum depends on the background metric itself, see below), the
right hand side is generically non-vanishing due to the vacuum fluctuations,
enforcing ¢ = g1 # go. Hence, in order to make this system of equations
consistent, one could iterate the procedure by computing the vacuum state
g, and reinserting g; into TW(.), resulting in go # g1 etc. hoping that the
procedure converges. However, this is generically not the case and results in
“run-away solutions” [3].

! Notice, that the stability of atoms is still not satisfactorily understood even today
because the full problem also treats the radiation field, the nucleus and the electron
as quantum objects which ultimately results in a problem in QED, QFD and QCD
for which we have no entirely satisfactory description today, see below.
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Hence, we are enforced to quantize the metric itself, that is, we need a
quantum theory of gravity resulting in the

Ry — %@w R=r1T,,(9) (1)

” Quantum-Einstein-Equations”

The inverted commas in this equation are to indicate that this equation is
to be made rigorous in a Hilbert space context. QGR is designed to exactly
do that, see Sect. 3.1.

General Relativity Inconsistencies

It is well-known that classical general relativity is an incomplete theory be-
cause it predicts the existence of so-called spacetime singularities, regions in
spacetime where the curvature or equivalently the matter density becomes
infinite [4]. The most prominent singularities of this kind are black hole and
big bang singularities and such singularities are generic as shown in the sin-
gularity theorems due to Hawking and Penrose. When a singularity appears
it means that the theory has been pushed beyond its domain of validity, cer-
tainly when matter collapses it reaches a state of extreme energy density at
which quantum effects become important. A quantum theory of gravity could
be able to avoid these singularities in a similar way as quantum mechanics
explains the stability of atoms. We will see that QGR is able to achieve
this, at least in the simplified context of “Loop Quantum Cosmology”, see
Sect. 3.2.

Quantum Field Theory Inconsistencies

As is well-known, QFT is plagued by UV (or short distance) divergences. The
fundamental operators of the theory are actually not operators but rather
operator-valued distributions and usually interesting objects of the theory
are (integrals of) polynomials of those evaluated in the same point. However,
the product of distributions is, generally, ill-defined. The appearance of these
divergences is therefore, on the one hand, not surprising, on the other hand
it indicates again that the theory is incomplete: In a complete theory there is
no room for infinities. Thus, either the appropriate mathematical framework
has not been found yet, or they arise because one neglected the interaction
with the gravitational field. In fact, in renormalizable theories one can deal
with these infinities by renormalization, that is, one introduces a short dis-
tance cut-off (e.g. by point splitting the operator-valued distributions) and
then redefines masses and coupling constants of the theory in a cut-off de-
pendent way such that they stay finite as the cut-off is sent to zero. This
redefinition is done in the framework of perturbation theory (Feynman dia-
grammes) by subtracting counter terms from the original Lagrangean which
are formally infinite and a theory is said to be renormalizable if the number
of algebraically different such counter terms is finite.

The occurrence of UV singularities is in deep conflict with general relativity
due to the following reason: In perturbation theory, the divergences have



Lectures on Loop Quantum Gravity 47

p-k

P k p

Fig. 1. One loop correction to the electron propagator in QED

their origin in Feynman loop integrals in momentum space where the in-
ner loop 4-momentum k& = (E, P) can become arbitrarily large, see Fig. 1
for an example from QED (mass renormalization). Now such virtual (off-
shell) particles with energy E and momentum P have a spatial extension
of the order of the Compton radius A = h/P and a mass of the order of
E/c?. Classical general relativity predicts that this lump of energy turns
into a black hole once A reaches the Schwarzschild radius of the order of
r = GE/c*. In a Lorentz frame where E ~ Pc this occurs at the Planck
energy E = Ep = /h/ke =~ 10 GeV or at the Planck length Compton
radius £p = vhik ~ 10733 cm. However, when a (virtual) particle turns into
a black hole it completely changes its properties. For instance, if the virtual
particle is an electron then it is able to interact only electroweakly and thus
can radiate only particles of the electrowak theory. However, once a black
hole has formed, also Hawking processes are possible and now any kind of
particles can be emitted, but at a different production rate. Of course, this
is again an energy regime at which quantum gravity must be important and
these qualitative pictures must be fundamentally wrong, however, they show
that there is a problem with integrating virtual loops into the UV regime.
In fact, these qualitative thoughts suggest that gravity could serve as a nat-
ural cut-off because a black hole of Planck length ¢p should decay within a
Planck time unit tp = fp/c ~ 107*% s so that one has to integrate P only
until Ep/c. Moreover, it indicates that spacetime geometry itself acquires
possibly a discrete structure since arguments of this kind make it plausible
that it is impossible to resolve spacetime distances smaller than ¢p, basically
because the spacetime behind an event horizon is in some sense “invisible”.
These are, of course, only hopes and must be demonstrated within a concrete
theory. We will see that QGR is able to precisely do that and its fundamen-
tal discreteness is in particular responsible for why the Bekenstein Hawking
entropy of black holes is finite, see Sects. 2.2, 3.1 and 3.4.

So we see that there is indeed a fundamental inconsistency within the current
description of fundamental physics comparable to the time before the discovery
of GR and QT and its resolution, Quantum Gravity, will revolutionize not only
our understanding of nature but will also drive new kinds of technology that we
do not even dare to dream of today.
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supp(f)

supp(f')

Fig. 2. Spacelike separated regions in Minkowski space

The Role of Background Independence. Given the fact that both QT
and GR were discovered already more than 70 years ago and that people have
certainly thought about quantizing GR since then and that matter interactions
are more or less successfully described by ordinary quantum field theories (QFT),
it is somewhat surprising that we do not yet have a quantum gravity theory. Why
is it so much harder to combine gravity with the principles of quantum mechanics
than for the other interactions? The short answer is that

Ordinary QFT only incorporates Special Relativity.

To see why, we just have to remember that ordinary QFT has an axiomatic
definition, here for a scalar field for simplicity:
WIGHTMAN AXIOMS (Scalar Fields on Minkowski Space)

W1 Poincaré Group P:
3 continuous, unitary representation U of P on a Hilbert space H.

W2 Forward Lightcone Spektral Condition:
For the generators P* of the translation subgroup of P holds 77,“,]5“}3” <
0, P°>0.

W3 Existence and Uniqueness of a P-invariant Vacuum §2:

UpR=0 VYpeP.
W4  P-Covariance:

() = / AP f(2)d(x), | € S(RPHY)

é(fl)é(fn)ﬁ dense in ‘H and (A](p)qg(f)f](p)_l = (ﬁ(f op).

W5 Locality (Causality):
If supp(f), supp(f’) spacelike separated (see Fig. 2), then [¢(f), ¢(f")] = 0.

It is obvious that due to the presence of the Minkowski background metric n we
have available a large amount of structure which forms the fundament on which
ordinary QFT is built. Roughly, we have the following scheme:
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Notice that a generic background metric has no symmetry group at all so that it
is not straightforward to generalize these axioms to QFT on general curved back-
grounds, however, since any metric is pointwise diffeomorphic to the Minkowski
metric, a local generalization is possible and results in the so-called microlocal
analysis in which the role of vacuum states is played by Hadamard states, see
e.g. [5].

The fundamental, radically new feature of Einstein’s theory is that there
is no background metric at all: The theory is background independent.
The lightcones themselves are fluctuating, causality and locality become
empty notions. The dome of ordinary QFT completely collapses.

Of course, there must be a regime in any quantum gravity theory where the
quantum fluctuations of the metric operator are so tiny that we recover the well
established theory of free ordinary quantum fields on a given background metric,
however, the large fluctuations of the metric operator can no longer be ignored
in extreme astrophysical or cosmological situations, such as near a black hole or
big bang singularity.

People have tried to rescue the framework of ordinary QFT by splitting the
metric into a background piece and a fluctuation piece

Guv = Nuv + huu

t 1 ' @)

full metric  background (Minkowski) perturbation (graviton)

which results in a Lagrangean for the graviton field h,, and could in principle
be the definition of a graviton QFT on Minkowski space. However, there are
serious drawbacks:

i) Non-renormalizability

The resulting theory is perturbatively non-renormalizable [6] as could have
been expected from the fact that the coupling constant of the theory, the
Planck area (%, has negative mass dimension (in Planck units). Even the su-
persymmetric extension of the theory, in any possible dimension has this bad
feature [7]. It could be that the theory is non-perturbatively renormalizable,
meaning that it has a non-Gaussian fix point in the language of Wilson, a
possibility that has recently regained interest [8].
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ii) Violation of Background Independence
The split of the metric performed above again distinguishes the Minkowski
metric among all others and reintroduces therefore a background depen-
dence. This violates the key feature of Einstein’s theory and thus somehow
does not sound correct, we better keep background independence if we want
to understand how quantum mechanics can possibly work together with gen-
eral covariance.

iii) Violation of Diffeomorphism Covariance
The split of the metric performed above is certainly not diffeomorphism
covariant, it breaks the diffeomorphism group down to Poincaré group. Vio-
lation of fundamental, local gauge symmetries is usually considered as a bad
feature in Yang-Mills theories on which all the other interactions are based,
thus already from this point of view perturbation theory looks dangerous. As
a side remark we see that background dependence and violation of general
covariance are synonymous.

iv) Gravitons and Geometry
Somehow the whole idea of the gravitational interaction as a result of gravi-
ton exchange on a background metric contradicts Einstein’s original and fun-
damental idea that gravity is geometry and not a force in the usual sense.
Therefore such a perturbative description of the theory is very unnatural
from the outset and can have at most a semi-classical meaning when the
metric fluctuations are very tiny.

v) Gravitons and Dynamics
All that classical general relativity is about is how a metric evolves in time
in an interplay with the matter present. It is clear that an initially (almost)
Minkowskian metric can evolve to something that is far from Minkowskian
at other times, an example being cosmological big bang situations or the
collapse of initially diluted matter (evolved backwards). In such situations
the assumption being made in (2), namely that h is “small” as compared
to n is just not dynamically stable. In some sense it is like trying to use
Cartesian coordinates for a sphere which can work at most locally.

All these points just naturally ask for a non-perturbative approach to quantum
gravity. This, in turn, could also cure another unpleasant feature about ordinary
QFT: Today we do not have a single example of a rigorously defined interacting
ordinary QFT in four dimensions, in other words, the renormalizable theories
that we have are only defined order by order in perturbation theory but the
perturbation series diverges. A non-perturbative definition, to which we seem
to be forced when coupling gravity anyway, might change this unsatisfactory
situation.

It should be noted here that there is in fact a consistent perturbative descrip-
tion of a candidate quantum gravity theory, called string theory (or M-Theory
nowadays) [9].2 However, in order to achieve this celebrated rather non-trivial
result, expectedly one must introduce extra structure: The theory lives in 10

2 String theory is an ordinary QFT but not in the usual sense: It is an ordinary scalar
QFT on a 2d Minkowski space, however, the scalar fields themselves are coordinates
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(or 11) rather than 4 dimensions, it is necessarily supersymmetric and it has
an infinite number of extra particles besides those that are needed to make the
theory compatible with the standard model. Moreover, at least as presently un-
derstood, again the fundamental new ingredient of Einstein’s theory, background
independence, is violated in string theory. This current background dependence
of string theory is supposed to be overcome once M-Theory has been rigorously
defined.

At present only string theory has a chance to explain the matter content
of our universe. The unification of symmetries is a strong guiding principle in
physics as well and has been pushed also by Einstein in his programme of ge-
ometrization of physics attempting to unify electromagnetism and gravity in
a five-dimensional Kaluza—Klein theory. The unification of the electromagnetic
and the weak force in the electroweak theory is a prime example for the success
of such ideas. However, unification of forces is an additional principle completely
independent of background independence and is not necessarily what a quantum
theory of gravity must achieve: Unification of forces can be analyzed at the purely
classical level®. Thus, the only question is whether the theory can be quantized
before unification or not (should unification of geometry and matter be realized
in nature at all).

We are therefore again in a situation, similar to that before the discovery
of special relativity, where we have the choice between a) preserving an old
principle, here renormalizability of perturbative QFT on background spacetimes
(M,n), at the price of introducing extra structure (extra unification symmetry),
or b) replacing the old principle by a new principle, here non-perturbative QFT
on a differentiable manifold M, without new hypothetical structure. At this
point it unclear which methodology has more chances for success, historically
there is evidence for either of them (e.g. the unification of electromagnetism and
the massive Fermi model is evidence for the former, the replacement of Newton’s
notion of spacetime by special relativity is evidence for the latter) and it is quite
possible that we actually need both ideas. In QGR we take the latter point
of view to begin with since there maybe zillions of ways to unify forces and
it is hard to judge whether there is a “natural one”, therefore the approach is

of the ambient target Minkowski space which in this case is 10 dimensional. Thus, it is
similar to a first quantized theory of point particles. The theory is renormalizable and
presumably even finite order by order in perturbation theory but the perturbation
series does not converge.

3 In fact, e.g. the unified electroweak SU(2)r x U(1) theory with its massless gauge
bosons can be perfectly described by a classical Lagrangean. The symmetry broken,
massive U(1) theory can be derived from it, also classically, by introducing a constant
background Higgs field (Higgs mechanism) and expanding the symmetric Lagrangean
around it. It is true that the search for a massless, symmetric theory was inspired
by the fact that a theory with massive gauge bosons is not renormalizable (so the
motivation comes from quantum theory) and, given the non-renormalizability of
general relativity, many take this as an indication that one must unify gravity with
matter, one incarnation of which is string theory. However, the argument obviously
fails should it be possible to quantize gravity non-perturbatively.
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Fig. 3. QFT on Background Spacetime (M, go): Actor = Matter; Stage = Geometry
+ Manifold M

purposely conservative because we actually may be able to derive a natural way of
unification, if necessary, if we drive the theory to its logical frontiers. Among the
various non-perturbative approaches available we will choose the canonical one.

Pictorially, one could illustrate the deep difference between a background
dependent QFT and background independent QFT as follows: In Fig. 3 we see
matter in the form of QCD (notice the quark (Q) propagators, the quark-gluon
vertices and the three- and four point gluon (G) vertices) displayed as an actor
in green. Matter propagates on a fixed background spacetime gy according to
well-defined rules, particles know exactly what timelike geodesics are etc. This
fixed background spacetime gq is displayed as a firm stage in blue. This is the
situation of a QFT on a Background Spacetime.

In contrast, in Fig. 4 the stage has evaporated, it has become itself an actor
(notice the arbitrarily high valent graviton (g) vertices) displayed in blue as well.
Both matter and geometry are now dynamical entities and interact as displayed
by the red vertex. There are no light cones any longer, rather the causal structure
is a semiclassical concept only. This is the situation of a QFT on a Differential
Manifold and this is precisely what QGR aims to rigorously define.

It is clear from these figures that the passage from a QFT on a background
spacetime to a QFT on a differential manifold is a very radical one: It is like
removing the chair on which you sit and trying to find a new, yet unknown,
mechanism that keeps you from falling down. We should mention here that for
many researchers in quantum gravity even that picture is not yet radical enough,
some proposals require not only to get rid of the background metric go but also of
the differential manifold, allowing for topology change. This is also very desired
in QGR but considered as a second step. In 3d QGR also this step could be
completed and the final picture is completely combinatorial.
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Fig. 4. QGR on Differential Manifold M: Actor = Matter + Geometry; Stage = Man-
ifold M

Let us finish this section by stating once more what we mean by Quantum
General Relativity (QGR).

Definition:

(Canonical) Quantum General Relativity (QGR) is an attempt to con-
struct a mathematically rigorous, non-perturbative, background inde-
pendent Quantum Field Theory of four-dimensional, Lorentzian General
Relativity and all known matter in the continuum.

No additional, experimentally unverified structures are introduced. The
fundamental principles of General Covariance and Quantum Theory are
brought together and driven to their logical frontiers guided by mathe-
matical consistency.

QGR is not a unified theory of all interactions in the standard sense since
unification of gauge symmetry groups is not necessarily required in a non-
perturbative approach. However, Geometry and Matter are unified in a
non-standard sense by making them both transform covariantly under
the Diffeomorphism Group at the quantum level.

1.2 Introduction: Classical Canonical Formulation
of General Relativity

In this section we sketch the classical Hamiltonian formulation of general rela-
tivity in terms of Ashtekar’s new variables. There are many ways to arrive at
this new formulation and we will choose the one that is the most convenient one
for our purposes.
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The Hamiltonian formulation by definition requires some kind of split of the
spacetime variables into time and spatial variables. This seems to contradict
the whole idea of general covariance, however, quantum mechanics as presently
formulated requires a notion of time because we interpret expectation values of
operators as instantaneous measurement values averaged over a large number
of measurements. In order to avoid this one has to “covariantize” the interpre-
tation of quantum mechanics, in particular the measurement process, see e.g.
[10] for a discussion. There are a number of proposals to make the canonical
formulation more covariant, e.g.*: Multisymplectic Ansitze [13] in which there
are multimomenta, one for each spacetime dimension, rather than just one for
the time coordinate; Covariant phase space formulations [14] where one works
on the space of solutions to the field equations rather than on the initial value
instantaneous phase space; Peierl’s bracket formulations [15] which covariantize
the notion of the usual Poisson bracket; history bracket formulations [16], which
grew out of the consistent history formulation of quantum mechanics [17], and
which extends the usual spatial Poisson bracket to spacetime.

At the classical level all these formulations are equivalent. However, at the
quantum level, one presently gets farthest within the the standard canonical
formulation: The quantization of the multisymplectic approach is still in its
beginning, see [18] for the most advanced results in this respect; The covariant
phase space formulation is not only very implicit because one usually does not
know the space of solutions to the classical field equations, but even if one
manages to base a quantum theory on it, it will be too close to the classical theory
since certainly the singularities of the classical theory are also built into the
quantum theory; The Peierl’s bracket also needs the explicit space of solutions
to the classical field equations; Also the quantization of the history bracket
formulation just has started, see [19] for first steps in that direction.

Given this present status of affairs, we will therefore proceed with the stan-
dard canonical quantization and see how far we get. Notice that there is no
obvious problem with general covariance: For instance, standard Maxwell the-
ory can be quantized canonically without any problem and one can show that
the theory is Lorentz covariant although the spacetime split into space and time
seems to break the Lorentz group down to the rotation group. This is not at all
the case! It is just that Lorentz covariance is not manifest, one has to do some
work in order to establish Lorentz covariance. Indeed, as we will see, at least at
the classical level we will explicitly recover the four-dimensional diffeomorphism

4 Path integrals [11] use the Lagrangean rather than the Hamiltonian and therefore
seem to be better suited to a covariant formulation than the canonical one, however,
usually the path integral is interpreted as some sort of propagator which makes
use of instantaneous time Hilbert spaces again which therefore cannot be completely
discarded with. At present, this connection with the canonical formulation is not very
transparent, part of the reason being that the path integral is usually only defined in
its Euclidean formulation, however the very notion of analytic continuation in time
is not very meaningful in a theory where there is no distinguished choice of time, see
however [12] for recent progress in this direction.
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group in the formalism, although it is admittedly deeply hidden in the canonical
formalism.

With these cautionary remarks out of the way, we will thus assume that
the four dimensional spacetime manifold has the topology R x o, where o is a
three dimensional manifold of arbitrary topology, in order to perform the 3 + 1
split. This assumption about the topology of M may seem rather restrictive,
however, it is not due to the following reasons: (1) According to a theorem due
to Geroch any globally hyperbolic manifold (roughly those that admit a smooth
metric with everywhere Lorentzian signature) is necessarily of that topology.
Since Lorentzian metrics are what we are interested in, at least classically, the
assumption about the topology of M is forced on us. (2) Any four manifold M
has the topology of a countable disjoint union U,I, X o, where either I, are
open intervals and o, is a three manifold or I, is a one point set and o, is
a two manifold (the latter are the intersections of the closures of the former).
In this most generic situation we thus allow topology change between different
three manifolds and it is even classically an open question how to make this
compatible with the action principle. We take here a practical point of view and
try to understand the quantum theory first for a single copy of the form R x o
and later on worry how we glue the theories for different ¢’s together.

The ADM Formulation. In this nice situation the 3 4+ 1 split is well known
as the Arnowitt—Deser—Misner (ADM) formulation of general relativity, see e.g.
[4] and we briefly sketch how this works. Since M is diffeomorphic to R x o we
know that M foliates into hypersurfaces X, ¢t € R as in Fig. 5, where t labels
the hypersurface and will play the role of our time coordinate. If we denote the
four dimensional coordinates by X* u = 0,1,2,3 and the three dimensional
coordinates by z% a = 1,2,3 then we know that there is a diffeomorphism
p: Rxo —= M; (t,z) = X = p(t,z) where Xy = p(t,0). We stress that
the four diffeomorphism ¢ is completely arbitrary until this point and thus the

T~ 5,
M

Fig. 5. Foliation of M
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foliation of M is not at all fized. In fact, when varying the diffeomorphism ¢
we obtain all possible foliations and the parametrization in terms of o of each
leaf X'; of the foliation can vary smoothly with ¢. Consider the tangential vector
fields to X given by

Sa(X) = (8a)tp(t,:r):X = (‘pfg(tvx))ap(t,x):x au (3>

Denoting the four metric by g,, we define a normal vector field n*(X) by
Gum* Sy =0, gun*n” = —1. Thus, while the tangential vector fields depend
only on the foliation, the normal vector field depends also on the metric. Let us
introduce the foliation vector field

T(X) = (8t)ap(t,x):X = (@{é(t»x))gp(t,m):X a}t (4)
and let us decompose it into the basis n, S,. This results in
T=Nn+U*S, (5)

where N is called the lapse function while U*S, is called the shift vector field.
The arbitrariness of the foliation is expressed in the arbitrariness of the fields
N,U% We can now introduce two symmetric spacetime tensor fields (V is the
unique, torsion free covariant differential compatible with g, )

Quv = Guv + NNy, K/w = quQVavan (6)

called the intrinsic metric and the extrinsic curvature respectively which are
spatial, that is, their contraction with n vanishes. Thus, their full informa-
tion is contained in their components with respect to the spatial fields S,, e.g.
Gap(t, ) = [qu SESYI(X (¢, x)). In particular,

1.

Kd,(t,l‘) = ﬁ[qab - 'CUqab] (7)
contains information about the wvelocity of q,,. Here L the Lie derivative. The
metric g, is completely specified in terms of .3, N,U® as one easily sees by
expressing the line element ds* = g, dX* dX" in terms of dt, dz°.

EXERCISE 1.

Recall the definition of the Lie derivative and verify that K, is indeed symmetric and
that formula (7) holds.

Hint: A hypersurface Y; can be defined by the solution of an equation of the form
7(X) = t. Conclude that n, « V,7 and use torsion-freeness of V.

The Legendre transformation of the Einstein-Hilbert action

1
g=1 / X /[det(g)| R (8)
K Jm

with qup, N, U® considered as configuration coordinates in an infinite dimensional
phase space is standard and we will not repeat the analysis here, which uses the
so - called Gauss - Codazzi equations.
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Here we are considering for simplicity only the case that o is compact without
boundary, otherwise (8) would contain boundary terms. The end result is

s=1 / dt / Br{qusP™ + NP + NPy — [\P + AP, + UV, + NC]}, (9)

where

68
Pab o K
6qab

and P, P, are the momenta conjugate to qup, N, U® respectively. Thus, we have
for instance the equal time Poisson brackets

{Pe(t,2), PU(t,y)} = {dab(t, ), qealt,y)} = 0

{P(t,2), qealt,y)} = KO(O3)0(x,y) (11)
where (.)ap) := [(.)ab + (-)ba]/2 denotes symmetrization. The functions C,V,
which depend only on q,, P are called the Hamiltonian and Spatial Diffeomor-

phism constraint respectively for reasons that will become obvious in a moment.
Their explicit form is given by

Va = _QqacDbec

det( )[ ac bd qachd}K (10)

= [Qacqbd 1qachd PabPCd \/(FR (12)

det(q) 2

where D is the unique, torsion-free covariant differential compatible with g, and
R is the curvature scalar associated with qgp.

The reason for the occurrence of the Lagrange multipliers A\, A® is that the
Lagrangean (8) is singular, that is, one cannot solve all the velocities in terms
of momenta and therefore one must use Dirac’s procedure [20] for the Legendre
transform of singular Lagrangeans. In this case the singularity structure is such
that the momenta conjugate to N,U® vanish identically, whence the Lagrange
multipliers which when varied give the equations of motion P = P, = 0. The
equations of motion with respect to the Hamiltonian (i.e. F' := {H, F} for any
functional F' of the canonical coordinates)

H= /d?’a;[/\P + AP, + UV, + NC| (13)

for N,U® reveal that N, U are themselves Lagrange multipliers, i.e. completely
unspecified functions (proportional to A, A*) while the equations of motion for
P, P, give P=—C, P, = —V,. Since P, P, are supposed to vanish, this requires
C =V, =0 as well. Thus we see that the Hamiltonian is constrained to vanish
in GR! We will see that this is a direct consequence of the four dimensional
diffeomorphism invariance of the theory.

Now the equations of motion for qup, P®° imply the so-called Dirac (or hy-
persurface deformation) algebra

{V(U),V(U")} =kV(LoT')
{V(U),C(N)} =rC(LuN)
{C(N),C(N")} = V(¢ Y (NdN' — N'dN)), (14)
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where e.g. C(N) = [d3xzNC. These equations tell us that the condition H =
V, = 0 is preserved under evolution, in other words, the evolution is consistent!
This is a non-trivial result. One says, the Hamiltonian and vector constraint form
a first class constraint algebra. This algebra is much more complicated than the
more familiar Kac-Moody algebras due to the fact that it is not an (infinite)
dimensional Lie algebra in the true sense of the word because the “structure
constants” on the right hand side of the last line in (14) are not really constants,
they depend on the phase space. Such algebras are open in the the terminology
of BRST [21] and about their representation theory only very little is known.

EXERCISE 2.

Derive (14) from (11).

Hint: Show first that the Poisson bracket between local functions which contain spatial
derivatives is simply the spatial derivatives applied to the Poisson bracket. Since the
Poisson bracket of local functions is distributional recall that derivatives of distributions
are defined through an integration by parts.

Since the variables P, P, drop out completely from the analysis and N,U*
are Lagrange multipliers, we may replace (9) by

1
g=1 / dt / Pe{quy P — [U°V, + NH]} (15)
R o

with the understanding that N, U* are now completely arbitrary functions which
parameterize the freedom in choosing the foliation. Since the Hamiltonian of
GR depends on the completely unspecified functions N,U?®, the motions that
it generates in the phase space M coordinatized by (P, q.,) subject to the
Poisson brackets (11) are to be considered as pure gauge transformations. The
infinitesimal flow (or motion) of the canonical coordinates generated by the
corresponding Hamiltonian vector fields on M has the following form for an
arbitrary tensor tq, built from qqp, P*

{VU),tateom = k(Lutapy)
{C(N),tav} rom = K(Lnntab) , (16)

where the subscript FOM means that these relations hold for generic functions
on M only when the vacuum equations of motion (EOM) R,(flu) ~RWg,,/2=0
hold. Equation (16) reveals that Diff(M) is implemented also in the canonical
formalism, however, in a rather non-trivial way: The gauge motions generated
by the constraints can be interpreted as four-dimensional diffeomorphisms only
when the EOM hold. This was to be expected because a diffeomorphism orthogo-
nal to the hypersurface means evolution in the time parameter, what is surprising
though is that this evolution is considered as a gauge transformation in GR. Off
the solutions, the constraints generate different motions, in other words, the set
of gauge symmetries is not Diff(M) everywhere in the phase space. This is not
unexpected: The action (8)narray is obviously Diff(M) invariant, but so would be
any action that is an integral over a four-dimensional scalar density of weight one
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Fig. 6. Constraint submanifold M and gauge orbit [m] of m € M in M

formed from polynomials in the curvature tensor and its covariant derivatives.
This symmetry is completely insensitive to the specific Lagrangean in question, it
is kinematical. The dynamics generated by a specific Lagrangean must depend
on that Lagrangean, otherwise all Lagrangeans underlying four dimensionally
diffeomorphism invariant actions would equal each other up to a diffeomorphism
which is certainly not the case (consider for instance higher derivative theories).
In particular, that dynamics is, a priori, completely independent of Diff(M). As
a consequence, Dirac observables, that is, functions on M which are gauge in-
variant (have vanishing Poisson brackets with the constraints), are not simply
functionals of the four metric invariant under four diffeomorphisms because they
must depend on the Lagrangean. The set of these dynamics dependent gauge
transformations does not obviously form a group as has been investigated by
Bergmann and Komar [22]. The geometrical origin of the hypersurface defor-
mation algebra has been investigated in [23]. Torre and Anderson have shown
that for compact o there are no Dirac observables which depend on only a finite
number of spatial derivatives of the canonical coordinates [24] which means that
Dirac observables will be highly non-trivial to construct.

Let us summarize the gauge theory of GR in Fig. 6: The constraints C =
V, = 0 define a constraint submanifold M within the full phase space M. The
gauge motions are defined on all of M but they have the feature that they
leave the constraint submanifold invariant, and thus the orbit of a point m in
the submanifold under gauge transformations will be a curve or gauge orbit [m)]
entirely within it. The set of these curves defines the so-called reduced phase
space and Dirac observables restricted to M depend only on these orbits. Notice
that as far as the counting is concerned we have twelve phase space coordinates
Gab, P to begin with. The four constraints C, V, can be solved to eliminate four
of those and there are still identifications under four independent sets of motions
among the remaining eight variables leaving us with only four Dirac observables.
The corresponding so-called reduced phase space has therefore precisely the two
configuration degrees of freedom of general relativity.
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Gauge Theory Formulation. We can now easily introduce the shift from the
ADM variables ¢q, P* to the connection variables introduced first by Ashtekar
[25] and later somewhat generalized by Immirzi [26] and Barbero [27]. We in-
troduce su(2) indices i, 7, k,.. = 1,2,3 and co-triad variables e} with inverse e}
whose relation with g, is given by

Qab = Ojrelel (17)
Defining the spin connection I'J through the equation
due) — I5el + ejullel =0, (18)
where IS, are the Christoffel symbols associated with g4, we now define
Al =T] + BKape}, Ef =+/det(q)e}/B, (19)

where 5 € C—{0} is called the Immirzi parameter. In this article we only consider
real valued and positive 3. Finally we introduce the SU(2) Gauss constraint

Gj = 0,E + €j ALE) (20)

with €ji; the structure constants of su(2) which we would encounter in the
canonical formulation of any SU(2) gauge theory. As one can check, modulo
G; = 0 one can then write C, V, in terms of A, E as follows

i b
Vo = F/E?,
FloeimESEY
O = e IR i el + More , (21)
| det(E)]

where F' = 2(dA + A A A) is the curvature of A and “More” is an additional
term which is more complicated but can be treated by similar methods as the
one displayed.

We then have the following theorem [25].

THEOREM 2.
Consider the phase space M coordinatized by (A7, E;’) with Poisson brackets

{B] (@), BR(y)} = {Ah(2), AL (1)} = 0, {Ef(x), A5 (y)} = wO5076(x,y)  (22)

and constraints G, C,V,. Then, solving only the constraint G; = 0 and deter-
mining the Dirac observables with respect to it leads us back to the ADM phase
space with constraints C, V.

The proof of the theorem is non-trivial and tedious and can be found in the
notation used here in [1]. Alternatively one can find directions for a proof
in the subsequent exercise. In particular, this works only because the Gauss
constraint is in involution with itself and the other constraints, specifically

(G.G} x G, {G.V}={G H} =0.
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EXERCISE 3.
i) Prove theorem 2. _
Hint: Express gap, P* in terms of A}, EY by using (17), (18), (19), and (20) and
check that the Poisson brackets, with respect to (22), among the solutions gq =
sab[A, E], P* = S°*[A, E] equal precisely (11) modulo terms proportional to Gj.
ii) Define G(A) := [ d*zA'G;, D(U) := [ U*[Va—ALG;], and [A, A']; = e AF(A')"
Verify the following Poisson brackets
{G(4),G(A)} = rG([A, A7)
{G(A),V({U)} =0
{D(U),D(U")} = xD(IU,U"]) (23)
and conclude that the Hamiltonian vector fields of G(A) and D(U) respectively
generate SU(2) gauge transformations and spatial diffeomorphisms of o respec-
tively.
Hint: Show first that

{G(A/r), AQ(2)} = =Ny + ejuA" A,

{DWU/R), A4 ()} = U"A] , + ULA] (24)
to conclude that A transforms as a connection under infinitesimal gauge trans-
formations and as a one-form under infinitesimal diffeomorphisms. Consider then
gt(z) = exp(tA’7;/(2k)) and ¢i(x) = cyz(t) where ¢ — cy,»(t) is the unique
integral curve of U through x, that is, ¢u(t) = U(cv,«(t)), cu,=(0) = z. Recall
that the usual transformation behaviour of connections and one-forms under finite
gauge transformations and diffeomorphisms respectively is given by (e.g. [28])

A9 = —dgg™" + Ad,(A)

A? = A, (25)
where A = Aldx®7;/2, Ady(.) = g(.)g~ ' denotes the adjoint representation of
SU(2) on su(2) and ¢* denotes the pull-back map of p-forms and i7; are the Pauli
matrices so that 7,7, = —d;r1l2 + €k 7. Verify then that (24) is the derivative at
t = 0 of (25) with g := g¢, ¢ := . Similarly, derive that E transforms as an
su(2)-valued vector field of density weight one. (Recall that a tensor field ¢ of some
type is said to be of density weight r € R if t\/|det(s)|_r is an ordinary tensor
field of the same type where sqp is any non-degenerate symmetric tensor field).

From the point of view of the classical theory we have made things more com-
plicated: Instead of twelve variables ¢, P we now have eighteen A, E. However,
the additional six phase-space dimensions (per spacepoint) are removed by the
first class Gauss constraint which shows that working on our gauge theory phase
space is equivalent to working on the ADM phase space. The virtue of this ex-
tended phase space is that canonical GR can be formulated in the language of
a canonical gauge theory where A plays the role of an SU(2) connection with
canonically conjugate electric field E. Besides the remark that this fact could
be the starting point for a possible gauge group unification of all four forces we
now have access to a huge arsenal of techniques that have been developed for
the canonical quantization of gauge theories. It is precisely this fact that has
enabled steady progress in this field in the last fifteen years while one was stuck
with the ADM formulation for almost thirty years.
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1.3 Canonical Quantization Programme

for Theories with Constraints

Refined Algebraic Quantization (RAQ). As we have seen, GR can be
formulated as a constrained Hamiltonian system with first class constraints. The
quantization of such systems has been considered first by Dirac [20] and was later
refined by a number of authors. It is now known under the name refined algebraic
quantization (RAQ). We will briefly sketch the main ideas following [29].

i)

ii)

iii)

iv)

Phase Space and Constraints

The starting point is a phase space (M, {.,.}) together with a set of first
class constraints C; and possibly a Hamiltonian H.

Choice of Polarization

In order to quantize the phase space we must choose a polarization, that
is, a Lagrangean submanifold C of M which is called configuration space.
The coordinates of C have vanishing Poisson brackets among themselves. If
M is a cotangent bundle, that is, M = T*Q then it is natural to choose
Q = C and we will assume this to be the case in what follows. For more
general cases, e.g. compact phases spaces one needs ideas from geometrical
quantization, see e.g. [30]. The idea is that (generalized, see below) points of
C serve as arguments of the vectors of the Hilbert space to be constructed.

Preferred Kinematical Poisson Subalgebra

Consider the space C*°(C) of smooth functions on C and the space V*°(C) of
smooth vector fields on C'. The vertical polarization of M, that is, the space
of fibre coordinates called momentum space, generates preferred elements of
Ve (C) through (vy[f])(q) :== ({p, f})(¢) where we have denoted configura-
tion and momentum coordinates by ¢,p respectively and v[f] denotes the
action of a vector field on a function. The pair C*°(C) x V*°(C) forms a Lie
algebra defined by [(f, v), (f',v")] = (v[f']=v'[f], [v,v']) of which the algebra
B generated by elements of the form (f,v,) forms a subalgebra. We assume
that B is closed under complex conjugation which becomes its *-operation
(involution).

Representation Theory of the Corresponding Abstract *-Algebra

We are looking for all irreducible *-representations m : B — L(Hyin) of B as
linear operators on a kinematical Hilbert space Hy;, such that the *-relations
becomes the operator adjoint and such that the canonical commutation re-
lations are implemented, that is, for all a,b € B

m(a) = 7(a”)
[w(a), w(b)] = ifim([a, b]). (26)

Strictly speaking, (26) is to be supplemented by the domains on which the
operators are defined. In order to avoid this one will work with the subalge-
bra of C>°(C) formed by bounded functions, say of compact support and one
will deal with exponentiated vector fields in order to obtain bounded oper-
ators. Irreducibility is a physically meaningful requirement because we are
not interested in Hilbert spaces with superselection sectors and the reason
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for why we do not require the full Poisson algebra to be faithfully repre-
sented is that this is almost always impossible in irreducible representations
as stated in the famous Groenewald-van Hove theorem (compare Giulini’s
contribution to this volume). The Hilbert space that one gets can usually
be described in the form Lo (C,dp) where C is a distributional extension of C
and p is a probability measure thereon. A well-known example is the case of
free scalar fields on Minkowski space where C is some space of smooth scalar
fields on R? vanishing at spatial infinity while C is the space of tempered
distributions on R? and p is a normalized Gaussian measure on C.
Selection of Suitable Kinematical Representations

Certainly we want a representation which supports also the constraints
and the Hamiltonian as operators which usually will limit the number of
available representations to a small number, if possible at all. The con-
straints usually are not in B unless linear in momentum and the expressions
Cr == n(Cy), H = 7(H) will involve factor ordering ambiguities as well as
regularization and renormalization processes in the case of field theories. In
the generic case, C‘I, H will not be bounded and C'I will not be symmetric.
We will require that H is symmetric and that the constraints are at least
closable, that is, they are densely defined together with their adjoints. It is
then usually not too difficult to find a dense domain Dy, C Hyin, on which
all these operators and their adjoints are defined and which they leave in-
variant. Typically Dy;, will be a space of smooth functions of rapid decrease
so that arbitrary derivatives and polynomials of the configuration variables
are defined on them and such spaces naturally come with their own topology
which is finer than the subspace topology induced from Hy;, whence we have
a topological inclusion Dyiy — Hiin-

Imposition of the Constraints

The two step process in the classical theory of solving the constraints C; = 0
and looking for the gauge orbits is replaced by a one step process in the quan-
tum theory, namely looking for solutions [ of the equations Cyl = 0. This is
because it obviously solves the constraint at the quantum level (in the cor-
responding representation on the solution space the constraints are replaced
by the zero operator) and it simultaneously looks for states that are gauge
invariant because C7 is the quantum generator of gauge transformations.
Now, unless the point {0} is in the common point spectrum of all the C'I,
solutions [/ to the equations C'Il = 0V I do not lie in Hyin, rather they are
distributions. Here one has several options, one could look for solutions in the
space Dy, of continuous linear functionals on Dy, (topological dual) or in
the space Dy;,, of linear functionals on Dy, with the topology of pointwise
convergence (algebraic dual). Since certainly Hiin C Dj;, C Dy, let us
choose the latter option for the sake of more generality. The topology on
Hyin is finer than the subspace topology induced from Dy, so that we obtain
a Gel’fand triple or Rigged Hilbert Space

Dkin — Hkin — IDltin . (27)
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This a slight abuse of terminology since the name is usually reserved for the
case that Dy, carries a nuclear topology (generated by a countable family
of seminorms separating the points) and that Dy, is its topological dual.

We are now looking for a subspace D;hys C Dy, such that for its elements
[ holds

[CHI(f) == UCIf) =0 ¥ f € Dyin, VI. (28)

The prime on the left hand side of this equation defines a dual, anti-linear
representation of the constraints on Dy, . The reason for the adjoint on the
right hand side of this equation is that if [ would be an element of Hy;, then
(28) would be replaced by

[CH(f) =< Cil, f >xin=<1,C}f >xin=1 1(CTf) ¥ f € D, VI, (29

where < .,. >k, denotes the kinematical inner product, so that (28) is the
natural extension of (29) from Hyin to Dy,

Anomalies

Since we have a first class constraint algebra, we know that classically
{C1,C5} = f17 KOk for some structure functions fry ¥ which depend in
general on the phase space point m € M. The translation of this equation
into quantum theory is then plagued with ordering ambiguities, because the
structure functions turn into operators as well. It may therefore happen that,

e.g.
(C1,Cy) = ihCr frs & = ib{[Cx, f17 K1 + fr7 ¥Cx} (30)

and it follows that any I € D5 also solves the equation ([Cx, frs K])'1=0
for all I, J. If that commutator is not itself a constraint again, then it follows
that [ solves more than only the equations C’}l = 0 and thus the quantum
theory has less physical degrees of freedom than the classical theory. This

situation, called an anomaly, must be avoided by all means.

Dirac Observables and Physical Inner Product
Since generically Hyin N Do = (0, the space D},ys cannot be equipped

with the scalar product < .,. >yi,. It is here where Dirac observables come
into play. A strong Dirac observable is an operator O on Hyin which is, to-
gether with its adjoint, densely defined on Dy;, and which commutes with
all constraints, that is, [O, C'I] = 0 for all 1. We require that O is the quan-
tization of a real valued function O on the phase space and the condition
just stated is the quantum version of the classical gauge invariance condition
{O,C1} =0 for all I. A weak Dirac observable is the quantum version of the
more general condition {O, Cr}jc, = 0¥J = 0 VI and simply means that the
space of solutions is left invariant by the natural dual action of the operator
O'Dx,.. C D, (compare Giulini’s contribution to this volume).

phys phys
A physical inner product on a subset Hpnys C DJys is a positive definite

sesquilinear form < .,. >pnys With respect to which the O’ become self-

adjoint operators, that is, O’ = (O’)* where the adjoint on Hphys is denoted
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by *. Notice that [0}, 0] = ([O1,0,]) so that commutation relations on
Hyin are automatically transferred to Hpnys which then carries a proper *-
representation of the physical observables. The observables themselves will
only be defined on a dense domain Dpnys C Hpnys and we get a second
Gel’fand triple

Dphys < Hphys = Dppys- (31)
In fortunate cases, for instance when the Cy are mutually commuting self-
adjoint operators on Hy;y, all we have said is just a fancy way of stating the
fact that Hyi, has a direct integral decomposition

Hkin = /:a dI/()\)'H)\ (32)

over the spectrum S of the constraint algebra with a measure v and eigen-
spaces H, which are left invariant by the strong observables and therefore
Hphys = Ho. In the more general cases that are of concern to us, more work
is required.

Classical Limit

It is by no means granted that the representation Hpnys that one finally
arrived at carries semiclassical states, that is states vy, labelled by gauge
equivalence classes [m] of points m € M with respect to which the Dirac
observables have the correct expectation values and with respect to which
their relative fluctuations are small, that is, roughly speaking

< w[m]7 (O/)Qw[m] >phys
(< w[m]a Old)[m] >phys)2

< maOA/ m > S
Vimly O Piml Zphys 4| 1 41q 1l < 1.
O(m)

(33)

Only when such a phase exists are we sure that we have not constructed some
completely spurious sector of the quantum theory which does not admit the
correct classical limit.

Selected Examples with First Class Constraints. In the case that a theory
has only first class constraints, Dirac’s algorithm [20] boils down to the following
four steps:

1.

Define the momentum p, conjugate to the configuration variable ¢* by (Leg-
endre transform)

Do = 0S/0¢", (34)

where S is the action.

. Equation (34) defines p, as a function of ¢%, ¢* and if it is not invertible to

define the ¢* as a function of ¢%, p, we get a collection of so-called primary
constraints Cy, that is, identities among the ¢, p,. In this situation one says
that S or the Lagrangean is singular.
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Using that ¢%, p, have canonical Poisson brackets, compute all possible Pois-
son brackets Cry := {Cr,C;}. If some Cy, j, is not zero when all Cx vanish,
then add this Cfy,j,, called a secondary constraint, to the set of primary
constraints.

. Iterate 3) until the C are in involution, that is, no new secondary constraints

appear.

In this report we will only deal with theories which have no second class

constraints, so this algorithm is all we need.

EXERCISE 4.
Perform the quantization programme for a couple of simple systems in order to get a
feeling for the formalism:

1.

Momentum Constraint

M = T*R? with standard Poisson brackets among ¢, pa; a = 1,2 and constraint
C := p1. Choose Hyin = LQ(R2,d2m), Dyin = S(RQ), Dy = S'(]RQ) (spaces of
functions of rapid decrease and tempered distributions respectively).

Solution: Dirac observables are the conjugate pair ¢2, pa, Hphys = L2(R, dz2).
Hint: Work in the momentum representation and conclude that the general solution
is of the form l¢(p1,p2) = §(p1) f(p2) for f € S'(R).

Angular Momentum Constraint

M = T*R3? with standard Poisson brackets among ¢%,p.; a = 1,2,3 and con-
straints Cy 1= €qpe®pe. Check the first class property and choose the kinematical
spaces as above with R? replaced by R3.

Solution: Dirac observables are the conjugate pair r := 1/d8.q%¢® > 0, p, =
Sabq“py/7, the physical phase space is T*Ry and Hphys = L2(R4, r2dr) where 7 is
a multiplication operator and p, = ih%%r with dense domain of symmetry given
by the square integrable functions f such that f is regular at » = 0.

Hint: Introduce polar coordinates and decompose kinematical wave functions into
spherical harmonics. Conclude that the physical Hilbert space this time is just the
restriction of the kinematical Hilbert space to the zero angular momentum sub-
space, that is, Hphys C Hiin. The reason is of course that the spectrum of the C,
is pure point (discrete).

Relativistic Particle

Consider the Lagrangean L = —m+/—n,,¢"*¢” where m is a mass parameter, 7 is
the Minkowski metric and p = 0,1, .., D. Verify that the Lagrangean is singular,
that is, the velocities ¢” cannot be expressed in terms of the momenta p, =
OL/0¢" which gives rise to the mass shell constraint C = m? + n"p,p,. Verify
that this happens because the corresponding action is invariant under Diff(R),
that is, reparameterizations t — ¢(t), ¢(t) > 0. Perform the Dirac analysis for
constraints and conclude that the system has no Hamiltonian, just the Hamiltonian
constraint C' which generates reparameterizations on the kinematical phase space
M = T*RP*H! with standard Poisson brackets. Now choose kinematical spaces as
in 1. with R? replaced by RP*1,

Solution: Conjugate Dirac observables are

0
Q" =q" - e (35)

V m?2 4+ §%papp
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and
Hphys = L2 (RD» de) (36)

on which ¢° = 0.
Hint: Work in the momentum representation and conclude that the general so-
lution to the constraints is of the form Iy = §(C)f(po,p). Now notice that the
d-distribution can be written as a sum of two J-distribution corresponding to the
positive and negative mass shell and choose f to have support in the former.
This example has features rather close to those of general relativity.

