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Preface

The papers in this collection are concerned with certain foundational aspects of
quantum gravity. We have chosen to group them together under the banner of
‘structuralism’. The ways in which the various papers fall under this banner, and the
extent to which they do so, are somewhat diverse. Cao, for example views quantum
gravity as lending support to a structural realist conception of ontology. Stachel
likewise advocates a similar view, though the two authors’ views are very dissimilar
in their details. Dorato and Pauri’s contribution, an attempt to motivate a position
they call ‘structural spacetime realism’, bears many similarities to Stachel’s position,
though they steer clear of the relationalist label that Stachel is happy to wear. Pooley,
on the other hand, cautions against the pulling of structural realist views from the
formalism (specifically from diffeomorphism invariance). Instead he argues that there
is a perfectly reasonable and preferable non-structural interpretation that can be
given; namely, ‘sophisticated substantivalism’. Interestingly, both Stachel and Pooley
see the developments of quantum gravity (or diffeomorphism-invariant physics in
general) as working against the view known as ‘haecceitism’—namely the view that
there can be possibilities that differ non-qualitatively (solely in virtue of which objects
play which role in the qualitative structure). Stachel interprets this as motivating a
relationalist position according to which objects, insofar as they exist at all, are simply
conceived as deriving their existence from their place in a network of relations. Such
a position gives a structural characterization of objects. But, as we mentioned, Pooley
interprets matters differently, arguing that a substantivalist position can be defended
within an anti-haecceitistic metaphysics too. Rickles argues that the ontological issue
at the root of the substantivalism/relationalism debate cannot be settled by quantum
gravity (or diffeomorphism-invariant physics) since an underdetermination takes
hold in these contexts. However, he shows how a structuralist conception of the
observables of these theories can help to avoid a serious problem in the context of
the problems of time and change they face. The chapters by Smolin and Baez in
very different ways argue that a metaphysics of relations is suggested by quantum
gravity. Our contention is that this kind of relationalism is easily and best construed
as a variety of structuralism. There is a common core to the views expressed in
these papers, which can be characterized as the stance that relational structures are
of equal or more fundamental ontological status than objects. The present volume
seeks to extend what has been a fruitful dialogue between physicists and philosophers
working on quantum gravity. Our goal is fairly modest: to suggest a possible,
and fitting, interpretative and ontological perspective from which to view quantum
gravity physics.
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1
Quantum Gravity Meets Structuralism:

Interweaving Relations in the Foundations
of Physics

Dean Rickles and Steven French

In this introductory chapter we aim to provide some of the technical and philosophical
background to the issues discussed in this volume. We hope that, together with the
other chapters, it will motivate the view that ‘going structural’ is well supported by
this most pressing area of physics.

1.1 QUANTUM GRAVITY: BACKGROUND, CONCEPTS,
AND METHODS

The physics of gravity is inextricably connected to the geometry of space and time.
In Einstein’s theory of general relativity—the best theory of classical gravity that we
have—the geometry (curvature) of spacetime, as encoded in the metric tensor g μν,
is identified with the gravitational field. But the metric field is also responsible for the
characteristic structures of space and time too (causal structure, notions of distance,
and so on). Hence, the metric plays a dual role in general relativity: it serves to
generate both the gravitational field structures and the chronometric, spatio-temporal
structures (cf. Stachel 1993). In the context of general relativistic physics, of course,
the metric—and, therefore, the geometry of space—is dynamical : the metric on
spacetime is not fixed across the physically admissible models of the theory (as it
is in, for example, Newtonian and specially relativistic theories). The geometry of
spacetime is affected by matter in such a way that different distributions of matter
yield different geometries—the coupling and the dynamics is described by Einstein’s
field equation. In other words, general relativity does not depend on the fixed
metrical structure of spacetime; rather, the metric itself, and hence the geometry,
comes only once a matter distribution has been specified (and the dynamical equation
has been solved). Classically, this feature, called background independence,¹ is rather

¹ Background independence is, more properly, defined as the freedom from ‘background
structures’, where a background structure is some element of the theory that is fixed across the
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remarkable, but it is, at least, fairly easy to make physical and conceptual sense of.
We can draw, for example, the following features from background independence
in general relativity: the geometry of spacetime satisfies equations of motion; its
curvature produces the gravitational force; since it produces a force it has energy
momentum; and so on.

However, in the quantum theory of gravity, the spacetime metric will most
probably have to be quantized, so that we will have to consider it a quantum theory
of spacetime (or quantum geometry), and will need to make sense of superpositions of
macroscopically distinct spacetime geometries.² This is not so easy to make any kind
of sense of; prima facie quantum gravity faces all of the technical and interpretative
problems of quantum theory, and then some. However, there are real interpretative
problems even at the classical level; most notably, the ‘hole argument’ (Earman and
Norton 1987). The hole argument has played an important role in the small portion
of work that exists on the interpretation of quantum gravity, at least in its canonical
(i.e. Hamiltonian) guise. Let us begin by saying a little about this argument, its root
and its significance—for it is central to the claims being made about the ‘structural’
and ‘relational’ aspects, and features quite heavily in what follows. We then discuss
the impact of quantum gravity (including a few words about the relevance of the
hole argument in this context), and say something about the various methods and
concepts employed in the field of quantum gravity. The emphasis throughout will be
on the notion of background independence (and the related notions of ‘background
structure’ and ‘background dependence’).

1.1.1 The Hole Argument and Spacetime Ontology

The hole argument is most easily couched in terms of models 〈M,D〉 (where D
is a set of dynamical fields on M—any further background fields are, of course,
absent in general relativity³). Let us restrict ourselves, purely for simplicity, to the
vacuum case and therefore assume that D = g, so that the (Lorentzian) metric is
the only dynamical field on M. The models 〈M, g〉 then minimally correspond to

models of a theory—this ‘fixity’ can be cashed out in a variety of ways, a common one of which is
the idea that a structure is fixed if it is not varied in the action of the theory. However, background
independence, when used in the context of quantum gravity, is usually meant in a restricted sense,
covering the freedom from a background metric alone. The other side of the coin is, of course,
background dependence, which is simply a dependence on background structures. See §1.1.7 and
the contributions of Baez and Smolin (in this volume) for more details. See also Butterfield and
Isham (1999) for a very nice disentangling of the various notions of ‘fixity’ in this context.

² Though several authors have argued that gravity might in fact act so as to collapse wave-
functions that would result in such geometric superpositions—see Károlyházy et al. (1986) and
Penrose (1986).

³ It is important to note that the manifold and the topological and differential structure of the
manifold are background structures in the theory—we can, in other words, ‘factor’ the manifold
into these other structures and when we do we find that they appear in the theory as background
structures. Though one may choose different manifolds and topologies (spaces of dimension other
than four, for example) once chosen they remain fixed in place, and are not sensitive to the dynamical
goings on in that space. Again, see the contributions of Baez and Smolin for more on this issue.
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a ‘bare’ manifold possessing only topological and differential structure along with
geometrical structure determined dynamically (i.e. post-solution) by g in accordance
with the vacuum Einstein equation:

Gμν ≡ Rμν − 1

2
Rα

αgμν = 0. (1.1)

The crucial property of Einstein’s equations, as regards the hole argument, is that
they are generally covariant: if 〈M, g〉 satisfies (i.e. solves) the Einstein equation then
so does the diffeomorphic copy 〈M, φ∗g〉 , ∀φ ∈ Diff(M).⁴ The ‘carried along’ field
φ∗g will generally be different in the sense that, given a global chart on M with
coordinates {xi}, φ∗g(x) �= g(x). When this happens we have the beginnings of a
hole argument: there will be many metrics that solve the equations that will give
(locally—i.e. at a specific point or within some region) different results. Hence,
choose a region of the manifold, H ⊂ M (the hole), and suppose that we can
solve completely for all points outside the hole in the region H = M − H (i.e. we
know g(x) , ∀x ∈ H). Now let φH be a diffeomorphism that acts as the identity on
H but not within H: then the field equations do not uniquely determine g(x) for
x ∈ H; for both g(x) and φ∗

Hg(x) are solutions (thanks to general covariance), and
yet φ∗

Hg(x) �= g(x) for at least one point within the hole. If we put the hole to the
future of some initial slice then this signals a violation of determinism: the Einstein
equation cannot uniquely determine the spread of the metric field over the points of
the spacetime manifold.

Earman and Norton argued that this form of indeterminism places the manifold
substantivalist⁵ in serious trouble: if the points of spacetime are real existents, and
are independent of any dynamical goings on at or around them, then he will surely
have to view the two solutions above as representing physically distinct possible

⁴ Recall that, for a given manifold M, a diffeomorphism φ is a smooth (i.e. C∞), invertible
mapping φ : M → M. Diffeomorphisms also act on field structures on M by ‘carrying them
along’ to new diffeomorphic field structures. Thus, given a field structure d ∈ D (e.g. some tensor
field) on M, the action of a diffeomorphism φ produces a new field structure d̃ = φ∗d called the
carry along of d by φ. Diff(M) is simply the group of all such diffeomorphisms on M—this group
is usually understood to be the gauge group of general relativity.

⁵ Following Sklar, let us define substantivalism as that view that takes ‘spacetime to be an entity
over and above the material inhabitants of the spacetime … that could exist even were there no
material inhabitants of the spacetime’ (1985: 8). Relationalism is just the denial of this: what the
substantivalist calls ‘spacetime’ is ‘nothing but a misleading way of representing the fact that there is
ordinary matter and that there are spatiotemporal relations among material happenings’ (ibid. 10).
There are two important things to note about these definitions: (1) there is assumed a straightforward
distinction between ‘matter’ and ‘space(time)’; (2) the distinction between the positions is grounded
in a basic ontological priority claim involving matter or space—in the case of general relativity these
distinctions become rather fragile, and this fragility leads to a remarkable degree of resemblance
between relationalist and substantivalist interpretations of spacetime in general relativity (compare,
for example, Hoefer’s (1996) ‘metric field substantivalism’, Stachel’s (1993) ‘relationalism,’ and
Saunders’s (2003) ‘non-eliminative relationalism’). However, according to Earman and Norton’s
best choice for the substantivalist (viz. ‘manifold substantivalism’) it is the manifold of points,
along with their topological and differential properties and relations, that best represents spacetime
conceived as a substantival entity. At least the distinction between matter and space(time) is rather
more robust on this view.
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states of affairs (distinct possible worlds, if you prefer); but if that is the case, then
the indeterminism that is exposed by the hole argument is genuine and physical.
Earman and Norton conclude from this that we should reject substantivalism,
for metaphysical positions are not the kinds of thing that should be leading us
into such difficulties—only reasons of physics should be doing that, they say. But
substantivalists have not been deterred, adopting ever more subtle forms of the basic
position than that of Earman and Norton’s naive manifold realism. In our view,
however, the best way to respect the hole argument, while remaining a realist about
spacetime, is to adopt a structuralist position. Many of the more recent positions
that call themselves ‘substantivalist’ (especially the ‘sophisticated’ ones: e.g. Hoefer
1996; Pooley, this volume) and ‘relationalist’ (particularly, the physicist inspired
ones: e.g., Stachel 1993, this volume; Saunders 2003; Smolin, this volume; and
Rovelli 2004) turn out to be of just this kind. The basic idea, to be developed in
the following subsections, is that the fundamental ontology of the theory is given
by relational structures rather than individual objects; inasmuch as objects exist at
all, they derive their properties and individuality from the relational network in
which they are embedded. Before we move on to consider quantum gravity, and the
structural stance in more generality, let us first pause to consider the nature of the
hole argument in a little more depth.

1.1.2 Gauging the Hole Argument

In order to fully appreciate the inner workings of the hole argument (qua problem
of determinism, at any rate), it is better to shift to the canonical (constrained
Hamiltonian) formulation of general relativity, and thus construct its phase space �

(parts of which are ‘unphysical’—see below).⁶ Adopting this stance does two things
for us: (1) it allows us to make sense of general relativity as a theory about the
dynamics of space; (2) it allows us to make sense of the way in which general relativity
is a gauge theory.⁷

First we take spacetime to be a four-dimensional manifold M diffeomorphic to
S × R—with S a (compact, orientable) 3-manifold taken to represent ‘space’ and
where R is taken to represent ‘time’. We choose S so that it is spacelike with respect
to g and so that it is a Cauchy surface—let’s now call this surface �. Let t be the
function on M associated with the foliation by � and whose level surfaces are the
leaves of the foliation. Thus far we have simply defined the background structure of

⁶ Here, we focus on the geometrodynamical formulation according to which the configuration
variable is the 3-metric q on a hypersurface. There are—as the chapters by Cao, Stachel, and
Smolin will highlight—alternative ‘polarizations’ of general relativity’s phase space (one might use,
for example, a connection on a hypersurface as the configuration variable), but the differences are
largely irrelevant for our purposes, and would overly complicate our account (see Rickles 2005a for
a discussion of the hole argument transplanted into these different contexts). The chapter by Rickles
in this volume offers a more detailed and general introduction to the canonical formalism.

⁷ Recall that a gauge theory is one whose physical content is captured by those dynamical
variables, the observables, that are invariant under the action of the (gauge) symmetry group, i.e.
those unchanged by gauge transformations (these are those transformations generated by the first
class constraints—see below, and see Dirac 1964, for the classic exposition).
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the theory. A phase space � is then constructed using this background by taking the
basic dynamical variables of the theory to be the 3-metric qab on � (playing the role
of canonical ‘position’ variable) and pab (playing the role of canonical ‘momentum’
variable conjugate to qab)⁸—both are induced by the 3 + 1 ‘split’ together with g.
Thus, an instantaneous state of the gravitational field is given by pairs (q, p) ∈ �.
However, not any old pairs will do—i.e. not all points in � are physically ‘kosher’.
The reason for this has to do with the four-dimensional diffeomorphism invariance
of the covariant theory which is ‘translated’ into a pair of constraints on the initial
data (�, q, p) so that, in order to count as physically admissible (i.e. dynamically
possible), they must satisfy both the diffeomorphism (or vector) constraint and the
Hamiltonian (or scalar constraint). We can express these formally—with 3R being
the Ricci curvature scalar of q on �—in the geometrodynamical formulation as
follows:

Da(q, p) = −2qac∇bpbc = 0 (1.2)

H⊥(q, p) = det(q)−1/2
[

qacqbd − 1

2
qabqcd

]
pabpcd − det(q)1/2 3R = 0 (1.3)

This analysis brings out some of the gauge-theoretic aspects of general relativ-
ity—though, it has to be said, these aspects are at their most transparent in the
connection formulation. In phase space terms we see that the full phase space � does
not correctly represent the physically possible worlds of general relativity, for not all
points will satisfy the constraints. However, the points that do satisfy the constraints
form a submanifold C ⊂ � known as the constraint surface. The crucial feature of
this setup, vis-à-vis the hole argument, is that the constraint surface is partitioned
into gauge orbits whose elements (phase points) correspond to those states related
by the symmetries (i.e. the diffeomorphisms) generated by the constraints—see the
essays by Dorato and Pauri and Rickles (in this volume) for more details.

The connection to the hole argument is now obvious: the spacetime diffeomorph-
isms utilized therein correspond to ‘unphysical’ gauge motions generated by the
constraints. The relevant constraint for the hole argument is Da since this generates
spatial diffeomorphisms of �.⁹ (This distinguishing of the constraints may seem
a little unnatural, since the hole argument calls upon the full group of spacetime

⁸ The momentum variable is related to the extrinsic curvature K ab of � by pab ≡ det(q)1/2(K ab −
K c

c qab), where Kab describes the embedding of � in 〈M, g〉.
⁹ However, an analogous problem also holds for the Hamiltonian constraint, though its treatment

and interpretation leads to even thornier issues connected with time and change (known as the
problem of the frozen formalism in the classical theory and the problem of time in the quantum theory).
Very roughly, the problem is that if we interpret the Hamiltonian constraint as both the generator
of time evolution (as is standard) and a generator of gauge transformations (and being a first class
constraint, following Dirac 1964, we should indeed view it as such—but see Kuchař (1992) for a
view to the contrary), then it seems as if there is no change, for time evolution corresponds to an
unphysical gauge motion. The quantum version of the problem simply follows from the fact that
if the classical Hamiltonian is zero, then the Schrödinger equation for relevant wave functions �

(e.g. ‘the wave function of the universe’) will be i ∂�
∂t = Ĥ� = 0, and we will be without quantum

dynamics. See Belot (1996), Belot and Earman (1999, 2001) and Rickles (this volume) for more
details.
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diffeomorphisms. However, in the canonical formalism, we can envisage the normal
deformations generated by the Hamiltonian constraint to be zero and yet still gen-
erate hole argument situations, and likewise, in setting the tangential deformations
generated by the diffeomorphism constraint to zero, we can still generate ‘problem
of time’ situations—whether anything of real significance rests on this fact we leave
to the reader to decide.) The gauge motions—the transformations generated by the
constraints—act on all points of � including those points lying within C. In fact,
the constraints have the effect of shifting phase points along orbits of the gauge
group. Distinct points lying on the same gauge orbit are physically indistinguishable,
representing equivalent (with respect to the ‘genuine’ observables) descriptions of the
same physical state. Hence, even after disposing of the physically impossible states
(by focusing on the constraint surface), there is something of an overabundance of
physically possible states; this surplus structure is known as ‘gauge freedom’, and it is
this that is responsible for the indeterminism that the hole argument exposes so well.

Now, the view that the constraints generate gauge motions—so that the diffeo-
morphisms utilized in the hole argument are gauge—leads to a natural resolution
(that we might refer to as ‘the physicist’s resolution’¹⁰) of the hole argument: the
indeterminism is simply unphysical, it is gauge. All that the hole argument shows us
is that there are no observables of the form ‘F (x)’: since points of space or spacetime
are not diffeomorphism invariant, neither are quantities defined with respect to them.
Hence, the value of the metric field at a certain independently specified spacetime
point is not admissible; that we can talk about such a thing at all is merely the
result of the surplus degrees of freedom (the gauge freedom) in the mathematical
framework we use to formulate the theory. Thus, the observables of the theory
should not distinguish between gauge-equivalent states (i.e. states lying within the
same gauge orbit); rather, they should be constant along gauge orbits (so that their
Poisson bracket with the constraints vanish) and dependence should be at the level of
entire gauge orbits.¹¹ There are a number of ways of cashing this out, both formally
and technically. For example, we might see it as motivating (or, perhaps, as being
underwritten by) an anti-haecceitistic metaphysics, according to which there is no
physical difference (i.e. a difference between possible worlds) without a qualitative
difference (this is the line of Stachel and Pooley in this volume). The natural
formal setup for making sense of the ‘eradication’ of the unphysical gauge degrees
of freedom is to construct the reduced phase space � (roughly, � = C/Diff(�),
where C ⊂ � and Diff(�) include the diffeomorphisms tangent and normal to the

¹⁰ See, for example, Wald (1984: 259–60) and Hawking and Ellis (1973: 227–8) for a pair of
classic statements of this viewpoint.

¹¹ Note, as hinted at in the previous footnote, that Kuchař argues that the constraints of general
relativity should be distinguished: the diffeomorphism constraint, generating spatial diffeomorph-
isms, should be viewed as a gauge transformation, so that observables should be insensitive to their
action, but the Hamiltonian constraint is a different matter for it generates changes in the variables
from one hypersurface to another. This is, of course, related to the problem of the frozen formalism:
if the Hamiltonian constraint is taken to generate gauge transformations, then observables must
be constants of the motion, which, Kuchař maintains, is absurd. Rickles reviews the interpretative
options in his contribution to this volume.
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hypersurface �) with phase points given by equivalence classes of models under all
the diffeomorphisms. Earman and Norton (and, more recently, Belot and Earman
1999, 2001) took this space to be out of bounds for substantivalists; after all adopting
it is, more or less, tantamount to implementing Leibniz equivalence (i.e. the idea
that diffeomorphic models represent one and the same physically possible world).
But they view the adoption of Leibniz equivalence (or, equivalently, commutation
of physical quantities with all of the constraints) as underwriting relationalist (or,
at least, anti-substantivalist) positions. We don’t wish to enter this debate here; it
is well trodden and many of the chapters in this volume cover the central issues.
What we want to suggest is that structuralist views sit nicely in this space, and
avoid the (often seemingly verbal) dispute between relationalists and sophisticated
substantivalists (i.e. substantivalists who endorse Leibniz equivalence). Indeed, as
mentioned previously, we say that these latter positions sit very happily under the
more general banner of ‘structuralism’ (see §1.2). Let us now turn to the subject
of quantum gravity, and consider the bearing of background independence in this
context. We shall then connect this to structuralism.

1.1.3 Enter Quantum Gravity

The problem of quantum gravity involves finding a way of describing the gravitational
field in those high-energy, small-scale regimes in which its quantum mechanical
features cannot be swept under the carpet. However, quantum gravity, as a label, does
not yet denote any existing theory; rather, there are a number of distinct research
programmes in competition for that title. There are certain minimal constraints that
these approaches must satisfy to qualify, or at least be in the running. How and to
what extent these constraints are met, and indeed what the precise constraints are is a
matter of debate between the various camps. Minimally, though, it seems that what is
required is a quantum theory that has general relativity as a classical limit, so that the
success of general relativity can be explained from the perspective of the new theory.
We might understand this in terms of a synthesis (or unification) of quantum field
theory and general relativity (say, a generally relativistic quantum field theory); but
even if we can make sense of such a notion, it is not clear that synthesis or unification
is a general requirement.¹² For one, it has never been decisively demonstrated that
there is an a priori conflict between the formalisms of classical general relativity and
quantum field theory.¹³ It should be noted, also, that there is no clear empirical
problem that requires quantum gravity for its resolution, nor is there, at present, any
way to probe quantum gravitational sectors empirically (though, recently, there has

¹² This ‘synthetic’ view seems to be the one adopted by those working on loop quantum gravity,
and the canonical approaches more generally—this picture seems to correspond to that favoured
by Cao (2001, and in this volume). The string theorist, by contrast, appear to follow a more
‘accommodationist’ line: quantum gravity is contained in the general framework of the theory in
virtue of there being a massless spin-2 particle (the graviton) in the string spectrum.

¹³ On the other hand, there does appear to be a ‘conceptual mismatch’ at the level of the views of
spacetime that each calls upon: general relativity is not set against a background spacetime, whereas
all quantum theories constructed so far, have been—see p. 13.
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been some progress in this latter respect: see Amelino-Camelia 1999). In light of
this, let us begin by assessing the possible reasons for wishing to construct a quantum
theory of gravity—this brief detour will act as a primer on the kinds of issue and
areas that a theory of quantum gravity might be expected to deal with. We shall then
sketch in very broad brushstrokes the kinds of methods that have been employed
to implement a theory of quantum gravity, and then finally indicate the way in
which structuralism enters the picture by appealing to background independence.
The following sections will then attempt to consolidate this suggested ‘structuralist
turn’ in quantum gravity by situating it within wider historical and philosophical
issues pertaining to structuralism.

1.1.3.1 Why Bother?
One of the first questions one faces when thinking about quantum gravity is why one
should bother constructing such a theory at all. There are, after all, no phenomena
that are out of the reach of the theories we have at out disposal already. Why should
we require a revolution when there is nothing to revolt against? It is true that many
times in the history of physics, when a revolution has occurred, it has occurred
because of some lack with the theories then current. Either there was an inconsistency
in the theory, or else the theory could not deal with some new (or old) piece of
observational data. However, conflict with the observed data is not necessary for a
revolution; in the next subsections we present several alternative reasons for requiring
another revolution in physics.

Dimensions of Quantum Gravity
Max Planck demonstrated over a century ago that the three fundamental constants
of nature—c (speed of light in vacuo), G (the gravitational constant), and � (Planck’s
constant: the quantum of action)—can be uniquely combined in such a way so as to
produce ‘natural’ units of length, time, and mass. We get:

lp =
(

�G
c3

) 1
2

≈ 1.62 × 10−33cm. (1.4)

tp = lp
c

=
(

�G
c5

) 1
2

≈ 5.40 × 10−44s. (1.5)

mp = �

lpc
=

(
�c
G

) 1
2

≈ 2.17 × 10−5g. (1.6)

At these scales, in the ‘Planck regime’, general relativity and quantum field
theory stop working: singularities, and other craziness emerge that lie outside of
their domain of applicability. It is here that quantum gravity is expected to reign
triumphant, and provide an adequate framework—‘formally’ adequate, in the sense
of providing a consistent mathematical theory (perhaps by eliminating the ‘craziness’);
and ‘experimentally’ adequate in the sense of offering up confirming instances of
data. Of course, this is not an empirical problem with general relativity and quantum
field theory simply because these dimensions are ‘out of reach’ as far as empirical
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accessibility goes—though we might class it as a ‘potentially empirical problem’.¹⁴
Rather, the lack is purely conceptual; it is a problem with the frameworks of
quantum theory and general relativity that lies beyond what is empirically accessible.
In addressing the issue of what happens in this realm we are ineluctably led to
consider what happens at scales when one or the other theory becomes relevant for
the other, so that both theories have to be considered acting together. When we do
this, then certain other, even deeper, conceptual problems surface, problems to do
with the radically divergent conceptual schemes the theories employ.

The Principle of Unification
A great many revolutionary advances in physics have come about by means of a
synthesis between two theories that were thought to be disparate. For example, special
relativity was conceived by trying to hold the principle of Galilean relativity and
Maxwell’s theory of electromagnetism together. The problem is that Maxwell’s theory
is not Galilean invariant. By unifying the two, Einstein realized that electromagnetic
phenomena must look the same in uniformly moving reference frames. Quantum
field theory was the result of concerted efforts to bring together special relativity
and quantum mechanics. General relativity was conceived in an attempt to unify
Newton’s theory of gravity with the principle of locality of special relativity. In each
case there was supposed to be some fundamentally conflicting pair of theories or
pieces of data that were both taken ‘seriously’ for the purposes of unification. The
end product is a theory of the piece of data that respects both in some ways, and
departs in other ways. If this is the dialectic of progress in physics, then we should
expect a theory of quantum gravity to emerge from the unification of quantum field
theory and general relativity, the latest in a series of conflicting pairs that physics has
presented us with.

However, the concept of unification is not straightforward, and admits certain
ambiguities in the context of physical theories. Unification can mean any number
of distinct, though often related, concepts. We can range a number of such concepts
in order of ‘strength’ as follows: (1) reductionism, (2) synthesis, or (3) compatibility
(encompassing ‘accommodation’). It isn’t clear that all revolutions in physics occur
at the same strength, or even that they involve any kind of unification. Above, we
have been speaking of unification as synthesis, whereby two incompatible theories
are ‘merged’, in some sense, into one that takes important features from both,
and discards other features. In the case of general relativity, the key distinguishing
feature that is expected (by many) to be retained is the diffeomorphism invariance
of the theory, and the background independence that it implies.¹⁵ Quantum field

¹⁴ We should add, however, that the field of ‘quantum gravity phenomenology’ has gone some
way towards demonstrating that features from the Planck scale might be accessible through certain
potentially observable effects, such as the violation of Lorentz invariance—see Amelino-Camelia
(1999) for a clear review.

¹⁵ The argument, in a nutshell, is that (1) diffeomorphism invariance means that the physical
quantities of the theory are insensitive to diffeomorphisms; (2) diffeomorphisms act (inversely) on
the dynamical fields of the theory. Therefore, (3) there cannot be a background metric, for if there
were then the diffeomorphisms would make a difference to the physical quantities.
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theory will, most likely, retain the probabilistic structure as encoded in the operator
algebraic representation of observables, and the representation of states as elements
of Hilbert space (or, possibly, linear functionals over the operator algebra). Thus,
what is required is a background-independent quantum field theory, or, equivalently,
a quantum theory on a differentiable manifold.¹⁶ In his contribution John Baez
presents one such possibility in the form of topological quantum field theory.
His idea involves the tools of category theory which he uses to demonstrate
certain deep analogies (at the category theoretic level) between quantum theory
and general relativity. Such a theory would certainly be structuralist. The reason
for this is to do with the absence of a background metric with which to ground
absolute locations in spacetime. This leads to the view that spacetime localization is
relativized to something other than spacetime points—this may be physical objects
or fields, or, if we view the identification of the metric with the gravitational
field as marking an ontological identity, then we are able to localize with respect
to the metric field itself (or, more properly, the points defined by the metric
field).¹⁷

Coping with Singularities
One area where there does appear to be some breakdown in current physics,
albeit in a (currently) non-empirical sense, is black hole physics. We know from
general relativity, and the singularity theorems of Penrose and Hawking, that very
many admissible initial data sets, for gravity plus matter, will result, under the
evolution described by Einstein equations, in a gravitational collapse so extreme
that a singularity will be produced. A singularity, you will recall, is (roughly) a
region of spacetime at which the gravitational curvature becomes infinitely large;
physically this may correspond to, for example, a material body collapsing to a
point.¹⁸ Now, a physically reasonable normative requirement on our theories is
that infinite quantities should be avoided or, more strongly, that infinities do not
correspond to anything physical. Whether one views this constraint as reasonable

¹⁶ It is for this reason that the hole argument becomes a pressing issue in quantum gravity
(conceived of in terms of a background independent quantum field theory). For one must make
certain non-trivial choices regarding how one deals with the symmetries utilized in that argument.
In capsule form these choices concern the question of whether or not we should quantize with or
without the symmetries generated by the constraints—or, in more technical terms, whether we
should use the machinery of non-constrained or constrained quantization. The choice is non-trivial
because there will be degrees of freedom being quantized in the unconstrained approach that are
not contained in the constrained approach; these can have potentially physical consequences (cf.
Gotay 1984).

¹⁷ This isn’t quite right. In the case of the topological quantum field theories that Baez discusses,
there are no local degrees of freedom at all. This is a problem because general relativity does have
local degrees of freedom, only they are determined dynamically by solving the Einstein equation.
However, the topological quantum field theories Baez presents nonetheless display structuralist
tendencies on account of the weight they put on relations as opposed to objects.

¹⁸ This is a rough characterization, and the details are much more complex. Less roughly we
can define a singular spacetime to be one containing a geodesic of finite total affine length, such
that a scalar invariant considered along it becomes infinite (see Earman 1995)—though there are
problems even with this ‘received’ definition: see, for example, Geroch (1968).



Quantum Gravity Meets Structuralism 11

or not, however, it seems clear that such singularities would pose a severe problem
for our current physical theories. The reason has to do with the simple dimensional
argument presented above: when the spacetime curvature is of the order of the
Planck length the quantum fluctuations of the spacetime metric would no longer
admit a representation by means of a smooth (pseudo-) Riemannian manifold. Thus,
some new physics is inevitably required to deal with the gravitational field in such
circumstances (cf. Penrose 1978).

Of course, another area in which infinities raise a problem is in quantum field
theory. As in classical electrodynamics, in quantum electrodynamics there is the
problem of electrons interacting with their own field. To resolve this problem,
manifested as divergent integrals, one looks to renormalization theory and, more
recently, renormalization group theory, to cope with or make sense of the difficulties.
However, when we run general relativity through this sausage machine, we find that
more infinities are produced: the theory is non-renormalizable.¹⁹ These ineradicable
infinities might be taken as signalling the need for a shift to a new or modified theory;
and, indeed, many have taken the lesson of non-renormalizability to be as signalling
a shift to a non-perturbative approach.²⁰

It might be the case that these two types of infinities can be dealt with together as
a package. Indeed, this seems to be the case in some approaches to quantum gravity;
certainly it is in string theory and loop quantum gravity (the two main lines of attack):
stringy dynamics has the effect of ‘delocalizing’ interactions (i.e. ‘smearing’ them
out, away from points), so that the point interactions responsible for the ultraviolet
divergencies are outlawed. Likewise the singularities of spacetime are avoided in
string theory, since there gravity simply corresponds to a certain vibrational mode
of the string, and in loop quantum gravity the micro-structure of space is discrete
(since the geometry, and therefore geometrical quantities that depend on the metric,
are quantized). In this way, the success of renormalization procedures is made a little
clearer from a physical point of view. Thus, we might say, roughly, that the loop
gravity and string theory programmes avoid the singularities by adding non-locality
at the level of ‘space’ and ‘objects’ respectively.

Cosmological Quantum Theory
If quantum theory is about observations, then we need observed things and observers.
What about the universe as a whole? Bell calls this ‘an embarrassing concept’ (1981:
622). Why? Because we do not see the universe in a superposition of states. Why not
if there is no observer to observe it? Shouldn’t the universe be in a grand superposition
of, for example, macroscopically distinct volume states? In this case we cannot call

¹⁹ See Deser and van Nieuwenhuizen (1974) for a classic discussion. However, the pudding is in
the proof, on which see Goroff and Sagnotti (1986).

²⁰ However, we need not desert a theory just because it is non-renormalizable. The theory of the
renormalization group (as devised by Wilson and co.—see Binney et al. 1992), and the programme
of effective field theories show us how we might view general relativity as an effective field theory
that is nonetheless capable of making physical predictions (cf. Donoghue 1994, 1996). See Burgess
(2004) for a very readable account of this viewpoint. Castellani (2002) offers a nice elementary
survey of effective field theories and their philosophical implications.
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on environmental effects (and thus modifying the state by including these variables),
since there is no environment. But with no measuring ‘agency’ the universe should
be in such a state if quantum theory is universally valid. In typically colourful style,
Bell writes that:

It would seem that [quantum] theory is exclusively concerned with ‘results of measurement’
and has nothing to say about anything else. When the ‘system’ in question is the whole
world where is the ‘measurer’ to be found? Inside, rather than outside, presumably. What
exactly qualifies some subsystems to play this role? Was the wave function waiting to jump for
thousands of millions of years until a single-celled living creature appeared? Or did it have to
wait a little longer for some highly qualified measurer—with a Ph.D? If the theory is to apply
to anything but idealized laboratory operations, are we not obliged to admit that more or less
‘measurement-like’ processes are going on more or less all the time more or less everywhere?
Is there ever then a moment when there is no jumping and the Schrödinger equation applies?
(1981: 611)

This brings into sharp focus the problems that quantum cosmology poses to
the interpretation of quantum theory. If it is measurement that prevents the wave
function from applying to everything at all times, then what measures the whole
universe? The universe is, after all, a valid object of study in general relativity,
therefore we should it expect to remain a valid object of study in quantum general
relativity. We might expect, then, that no measurement takes place, and that the
evolution is plain linear Schrödinger-style evolution—of course, the problem of
time, mentioned earlier, becomes highly relevant here. Given this, how can we make
sense of the universe’s being in a superposition of (e.g. geometrical) states? There are
several possibilities: some go down the Everettian route, and some go down the de
Broglie–Bohm route. Neither route leads to jumps or collapses.

One thing seems certain, however, and that is that the traditional Copenhagen
interpretation is put under pressure in this context. Recall that according to this
‘orthodox’ interpretation of quantum theory, any measurement interaction requires
an observer that is external to the system that is being measured and is classical. Yet
if we want quantum theory to be universal (i.e. independent of scale and applicable
to all dynamical systems) then this category of interpretation faces a very simple
problem. Quantum theory being universally valid means that it applies to systems
of any size. The universe as a whole can be viewed as a physical system. Indeed, in
cosmology this is a perfectly reasonable object of study. Yet there is, by definition,
no observer outside the universe. Moreover, physics on cosmological scales, and
so the universe as a whole system, is the domain of general relativity. It seems as
though we have wandered into the territory of quantum gravity, and it seems that
the Copenhagen interpretation is at a loss to deal with it.

Though many view the problems of quantum cosmology as strictly independent
from the problem of quantum gravity, there are some who see the two problems as
entangled (e.g. Smolin 1991, 2003). Our view is that there is a definite asymmetry
here: a theory of quantum gravity should certainly give us an account of quantum
cosmology, but the converse of this need not be true; for example, there are proposals
to make sense of quantum cosmology that, strictly speaking, lie outside quantum
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gravity proper—e.g. consistent histories and Hartle’s ‘spacetime quantum mechanics’
(1995).²¹

Problems with the Semiclassical Theory
There is a fairly simple argument that demonstrates that a semiclassical theory of
quantum gravity (that is, a coupling of a classical gravitational field with quantum
matter) results in superluminal signalling (Eppley and Hannah 1977). Suppose we
have two spacelike separated observers, at sites A and B, and that they are making
continuous measurements on the gravitational field. Suppose now that in between
A and B we perform a beam-splitting experiment on a photon (let us suppose, for
the sake of simplicity, that the photon has a mass of one unit—one pound, say).
The experiment results in a probability distribution according to which it is at site
A with a probability of a half, and at site B with a probability of a half. Since
the gravitational field is classical, this will manifest itself as a warping of spacetime
equivalent to half a pound at A and half a pound at B. Now suppose that observer
A makes a measurement to determine the position of the photon. If the photon
is at A, then the wave function collapses in such a way as to produce a warping
equivalent to a one-pound mass, and the gravitational field at B will diminish by
an amount equivalent to half a pound. Otherwise, the field at A will be diminished
by half a pound of curvature and will increase to a pound of curvature at B. This
happens instantaneously. Thus, observer A could use this setup to send a message
to B; he could make a measurement to send the message, say, ‘Yes, the bomb has
been launched,’ and not make any measurement to say ‘No, the bomb has not been
launched.’ All B has to do is continue to measure the state of the gravitational field,
and watch out for the increase or decrease. This suggests that we have to consider the
gravitational field as quantized too, in order to avoid conflict with the principle of
locality in general relativity.²²

Time and Space in GR and QFT
One of the most obvious areas where philosophers can apply themselves is to the
radically divergent concepts of space and time that are employed in quantum field
theory (QFT) and general relativity (GR). In a nutshell the theories are incompatible
because they employ incompatible ideas of space and time: quantum field theory
(those forms we have at present) is necessarily background dependent (in order that
the states, operators, and even the fundamental axioms can be defined); general
relativity is background independent. Many of the problems and issues raised in the
contributions in this book can be traced back to this single source. Here we do no
more than merely hint at the scope of the problems.

The central point of difference between the two types of theory concerns, of
course, the treatment of the metric (or connection) on the spacetime manifold. In
existing quantum field theories (and quantum theories more generally), space and

²¹ See also Gell-Mann and Hartle (1990) for an attempt to formulate a (non-quantum
gravitational) quantum theory capable of dealing with the universe as a whole.

²² We don’t discuss this further, though there has been some recent philosophical work on this
argument: see Mattingly (2006); Callender and Huggett (2001); and Wüttrich (2004).
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time possess a fixed metric and connection structure. That is to say, the metric is
imposed prior to solving any equations of motion for the other fields, is not allowed
to vary in the action, and so is not affected by the behaviour of the quantum fields
defined with respect to it. We hinted above at the fact that the metric is crucial in
quantum field theory for the mathematical and conceptual foundations of the theory.
For example, it is an axiom of the theory that for any pair of spacelike separated
(relativistic) quantum fields (i.e. field operators with support in regions of spacetime
that lie at spacelike distances from each other) �̂(X i) and �̂(Y j)

[�̂(X i), �̂(Y j)] = 0. (1.7)

This is known as the ‘microcausality condition’, and it encapsulates the specially
relativistic basis of the theory. The fundamental conceptual conflict (vis-à-vis the
nature of spacetime) between quantum field theory and general relativity can be
captured if we consider the quantum gravitational analogue of the microcausality
condition. Recall that in a quantum theory of gravity the spacetime metric will be
an operator. Yet the metric field is responsible for chronogeometrical structure in
addition to gravitational field structure, which implies that it is responsible for the
causal structure too (microcausal structure included). In other words, since the causal
structure is dependent on the metric and the causal structure determines whether
two events are spacelike or not, and given that the metric is prone to quantum
fluctuations, it follows that the notion of spacelikeness, and therefore microcausality
itself, becomes subject to quantum fluctuations: one of the fundamental axioms of
quantum field theory is thus rendered meaningless (cf. Wald 1984: 381–2). We
need, then, a new conception of spacetime that goes beyond the conceptions that
we find in quantum field theory and general relativity, and that will take something
special indeed: prima facie, we need to either reject background-independence (scrap
general relativity) or else find a way to set up a background independent quantum
field theory (scrap quantum field theory as it is understood at present).