4. Mazwell Theory
Consider the action for free Maxwell-theory on Minkowski space and perform the
Legendre transform. Conclude that there is a first class constraint C = 9,FE“
(Gauss constraint) with Lagrange multiplier A and a Hamiltonian

H= l/ d*z(E“E" + B“B"), (37)
2 Jps

where E® = A, — 8, Ao is the electric field and B* = ¢**°8, A, the magnetic one.
Verify that the Gauss constraint generates U(1) gauge transformations A — A—df
while E* is gauge invariant. Choose Hyin to be the standard Fock space for three
massless, free scalar fields A, and as Dyin, Dy, the finite linear span of n-particle
states and its algebraic dual respectively.

Solution: Conjugate Dirac observables are the transversal parts of A, E respec-
tively, e.g. E{ = E* — &Li&,Eb where A is the Laplacian on R3. The physical
Hilbert space is the standard Fock space for two free, massless scalar fields corre-
sponding to these transversal degrees of freedom.

Hint: Fourier transform the fields and compute the standard annihilation and
creation operators 2q(k), 2} (k) with canonical commutation relations. Express
the Gauss constraint operator in terms of them and conclude that the gauge
invariant part satisfies Z,(k)k* = 0. Introduce 2;(k) = Zq(k)e?(k) where
ei(k),ez(k),es(k) := k/||k|| form an oriented orthonormal basis. Conclude that
physical states are states without longitudinal excitations and build the Fock space
generated by the 2] (k), 25 (k) from the kinematical vacuum state.

2 Mathematical and Physical Foundations
of Quantum General Relativity

2.1 Mathematical Foundations

Polarization and Preferred Poisson Algebra B. The first two steps of
the quantization programme were already completed in Sect. 1.2: The phase
space M is coordinatized by canonically conjugate pairs (A{17E;‘) where A is
an SU(2) connection over o while F is a su(2)-valued vector density of weight
one over o and the Poisson brackets were displayed in (22). Strictly speaking,
since M is an infinite dimensional space, one must supply M with a manifold
structure modelled on some Banach space but we will skip these functional
analytic niceties here, see [1] for further information. Also we must specify the
principal fibre bundle of which A is the pull-back by local sections of a globally
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defined connection, and we must specify the vector bundle associated to that
principal bundle under the adjoint representation of which FE is the pull-back by
local sections. Again, in order not to dive too deeply into fibre bundle theoretic
subtleties, we will assume that the principal fibre bundle is trivial so that A, F
are actually globally defined. In fact, for the case of G = SU(2) and dim(o) = 3
one can show that the fibre bundle is necessarily trivial but for the generalization
to the generic case we again refer the reader to [1].

With these remarks out of the way we may begin by defining a polarization.
The fact that GR has been casted into the language of a gauge theory suggests
the choice C = A, the space of smooth SU(2) connections over o.

The next question then is how to choose the space C*°(A). Since we are
dealing with a field theory, it is not clear a priori what smooth or even differen-
tiable means. In order to give precise meaning to this, one really has to equip
A with a manifold structure modelled on a Banach space. This is because one
usually says that a function F' : A — C is differentiable at Ay € A provided
that there exists a bounded linear functional DFy4, : Ta,(A) — C such that
F[Ag 4+ §A] — F[Aog] — DF4, - §A vanishes “faster than linearly” for arbitrary
tangent vectors 0A € Ty, (A) at Ag. (The proper way of saying this is using the
natural Banach norm on T'(A).) Of course, in physicist’s notation the differential
DFy, = (0F/0A)(Ap) is nothing else than the functional derivative. Using this
definition it is clear that polynomials in AJ(x) are not differentiable because
their functional derivative is proportional to a d-distribution as it is clear from
(22). Thus we see that the smooth functions of A have to involve some kind of
smearing of A with test functions, which is generic in field theories.

Now this smearing should be done in a judicious way. The function F[A] :=
[, d*xF 3 () Al (x) for some smooth test function F of compact support is cer-
tainly smooth in the above sense, its functional derivative being equal to F?
(which is a bounded operator if F' is e.g. an Lo function on ¢ and the norm
on the tangent spaces is an Ly norm). However, this function does not trans-
form nicely under SU(2) gauge transformations which will make it very hard to
construct SU(2) invariant functions from them. Here it helps to look up how
physicists have dealt with this problem in ordinary canonical quantum Yang-
Mills gauge theories and they found the following, more or less unique solution
[31]: Given a curve ¢ : [0,1] = ¢ in ¢ and a point A € A we define the holon-
omy or parallel transport A(c) := hc a(1) € SU(2) as the unique solution to the
following ordinary differential equation for functions h¢ 4 : [0,1] — SU(2)

dhc,A(t)

T = hea®AL(C®) (W), hea(0) = 1o (38)

2

EXERCISE 5.
Verify that (38) is equivalent with

Ale) =P - exp (/CA> :12+i/0tdt1/tldt2 /tl Ab)-At), (39)

n—1
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where P denotes the path ordering symbol which orders the curve parameters from
left to right according to their value beginning with the smallest one and A(t) :=
Az (c(t)e (t)T; /2.

With this definition it is not difficult to verify the following transformation
behaviour of A(c¢) under gauge transformations and spatial diffeomorphisms re-
spectively (recall (25)):

A%(c) = g(b(c) A(c)g(f(c) ™" and A?(c) = A(¢™"(c)) (40)

where b(c), f(c) denote the beginning and final point of a curve respectively.
Thus, the behaviour under gauge transformations is extremely simple which
makes it easy to construct gauge invariant functions, for instance the Wilson
loop functions Tr(A(c)) where ¢ is a closed curve, that is, a loop. This is the
reason why QGR is also denoted as Loop Quantum Gravity. That holonomies
also transform very naturally under spatial diffeomorphisms as depicted in the
second equation of (40) has the following mathematical origin: A connection is
in particular a one-form, therefore it is naturally integrated (smeared) over one-
dimensional submanifolds of o. Here natural means without using a background
metric. Now the holonomy is not really the exponential of ch but almost as
shown in (39). Thus, holonomies are precisely in accordance with our wish to
construct a background independent quantum field theory. Moreover, the simple
transformation behaviour under diffeomorphisms again makes it simple to con-
struct spatially diffeomorphism invariant functions of holonomies: These will be
functions only labelled by diffeomorphism invariance classes of loops, but these
are nothing else than knot classes. Thus QGR has an obvious link with topo-
logical quantum field theory (TQFT) [32] which makes it especially attractive
and was one of the major motivations for Jacobson, Rovelli and Smolin to con-
sider Wilson loop functions for canonical quantum gravity [33]. Finally one can
show [34] that the holonomies separate the points of A, i.e. they encode all the
information that is contained in a connection.

The fact that the holonomy smears A only one-dimensionally is nice due to
the above reasons but it is also alarming because its functional derivative is cer-
tainly distributional and thus does not exist in an a priori mathematical sense.
However, in order to obtain a well-defined Poisson algebra it is not necessary to
have smooth functions of A, it is only sufficient. The key idea idea is that if we
smear also the electric fields E then we might get a non-distributional Poisson
algebra. By inspection from (22) it is clear that E has to be smeared in at least
two dimensions in order to achieve this. Now again background independence
comes to our help: Let €4, be the totally skew, background independent tensor
density of weight —1, that is, €4, = 56@55621 where [..] denotes total antisym-
metrization. Then (xE)), := EJ, := Efea. is a 2-form of density weight 0.
Therefore E is naturally smeared in two dimensions. Notice that the smearing
dimensions of momenta and configuration variables add up to the dimension of
o, they are dual to each other which is a generic phenomenon for any canonical
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theory in any dimension. We are therefore led to consider the electric fluxes
B)(S) = [ +E, (a1)
s

where S is a two-dimensional, open surface. It is easy to check that E(S) :=
E;(S)7; has the following transformation behaviour

E9(S) = /SAdg(*E) and E?(S) = E(p(9)). (42)

Thus, while the transformation under spatial diffeomorphisms is again simple,
the one under gauge transformations is not. However, the idea is that the E;(.5)
are the basic building blocks for more complicated functions of E which are
already gauge invariant. The prototype of such a function is the area functional
for a parameterized surface Xg: D — o, D C R?

Ar(S :——/ d*uy/det(X%q). 43
(5) \/ (X5q) (43)
EXERCISE 6.

Define nf = eachg w1 X & 2 and verify that (43) coincides with

Ax(S) =6 [ dun/(Bpni)(En), (44)
D
where (8 is the Immirzi parameter.

It is clear that E;(S) = [} dQUE?nf so that the area functional can be written
as the limit of a Riemann sum, over small surfaces that partition .S, of functions
of the electric fluxes for those small surfaces.

Let us see whether the Poisson bracket between an electric flux and a holon-
omy is well-defined. Actually, let us be slightly more general and introduce the
following notion: Let us loosely think for the moment of a graph + as a collec-
tion of a finite number of smooth, compactly supported, oriented curves, called
edges e, which intersect at most in their end points, which are called vertices v.
We denote by E(v), V(v) the edge and vertex set of v respectively. A precise
definition will be given in Sect. 2.1.

DEFINITION 9.
Given a graph v we define

Py A= SU@EON A s (A(€))eerr)- (45)

A function f: A — C is said to be cylindrical over a graph ~, if there exists a
function f, : SU(2)/EM! — C such that f = f, o p,. We denote by Cyly, n =
0,1, .., 00 the set of n-times continuously differentiable cylindrical functions over
~v and by Cyl™ the set functions which are cylindrical over some v with the same
differentiability type. Here we say that f = f, op, € Cylf; if and only if f,
is n-times continuously differentiable with respect to the standard differential
structure on SU(2)IEMI,
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e_trans,

A

e_trans, o=—1

Fig. 7. Intersection structure of surfaces with edges

Our Poisson Algebra will be based on the set of functions Cyl®>® which certainly
form an Abelean Poisson subalgebra. Our next task will be to compute the
Poisson bracket between a flux and an element of Cyl®. In order to compute
this we will use the chain rule (f € Cyly")

.= 3 (PR y5), () ntnaey (0)

e€E(y)

so that the bracket will be well-defined once the bracket between a holonomy
and a flux is well-defined. To compute this the intersection structure of e with
S is somewhat important. In order to simplify the notation, we notice that we
can always take v to be adapted to S5, that is, every edge e belongs to one of the
following three types:

a)e € Eoui(y) & enS=40.
b)e€ En(y) & enS=e.
¢) € € Byans(7) & eNS =ble).

This can be achieved by subdividing edges into a finite number of segments and
inverting their orientation if necessary as depicted in Fig. 7 (strictly speaking,
this is true only if S is compactly supported, open, oriented and analytic). We
also need to introduce the function o (., e) which vanishes for e € Ei, (7)UEqut(7)
and which is +£1 for e € Eyans(7y) if the orientations of S and e agree or disagree
respectively. The easiest case is € € Eirans(y), 0(S,e) = 1. We find

d*u nf(u)/o dsé“(s)é(XS(u),e(s))A(es)QA(es)_lA(e)

(E,(8). @)} = n [ ;
(@7

D
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where e4(t) := e(st). Noticing that the support of the d-distribution is at Xg(u) =
€(0) which is an interior point of S but a boundary point of e, a careful analysis
reveals that (47) reduces to

K
{B5(5), Ale)} = 4 miAle). (48)
With this result, (46) can be written in the compact form

{Bi(S). S} A) =T 3 o(S,)RLf i =ac (49)

e€E(y)

where we have defined the right invariant vector fields

(R (e Yeremen)) i= (o dimof ([he Yoo €7 ). (50)

We can now define the vector fields vé on Cyl*® by vjs[f} = {E;(5), f} and
arrive at the Poisson *-algebra B generated by the v, f € Cyl™ with involution
defined by complex conjugation through the general formula [(f,v), (f',v")] =

(0[f'] = 0" [£1; [v, 0"]).

EXERCISE 7.

Fill the gaps between Egs.(46) and (49).

Hint: Use formula 39 in order to derive (47), then expand Xs(u) — e(t) around u = uo
defined by Xg(uo) = €(0) and ¢ = 0 to linear order in u — uo and sufficiently high order
in ¢ to arrive at (48). (Notice that e is only transversal, so ¢(0) may be tangential to S
in e(0)!) Verify that the end result coincides with (49).

So we see that we arrive at a well defined algebra B by smearing the momenta
in two dimensions. Could we also smear them in three dimensions? The answer
is negative: Consider a one-parameter family of surfaces ¢ — S; and define
E;({S}) := [dt E;(S;). Then f — {E;(S), f} maps f out of Cyl™ because it
involves an integral over ¢ and thus depends on an uncountably infinite number
of edges rather than a finite number. Thus this algebra would not be closed so
that if we would like to stick with at least countably infinite graphs then we are
forced to stick with two dimensional smearings of the electric fluxes!

Representation Theory of B and Suitable Kinematical Representa-
tions. The representation Theory of B has been considered only rather recently
[35] and the analysis is not yet complete. However, if one sticks to irreducible rep-
resentations for which 1) the flux operators are well-defined and self-adjoint (in
other words, the corresponding one parameter unitary groups are weakly con-
tinuous) and 2) the representation is spatially diffeomorphism invariant, then
the unique solution to the representation problem is the representation which
we describe in this section.
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This representation is of the form Ho = Lo(A,dug) where A is a certain

distributional extension of A and pg is a probability measure thereon. The most
elegant description of this Hilbert space uses the theory of C*-algebras [36] but
fortunately there is a purely geometric description available [37] which is easier
to access for the beginner. In what follows we assume for simplicity that o is
an oriented, connected, simply connected smooth manifold. One can show that
each smooth manifold admits at least one analytic structure (i.e. the atlas of
charts consists of real analytic maps) and we assume to have picked one once
and for all.

Curves, Paths, Graphs, and Groupoids.

DEFINITION 10.

i

ii)

iii)

iv)

By a curve ¢ we mean a map ¢ : [0,1] — o which is piecewise analytic,
continuous, oriented and an embedding (does not come arbitrarily close to
itself). It is automatically compactly supported. The set of curves is denoted
C in what follows.

On C we define maps o, (.)~! called composition and inversion respectively

by
a2t for ¢ €0, 3]
[er o c2l(t) = {02(27,‘ -1 forte [%’21] Y
if f(c1) = b(c2) and
() = o1 - 2t). )

By a path p we mean an equivalence class of curves ¢ which differ from each
other by a finite number of reparameterizations and retracings, that is, ¢ ~ ¢/
if there either exists a map ¢t — f(t), f(t) > 0 with ¢ = /o f or we may write
¢, ¢ as compositions of segments in the form ¢ = sy 059, ¢/ = 570530 351 0S89
(and finite combinations of such moves). Notice that a curve induces its
orientation and its end points on its corresponding path. The set of paths is
denoted by P.

By a graph v we mean a finite collection of elements of P. We may break
paths into pieces such that v can be thought of as a collection of edges
e € E(v), that is, paths which have an entire analytic representative and
which intersect at most in their end points v € V() called vertices. The set
of graphs is denoted by I'.

These objects are depicted in Fig. 8.
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A

€

€ erl

Fig. 8. Paths and graphs

EXERCISE 8.

a) Despite the name, composition and inversion does not equip C with a group struc-
ture for many reasons. Verify that composition is not associative and that the
curve coc™ ! is not simply b(c) but rather a retracing. Moreover, contemplate that
C does not have a unit and that not every two elements can be composed.

b) Define composition and inversion of paths by taking the equivalence class of the
compositions and inversions of any of their representatives and check that this
definition is well defined. Check that then composition of paths is associative and
that pop™t = b(p). However, P still does not have a unit and still not every two
elements can be composed.

c) Let Obj:= o and for each z,y € o let Mor(z,y) :={p € P: b(p) ==z, f(p) =y}
Recall the mathematical definition of a category and conclude that P is a category
in which every morphism is invertible, that is, a groupoid.

d) Define the relation < on I' by saying that v < «' if and only if every e € E(v) is
a finite composition of the ¢’ € E(y') and their inverses. Verify that < equips I’
with the structure of a directed set, that is, for each ,+" € I" we find 7' € I" such
that v,v" < ~".

Hint: For this to work, analyticity of the curve representatives is crucial. Smooth
curves can intersect in Cantor sets and thus define graphs which are no longer
finitely generated. Show first that this is not possible for analytic curves.

e) Given a curve ¢ with path equivalence class p; notice that for the holonomy with
respect to A € A holds A(c) = A(p). Contemplate that, in particular, every group
is a groupoid and that every connection A € A qualifies as a groupoid homomor-
phism, that is, A: P — SU(2); p— A(p) with

A(pop') = A(p)A(p') and A(p™") = (A(p)) . (53)

The fact that holonomies are really defined on paths rather than curves and that
holonomies are characterized algebraically by 53 makes the following definition
rather natural.

DEFINITION 11. .
The quantum configuration space is defined as the set A := Hom(P, SU(2)) of
all algebraic, arbitrarily non-continuous groupoid morphisms.

Here non-continuous means that in contrast to A € A for an element A € A it is
possible that A(p) = 1 varies discontinuously as we vary p continuously. Thus,
A can be thought of as a distributional extension of A.
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Topology on A. So far A is just a set. We now equip it with a topology. The
idea is actually quite simple. Recall the maps (45) which easily extend from A
to A and maps A into SU(2)IFMI. Now SU(2)FMI is a compact Hausdorff
topological group?® in its natural manifold topology and we would like to exploit
that. Thus we are motivated to consider the spaces X, := Hom(vy, SU(2)/FMI)
where « is considered as a subgroupoid of I" with objects V(y) and morphisms
generated by the e € E(v). The map

X, = SU@)PD a0y = (a5 (€)}eemi) (54)

identifies X, with GIEMI since zy € X, is already defined by which values it
takes on the e € E() and we may thus use this identification in order to equip
X, with a compact Hausdorff topology. Now consider the uncountably infinite
product

Xoo =[] X, (55)
yerl

A standard result from general topology, Tychonov’s theorem, tells us that the
smallest topology on X such that all the maps p, : Xoo = X; (24)yer — 2,
are continuous is a compact Hausdorff topology®. Now we would like to identify
A with X, through the restriction map

P A= Xoo; A (2y := Ay = py(A))ver (56)

However, that map cannot be surjective because the points of A satisfy the
following constraint which encodes the algebraic properties of a generalized con-
nection: Let 7 < 7/ and define the graph restriction maps

Dyt Xy = Xoj @y = (T (57)
which satisfy the compatibility condition
Drtty = Pryiy © Py for 4 <y <" (58)
Then automatically
Py (Ajy) = Ay (59)
We are therefore forced to consider the subset of X, defined by
X = {(ay)yer € Xoo} pyy(ay) =2, V7 <7} (60)

® Here it is crucial that G = SU(2) is compact and thus for non-real Immirzi parameter
all of what follows would be false.

5 Recall that we know the topology on a space when we know a base of open sets from
which we obtain all open sets by arbitrary unions and finite intersections. Since the
preimages of open sets under continuous functions are open by definition, we obtain
a topology once we know which functions are continuous.
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EXERCISE 9.

i) Show that the maps (57) are continuous surjections.
Hint: Exploit the identification of the X, with powers of SU(2) and the continuity
of multiplication and inversion in groups to establish continuity. To establish sur-
jectivity use the fact that each edge e of v contains an edge e, of 7' as a segment
such that the e, do not overlap each other. Now given z., set z./(e.) = z(e) and
extend trivially away from the ec. Check that this defines an element of X./.

ii) Show that X is a closed subset of X.
Hint: Since X is not a metric space we must work with nets and show that every
net of points z* € X which converges in X, actually converges in X. Using the
definition of the topology on X, show that this is equivalent to showing that
the py(z*) = x5 converge to points z, which satisfy (59) and verify this using
continuity of the p,/, just established.

The surjectivity of the p,s, qualifies X as the so-called projective limit of the
X, a mathematical structure which is independent of our concrete context once
we have a directed index set I' at our disposal and surjective projections which
satisfy the compatibility condition (58).

Now another standard result from topology now tells us that X, being the
closed subset of a compact Hausdorff space, is a compact Hausdorff space in the
subspace topology and the question arises whether

b: A—X; A (2 := Al = py(A))yer (61)

is a bijection. Injectivity is fairly easy to see while surjectivity is a little bit
tricky.

EXERCISE 10.

Show that (61) is a bijection.

Hint: Given # € X and p € P choose any v, € I" such that p € v, and define A, by
Az (p) := x4, (p). Show that this definition is well defined using the directedness of I"
and that A, is a groupoid homomorphism.

Let us collect these results in the following theorem [38].

THEOREM 3.
The space A equipped with the weakest topology such that the maps p~ of (45)
are continuous, is a compact Hausdorfl space.

The value of this result is that it gives us a powerful tool for constructing mea-
sures on A.

Measures on A. A powerful theorem due to Riesz and Markov, sometimes called
the Riesz representation theorem, tells us that there is a one-to-one correspon-
dence between the positive linear functionals A on the algebra C(A) of continu-
ous functions on a compact Hausdorff space A and (regular, Borel) probability

measures p thereon through the simple formula

A(f) = /A dp(A) f(4) (62)
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One says A is represented by f. Here a linear functional is called positive if
A(|f|*) > 0 for any f € C(A). A function algebra on a compact space can
be equipped with the sup-norm ||f|| := sup 4.5 |f(A)| which evidently has the
so-called C*-property ||ff|| = ||f]|*> so that (w.lLg. we may take C(A) to be
complete w.r.t. the norm) C(A) is a C*-algebra. A standard result in functional
analysis reveals that positive linear functionals on C'*-algebras are automatically
continuous, [A(f)] < A(1) ||f]| and if we choose the normalization of A to be
A(1) =1 then p is a probability measure.

In order to specify the measure ug that we are interested in, it is there-
fore enough to specify a positive linear functional Ag. The most elegant way of
defining Aq is through the following definition.

DEFINITION 12.

i) Given a graph ~, label each edge e € F(y) with a triple of numbers (j., me, ne)
where j. € {%, 1, %, 2, ..} is a half-integral spin quantum number and me, n. €
{=Je,—Je +1,..,jc} are magnetic quantum numbers. A quadruple

§ = (7).7 = {je}eEE('y)am = {me}eEE('y)vn = {ne}eeE('y)) (63)

is called a spin network (SNW). We also write (s) etc. for the entries of a
SNW.

ii) Choose once and for all one representative p;, j > 0 half integral, from each
equivalence class of irreducible representations of SU(2). Then

T, : A= C; A H [\/ 2je + l[pje (A(e))]mene] (64)

e€E(y)

is called the spin-network function (SNWF) of s. Here [p;(.)]mn denotes the
matrix elements of the matrix valued function p;(.).

An example of a SNW, which can be arbitrarily large and with vertices of arbi-
trarily high valence, is given in Fig. 9. The original motivation for the definition
of spin network functions [40] in loop quantum gravity was the fact that they
are linearly independent in contrast to the Wilson loop functions which suf-
fer from the so-called Mandelstam identities. For SU(2) matrices h, h’ they are
Tr(h) Tr(h') = Tr(hh') + Tr(h(R')~1!) and Tr(h) = Tr(h~') which leads to an
infinite tower of identities of the form

[Tr(A(ar)) Tr(A(ag))|Tr(A(a1)) = Tr(A(a))[Tr(A(az)) Tr(A(ar))]  (65)

depending on how we bracket the product of traces involving the three loops
ay, g, a3 with a common base point. The SNWEF’s remove these cumbersome
identities first by labelling functions by edges rather than loops and secondly by
the simple observation that a tensor product of (fundamental) representations
can be uniquely decomposed into irreducibles (Clebsh-Gordon decomposition).
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j25

j_50

49

Fig.9. A SNW. Orientations and magnetic quantum numbers are suppressed

THEOREM 4.

The uniform (Ashtekar-Lewandowski) measure pg is uniquely defined by the

positive linear functional [39]

1 for s = (0,0,0,0)
0 otherwise

A(](TS) = {

EXERCISE 11.

(66)

i) Recall the representation theory of SU(2) from the quantum mechanics of angular

momentum and verify that the SNWF are indeed linearly independent.
ii) Verify that Ag is a positive linear functional.

Hint: Using the Stone—Weierstrass theorem, show first that the finite linear com-

binations of SNWF are dense in C'(.A). By continuity of Ao it is therefore sufficient

to check positivity on finite linear combinations

N
fZZznTsn, N < oo, 2z, €C (67)

n=1

with s, mutually different SNW’s. To see this, verify that Ao (TSTS/) =0fors# s
by using the Clebsh-Gordon formula j®j' = (j+j )@ (G+5 —1)®..d (|7 —5']).
iii) A fundamental theorem for the representation theory of compact groups is due to

Peter and Weyl [41]. For SU(2) it amounts to saying that the functions

Tjmn : SU(2) = C; b /25 + 1[p;(R)]mn (68)
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form an orthonormal basis for the Hilbert space L2(SU(2),dpm) where pp is the
normalized Haar measure on SU(2) (the unique normalized measure which in-
variant under inversion as well as left and right translation in SU(2)). Based on
this result, show that the SNWF form an orthonormal basis for the Hilbert space
L2 (Z, dﬂo).

Let us summarize the results of the exercise in the following theorem [40].

THEOREM 5. o
The kinematical Hilbert space Hyin := L2(A, duo) defined by (66) is non-separ-
able and has the SNWF’s T, as orthonormal basis.

Representation Property. So far we did not verify that Hy;, is a representation
space for our *-algebra B of basic operators. This will be done in the present
section. Indeed, until today no other irreducible representation of the holonomy-
flux algebra has been found (except if one allows also infinite graphs [42]).

By theorem (6) the subspace of finite linear combinations of SNWEF’s is
dense in Hiyj, with respect to the Lo norm. On the other hand, we notice
that the definition of Cyl>(A) simply extends to Cyl*(A) and that finite
linear combinations of SNWEF’s form a subspace of Cyl™(A). Thus, we may
choose Dy, = Cyl®(A) and obtain a dense, invariant domain of B as we
will see shortly. We define a representation of the holonomy-flux algebra by

(f' € Cyl*®(A), f € Cyl®(A), A€ A)

[7(f) - 1(4) = (F'£)(4) |
(r0) - ) = D)) 1) = (o), () + (B - A
ilr(vd[f]) - 11(A) = ih(ALf])(A). (69)

Thus 7(f) is a multiplication operator while ﬂ(vé) is a true derivative operator,
i.e. it annihilates constants. Notice that the canonical commutation relations are
already obeyed by construction, thus we only need to verify the *-relations and
the fact that m(v}) annihilates constants will be crucial for that.

The 7(f) are bounded multiplication operators (recall that smooth, i.e. in
particular continuous, functions on compact spaces are uniformly bounded, that
is, have a sup-norm) so that the adjoint is complex conjugation, therefore there
is nothing to check. As for m(v}) we notice that given two smooth cylindrical
functions on A we always find a graph « over which both of them are cylindrical
and which is already adapted to S.

A

™

EXERCISE 12.
Let f be cylindrical over «y. Verify that

o= [ L dmnfhedece) (70)

e€E(y)

Hint: Write f as a (Cauchy limit of) finite linear combinations of SNWEF’s and verify
that (70) coincides with (66).
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Using the explicit expression (49) and the result of exercise 12 it is easy to see
that the symmetry condition < f,7(v})f" >kin=< 7(v%)[f, [’ >kin Is equivalent
with the condition

<ERF >0 dum= — < P F' > 1, (50@),dun) (71)

for any F, F' € C*>(SU(2)) and R’ is the right invariant vector field on SU(2).
However, pp is by definition invariant under left translations and R’ is a gen-
erator of left translations in SU(2) so the result follows. This shows that Dy,
is contained in the domain of 7(v%)" and that the restriction of the adjoint to
Dyin coincides with W(vg). That Dy, is actually a domain of (essential) self-
adjointness requires a little bit more work but is not difficult to see, e.g. [1].

Finally, let us verify that the representation is irreducible. By definition, a
representation is irreducible if every non-zero vector is cyclic and a vector {2 is
cyclic if the set of vectors 7(a)f2, a € B is dense. Now the vector 2 = 1 is cyclic
because the vectors w(f)§2 = f, f € Cyl™ are already dense. Given an arbitrary
element ¢ € Hyn we know that it is a Cauchy limit of finite linear combinations
of spin network functions. Thus, if we can show that we find a sequence a,, € B
such that 7(a, )Y converges to {2, then we are done. It is easy to see (exercise)
that this problem is equivalent to showing that any F € Lo(F,dug) can be
mapped by the algebra formed out of right invariant vector fields and smooth
functions on SU(2) to the constant function.

EXERCISE 13.
Check that this is indeed the case.
Hint: Show first that it is sufficient to establish that any polynomial p of the

a,b,c,d, ad—bc =1 for h = (ab
cd

Show then that suitable linear combinations of the R’, j = 1,2,3 with coefficients
in C*°(SU(2)) produce the derivatives d,,d,d. and convince yourself that a™p is a
polynomial in a, b, ¢ for sufficiently large N.

) € SU(2) can be mapped to the constant function.

Let us collect these results in the following theorem [43].

THEOREM 6.
The relations (69) define an irreducible representation of B on Hyip-

Thus, the representation space Hii, constructed satisfies all the requirements
that qualify it as a good kinematical starting point for solving the quantum con-
straints. Moreover, the measure p is spatially diffeomorphism invariant as we
will see shortly and together with the uniqueness result quoted at the beginning
of this section, this is the only representation with that property. There are,
however, doubts on physical grounds whether one should insist on a spatially
diffeomorphism invariant representation because the smooth and even analytic
structure of o which is encoded in the spatial diffeomorphism group should not
play a fundamental role at short scales if Planck scale physics is fundamentally
discrete. In fact, as we will see later, QGR predicts a discrete Planck scale struc-
ture and therefore the fact that we started with analytic data and ended up
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with discrete (discontinuous) spectra of operators looks awkward. Therefore, on
the one hand, we should keep in mind that other representations are possibly
better suited in the final picture; on the other hand, there is no logical contra-
diction within the present formulation and in fact in 2-+1 gravity one has a final
combinatorial description while one started with analytical structures as well.

2.2 Quantum Kinematics

In this section we discuss the complete solution of the Gauss and Vector con-
straint as well as the quantization of kinematical, geometrical operators that
measure the length, area and volume of coordinate curves, surfaces and regions
respectively. We call these results kinematical because the Gauss and Vector con-
straint do not generate dynamics, this is the role of the Hamiltonian constraint
which we will discuss in the third part. Moreover, the kinematical geometrical
operators do not commute with the Vector constraint or the Hamiltonian con-
straint and are therefore not Dirac observables. However, as we will show, one
can turn these operators easily into Dirac observables, at least with respect to
the Vector constraint, and the fact that the spectrum is discrete is robust under
those changes.

The Space of Solutions to the Gauss and Spatial Diffeomorphism Con-
straint. Recall the transformation behaviour of classical connections A € A
under SU(2) gauge transformations and spatial diffeomorphisms (40). These
equations trivially lift from A to A and we may construct corresponding opera-
tors as follows: Let G := Fun(X, SU(2)) be the set of local gauge transformations
without continuity requirement and consider the set Diff* (X)) of analytic diffeo-
morphisms. We are forced to consider analytic diffeomorphisms as otherwise we
would destroy the analyticity of the elements of I'. These two groups have a
natural semi-direct product structure that has its origin in the algebra (23) and
is given by

[G % Diff*(5)] x [G x Diff*(%)] — [G x Diff*(%)] (72)
[9.0) 19,1 =1l9(g' o™ "), 00¢]. (73)

EXERCISE 14.
Verify (72).
Hint: Define [g,id] - A := AY, [id, ¢] - A := A® and [g,¢] - A := [g,1d] - ([id, ¢] - A).

We now define representations

U: G — B(Hyin); g — U(g)
V : Diff* (%) = B(Huin); © — V(p) (74)

densely on f = pZ fy € Dxin by

[U(9)71(A) = f,({g(b(e)) Ale) g(f(€)) ' }eern})
V() 1(4) = f,({A@™ () }eerm }) - (75)



82 Thomas Thiemann

j_lm_1n_1 e 2

j_lm_1,n_1
e 1

e 2

e_3 w

Fig. 10. Action of Spatial Diffeomorphisms on SNW’s

Here B(.) denotes the bounded operators on a Hilbert space. This definition of

course comes precisely from the classical formula (40). The action of a diffeomor-

phism on a SNWF T is therefore simply by mapping the graph v(s) to o =1(s)

while the labels j., me, n. are carried from e to ¢ ~1(e) as depicted in Fig. 10.
Then the following theorem holds [43].

THEOREM 7.
The relations (75) define a unitary representation of the semi-direct product
kinematical group G x Diff*(X).

EXERCISE 15.

Prove theorem (7).

Hint: Check unitarity on the SNWF basis using the bi-invariance of the Haar measure.
That (75) holds can be traced back to exercise 14.

The unitarity of the kinematical gauge group implies invariance of the mea-
sure o and thus supplies additional motivation for the representation space
Hyin. Notice that the statement that (75) defines a representation in particular
means that the kinematical constraint algebra is free of anomalies. This should
be contrasted with string theory where the anomaly sits also in the spatial dif-
feomorphism group (e.g. Diff(S1) for the closed string) unless one chooses the
critical dimension D = 25(9) for the bosonic (supersymmetric) string.

Let us now solve the kinematical constraints. By definition, we are supposed
to find algebraic distributions ! € Dj;, which satisfy

WU(9)f) =1V (p)f) =1(f) Vg€, ¢ €DIft*(Y), f € Dyin.  (76)

Now it is not difficult to see that any element of Dy | can be conveniently written
in the form

1))=Y ¢ <T. >un, (77)

where ¢, are complex valued coefficients and the uncountably infinite sum ex-
tends over all possible SNW’s. The general solution to (76) is then easy to de-
scribe: Invariance under G means that for fixed  the coefficients ¢, j m,n have
to be chosen, as j, m,n vary, in such a way that at each vertex of v the resulting
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function is gauge invariant. That is, if ji, .., j, are the labels of edges incident
at v, then the c¢; have to arrange themselves to a projector on the trivial rep-
resentations contained in the tensor product j; ® .. ® j,. Such a projector is
also called intertwiner in the mathematical literature. For SU(2) this leads to
the theory of Clebsh-Gordon coefficients, 6j-symbols etc. As for Diff (X') we see
that c,(y),j,m,n must be independent of ¢, therefore c, j m n depends only on
the generalized knot class of v! We say generalized because, as we will see later
on, the physically relevant graphs are those with self-intersections while classical
knot theory deals only with smooth curves.

One may ask whether one should already define a physical inner product
with respect to the Gauss and spatial Diffeomorphism constraint and then solve
the Hamiltonian constraint in a second, separate step on that already partly
physical Hilbert space . While such a Hilbert space can indeed be constructed
[43] it is of no use for QGR because the Hamiltonian constraint cannot leave
that Hilbert space invariant as we see from the second equation in (14) and we
must construct the physical inner product from the full solution space to all
constraints. However, at least with respect to the kinematical constraints the
full quantization programme including the question of observables has already
been completed except for the analysis of the classical limit.

Kinematical Geometrical Operators. We will restrict ourselves to the de-
scription of the area operator the classical expression of which we already wrote
in (43) and (44).

In order to quantize Ar(S) one starts from (44) and decomposes the analyti-
cal, compactly supported and oriented surface S or, equivalently, its preimage D
under Xg into small pieces S;. Then the exact area functional is approximated

by the Riemann sum
Ar({S}) =8> \/E;(Sn)?. (78)
I

This function is easily quantized because E;(S;) = ihv! is a self-adjoint operator
so that the sum over j of its squares is positive semi-definite, hence its square
root_is well-defined. Let us denote the resulting, partition dependent operator
by Ar({S}). Now one can show that the (strong) limit as the partition is sent
to the continuum exists [44] and a partition independent operator A\r(S ) results
[44].

THEOREM 8. -
The area functional admits a well-defined quantization Ar(S) on Hyin with the
following properties:

i) A\r(S) is positive semidefinite, (essentially) self-adjoint with Cyl?(A) as do-
main of (essential) self-adjointness.

ii) The spectrum Spec(:&\r(S)) is pure point (discrete) with eigenvectors being
given by finite linear combinations of spin network functions.
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iii) The eigenvalues are given explicitly by

B — —
Nivgage =~ V20101 + 1) + 22072 + 1) = j12(ja2 +1)
J12 € {1 +J2, 1 +J2 — 1, [j1 — jal}, (79)
where j1, jo are spin quantum numbers and {3 = hk is the Planck area. The
spectrum has an area gap (smallest non-vanishing eigenvalue) given by

V3
2
€4.

/\O = ﬂ P (80)

iv) Spec(g\r(S’)) contains information about the topology of S, for instance it
matters whether 9S = () or not.

EXERCISE 16.

Verify that the area gap is indeed given by (80) and check that the distance between
subsequent eigenvalues rapidly decreases as ji,j2 — oco. Can one give an asymptotic
formula for N(A), the number of eigenvalues (discarding multiplicity) in the interval
[A—¢%, A+ (3]? Thus, a correspondence principle, important for the classical limit is
valid. If the spectrum would only consist of the main series A\; = %\/j(j + 1) which
one obtains for j1 = j2 = j, ji2 = 0 then such a correspondence principle would
certainly not hold which is, e.g., relevant for the black body spectrum of the Hawking
radiation.

Theorem 8 is an amazing result for several reasons:

A) First of all, the expression for Ar(S) depends non-polynomially, not even
analytically on the product E]a(x)Eé’(x), r € S. Now Ef(x) becomes an
operator valued distribution in the quantum theory and products of distri-
butions at the same point are usually badly divergent. However, Ar(S) is
perfectly well-defined! This is the first pay-off for sticking to a rigorous and
background independent formalism! L

B) Although S,~, X, .. are analytical, the spectrum Spec(Ar(S)) is discrete. In
other words, suppose we are measuring the area of a sheet of paper with a
spin-network state. As long as the sheet does not cut an edge of the graph, the
area eigenvalue is exactly zero no matter how “close” the edge and the sheet
are. We have put the word “close” in inverted commas because this word
has no meaning: Since there is no background metric, we do not know what
close means, only diffeomorphism invariant notions have a meaning such as
“the edge is cut” or “the edge is not cut”. However, once the edge is cut the
area eigenvalue jumps at least by the area gap. This strongly hints that the
microscopical geometry is really distributional (discontinuous) and that we
have a discrete Planck scale structure, the role of the atoms of geometry being
played by the one-dimensional (polymer-like) excitations labelled by SNW’s.
One may speculate that this discrete structure is fundamental and that the
analyticity assumptions that we began with should be unimportant, in the
final picture everything should be only combinatorial. The smooth geometry
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that we are familiar with at macroscopic scales is merely a result of coarse
graining, for instance in order that a SNWF labelled with spin j = 1/2 on
every edge assigns to our sheet of paper its area of about 100cm?, an order
of 10%® edges of the SNW have to cut the sheet!

C) Qualitatively similar results apply to the volume operator \751(R) [44,45] and
the length operator f&l(c) [46] whose classical expressions are given by

Vol(R / d*z+/det(q) and Len(c /\/q pdztdzb. (81)

D) These kinematical operators are certainly not Dirac observables because they
are not even spatially diffeomorphism invariant (but SU(2) invariant) since
the objects R, S,c are just coordinate submanifolds of Y. Thus, one may
wonder whether the properties of the spectrum just stated have any sig-
nificance at all. The answer is believed to be affirmative as the following
argument shows: For instance, instead of Vol(R) consider

Volga = / d3x+/det(q) 9(

[E“E’ + B°B® ]) : (82)
det(q)

where we have coupled a Maxwell field to GR with electromagnetic fields
E® E® and 6 is the step function. The physical meaning of (82) is that it
measures the volume of the region where the electromagnetic field energy
density is non-vanishing and it is easy to check that (82) is actually spatially
diffeomorphism invariant! Now in QGR the argument of the step function
can be given a meaning as an operator (valued distribution) as we will see
in the next section and the theta function of an operator can be defined
through the spectral theorem. Since the spectrum of the f-function consists
only of {0,1}, the spectrum of (82) should actually coincide with that of
\//EI(R) [47]. A similar argument should also be valid with respect to Dirac
observables commuting with the Hamiltonian constraint.

E) The existence of the area gap is also at the heart of the finiteness of the
Bekenstein—-Hawking entropy of black holes as we will see.

3 Selected Areas of Current Research

3.1 Quantum Dynamics

The Hamiltonian constraint C of QGR is, arguably, the holy grail of this approach
to quantum gravity, therefore we will devote a substantial amount of space to
this subject. In fact, unless one can quantize the Hamiltonian constraint, literally
no further progress can be made so that it is important to know what its status
is. From the explicit, non-polynomial expression (21) it is clear that a well-
defined operator version of this object will be extremely hard to obtain and in
fact this had been the major obstacle in the whole approach until the mid 90’s.
In particular, within the original ADM formulation only formal results were
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available. However, since with the new connection formulation also the non-
polynomial kinematical operators of the previous section could be constructed,
chances might be better.
At this point we include a brief account of the historical development of the

subject in order to avoid confusion as one looks at older papers:
Originally one chose the Immirzi parameter as 8 = +i and considered C =

det(q) rather than C' because then C is actually a simple polynomial of only
fourth order (the “More” term disappears). Polynomiality was considered as
mandatory. There were three problems with this idea:

1) The non-polynomiality was shifted from C into the reality conditions A+A =
2I'(E) where the spin connection I" is now a highly non-polynomial function
of E. The operator version of this equation should be very hard to implement.

2) If A is complex, then we are dealing with an SL(2,C) bundle rather than an
SU(2) bundle. Since SL(2,C) is not compact, the mathematical apparatus
of Sect. 2 is blown away.

3) Even formal trials to quantize C resulted in either divergent, or background
dependent operators.

In [27] it was suggested to keep § real which solves problems 1) and 2), however,
then C' becomes even more complicated and anyway problem 3) is not cured.
Finally in [48] it was shown that non-polynomiality is not necessarily an obstacle,
even better, it is actually required in order to arrive at a well-defined operator:
It was established that the reason for problem 3) is that C' is a scalar density
of weight two while it was shown that only density weight one scalars have a
chance to be quantized rigorously and background independently. Therefore the
currently accepted point of view is that § should be real and that one uses the
original unrescaled C' rather than C.

A Possible New Mechanism for Avoiding UV Singularities in Back-
ground Independent Quantum Field Theories. Before we go into more
details concerning [48], let us give a heuristic explanation just why it happens
that QGR may cure UV problems of QFT, making the connection with the issue
of the density weight just mentioned. Consider classical Einstein—-Maxwell the-
ory on M = R X ¢ in its canonical formulation, then the Hamiltonian constraint
gains an extra matter piece given for unit lapse N =1 by

Density weight -1
[E°E® + B*B"] . (83)

Hpm = / %
Densfny weight 42

EXERCISE 17.
Starting from the Lagrangean

L= 5/ [Aet(9)| Fuw o (84)
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where F' = 2dA is the spacetime curvature of the Maxwell connection A with unit
em™! and e is the electric charge in units such that o = he? is the dimensionless fine-
structure constant, perform the Legendre transform. With the electric field E* being
the momentum conjugate to the spatial piece A, of A verify that the “Hamiltonian” is
given by —A¢G+ NV, 4+ NC’ where G = 9, E® is the Gauss law, V, = F, E® and C" is
the integrand of (83) with B® = ¢**“F}. /2 the magnetic field. Check that G’ generates
U(1) gauge transformations while V, generates spatial diffeomorphisms where A, E*
transform as a one-form and a vector density of weight one respectively. Confirm that
also B® is a vector density of weight one.

As the exercise reveals, the geometry factor in (83) is a symmetric covariant
tensor of rank two of density weight —1 due to the factor \/det(q) in the denom-
inator while the matter part is a symmetric contravariant tensor of rank two of
density weight +2. That the resulting scalar has net density weight is +1 is no
coincidence but a direct consequence of the diffeomorphism invariance or back-
ground independence of any matter theory coupled to gravity: only the integral
over ¢ of a scalar density of weight +1 is spatially diffeomorphism invariant.
We can now quantize (83) in two ways:

1) In the first version we notice that if ¢ = n is the Minkowski metric, that
i8S, qap = dqp then (83) reduces to the ordinary Maxwell Hamiltonian on
Minkowski space. Thus we apply the formalism of QFT on a background
spacetime, in this case Minkowski space, because we have fixed g, to the
non-dynamical C-number field §,;, which is not quantized at all.

2) In the second version we keep ¢, dynamical and quantize it as well. Thus
we apply QGR, a background independent quantization. Now g, becomes a
field operator ¢,p and the statement that the metric is flat can at most have a
semiclassical meaning, that is, the expectation value of g, in a gravitational
state is close to dg4p.

Let us now sketch how these two different quantizations are performed and
exactly pin-point how it happens that the first quantization is divergent while
the second is finite.

1) QFT on a background spacetime
As we have said, the metric g, = 045 18 now no longer a dynamical entity
but just becomes a complex number. What we get is the usual Maxwell

Hamiltonian operator

= & / P S |EOE + BB, (85)

262 b
Notice the crucial difference with (83): The net density weight of the operator
valued distribution in the integral is now +2 rather than +1! By switching off
the metric as a dynamical field we have done a severe crime to the operator,
because the net density weight +2 will be remembered by the operator in
any faithful representation of the canonical commutation relations and leads
to the following problem: The only coordinate density of weight one that one
can construct is a d-distribution (and derivatives thereof), thus for instance
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the operator E’“(m) is usually represented as a functional derivative which
one can rewrite formally as

ad/0Au(x) =y 8(x,y)0/0Au(y) - (86)

yeX

The right hand side of (86) is a sum over terms each of which consists
of a well-defined operator Y, (y) = 0/0A,(y) and a distributional prefac-
tor 0(z,y). It is for this reason that expressions of the form E%(z)E®(x)
cannot be well-defined since we get products of distributions supported at
the same point x and which result in divergent expressions of the form
5,0 (2, y)5(@, 2)Ya(y)Yo(2) = X2, 6(2,9)?Ya(y)Yi(y). The density weight
two is correctly encoded in the term &(z,y)? = §(0,0)d(z,y) which, how-
ever, is meaningless.

These heuristic arguments can of course be made precise: (85) is quantized
on the Fock space Hpocr and one obtains

A= c + h/ /=206 1)y - (87)
P
UV Singularity

Here the colons stand for normal ordering. The UV (or short distance) sin-
gularity is explicitly identified as the coincidence limit x = y of the integrand
in the normal ordering correction. Therefore H)yy is ill-defined on H poe. No-
tice that even if the integrand would be finite, the integral suffers from an
IR (or large volume) singularity if o is not compact which comes from the
fact that we are dealing with an infinite number of degrees of freedom. This
singularity is, in contrast to the UV singularity, physical since it captures
the vacuum energy of the universe which is of course infinite if the volume
is.