The question of why we should attempt to construct a quantum theory of gravity
duly dealt with (albeit in a very cursory manner), the next question we face is
how to go about it. The fact that there are many unconnected approaches makes
philosophizing about quantum gravity a difficult matter. Of course, in an article of
this nature we can barely pay lip service to the welter of methods that have been
devised to resolve the problem of quantum gravity.

1.1.4 Categorizing the Manifold Methods

There are so many distinct approaches to quantum gravity that the task of categorizing
them is rendered surprisingly difficult. Indeed, there is quite a diverse range of
suggestions within the quite substantial literature on the subject. Let us begin by
outlining several of these, before we lay down our preferred version.

• Relativity vs Particle Physics based: the various methods are divided according to
the principle that there are methods that favour general relativity over quantum
field theory, and those that reverse the preference.
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• Additional Structure based: the methods are distinguished by various novel
elements that are added to the foundations of one or another ingredient theory
until quantum gravity is accounted for. Examples might be supersymmetry, extra
dimensions of spacetime, and so on.

• Covariant vs Canonical based: methods are distinguished by the method of
quantization used.

• Perturbative vs Non-perturbative: methods should be distinguished according to
whether they use perturbative or non-perturbative technology.

The latter two taxonomies are often run together, with covariant and perturbative
methods set together against canonical and non-perturbative methods. Certainly
loop quantum gravity is both canonical and non-perturbative and the first revolution
(pre-1995) picture of string theory was covariant and perturbative. However, there
is no necessary connection between these distinctions. For example, recent work
on string theory, though remaining manifestly covariant, aims to be thoroughly
non-perturbative. However, the kinds of connections that do hold between these two
distinctions certainly deserves some serious attention from physicists and philosophers
of physics. Focusing on these two taxonomies independently of one another, they
face the same problem; namely that there are methods that simply fall outside
their scope.

The first taxonomy appears to be largely based in dogma and prejudice, rather than
on any deep underlying divisions concerning the subject matter of the approaches
thus divided. The relativists follow their geometric training whilst the particle
physicists follow their analytic training. Fortunately too there are signs that this
once ‘great divide’ is eroding, with the appearance of certain researchers who have
feet in multiple camps (e.g. Baez 1994 and Smolin 2000). The second taxonomy
hardly constitutes a taxonomy at all, since there would most likely be but a single
theory or approach to each category. The third taxonomy makes a useful cut
between the approaches, but the division is rather weak since one can associate
(via a Legendre transformation) a canonical approach to each covariant approach,
and vice versa—furthermore, these formulations should be equivalent. Moreover,
again, there are approaches that fall outside the remit of this taxonomy—we
are thinking of those approaches, such as causal set theory, which do not work
by quantizing a theory at all. Our preferred way is to focus on background
structure and dependence or independence on it and from it. This is related
to the fourth taxonomy on our list, since the perturbative approaches tend to
be those that make use of a fixed, flat background spacetime, while the non-
perturbative ones do not follow this procedure. It strikes us that this division reflects
the most fundamental and central division that separates the distinct approaches
to quantum gravity. However, it seems that the balance between the two sides
of this carving of the approaches is becoming increasingly lopsided, with the
majority of physicists acknowledging the importance of having a background-
independent theory—the background-dependent approaches appear to be slowly
dying off. Let us consider this distinction a little further by exposing the pitfalls
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of background-dependent methods, and the virtues of the background-independent
methods.²³

1.1.5 What’s Wrong with Background-Dependent Methods?

Among the first serious attempts to produce a quantum theory of gravity were
background-dependent, covariant perturbation quantizations. This method was
generally adopted within the particle physics community. The idea was, as Ashtekar
so nicely puts it (1988: 1), to do unto the gravitational field as was done to the
electromagnetic field: quantize the gravitational field to get a particle (the graviton)
that mediates the interaction. However, just as photons require background metrical
structure, so does the graviton.²⁴ One begins the analysis in terms of weak gravitational
waves moving about in Minkowski spacetime. This is accomplished by splitting the
spacetime metric gμν into a background part and a perturbation; the background
part corresponds to flat Minkowski spacetime, with metric ημν = diag(−1, 1, 1, 1),
and the perturbation term pμν, measures the ‘deviation’ from the flat (classical)
background. Thus, one has

gμν = ημν + pμν. (1.8)

This procedure is done to make the quantization job easier; one has all of the
machinery of a fixed spacetime so that, for example, microcausality conditions are
defined with respect to this rather than the full metric. The helicity states²⁵ of the
gravitational waves on the background become the quantum states of the graviton.
Utilizing the representations of the Poincaré group, one is able to define the graviton
as a spin-2 particle. We know, also, that this particle must be massless because the
gravitational interaction works long range, and the slightest mass would contradict
results concerning the deflection of light.

Weinberg (1995; see also 1979), in his definitive discussion on covariant quantum
gravity, showed that, in the vacuum case, one can derive the equivalence principle
from the Lorentz invariance of the spin-2 quantum field theory of the graviton.
Thus, it is sometimes claimed (mostly by string theorists) that the spin-2 theory is
equivalent to general relativity and follows from the quantum theory. The upshot
of this is that any theory with gravitons is a theory that can accommodate general
relativity (in some appropriate limit). This analysis forms the basis of string theory’s
claim that it is a candidate theory of quantum gravity: since there is a string vibration
mode corresponding to a massless spin-2 particle, there is an account of general
relativity (see Kiefer 2004: 34).

²³ For accounts of some of the other lines of research in quantum gravity, see the chapters by
Stachel and by Smolin in this volume.

²⁴ Indeed, so does any particle at all. What’s more, the background must be flat in order to help
oneself to the Poincaré symmetry and thus define a preferred vacuum state, from which one derives
the particle content of the theory. Thus, dynamical curved spacetimes are especially problematic
from this perspective. See Wald (1994) for the reasons why this is so.

²⁵ If φ → eihθ is a transformation of a plane wave under the the action of a rotation about the
direction of propagation, then h is the helicity of the wave.
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But this analysis has proceeded from substantive assumptions, that we have
available a flat background, and that we proceed using a linear approximation (so
that the physical interpretation is one of a few gravitons propagating on Minkowski
spacetime). The concept of the graviton, and this way of doing quantum gravity, is an
approximation, albeit a pragmatic one that is, perhaps, required to do ‘real’ physics.
Worse, the attempt to use perturbative methods leads to a non-renormalizable theory;
any attempt to eradicate the divergences that result from probing the local fields at
arbitrarily small distances fails, simply producing yet more divergences. Weinberg
knows all of this, of course, but he refrains from ruling out the perturbative approach
tout court. As we mentioned above, one may view the theory as effective; for sufficiently
small energies, the theory may still produce testable physical predictions. However, be
that as it may, the non-renormalizability of quantum general relativity is unequivocal
with respect to the ‘fundamental’ status of the theory: it cannot be fundamental, for
this would require consideration of Planckian physics that lies outside of the simple
linear approximation. But we should have expected this, says Rovelli, for ‘GR has
changed the notions of space and time too radically to docilely agree with flat space
quantum field theory’ (2004: 4).

String theory is, however, one way—by far the most heavily researched—of
sticking to the perturbative, covariant, background-dependent methodology of
quantum field theory while avoiding the divergences. Another response to the non-
renormalizability was to consider ‘corrections’ to the theory in the form of additional
particles with quantum loop amplitudes that serve to cancel out the divergences
associated with the gravitons. This is the way of ‘supergravity’ theories.

As philosophers, what conclusions might we draw from this? The general under-
standing is that the problems that the old covariant perturbation approaches face
stem, at least in large part, from the background dependence that is imposed. The
existence of a background, continuous spacetime implies, ceteris paribus, that the
local fields have no limit of resolution; one can probe them to whatever distances
and energies one likes. The metric remains fixed and classical. Divergences follow,
as we mentioned above. The answer to the puzzle seems to be that the limitless
resolution be limited in some way. One very ingenious way was to add dimensions
to the fundamental objects of the theory so that interactions are ‘delocalized’ away
from spacetime points. This is conservative as regards spacetime, since one can retain
the fixed, classical background: the revision is applied to the ‘material’ side of the
ontology. This is the way of string theory and M-theory, of course. Alternatively
we can delocalize the points themselves, perhaps by making their coordinates ‘non-
commuting’ q-numbers. We might also attempt to make the theory background
independent, so that no fixed metric appears in the definitions of the states and
observables of the theory; the metric will be a dynamical entity and become an
operator in the quantum theory. This way the points, inasmuch as they exist at all,
are dynamically individuated by the metric field, and so spacetime geometry itself is
quantized—in the loop quantum gravity approach the geometry of space is found to
be discrete (in that the geometrical operators on a spatial slice when quantized have
discrete spectra).
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1.1.6 What’s Right about Background-Independent Methods?

Perturbative background-dependent methods attempt to stick as much as possible
to the old ways of quantizing fields. Faced with a non-linear field, one treats the
non-linearities as perturbations about some linear equation. Likewise, in perturbative
quantizations of gravity the trick was to view the variety of curved metrics as
perturbations about a fixed background metric. This background supplies all of
the machinery of standard quantum field theory, representation theory, and the
renormalization techniques. However, it faces a problem: recall from §1.1.3.1 that
we should expect quantum gravitational effects to become significant at the Planck
scale. Hence, as one approaches higher and higher energies (smaller and smaller
length scales) the metrical fluctuations should become ever more non-negligible. It
becomes harder and harder to sustain the perturbative idea of treating the various
metrics of the various solutions as small perturbations about a flat, fixed background.
This idea prompted the search for non-perturbative methods of quantization.

Canonical quantization methods follow this non-perturbative line (quantizing the
full metric), and attempt to do physics in a background-independent manner.²⁶
Originally, the path involved using a configuration space of Riemannan metrics on a
three-dimensional hypersurface, so that general relativity was rendered a dynamical
theory of the geometry of space—the approach was called ‘geometrodynamics’ (see
Arnowitt et al. 1962). However, that approach faced many problems. A recent
modification, ushered in by Ashtekar’s change of variables, uses connections on a
principle SL(2, C) bundle over a three-dimensional hypersurface—see the articles
in this volume by Dorato and Pauri, Rickles, and Smolin for more details on the
canonical approach.²⁷

Much conceptually interesting material in the canonical approach comes from the
way in which the spacetime diffeomorphisms—conceptually interesting in their own
right, of course—are implemented by means of constraints. In the quantum theory,
these constraints must be enforced too, so that wave functions are invariant under
spacetime diffeomorphisms by being annihilated by the constraints. In the ‘new

²⁶ In this case, non-perturbative methods and background independence seem to be two sides
of the same coin. Indeed, in the context of quantum gravity they are often discussed as if they were
synonyms (see Smolin, this volume, p. 209). The precise relations that hold between these two
concepts, in this restricted context, merit further investigation. As a first step consider the following
link between background independence and non-perturbative methods: (1) in non-perturbative
methods the full metric is quantized; (2) the metric represents space(time); (3) the metric is
dynamical. These three factors seem to give us no choice: quantizing a dynamical metric, without
making a perturbative split, enforces background independence. String theory might seem like a
counter-example to this; however, note that still very little is known about the non-perturbative
extension to string theory (viz. M-Theory), and the more that is discovered about it, the more it
seems like background independence will be one of its features.

²⁷ In fact, Smolin was one of the physicists involved in the creation of the approach called ‘loop
quantum gravity’ (arguably the only serious rival to strings). Also, John Baez (likewise a contributor
to this volume) has done much to make the mathematical foundations of loop quantum gravity
more solid. Carlo Rovelli, the other creator of loop gravity, has written an excellent textbook (Rovelli
2004) on the theory that does much to expose its philosophical implications.



Quantum Gravity Meets Structuralism 19

variables’ approach, mentioned above, there is an additional constraint that comes
from the connection, namely the Gauss law constraint. This expresses invariance
under gauge transformations: again the physical wave functions in the quantum
theory must be invariant with respect to these too. The Ashtekar variables had
the effect of transforming the phase space of general relativity into a copy of the
phase space of a Yang–Mills theory.²⁸ This in turn allowed for the application
of mathematical techniques that had proven fruitful in the Yang–Mills context; of
particular importance was the loop representation that it afforded. This representation
(roughly an infinite Fourier transformation from the connection variables) admits
natural solutions to the Gauss-law constraint (i.e. it is gauge invariant), and solutions
can be found to the other constraints by considering equivalence classes of loops
(under spatial diffeomorphisms), or knots, and intersections of knots. Quantizing
the theory led to the application of spin networks, introduced in the 1970s by Roger
Penrose. In the context of loop quantum gravity it is found that the spin networks
form a basis for the quantum states. Penrose’s original idea was to dispense with the
continuous spacetime manifold, and replace it with a combinatorial structure. He
writes, in typically visionary form, that

A reformulation is suggested in which quantities normally requiring continuous coordinates
for their description are eliminated from primary consideration. In particular, space and time
have therefore to be eliminated, and what might be called a form of Mach’s principle must be
invoked: a relationship of an object to some background space should not be considered—only
relationships of objects to each other can have significance. (1971: 151)

Following Penrose’s line, the claim of many of those working on loop quantum
gravity is that spin networks point towards a relational conception of space. Why?
The reason, so far as we can see, is connected to the hole argument. The claim is
that spin networks represent quantum space (i.e. a quantized version of the spatial
part of the gravitational field). However, in order to accomplish this, the states
must be diffeomorphism invariant. Yet spin networks are defined on a (compact
three-dimensional) manifold, just like the metric was in the classical case. Hitting a
spin network with a diffeomorphism shifts it around the manifold. Thus, we need
to impose the constraints (i.e. we need to solve the quantum Einstein equations).
This is achieved by taking the equivalence class of spin networks under these
diffeomorphisms, giving us a diffeomorphism invariant s-knot (for ‘spin’-knot) or
‘abstract’ spin network. The idea is that the s-knot is ‘smeared out’ over the manifold;
it is not a localized entity—so hitting an s-knot with a diffeomorphism does nothing,
we simply get the same state back. However, any other fields must then be localized
with respect to these s-knots; the s-knots represent space and define location. Since the
s-knots are dynamical entities—being, roughly, a quantum analogue of the classical
metric field—it seems as though localization has been relativized: localization is
relational. However, the ontological conclusion regarding the relationalist conception

²⁸ There is nonetheless, of course, a crucial difference between the two theories: Yang–Mills
theories are formulated with respect to a metric manifold (i.e. they are background dependent)
whereas general relativity is not.
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of space seems to be drawn from nothing more than the fact that Leibniz equivalence
has been imposed—i.e. by solving the diffeomorphism constraint in the move to
s-knots. Relational localization cannot itself deliver relationalism about space(time),
since, on the understanding that the 3-metric and s-knot state represent classical and
quantum space, the localization is relativized to space! But this then simply begs
the question about the ontological nature of space. Thus, this is a non sequitur
as has been shown by many substantivalists who also adopt Leibniz equivalence,
and as Pooley nicely charts in his contribution to this volume. It is, we say, much
better understood as underwriting a structuralist stance. What is objective is the
structure that is formed by abstracting the invariant core from the symmetries of the
individual localized spin networks. What we get is a delocalized structure which can
be understood as encoding relational features; relations between fields.²⁹

1.1.7 Background Independence and Structuralism

The chapters that follow this essay are, more or less, united in their focus on
background-independent approaches to the problem of quantum gravity. Thus, in
general, string theory, and other background-dependent approaches, are mentioned
only as examples of how not to go about constructing a theory of quantum gravity.
One of the main points we wish to make here is that background independence
and structuralism are well-matched bedfellows; better matched, in fact, than are the
traditional positions of substantivalism and relationalism. Let us spend some time
developing this line of thought before turning our attentions to structuralism (and
structural realism).

To understand background independence, we need to introduce the notion of
background structure. This will, no doubt, be already quite familiar to philosophers,
though most likely under the somewhat scholastic sobriquet of ‘absolute object’.³⁰
The technical use of this term, in the context of spacetime theories and in the sense
we intend it here, originated with Anderson (1967), where he used it to refer to
those objects that are dynamically decoupled in one direction from the other objects
in the theoretical ontology. This means that they can affect the behaviour of other
objects—i.e. play a role in determining the kinematical and dynamical properties
and relations of a set of fields, for example—without being likewise affected. The
idea of absolute object, though intuitively easily graspable, is a notoriously slippery
customer. Friedman (1983: 62–70), for example, discerns three distinct senses that
can be marshalled under its banner:

• The first arises in the context of the debate about the ontological status of spacetime
structures (Friedman 1983: 62–3); that is, the debate between absolute (or, more

²⁹ See Rickles (2005a, 2005b) for a detailed philosophical examination of some of these themes.
³⁰ We should perhaps point out that Smolin, in a relevant early paper, refers to background

structures as ‘ideal elements’ and characterizes them as ‘contingent, in the sense that they may be
altered without altering the basic character of the theory, play a role in the dynamical equations of
the theory, and are not themselves determined by solving any dynamical equations of the theory’
(1991: 231). However, he has since converted to the present terminology, and sticks with it for his
contribution to this volume.
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properly, substantivalist) and relational spacetime. The issue here concerns the
range of the ontologies employed: the relationalist will wish to reduce spacetime
structures to relations between physical objects, so that the ontology is coextensive
with the set of physical events (or, if he is a little cleverer, the set of possible physical
events); the substantivalist, on the other hand, will claim a larger ontological
domain containing an independent manifold of possibly unoccupied spacetime
points. The distinction between this sense of absolutism and relationalism is just
the distinction outlined in Earman’s ‘R2’; namely, that holding between those
views that take spatio-temporal properties and relations to be ‘parasitic on relations
among a substratum of space points that underlie bodies or space-time points
that underlie events’ (1989: 12) and those that do not. We are, in effect, back
with Sklar’s notion of substantivalism; hence, this first sense of absolute has been
reassigned to the notion of substantival spacetime.

• The second sense concerns the dependence or independence of quantities from
frames of reference or coordinate systems (Friedman 1983: 63). The absolute
objects are taken to be those quantities that are thus independent. An example is
simultaneity. In a spacetime with structure E3 × R the notion of simultaneity can
be defined independently of reference frames and coordinate charts; it is, therefore,
an absolute quantity. However, shift to a relativistic picture and the notion is
relativized to a reference frame. This is, for sure, connected to absolute objects; as
Earman (1989: 12) points out in his characterization of ‘traditional relationalism’:
‘[R1] All motion is the relative motion of bodies, and consequently, space-time
does not have, and cannot have, structures that support absolute quantities of
motion.’ But although this sense depends upon absolute objects, it does not
characterize them. Rather, the absolute quantities are grounded in the absoluteness
of the background framework given by the type of spacetime structures employed.

• The third sense is Anderson’s, which we mentioned above. It is this sense that
we are interested in. Friedman defines an absolute object in this category as a
‘geometrical structure … that affects the material contents of space-time (through
laws of motion, for example) but is not affected in turn’ (Friedman 1983: 64).

However, we don’t intend to add anything new to the clarification of the concept
of absolute object. We simply wish to line up what physicists call ‘background
structures’ with the third of Friedman’s ‘senses’, and with what Anderson means
by absolute object.³¹ There is a sense, then, in which the introduction of the
background-independent/dependent distinction ‘cleanses’ the concept of absolute
object of one of its ambiguities, but an interpretative problem nonetheless remains:
what is the conceptual significance of background independence?

Smolin (1998: 2–3) characterizes background-independence/dependence in the
context of quantum gravity as follows:

The background dependent approaches are those in which the definitions of the states,
operators and inner product of the theory require the specification of the classical metric

³¹ For a very careful disentangling of the various senses of ‘absolute object’, see Rynasiewicz
(2000).
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geometry. The quantum theory then describes quanta moving on this background. The theory
may allow the description of quanta fluctuating around a large class of backgrounds, but
nevertheless, some classical background must be specified before any physical situation can
be described or any calculation can be done. All weak coupling perturbative approaches are
background dependent, as are a number of non-perturbative developments. … The background
independent approaches are those in which no classical metric appears in the definition of the
states, operators and inner product of the theory. … [T]he metric and connection enter the
theory only as operators, and no classical metric appears in the definition of the state space,
dynamics or gauge symmetries.

Now, as we mentioned, the received view amongst physicists is that background
independence implies relationalism about space(time). Smolin is quite explicit about
this in his contribution, writing

Thus, we often take background independent and relational as synonymous. The debate
between philosophers that used to be phrased in terms of absolute vrs relational theories of
space and time is continued in a debate between physicists who argue about background
dependent vrs background independent theories. (p. 22)

Rovelli sketches the supposed implication—on the understanding that (act-
ive) diffeomorphism invariance implements background independence in general
relativity—as follows:

[Diffeomorphism invariance] implies that spacetime localization is relational, for the following
reason. If (ψ, Xn) is a solution of the equations of motion, then so is (φ(ψ), φ(Xn) ) [where φ

is a diffeomorphism]. But φ might be the identity for all coordinate times t before a given
t0 and differ from the identity for some t > t0. The value of a field at a given point in M,
or the position of a particle in M, changes under the active diffeomorphism φ. If they were
observable, determinism would be lost, because equal initial data could evolve in physically
distinguishable ways respecting the equations of motion. Therefore classical determinism
forces us to interpret the invariance under DiffM as a gauge invariance: we must assume that
diffeomorphic configurations are physically indistinguishable. (1999: 3)

Hence, the ‘physical’ aspects of a system are not given by specifying a single field
configuration, but instead by the ‘equivalence class of field configurations … related
by diffeomorphisms’ (ibid.). The observables of such a system are then given by
diffeomorphism invariant quantities. Such specifications of states and observables are
clearly independent of any background metric: only gauge-invariant quantities are
to enter into such specification, and any reference to a background metric (via, for
example, fixed coordinates or functions onM) yields non-gauge-invariant quantities.
Thus, diffeomorphisms change the localization of fields on M; this is represented in
the Hamiltonian scenario by the action of the constraints. However, the localization
is a gauge freedom, so any states or observables involving localization to points will
not be physical. Smolin sees a direct connection between taking the equivalence class
of metrics, which pushes towards a relational view of localization, and relationalism
about spacetime:

The basic postulate, which makes GR a relational theory is [that a] physical spacetime is
defined to correspond, not to a single (M , gab, f ), but to an equivalence class of manifolds,
metrics and fields under all actions of Diff (M ). (This volume, p. 206)
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Rovelli makes the case in more detail as follows:

[t]he point is that only physically meaningful definition of location within GR is relational.
GR describes the world as a set of interacting fields including gμν(x), and possibly other
objects, and motion can be defined only by positions and displacements of these dynamical
objects relative to each other. … All this is coded in the active diffeomorphism invariance … of
GR. Because active diff invariance is gauge, the physical content of GR is expressed only by
those quantities, derived from the basic dynamical variables, which are fully independent from
the points of the manifold. … [Diff invariance] gets rid of the manifold. (Rovelli 2001: 108)

What status are we to attribute to the manifold once we remove dependency
upon its coordinates, and smear out reference to points with the action of Diff (M)?
Rovelli suggests that the manifold is an ‘auxiliary mathematical device for describing
spatiotemporal relations between dynamical objects’ (2001: 4). Of course, spacetime
coordinates enter into many areas of physics, especially mechanics and field theories,
i.e. as positions of objects (particles, strings, etc.) or as the argument of a local
field operator. Many physicists believe that general relativity rules out such absolute
local quantities; there are local degrees of freedom, but the locality is grounded
dynamically. This is, again, seen to follow from the practice of taking an equivalence
class of manifolds and metrics under diffeomorphisms as the correct description of a
spacetime in general relativity. Smolin claims that a consequence of this view is that

there are no points in a physical spacetime … [since] a point is not a diffeomorphism invariant
entity, for diffeomorphisms move the points around. There are hence no observables of the
form of the value of some field as a given point of a manifold, x. (2000: 5)

The latter point, that there are no local (i.e. localized to a particular spacetime
point) observables in general relativity, is perfectly true of course—we think this is
the real ‘lesson’ of the hole argument, as we mentioned above. However, Smolin gets
things the wrong way around. It is physical quantities that must be diffeomorphism
invariant, and this does indeed supply the result that there are no observables localized
to points of the manifold. But it is a big step from here to relationalism and the
absence of points.

This ‘relationalism from relational localization’ move is, then, fairly common,³²
but it is, for the reasons we have given, also a non sequitur: substantivalism is perfectly
compatible with the view that observables of general relativity are relational, and it
is compatible with the shift to equivalence classes—the sophisticated substantivalists

³² The view of the physicists is a far cry from the ‘received view’ amongst philosophers, which is
that general relativity supports spacetime substantivalism. Underlying this belief is the availability
of ‘empty space’ solutions—i.e. those consisting of a differentiable manifold and metric tensor
and without any matter fields. But this is as problematic as the move to relationalism: the empty
space solutions might just as well be taken to describe a physically real field; as Stachel points
out ‘[a]n empty spacetime could also be called a pure gravitational field, and it seems to me that
the gravitational field is just as real as any other’ (1993: 144). These features have been used by
both sides of the debate to claim victory of the other. The substantivalists have sought to pull the
gravitational field to their ‘spacetime’ side, and the relationalists have sought to pull it to their
‘material’ side. This tug of war has gone on for some time, and we think that time has come to
accept that neither side is given more or less support than the other: we need to look beyond the
physics to support these positions, or else look to an alternative view.
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have demonstrated this (see Pooley, this volume). Once again (as with the hole
argument), we have an interpretative underdetermination: both substantivalists and
relationalists can lay claim to this setup. We view this underdetermination as a
problem similar to the interpretative underdetermination that plagues quantum
statistical mechanics, where there are conceptually incompatible interpretations
of quantum particles that are nonetheless both compatible with the quantum
formalism.³³ Our response is to evade the underdetermination by adopting a
structuralist metaphysics: forget points and forget individual material fields, the
structure as characterized by the equivalence class of metrics is where our ontological
commitments should lie.

To wrap up this section, we shall indicate how what is called relationalism can be
understood as a form of structuralism. Let us begin with a statement of a variety of
mathematical structuralism—that of Resnik:

In mathematics, I claim, we do not have objects with an ‘internal’ composition arranged in
structures, we have only structures. The objects of mathematics, that is, the entities which
our mathematical constants and quantifiers denote, are structureless points or positions in
structures. As positions in structures, they have no identity outside of a structure. Furthermore,
the various results of mathematics which seem to show that mathematical objects such as the
numbers do have internal structures, e.g., their identification with sets, are in fact interstructural
relationships. (Resnik 1981: 530)

Thus, mathematical objects, for Resnik, have their identities fixed only through
their relationships to each other.³⁴ The overall structure determines the objects’
identities. This basic feature—the identities of things being derived from a relational
structure—is what characterizes a structuralist position. Now consider the following
passage from Smolin:

Observables associated with classical general relativity with cosmological boundary conditions
measure relations between physical fields. Points have no intrinsic meaning and are only
identified through the coincidence of field values. The diffeomorphism invariance of the
classical theory is thus an expression that that theory is background independent (up to the
specification of the topology of the manifold.) (1998: 10)

Recall, as we said above, that the idea that objects are ‘identified’ and ‘have
meaning’ in virtue of relations to some other things is part and parcel of structuralism.
Moreover, the way in which this is cashed out through background independence
is firmly within the structuralist camp. There is something akin here—and in the

³³ See French and Rickles (2003) for a review of the ins and outs of this debate, and a discussion of
the connections to the interpretation of spacetime theories vis-à-vis relationalism vs substantivalism.
Pooley (this volume) strongly disagrees with us that there is an analogy to be had here—we reserve
the right to save our response for another occasion!

³⁴ See Resnik (2000) for a well-developed account of his position. See Parsons (1990) for a
critical analysis of this position in which he argues that it cannot in fact be extended to the most
elementary objects of mathematics (we’d like to thank one of the referees for pointing this out to
us). More recently, Busch (2003) and Psillos (forthcoming) have drawn on the comparison with
mathematical structuralism to develop criticisms of the form of (physical) structuralism advocated
here. For a response see French (2006).
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passages of Smolin and Rovelli given previously—for example, to Mundy’s (1992)
notion of ‘spacetime structuralism’, according to which spacetime theories should
be recast in non-coordinate geometry terms, using relational predicates, and then
shifting to the isomorphism class as the object that encodes the various equivalent
coordinate spacetimes. Mundy then argues that ‘points, like numbers, are structural
roles in isomorphism classes of models of certain theories’ (p. 523), and with this we
are back to Resnik’s comments and the central core of structuralism. Baez’s discussion
of topological quantum field theory (and quantum field theory and general relativity
from the point of view of category theory) fits well with this perspective too, since
category theory places the weight on morphisms (generalized functions) over objects:
the objects are defined by the relations they bear to other objects. In the next section
we present some key themes from the history and philosophy of structuralism, so
that these connections will be all the more transparent.

1.2 STRUCTURALISM AND STRUCTURAL REALISM

1.2.1 Motivating Structuralism

Recent years have seen the beginnings of appropriate philosophical investigation of
quantum gravity. It is notable—and, to some, surprising—that many physicists
have welcomed this interest from philosophers (e.g. Rovelli 1997: 182; Baez 2001:
177—see also Rickles 2005b), and one can find philosophers speaking about
quantum gravity at physicists’ conferences and publishing in physics journals, and
vice versa (cf. Callender and Huggett 2001: 1). Our aim in this chapter has been to
indicate how this dialogue might be further pursued from a structural perspective;
we now propose to place these developments in their wider historical context.

1.2.2 What is Structuralism?

Defining structuralism is itself a philosophical issue and one of the points we want
to press is precisely that it should not be conceived of as a monolithic philosophical
position but as a heterogeneous movement composed of a number of intertwined
strands. In perhaps its broadest characterization, as already used in this chapter,
structuralism can be understood as urging a shift in one’s ontology, away from
objects, as traditionally conceived, and towards structures, typically conceived of in
terms of relations. Crudely put, on the traditional conception, objects ontologically
underpin the relevant structures, in the sense that they are the relata for the
relations which hold between them. Structuralism shifts the focus onto the relational
structures themselves and away from the objects, which must then be reconceived,
in some sense, from the structure. The extent of this reconceptualization will
then depend on both the form of structuralism adopted and the view of objects
from which one begins. A ‘weak’ form of structuralism might adopt a weak form of
reconceptualization and leave the objects as ontologically underpinning the structure,
but insist that epistemologically they are ‘hidden’ in some sense. On this epistemic
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form of structuralism the claim is that we have epistemic access only to the structure,
not what might lie behind it; therefore, that is what we should be concerned with
in our interpretations of our physical theories. A ‘stronger’ form of structuralism
might urge a more radical reconceptualization of objects, such that they come to be
understood as mere ‘nodes’ or ‘intersections’ in the structure. More generally, objects
might be understood as being secondary to the structure; the relations are then to
be regarded as having ontological primacy over the objects. Alternatively, one might
eschew talk of ‘primacy’ and adopt a view that is committed to both categories but
privileges neither over the other (see e.g. Rickles, this volume).

1.2.3 … and Where Does it Come from?

Of course, how dramatic a shift in focus this amounts to will depend on the view of
objects one starts with. Historically, many structuralists took a ‘substantivalist’ view
of objects, in the sense that they were conceived of in terms of some form of Lockean
substratum underlying the properties they possess. In these terms, structuralism has
been seen as a move towards the ‘liberation’ of physical ontology from the substance
paradigm. This was certainly the stance adopted by Cassirer and Eddington, for
example, whose broadly structuralist responses to both General Relativity and
Quantum Mechanics have unfortunately been overshadowed by the work of Russell
in modern structuralists’ own retrospective narratives of the movement’s origins.

Both Cassirer and Eddington included a fundamental subjective element in
their positions, which perhaps explains their relative neglect in today’s more realist
context. Cassirer, in particular, was, famously, a neo-Kantian who insisted that,
far from being ruled out by the developments of early twentieth-century physics,
Kant’s philosophy, properly understood, offered the most appropriate framework
for accommodating such developments (for an excellent introduction to Cassirer’s
ideas, see Friedman 2004). The structuralist element of his philosophy was grounded
in his reflections on the nature of space and was hugely influenced by Klein’s
Erlanger programme. This offered a structural conception of geometrical objects
which shifts the focus from individual geometrical figures, grasped intuitively, to the
relevant geometrical transformations and the associated laws. This shift underpinned
Cassirer’s insistence on ‘the priority of the concept of law over the concept of object’.
From this perspective, ‘objects’ dissolve into a ‘web of relations’, held together by
certain symmetry principles which represent that which is invariant in the web of
relations itself.

Cassirer famously applied this structuralist framework to the foundations of
relativity theory and argued that the unity of the concept of object, which is apparently
lost through the relativistic transformations, is effectively reinstated in structuralist
terms via the ‘lawful unity’ of inertial systems offered by the Lorentz transformations.
The shift from a substantivalist conception of objects to a structuralist one is furthered
by the General Theory of Relativity and what we are left with is an understanding of
the objects of a theory as defined by those transformations which leave the relevant
physical magnitudes invariant. General covariance then functions as a principle of
objectivity which offers a ‘deanthropomorphized’ conception of a physical object
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(Ryckman 1999). Thus Cassirer saw General Relativity as the natural conclusion of
the structuralist tendency:

With the demand that laws of nature be generally covariant, physics has completed the
transposition of the substantial into the functional—it is no longer the existence of particular
entities, definite permanencies propagating in space and time, that form ‘the ultimate stratum
of objectivity’ but rather ‘the invariance of relations between magnitudes’. (Ibid. 606, citing
Cassirer 1957: 467).

When it comes to quantum mechanics, there is a similar shift from things-as-
substances to relations as the ground of objectivity in science; or as Cassirer put it,
‘[w]e are concerned not so much with the existence of things as with the objective
validity of relations; and all our knowledge of atoms can be led back to, and depends
on, this validity’ (Cassirer 1937: 143). In classical mechanics objectivity rests on the
spatio-temporal persistence of individual objects and here, ‘ ‘‘[o]bjective’’ denotes a
being which can be recognized as the same in spite of all changes in its individual
determinations, and this recognition is possible only if we posit a spatial substratum’
(ibid. 177). It is not only the notion of spatio-temporal persistence that quantum
mechanics threatens (under the standard interpretation) but the individuality of
the particle itself. What is an electron then, Cassirer asks? Not, he answers, an
individual object (ibid. 180), as such a conception appears to be undermined by
quantum statistics (ibid. 184). At best, quantum particles ‘are describable as ‘‘points
of intersection’’ of certain relations’ (ibid.). From this structuralist perspective, the
entity ‘constitutes no longer the self-evident starting point but the final goal and end
of the considerations: the terminus a quo has become a terminus ad quem’ (ibid. 131).

Eddington’s importance in the history of General Relativity is well known, of
course and in both his ‘popular’ and ‘professional’ works he presented structuralism
as offering the most appropriate way of understanding the foundations of the theory:

The investigation of the external world in physics is a quest for structure rather than substance.
A structure can best be represented as a complex of relations and relata; and in conformity
with this we endeavour to reduce the phenomena to their expressions in terms of the relations
which we call intervals and the relata which we call events. (Eddington 1923: 41).

Beginning with point events, the aggregate of which constitute ‘the World’ and
which is postulated to be four-dimensional, the interval can then be defined, as a
quantitative relation, and the operation of comparing intervals eventually yields—via
a fair bit of jiggery-pokery—the field equations. Eddington insisted that these should
be read from left to right, not as laws of the World relating the continuum of
points events and matter, but as mathematical identifications denoting ‘definite and
absolute’ conditions of the world (Kilmister 1994: 44–6). Hence, ‘Matter does not
cause an unevenness in the gravitational field; the unevenness is matter’ (Eddington
1923: 152). By matter here, Eddington means matter as substance and thus this
construction is seen as eliminating substance from our ontology in favour of relational
structures, which were taken to be of a kind defined and investigated by group theory
(see Eddington 1936: ch. XII and 1939: , ch. IX).

From this perspective, substantivalist and relationist metaphysics, as traditionally
conceived, are nothing more than embellishments to the ‘bare structural description’
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which the structuralist focuses on. Thus, taking the example of uniform spherical
space, all that we know about such a space, Eddington argued, is that it has the
structure of the rotation group. ‘When we introduce spherical space into physics we
refer to something—we know not what—which has this structure’ (1939: 146).
Similarly, Euclidean space and Riemannian space are referred to as something with
a specifiable group structure. The usual attempts to describe space in terms of more
or less familiar metaphysical categories are an ‘unauthorized addition’ to physical
knowledge. Here again the structuralism is underpinned by a shift away from entities,
in this case spacetime points and Eddington insisted that ‘Space is not a lot of points
close together; it is a lot of distances interlocked’ (1923: 10).

Furthermore, as in the case of Cassirer, Eddington took the implications of
quantum statistics for particle individuality as opening the door to a structuralist
accommodation of quantum physics. And again, it is a substantival conception
of object that must be abandoned, in favour of a group-theoretic understanding
(for more on Eddington’s structuralist conception of quantum particles, see French
2003). What we obtain, then, is a structuralist view of all of science:

Physical science consists of purely structural knowledge, so that we know only the structure of
the universe which it describes. This is not a conjecture as to the nature of physical knowledge;
it is precisely what physical knowledge as formulated in present-day theory states itself to be.
In fundamental investigations the conception of group-structure appears quite explicitly as the
starting point; and nowhere in the subsequent development do we admit material not derived
from group-structure. (Eddington 1939: 142–3).

Eddington’s later work, particularly as presented in his Fundamental Theory,
represents an attempt to articulate a unified theory of physics—that is, in part, a
theory of Quantum Gravity—within such a structuralist perspective. That it remains
barely comprehensible, if at all, should not detract from the heroic effort involved!³⁵

Of course, to modern eyes, the concern with substance might seem somewhat
idiosyncratic. And if one were to initially regard an object, not as a substance
possessing properties, but as nothing more than a bundle of such properties and
relations (perhaps united by some kind of primitive ‘compresence’ relation) to
begin with, then the structuralist shift may not seem quite so radical after all.³⁶
Furthermore, it has come to be appreciated that one can in fact maintain a view of
objects as individuals in the context of quantum statistics, where this individuality
can be understood as grounded in either some form of substantival metaphysics,
or a broadly Scholastic notion of haecceity or ‘primitive thisness’ (French 1989;
French and Krause 2006). However, the bundle theory, just mentioned, appears
not to fare that well, since it requires the acceptance of some form of Leibniz’s
Principle of the Identity of Indiscernibles—so that no two ‘bundles’ can be exactly
alike—and this appears to be ruled out by quantum mechanics (French and Redhead
1988). Nevertheless, Saunders has recently elaborated a kind of ‘modernized’ form

³⁵ For an almost equally heroic effort to render it comprehensible and relate it to modern
concerns, see Durham (2005).

³⁶ This point is made in French (2001) and also in Pooley’s contribution to this volume.
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of the Principle which is compatible with quantum theory (Saunders 2003; for
comments, see French and Rickles 2003). Interestingly, this form grants relations an
individuating role and it can thus be regarded as yielding a form of structuralism, in
that the very individuality of the object is grounded in the latter’s relations with other
objects. Similarly, but less plausibly, perhaps, Stachel suggests, in his contribution to
this collection, that haecceity or ‘primitive thisness’ can have a relational basis too;
one might wonder how the haecceity can still be regarded as ‘primitive’ under such a
conception.