QFT coupled to QGR

This time we keep the metric as a dynamical variable and quantize it. Thus
instead of (85) we obtain something of the form

—_—
Gab

3 [E°E® + B°B]. (88)

N 1
Hepy=— | &Pz ——
PN 262 det(q)

This time the net density weight is still +1. Now while the expression (86)
is still valid and implies that there will be a product of J-distributions in
the numerator coming from the matter operator valued distributions, there
is also a d-distribution in the denominator due to the factor \/det(q) which
comes about as follows: As we already mentioned in Sect. 2.2 the volume
functional in (81) admits a well-defined quantization of the form

VOl(R)T, =6 Y VT, (89)
veV(v(s))NR
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where V, is a well-defined, dimensionless operator (not an operator valued
distribution!) built from the vector fields v%. Since Vol(R) is the integral
over R of y/det(q) we conclude that \/det(q) admits a quantization as an
operator valued distribution, namely
det(q)(x)Ts =63 Y 6z, 0)V, T (90)
veV(y(s)

Now certainly (88) cannot be quantized on the Hilbert space Hiin ® Hrock
because Hpocr, depends on a background metric (for instance through the
Laplacian A) which is not available to us. However, we may construct a
background independent Hilbert space Hj,, for Maxwell theory which is
completely identical to our Hyin, just that SU(2) is replaced by U(1) [48].
In Hj,, the role of spin network states is played by charge network (CNW)
states, that is, edges e are labelled by integers n. (irreducibles of U(1). Let
us denote CNW’s by ¢ = (v,n = {nc}eccp(y)) and CNWF’s by T/. Then a
basis for the Einstein-Maxwell theory kinematical Hilbert space Hyin, @ Hj;,
is given by the states Ts ® T.

Now something very beautiful happens, which is not put in by hand but
rather is a derived result: A priori the states T, 7. may live on different
graphs, however, unless the graphs are identical, the operator automatically
(88) annihilates Ty @ T/ [49]. This is the mathematical manifestation of the
following deep physical statement: Matter can only exist where geometry is
excited. Indeed, if we have a gravitational state which has no excitations in
a coordinate region R then the volume of that region as measured by the
volume operator is identically zero. However, if a coordinate region has zero
volume, then it is physically simply not there, it is empty space. Summarizing,
the operator (88) is non-trivial only if v(s) = v(c).

With this being understood, let us then sketch the action of (88) on our
basis. One finds heuristically

HpuTo @ T, =mp Y > X (91)
veEV () e,e’ €EE(y),eNe’=v

></ dsm{di’e/ ! TS} ® 5(:10,1))5(y,v)YeYe/Té]z:y],
b

V, O(z,v)
Y
—

Cancellation

where mp = /hi/k is the Planck mass. Here g ., and Y¢ are well-defined,
dimensionless operators (not distribution valued!) on Hyi, and Hj,,, respec-
tively built from the right invariant vector fields RZ, R, that enter the defini-
tion of the flux operators as in (49) and its analog for U(1). The product of
d-distributions in the numerator of (91) has its origin again in the fact that
the matter operator has density weight +2 certainly also in this representa-

tion and therefore has to be there, so nothing is swept under the rug! The
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d-distribution in the denominator comes from (90) and correctly accounts
for the fact that the geometry operator has density weight —1. Again we
have a coincidence limit £ = y which comes from a point splitting regular-
ization and which in the background dependent quantization gave rise to the
UV singularity. Now we see what happens: One of the §-distributions in the
numerator gets precisely cancelled by the one in the denominator leaving us
with only one J-distribution correctly accounting for the fact that the net
density weight is +1. The integrand is then well-defined and the integral can
be performed resulting in the finite expression

ApuT, 0T, = > 3 y [qv Ts] DY T oy, (92)

veV (y) e,e’ €E(vy),eNe’=v v

Notice that finite here means non-perturbatively finite, that is, not only fi-
nite order by order in perturbation theory (notice that in coupling gravity
we have a highly interacting theory in front of us). Thus, comparing our
non-perturbative result to perturbation theory the result obtained is com-
parable to showing that the perturbation series converges! Notice also that
for non-compact o the expression (92) possibly has the physically correct IR
divergence coming from a sum over an infinite number of vertices.

EXERCISE 18.
Recall the Fock space quantization of the Maxwell field and verify (87).

This ends our heuristic discussion about the origin of UV finiteness in QGR.
The crucial point is obviously the density weight of the operator in question
which should be precisely 41 in order to arrive at a well-defined, background
independent result: Higher density weight obviously leads to more and more
divergent expressions, lower density weight ends in zero operators.

Sketch of a Possible Quantization of the Hamiltonian Constraint. We
now understand intuitively why the rescaled Hamiltonian constraint C had no
chance to be well-defined in the quantum theory: It is similar to (87) due to its
density weight +2. The same factor 1/4/det(q) that was responsible for making
(88) finite also makes the original, non-polynomial, unrescaled Hamiltonian con-
straint C' = C'//det(q) finite. We will now proceed to some details how this is
done, avoiding intermediate divergent expressions such as in (91).

The essential steps can already be explained for the first term in (21) so let
us drop the “More” term and consider only the integrated first term

Cg(N) = l/ d3xNM. (93)
fJs | det(E)]

Let us introduce a map

R: ¥ —0O(o); x— R, (94)
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where O(X') denotes the set of open, compactly supported, connected and simply
connected subsets of X' and R, € O(X) is constrained by the requirement that
x € R,. We define the volumes of the R, by

V(@)= Vol(R,) = [ dyy/[deE)). (95)

x

Then, up to a numerical prefactor we may write (93) in the language of differ-
ential forms and in terms of a Poisson bracket as

C(N) = % /2 NTH(F A {A, V). (96)

EXERCISE 19.
Verify that (95) is really the volume of R, and (96).

The reasoning behind (96) was to move the factor 1/1/det(g)(z) from the de-
nominator into the numerator by using a Poisson bracket. This will avoid the
0-distribution in the denominator as in (91) and has the additional advantage
that y/det(q) now appears smeared over R, so that one obtains an operator, not
a distribution. Thus, the idea is now to replace the function V(z) by the well-
defined operator Vol(R,) and the Poisson bracket by a commutator divided by
ih. The only thing that prevents us from doing this is that the operators A7, F’,
do not exist on Hyi,. However, they can be regularized in terms of holonomies
as follows:
Given tangent vectors u,v € T, (o) we define one parameter homotopies of paths
and loops of triangle topology
€ Peas (97)

respectively with b(p¢ ) = b(agy) = z and (B¢, )e = (&%)t = €u, (G5 )z- =
—ev (left and right derivatives at z). Then for smooth connections A € A the
Ambrose—Singer theorem tells us that

li ]'Au —u%A li 1A uv 71ab

lim [A(p) 1] = w4 (r), T S A) 1] = St Fafe).  (99)
EXERCISE 20.
Verify (98) by elementary means, using directly the differential equation (38).
Hint:
For sufficiently small € we have up to €2 corrections De . (t) = x + etu and

tu s te [071}
als®)=z+eu/3+(t—Dw—-u) , te][l2]
(3=t , te[2,3].

Thus, given a triangulation 7. of o, that is, a decomposition of ¢ into tetrahedra
A with base points v(A), edges pr(4), I =1,2,3 of A of the type p, starting
at v and triangular loops ayj(A) = pr(A) o ars(A)ps(A)~" of the type o
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where the arcs arj(A) comprise the remaining three edges of A, it is easy to
show, using (98), that up to a numerical factor

Cp(N) = % Y N((2) ) e FTr(A(ar (A) Ak (A){Alpx (2)) 71 V ()}

A€T. I1JK
(99)

tends to Cg(N) as € — 0 (in this limit the triangulation gets finer and finer).

EXERCISE 21.
Verify this statement.

The expression (99) can now be readily quantized on Hy;, because holonomies
and volume functionals are well-defined operators. However, we must remove the
regulator € in order to arrive at a quantization of (96). Now the regulator can
be removed in many inequivalent ways because there is no unique way to refine
a triangulation. Moreover, we must specify in which operator topology C (N)
converges. The discussion of these issues is very complicated and the interested
reader is referred to [48] for the detailed arguments that lead to the following
solution:

i) Triangulation
First of all we define the operator explicitly on the SNW basis T. In order
for the refinement limit to be non-trivial, it turns out that the triangulation
must be refined in such a way that v(s) C 7. for sufficiently small e. This
happens essentially due to the volume operator which has non-trivial action
only at vertices of graphs. Thus the refinement must be chosen depending on
s. This is justified because classically all refinements lead to the same limit.
One might worry that this does not lead to a linear operator, however, this
is not the case because it is defined on a basis.

ii) Operator Topology
The limit € — 0 exists in the following sense:
Let Dfg C Dy, be the space of solutions of the diffeomorphism constraint.
We say that a family of operators O. converges to an operator O on Hyin in
the uniform-weak-Diff*-topology provided that for each § > 0 and for each
1 € Diig, f € Duin there exists €(d) > 0 independent of I, f such that

([0 — O)f)] < 6 Ve < €(6). (100)

This topology is of course motivated by physical considerations: Since the
operator is unbounded, the uniform (i.e. operator norm) topology is too
strong. The strong or weak topologies (pointwise convergence in Hilbert
space norm or as matrix elements) give a trivial (zero) limit (exercise!).
Thus one is naturally led to * topologies. The maximal dual space on which
to build a topology would be Dj;, but one can check that the limit does
not exist even pointwise in Dy, . Thus one is looking for suitable subspaces
thereof. The natural, physically motivated choice is, of course, the space D,
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which is singled out by the spatial diffeomorphism constraint. The reason
for why have required uniform convergence in (100) is that this excludes the
existence of the limit for larger spaces Dfy¢ C D} C Dy,

The end result is

ChN)y=me 35 N@ 3 %
VeV (7(s)) e,e’ e € B(v(s))
ene Nne” ={v}

X {Tr([A(a'y(S),v,E,e’) - (A(O"V(S),U,E,e/))_1]A(p'y(s),v,e”)[A(p'y(s),v.,e”)_lv VvD
+cyclic permutation in{e,e’,e”}} Ts. (101)

The meaning of the loops ay .. and paths py,, o that appear in this sum over
vertices and triples of edges incident at them is best explained in the follow-
ing Fig. 11. Their precise specification makes use of the axiom of choice and is
diffeomorphism covariant, that is, for ¢ € Diff*(X), e.g. the loops @ v and
Qp(),0(0),0(e),p(e) are analytically diffeomorphic. Moreover, the arcs a, y e, de-
fined by

—1
A~ ye,e’ = Pvy,v,e © Qypee’ © pmv’e/ (102)

are such that also YU ay y,e.er and ©(77) U Gy (y),0(0),0(e),0(er) are analytically dif-
feomorphic. The adjoint in (101) is due to the fact that Cg(N) is classically

Fig. 11. Meaning of the loop, path and arc assignment of the Hamiltonian constraint.
Notice how a tetrahedron emerges from those objects, making the link with the trian-
gulation. The broken lines indicate possible other edges or continuations thereof
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real-valued, so we are quantizing C'y(N) as well. The operator (101) is not sym-
metric, however, its adjoint is densely defined on Dy;, and it is therefore closable.
Usually one requires real valued functions to become self-adjoint operators be-
cause then by the spectral theorem the spectrum (possible measurement values)
is a subset of the real line. However, this argument is void when we are only
interested in the kernel of the operator (“zero eigenvalue”).

EXERCISE 22.

Verify that C(N) is not symmetric but it is, together with Cp(N), densely defined
on Dyin. Show that if real valued constraints C; form a Poisson algebra {C;,C;} =
fr5 ¥ Cx with non-trivial, real valued structure functions such that { fr; ¥, Ck}icp=0}
# 0, then Cr, fu K must not be both symmetric in order for the quantum algebra to
be free of anomalies. Conclude that the failure of (101) to be symmetric is likely to be
required for reasons of consistency.

The fact the 100p vy 4 .’ is DOt shrunk to v as one would expect is of course due
to our definition of convergence, in fact, an arbitrary loop assignment (v, v, e, ')
> Qy,u,e,er that has the same diffeomorphism invariant characteristics is allowed,
again because in a diffeomorphism invariant theory there is no notion of “close-
ness” of oy 4.’ to v. Notice that the operator C’E(N) is defined on Hyin using
the axiom of choice and not on diffeomorphism invariant states as it is sometimes
misleadingly stated in the literature [50]. In fact, it cannot be because the dual
operator C,(N) defined by

[Co(N(f) = UCL(N)f) (103)

for all f € Dyin, | € Dy;,, does not preserve Dfy. as is expected from the classical
Poisson algebra {V,C} o« C # V. If one wants to take this dual point of view
then one is forced to introduce a larger space D} which is preserved but which
does not solve the diffeomorphism constraint and is therefore unphysical. This
has unnecessarily given rise to a large amount of confusion in the literature and
should be abandoned.

As we have said, the loop assignment is to a very large extent arbitrary at
the level of Hyi, and represents a serious quantization ambiguity, it cannot even
be specified precisely because we are using the axiom of choice. However, at the
level of Hpnys this ambiguity evaporates to a large extent because all choices
that are related by a diffeomorphism result in the same solution space to all
constraints defined by elements | € Djy;z which satisfy in addition

[CH(N)(f) = UCL(N)f) =0 Y N €C5°(X), f € D, (104)

where C§°(X) denotes the smooth functions of compact support. Thus the so-
lution space Df, o will depend only on the spatially diffeomorphism invariant
characteristics of the loop assignment which can be specified precisely [48], it
essentially characterizes the amount by which the arcs knot the original edges
of the graph. Besides this remaining ambiguity there are also factor ordering

ambiguities but no singularities some of which are discussed in [51].
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Let us list without proof some of the properties of this operator:

Matter Coupling

Similar Techniques can be applied to the case of (possibly supersymmetric)
matter coupled to GR. [48].

Anomaly-Freeness

The constraint algebra of the Hamiltonian constraint with the spatial dif-
feomorphism constraint and among each other is mathematically consis-
tent. From the classical constraint algebra {V,C} «x C we expect that
V(@)C’%(N)V(ga)_l = Cp(p*N) for all diffeomorphisms ¢. However, this
is just the statement of the loop assignment being diffeomorphism covari-
ant which can be achieved by making use of the axiom of choice. Next, from
{C,C} o V we expect that the dual of [CL(N), CL(N")] = [C&(N'), Ce(N)]t
annihilates the elements of Dj4. This can be explicitly verified [48]. We
stress that [CA’}LE(N),C'IE(N')] is mot zero, the algebra of Hamiltonian con-
straints is not Abelean as it is sometimes misleadingly stated in the literature.
The commutator is in fact explicitly proportional to a diffeomorphism.
Physical States

There is a rich space of rigorous solutions to (104) and a precise algorithm
for their construction has been developed [48].

Intuitive Picture

The Hamiltonian constraint acts by annihilating and creating spin degrees
of freedom and therefore the dynamical theory obtained could be called
“Quantum Spin Dynamics (QSD)” in analogy to “Quantum Chromody-
namics (QCD)” in which the Hamiltonian acts by creating and annihilating
colour degrees of freedom. In fact we could draw a crude analogy to Fock
space terminology as follows: The (perturbative) excitations of QCD carry a
continuous label, the mode number k € R? and a discrete label, the occupa-
tion number n € N (and others). In QSD the continuous labels are the edges
e and the discrete ones are spins j (and others). So we have something like
a non-linear Fock representation in front of us.

Next, when solving the Hamiltonian constraint, that is, when integrating
the Quantum FEinstein FEquations, one realizes that one is not dealing with
a (functional) partial differential equation but rather with a (functional)
partial difference equation. Therefore, when understanding coordinate time
as measured how for instance volumes change, we conclude that also time
evolution is necessarily discrete. Such discrete time evolution steps driven
by the Hamiltonian constraint assemble themselves into what nowadays is
known as a spin foam. A spin foam is a four dimensional complex of two
dimensional surfaces where each surface is to be thought of as the world
sheet of an edge of a SNW and it carries the spin that the edge was carrying
before it was evolved”.

Another way of saying this is that a spin foam is a complex of two-surfaces
labelled by spins and when cutting a spin foam with a spatial three-surface X

" Thus, a spin foam model can be thought of as a background independent string
theory!
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L=/

Fig.12. Emergence of a spin foam from a SNW by the action of the Hamiltonian
constraint

one obtains a SNW. If one uses two such surfaces Xy, Xy, where Tp = lp/c
is the Planck time then one rediscovers the discrete time evolution of the
Hamiltonian constraint. These words are summarized in Fig. 12.

While these facts constitute a promising hint that the Hilbert space Hyin
could in fact support the quantum dynamics of GR, there are well-taken con-
cerns about the physical correctness of the operator C'] 5 (N):

The problem is that one would like to see more than that the commutator of
two dual Hamiltonian constraints annihilates diffeomorphism invariant states,
one would like to see something of the kind

—

(CLN), LV = it / BrINN', — N o N'gaVi]. (105)

The reason for this is that then one would be sure that CA'TE(N ) generates the
correct quantum evolution. While this requirement is not necessary, it is certainly
sufficient and would be reassuring®. There are two obstacles that prevent us from
rewriting the left hand side of (105) in terms of the right hand side.

1) The one parameter groups s — V(p%) of unitarities where % are the one
parameter groups of diffeomorphisms defined by the integral curves of a
vector field u are not weakly continuous, therefore a self-adjoint generator
V(u) that we would like to see on the right hand side of (105) simply does
not exist.

8 Example: Suppose that C, are the angular momentum components for a particle in in
R3 with classical constraint algebra {C,, Cb} = €abcCe. Introduce polar coordinates
and define the non-self adjoint operators Cl = 4hd/00, Cg = 1hd /09, C3 = 0.
Then the quantum constraint algebra is Abelean and does not at all resemble the
classical one, however, the physical states are certainly the correct ones, functions
that depend only on the radial coordinate.
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EXERCISE 23.

Recall Stone’s theorem about the existence of the self-adjoint generators of weakly con-
tinuous one-parameter unitary groups and verify that V(¢y) is not weakly continuous
on Hkin~

2) Ome can quantize the right hand side of (105) by independent means and
it does annihilate Df.; [48], however, that operator does not resemble the
left hand side in any obvious way. The reason for this is that even classi-
cally it takes a A4 page of calculation in order to rewrite the Poisson bracket
{Cg(N),Cg(N")} as in (105) with V, given by (21). The manipulations that
must be performed in order to massage the Poisson bracket into the desired
form involve a) integrations by part, b) writing Fyp in terms of A,, ¢) deriva-
tives of y/det(q), d) multiplying fractions by functions in both numerator
and denominator, e) symmetry arguments in order to see that certain terms
cancel etc. (exercise!). These steps are obviously difficult to perform with
operators.

In summary, there is no mathematical inconsistency, however, there are
doubts about the physical correctness of the Hamiltonian constraint operator
presently proposed although no proof exists so far that it is necessarily wrong.
In order to make progress on this issue, it seems that we need to develop first
a semiclassical calculus for the theory, more precisely, we need coherent states
so that expectation values of operators and their commutators can be replaced,
up to A corrections, by their classical values and Poisson brackets respectively
for which then the manipulations listed in 2) above can be carried out. If that is
possible, and the outcome of these calculations is the expected one, possibly after
changing the operator by making use of the available quantization ambiguities,
then one would be able to claim that one has indeed constructed a quantum
theory of GR with the correct classical limit. Only then can one proceed to solve
the theory, that is, to construct solutions, the physical inner product and the
Dirac observables. The development of a semiclassical calculus is therefore one
of the “hot” research topics at the moment.

Another way to get confidence in the quantization method applied to the
Hamiltonian constraint is to study model systems for which the answer is known.
This has been done for 2+1 gravity [48] and for quantum cosmology to which
we turn in the next section.

3.2 Loop Quantum Cosmology

A New Approach To Quantum Cosmology. The traditional approach to
quantum cosmology consists in a so-called mini-superspace quantization, that
is, one imposes certain spacetime Killing symmetries on the metric, plugs the
symmetric metric into the Einstein Hilbert action and obtains an effective action
which depends only on a finite number of degrees of freedom. Then one canon-
ically quantizes this action. Thus one symmetrizes before quantization. These
models are of constant interest and have natural connections to inflation. See
e.g. [52] for recent reviews.
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What is not perfect about these models is that 1) not only do they switch
off all but an infinite number of degrees of freedom, but 2) also the quantization
method applied to the reduced model usually is quite independent from that
applied to the full theory. A fundamental approach to quantum cosmology will be
within the full theory and presumably involves the construction of semiclassical
physical states whose probability amplitude is concentrated on, say a Friedmann—
Robertson-Walker (FRW) universe. This would cure both drawbacks 1) and
2). At the moment we cannot really carry out such a programme since the
construction of the full theory is not yet complete. However, one can take a
more modest, hybrid approach, where while dealing only with a finite number
of degrees of freedom one takes over all the quantization machinery from the
full theory! Roughly speaking, one works on the space Hyi, of the full theory
but considers only states therein which satisfy the Killing symmetry. Hence one
symmetrizes after quantization which amounts to considering only a finite subset
of holonomies and fluxes. This has the advantage of leading to a solvable model
while preserving pivotal structures of the full theory, e.g. the volume operator
applied to symmetric states will still have a discrete spectrum as in the full
theory while in the traditional approaches it is continuous. Such a programme
has been carried out in great detail by Bojowald in a remarkable series of papers
[53] and his findings are indeed spectacular, should they extend to the full theory:
It turns out that the details of the quantum theory are drastically different from
the traditional minisuperspace approach. In what follows we will briefly describe
some of these results, skipping many of the technical details.

Spectacular Results. Consider the FRW line element (in suitable coordinates)
2 2 2 r? 2 7092 2 2.0 7.a7.b

ds* = —dt* + R(t) [m + rodf2;5] = —dt* + R(t)"q,,dzdx’. (106)
The universe is closed/flat/open for £ = 1/0/ — 1. The only dynamical degree
of freedom left is the so-called scale factor R(t) which describes the size of the
universe and its conjugate momentum. The classical big bang singularity cor-
responds to the fact that the Einstein equations predict that lim; o R(t) = 0
at which the metric (106) becomes singular and the inverse scale factor 1/R(t)
blows up (the curvature will be oc 1/R(¢)? so this singularity is a true curvature
singularity).

We are interested in whether the curvature singularity 1/R — oo exists also
in the quantum theory. To study this we notice that for (85) det(q) = R det(q°).
Hence, up to a numerical factor this question is equivalent to the question
whether the operator corresponding to 1/+/det(q), when applied to symmet-
ric states, is singular or not. However, we saw in the previous section that one
can trade a negative power of det(q) by a Poisson bracket with the volume
operator. In [53] precisely this, for the Hamiltonian constraint, essential quan-
tization technique is applied which is why this model tests some aspects of the
quantization of the Hamiltonian constraint. Now it turns out that this opera-

tor, applied to symmetric states, leads to an operator % which is diagonalized
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Fig. 13. Spectrum of the inverse scale factor

by (symmetric) SNWEF’s and the spectrum is bounded! In Fig. 13 we plot the
qualitative behaviour of the eigenvalues /p); as a function of j where j is the
spin label of a gauge invariant SNWF with a graph consisting of one loop only
(that only such states are left follows from a systematic analysis which defines
what a symmetric SNWF is). One can also quantize the operator R and one sees
that its eigenvalues are essentially given by j¢p up to a numerical factor. Thus
the classical singularity corresponds to j = 0 and one expects the points A;¢,
at the values 1/j on the curve ¢p/R. Evidently the spectrum is discrete (pure
point) and bounded, at the classical singularity it is finite. In other words, the
quantum universe never decreases to zero size. For larger j, in fact already for
R of the order of ten Planck lengths and above, the spectrum follows the classi-
cal curve rather closely hinting at a well-behaved classical limit (correspondence
principle).

Even more is true: One can in fact quantize the Hamiltonian constraint by
the methods of the previous section and solve it exactly. One obtains an eighth
order difference equation (in j). The solution therefore depends non-trivially
on the initial condition. What is surprising, however, is the fact that only one
set of initial conditions leads to the correct classical limit, thus in loop quan-
tum cosmology initial conditions are derived rather than guessed. One can even
propagate the quantum Einstein equations through the classical singularity and
arrives at the picture of a bouncing universe.

Finally one may wonder whether these results are qualitatively affected by
the operator ordering ambiguities of the Hamiltonian constraint. First of all one
finds that these results hold only if one orders the loop in (101) to the left of the
volume operator as written there. However, one is not forced to work with the
holonomy around that loop in the fundamental representation of SU(2), there is
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some flexibility [51] and one can choose a different one, say jo. It turns out that
the value jy influences the onset of classical behaviour, that is, the higher jy the
higher the value j(jo) from which on the spectrum in Fig. 13 lies on the curve
1/j. Now this is important when one couples, say scalar matter because the

operator % enters the matter part of the Hamiltonian constraint and modifies
the resulting effective equation for R(t) in the very early phase of the universe
and leads to a quantum gravity driven inflationary period whose duration gets
larger with larger jo!

Thus, loop quantum cosmology not only confirms aspects of the quantiza-
tion of the Hamiltonian constraint but also predicts astonishing deviations from

standard quantum cosmology which one should rederive in the full theory.

3.3 Path Integral Formulation: Spin Foam Models

Spin Foams from the Canonical Theory. Spin Foam models are the fusion
of ideas from topological quantum field theories and loop quantum gravity, see
e.g. [54] for a review, especially the latest, most updated one by Perez. The idea
that connects these theories is actually quite simple to explain at an heuristic
level:

If we forget about 1) all functional analytic details, 2) the fact that the
operator valued distributions corresponding to the Hamiltonian constraint C (2)
do not mutually commute for different z € ¢ and 3) that the Hamiltonian
constraint operators C (N) are certainly not self-adjoint, at least as presently
formulated, then we can formally write down the complete space of solutions to
the Hamiltonian constraint as a so-called “rigging map” (see e.g. [1])

7 Diin = Dipyes [ 0[C] = [[] 8(C(2)) f] (107)

zeX

(where 77 = c.c - 1y is the complex conjugate of the actual anti-linear rigging
map). Here the J-distribution of an operator is defined via the spectral theo-
rem (assuming the operator to be self-adjoint). Notice that we do not need to
order the points x € o as we assumed the é(x) to be mutually commuting for
the moment and only under this assumption it is true that, at least formally
Alf](C(N)f") = 0 (exercise)’. Now we use the formula §(z) = [, 2e? to write

the functional d-distribution §[C] as a path integral
3¢ = / [DN]eiCO) (108)
where we have neglected an infinite constant as usual in this formal business.

Here N is the space of lapse functions at a fixed time. Let us introduce also the

9 At an even more formal level 7j[f] is also a solution in the non-commuting case if, as is
the case with the currently proposed C, the algebra with the spatial diffeomorphism
constraint closes
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space of lapses with arbitrary time dependence N, 4, in ¢ € [t1,t2]. Then, up to
an infinite constant one can verify that

5[C) = / [DN]ei il dt [z PoN@ @) (109)
N2

t1

The rigging map machinery then tells us that the scalar product on the image
of the rigging map is simply given by

<A A) Zpnysi=< £,71(f') >kin= /N LIDN] < fe g5

(110)

This formula looks like a propagator formula, that is, like a transition amplitude
between an initial state f’ on X, and a final state f on X, after a multi-fingered
time evolution generated by C (Ny). In fact, if we use the Taylor expansion of
the exponential function and somehow regularize the path integral then the
expansion coefficients < Tj, C’(Nt)”T s’ >in can be interpreted as probability
amplitude of the evolution of the SNW state T, to reach the SNW state T} after
n time steps (recall Fig. 12).

Now by the usual formal manipulations that allow us to express a unitary
operator e'(2=1)H a5 g path integral over the classical pase space M (the rig-
orous version of which is the Feynman-Kac formula, e.g. [56]) one can rewrite
(110) as

<) () > phyem /[DN DN DADADE] < f,é5f >, (111)

where S is the Einstein-Hilbert action written in canonical form in terms of the
variables A, F, that is

S = / dt/ d*z{AIE? — [-AGj + NV, + NC|} (112)
R )

and we have simultaneously included also projections on the space of solutions
to the Gauss and vector constraint. Now the action (112) is the 34 1 split of the
following covariant action

S = / (9205 N ED — 31K T e A ep ) (113)
M

discovered in [57] where §3 is the Immirzi parameter. Here £2;; is the (antisym-
metric) curvature two-form of an (antisymmetric) SL(2,C) connection one-form
wyy with Lorentz indices I, J, K, .. = 0,1,2,3, n is the Minkowski metric and e’
is the co-tetrad one-form. The first term in (113) is called the Palatini action
while the second term is topological (a total differential modulo the equations
of motion). The relation between the four-dimensional fields w[;] , eﬁ (40 compo-
nents) and the three-dimensional fields A7, E¢, A7, N, N* (25 components) can
only be established if certain so-called second class constraints [20] are solved.
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Spin Foams and BF-Theory. Thus, it is formally possible to write the inner
product between physical states as a covariant path integral for the classical
canonical action and using only the kinematical inner product, thus providing
a bridge between the covariant and canonical formalism. However, this bridge
is far from being rigorously established as we had to perform many formal,
unjustified manipulations. Now rather than justifying the steps that lead from
C to (111) one can turn the logic upside down and start from a manifestly
covariant formulation and derive the canonical formulation. This is the attitude
taken by people working actively on spin foam models. Thus, let us forget about
the topological term in (113) and consider only the Palatini term. Then the
Palatini action has precisely the form of a BF-action

Spr :/ Q15 NB" (114)
M

just that the (antisymmetric) two-form field B” is not arbitrary (it would have
36 independent components), it has to come from a tetrad with only 16 inde-
pendent components, that is, it has to be of the form e//5ley Aey,.

EXERCISE 24.
Show that the condition that B comes from a tetrad is almost'® equivalent to the
stmplicity constraint

EIJKLB;{iBgrL = C€uvpo (115)
for some spacetime scalar density ¢ of weight one.

The reasoning is now as follows: BF-theory without the constraint (115) is a
topological field theory, that is, it has no local degrees of freedom. Therefore
quantum BF-theory is not really a QFT but actually a quantum mechanical
system and can therefore be handled much more easily than gravity. Let us now
write an action equivalent to the Palatini action given by

S})[W7B7@} = SBF[%B] + S[[B,@]

SI[B,@] = /M @#Vpgej.]KLBé‘éBi%L[53555;5g — %eaﬁ’ytse‘wpo] s (116)
where the Lagrange multiplier $#¥77 [58] is a four dimensional tensor density of
weight one, symmetric in the index pairs (ur) and (po) and antisymmetric in
each index pair. Thus, @ has (6-7)/2 = 21 independent components of which the
totally skew component is projected out in (116), leaving us with 36 — 16 = 20
independent components. Hence the Euler Lagrange equations for @ precisely
delete the amount of unwanted degrees of freedom in B and impose the simplicity
constraint. Hence, classically S%[f2, B, @] and Sp[f2, ] are equivalent. Thus, if we
write a path integral for S% and treat the Lagrange multiplier term Sy in (116)
as an interaction Lagrangean (a perturbation) to BF-theory, then we can make
use of the powerful techniques that have been developed for the path integral
quantization for BF-theory and its perturbation theory.

10 Another solution is BT/ = e! A e’ but this possibility is currently not discussed.
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EXERCISE 25.

i) Write the Euler Lagrange equations for BF-theory and conclude that the solutions
consist of flat connections w and gauge invariant B— fields. Conclude that w can
be gauged to zero by SL(2,C) transformations locally and that then B is closed,
that is, locally exact by Poincaré’s theorem. Now, verify that the BF-action is not
only invariant under local SL(2, C)-transformations but also under

B"Y == B" 4+ (DA6) =B +d0" + " k AOKT 0 w7 (117)

for some si(2,C) valued one-form 6 and that therefore also B can be gauged to
zero locally.
Hint: Use the Bianchi identity for (2.

ii) Perform the Legendre transformation and conclude that there are as many first
class constraints as canonical pairs so that again at most a countable number of
global degrees of freedom can exist.

One may wonder how it is possible that a theory with less kinematical degrees
of freedom has more dynamical (true) degrees of freedom. The answer is that
BF-theory has by far more symmetries than the Palatini theory, thus when
constraining the number of degrees of freedom we are freezing more symmetries
than we deleted degrees of freedom.

Let us now discuss how one formulates the path integral corresponding to
the action (116). It is formally given by

KP(EtnEm) = /[Dw DB D@]eisg[w,B,Gb]’ (118)

where X, , 2, denote suitable boundary conditions specified in more detail be-
low. Suppose we set @ = 0, then (118) is a path integral for BF-theory and the
integral over B results in the functional d-distribution §[{2] imposing the flat-
ness of w. Now flatness of a connection is equivalent to trivial holonomy along
contractible loops by the Ambrose—Singer theorem. If one regularizes the path
integral by introducing a triangulation 7 of M, then §[F] can be written as
[I, d(w(a),1) where the product is over a generating system of independent,
contractible loops in 7 and d(w(a),1) denotes the d-distribution on SL(2,C)
with respect to the Haar measure. Since SL(2,C) is a non-compact group, the
d-distribution is a direct integral over irreducible, unitary representations rather
than a direct sum as it would be the case for compact groups (Peter&Weyl
theorem). Such representations are infinite dimensional and are labelled by a
continuous parameter p € Rar and a discrete parameter n € NS‘ . Thus, one ar-
rives at a triangulated spin foam model: For a fixed triangulation one integrates
(sums) over all possible “spins” p (n) that label the generating set of loops
(equivalently: the faces that they enclose) of that triangulated four manifold.
The analogy with the state sum models for TQFT’s is obvious.

Now what one does is a certain jump, whose physical implication is still not
understood: Instead of performing perturbation theory in S; one argues that
formally integrating over @ and thus imposing the simplicity constraint is equiv-
alent to the restriction of the direct integral that enters the J-distributions to
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simple representations, that is, representations for which either n =0 or p = 0.
In other words, one says that the triangulated Palatini path integral is the same
as the triangulated BF path integral restricted to simple representations. To
motivate this argument, one notices that upon canonical quantization of BF
theory on a triangulated manifold the B field is the momentum conjugate to
w and if one quantizes on a Hilbert space based on si(2,C) connections using
the Haar measure (similar as we have done for SU(2) for a fixed graph), its
corresponding flux operator By 7(S) becomes a linear combination of right in-
variant vector fields R’/ on SL(2,C). Now the simplicity constraint becomes the
condition that the second Casimir operator R’/ R¥¢; ;i1 vanishes. However,
on irreducible representations this operator is diagonal with eigenvalues np/4.
While this is a strong motivation, it is certainly not sufficient justification for
this way of implementing the simplicity constraint in the path integral because
it is not clear how this is related to integrating over &.

In any case, if one does this then one arrives at (some version of) the
Lorentzian Barrett—Crane model [59]. Surprisingly, for a large class of trian-
gulations 7 the amplitudes

Ko(Zy,, 5, =] / [Dw DB)eSBrleBl] o ereps. (119)

actually converge although one integrates over a non-compact group! This is
a non-trivial result [60]. The path integral is then over all possible representa-
tions that label the faces of a spin foam and the boundary conditions keep the
representations on the boundary graphs, that is, spin networks fixed (SL(2,C)
reduces to the SU(2) on the boundary). This also answers the question of what
the boundary conditions should be.

There is still an open issue, namely how one should get rid of the regulator
(or triangulation) dependence. Since BF-theory is a topological QFT, the ampli-
tudes are automatically triangulation independent, however, this is certainly not
the case with GR. One possibility is to sum over triangulations and a concrete
proposal of how to weigh the contributions from different triangulations comes
from the so-called field theory formulation of the theory [61]. Here one reformu-
lates the BF-theory path integral as the path integral for a scalar field on a group
manifold which in this case is a certain power of SL(2,C). The action for that
scalar field has a free piece and an interaction piece and performing the pertur-
bation theory (Feynman graphs!) for that field theory is equivalent to the sum
over BF-theory amplitudes for all triangulated manifolds with precisely defined
weights. This idea can be straightforwardly applied also to our context where
the restriction to simple representations is realized by imposing corresponding
restrictions (projections) on the scalar field.

Summarizing, spin foam models are a serious attempt to arrive at a covariant
formulation of QGR but many issues are still unsettled, e.g.:

1. There is no clean equivalence with the Hamiltonian formulation as we have
seen. Without that it is unclear how to interpret the spin foam model ampli-
tude and whether it has the correct classical limit. In order to make progress
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on the issue of the classical limit, model independent techniques for con-
structing “causal spin foams” [62] with a built in notion of quantum causal-
ity and renormalization methods [63], which should allow in principle the
derivation of a low energy effective action, have been developed.

2. The physical correctness of the Barrett—Crane model is unclear. This is em-
phasized by recent results within the Euclidean formulation [64] which sug-
gest that the classical limit is far off GR since the amplitudes are dominated
by spin values close to zero. This was to be expected because in the defini-
tion of the Barrett—Crane model there is a certain flexibility concerning the
choice of the measure that replaces [Dw DB] at the triangulated level and
the result [64] indicates that one must gain more control on that choice.

3. It is not even clear that these models are four-dimensionally covariant: One
usually defines that the amplitudes for a fixed triangulation are the same for
any four - diffeomorphic triangulation. However, recent results [65] show that
this natural definition could result nevertheless in anomalies. This problem
is again related to the choice of the measure just mentioned.

Thus, substantially more work is required in order to fill in the present gaps but
the results already obtained are very promising indeed.

3.4 Quantum Black Holes

Isolated Horizons. Any theory of quantum gravity must face the question
whether it can reproduce the celebrated result due to Bekenstein and Hawk-
ing [66] that a black hole in a spacetime (M, g) should account for a quantum
statistical entropy given by

Ar(H)

—_—, (120)
10

SpH =

where H denotes the two-dimensional event horizon of the black hole. This result
was obtained within the framework of QFT on Curved SpaceTimes (CST) and
should therefore be valid in a semiclassical regime in which quantum fluctuations
of the gravitational field are negligible (large black holes). The most important
question from the point of view of a microscopical theory of quantum gravity is,
what are the microscopical degrees of freedom that give rise to that entropy. In
particular, how can it be within a quantum field theory with an infinite number
of degrees of freedom, that this entropy, presumably a measure for our lack of
information of what happens behind the horizon, comes out finite.

In [67] the authors performed a bold computation: For any surface S and
any positive number Ay they asked the question how many SNW states there
are in QGR such that the area operators eigenvalues lie within the interval
[Ag — %, Ag + (3]. This answer is certainly infinite because a SNW can intersect
S in an uncountably infinite number of different positions without changing the
eigenvalues. This divergence can be made less severe by moding out by spatial
diffeomorphisms which we can use to map these different SNW onto each other
in the vicinity of the surface. However, since there are still an infinite number
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of non-spatially diffeomorphic states which look the same in the vicinity of the
surface but different away from it, the answer is still divergent. Therefore, one has
to argue that one must not count information off the surface, maybe invoking the
Hamiltonian constraint or using the information that S = H is not an arbitrary
surface but actually the horizon of a black hole. Given this assumption, the result
of the, actually quite simple counting problem came rather close to (120) with
the correct factor of 1/4.

Thus the task left is to justify the assumptions made and to make the entropy
counting water-tight by invoking the information that H is a black hole horizon.
The outcome of this analysis created a whole industry of its own, known under
the name “isolated horizons”, which to large part is a beautiful new chapter
in classical GR. In what follows we will focus only on a tiny fraction of the
framework, mostly concentrating on the ingredients essential for the quantum
formulation. For reviews see [68] which also contain a complete list of references
on the more classical aspects of this programme, the pivotal papers concerning
the quantum applications are [69].

By definition, an event horizon is the external boundary of the part of M that
does not lie in the past of null future infinity J= in a Penrose diagramme. From
an operational point of view, this definition makes little sense because in order
to determine whether a candidate is an event horizon, one must know the whole
spacetime (M, g) which is never possible by measurements which are necessarily
local in spacetime (what looks like an eternal black hole now could capture some
dust later and the horizon would change its location). Thus one looks for some
local substitute of the notion of an event horizon which captures the idea that
the black hole has come to some equilibrium state at least for some amount of
time. This is roughly what an isolated horizon A is, illustrated in Fig. 14.

More in technical details we have the following.

DEFINITION 13.
A part A of the boundary OM of a spacetime (M, g) is called an isolated horizon,
provided that

1) A =R x S?is a null hypersurface and has zero shear and expansion!®.

2) The field equations and matter energy conditions hold at A.
3) g is Lie derived by the null generator I of A at A.

The canonical formulation of a field theory on a manifold M with boundary
A must involve boundary conditions at A in order that the variation principle
be well-defined (the action must be functionally differentiable). Such boundary
conditions usually give birth to boundary degrees of freedom [70] which would
normally be absent but now come into being because (part of the) gauge transfor-
mations are forced to become trivial at A. In the present situation what happens

11 Recall the notions of shear, expansion and twist of a congruence of vector fields in
connection with Raychaudhuri’s equation.
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Fig. 14. An isolated horizon A boundary of a piece M (shaded) of spacetime also
bounded by spacelike hypersurfaces Xy, Y5. Radiation « may enter or leave M and
propagate into the singularity before or after the isolated horizon has formed but must
not cross A. An intersection of a spacelike hypersurface X with A is denoted by H
which has the topology of a sphere

is that the boundary term is actually a U(1) Chern-Simons action'?
A .
Scs = —0/ W AdW = / dt/ d2ye" [WiWy + Wi (dW)14], (121)
0 Ja R JH

where W is a U(1) connection one form and H = S? = ¥ N A is a sphere. The
relation between the bulk fields A7, E? and the boundary fields Wy, I =1,2is
given by
* j i * AO
XA =Wr? and [ X§(xE);|r; = fﬁdW, (122)
™
where Xy : H — X is the embedding of the boundary H of X" into X' and
rJ is an arbitrary but fixed unit vector in su(2) which is to be preserved under
SU(2) gauge transformations at A and therefore reduces SU(2) to U(1). The
number A is the area of H as measured by g which turns out to be a constant

12 Tt was observed first in [71] that general relativity in terms of connection variables
and in the presence of boundaries leads to Chern—Simons boundary terms.
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of the motion as a consequence of the field equations. The existence of 7 is a
consequence of definition (13) and % E is the natural metric independent two-form
dual to E.

Entropy Counting. One now has to quantize the system. This consists of
several steps whose details are complicated and which we will only sketch in
what follows.

i) Kinematical Hilbert Space
The bulk and boundary degrees of freedom are independent of each other,
therefore we choose Hyin = 'Hgn ® Hﬂn where both spaces are of the form
Lo(A, duo) just that the first factor is for an SU(2) bundle over X while the
second is for an U(1) bundle over H.

ii) Quantum Boundary conditions
Equation (122) implies, in particular, that in quantum theory we must have
schematically

Now we have seen in the bulk theory that we have discussed in great detail
throughout this review, that *xF is an operator valued distribution which
must be smeared by two-surfaces in order to arrive at the well-defined electric
fluxes. Since (123) is evaluated at H, this flux operator will non-trivially act
only on SNWF’s T, which live in the bulk but intersect H in punctures
p € HN~(s). Now the distributional character of the electric fluxes implies
that the left hand side of (123) is non-vanishing only at those punctures.
Thus the curvature of W is flat everywhere except for the punctures where
it is distributional.

Consider now SNWEF’s Ty of the bulk theory and those of the boundary

—

theory T).. Then [X7;(xE),|r;] acts on Ty like the z-component of the angular
momentum operator and will have distributional eigenvalues proportional to
the magnetic quantum numbers m. of the edges with punctures p = enN H
and spin j, where m, € {—je, —Je + 1, .., Je -

iii) Implementation of Quantum Dynamics at A
It turns out that Xﬁ@]rj and dIW are the generators of residual SU (2)
gauge transformations close to Xy (H) and of U(1) on H respectively. Now
these residual SU(2) transformations are frozen to U(1) transformations by
r; and the most general situation in order for a state to be gauge invariant
is that these residual SU(2) transformations of the bulk theory and the
U(1) transformations of the boundary theory precisely cancel each other. Tt
turns out that this cancellation condition is precisely given by the quantum
boundary condition (123). Thus the states that solve the Gauss constraint
are linear combinations of states of the form Ty ® T where the boundary
data of these states are punctures p € P where p € 7(s) N H, the spins
Jp = Je, of edges e € E(y(s)) with e, N H = p and their magnetic quantum
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numbers m,, = m.,. However, due to the specific features of the geometrical
quantization of Chern-Simons theories [72] the m,, cannot be specified freely,
they have to satisfy the constraint

Ao
47r€123 ’

> 2m, =0mod k, k=

peP

(124)

where k is called the level of a Chern Simons theory which is constrained
to be an integer due to Weil’s quantization obstruction cocycle criterion of
geometric quantization [30] and comes about as follows: The T, are actually
fixed to be ©-functions of level k labelled by integers a, which satisfy the
gauge invariance condition

2m, = —a, mod k, Zap =0 mod k. (125)
P

Next, the spatial diffeomorphism constraint of the bulk theory tells us that
the position of the punctures on H are not important, important is only
their number.

Finally, one of the boundary conditions at A implies that the lapse becomes
trivial N = 0 at H if C (N) is to generate an infinitesimal time reparameter-
ization'®. Thus, luckily we can escape the open issues with the Hamiltonian
constraint as far as the quantum dynamics at H is concerned.

We can now come to the issue of entropy counting. First of all we notice that
Ar(H) is a Dirac observable because H is invariant under Diff(H) and N = 0 at
H. Given n punctures with spins j;, [ = 1,.., N the area eigenvalue for H is

A(n,§) = 8738 > VilGi+1). (126)

Now the physical Hilbert space is of the form
thys = On,j,m,a=,—2m Hrlij,m ® Hfj{m ® H’II;I,(L ) (127)

where Hf’g{ m describes bulk degrees of freedom10.eps at H corresponding to the

black hole (finite dimensional), Hﬁj,m describes bulk degrees of freedom away
from H and finally #/, describes Chern-Simons degrees of freedom which are
completely fixed in terms of m due to reasons of gauge invariance (125). The

situation is illustrated in Fig. 15. Let 6 > 0 and let S4, s be the set of eigenstates

13 This does not mean that the lapse of a classical isolated horizon solution must vanish
at S, rather there is a subtle difference between gauge motions and symmetries for
field theories with boundaries [70] where in this case symmetries map solutions to
gauge inequivalent or equivalent ones respectively, if Njg # 0 or N|g = 0 respec-
tively.
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j3.m_3 Bulk

Fig. 15. Punctures, spins, magnetic quantum numbers and entropy counting. Only the
relevant boundary data are shown, the bulk information is traced over

Ynjm € 7—[ ngm of the area operator such that the eigenvalue lies in the interval
[Ag — 0, Ap + (5] and Ny, 5 their number. Define the density matrix

1

ﬁBH =idp® N E |w >< 1/)‘ ®idg. (128)
Ap,d
YESAy,s

The quantum statistical entropy from this microcanonical ensemble is given by
Spr = —Tr(ppr n(ppr)) = In(Na,,s) - (129)

Thus we just need to count states and the answer will be finite because the area
operator has an area gap.

EXERCISE 26.
Estimate Na,,s from above and below taking into account the constraint (124) and
that k is an integer (purely combinatorial problem!).

The result of the counting problem is that Sgy is indeed given by (120) to
leading order in Ay (there are logarithmic corrections) for § ~ % provided that

In(2)
™3
Here the numbers In(2), v/3 comes from the fact that the configurations with low-

est spin j; = 1/2 make the dominant contribution to the entropy with eigenvalue
x Anv3 ~ Ay and number of states given by Na,,s = 2™ that is, two Boolean

B= (130)
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degrees of freedom per puncture [73]. This provides an explicit explanation for
the origin of the entropy. Now fixing 3 at the value (130) would make little sense
would it be different for different types of black hole (that is, in presence of
different matter, charges, rotation, other hair,..). However, this is not the case!

In summary, the analysis sketched above provides a self-contained derivation
of Spy within QGR. The result is highly non-trivial because it was not to be
expected from the outset that Loop Quantum Gravity, classical GR and Chern
Simons theory would interact in such a harmonic way as to provide the expected
result: Chern—Simons theory is very different from QGR and still they have an
interface at H. The result applies to astrophysically interesting black holes of
the Schwarzschild type and does not require supersymmetry. Nevertheless, the
calculation still has a semiclassical input because the presence of the isolated
horizon is fed in at the classical level already. It would be more satisfactory to
have a quantum definition of an (isolated) horizon but this is a hard task and
left for future research. Another unsolved problem then is the calculation of the
Hawking effect from first principles.

3.5 Semiclassical Analysis

The Complexifier Machinery for Generating Coherent States. Let us
first specify what we mean by semiclassical states.

DEFINITION 14.

Let be given a phase space M, {.,.} with preferred Poisson subalgebra O of
C> (M) and a Hilbert space H, [.,.] together with an operator subalgebra O of
L(H). The triple M, {.,.}, O is said to be a classical limit of the triple , [.,.], O
provided that there exists an (over)complete set of states {¢;, }mea such that

for all O, 0’ € O the infinitesimal Ehrenfest property

— -1 1 —— 1 1 131
owm) <N Jm0.0hm € s
and the small fluctuation property
32
<OA7>”‘ -1« 1 (132)
<0 >2,

holds at generic!'? points in M. Here < . >,,:=< ¥, P, > /|[thm||* denotes
the expectation value functional.

For systems with constraints, strictly speaking, semiclassical states should be
physical states, that is, those that solve the constraints because we are not
interested in approximating gauge degrees of freedom but only physical observ-
ables. Only then are the predictions (% corrections to the classical limit) of the

4 The set of points where (131), (132) are violated should have small Liouville measure.
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theory reliable. In the present situation with QGR, however, we are more inter-
ested in constructing kinematical semiclassical states for the following reason:
As we have shown, the status of the physical correctness of the Hamiltonian
constraint operator C is unsettled. We would therefore like to test whether it
has the correct classical limit. This test is obviously meaningless on states which
the Hamiltonian constraint annihilates anyway. For the same reason it also does
not make sense to construct semiclassical states which are at least spatially dif-
feomorphism invariant because the Hamiltonian constraint does not leave this
space invariant.

The key question then is how to construct semiclassical states. Fortunately,
for phase spaces which have a cotangent bundle structure as is the case with
QGR, a rather general construction guideline is available [74], the so-called Com-
plexifier Method, which we will now sketch:

Let (M, {.,.}) be a phase space with (strong) symplectic structure {.,.} (no-
tice that M is allowed to be infinite dimensional). We will assume that M = T*C
is a cotangent bundle. Let us then choose a real polarization of M, that is, a real
Lagrangean submanifold C which will play the role of our configuration space.
Then a loose definition of a complexifier is as follows:

DEFINITION 15.

A complexifier is a positive definite function '* C' on M with the dimension of
an action, which is smooth a.e. (with respect to the Liouville measure induced
from {.,.}) and whose Hamiltonian vector field is everywhere non-vanishing on
C. Moreover, for each point ¢ € C the function p — Cy(p) = C(¢,p) grows
stronger than linearly with ||p||, where p is a local momentum coordinate and
I|-[l¢ is a suitable norm on T (C).

In the course of our discussion we will motivate all of these requirements.

The reason for the name complexifier is that C' enables us to generate a
complex polarization of M from C as follows: If we denote by ¢ local coordinates
of C (we do not display any discrete or continuous labels but we assume that
local fields have been properly smeared with test functions) then

o0

2(m) = 3 {0, O (m) (133)

n=0

define local complex coordinates of M provided we can invert z,z for m :=
(¢,p) where p are the fibre (momentum) coordinates of M. This is granted at
least locally by definition 15. Here the multiple Poisson bracket is inductively
defined by {q,C}0) = ¢, {¢,C}n+1) = {{¢, C}n), C} and makes sense due to
the required smoothness. What is interesting about (133) is that it implies the
following bracket structure

{z,2} =1{2,z2} =0 (134)

15 For the rest of this section C' will denote a complexifier function and not the Hamil-
tonian constraint.
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while {z, Z} is necessarily non-vanishing. The reason for this is that (133) may
be written in the more compact form

z=exeqg= ([} ] Q)i=—i, (135)

where x¢ denotes the Hamiltonian vector field of C', £ denotes the Lie derivative
and Lp; . 1s the one-parameter family of canonical transformations generated by
Xc- Formula (135) displays the transformation (133) as the analytic extension
to imaginary values of the one parameter family of diffeomorphisms generated
by xc and since the flow generated by Hamiltonian vector fields leaves Poisson
brackets invariant, (134) follows from the definition of a Lagrangean submanifold.
The fact that we have continued to the negative imaginary axis rather than
the positive one is important in what follows and has to do with the required
positivity of C.

The importance of this observation is that either of z, z are coordinates of a
Lagrangean submanifold of the complexification MC, i.e. a complex polarization
and thus may serve to define a Bargmann-Segal representation of the quantum
theory (wave functions are holomorphic functions of z). The diffeomorphism
M — C% m +— z(m) shows that we may think of M either as a symplectic
manifold or as a complex manifold (complexification of the configuration space).
Indeed, the polarization is usually a positive Kéahler polarization with respect to
the natural {.,.}-compatible complex structure on a cotangent bundle defined
by local Darboux coordinates, if we choose the complexifier to be a function of p
only. These facts make the associated Segal-Bargmann representation especially
attractive.

We now apply the rules of canonical quantization: a suitable Poisson algebra
O of functions O on M is promoted to an algebra O of operators O on a Hilbert
space H subject to the condition that Poisson brackets turn into commutators
divided by if and that reality conditions are reflected as adjointness relations,
that is,

10,0 = il{0,0"} + o(h), OF =0 +o(h), (136)

where quantum corrections are allowed (and in principle unavoidable except if
we restrict O, say to functions linear in momenta). We will assume that the
Hilbert space can be represented as a space of square integrable functions on (a
distributional extension C of) C with respect to a positive, faithful probability
measure i, that is, H = Lo(C,dp) as it is motivated by the real polarization.

The fact that C' is positive motivates to quantize it in such a way that it
becomes a self-adjoint, positive definite operator. We will assume this to be the
case in what follows. Applying then the quantization rules to the functions z in
(133) we arrive at

n=0 n
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The appearance of 1/h in (137) justifies the requirement for C'/k to be dimen-
sionless in definition 15. We will call 2 annihilation operator for reasons that will
become obvious in a moment.

Let now ¢ — 64 (g) be the d-distribution with respect to p with support at
q = ¢'. (More in mathematical terms, consider the complex probability measure,
denoted as d, dp, which is defined by [ 6,duf = f(¢') for measurable f). Notice
that since C' is non-negative and necessarily depends non-trivially on momenta
(which will turn into (functional) derivative operators in the quantum theory),

—C/h

the operator e is a smoothening operator. Therefore, although ¢, is certainly

not square integrable, the complex measure (which is probability if C-1= 0)
by = e 5, (138)

has a chance to be an element of 2. Whether or not it does depends on the details
of M, {.,.},C. For instance, if C' as a function of p at fixed ¢ has flat directions,
then the smoothening effect of e~¢/" may be insufficient, so in order to avoid
this we required that C is positive definite and not merely non-negative. If C
would be indefinite, then (138) has no chance to make sense as an Lo function.

We will see in a moment that (138) qualifies as a candidate coherent state
if we are able to analytically extend (138) to complex values z of ¢’ where the
label z in v, will play the role of the point in M at which the coherent state is
peaked. In order that this is possible (and in order that the extended function is
still square integrable), (138) should be entire analytic. Now d,/(¢) roughly has
an integral kernel of the form ei(k:(4=4") (with some pairing < .,. > between
tangential and cotangent vectors) which is analytic in ¢’ but the integral over
k, after applying e~ ¢/", will produce an entire analytic function only if there is
a damping factor which decreases faster than exponentially. This provides the
intuitive explanation for the growth requirement in definition 15. Notice that
the 1, are not necessarily normalized.

Let us then assume that

q— '(/)m(Q) = ["/)q’ (Q)]q’ﬁz(m) = [e_é/h(sq’ (q)]q’—)z(m) (139>

is an entire Lo function. Then v, is automatically an eigenfunction of the an-
nihilation operator Z with eigenvalue z since

2 = [ C/ﬁqé ]q '—z(m) = [q/ ~C/n 5 ]q '—z(m) = Z( ) s (14())

where in the second step we used that the delta distribution is a generalized
eigenfunction of the operator ¢. But to be an eigenfunction of an annihilation
operator is one of the accepted definitions of coherent states!

Next, let us verify that 1, indeed has a chance to be peaked at m. To see
this, let us consider the self-adjoint (modulo domain questions) combinations

z+2t z— 2t
T = g = 141
& 5 U 5 (141)
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whose classical analogs provide real coordinates for M. Then we have automat-
ically from (140)

. < VY, TP >
<X >yi=
" |[Ym ]2

and similar for y. Equation (142) tells us that the operator Z should really
correspond to the function m — z(m), m € M.
Now we compute by similar methods that

2m) ; 2 . m) (142)

5A 2 mi= < wmv [-i_ < i‘ >m]2'¢)m >
<ol > Toml?

. 1 -
=< [62/]2 >m= §| < [a?,y} >m |a
(143)

so that the v, are automatically minimal uncertainty states for &, ¢, moreover
the fluctuations are unquenched (equal each other). This is the second motivation
for calling the ), coherent states. Certainly one should not only check that
the fluctuations are minimal but also that they are small as compared to the
expectation value, at least at generic points of the phase space, in order that the
quantum errors are small.

The infinitesimal Ehrenfest property

A2 e ) + o) (144)
follows if we have properly implemented the canonical commutation relations
and adjointness relations. The size of the correction, however, does not follow
from these general considerations but the minimal uncertainty property makes
small corrections plausible. Condition (144) supplies information about how well
the symplectic structure is reproduced in the quantum theory.

For the same reason one expects that the peakedness property

|<¢m7wm’ > |2 ~ XK
[l [* |9 |2 "

holds, where K,, is a phase cell with center m and Liouville volume =
/< [62]2 >,,,< [69]2 >, and y denotes the characteristic function of a set.

Finally one wants coherent states to be overcomplete in order that every state
in ‘H can be expanded in terms of them. This has to be checked on a case by case
analysis but the fact that our complexifier coherent states are for real z nothing
else than regularized ¢ distributions which in turn provide a (generalized) basis
makes this property plausible to hold.

(m) (145)

EXERCISE 27.

Consider the phase space: M = T*R = R? with standard Poisson brackets {q,q} =
{p,p} = 0, {p,q} = 1 and configuration space C = R. Consider the complexifier
C = p?/(20) where o is a dimensionful constant such that C/# is dimensionless. Check
that it meets all the requirements of definition 15 and perform the coherent state
construction displayed above.
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Hint: Up to a phase, the resulting, normalized coherent states are the usual ones for
the harmonic oscillator with Hamiltonian H = (p?/m+mw?¢?)/2 with o = mw. Verify
that the states 1, are Gaussian peaked in the configuration representation with width
v/fi/o around ¢ = go and in the momentum representation around p = po with width

Vho where m = (po, qo)-

As it has become clear from the discussion, the complexifier method gives a
rough guideline, but no algorithm, in order to arrive at a satisfactory family of
coherent states, there are things to be checked on a case by case basis. On the
other hand, what is nice is that given only one input, namely the complexifier C,
it is possible to arrive at a definite and constructive framework for a semiclassical
analysis. It is important to know what the classical limit of C is, otherwise, if
we have just an abstract operator C then the map m — z(m) is unknown and
an interpretation of the states in terms of M is lost.

Application to QGR. Let us now apply these ideas to QGR. Usually the
choice of C' is strongly motivated by a Hamiltonian, but in QGR we have none.
Therefore, at the moment the best we can do is to play with various proposals for
C and to explore the properties of the resulting states. For the simplest choice
of C [75] those properties have been worked out more or less completely and we
will briefly describe them below.

The operator C is defined by its action on cylindrical functions f = pZ f, by

SF=-pl Y U] 1] =0 ), (146)

e€E(y)

where the positive numbers [(e) satisfy I(e o e’) = I(e) + I(e’) and I(e™!) = I(e)
and RJ are the usual right invariant vector fields.

EXERCISE 28. R
Recall the definition of the maps p,., for v < 4" from Sect. 2.1 and check that the C,

are consistently defined, that is, Cs opl,., = p., o C,.

This choice is in analogy to the harmonic oscillator where the quantum complex-
ifier is essentially the Laplacian —(d/dx)?. The classical limit of (146) depends
in detail on the function [ which is analogous to the parameter ii/o for the case
of the harmonic oscillator. For instance [74], one can choose a) three families of
foliations s — H, I = 1,2,3 of o by two dimensional surfaces H! such that
there is a bijection (s',s?,5%) — x(s) := [N;H.,] € o and b) a partition P} of
the H! into small surfaces S and define

o L a3 37 ars)?
*za%/RSZZ“( ) (147)

I=15epP!
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where Ar(S) is again the area functional and a is a dimensionful constant
of dimension cm!. The function [ for this example is then roughly'® i(e) =

MP Jds>2; > sepr xs(e) where xs(e) = 1if SNe # () and vanishes other-
wise.
The d-distribution with respect to the measure pg can be written as the sum
over all SNW’s (exercise!)

Sa(A4) = 3T (AT (A) (148)

with resulting coherent states

bac(A Z e % Leenten Ut (ACYT (4), (149)

where the SL(2,C) connection A is defined by

o0

Z'” {4, Cy)IA B (150)

Thus we see that in this case the symplectic manifold given as the cotangent
bundle M = T*A over the space of SU(2) connections is also naturally given as
the complex manifold A® of SL(2,C) connections. From the general discussion
above it now follows that the classical interpretation of the annihilation operators

AC(e) == eié/hfl(e)eé/h (151)

is simply the holonomy of the complex connection A®(e).
In order to study the semiclassical properties of these states we consider their
cut-offs 1 gc , for each graph v defined on cylindrical functions f = p f, by

< wAC f >kin=:< 7/},4@ 'yvf >kin - (152)
Now, (if we work at the non-gauge invariant level,) one can check that
wAV,'y H ¢AL e) )) (153)
e€E(vy(s)
where for any g € SL(2,C), h € SU(2) we have defined
Yy(h) =D (2 + e IO 2y (gh ™). (154)
J

EXERCISE 29.
Verify, using the Peter&Weyl theorem, that for g € SU(2) we have ¥ (h) = §4(h), the

16 This formula gets exact in the limit of infinitely fine partition, at finite coarseness,
it is an approximation to the exact, more complicated formula.
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d-distribution with respect to La(SU(2), dpr). Conclude that (154) is just the analytic
extension of the heat kernel e "*4/2 where A is the Laplacian on SU(2). Thus the states
(154) are in complete analogy with those for the harmonic oscillator, just that R was
replaced by SU(2) and the complexification C of R by the complexification SL(2,C) of
SU(2). In this form, coherent states on compact gauge groups were originally proposed
by Hall [76].

The analysis of the semiclassical properties of the states ¢ ,c , on Hyy, can
therefore be reduced to that of the states ¢, on La(SU(2),dum). We state here
without proof that the following properties could be proved [75]: I) Overcom-
pleteness, IT) expectation value property, IIT) Ehrenfest property, IV) peakedness
in phase space, V) annihilation operator eigenstate property, VI) minimal un-
certainty property and VII) small fluctuation property. Thus, these states have
many of the desired properties that one requires from coherent states.

In the following graphic we display as an example the peakedness properties
of the analog of (154) for the simpler case of the gauge group U(1), the case of
SU(2) is similar but requires more plots because of the higher dimensionality of
SU(2). Thus go = ePhg € U(1)® = C — {0}, p € R, ho € U(1) and u € U(1)
where we parameterize u = €'?, ¢ € [—m, 7). Similarly, g = eP'u, p; € R. We
consider in Fig. 16 the peakedness in the configuration representation given by
the probability amplitude

u= e g, (u) = [, (w)*/[1vg, |I? (155)

at hg = 1,p € [-5,5]. In Fig. 17 the phase space peakedness expressed by the
overlap function

| <y vy, > I?
95112 119G, 112

is shown at fixed p = 0,hg = 1 for p € [-5,5], u € U(1). We have made use of
the fact (exercise!) that 14, (u) and < 14,14, > respectively depend only on the

g=elursil(g,g0) = (156)

Fig. 16. Probability amplitude u — j§, (u) at p € [-5,5],ho = 1
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a.37 8.1

Fig. 18. Resolution of a neighbourhood of the peak of the function g + i} (g) at
p= O, ho =1

combinations gou~! = ePohu! and Ggo = ePPru"'hy respectively. Therefore,
peakedness at u = hg or g = g9 = ePhg respectively for any hg is equivalent to
peakedness at u = 1 or at g = eP° respectively for hg = 1. Both plots are for the
value t = 0.001 and one clearly sees the peak width of /f ~ 0.03 when resolving
those plots around the peak as in Fig. 18, which has a close to Gaussian shape
just like the harmonic oscillator coherent states have. As a first modest appli-
cation, these states have been used in order to analyze how one would obtain, at
least in principle, the QFT’s on CST’s (Curved SpaceTime) limit from full QGR
in [49]. In particular, it was possible to perform a detailed calculation concerning
the existence of Poincaré invariance violating dispersion relations of photon prop-
agation within QGR which were discussed earlier at a more phenomenological
level in the pioneering papers [77]: The idea is that the metric field is a collection
of quantum operators which are not mutually commuting. Therefore it should
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be impossible to construct a state which is peaked on, say the Minkowski metric,
and which is a simultaneous eigenstate of all the metric operator components, in
other words, there should be no such thing as a Poincaré-invariant state in full
QGR!7, already because such an object should be highly background dependent.
The best one can construct is a coherent state peaked on the Minkowski metric.
The small fluctuations that are encoded in that state influence the propagation
of matter and these tiny disturbances could accumulate to measurable sizes in
so-called y-ray burst experiments [78] where one measures the time delay of pho-
tons of higher energy as compared to those of lower energy as they travel over
cosmological distances as a result of the energy dependence of the speed of light.
If such an effect exists then it is a non-perturbative one because perturbatively
defined QFT’s on Minkowski space are by construction Poincaré invariant (recall
e.g. the Wightman axioms from Sect. 1.1).

These are certainly only first moderate steps. The development of the semi-
classical analysis for QGR is still in its very beginning and there are many
interesting and new mathematical and physical issues that have to be settled
before one can seriously attack the proof that, for instance, the Hamiltonian
constraint of Sect. 3.1 has the correct classical limit or that full QGR reduces to
classical GR plus the standard model in the low energy regime.

3.6 Gravitons

The Isomorphism. The reader with a strong background in ordinary QFT
and/or string theory will have wondered throughout these lectures where in QGR
the graviton, which plays such a prominent role in the perturbative, background
dependent approaches to quantum gravity, resides. In fact, if one understands the
graviton, as usually, as an excitation of the quantum metric around Minkowski
space, then there is a clear connection with the semiclassical analysis of the
previous section: One should construct a suitable coherent state which is peaked
on the gauge invariant phase space point characterizing Minkowski space and
identify suitable excitations thereof as gravitons. It is clear that at the moment
such graviton states from full QGR cannot be constructed, because we would
need first to solve the Hamiltonian constraint.

However, one can arrive at an approximate notion of gravitons through the
quantization of linearized gravity: Linearized gravity is nothing else than the
expansion of the full GR action around the gauge variant initial data (EO)‘} =
o9, (A%)J = 0 to second order in E — E° A which results in a free, classical
field theory with constraints. In fact, the usual notion of gravitons is precisely

17 This seems to contradict the fact that we are even interested in four dimensionally
diffeomorphism invariant states and the fact that the Poincaré group should be a tiny
subgroup thereof. However, this is not the case because we require the states only to
be invariant under diffeomorphisms which are pure gauge and those have to die off
at spatial infinity. Poincaré transformations are therefore not gauge transformation
but symmetries and what we are saying is that there are no Poincaré symmetric,
diffeomorphism gauge invariant states.
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the ordinary Fock space quantization of that classical, free field theory [79]. In
order to see whether QGR can possibly accommodate these graviton states,
Varadarajan in a beautiful series of papers [80] has carried out a polymer like
quantization of that free field theory on a Hilbert space Hy;, which is in complete
analogy to that for full QGR, the only difference being that the gauge group
SU(2) is replaced by the gauge group U(1)3. While there are certainly large
differences between the highly interacting QGR theory and linearized gravity,
one should at least be able to gain some insight into the the answer to the
question, how a Hilbert space in which the excitations are one dimensional can
possibly describe the Fock space excitations (which are three dimensional).

The problem of describing gravitons within linearized gravity by polymer like
excitations is mathematically equivalent to the simpler problem of describing the
photons of the ordinary Fock Hilbert space Hr of Maxwell theory by polymer
like excitations within a Hilbert space Hp = Lo(A, du) where A is again a space
of generalized U (1) connections with some measure p thereon. Thus, we describe
the latter problem in some detail since it requires less space and has the same
educational value.

The crucial observation is the following isomorphism Z between two different
Poisson subalgebras of the Poisson algebra on the phase space M of Maxwell
theory coordinatized by a canonical pair (E, A) defined by a U(1) connection
A and a conjugate electric field E: Consider a one-parameter family of test
functions of rapid decrease which are regularizations of the §-distribution, for
instance

_lz—y?
e 2r2

(Vamr)s

where we have made use of the Euclidean spatial background metric. Given a
path p € P we denote its distributional form factor by

fr(z,y) = (157)

:/0 dt p*(t)d(z, p(t)). (158)

The smeared form factor is defined by

Xe / Pyt (2, 9) X0y / dt 50 fo@p(),  (159)

which is evidently a test function of rapid decrease. Notice that a U (1) holonomy
maybe written as

A(p) = ol S P x Xy () Aa(x) (160)
and we can define a smeared holonomy by

Ar(p) =e lde"LXa (z)Aa (I) (161)
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Likewise we may define smeared electric fields as
Bia) = [ duh (e B W), (162)

If we denote by ¢ the electric charge (notice that in our notation o = hg? is the
fine structure constant), then we obtain the following Poisson subalgebras: On
the one hand we have smeared holonomies but unsmeared electric fields with

{Ar(p), A, ()} = {E(2), E*(y)} = 0, {E%(2),A(p)} = ig° X}, ,.(¢) A (p)
(163)

and on the other hand we have unsmeared holonomies but smeared electric fields
with

{A(p), A(P)} = {E}(2), B(y} = 0, {E}(2), Ap)} = ig’ X . (2)hy . (164)

Thus the two Poisson algebras are isomorphic and also the * relations are isomor-
phic, both E%(x), E¢(z) are real valued while both A(p), A,(p) are U(1) valued.
Thus, as abstract *- Poisson algebras these two algebras are indistinguishable
and we may ask if we can find different representations of it. Even better, notice
that A,.(p)A.-(p') = Ar(pop’), A(p)™' = A.(p™!) so the smeared holonomy
algebra is also isomorphic to the unsmeared one. Hence there is an algebra *-
isomorphism Z defined on the generators by Z,(h,) = hp,, Z.(E;) = E. One
must also show that the A, (p) are still algebraically independent as are the A(p)
[80].

Induced Fock Representation with Polymer-Excitations. Now we know
that the unsmeared holonomy algebra is well represented on the Hilbert space
Hiin = La(A, dpg) while the smeared holonomy algebra is well represented on
the Fock Hilbert space Hr = Lo(S’,dur) where S’ denotes the space of diver-
gence free, tempered distributions and pp is the Maxwell-Fock measure. These
measures are completely characterized by their generating functional

wi(Ar(p) == pr(Ar(p) = e LN @VEETXS bar (165)

since finite linear combinations of the h,, , are dense in H r [80]. Here A = 59,0,
denotes the Laplacian and we have taken a loop p rather than an open path so
that X, , is transversal. Also unsmeared electric fields are represented through
the Fock state wp by
~ ~ ~ o ~
wr (A (p)E(x)An(p)) = —a[X{f,r(x) — Xy (@)|wr (hpopr ) (166)

and any other expectation value follows from these and the commutation rela-
tions.

Since wp defines a positive linear functional we may define a new represen-
tation of the algebra A(p), B¢ by



Lectures on Loop Quantum Gravity 123

wr(A(p) = wr(A,(p)) and wi(A(p)E}(x)AR')) = wF(Ar(p)E“(m)Ar((Pl’g)?)

called the r-Fock representation. In other words, we have w, = wg o Z,..

Since w, is a positive linear functional on C'(A) by construction there exists
is a measure 1, on A that represents w, in the sense of the Riesz representation
theorem (recall 62). In [81] Velhinho showed that the one-parameter family of
measures p, are expectedly mutually singular with respect to each other and
with respect to the uniform measure o (that is, the support of one measure is
a measure zero set with respect to the other and vice versa).

Result 1: There is a unitary transformation between any of the Hilbert spaces
H, and their images under Z,. in the usual Fock space Hp. Since finite linear
combinations of the A,(p) for fixed r are still dense in Hp [80], there exists
indeed a polymer like description of the usual n-photon states.

Recall that the Fock vacuum §2r is defined to be the zero eigenvalue coherent
state, that is, it is annihilated by the annihilation operators

a(f) = \/%/dgxf“ (V=4 —i(/=B) B | (168)

where f® is any transversal smearing field. We then have in fact that wgp(.) =<
Qp, 2p >3,. (For readers familiar with C*-algebras this means that Q2 is the
cyclic vector that is determined by wp through the GNS construction.) The idea
is now the following: From (167) we see that we can easily answer any question
in the r-Fock representation which has a preimage in the Fock representation,
we just have to replace everywhere A, (p), E*(z) by A(p), E*(x). Since in the
r-Fock representations only exponentials of connections are defined, we should
exponentiate the annihilation operators and select the Fock vacuum through the
condition

e 0p = Qp. (169)
In particular, choosing f = v2a(+v/—A)71X,, . for some loop p we get
ef Xy At (V=R T E g = (170)

Using the commutation relations and the Baker—Campell-Hausdorff formula one
can write (170) in terms of A,(p) and the exponential of the electric field ap-
pearing in (170) times a numerical factor. The resulting expression can then be
translated into the r-Fock representation. Denoting the translated expression by
Ir_l(eid(f)) we now ask the question, whether there exists a state £2, € Hyn =
Ly(A, dug) such that Z-'(e’*)), = ,. Remarkably, expanding (2, into the
charge network basis introduced in Sect. 3.1 one finds a (up to a multiplicative
constant) unique solution given by

02, = Z e” % Leerena(en Geerme(One (O (171)
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where ¢ = (y(c), {ne(c) ecr(y(c))) denotes a charge network (the U(1) analogue
of a spin network) and

ar. = / dPaxe V=A XY T, (172)
where 55) = 45 — 0, A710, denotes the transverse projector.

EXERCISE 30.
Fill in the gaps that lead from (170) to (172).

Let us discuss this result. First of all, (171) is not normalizable with respect
to the inner product on Hyi, and neither are the images of n-photon states or
coherent states from Hp. This seems to indicate that the space Hyi, does not
play any role for physically interesting states. However, in [74] it was shown
that this is not the case: It turns out, that, given a suitable regularization, that
one can indeed obtain the expectation values such as w,(A(p)) from the formal
expression

<0, Alp) (2 >

where both numerator and denominator are infinite but the fraction is finite.
Result 2: The polymer images of photon states can be obtained as certain
limits of states from Hyi, which therefore is a valid starting point in order to
obtain physically interesting representations.
Moreover, as can be expected from the similarity between the formulas (172)
and (149) (for A® = 0 corresponding to vacuum E = A = 0 in the present case),
the states 2, also arise from a complexifier, given in this case by

o= L / BB Eous . (174)
R3

= 2q2

Result 3: The complexifier framework is also able to derive images of n-
photon states and usual Fock coherent states from the universal input of a com-
plexifier.

We conclude that at least for the linearized theory the question posed at
the beginning of this section could be answered affirmatively: There is indeed
a precise framework available for how to accommodate graviton states into the
framework of loop quantum gravity. This is a promising result and should have
an analog in the full theory.

4 Selection of Open Research Problems

Let us summarize the most important open research problems that have come
up during the discussion in these lectures.
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ii)

iii)

iv)

vi)

vii)
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Hamiltonian Constraint and Semiclassical States

The unsettled correctness of the quantum dynamics is the major roadblock to
completing the quantization programme of QGR. In order to make progress
a better understanding of the kinematical semiclassical sector of the theory
is necessary.

Physical Inner Product

Even if we had the correct Hamiltonian constraint and the complete space
of solutions, at the moment there is no really good idea available of how
to construct a corresponding physical inner product because the constraint
algebra is not a Lie algebra but an open algebra in the BRST sense so
that techniques from rigged Hilbert spaces are not available. A framework
for such open algebras must be developed so that an inner product can be
constructed at least in principle.

Dirac Observables

Not even in classical general relativity do we know enough Dirac observ-
ables. For QGR they are mandatory for instance in order to select an inner
product by adjointness conditions and in order to arrive at an interpretation
of the final theory. A framework of how to define Dirac observables, at least
in principle, even at the classical level, would be an extremely important
contribution.

Covariant Formulation

The connection between the Hamiltonian and the Spin Foam formulation is
poorly understood. Without such a connection e.g. a proof of covariance of
the canonical formulation on the one hand and a proof for the correct classical
limit of the spin foam formulation on the other cannot be obtained using the
respective other formulation. One should prove a rigorous Feynman—Kac like
formula that allows to switch between these complementary descriptions.
QFT on CST’s and Hawking Effect from First Principles

The low energy limit of the theory in connection with the the construction
of semiclassical states must be better understood. Once this is done, funda-
mental issues such as whether the Hawking effect is merely an artefact of an
invalid description by QFT’s on CST’s while a quantum theory of gravity
should be used or whether it is a robust result can be answered. Similar
remarks apply to the information paradoxon associated with black holes etc.
Combinatorial Formulation of the Theory

The description of a theory in terms of smooth and even analytic struc-
tures curves, surfaces etc. at all scales in which the spectra of geometrical
operators are discrete at Planck scales is awkward and cannot be the most
adequate language. There should be a purely combinatorial formulation in
which notions such as topology, differential structure etc. can only have a
semiclassical meaning.

Avoidance of Classical and UV Singularities

That certain classical singularities are absent in loop quantum cosmology
and that certain operators come out finite in the full theory while in the
usual perturbative formulation they would suffer from UV singularities are
promising results, but they must be better understood. If one could make
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contact with perturbative formulations and pin-point exactly why in QGR
the usual perturbative UV singularities are absent then the theory would gain
a lot more respect in other communities of high energy physicists. There must
be some analog of the renormalization group and the running of coupling
constants that one usually finds in QFT’s and CST’s. Similar remarks apply
to the generalization of the loop quantum cosmology result to the full theory.
viii) Contact with String (M)-Theory

If there is any valid perturbative description of quantum gravity then it
is almost certainly string theory. It is conceivable that both string theory
and loop quantum gravity are complementary descriptions but by them-
selves incomplete and that only a fusion of both can reach the status of a
fundamental theory. To explore these possibilities, Smolin has launched an
ambitious programme [82] which to our mind so far did not raise the interest
that it deserves!®. The contact arises through Chern—Simons theory which
is part of both Loop Quantum Gravity and M-Theory [83] (when considered
as the high energy limit of 11 dimensional Supergravity). Another obvious
starting point is the definition of M-Theory as the quantum supermembrane
in 11 dimensions [84], a theory that could be obtained as the quantization
of the classical supermembrane by our non-perturbative methods. Finally, a
maybe even more obvious connection could be found through the so-called
Pohlmeyer String [85] which appears to be a method to quantize the string
non-perturbatively, without supersymmetry, anomalies or extra dimensions,
by working directly at the level of Dirac observables which are indeed possible
to construct explicitly in this case.

We hope to have convinced the reader that Loop Quantum Gravity is an active
and lively approach to a quantum theory of gravity which has produced already
many non-trivial results and will continue to do so in the future. There are still
a huge number of hard but fascinating problems to be solved of which the above
list is at most the tip of an iceberg. If at least a tiny fraction of the readers would
decide to dive into this challenging area and help in this endeavour, then these
lectures would have been successful.
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18 That we did not devote a section to this topic in this review is due to the fact that we
would need to include an introduction to M-Theory into these lectures which would
require too much space. The interested reader is referred to the literature cited.
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Abstract. In these lecture notes, I describe the motivation behind a recent formu-
lation of a non-perturbative gravitational path integral for Lorentzian (instead of the
usual Euclidean) space-times, and give a pedagogical introduction to its main features.
At the regularized, discrete level this approach solves the problems of (i) having a well-
defined Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to
convergent sums over geometries. Although little is known as yet about the existence
and nature of an underlying continuum theory of quantum gravity in four dimensions,
there are already a number of beautiful results in d = 2 and d = 3 where continuum
limits have been found. They include an explicit example of the inequivalence of the
Fuclidean and Lorentzian path integrals, a non-perturbative mechanism for the cancel-
lation of the conformal factor, and the discovery that causality can act as an effective
regulator of quantum geometry.

1 Introduction

The desire to understand the quantum physics of the gravitational interactions
lies at the root of many recent developments in theoretical high-energy physics.
By quantum gravity I will mean a consistent fundamental quantum description
of space-time geometry (with or without matter) whose classical limit is general
relativity. Among the possible ramifications of such a theory are a model for the
structure of space-time near the Planck scale, a consistent calculational scheme
to compute gravitational effects at all energies, a description of (quantum) geom-
etry near space-time singularities and a non-perturbative quantum description
of four-dimensional black holes. It might also help us in understanding cosmo-
logical issues about the beginning (and end?) of our universe, although it should
be said that some questions (for example, that of the “initial conditions”) are
likely to remain outside the scope of any physical theory.

From what we know about the quantum dynamics of the other fundamental
interactions it seems eminently plausible that also the gravitational excitations
should at very short scales be governed by quantum laws, so why have we so
far not been able to determine what they are? — One obvious obstacle is the
difficulty in finding any direct or indirect evidence for quantum gravitational
effects, be they experimental or observational, which could provide a feedback
for model-building. A theoretical complication is that the outstanding problems
mentioned above require a non-perturbative treatment; it is not sufficient to
know the first few terms of a perturbation series. This is true for both conven-

R. Loll, A Discrete History of the Lorentzian Path Integral, Lect. Notes Phys. 631, 137-171 (2003)
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tional perturbative path integral expansions of gravity or supergravity' and a
perturbative expansion in the string coupling in the case of unified approaches.
One avenue to take is to search for a non-perturbative definition of such a theory,
where the initial input of any fixed “background metric” is inessential (or even
undesirable), and where “space-time” is determined dynamically. Whether or
not such an approach necessarily requires the inclusion of higher dimensions and
fundamental supersymmetry is currently unknown. As we will see in the course
of these lecture notes, it is perfectly conceivable that one can do without.

Such a non-perturbative viewpoint is very much in line with how one proceeds
in classical general relativity, where a metric space-time (M, g,,) (+matter)
emerges only as a solution to the Einstein equations

1
R;w [9] - §gm,R[g] + Ag;w = _SWGNTHV[QSL (1)
which define the classical dynamics on the space M (M), the space of all metrics
on a given differentiable manifold M. The analogous question I want to address
in the quantum theory is

Can we obtain “quantum space-time” as a solution to a set of non-
perturbative quantum equations of motion on a suitable quantum ana-
logue of M(M) or rather, of the space of geometries, Geom(M) :=
M(M)/Diff(M)?

This is not a completely straightforward task. Whichever way we want to pro-
ceed non-perturbatively, if we give up the privileged role of a flat, Minkowskian
background space—time on which the quantization is to take place, we also have
to abandon the central role usually played by the Poincaré group, and with it
most standard quantum field-theoretic tools for regularization and renormaliza-
tion. If one works in a continuum metric formulation of gravity, the symmetry
group of the Einstein action is instead the group Diff(M) of diffeomorphisms on
M, which in terms of local charts are simply the smooth invertible coordinate
transformations x# s y#(z#).2

I will in the following describe a particular path integral approach to quantum
gravity, which is non-perturbative from the outset in the sense of being defined
on the “space of all geometries” (to be defined later), without distinguishing any
background metric structure (see also [1,2] for related reviews). This is closely
related in spirit with the canonical approach of loop quantum gravity [3] and its
more recent incarnations using so-called spin networks [4,5], although there are

1 Of course, we already know that in these cases a quantization based on a decom-
position g (z) = npi™ 4+ V/GN huu(z), for a linear spin-2 perturbation around
Minkowski space leads to a non-renormalizable theory.

2 One should not get confused here by the fact that in gauge formulations of gravity
which work with vierbeins e}, instead of the metric tensor g,., one has an additional
local invariance under SO(3,1)-frame rotations, i.e. elements of the Lorentz group,
in addition to diffeomorphism invariance. Nevertheless, this formulation is still not
invariant under global Lorentz- or Poincaré-transformations.
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significant differences in methodology and attitude. “Non-perturbative” means
in a covariant context that the path sum or integral will have to be performed
explicitly, and not just evaluated around its stationary points, which can only
be achieved in an appropriate regularization. The method I will employ uses a
discrete lattice regularization as an intermediate step in the construction of the
quantum theory. However, unlike in lattice QCD, the lattice and its geomet-
ric properties will not be part of a static background structure, but dynamical
quantities, as befits a theory of quantum geometry.

2  Quantum Gravity from Dynamical Triangulations

In this section I will explain how one may construct a theory of quantum gravity
from a non-perturbative path integral, and what logic has led my collaborators
and me to consider the method of Lorentzian dynamical triangulations to achieve
this. The method is minimal in the sense of employing standard tools from quan-
tum field theory and the theory of critical phenomena and adapting them to the
case of generally covariant systems, without invoking any symmetries beyond
those of the classical theory. At an intermediate stage of the construction, we
use a regularization in terms of simplicial “Regge geometries”, that is, piecewise
linear manifolds. In this approach, “computing the path integral” amounts to
a conceptually simple and geometrically transparent “counting of geometries”,
with additional weight factors which are determined by the Einstein action. This
is done first of all at a regularized level. Subsequently, one searches for interest-
ing continuum limits of these discrete models which are possible candidates for
theories of quantum gravity, a step that will always involve a renormalization.
From the point of view of statistical mechanics, one may think of Lorentzian dy-
namical triangulations as a new class of statistical models of Lorentzian random
surfaces in various dimensions, whose building blocks are flat simplices which
carry a “time arrow”, and whose dynamics is entirely governed by their intrinsic
geometric properties.

Before describing the details of the construction, it may be helpful to recall
the path integral representation for a (one-dimensional) non-relativistic particle
[6]. The time evolution of the particle’s wave function ¢ may be described by
the integral equation

2 ") /Gx ot (), (2)

where the propagator or Feynman kernel G is defined through a limiting proce-
dure,

G2 2"t ) = hmA N H /dxk e 2550 eL(@ir, (@1 -25)/€) (3)

The time interval t”” — ¢’ has been discretized into N steps of length ¢ = (¢ —
t')/N, and the right-hand side of (3) represents an integral over all piecewise
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Fig. 1. A piecewise linear particle path contributing to the discrete Feynman propa-
gator

linear paths z(t) of a “virtual” particle propagating from z’ to x”, illustrated in
Fig. 1.

The prefactor A~ is a normalization and L denotes the Lagrange function
of the particle. Knowing the propagator G is tantamount to having solved the
quantum dynamics. This is the simplest instance of a path integral, and is often
written schematically as

G ;2" ") = / Da(t) S0 (4)

where Dx(t) is a functional measure on the “space of all paths”, and the expo-
nential weight depends on the classical action S[x(t)] of a path. Recall also that
this procedure can be defined in a mathematically clean way if we Wick-rotate
the time variable ¢ to imaginary values ¢t — 7 = it, thereby making all integrals
real [7].

Can a similar strategy work for the case of Einstein gravity? As an analogue of
the particle’s position we can take the geometry [g;;(z)] (ie. an equivalence class
of spatial metrics) of a constant-time slice. Can one then define a gravitational
propagator

i Einstein
Gllgis) lgi) = / Dlgyu] €5 lo1] 5)
Geom(M)

from an initial geometry [¢'] to a final geometry [¢”] (Fig. 2) as a limit of some
discrete construction analogous to that of the non-relativistic particle (3)? And
crucially, what would be a suitable class of “paths”, that is, space-times [g,,,]
to sum over?

Setting aside the question of the physical meaning of an expression like (5),
gravitational path integrals in the continuum are extremely ill-defined. Clearly,
defining a fundamental theory of quantum gravity via a perturbation series
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Fig. 2. The time-honoured way [8] of illustrating the gravitational path integral as the
propagator from an initial to a final spatial boundary geometry

in the gravitational coupling does not work because of its perturbative non-
renormalizability. So, is there a chance we might simply be able to do the integra-
tion [ D[g,.] in a meaningful way? Firstly, there is no obvious way to parametrize
“geometries”, which means that in practice one always has to start with gauge-
covariant fields, and gauge-fix. Unfortunately, this gives rise to Faddeev—Popov
determinants whose non-perturbative evaluation is exceedingly difficult. A simi-
lar problem already applies to the action itself, which is by no means quadratic,
no matter what we choose as our basic fields. How then can the integration over
exp(S) possibly be performed? Part of the problem is clearly also the complex
nature of this integrand, with no obvious choice of a Wick rotation in the context
of a theory with fluctuating geometric degrees of freedom. Secondly, since we are
dealing with a field theory, some kind of regularization will be necessary, and
the challenge here is to find a procedure that does not violate diffeomorphism-
invariance.

In brief, the strategy I will be following starts from a regularized version of
the space Geom(M) of all geometries. A regularized path integral G(a) can be
defined which depends on an ultraviolet cutoff a and is convergent in a non-
trivial region of the space of coupling constants. Taking the continuum limit
corresponds to letting a — 0. The resulting continuum theory — if it can be
shown to exist — is then investigated with regard to its geometric properties and
in particular its semiclassical limit.

3 Brief Summary of Discrete Gravitational Path Integrals

Trying to construct non-perturbative path integrals for gravity from sums over
discretized geometries is not a new idea. The approach of Lorentzian dynamical
triangulations draws from older work in this area, but differs from it in several
significant aspects as we shall see in due course.

Inspired by the successes of lattice gauge theory, attempts to describe quan-
tum gravity by similar methods have been popular on and off since the late 70’s.
Initially the emphasis was on gauge-theoretic, first-order formulations of gravity,
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Fig. 3. The phase diagram of three- and four-dimensional Euclidean dynamical trian-
gulations

usually based on (compactified versions of) the Lorentz group, followed in the
80’s by “quantum Regge calculus”, an attempt to represent the gravitational
path integral as an integral over certain piecewise linear geometries (see [9] and
references therein), which had first made an appearance in approximate descrip-
tions of classical solutions of the Einstein equations. A variant of this approach
by the name of “dynamical triangulation(s)” attracted a lot of interest during the
90’s, partly because it had proved a powerful tool in describing two-dimensional
quantum gravity (see the textbook [10] and lecture notes [11] for more details).

The problem is that none of these attempts have so far come up with con-
vincing evidence for the existence of an underlying continuum theory of four-
dimensional quantum gravity. This conclusion is drawn largely on the basis of
numerical simulations, so it is by no means water-tight, although one can make
an argument that the “symptoms” of failure are related in the various approaches
[12]. What goes wrong generically seems to be a dominance in the continuum
limit of highly degenerate geometries, whose precise form depends on the ap-
proach chosen. One would of course expect that non-smooth geometries play a
decisive role, in the same way as it can be shown in the particle case that the
support of the measure in the continuum limit is on a set of nowhere differen-
tiable paths. However, what seems to happen in the case of the path integral for
four-geometries is that the structures obtained are too wild, in the sense of not
generating, even at coarse-grained scales, an effective geometry whose dimension
is anywhere near four.

The schematic phase diagram of Euclidean dynamical triangulations shown
in Fig. 3 gives an example of what can happen. The picture turns out to be
essentially the same in both three and four dimensions: the model possesses
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infinite-volume limits everywhere along the critical line k$'i*(kg), which fixes
the bare cosmological constant as a function of the inverse Newton constant
ko ~ G&l. Along this line, there is a critical point k§* (which we now know to
be of first order in d = 3, 4) below which geometries generically have a very large
effective or Hausdorff dimension. (In terms of geometry, this means that there are
a few vertices at which the entire space-time “condenses” in the sense that almost
every other vertex in the simplicial space-time is about one link-distance away
from them.) Above kgt we find the opposite phenomenon of “polymerization”:
a typical element contributing to the state sum is a thin branched polymer, with
one or more dimensions “curled up” (an image familiar to string theorists!) such
that its effective dimension is around two.

Why this happens was, at least until recently, less clear, although it has
sometimes been related to the so-called conformal-factor problem. This problem
has to do with the fact that the gravitational action is unbounded below, causing
potential havoc in Euclidean versions of the path integral. This will be discussed
in more detail below in Sect. 5.2, but it does lead directly to the next point.
Namely, what all the above-mentioned approaches have in common is that they
work from the outset with Fuclidean geometries, and associated Boltzmann-
type weights exp(—S°") in the path integral. In other words, they integrate over
“space-times” which know nothing about time, light cones and causality. This
is done mainly for technical reasons, since it is difficult to set up simulations
with complex weights and since until recently a suitable Wick rotation was not
known.

“Lorentzian dynamical triangulations”, first proposed in [13] and further
elaborated in [14,15] tries to establish a logical connection between the fact
that non-perturbative path integrals were constructed for Euclidean instead of
Lorentzian geometries and their apparent failure to lead to an interesting con-
tinuum theory. Is it conceivable that we can kill two birds with one stone, ie.
cure the problem of degenerate quantum geometry by taking a path integral
over geometries with a physical, Lorentzian signature? Remarkably, this is in-
deed what happens in the quantum gravity theories in d < 4 which have already
been studied extensively. The way in which Lorentzian dynamical triangulations
overcome the problems mentioned above is the subject of the Sect. 5.

4 Geometry from Simplices

The use of simplicial methods in general relativity goes back to the pioneering
work of Regge [16]. In classical applications one tries to approximate a classical
space-time geometry by a triangulation, that is, a piecewise linear space obtained
by gluing together flat simplicial building blocks, which in dimension d are d-
dimensional generalizations of triangles. By “flat” I mean that they are isometric
to a subspace of d-dimensional Euclidean or Minkowski space. We will only be
interested in gluings leading to genuine manifolds, which therefore look locally
like an R?. A nice feature of such simplicial manifolds is that their geometric
properties are completely described by the discrete set {I2} of the squared lengths
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of their edges. Note that this amounts to a description of geometry without the
use of coordinates. There is nothing to prevent us from re-introducing coordinate
patches covering the piecewise linear manifold, for example, on each individual
simplex, with suitable transition functions between patches. In such a coordinate
system the metric tensor will then assume a definite form. However, for the
purposes of formulating the path integral we will not be interested in doing this,
but rather work with the edge lengths, which constitute a direct, regularized
parametrization of the space Geom(M) of geometries.