It can also be argued that even if one were to accept the traditional implication
of quantum statistics with regard to individuality, one does not have to give up a
metaphysics of objects entirely since the supposed non-individuality can be captured
via some non-standard formal framework which accommodates a conception of
objects still, albeit of a strange kind (see Krause 1992; French and Krause 2006).
Nevertheless, that both these metaphysical packages—‘quantum objects-as-non-
individuals’ and ‘quantum objects-as-individuals’—are effectively supported by the
physics provides an alternative motivation for structuralism. Put simply the idea is
that what we have here is a form of ‘metaphysical underdetermination’ in which the
metaphysical interpretation—in this case of quantum objects as either individuals
or non-individuals—is underdetermined by the physics itself. This can be taken to
raise a fundamental problem, in that we can no longer ascertain which metaphysics
of objects—at the most basic level of their individuality—is implied by the physics.
This problem can then be resolved, or ‘sidestepped’, by reconceptualizing the notion
of object in structuralist terms, for it only afflicts object-based ontologies (be they
individuals based or non-individuals based). Pooley (this volume) has questioned
the strength of this motivation, on the grounds that the underdetermination only
exists in ‘logical space’. Here he seems to be following Redhead and Teller, who have
argued that the non-individuals package meshes better with quantum field theory
and hence we have grounds for choosing that horn of the apparent dilemma, so the
underdetermination evaporates.³⁷

Of course, these alternative metaphysical packages were articulated in the context
of ‘first quantized’ quantum mechanics and it should, perhaps, come as no surprise
that the force of an apparent underdetermination weakens once one broadens the
theoretical context. But note, it would be a mistake to view the move to quantum
field-theory as truly resolving the underdetermination since in the field-theoretic
context we do not, strictly speaking, have objects at all but only field excitations. It
is rather a case of a particular underdetermination which exists in one theoretical
context, not featuring in another, and this should not be unexpected. Nevertheless,
new forms of underdetermination might arise in these new contexts and indeed,
in the field-theoretic context, Redhead has located the structuralist stance as laying
between the two questions ‘what is a field?’ and ‘what are the equations which govern
its behaviour?’ (Redhead 1995: 18). The standard answers to the first—that a field
is some kind of substance or merely a set of properties instantiated at spacetime

³⁷ For discussion of this line of argument, see French and Krause (2006).
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points or regions—are not exhausted by the answer to the second. Harking back
to the history again, Cassirer, for example, rejected the substantival account for
philosophical reasons and insisted that a field is not a ‘thing’ but rather a ‘system of
effects’ (1937: 178). Those who prefer their structuralism less in thrall to an already
given philosophical position might want to articulate another form of metaphysical
underdetermination—this time between fields as substances and fields as instantiated
properties. Even if one were to follow Cassirer and choose the latter horn of the
underdetermination, this would still leave the nature of spacetime as a potentially
non-structural element of one’s ontology.

Whether similar motivations can be articulated in the context of the foundations
of spacetime theory is a further, interesting question. Certainly it is debatable whether
the traditional dichotomy between substantival and relationalist views of spacetime
can be understood as a form of metaphysical underdetermination in the above sense
(Pooley, this volume, argues not). Recent interest in ‘spacetime structuralism’ has been
motivated, in large measure, by the hole argument, which, as we have seen, presents an
apparent dilemma of either giving up manifold substantivalism or accepting a form of
indeterminism. In an attempt to avoid having to succumb to a relationalist position,
various structuralist alternatives have been articulated—though, as we mentioned
previously, these positions often parade under a label other than structuralism (Dorato
2000 is an exception). Still, concerns over the individuation of spacetime points may
still drive one to a form of spacetime structuralism (see, for example, Stein 1967).
We recall Eddington’s understanding of space as ‘not a lot of points close together;
it is a lot of distances interlocked’ (1923: 10) and more recently, Dorato has asserted
that ‘To say that spacetime exists just means that the physical world exemplifies,
or instantiates, a web of spatiotemporal relations that are described mathematically’
(2000: 7).

This suggests that spacetime has an objective existence that is not grounded in
some form of substantivalism, but then Dorato appears to agree with Cao (1997) that
the existence of spatio-temporal relations must be underpinned by the existence of
the gravitational field, understood as a ‘concrete’ and hence, presumably, substantive,
entity. As far as Cao is concerned a field is a ‘hypothetical entity’, employed as the
basis for generating the field equations which describe the structural aspects of these
entities and from which particles emerge as ‘observable manifestations’ (2003). But
this just pushes the question back: what is this hypothetical entity, metaphysically
speaking? The structuralist’s answer is that the field is just the structure, the whole
structure, and nothing but the structure (French and Ladyman 2003).

1.2.4 Structural Realism

Interest in the structuralist programme has recently been reawakened in the context of
the realism–antirealism debate in the philosophy of science. Psillos’s characterization
of different forms of structuralism in terms of the ‘upwards’ and ‘downwards’
epistemic paths represents a useful way of framing the recent discussions in a way
which connects current positions to their predecessors (2001). Broadly speaking,
when we follow the ‘upwards’ path we begin with supposedly secure knowledge
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and then infer what we can know on that basis. Thus Russell, for example, began
with ‘percepts’, which represent our experiences and which we know via direct
acquaintance, and then used his causal theory of perception to infer that all that we
can know of the external world on that basis is its structure (Russell 1927). Thus he
writes,

When we are dealing with inferred entities, as to which we know nothing beyond structure,
we may be said to know the equations, but not what they mean: so long as they lead to the
same results as regards percepts, all interpretations are equally legitimate. (p. 287)

Now this view famously came under attack from the mathematician Newman
(1928), who argued that if we know only the structure of the world, then we
actually know very little indeed. The argument is apparently straightforward: given
any ‘aggregate’ of relata A, a system of relations can be found having any assigned
structure compatible with the cardinality of A; hence, the statement ‘there exists
a system of relations, defined over A, which has the assigned structure’ yields
information only about the cardinality of A. In other words, to say we know the
structure of the world is to say nothing more than that we know the cardinality of the
world. Russell himself appears to have been convinced by Newman’s conclusion and
in the context of our history above, it is worth noting that Braithwaite also deployed
it against Eddington (Braithwaite 1940), writing that

his [Newman’s] strictures are applicable to Eddington’s group-structure. If Newman’s con-
clusive criticism had received proper attention from philosophers, less nonsense would have
been written during the last twelve years on the epistemological virtue of pure structure.
(Braithwaite 1940: 463)

Unlike Russell, however, Eddington was less impressed, arguing that Newman’s
conclusion depends on a mathematical distinction between elements of a set and the
relevant relations, but that from the group-theoretical perspective on which his form
of structuralism is founded, no such distinction is possible: ‘The element is what it is
because of its relation to the group structure’ (Eddington 1941: 269; his emphasis).
In particular, he contrasts Russell’s ‘vague’ conception of structure as a pattern of
entities—or, perhaps, a pattern of relations—with his group-theoretic understanding
of structure as a pattern of ‘interweaving’, or a ‘pattern of interrelatedness of relations’.
As an example, he presents the algebra of operators representing rotations acting on
elements, for which the ‘pattern of interrelatedness’ is manifested in the associated
multiplication table and, he insists, the information encoded in such a table is by
no means trivial in the way Newman indicated (for further discussion, see French
2003).

Nevertheless, the Newman argument continues to be presented by critics of
structuralism,³⁸ possibly because these critics see structuralism as following the
‘upwards’ path in general and as beholden to Russell in particular. However, Russell’s
account emerged at a specific time, historically (1926–7) and although it contains

³⁸ See, for example, Demopoulos and Friedman (1995); Psillos (1999); Ketland (2004); for a
response, see Melia and Saatsi (forthcoming).
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a good representation of the then current understanding of spacetime theory, the
implications of the new quantum mechanics were only dimly appreciated. Indeed,
given Cassirer’s and Eddington’s concern to develop a form of structuralism that could
accommodate these implications, one might suggest that it is to these authors, rather
than Russell (and Newman) that both structuralists and their critics should look.

In its modern form, a structuralist accommodation of modern physics can be
characterized in terms of what Psillos calls the ‘downward path’. Here one begins
with the full, theoretical edifice, as it were, and then undertakes a strategic, epistemic
retreat according to what one learns from reflection on both the progress of science
and its metaphysical implications (or lack thereof). Thus Worrall has famously
presented a form of structuralism as a response to Laudan’s ‘Pessimistic Meta-
Induction’ (Worrall 1996). Put rather crudely this asserts that the history of science
is, to a significant extent, a history of changing ontologies—as one moves from
the particle theory of light to the wave theory to Maxwell’s theory and so on, to
take one example—and given this, one has good reason not to be a realist with
regard to the ontology of our current best theories. Worrall’s response, again put
rather simply, is to note that the same history suggests that important structural
elements of theories are preserved through these changes. By ‘ontology’ here is meant
the theoretical representation of scientific entities, such as light, electrons, etc. The
relevant structures, on the other hand, are represented for Worrall by the appropriate
mathematical equations—Snell’s Laws are incorporated into Maxwell’s Equations
and so on. Thus, whereas the ontological component of a theory may be subjected to
a pessimistic meta-induction, as far as the structural component is concerned things
look quite optimistic.

This gives rise to a form of ‘Structural Realism’ (SR) which holds that one can,
and should, adopt a realist attitude towards the well-confirmed structural aspects of
theories (see also Redhead 1995). As Ladyman has pointed out (1998), this should
be regarded as an epistemic form of SR since it holds that all that we know are the
structures, while the objects themselves remain epistemologically inaccessible. Again
there is a historical aspect to these developments, since in defending this position
Worrall draws on those famous passages from Science and Hypothesis where Poincaré
writes that theoretical terms ‘are merely names of the images we substituted for the
real objects which Nature will hide forever from our eyes. The true relations between
these real objects are the only reality we can ever obtain’ (1905: 162).³⁹

Setting aside these historical issues again, Worrall noted that this form of struc-
turalism might be capable of accommodating quantum physics, although he did not
develop this aspect of his account. However, in retaining the idea of epistemologically
inaccessible objects, hidden behind the structures as it were, Worrall appears to run
up against the very implications that Cassirer and Eddington took to underpin their

³⁹ Elsewhere Poincaré presents group theory as the most appropriate representation of these ‘true
relations’ and displays certain Kantian inclinations which hardly commend him to the realist. Such
inclinations appear again and again through the history of structuralism and the issue arises as to
whether, in drawing on this history for her understanding of ‘structure’, the structural realist can
neatly peel them off from the rest of structuralist programme.
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forms of structuralism, namely that quantum particles are not individuals in some
sense. Here, in the context of defending realism, the above underdetermination
between objects-as-individuals and objects-as-non-individuals has a particular bite:
van Fraassen has argued that realism should be understood as requiring a commit-
ment to a metaphysical interpretation, at this most basic level (van Fraassen 1991).
However, this underdetermination indicates that no such interpretation can be given
founded on the physics itself. The realist is thus faced with a problem.

Ladyman’s ‘ontic’ form of SR (Ladyman 1998) can be seen as responding to
this concern (as well as to the pessimistic meta-induction) by effectively eliminating
the objects completely, leaving only the structures. Again, put simply, the idea is
that it is not just that all that we know are the structures but that all that there
is are the structures. It is important to emphasize (because some critics appear
incapable of grasping this) that although Ladyman’s view bears some resemblance to
earlier forms of structuralism—in taking the ontology of the world to be structural
most crucially—the underlying argument is quite different (it is not that quantum
mechanics implies that quantum objects are in some sense non-individuals but that
on the basis of the physics alone we cannot say whether the particles are individuals
or not and hence if we want a realism compatible with our current best theories,
we had better adopt a different ontology). The elaboration and development of this
position has raised a number of interesting issues, to do with the representation and
metaphysics of structure, the conceivability of structures without any underlying
objects, the identity conditions for such structures, and so on, some of which, at
least, have been addressed elsewhere (Ladyman 1998; French 2001; French and
Ladyman 2003). It is important to realize that in eliminating objects from the
realist’s ontology, the structuralist is not advocating the view that physicists cannot
talk, whether theoretically or informally or whatever, of ‘electrons’, ‘quarks’, etc.,
but rather is insisting that from a metaphysical perspective these entities must be
reconceptualized in structural terms. Furthermore, this form of ‘ontic structuralism’
can be extended to quantum field theory along the lines already sketched above
(French and Ladyman 2003).

Of course we are not suggesting that to understand the foundations of quantum
gravity one must be a structural realist. One could be a structural empiricist and
adopt van Fraassen’s modal stance towards interpretations of theory and insist that
what these interpretations tell us is how the world could be (see Bueno 2000, for steps
leading in this direction). In the case of structuralism, what we are asserting, according
to this empiricist stance, is that the world could be, metaphysically, structural. In
either case—that of the structural realist or that of the empiricist—what is important
for our purposes is that we are provided with the resources for giving an ontological
account of the foundations of quantum gravity. These resources will include the
representational, whether they be group theoretic, as Eddington advocated, or
category theoretic, as Baez and others have suggested, and the metaphysical, as in the
claim, defended, again, by Eddington and, more recently, Rickles, that relations and
the objects which act as their relata come together in a structuralist package, as it
were; or the view, proposed, in various forms, by Saunders, Stachel, and others, that
it is relations ‘all the way down’, even to the level of the individuality of the objects,
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so the latter emerge as mere ‘nodes’ in the structure, or intersections of relations,
as Cassirer thought. And of course there is still a great deal of work to be done in
articulating those resources fully and properly and there are a number of criticisms
that must be faced (see, most notably, Chakravartty 1998 and Psillos, forthcoming)
but we hope, at the very least, that the essays contained in this collection will lead to
a greater appreciation of both the virtues of this approach and the obstacles still to be
overcome.
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Károlyházy, F., A. Frenkel, and B. Lukács (1986) ‘‘Gravity and State Vector Reduction’’. In
R. Penrose and C. J. Isham (eds.), Quantum Concepts in Space and Time. Oxford: Clarendon
Press (pp. 109–28).

Ketland, J. (2004) ‘‘Empirical Adequacy and Ramsification’’. British Journal for the Philosophy
of Science, 55(2): 287–300.

Kiefer, C. (2004) Quantum Gravity. Oxford: Clarendon Press.
Kilmister, C. (1994) Eddington’s Search for a Fundamental Theory. Cambridge: Cambridge

University Press.
Komar, A. (1955) ‘‘Degenerate Scalar Invariants and the Groups of Motion of a Riemann

Space’’. Proceedings of the National Academy of Science, 41: 758–62.
Krause, D. (1992) ‘‘On a Quasi-set Theory’’. Notre Dame Journal of Formal Logic, 33: 402–11.
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Pittsburgh: University of Pittsburgh Press/Konstanz: Universitaetsverlag Konstanz.

Stein, H. (1967) ‘‘Newtonian Space-Time’’. The Texas Quarterly, 10: 174–200. Reprinted
in R. Palter (ed.), The Annus Mirabilis of Sir Isaac Newton. Cambridge, Mass: MIT Press,
1970 (pp. 258–84).

Thiemann, T. (2001) ‘‘Introduction to Modern Canonical Quantum General Relativity’’.
ArXiv:gr-qc/0110034.

(2003) ‘‘Lectures on Loop Quantum Gravity’’. In D. Giulini, C. Kiefer, and
C. Lämmerzahl (eds.), Quantum Gravity: From Theory to Experimental Search. Berlin:
Springer-Verlag (pp. 41–135).

Van Fraassen, B. (1991) Quantum Mechanics: An Empiricist View. Oxford: Oxford University
Press.

Wald, R. (1984) General Relativity. Chicago: University of Chicago Press.
(1994) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics.

Chicago: University of Chicago Press.
Weinberg, S. (1979) ‘‘Phenomenological Lagrangians’’. Physica, A 96: 327.

(1995) The Quantum Theory of Fields, I: Foundations. Cambridge: Cambridge University
Press.

Weingard, R. (1988) ‘‘A Philosopher Looks at String Theory’’. Proceedings of the Philosophy of
Science Association 1988, 2: 95–106.

Worrall, J. (1996) ‘‘Structural Realism: The Best of Both Worlds?’’ Dialectica, 43 (1989),
99–124. Reprinted in D. Papineau (ed.), The Philosophy of Science. Oxford: Oxford
University Press (pp. 139–65).

Wüttrich, C. (2004) ‘‘To Quantize or Not to Quantize? Fact and Folklore in Quantum
Gravity’’. Forthcoming in Philosophy of Science.

Zweibach, B. (2004) A First Course in String Theory. Cambridge: Cambridge University Press.



2
Structural Realism and Quantum Gravity

Tian Yu Cao

Technically, it is very difficult to construct a tenable quantum theory of gravity. As
a philosopher, however, my major concern is with having a consistent strategy to
guide technical moves. If we look at quantum gravity this way, we immediately face
a question of theoretical constraints imposed by general relativity and quantum field
theory, which are the two most successful theories in fundamental physics: one deals
with gravity in a classical field-theoretical framework, the other deals with quantum
fields. Since quantum gravity means a quantum theory of the gravitational field,¹
what should we do so that we can secure a chance of success if we cannot meet these
constraints in their original forms, and thus have to go beyond the two theories?

As I have argued elsewhere (Cao 1999, 2001), the trouble is that it is impossible
to meet the constraints imposed by these two theories in a single theory without
radically revising each of them. Briefly, quantum field theory requires a Minkowskian
spacetime as a fixed background,² which is rejected by general relativity; and the latter
requires a continuous manifold that cannot stand violent quantum fluctuations.³

¹ Some might argue that many implementations of quantum gravity are not quantization of
the gravitational field (string theory being the most obvious, of course). But, in terms of the
conceptual framework, string theory is only a variation of quantum field theory. For more on
this see (Cao 1999); string theorist Joseph Polchinski has also agreed with this judgement (private
communication).

² A Minkowskian background is sufficient for formulating quantum field theory. But it is not
necessary. The Equivalence Principle allows one to extend quantum field theory to non-dynamical
curved background manifolds. The extension is unambiguous for the Dirac action and for spin-one
gauge actions, and for scalars becomes unambiguous when one specifies that massless scalar field
theories should be conformal invariant. In cases where gravity is important (but geometries are still
static) while quantum gravity is not, such as Hawking radiation (as a limiting case where the initial
and final geometries are static [a star before gravitational collapse or a black hole after], concrete
results can be obtained, although in general non-static cases nothing is unproblematic). For initial
ideas about quantum field theory in curved spacetime, see Isham et al. (1975) and Hawking and
Israel (1979); for more recent developments, see Wald (1994) and Kay (1996); for the breakthrough
in formulating a spectral condition in a curved background manifold where there is no Poincaré
symmetry, see Brunetti et al. (1996). I am grateful to Stephen Adler for suggesting a more precise
description of the role played by the Minkowskian background in formulating quantum field theory,
and for his giving me the references to the extensions that have been achieved since the mid-1970s
(see Cao 2001). I am also grateful to Dean Rickles (private communication) for reminding me of
this subtle point.

³ In the substantivalist view of spacetime, the substantival manifold itself would be subject to
quantum fluctuations, as John Wheeler once argued (1973). In the relationalist view of spacetime,
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What is the way out? Before any attempt is made to address this crucial issue,
we have to take a closer look at the notions of physical reality offered by general
relativity and quantum field theory respectively. This question is interesting in its
own right, in addition to its relevance for our construction of a tenable quantum
theory of gravity, because confusions in this regard have to be cleared before we can
have a correct understanding of general relativity and quantum field theory. Forget
quantum gravity for a moment.

The claim I wish to make in this article is that structural realism is a framework in
which the aforementioned confusions can be cleared and constraints met satisfactorily,
and thus a strategy in guiding technical moves for constructing a consistent quantum
theory of gravity can be suggested. But what is structural realism in the first place?

2.1 STRUCTURAL REALISM

There are various versions of structural realism these days.⁴ The basic ideas of my
own version that are most pertinent to the arguments in this chapter can be briefly
summarized as follows.

1. The physical world consists of entities that are all structured and/or involved in
larger structures.⁵

2. There are two types of structures. A structure of first type, call it componential
structure, is formed by elements through a structuring agency, and thus the
elements enjoy ontological priority over the structure as a whole. In contrast,
a structure of second type, call it holistic structure, enjoys ontological priority
over its elements, meaning that the elements, either as unstructured raw stuff or
as place-holders, derive their individuality from the places they occupy and the
functions they play in the structure.⁶

3. The difference in the ontological status of structures (versus that of their elements)
in the two types has its root in different allocation of causal power. In the first

the relevant fluctuations refer to the fluctuations of physical properties of the gravitational field that
is constitutive of the spacetime structures.

⁴ Cao (1985, 1997, 2003a, 2003b); Chakravartty (1998); Ladyman (1998) and references
therein; French and Ladyman (2003).

⁵ John Stachel (2002) also holds this view.
⁶ An example of the first type is the atomic structure of hydrogen. It is the electron’s negative

electric charge and the proton’s positive electric charge that make the formation of a hydrogen atom
possible through their electromagnetic interactions; while the hydrogen atom has no causal power
over the existence and identity of the electron and proton. This kind of ontological priority of
elements over the structure of which they are components is reflected in the fact that the existence
of electrons and protons does not depend on the existence of the hydrogen atom, while the latter
clearly depends on the former (see Strawson 1959). Among the examples of the second type stand
prominently fields and spacetime structures. A field is a structure with an infinite number of
components (its values at spacetime points). Although its components are individually detectable
through the probing of test bodies put at proper locations, none of them, as manifestations of the
field in its interaction with the test body at the location the component sits, has self-subsistent
existence aside from being a place-holder in the field configuration. More discussions on spacetime
structures will be given in §2.2.
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type, it is the causally effective properties of elements that make it possible for a
structure to be formed through the causal interactions of elements (the structuring
of elements). In the second type, the elements are causally idle with regard to the
structure of which they are components; what is causally effective is the structure,
which is thus constitutive of the individuality of its components.

The most important implication of point (1) is that entities of any kind can be
approached through their internal and external structural properties and relations
that are epistemically accessible to us. In fact, our conception of the reality of any
unobservable entity can only be constructed through such a structural approach.

In the process of construction, the structural knowledge just mentioned can be
divided into two categories: mathematical and physical statements. A mathematical
structure (e.g. connection) involved in mathematical statements (e.g. those in general
relativity) may represent a physical structure (e.g. an inertio-gravitational field) which
itself is also a physical entity. But this is not generally true. In most cases, what a
mathematical structure represents is a relationship between physical entities (e.g. a
field equation involving a coupling term between two fields), or the relational aspect
of a physical entity (e.g. a metric representing the relational aspects of the connection
through the compatibility conditions),⁷ or even a general cognitive structure (e.g. a
manifold representing the epistemic necessity for having a parameter spacetime to
start with).⁸ More on the latter two points in §2.2.

A physical structure involved in physical statements may be substantial, meaning it
has energy and momentum,⁹ and thus be a physical entity itself; or merely relational,
such as the spacetime structure, which itself cannot be regarded as a physical entity. A
substantial structure can be componential or holistic, but a purely relational structure
can only be holistic. It is worth stressing that in line with point (1), any purely
relational structure must be ontologically supported or constituted by substantial
physical structures, and thus be a representation of the relational aspect of the
latter. In my view, no free floating purely relational structure can exist without any
ontological underpinning.

It should be stressed that the meaning of ontological priority is different in the
two types of structures. In a componential structure, the ontological priority of
elements over the structure formed by the elements means that the structure derives

⁷ These relational aspects may (as in the case of metric) or may not (as in the case of automorphism
group) form a relational physical structure. See the next paragraph.

⁸ Cao (2001, 2003c); Ashtekar said: ‘I fully agree with your view on unstructured background.
In fact in the late eighties, I had a discussion with Julian Barbour in Syracuse where I was trying
to make the same points to him but in more technical terms. Classically, he wanted to say that [in
writing] the constraint equations in the Hamiltonian formulation … points of manifolds have no
reality at all. But I pointed out to him that one can not even write the constraint equations if one
does not have a manifold as such without identification between points. The analogy you make
with quanta to drive home the idea that there is a distinction between ‘‘lack of identity’’ and ‘‘lack
of reality’’ is very nice’ (2003). Since ‘a general cognitive structure’ can only be defined historically,
the notion Ashtekar used, ‘a manifold as such’ is somewhat too strong a notion.

⁹ It is not easy to directly define the energy and momentum possessed by a gravitational field,
although the field is not unrelated to energy and momentum. For this reason, perhaps a new
criterion for being substantial that is wider than having energy and momentum is needed.
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its very existence from the existence of its elements. In a holistic structure, however,
the ontological priority of a structure over its components only means that it is the
individuality of the components that is constituted by the structure, not that their
existence is derived from the structure of which they are components. Ontologically,
in any structure of the second type, the components are always embedded in the
structure and thus being individuated, their existence or reality and their individuality
cannot be separated. The abstract way of talking about unstructured stuff and place-
holders, or about something that exists but lacks individuality, makes sense only
in the realm of epistemology,¹⁰ when we try to approach the individuality (and
thus the full reality) of components in a holistic structure through its constituting
agent, the structure itself or the structural features of the components dictated by the
structure. It should be clear now that structural realism in ontology has underlain
and justified constructive realism in epistemology,¹¹ and thus is directly relevant to
the construction of a tenable theory of quantum gravity, as we will see in §2.3.

2.2 PHYSICAL REALITY OF SPACETIME
AND QUANTUM FIELDS

The current accepted interpretation of general relativity is that its chrono-geometric
structures describe phenomenal spatio-temporal relations in the physical world. The
phenomenological reality of spacetime, however, should not be misconceived as a
substantival reality because it has no existence of its own, but only expresses the
spatio-temporal relations among physical entities.

The foundation of this relationalist interpretation of spacetime is the so-called
hole argument (Stachel 1980, 1986). The upshot of the argument is this. In a
generally covariant theory such as general relativity, homogeneous indistinguishable
points of the manifold on which the dynamic equations are defined have no physical
reality because they have no individuality, otherwise the causality principle would
be compromised. Only when a manifold is equipped with a metric, a solution to
the dynamic equation, and its points are enmeshed into the metric structure and
thus function as place-holders, can the manifold be used to define spatio-temporal
relations. But even in this case, the absolute positions in spacetime, due to the lack

¹⁰ What about field quanta? In my understanding of quantum field theory, field quanta, as
registers of a field’s interactions with other entities, do not exist prior to the interactions, and once
a field quantum is registered in an interaction, it has already externally acquired its individuality
through the interaction. This remark, concerning only the individuality of a structure’s components,
is not meant to be a general claim that there is no physical entity without individuality. Quantum
particles in non-relativistic quantum mechanics seem to offer a ready counter-example. But it is not
clear to me the extent to which these quantum particles can be viewed as particles existing in their
own right, or otherwise only as a special case of being field quanta. More thorough investigations
have to be done before any general claim can be made.

¹¹ According to constructive realism, reality is structurally constructed step by step. It should be
stressed that the process of construction is only an epistemic process, not a Platonist ontic process
of imposing structures ‘upon an otherwise unstructured reality (formless and passive matter) from
without’, which was rightly rejected by John Stachel (2002).
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of reality of the manifold points, remain undefinable. Thus, the absolute view of
spacetime, in the sense that there is a preferred reference frame, is replaced by a
relative view that no such frame can be found or defined. Furthermore, since the
metric, with which the defining of spatio-temporal relations becomes possible, is
dynamical, the fixed view of spacetime is replaced by a dynamical view. Taking
spacetime as something substantival is thus regarded by some philosophers (see
e.g. Dorato 2000) as having mistakenly reified the relational structure of spacetime
(which is represented by the mathematical structure of a manifold equipped with
metrics) and taken it as a structure possessing its own existence and causal power.
Since the ontologically independent existence of the manifold points (interpreted as
spacetime points) is definitely rejected by the hole argument, the substantivalist view
seems to be definitely replaced by the relationalist view. It seems that the negative
side of the argument is convincing. But what about its positive side?

Unfortunately, in its positive side, the relationalist view is deeply flawed. The
old version of Machian type, according to which the spatio-temporal relations
are determined by material bodies, is untenable simply because of the existence of
vacuum solutions. The newer Grünbaumian version (see Grünbaum 1977) according
to which these relations are constituted by rods and clocks, is also untenable because
this external view is in contradiction with (i) the intrinsic view initiated by Gauss
and Riemann, (ii) Einstein’s view that they are constituted by the gravitational field,
and (iii) Einstein’s view that the separation of rods and clocks from all other physical
entities is inconsistent.¹²

The combination of the prevailing relationalist rhetoric and the lack of con-
crete relationalist understanding of spacetime results in a strange phenomenon.
Many self-claimed relationalists appear to substitute dynamical talk for relation-
alist talk, in particular in the context of dealing with pure gravity without any
other physical entities being involved. Rather than directly arguing in support of
relationalism, proponents defend a dynamical understanding and then claim that
since no non-dynamical fixed background spacetime is acceptable, spacetime is
purely relational. Of course, dynamical spacetime can still be a substantivalist one
if it can exist in its own right, such as the case in Wheeler’s geometrodynamics
(1962).¹³

A proper understanding of spacetime, which would preserve all the merits of the
relationalist view without its flaws, is a structural-constitutive-constructive (SCC)
one. The major ideas of the SCC view can be briefly summarized as follows.

1. It shares the relationalist view that the manifold points or manifold itself
have no direct spatio-temporal meaning, and that the phenomenological reality of
spacetime is constituted by the metric or Riemann tensor, which endow the points
with individuality either through imposing non-reflexive metrical relationships
upon manifold points (see Saunders 2003), or characterizing the points with

¹² For more details, cf. §5.1 of Cao (1997).
¹³ See also Stein (1967), in which Howard Stein explicitly argues against the view that ‘dynamical’

means ‘relational’. I am grateful to Dean Rickles for bringing this reference to my attention.
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four or more invariants of the Riemann tensor.¹⁴ For this reason, the points
of the manifold or the manifold itself enjoy no ontological priority over the
chrono-geometrical structures.
However, different from the relationalist view, the SCC view maintains that a
minimally structured manifold (with only a global topological structure) is real
and is the starting point for our further construction of the reality of spacetime
for two reasons. First, without initially assuming the existence of the manifold as
a parameter spacetime, no further investigations of spacetime structures would be
possible.¹⁵ Here the Kantian argument for the epistemic necessity of spacetime
looms large. Second, the very dimensionality of the manifold represents the
most general feature of spacetime. But the acknowledgement of the primitive
(in the epistemically constructive sense) reality of such a minimally structured
manifold should not be taken as an attempt to revive the substantivalist view,
because here the spacetime is not to be taken as the totality of (ontologically
basic) events represented by the manifold points; rather, the events or points are
deeply structural in the sense that their individuality is constituted by complicated
structures (or themselves are characterized by structural features dictated by the
larger structure in which they are embedded).

2. It shares the relationalist view that spacetime is not fixed but dynamical, not
substantival but relational. However, it maintains that mere dynamicity is not
enough to reject the substantivalism, thus more convincing arguments are
needed. Furthermore, the roots of dynamic interactions lie in the causal power
of physical properties possessed by substantial physical entities. Thus being
dynamical presumes being substantial. But the chrono-geometrical structures that
constitute the individuality of manifold points are not substantial but purely
relational. So substantial entities have to be found that are supposed to be
constitutive of the chrono-geometrical structures. A solution suggested by the
SCC view to this dual task is this. The gravitational field, as a substantial physical
entity represented by the connection field, is the required dynamical entity, whose
relational aspects are represented by the metric tensor field, which represents the
chrono-geometrical structure, through the compatibility condition.¹⁶ Therefore,
although the spatio-temporal relations are constituted by the chromo-geometrical
structure (the metric), the latter itself is constituted, or ontologically supported, by
the inertio-gravitational field (the connection). Once the relationship between the

¹⁴ This is associated with Bergmann (1957) and Komar (1958), see also Stachel (1993). I am
grateful to John Stachel and Dean Rickles for bringing these references to my attention.

¹⁵ More arguments in this regard can be found in Cao (2001).
¹⁶ In the geodesic equation, if we take the components of the connection with respect to any basis

as being numerically equal to the Christoffel symbols of a metric tensor, then the metric tensor thus
obtained is compatible to the connection. Observationally, this means that particles’ trajectories,
as the result of their interactions with the gravitational field represented by the connection, are
geodesics with respect to the metric that is compatible with the connection, or only the metric
that is compatible with the connection can describe the observable spatio-temporal behaviour of
physical entities, and thus the claim that a compatible metric represents the relational aspect of the
connection is justified.
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metric and the connection is thus clarified, the mystery about the dynamicity of the
metric (as a purely relational structure) is dispelled: it is only an epiphenomenon
of the dynamical behaviour of the connection, a substantial physical structure
or entity.

3. It takes the metric and connection as holistic structures that enjoy ontological
priority over their components. For the metric, manifold points are only place-
holders for the spatio-temporal relations it stipulates; for the connection field, it
is both a holistic structure, stipulating the possible behaviours of test bodies if
they are put somewhere in the field and interacting with parts of the field (as
place-holders) there, and a substantial entity.

4. For the reasons spelled out above, the SCC view takes the ultimate reality of
spacetime as being field-theoretical in nature. That is, the spatio-temporal aspects
of the world are constituted, characterized, and explained completely in terms of
the gravitational field (connection). First, the manifold continuum is constituted
and characterized by an infinite number of degrees of freedom of the field in a
continuous way. Second, it is the relational aspect of the field, stemming from
its universal coupling with all other physical entities,¹⁷ represented by the metric
that stipulates the spatio-temporal structure of the world. This field-theoretical
framework has provided a firm foundation for the construction of a tenable theory
of quantum gravity that is compatible with the general theory of relativity.

The understanding of the physical reality of quantum fields, as it is constructed in
existing quantum field theories, in my view, can be summarized as follows.

1. A quantum field is a dynamical global substratum that is ever fluctuating,¹⁸ locally
excitable,¹⁹ and quantum in nature.²⁰

2. The substratum, however, is itself defined over (or ontologically supported by)
a pre-existing background spacetime, namely, a four-dimensional Minkowskian
manifold with a fixed, classical chrono-geometrical structure.²¹

3. This global but structured background spacetime underlies (i) a global vacuum
state of the field; (ii) an infinite number of degrees of freedom of the field, indexed

¹⁷ Generally, the relational aspect of a field as a holistic structure is manifested in its interactions
with test bodies that are placed in different locations in the field configuration. In the case of
gravitational field, its interactions are characterized by its universal coupling, including its couplings
with rods and clocks, which specify the behaviour of rods and clocks and thus give metric meaning
to the relational aspect of the gravitational field.

¹⁸ The intrinsic and primitive quantum fluctuations of a field’s physical properties over a
spacetime region is the ontological basis for the coupling of physics at different scales, which in turn
is a conceptual basis for renormalization group organization of physics.

¹⁹ A field can be locally excited by its intrinsic fluctuations or by external disturbances.
²⁰ It means that the local excitations of a field obey quantum principles, such as canonical

commutation or anti-commutation relations and uncertainty relations (which is defined in terms of
the variations of measurable properties over a spacetime region.

²¹ ‘Classical’ here means that the structure cannot be treated in a quantum mechanical way.
Otherwise, the whole theoretical structure of quantum field theory would collapse. For more on
this see Cao (1999).
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by the spacetime points; (iii) the localizability of each and every degree of freedom
of the field; (iv) the causal (light-cone) structure and the quantum structures
(commutation or anti-commutation relations). Note that the uncertainty principle
and its metaphysical presupposition (and/or implication), namely the fluctuations
of physical properties definable in a spacetime region, are anchored in such a
fixed background spacetime. Without such a background, these notions would
not even be definable.

2.3 QUANTUM GRAVITY

The above discussions have direct bearings on the construction of consistent quantum
theories of gravity, in terms of fundamental ontological commitment as well as overall
theoretical structure. Ontologically, the first step in the construction, as in the con-
struction of any other fundamental physical theory, is to determine or find out what
should be taken as the fundamental degrees of freedom that should be investigated
quantum mechanically. In terms of overall theoretical structure, two questions have
to be properly addressed. First, the question concerning the reconstruction of the
classical limit, namely, the classical theory of general relativity should be derivable
from the quantum theory of gravity. Second, the complicated relationship among
kinematical structures, dynamical structures, and causal structures has to be clarified.

If we take the above discussions about physical reality seriously, then we have
to take some substantial dynamical physical entities or their components to be the
fundamental degrees of freedom and investigate their quantum behaviour. Classically,
the relevant physical entity here is the connection. Thus if we can actively quantize
it, we will have a desirable classical limit. This observation has provided strong
motivation for taking connections as a starting point for constructing a quantum
theory of gravity (Ashtekar 1986).

But there are some subtle problems, and thus the works by Ashtekar and his
colleagues (the loop quantum gravity school²²) may have to be interpreted in a
different way. The relationship between quantum entities and classical entities is
very complicated, more complicated than the notion of active quantization can
conceptualize. For example, fermion fields have no classical limit, and gravitational
fields cannot be quantized in the conventional way because the resultant theory gives
only meaningless results. A crucial point here is that the entities in the quantum
sector and the entities in the classical sector may not be the same entities only
behaving differently on different energy scales.

If we take this point seriously, we have to give up the attempt of actively quantizing
some classical degrees of freedom when it is not appropriate, for example, in the
case of gravity. In its stead, a proper position to take is the quantum realist position,
which is complemented by an emergentist understanding of the classical limit. More
specifically, this position suggests that we should first take some fundamental degrees

²² See for example, Smolin (2003), Rovelli (2004), and Perez (2003) and numerous references
therein.
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of freedom, which need not have a direct link to any classical entities, and investigate
them quantum mechanically. Only when the theoretical structure of the quantum
sector has been constructed in a consistent way should efforts be made to re-
establish its links with classical phenomena by reconstructing some classical entities.
These reconstructed classical entities may have totally different characteristics from
their quantum counterparts, and thus should be legitimately regarded as something
emergent when we move from one energy regime to another, similar to the emergence
of ice from water in the phase transition.

If we construct a quantum theory of gravity in such a quantum-realist way, the
constraint of quantum theory on the construction (violent quantum fluctuations
that undermine the manifold’s smooth topology which is the foundation of classical
general relativity), that had seriously worried Wheeler (1973), may not even be
relevant here.

It is irrelevant because the manifold involved in the construction of a quantum
theory is not spacetime itself (which, as a phenomenal structure constituted by
classical gravitational field, can only be classical), but a parameter spacetime, whose
only function is to pin down the most general features of a theoretical structure,
the individuality of which is constituted by the quantum gravitational field and the
classical limit of which would be spacetime. Most important among these general
features is the dimensionality, which can endure quantum fluctuations without itself
undergoing any change. Whatever the characteristic features, resulting from quantum
fluctuations, of differential and other topological structures a manifold possesses,
they are constituted by the structure, behaviour pattern, and other relational aspects
of the quantum gravitational field, or as the expression of the latter, and have no
direct bearings on the classical, observable spacetime structures.

The same reasoning can be applied to the so-called problem of time in canonical
formulations of quantum gravity. Many physicists and philosophers working on
quantum gravity have tried hard to understand the ‘deep’ and ‘mysterious’ implic-
ations of the time problem. However, if we interpret the canonical formulations in
a quantum realistic way, if we at the same time take an SCC interpretation of the
general relativity, namely, that spacetime is constituted by the classical gravitational
field, then we would realize that in the quantum realm, there is no spacetime,
and thus no time at all. According to the emergentist view mentioned above that
complements the quantum realist view, we do not have to have time at the quantum
level to get a classical time. Time may emerge from some quantum structures that
are not based on any temporal structures.

In terms of ontological commitment and quantum realism discussed above,
the evolution of the loop quantum gravity school is very instructive. In fact, the
transitions from taking connections as the fundamental degrees of freedom, to taking
spin networks (as functions of connections and as a convenient basis in the Hilbert
space of square-integrable functions of connections)²³ and then diffeomorphism

²³ A spin network is a labelled graph, whose edges and vertices are labelled by some spin variables,
that is embedded into a non-dynamic four-dimensional differentiable manifold. For details, see
Perez (2003).
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equivalent classes of spin networks as the fundamental units for analysis, have
revealed a trajectory of gradually moving away from something directly suggested
by a classical entity to something intrinsically quantum in nature. That is, it is
an evolution from a pursuit of active quantization to a quantum realist pursuit.
But this recognition should not blind us from seeing the importance of the original
commitment to the connections: all the subsequent transformed fundamental degrees
of freedom, because of their links to the original ones, are physically real degrees
of freedom rather than purely relational ones, and thus the links have provided the
successive theoretical constructions with a firm ontological foundation.

In terms of overall theoretical structure in the construction of consistent quantum
theories of gravity, the direct bearings of the positions presented in this article can
also be illuminated by the developments in loop quantum gravity. Let me start with
a discussion on the relationship between dynamical structures, causal structures, and
kinematical structures, which is closely related with the theoretical constraint posed
by general relativity upon any quantum theory.

As we have noticed above (the end of §2.2), a quantum theory requires a
background spacetime, a Minkowskian spacetime with a fixed classical chrono-
geometrical structure. However, by a closer examination, we find that the necessity
for having a fixed Minkowskian spacetime structure lies, mainly, in its functions of
defining local fields and their causal structure, and thus is dispensable if we can find
other ways to localize quantum fields and to define their causal structure. That is, if we
can define causal structures among fundamental degrees of freedom in a dynamical
way, and reinterpret localization in a relationalist way understood in the spirit of the
SCC view, then the constraint from general relativity that undermines the kinematical
structure of conventional quantum field theory can be satisfactorily met in the
construction of a consistent theory of quantum gravity, such as the spin-foam model.

I am quite fascinated by the recent developments along the line that has led to
the spin-foam model. Technical obstacles aside, conceptually, a quite satisfactory
picture has already emerged. The whole loop quantum gravity programme, that has
culminated in the spin-foam model started its construction within the canonical
approach; the fundamental reason for many scholars to have serious reservations
about the approach, and to be in favour of the covariant approach, is that the former
artificially separates space and time, and is thus in direct contradiction with the
basic teachings of special and general relativity. But the relevant literature about the
spin-foam model over the last few years has shown that this concern has in fact been
addressed quite properly.

The canonical people, motivated by their dynamical concerns, in addressing the
transition between the diffeomorphism equivalent classes of spin networks, have
adopted the sum over histories approach.²⁴ This has profound implications, at least
conceptually.

First, it is inherently four-dimensional, and thus paves the way for a covariant
formulation of the canonical approach.

²⁴ Here this means summing over foams (each foam is a possible transition or a history), or over
the graphs and labels of the spin network involved in transition. More can be found in Perez (2003).
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Second, it gives a concrete model for defining causal structures in terms of
dynamical processes (transitions) without involving any pregiven, fixed background
manifold, let alone any fixed kinematical structures. From the SCC standpoint, this
is philosophically very satisfactory. In addition, the causal structures derived from
dynamical processes in this model are by no means global, but have incorporated all
the local complexities of the underlying dynamical processes.

Third, the kinematical structures derived from the causal structures are accordingly
intrinsically local and dynamical. In particular, the very notions of spatial and
temporal are defined solely in terms of causal and acausal, and equal time slices are
defined by spin-network states that are involved in a causal sequence. The result is
that everything in the kinematical structures is piece-wise, namely, local and variable
(or dynamical). But still, the classical notions of spacetime and space and time seem
to be reconstructible, at least in principle. For example, it can be done through
a coarse grained approximation to discrete quantum structures (see e.g. Smolin
2001).

Of course, I know that this is an over-optimistic remark. Two serious problems
remain to be addressed. First, other fields have to be incorporated. This may still
be considered as a technical obstacle. But then the other problem is definitely a
very serious conceptual problem. That is that the very notion of causality, which
is the foundation for all the merits I have just mentioned, is not properly defined
in the spin-foam model. The trouble here is that causality can only be defined
in each history, which is dynamical, local and well defined. But what about the
overall causality, causality as the result of summing over the histories? I find it
difficult to have any clear ontological, metaphysical, or conceptual picture as to
what the resulting notion of causality is. Different from causality in each foam,
the resulting causality cannot be said to be local because there is no clear-cut
local sense to be defined. However, to be fair to the sum over history people,
I should mention that the same question can also be raised for its prototype,
namely the Feynman path integral approach that is widely used in quantum
physics. What is the ontological basis of these paths? Do they really exist? Although
nobody can answer these questions, the Feynman approach works extremely well.
Then why should we bother in the case of the spin-foam model? Here is the
difference. The Feynman approach in conventional quantum physics does not
touch upon the underlying causal and kinematical structures. Thus the question
we can raise is only a disguised version of the same question that is common
to all formulations of quantum physics, namely the superposition of quantum
states. But this is not the case in the case of the spin-foam model. Here, in
addition to this common question of superposition, the sum over histories has
also blurred our clear sense of causality and that of temporality and spatiality.
This is obviously a very serious conceptual problem, which has to be properly
addressed before we can have a proper interpretation of the spin-foam model. Still,
judging from a structural and constructive realist position, this model is the most
promising, so far, among all attempts at constructing a consistent model of quantum
gravity.
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3
Structure, Individuality, and Quantum

Gravity

John Stachel

ABSTRACT

After reviewing various interpretations of structural realism, I adopt a definition that allows both
relations between things that are already individuated (which I call ‘relations between things’)
and relations that individuate previously un-individuated entities (‘things between relations’).
Since both spacetime points in general relativity and elementary particles in quantum theory
fall into the latter category, I propose a principle of maximal permutability as a criterion for
the fundamental entities of any future theory of ‘quantum gravity’; i.e. a theory yielding both
general relativity and quantum field theory in appropriate limits. Then I review a number of
current candidates for such a theory. First I look at the effective field theory and asymptotic
quantization approaches to general relativity, and then at string theory. Next, a discussion of
some issues common to all approaches to quantum gravity based on the full general theory of
relativity argues that processes, rather than states should be taken as fundamental in any such
theory. A brief discussion of the canonical approach is followed by a survey of causal set theory.
The chapter ends by suggesting a new approach to the question of which spacetime structures
should be quantized.

3.1 WHAT IS STRUCTURAL REALISM?

The term ‘structural realism’ can be (and has been) interpreted in a number of different
ways.¹ I assume that, in discussions of structuralism, the concept of ‘structure’ refers
to some set of relations between the things or entities that they relate, called the relata.
Here I interpret ‘things’ in the broadest possible sense: they may be material objects,
physical fields, mathematical concepts, social relations, processes, etc.² People have
used the term ‘structural realism’ to describe different approaches to the nature of

¹ For a recent survey, with references to earlier literature, see the symposium ‘Structural Realism
and Quantum Field Theory’, Symons (2003), which includes papers by Tian Yu Cao, Steven
French and James Ladyman, and Simon Saunders.

² In this section, ‘thing’ is used in a sense that includes processes. Note that from §3.5.1 on, it is
used in a more restricted sense, in which ‘thing’ is contrasted with ‘process’.
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the relation between things and relations. These differences all seem to be variants of
three basic possibilities.

I. There are only relations without relata.³

As applied to a particular relation, this assertion seems incoherent. It only makes
sense if it is interpreted as the metaphysical claim that ultimately there are only
relations; that is, in any given relation, all of its relata can in turn be interpreted
as relations. Thus, the totality of structural relations reduces to relations between
relations between relations … As Simon Saunders might put it, it’s relations all the
way down (e.g. Saunders 2003).⁴ It is certainly true that, in certain cases, the relata
can themselves be interpreted as relations; but I would not want to be bound by
the claim that this is always the case. I find rather more attractive the following two
possibilities:

II. There are relations, in which the things are primary and their relation is
secondary.

III. There are relations, in which the relation is primary while the things are
secondary.

In order to make sense of either of these possibilities, and hence of the distinction
between them, one must assume that there is always a distinction between the essential
and non-essential properties of any thing,⁵ For II to hold (i.e. things are primary
and their relation is secondary), no essential property of the relata can depend on
the particular relation under consideration; while for III to hold ( i.e. the relation is
primary and the relata are secondary), at least one essential property of each of the
relata must depend on the relation. Terminology differs, but one widespread usage
denotes relations of type II as external, those of type III as internal. One could convert
either possibility into a metaphysical doctrine: ‘All relations are external’ or ‘All
relations are internal’; and some philosophers have done so. But, in contradistinction
to I, there is no need to do so to make sense of II and III. If one does not, then the
two are perfectly compatible.

Logically, there is a fourth possible case:

IV. There are things, such that any relation between them is only apparent.

This is certainly possible in particular situations. One could, for example, pre-
programme two mechanical dolls (the things) so that each would move independently

³ See Krause (2004: 1), for the phrase ‘relations without the relata’.
⁴ ‘I believe that objects are structures; I see no reason to suppose that there are ultimate

constituents of the world, which are not themselves to be understood in structural terms. So far as I
am concerned, it is turtles all the way down’ (Saunders 2003: 329).

⁵ For example, in quantum mechanics, electrons are characterized by their essential properties
of mass, spin, and charge. All other properties that they may exhibit in various processes—such as
positions, momenta, or energies—are non-essential (see n. 19). For a discussion of their haecceity,
see the next section. As this example suggests, the distinction between essential and non-essential
properties—and indeed the distinction between elementary and composite entities—may be theory
dependent (see Dosch et al. 2004). (Note that having the same essence is what characterizes a
natural kind.)
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of the other, but in such a way that they seemed to be dancing with each other
(the apparent relation—I assume that ‘dancing together’ is a real relation between
two people).

Again, one might convert this possibility into a universal claim: ‘All relations
are only apparent.’ Leibniz’s monadology, for example, might be interpreted as
asserting that all relations between monads are only apparent. Since God set up a
pre-established harmony among them, they are pre-programmed to behave as if they
were related to each other. As a metaphysical doctrine, I find IV even less attractive
than I. And if adopted, it could hardly qualify as a variant of structural realism, so I
shall not mention IV any further.

While several eminent philosophers of science (e.g. French and Ladyman) have
opted for version I of structural realism, to me versions II and III (interpreted
non-metaphysically) are the most attractive. They do not require commitment to
any metaphysical doctrine, but allow for a decision on the character of the relations
constituting a particular structure on a case-by-case basis.⁶ My approach leads to a
picture of the world, in which there are entities of many different natural kinds,
and it is inherent in the nature of each kind to be structured in various ways. These
structures themselves are organized into various structural hierarchies, which do not
all form a linear sequence (chain); rather, the result is something like a partially
ordered set of structures. This picture is dynamic in two senses: there are changes in
the world, and there are changes in our knowledge of the world.

As well as a synchronic aspect, the entities and structures making up our current
picture of the world have a diachronic aspect: they arise, evolve, and ultimately
disappear—in short, they constitute processes. And our current picture is itself subject
to change. What particular entities and structures are posited, and whether a given
entity is to be regarded as a thing or a relation, are not decisions that are forever fixed
and unalterable; they may change with changes in our empirical knowledge and/or
our theoretical understanding of the world. So I might best describe this viewpoint
as a dynamic structural realism.⁷

3.2 STRUCTURE AND INDIVIDUALITY

A more detailed discussion of many points in this section is presented in Stachel
(2002, 2005).

It seems that, as deeper and deeper levels of these structural hierarchies are probed,
the property of inherent individuality that characterizes more complex, higher-level
entities—such as a particular crystal in physics, or a particular cell in biology—is

⁶ For further discussion of cases II and III, see Stachel (2002), which refers to case II as ‘relations
between things’, and to case III as ‘things between relations’.

⁷ For further discussion of the structural hierarchy, see Stachel (2005). For many examples of
such hierarchies in the physics, biology, and cosmology, see Ellis (2002). Although my concepts of
entity and structure are meant to be ontological, the term ‘ontic structural realism’ has been given a
different significance (see Ladyman 1998).
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lost. Using some old philosophical terminology, I say that a level has been reached,
at which the entities characterizing this level possess quiddity but not haecceity.
‘Quiddity’ refers to the essential nature of an entity, its natural kind; and—at least
at the deepest level which we have reached so far—entities of different natural kinds
exist, e.g. electrons, quarks, gluons, photons, etc.⁸ What distinguishes entities of the
same natural kind (quiddity) from each other, their unique individuality or ‘primitive
thisness’, is called their ‘haecceity’.⁹ Traditionally, it was always assumed that every
entity has such a unique individuality: a haecceity as well as a quiddity. However,
modern physics has reached a point at which we are led to postulate entities that
have quiddity but no haecceity that is inherent, i.e. independent of the relational
structures in which they may occur. Insofar as they have any haecceity (and it appears
that degrees of haecceity must be distinguished¹⁰), such entities inherit it from the
structure of relations in which they are enmeshed. In this sense, they are indeed
examples of the case III: ‘things between relations’ (Stachel 2002).

Since Kant, philosophers have often used position in space as a principle of
individuation for otherwise indistinguishable entities; more recently, similar attempts
have been made to individuate physical events or processes.¹¹

A physical process occupies a (generally finite) region of spacetime; a physical
event is supposed to occupy a point of spacetime. In theories, in which spacetime is
represented by a continuum, an event can be thought of as the limit of a portion of
some physical process as all the dimensions of the region of spacetime occupied by
this portion are shrunk to zero. Classically, such a limit may be regarded as physically
possible, or just as an ideal limit. ‘An event may be thought of as the smallest part
of a process … But do not think of an event as a change happening to an otherwise
static object. It is just a change, no more than that’ (Smolin 2002a: 53). See §3.5.1
for further discussion of processes. It is probably better to avoid attributing physical
significance to point events, and accordingly to mathematically reformulate general
relativity in terms of sheaves.¹²

Individuation by means of position in spacetime works at the level of theories
with a fixed spacetime structure, notably special-relativistic theories of matter and/or

⁸ Believers in a unified ‘Theory of Everything’ will hope that ultimately only entities of one
natural kind will be needed, and that all apparently different kinds will emerge from the relational
properties of the one fundamental quiddity. String theory might be regarded as an example of such
a theory; but, aside from other problems, its current framework is based on a fixed background
spacetime, as will be discussed in §3.3.

⁹ Runes (1962): ‘Haecceity … [is] … A term employed by Duns Scotus to express that by which
a quiddity, or general essence, becomes an individual, particular nature, or being’. Teller (1995,
1998), following Adams (1979), noted the utility of the term ‘haecceity’, and his suggestion has
been followed by many philosophers of physics.

¹⁰ For example, the electrons confined to a particular ‘box’ (i.e. infinite potential well) may be
distinguished from all other electrons, if not from each other.

¹¹ See e.g. Auyang (1995), ch. 6.
¹² See Stachel and Iftime (2005) for further discussion of this point. For one such reformulation

of differential geometry, see Mallios (1998), and for applications to general relativity, see Mallios
(2006) and Mallios and Raptis (2003).
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fields¹³ but, according to general relativity, because of the dynamical nature of all
spacetime structures,¹⁴ the points of spacetime lack inherent haecceity; thus they
cannot be used for individuation of other physical events in a general-relativistic
theory of matter and/or non-gravitational fields. This is the purport of the ‘hole
argument’ (see Stachel 1993, and references therein). The points of spacetime have
quiddity as such, but only gain haecceity (to the extent that they do) from the
properties they inherit from the metrical or other physical relations imposed on
them.¹⁵ In particular, the points can obtain haecceity from the inertio-gravitational
field associated with the metric tensor: For example, the four non-vanishing invariants
of the Riemann tensor in an empty spacetime can be used to individuate these points
in the generic case (see ibid. 142–3).

Indeed, as a consequence of this circumstance, in general relativity the converse
attempt has been made: to individuate the points of spacetime by means of the
individuation of the physical (matter or field) events or processes occurring at them;
i.e. by the relation between these points and some individuating properties of matter
and/or non-gravitational fields. Such attempts can succeed at the macroscopic, clas-
sical level;¹⁶ but, if the analysis of matter and fields is carried down far enough—say
to the level of the sub-nuclear particles and field quanta¹⁷—then the particles and
field quanta of differing quiddity all lack inherent haecceity.¹⁸ Like the points of

¹³ Actually, the story is more complicated than this. The points of Minkowski spacetime, for
example, are themselves homogeneous, and some physical framework must be introduced in order
to physically individuate them. Only after this has been done can these points be used to individuate
other events or processes. The physical framework may be fixed non-dynamically (e.g. by using
rods and clocks introduced a priori); or if fixed by dynamical process (e.g. light rays and massive
particles obeying dynamical equations), the resulting individuation must be the same for all possible
dynamical processes. This is better said in the language of fibre bundles, in which particular
dynamical physical fields are represented by cross-sections of the appropriate bundle: if the metric
of the base space is given a priori, the individuation of the points of the base space is either also so
given, or is the same for all cross-sections of the bundle (see Stachel and Iftime 2005).

¹⁴ Except for continuity, differentiability and local topology of the differentiable manifold.
¹⁵ Again this is better said in the language of fibred manifolds, in which particular dynamical

physical fields are represented by cross-sections of the manifold: one can now define the base space
as the quotient of the total space by the fibration. Thus, even the points of the base space (let alone
its metric) are not defined a priori, and their individuation depends on the choice of a cross-section
of the fibred manifold, which will include specification of a particular inertio-gravitational field. For
a detailed discussion, see Stachel and Iftime (2005).

¹⁶ See e.g., Rovelli 1991.
¹⁷ I reserve the term ‘elementary particles’ for fermions and ‘field quanta’ for bosons, although

both are treated as field quanta in quantum field theory. I aim thereby to recall the important
difference between the two in the classical limit: classical particles for fermions and classical fields for
bosons. In this chapter, I am sidestepping the question of whether and when the field concept is more
fundamental than the particle concept in quantum field theory, especially in non-flat background
spacetimes (I discuss it in detail in Stachel (2006a), but see the next footnote and n. 45); but in
the special-relativistic theories, a preparation or registration may involve either gauge-invariant field
quantities or particle numbers.

¹⁸ At the level of non-relativistic quantum mechanics for a system consisting of a fixed number of
particles of the same type, this is seen in the need to take into account the bosonic or fermionic nature
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spacetime, insofar as they have any individuality, it is inherited from the structure of
relations in which these quanta are embedded. For example, in a process involving a
beam of electrons, a particular electron may be individuated by the click of a particle
counter.¹⁹

In all three of these cases—spacetime points or regions in general relativity,
elementary particles in quantum mechanics, and field quanta in quantum field
theory—insofar as the fundamental entities have haecceity, they inherit it from
the structure of relations in which they are enmeshed. But there is an important
distinction here between general relativity on the one hand and quantum mechanics
and quantum field theory on the other: the former is background independent while
the latter are not; but I postpone further discussion of this difference until §3.5.2.

What has all this to do with the search for a theory of quantum gravity? The
theory that we are looking for must underlie both classical general relativity and
quantum theory, in the sense that each of these two theories should emerge from
‘quantum gravity’ by some appropriate limiting process. Whatever the ultimate
nature(s) (quiddity) of the fundamental entities of a quantum gravity theory turn out
to be, it is hard to believe that they will possess an inherent individuality (haecceity)
already absent at the levels of both general relativity and quantum theory (see Stachel
2005). So I am led to assume that, whatever the nature(s) of the fundamental entities
of quantum gravity, they will lack inherent haecceity, and that such individuality as
they manifest will be the result of the structure of dynamical relations in which they
are enmeshed. Given some physical theory, how can one implement this requirement
of no inherent haecceity? Generalizing from the previous examples, I maintain that
the way to assure the inherent indistinguishability of the fundamental entities of the

of the particle in question by the appropriate symmetrization or antisymmetrization procedure on
the product of the one-particle Hilbert spaces (see e.g. Haag 1996: 35–6, for more details). At the
level of special-relativistic quantum field theory, in which interactions may change particle numbers,
it is seen in the notion of field quanta, represented by occupation numbers (arbitrary for bosons,
either zero or one for fermions) in the appropriately constructed Fock space; these quanta clearly
lack individuality. (See e.g. Teller 1995; Haag 1996: 36–8.). At the level of quantum field theory in
background curved spacetimes, ‘a useful particle interpretation of states does not, in general, exist’
(Wald 1994: 47).

¹⁹ The macroscopic counter is assumed to be inherently individuated. It seems that, for such
individuation of an object, a level of structural complexity must be reached, at which it can be
uniquely and irreversibly ‘marked’ in a way that distinguishes it from other objects of the same
nature (quiddity). My argument is based on an approach, according to which quantum mechanics
does not deal with quantum systems in isolation, but only with processes that such a system can
undergo. (For further discussion of this approach, see Stachel 1986, 1997). A process (Feynman
uses ‘process’, but Bohr uses ‘phenomenon’ to describe the same thing) starts with the preparation of
the system, which then undergoes some interaction(s), and ends with the registration of some result
(a ‘measurement’). In this approach, a quantum system is defined by certain essential properties
(its quiddity); but manifests other, non-essential properties (its haecceity) only at the beginning
(preparation) and end (registration) of some process. (Note that the initially prepared properties
need not be the same as the finally registered ones.) The basic task of quantum mechanics is to
calculate a probability amplitude for the process leading from the initially prepared values to the
finally registered ones. (I assume a maximal preparation and registration; the complications of the
non-maximal cases are easily handled.) (See §3.5.1 for a discussion of whether this interpretation of
quantum mechanics is viable in the context of quantum gravity).
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theory is to require the theory to be formulated in such a way that physical results are
invariant under all possible permutations of the basic entities of the same kind (same
quiddity).²⁰ I have named this requirement the principle of maximal permutability.
(See Stachel and Iftime (2005) for a more mathematically detailed discussion.)

The exact content of the principle depends on the nature of the fundamental
entities. For theories, such as non-relativistic quantum mechanics, that are based on
a finite number of discrete fundamental entities, the permutations will also be finite
in number, and maximal permutability becomes invariance under the full symmetric
group. For theories, such as general relativity, that are based on fundamental
entities that are continuously, and even differentiably related to each other, so that
they form a differentiable manifold, permutations become diffeomorphisms. For
a diffeomorphism of a manifold is nothing but a continuous and differentiable
permutation of the points of that manifold.²¹ So, maximal permutability becomes
invariance under the full diffeomorphism group. Further extensions to an infinite
number of discrete entities or mixed cases of discrete-continuous entities, if needed,
are obviously possible.

In both the case of non-relativistic quantum mechanics and of general relativity,
it is only through dynamical considerations that individuation is effected. In the
first case, it is through specification of a possible quantum-mechanical process that
the otherwise indistinguishable particles are individuated (‘The electron that was
emitted by this source at 11:00 a.m. and produced a click of that Geiger counter at
11:01 a.m.’). In the second case, it is through specification of a particular solution
to the gravitational field equations that the points of the spacetime manifold are
individuated (‘The point at which the four non-vanishing invariants of the Riemann
tensor had the following values: … ’). So one would expect the principle of maximal
permutability of the fundamental entities of any theory of quantum gravity to be
part of a theory in which these entities are only individuated dynamically.

Thomas Thiemann has pointed out that, in the passage from classical to quantum
gravity, there is good reason to expect diffeomorphism invariance to be replaced by
some discrete combinatorial principle:

The concept of a smooth spacetime should not have any meaning in a quantum theory of
the gravitational field where probing distances beyond the Planck length must result in black
hole creation which then evaporate in Planck time, that is, spacetime should be fundamentally
discrete. But clearly smooth diffeomorphisms have no room in such a discrete spacetime. The
fundamental symmetry is probably something else, maybe a combinatorial one, that looks like
a diffeomorphism group at large scales. (Thiemann 2001: 117)

²⁰ In this principle, the word ‘possible’ is to be understood in the following sense: if the theory
is formulated in such a way that some dynamically independent permutations of the fundamental
entities are possible, then the theory must be invariant under all permutations. Or the theory must
be formulated in such a way that no such permutations are possible (see n. 18).

²¹ Here, diffeomorphisms are to be understood in the active sense, as point transformations
acting on the points of the manifold, as opposed to the passive sense, in which they act upon
the coordinates of the points, leading to coordinate re-descriptions of the same point. See Stachel
and Iftime (2005) for a more detailed discussion, based on the use of fibred manifolds and local
diffeomorphisms.
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In the next section, I shall look at the effective field theory approach to general
relativity and asymptotic quantization; and then, in the following section, at string
theory, both in the light of the principle of maximal permutability. §3.5 discusses
some issues common to all general-relativity-based approaches to quantum gravity. I
had hoped to treat loop quantum gravity in detail in this chapter, but the discussion
outgrew my allotted spatial bounds; so just a few points about the canonical approach
are discussed in §3.6, and the fuller discussion relegated to a separate paper (Stachel
2006a). §3.7 is devoted to causal set theory, and §3.8 sketches a possible new
approach, suggested by causal set theory, to the question of what spacetime structures
to quantize.

3.3 EFFECTIVE FIELD THEORY AND ASYMPTOTIC
QUANTIZATION

The earliest attempts to quantize the field equations of general relativity were
based on treating it using the methods of special-relativistic quantum field the-
ory, perturbatively expanding the gravitational field around the fixed background
Minkowski space metric and quantizing only the perturbations. By the 1970s,
the first wave of such attempts petered out with the realization that the result-
ing quantum theory is perturbatively non-renormalizable. With the advent of the
effective field theory approach to non-renormalizable quantum field theories, a
second, smaller wave arose²² with the more modest aim of developing an effective
field theory of quantum gravity valid for sufficiently low energies (for reviews, see
Donoghue 1995 and Burgess 2004). As is the case for all effective field theories,
this approach is not meant to prejudge the nature of the ultimate resolution of
‘the more fundamental issues of quantum gravity’ (Burgess 2004: 6), but to estab-
lish low-energy results that will be reliable whatever the nature of the ultimate
theory.²³

The standard accounts of the effective field approach to general relativity take
the metric tensor as the basic field, which somewhat obscures the analogy with
Yang–Mills fields:

Despite the similarity to the construction of the field strength tensor of Yang Mills field theory,
there is the important difference that the [Riemannian] curvatures involve two derivatives of
the basic field, R ∼ ∂∂g. (Donoghue 1995: 4)

But much of the recent progress in bringing general relativity closer to other gauge
field theories, and in developing background-independent quantization techniques,

²² Presumably (to continue the metaphor), the fashion for string theory pre-empted the waters,
in which the second wave would otherwise have flourished. Of course, the effective field theory
approach has been applied effectively to perturbatively renormalizable theories (see Dosch et al.
2004).

²³ ‘Effective field theory is to gravitation as chiral perturbation theory is to quantum chromody-
namics: appropriate at large distances, and impotent at short,’ James Bjorken, ‘Preface’ to Rovelli
2004: p. xiii.
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has come from giving equal importance (or even primacy) to the affine connection as
compared to the metric (see §§3.6 and 3.8, and Stachel 2006a). Since the curvature
tensor involves only one derivative of the connection, R ∼ ∂�, this approach brings
the formalism of general relativity much closer to the gauge approach used to treat
all other interactions. From this point of view, one role of the metric tensor is to act
as potentials for the connection � ∼ ∂g. From this viewpoint, one can reformulate
the starting point of general relativity as follows.

The equivalence principle demands that inertia and gravitation be treated as intrins-
ically united, the resulting inertio-gravitational field being represented mathematically
by a non-flat affine connection �.²⁴

If one assumes that this connection is metric, i.e. that the connection can be derived
from a second-rank covariant metric field g, then according to general relativity such
a non-flat metric field represents the chrono-geometry of spacetime.

But the effective field approach assumes that the true chrono-geometry of spacetime
remains the Minkowski spacetime of special relativity, represented by the fixed
background metric η.²⁵ There is a unique, flat affine connection {} compatible with
the Minkowski metric η,²⁶ and since the difference between any two connections
is a tensor, � − {}—the difference between the non-flat and flat connections—is a
tensor that serves to represents a purely gravitational field.

Contrary to the purport of the equivalence principle, inertia and gravitation have
been separated with the help of the background metric and a kinematics based on the
background fields has been introduced that is independent of the dynamics of this
gravitational tensor. However, the background metric is unobservable: the effect of
this gravitational field on all (ideal) rods and clocks is to distort their measurements
in such a way that they map out the non-flat chrono-geometry associated with the
g-field, which if we did not know better, we would be tempted to think of as the
true chrono-geometry.²⁷ The points of the background metric (flat or non-flat—see
n. 25) are then assumed to be individuated up to the symmetry group of this
metric, which at most can be a finite-parameter Lie group (e.g. the ten parameter

²⁴ See Stachel (2006b) for a detailed discussion of this approach. Note that in this brief account
I represent each geometric object by a single symbol, omitting all indices.

²⁵ Of course, one could start with any fixed background metric—flat or non-flat—and perform
such a split between the inertial connection associated with this metric and the gravitational field
tensor, the latter again being the difference between the inertio-gravitational connection associated
with the g-field and the inertial connection associated with the background metric. But regardless
of spacetime metric chosen, the kinematics of the theory is based on this fixed background metric;
and this limits the spacetime diffeomorphisms, under which the theory is presumed invariant, to
the symmetries (if any) of this metric.

²⁶ I use this symbol as a reminder that the Christoffel symbols define this connection.
²⁷ The reader may be reminded of the Lorentzian approach to special relativity: there really is

a privileged inertial frame (‘the ether frame’). But motion through the ether contracts all (ideal)
measuring rods, slows down all (ideal) clocks, and increases all masses in such a way that this motion
is undetectable. Clocks in a moving inertial frame synchronized by light signals, but forgetting about
the effects of this motion on the propagation of light, will read the ‘local time’ and light will appear
to propagate with the same speed c in all inertial frames. I often wonder why those who adopt the
special-relativistic approach to general relativity don’t abandon special relativity too in favour of the
ether frame?
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Poincaré group for the Minkowski background metric) acting on the points of
spacetime.²⁸

Since the full diffeomorphism group acting on the base manifold is not a symmetry
group of the background metric,²⁹ this version of quantum gravity does not meet our
criterion of maximal permutability. If we choose a background spacetime with no
symmetry group, each and every point of the background spacetime manifold will
be individuated by the non-vanishing invariants of the Riemann tensor. But if there
is a symmetry group generated by one or more Killing vectors, then points on the
orbits of the symmetry group will not be so individuated, but must be individuated
by some additional non-dynamical method.³⁰

Other diffeomorphisms can only be interpreted passively, as coordinate rede-
scriptions of the background spacetime and inertial fields. They can be given an
active interpretation only as gauge transformations on the gravitational potentials
h = g − η.³¹

Since the effective field approach does not claim to be any more than a low-energy
approximation to any ultimate theory of quantum gravity, rather than an obstacle
to any theory making such a claim, this approach presents a challenge. Can such a
theory demonstrate that, in an appropriate low-energy limit, its predictions match
the predictions of the effective field theory for experimental results?³² Since these
experimental predictions will essentially concern low-energy scattering experiments
involving gravitons, it will be a long time indeed before any of these predictions can
be compared with actual experimental results; and the effective field theory approach
has little to offer in the way of predictions for the kind of experimental results

²⁸ We merely mention the additional global complications: the topology chosen for the
background spacetime (e.g. R4 for Minkowski spacetime) may not be the same as the topology
associated with particular g-fields that solve the field equations (e.g. the Kruskal manifold for the
Schwarzschild metric). As Trautman showed long ago, if one solves for the g-field of a point mass
at the origin by successive approximations, at each order the solution field is regular except at the
origin. But when the infinite series is summed, the Schwarschild solution is obtained with its quite
different topology.

²⁹ This symmetry group includes only those diffeomorphisms generated by the Killing vectors
of the background metric.

³⁰ In the extreme case of Minkowski spacetime, for which all the invariants of the Riemann
tensor vanish, the individuation of all the points must be non-dynamical. However, the situation is
not as bad as this comment might suggest. Singling out of one point as origin, of three orthogonal
directions, of a unit of spatial distance and a unit of time serve to complete the individuation of all
remaining points.

³¹ That is, such a transformation can be looked upon either passively, as a transformation to
a non-inertial frame of reference, in which inertial forces appear; or actively as a transformation
of the gravitational field, producing additional gravitational forces. Of course, it can be divided
into two parts, each of which is given a different one of the two interpretations. When the
gravitational field is quantized and the background field is not, the need for a choice makes it evident
that this interpretation of general relativity differs from the standard, diffeomorphism-invariant
interpretation in more than matters of taste.

³² Since the effective field theory approach is based on the assumption of a spacetime continuum,
the challenge will take a radically different form depending on whether the more fundamental theory
is itself based on the continuum concept, as is string theory; or whether it denies basic significance
to the spacetime continuum, as do loop quantum gravity and causal set theory.
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that work on phenomenological quantum gravity is actually likely to give us in the
near future.

In a sense, one quantum gravity programme has already met this challenge:
Ashtekar’s (1987) asymptotic quantization, in which only the gravitational in- and
out-fields at null infinity—i.e. at �+ (scri-plus) and �− (scri-minus)—are quantized.
Without the introduction of any background metric field, it is shown how non-
linear gravitons may be rigorously defined in terms of these fields as irreducible
representations of the symmetry group at null infinity. This group, however, is not
the Poincaré group at null infinity, but the much larger Bondi–Metzner–Sachs
group, which includes the super-translations depending on functions of two variables
rather than the four parameters of the translation group. This group defines a unique
kinematics at null infinity that is independent of the dynamical degrees of freedom,
and it is this decoupling of kinematics and dynamics that enables the application of
more-or-less standard quantization techniques. Just as the quotient of the Poincaré
group by its translation subgroup defines the Lorentz group, so does the quotient of
the BMS group by its super-translation subgroup. Since, in both the effective field
and asymptotic quantization techniques, experiments in which the graviton concept
could be usefully invoked involve the preparation of in-states and the registration of
out-states, there must be a close relation between the two approaches; although, as
far as I know, this relation has not yet been elucidated in detail.

In summary, both the effective field theory and asymptotic quantization approaches
avoid the difficulties outlined in the previous section by separating out a kinematics
that is independent of dynamics. In the former case, this separation is imposed by fiat
everywhere on the spacetime manifold by singling out a background spacetime metric
and corresponding inertial field, with the expectation that the results achieved will
always be valid to good approximation in the low-energy limit of general relativity.
In the latter case, the separation is achieved only for the class of solutions that
are asymptotically flat at null infinity (or more explicitly, the Riemann tensors of
which vanish sufficiently rapidly in all null directions to allow the definition of
null infinity). It is then proved that at null infinity a kinematics can be decoupled
from the dynamics at null infinity due to the symmetries of any gravitational
field there, and that this can be done without violating diffeomorphism invariance
in the interior region of spacetime. Again, this approach presents a challenge to
any background-independent quantization programme: derive the results of the
asymptotic quantization programme from the full quantum gravity theory in the
appropriate limit.

3.4 STRING THEORY

String (or superstring) theory applies the methods of special-relativistic quantum
theory to two-dimensional timelike world sheets, called ‘strings’.³³ All known (and

³³ ‘String theory is an ordinary QFT but not in the usual sense. It is an ordinary scalar QFT on
a 2d Minkowski space, however, the scalar fields themselves are coordinates of the ambient target
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some unknown) particles and their interactions, including the graviton and the
gravitational interaction, are supposed to emerge as certain modes of excitation
of and interactions between quantized strings. The fundamental entities of the
original (perturbative) string theory are the strings—two-dimensional timelike world
sheets—embedded in a given background spacetime, the metric of which is needed
to formulate the action principle for the strings. For that reason, the theory is said
to be ‘background dependent’. Quantization of the theory requires the background
spacetime to be of ten or more dimensions.³⁴

The theory is seen immediately to fail the test of maximal permutability since the
strings are assumed to move around and vibrate in this background, non-dynamical
spacetime. So the background spacetime, one of the fundamental constituents of
the theory, is invariant only under a finite-parameter Lie subgroup (the symmetry
group of this spacetime, usually assumed to have a flat metric with Lorentzian
signature) of the group of all possible diffeomorphisms of its elements. Many
string theorists, with a background predominantly in special-relativistic quantum
field theory (attitudes are also seen to be background dependent), initially found it
difficult to accept such criticisms; so it is encouraging that this point now seems to
be widely acknowledged in the string community.³⁵ String theorist Brian Greene
recently presented an appealing vision of what a string theory without a background
spacetime might look like, but emphasized how far string theorists still are from
realizing this vision:

Since we speak of the ‘fabric’ of spacetime, maybe spacetime is stitched out of strings much
as a shirt is stitched out of thread. That is, much as joining numerous threads together in
an appropriate pattern produces a shirt’s fabric, maybe joining numerous strings together in
an appropriate pattern produces what we commonly call spacetime’s fabric. Matter, like you
and me, would then amount to additional agglomerations of vibrating strings—like sonorous
music played over a muted din, or an elaborate pattern embroidered on a plain piece of
material—moving within the context stitched together by the strings of spacetime. … [A]s
yet no one has turned these words into a precise mathematical statement. As far as I can tell,
the obstacles to doing so are far from trifling. … We [currently] picture strings as vibrating
in space and through time, but without the spacetime fabric that the strings are themselves
imagined to yield through their orderly union, there is no space or time. In this proposal, the
concepts of space and time fail to have meaning until innumerable strings weave together to
produce them.

Thus, to make sense of this proposal, we would need a framework for describing strings
that does not assume from the get-go that they are vibrating in a preexisting spacetime. We
would need a fully spaceless and timeless formulation of string theory, in which spacetime
emerges from the collective behavior of strings. Although there has been progress toward

Minkowski space which in this case is 10 dimensional. Thus, it is similar to a first quantized theory
of point particles’ (Thiemann 2002: 12).

³⁴ However, Thiemann (2004) asserts that the so-called Pohlmayer string can be quantized in
any number of dimensions, including four-dimensionsal Minkowski space.

³⁵ See Stachel (2003: 31–2) for quotations to this effect from review articles by Michael Green
and Thomas Banks.
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this goal, no one has yet come up with such a spaceless and timeless formulation of
string theory—something that physicists call a background-independent formulation [of the
theory] … Instead, all current approaches envision strings as moving and vibrating through
a spacetime that is inserted into the theory ‘by hand’ … Many researchers consider the
development of a background-independent formulation to be the single greatest unsolved
problem facing string theory. (Greene 2004: 487–8)

One of the main goals of the currently sought-for M-theory (see Greene 2004:
376–412) is to overcome this defect, but so far this goal has not been reached.

3.5 QUANTUM GENERAL RELATIVITY: SOME
PRELIMINARY PROBLEMS

String theory attempts to produce a theory of everything, including a quantum
theory of gravity that will have general relativity (or a reasonable facsimile thereof)
as part of its classical limit. Most other approaches to quantum gravity start from
classical general relativity. In this section, I shall discuss two related issues that arise
in the course of any such attempt.

3.5.1 States or Processes: Which is Primary?

There has been a long-standing debate between adherents of covariant and canonical
approaches to quantum gravity. The former attempt to develop a four-dimensionally-
invariant theory of quantum gravity from the outset; the latter start from a
(3 + 1)-breakup of spacetime, emphasizing three-dimensional spatial invariance
and developing quantum kinematics before quantum dynamics. Christian Wüthrich
has related this debate to

the philosophical debate between proponents of the endurance view of time and those of the
perdurance view [which] reflects a disagreement concerning whether, and to what degree, time
is on a par with spatial dimensions. (Wüthrich 2003: 1)

According to the former view, ‘an object is said to endure just in case it exists at
more than one time’. According to the latter view,

objects perdure by having different temporal parts at different times with no part being
present at more than one time. Perdurance implies that two [space-like] hypersurfaces … do
not share enduring objects but rather harbour different parts of the same four-dimensional
object. (Wüthrich 2003: 1)

I shall use slightly different terminology to make this important distinction. One
approach to the quantum gravity problem places primary emphasis on the three-
dimensional state of some thing; from this point of view, a process is just a succession of
different states of this thing. (The relation of this succession of states to some concept
of ‘time’ is a contentious issue). The other approach places primary emphasis on four-
dimensional processes; from this point of view, a ‘state’ is just a particular spatial cross-
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section of a process and of secondary importance: all such cross-sections are equal,
and each sequence of states represents a different ‘perspective’ on the same process.