How precisely is the intrinsic geometry of a simplicial space, most impor-
tantly, its curvature, encoded in its edge lengths? A useful example to keep in
mind is the case of dimension two, which can easily be visualized. A 2d piecewise
linear space is a triangulation, and its scalar curvature R(x) coincides with the
so-called Gaussian curvature. One way of measuring this curvature is by parallel-
transporting a vector around closed curves in the manifold. In our piecewise-flat
manifold such a vector will always return to its original orientation unless it has
surrounded lattice vertices v at which the surrounding angles did not add up to
2w, but Y, a; = 27 — 6, for § # 0, see Fig. 4. The so-called deficit angle &
is precisely the rotation angle picked up by the vector and is a direct measure
for the scalar curvature at the vertex. The operational description to obtain the
scalar curvature in higher dimensions is very similar, one basically has to sum
in each point over the Gaussian curvatures of all two-dimensional submanifolds.
This explains why in Regge calculus the curvature part of the Einstein action is
given by a sum over building blocks of dimension (d — 2) which are simply the
objects dual to those local two-dimensional submanifolds. More precisely, the
continuum curvature and volume terms of the action become

1
5/ d?z \/]det g| YR — Z Vol(it" (d — 2)—simplex) &; , (6)
R

i€R
d%z /| det g — Z Vol(i'" d—simplex) (7)
R i€R

in the simplicial discretization. It is then a simple exercise in trigonometry to
express the volumes and angles appearing in these formulas as functions of the
edge lengths [;, both in the Euclidean and the Minkowskian case.
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The approach of dynamical triangulations uses a certain class of such sim-
plicial space-times as an explicit, regularized realization of the space Geom(M).
For a given volume Ny, this class consists of all gluings of manifold-type of a
set of Ny simplicial building blocks of top-dimension d whose edge lengths are
restricted to take either one or one out of two values. In the Euclidean case
we set [7 = a? for all i, and in the Lorentzian case we allow for both space-
and time-like links with (? € {—a?,a?}, where the geodesic distance a serves
as a short-distance cutoff, which will be taken to zero later. Coming from the
classical theory this may seem a grave restriction at first, but this is indeed not
the case. Firstly, keep in mind that for the purposes of the quantum theory we
want to sample the space of geometries “ergodically” at a coarse-grained scale of
order a. This should be contrasted with the classical theory where the objective
is usually to approximate a given, fixed space-time to within a length scale a.
In the latter case one typically requires a much finer topology on the space of
metrics or geometries. It is also straightforward to see that no local curvature
degrees of freedom are suppressed by fixing the edge lengths; deficit angles in
all directions are still present, although they take on only a discretized set of
values. In this sense, in dynamical triangulations all geometry is in the gluing of
the fundamental building blocks. This is dual to how quantum Regge calculus is
set up, where one usually fixes a triangulation 7" and then “scans” the space of
geometries by letting the /;’s run continuously over all values compatible with
the triangular inequalities.

In a nutshell, Lorentzian dynamical triangulations give a definite meaning to
the “integral over geometries”, namely, as a sum over inequivalent Lorentzian
gluings T over any number Ny of d-simplices,

. 1 . egge
| Dlgajesiel TS S s, (8)
Geom (M) Ter T

where the symmetry factor Cr = |Aut(T')| on the right-hand side is the order of
the automorphism group of the triangulation, consisting of all maps of T onto
itself which preserve the connectivity of the simplicial lattice. I will specify below
what precise class T of triangulations should appear in the summation.

It follows from the above that in this formulation all curvatures and volumes
contributing to the simplicial Regge action come in discrete units. This is again
easily illustrated by the case of a two-dimensional triangulation with Euclidean
signature, which according to the prescription of dynamical triangulations con-
sists of equilateral triangles with squared edge lengths +a?. All interior angles
of such a triangle are equal to 7 /3, which implies that the deficit angle at any
vertex v can take the values 2w — k,7/3, where k, is the number of triangles
meeting at v. As a consequence, the Einstein-Regge action assumes the simple
form3

3 Strictly speaking, the expression (9) in d > 3 is only correct for the Euclidean or
the Wick-rotated Lorentzian action. In the Lorentzian case one has several types of
simplices of a given dimension d, depending on how many of its links are time-like.
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Fig. 5. The two types of Minkowskian four-simplices in four dimensions

SReggE(T) = K/d_QNd_Q — Ideda (9)

where the coupling constants k; = k;(\,Gy) are simple functions of the bare
cosmological and Newton constants in d dimensions. Substituting this into the
path sum in (8) leads to

Z(Kd—2,Kd) Ze‘md}vd Z gira—2Na—2 Z C (10)
T

Na—2 TINg.Ng_o

The point of taking separate sums over the numbers of d- and (d—2)-simplices in
(10) is to make explicit that “doing the sum” is tantamount to the combinatorial
problem of counting triangulations of a given volume and number of simplices
of co-dimension two (corresponding to the last summation in (10)).* It turns
out that at least in two space-time dimensions the counting of geometries can
be done completely explicitly, turning both Lorentzian and Euclidean quantum
gravity into exactly soluble statistical models.

5 Lorentzian Nature of the Path Integral

It is now time to explain what makes our approach Lorentzian and why it there-
fore differs from previous attempts at constructing non-perturbative gravita-
tional path integrals. The simplicial building blocks of the models are taken to
be pieces of Minkowski space, and their edges have squared lengths 4+a? or —a?.
For example, the two types of four-simplices that are used in Lorentzian dynam-
ical triangulations in dimension four are shown in Fig. 5. The first of them has
four time-like and six space-like links (and therefore contains 4 time-like and 1
space-like tetrahedron), whereas the second one has six time-like and four space-
like links (and contains 5 time-like tetrahedra). Since both are subspaces of flat
space with signature (— + ++), they possess well-defined light-cone structures
everywhere.

Only after the Wick rotation will all links be space-like and of equal length (see
later). Nevertheless, I will use this more compact form for ease of notation.
4 The symmetry factor Cr is almost always equal to 1 for large triangulations.
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Fig. 6. At a branching point associated with a spatial topology change, light-cones get
“squeezed”

In general, gluings between pairs of d-simplices are only possible when the
metric properties of their (d — 1)-faces match. Having local light cones implies
causal relations between pairs of points in local neighbourhoods. Creating closed
time-like curves will be avoided by requiring that all space-times contributing to
the path sum possess a global “time” function ¢. In terms of the triangulation
this means that the d-simplices are arranged such that their space-like links all
lie in slices of constant integer ¢, and their time-like links interpolate between
adjacent spatial slices ¢t and t + 1. Moreover, with respect to this time, we will
not allow for any spatial topology changes®.

This latter condition is always satisfied in classical applications, where
“trouser points” like the one depicted in Fig. 6 are ruled out by the require-
ment of having a non-degenerate Lorentzian metric defined everywhere on M (it
is geometrically obvious that the light cone and hence g,,, must degenerate in at
least one point along the “crotch”). Another way of thinking about such config-
urations (and their time-reversed counterparts) is that the causal past (future)
of an observer changes discontinuously as her worldline passes near the singular
point (see [17] and references therein for related discussions about the issue of
topology change in quantum gravity).

Of course, there is no a priori reason in the quantum theory to not relax some
of these classical causality constraints. After all, as I stressed right at the outset,
path integral histories are not in general classical solutions, nor can we attribute
any other direct physical meaning to them individually. It might well be that
one can construct models whose path integral configurations violate causality
in this strict sense, but where this notion is somehow recovered in the resulting
continuum theory. What the approach of Lorentzian dynamical triangulations

5 Note that if we were in the continuum and had introduced coordinates on space-time,
such a statement would actually be diffeomorphism-invariant.
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has demonstrated is that imposing causality constraints will in general lead to a
different continuum theory. This is in contrast with the intuition one may have
that “including a few isolated singular points will not make any difference”. On
the contrary, tampering with causality in this way is not innocent at all, as was
already anticipated by Teitelboim many years ago [18].

I want to point out that one cannot conclude from the above that spatial
topology changes or even fluctuations in the space-time topology cannot be
treated in the formulation of dynamical triangulations. However, if one insists
on including geometries of variable topology in a Lorentzian discrete context,
one has to come up with a prescription of how to weigh these singular points
in the path integral, both before and after the Wick rotation. Maybe this can
be done along the lines suggested in [19]; this is clearly an interesting issue for
further research.

Having said this, we next have to address the question of the Wick rotation, in
other words, of how to get rid of the factor of ¢ in the exponent of (10). Without
it, this expression is an infinite sum (since the volume can become arbitrarily
large) of complex terms whose convergence properties will be very difficult to
establish. In this situation, a Wick rotation is simply a technical tool which — in
the best of all worlds — enables us to perform the state sum and determine its
continuum limit. Of course, the end result will have to be Wick-rotated back to
Lorentzian signature.

Fortunately, Lorentzian dynamical triangulations come with a natural notion
of Wick rotation, and the strategy I just outlined can be carried out explicitly
in two space-time dimensions, leading to a unitary theory (see Sect. 5.1 below).
In higher dimensions we do not yet have sufficient analytical control of the
continuum theories to make specific statements about the inverse Wick rotation.
Since we use the Wick rotation at an intermediate step, one can ask whether
other Wick rotations would lead to the same result. Currently this is a somewhat
academic question, since it is in practice difficult to find such alternatives. In
fact, it is quite miraculous we have found a single prescription for Wick-rotating
in our regularized setting, and it does not seem to have a direct continuum
analogue (for more comments on this issue, see [20,21]).

Our Wick rotation W in any dimension is an injective map from Lorentzian-
to Euclidean-signature simplicial space-times. Using the notation T for a sim-
plicial manifold together with length assignments (2 and [? to its space- and
time-like links, it is defined by

TS (T2 = = —a?}) B = (1=t B =a?)). ()

Note that we have not touched the connectivity of the simplicial manifold T,
but only its metric properties, by mapping all time-like links of T" into space-like

ones, resulting in a Fuclidean “space-time” of equilateral building blocks. It can
be shown [15] that at the level of the corresponding weight factors in the path
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integral this Wick rotation® has precisely the desired effect of rotating to the
exponentiated Regge action of the Euclideanized geometry,

ST W oS8T, (12)
The Euclideanized path sum after the Wick rotation has the form

1
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In the last equality I have used that the number of Lorentzian triangulations
of discrete volume Ny to leading order scales exponentially with Ny for large
volumes. This can be shown explicitly in space-time dimension 2 and 3. For
d = 4, there is strong (numerical) evidence for such an exponential bound for
Euclidean triangulations, from which the desired result for the Lorentzian case
follows (since W maps to a strict subset of all Euclidean simplicial manifolds).

From the functional form of the last line of (13) one can immediately read off
some qualitative features of the phase diagram, an example of which appeared
already earlier in Fig. 3. Namely, the sum over geometries Z°" converges for val-
ues Kq > /i;m of the bare cosmological constant, and diverges (ie. is not defined)
below this critical line. Generically, for all models of dynamical triangulations
the infinite-volume limit is attained by approaching the critical line £5*(kq—2)
from above, ie. from inside the region of convergence of Z°". In the process of
taking Ng — oo and the cutoff @ — 0, one obtains a renormalized cosmological
constant A through

(ko — K™) = a# A+ O(a"™). (14)

If the scaling is canonical (which means that the dimensionality of the renor-
malized coupling constant is the one expected from the classical theory), the
exponent is given by u = d. Note that this construction requires a positive bare
cosmological constant in order to make the state sum converge. Moreover, by
virtue of relation (14) also the renormalized cosmological constant must be posi-
tive. Other than that, its numerical value is not determined by this argument, but
by comparing observables of the theory which depend on A with actual physical
measurements.” Another interesting observation is that the inclusion of a sum

5 To obtain a genuine Wick rotation and not just a discrete map, one introduces a
complex parameter « in [? = —aa®. The proper prescription leading to (12) is then
an analytic continuation of « from 1 to —1 through the lower-half complex plane.

" The non-negativity of the renormalized cosmological coupling may be taken as a
first “prediction” of our construction, which in the physical case of four dimensions
is indeed in agreement with current observations.
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over topologies in the discretized sum (13) would lead to a super-exponential
growth of at least o« Ny! of the number of triangulations with the volume Ny.
Such a divergence of the path integral cannot be compensated by an additive
renormalization of the cosmological constant of the kind outlined above.

There are of course ways in which one can sum divergent series of this type,
for example, by performing a Borel sum. The problem with these stems from
the fact that two different functions can share the same asymptotic expansion.
Therefore, the series in itself is not sufficient to define the underlying theory
uniquely. The non-uniqueness arises because of non-perturbative contributions
to the path integral which are not represented in the perturbative expansion.®
In order to fix these uniquely, an independent, non-perturbative definition of
the theory is necessary. Unfortunately, for dynamically triangulated models of
quantum gravity, no such definitions have been found so far. In the context
of two-dimensional (Euclidean) quantum gravity this difficulty is known as the
“absence of a physically motivated double-scaling limit” [22]. The same issue has
recently been revived in d = 3 [23], where the situation is not any better.

Lastly, obtaining an interesting continuum limit may or may not require an
additional fine-tuning of the inverse gravitational coupling k4_2, depending on
the dimension d. In four dimensions, one would expect to find a second-order
transition along the critical line, corresponding to local gravitonic excitations.
The situation in d = 3 is less clear, but results obtained so far indicate that no
fine-tuning of Newton’s constant is necessary [24,25].

Before delving into the details, let me summarize briefly the results that have
been obtained so far in the approach of Lorentzian dynamical triangulations. At
the regularized level, that is, in the presence of a finite cutoff a for the edge
lengths and an infrared cutoff for large space-time volume, they are well-defined
statistical models of Lorentzian random geometries in d = 2,3,4. In particu-
lar, they obey a suitable notion of reflection-positivity and possess selfadjoint
Hamiltonians.

The crucial questions are then to what extent the underlying combinatorial
problems of counting all d-dimensional geometries with certain causal proper-
ties can be solved, whether continuum theories with non-trivial dynamics exist
and how their bare coupling constants get renormalized in the process. What
we know about Lorentzian dynamical triangulations so far is that they lead to
continuum theories of quantum gravity in dimension 2 and 3. In d = 2, there is
a complete analytic solution, which is distinct from the continuum theory pro-
duced by Euclidean dynamical triangulations. Also the matter-coupled model
has been studied. In d = 3, there are numerical and partial analytical results
which show that both a continuum theory exists and that it again differs from its
FEuclidean counterpart. Work on a more complete analytic solution which would
give details about the geometric properties of the quantum theory is under way.
In d = 4, the first numerical simulations are currently being set up. The challenge
here is to do this for sufficiently large lattices, to be able to perform meaningful

8 A field-theoretic example would be instantons and renormalons in QCD.
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measurements. So far, we cannot make any statements about the existence and
properties of a continuum theory in this physically most interesting case.

5.1 In Two Dimensions

The two-dimensional case serves as a nice illustration of the objectives of the
approach, many of which can be carried out in a completely explicit manner
[13]. There is just one type of building block, a flat Minkowskian triangle with
two time-like edges of squared edge lengths I? = —a? and one space-like edge
with {2 = a2. We build up a causal space-time from strips of unit height At = 1
(see Fig. 7), where t is an integer-valued discrete parameter that labels sub-
sequent spatial slices, i.e. simplicial submanifolds of codimension 1 which are
constructed from space-like links only. In the two-dimensional case these sub-
spaces are one-dimensional. We choose periodic boundary conditions, such that
the spatial “universes” are topologically spheres S* (other boundary conditions
are also possible, leading to a slight modification of the effective quantum Hamil-
tonian [26,27]). A spatial geometry at given ¢ is completely characterized by its
length I(t) € {1,2,3,...}, which (in units of the lattice spacing a) is simply the
number of spatial edges it contains.

One simplification occurring in two dimensions is that the curvature term in
the Einstein action is a topological invariant (and that therefore does not depend
on the metric), given by

/ d*z /| det g|R = 27, (15)
M

where x denotes the Euler characteristic of the two-dimensional space-time M.
Since we are keeping the space-time topology fixed, the exponential of 7 times
this term is a constant overall factor that can be pulled out of the path integral
and does not contribute to the dynamics. Dropping this term, we can write the
discrete path integral over 2d simplicial causal space-times as

—i Wick ~X
G)\(lina lout; t) = Z € ANz l> Z € ANQ? (16)
causal T W (T)
lin»lout’t Linaloutvt
t+2
—aa’
t+1
t e

Fig. 7. Two strips of a 2d Lorentzian triangulation, with spatial slices of constant ¢
and interpolating future-oriented time-like links
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where the weight factors depend now only on the cosmological (volume) term,
and A differs from A by a finite positive numerical factor. Each history entering
in the discrete propagator (16) has an in-geometry of length l;,, an out-geometry
of length I, and consists of ¢ steps. An important special case is the propagator
for a single step, which in its Wick-rotated form reads®

. ) ) 1 (41
Gs(l1, it =1) = ([o|Th) = Ala+l2) Z 1= )‘(““2)1 7 ( ! l 2).
Tili—ls 12 1

(17)

The second equation in (17) defines the transfer matrix 7' via its matrix elements
in the basis of the (improper) length eigenvectors |I). Knowing the eigenvalues of
the transfer matrix is tantamount to a solution of the general problem by virtue
of the relation

G5 (1, l23t) = (Ia|T"|1). (18)

Importantly, the propagator satisfies the composition property
oo
Gx(lth;tl +t2 ZG ll,l,tl lG (l,lz;tg), (19)
=1

where the sum on the right-hand side is over a complete set of intermediate
length eigenstates.

Next, we look for critical behaviour of the propagator G5 (that is, a non-
analytic behaviour as a function of the renormalized coupling constant) in the
limit as a — 0. Since there is only one coupling, the phase diagram of the theory
is just one-dimensional, and illustrated in Fig. 8. As can be read off from the
explicit form of the propagator,

G5 = z:e_S‘N2 Z 1= z:e_(j‘_xcmw2 x subleading(Nz), (20)

N3 TNy N3

the discrete sum over 2d geometries converges above some critical value Acrit > 0,
and diverges for A below this point. In order to attain a macroscopic physical
volume (V') := (a?N3) in the a — 0 limit, one needs to approach A**'* from above.

O ’irlt -
: > A

|
T

G diverges G converges

Fig. 8. The 1d phase diagram of 2d Lorentzian dynamical triangulations

9 This is the “unmarked” propagator, see [13,11] for details.
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It turns out that to get a non-trivial continuum limit, the bare cosmological
coupling constant has to be fine-tuned canonically according to

5\ _ Xcrit _ a2Aren + O(a?))' (21)

Note that the numerical value of A"t will depend on the details of the discretiza-
tion (for example, the building blocks chosen; see [26] for alternative choices), the
so-called non-universal properties of the model which do not affect the quantum
dynamics of the final continuum theory. At the same time, the counting variables
[ and t are taken to infinity while keeping the dimensionful quantities L := al
and T := at constant. The renormalized propagator is then defined as a function
of all the renormalized variables,

— 22
(22

Ga(L1, L2;T) == lim a”Gerie 24

—0

(L1 Ly T)

which also contains a multiplicative wave function renormalization. The final
result for the continuum path integral of two-dimensional Lorentzian quantum
gravity is obtained by an inverse Wick rotation of the continuum proper time T’
to i1 from the Euclidean expression and is given by

(L, Louts T) = e~ 0MGVATV Ay Ln) YALinLow 2V ALin Lous
o en sinh(i\/ZT) sinh(i\/ZT) ’
(23)

where I; denotes the Bessel function of the first kind.

What is the physics behind this functional expression? In two dimensions,
there is not much “physics” in the sense that the classical Einstein equations
are empty. This renders meaningless the question of a classical limit of the 2d
quantum theory; whatever dynamics there is will be purely “quantum”. Figure 9
shows a typical two-dimensional quantum universe: the compactified direction
is “space”, and the vertical axis is “time”. It illustrates the typical development
of the ground state of the system over time, as generated by a Monte-Carlo
simulation of almost 19.000 triangles.

Since the theory has been solved analytically, we also know the explicit form
of the effective quantum Hamiltonian, namely,

- d? d

H= LdL2 2dL + AL. (24)
This operator is selfadjoint on the Hilbert space L?(R., LdL) and generates a
unitary evolution in the continuum proper time 7. The Hamiltonian consists of
a kinetic term in the single geometric variable L (the size of the spatial universe)
and a potential term depending on the renormalized cosmological constant. Its
spectrum is discrete,

E,=2n+1)VA, n=0,1,2,... (25)
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Fig. 9. A typical two-dimensional Lorentzian space-time, with volume N2 = 18816 and
a total proper time of t = 168 steps

and one can compute various expectation values, for example,

n+1 3 (n+1)2

<L>nzﬁv ( 2>n:§ A

(26)

Since there is just one dimensionful constant, with [A] = length™2, all dimen-
sionful quantities must appear in appropriate units of A.

Another useful way of characterizing the continuum theory is via certain
critical exponents, which in the case of gravitational theories are of a geometrical
nature. The Hausdorff dimension dy describes the scaling of the volume of a
geodesic ball of radius R as a function of R. This very general notion can be
applied to a fixed metric space, but for our purposes we are interested in the
ensemble average over the entire “sum over geometries”, that is, the leading-
order scaling behaviour of the expectation value'®

(V(R)) o< R (27)

The Hausdorff dimension is a truly dynamical quantity, and is not a priori
the same as the dimensionality of the building blocks that were used to construct

10 For the Lorentzian theory, “geodesic distance” refers to the length measurements
after the Wick rotation.
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the individual discrete space-times in the first place. It may even depend on the
length scale of the radial distance R. Remarkably, dy can be calculated analyt-
ically in both Lorentzian and Euclidean 2d quantum gravity (see, for example,
[28]). The latter, also known as “Liouville gravity”, can be obtained by per-
forming a sum over arbitrary triangulated Euclidean two-geometries (with fixed
topology S?), and not just those which correspond to a Wick-rotated causal
Lorentzian space-time. One finds

dg =2 (Lorentzian) and dy =4 (Euclidean). (28)

The geometric picture associated with the non-canonical value of dg in the Eu-
clidean case is that of a fractal geometry, with wildly branching “baby universes”.
This branching behaviour is incompatible with the causal structure required in
the Lorentzian case, and the geometry of the Lorentzian quantum ground state
is much better behaved, although it is by no means smooth as we have already
seen.

We conclude that the continuum theories of 2d quantum gravity with Eu-
clidean and Lorentzian signature are distinct. They can be related by a somewhat
complicated renormalization procedure which one may think of as “integrating
out the baby universes” [29], which is not at all as simple as “sticking a factor
of ¢ in the right place”. In a way, this is not unexpected in view of the fact that
(the spaces of) Euclidean and Lorentzian geometries are already classically very
different objects. I am not claiming that from the point of view of 2d quantum
gravity, one signature is better than the other. This seems a matter of taste,
since neither theory describes any aspects of real nature. Nevertheless, what we
have shown is that imposing causality constraints at the level of the individual
histories in the path integral changes the outcome radically, a feature one may
expect to generalize to higher dimensions.

Let me comment at this point about the role of the integer ¢ which labels the
time steps in the propagator (18) and its higher-dimensional analogues. In the
first place, it is one of the many discrete parameters that label the regularized
space-times in a coordinate-invariant way. In any given Minkowskian building
block, one may introduce proper-time coordinates whose value coincides (up
to a constant factor depending on the type of the building block) with the
discrete time ¢ on the spatial slices. However, this is where the analogue with
continuum proper time ends, since it is in general impossible to extend such
coordinate patches over more than one time step, because of the presence of
curvature singularities. Next, there is no claim that the propagator with respect
to t or its continuum analogue T has a distinguished physical meaning, despite
being invariantly defined. Nevertheless, we do believe strongly that it contains
all physical information about the “quantum geometry”. In other words, all
observables and propagators (which may depend on other notions of “time”)
can in principle be computed from our propagator in ¢.!' This can of course be
difficult in practice, but this is only to be expected.

11 A related result has already been demonstrated for the proper-time propagator in
two-dimensional Fuclidean quantum gravity [30].
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Coming from Euclidean quantum gravity, there are specific reasons for look-
ing at the behaviour of the matter-coupled theory in two dimensions. The cou-
pling of matter fields to Lorentzian dynamical triangulations can be achieved
in the usual manner by including for each given geometry 7' in the path inte-
gral a summation over all matter degrees of freedom on 7', resulting in a double
sum over geometric and matter variables. For example, adding Ising spins to 2d
Lorentzian gravity is described by the partition function

ZefoQ Z Z e2 F i O (29)

1
2 {ov=il)

where the last sum on the right is over the spin configurations of the Ising model
on the triangulation T. The analogous model on Euclidean triangulations has

been solved exactly [31], and its continuum matter behaviour is characterized
by the critical exponents

a=-1, pB=05 ~vy=2 (Euclidean) (30)

for the specific heat, the magnetization and the magnetic susceptibility respec-
tively. These differ from the ones found for the Ising model on a fixed, flat lattice,
the so-called Onsager exponents. The transition here is third-order, reflecting the
influence of the fractal background on which the matter is propagating.

The same Ising model, when coupled to Lorentzian geometries according to
(29), has not so far been solved exactly, but its critical matter exponents have
been determined numerically and by means of a diagrammatic high-T" expansion
[32] and agree (within error bars) with the Onsager exponents, that is,

a=0, [F=0125 ~=1.75. (Lorentzian) (31)

So, interestingly, despite the fluctuations of the geometric ensemble evident in
Fig. 9, the conformal matter behaves as if it lived on a static flat lattice. This
indicates a certain robustness of the Onsager behaviour in the presence of such
fluctuations. Does it also imply there cannot be any back-reaction of the matter
on the geometry? In order to answer this question, Lorentzian quantum gravity
was coupled to “a lot of matter”, in this case, eight copies of Ising models [33].
The partition function is a direct generalization of (29). For a given triangulation,
there are 8 independent Ising models, which interact with each other only via
their common interaction with the ensemble of geometries.

Looking again at a typical “universe”, depicted in Fig. 10, its geometry is now
significantly changed in comparison with the case without matter. Part of it is
squeezed down to a spatial universe of minimal size, with the remainder forming
a genuinely extended space-time. A measurement of the critical behaviour of the
matter on this piece of the universe again produces values compatible with the

Onsager exponents!!? This is a very interesting result from the point of view

12 The same would of course not hold for the degenerate part of the space-time which
is effectively one-dimensional.
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Fig. 10. A typical two-dimensional Lorentzian geometry in the presence of eight Ising
models, for volume Ny = 73926 and a total proper time ¢t = 333

of Liouville gravity, which does not seem to produce meaningful matter-coupled
models beyond a central charge of one, the famous ¢ = 1 barrier. (A model with
n Ising spins corresponds to central charge ¢ = n/2.) We conclude that causal
space-times are better carrier spaces for matter fields in 2d quantum gravity.

5.2 In Three Dimensions

Having discovered the many beautiful features of being Lorentzian in two di-
mensions, the next challenge is to solve the dynamically triangulated model
in three dimensions and understand the geometric properties of the continuum
theory it gives rise to. This will bring us a step closer to our ultimate goal, the
four-dimensional quantum theory.

Despite its reputation as an “exactly soluble theory”, many aspects of quan-
tum gravity in 2+1 dimensions remain to be understood. There is still an unre-
solved tension between (i) the gauge (Chern-Simons) formulation in which the
constraints can be solved in a straightforward way before or after quantization,
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leading to a quantized finite-dimensional phase space, and (ii) a path integral
formulation in terms of “g,,” which seems just about as intractable as the four-
dimensional theory, and is power-counting non-renormalizable.

Since Lorentzian dynamical triangulations are really a regularized and non-
perturbative version of the latter, a solution of the model should help to bridge
this gap. Part of the trouble with gravitational path integrals is the “conformal-
factor problem”, which makes its first appearance in d = 3.!® The conformal part
of the metric, ie. the mode associated with an overall scaling of all components of
the metric tensor, contributes to the action with a kinetic term of the wrong sign.
This is most easily seen by considering just the curvature term of the Einstein
action,

S:/ddx\/g(RJr...), (32)

and performing a conformal transformation g,,, — g:w = e¢gW on the metric.
This is not a gauge transformation and leads to a change

S8 = /ddx\/y(—(am)? o) (33)

in the action, with the anticipated negative kinetic term for the conformal field ¢.
In the perturbative theory, this is not a real problem since the conformal term can
be isolated explicitly and eliminated. However, the ensuing unboundedness of the
action spells potential trouble for any non-perturbative geometric path integral
(that is either Euclidean from the outset, or has been Euclideanized by a suitable
Wick rotation), since the Euclidean weight factors exp(—S) =exp(¢? +...) can
become arbitrarily large. We will see that this problem arises in our approach
too, and how it is resolved non-perturbatively.

First to some basics of Lorentzian dynamical triangulations in three dimen-
sions. The construction of space-time manifolds is completely analogous to the
2d case. Slices of constant integer ¢ are now two-dimensional space-like, equilat-
eral triangulations of a given, fixed topology ()X, and time-like edges interpolate
between adjacent slices ¢t and ¢ + 1. The building blocks are given by two types
of tetrahedra: one of them has three space-like and three time-like edges, and
shares its space-like face with a slice ¢ =const, the other has four time-like and
two space-like edges, the latter belonging to two distinct adjacent spatial slices
(Fig. 11). We often denote the different tetrahedral types by the numbers of
vertices (n,m) they have in common with two subsequent slices, which in three
dimensions can take the values (3,1) (together with its time inverse (1,3)) and
(2,2). Within a given sandwich At = 1, a (2,2)-tetrahedron can be glued to other
(2,2)’s, as well as to (3,1)- and (1,3)-tetrahedra, but a (1,3) can never be glued
directly to a (3,1), since their triangular faces do not match.

13° A more detailed account of the history of this problem in quantum gravity can be
found in [20].
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t+1

(1,3) 2,2)

Fig. 11. The three types of tetrahedral building blocks used in 3d Lorentzian gravity

The simplicial action after the Wick rotation reads

N.(T)
"IN (T)

S = —IilNl(T) + HgNg(T) = N3(T) (— + /{3)7 (34)

where the latter form is useful in the discussion of Monte-Carlo simulations,
which are usually performed at (approximately) constant volume. The phase
structure of the 3d model with spherical spatial topology, (?) X = 52, has been
determined with the help of numerical simulations [24]. As expected, there is
a critical line k§* (k7). After fine-tuning to this line, there is no further phase
transition'? along it as a function of the inverse Newton coupling ;.

Where is our conformal-mode problem? If we keep the total volume N3 fixed,
the Euclidean action is not actually unbounded, but because of the nature of our
regularization restricted by the range of the “order parameter” £ := N; /N3 which
kinematically can only take values in the interval [1,5/4] [15]. This by no means
implies we have removed the problem by hand. Firstly, one can explicitly identify
configurations which minimize the action (34) and, secondly, the unboundedness
could well be recovered upon taking the continuum limit. However, what happens
dynamically is that even in the continuum limit (as far as can be deduced from
the simulations [24,35]), £ stays bounded away from its “conformal maximum”,
which means that the quantum theory of Lorentzian 3d gravity is not dominated
by the dynamics of the conformal mode. Configurations with minimal action
exist, but they are entropically suppressed. This is clearly a non-perturbative
effect which involves not just the action, but also the “measure” of the path
integral. A similar argument of a non-perturbative cancellation between certain
Faddeev-Popov determinants and the conformal divergence can be made in a
gauge-fixed continuum computation [20].5

14 The first simulations did report a first-order transition at large w1, but this was
presumably a numerical artefact; upon slightly generalizing the class of allowed ge-
ometries, this transition has now disappeared [34].

5 Of course, since the continuum path integral cannot really be done (strictly speaking,
not even in two dimensions), the cancellation argument has to rely on certain (plau-
sible) assumptions about the behaviour of the path integral under renormalization.
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0 5 10 15 20 25 30

Fig.12. A typical three-dimensional universe, represented as a distribution of two-
volumes N2 (t) of spatial slices at proper times t € [0, 32], at ko = 5.0

This result is reassuring, because it shows that (Euclideanized) path integrals
are not doomed to fail, if only they are set up properly and non-perturbatively.
It also agrees with the expectation one has from canonical treatments of the
theory where it is obvious that the conformal mode is not a propagating degree
of freedom.

What can we say about the quantum dynamics of 3d Lorentzian gravity
and the geometry of its ground state? Fig. 12 shows a snapshot of a typical
“universe” produced by the Monte-Carlo simulations. The only variable plotted
as a function of the discrete time t is the two-volume of a spatial slice. What has
been determined are the macroscopic scaling properties of this universe; they
are in agreement with those of a genuine three-dimensional compact space-time,
its time extent scaling o N:,}/?’ and its spatial volume o N32/3.

Current efforts are directed at trying to analyze the detailed microscopic
geometric properties of the quantum universe, its effective quantum Hamilto-
nian, and at gaining an explicit analytic understanding of the conformal-factor
cancellation. One important question is how exactly the conformal mode decou-
ples from a propagator like G(g(in)7 g("“t)), although it appears among the labels
parametrizing the in- and out-geometries g. One does not in general expect to
be able to make much progress in solving a three-dimensional statistical model
analytically. However, we anticipate some simplifying features in the case of pure
three-dimensional gravity, which is known to describe the dynamics of a finite
number of physical parameters only.
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There are two main strands of investigation, one for space-times R x 52 and
using matrix model techniques, and the other for space-times R x T2 with flat
toroidal spatial slices. An observation that is being used in both is the fact that
the combinatorics of the transfer matrix, crucial to the solution of the full prob-
lem, is encoded in a two-dimensional graph. The transfer matrix T, defined in
analogy with (17), describes all possible transitions from one spatial 2d triangu-
lation to the next. Such a transition is nothing but a three-dimensional sandwich
geometry [t,t 4 1], and is completely characterized by the two-dimensional pat-
tern that emerges when one intersects this geometry at the intermediate time
t 4+ 1/2. One associates with each time-like triangle a coloured edge where the
triangle meets the (¢ + 1/2)-surface. A blue edge belongs to a triangle whose
base lies in the triangulation at time ¢, and a red edge denotes an upside-down
triangle with base at ¢ + 1. The intersection pattern can therefore be viewed as
a combined tri- and quadrangulation, made out of red triangles, blue triangles,
and squares with alternating red and blue sides.

Graphs of this type, or equivalently their duals, are also generated by the
large-N limit of a hermitian two-matrix model with partition function

Z(a1, 02, 0) = /dANxN dByyy e N TEAM 3B a1’ auBI-pABAD) - (35)

The cubic and quartic interaction terms in the exponent correspond to the tri-
and four-valent intersections of the dual bi-coloured spherical graph character-
izing a piece of space-time. In fact, as was shown in [36], the matrix model gives
an embedding of the gravitational model we are after, since it generates more
graphs than those corresponding to regular three-dimensional geometries. Inter-
estingly, from a geometric point of view these can be interpreted as wormhole
configurations. Some explicit examples are shown in Fig. 13; the graphs consist
of squares since they are taken from a “pyramid” variant of three-dimensional
gravity, cf. footnote 16. Blue and red edges are in these pictures represented by
solid and dashed lines.

The matrix model has been solved analytically for the diagonal case a; = as
[37], and its second-order phase transition separates the phase where wormholes
are rare from that where they are abundant.!'® One therefore concludes that
Lorentzian gravity as given by dynamical triangulations should correspond to
the former.

It turns out that to extract information about the quantum Hamiltonian of
the system, one must consider the off-diagonal case where the two a-couplings
are different. Only in that case can one distinguish which part of the intersection
graph comes from “below” (time t) and which from “above” (time ¢ + 1). The
colouring of the two-dimensional graph is really the memory of the original
three-dimensional nature of the problem. It turns out that even for a’s which

16 More precisely, these results apply to a variant of (35) where the cubic terms A3 and
B? have been replaced by quartic terms A* and B*. Geometrically, this corresponds
to using pyramids instead of the tetrahedral building blocks, a difference that is
unlikely to affect the continuum theory.
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(a) (b)

Fig. 13. Examples of quadrangulations at ¢ + 1/2 corresponding to wormholes at time
t. Shrinking the dashed links to zero, one obtains the two-geometries at the bottom.
The thick dashed lines at the top are contracted to points where wormholes begin or
end

differ only infinitesimally, this is a highly non-trivial problem. Making a natural
ansatz for the analytic structure of the eigenvalue densities that appear in the
partition function, a consistent set of equations has now been found, which will
hopefully yield more details about the effective Hamiltonian of the quantum
system [38]. Since there are no non-trivial Teichmiiller parameters in the sphere
case, what one might expect on dimensional grounds is a differential operator in
the two-volume V5 of the kind [34]

. d?
H = 7C1GN‘/2d7‘/22 — CQAVQ, (36)

where the ¢; are numerical constants.

A second direction of attack are cosmological models of 3d gravity. They are
symmetry-reduced in the sense that only a restricted class of spatial geometries is
allowed at integer values of ¢, and also additional conditions may be imposed on
the interpolating three-dimensional Lorentzian geometries. All models studied
so far have flat tori as their spatial slices, the simplest case with a non-trivial
physical configuration space, spanned by two real Teichmiiller parameters (apart
from the two-volume of the spatial slices). Flat two-dimensional tori can be
obtained by suitably identifying the boundaries of a piece of the triangulated
plane. Since we are working with equilateral triangles, this amounts to a piece of
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regular triangulation where exactly six triangles meet at every (interior) vertex
point.

Even if the spatial slices have been chosen as spaces of constant curvature, this
still leaves a number of possibilities of how the space-time in between can be filled
in. One extreme choice would be to allow any intermediate three-geometry. By
this we would probably not gain much in terms of simplifying the model, which
obviously is a major motivation behind going “cosmological”. By contrast, the
first model studied had very simple interpolating geometries. The most trans-
parent realization of this model is in terms of (4,1)- and (1,4)-pyramids rather
than the (3,1)- and (1,3)-tetrahedra (a modification we already encoutered in
the discussion of the matrix model), so that the spatial slices at integer-t are
regular square lattices [39]. The corresponding 2d building blocks of the inter-
section graph at half-integer ¢ are now blue squares, red squares and — as before
— red-and-blue squares. If the (cut-open) tori at times ¢; = ¢ and to = ¢t + 1
consist of I; columns and m; rows, i = 1,2, any allowed intersection pattern
is a rectangle of size (I1 + l3) X (m1 + ms2). An example is shown in Fig. 14.
The trouble with this simple model is that it does not have enough entropy: the
number of possible interpolating sandwiches between two neighbouring spatial

slices is given by
I +1
entropy o < Lt 2) <m1 + m2>’ (37)
ll mi

which is roughly speaking the square of the entropy of the two-dimensional
Lorentzian model, cf. (17). This is not enough in the sense that the number of
“microstates” in a piece of space-time At = 1 scales asymptotically only with the
linear size of the tori, ie. like exp(c-length). Such a behaviour cannot “compete”
with the exponential damping exp(c’-area) coming from the cosmological term
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Fig.14. The cosmological “pyramid model” has regular slices at both integer and
half-integer times.
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in the action. Thus, the only space-times that will not be exponentially damped
in the continuum limit will be those whose spatial slices are essentially one-
dimensional. This clearly is a limit that has nothing to do with the description
of 3d quantum geometries we are after. In particular, the model is unsuitable
for studying the conformal-mode cancellation.

I have included a discussion of this model because it suggests a potential prob-
lem for the path integral in models that impose severe symmetry constraints be-
fore quantization. Prime examples of this are continuum mini-superspace models
with only a finite number of dynamical degrees of freedom, whose path integral
formulations are riddled with difficulties. Lorentzian dynamically triangulated
models are more flexible concerning the imposition of such constraints.

The next cosmological model I will consider has also flat tori at integer-, but
allows for more general geometries in between the slices. As a consequence, it
does not suffer from the problem described above. The easiest way of describing
the geometry of this so-called hexagon model is by specifying the intersection
patterns at half-integer ¢. One such pattern can be thought of as a tiling of
a regular piece of a flat equilateral triangulation with three types of coloured
rhombi. The colouring of the rhombi again encodes the orientation in three
dimensions of the associated tetrahedral building block. A blue rhombus stands
for a pair of (3,1)-tetrahedra, glued together along a common time-like face,
a red rhombus for a pair of (1,3)-tetrahedra, and the rhombus with alternating
blue and red sides is a (distorted) representation of a (2,2)-tetrahedron. Opposite
sides of the regular triangular “background lattice” are to be identified to create
the topology of a two-torus. The beautiful feature of this model is the fact that
any complete tiling of this lattice by matching rhombic tiles automatically gives
rise to flat two-tori on the two spatial boundaries of the associated sandwich
[t,t + 1] [40].

After the Wick rotation, the one-step propagator of this model can be written
as

A _ (1) ,(2)
G(gM,g?; At =1) = (4P| T|gM) = (g, g?) e 970 (38)

We note here a distinguishing property of the hexagon model, namely, a factor-
ization of G into a Boltzmann weight exp(—S) and a combinatorial term C which
counts the number of distinct sandwich geometries with fixed toroidal bound-
aries ¢(Y and ¢®, both of which depend on the boundary data only, and not
on the details of the three-dimensional triangulation of its interior. The leading
asymptotics of the entropy term is determined by the combinatorics of a model
of so-called vicious walkers. The walkers are usually represented by an ensemble
of paths that move up a tilted square lattice, taking steps either diagonally to
the left or to the right, in such a way that at most one path passes through any
one lattice vertex.

The paths of the hexagon model are sequences of rhombi that have been
put down on the background lattice so they lie on one of their sides (types B
and C in Fig. 15). Because of the toroidal boundary conditions, such B-C-paths
wind around the background lattice in the “vertical direction” (on figures such



A Discrete History of the Lorentzian Path Integral 165

A

Fig.15. A rhombus can be put onto the triangular background lattice with three
different orientations, A, B or C
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Fig.16. An example of a periodic tiling of the triangular background lattice. The
shaded region is a B-C-path with winding number (0,1)

as Fig. 16), which for the purposes of solving the 2d statistical model of vicious
walkers we may think of as the time direction. The transfer matrix of this model
can be diagonalized explicitly. Let us denote the number of vicious-walker paths
by w/2, the width of the background lattice by I + w and its height (in time
direction) by m, all in lattice units. It turns out that for the simplest version of
the model we can set m = [ without loss of generality. We are now interested in
the number N (I, w) which solves the following combinatorial problem:

Given two even integers | and w, how many ways N(I,w) are there of
drawing w/2 non-intersecting paths of winding number (0,1) (in the
horizontal and vertical direction) onto a tilted square lattice of width
l+w and height [, with periodic boundary conditions in both directions?

Denoting by A = (A1,...,Ay/2), A € {0,2,4,...,1 +w = 0}, the vector of
positions of the vicious walkers along the horizontal axis, the eigenvectors of the
transfer matrix have the form

1 |
W) = ——=det[z)], 1<ij< % (39)
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where the complex numbers z; are given by

ke l
zj:e”lﬁe”ﬁ, 0<ki<ky-- <kw/2<¥—1 (40)

This result can be understood by observing that for a single walker in the same

representation, taking a step to the right (left) is represented by a multiplication
(division) by z, that is,

TN =20 = 2\ =T =v(\+1). (41)

The expression (39) is an appropriately antisymmetrized and normalized version
for the case of several walkers. In this representation, the transfer matrix!” takes
the form

w/2
TVW H + 2+ Zz (42)

The final result in the limit as both [, w — oo, with a fixed ratio « := is to

leading order given by

_w
I+w?’

lw

a/2
N(lw)=C(a)2z, C(a)=-exp lz /0 dy log(2 cos Wy)] . (43)

This shows that the hexagon model has indeed enough entropy, since the number
of possible intermediate geometries scales exponentially with the area, and not
just with the linear dimension of the tori involved.

Another attractive feature of the model is that the Teichmiiller parameters
T(t) = 71(t) + im2(t) of the spatial tori at time ¢ can be written explicitly as
functions of the discrete variables describing the Lorentzian simplicial space-
time. It turns out that the real parameter 71 is not dynamical, so that the wave
functions of the model are labelled by just two numbers, the two-volume v(t)
and 75(t).'® Expanding the euclideanized action for small At = a, one finds

S:Xv—fca%((B)Q—(E)2>+..., (44)
v T2
where X and k are proportional to the bare cosmological and inverse Newton’s
constants. This has the expected modular-invariant form, with a standard kinetic
term for 79, and one with the wrong sign for the area v. Of course, this is our
old friend, the (global) conformal mode!

What we are after is the “effective action”, containing contributions from

both (44) and the state counting, namely,

S .= § — log(entropy) = v(A — C)+ 777 (45)

17 This is the transfer matrix corresponding to a “double step” in time; a single step
would lead to a position vector with odd A;’s.

'8 The model can be generalized to have non-trivial 7; by allowing for B-C-paths with
higher winding numbers [41].
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In order to say anything about the cancellation or otherwise of the conformal
divergence, we need more than just the leading-order term (43) of the entropy
of the hexagon model. Unlike the exponential term, these subleading terms are
sensitive to the colouring of the intersection graph, and efforts are under way to
solve the corresponding vicious-walker problem [41].

5.3 Beyond Three Dimensions

As already mentioned earlier, there is not much to report at this stage on the
nature of the continuum limit in the physical case of four dimensions. The
first Monte-Carlo simulations are just being set up, but any conclusive state-
ments are likely to involve a combination of analytical and numerical argu-
ments. Also it should be kept in mind that, unlike in previous simulations of
four-dimensional Fuclidean dynamical triangulations, the space-times involved
here are not isotropic. Measurements of two-point functions, say, will be sensitive
to whether the distances are time- or space-like, and therefore more computing
power will be necessary to achieve a statistics comparable to the Euclidean case.

One way of making progress in four dimensions will be by studying geome-
tries with special symmetries, along the lines of the 3d cosmological models
discussed above. It should be noted that popular symmetry reductions, such
as spherical or cylindrical symmetry, cannot be implemented ezactly because of
the nature of our discretization. They can at best be realized approximately,
which in view of the results of the previous subsection may be a good thing
since it will ensure that a sufficient number of microstates contributes to the
state sum. An important application in this context is the construction of a
path integral for spherical black hole configurations. Already the formulation
of the problem has a number of challenging aspects, for example, the inclusion
of non-trivial boundaries, an explicit realization of the (near-)spherical symme-
try, and of a “horizon finde”, some of which have been addressed and solved in
[42,43]. It will be extremely interesting to see what Lorentzian dynamical trian-
gulations have to say about the famous thermodynamic properties of quantum
black holes from a non-perturbative point of view. These questions are currently
under study.