In pre-relativistic physics, the absolute time provided a natural foliation of
spacetime into spatial cross-sections. So, even if one favoured the ‘process’ view-
point for philosophical reasons, there was little harm to physics—if not to
philosophy—in using the alternate ‘state’ viewpoint. While the split into spaces
was not unique (one inertial frame is as good as another), each inertial frame
corresponding to a different preferred fibration of spacetime, they all shared a
unique time (absolute simultaneity). In short, there was a unique breakup of
four-dimensions into (3 + 1). In special-relativistic physics, this is no longer the
case: there are an infinite number of such preferred cross-sections (one for each
family of parallel spacelike hyperplanes in Minkowski space). Not only is the
split into spaces not unique (one inertial frame is still as good as another), but
now they do not even agree on a unique time slicing (the relativity of sim-
ultaneity): there is a different foliation for each preferred fibration. In short,
there is a three-parameter family of ‘natural’ breakups of four-dimensions into
(3 + 1). So, in special-relativistic physics, and quite apart from philosophical con-
siderations, the ‘process’ approach has much to recommend it over the ‘state’
approach.

General relativity is an inherently four-dimensional theory of spacetime—even
more so than special relativity. There is no ‘natural’ breakup of spacetime into
spaces and times, such as the inertial frames provide in special relativity. There
are no preferred timelike fibrations or spacelike foliations.³⁶ Any breakup of this
four-dimensional structure into a (3 + 1) form requires the (explicit or implicit)
introduction of an arbitrary ‘frame of reference’,³⁷ represented geometrically by the
introduction of a fibration and foliation of spacetime. Then one may speak about
the ‘state’ of a thing on a given hypersurface and its evolution from hypersurface
to hypersurface of the foliation (over some ‘global time’). But such a breakup is
always relative to some chosen frame of reference. There are no longer any preferred
breakups in generally relativity; there is always something arbitrary and artificial
about the introduction of such a frame of reference. The process approach seems
rooted in general-relativistic physics, just as it is in quantum theory (see n. 19). No
one has put the case more strongly than Lee Smolin:

[R]elativity theory and quantum theory each … tell us—no, better, they scream at us—that
our world is a history of processes. Motion and change are primary. Nothing is, except in a
very approximate and temporary sense. How something is, or what its state is, is an illusion.
It may be a useful illusion for some purposes, but if we want to think fundamentally we must
not lose sight of the essential fact that it ‘is’ an illusion. So to speak the language of the new
physics we must learn a vocabulary in which process is more important than, and prior to,
stasis. (Smolin 2002a: 53; my emphases)

³⁶ The only ‘natural’ foliation would be a family of null hypersurfaces, and null hypersurface
quantization has had many advocates, starting with Dirac. For a survey, see Robinson (2003).

³⁷ Einstein emphasized the amorphous nature of such a frame by calling it a ‘reference-mollusc’
(see Einstein 1917; cited from Einstein 1961: 99).
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Now the canonical formalism is based on the introduction of a fibration and
foliation of spacetime,³⁸ and by its nature tends to shift attention from processes in
spacetime to states of things in space.³⁹ Bryce DeWitt, in his final book, has put the
case in the context of quantum field theory:

When expounding the fundamentals of quantum field theory physicists almost universally fail
to apply the lessons that relativity theory taught them early in the twentieth century. Although
they carry out their calculations in a covariant way, in deriving their calculational rules
they seem unable to wean themselves from canonical methods and Hamiltonians, which are
holdovers from the nineteenth century, and are tied to the cumbersome (3 + 1)-dimensional
baggage of conjugate momenta, bigger-than-physical Hilbert spaces and constraints. (DeWitt
2003: i, p. v)

This has immediate implications for a theory of quantum gravity. Whether one
should be looking for quanta of space or of spacetime seems to be one essential point
of difference between the canonical loop quantum gravity approach and the covariant
causal set approach. In his exposition of the canonical approach, Carlo Rovelli asserts:
‘Spacetime is a temporal sequence of spaces, or a history of space’. He asks:

What are the quanta of the gravitational field? Or, since the gravitational field is the same
entity as spacetime, what are the quanta of space? (Rovelli 2004: 18)⁴⁰

The unremarked shift from ‘quanta … of spacetime’ to ‘quanta of space’ is striking,
but almost seems forced on Rovelli by the canonical, ‘history of space’ approach.
On the other hand, discussing causal set theory, a ‘process’ approach to quantum
gravity,⁴¹ Fay Dowker states:

Most physicists believe that in any final theory of quantum gravity, space-time itself will
be quantized and grainy in nature. … So the smallest possible volume in four-dimensional

³⁸ All treatments of the canonical formalism mention the need for a foliation, but most do not
mention the fibration, which is needed in order to understand the geometrical significance of the
lapse and shift functions (see Stachel 1962, 1969).

³⁹ This is not meant to imply that the full four-dimensional invariance cannot be recovered in
some variant of the canonical approach. For a brief discussion of ‘proposals to make the canonical
formulation more covariant’, with references, see Thiemann (2002: 15–16). For a summary of a
different approach, see Salisbury (2003).

⁴⁰ As will be seen in Stachel (2006a), this is not the only instance of Rovelli’s wavering between
‘space’ and ‘spacetime’. There I also discussed the interpretation of the discrete spectra, in loop
quantum gravity, of the operators for three-volume and two-area on the initial hypersurface.
Attributing direct physical significance to such mathematical results obtained before solution of the
Hamiltonian constraints seems to violate the general-relativistic golden rule: ‘no kinematics before
dynamics.’ I thank Fotini Markopoulou for helpful discussion of this point.

⁴¹ The causal set approach, to be discussed in §§3.6 and 3.7, does not attempt a quantization
of the classical theory. Rather, its aim is to construct a quantum theory of causal sets based on two
features of classical general relativity that it takes as fundamental:

(1) The causal structure, which is replaced by a discrete causal set; and
(2) The four-volume element, which is replaced by the quantum of process.

It must then be shown that the classical equations can be recovered from some sort of limit of
causal sets, or of an ensemble of such sets.
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spacetime, the Planck volume, is 10−42 cubic centimetre seconds. If we assume that each of
these volumes counts a single space-time quantum, this provides a direct quantification of the
bulk. (Dowker 2003: 38)

3.5.2 Formalism and Measurability

There has always been a dialectical interplay between formalism and measurability
in the development of quantum theory, first seen in the discussion about the
physical interpretation of the commutation relations in non-relativistic quantum
mechanics, see e.g. Heisenberg (1930) and later in the similar discussion in quantum
electrodynamics.⁴² This interplay was well expressed by Bohr and Rosenfeld in their
classic discussion of the measurability of the components of the electric and magnetic
field:

[O]ur task will thus consist in investigating whether the complementary limitations on the
measurement of field quantities, defined in this way, are in accord with the physical possibilities
of measurement. (Bohr and Rosenfeld 1933, cited from Rosenfeld 1979: 358)

By ‘in this way’ they mean: ‘the field quantities are no longer represented by actual
point-functions but by functions of space-time regions, which formally correspond
to the average value of the idealized field components over the region in question’
(ibid.), and that delta-function commutation relations at points must be replaced by
commutation relations smeared over such (finite) regions of spacetime.

By 1933, quantum electrodynamics had been developed to a point that enabled
Bohr and Rosenfeld ‘to demonstrate a complete accord’ between the formal com-
mutation relations of the field components and the physical possibilities of their
measurement. In the case of quantum gravity, the theory is still in a state of active
exploration and development, and one may hope that investigation of the possibilities
of ideal measurements of the variables basic to each approach can help to clarify still
unresolved issues in the physical interpretation of the formalism, and perhaps even
help in choosing between various formalisms.⁴³ It has been objected that a quantum
theory of gravity requires a different interpretation of quantum theory, in which no
external ‘observer’ is introduced. First of all, a quantum process does not require
an ‘observer’ in any anthropomorphic sense. Once the results of a preparation and
registration are recorded (see n. 19), the quantum process is over, whether anyone
ever looks at (‘observes’) the results or not. Carlo Rovelli has argued well against
combining the problem of quantum gravity with the problem of the interpretation
of quantum mechanics:

I see no reason why a quantum theory of gravity should not be sought within a standard
interpretation of quantum mechanics (whatever one prefers). Several arguments have been

⁴² See e.g. Bohr and Rosenfeld (1933). Bergmann and Smith provide a careful discussion of
the analogies and differences that arise when a Bohr-Rosenfeld-style analysis of measurability is
attempted for the linearized Riemann tensor (see Bergmann and Smith 1982, which summarizes
and extends their earlier papers).

⁴³ See Stachel (2001) for further comments on this question.
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proposed to connect these two problems [quantum gravity and the interpretation of quantum
mechanics]. A common one is that in the Copenhagen interpretation the observer must
be external, but it is not possible to be external from the gravitational field. I think that
this argument is wrong; if it was correct it would apply to the Maxwell field as well. We
can consistently use the Copenhagen interpretation to describe the interaction between a
macroscopic classical apparatus and a quantum-gravitational phenomenon happening, say, in
a small region of (macroscopic) spacetime. The fact that the notion of spacetime breaks down
at short scale within this region does not prevent us from having the region interacting with
an external Copenhagen observer. (Rovelli 2004: 370).⁴⁴

Rovelli has discussed the physical interpretation of the canonical formalism for a
field theory describing some generic field, symbolized by �:

The data from a local experiment (measurements, preparation, or just assumptions) must
in fact refer to the state of the system on the entire boundary of a finite spacetime region.
The field theoretical space … is therefore the space of surfaces � [‘where � is a 3d surface
bounding a finite spacetime region’] and field configurations � on �. Quantum dynamics can
be expressed in terms of an [probability] amplitude W [�, �]. … Notice that the dependence
of W [�, �] on the geometry of � codes the spacetime position of the measuring apparatus.
In fact, the relative position of the components of the apparatus is determined by their physical
distance and the physical time elapsed between measurements, and these data are contained in
the metric of �. (Rovelli 2004: 23).

From the ‘process’ viewpoint (see §3.5.1), this is an encouraging approach: what
occurs in the spacetime region bounded by � constitutes a process, and an amplitude
is only defined for such processes. However, as Rovelli emphasizes, this definition
is broad enough to include a background-dependent theory, i.e. a theory with a
fixed background spacetime. But his real subject of course is theories, such as general
relativity, which are background independent:

Consider now a background independent theory. Diffeomorphism invariance implies imme-
diately that W [�, �] is independent of �. … Therefore, in gravity W depends only on
the boundary value of the fields. However, the fields include the gravitational field, and the
gravitational field determines the spacetime geometry. Therefore the dependence of W on the
fields is still sufficient to code the relative distance and time separation of the components of
the measuring apparatus! (Rovelli 2004: 23)

He summarizes the contrast between the two cases:

⁴⁴ I disagree on one major point. There is at least one big difference between the Maxwell field
and the gravitational field: the non-universality of the electromagnetic charge-current vector versus
the universality of gravitational stress-energy tensor. Because charges occur with two signs that can
neutralize each other, a charge-current distribution acting as a source of an electromagnetic field
can be manipulated by matter that is electrically neutral and so not acting as a source of a further
electromagnetic field; and one can shield against the effects of a charge-current distribution. Because
mass comes with only one sign, all matter (including non-gravitational fields) has a stress-energy
tensor, no shielding is possible, and any manipulation of matter acting as a source of gravitational
field will introduce an additional stress-energy tensor as a source of gravitational field. A glance
at Bohr and Rosenfeld (1933) shows how important the possibility of neutralizing the charges on
test bodies is for measurement of the (averaged) components of the electric field with arbitrary
accuracy, for example. This difference may well have important implications for the measurement
of gravitational field quantities. For detailed discussion, see Bergmann and Smith (1982).
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What is happening is that in background dependent QFT we have two kinds of measurements:
those that determine the distances of the parts of the apparatus and the time elapsed between
measurements, and the actual measurements of the fields’ dynamical variables. In quantum
gravity, instead, distances and time separations are on an equal footing with the dynamical
fields. This is the core of the general relativistic revolution, and the key for background
independent QFT. (Rovelli 2004: 23)

This is a brilliant exposition of the nature of the difference between background-
dependent and background-independent quantum field theories (QFTs). But it
immediately raises a number of questions, most of which I discuss in Stachel (2006a).
Here I shall mention only one of them.

Rovelli’s interpretation of the canonical formalism seems based on the assumption
that, in both background-dependent and background-independent QFTs, one can
idealize a field measurement by confining its effects to the (three-dimensional)
boundary of a (four-dimensional) spacetime region; and in particular to a finite
region of (three-dimensional) space, while neglecting its finite (one-dimensional)
duration in time. Yet, since the pioneering work of Bohr and Rosenfeld on the
measurability of the components of the electromagnetic field (Bohr and Rosenfeld
1933), it has been known that this is not the case for the electromagnetic field in
Minkowski spacetime.

It is … of essential importance that the customary description of an electric field in terms of its
components at each space-time point, which characterizes classical field theory and according to
which the field should be measurable by means of point charges in the sense of electron theory,
is an idealization which has only restricted applicability in quantum theory. This circumstance
finds its proper expression in the quantum-electromagnetic formalism, in which the field
quantities are no longer represented by true point functions but by functions of space-time
regions, which formally correspond to the average values of the idealized field components over
the region in question. The formalism only allows the derivation of unambiguous predictions
about the measurability of such region-functions … [U]nambiguous meaning can be attached
only to space-time integrals of the field components (Bohr and Rosenfeld 1933: 358–61).

The aim of the paper was to show that these theoretical limits on measurability
coincide with the actual possibilities of (idealized) measurements of these field
quantities. Bohr and Rosenfeld demonstrate in some detail how test bodies occupying
a finite region of space over a finite period of time—that is, test processes over finite
regions of spacetime—can be used to measure electromagnetic field averages over
these regions.⁴⁵

⁴⁵ One may see in this work the germ of the algebraic approach to quantum field theory, which
also is based on attaching primary significance to operators defined over finite regions of spacetime.

The primary physical interpretation of the [quantum field] theory is given in terms of local
operations, not in terms of particles. Specifically, we have used the basic fields to associate to
each open region O in space-time an algebra A(O). Of operators in Hilbert space, the algebra
generated by all F ( f ), the fields ‘smeared out’ with test functions f having their support in the
region O. We have interpreted the elements of A(O) as representing physical operations performable
within O and we have seen that this interpretation tells us how to compute collision cross sections
once the correspondence O → A(O) is known. This suggests that the net of algebras A, i.e, the
correspondence [given above] constitutes the intrinsic mathematical description of the theory. The
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Schweber summarizes the point nicely:

In fact, Bohr and Rosenfeld in their classic papers on the question of the measurability of
electromagnetic fields have already shown that only averages over small volumes of space-time
of the field operators are measurable … This is because of the finite size of the classical
measuring apparatus and the finite times necessary to determine forces through their effects
on macroscopic test bodies. (Schweber 1961: 421–2)

Dosch et al. (2004) generalize the point to all quantum field theories:

The quantum fields, in terms of which the theory is constructed, are operators that depend
on space-time. This dependence on space-time however, shows the behavior of a generalized
function or distribution. Therefore, a well-defined operator cannot be related to a definite
space-time point x, but only to a space-time domain of finite extent (Dosch et al. 2004: 4).

Sorkin (1993) contrasts non-relativistic quantum mechanics and quantum field
theory:

Now in non-relativistic quantum mechanics, measurements are idealized as occurring at a single
moment of time. Correspondingly the interpretive rules for quantum field theory are often
stated in terms of ideal measurements which take place on Cauchy hypersurfaces. However, in
the interests of dealing with well-defined operators, one usually thickens the hypersurface, and
in fact the most general formulations of quantum field theory assume that there corresponds
to any open region of space-time an algebra of observables which—presumably—can be
measured by procedures occurring entirely within that region.⁴⁶

The question of whether measurements should be associated with (three-
dimensional) things or (four-dimensional) processes recurs in loop quantum gravity,
and will be discussed in Stachel (2006a).

3.6 CANONICAL QUANTIZATION (LOOP QUANTUM
GRAVITY)

From the point of view of the principle of maximal permutability, the basic problem
of the canonical formalism is that, by introducing a fibration and a foliation, it
violates the principle.

Indeed, when the Cauchy problem is formulated in terms of Lie derivatives with
respect to the vector field defined by the foliation and fibration (see Stachel 1962,
1969), it is already trivially diffeomorphism invariant in the sense that, if the fibration
and foliation are dragged along together with all the initial data fields imposed on
the spacetime, nothing is changed.

mentioned physical interpretation establishes the tie between spacetime and events. The role of
‘fields’ is only to provide a coordinatization of this net of algebras. (Haag 1996: 105).

This approach of course extensively utilizes the existence and properties of the background
Minkowski spacetime. In the section on causal sets, I shall cite Haag’s speculations about how it
might be generalized in the absence of such a background spacetime.

⁴⁶ See the previous footnote.
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But the fibration and foliation already assign a certain amount of individuality
to the points of spacetime before any initial data fields are imposed on it. Points on
the same hypersurface of the fibration and/or the same curve of the foliation are
distinguished by these characteristics.

What remains of permutation invariance is the three-dimensional diffeomorphism
invariance of the physically significant parts of the Cauchy data on the initial
hypersurface; and the freedom to change from evolution of the initial data along one
fibration and foliation to evolution along another, which is done by the choice of the
lapse and shift functions.

There certainly is a price to pay for this loss of manifest permutation invariance of
the theory under four-dimensional diffeomorphisms. Since the canonical formalism
manifestly preserves only three-dimensional diffeomorphism invariance within each
hypersurface of the foliation, it is perhaps not too surprising that many of its problems
have to do with time and dynamics.

Speaking about loop quantum gravity, Perez states,

The dynamics is governed by the quantum Hamiltonian constraint. Even when this operator
is rigorously defined it is technically difficult to characterize its solution space. This is partly
because the (3 + 1) decomposition of spacetime (necessary in the canonical formulation)
breaks the manifest 4-diffeomorphism invariance of the theory making awkward the analysis
of the dynamics. (Perez 2003: p. R 45)

Perez continues:

The difficulty in dealing with the scalar constraint [i.e. the Hamiltonian] is not surprising. The
vector constraint, generating space diffeomorphisms, and the scalar constraint, generating time
reparametrizations, arise from the underlying 4-diffeomorphism invariance of gravity. In the
canonical formulation the 3 + 1 splitting breaks the manifest four-dimensional symmetry. The
price paid is the complexity of the time reparametrization constraint S (i.e. the Hamiltonian).
(Perez 2003: p. R 49)

It is also clear that, by its nature, the canonical formalism favours a ‘state of things’
over a ‘process’ approach to quantum gravity. Whether this is a drawback; and if so,
how it can be overcome are questions discussed in Stachel (2006a), together with a
number of other questions raised by the modern canonical formulation of general
relativity (‘loop quantum gravity’).

Here I shall only comment on a question raised in the previous section: the
interplay between formalism and measurement. Ashtekar and Lewandowski (2004)
describe the strategy adopted in loop quantum gravity:

To pass to the quantum theory [of a fully constrained theory in its phase space formulation],⁴⁷
one can use one of the two standard approaches: i) find the reduced phase space of the
theory representing ‘true degrees of freedom’ thereby eliminating the constraints classically
and then construct a quantum version of the resulting unconstrained theory;⁴⁸ or ii) first

⁴⁷ For detailed discussions of what is called ‘refined algebraic quantization’ of a system with first
class constraints, see Thiemann (2002: 22–5), and Thiemann (2001: §II.7, pp. 280–4).

⁴⁸ In this chapter, I shall not discuss alternative (i). Yet the possibilities of this alternative
approach to quantization should be kept in mind. In particular, the (2 + 2) formalism (for a recent
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construct quantum kinematics for the full phase space ignoring the constraints, then find
quantum operators corresponding to the constraints and finally solve the quantum constraints
to obtain the physical states.⁴⁹ Loop quantum gravity follows the second avenue … (Ashtekar
and Lewandowski 2004: 51).

Note that, in this approach, the commutation relations are simply postulated.
For the physical interpretation and validation of the formalism, the configuration
variables and their conjugate momenta should be given some interpretation in terms
of procedures for their individual measurement; and—a crucial second step—the
limitations on the joint definability of pairs of such variables implied by the
postulated commutation relations should coincide with the limitations on their joint
measurability by these procedures (for a detailed discussion, see Bergmann and Smith
1982).

The question of the link between measurability and formalism seems especially
acute in view of the claim by Ashtekar and Lewandowski that there is essentially
only one possible representation of the algebraic formalism, and the suggestion by
Thiemann that this mathematical uniqueness may have been achieved at too high a
physical price.⁵⁰ As explained in detail in Stachel (2006a), in loop quantum gravity the
holonomies associated with a certain three-connection are taken as the ‘configuration’
variables, with a corresponding set of so-called electric-flux ‘momentum’ variables;
taken together, they obey a certain algebra. The main problem is that of finding the
physically appropriate representation of this holonomy-flux algebra (Ashtekar and
Lewandowski 2004: 41). They succeed in constructing one, and state:

Remarkably enough, uniqueness theorems have been established: there is a precise sense in
which this is the only diffeomorphism invariant, cyclic representation of the kinematical quantum
algebra … Thus, the quantum geometry framework is surprisingly tight. … there is a unique,
diffeomorphism invariant representation … (ibid. 41, their emphasis)⁵¹

One might have expected that, as in ordinary quantum mechanics, there is a complementary
representation, based on the ‘momentum’ variables conjugate to the configuration ones (these
are the ‘electric fluxes’ mentioned above), which essentially constitute the three-metric. But
these variables, suitably smeared, do not commute;⁵² consequently, [t]his result brings out a

summary with references to earlier literature, see d’Inverno 2003) offers a possible classical starting
point for such an approach, in which the two degrees of freedom of the inertio-gravitational field
are given a direct geometrical interpretation.

⁴⁹ For quantum kinematics, see e.g. Thiemann (2001: §I.3).
⁵⁰ The main point of the following discussion should be clear even to readers unfamiliar with

the canonical formalism: it is claimed that, given the techniques that make the new canonical
quantization possible, there is just one possible operator representation of the algebra of the basic
canonical variables. If correct, then it is crucial to make sure that the possibilities for actual
measurement of these variables reaches, but does not exceed, the limits set by this algebra.

⁵¹ Put more technically: ‘As we saw, quantum connection-dynamics is very ‘‘tight’’; once we
choose the holonomies A(e) and the ‘‘electric fluxes’’ P(S, f ) as the basic variables, there is essentially
no freedom in the background-independent quantization’ (ibid.).

⁵² As a consequence, and even more significant for physical measurements, ‘area operators ÂS

and ÂS′ fail to commute if the surfaces S and S′ intersect. … Thus, the assertion that ‘‘the spin
network basis diagonalizes all geometrical operators’’ … that one sometimes finds in the literature is
incorrect’ (ibid. 46).
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fundamental tension between connection-dynamics and geometrodynamics. … [T]he metric
representation does not exist. (Ibid. 46)

This uniqueness claim is striking indeed. In Lorentz-invariant quantum field
theories, there are unitarily inequivalent representations of the basic algebra, which
led to the algebraic approach to quantum field theory that de-emphasizes the role of
the representations.⁵³ But in loop quantum gravity,

[T]hese results seem to suggest that, for background independent theories, the full generality
of the algebraic approach may be unnecessary. (Ibid: 41)⁵⁴

Some caution is advisable here; this result is based on the requirement of spatial
diffeomorphism invariance. But, as Thiemann notes,

[t]here are, however, doubts on physical grounds whether one should insist on spatial
diffeomorphism invariant representation because smooth and even analytic structure of
[the three-manifold] which is encoded in the spatial diffeomorphism group should not
play a fundamental role at short scales if Planck scale physics is fundamentally dis-
crete. In fact, as we shall see later, Q[uantum] G[eneral] R[elativity] predicts a discrete
Planck scale structure and therefore the fact that we started with analytic data and ended
up with discrete (discontinuous) spectra of operators looks awkward. Therefore … we
should keep in mind that other representations are possibly better suited in the final
picture … (Thiemann 2002: 40; see also the quotation from Thiemann (2001) at the end of
§3.2).

Are there other representations once one drops the demand for diffeomorphism
invariance? If there are, will they be inequivalent (as in quantum field theory) or
equivalent (as in non-relativistic quantum mechanics) to the Ashtekar–Lewandowski
representation? In view of the physical importance of the answers to these technical
questions, one would like to be certain that the formal success of this possibly unique
quantization is accompanied by an equally successful physical interpretation of it.
Ashtekar and Lewandowski are far from claiming that this has been accomplished.
In discussing quantum dynamics, they note that:

the requirement of diffeomorphism invariance picks out a unique representation of the
algebra generated by holonomies and electric fluxes. Therefore we have a single arena for
background independent theories of connections and a natural strategy for implementing
dynamics provided, of course, this mathematically natural, kinematic algebra is also ‘physically
correct’. (Ashtekar and Lewandowski 2004: 51)

Once these ‘kinematic’ steps have been taken, there still remains the final ‘dynamic-
al’ step:

⁵³ See Haag (1996) for a full account.
⁵⁴ While the full generality of the algebraic approach might not be needed, it might still

be worthwhile to investigate the possibility of a four-dimensional algebra that reduces to the
holonomy-flux algebra on a spacelike hypersurface. If this four-dimensional algebra could be related
to physical measurements, this might provide another approach to the question, raised above, of
physically justifying the holonomy-flux algebra instead of simply postulating it. See n. 57 for Haag’s
comments on the possibility of a net of algebras on a partially ordered set.
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We come now to the ‘Holy Grail’ of Canonical Quantum General Relativity, the definition
of the Hamiltonian constraint. [T]he implementation of the correct quantum dynamics is
not yet completed and one of the most active research directions at the moment. (Thiemann
2001: 150)

Another question can be raised in this connection. Might it be possible to go
beyond simply postulating the three-dimensional commutation relations in loop
quantum gravity, which after all do not take us beyond one spatial hypersurface?
Various spin-foam models are candidates for a four-dimensional, dynamical version
of the canonical approach. So it might be possible to introduce four-dimensional
commutation relations in such models (insofar as these models can be freed from
their origins in, and close ties to, the canonical formalism—see Stachel 2006a) and
show that the three-dimensional canonical commutation relations postulated on a
spacelike hypersurface can be derived from them.⁵⁵ Since the presence of a causal
structure seems necessary for the formulation of four-dimensional commutation
relations, causal spin-foam models might be good candidates for such an approach
(see Stachel 2006a).

3.7 THE CAUSAL SET (CAUSET) APPROACH

I should first like to draw attention to an early work on this subject, which I have
not seen cited in the recent literature on causal sets (Kronheimer and Penrose 1967).

This approach would seem to have already adopted much of the viewpoint
suggested here.⁵⁶ Spacetime points are replaced by quanta of process, elements of
four-volume of order l4

P , and these are the basic entities in this approach.⁵⁷
They are connected to each other by a causal (partial) ordering relation. The

causal ordering relation enables us to define a causal past and a causal future for
each element of the causal set, forming the discrete analogues of the forward and
backward light cones of a point, which define the classical causal structure of a
spacetime. The number of quanta of process in any given four-dimensional process
determines its spacetime ‘volume’. Together, they provide the causal-set analogue of
the four-dimensional metric tensor. After introducing the idea of a ‘labeled causet’, in
which each element of the causet is labelled by the sequence in which it is introduced,
Sorkin et al. comment:⁵⁸

⁵⁵ ‘[I]t would be very interesting to reconstruct in detail the hamiltonian Hilbert space, as well
as kinematical and dynamical operators of the loop theory, starting from the covariant spinfoam
definition of the theory. At present [this problem is not] under complete control’ (Rovelli 2004:
362).

⁵⁶ For a popular survey, see Dowker (2003). For a more technical survey, see Sorkin (2003).
⁵⁷ Rudolf Haag’s comments on how the algebraic approach to field theory might be modified in

the absence of a background spacetime bear a close resemblance to the causal set approach: ‘In a
minimal adaptation of the algebraic approach and the locality principle one could keep the idea of
a net of algebras which, however, should be labeled now by the elements of a partially ordered set L
(instead of regions in R4). L could be atomic, with minimal elements (atoms) replacing microcells
in spacetime’ (Haag 1996: 348).

⁵⁸ See Brightwell et al. 2002: 8.
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After all, labels in this discrete setting are the analogs of coordinates in the continuum,
and the first lesson of general relativity is precisely that such arbitrary identifiers must be
regarded as physically meaningless: the elements of spacetime—or of the causet—have
individuality only to the extent that they acquire it from the pattern of their relations to the
other elements. It is therefore natural to introduce a principle of ‘discrete general covariance’
according to which ‘the labels are physically meaningless’. But why have labels at all then? For
causets, the reason is that we don’t know otherwise how to formulate the idea of sequential
growth, or the condition thereon of Bell causality, which plays a crucial role in deriving
the dynamics. Ideally perhaps, one would formulate the theory so that labels never entered,
but so far, no one knows how to do this—anymore than one knows how to formulate
general relativity without introducing extra gauge degrees of freedom that then have to be
canceled against the diffeomorphism invariance. Given the dynamics as we can formulate it,
discrete general covariance plays a double role. On one hand it serves to limit the possible
choices of the transition probabilities in such a way that the labels drop out of certain ‘net
probabilities’. This is meant to be the analog of requiring the gravitational action-integral
S to be invariant under diffeomorphisms (whence, in virtue of the further assumption of
locality, it must be the integral of a local scalar concomitant of the metric). On the other
hand, general covariance limits the questions one can meaningfully ask about the causet (cf.
Einstein’s ‘hole argument’). It is this second limitation that is related to the ‘problem of
time’, and it is only this aspect of discrete general covariance that I am addressing in the
present talk.

I think there is a certain confusion here between the causet analogues of active
and passive diffeomorphisms. Sorkin rightly emphasizes that ‘the elements of space-
time—or of the causet—have individuality only to the extent that they acquire it
from the pattern of their relations to the other elements.’ Yet he goes on to speak
about invariance under a relabelling of the elements of the causet as ‘discrete general
covariance’. But such a relabelling corresponds to a coordinate transformation, i.e.
a passive diffeomorphism. What is important physically is an active permutation of
the elements of the causet. But clearly all the physically relevant information about
the causet is contained in the network of order relations between its elements and,
as long as this is not changed, a permutation of the elements changes nothing. In
my terminology, the elements of the causet have quiddity—crudely put, they are
quanta of four-volume—but lack haecceity: nothing distinguishes one from the
other except its position in the causet. So, in spite of Sorkin’s terminology, there is
no problem here. The chief defect of the causal set approach is that so far it is not
really a quantum theory; that is, it has not been able to take the step from transition
probabilities to transition probability amplitudes, which would allow a Feynman
formulation of the theory, leading to ‘a ‘‘sum over histories’’ quantum theory of
causets’ (Dowker 2004), i.e. the addition of the amplitudes for indistinguishable
processes that begin with the same initial preparation and end with the same final
registration.

Perhaps associated with this problem is the circumstance that the theory is not very
closely linked to classical general relativity. It simply postulates certain things—such
as the discreteness of processes (i.e. four-volumes): the number of causet elements
gives the volume of the corresponding region of the approximating spacetime in
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Planck units⁵⁹—that one might hope to derive from a quantum version of general
relativity, for example by an appropriate quantization of the conformal factor in the
metric (i.e. the determinant of the metric tensor). In the last section, I shall offer
some suggestions about how this might be done.

3.8 WHAT STRUCTURES TO QUANTIZE?

There are a number of spacetime structures that play an important role in the
general theory of relativity (see Stachel 2003). The chrono-geometry is represented
mathematically by a pseudo-metric tensor field on a four-dimensional manifold. The
inertio-gravitational field⁶⁰ is represented by a symmetric affine connection on this
manifold. Then there are compatibility conditions between these two structures (the
covariant derivative of the metric with respect to the connection must vanish). As
noted above, major technical advances in the canonical quantization programme
came when the inertio-gravitational connection was taken as primary rather than the
chrono-geometrical metric. It is possible to start with only the metric field and derive
from it the unique symmetric connection (the Christoffel symbols) that identically
satisfies the compatibility conditions. A second order Lagrangian (the densitized
curvature scalar) then leads to the field equations in terms of the metric. This is
the route that was first followed historically by Hilbert, and is still followed in most
textbooks.

It is possible to treat metric and connection as initially independent structures,
and then allow the compatibility conditions between them to emerge, together
with the field equations (written initially in terms of the connection), from a first
order, Palatini-type variational principle. In this approach, metric and connection
are in a sense ‘dual’ to each other. Either of these methods may be combined with
a tetrad formalism for the metric, combined with one or another mathematical
representation of the connection, e.g. connection one-forms, or tetrad components
of the connection.

But one can go a step further and decompose the metric and affine connection
themselves. If one abstracts from the four-volume-defining property of the metric,
one gets the conformal structure on the manifold. Physically, this conformal structure
is all that is needed to represent the causal structure of spacetime. Similarly, if one
abstracts from the preferred parametrization (proper length along spacelike, proper
time along timelike) of the geodesics associated with an affine connection, one gets a

⁵⁹ See Dowker (2004). See also the more complete discussion in Sorkin (2003), which offers
several heuristic arguments.

⁶⁰ This is often referred to simply as the gravitational field. But it must be emphasized that
the deeper meaning of the equivalence principle is that there is no frame-independent separation
between inertia and gravitation. This is as true of Newton’s gravitational theory, properly interpreted
as a four-dimensional theory, as it is of general relativity.
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projective structure on the manifold.⁶¹ Physically the projective structure picks out
the class of preferred paths in spacetime.⁶² Compatibility conditions between the
causal and projective structures can be defined, which also guarantee the existence of
a corresponding metric and compatible affine connection.⁶³

But the important point here is that, as shown in Weyl (1921), in a manifold
with metric, its conformal and affine structures suffice to determine that metric (up
to an overall constant factor). We can use this circumstance to our advantage in the
first order, so-called Palatini variational principle for general relativity. As mentioned
above, in this case metric and affine connection are independently varied, and the
metrical nature of the connection follows from the variation of the connection. But
one can go further: break up the metric into its four-volume structure-determining
part (essentially, the determinant of the metric) and its conformal, causal structure-
determining part (with unit determinant); and break up the affine connection into
its projective, preferred path-determining part (the trace-free part of the connection)
and its preferred parameter-determining part (the trace of the connection).⁶⁴ Each
of these four parts may then be varied independently. Such a breakup is of particular
interest because, as noted in the previous section, the causal set theory approach to
quantum gravity is based on taking the conformal structure and the four-volume
structure as the primary constituents of the classical theory,⁶⁵ and then replacing
them with discretized versions (ibid.): the causal set idea combines the twin ideas of
discreteness and order to produce a structure on which a theory of quantum gravity
can be based.

However, in causal set theory no attention seems to have been paid to the
affine connection, and the possibility of finding quantum analogues of the traceless
projective and trace parts of the connection. The answer to this question might
lead to a link between the causal set approach and some quantized version of the
dynamics of general relativity. It is easy to set up a conformal-projective version
of the Palatini principle, in which the trace of the affine connection is dual to
the four-volume structure, suggesting that the projective connection is dual to the
conformal structure.⁶⁶

So a covariant quantization based on this breakup might lead to a representation in
which four-volume and conformal structures are the configuration variables—a sort

⁶¹ Alternately, and perhaps better put, if one abstracts from the concept of parallel transport its
property of preservation of ratios of parallel vectors, one gets the concept of projective transport,
which preserves only the direction of a vector.

⁶² Remember the distinction between curves, which are associated with a parametrization, and
paths, which are not. Since the holonomies of the affine connection are independent of the
parametrization of the curves, it is possible that the holonomies of the projective connection might
be more suited to a four-dimensional version of loop quantum gravity.

⁶³ See Ehlers et al. (1972). For some further results clarifying the interrelations between conformal,
(semi-)Riemannian, volume and projective geometrical structures, see Sanchez-Rodriguez (2001).

⁶⁴ For discussions of projective and conformal geometry, see Schouten (1954: 287–334).
⁶⁵ We can say that a spacetime is its causal structure (order) plus volume information (Dowker

2004).
⁶⁶ Further study has shown that the relations between the four structures are more complicated.

The results of this joint work with Mihaela Iftime will be reported elsewhere.
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of four-dimensional analogue of quantum geometro-dynamics; with the possibility
of another representation in which the projective connection and the trace factor
are the configuration variables—a sort of four-dimensional analogue of the loop
quantum gravity representation. Of course such an approach would seem to require
a full, four-dimensional quantization procedure rather than a canonical one.

As suggested above, such an approach might provide a way to derive the funda-
mental quantum of process in general relativity. Quanta of (proper) three-volume
and (proper) time might then be regarded as ‘perspectival’ effects of ‘viewing’ quanta
of four-volume by observers in different states of relative motion through spacetime.

ACKNOWLEDGEMENTS

I thank Carlo Rovelli for written comments, and Abhay Ashtekar and Thomas
Thiemann for oral comments, on an earlier version of this chapter. Of course, I am
solely responsible for my comments on their work.

I thank Mihaela Iftime, whose critical reading of the text led to a number of
important clarifications and improvements.

REFERENCES

Adams, R. M. (1979) ‘‘Primitive Thisness and Primitive Identity’’. Journal of Philosophy, 76:
5–26.

Ashtekar, A. (1987) Asymptotic Quantization. Naples: Bibliopolis.
(1999) ‘‘ ‘Discussions’ following ‘Quantum Field Theory of Geometry’ ’’. In T. Yu Cao

(ed.), Conceptual Foundations of Quantum Field Theory. Cambridge: Cambridge University
Press, (pp. 203–6).

and J. Lewandowski (2004) ‘‘Background Independent Quantum Gravity: A Status
Report’’. ArXiv:gr-qc/0404018 v1.

Auyang, S. Y. (1995) How is Quantum Field Theory Possible? New York: Oxford University
Press.

Baez, J. C., J. D. Christensen, T. R. Halford, and D. C. Tsang (2002) ‘‘Spin Foam Models of
Riemannian Quantum Gravity’’. Classical and Quantum Gravity, 19: 4627–48.

Bergmann, P. G., and G. J. Smith (1982) ‘‘Measurability Analysis of the Linearized Gravita-
tional Field’’, General Relativity and Gravitation 14: 1131–66.

Bohr, N., and L. Rosenfeld (1933) ‘‘Zur Frage der Messbarkeit der Elektromagnetischen
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4
Points, Particles, and Structural Realism

Oliver Pooley

Even if we are able to decide on a canonical formulation of our theory, there
is the further problem of metaphysical underdetermination with respect to, for
example, whether the entities postulated by a theory are individuals or not …

We need to recognise the failure of our best theories to determine even
the most fundamental ontological characteristic of the purported entities they
feature … What is required is a shift to a different ontological basis altogether,
one for which questions of individuality simply do not arise. Perhaps we should
view the individuals and nonindividuals packages, like particle and field pictures,
as different representations of the same structure. There is an analogy here with
the debate about substantivalism in general relativity. (Ladyman 1998)

In his paper ‘What is Structural Realism?’ (1998) James Ladyman drew a
distinction between epistemological structural realism (ESR) and metaphysical (or
ontic) structural realism (OSR). In recent years this distinction has set much of the
agenda for philosophers of science interested in scientific realism. It has also led to
the emergence of a related discussion in the philosophy of physics that concerns the
alleged difficulties of interpreting general relativity that revolve around the question
of the ontological status of spacetime points. Ladyman drew a suggestive analogy
between the perennial debate between substantivalist and relationalist interpretations
of spacetime on the one hand, and the debate about whether quantum mechanics
treats identical particles as individuals or as ‘non-individuals’ on the other. In
both cases, Ladyman’s suggestion is that a structural realist interpretation of the
physics—in particular, an ontic structural realism—might be just what’s needed to
overcome the stalemate. The purported analogy between the physics of spacetime
points and the physics of quantum particles has been further articulated and defended
by Stachel (2002), by Saunders (2003), and by French and Rickles (2003).

The main thesis of this chapter is that, whatever the interpretative difficulties of
generally covariant spacetime physics are, they do not support or suggest structural
realism. In particular, I hope to show that there is in fact no analogy that supports
a similar interpretation of the metaphysics of spacetime points and of quantum
particles. But the story is not simple, and a certain amount of stage setting is required.
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4.1 WHAT IS STRUCTURAL REALISM?

The genesis of contemporary structural realism is well known: John Worrall (1989)
proposed a realist interpretation of science with the intention of doing justice to
two opposing arguments. On the one hand there is the ‘no miracles’ argument:
the empirical success of science is held to be miraculous unless it has succeeded
in correctly describing the reality behind the phenomena it saves. On the other
hand, there is the ‘pessimistic meta-induction’, most famously, and forcefully, put by
Laudan (1981): theories that have been superseded in Kuhnian scientific revolutions
are now judged to be radically mistaken in their claims about the reality behind the
phenomena, and this despite their often having enjoyed exceptional empirical success.
It is only rational, therefore, to expect our current theories to suffer a similar fate come
the next scientific revolution. Worrall’s structural realism is designed to be realist
enough so as to do justice to the ‘no miracles’ intuition and yet agnostic enough to
avoid falling prey to the pessimistic meta-induction. In particular, continuity through
theory change at the level of form or structure is supposed to license the belief that
science is succeeding in characterizing the structure of reality (and hence its empirical
success is not miraculous) even if science is radically wrong in its description of the
fundamental nature of reality.

Ladyman asked whether this is epistemology or metaphysics. If it is epistemology,
he argued, then there are problems if the doctrine is cashed out in the most obvious
way, in terms of a theory’s Ramsey sentence. Epistemological structural realists, like
John Worrall and Elie Zahar, have since explicitly endorsed the Ramsey sentence
strategy, and have sought to defend it against Ladyman’s objections.

Recall that the Ramsey sentence T ∗ of a theory T is formed from T by replacing
all the theoretical predicates that occur in the theory with predicate variables and
then existentially quantifying. The epistemological structural realist holds that the
cognitive content of a theory is fully captured by its Ramsey sentence. Two, related,
results appear to pose a problem for such a position.

The implications of the first for structural realism were raised against Russell’s
structuralist position by Newman (1928); they have been discussed in the context
of the recent debate by Demopoulos and Friedman (1985). Essentially the same
result lies at the heart of Putnam’s paradox. The problem is that it is theorem of
set theory and second-order logic that any consistent proposition to the effect that
a certain set of properties and relations exist, no matter what structural constraints
are placed upon this set, will be true of any domain, provided that the domain has
the right cardinality (and the upward Lowenheim–Skolem theorem entails that the
only cardinality constraint concerns whether or not the domain is finite). The second
result is due to Jane English (1973): any two Ramsey sentences that are incompatible
cannot have all of their observational consequences in common. The conclusion to
be drawn appears to be that if a Ramsey sentence is empirically adequate, then it is
true. It doesn’t really make substantive claims about the structure of reality beyond
the phenomena since such claims, because they are made only in terms of existential
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quantification, will always be true (providing that the realm of the unobservable has
the right cardinality).

Worrall and Zahar’s response (2001) is to stress that the Ramsey sentence is
formed by replacing only the theoretical predicates with variables; the observational
predicates remain in place. But it is far from clear that this solves the problem. It
certainly means that a consistent Ramsey sentence doesn’t simply make a statement
about the cardinality of the set of individuals in the world; it does have empirical
consequences. But, putting aside Newman’s specific target in Russell, the charge was
never that structural realism conceived in terms of a theory’s Ramsey sentence made
only trivial claims about the world. The charge is that it collapses into empiricism;
that the realist claim that science is in some way latching onto reality beyond the
phenomena so as to do justice to the ‘no miracles’ intuition has been lost.¹

In fact, in further articulating their response, Worrall and Zahar face a dilemma.
They rely on a distinction between observational and theoretical predicates, but
let us ask how this might relate to a distinction between (directly) observable and
unobservable, or inferred, entities. Grant such a partition of the domain of the world,
and one has two possibilities: (1) an observational predicate is one that is satisfied only
by observable entities or (2) observational predicates can be satisfied by unobservable
entities.² If one opts for (1), then clearly the Newman problem applies in full force
to the question of which unobservable entities fall in the extensions of the theoretical
predicates. If one opts for (2), then one can ask with what right does the structural
realist claim to be able to keep fixed the extensions of the observational predicates,
given that such predicates apply to unobserved entities whose existence is conjectural.

And even if we grant that the extensions of the observational predicates are to
be held fixed, and that there is no subdomain of the world to which none of
them apply, the structural realist is still not entitled to assume that holding true
the Ramsey sentence will give a fix on the extensions of the theoretical properties
and relations over which it quantifies that is sufficient to satisfy realist intuitions. A
complete fix will be achieved if the original theory is categorical—if all of its models
are isomorphic—but (formalizations of) real scientific theories, even together with
reports of all relevant empirical data, will not, of course, be categorical.

In fact, Worrall and Zahar seem to be prepared to acknowledge that there is
no more to the content of a Ramsey sentence than all of its consequences that
contain only observational predicates. The reason why they do not consider that this
means that their version of structural realism collapses into empiricism is that they
distinguish between a theory’s observational content—which they claim must be
empirically decidable, if it is to count as genuinely observational—and the more
inclusive set that also includes all of the empirical generalizations that the theory
entails. They concede that the theory’s Ramsey sentence itself might be amongst the
latter. But even if to endorse empirical generalizations really is to ‘go against the

¹ For a careful defence of the claim that the truth of a theory’s Ramsey sentence is equivalent
to the combination of its empirical adequacy together with a cardinality constraint, see Ketland
(2004).

² The phenomenalistic strain in Zahar’s philosophy might suggest that he is committed to (1).
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canons of even the most liberal version of empiricism’ (2001: 241), by itself it hardly
amounts to scientific realism, structural or otherwise.³

Let me conclude this discussion of the problems facing epistemological structural
realism by mentioning one further worry. It is clear that the Ramsifying structural
realist has to tread a very fine line. The Ramsey sentence must be held to give
us enough of a fix on the extensions of theoretical predicates so as to avoid the
Newman problem. But to achieve too strong a fix would undermine the original
motivation for structural realism. The reason is that the Ramsey sentence refers to,
and quantifies over, exactly the same entities as the original theory. As French and
Ladyman press: ‘If the meta-induction is a problem about lack of continuity of
reference then Ramsifying a theory does not address the problem at all’ (2003: 33).

4.2 UNDERDETERMINATION

The idea of an ontic structural realism can provoke a definite sense of unease, for
it is hard not to worry that something akin to mystery mongering is taking place.
It is one thing to claim that our knowledge of the unobservable realm is limited
to structural knowledge, that all we can know about unobservable objects are their
structural properties. It is quite another thing to claim that all there is beyond the
phenomena is structure. What can this claim mean?

It would, however, be quite unfair to accuse the most prominent defenders of
ontic structural realism of mystery mongering. In order to get beyond the slogans
and metaphors and to arrive at a characterization of, if not ontic structural realism
itself, then of one of its expected achievements, it is time to consider the problem
of underdetermination. This problem is central to Ladyman’s positive case for OSR:
whatever else it is, OSR is intended to dissolve various metaphysical disputes centring
on underdetermination. It is supposed to provide a new metaphysical perspective
with respect to which certain troublesome, apparently irresolvable, choices simply do
not arise.

Ladyman distinguishes between two quite distinct ways in which a single theory
might be said to be empirically underdetermined.⁴ The first type arises due to the

³ Although it is perhaps close to the version of structural realism that I take Ladyman, in
particular, to advocate. This has no use for a notion of reality ‘behind’ the phenomena and involves
only the ‘minimal metaphysical commitment’ to ‘mind independent modal relations between
phenomena (both possible and actual)’ (French and Ladyman 2003: 46). Where Ladyman would
differ from Worrall and Zahar, presumably, is in claiming that these modal relations are not
‘supervenient on the properties of unobservable objects and the external relations between them,
rather this structure is ontologically basic’ (ibid. 46; cf. also Ladyman 1998: 418).

⁴ Traditional ‘underdetermination of a theory by data’ might be thought to involve two quite
distinct theories which are nevertheless empirically equivalent, either with respect to all the observa-
tional evidence so far (weak underdetermination), or in principle (strong underdetermination). The
types of underdetermination that Ladyman highlights, as will be seen, involve the interpretation of
a single theory. In what follows I simply set aside the traditional problem, and use the term empirical
underdetermination as a general term for the two special types of underdetermination that Ladyman
discusses.
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existence of different formulations of a single theory, formulations that can suggest
radically different ontologies if interpreted realistically. This particular problem for
the realist was stressed by Jones (1991). Call the type of underdetermination involved
Jones underdetermination. Ladyman calls the second type of underdetermination
metaphysical underdetermination. Roughly speaking, this type of underdetermination
arises because of the existence of alternative (realist) interpretations of a single
formulation of a theory, interpretations that again are supposed to involve radically
incompatible ontologies. According to Ladyman the underdetermination between
individual and non-individual interpretations of the quantum mechanics of identical
particles, and between substantivalism and relationalism is of this type. Another nice
example is the underdetermination between two rival conceptions of fields. Fields
can be viewed either as substantival entities in their own right, with infinitely many
degrees of freedom associated with their infinitely many point-like parts, or they can
be viewed as consisting in the instantiation of a pattern of properties by spacetime
points.

It is useful at this point to mention a parallel problem in the philosophy of
mathematics. In ‘What Numbers Could Not Be’ (1965), Benacerraf highlighted the
following difficulty facing anyone who would identify numbers with sets: there are
many proposals, they are incompatible so at most one can be correct, but it seems that
no cogent reason can be given for preferring one over another. If numbers are sets then
which sets they are seems to be underdetermined. Defenders of structuralist views
of mathematics view this difficulty that faces those who would take the reducibility
of arithmetic to set theory as disclosing that numbers are really sets as one of the
best supports for their philosophy. What all the set-theoretic constructions share is
the same structure, and this structure is all that matters. Does this parallel reflect
favourably on the ontic structural realist’s attitude to empirical underdetermination?⁵

For cases of empirical underdetermination to support ontic structural realism,
Ladyman had better be correct in saying that traditional realism goes beyond a
commitment to structure precisely in terms of metaphysical commitments that
are underdetermined by the evidence for them (Ladyman 1998: 418). On the
face of it, and without being told what a commitment only to structure might
involve, the claim does not look plausible. An obvious problem is that, on the most
straightforward characterizations of structure (e.g. a set-theoretic one), most cases of
different formulations of a theory will involve different structures.⁶ Consider a model
of a theory of Newtonian gravitation formulated using an action-at-a-distance force

Note that the division is not quite as clear cut as this summary suggests. Someone might argue,
on the basis of an instance of strong traditional underdetermination that in fact we have two
formulations of a single theory, not two theories. Conversely, someone might argue that Jones
underdetermination (defined below) really shows us that what we were inclined to treat as two
formulations of a single theory should in fact be regarded as two theories.

⁵ I return to the parallel in §4.3. A crucial question will be whether the parallel supports the
elimination of objects altogether.

⁶ A fact which undermines, I think, the parallel between empirical underdetermination (at
least of the Jones variety) and the underdetermination that motivates structuralist positions in the
philosophy of mathematics.
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and an empirically equivalent model of the Newton–Cartan formulation of theory.
There is no (primitive) element of the second model which is structurally isomorphic
to the flat inertial connection of the first model, and there are no (primitive) elements
of the first model which are structurally isomorphic to the gravitational potential
field, or the non-flat inertial structure of the second. Clearly a more sophisticated
notion of structure is needed if it is to be something common to models of both
formulations of the theory.

The claim that the structural realist might have the resources to be able to identify
something beyond the empirical that is in common to different formulations of
a single theory, and that he thus might be able to dissolve various interpretative
problems by transcending the root underdetermination, is supposed to get some
of its plausibility from the case of Schrödinger’s and Heisenberg’s original rival
formulations of quantum mechanics. Through the work of Weyl and others,
these formulations were soon recognized to be different representations of a single,
mathematical structure in which states of a system correspond to rays in a Hilbert
space, and observables correspond to operators (of the appropriate sort) that act on
this space.⁷ But there are at least three reasons to be sceptical that this example
alone lends support to the idea that underdetermination in general, and Ladyman’s
metaphysical underdetermination in particular, motivate a radical ontic structural
realism.

First, it is not clear that the ontic structural realist has a story to tell about this
example. As is well known, whether anyone has come up with a truly successful
realist interpretation—structural or otherwise—of the standard formulation of non-
relativistic quantum mechanics that subsumes both Schrödinger’s and Heisenberg’s
original formalisms is a controversial issue. Two of the potential candidates—GRW
(Ghirardi–Rimini–Weber) collapse theory and de Broglie–Bohm pilot wave the-
ory—break the unifying picture by preferring one basis with respect to which either
genuine collapse occurs, or with respect to which the true beables are defined. And
if more than one of the various interpretative options ultimately survives the many
criticisms they all face, it would seem that quantum mechanics remains beset by
underdetermination, albeit of a very different type to that involving wave versus
matrix mechanics.

Second, this one example gives us little reason to suppose that whatever was
achieved in this particular case will be, or even can be, repeated for other instances
of Jones underdetermination. Consider the underdetermination that exists (relative
to certain solutions) between Julian Barbour’s Machian 3-space approach to general
relativity (where the fundamental ontology consists of instantaneous 3-spaces and
does not involve any primitive temporal notions), the traditional curved-spacetime
formulation, and formulations involving spin-2 fields on a flat (or at least fixed)
background spacetime. Here we have a clear case of different formulations of a theory
that are associated with prima facie incompatible ontologies. A structural realist
dissolution of this problem requires an explicit characterization of a mathematical

⁷ In fact, Heisenberg’s matrix mechanics and Schrödinger’s wave mechanics were not strictly
equivalent; see Muller (1997a, 1997b)!
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framework that stands to each formalism as the abstract Hilbert space formalism
of quantum mechanics stands to Schrödinger’s wave mechanics and Heisenberg’s
matrix mechanics. Note that it is not enough that we have a good understand-
ing (as we do) of the various mathematical relationships that exist between the
formalisms. Ladyman’s structural realist needs a single, unifying framework, which
she can then interpret (in terms of an as-yet-to-be-articulated metaphysics of
structure) as corresponding more faithfully to reality than do its various realist
representations.

I am not optimistic that any such development is in the offing. It seems more likely
that theoretical advances will favour one formulation over the others. String theory’s
triumph would, in many senses, vindicate the spin-2 picture. The success of loop
quantum gravity (or of a variant, provided with the right sort of interpretation) could
vindicate Barbour’s advocacy of 3-space concepts over spacetime concepts.⁸ The idea
that underdetermination associated with different formulations is to be transcended
by a more general framework with respect to which the different formulations are
seen as different representations of a single, underlying reality might look suspiciously
like an unwarranted generalization from a single, special case.

Third, the Heisenberg–Schrödinger example involves Jones underdetermination.
However, the type of underdetermination that is supposed to be involved in the
debates between the substantivalist and the relationalist, and between advocates
of the ‘individuals interpretation’ of quantum particles and those who advocate
a particles-as-non-individuals interpretation, is what Ladyman calls metaphysical
underdetermination. Here it might seem more plausible that some interpretative
stance according to which the rival viewpoints are merely different representations of
the same reality will be possible. (But it is important to stress that those sympathetic
to an ontic structural realism have yet to provide a positive characterization of any
such position, so far they have only told us what the position is meant to achieve; see
section 4.3 below.) But equally, one might wonder whether the underdetermination
in question is one that should genuinely trouble the realist.

In fact, a genuine underdetermination between relationalism and substantivalism
is one that should trouble the realist. This is because such an underdetermination
would be an instance of Jones underdetermination. However, as things stand, there
simply is no such underdetermination. The standard formulations of general relativity
are straightforwardly substantivalist in that the metric field is (a) taken to represent
a genuine and primitive element of reality and (b) most naturally interpreted as
representing spacetime structure.⁹ Now some believe that the hole argument calls
this picture into question. But these same people also typically suggest that an
alternative formulation, which would correspond to a genuinely relationalist world
picture, should be sought (e.g. Earman 1989: ch. 9). I agree that relationalism

⁸ Such discrimination between alternatives by theoretical advances gets some support from the
history of physics, although the fact that underdetermination often reappears in a new guise means
that the realist should not take too much comfort from this state of affairs.

⁹ The second of these claims is contested by some (Earman and Norton 1987; Rovelli 1997). I
say more about it below.
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needs different physics (or at least a different formulation of the physics).¹⁰ But
I disagree that the formulation of general relativity (GR) that the realist naturally
interprets along substantivalist lines is in trouble because of the hole argument,
for there are different interpretative options available within the substantivalist
camp.

And it turns out that this is the true location of Ladyman’s metaphysical
underdetermination. The opposition that he, and Stachel, characterize as between
relationalism and substantivalism is really an opposition between haecceitist and
anti-haecceitist substantivalism.¹¹ I will explain later what I mean by these terms, and
why I believe that there is no real contest: anti-haecceitism is the clear winner. But
even if one thought that there was a genuine choice to be made, and that interpreting
the physics realistically failed, by itself, to make the choice, it is not clear why this
should trouble the scientific realist. For, as we will see, there is a sense in which
haecceitist substantivalism is simply an extension of anti-haecceitist substantivalism.
Anti-haecceitist substantivalism represents a realist core position which it may or
may not be correct to supplement. If this is the only choice to be made, it hardly
constitutes an interesting threat to the scientific realist’s belief in the existence of
spacetime points.

Things are otherwise with the quantum mechanics (QM) of identical particles.
For the benefit of those already au fait with the terminology, it turns out that, while
the physics of identical particles strongly suggests anti-haecceitism, anti-haecceitism
by itself does not suffice to explain all the peculiarities of the physics of quantum
particles. The difference between the two cases is traceable to a difference in the
physics. Perhaps unsurprisingly, the way in which classical GR is diffeomorphism
invariant is rather different from the way in which the quantum mechanics of identical
particles is permutation invariant.

The disanalogy highlights a sense in which it is misleading to present the quantum
mechanical case as an instance of underdetermination between two realist interpret-
ations, if the intended implication is that the two interpretations are equally viable.
While French (1989; French and Redhead 1988) may have clearly demonstrated
that the individuals interpretation of QM particles exists in logical space, it is
not really a serious contender.¹² Equally, the non-individuals interpretation, if it

¹⁰ Barbour’s 3-space approach to GR constitutes a genuinely distinct interpretation, but not a
relationalist one, since the fundamental ontology is substantival space (not spacetime).

¹¹ The positions have been labelled straightforward and sophisticated substantivalism by Belot
and Earman (1991; 2001).

¹² Ladyman’s claim that there is ‘much dispute about whether or not quantum particles … are
individuals’ (1998: 419) is unconvincing if to treat particles as individuals is to adopt the
interpretative option delineated by French, and French and Redhead. I am not, of course, denying
that exactly how one should conceive of quantum particles is a highly disputed question; rather I
am only claiming that there is a fair degree of consensus that one should not conceive of quantum
particles in certain ways. French (1998: 112, n. 62) himself states that it is not true that ‘anything
goes’, but I understand him to take viewing the particle labels of the standard tensor product Hilbert
space formalism as naming individuals as a genuine interpretative option. I don’t believe it is.
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truly accommodates the phenomena, is a more radical position than anti-haecceitist
substantivalism.¹³

In the next section I briefly consider how far OSR’s defenders have gone in
attempting to characterize the position. Before doing so, I wish to raise two worries
connected specifically to underdetermination. The first is that one might worry that
dissolving the underdetermination is not desirable. Recall that I mentioned above
the way in which the various alternative formulations of GR were linked to quite
distinct attempts to advance beyond that theory. Having these alternatives in play
might therefore serve a vital heuristic role in theoretical advance. Of course, from the
perspective of OSR, the various formulations still exist; they are just now understood
as different representations of the same structure. But perhaps, for advances to take
place, it is important that the different formulations are considered to be genuinely
distinct and exclusive alternatives. And perhaps, from the perspective of an advance,
that the subsequently favoured alternative could be unified with the others in a single
structure will seem like a happy accident; the overarching framework will appear to
have a secondary status, rather than a fundamental one.

The second worry is that a radical structural metaphysics might make the underde-
termination worse. Assuming such a metaphysics is possible (a big assumption), then
if one adopts it, one will view the previous alternatives as different representations
of the structure that one claims is fundamental. But is the fact that this is how it
looks from the perspective of OSR enough to commend adopting that perspective? It
seems likely that every side of the original underdetermination will be able to explain
the other side’s worldview. For example, if one believes in a dynamical spacetime
connection, one can explain why things are as if spacetime were flat and gravity were
a universal force. But why not also expect that the red-blooded realists will be able
similarly to explain away the structural realist’s perspective, just as GRW theory and
Bohm theory can (or are supposed to be able to) explain the success of orthodox
quantum theory? The defender of OSR can perhaps wield Ockham’s razor, but the
dialectical problem here, for the structural realist, is that this is exactly the type of
consideration that might also favour one traditional realist interpretation over anoth-
er. And since we do not yet have the structural realist metaphysics, or any guarantee
that such a thing is conceivable, if we end up having to wield Ockham’s razor in order
to vindicate it, one might wonder why one should go looking for it in the first place.

4.3 WHAT IS ONTIC STRUCTURAL REALISM?

If it has been made clear what the relation of ontic structural realism to the problem
of underdetermination is supposed to be, what has been said by way of a positive

¹³ As Teller’s discussion in his (2001) makes clear. As will become apparent, although I agree with
Teller that the interpretative options that the substantivalist has in the face of the hole argument are
not applicable to the case of identical QM particles, I differ with him both about how to characterize
the substantivalist options, and about the difficulty of providing a successful realist interpretation of
the quantum mechanics of identical particles.
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characterization of a position that can do the job? The answer is, at this stage, not
much, but in a recent paper French and Ladyman (2003) seek to further articulate
their vision of OSR.

I have already mentioned Ladyman’s claim that traditional realism goes beyond
commitment to structure precisely in commitments that are underdetermined by the
evidence. This suggests the tactic of attempting to identify exactly which elements
of the realist’s metaphysics are responsible for the underdetermination. French and
Ladyman have a clear view:

The locus of this metaphysical underdetermination is the notion of an object so one way
of avoiding it would be to reconceptualise this notion entirely in structural terms. The
metaphysical packages of individuality and non-individuality would then be viewed in a
similar way to that of particle and field in QFT, namely as two different (metaphysical)
representations of the same structure. (2003: 37)

The basic point in this quote, that OSR is to offer a perspective from which
viewpoints previously taken to be alternatives are seen as representations of the same
structure, has been well rehearsed above. What is new in this quote is the claim that
an elimination (or, at least, a reconceptualization) of objects is the key. A little later,
French and Ladyman are more specific:

We regard the ontic form of SR as offering a reconceptualisation of ontology, at the most
basic metaphysical level, which effects a shift from objects to structures. Now, in what terms
does such a reconceptualisation proceed? This hinges on our prior understanding of the
notion of an ‘object’ which has to do … with the metaphysics of individuality. Given the
above metaphysical underdetermination, a form of realism adequate to the physics needs
to be constructed on the basis of an alternative ontology which replaces the notion of
object-as-individual/non-individual with that of structure in some form. (Ibid.)

Before asking what we are to make of this talk of reconceptualizing objects in
terms of structures, it is worth raising the following worry. In the previous section,
a distinction was drawn between traditional and metaphysical underdetermination.
The present proposal appears to be addressed only to the latter type (and then, rather
specifically, to that involving the quantum physics of identical particles and, more
controversially, the interpretation of spacetime points). Surely the notion of an object,
and an object’s individuality, is not the root cause of the underdetermination between,
for example, spacetime formulations of GR and Machian geometrodynamics.

Putting aside this worry, let us ask what replacing the notion of objects with
that of structure comes to. It is worth recalling the parallel with structuralist views
in mathematics. Benacerraf’s own view was that his argument to the effect that
numbers could not be sets extended to support the conclusion that numbers could
not be objects at all. But this point of view is not shared by many contemporary
‘non-eliminative’ mathematical structuralists, who hold that one can agree that a
mathematical object is the very object that it is in virtue of its occupying its particular
place in the relevant mathematical structure, without in any sense eliminating it as a
genuine object.

One version of the non-eliminative view is Stewart Shapiro’s ante rem structuralism,
so-called after the analogous view concerning universals. This view takes ‘structures,
and their places, to exist independently of whether there are any systems of objects
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that exemplify them’ (1997: 9). The indifference to whether there exist objects
exemplifying the structures should not be taken to suggest an indifference to
the existence of mathematical objects. Rather the mathematical objects are to be
understood in terms of the ‘places’ in the structures; although they enjoy a somewhat
secondary ontological status to the structures in which they are places, their existence
is not being denied.

The idea of the independent existence of structures suggests an obvious comparison,
viz. with the view that physical objects are nothing but bundles of collocated properties
(‘bundle theory’). Most variants of such a view are held to face the decisive objection
that they entail an intolerably strong version of the principle of the identity of
indiscernibles. But if one takes relations, and the structures that they form, seriously,
one has the resources to frame a sophisticated bundle theory that entails only a
relatively weak form of the identity of indiscernibles. According to such a view, it
must always be possible to make out numerical diversity in relational terms that
do not presuppose identity and difference, but this allows that two objects may
nevertheless satisfy exactly the same open sentences with just one free individual
variable.¹⁴ Is this all that French and Ladyman have in mind when they talk of a
structural reconceptualization of objects?

Although it is suggested by their quoting, apparently with approval, Cassirer’s talk
of electrons as the ‘ ‘‘points of intersection’’ of certain relations’, and of entities being
‘constituted’ in terms of relations, there are two reasons why I doubt that it is what they
intend. First, the new structural metaphysics was supposed to transcend questions
of individuality/non-individuality. But the obvious interpretation of the bundle-
theoretic proposals is that they do yield individuals: determinately numerically distinct
particulars, albeit ones whose ontological status, and individuality, is secondary to,
and dependent upon, that of properties and relations. The second reason, which is
related to the first, is that there is no reason for a bundle theorist to have a problem
with standard logic and set theory. Standard logic and set theory presuppose the
existence of individuals that are determinately numerically distinct, but they do not
presuppose that the individuality of these individuals is independent of the properties
and relations that predicates can express, or of the sets that the individuals can form.
And yet French and Ladyman do see standard logic as a barrier to articulating their
view:

How can you have structure without (non-structural) objects? Here the structuralist finds
herself hamstrung by the descriptive inadequacies of modern logic and set theory which retains
the classical framework of individual objects represented by variables and which are the subject
of predication or membership respectively (cf. Zahar (1996) ). In lieu of a more appropriate
framework for structuralist metaphysics, one has to resort to a kind of ‘spatchcock’ approach,
reading the logical variables and constants as mere placeholders which allow us to define and
describe the relevant relations which bear all the ontological weight. (2003: 41)

Talk of ‘mere placeholders’ might suggest that their view is no more radical than
the bundle-theoretic suggestion, but in a later footnote they are more explicit about

¹⁴ The requisite formal treatment of identity goes back to Hilbert and Bernays (1934). It is
advocated by e.g. Quine (1986: 63–4), and recently has been systematically applied to issues in the
philosophy of physics by Simon Saunders (2000; 2003).
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what they perceive to be the inadequacies of set theory, and the current unavailability
of anything that serves the ontic structural realist’s needs:

[B]oth of these modes of representation—group theory and set theory—presuppose distin-
guishable elements, which is precisely what we take modern physics to urge us to do away
with. If we are going to take our structuralism seriously, we should therefore be appropriately
reflective and come up with thorough-going structural alternatives to group theory and set
theory … [Krause’s attempt to construct a ‘quasi-set theory’ (Krause 1992)] insofar as [it] is
based on objects which do not have well defined identity conditions … represents a formalism
of one side of our metaphysical underdetermination, rather than a structuralist attempt to
avoid it altogether. What is needed is the construction of a fundamental formalisation that is
entirely structural; we shall leave this to future works or future (cleverer) philosophers. (2003:
52; my emphasis)¹⁵

It is time to examine more closely whether the realist’s commitment to objects
really does lead to an objectionable form of underdetermination, as French and
Ladyman maintain.

4.4 OBJECTS

Ladyman claims that ‘traditional realism does involve acceptance of more than the
structural properties of theoretical entities’ (1998: 418). The realist’s additional,
metaphysical commitments are underdetermined by the empirical evidence but
are supposed to be of such interpretative importance to the realist that our best
theories fail to determine ‘even the most fundamental ontological characteristics of
the purported entities they feature’ (ibid. 419–20). What are the realist’s additional
commitments? Are they as central to a traditional realism as Ladyman claims? Should
we be troubled that facts concerning them are underdetermined by the physics itself?

The problem is supposed to concern whether the fundamental entities (spacetime
points or quantum particles) that the realist posits are individuals, but what is it for an
object to be an individual? This is, of course, a question that has been much discussed
in this context (van Fraassen 1991; French 1998; Teller 1998; French and Rickles
2003) but I have to confess myself unhappy with the course that these discussions
sometimes take, and with many of their presuppositions. For example, the problem
is sometimes approached by suggesting that if the objects are individuals, then there
is a limited range of options for understanding what their individuality consists in:

(i) objects might be individuated in virtue of their possessing some sort of haecceity,
(ii) the individuality of the substance or matter of an object might be held to

account for the object’s individuality,

¹⁵ Note that talk of ‘distinguishable elements’ is ambiguous. I stated above that standard logic
and set theory presuppose the determinate distinctness of its elements. I claim that logic and set
theory presuppose that their elements are distinguishable in no stronger sense than this. The
diffeomorphism invariance of GR in no way suggests that spacetime points fail to be distinguishable
elements in this sense, but the quantum physics of identical particles does threaten the view that
fundamental particles are numerically distinct.
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(iii) objects might be individuated in terms of their spatio-temporal location, or
(iv) objects might be individuated in terms of the properties they possess (and

perhaps, also, the relations they stand in).¹⁶

An object would then, presumably, be a ‘non-individual’ if none of these ways of
understanding it as ‘possessing individuality’ were available.

Talk of individuality, and of individuation, in these contexts is highly obscure. A
more promising approach to the question is to focus on questions of identity and
non-identity. First, one can ask, within the context of a single situation, about the
numerical distinctness of the objects featuring in the situation. Here there are two
obvious questions: (ND1) are the objects determinately numerically distinct? And,
if they are, (ND2) what (if anything) confers, or is the ground of, this numerical
distinctness? Second, one can ask about the trans-situation identity and distinctness of
objects in different situations (for example, situations that obtain at different times,
or different counterfactual possibilities). Here some of the possible questions are:

(TT) if an object that exists at one time is the same object as a particular object that
exists at another time, does anything account for, or ground, this identity, or
is it a primitive fact?

(TW) If an object that exists in one possible situation is the same object as an object
that exists in another possible situation does anything account for, or ground,
this identity, or is it a primitive fact?

Related to these questions is a rather more specific question:

(P) are the objects such that there can be two, genuinely distinct, situations which
differ solely in terms of a permutation of some of the objects involved?

When the situations in question are distinct possible worlds, (P) becomes a
question concerning haecceitism. As I will use the term, haecceitism is the position
that there are pairs of genuinely distinct possible worlds that differ solely in terms
of a permutation of some of the objects that exist in¹⁷ both possible worlds.¹⁸
Anti-haecceitism (concerning a class of objects) is simply the denial that two possible
worlds can differ solely in terms of a permutation of objects of that type. When the
situations in question are understood as obtaining at different times within a single
world, (P) is not a question about haecceitism.

Now clearly one’s answers to the questions (TT) and (TW), which concern
trans-temporal and trans-possibility identity respectively, will have a bearing on
how one answers the corresponding versions of (P). If one thinks that there can

¹⁶ Cf. French and Rickles (2003: 223).
¹⁷ Read ‘exist in’ in such a way that it is compatible with counterpart-theoretic approaches to

trans-world identity.
¹⁸ In this I comply with a usage that is standard in much recent philosophical literature. It is

due to David Kaplan (1975), and is, for example explicitly followed by Lewis (1986: ch. 4). As will
become clear, it should not be confused with a commitment to haecceities, however these are to be
understood. Of course, belief in a certain robust type of haecceity might license haecceitism in the
modal sense meant here.
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be primitive facts concerning trans-temporal, or trans-world, identity, then it seems
that one will be committed to the view that a permutation of objects is alone
sufficient to yield genuinely different situations of the type in question.¹⁹ The
converse, however, does not hold, at least in the case of trans-temporal identity.
One can hold that the state of a system at two different times differs solely by a
permutation of the system’s constituent objects without holding that the objects’
trans-temporal identities are brute matters of fact, for one might think that the
trans-temporal identities are determined by various trans-temporal relations that do
not supervene on the intrinsic states of the system at the two times in question.
The most obvious possibility, of course, is that the identities are underwritten by
the continuity of the objects’ trajectories. It seems plausible, however, that no such
relations are available to ground haecceitistic differences in the absence of primitive
trans-world identity.

Now questions of individuality appear originally to have entered discussions of
the interpretation of many-particle quantum mechanics in terms of question (P),
though it is perhaps not totally clear whether the trans-world or trans-temporal
version was in question. Crudely put, the assumption of equiprobability together
with the answer ‘Yes’ to (P)—states which differ solely over a permutation of the
objects involved are genuinely distinct states—yields Maxwell–Boltzmann statistics
(see page 114 below). Answering ‘No’, therefore, looks like a way of accounting for
quantum statistics. It is quite possible that all that some of the founding fathers of
quantum mechanics—such as Born, Heisenberg, and Pauli—meant by quantum
particles lacking individuality was that (some version of) (P) should receive a negative
answer. As we will see in §4.8, denying that a permutation yields a distinct situation
is not by itself sufficient to explain the full peculiarities of the quantum mechanics of
identical particles.

Let us return to the question of the metaphysical commitments of traditional,
object-positing realism. We have listed four putative accounts of individuality, (i)
to (iv), and we have reviewed a set of questions—(ND1), (ND2), (TT), (TW),
and (P)—concerning object identity. I wish to urge the following point of view:
it is sufficient for a certain class of objects to qualify as individuals that (ND1)
gets answered ‘Yes’—that in a given situation there are facts of the matter about
the objects’ numerical distinctness. In particular, I claim that answering ‘No’ to
(P)—especially in its modal version, does not impugn the objects’ status as genuine,
substantial, individuals.

Here I disagree with Paul Teller. He is concerned to identify a minimalist sense
of haecceity that is connected with the idea that a particular subject matter (e.g. that
of a particular physical theory) concerns things. I take it that an entity should be
counted as an individual just if it is a thing and has a haecceity in some properly
minimalist sense. Teller proposes three ‘tests’ for whether a subject matter includes
(minimalist) haecceities:

¹⁹ In fact things are not quite so straightforward: primitive trans-world identity can perhaps be
combined with a denial of purely haecceitistic differences if it is coupled with a strong enough
essentialism; cf. Maudlin’s response to the hole argument (1989, 1990).
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1. Strict identity: … there is a fact of the matter for two putatively distinct objects, either that
they are distinct or, after all, that they are one and the same thing.

2. Labeling: … the subject matter comprises things that can be referred to with names directly
attaching to the referents; that is … things can be named, or labeled, or referred to with
constants where the names, labels, or constants each pick out a unique referent, always the
same on different occurrences of use, and the names, labels, or constants do not function
by relying on properties of their referents.

3. Counterfactual switching: … the subject matter comprises things which can be counterfac-
tually switched, that is just in case a being A and b being B is a distinct possible case from
b being A and a being B, where A and B are complete rosters of, respectively a’s and b’s
properties in the actual world. (1998: 121)

‘Strict identity’ corresponds to a positive answer to (ND1); ‘counterfactual
switching’ corresponds to a positive answer to the possible worlds version of (P).
Now although Teller does not claim that the three tests are necessarily ‘different
ways of getting at the same idea’ (1998: 122), he clearly thinks that the con-
nections are close enough for the tests to be usefully grouped together.²⁰ But
if—as I claim—determinate intra-situation distinctness has no implications for
trans-situation identity, then such grouping can only lead to confusion. It is only
the denial of determinate intra-situation identity and distinctness that threatens
the individuality—the genuine objecthood—of the putative entities in question.
However, if questions of intra-situation distinctness and trans-situation identity
are not distinguished, one might erroneously infer non-individuality from the
denial of (primitive) trans-situation identity. Keeping the two notions distinct is
crucial if one is to understand the difference between difficulties raised by the
diffeomorphism invariance of classical GR, and by the (anti)symmetrization of
the quantum states of identical particles. In the next section we will see that the
former only has implications, via the hole argument, for trans-situation identity,
whereas the latter, at least according to some, threatens determinate numerical
distinctness.

I claim that the realist, in positing objects as individuals, is committed to the
determinate intra-situation numerical distinctness of the entities posited. To posit
‘non-individual’ objects, if sense can be made of this, would be to posit a class of
entities whose numerical distinctness was somehow not determinate.²¹ These two
positions—the positing of a class of determinately distinct objects and the positing of

²⁰ In fact, in his (2001: 377), Teller claims that (3) is a consequence of (1) and (2). It is true
that (1) and (2) allow us to form descriptions which, if they both describe possibilities, describe
possibilities that involve counterfactual switching (i.e. that differ merely haecceitistically). But it
does not follow from this fact alone that such possibilities exist. Note that ‘labeling’ will only fail to
be possible even though strict identity applies when no reference to the individuals is possible. But
even in such situations ‘reference’ via variables is possible. Compare our ability to talk about abstract
symmetrical structures, e.g. Black’s sphere world. In such cases labels or names can be used in a
generic sense, but do not refer to one, rather than the other, of the objects related by the symmetry
(cf. Teller 2001: 367).

²¹ And some think that sense can be made of this: see Dalla Chiara et al. (1998).
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a class of non-individual objects respectively—represent core realist positions. They
do not go beyond an acceptance of the ‘purely structural’ properties of the entities
in question (what properties could be more structural than the determinateness or
otherwise of numerical distinctness?). And to go so far, and no further, is hardly an
‘ersatz form of realism’, but rather a realism worthy of the name.

If the phenomena covered by a particular theory really were indifferent between
these two, radically different metaphysics, then one would have an interesting case
of genuine metaphysical underdetermination. Perhaps this is what we face in the
quantum mechanics of identical particles. It is inappropriate, however, to regard the
spacetime points of diffeomorphism-invariant generally relativistic physics as non-
individuals in this sense; the physics simply gives us no scope to do so. In any case, the
alleged metaphysical underdetermination discussed in the previous sections was not
solely an underdetermination between these two core realist positions. Rather it con-
cerned further metaphysical commitments to which the realist may or may not sign up.

Of course, the realist is perfectly entitled to sign up to other metaphysical
commitments, and he may well endorse particular answers to questions such as (TW)
and (P). In particular, it is clear that the four ways of understanding ‘individuality’,
(i)–(iv), mentioned above might well be held to underwrite particular answers to
such questions. The haecceities of (i), for example, might be thought both to ground
numerical distinctness and to underwrite haecceitistic differences; the properties and
relations of (iv) might be thought to ground numerical distinctness in such a way
as to rule out haecceitistic differences. A ‘bare particular’ view of objects is a specific
example of a metaphysics in line with (i), or perhaps (ii); the sophisticated bundle
theory of the last section is a specific example (though not the only example) of a
metaphysics in line with (iv).