6 Brief Conclusion

As we have seen, the method of Lorentzian dynamical triangulations constitutes
a well-defined regularized framework for constructing non-perturbative theories
of quantum gravity. Technically, they can be characterized as regularized sums
over simplicial random geometries with a time arrow and certain causality prop-
erties. In dimension d < 4, interesting continuum limits have been shown to exist.
Their geometric properties have been explored, almost exhaustively in two, and
partly in three dimensions. Both are examples of Lorentzian quantum gravita-
tional theories which as continuum theories are inequivalent to their Euclidean
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counterparts, and the relation between the two is not that of some simple an-
alytic continuation of the form ¢ — ¢t. The origin of the discrepancy between
quantum gravity with Euclidean and Lorentzian signature lies in the absence of
causality-violating branching points for geometries in the latter. Since in dimen-
sion d > 3, the approach of Fuclidean dynamical triangulations seems to have
serious problems, I am greatly encouraged by the fact that the 3d Lorentzian
model is better behaved. Of course, it still needs to be verified explicitly that
the imposition of causality conditions is indeed the correct remedy to cure the
four-dimensional theory of its apparent diseases. One step in that direction will
be to show that the non-perturbative cancellation mechanism for the conformal
divergence is also present in d = 4.

Two warnings may be in order at this point. Firstly, there is a priori noth-
ing discrete about the quantum gravitational theories this method produces.
Its “discreteness” refers merely to the intermediate regularization that was cho-
sen to make the non-perturbative path sums converge.'® In particular, there is
nothing in the construction suggesting the presence of any kind of “fundamental
discreteness”, as has been found in canonical models of four-dimensional quan-
tum gravity [44-46]. Secondly, one should refrain from trying to interpret the
discrete expressions of the regularized model as some kind of approximation of
the “real” quantum theory before one has shown the existence of a continuum
limit which (at least in dimension four) is an interacting theory of geometric
degrees of freedom.

In conclusion, I have described here a possible path for constructing a non-
perturbative quantum theory of gravity, by applying standard tools from both
quantum field theory and the theory of critical phenomena to theories of fluctu-
ating geometry. Investigation of the continuum theories in two and three space-
time dimensions has already led to exciting new insights into the relation between
the Lorentzian and Euclidean quantum theories, and ways of understanding and
resolving the conformal sickness of gravitational path integrals, as well as bring-
ing in new tools from combinatorics and statistical mechanics. I hope this has
convinced you that the method of Lorentzian dynamical triangulations stands a
good chance of throwing some light on the ever-elusive quantization of general
relativity!
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A Discrete History of the Lorentzian Path Integral 169

References

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

J. Ambjgrn: Simplicial Fuclidean and Lorentzian quantum gravity, plenary talk
given at GR16 [gr-qc/0201028]

R. Loll: Discrete Lorentzian quantum gravity, Nucl. Phys. B (Proc. Suppl.) 94
(2001) 96-107 [hep-th/0011194]

C. Rovelli: Loop quantum gravity, Living Rev. Rel. 1 (1998),

http://www .livingreviews.org [gr-qc/9710008]

T. Thiemann: Introduction to modern canonical quantum general relativity [gr-
qc/0110034]

D. Oriti: Spacetime geometry from algebra: Spin foam models for non-perturbative
quantum gravity, Rept. Prog. Phys. 64 (2001) 1489-1544 [gr-qc/0106091]

C. Grosche and F. Steiner, Handbook of Feynman path integrals, Springer tracts in
modern physics 145, Springer, Berlin, 1998

M. Reed and B. Simon, Methods of modern mathematical physics, vol.2: Fourier
analysis, self-adjointness, Academic Press, San Diego, 1975

S.W. Hawking: in General relativity: an Einstein centenary survey, ed. S.W. Hawk-
ing and W. Israel (Cambridge University Press, Cambridge, 1979) 746-789

R.M. Williams: Recent progress in Regge calculus, Nucl. Phys. B (Proc. Suppl.) 57
(1997) 73-81 [gr-qc/9702006]

J. Ambjgrn, B. Durhuus and T. Jonsson, Quantum geometry, Cambridge Mono-
graphs on Mathematical Physics, Cambridge University Press, Cambridge, UK,
1997

J. Ambjgrn, J. Jurkiewicz and R. Loll: Lorentzian and Euclidean quantum gravity
— analytical and numerical results, in: M-Theory and Quantum Geometry, eds. L.
Thorlacius and T. Jonsson, NATO Science Series (Kluwer Academic Publishers,
2000) 382-449 [hep-th/0001124]

R. Loll: Discrete approaches to quantum gravity in four dimensions, Living Reviews
in Relativity 13 (1998), http://www.livingreviews.org [gr-qc/9805049]

J. Ambjgrn and R. Loll: Non-perturbative Lorentzian quantum gravity, causality
and topology change, Nucl. Phys. B 536 (1998) 407-434 [hep-th/9805108]

J. Ambjgrn, J. Jurkiewicz and R. Loll: A nonperturbative Lorentzian path integral
for gravity, Phys. Rev. Lett. 85 (2000) 924-927 [hep-th/0002050]

J. Ambjgrn, J. Jurkiewicz and R. Loll: Dynamically triangulating Lorentzian quan-
tum gravity, Nucl. Phys. B 610 (2001) 347-382 [hep-th/0105267]

T. Regge: General relativity without coordinates, Nuovo Cim. A 19 (1961) 558-571
F. Dowker: Topology change in quantum gravity, Contribution to the proceedings of
Stephen Hawking’s 60th birthday conference, Cambridge Jan 2002 [gr-qc/0206020]
C. Teitelboim: Causality versus gauge invariance in quantum gravity and super-
gravity, Phys. Rev. Lett. 50 (1983) 705-708

J. Louko and R.D. Sorkin: Complex actions in two-dimensional topology change,
Class. Quant. Grav. 14 (1997) 179-204 [gr-qc/9511023]

A. Dasgupta and R. Loll: A proper-time cure for the conformal sickness in quantum
gravity, Nucl. Phys. B 606 (2001) 357-379 [hep-th/0103186]

A. Dasgupta: The real Wick rotations in quantum gravity, JHEP 0207 (2002) 062
[hep-th/0202018]

J. Ambjgrn and C.F. Kristjansen: Nonperturbative 2-d quantum gravity and Hamil-
tonians unbounded from below, Int. J. Mod. Phys. A 8 (1993) 1259-1282 [hep-
th/9205073]



170

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.
42.

43.

44.

Renate Loll

L. Freidel and D. Louapre: Non-perturbative summation over 3D discrete topologies
[hep-th/0211026]

J. Ambjgrn, J. Jurkiewicz and R. Loll: Nonperturbative 8d Lorentzian quantum
gravity, Phys. Rev. D 64 (2001) 044011 [hep-th/0011276]

J. Ambjgrn, J. Jurkiewicz and R. Loll: Computer simulations of 3d Lorentzian
quantum gravity, Nucl. Phys. B (Proc. Suppl.) 94 (2001) 689-692 [hep-lat/0011055].
P. Di Francesco, E. Guitter and C. Kristjansen: Integrable 2-d Lorentzian gravity
and random walks, Nucl. Phys. B 567 (2000) 515-553 [hep-th/9907084]

P. Di Francesco, E. Guitter and C. Kristjansen: Generalized Lorentzian triangu-
lations and the Calogero Hamiltonian, Nucl. Phys. B 608 (2001) 485-526 [hep-
th/0010259]

J. Ambjgrn, R. Loll, J.L. Nielsen and J. Rolf: Euclidean and Lorentzian quantum
gravity — lessons from two dimensions, J. Chaos Solitons Fractals 10 (1999) 177-195
[hep-th/9806241]

J. Ambjgrn, J. Correia, C. Kristjansen and R. Loll: The relation between Fu-
clidean and Lorentzian 2D quantum gravity, Phys. Lett. B 475 (2000) 24-32 [hep-
th/9912267]

H. Aoki, H. Kawai, J. Nishimura and A. Tsuchiya: Operator product expansion
in two-dimensional quantum gravity, Nucl. Phys. B 474 (1996) 512-528 [hep-
th/9511117]

D.V. Boulatov and V.A. Kazakov: The Ising model on random planar lattice: the
structure of phase transition and the exact critical exponents, Phys. Lett. B 186B
(1987) 379

J. Ambjgrn, K.N. Anagnostopoulos and R. Loll: A new perspective on matter cou-
pling in 2d quantum gravity, Phys. Rev. D 60 (1999) 104035 [hep-th/9904012]

J. Ambjgrn, K.N. Anagnostopoulos and R. Loll: Crossing the ¢=1 barrier in 2d
Lorentzian quantum gravity, Phys. Rev. D 61 (2000) 044010 [hep-lat/9909129]

J. Ambjorn, J. Jurkiewicz and R. Loll: 8d Lorentzian, dynamically triangulated
quantum gravity, Nucl. Phys. Proc. Suppl. 106 (2002) 980-982 [hep-lat/0201013]
J. Ambjgrn, A. Dasgupta, J. Jurkiewicz and R. Loll: A Lorentzian cure for Eu-
clidean troubles, Nucl. Phys. Proc. Suppl. 106 (2002) 977-979 [hep-th/0201104]

J. Ambjgrn, J. Jurkiewicz, R. Loll and G. Vernizzi: Lorentzian 3d gravity with
wormholes via matriz models, JHEP 0109 (2001) 022 [hep-th/0106082]

V.A. Kazakov and P. Zinn-Justin: Two matriz model with ABAB interaction, Nucl.
Phys. B 546 (1999) 647-668 [hep-th/9808043]

J. Ambjgrn, R. Janik, J. Jurkiewicz, R. Loll and G. Vernizzi, work in progress

C. Dehne: Konstruktionsversuche eines quantenkosmologischen, dynamisch tri-
angulierten Torusuniversums in 2+1 Dimensionen (in German), Diploma The-
sis, Univ. Hamburg (2001), http://www.aei-potsdam.mpg.de/research/thesis/
dehne_dipl.ps.gz

B. Dittrich and R. Loll: A hexagon model for 3D Lorentzian quantum cosmology,
Phys. Rev. D 66 (2002) 084016 [hep-th/0204210]

R. Costa-Santos and R. Loll, work in progress

D. Kappel: Nichtperturbative Pfadintegrale der Quantengravitation durch kausale
dynamische Triangulierungen (in German), Diploma Thesis, Univ. Potsdam (2001)
B. Dittrich: Dynamische Triangulierung von Schwarzloch-Geometrien (in German),
Diploma Thesis, Univ. Potsdam (2001)

C. Rovelli and L. Smolin: Discreteness of area and volume in quantum gravity, Nucl.
Phys. B 442 (1995) 593-622, Erratum-ibid. B 456 (1995) 753 [gr-qc/9411005]



A Discrete History of the Lorentzian Path Integral 171

45. R. Loll: The volume operator in discretized quantum gravity, Phys. Rev. Lett. 75
(1995) 3048-3051 [gr-qc/9506014].

46. R. Loll: Spectrum of the volume operator in quantum gravity, Nucl. Phys. B 460
(1996) 143-154 [gr-qc/9511030].



Introduction to String Theory

Thomas Mohaupt

Friedrich-Schiller Universitat Jena, Max-Wien-Platz 1, 07743 Jena, Germany

Abstract. We give a pedagogical introduction to string theory, D-branes and p-brane
solutions.

1 Introductory Remarks

These notes are based on lectures given at the 271-th WE-Heraeus-Seminar
‘Aspects of Quantum Gravity’. Their aim is to give an introduction to string
theory for students and interested researches. No previous knowledge of string
theory is assumed. The focus is on gravitational aspects and we explain in some
detail how gravity is described in string theory in terms of the graviton excitation
of the string and through background gravitational fields. We include Dirichlet
boundary conditions and D-branes from the beginning and devote one section to
p-brane solutions and their relation to D-branes. In the final section we briefly
indicate how string theory fits into the larger picture of M-theory and mention
some of the more recent developments, like brane world scenarios.

The WE-Heraeus-Seminar ‘Aspects of Quantum Gravity’ covered both main
approaches to quantum gravity: string theory and canonical quantum gravity.
Both are complementary in many respects. While the canonical approach stresses
background independence and provides a non-perturbative framework, the cor-
nerstone of string theory still is perturbation theory in a fixed background ge-
ometry. Another difference is that in the canonical approach gravity and other
interactions are independent from each other, while string theory automatically
is a unified theory of gravity, other interactions and matter. There is a single
dimensionful constant and all couplings are functions of this constant and of
vacuum expectation values of scalars. The matter content is uniquely fixed by
the symmetries of the underlying string theory. Moreover, when formulating the
theory in Minkowski space, the number of space-time dimensions is fixed. As
we will see, there are only five distinct supersymmetric string theories in ten-
dimensional Minkowski space.

The most important feature of string perturbation theory is the absence of
UV divergencies. This allows one to compute quantum corrections to scatter-
ing amplitudes and to the effective action, including gravitational effects. More
recently, significant progress has been made in understanding non-perturbative
aspects of the theory, through the study of solitons and instantons, and through
string dualities which map the strong coupling behaviour of one string theory to
the weak coupling behaviour of a dual theory. Moreover, string dualities relate

T. Mohaupt, Introduction to String Theory, Lect. Notes Phys. 631, 173-251 (2003)
http://www.springerlink.com/ (© Springer-Verlag Berlin Heidelberg 2003
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all five supersymmetric string theories to one another and lead to the picture of
one single underlying theory, called M-theory. So far, only various limits of this
theory are known, while the problem of finding an intrinsic, non-perturbative
and background-independent definition is unsolved. One expects that M-theory
has an underlying principle which unifies its various incarnations, presumably
a symmetry principle. One of the obstacles on the way to the final theory is
that it is not clear which degrees of freedom are fundamental. Besides strings,
also higher-dimensional p-branes play an essential role. Moreover, there is an
eleven-dimensional limit, which cannot be described in terms of strings.

Our presentation of string theory will be systematic rather than follow the
path of historical development. Nevertheless we feel that a short historical note
will be helpful, since many aspects which may seem somewhat ad hoc (such as
the definition of interactions in Sect. 3) become clearer in their historical con-
text. The story started with the Veneziano amplitude, which was proposed as
an amplitude for meson scattering in pre-QCD times. The amplitude fitted the
known experimental data very well and had precisely the properties expected
of a good scattering amplitude on the basis of S-matrix theory, the bootstrap
program and Regge pole theory. In particular it had a very special soft UV be-
haviour. Later work by Y. Nambu, H.B. Nielsen and L. Susskind showed that the
Veneziano amplitude, and various generalizations thereof could be interpreted as
describing the scattering of relativistic strings. But improved experimental data
ruled out the Veneziano amplitude as a hadronic amplitude: it behaved just to
softly in order to describe the hard, partonic substructures of hadrons seen in
deep inelastic scattering. J. Scherk and J. Schwarz reinterpreted string theory
as a unified theory of gravity and all other fundamental interactions, making
use of the fact that the spectrum of a closed string always contains a massless
symmetric tensor state which couples like a graviton. This led to the develop-
ment of perturbative string theory, as we will describe it in Sects. 2—4 of these
lecture notes. More recently the perspective has changed again, after the role of
D-branes, p-branes and string dualities was recognized. This will be discussed
briefly in Sects. 5 and 6.

From the historical perspective it appears that string theory is a theory which
is ‘discovered’ rather than ‘invented’. Though it was clear from the start that
one was dealing with an interesting generalization of quantum field theory and
general relativity, the subject has gone through several ‘phase transitions’, and its
fundamental principles remain to be made explicit. This is again complementary
to canonical quantum gravity, where the approach is more axiomatic, starting
from a set of principles and proceeding to quantize Einstein gravity.

The numerous historical twists, our lack of final knowledge about the funda-
mental principles and the resulting diversity of methods and approaches make
string theory a subject which is not easy to learn (or to teach). The 271-th WE-
Heraeus-Seminar covered a broad variety of topics in quantum gravity, ‘From
Theory to Experimental Search’. The audience consisted of two groups: gradu-
ate students, mostly without prior knowledge of string theory, and researchers,
working on various theoretical and experimental topics in gravity. The two lec-
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tures on string theory were supposed to give a pedagogical introduction and to
prepare for later lectures on branes worlds, large extra dimensions, the AdS-CFT
correspondence and black holes. These lecture notes mostly follow the lectures,
but aim to extend them in two ways. The first is to add more details to the
topics I discussed in the lectures. In particular I want to expand on points which
seemed to be either difficult or interesting to the audience. The second goal is to
include more material, in order to bring the reader closer to the areas of current
active research. Both goals are somewhat contradictory, given that the result is
not meant to be a book, but lecture notes of digestable length. As a compromise
I choose to explain those things in detail which seemed to be the most important
ones for the participants of the seminar, hoping that they represent a reason-
able sample of potential readers. On the other side several other topics are also
covered, though in a more scetchy way. Besides summarizing advanced topics,
which cannot be fully explained here, I try to give an overview of (almost) all
the new developements of the last years and to indicate how they fit into the
emerging overall picture of M-theory.

The outline of the lectures is as follows: Sects. 2—4 are devoted to perturbative
aspects of bosonic and supersymmetric string theories. They are the core of the
lectures. References are given at the end of the sections. String theory has been a
very active field over several decades, and the vast amount of existing literature
is difficult to oversee even for people working in the field. I will not try to
give a complete account of the literature, but only make suggestions for further
reading. The basic references are the books [1-5], which contain a huge number of
references to reviews and original papers. The reader interested in the historical
developement of the subject will find information in the annotated bibliography
of [1]. Section 5 gives an introduction to non-perturbative aspects by discussing
a particular class of solitons, the p-brane solutions of type II string theory.
Section 6 gives an outlook on advanced topics: while Sects. 6.1-6.3 scetch how
the five supersymmetric string theories fit into the larger picture of M-theory,
Sect. 6.4 gives an overview of current areas of research, together with references
to lecture notes, reviews and some original papers.

2 Free Bosonic Strings

We start our study of string theories with the bosonic string. This theory is a
toy-model rather than a realistic theory of gravity and matter. As indicated by
its name it does not have fermionic states, and this disqualifies it as a theory
of particle physics. Moreover, its ground state in Minkowski space is a tachyon,
i.e., a state of negative mass squared. This signals that the theory is unstable.
Despite these shortcomings, the bosonic string has its virtues as a pedagogi-
cal toy-model: whereas we can postpone to deal with the additional techniques
needed to describe fermions, many features of the bosonic string carry over to
supersymmetric string theories, which have fermions but no tachyon.
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2.1 Classical Bosonic Strings

We start with a brief overview of classical aspects of bosonic strings.

Setting the Stage. Let us first fix our notation. We consider a fixed background
Pseudo-Riemannian space-time M of dimension D, with coordinates X = (X*),
p=0,...,D—1. The metric is G,,,,(X) and we take the signature to be ‘mostly
plus’, (—)(+)"~".

The motion of a relativistic string in M is described by its generalized world-
line, a two-dimensional surface X', which is called the world-sheet. For a single
non-interacting string the world-sheet has the form of an infinite strip. We in-
troduce coordinates ¢ = (0°,0') on the world-sheet. The embedding of the

world-sheet into space-time is given by maps
X:XY—M:0—X(0). (1)
The background metric induces a metric on the world-sheet:

9X"9XY
~ Jox B MY

Gaﬂ (2)
where «, 5 = 0,1 are world-sheet indices. The induced metric is to be distin-
guished from an intrinsic metric h,g on X. As we will see below, an intrinsic
metric is used as an auxiliary field in the Polyakov formulation of the bosonic
string.

A useful, but sometimes confusing fact is that the above setting can be viewed
from two perspectives. So far we have taken the space-time perspective, inter-
preting the system as a relativistic string moving in space-time M. Alternatively
we may view it as a two-dimensional field theory living on the world-sheet, with
fields X which take values in the target-space M. This is the world-sheet per-
spective, which enables us to use intuitions and methods of two-dimensional field
theory for the study of strings.

Actions. The natural action for a relativistic string is its area, measured with
the induced metric:

1
Sna = ﬁ/zdgﬂdetGagP/Q. (3)
This is the Nambu-Goto action, which is the direct generalization of the action
for a massive relativistic particle. The prefactor (2ra’)~! is the energy per length
or tension of the string, which is the fundamental dimensionful parameter of the
theory. We have expressed the tension in terms of the so-called Regge slope o/,
which has the dimension (length)? in natural units, ¢ = 1, A = 1. Most of the
time we will use string units, where in addition we set o/ = %

The Nambu-Goto action has a direct geometric meaning, but is technically
inconvenient, due to the square root. Therefore one prefers to use the Polyakov
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action, which is equivalent to the Nambu-Goto action, but is a standard two-
dimensional field theory action. In this approach one introduces an intrinsic
metric on the world-sheet, hog(0), as additional datum. The action takes the
form of a non-linear sigma-model on the world-sheet,

Sp =

2 af 7 v
4m,/ 2oVhhPO, X105 X" G (X) (4)
where h = | det hogl.
The equation of motion for h,g is algebraic. Thus the intrinsic metric is
non-dynamical and can be eliminated, which brings us back to the Nambu-Goto
action. Since

Top = (2m'\f ) 55; = 0, X"05X,, — %haﬁawwavxu (5)
is the energy momentum of the two-dimensional field theory defined by (4), we
can interpret the equation of motion of ks as the two-dimensional Einstein equa-
tion. The two-dimensional metric is non-dynamical, because the two-dimensional
Einstein-Hilbert action is a topological invariant, proportional to the Euler num-
ber of X. Thus its variation vanishes and the Einstein equation of (4) coupled to
two-dimensional gravity reduces to T, = 0. Note that the energy-momentum
tensor (5) is traceless, h“ﬁTag = 0. This holds before imposing the equations of
motion (‘off shell’). Therefore T, has only two independent components, which
vanish for solutions to the equations of motion (‘on shell’). Since the trace of the
energy-momentum tensor is the Noether current of scale transformations, this
shows that the two-dimensional field theory (4) is scale invariant. As we will see
below, it is in fact a conformal field theory.

The Polyakov action has three local symmetries. Two are shared by the
Nambu-Goto action, namely reparametrizations of the world-sheet:

o — %% 0') . (6)

The third local symmetry is the multiplication of the metric hog by a local,
positive scale factor,

hap(o) — e hop(o) . (7)

This transformation is called a Weyl transformation by physicists, while mathe-
maticians usually use the term conformal transformation. The three local sym-
metries can be used to gauge-fix the metric hog. The standard choice is the
conformal gauge,

| .
hap(0) =nap, where (n,.s) = Diag(—1,1). (8)

While this gauge can be imposed globally on the infinite strip describing the
motion of a single non-interacting string, it can only be imposed locally on more
general world-sheets, which describe string interactions. We will discuss global
aspects of gauge fixing later.
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The conformal gauge does not provide a complete gauge fixing, because (8)
is invariant under a residual symmetry. One can still perform reparametrizations
under which the metric only changes by a local, positive scale factor, because this
factor can be absorbed by a Weyl transformation. Such conformal reparametriza-
tions are usually called conformal transformations by physicists. Note that the
same term is used for Weyl transformations by mathematicians. A convenient
way to characterize conformal reparametrizations in terms of coordinates is to
introduce light cone coordinates,

ot =o'+ ot . 9)

Then conformal reparametrization are precisely those reparametrizations which
do not mix the light cone coordinates:

ot — 6t (o"), 07— 5 (07). (10)

Thus we are left with an infinite-dimensional group of symmetries, which in
particular includes scale transformations.

Equations of Motion, Closed and Open Strings, and D-Branes. In order
to proceed we now specialize to the case of a flat space-time, G, = 1, where
N = Diag(—1,+1,... ,+1). In the conformal gauge the equation of motion for
X reduces to a free two-dimensional wave equation,

DPXH =00, X" =0. (11)

Note that when imposing the conformal gauge on the Polyakov action (4), the
equation of motion for h.g, i.e. T,z = 0, becomes a constraint, which has to be
imposed on the solutions of (11).

The general solution of (11) is a superposition of left- and right-moving waves,

XHo) =X oT)+ Xh(o7). (12)

However, we also have to specify boundary conditions at the ends of the string.
One possible choice are periodic boundary conditions,

X0 ot + 1) = XH (0%, 0t) . (13)

They correspond to closed strings. A convenient parametrization of the solution
is:

XH(o) = z# 4 2a/pto® 41 \/ﬁz a—ﬁe*zi”‘# +i @Z a—ge*m"”_ . (14)
n#0 n n#0 n

Reality of X* implies: (z*)* = z* and (p")* = p* and (af)* = o, and

(ar)* = a" . Here x denotes complex conjugation. While z# is the position of

the center of mass of the string at time ¢, p* is its total momentum. Thus, the

center of mass moves on a straight line in Minkowski space, like a free relativistic
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particle. The additional degrees of freedom are decoupled left- and right-moving
waves on the string, with Fourier components a#, and &#,.

When not choosing periodic boundary conditions, the world-sheet has bound-
aries and we have open strings. The variation of the world-sheet action yields a
boundary term, 6.5 =~ faz do%9; X#5X,,. The natural choice to make the bound-
ary term vanish are Neumann boundary conditions,

XMy =0, HXV| .__ =0, (15)

ol=m

With these boundary conditions, momentum is conserved at the ends of the
string. Left- and right-moving waves are reflected at the ends and combine into
standing waves. The solution takes the form

at .
XH(o) = 2" + 2a/p"c” +1 v2a/ Z Zn g=ino? cos(not) . (16)
n#0 n
There is, however, a second possible choice of boundary conditions for open

strings, namely Dirichlet boundary conditions. Here the ends of the string are
kept fixed:
XM|(71:0 = mé“l) ’

With these boundary conditions the solution takes the form

XM i, = x’é) . (17)

XH(o )—x(1)+( @ — (1)) \/72 o e~ino’ sin(not) . (18)

n#0

More generally we can impose Neumann boundary conditions in the time and
in p space directions and Dirichlet boundary conditions in the other directions.
Let us denote the Neumann directions by (X™) = (X% X! ..., XP) and the
Dirichlet directions by (X®) = (XP*1 ... XD-1).

The most simple choice of Dirichlet boundary conditions is then to require
that all open strings begin and end on a p-dimensional plane located at an
arbitrary position X = xf,, along the Dirichlet directions. Such a plane is called
a p-dimensional Dirichlet-membrane, or D-p-brane, or simply D-brane for short.
While the ends of the strings are fixed in the Dirichlet directions, they still can
move freely along the Neumann directions. The world-volume of a D-p-brane is
(p+1)-dimensional. The Neumann directions are called the world-volume or the
parallel directions, while the Dirichlet directions are called transverse directions.

An obvious generalization is to introduce N > 1 such D-p-branes, located
at positions z¢,), where ¢ = 1,... , N, and to allow strings to begin and end on
any of these. In this setting the mode expansion for a string starting on the i-th
D-brane and ending on the j-th is:

m
X"(0) = 2™ +2a/p"0” +iV2a/ Z Zn_g=ing® cos(not) ,
n
n#0

X(0) =y + (af;) -z )—+1FZ n o—ino® sin(no') . (19)

n#0
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(One might also wonder about Dirichlet boundary conditions in the time direc-
tion. This makes sense, at least for Euclidean space-time signature, and leads to
instantons, called D-instantons, which we will not discuss in these lectures.)

Dirichlet boundary conditions have been neglected for several years. The rea-
son is that momentum is not conserved at the ends of the strings, reflecting that
translation invariance is broken along the Dirichlet directions. Therefore, in a
complete fundamental theory the D-branes must be new dynamical objects, dif-
ferent from strings. The relevance of such objects was only appreciated when it
became apparent that string theory already includes solitonic space-time back-
grounds, so called (‘RR~charged’) p-Branes, which correspond to D-branes. We
will return to this point later.

Promoting the D-branes to dynamical objects implies that they will interact
through the exchange of strings. This means that in general they will repulse or
attract, and therefore their positions become dynamical. But there exist many
static configurations of D-branes (mainly in supersymmetric string theories),
where the attractive and repulsive forces cancel for arbitrary distances of the
branes.

2.2 Quantized Bosonic Strings

The definition of a quantum theory of bosonic strings proceeds by using stan-
dard recipies of quantization. The two most simple ways to proceed are called
‘old covariant quantization’ and ‘light cone quantization’. As mentioned above,
imposing the conformal gauge leaves us with a residual gauge invariance. In light
cone quantization one fixes this residual invariance by imposing the additional
condition

Xt £t +ptot, e, af = , (20)

m

where X+ = %(X O+ XP~=1) are light cone coordinates in space-time. Then

the constraints T,3 = 0 are solved in the classical theory. This yields (non-
linear) expressions for the oscillators «, in terms of the transverse oscillators
al,i=1,...D — 2. In light cone coordinates the world-sheet is embedded into
space-time along the X% XP~1 directions. The independent degrees of freedom
are the oscillations transverse to the world sheet, which are parametrized by
the ai. One proceeds to quantize these degrees of freedom. In this approach
unitarity of the theory is manifest, but Lorentz invariance is not.

In old covariant quantization one imposes the constraints at the quantum
level. Lorentz covariance is manifest, but unitarity is not: one has to show that
there is a positive definite space of states and a unitary S-matrix. This is the
approach we will describe in more detail below.

One might also wonder about ‘new covariant quantization’, which is BRST
quantization. This approach is more involved but also more powerful than old
covariant quantization. When dealing with advanced technical problems, for ex-
ample the construction of scattering amplitudes involving fermions in superstring
theories, BRST techniques become mandatory. But this is beyond the scope of
these lectures.
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The Fock Space. The first step is to impose canonical commutation relations
on X*(o) and its canonical momentum I7#(c) = 9y X*(o). In terms of modes
one gets

[, p"] =", fog,, ag] = mn" Smno - (21)

For closed strings there are analogous relations for &# . The reality conditions of
the classical theory translate into hermiticity relations:

(@)t =a", @) =p", (ah)'=al,. (22)

While the commutation relations for x*,p” are those of a relativistic particle,
the ok, satisfy the relations of creation and annihilation operators of harmonic
oscillators, though with an unconventional normalization.

To proceed, one constructs a Fock space F on which the commutation rela-
tions (21) are represented. First one chooses momentum eigenstates |k), which
are annihiliated by half of the oscillators:

pHk) = kH|k), ol ky=0=3aklk), m>0. (23)
Then a basis B of F is obtained by acting with creation operators:

B={a" —.-.a" k)| my,n >0}. (24)

—my —ni

A bilinear form on F which is compatible with the hermiticity properties (22)

cannot be positive definite. Consider for example the norm squared of the state
p .

ol k)

(Bl(a,,) ok k) ~ ot = 1 (25)

However, the Fock space is not the space of physical states, because we still have
to impose the constraints. The real question is whether the subspace of physical
states contains states of negative norm.

The Virasoro Algebra. Constraints arise when the canonical momenta of a
system are not independent. This is quite generic for relativistic theories. The
most simple example is the relativistic particle, where the constraint is the mass
shell condition, p? + m? = 0. When quantizing the relativistic particle, physical
states are those annihilated by the constraint, i.e., states satisfying the mass
shell condition:

(p? +m?)|®) =0 . (26)

When evaluating this in a basis of formal eigenstates of the operator z*, one
obtains the Klein-Gordon equation, (8% + m?)®(z) = 0, where &(z) = (z|®) is
interpreted as the state vector in the x-basis. This is a clumsy way to approach
the quantum theory of relativistic particles, and one usually prefers to use quan-
tum field theory (‘second quantization’) rather than quantum mechanics (‘first
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quantization’). But in string theory it turns out that the first quantized formula-
tion works nicely for studying the spectrum and computing amplitudes, whereas
string field theory is very complicated.

Proceeding parallel to the case of a relativistic particle one finds that the
canonical momentum is IT* = 9y X*. The constraints are

401X, =0, "I, +0, X" X, =0. (27)

In the Polyakov formulation they are equivalent to T,g = 0. It is convenient
to express the constraints through the Fourier components of T, 3. Passing to
light cone coordinates, the tracelessness of T3, which holds without using the
equation of motion or imposing the constraints, implies

Thus we are left with two independent components, Ty and T _, where Ty 1 ~
0+ X"y X,,. For closed strings, where 01 X* are periodic in o', we expand T 1
in a Fourier series and obtain Fourier coefficients L, Ly, m € Z. For open
strings, observe that ¢! — —o! exchanges 9, X* and d_X*. Both fields can
be combined into a single field, which is periodic on a formally doubled world-
sheet with —7 < ¢! < . In the same way one can combine T, with T__.
By Fourier expansion on the doubled world-sheet one then obtains one set of
Fourier modes for the energy-momentum tensor, denoted L,,. This reflects that
left- and right-moving waves couple through the boundaries.
The explicit form for the L,, in terms of oscillators is

1 %)
Lm = 5 Z Am—n * Op , (29)

n=—oo

with an analogous formula for L,, for closed strings. We have denoted the con-
traction of Lorentz indices by ‘-’ and defined af = %p“ = afy for closed strings
and af) = p# for open strings. In terms of the Fourier modes, the constraints are
L,, = 0 and, for closed strings, L,, = 0. Translations in ¢° are generated by Lg
for open and by Lo + L for closed strings. These functions are the world-sheet

Hamiltonians. The L,, satisfy the Witt algebra,
{Lm7 Ln}P.B. - l(m - n)Lm-i-n 5 (30)

where {-,-}p . is the Poisson bracket. For closed strings we have two copies
of this algebra. The Witt algebra is the Lie algebra of infinitesimal conformal
transformations. Thus the constraints reflect that we have a residual gauge sym-
metry corresponding to conformal transformations. Since the constraints form
a closed algebra with the Hamiltonian, they are preserved in time. Such con-
straints are called first class, and they can be imposed on the quantum theory
without further modifications (such as Dirac brackets).

In the quantum theory the L,, are taken to be normal ordered, i.e., annihi-
lation operators are moved to the right. This is unambigous, except for Ly. We
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will deal with this ordering ambiguity below. The hermiticiy properties of the
L,, are:

Ll =L ... (31)
The operators L, satisfy the Virasora algebra:

i(m3 — M) Om4n,0 - (32)

Ly, Ly| = —n)Lmin
[ | = (m—n)Lmy T

The Virasoro algebra is a central extension of the Witt algebra. On our Fock
space F the central charge c takes the value

c=n"1nu =D, (33)

i.e., each space-time dimension contributes one unit. Since the Poisson brackets
of L,, in the classical theory just give the Witt algebra, this dependence on the
number of dimensions is a new property of the quantum theory. The extra central
term occuring at the quantum level is related to a normal ordering ambiguity
of commutators with m + n = 0. This results in a new ‘anomalous’ term in the
algebra. In the context of current algebras such terms are known as Schwinger
terms.

Imposing the Constraints, or, Why D = 267 In the classical theory the
constraints amount to imposing L,, = 0 on solutions. Imposing this as an op-
erator equation on the quantum theory is too strong. In particular it is not
compatible with the algebra (32). What can be imposed consistently is that
matrix elements of the L,, vanish between physical states, (®q|L,,|®2) = 0.
Conversely this condition singles out the subspace of physical states, Fpnys C F.
Using the hermiticity properties of the L,,, this is equivalent to the statement
that the positive Virasoro modes annihilate physical states,

Lo |®) =0, m>0,
(Lo —a)|®) =0, (34)

for all |®) € Fpnys. Note that we have introduced an undetermined constant
a into the Lg-constraint. As mentioned above this operator has an ordering
ambiguity. We take Ly to be normal ordered and parametrize possible finite
ordering effects by the constant a. Since Lg is the Hamiltonian, this might be
considered as taking into account a non-trivial Casimir effect. In the case of
closed strings there is a second set of constraints involving the Ly,.

The Virasoro operators L_,,, m > 0 still act non-trivially on physical states
and create highest weight representations of the Virasoro algebra. This corre-
sponds to the fact that we still have residual gauge symmetries. Therefore it is
clear that Fpnys is not the physical Hilbert space. Fpnys is not positive definite,
but contains null states (states of norm zero) and, depending on the number of
space-time dimensions, also states of negative norm. A positive definite space
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of states can be constructed if negative norm states are absent, such that Fppys
is positive semi-definite, and if null states are orthogonal to all physical states.
Then one can consistently identify physical states |®) that differ by null states
7).

@) ~ D) + ) , (35)
and define the Hilbert space by
H = Fphys/{Null states} . (36)

The working of this construction crucially depends on the values of D and a.
This is the contents of the so-called no-ghost theorem, which can be summarized
as follows:

1. D =26 and a = 1. The construction works as described above. The resulting
theory is known as the critical (bosonic) string theory, D = 26 is the critical
dimension. Physical states differing by a null states differ by a residual gauge
transformation and represent the same state in the Hilbert space. We will
see explicit examples below.

2. D > 26. The physical subspace Fpnys always contains states of negative
norm and no Hilbert space H can be constructed. There is no bosonic string
theory for D > 26.

3. D < 25. Naively one expects such theories to be unitary, because we can just

truncate the unitary critical string theory and this cannot introduce states
of negative norm. Nevertheless one does not obtain a consistent quantum
theory by truncation. When studying scattering amplitudes at the loop level
one finds poles corresponding to unphysical negative norm states and there
is no unitary S-matrix. Thus truncations of the critical string do not yield
unitary theories.
But there is an alternative to truncation, known as Liouville string theory
or non-critical string theory. This theory exists in D < 26, at the price that
the quantum theory has a new degree of freedom, the Liouville mode. (This
is most obvious in a path integral formulation.) The resulting theory is much
more complicated than the critical string, because its world-sheet theory is
interacting even for a flat target space. For this theory much less is known
than about the critical string. However, there are arguments indicating that
the non-critical string is equivalent to the critical string in a non-trivial
background.

We will only consider critical string theories in the following. Also note that the
above analysis applies to strings in flat space-time, with no background fields.
When switching on a non-trivial dilaton background, this can modify the central
charge of the world-sheet conformal field theory, and, hence, the dimension of
space-time. But this topic is beyond the scope of these lectures.

The Spectrum of the Bosonic Closed String. We can now identify the
physical states by imposing the constraints. Let us consider closed strings. We
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first look at the two constraints
(Lo—1)[®) =0, (Ly—1)|®)=0. (37)
The operator Ly can be rewritten as

Lo=3%p"+N. (38)

As mentioned above the operator Ly is the normal ordered version of (29) with
m = 0. The original and the normal ordered expression formally differ by an
infinite constant. Subtracting this constant introduces a finite ambiguity, which
was parametrized by a. Unitarity then fixes a = 1. The oscillator part of Ly is

N=> o pn-a. (39)
n=1
N is called the number operator, because
[N,a" ] =ma",, . (40)

Since the total momentum is related to the mass of the string by M? + p? = 0,
the constraints (37) determine the mass of a physical states in terms of the
eigenvalues of NV and of its right-moving analogue N. (We denote the operators
and their eigenvalues by the same symbol.) We now use the above decomposition
of Lo, take the sum and difference of the constraints (37) and reintroduce the
Regge slope o’ = % by dimensional analysis:

o/ M? =2(N+ N —2),

N =N. (41)

The first equation is the mass formula for string states, whereas the second
equation shows that left- and right-moving degrees of freedom must contribute
equally to the mass.

Let us list the lightest states satisfying these constraints:

Occupation | Mass State

N=N=0 | oM?>=—4| k)

N=N=1|dM*=0 | o",a",k)

N=N=2| o/M2=4 | o",a",lk) (42)

al,a? 62,4 |k)
aja”,a”, k)

ot ja¥ 6P a7 k)

The most obvious and disturbing fact is that the ground state is a tachyon,
i.e., a state of negative mass squared. Since the mass squared of a scalar cor-
responds to the curvature of the potential at the critical point, we seem to be
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expanding around a maximum rather then a minimum of the potential. This sig-
nals that the bosonic closed string quantized in flat Minkowski space is unstable.
It is a very interesting question whether there is a minimum of this potential
which provides a stable ground state. Since the tachyon acquires a vacuum ex-
pectation value in this minimum, this is referred to as tachyon condensation.
But since we will be mostly interested in superstring theories, where tachyons
are absent, we will simply ignore the fact that our toy model has a tachyon.

The first excited state is massless, and on top of it we find an infinite tower
of states with increasing mass. Since the mass scale of string theory presumably
is very large, we will focus on the massless states. So far we only imposed the
constraints (37). The other constraints

Ln|®) =0, Lp|®) =0, m>0, (43)

impose conditions on the polarizations of physical states. For the tachyon one
gets no condition, while for the first excited level the constraints with m = 1 are
non-trivial. Forming a general linear combination of basic states,

Cuualil&ilw{;) ) (44)
the constraints (43) imply
EFC =0=k"Cu . (45)

Since ¢, is the polarization tensor, we see that only states of transverse po-
larization are physical. To obtain the particle content, we have to extract the
irreducible representations of the D-dimensional Poincaré group contained in
physical (.. There are three such representations: the traceless symmetric part
describes a graviton G, the trace part corresponds to a scalar, the dilaton &,
and the third representation is an antisymmetric tensor B,,,. In order to dis-
entangle the trace part, one needs to introduce an auxiliary vector k, with the
properties:

k-k=0, k-k=-1. (46)

(k is the momentum vector.) The polarization tensors of the graviton, dilaton
and antisymmmetric tensor are:

i = Sy = 55 S O — bk = k)

1 _ _
fy = 7(5(77;w — kuky — kuky)

D -2
ny = C[,uu] ) (47)
where () = %(CW + Gp) and () = %(CW — (yp) are the symmetric and

antisymmetric parts of (,,,. Note that the prefactor 1/(D — 2) is needed in order
that the trace part is physical. Using explicit choices for k,k one can check
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that g, is the polarization tensor of a plane wave and transforms as a traceless
symmetric tensor under transverse rotations.

As we discussed above, physical states are only defined up to the addition of
null states, |@) ~ |®) + [¥). In the case at hand adding null states corresponds
to adding states of longitudinal polarization, according to:

Cuw) ~ Sy + kulu + Gk
Q] ~ Q) + kubo — Euku (48)

(u and , are arbitrary vectors orthogonal to the momentum k*. Adding null
states can be understood as a residual gauge transformation parametrized by
Cu» &y By taking Fourier transforms we see that these are the standard gauge
invariances of a graviton and of an antisymmetric tensor, respectively:

Gy ~ Gy + Ou A, + 0y Ay,
Buy ~ Buy + 0, A, — 0,4, . (49)

A graviton is defined by taking the gravitational action and expanding the met-
ric around a flat background. The gauge transformations are then infinitesimal
reparametrizations which, in a flat background, act according to (49) on the met-
ric. Note that our gauge transformations A,,, A, have a vanishing divergence, be-
cause the corresponding polarization vectors are orthogonal to the momentum.
The reason is that the Virasoro constraints automatically impose a generalized
Lorenz gauge.

Thus far our identification of the symmetric traceless part of the state (44)
as a graviton is based on the fact that this state has the same kinematic prop-
erties as a graviton in Einstein gravity. We will see later, after analyzing string
interactions, that this extends to the dynamical properties.

Finally it is interesting to compare the results of old covariant quantization
to those obtained in light cone quantization. In light cone quantization unitarity
is manifest, but the Lorentz algebra of the quantum theory has an anomaly
which only cancels in the critical dimension D = 26. Moreover, the normal
ordering constant must take the value a = 1. Independently, the same value
of a is obtained when computing the Casimir energy of the ground state using
(-function regularization. One virtue of light cone quantization is that one can
write down immediately all the physical states. A basis is provided by all states
which can be created using transverse oscillators,

ot @l k) (50)

—mi —ni

where i1,...,71,... = 1,...,D — 2. What remains is to group these states
into representations of the D-dimensional Poincaré group. Massless states are
classified by the little group SO(D — 2). Since all states manifestly are tensors
with respect to this subgroup, one immediately sees that the massless states
are a graviton (traceless symmetric tensor), dilaton (trace) and antisymmetric
tensor. For massive states the little group is the full rotation subgroup SO(D —
1). Using Young tableaux it is straightforward to obtain these from the given
representations of SO(D — 2).
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Open Strings. Having treated the closed bosonic string in much detail, we
now describe the results for open strings. One finds the same critical dimension,
D = 26, and the same value of the normal ordering constant, a = 1. The
constraints read:

(Lo~ 1)) =0, L) =0, m>0. (51)

Ly can be decomposed as Ly = %pQ + N, where N is the number operator. The
Ly-constraint gives the mass formula:

a'M*=N-1. (52)
Therefore the lowest states are:
Occupation | Mass State
N=0 o/M? =—1 | |k)
N=1 oM2=0 | C.a™ k) (53)
N=2 o' M? =1 Cuvat a1 |k)
Cuals|k)

The other constraints impose restrictions on the polarizations. Whereas the
groundstate is a tachyonic scalar, the massless state has the kinematic prop-
erties of a gauge boson: its polarization must be transverse,

Cuk* =0, (54)

and polarizations proportional to k* correspond to null states,
Cur~ Cutak,. (55)

This is the Fourier transform of a U(1) gauge transformation,
Ay~ AL+ 0ux - (56)

Whereas massless closed string states mediate gravity, massless open string states
mediate gauge interactions.

Chan-Paton Factors. Open string theory has a generalization which has non-
abelian gauge interactions. One can assign additional degress of freedom to the
ends of the string, namely charges (‘Chan-Paton factors’) which transform in
the fundamental and anti-fundamental (complex conjugated) representation of
the group U(n). The massless states then take the form

Cua‘i1|k:,a,5> , (57)
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where a is an index transforming in the fundamental representation [n] of U(n),
whereas b transforms in the anti-fundamental representation [77]. Since

[n] x [n] = adj U(n) , (58)

the massless states transform in the adjoint of U(n) and can be interpreted
as U(n) gauge bosons. (As for the graviton, we have only seen the required
kinematic properties so far. But the interpretation is confirmed when studying
interactions.)

Note that U(n) is the only compact Lie group where the adjoint represen-
tation is the product of the fundamental and anti-fundamental representation.
Therefore the construction precisely works for these groups.

Non-oriented Strings. There is a further modification which leads to non-
oriented strings. These are obtained from the theories constructed so far by a
projection. Both closed and open bosonic string theories are symmetric under
world-sheet, parity, which is defined as a reflection on the world-sheet:

!'= ¢! modulo = . (59)

R:0t —nr—0
Since (2 is an involution, £22 = 1, the spectrum can be organized into states with
eigenvalues +1:

“Q|N7 k> = (71)N|N7 k> ) (60)
Q|N,N,k) = |N,N,k) . (61)

Here |N,k) is an open string state with momentum %k and total occupation
number N and |N, N, k) is a closed string state with momentum & and total left
and right occupation numbers N, N.

Non-oriented strings are defined by keeping only those states which are in-
variant under {2. The resulting theories are insensitive to the orientation of the
world-sheet. Let us look at the effect of this projection on the lowest states. For
open strings we are left with:

Occupation | Mass State
N=0 o/M? =—1 | |k)
N=1 oM?>=0 | - (62)
N=2 o'M?P=1 | Guatia”yk)
Cualy|k)
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All states with odd occupation numbers are projected out, including the gauge
boson. For closed strings we obtain:

Occupation | Mass State

N=N=0|oM?*=—4| k)

N=N=1|adM>=0 | Cua™ @k (63)

N=N=2 | dM>=4 | (uu)a",a",lk)
C(upl/o’)al—ilaildgldil|k>

Only states which are left-right symmetric survive. At the massless level the
antisymmetric tensor is projected out, whereas the graviton and dilaton are
kept.