To sum up, there are two points that I wish to make at this juncture. First any
‘underdetermination’ at this level surely should not trouble the scientific realist. It
looks as if a quite general, metaphysical debate is being played out in the context of
the entities of physics. Why should the fact that these two options arise in the context
of the interpretation of, for example, spacetime points trouble the scientific realist?
In this context, realism is a commitment to the existence of spacetime points, as
determinately distinct, substantial individuals. It is hardly a failure of our best theory
of them that it fails to determine whether they are bundles of properties, or bare
particulars. In fact, it is not clear that the theory is indifferent to the choice, for the hole
argument shows precisely that conceiving of spacetime points as something akin to
bare particulars has the unwelcome consequence of a thoroughgoing indeterminism.

The second point is that it has long been recognized that the choice between the
bare particulars view (according to which relata, and their numerical diversity, are
ontologically prior to their properties and relations) and a (sophisticated) bundle
theory (according to which relations are ontologically ‘prior’ to, and ‘constitute’ their
relata) presents us with a false dichotomy. A ‘no priority view’ seems to many to
be far more plausible than either. One can endorse the structuralist claim that the
numerical diversity of certain objects is grounded in their being situated in a relational
structure without reducing these objects to the properties and relations themselves.
Equally, and conversely, one can claim that facts of numerical diversity are not
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so grounded, without going on to claim that they nevertheless are grounded by
mysterious haecceities or substrata. Instead, one can just take such facts as primitive
and as in need of no further metaphysical ‘explanation’. It is time to see how these
issues play out in the context of the debate concerning substantivalism.

4.5 SOPHISTICATED SUBSTANTIVALISM

In debates concerning the nature of spacetime, substantivalism is simply the view
that spacetime and its pointlike parts exist as fundamental, substantial entities.
This realist view would appear to be what follows from a fairly literal-minded
reading of the mathematical formalism of the standard formulations of relativistic
physics. For example, the models of general relativity are typically taken to be
n-tuples of the form 〈M , g, φ1, …, φn−2〉 that satisfy Einstein’s field equations. M
is a four-dimensional differential manifold and g is a pseudo-Riemannian metric
tensor. M and g, taken together, are naturally understood as representing substantival
spacetime: the elements of M represent spacetime points, and g encodes the spatio-
temporal relations in which they stand. The fields φi represent the material content
of spacetime.

This simple story is supposed to be threatened by Einstein’s hole argument. In
its modern guise, which it owes to Stachel and to Earman and Norton, it points
out that if M1 = 〈M , g, φ1, …, φn−2〉 is a model of a generally relativistic theory,
then the theory’s diffeomorphism invariance entails that M2 = 〈M , d∗g, d∗φ1, …,
d∗φn−2〉 is also a model, for any diffeomorphism d (d∗g etc. are the pull-backs and
push-forwards of the original fields under the action of the d ). According to the
argument, the substantivalist is committed to the view that M1 and M2 represent
distinct possible worlds. It is then pointed out that this commits the substantivalist
to a radical form of indeterminism. In the light of the previous section, it will be
clear that what interests us is the claim that substantivalism—viewing spacetime
points as genuine individuals—entails that M1 and M2 represent two distinct
physically possible worlds. Before addressing this issue, however, I should briefly
consider another threat to the substantivalist understanding of GR, namely that g
should be understood, not as representing spacetime structure, but as a ‘gravitational’
field, much like any other material field.

Carlo Rovelli is someone who advocates such a view:

In the physical, as well as philosophical literature, it is customary to denote the differential
manifold as well as the metric/gravitational field … as spacetime, and to denote all the other
fields (and particles, if any) as matter. But … [i]n general relativity, the metric/gravitational
field has acquired most, if not all, the attributes that have characterized matter (as opposed to
spacetime) from Descartes to Feynman: it satisfies differential equations, it carries energy and
momentum, and, in Leibnizian terms, it can act and also be acted upon, and so on. …

Einstein’s identification between gravitational field and geometry can be read in two
alternative ways:

i. as the discovery that the gravitational field is nothing but a local distortion of spacetime
geometry; or
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ii. as the discovery that spacetime geometry is nothing but a manifestation of a particular physical
field, the gravitational field.

The choice between these two points of view is a matter of taste, at least as long as we remain
within the realm of nonquantistic and nonthermal general relativity. I believe, however, that
the first view, which is perhaps more traditional, tends to obscure, rather than enlighten, the
profound shift in the view of spacetime produced by general relativity. (1997: 193–4)

When seeking to decide between these two views it should also be borne in mind
that the ‘metric/gravitational field’ has also retained all of the attributes that lead
us to view the analogous structures in pre-GR theories as codifications of spacetime
structure. This point cannot be emphasized enough: there is a sense in which the
variable, dynamic metric field g of generally relativistic theories plays precisely the
same role as the flat, non-dynamic metric η of special relativistic theories. The sole
difference between the two types of theory is that in one case spacetime is dynamical,
and is governed by Einstein’s field equations; in the other it is not. So the sole
attribute that g has lost is the flip-side of one of the attributes that Rovelli claims
it has gained, namely it is no longer immutable but is affected by matter. And the
substantivalist will, of course, see this as making his realism about spacetime all the
more plausible: as Rovelli says, spacetime now obeys the action–reaction principle
(Anandan and Brown 1995).

What of Rovelli’s contention that the metric of GR satisfies differential equations?
The metric and affine structures of pre-GR theories also satisfy differential equations,
albeit equations (such as the vanishing of the Riemann tensor) that are not of a great
deal of physical interest.

What of the claim that the metric has acquired ‘most, if not all’ of the attributes
that might lead us to regard it as matter? Rovelli elaborates the point as follows:

Let me put it pictorially. A strong burst of gravitational waves could come from the sky and
knock down the rock of Gibraltar, precisely as a strong burst of electromagnetic radiation
could. Why is the [second] ‘matter’ and the [first] ‘space’? Why should we regard the second
burst as ontologically different from the [first]? (1997: 193)

The attributes in question all arise from the fact that the metric is dynamical. Now
this certainly supports the view that the metric represents a genuine entity, which
does not enjoy an inferior ontological status to matter. But why go further and seek
to assimilate it to matter? The phenomenon of gravitational waves certainly pushes
one to regard whatever is represented by the metric field as a concrete, substantival
entity. But why can’t we interpret the potentially devastating effect of gravitational
radiation as due to ripples in the fabric of spacetime itself?

Clearly we can give very different accounts of the rock’s destruction by electromag-
netic radiation and by gravitational radiation. According to the substantivalist, the
parts of the rock of Gibraltar, as part of an extended rigid body, are being continually
and absolutely accelerated away from their natural free-fall motions towards their
common centre. The accelerating forces are the electromagnetic forces that account
for the rock’s rigidity. When the rock is hit by a strong burst of electromagnetic
radiation, the natural motions of the parts of the rock do not (significantly) change.
Rather the parts of the rock are differently accelerated by forces that overcome the
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counteracting forces between the parts of the rock. When the rock is hit by gravit-
ational radiation, however, no additional accelerative forces are applied. Rather the
natural motions are no longer towards the rock’s centre but are radically divergent.
So divergent, in fact, that the electromagnetic binding forces of the rock are no longer
sufficient to accelerate the parts of the rock away from their natural trajectories.

The extent to which the metric should be assimilated to other fields is connected
to the controversial question of whether gravitational waves, and more generally the
metric, carry energy and momentum. The status of gravitational stress-energy is an
intricate topic, but the case for drawing a distinction between it and the stress-energy
of matter seems compelling (see Hoefer 2000, for an extended discussion). Scenarios
where gravitational stress-energy seems most well defined typically involve island
matter distributions in asymptotically flat spacetime. Exactly those cases, in other
words, where the metric field can be analysed into the flat metric of special relativity
(SR) plus a perturbation (see Norton 2000: §3 and the references therein). It is
the perturbation, if anything, that corresponds to the ‘gravitational field’ and carries
energy momentum. But Rovelli appears not to wish to view just the perturbation
as representing a material field but instead wishes to brand the entire metric as
‘material’. Gravitational stress-energy and gravitational waves do not force such an
interpretation.

Let us grant, then, that a compelling case for regarding the metric field as just
another material field has not been made, and that a straightforward, spacetime
realist reading of generally relativistic theories remains viable. Our question now is
whether such a reading also supports the view that two models related by a non-
trivial diffeomorphism represent distinct possibilities. It is clear that this question is a
version of the previous section’s question (P). If our two diffeomorphic models, M1
and M2, are taken to represent two distinct physically possible worlds, then they are
worlds which differ solely over a permutation of the spacetime points.

There is close to a consensus in the philosophical literature on Earman and Norton’s
hole argument that there is nothing anti-substantival about denying that there can be
such distinct possible worlds (Butterfield 1989; Brighouse 1994; Rynasiewicz 1994;
Hoefer 1996; an exception is Maudlin 1990). Following Belot and Earman, call any
substantivalist position that denies haecceitistic differences, and regards M1 and M2
as two representations of the same possible world, sophisticated substantivalism.

Belot and Earman refuse to be convinced that the substantivalist can have it so easy.
They see sophisticated substantivalists’ responses either as lacking a ‘coherent and
plausible motivation’, or as indicative of the ‘insularity of contemporary philosophy
of space and time’ (1999: 167).

I would argue that it is Belot and Earman’s refusal to take seriously the responses
that they criticize which lacks a coherent and plausible motivation. In particular,
their concern is that philosophers of physics appear to have cut themselves off from
what physicists working in the area view as genuine conceptual problems. But the
philosophers’ defence of substantivalism, and their rejection of the dilemma posed by
the hole argument, is not incompatible with taking seriously the concerns of working
physicists. On closer scrutiny, and despite the lip service some physicists pay to it,
the hole argument, and the debate between substantivalism and relationalism, turns
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out to have rather little to do with the issues of concern to physicists. To insist on
reading the issue of substantivalism into these interpretative questions can only lead
to confusion.

Two prime examples of physicists’ concerns are (i) the notion of a background
independent theory and (ii) whether a theory’s observables should be diffeomorphism
invariant.

Concerning (i), note that background independence has to do with whether
a theory posits non-dynamical, absolute (background) fields, not with whether
it sanctions haecceitistic differences. This feature of a theory has nothing to do
with the hole argument, as Earman and Norton’s application of that argument to
‘local spacetime’ formulations of background-dependent pre-GR theories illustrates
(1987: 517–8).²² However, it may well be connected to whether the appropriate
Hamiltonian formulation of the theory is a constrained Hamiltonian theory for
which the diffeomorphism group is a gauge group in a technical sense.²³

Concerning (ii), the question of whether a theory’s observables are diffeomorphism
invariant needs further explication.²⁴ If it is taken to entail that no physical magnitude
can take different values at different times (a version of the so-called ‘problem of
time’), then it is a stronger claim than the anti-haecceitistic claim that all diffeomorphic
models represent the same physical situation.

Sophisticated substantivalism may be compatible with taking seriously physicists’
concerns, but does it have a coherent motivation? The obvious thing to be said for
the position is that one thereby avoids the indeterminism of the hole argument. This
motivation is, of course, rather ad hoc. A less ad hoc motivation would involve a
metaphysics of individual substances that does not sanction haecceitistic differences,
perhaps because the individuals are individuated by—their numerical distinctness
is grounded by—their positions in a structure. In the next section we will see that
Stachel has recently sought to embed his response to the hole argument in exactly
this type of more general framework. I hope enough has been said in this section
and the previous one to indicate the coherence of such a point of view; it is perhaps
a modest structuralism about spacetime points, but it is a far cry from the objectless
ontology of the ontic structural realist.

There is one final line of defence of sophisticated substantivalism that needs
to be undertaken. One might concede that in principle anti-haecceitism is com-
patible with spacetime points being substances, but nevertheless believe that the
theoretical treatment of spacetime, read literally, strongly supports haecceitism.
Is it not the case that the natural reading of M1 = 〈M , g, φ1, …φn−2〉 and
M2 = 〈M , d∗g, d∗φ1, … d∗φn−2〉 interprets each point of M as representing the

²² Of course, it becomes a moot question whether the fields representing spacetime structure
should count as ‘non-dynamical’ background fields in the context of local spacetime formulations
of pre-GR theories. In one sense they are dynamical, since they are held to obey field equations
such as Ra

bcd = 0. In another sense, they are non-dynamical, since they do not vary (except globally)
from model to model.

²³ See Earman (2003: 151–3); I hope to return to this topic on a future occasion.
²⁴ Consider, for example, Smolin’s distinction between ‘causal observables’ and ‘Hamiltonian

constraint observables’ in (2000).
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very same point in each model, and therefore interprets the two models as attrib-
uting different properties to each point? Moreover, doesn’t the mathematics of GR
presuppose that the numerical distinctness of the points of M is independent of
the properties and relations assigned to them by the fields g, φi? So if we’re being
literalistic realists about our theories, shouldn’t we take a similar stance towards the
individuality of spacetime points?

Something like this line of thought might well be responsible for what resistance
there remains to sophisticated substantivalism’s combination of anti-haecceitism
and realism about spacetime points. But it does not stand up to scrutiny. For
a start, it is not obvious that the numerical distinctness of the points of the
mathematical object M is independent of their properties and relations. We have
already had reason to consider structuralist approaches to mathematical objects.
According to the mathematical structuralist, the individuality of the points of M
does depend on their positions in the mathematical structure of which they are
part. The mathematical structuralist, of course, needs to be able to give an account
of the difference between the two models M1 and M2. Here the most obvious
strategy is to point out that such a difference can be made out if the two are
considered as distinct substructures embedded in a larger structure (cf. Parsons
2004: 68–9). (And if this line is taken, there is no reason, of course, to think that
the substantivalist should postulate a counterpart in concrete reality of this larger
(unspecified!) structure.)

If one remains attracted to these particular lines of haecceitist argument, a useful
question to ask oneself is the following. Suppose, for the sake of argument, that
the sophisticated substantivalist is right: individual spacetime points exist as basic
objects, but possible spacetimes correspond to equivalence classes of diffeomorphic
models of GR. How should the formalism of GR be modified to take account of the
anti-haecceitism? (Note that this is not the demand for a relationalist reformulation
that does away with spacetime points.) It should be clear that no such thing is
needed. As soon as one is committed to the existence of a set of points with various
geometrical properties, even if one is avowedly anti-haecceitistic, the most obvious
way of representing such a set will be open to a haecceitistic misinterpretation.

In fact, the haecceitist substantivalist’s mistake is a specific instance of a common
type. Back in 1967, Kaplan identified the occurrence of essentially the same error in
a rather different context:

the use of models as representatives of possible worlds has become so natural for logicians that
they sometimes take seriously what are really only artifacts of the model. In particular, they are
led almost unconsciously to adopt a bare particular metaphysics. Why? Because the model so
nicely separates the bare particular from its clothing. The elements of the universe of discourse
of a model have an existence which is quite independent of whatever properties the model
happens to tack onto them. (1979: 97)

It seems that the use of mathematical models as representatives of possible worlds
has become so natural for some philosophers of physics that they too have been led
almost unconsciously to endorse haecceitistic distinctions that are really only artefacts
of the model.
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4.6 STACHEL’S GENERALIZED HOLE ARGUMENT FOR SETS

According to John Stachel, the moral of the hole argument is that diffeomorphically
related mathematical solutions to the field equations of GR (hereafter: diffeomorphs)
do not represent physically distinct solutions. Although, in the past, he has referred to
his position as a relationalist one, it is really, as I use the terms, a version of sophisticated
substantivalism. He does not believe that to count diffeomorphs as representing the
same physical solution one has to eliminate spacetime points.²⁵ According to Stachel,
one would be forced to view diffeomorphs as representing distinct physical solutions
if one took spacetime points to be ‘individuated independently of the metric field’.
One can maintain the existence of points and count diffeomorphs as representing
the same physical solution if one assumes that ‘the points of the manifold are not
individuated independently of the gμν field; i.e., that these points inherit all their
chronogeometrical (and inertiogravitational) properties and relations from that field’
(Stachel 2002: 233).²⁶

So far I am in agreement with Stachel. The talk of the points being ‘individuated’
is a little obscure. At one point Stachel talks equivalently of an entity being
‘distinguishable’ from entities of the same kind (p. 236). ‘Distinguishable’ can be
understood in an epistemological or an ontological sense. It must be the latter
that is in question, and I suggest that, minimally, it is the entities’ determinate
numerical distinctness that is at stake (recall questions (ND1) and (ND2) from
section 4.3). In claiming that points are not individuated independently of the metric
field, Stachel can be understood as claiming that their determinate distinctness
from one another is grounded in their standing in the spatio-temporal relations
to one another that they do. This in turn is held to prevent our interpreting
diffeomorphically related models as representing two situations involving the very

²⁵ He does refer to fibre bundle formulations of theories in which one ‘eliminates’ an inde-
pendently specified base space, replacing it with the quotient space of the total space by the fibres.
With the theory so formulated, one cannot permute the fibres of the total space without thereby
permuting the points of the base space. But this does not mean, as Stachel claims, that one cannot
even generate the models that provide the basis of the original hole dilemma. Two models the
cross-sections of which are related by a fibre-preserving diffeomorphism of the total space still
represent mathematically distinct objects. Further, since such cross-sections are ‘differently placed’
relative to the fibres, and since the base space is simply defined as the quotient space of the total space
by the fibres, these two models represent two distributions of structurally identical fields ‘differently
placed’ on the base space (i.e. spacetime). Of course, Stachel deems all cross-sections related by
fibre-preserving diffeomorphisms of the total space to be physically equivalent. I agree. But we
can, with as much right, make the analogous claim of the models of the traditional formulation of
the theory. Consideration of formulations in terms of fibred manifolds without an independently
specified base space gains us nothing.

²⁶ In my view there is something at least misleading about talk of the points ‘inheriting’ their
properties from this ‘field’. It suggests that the field is some entity in its own right (the ‘gravitational
field’). My preferred view, as explained in the previous section, is that the mathematical metric field
is simply a specification of the points’ (spatio-temporal) properties. It does not represent something
that bestows or engenders the points’ properties. It stands to the points as, for example, red stands
to red things (however that is!).
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same points as occupying different positions in the very same network of spatio-
temporal relations.

Now Stachel wishes to situate the hole argument, and its moral concerning the
individuation of spacetime points, in a more general framework.²⁷ Rather than
considering only sets of spacetime points, he considers an arbitrary set S of n entities.
And rather than considering the spatio-temporal properties encoded by gμν, he
considers an arbitrary ensemble R of n-place relations.²⁸ Stachel calls the relational
structure 〈S, R〉 a ‘world’. What can be said about the ‘individuation’ of the elements
of S? Stachel suggests that there are two possibilities (within which he draws further
divisions, which I will ignore for now):

1. the entities are individuated (that is, [are] distinguishable from other entities of
the same kind) prior to and without reference to the relations R…

2. the entities are not individuated (that is are indistinguishable among themselves)
without reference to the relations R. (2002: 236)

Later Stachel goes on to adapt terminology he borrows from Marx, and dubs entities
of kind (2) reflexively defined entities.

Now diffeomorphisms are simply a special class of permutations of the set of
manifold points, those that preserve the manifold’s topological and differential
structure. And just as one can start with a given model 〈M , g, φi〉 and consider the
mathematically distinct model 〈M , d∗g, d∗φi〉 generated by the action on the fields
induced by a particular diffeomorphism d , one can start with 〈S, R〉 and consider
a new structure 〈S, PR〉 generated by the action on the M relations R1, … RM in
R induced by an arbitrary permutation P : S → S. The definition of PRi ∈ PR is
obvious: (taking an n-place relation to be defined extensively as a set of n-tuples
of elements of S, i.e. as a subset of Sn) for any s = 〈s1, …, sn〉 ∈ Sn, s ∈ PRi just if
P−1s = 〈P−1(s1), …, P−1(sn)〉 ∈ Ri.

By analogy with the interpretative questions that arise in connection with 〈M , g, φi〉
and 〈M , d∗g, d∗φi〉, one might consider whether the structure 〈S, R〉’s being a possible
world entailed that 〈S, PR〉 is also a possible world. And, if both are held to be
possible worlds, one might consider whether 〈S, R〉 and 〈S, PR〉 should be interpreted
as the same, or as distinct possible worlds. Of course, 〈S, R〉 and 〈S, PR〉 will, in
general,²⁹ not be identical, just as 〈M , g, φi〉 and 〈M , d∗g, d∗φi〉 are, in general,
distinct mathematical entities. If we wish nonetheless to talk of their ‘being’ the
same possible world, then a distinction needs to be drawn between the structures

²⁷ In what follows I adopt as far as possible Stachel’s convention of using boldface type when
referring to sets, italic type when referring to n-tuples (and to numbers), and roman type when
referring to elements of sets or of n-tuples.

²⁸ One might consider relations of any adicity. For any adicity N < n, Stachel claims that the
restriction to n-place relations is no real restriction because there is a natural way of associating an
n-place relation with any N -place relation. Assuming I have understood his description correctly,
the procedure that Stachel outlines will associate a single n-place relation with some pairs of distinct
relations (of different adicity). I do not claim that this conflation causes problems for Stachel.

²⁹ The qualification concerns the case when all of the relations in R are symmetric with respect
to all permutations of S (i.e. if for any Ri , s ∈ Ri just if Ps ∈ Ri , ∀P), a case that will be important
in the context of quantum particles.
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〈S, R〉 and 〈S, PR〉, considered as mathematical objects, and the possible worlds they
represent. Our second question then becomes whether 〈S, R〉 and 〈S, PR〉 represent
the same, or different, possible worlds.³⁰

Stachel talks of permutable and generally permutable worlds, theories, and even
entities. Although this is not how Stachel defines the terms, I propose the following
definitions. The structure 〈S, R〉 is a permutable world just if, if it represents a possible
world then 〈S, PR〉 also represents a possible world, for every permutation P. The
structure 〈S, R〉 is a generally permutable world just if, if it represents a possible world
then 〈S, PR〉 represents the same possible world, for every permutation P. With
one minor qualification, I can follow Stachel in his definition of a theory and of a
permutable theory:

A theory is a ‘rule that picks out a class of worlds: in other words, a class of ensembles of n-place
relations: R, R′, R′′, etc., whose places are filled by the members of the same set S of n entities
a; further, let it be a permutable theory … [just in case], if R is in the selected class of worlds,
so is PR for all P. (2002: 244)³¹

Despite their status as the analogues of diffeomorphic models of GR, Stachel
nowhere explicitly considers two distinct structures such as 〈S, R〉 and 〈S, PR〉.
Instead he seeks to define things in terms of expressions of the form ‘Ri(a) holds’ and
‘R(a) holds’.³²

Now the claim that Ri(a) holds is simply the claim that a ∈ Ri (recall that a is a
particular n-tuple and that we are considering only n-place relations). But what does
‘R(a) holds’ mean? The obvious interpretation is that a ∈ Ri for all Ri ∈ R.³³ But
note that, for generic sets S and ensembles of relations R, there will be no sequence
a ∈ Sn such that R(a) holds!³⁴

This might lead one to suspect that Stachel’s attempts to define the ensemble of
relations PR, and his notion of a permutable world, in terms of the expression R(a)
are doomed, and indeed they are. PR is said to hold for a if and only if R(P−1a)
holds. Stachel is not explicit about whether this is required for every a, but either way

³⁰ A way of talking that Stachel quickly slips into.
³¹ My reservation concerns talk of a relation’s ‘places’ being ‘filled’ by the members of some

set. If we are conceiving of relations on a given domain in purely extensional terms (cf. Stachel
2002: 237), then strictly it makes no sense to talk of a fixed relation as having places that might be
variously filled.

³² Note that, as is standard practice, Stachel here makes the letter Ri do double duty as a predicate
letter (in the expression ‘Ri(a)’) and as the name for the relation that is this predicate’s extension.

³³ For the record, Stachel’s own elucidation is that ‘R(a)’ stands for ‘the entire ensemble of
relations filled by that sequence [i.e. by the particular n-tuple a]’ (2002: 237).

³⁴ It will fail to hold for all a whenever R contains two disjoint relations. Rather unfortunately
for Stachel, the pair of binary relations (promoted to continuously infinite relations as per Stachel’s
recipe) on a set of spacetime points expressed by the predicates ‘x is timelike related to y’ and ‘x
is spacelike related to y’ is just such an example of disjoint relations. It will also fail even if no
relations are disjoint, just so long as, for example the intersection of two relations does not intersect
with a third etc. There is another oddity worth noting. Even for structures 〈S, R〉 such that R(a)
(interpreted in this way) holds, R(a) constitutes an incomplete, and very arbitrary, specification of
the structure. We are told that for this particular a, a ∈ Ri for all Ri ∈ R, but this tells us next to
nothing about R. To be given the complete state of the world, we need to be told, for every n-tuple,
and for every Ri individually, whether or not the n-tuple is in the relation.
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the definition is not equivalent to the (more standard) definition of PR given above.
For consider, as an example, S = {s1, s2}, R = {R1 = {〈s1, s1〉}, R2 = {〈s2, s2〉}} and
R′ = {R′

1 = {〈s1, s1〉}, R′
2 = {〈s1, s2〉}}. Now 〈S, R〉 and 〈S, R′〉 are non-isomorphic

structures, but because neither R(a) nor R′(a) holds for any ordered pair a of elements
of S, R(a) holds iff R(P−1a) holds.³⁵

Stachel’s definition of a permutable world is equally problematic. 〈S, R〉 is said to
be permutable if, whenever R(a) is a possible state of the world, then PR(a) is also
a possible state of the world, for every n! permutations P of a.³⁶ In the light of the
troubles noted in the last paragraph, let us simply take 〈S, PR〉 to be the isomorphic
structure generated by P, in the way outlined above on page 105, and consider again
the example S = {s1, s2}, R = {R1 = {〈s1, s1〉}, R2 = {〈s2, s2〉}}. Intuitively, if 〈S, R〉
is to be permutable, 〈S, PR〉 should be (should represent) a possible world. But since
R(a) and PR(a) are not states of the worlds 〈S, R〉 and 〈S, PR〉 for any a, whether
〈S, R〉 counts as permutable will be independent of whether or not 〈S, PR〉 also
counts a possible world. One might hope that by taking the relations to be defined
intensively, rather than extensively, sense can be made of these definitions. A little
reflection shows that this will not work either.³⁷

The ensemble PR, then, simply cannot be defined in terms of R(a) in the way
Stachel suggests, however one understands R(a). In fact, the obvious definition of
PR in terms of expressions such as Ri(a) is the following:

∀P, ∀Ri ∈ R and ∀a ∈ Sn, PRi(a) iff Ri(P
−1a)

That is, it must be given in terms of the individual expressions Ri(a), not via the
single expression R(a). Why does Stachel introduce the expression R(a) at all? It
figures prominently in his set-theoretic version of the hole argument. We are asked to
consider the class of ensembles of relations R, R′, R′′ picked out by some permutable
theory, and then the question is put ‘Could such a permutable theory pick out a

³⁵ This will be true for every pair of ensembles of relations on the same domain such that, for
each ensemble, no n-tuple of elements of the domain is a member of every relation; the ensembles
do not even have to be equinumerous! The condition ‘PR(a) holds iff R(P−1a) holds’ therefore
clearly fails to define PR in terms of R.

³⁶ If there is a possible world in which R(a) holds, Stachel calls R(a) a possible state of the world,
and if R(a) holds he calls it a state of the world (2002: 237–8). As Stachel notes, there will only be
as many as n! distinct permutations if a is a non-duplicating n-tuple. With what right does Stachel
consider only non-duplicating n-tuples? This is an indication that he is not really interpreting ‘R’ in
‘R(a)’ as expressing an ensemble of relations, extensively defined or otherwise.

³⁷ Stachel provides the following example to illustrate his definitions. Our set is {Cat, Cherry}
and R(x1, x2) holds iff x1 is on a mat and x2 is on a tree. With the relation specified in this way,
one can perhaps make sense of the same relation ‘having its places filled’ by different n-tuples, even
when the relation does not in fact hold of the n-tuples in question (cf. 2002: 237). But this does
not enable us to make sense of PR(a). For consider extending the example with another relation:
R′(x1, x2) holds iff x1 is red and x2 has claws. And consider the world in which the cat is on a mat
(and the cherry is not), the cherry is on a tree (and the cat is not), the cherry is red (and the cat is
not) and the cat has claws (and the cherry does not). The obvious interpretation of ‘R(Cat, Cherry)
holds’ is that the cat is on a mat and the cherry is on a tree and that the cat is red and that the
cherry has claws, i.e. the claim that R(Cat, Cherry) holds is false at the specified world, and, let us
suppose, at every possible world. And, more generally, it seems that we again have an ensemble R
of relations for which R(a) never holds for any ordered pair a of our domain.
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unique state of the world by first specifying a unique world, i.e., one R; and then
specifying how any number m of its places less than (n − 1) are filled?’ (2002: 244)
Not if the entities in question are not reflexively defined, claims Stachel, for then,
‘R(a) and PR(a) represent different states of the world’ (ibid.). But this is just false.
Whenever all the relations in R are symmetric with respect to all permutations, we
get back the identical structure (R(a) iff PR(a) ), so there can be no question of their
representing different worlds. And even setting aside the special case of symmetric
ensembles of relations, we again have the unwarranted restriction to non-duplicating
n-tuples, for otherwise there is the possibility that R(a) and PR(a) are both states of
the same structure because, although R �= PR, a = Pa.

I think enough has been said to show that, taken literally, Stachel’s description
of a set-theoretic hole argument is in terminal trouble. But it is equally clear how
to make precise what he must have had in mind. We need the notion of a complete
description of the structure 〈S, R〉, and also of a partial description, for the latter will
be the analogue of a specification of a metric field on all of a differentiable manifold
save for a compact region (the ‘hole’ of the hole argument).³⁸ One way of giving
such a complete description is the following. We suppose that for every relation
Ri ∈ R we have a predicate symbol Ri (I follow Stachel in using the same letter for
the predicate and the relation it expresses). And similarly, we suppose that we have
a name ak for every element of S. A complete description will be a conjunction of
the following three formulas: (i) an (n2 × M )-place conjunction that includes, for
every predicate letter Ri and for every n-place sequence a of the names for elements
of S, either the formula Ri(a) or the formula ¬Ri(a); (ii) an n!-place conjunction
(
∧

i �=j ai �= aj) stating that different names name different elements of S; and (iii) an
n-place disjunction (∀y(

∨n
i=1 y = ai)) stating that there are no elements of S other

than a1, …, ak.
Now we may introduce R(a) as an abbreviation for this conjunction, where a

is some particular non-repeating n-place sequence of the n names ak. R(P−1a) will
then be (an abbreviation of) a complete description of the (mathematically) distinct
but isomorphic structure 〈S, PR〉, and ∃x1…∃xnR(x1, …, xn) will be a structural
description true of any structure isomorphic to 〈S, R〉.³⁹

I suggest that it is expressions such as R(a) that Stachel needs for his hole argument
for sets. Recall that he considers first specifying a unique world R, and then specifying
how many any number m of its places less than (n − 1) are filled. Given the extensive
conception of relation that he began with, to specify R is already to specify, for every

³⁸ In what follows I am influenced by the notational conventions of §3 of Belot (2001), which
provides an admirably clear and uncluttered account of the symmetries and permutations of abstract
structures and our means of describing them in a first-order language. Stachel is at pains to stress
the coordinate independence of the hole argument, which might partly account for his reluctance
to engage in the necessary, though limited, semantic ascent.

³⁹ As Belot notes, no first-order theory (i.e. no set of sentences involving only variables and
no names) can determine a structure up to isomorphism if n is infinite. Correspondingly, the
prescription we are considering, which does determine the structure up to isomorphism, yields an
infinitary formula, i.e. something that is not well-formed according to standard first-order logic.
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n-tuple, whether or not it is a member of each relation in R.⁴⁰ Instead, what he
should have considered was first specifying an isomorphism class of structures via
∃x1…∃xnR(x1, …, xn), and then specifying how m ‘places’ in this structure are filled
via a formula such as ∃x1…∃x(n−m)R(b, x1, …, x(n−m)), where b is some particular
non-repeating m-place sequence of the names for the elements of S.

Let a = (b, c) (a is an n-place sequence of names, b is an m-place sequence of
names and c is an (n − m)-place sequence of names). If the theory we are considering
is a permutable theory, then if the structure that corresponds to the description
R(a) = R(b, c) is a possible world, so too is the structure corresponding to the
description R(Pa) = R(b, P(n−m)c), i.e. we consider a permutation P that acts non-
trivially only on the last (n − m) members of the sequence a. If the elements of
S are not reflexively defined (i.e. if these entities are individuated independently
of the ensemble of relations R, i.e. if 〈S, R〉 and 〈S, P−1R〉 represent distinct
possible worlds), then specifying only ∃x1…∃x(n−m)R(b, x1, …, x(n−m)) fails to pick
out a unique world, for it is compatible with both R(a) and R(Pa), which both
describe (distinct) structures allowed by the theory (namely, 〈S, R〉 and 〈S, P−1R〉
respectively), structures that represent distinct possible worlds. On the other hand, if
the elements of S are reflexively defined (if they are ‘generally permutable entities’ that
are not individuated independently of the ensemble of relations), then specifying only
∃x1…∃x(n−m)R(b, x1, …, x(n−m)) is sufficient to pick out a unique world because,
although compatible with bothR(a) andR(Pa), these describe only formally distinct,
isomorphic structures which represent the same world. It is surely in this latter case
that Stachel intends to apply the label ‘generally permutable’ to the theory, and to
the worlds it picks out. This, I submit, is the proper set-theoretic analogue of the
hole argument.⁴¹

4.7 STACHEL ON IDENTICAL PARTICLES

It is finally time to consider Stachel’s application of all of this to quantum particles.
I quote at length:

One can immediate apply this result to the current discussion about the individuality
of elementary particles … One group maintains that each elementary particle retains its
individuality, and that quantum statistics are merely the result of the fact that certain
states … that are accessible to systems of elementary particles that are not of the same kind,
are for some reason inaccessible to systems of particles that are all of the same kind. The other
group maintains that quantum statistics has its origin in the lack of individuality of elementary

⁴⁰ And to give only an intensive definition of an ensemble of relations will fail to pick out a
particular isomorphism class of structures at all.

⁴¹ A specification of the metric on all of a manifold except a ‘hole’ (once one has solved
the equations and determined the metric in the hole up to isomorphism) corresponds, in effect,
to the formula ∃x1…∃x(n−m)R(b, x1, …, x(n−m)); i.e., one has specified an equivalence class of
diffeomorphic solutions to Einstein’s field equations and has further specified, for all but the hole,
which manifold points have which spatio-temporal properties.
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particles. As far as I know, no one has … mentioned the possibility of extending the hole
argument from the discussion of the individuality of space-time points to the discussion of the
individuality of elementary particles, as I shall now do.

If we take the points of our set to represent n elementary particles of the same kind, then
quantum-mechanical statistics imposes the requirement that all physical relations between
them be permutable. Our set theoretical hole argument shows that, if we ascribe an individuality
to the particles that is independent of the ensemble of permutable relations, then no model
can be uniquely specified by giving all the n-place relations R between them unless we further
specify which particle occupies each place in these relations … (2002: 245)

In a footnote he expands on what he means by ‘the requirement that all physical
relations between [the particles] be permutable’:

The relations will represent values of physical properties of the system of identical particles,
which must remain invariant under all permutations of the particle labels. Since these physical
properties are represented by bilinear functions of the state vector of the system, they will
remain invariant whether the state vector remains invariant under a permutation (bosons) or
changes sign (fermions) … (ibid. 261; my emphasis)

The obvious interpretation of the claim that the relations between the particles
are themselves permutable is that all permutations of the set S are symmetries of
these relations. That is, for every Ri, a ∈ Sn and permutation P, a ∈ Ri iff Pa ∈ Ri.
In this special case we have 〈S, R〉 = 〈S, PR〉; there just can be no question of the
two structures representing distinct worlds because we do not have two structures:
there is only one. Such a situation does indeed correspond to what we find in the
case of the quantum mechanics of identical bosons and fermions. The quantum
states of such systems are required to be either symmetrized or antisymmetrized.
That is, for an arbitrary permutation of the particle labels, one gets back the very
same state (up to a phase factor of −1 in the case of fermions, if the permutation
is odd). Stachel’s footnote suggests that he is indeed considering such symmetrized
and antisymmetrized states. His characterization of the group who maintain that
elementary particles retain their individuality but that ‘certain states … that are
accessible to systems of elementary particles that are not of the same kind, are for
some reason inaccessible to systems of particles that are all of the same kind’ also
strongly suggests that he has (anti)symmetrized states in mind. Moreover, when one
talks of the ‘permutation invariance’ of the quantum mechanics of identical particles,
one is typically referring to the fact that the physically allowed states themselves are
permutation invariant (up to a phase).⁴²

But now consider how this situation plays out in the context of the set-theoretic
hole argument. First consider Stachel’s ‘states of the world’ R(a) and R(Pa). These

⁴² Strictly, this corresponds to the quantum mechanics of identical particles satisfying the
symmetrization postulate. Sometimes ‘permutation invariance’ is used to refer the strictly weaker
requirement that the expectation values of all physical observables be permutation invariant (see
French and Rickles 2003: §§2–3). Note that (i) the more general possibilities allowed by the
weaker interpretation do not appear to be realized in nature and that (ii) to require the permutation
invariance of states (up to a possible phase factor of −1) is to impose the symmetrization postulate.
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are indeed distinct states of the world, but for any world 〈S, R〉 allowed by quantum
mechanics, if R(a) is a state of this world, then R(Pa) is also a state of the very same
world. If the relations themselves are permutable then R(a) and R(Pa) are either
both true, or both false. Consider, instead, the complete description R(a) introduced
above. If R(a) is a description of a world allowed by quantum mechanics, then
R(Pa) will be a description of exactly the same world (it will be a logically equivalent
formula). Thus stipulating that ∃x1…∃x(n−m)R(b, x1, …, x(n−m)) does suffice to pick
out a unique world, even if one believes that the individuality of quantum particles
transcends the relational structure in which they are embedded.

In fact, Stachel does not always talk as if the ensemble of relations in question
is itself permutable (i.e. that it corresponds to a symmetric or antisymmetric state).
Before applying the hole argument to quantum particles, he writes:

Some suggest that, if elementary particles are not individuated, then any attempt to label them
is misguided. On the contrary, it is just an example of the usual method of coordinatization,
introduced when treating any set of entities that are numerous, yet indistinguishable … What
is important to realize is that, in all such cases, no one coordinatization (labelling in this case) is
preferred over another; and that it is precisely invariance of all relations under all permutations
of the labels that guarantees this. It is entirely indifferent which six electrons out of the universe
make up a particular carbon atom[.] They are individuated, as K -shell or L-shell electrons of
the atom, for example, entirely by the ensemble of their relations to the carbon nucleus of the
atom and to each other. Indeed, the notation for the electronic structure of an atom is based
on this type of individuation. (2002: 243)

Here, again, Stachel talks of the ‘invariance of all relations under all permutations
of the labels’. However, he also claims that one can think of, for example, a
K -shell electron as being individuated by the ensemble of the relations that hold
between the electrons of the atom, and between the electrons and their nucleus. In
a footnote he elaborates: ‘as a result of the Pauli exclusion principle for fermions,
each electron in an atom can be fully individuated by the set of its quantum
numbers’ (2002: 260). And later he claims that his set-theoretic hole argument
shows that:

if we ascribe an individuality to the particles that is independent of the ensemble of permutable
relations, then no model can be uniquely specified by giving all the n-place relations R between
them unless we further specify just which particles occupies each place in the relations. For
example, the rules for filling atomic shells in the ground state of an atom with electrons would
have to be regarded as radically incomplete, since they do not tell us which electron has the
different quantum numbers that characterize that state. (2002: 245–6)

At this point, we should distinguish two, quite distinct, ways of describing, for
example, the electrons in a particular atom. First we might give its state as an
antisymmetrized vector in a tensor product Hilbert space. It is this description that
corresponds to an ensemble of permutable relations. And, despite what Stachel appears
to suggest, one cannot think of the labels that feature in this description as (arbitrary
coordinate) labels for electrons with particular quantum numbers, individuated by
the ensemble of relations. First, precisely because they are permutable, the relations
fail to individuate in the way Stachel appears to imply: every place in the ensemble
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of relations is exactly like every other place.⁴³ Secondly, and relatedly, in this
formalism, each electron, i.e. the entities associated with each label, enters equally
into the state associated with a particular set of quantum numbers, for example,
those corresponding to a K -shell electron with a particular spin.⁴⁴ It is for this reason
that it is held by some that ‘attempts to label the electrons are misguided’. It is just
hard to believe that the labels in the tensor product formalism are genuine labels
(cf. Teller 1998: §5); they are certainly not an example of the ‘usual method of
coordinatization’.