Chan-Paton Factors for Non-oriented Strings. The above construction
can be generalized to open strings with Chan-Paton factors. In this case the two
representations assigned to the ends of the strings must be equivalent. One can
define a generalized involution ', which combines world-sheet parity with an
action on the Chan-Paton indices,

'|N,a,b) = e(=1)"|N,b,a) , (64)

where e = +1. The projection is 2’| N, a, b) . |N,a,b). There are two inequiva-
lent choices of the projection. For € = 1, the indices a,b must transform in the
fundamental representation of SO(n). Since the adjoint of SO(n) is the anti-
symmetric product of the fundamental representation with itself, the massless
vector state transforms in the adjoint. More generally, states at even (odd) mass
level transform as symmetric (antisymmetric) tensors.

The other choice is ¢ = —1. Then a,b transform in the fundamental of
USp(2n) (the compact form of the symplectic group). Our normalization is such
that USp(2) ~ SU(2). Since the adjoint of USp(2n) is the symmetric product
of the fundamental representation with itself, the massless vector transforms in
the adjoint. More generally, states at even (odd) mass level transform as anti-
symmetric (symmetric) tensors.

D-Branes. Finally we can consider open strings with Dirichlet boundary con-
ditions along some directions. Consider first oriented open strings ending on a
D-p-brane located at x?l). The ground state is tachyonic. The massless state of
an open string with purely Neumann condition is a D-dimensional gauge bo-
son o' ;|k). Now we impose Dirichlet boundary conditions along the directions
a=p+1,...,D—1,so that the string can only move freely along the Neumann
directions m = 0,1, ... , p. The relevant kinematic group is now the world-volume
Lorentz group SO(1,p). The massless states are a world-volume vector,

a™|ky, m=0,1,...,p (65)
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and D — p — 1 scalars,
at k), a=p+1,...,.D-1. (66)

The scalars correspond to transverse oscillations of the brane. Changing the
position of the brane corresponds to changing the vacuum expectation values of
the scalars. The effective action of the massless modes is given, to leading order
in o/, by the dimensional reduction of the D-dimensional Maxwell action to p+1
dimensions. The full effective action is of Born-Infeld type.

Next consider N parallel D-p-branes, located at positions zf, . The new fea-
ture of this configuration is that there are strings which start and end on different
branes. For such strings there is an additional term in the mass formula, which
accounts for the stretching:

2
. lzi) —z )

Here x(;) is the position of the i-th brane. (Remember that the tension of the
string is (27a’)~1.) Due to the normal ordering constant, the ground state be-
comes tachyonic if two branes come close enough. This signals an instability of
the D-brane configuration. As already mentioned this might lead to interesting
dynamics (tachyon condensation, decay of D-branes), but we will not discuss
this here. Instead, we focus on features shared by D-branes in supersymmetric
string theories. The states at the first excited level become massless precisely if
the corresponding D-branes are put on top of each other. Each of the N branes
already carries a U(1) gauge theory: the massless modes of strings beginning
and ending at the same brane give N vectors and N - (D —p — 1) scalars. For N
coinciding branes we get additional N-(N —1) vectors and N-(N—1)-(D—p—1)
scalars. Combining all massless states one gets one vector and D — p — 1 scalars
in the adjoint representation of the non-abelian group U(N). This suggests that
the D-brane system describes a U(N) gauge theory with an adjoint Higgs mech-
anism. The Higgs mechanism is realized geometrically: Higgs expectation values
correspond to the distances between branes, and the masses can be understood in
terms of stretched strings. Again, this interpretation, which is based on analyz-
ing the spectrum is confirmed when studying interactions. Besides Chan-Paton
factors, D-branes are a second possibility to introduce non-abelian gauge groups.
In fact Chan-Paton factors are related to D-branes through T-duality, but we
will not be able to discuss this in these lectures.

The above construction can be extended to non-oriented strings, where other
gauge groups occur. There are various other generalizations, which allow one to
construct and study various gauge theories using strings and D-branes. These
techniques are known as ‘D-brane engineering’ of field theories. Besides being
of interest for the study of field theories through string methods, D-branes are
important for understanding string theory itself. As we will see later, D-branes
are actually solitons of string theory. Thus we are in the privileged position of
knowing the exact excitation spectrum around such solitons in terms of open
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strings. This can be used, for example, to compute the entropy and Hawking
radiation of black holes.

Another application of D-branes goes under the name of ‘brane worlds’ or
‘brane universes’ or ‘models with large extra dimensions’. As we have seen, D-
branes enable one to localize gauge interactions and matter on a lower-dimension-
al submanifold of space-time. This leads to models with space-dimensions where
only gravity (closed strings) but not standard model matter (open strings) can
propagate. Empirical limits on the size of the dimensions transverse to the brane
only come from gravity, which is much weaker than all other interactions. There-
fore such dimensions can be quite large, even up to about 1 mm. This is in
contrast to limits on extra dimensions which are accessible to standard model
interactions. Here the experimental limits are set by the scale resolvable in cur-
rent accelerator experiments.

Brane world models are nowadays popular in both particle physics and cos-
mology. In particular, they can be used to construct models where the fundamen-
tal gravitational scale is of order 1 TeV. We will come back to these applications
of D-branes in Sect. 6.

2.3 Further Reading

The material covered in this section can be found in all of the standard textbooks
on string theory [1-5]. Dirichlet boundary conditions and D-branes are only
covered by the more recent ones [3,4].

3 Interacting Bosonic Strings

So far we have not specified how strings interact. One might expect that this
can be done by adding interaction terms to the world-sheet action. However,
we have to respect the local symmetries of the Polyakov action, which severely
restricts our options. In particular, contact interactions, which are frequently
used in describing non-fundamental string-like objects such as polymers, are
not compatible with Weyl invariance. Admissible interacting world-sheet actions
include marginal deformations of the Polyakov action, i.e., deformations which
preserve Weyl invariance. One such deformation replaces the flat space-time
metric by a curved one. As expected intuitively, such an action does not describe
interactions among strings, but strings moving in a non-trivial background. The
same is true when replacing the Polaykov action by more general conformal field
theories.

How then do we define interactions? We will give a heuristic discussion in the
next section. The resulting scattering amplitudes are Lorentz covariant, unitary
and UV finite. They include the Veneziano amplitude and its cousins, which
historically started the subject.

For definiteness we will focus in the following on closed oriented strings. The
generalization to other string theories will be indicated briefly.
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3.1 Heuristic Discussion

Intuitively, interactions between strings are described by world-sheets which con-
nect a given initial configuration of strings to a final configuration. One can
draw several such world-sheets, which differ by their topologies. Comparing to
the similar treatment of point particles by graphs, we realize that while graphs
have vertices, the world-sheets connecting strings are manifolds without distin-
guished interaction points. This leads to the expectation that string interactions
are less singular then those of point particles, which is indeed confirmed by the
final result of the construction. Moreover, it indicates that one does not have
any freedom in defining interactions. For particles, we can assign couplings to
vertices which depend on the species of the particles meeting at the vertex. For
strings the interaction is encoded in the topology of the world-sheet and there
is no such freedom. There is one fundamental interaction, which couples three
closed strings, and all we can do is to assign a coupling constant x to it.

Next, we restrict ourselves to finding transition amplitudes between asymp-
totic states in the infinite past and future. An asymptotic in- or out-going state
is represented by a semi-infinite cylinder. When mapping this to a punctered
disc, the asymptotic state is represented by the puncture. This leads to the idea
that we can represent the asymptotic state by a local operator of the world-sheet
field theory. Such operators are called vertex operators. Note that they do not
describe interactions. Instead, the vertex operator Vg (o) describes the creation
or annihilation of the string state |®) at the position o on the world-sheet. That
is, they allow us to assign a copy of the space of physical states to every point of
the world-sheet. As we will see below, there is indeed a natural one-to-one map
between physical states |®) and local operators of the world-sheet field theory.

After replacing the world-sheet punctures by insertions of vertex operators
we are left with compact closed surfaces. The topologies of such surfaces are
classified by their genus g > 0, or equivalently, by their Euler number y = 2—2g.
Here g = 0 is the two-sphere, and g = 1 is the torus. The general genus g surface
X4 is obtained from the sphere by attaching g handles. The handles play the
role of loops in Feynman diagrams. When considering an interaction process on
X involving M external states, we find M — x fundamental string interactions
and have to assign a factor kM —X,

We now postulate that a scattering amplitude involving M external states is
given by

o0
A, M) =) RMTXAQLLL M), (68)
g=0
where A(1,..., M), is the contribution of Y. This is a perturbative expression

in the string coupling x. As usual for theories with a single coupling, the expan-
sion in the coupling coincides with the expansion in loops, which in our case is
the expansion in the genus g.

The genus g contribution is defined to be

A, ... M)y = (Vi Var)g, (69)
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where

V; :/ dzai\/ﬁVi(m) (70)
ZQ

are the so-called integrated vertex operators, which are obtained by integrating
the vertex operators V;(o;) over the world sheet. (Though our notation might
suggest otherwise, we do not require that X; can be covered by one set of co-
ordinates, which is of course impossible for compact X;. We just use a local
representative of the integrand for notational purposes.) In (69) we compute
the correlation function of the vertex operators V;(o;) on X, in the world-sheet
quantum field theory defined by the Polyakov action and integrate over the posi-
tions of the vertex operators. The result is interpreted as a scattering amplitude
of string states in space-time, with the in- and out-states represented by the
vertex operators.

Note that it is not possible to introduce arbitrary weight factors between
the contributions of different genera. The reason is that unitarity requires that
scattering amplitudes factorize into the amplitudes of subprocesses whenever
an intermediate state is on-shell. In fact, in the old days of string theory this
was used to construct the perturbative expansion by seewing together tree am-
plitudes. However, this approach is more cumbersome then the Polyakov path
integral approach that we will describe here.

3.2 Vertex Operators

We now take a closer look at the vertex operators. Observe that the scattering
amplitudes defined by (68,69,70) must be invariant under reparametrizations of
the world-sheets. In particular the local vertex operators V;(o;) must transform
such that (70) is invariant. When imposing the conformal gauge, it still must
transform in a specific way under conformal transformations o* — &% (o%).
In conformal field theory fields which transform covariantly under conformal
transformations are called primary conformal fields. A primary conformal field
of weights (h, h) is an object that transforms like a contravariant tensor field of

rank (h, R):
V(et,67) = (Zgi)h (gg)hvw,a). (71)

Invariance of (70) implies that vertex operators of physical states must be pri-
mary conformal fields of weights (1,1). This property is equivalent to imposing
the Virasoro constraints (41) on physical states. States assigned to a point P
of X are constructed from vertex operators by applying them to a ground state

|0>P’

@) = Va(P)|0)p - (72)

To make contact with the space Fpnys constructed in Sect. 2.2, one parametrizes
2 in the vicinity of P by a semi-infinity cylinder with P being the asymptotic
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point ¢° — —oo. Intuitively this describes an ingoing state created in the infinite
past. Then,

|®) = lim Vg(0)|0), (73)
00— —c0
where |0) := |k = 0) is the (unphysical) zero-momentum state with occupation

numbers N =0 = N in F.
To indicate how this works in practice, we now specify the vertex operators
for the lowest states. Consider the operator

V(o) =:e™X" (o), (74)
where : - - - : indicates normal ordering. Applying this operator we find
lim :e® X" (0)|0) = e |0) = |k) (75)

09— —oc0

where we have used that e*»" |0) is an eigenstate of p* with eigenvalues k*. One
can show that (74) has weights (§%2, £k7). Thus it has weights (1,1) if k% = 8,
which is the physical state condition M? = —8 for the tachyonic ground state of
the closed string. (We have set o/ = 1.)

The vertex operator for the first excited level is

V(o) =: (o XHo_X"e*o X" (g) . (76)
This has weights (1,1) if
=0, k'(,=0=kC., (77)
which is precisely the physical state condition for the state
Cuat a? k) . (78)
More generally, vertex operators of the form
V(0) =t Gy 0TI X QM XM R X () (79)
generate states of the form

Cyooy o G R (80)

—mi —ni

3.3 Interactions in the Path Integral Formalism

The next step is to explain in more detail how the amplitudes (68)—(70) are
defined and how they are computed in practice. As usual one can use either the
path integral (Lagrangian) or the operator (Hamiltonian) formulation. We will
use Polyakov’s path integral formulation. This has the advantage of immediately
providing explicit formal expressions for correlation functions. The mathematical
complications of defining the interacting quantum theory are hidden in the path
integral measure. We will not discuss this in full detail, but mention and illustrate
the most important points.
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The Path Integral. We now turn to the Polyakov path integral, which is one
way to give a precise meaning to (68). In this approach the correlation func-
tion (69) is computed by functional methods. Intuitively we integrate over all
paths that strings can take in space-time. However, in order to have a well de-
fined path integral, we need to study the theory in Euclidean signature, both on
the world-sheet and in space-time. A Euclidean formulation of the world-sheet
theory is needed to have a well defined functional integral for the world-sheet
field theory. In particular, we want to have well defined world-sheet metrics on
general surfaces Yy, which is not possible for Lorentzian signature. Second, one
also has to work in Euclidean space-time, in order to have a standard Gaus-
sian integral for the ‘time’ coordinate X°. Wick-rotating X° can be interpreted
as continuing to unphysical Euclidean momenta and polarizations. As we have
seen in our discussion of vertex operators the string coordinates X* are always
contracted with momenta and polarizations. Physical scattering amplitudes are
thus obtained by computing (68) in the Euclidean theory and evaluating the re-
sult for physical momenta and polarizations. This uses the analycity properties
expected to hold for any relativistic unitary scattering amplitude. For tree-level
amplitudes one can study how the Wick rotation works explicitly, by comparing
to results obtained by operator methods.

Our starting point is the Polyakov action on a world-sheet ' with positive
definite metric hog and local complex coordinate z,

1
 drna!

Sp / d?2Vhh*Po, X 95X, . (81)
x

The quantum theory is now defined by summing over all topologies of X' and

integrating over X* and hqg:

A(l,... M) = ZKM*XN_(,/DXﬂDhaﬁe*SP[X’h]Vl~~~VM ;o (82)

9=0

where V; are the integrated vertex operators of the physical states and N, are
normalization factors needed to define the path integral. The V; depend on X*
through the local vertex operators V;(o;), while the world-sheet metric enters
through the integration over o;.

One expects that one can properly define and compute the expression (82),
because the integration over X* is Gaussian (in flat space-time) and hqg is non-
dynamical. This turns out to be true, though several interesting complications
arise. Let us consider the integration over h,g. Since we can locally impose the
conformal gauge,

hap = dap (83)

we expect that we can use the Faddeev-Popov method and trade the integration
over the metric for an integration over reparametrizations and the Weyl factor.
As long as these are symmetries, the corresponding integration factorizes and can
be absorbed in the normalization factor IV,. The first obstruction encountered is
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that there is a conformal anomaly when the quantum theory based on (81) lives
on a curved world-sheet. This has the consequence that the integration over the
Weyl factor does not factorize in general. One option is to accept it as a new,
purely quantum degree of freedom: this is non-critical string theory, also called
Liouville string theory, because the dynamics of the Weyl factor is given by the
Liouville action. The other option is to observe that the anomaly is proportional
to D — 26, and therefore cancels for D = 26 space-time dimensions. This is the
critical string theory we study in these lectures.

Moduli and Modular Transformations. The next point is that the gauge
(83) cannot be imposed globally. All that can be achieved is to map has to a
metric of constant curvature,

hap = haslT] - (84)

As indicated, X, in general possesses a continuous family of such metrics, para-
metrized by moduli 7 = (71, ...). The space of constant curvature metrics on a
two-dimensional closed compact surface is isomorphic to the space of complex
structures. By reparametrizations and Weyl transformations we cannot change
the complex structure of the metric but we can map it to the unique representa-
tive (84) of the complex structure class which has constant curvature. Then the
path integral over all metrics reduces to a finite-dimensional integral over the
space M, of complex structures. The dimension of this space is known from the
Riemann-Roch theorem. For ¢ = 0 the complex structure is unique, and every
metric can be mapped to the standard round metric on the sphere. For g > 1
there is a non-trivial moduli space,

dimc My =1, for g=1,
dimc M, =39g—3, for g>1. (85)

After carrying out the integration over the metric, amplitudes take the form

o0
A(l,...,M) = ZHM_XN;/ d,u(T)/DX“e_SP[X’h]J(iL)Vl...VM. (86)
9=0 My

N are normalization factors needed to deal with the X*-integration and .J (ﬁ)
is the Faddeev-Popov determinant, which one can rewrite as a functional inte-
gral over Faddeev-Popov ghost fields. As indicated the X*-integral depends on
the moduli through the world-sheet metric hag = hags(T). One finds that the
measure du(7) for the moduli is the natural measure on the space of complex
structures, the so-called Weil-Petersson measure.

The precise characterization of the moduli space has further interesting de-
tails. We examplify this with the two-torus. We can represent a torus as a paral-
lelogram in the complex plane with opposite sides identified. Since the complex
structure does not depend on the overall volume, we can restrict ourselves to
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parallelograms with edges 0, 1, 7, 7+ 1, where Im(7) > 0. In one complex dimen-
sion holomorphic maps are conformal maps, and vice versa. Thus the complex
structure is varied by moving 7 in the upper half-plane,

H={reC|Im(r) >0}. (87)

This is the modulus we are looking for. H has a metric of constant negative
curvature, the Poincaré metric,

d’r
(Im(7))*
With this SI(2, R)-invariant metric, H is the symmetric space SI(2,R)/SO(2).
However, H is not our moduli space, because it overcounts complex structures.

On H the group SI(2,R) acts from the right. Taking 7 as coordinate, the oper-
ation is

dp(r) = (88)

ab
ar +b ,  where € SI(2,R) . (89)
ct+d cd

The subgroup SI(2,Z) maps parallelograms to parallelograms which define the
same torus, because they form basic cells of the same lattice in H. Such transfor-
mations are called modular transformations. Their action on the torus is given by
cutting the torus along a non-contractible loop, twisting and regluing. This cor-
responds to a large reparametrization which cannot be continously connected
to the identity. Clearly, we have to require that string amplitudes are invari-
ant under such large reparametrizations. This implies a consistency condition,
known as modular invariance: the 7-integral in (86) must be invariant under
modular transformations. This condition becomes non-trivial when considering
more general background geometries or string theories with fermions.

The moduli space is obtained by restricting to a fundamental domain F of
the action of SI(2,Z) on H. By modular invariance we can consistently restrict
the 7-integration to such an F. The standard choice is found by looking at the
action of the two generators of Si(2,Z),

1
ToT+1l, T ——. (90)
T

Therefore the most convenient choice is
F={reH|-i<Im(r)<ir, || >1} (91)

(with certain identifications along the boundary).

Modular invariance has deep consequences for the short distance behaviour
of string theory. In fact, modular invariance is what makes closed string theories
UV finite. To illustrate how this works, note that a one-loop amplitude in closed
string theory takes the form

1—loop

. 2
ASting / TPy (92)
F
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An analogous expression for one loop amplitudes in quantum field theory is given
by Schwinger’s proper time parametrization,

o dt
A?flzop ~ / ?f(t) ) (93)

where t is the proper time and ¢ is an UV cutoff. In this formulation UV di-
vergencies occur at short times ¢ — 0. In string theory Im(7) plays the role
of proper time, and potential UV divergencies occur for Im(7) — 0. However,
by restricting to the fundamental domain we have cut out the whole dangerous
region of small times and high momenta. This confirms the intuitive idea that
strings should have a particularly soft UV behaviour, because the theory has
a minimal length scale, which works like a physical UV cutoff. Note that one
still has IR divergencies. In bosonic string theory one has divergencies related to
the tachyon, which show that the theory is unstable in Minkowski space. This
problem is absent in supersymmetric string theories. In addition one can have
IR divergencies related to massless states. Since there is only a finite number of
massless string states, this problem has the same character as in field theory.

Also note that the modular transformation 7 — —1/7 maps the UV region
of H to its IR region. Thus, modular transformations map UV divergencies to
IR divergencies and enable us to reinterpret them in terms of low energy physics
(namely, intermediate massless states which go on-shell).

For higher genus surfaces Y, with g > 1 the story is similar, but more
complicated. There is an analogue of the upper half plane, which is called Siegels
upper half plane and has complex dimension @. Since there are only 3g — 3
complex moduli, this space contains more parameters then needed for g > 4.
The Teichmiiller space is embedded in a complicated way into Siegel’s upper
half plane. On top of this there is a modular group which has to be divided out.

Global Conformal Transformations. The integration over complex struc-
ture moduli in (86) reflects that surfaces with g > 0 have metrics that cannot
be related by reparametrizations. Therefore there is a finite left-over integration
when replacing the integral over metrics by an integral over reparametrizations.
For g < 2 one has in addition the reciprocal phenomenon: these surfaces have
global conformal isometries. This means that there are reparametrizations which
do not change the metric, implying an overcounting of equivalent contributions
in (86). Formally this is taken care of by the normalization factors N, N7. The
overcounting yields a multiplicative factor, which is the volume of the group of
conformal isometries. This has to be cancelled by the normalization factors. For
g = 0 the conformal group is SI(2,C) and has infinite volume. Thus one has to
formally divide out an infinite constant. For g = 1 the conformal group is U(1)?,
and has a volume which depends on the complex structure modulus 7 of the
world-sheet. This factor is crucial for world-sheet modular invariance.

The systematic approach is to treat the global conformal isometries as a
residual gauge invariance and to apply the Faddeev-Popov technique.Then the
volumes of residual gauge groups are properly taken care of. So far we have been
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sloppy about how and when to carry out the integration over the positions of
the vertex operators. The proper order is as follows: one first carries out the X*#-
integration to obtain a correlation function on a world-sheet of given topology
and complex structure:

(Vi(21,21) - )gr _N'/Dxe*SP[XWlJ(iL( Wiz, Z) . (94)

Next one integrates over the positions of the vertex operators. For g < 2 one
treats the global conformal isometries by the Faddeev Popov method. The result
is

<v1--->g,f=/du<z1,zl,...><v1<zl,zl>--->g,f, (95)

where dp(z1,%1,...) for g < 2 is a measure invariant under the global isometries.

For g = 0 the measure vanishes if less than three vertex operators are present.
This reflects the infinite volume of the global conformal group: by SI(2, C) trans-
formations one can map three points on the sphere to three arbitrary prescribed
points. Thus, the SI(2, C) symmetry can be used to keep three vertex operators
at fixed positions. In other words the first three integrations over vertex opera-
tors compensate the infinite volume of the global conformal group that one has
to divide out. For less than three vertex operators one cannot compensate this
infinite normalization factor and the result is zero. Thus, the integrated zero-,
one- and two-point functions vanish. This implies that at string tree level the
cosmological constant and all tadpoles diagrams vanish.

The final step in evaluating (86) is to integrate over complex structures and
to sum over topologies:

A(l,...,M) = ZW—X<Q>/ ()i Dgr (96)
9=0 My
Through the vertex operators, A(1,... , M) is a function of the momenta k! and

polarization tensors (/""" of the external states.

Graviton Scattering. Though we cannot go through the details of a calcula-
tion here, we would like to discuss the properties of string scattering amplitudes
in a particular example. Our main interest being gravity, we choose the scat-
tering of two massless closed string states. The corresponding external states
are

Cﬁ?a&diﬂk(i)) ) (97)
with ¢ = 1,2, 3,4. The resulting amplitude takes the following form:
I'(— %S)F

(—% ) (—%u)
P+ <) M1+ 2401+ %u)

Aitring _ :‘<C2 K(C(l)7 k(z)) . (98)
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Here s,t,u are the Mandelstam variables
s=—(kW+ k)2 t=—(k® + £ w= k" +£E)2  (99)

and K (¢, k®) is the kinematic factor, a complicated function of momenta and
polarizations that we do not display.

Scattering amplitudes have poles whenever an intermediate states can be
produced as a real physical state. Unitarity requires that the residue of the pole
describing such a resonance is the product of the amplitudes of the subprocesses
through which the intermediate state is produced and decays. In this way the
pole structure of amplitudes is related to the particle spectrum of the theory.

The amplitude (98) has poles when the argument of one of the I’-functions
in the numerator takes a non-positive integer value,

/

—%x:O,—l,—Z,... , where z =s,t,u. (100)

Comparing to the mass formula of closed strings,
o’ M?*=2(N+N -2), (101)

we see that the poles precisely correspond to massless and massive string states
with N = N =1,2,3,.... There is no pole corresponding to the tachyon (N =
0) in this amplitude, because the tachyon cannot be produced as a resonance
for kinematic reasons. When computing the amplitude for tachyon scattering
instead, one also finds a tachyon pole.

The particular pole structure of (98) and of related string amplitudes was
observed before the interpretation of the amplitudes in terms of strings was
known. In the late 1960s it was observed experimentally that hadronic resonances
obey a linear relation between the spin and the square of the mass, called Regge
behaviour. This behaviour was correctly captured by the Veneziano amplitude,
which has a structure similar to (98) and describes the scattering of two open
string tachyons. The Regge behaviour was the clue for the interpretation of the
Veneziano amplitudes and its cousins in terms of strings.

To see that string states show Regge behaviour, consider the truncation of
string theory to four space-time dimension (which is consistent at tree level).
Closed string states with level N = N have spins J < 2N, because the spin J
representation of the four-dimensional Lorentz group is the traceless symmetric
tensor of rank J. Open string states have spins J < N. The states lie on lines in
the (M2, J)-plane, which are called Regge trajectories. The closed string Regge
trajectories are given by

Qclosed (M2) = O‘glosed]\/[2 + aclosed(o) ) (102)

where

O[/

O[::losed = Z 5 aclosed(o) = 170’ —17 el . (103)
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String states correspond to those points on the Regge trajectories where

@ oseq(M?) = N + N. States with the maximal possible spin J = 2N = N +
N for a given mass lie on the leading Regge trajectory aelosed(0) = 1. Since
o' determines the slope of the trajectories, it is called the Regge slope. The
corresponding expressions for open strings are:

aopen(M2) = a;penMQ + aopen(o) ) (104)
where
Qpen = @5 Qopen(0) = 1,0, =1, . (105)

The resonances found in open string scattering lie on the corresponding Regge
trajectories.

When computing scattering amplitudes in terms of Feynman diagrams in
field theory, individual diagrams only have poles in one particular kinematic
channel, i.e., in the s-channel or t-channel or u-channel. The full scattering am-
plitude, which has poles in all channels, is obtained by summing up all Feynman
diagrams. In (closed oriented) string theory there is only one diagram in each
order of perturbation theory, which simultanously has poles in all channels. The
total amplitude can be written as a sum over resonances in one particular chan-
nel, say the s-channel. This is consistent with the existence of poles in the other
channels, because there is an infinite set of resonances. When instead writing
the amplitude in the form (98), it is manifestly symmetric under permutations
of the kinematic variables s, ¢, u. This special property was called ‘duality’ in the
old days of string theory (a term that nowadays is used for a variety of other,
unrelated phenomena as well).

Another important property of (98) and other string amplitudes is that they
fall off exponentially for large s, which means that the behaviour for large ex-
ternal momenta is much softer than in any field theory. This is again due to the
presence of an infinite tower of excitations. Since loop amplitudes can be con-
structed by sewing tree amplitudes, this implies that the UV behaviour of loop
diagrams is much softer than in field theory. This lead to the expectation that
string loop amplitudes are UV finite, which was confirmed in the subsequent
development of string perturbation theory.

Though we did not explicitly display the kinematic factor K (¢, k() we
need to emphasize one of its properties: it vanishes whenever one of the external
states is a null state. As we learned above, null states have polarizations of the
form

¢ = kD + kD¢ (106)

and are gauge degrees of freedom. They have to decouple from physical scattering
amplitudes, as it happens in the above example. This property is called ‘on shell
gauge invariance’, because it is the manifestation of local gauge invariance at
the level of scattering amplitudes. It can be proven to hold for general scattering
amplitudes.
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If we take the polarization tensors of the external states to be symmetric and
traceless, then (98) describes graviton—graviton scattering. So far our identifica-
tion of this string state with the graviton was based on its kinematic properties.
Since Einstein gravity is the only known consistent interaction for a second rank,
traceless symmetric tensor field (‘massless spin—2-field’), we expect that this
also holds dynamically. We will now check this explicitly. In the field theoretical
perturbative approach to quantum gravity one starts from the Einstein-Hilbert
action,

1 D
S = ﬁ/d \/gR (107)
and expands the metric around flat space
I (%) = My + £y (2) - (108)

The field v, () is the graviton field. Expanding (107) in « one gets a compli-
cated non-polynomial action for ¢ that one quantizes perturbatively. The result-
ing theory is non-renormalizable, but tree diagrams can be consistently defined
and computed. In particular one can compute graviton—graviton scattering at
tree level and compare it to the string amplitude (98). Denoting the field theory
amplitude by AJ™" the relation is

yserng _ DAL= 59T = SOT(1 = Fw) oy
4 - ’ 4 :
D1+ %s) M1+ 2001+ %u)

In the limit o/ — 0, which corresponds to sending the string mass scale to
infinity, the string amplitude reduces to the field theory amplitude:

lim A§™ie — AFTh (110)

a’—0

(109)

At finite o/ string theory deviates from field theory. The correction factor in (109)
contains precisely all the poles corresponding to massive string states, whereas
the massless poles are captured by the field theory amplitude. One can construct
an effective action which reproduces the string amplitude order by order in «/'.
At order o one obtains four-derivative terms, in particular terms quadratic in
the curvature tensor,

Sut = gz [ AP0VAR+ e By R 4 O(@)) . (111)

where c; is a numerical constant. The o’-expansion of the effective action is an
expansion in derivatives. It is valid at low energies, i.e., at energies lower than
the scale set by o/, where corrections due to massive string scales are small.

Obviously, it is very cumbersome to construct the effective action by match-
ing field theory amplitudes with string amplitudes. In practice one uses symme-
tries to constrain the form of the effective action. This is particularly efficient for
supersymmetric actions, which only depend on a few independent parameters
or functions, which can be extracted from a small number of string amplitudes.
A different technique, which often is even more efficient, is to study strings in
curved backgrounds, and, more generally, in background fields.
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3.4 Strings in Curved Backgrounds

So far we only discussed strings in flat backgrounds. Let us now consider the case
of a curved background with Riemannian metric G, (X). Then the Polyakov
action takes the form of a non-linear sigma-model

1

S =
P 4o/

/ d?oVhh*P9, X 05 X" G (X)) . (112)

As emphasized above, the local Weyl invariance
has — €M hyg (113)

is crucial for the consistency of string theory, since the construction of states,
vertex operators and amplitudes is based on having a conformal field theory on
the world-sheet. If the space-time metric is curved, then the Weyl invariance of
the classical action (112) is still manifest. But at the quantum level it becomes
non-trivial and imposes restrictions on G, (X). In the non-linear sigma-model
defined by (112) one can define a modified beta function 3, which measures the
violation of local Weyl invariance. In order to have local Weyl invariance this
function must vanish,

f=0. (114)

Since G, (X) are the field-dependent couplings of the non-linear sigma-model,
the beta function (3 is a functional of G, (X). It can be computed perturbatively,
order by order in o’. The dimensionless expansion parameter is the curvature
scale of the target space (i.e., space-time) measured in units of the string length
Vol

The leading term in this expansion is:

=G 1

ﬂul/ = _ﬂRHV . (115)
Thus the space-time background has to be Ricci-flat, i.e., it satisfies the vacuum
Einstein equation. The condition imposed on the background field by local Weyl
invariance on the world-sheet is its space-time equation of motion. This relation
between world-sheet and space-time properties holds for other background fields
as well and can be used as an efficient method to construct effective actions. One
can also compute the o/-corrections to (115):

-G 1
ﬁp,]/ = _%

a/
(RMV + QR/chvRuaﬂ’y) : (116)
The corresponding o/-corrections to the Einstein-Hilbert action take the form
(111).
At this point we need to reflect a little bit on how gravity is described in string
theory. So far we have seen that it enters in two ways: first, there is a graviton
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state ()0 1@ |k) in the string spectrum. Second, there is a background met-
ric G, (X). If gravity is described consistently, then these two objects must be
related. To explore this we expand G, (X) around flat space,

G (X) = nw + kb (X) (117)

and observe that the action (112) is related to the Polyakov action in flat space
by

SP[GW] = SP[UW] + KV[Q/’W] ) (118)
where
v _L 25/ hho08 o v
W] = 4m,/d VAP, (X )0 X0 X" . (119)

Taking the Fourier transform of 1, (X) we obtain

Vi) = oy [ @7 [ VRV 5(0) (120)
where
Vi, D)) = Ty (k)90 X1 0% X7 X (121)

is the graviton vertex operator with polarisation tensor zzm,(k:).

Thus the curved space action Sp[G | is obtained by deforming the flat space
action Sp[n..,] by the graviton vertex operator. Since both actions must be con-
formal, V[i)] must be a so-called exactly marginal operator of the world-sheet
field theory. These are the operators which generate deformations of the action
while preserving conformal invariance. A necessary condition is that V[¢)] must
be a marginal operator, which means it has weights (0,0) with respect to the
original action. Such operators have the correct weight for being added to the
action and generate infinitesimal deformations which preserve conformal invari-
ance. Note that it is not guaranteed that a marginal operator is still marginal in
the infinitesimally deformed theory. Only those marginal operators which stay
marginal under deformation generate finite deformations of a conformal field
theory and are called exactly marginal (or truly marginal).

If the integrated vertex operator V[i] has weights (0,0), then the vertex op-
erator (121) must have weights (1, 1). This is the condition for a vertex operator
to create a physical state. The resulting conditions on momenta and polarization
are

=0, kg =0, (122)

which we now recognize as the Fourier transforms of the linearized Einstein
equation. This the free part of the equations of motion for the graviton and
characterizes its mass and spin.
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Marginal operators are not necessarily exactly marginal. The flat space action
defines a free field theory on the world-sheet, which is conformally invariant at
the quantum level. Thus V[¢] is exactly marginal if and only if the curved
space action Sp[G.] is conformally invariant. By the beta—function analysis,
this is equivalent to the full vacuum Einstein equation for the metric G, plus
corrections in «'. This is the full, non-linear equation of motion for the graviton
string state.

In order to understand the relation between the graviton string state and
the background metric even better we use (118) to relate amplitudes computed
using the curved space action Sp[G,,,] and the flat space action Sp[n,.|:

Vi Vaya = (Vi - VeV ¥y, (123)

The operator ¢”[¥] generates a coherent state of gravitons in flat space. This
can be seen as follows: in quantum mechanics (think of the harmonic oscilla-
tor) coherent states are defined as states with minimal Heisenberg uncertainty.
They are eigenstates of annihilation operators and can be constructed by ex-
ponentiating creation operators. The resulting states are not eigenstates of the
number operator but are superpositions of states with all possible occupation
numbers. In (123) the role of the creation operator is played by the graviton
vertex operator.

In quantum field theory, coherent states are the states corresponding to clas-
sical fields. For example, in quantum electrodynamics a classical electrodynamic
field can be represented as a coherent state of photons. Similarly, in gravity a
curved metric (modulo global properties) can be described as a coherent state
of gravitons in the Minkowski vacuum. This is realized in the above formula,
where the amplitudes in the curved background can be computed equivalently
by inserting the vertex operator for a coherent state of gravitons into the flat
space amplitude. This is a manifestation of background independence: though
we need to pick a particular background to define our theory, other backgrounds
are different states in the same theory. Since consistent backgrounds must satisfy
the equations of motion, one also calls them solutions of string theory. In this
terminology different background geometries are different solutions of the single
underlying string theory.

3.5 Effective Actions

In the last section we have seen that the equation of motion of the metric/graviton
can be obtained from an effective action. Such effective actions are very conve-
nient, because they allow us to describe string states in terms of D-dimensional
field theory. Effective actions are obtained in an expansion in o’ and therefore
their use is limited to scales below the string scale. But given that the string
scale probably is very large, they are extremely useful to extract particle physics
or gravitational physics from string theory. Therefore they play a major role in
string theory. We have also seen that there are two methods for deriving effective
actions: the matching of string theory amplitudes with field theory amplitudes
and solving the conditions for Weyl invariance $ = 0 in a non-trivial background.
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So far we found that the Einstein-Hilbert action is the leading part of the
effective action for the graviton. We have seen that the closed string has two
further massless modes, the dilaton @ and the antisymmetric tensor field B, .
We can now switch on the corresponding non-trivial background fields. The total
world-sheet action is:

S = Sp[G] + S[B] + S[®) . (124)
Here Sp[G] is the action (112),
S[B] = 4730/ / d?oe*P 9, X" 05 X" B (X) (125)
and
S[®] = %/dQU\/ﬁR(Q)(h)qﬁ(X) . (126)

Here €27 is the totally antisymmetric world-sheet tensor density and R(2)(h) is
the Ricci scalar of the world-sheet metric. Note that the dilaton action is higher
order in o'

The beta-function for the dilaton starts with a term proportional to (D — 26)
and has o’-correction proportional to derivatives of @. The leading term of the
beta-function corresponds to a cosmological constant in the effective action.
When considering string theory around backgrounds with constant dilaton, the
only solution to the dilaton beta-function equation is to work in the critical di-
mension D = 26. We will only consider such backgrounds here, and therefore the
cosmological term in the effective action vanishes. But let us note that there are
known exact solutions to the beta-function equations with non-constant dilaton.
These describe exact string backgrounds with D # 26.

Let us now return to the dilaton term of the world-sheet action. When eval-
uated for constant dilaton, (126) is proportional to the Euler number of the
world-sheet. For a Euclidean closed string world-sheet of genus g we have:

1
X= - VAR (h) =2 —2¢. (127)
™ z,

Therefore shifting the dilaton by a constant a,
H(X) > P(X)+a (128)

has the effect of shifting the total action (124) by a constant proportional to the
Euler number:

S — S +ax(g) . (129)

For the corresponding partition function this is equivalent to rescaling the cou-
pling by e®:

oo oo
Z=> kX9 / DXDhe™% — Y (re®) X9 / DXDhe " . (130)
g=0 g=0
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This shows that the coupling constant x and vacuum expectation value () of the
dilaton are not independent. To clarify the physical meaning of both quantities,
we now investigate the effective action of the massless modes. The conditions
for Weyl invariance of (124) are the Euler-Lagrange equation of the following
effective action:

1 1
goutr 53 / dP v/ Ge 2 (R(G) — —H,, , H"? 4 40,0"® + 0(o/)> .

12
(131)

This way of parametrizing the effective action is called the string-frame. The
string-frame metric G ,,, is the metric appearing in the world-sheet action (112).
The field strength of the antisymmetric tensor field is

Hywp =31 91,B,) (132)

where [uvp] denotes antisymmetrization.

Concerning the dilaton we note that its vacuum expectation value is not
fixed by the equations of motion. Like in the partition function (130), shifting
the dilaton by a constant is equivalent to rescaling the coupling. In order to
determine the relation of the string coupling constant x to the physical gravi-
tational coupling kphys one has to perform a field redefinition that transforms
the gravitational term in (131) into the standard Einstein-Hilbert action. The
coefficient in front of this term is the physical gravitational coupling.

The transformation which achieves this is the following Weyl rescaling of the
metric:

g;U«V = Gﬂyeiﬁ(¢7<¢>) . (133)

Expressing everything in terms of the Einstein frame metric g, one obtains:

st = s [ Vi (R - gy T
phys
—%audiaﬂqﬁ + (’)(o/)) . (134)
The physical gravitational coupling is
Fophys = Kel?) . (135)

Since the coupling x can be rescaled by shifting @, it can be set to an arbitrary
value. This is used to fix x:

(136)

(Note that the D-dimensional gravitational couplings &, kpnys have dimension
(length)P=2/2) Since kphys and o’ are related by the vacuum expectation value
of the dilaton we see that there is only one fundamental dimensionful parameter
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in string theory, which we can take to be either the gravitational coupling s pnys
or the string scale set by a’. They are related by the vacuum expectation value of
the dilaton, which classically is a free parameter labeling different ground states
in one theory. Defining the dimensionless string coupling constant by

gs = €', (137)

we have the relation

D—-2

Kphys = (@) 7 gs . (138)

The effective actions (131,134) have been constructed to leading order in o/
and at tree level in the string coupling gg. Loop corrections in gg can be ob-
tained, either by considering loop amplitudes or from the contribution of higher
genus world-sheets to the Weyl anomaly (Fischler-Susskind mechanism). One
might expect that loop corrections generate a potential for the dilaton and lift
the vacuum degeneracy. But for the bosonic string one does not know the stable
ground state, because of the tachyon. In supersymmetric string theories tachyons
are absent, but no dilaton potential is created at any loop level. Thus the value
of the string coupling remains a free parameter. This is (part of) the problem
of vacuum degeneracy of superstring theories. Since the flatness of the dilaton
potential is a consequence of supersymmetry, the solution of the vacuum degen-
eracy problem is related to understanding supersymmetry breaking.

For practical applications, both the string frame effective action and the
Einstein frame effective action (and their higher-loop generalizations) are needed.
The string frame action is adapted to string perturbation theory and has a
universal dependence on the dilaton and on the string coupling:

Soty o~ g T (139)
The Einstein frame action is needed when analyzing gravitational physics, in
particular for solutions of the effective action that describe black holes and
other space-time geometries. Note that concepts such as the ADM mass of an
asymptotically flat space-time are tied to the gravitational action written in the
Einstein frame. The relation between the Einstein frame metric and the string
frame metric is non-trivial, because it involves the dilaton, which in general is a
space-time dependent field. Therefore various quantities, most importantly the
metric itself, can take a very different form in the two frames. For example one
metric might be singular wheras the other is not. In order to decide whether a
field configuration is singular or not, one has of course to look at all the fields,
not just at the metric. If the metric is singular in one frame but not in the other,
then the dilaton must be singular.

3.6 Interacting Open and Non-oriented Strings

We now indicate how the above results extend to open and non-oriented strings.
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Open Strings. The world-sheets describing the interactions of open strings
have two kinds of boundaries: those corresponding to the initial and final strings
and those corresponding to the motions of string endpoints. Boundaries corre-
sponding to external strings can be mapped to punctures and are then replaced
by vertex operators. The boundaries corresponding to the motions of string
endpoints remain. They are the new feature compared to closed strings. Pertur-
bation theory for open strings can then be developed along the same lines as for
closed strings. Instead of closed oriented surfaces it involves oriented surfaces
with boundaries, and the vertex operators for open string states are inserted at
on the boundaries.

Again there is one fundamental interaction, which couples three open strings,
and we assign to it a coupling constant k,. The most simple world-sheet, analo-
gous to the sphere for closed strings, is the disc. It is leading in the expansion in
ko, and describes scattering at tree level. The computation of tree level scattering
amplitudes confirms the interpretation of the massless state as a gauge boson.
The resulting effective action, to leading order in o, is the Maxwell or, with
Chan-Paton factors, the Yang-Mills action. It receives higher order corrections
in o’ and one can show that the resulting actions are of Born-Infeld type.

Higher order diagrams in open string perturbation theory correspond to sur-
faces with more than one boundary component. They are obtained from the disc
by removing discs from the interior. Each removal of a disc corresponds to an
open string loop. The one loop diagram is the annulus.

One can also introduce a coupling of two open strings to one closed string
with coupling k.. and consider theories of open and closed strings. Unitarity
then implies that the three couplings k,, koc, £ are not independent. To see this
consider first a disc diagram with two open string vertex operators at the bound-
aries and two closed string vertex operators in the interior. This amplitude can
be factorized with an intermediate closed string. Looking at string interactions
we see that one has one interaction between three closed strings and one be-
tween one closed and two open strings. Therefore the amplitude is proportional
to Kkoe. The amplitude can also be factorized with an intermediate open string.
This time one sees two interactions involving two open and one closed string.
Therefore the amplitude is proportional to k2,. Comparing both forms of the
amplitude we deduce

K~ Koe (140)

(the numerical factor has to be determined by explicit computation).

Next consider the open string one loop diagram, the annulus. Putting two
vertex operators on each boundary one can again factorize it with either a closed
or an open intermediate state. This way one finds

K~ K2 (141)

o

Note that the above amplitude does not involve external closed string states.
This indicates an important property of open string theories: the coupling to
closed strings is not optional, but mandatory. When computing open string loop
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diagrams, one finds that they have poles which correspond to closed string states.
Therefore consistency of open string theories at the quantum level requires the
inclusion of closed strings. This means in particular that every consistent quan-
tum string theory has to include gravity. The relation between open and closed
strings becomes obvious when one realizes that the annulus is topologically equiv-
alent to the cylinder. While the annulus intuitively is the open string one loop
diagram, the cylinder is the closed string propagator. This is reflected by the
properties of the corresponding string amplitudes, which can be written either
as a sum over poles corresponding to open strings (open string channel) or as a
sum over poles corresponding to closed strings (closed string channel).

The UV finiteness of closed string theories is due to modular invariance. Open
string world-sheets do not have a modular group. The role of modular invari-
ance is played by another property, called tadpole cancellation. The underlying
observation is that the cancellation of divergencies between different diagrams
is equivalent to the vanishing of the dilaton tadpole. It turns out that tadpole
cancellation cannot be realized in a theory of oriented open and closed strings.
In theories of non-oriented open and closed strings tadpole cancellation fixes
the gauge group to be SO(2P/2). For bosonic strings the critical dimension is
D = 26 and the gauge group must be SO(8192). Since the primary problem of
bosonic strings is the tachyon, it is not clear whether tadpole cancellation plays
a fundamental role there. But for type I superstrings this is the condition which
makes the theory finite.

Since we only discussed orientable world-sheets so far, we next collect some
properties of the world-sheets of non-oriented strings.

Non-oriented Strings. Theories of non-oriented strings are obtained by keep-
ing only states which are invariant under world-sheet parity. Since such theories
are insensitive to the orientation of the world-sheet one now has to include
non-orientable world-sheets. Theories of closed non-oriented strings involve ori-
entable and non-orientable surfaces without boundaries, whereas theories of open
and closed non-oriented strings involve in addition orientable and non-orientable
world-sheets with boundaries. Let us summarize which types of world-sheets oc-
cur in string theory, depending on boundary conditions and orientability of the
world-sheet:

Strings Surfaces

boundaries |orientable

open | closed | oriented | non-oriented || without | with | yes | no

X — b — X — x | — (142)
X X X - X X X | -
X — — X X — X | x
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The simplest example of a non-orientable surface without boundary is the
real projective plane RP?, which is obtained from R? by adding a circle at
infinity, such that every line through the origin in R? intersects the circle in
one point. Equivalently, RP? is obtained from the disc by identifying antipodal
points on its boundary. Thus, RP? is a closed, but non-orientable surface, and
it is a world-sheet occuring in theories of closed non-oriented strings. It is useful
to note that RP? can be obtained from the sphere, which is the tree-level world-
sheet already familiar from oriented closed strings, by the following procedure:
start with the sphere, remove a disc, (realize that the result is a disc itself,) then
identify antipodal points on the resulting boundary. This operation is called
‘adding a crosscap’. By iterating this process we get an infinite series of new
non-orientable surfaces. For example, by adding a second crosscap we get the
Klein bottle. As we discussed above, there is a similar operation that generates
all orientable closed surfaces from the sphere: adding a handle. By adding both
handles and crosscaps we can generate all closed surfaces, orientable and non-
orientable. In fact, it is sufficient to either add handles (generating all orientable
surfaces) or to add crosscaps (generating all non-orientable surfaces). The reason
is that adding a crosscap and a handle is equivalent to adding three crosscaps.

When considering theories of non-oriented open strings one has to add world-
sheets with boundaries. These are obtained from the world-sheets of closed
strings by removing discs. For example, removing one disc from RP? gives the
Mobius strip. As we discussed in the last section, the couplings between open
strings, ., and between open and closed strings, ko4, are related to the closed
string coupling x by unitarity. The order of a given world-sheet in string pertur-
bation theory is k= X(9%:¢) where the Euler number is now determined by the
number g of handles, the number b of boundary components and the number ¢
of crosscaps:

x(g,b,c)=2—-2g—b—c. (143)

Let us write down explicitly the first few world-sheets:

g | bl c| x| Surface Coupling

0|00 Sphere K2

0)1]0]1 Disc K1

0| 0] 1|1 || Real projective plane || ! (144)
110|0]|0 || Torus K0

00| 2] 0 || Klein bottle K0

0| 2]0]| 0 || Annulus = cylinder K0

Oj1(1](0 Moébius strip K0
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3.7 Further Reading

Vertex operators and the Polyakov path integral are discussed in all the standard
textbooks [1-4]. A very nice introduction to the use of conformal field theory in
string theory is provided by [6]. A more detailed introduction to the Polyakov
path integral can be found in [8]. For an extensive review of this subject, see
[7]. A pedagogical treatment of the mathematical ingredients needed to treat
higher genus surfaces can be found in [10], whereas [9] discusses the Polyakov
path integral from the mathematicians point of view.

4 Supersymmetric Strings

The bosonic string does not have fermionic states and therefore it cannot be used
as a unified theory of particle physics and gravity. One way to introduce fermionic
states is an extension known as the Ramond-Neveu-Schwarz string (RNS string).
In this model one introduces new dynamical fields ¢¥* = (¢4) on the world-
sheets, which are vectors with respect to space-time but spinors with respect to
the world-sheet. We will suppress the world-sheet spinor indices A = 1,2 most of
the time. Surprisingly, the presence of such fields, when combined with a certain
choice of boundary conditions, yields states which are spinors with respect to
space-time, as we will see below.

The RNS model contains space-time bosons and fermions, but still has a
tachyonic ground state. One then observes that there are projections of the
spectrum which simultanously remove the tachyon and make the theories space-
time supersymmetric. A closer inspection shows that these projections are not
optional, but required by consistency at the quantum level. This way one obtains
three consistent supersymmetric strings theories, called type I, type ITA and type
IIB. Finally there are also two so-called heterotic string theories, which are the
result of a hybrid construction, combining type II and bosonic strings. This
makes a total of five supersymmetric string theories.

4.1 The RNS Model

We now discuss the classical and quantum properties of the RNS string, pro-
ceeding along the same lines as we did for the bosonic string.

The RNS Action. The action of the RNS model is obtained from the Polyakov
action by extending it to an action with supersymmetry on the world-sheet. Note
that world-sheet supersymmetry is different from, and does not imply, supersym-
metry in space-time. The action of the RNS model is constructed by extending
the Polyakov action (4) to an action with local world-sheet supersymmetry.
This action also has local Weyl symmetry, and further local fermionic symme-
tries which make it locally superconformal. We will not need its explicit form
here. The analogue of the conformal gauge is called superconformal gauge. In
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this gauge the action reduces to

SRNS = T

/"dQU(aaxwaa)qL+iaWpaaa¢ﬂ). (145)
=

The fields ¢* = (¢!;) are Majorana spinors with respect to the world-sheet and
vectors with respect to space-time, while p* = (p% ) are the two-dimensional
spin matrices. We will usually suppress the world-sheet spinor index A, B = 1, 2.
The action (145) is invariant under global world-sheet supersymmetry transfor-
mations:

Xt =gyt | oYF = —1p%ed XH . (146)
The equations of motion are:
PXF =0, p " =0. (147)

To these one has to add the constraints, which arise from the locally superconfor-
mal action. In this action the supersymmetric partner of the world-sheet metric
is a vector-spinor, the gravitino. This field is non-dynamical in two dimensions
and is set to zero in the superconformal gauge. The equation of motion for the
metric implies that the energy-momentum tensor vanishes on shell:

T = 0a X 05X, + %E“p(aa@@zjﬂ — Trace =0 . (148)

The equation of motion for the gravitino implies that the world-sheet supercur-
rent J, vanishes on shell:

1
Jo = ipﬁpad}”agXu =0. (149)

In order to solve the equation of motion for * it is convenient to choose the
following spin matrices:

0i 0 —i
P’ = , p= : (150)
i 0 i 0

Using the chirality matrix p = p°p! we see that the components ¥/ of ¥*,
defined by

N (151)
Py

with respect to the basis (150) are Majorana-Weyl spinors. The equations of
motion decouple,

o_yt =0, ouf =0, (152)
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and have the general solution

P =y(oT), P =yt(oT). (153)

Next we have to specify the boundary conditions. Requiring the vanishing of the
boundary terms when varying the action implies:

(O VA L | BN (Vi L At LU | B (154)

For open strings we take

Vo0t =0) = v(o" 0" =0) (155)
Ho® 0 =) = £ (o, 0" = 1) . (156)

This couples ¢} and 9" at the boundaries. Depending on the choice of sign
n (156) one gets Ramond boundary conditions (‘+’ sign) or Neveu-Schwarz
4 )

boundary conditions (‘—’ sign). One can use the same doubling trick that we
used to obtain the Fourier expansion for bosonic open strings. Setting

H 07_ 1 if — < 1 < O7
P ot = | VT TS s (157)
wi(ao,al) if 0<ol <,

we find that v is periodic for R(amond)-boundary conditions and antiperiodic
for N(eveu-)S(chwarz)-boundary conditions on the doubled world-sheet. Consis-
tency at the loop level requires that both types of boundary conditions have to
be included. The Hilbert space has both an NS-sector and an R-sector.

For closed strings we can make ¢, and _ either periodic (R-boundary
conditions) or antiperiodic (NS-boundary conditions):

P (o o' =7) = £¢ (0% 0! =0), (158)
Y (0% 0t = 71) = +¢* (6%, 0t = 0) . (159)

Since % and " are independent, one has four different choices of fermionic
boundary conditions: R-R, NS-R, R-NS, NS-NS. Again considerations at the
loop level require that all four sectors have to be included.

We can now write down solutions of (152) subject to the boundary conditions
that we admit. For open strings we use the doubling trick and Fourier expand
(157). For R-boundary conditions one obtains,

Y= dhe (160)
\[ neZ
while for NS-boundary conditions the result is:

Z bre=iroT (161)

rEZ+2
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For closed strings R-boundary conditions in the right-moving sector we get:

Pt =Y dhe (162)

neZ

while with NS-boundary conditions this becomes

Y= > bpeT (163)

r€Z+3

The Fourier coefficients of the left-moving fields are denoted d¥ and b/*, respec-
tively.

Likewise, one obtains Fourier coefficients of the energy momentum tensor 75, g
and of the supercurrent J,. For open strings the Fourier coefficients of J;, J_ (in
the doubled intervall) are denoted F, in the R-sector and G, in the NS-sector.
For closed strings the Fourier modes of J, are denoted F},, G,, while those of
J_ are F,, and G,. The Fourier components of T, and T__ are denoted as
before.

Covariant Quantization of the RNS Model. The covariant quantization of
the RNS model proceeds along the lines of the bosonic string. We will consider
open strings for definiteness. The canonical commutation relations of the o, are
as before. The fermionic modes satisfy the canonical anticommutation relations

{b¢> bZ} = 77“”67"+s,0 (164)
in the NS-sector and
{dhdn} = 0" 6min0 (165)

in the R-sector. (For closed strings there are analogous relations for the second
set of of modes.)

The Virasoro generators get contributions from both the bosonic and the
fermionic oscillators, L,, = Lfﬁ) + L%VS)/(R). The bosonic part Lfﬁ) is given
by (29), while the contributions from the fermionic oscillators in the respective
sectors are:

1 & 1
LVS) = 3 > (r+ 3" by b (166)

The explicit formulae for the modes of the supercurrent are:

Gr= > a_p-bun, (168)
Fr= Y a p-dmin. (169)

n—=——oo
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The modes of T, 3 and J, generate a supersymmetric extension of the Vira-
soro algebra. In the NS sector this algebra takes the form

D

[Lm7 Ln] = (m - n)Lm-‘rn + g(m:} - m)5m+n,0 ; (170)
1

[Lyn, G| = (§m —1)Gmatr (171)

D 1
ﬂhxg}zzg%,+iuﬂ—ZwHﬁo, (172)

while in the R-sector one finds
D
wmmjzm—m%m+§w%mm (173)
1

[Lin, F] = (gm —n)Fqn (174)

D .,

The subspace of physical states Fpnys C F is found by imposing the corre-
sponding super Virasoro constraints. In the NS-sector the constraints are:

L, |®) =0, n>0,
(Lo —a)|®) =0,
G, |®) —0, r>0. (176)

Absence of negative norm states is achieved for
1
D:lOandazi. (177)

(Like for bosonic strings there is the option to have a non-critical string theory
with D < 10, which we will not discuss here.) Thus the critical dimension has
been reduced to 10.

In the R-sector the constraints are:

L, |®) =0, n>0,

(Lo —a)|®) =0,

F,|P) =0, n>0. (178)
Note that there is no normal ordering ambiguity in Fy. Since FZ = Lo we

conclude a = 0. The critical dimension is 10, as in the NS-sector:
D=10and a=0. (179)

Let us construct explicitly the lowest states of the open string in both sectors.
In the NS-sector the basic momentum eigenstates satisfy

ablky=0, m>0, (180)
BE) =0, r>0 (181)
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and the constraint (L — 1)|®) = 0 provides the mass formula:

1
o’M? =N — 3 (182)
where we reinstated o’. The number operator gets an additional term N®) com-
pared to (39), which counts fermionic oscillations:

N@D = 3" rb b, (183)
r=1/2
N0, ] =rbt, . (184)
Now we can list the states:
Occupation | Mass State
N=0 o' M? = —% |k)
N:% o’ M? =0 b‘il/2|k>
N=1 o M* =g |V plk) (185)
o |k)
N = % o/ M? =1 b‘il/Qb’il/Qbﬁl/2|k>
a’ilbil/2|k>
by ol)

Thus the NS-sector of the open string consists of space-time bosons and has a
tachyonic ground state. The massless state is a gauge boson.
The basic momentum eigenstates in the R-sector are defined by:

allk)y=0, m>0, (186)
dk) =0, m>0. (187)

The constraint Ly|®) = 0 yields the mass formula
oM? =N . (188)

The number operator gets an additional fermonic contribution
ND =N "md_y, - dy . (189)
m=1

The zero modes dj of the fermionic fields play a distinguished role. Their algebra
is, up to normalization, the Clifford algebra CI(1,9):

{dy, dg} =n""". (190)
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The unique irreducible representation of this algebra is the spinor representation
of the Lorentz group SO(1,9). Introducing standard Clifford generators y* =
V2d}, the generators of the spinor representation are o#* = 1[y# ~"]. Since the
dfy are real, this representation is the 32-dimensional Majorana representation,
denoted [32].

The zero modes dfj commute with the number operator. Therefore the states
in the R-sector organize themselves into spinor representations of the Lorentz
group. This is how space-time spinors are described in the RNS model. To con-
struct the states, we denote the ground state of the R-sector by

la), a=1,...,32=20/2 (191)

where a transforms in the [32] representation. Then the first states are:

Occupation | Mass State
N=0 a'M?=0 | |a) (192)
N=1 o'M? =1 | d"|a)

alya)

The constraints L, |®) = 0 (n > 0) and the new constraints F,|$) = 0 (n > 0)
impose restrictions on the polarization. For example, Fyla) = 0 is easily seen to
be the Fourier transform of the massless Dirac equation and reduces the number
of independent components by a factor % Excited states are obtained by acting
with creation operators o, , d" = on the gound state. Since the product of a
tensor representation of the Lorentz group with a spinor representation always
gives spinor representations, we see that all states in the R-sector are space-time
spinors.

The GSO Projection for Open Strings. The RNS model solves the problem
of describing space-time fermions but still has a tachyon. Gliozzi, Scherk and
Olive observed that one can make a projection of the spectrum, which removes
the tachyon. Moreover, the resulting spectrum is supersymmetric in the space-
time sense. This so-called GSO projection is optional at the classical level, but
it becomes mandatory at the quantum level, as we will discuss below.

The GSO projector in the NS-sector is defined as follows:

NS o0 b
Psg) = —(—1)%r=azborte (193)

Imposing Pg;g) = 1, one projects out all the states which contain an even
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number of b . creation operators. This in particular removes the tachyon. The
GSO projector in the R-sector is

R — ©o .
PYe = A(=1)Zmm domedn (194)

where 7 is the ten-dimensional chirality operator. On the ground state |a) of
the R-sector the projection PC(;%)O|¢> < 1 removes one chirality of the spinor.
This is consistent, because in ten space-time dimensions the irreducible spinor
representations are Majorana-Weyl spinors. The [32] representation decomposes

according to
[32] = [16]4 + [16]— . (195)

With the GSO projection one only keeps one chirality (which we have taken to
be the [16],, for definiteness):

la) = lay) +a—) — lay), (196)

where ay = 1,...,16 is a Majorana-Weyl index.

At the massive level just projecting out one chirality would not be consistent,
as massive particles cannot be chiral. The projection with (194) keeps states
which either have ‘+’ chirality and an even number of d",  creation operators
or ‘—’ chirality and an odd number of d" . creation operators.

By writing down the first few states one can easily verify that after the
projection the NS-sector and R-sector have an equal number of states, and that
the massive states in the R-sector combine into full (non-chiral) massive Lorentz
representations.

Checking the equality of states at every mass level is done by computing the
one-loop partition function. Moreover, one can construct explicitly the represen-
tation of the ten-dimensional super Poincaré algebra on the physical states. This
is done using BRST techniques and lies beyond the scope of these lectures. Here
we restrict ourselves to noting that the ground state of the open string, after
GSO projection, is a ten-dimensional vector supermultiplet:

{b}il/2|k> ) |a+>} . (197)

Spectrum and GSO Projection for Closed Strings. Let us next study the
spectrum of closed RNS strings. The masses of states are determined by

o M? =2(N —a, + N —a,) ,
N-—a, =N —a,, (198)

with normal ordering constants ar =0 = agr and ayg = % =apns.
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We start by listing the first states in the NS-NS sector:

Occupation | Mass States

N=N=0 | &M?>=-2] |k)

N=N=3|adM*=0 |V 0" k)
N=N=1|odM2=2 | o",a" |k (199)

a61611/2661/2|k>

By ab 087 [K)

bﬁ1/2b11/2b61/2b21/2|k>

All these states are bosons, and at the massless level we recognize the graviton,
the dilaton and the antisymmetric tensor.

In the R-R sector, the ground state transforms in the [32] x [32] representation
and is denoted |a, a). The first states are

Occupation | Mass State
N=N=0| &M?>=0 | |a,a)
N=N=1| dM?*=2 | o",a",|a,a)

(200)

The product of two spinor representations is a vector-like representation. There-
fore the states in the R-R sector are bosons. In more detail, the [32] x [32]
representation is the direct sum of all the antisymmetric tensor representations
of rank zero to ten. Using the ten-dimensional I'-matrices we can decompose a
general massless state into irreducible representations:

|PrR) = (Floa + E, L0 + F LY + -2 )]a,a) . (201)

By evaluating the remaining constraints Fy|®rr) = 0 = F0|¢RR> one obtains
the conditions

Ky g, = 0 and kpo Flyyp. ) = 0, (202)

which are the Fourier transforms of the equation of motion and Bianchi identity
of an n-form field strength:

d* Fpy =0 and dF(,) = 0. (203)

The physical fields are antisymmetric tensor gauge fields or rank n— 1. Note that
in contrast to the antisymmetric NS-NS field, the states in the R-R sector (and
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the corresponding vertex operators) describe the field strength and not the gauge
potential. When analyzing interactions one finds that there are no minimal gauge
couplings but only momentum couplings of these fields (i.e. couplings involving
the field strength). In other words the perturbative spectrum does not contain
states which are charged under these gauge fields. This is surprising, but a closer
analysis shows that the theory has solitonic solutions which carry R-R charge.
These so called R-R charged p-branes turn out to be an alternative description
of D-branes.
Now we turn to the NS-R sector. The first states are:

Occupation Mass State
N=3 N=0|dM* =0 |V ,a)
N=3 N=1| oM =4 |, ,a" a) (204)

Oy ob” 1 job? 1 904 |G)
a’i1bi1/2dﬁ1|&>
bﬁ1/2bi1/2bi1/2di1 |a)

The massless state is a product of a vector [D] and a spinor [2P/2]. Tt decomposes
into a vector-spinor and a spinor:

[D] x [2P/?] = (D — 1)2P/?] + 2P/2 (205)

Therefore this state and all other states in the NS-R sector are space-time
fermions. The spectrum of the R-NS sector is obtained by exchanging left- and
right-moving fermions.

We observe that the massless states contains two vector-spinors. The only
known consistent interaction for such fields is supergravity. There these fields
are called gravitini. They sit in the same supermultiplet as the graviton, they
are the gauge fields of local supertransformations and couple to the conserved
supercurrent. The spectrum of the closed RNS model is obviously not super-
symmetric. This suggests that we have to make a projection in order to obtain
consistent interactions. This brings us to the GSO projection for closed strings,
which makes the spectrum supersymmetric and removes the tachyon. The GSO
projection is applied both in the left-moving and in the right-moving sector. In
the R-sectors one has to decide which chirality one keeps. There are two in-
equivalent projections of the total spectrum: one either takes opposite chiralities
of the R-groundstates (type A) or the same chiralities (type B). The resulting
theories are the type ITA and type IIB superstring. Let us look at their massless
states. The NS-NS sectors of both theories are identical. The states

Vb 1 olk) (206)
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are the graviton G, the dilaton @, and the antisymmetric tensor B,,,. The
number of on-shell states is 8 -8 = 64. The ground states of the R-R sectors are:

lay,a_) (type A), (207)
lay,ay) (type B). (208)

In both cases we have 8 - 8 = 64 on-shell states. Again we can decompose these
representations into irreducible antisymmetric tensors. For type ITA we get a
two-form and a four-form field strength, corresponding to a one-form and a
three-form potential:

TMA: A,, A,,. (209)

There is also a zero-form field strength which has no local dynamics. It corre-
sponds to the so-called massive deformation of ITA supergravity, which is almost
but not quite a cosmological constant. (In the effective action the corresponding
term is a dimensionful constant multiplied by the dilaton. This is as close as one
can get to a cosmological constant in ten-dimensional supergravity.)

In the IIB theory one has a one-form, a three-form and a selfdual five-form
field strength. The corresponding potentials are:

MB: A, A, Aupo - (210)

The massless states in the NS-R sector and R-NS sector are:

A : by pla) B play), (211)
1B : bli1/2|d+> blil/z‘a+>v (212)

The total number of fermionic states is 128 in both cases. The decomposition
into irreducible representations gives two vector-spinors, the gravitini, and two
spinors, called dilatini. For type ITA they have opposite chiralities, whereas for
type IIB they have the same chiralities. The corresponding space-time fields are:

IIA wi,¢ﬁglp+7w*7
IIB : l/fi(l) ) wi(g) ) 1/’+(1) ) 1/)+(2) . (213)

All together we get the field content of the type IIA /B supergravity multiplet
with 128 bosonic and 128 fermionic on-shell states. The ITA theory is non-chiral
whereas the IIB theory is chiral. The massive spectra are of course non-chiral,
and, moreover, they are identical.

4.2 Type I and Type II Superstrings

We will now begin to list all consistent supersymmetric string theories. A priori,
we have the following choices: strings can be (i) open or closed, (ii) oriented
or non-oriented, (iii) one can make the GSO projection, with two inequivalent
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choices (type A and B) for closed strings and (iv) one can choose gauge groups for
open strings: U(n) for oriented and SO(n) or Usp(2n) for non-oriented strings.

We have already seen that not all combinations of these choices are consistent
at the quantum level. Since theories of open strings have closed string poles in
loop diagrams, we can either have closed or closed and open strings. The next
restriction comes from modular invariance. On the higher genus world-sheets
of closed oriented strings, one has to specify boundary conditions around every
handle. Since modular invariance maps one set of boundary conditions to others,
these choices are not independent. It turns out that one has to include both NS-
and R-boundary conditions around every handle, but one has the freedom of
choosing relative signs between different orbits of action of the modular group
on the set of boundary conditions. There are four possible choices. Two of them
correspond to the ITA and IIB superstrings. The other two choices are non-
supersymmetric theories without fermions, known as type 0A and 0B, which we
will not discuss here.

Type ITA and IIB are theories of oriented closed strings. Can we construct
supersymmetric string theories with oriented closed and open strings? The states
of the oriented open string fall into representations of the minimal N = 1 super-
symmetry algebra in D = 10. This algebra has 16 supercharges, which transform
as a Majorana-Weyl spinor under the Lorentz group. In ten dimensions there are
two further supersymmetry algebras, called N = 24 and N = 2B. They have 32
supercharges which either combine into two Majorana-Weyl spinors of opposite
chirality (A) or into two Majorana-Weyl spinors of the same chirality (B). The
states of the oriented closed string form multiplets of the N = 24 or N = 2B
supersymmetry algebra. In particular one has two gravitini, which must couple
to two independent supercurrents. Therefore oriented open and closed strings
cannot be coupled in a supersymmetric way. One can also show that any such
theory has divergencies, due to the presence of dilaton tadpoles.

Next we have to consider non-oriented strings. A theory of non-oriented
closed strings can be obtained by projecting the type IIB theory onto states in-
variant under world-sheet parity. (ITA is not invariant under world-sheet parity,
because the R-groundstates have opposite chirality.) This theory has divergen-
cies, which are related to the non-vanishing of dilaton tadpole diagrams. One
can also see from the space-time point of view that this theory is inconsistent:
the massless states form the NV = 1 supergravity multiplet, which is chiral. Pure
N = 1 supergravity has a gravitational anomaly, which can only be cancelled by
adding precisely 496 vector multiplets.

Therefore we have to look at theories with non-oriented closed and open
strings. Tadpole cancellation precisely occurs if the gauge group is chosen to
be SO(2P/?) = SO(32). This is one of the gauge groups for which gravitational
anomalies cancel. The other anomaly-free gauge groups are Eg x Eg, Egx U(1)248
and U(1)*%6, which, however, cannot be realized through Chan-Paton factors.
Thus there is one supersymmetric string theory with non-oriented closed and
open strings and gauge group SO(32). This is the type I superstring.
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Let us construct the massless spectrum of this theory. The closed string sector
is obtained by projecting the IIB theory onto states invariant under world-sheet
parity. Parity acts by exchanging left- and right-moving quantities:

ol e @l b e b, dE e dh ) Jay) < |ay) (214)

m

The action on the R-R ground state is:
|ay,dy) < —lag,ay) . (215)

The ‘=’ sign reflects that one exchanges two fermionic states. (To make this
precise one needs to construct the so-called spin fields 5%, S% which generate the
R-groundstates from the NS-groundstate. This can be done in the framework of
BRST quantization, which we did not introduce here.)

We can now write down the massless states of the type IIB string which
are invariant under world-sheet parity and survive the projection. In the NS-NS
sector we find

1 v v 7
NSNS+ o (b 5800 + 6700 15 ) (216)

Therefore the B,,, field is projected out and we are left with the graviton G,
and dilaton @. In the R-R sector the invariant massless state is:

RR o (g, d) — lisay)) (217)

Thus only the antisymmetric part of the tensor product of the two Majorana-
Weyl spinors survives the projection. This corresponds to the three-form field
strength F),,,, as is most easily seen by computing the dimensions of the repre-
sentations. Thus the two-form R-R gauge field A, survives the projection.

In the NS-R and R-NS one finds the following invariant state:

1 5 -
R-NS/NS-R : (bﬁl/z\a+>+bﬁl/2\a+>) . (218)

Therefore one gravitino ¢/ and one dilatino 1)* are kept.

In the NS-sector of the open string we get massless vectors Aj,, which trans-
form in the adjoint representations of SO(32): i = 1,... ,dim(adjSO(32)) = 496.
The R-sector contains massless spinors 9 which combine with the vectors to
form vector supermultiplets.

Combining the massless states of the closed and open string sector we get
the field content of N = 1 supergravity coupled to Super-Yang-Mills theory with
gauge group SO(32).

4.3 Heterotic Strings

There is yet another construction of supersymmetric string theories. It is a hybrid
construction, which combines the bosonic string with the type II superstring and
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is called the heterotic string. The right-moving sector is taken from the type II
superstring, whereas the left-moving sector is taken from the bosonic string. To
get a modular invariant theory, the sixteen extra left-moving coordinates have
to be identified periodically,

X'~ X" +wly, I=1,...,16. (219)

The vectors w;) = (w(Ii)), 1 =1,...,16 generate a sixteen-dimensional lattice
I'1g. Modular invariance requires that Ig is an even self-dual lattice. Modulo
rotations, there are only two such lattices, the root lattice of Eg x Eg and the
lattice generated by the roots and the weights of one of the Majorana-Weyl
spinor representations of SO(32). Thus, there are two different heterotic string
theories.

The bosonic massless states come from the NS-sector and take the form

aﬁ—blgzl/2|k> (220)

al—lbi1/2|k> (221)
i '(i)zl v

eI k) (222)

Here o | are the oscillators corresponding to the sixteen extra left-moving di-

rections. The vectors k() = (k;z)) are discrete momentum vectors in the extra
dimensions. The above states are massless if the vectors k(¥ have norm-squared
two. The two lattices I'1g have 480 such vectors, corresponding to the roots of
Eg x Eg and SO(32), respectively. Together with the states generated by the
internal oscillators one gets bosons in the adjoint representations of theses two
groups. The massless fermionic states are obtained by replacing 5’:1 /2|k:) by the
R-ground state |ay). In total one gets the N = 1 supergravity multiplet plus
vector multiples in the adjoint representation of Fg x Eg or SO(32).

The massless sectors of the five supersymmetric string theories correspond
to four different supergravity theories. The type I and the heterotic string with
gauge group SO(32) have the same massless spectrum, but their massive spectra
and interactions are different.

Let us summarize the essential properties of the five supersymmetric string
theories:

Type |open/closed?|oriented?|chiral?|supersymmetry|gauge group

I both no yes N=1 SO(32)
ITA closed yes no N =2A —
(223)
IIB closed yes yes N =2B —
Heterotic closed yes yes N =1 Es x Eg

Heterotic|  closed yes yes N=1 S0(32)
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4.4 Further Reading

Supersymmetric string theories are discussed in all of the standard textbooks
[1-5]. To prove the necessity of the GSO projection and the consistency of the
heterotic string as a perturbative quantum theory one needs properties of the
multiloop path integral [7]. A paedagogical treatment of the relation between
the GSO projection and boundary conditions in the path integral can be found
in [6].

5 p-Branes in Type II String Theories

In this section we discuss a class of solitons of the type II string theories, which
turn out to be alternative descriptions of the D-branes introduced earlier.

5.1 Effective Actions of Type II String Theories

The effective actions for the massless states of type ITA /B superstring theory are
the corresponding type ITA /B supergravity actions. Since we will be interested in
bosonic solutions of the field equations, we will only display the bosonic parts.
The effective action for the fields in the NS-NS sector is the same for both
theories. Moreover it is identical to the effective action of the bosonic string:

1
SNS_NS = dP2/—Ge 2 (R + 40, 0"® — HW,,H‘“”)> . (224)

2k2 12

The R-R sectors consist of antisymmetric tensor gauge fields. For an (n — 1)
form gauge potential A(,_;) with field strength F{,) = dA(,_1) the generalized
Maxwell action is

1 1
e *§/F<n> A*Fm) = *§/dD$@|F<n>I2, (225)
where
1
|F(n)|2 = ﬁFulwunFm e (226)

In the effective R-R actions one has in addition Chern-Simons terms.
In the ITA theory the R-R fields are A(;) and A(s). It is convenient to define
a modified field strength

F(4) = dA(g) — A(l) A\ H(g) R (227)

where H(3y = dBs) is the field strength of the antisymmetric NS-NS tensor field.
Then the R-R action is the sum of a Maxwell and a Chern-Simons term:

| _
Sitn =75 [ 4'2V=G (|F<2>|2 + |F<4>|2>

1

5z | Bey NEw Ay (228)
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The massless R-R fields of IIB string theory are A, A2y and A(4). Again
it is useful to define modified field strengths

Fiz) = Fz) — Ay N H)

- 1 1

F(5) = F(5) — 514(2) N H(3) + §B(2) A F(3) . (229)
Since F(g,) must be selfdual, the kinetic term (225) vanishes and does not give a

field equation. The simplest way out is to impose the selfduality condition only
at the level of the equation of motion. Then one can use the action

1 2 L7
SKPn = — 1 /dwxm (|F(1>|2 + [ Fg” + 2|F<5>|2>

1
L2 /A(4) N H) N E) - (230)

The correct covariant equations of motion result when varying the action and
imposing selfduality of F(s5) afterwards.

5.2 R-R Charged p-Brane Solutions

The type II effective actions have static solutions which are charged under the R-
R gauge fields. The solution charged under A, ) has p translational isometries.
From far it looks like a p-dimensional membrane and therefore one calls it a p-
brane solution or just a p-brane.

For 0 < p < 2 the solution has the following form:

dsd, = H'2(r) (=dt® + (da')* + - + (daP)?)
+H'Y2(r) ((da”™)? + -+ (d2”)?) |
Flpi2) = dH Y (r) Ndt Ndxt A -+ A daP
2

e 2 = g2 (231)
where
r? = (P2 4 (29)2 (232)
and H(r) is a harmonic function of the transverse coordinates (xP*1,...  %):
9
AYH = )" 0:0,H=0. (233)
i=p+1

We require that the solution becomes asymptotically flat at transverse infinity
and normalize the metric such that it approaches the standard Minkowski metric.
This fixes

H(r)=1+ @ (234)
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(0, measures the flux of the R-R field strength at transverse infinity. A convenient
way to parametrize it is:

(277—)77;0 nize
Q, = N,c cp=-——""()2 gs. 235
p p=p > P (7_p)w8—p( ) ( )
N, is a constant, which a priori is real, but will turn out later to be an integer.
Therefore ¢, is the fundamental quantum of R-R p-brane charge. w, is the
volume of the n-dimensional unit sphere,

27.(.(n+1)/2
T ()

Besides geometrical factors, @, contains the appropriate power of o to give it
the correct dimension. gg is the dimensionless string coupling. Note that in the
above solution for the dilaton we have subtracted the dilaton vacuum expectation
value from &.

The metric used in this solution is the string frame metric, as indicated by
the subscript. (The effective action was also given in the string frame.) Using
(133) we can find the corresponding Einstein frame metric:

(236)

Ay = —H'S (r) (=df + (do')? 4+ (da?)?)
FHS (7)) ((daP )2 + - + (da”)?) (237)

The above solution is most easily understood as a generalization of the ex-
treme Reissner-Nordstrom solution of four-dimensional Einstein-Maxwell theory.
Let us review its properties.

The isometry directions ¢, z!, ..., 2P are called longitudinal or world-volume
directions, the others transverse directions. Since the solution has translational
invariance, it has infinite mass, as long as one does not compactify the world-
volume directions. However, the tension T, (the energy per world volume) is
finite. Since the solution becomes asymptotically flat in the transverse directions,
the tension can be defined by a generalization of the ADM construction of general
relativity. Concretely, the tension of a p-brane can be extracted from the Einstein
frame metric by looking at the leading deviation from flatness:

167G 0T 167G T
=_1 N P =14 N 7P 2
900 + (D= 2wp s D57 + + ST + (238)
The Schwarzschild radius rg of the brane is:
(D)
pos_p  167GYT, (230)

T =—= "+
s (D = 2)wp—2-p

Since there is only one independent dimensionful constant, which we take to
be o/, we can express the ten-dimensional Newton constant Gg\l,o) in terms of o’
and the dimensionless string coupling gs:

G\ = 8n%(a) g3 . (240)
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Since Newton’s constant is related to the physical gravitational coupling by
D
87"va ) = IQ?DLphys (241)

in any dimension, this corresponds to replacing the conventional choices (136,

138) by &% = 6477 (o/)* and #2,, . = 6477 (o/)*g2.

Using (238) we can compute the tension of the p-brane solution (231):

N,
T, = =

=2 242
gs(a) = (2m)P 242

For » — 0 the solution (231) has a null singularity, that is a curvature
singularity which is lightlike and coincides with an event horizon. The p-brane
(231) is the extremal limit of a more general black p-brane solution, which has a
time-like singularity along a p-dimensional surface and a regular event horizon. In
the extremal limit, the singularity and the even horizon coincide. This behaviour
is similar to the Reissner-Nordstrom black hole. The behaviour of the black p-
brane in the extremal limit is slightly more singular, because for the extremal
Reissner-Nordstrom black hole singularity and horizon do not coinicide. But
since the singularity of the p-brane solution is not naked, we can think about
it as describing an extended charged black hole. The charge (density) carried
under the gauge field A(,,) can be read off from the asymptotic behaviour of
the field strength,

Foi.p ™~ Tg_pp . (243)

Instead of @), we can use a redefined charge, which has the dimension of a
tension:

A 1
Qp = ﬁ ﬁsp *F(;D+2) s (244)
which gives
Q=N,"2 0 gy = % : (245)
gs @2m)P(a) =

We now observe that tension and charge are equal:
1, = Qp : (246)
More generally, black p-brane solutions satisfy the Bogomol’nyi bound
T,>Q,. (247)

This inequality guarantees the existence of an event horizon, just as for charged
black holes.
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A feature that distinguishes our solutions from Reissner-Nordstrom type
black holes is that one also has a non-trivial scalar, the dilaton.

The extremal solution has a multicentered generalization. When replacing
H(r) by

H(z,) _1+Z el (248)
1 le, — ()|7 p’

one still has a static solution, provided that all the charges Ql(f) have the same
sign. Here &, = (zP*!,...,2°) and w(j) is the position of (the horizon of) the
i-th p-brane. It is remarkable that the solution is static for arbitrary positions
wﬁf), because this implies that the gravitational attraction and the ‘electrostatic’
repulsion cancel for arbitrary distances. (If one flips the sign of one charge, one
has to flip the corresponding tension, which makes the solution unphysical.)
Systems of extremal Reissner-Nordstrom black holes have the same properties.
The corresponding multi-centered solutions are known as Majumdar-Papapetrou
solutions.

The remarkable properties of these (and other related) solutions can be un-
derstood in terms of supersymmetry. The solution (231) is a supersymmetric
solution, i.e., it has Killing spinors. Killing spinors are the supersymmetric ana-
logues of Killing vectors v(z), which satisfy

,CU(I) W(x)\%(z) =0, (249)

where £ is the Lie derivative. Here W(x) collectively denotes all the fields, and
Uy (x) is the particular field configuration, which is invariant under the transfor-
mation generated by the vector field v(x). In supergravity theories one can look
for field configurations ¥y(x) which are invariant under supersymmetry trans-
formations. From the action one knows the supersymmetry variations of all the
fields, 0()¥(z), where the spinor (field) (z) is the transformation parameter.
Then one can plug in a given field configuration ¥y(x) and check whether the
variation vanishes for a specific choice of e(x):

(55(56) LD(:U)|%(z) = 0 . (250)

Since the supersymmetry transformations involve derivatives of e(x), this is a
system of first order differential equations for £(z). Solutions of (250) are called
Killing spinors.

The type II superalgebras have 32 independent real transformation param-
eters, which organize themselves into two Majorana-Weyl spinors €;(z). The
equation (250) fixes the space-time dependence of the €;(z). For the p-brane one
finds

ei(z) = g/ *(x)e” (251)

(0)

where the constant Majorana-Weyl spinors ¢, , 1 = 1,2 are related by

e = 0. e (252)
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Since half of the components of the 550) is fixed in terms of the other half, we
see that we have 16 independent solutions, i.e., 16 Killing spinors. The maximal
number of Killing spinors equals the number of sypersymmetry transformation
parameters, which is 32 in type II theory. Solutions with the maximal number of
Killing spinors are invariant under all supersymmetry transformations. They are
the analogues of maximally symmetric spaces in Riemannian geometry, which
by definition have as many isometries as flat space. One example of a maximally
supersymmetric solution of type II theory is flat ten-dimensional Minkowski
space. Here the Killing spinor equation is solved by all constant spinors. The
p-brane solution (231) has 16 Killing spinors, and only is invariant under half of
the supersymmetry transformations. Solutions with residual supersymmetry are
called BPS solutions, and solutions which preserve half of the supersymmetry
are called ‘3 BPS solutions’.

The Bogomol’nyi bound (247) can be shown to follow from supersymmetry.
In this context it is then also called the BPS bound. In theories where the
supersymmetry algebra contains central charges, (247) is a relation between the
mass or tension of a state and its central charge. In our case the charges carried
under the R-R gauge fields are such central charges. The representations of the
supersymmetry algebra fall into distinct classes, depending on whether they
saturate the bound or not. Representations which saturate the bound are called
short representations or BPS representations. Since BPS states have the minimal
tension possible for their charge they are absolutely stable. This minimization
of energy also accounts for the existence of static multicentered solutions.

So far we have restricted ourselves to p-brane solutions with 0 < p < 2.
There is a second class, where the solution (231) and the other formulae take
the same form, but with p replaced by p with 4 < p < 6. The field strength Fp,o
in equation (231) is the x—dual of F,1o = dAp41. Since Fji1o = xF,4o implies
p+p+4 =D =10, each of the so-called electric solutions with p = 0, 1,2 has a
dual magnetic solution with p = 6,5, 4.

There is also a solution with p = 3. The five-form gauge field is selfdual,
and the solution for Fy is from (231) by adding the x-dual of the right-hand
side of the equation. The solutions for the metric and for the dilaton are not
modified. Note that for p = 3 the dilaton is constant. The three-brane solution
is not singular at » = 0. Instead one has a regular horizon, and the geometry
is asymptotic to AdS® x S®. This geometry has 32 Killing spinors and is fully
supersymmetric. The interior of this geometry is isometric to the exterior, in
particular it is non-singular. Since the field strength is selfdual, the three-brane
carries an equal amount of electric and magnetic charge (it is not only dyonic,
carrying both electric and magnetic charge, but selfdual).

Electric and magnetic charges are subject to a generalized Dirac quantization
condition, which can be found by generalizing either the Dirac string or the Wu-
Yang construction known from four-dimensional magnetic monopoles. In our
conventions the condition is:

(2m)7g3(o")* QpQp € 20Z . (253)



Introduction to String Theory 233

This fixes the possible magnetic charges in terms of the electric charges. Using
T-duality and S-duality one can fix the electric and magnetic charge units. T-
duality is a symmetry that can be proven to hold in string perturbation theory.
It acts on our solutions by transforming p-branes into (p=+1)-branes. In this way
one can relate the tensions and charges of all R-R charged p-branes. S-duality
is a conjectured non-perturbative symmetry of IIB string theory. It relates the
R-R one-brane to a solution which describes the fundamental IIB string. This
way one relates the fundamental unit of R-R one-brane charge to the charge
carried by a fundamental IIB string under the NS-NS B-field. The resulting R-
R p-brane charge units are given by p, (245) and satisfy Dirac quantization
in a minimal way: u,us(27)7(a’)* = 27. Thus N, in (245) is an integer which
counts multiples of the fundamental R-R charge. When using (), instead of Qp
to measure charges then ¢, as defined in (235) is the unit charge.

We now summarize the R-R charged p-brane solutions of type II string the-
ories:

Theory | R-R potential | electric sol. | magnetic sol.

ITA Ay p=0 p==6

1B A p=1 p=5 (254)
IIA Az p=2 p=4

1B Ay p = 3 (selfdual)

The R-R p-brane solutions have properties which qualify them as solitons:
They are static, stable (BPS bound), regular (no naked singularities) solutions
of the field equations and have finite tension. The three-brane has an addi-
tional property familiar from two-dimensional solitons: it interpolates between
two vacua, Minkowski space at infinity and AdS® x S® at the event horizon.
(We call AdS® x S5 a vacuum, because it is maximally supersymmetric.) For
solitons one expects that the tension depends on the coupling as T ~ 1/g°.
This is, for example, what one finds for monopoles in Yang-Mills-Higgs theories.
In this respect the R-R p-branes show an unusal behaviour as their tension is
proportional to the inverse coupling, T, ~ 1/gg, see (242). This behaviour is in
between the one expected for a soliton 7' ~ 1/¢% and the one of a fundamental
string, T' ~ 1, which is independent of the coupling.

One clue to this unexpected behaviour is that the fundamental coupling of
three closed strings is — up to a constant — the square of the coupling of three open
strings, see (141). Thus a R-R p-brane has the coupling dependence expected
for a soliton in a theory of open strings. The type II string theories, as defined
so far, are theories of oriented closed strings. Consider now an extension where
one adds to the theory open strings with Dirichlet boundary conditions along p
directions. If we manage to identify the corresponding D-p-branes with the R-R
p-brane solutions, this provides a description of type II string theory in these
solitonic backgrounds.
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5.3 p-Branes and D-Branes

Surprising as it may be, the identification of R-R p-branes and D-branes can
be supported by convincing arguments. Let us compare the known properties of
these objects. R-R p-branes preserve half of supersymmetry and can be located
at arbitrary positions in transverse space. The same is true for D-branes with p =
0,2,4,6 in type ITA and p = 1, 3,5 in type IIB string theory. The corresponding
Killing spinors are constant and are given by (252). The translational symmetries
trivially agree. These D-p-branes are BPS states and since the central charge
associated with a BPS state with Killing spinors (252) is precisely the R-R
charge, they must carry R-R charge. A crucial quantitative test is to compute
the R-R charge carried by a single D-p-brane. To do so one has to compute the
force due to exchange of R-R gauge fields between to D-p-branes.

One first computes an annulus diagram with Dirichlet boundary conditions
on both boundaries. This diagram can be factorized in two ways: either as a sum
over intermediate open strings, or as a sum over intermediate closed strings. In
the closed string channel the diagram can be visualized as a cylinder (closed
string propagator) ending on the two D-branes. In this picture it is obvious that
one measures the total force between the D-branes resulting from the exchange
of arbitrary closed string states. This amplitude vanishes, which tells us that the
total force vanishes, as expected for a BPS state. To extract the long range part of
the force one takes the two D-branes to be far apart and expands the amplitudes
in the masses of the closed string states. Then the exchange of massless states
dominates. In detail one finds an attractive force due to graviton and dilaton
exchange which is cancelled exactly by a repulsive force due to exchange of rank
(p + 1) tensor gauge fields. The static R-R forces correspond to a generalized
Coulomb potential,

Qp Qp

VR_R == m == 7‘7717 . (255)

It turns out that one D-p-brane carries precisely one unit of R-R p-brane charge,

(271.)7—;0 N2
QP =0 = (7 *p)WS—p (a ) 2 gs - (256)
This shows that one should identify a R-R p-brane of charge N,c, with a system
of N, D-p-branes. People also have computed various other quantities, including
the low energy scattering, absorption and emission (encoded in the so-called
greybody factors) of various strings states on R-R p-branes and D-p-branes, and
the low velocity interactions between p-branes and D-branes. All these tests have
been successful.

Since p-branes are extended supergravity solutions with non-trivial space-
time metric, whereas D-branes are defects in flat space-time, we should of course
be more precise in what we mean by identification. We have seen that both kinds
of objects have the same charges, tensions and low energy dynamics. They have
the same space-time and supersymmetries and saturate the same BPS bound.
Thus they seem to represent the same BPS state of the theory, but in different
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regions of the parameter space. A description in terms of N, D-branes works
within string perturbation theory. In presence of D-branes the effective string
loop counting parameter is Np,gg instead of gg. The reason is as follows: as we
have seen in Sect. 3 each boundary component gives rise to a factor gg in scat-
tering amplitudes. In a background with D-branes every boundary component
can end on each of the N, D-branes and therefore gg always occurs multiplied
with N,. Since we are interested in describing macroscopic objects with large
Np, we need to impose that N,gg is small in order to apply perturbation theory.
Thus we are in the perturbative regime if

Npgs < 1. (257)
Using the Schwarzschild radius (239) we see that this equivalent to

rs < Vo', (258)

which means that the gravitational scale is much smaller then the string scale.
This explains why one does not see any backreaction of the D-branes on the
space-time in string perturbation theory. D-branes have a finite tension and
couple to gravity, but the deviation from flat space caused by backreaction is
only seen at scales of the order rg. The only length scale occuring in string
perturbation theory is v/’ and this is the minimal scale one can resolve when
probing D-branes with strings.

The R-R p-branes are solutions of the type II effective actions. These are
valid at string tree level and therefore we need to be in the perturbative regime
(of the closed string sector), gs < 1. Moreover we have neglected o/-corrections,
which become relevant when the curvature, measured in string units, becomes
large. The condition for having small curvature is

rs > Val (259)
or, equivalently,
Npgs > 1, (260)

which is opposite to (257, 258). The p-brane solution is valid in the regime of
the low energy effective field theory, where stringy effects can be neglected.

Between the two regimes one can interpolate by changing the string coupling
gs, while keeping the charge IV, fixed. In general it is not clear that one can
believe in the results of such interpolations. But in our case we know that the
p-brane/D-brane is the object of minimal tension for the given charge. As a
BPS state it sits in a special BPS multiplet. There is no mechanism compatible
with supersymmetry through which this state could decay or become a non-BPS
state. Besides these arguments, various quantities have been computed in both
regimes and agree with one another.

In string perturbation theory one also has D-branes with p > 6. Therefore
one might wonder whether the corresponding objects also exist as p-branes.
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The answer is yes, though these so-called large branes have somewhat different
properties than the other branes. For example the seven- and eight-brane are
not flat in the transverse dimensions. The reason is that there are no harmonic
functions in transverse space that become constant at infinity (this is similar to
black holes in D < 4). The seven-brane carries magnetic charge under the IIB R-
R scalar A. Its electric partner is a (—1)-brane, the D-instanton. The eight-brane
does not have a local source. It is a domain wall solution which separates regions
where the ITA mass parameter (which is similar to a cosmological constant) takes
different values. The nine-brane is flat space.

5.4 Further Reading

The type II effective actions and the corresponding p-brane solutions can be
found in the book [3]. For extensive reviews of BPS-branes in supergravity and
string theory, see [11,47,13,12].

6 Outlook

In this final section we give an outlook on more recent developments.

6.1 Eleven-Dimensional M-Theory

Besides the R-R charged p-branes, type II string theories contain various other
BPS solutions. Since all these carry central charges of the supersymmetry alge-
bra, they can be constructed systematically. The other string theories also have
their BPS solitons. Combining perturbative string theory with the knowledge
about the BPS states one can show that the strong coupling behaviour of any of
the five string theories can be described consistently by a dual theory. Moreover,
one can interrelate all five superstring theories by such string dualities. These
dualities have not been fully proven yet, but one has compared various accessible
quantities and all these tests have been successful. The dualities give a coherent
picture where all perturbative string theories are limits of one single underlying
theory.

This is by now a huge subject, which 