The alternative description involves Fock space and the occupation number
formalism (see e.g. van Fraassen 1991: 438–48). Here no particle labels are employed
at all. Rather the formalism uses occupation numbers, ‘numbers describing how many
times each maximal property is instantiated, with no regard to ‘‘which’’ particle has
which of the properties’ (Teller 1998: 128). Such descriptions correspond to formulae
of the type ∃x1…∃xnR(x1, …, xn) involving no names and only variables. Note that
the R occurring in this description will not abbreviate the same complex relation as
the R that occurs in a description of the permutable structure corresponding to a
symmetrized state vector. The Rs of the latter type of description have every possible
symmetry: R(a) and R(Pa) are logically equivalent formulae for every P. In contrast,
the R of an occupation number description will have no symmetries: each place must
correspond to a different maximal property.

If we now try to run the hole argument for an occupation number description
we run into trouble, for there simply is nothing in the formalism that corresponds
to further specifying which entities occupy which occupied states, for example, the
various atomic shells in an atom. As soon as we do introduce things that formally
look like such names—the labels of the tensor product Hilbert space formalism—we
symmetrize, so that every label is associated with every occupied atomic shell. Either
way, there appears to be no analogue of the hole argument for quantum particles.
Stachel appears to conflate the two descriptions: on the one hand he talks about
labels, and permutable relations (suggesting the labelled tensor product Hilbert space
formalism), on the other hand he talks about different electrons being individuated by
different sets of quantum numbers, in conformity with the Pauli exclusion principle
(suggesting an occupation number description).

I hope to have made it clear that the diffeomorphism invariance of GR, and the
permutation invariance of quantum mechanics are very different. In the first case, the

⁴³ This is not say that such relations cannot be held to individuate; although the relations are
permutable, they may represent, e.g., symmetric yet irreflexive relations, which is enough to force
the numerosity of the domain if one adopts the Hilbert and Bernays’s definition of identity (see
Saunders 2003: esp., 294–5). We can even think of bosons as being individuated by such relations
when their symmetrized entangled state does not involve more than one copy of any single-particle
state in each element of the superposition.

⁴⁴ These points are related to the claim that all identical particles, fermions just as much as
bosons, violate the identity of indiscernibles, in every physically possible state (French and Redhead
1988). The claim is only true if the labels of the tensor product Hilbert space formalism are
interpreted as genuine labels.
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diffeomorphism invariance is a symmetry of the theory.⁴⁵ If 〈M , g, φi〉 is a solution
to the theory, then so is (the mathematically distinct) 〈M , d∗g, d∗φi〉. But whether
or not we take the interpretative step of regarding these two models as representing
the same world, arbitrary diffeomorphisms are not symmetries of the worlds they
represent (except in special cases where the metric has Killing vectors, in which
case a small subgroup of the diffeomorphism group will be a symmetry group of the
solution). Contrast this with the case of quantum mechanics. Starting with the tensor
product Hilbert space formalism, permutations of particle labels are symmetries of
the theory. For example, if �12 is a physically possible state of two identical particles,
then so is �21. But this is because �12 = (−)�21. Permutations are symmetries of
every solution of the theory, and that is how and why they are also symmetries of the
theory. And if we consider instead the Fock space formalism, there simply are no
particle labels to be permuted.

I conclude that the diffeomorphism invariance of GR and the permutation
invariance of quantum mechanics are not formally analogous, and do not generate
the same interpretative problems concerning the individuation of the putative subject
matter of the theories. This is not, of course, to say that there are no similarities. To
treat the points of the manifold of a solution of Einstein’s field equations as akin
to variables rather than names (a stance Maudlin (1989) has dubbed ‘Ramseyfying
substantivalism’), would be to regard the models of GR as akin to a Fock space
description; it involves regarding diffeomorphic models as akin to syntactically
distinct yet logically equivalent formulae. Conversely, if one can really think of
the states associated with the occupation numbers of the Fock space formalism as
genuinely occupied by objects, objects that are individuated by the properties attributed
to them by these states (cf. Stachel’s talk of electrons in an atom being individuated
by their different quantum numbers), then what is to stop us naming them? Such
names would not correspond to the labels of any quantum formalism, but they would
correspond to the informal talk of physicists, who are happy to talk of the K -shell
electron, for example, (assuming there is only one) or of the particle in the left-hand
wing of the EPR apparatus.

In the next section I consider briefly whether this talk is really permissible. Before
turning to that final topic, let us briefly consider French and Rickles’s assessment of
Stachel’s analogy between points and particles. They write:

Stachel … understands the non-individuality of particles as their being individuated ‘entirely
in terms of the relational structures in which they are embedded’ … But then it is not clear
what metaphysical work the notion of ‘non-individuality’ is doing, when we still have ‘objects’
which are represented by standard set theory (and this is precisely the criticism that can be
levelled against attempts to import non-individuality into the spacetime context) …

Again the alternative, ‘middle way’ is to drop objects out of the ontology entirely, regarding
both spacetime and particles in structural terms. Indeed, this appears to be the more appropriate
way of understanding both Stachel’s talk of individuating objects ‘entirely in terms of relational

⁴⁵ The distinction between symmetries of theories, and of worlds, is discussed by Belot (2003:
§4.2) and Ismael and van Fraassen (2003: 378); I am grateful to Paul Mainwood for emphasizing it
to me.
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structures in which they are embedded’ … However, rather than thinking of objects being
individuated, we suggest they should be thought of as being structurally constituted in the first
place. In other words, it is relational structures which are regarded as metaphysically primary
and the objects as secondary or ‘emergent’. (2003: 235)

In light of this section and the previous ones, the response I advocate to these
suggestions should be clear. Why should non-individuality do any more work
than (be anything more than) the denial of primitive individuality and haecceitistic
differences? We have yet to be given a reason to think that standard set theory should
not apply, at least to spacetime points.

4.8 IDENTICAL PARTICLES AND IDENTITY OVER TIME

A simple story is often retold in elementary discussion of quantum statistics. Suppose
that we have two identical particles, a and b, and just two possible single-particle
states L and R. We are told that if one ‘thinks classically’, one should expect four
distinct states for the joint system:

1. L(a)L(b)
2. L(a)R(b)
3. R(a)L(b)
4. R(a)R(b)

And if we further suppose that each of these states is equally probable, then we get
an instance of Maxwell–Boltzmann statistics: the possibility according to which one
particle is in state L while one is in state R is twice as likely as each of the two
possibilities according to which the particles are in the same state.

But quantum particles obey either Fermi–Dirac or Bose–Einstein rather than
Maxwell–Boltzmann statistics. For example, in the Bose–Einstein case, the possib-
ilities:

1. L(2)R(0): two particles are in state L
2. L(1)R(1): one particle is in state L and one particle is in state R
3. L(0)R(2): two particles are in state R

are all equally likely. It seems that it is the supposition that L(a)R(b) and R(a)L(b)
are distinct possibilities that led us to the wrong, classical, statistics. But isn’t
equating the possibilities L(a)R(b) and R(a)L(b) simply anti-haecceitism? It seems
that the non-existence of haecceitistic differences between states involving identical
quantum particles suffices to explain quantum statistics. Perhaps quantum statistics
recommends exactly the same interpretative move as the hole argument in general
relativity after all.

Unfortunately, things are not so simple. First, anti-haecceitism is compatible with
Maxwell–Boltzmann statistics, as is shown by Huggett (1999). What is required, if
one is to obtain such statistics while denying haecceitistic differences, is, crudely put,
a continuum of possible microstates relative to a countable number of particles (ibid.,
§IV). It might be held that this result is just as well, for some see the Gibbs Paradox as
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motivating the denial of haecceitistic differences even in classical statistical mechanics
(see e.g. Saunders 2003: 302), although this remains a matter of controversy. The
difference between quantum statistical systems, and classical statistical systems, is
then to be seen as arising precisely because, in the quantum case, one does not have
a continuum of microstates.

I agree with this as far as it goes, but it seems that a puzzle remains. Why is
the symmetrization postulate imposed; i.e. why, rather than simply stipulating that
L(a)R(b) and R(a)L(b) represent the same state, do we take the appropriate quantum
state to be (1/

√
2) (L(a)R(b) + R(a)L(b) )?

The answer has to do with a distinction drawn in section 4.3. Statistics are
manifest over time in frequencies. To regard the states L(a)R(b) and R(a)L(b) as
distinct in the context of the persisting particles a and b is not necessarily to sign
up to haecceitistic differences. A single solution might involve the instantaneous
state L(1)R(1) at two different times t1 and t2. If it makes sense to ask whether
the particle that occupies state L at t1 is the same as the particle that occupies the
state L at t2, then we have a legitimate, non-haecceitistic reason for distinguishing
between the instantaneous states L(a)R(b) and R(a)L(b). According to a point of
view that goes back at least to Reichenbach (1956), the difference between classical
and quantum statistics bears on such questions concerning identity over time, rather
than haecceitism.

As a very simple example, consider our two one-particle states L and R, which, let
us suppose, at regular time intervals, t1, t2, …, are instantiated by two ‘particles’.⁴⁶
Consider the two cases where the frequencies exhibited over time correspond to (i)
Maxwell–Boltzmann statistics and (ii) Bose–Einstein statistics. The frequencies of
scenario (i) can be explained in terms of a very simple dynamical model. It involves
two persisting particles such that (a) at each time the probability of each particle
occupying each state is 1

2 and (b) the likelihood of their occupying each state at each
time is independent of which state the other particle occupies at that time. Scenario
(ii), on the other hand, is most simply explained by postulating that at each time
the three possible instantaneous states L(2)R(0), L(0)R(2), and L(1)R(1) are equally
likely; there is no additional fact of the matter concerning whether the ‘particle stage’
that instantiates L at one time constitutes a stage of the same persisting particle as
the particle stage that instantiates L at some other time. Of course, one can combine
such additional facts about persistence with the Bose–Einstein statistics of scenario
(ii). But if one does, the dynamics of the two particles can no longer be independent
of each other but must involve ‘causal anomalies’ if the correct frequencies are to be
recovered (Reichenbach 1956: 69–71 (in Castellani edn.)).⁴⁷

⁴⁶ I am indebted, at this point, to a conversation with Nick Huggett.
⁴⁷ There is a rather interesting application of this type of example to the debate between

perdurantists and endurantists. In response to the scenarios involving rotating homogeneous matter
that endurantists press against perdurantists, Sider (2001: 224–36) has suggested that one might
exploit the Mill–Ramsey–Lewis account of laws to pick out a preferred genidentity relation in
favourable cases. (For a comprehensive discussion of arguments concerning rotating homogeneous
matter in the context of the perdurantist–endurantist debate, see Butterfield 2004.) Now we can
envisage two spatio-temporal Humean mosaics for which the Mill–Ramsey–Lewis prescription
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The previous paragraph suggests the following possibility. Perhaps one can
view the instantaneous temporal stages of quantum particles as genuine individuals,
individuated by their sets of quantum numbers. The only problem with introducing
particle labels as the names of such objects is that they illicitly introduce primitive
trans-temporal identities between the particles that exist at one moment and those
that exist at another. We are only forced to (anti)symmetrize the state in order to
‘rub out’ these illegitimate trans-temporal identities. The entities that exist at any
given instant are not really to be thought of as each in an identical mixed state (it
is not the case that every electron is currently equally a part of me, part of you, and
part of this page of the paper you are reading). We would then, again, have a strong
analogy between spacetime points and the fundamental ontology of identical particle
quantum mechanics; both would be instantaneous entities fully individuated by their
properties and relations.

The problem with this suggestion is that the non-commutative algebra of
observables prevents our interpreting even the instantaneous ontology of quantum
mechanics as a determinate set of reflexively defined individuals. The difficulty is that
the choice of particular maximal properties to characterize the quantum particles is
to a large extent arbitrary. Stachel states that ‘each electron in an atom can be fully
individuated by the set of its quantum numbers’ (2002: 260). If these quantum num-
bers are to fully individuate, then the electron’s component of spin in some direction
must be included, conventionally the ‘z’-direction. If such a set of properties really
did individuate, we should be able to talk about, for example, the S-shell electron
whose spin in the z-direction is +�/2. But of course, we cannot, for if we could,
symmetry would require that we could also talk about the S-shell electron whose
spin in the x-direction is +�/2. And we could then ask whether the S-shell electron
whose spin in the z-direction is +�/2 was the same electron as the S-shell electron
whose spin in the x-direction is +�/2. But this last question is illegitimate. There
being a fact of the matter about its answer would contravene quantum mechanics’
violation of Bell’s inequalities. Unlike spacetime points in classical general relativity,
quantum particles cannot be thought of as individuated by the relational structures
in which they are imbricated. They are not even reflexively defined entities.

4.9 TWO MORALS FOR QUANTUM GRAVITY

In the previous two sections two conclusions were reached concerning identical
particles in quantum mechanics. The first was that, since the states of identical
particle quantum mechanics were permutation invariant, there could be no analogue
of the hole argument that involved them. To run an analogue of the hole argument

yields probabilistic laws involving Maxwell–Boltzman and Bose–Einstein statistics respectively.
As described in the paragraph above, the former favours a law formulated in terms of persisting
particulars. However, there will be many ways of drawing the lines of persistence consistent with
the statistics. Here is a case, then, where the simplest law favours introducing a genidentity relation,
but fails to determine which particle stages should be regarded as genidentical.



Points, Particles, and Structural Realism 117

one needs solutions of a permutation-invariant theory that are not themselves
permutation invariant and which are thus interpretable, at least in principle, as
representing physically distinct (although only haecceitistically distinct) states of
affairs. The second, more tentative, conclusion, was that if a theory involves a
non-commutative algebra of observables, then there is at least a prima facie problem
facing those who would interpret the ontology of the theory as involving a single,
determinate set of reflexively defined entities.

Both of these conclusions would appear to be applicable to loop quantum gravity
(LQG), the first straightforwardly so. The states of loop quantum gravity satisfy the
so-called diffeomorphism constraint. This means that they are (3-)diffeomorphism
invariant: the states do not distinguish the points of the 3-manifold in terms of which
they are, notionally, defined. In LQG the points of the spatial 3-manifold have a
status exactly analogous to particle labels in identical particle quantum mechanics.⁴⁸

The space of states that satisfy both the Gauss constraint and the diffeomorphism
constraint is spanned by a basis of states that are labelled by abstract spin networks, or
knots, where a knot is an equivalence class of graphs embedded in a manifold under
diffeomorphisms. It is to these states (often, and somewhat confusingly, also referred
to simply as spin-network states) that popular accounts of LQG typically refer (see
Rovelli 2001: 110–11). The nodes of the graph can be thought of as quanta of
volume—as elementary chunks of space—and the links as quanta of area separating
these volumes. This picture suggests the following thought: might we regard the links
and nodes of abstract spin networks as representing genuine entities (i.e. elementary
volumes and surfaces of space), entities that are reflexively defined by the network of
relations in which they stand?

The obvious worry with this proposal concerns the second conclusion mentioned
above. The spin-network basis is just one basis for the space of states that satisfy the
Gauss constraint. Other possible bases will provide us with a set of states that are
not interpretable as networks of volumes and areas (the volume and area operators
will not be diagonalized by these other bases). If non-commuting observables do
not allow quantum particles to be straightforwardly interpreted as reflexively defined
objects, the same will be true of the elementary quanta of loop quantum gravity.
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5
Holism and Structuralism in Classical

and Quantum General Relativity

Mauro Dorato and Massimo Pauri

ABSTRACT

The main aim of our chapter is to show that interpretative issues belonging to classical General
Relativity (GR) might be preliminary to a deeper understanding of conceptual problems
stemming from ongoing attempts at constructing a quantum theory of gravity. Among such
interpretative issues, we focus on the meaning of general covariance and the related question
of the identity of points, by basing our investigation on the Hamiltonian formulation of
GR as applied to a particular class of spacetimes. In particular, we argue that the adoption
of a specific gauge-fixing within the canonical reduction of Arnowitt–Deser–Misner metric
gravity provides a new solution to the debate between substantivalists and relationists, by
suggesting a tertium quid between these two age-old positions. Such a third position enables
us to evaluate the controversial relationship between entity realism and structural realism in a
well-defined case study. After having indicated the possible developments of this approach in
Quantum Gravity, we discuss the structuralist and holistic features of the class of spacetime
models that are used in the above-mentioned canonical reduction.

5.1 INTRODUCTION: TWO STRANDS OF PHILOSOPHY
OF PHYSICS THAT OUGHT TO BE BROUGHT TOGETHER

In recent philosophy of science, there have been two interesting areas of research
that, independently of each other, have tried to overcome what was beginning to be
perceived as a sterile opposition between two contrasting philosophical stances.

The first area of research involves the age-old opposition between the so-called
spacetime substantivalism, according to which spacetime exists over and above the
physical processes occurring in it, and relationism, according to which spatio-temporal
relations are derivative and supervenient on physical relations obtaining among events
and physical objects. The plausible claim that substantivalism and relationism, as they
were understood before the advent of relativity or even before the electromagnetic
view of nature, simply do not fit in well within the main features of the general
theory of relativity, is reinforcing the need of advancing a tertium quid between these
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two positions, which tries in some sense to overcome the debate by incorporating
some claims of both sides (Dorato 2000).

On the second front, discussions fuelled by the historical work of Thomas Kuhn
have generated a contrast between those who believe that assuming the approximate
truth of scientific theories is the best explanation for the predictive and explanatory
success of science (viz., the scientific realists) and those who insist that the history of
science is so replete with the corpses of abandoned entities (the phlogiston, the caloric,
the ether, etc.) that one should believe only in the humanly observable consequences
of our best scientific theories (viz., the instrumentalists). As an attempt to overcome
this opposition and save the history of science from a complete incommensurability
between successive theories, John Worrall (1989) has recently recuperated some
forgotten lessons left to us by Poincaré, by pointing out that structural realism (i.e.
belief in the relational content denoted by our mathematically expressed laws of
nature) is ‘the best of all possible worlds’. While giving some content to the view
that there is (structural) continuity in the history of science, and therefore justifying
a claim typically endorsed by the realists, structural realism à la Worrall was also
meant as a warning against believing in non-directly observable physical entities.
Discussing the example already put forth by Poincaré, Worrall remarked that while
Fresnel’s equations were later incorporated by Maxwell’s synthesis, the ether-based
models used by him to mathematically describe light have since been abandoned.

In this chapter, we aim to bring together these two strands of philosophical
research by claiming that a certain form of structural spacetime realism (a view that
we refer to as ‘point structuralism’) may offer the desired tertium quid between
substantivalism and relationism. As we will see, such a solution emerges naturally
from the Hamiltonian formulation of the general theory of relativity (GR), as applied
to a definite class of solutions¹, which is important not just to shed light on the
above debate but also to clarify—with the help of a well-defined case study—some
philosophical problems that are currently affecting the literature on structural realism
in general. Most importantly, taking a stance on the meaning of general covariance
within classical GR seems to us a precondition also to develop a satisfactory quantum
theory of gravity.²

Given these aims, our chapter is organized as follows. In §5.2, we try to clarify
the relationships among the various forms of scientific realism that are currently
discussed in the philosophical literature. Together with the question of clarifying the
nature of a physical (versus a purely mathematical) structure, we believe that these
issues are a precondition to understand the impact of structural realism on the issue of
the identity of point-events in classical GR. After a brief review of the Hole Argument
in §5.3.1, in §5.3.2 we show how a specific gauge fixing in the canonical reduction
of ADM metric gravity, based upon a new use of the so-called Bergmann–Komar
‘intrinsic pseudo-coordinates’, can help us to formulate a new structural view of GR.
In §5.4, we indicate some possible developments of this view on the status of ‘points’

¹ The Christodoulou–Klainermann continuous family of spacetimes (Christodoulou and Klain-
ermann 1999).

² See also Belot and Earman (1999).
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in Quantum Gravity. In §5.5 and §5.5.1 we draw some philosophical conclusions
from the preceding discussion by showing how our point structuralism represents an
overcoming of both traditional substantivalist and relationist views of the spacetime
of GR. Such a point structuralism, however, does not dissolve physical entities into
mathematical structures, as it entails a robust realism toward the metric field and
a weaker form of entity realism toward its ‘point-events’, as well as a theory-realist
attitude toward Einstein’s field equations.

5.2 MANY ‘REALISMS’ OR ONE?

With the progressive sophistication of our philosophical understanding of science,
the issue of scientific realism seems to have undergone a process of complication
that is not unlike the growth of a living cell or the development of an embryo. As
evidence for this claim, note that nowadays there are at least four different ways
of characterizing scientific realism, namely theory realism, entity realism, and, more
recently, structural scientific realism, where the latter characterization, in its turn, has
originated a division between the so-called epistemic structural realists and the ontic
structural realists.

A theory realist defends the claim that the theories of a mature science and its
laws are true in the limits of the approximation of a physical model or, in short,
approximately true (whatever ‘approximately’ may mean in this context, a difficult
problem that here we will not address). Entity realists claim that entities that are
not directly observable with the naked eye (quarks, electrons, atoms, molecules, etc.)
but are postulated by well-confirmed scientific theories exist in a mind-independent
fashion. Epistemic structural realists claim, with Poincaré, that while real objects will
always be hidden from our eyes, ‘the true relations between these objects are the
only reality we can attain’: ‘les rapports véritables entre ces objets sont la seule réalité
que nous puissions atteindre’ (Poincaré 1905: 162). Ontic structural realists, on the
contrary, hold that we can only know structures or relations because they are all there
is (Ladyman 1998).

One may wonder whether these various forms of realism are logically independent
of each other, as many philosophers have claimed. We believe that they are not.
For example, it is not at all clear whether it is really possible, pace Hacking (1983),
to defend any form of entity realism without also endorsing some form of theory
realism.³

Analogously, it is highly controversial whether one may have structural realism
without also embarking on theory realism or entity realism of some form. For a
necessarily brief defence of the implication from structural realism to theory realism,
consider the following remarks. If: (i) the only reality we can know (as the epistemic
structural realist has it) is the relations instantiated by existing but unknowable

³ For a forceful defence of the view that unless we trust theoretical laws, we cannot choose
between alternative explanations of the data in terms of rival models of theoretical entities, see
Massimi (2004).
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entities described by mathematically expressed laws (Worrall 1989, see also Morganti
2004) and (ii) the relations expressed by the equations of mathematical physics
represent the only element of continuity across scientific revolutions, then clearly
one has some evidence to assume that at least such equations and the theories
they constitute are approximately true (even Poincaré admitted that ‘les équations
différentielles sont toujours vraies’: ibid.). To the extent that (i) stability of equations
through theory change is evidence for their approximate truth and (ii) realism about
laws entails theory realism, Worrall’s position seems to presuppose some form of
realism about theories, an implication that in the philosophical literature has gone
strangely unnoticed.

For a defence of the implication from structural realism to entity realism, suppose
with the ontic structural realists that the relations referred to by mathematically
formulated laws are knowable just because they exhaust what exists, so that entity
realism is false. Alternatively, suppose with the epistemic structural realism that entity
realism is epistemically unwarranted. In both cases, how can we endorse the existence
of relations without also admitting the existence of something that such relations
relate (their relata), namely something carrying intrinsic, non-relational properties?⁴
Chakravartty (1998) and Cao (2003a), for instance, agree with the epistemic realist
that our knowledge about unobservable entities is essentially structural, but refuse to
dissolve physical entities into mathematical structure, thereby classifying themselves
as entity realists, and endorsing the view that structural realism entails entity realism.⁵
This is also the view we want to defend by considering the case study of the ontological
status of point-events in classical GR: point-events are structurally individuated by
some parts of the metric field, but (i) the metric field exists as an extended entity
together with its point-events (entity realism), even though their identity depends on
the choice of a global laboratory, and (ii) the law governing its behaviour must be
regarded as approximately true.

5.2.1 What, Exactly, is a Physical Structure?

It should be clear at this point that a decisive progress on the issues concerning
structural realism presupposes a clarification of the following, crucial question: ‘what,
exactly, is a physical structure?’ As we will see, such a question is also crucial to
address the problem of the nature of point-events in classical GR. Much seems to
depend on how we want to understand a structure in physical terms, since for our
purpose the definition of a mathematical structure can be taken as sufficiently clear,
at least if the latter is regarded as a system of differential equations plus abstract objects
purporting to describe a physical system.

⁴ This worry has been expressed also by Redhead in private conversation. See French and
Ladyman (2003: 41).

⁵ Conversely, it is much less controversial to agree on the fact that a theory realist must be
committed to structural realism about scientific laws, as well as to the existence of unobservable
entities, since holding a theory as approximately true implies believing in the referential power of its
assumptions about unobservable entities.
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The problem is that it seems very difficult even to define a physical structure
without bringing in its constituents, and thereby granting them existence. We will
take this difficulty as a preliminary argument in favour of the implication that we
want to defend, namely that structural realism implies entity realism, let alone theory
realism.

For instance, if we preliminarily regard a structure as ‘a stable system of relations
among a set of constituents’, i.e. a class of entities (see Cao 2003a: 6–7; Cao 2003b:
111)—where ‘entities’ is deliberately left sufficiently vague in order to cover cases
in which the members of the above class lack distinct individuality as is the case for
quantum particles—we immediately take an important stance in the above debate.
By adopting this definition, in fact, we are already presupposing the independent
existence of entities [the constituents], thereby ruling out of the game a priori the
ontic structural realism defended by French and Ladyman (2003). Analogously,
the so-called ‘partial structure approach’ (Bueno et al. 2002), according to which a
structure is a set of individuals together with a family of partial relations defined over
the set, seems to run an analogous risk, because the definition of a partial structure
includes a set of individuals.

In particular, what is unclear to us is whether it makes sense to consider a
physical, ‘holistic structure as [ontologically] prior to its constituents’, as Cao has it
(2003c: 111), by simply arguing that its constituents, ‘as placeholders, derive their
meaning or even their existence from their function and place in the structure’.
While the thesis of meaning holism may be uncontroversial but clearly irrelevant in
the present ontological discussion, one must ask how a place-holder can have any
ontological function in an evolving network of relationships without possessing at
least some intrinsic non-relational properties. While we can imagine that place-holders
with different intrinsic properties can contribute the same function in the holistic
network, so that the structural, relational properties empirically underdetermine the
intrinsic properties of the place-holders, it seems that no place-holder can even have
a function without possessing some intrinsic properties.⁶ An ordinary key and a
magnetic strip on a card do certainly have different intrinsic properties, and knowing
only about their common effect-type (opening doors),⁷ it may be difficult to find out
about their difference. However, if they have to yield the same function, the key and
the magnetic card must each have their different intrinsic properties.

In a word, we believe that in order to clarify the meaning of ‘structure’ in the
philosophy of physics in general and in the philosophy of space and time in particular,
it is essential to revert to the original meaning that ‘structuralism’ had in linguistics or
anthropology. In such contexts, structuralism referred to a sort of holistic thesis about
the identity of the members of a set of stable relations, and was not conceived, as today
it sometimes is, as an attempt to eliminate the constituents. In other words, in what
follows we will assume that the interesting and clearer question to be posed in our

⁶ A property is intrinsic or non-relational if and only if its attribution does not presupposes the
existence of any other entity. For instance, ‘being a father’ is clearly extrinsic or relational, while
‘being square’ is intrinsic.

⁷ Notice that the doors in the two cases are differently constituted.
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context involves a conflict between two ways of understanding the identity of individual
entities constituting a physical system. The first views the identity of physical entities
(in our case, spacetime points) as being constituted by the whole system in which
they are physically embedded. The second accords each such individual constituent a
distinct identity and individuality, in such a way that the constituents carry different
intrinsic or monadic properties which enable us to distinguish them.

So construed, the dispute between the structural realist and the entity realist
becomes one between an ontology of quasi-entities that lack any intrinsic individuat-
ing property and only possess relational (extrinsic) properties on the one hand (ontic,
relational holism) and an ontology of individuals carrying intrinsic and monadic
property on the other (entity realism). The crucial question to ask then becomes:
given a certain physical theory, to what extent do the relational properties of a set of
constituents contribute to fix their identity?

In the next sections we will try to answer this question by showing how the
structural and holistic identity of spacetime points in GR does not force us to
abandon the typical entity realist’s attitude toward the metric field. However, since
the identity of its point-events will be shown to depend relationally on the choice
of a global laboratory, one’s entity realist attitude toward them will have to be of a
weaker form. In any case, such an attitude is compatible with the fact that the points
of a bare manifold, by lacking intrinsic identity, are deprived, to put it with Einstein,
of ‘the last remnant of physical objectivity’.

5 .3 A CASE STUDY: THE HOLISTIC AND STRUCTURAL
NATURE OF GENERAL-RELATIVISTIC SPACETIME IN A

CLASS OF MODELS OF GR

5.3.1 The Hole Argument and its Consequences

In the recent years, the debate on spacetime substantivalism in GR has been revived
by a seminal paper by John Stachel (1980), followed by Earman and Norton’s
philosophical argument against manifold spacetime substantivalism (1987). Both
papers addressed Einstein’s famous hole argument (Lochbetrachtung) of 1913–15
(Einstein 1914, 1916), which was soon to be regarded by virtually all participants to
the debate⁸ as being intimately tied to the nature of space and time, at least as they
are represented by the mathematical models of GR.

In a nutshell, a mathematical model of GR is specified by a four-dimensional
mathematical manifold M4 and by a metrical tensor field g, where the latter dually
represents both the chrono-geometrical structure of spacetime and the potential
for the inertial-gravitational field. Non-gravitational physical fields, when they are
present, are also described by dynamical tensor fields, which appear as sources of the
Einstein equations.

⁸ For example: Butterfield (1989), Earman (1989), Maudlin (1990), Norton (1987, 1992,
1993), Stachel (1993).
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The above-emphasized dual role of the metric field has recently generated a
conceptual debate, that can be summarized by the following question: which is
the best candidate to interpret the role of space and time in GR, the manifold or the
(manifold plus) the metric? Those opting for the bare manifold M4 (like Earman and
Norton) correctly point out that g cannot be understood as interpreting the role of
the ‘empty spacetime’ of the traditional debate: by embodying the potential of the
gravitational field, g is to be regarded as a (special) type of ‘physical field’. Those
opting—much more reasonably, in our opinion—for ‘the manifold plus the metric
field’ (Maudlin 1990; Stachel 1993) also correctly point out that the metric provides
the chrono-geometrical structure as well as, most significantly, the causal structure of
spacetime. To the extent that one can see good arguments for both options—or even
if, as we believe, the second option is the only plausible one—such an ‘ambiguous’
role of the metric seems to provide one of the main arguments to claim that the
early-modern debate between substantivalists and relationists is now ‘outmoded’,
because in GR it does not admit of a clear formulation (Rynasiewicz 1996).

Before agreeing on this sceptical remark, however, it is appropriate to go over the
hole argument one more time, in order to show how it should really be tackled and
what implications our proposed solution has for the above debate. Let us assume
that M4 contains a hole H: that is, an open region where all the non-gravitational
fields vanish. On M4 we can define an active diffeomorphism DA : x

′ = DAx (see,
for example, Wald 1984) that re-maps the points inside H, but blends smoothly into
the identity map outside H and on the boundary. If we consider the transformed
tensor field g ′ ≡ D∗

Ag (where D∗
A denotes the action of a diffeomorphism on tensor

fields) then, by construction, for any point x ∈ H we have (in the abstract tensor
notation) g ′(DAx) = g(x), but of course g ′(x) �= g(x) (in the same notation). The
crucial fact to keep in mind at this point is that the Einstein equations are generally
covariant: this means that if g is one of their solutions, so is the drag-along field g ′.

What is the correct interpretation of the new field g ′? Clearly, the transformation
entails an active redistribution of the metric over the points of the manifold in H, so
the crucial question is whether and how the points of the manifold are primarily
individuated. Now, if we think of the points ofH as intrinsically individuated physical
events, where ‘intrinsic’ means that their identity is independent of the metric—a
claim that is associated with manifold substantivalism—then g and g ′ must be regarded
as physically distinct solutions of the Einstein equations (after all, g ′(x) �= g(x) at the
same point x). This is a devastating conclusion for the causality (or, in other words,
the determinism) of the theory, because it implies that, even after we completely
specify a physical solution for the gravitational and non-gravitational fields outside
the hole—in particular, on a Cauchy surface for the initial value problem—we are still
unable to predict uniquely the physical solution within the hole. Clearly, if general
relativity has to make any sense as a physical theory, there must be a way out of this
foundational quandary, independently of any philosophical consideration.

According to Earman and Norton (1987), the way out of the hole argument
lies in abandoning manifold substantivalism, even if they do not endorse a specific
relationist view: they claim that if diffeomorphically related metric fields were
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to represent different physically possible worlds, then GR would turn into an
indeterministic theory. And since the issue of whether determinism holds or not at
the physical, empirical level cannot be decided by opting for a metaphysical doctrine
like manifold substantivalism, they conclude that one should go for spacetime
relationism.

Now, if relationism in GR were entailed by the claim that diffeomorphically
related mathematical models don’t represent physically distinct solutions, most
physicists would count themselves as relationists. After all, the assumption that an
entire equivalence class of diffeomorphically related mathematical solutions represents
only one physical solution is regarded as the most common technical way out of the
strictures of the hole argument (in the philosophical literature such an assumption
is known, after Earman and Norton (1987), as Leibniz equivalence). However, we
believe that it is not at all clear whether Leibniz equivalence really grinds corn for the
relationist’s mill, since the spacetime substantivalist can always ask: (1) why on earth
should we identify physical spacetime with the bare manifold deprived of the metric
field ? (2) Why should we assume that the points of the mathematical manifold have
an intrinsic physical identity independently of the metric field?⁹

In order to lay our cards on the table with respect to these (rhetorical) questions,
we start from the latter in order to note an unfortunate ambiguity in the use of the
term ‘spacetime points’: sometimes it refers to elements of the mathematical structure
that is the first conceptual ‘layer’ of the spacetime model (the manifold), sometimes
it refers to the points interpreted as physical events. To remedy this situation, we
stipulate to use the term point-events to refer to physical events and simply points to
refer to elements of the mathematical manifold. In this respect we just want to add
that in the mathematical literature about topological spaces, it is implicitly assumed
that their elements are already distinguished. Otherwise, one could not even state
the Hausdorff condition, let alone define mappings, homeomorphisms, or active
diffeomorphisms. It is well known, however, that the points of a homogeneous space
(as the manifold would be prior to the introduction of the metric) cannot have any
intrinsic individuality. As Hermann Weyl (1946) put it:

There is no distinguishing objective property by which one could tell apart one point from
all others in a homogeneous space: at this level, fixation of a point is possible only by a
demonstrative act as indicated by terms like ‘this’ and ‘there.’

Quite aside from the phenomenological stance implicit in Weyl’s words, there is only
one way to individuate points at the mathematical level that we are considering, namely
by (arbitrary) coordinatization. By using coordinates, we transfer the individuality of
n-tuples of real numbers to the elements of the topological set.

⁹ It could be observed that such rhetorical questions lack bearing to a substantivalist about
Minkowski spacetime, and that substantivalism should not be construed differently in different
spacetime theories. However, it is not clear how pointlike events deprived of every physical quality
can be regarded as possessing an intrinsic quality, or an haecceity. Also in the special theory of
relativity, in order to individuate points of Minkowski spacetime, one has to rely on physical entities
like rods and clocks or physical fields.
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As to the first question above, we will have to limit ourselves to the following
remarks: although the metric tensor field, qua physical field, cannot be regarded as the
traditional empty container of other physical fields, we believe that it has ontological
priority over all other fields. This pre-eminence has various reasons (Pauri 1996),
but the most important is that the metric field tells all other fields how to move
causally. In agreement also with the general-relativistic practice of not counting the
gravitational energy induced by the metric as a component of the total energy, we
believe that physical spacetime should be identified with the manifold endowed with
its metric, thereby leaving the task of representing matter to the stress-energy tensor.

In consonance with this choice, Stachel¹⁰ has provided a very enlightening analysis
of the conceptual consequences of modern Leibniz equivalence. Stachel stresses that
asserting that g and D∗

Ag represent one and the same gravitational field implies that
the mathematical individuation of the points of the differentiable manifold by their
coordinates has no physical content until a metric tensor is specified. Furthermore, if
g and D∗

Ag must represent the same gravitational field, they cannot be physically
distinguished in any way. Consequently, when we act on g with D∗

A to create the
drag-along field D∗

Ag, no element of physical significance can be left behind: in
particular, nothing that could identify a point x of the manifold as the same point of
spacetime for both g and D∗

Ag. Instead, when x is mapped onto x′ = DAx, it brings
over its identity, as specified by g ′(x′) = g(x).

These remarks led Stachel to the important conclusion that vis-à-vis the physical
point-events, the metric plays in fact the role of individuating field. More than that,
even the topology of the underlying manifold cannot be introduced independently
of the specific form of the metric tensor, a circumstance that makes Earman and
Norton’s choice of interpreting the mere topological and differentiable manifold as
spacetime (let alone substantival spacetime) even more implausible. More precisely,
Stachel suggested that this individuating role should be implemented by four invariant
functionals of the metric, already considered by Komar (1955). However, he did not
follow up on such a suggestion concretely, something that we will do in the next
section, with the aim of further clarifying the nature of the physical point-events.
We believe in fact that their status as the intrinsic elements of physical spacetime
needs further analysis,¹¹ especially in view of the questions of structural realism
and spacetime substantivalism that we raised before. In addition, our procedure
will show why Stachel’s original approach cannot be effective in its fully covariant
form.

¹⁰ See Stachel (1980, 1986, 1993).
¹¹ Let us recall that in 1984 Michael Friedman was lucidly aware of the unsatisfactory status of

the understanding of the relation between diffeomorphic models in terms of Leibniz equivalence:
‘Further, if the above models are indeed equivalent representations of the same situation (as it
would seem they must do) then how do we describe this physical situation intrinsically? Finding such
an intrinsic characterization (avoiding quantification over bare points) appears to be a non-trivial,
and so far unsolved mathematical problem. (Note that it will not do simply to replace points with
equivalence classes of points: for, in many cases, the equivalence class in question will contain all
points of the manifold).’ Friedman (1984: 663; our emphasis.)
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5.3.2 The Dynamical Individuation of Point-Events

5.3.2.1 Pure Gravitational Field without Matter
It is well known that only some of the ten components of the metric are physically
essential: it seems then plausible to suppose that only this subset can act as
individuating field, and that the remaining components play a different role.

Bergmann and Komar (1960) and Bergmann (1960, 1962, 1977) introduced
the notion of intrinsic invariant pseudo-coordinates already in 1960. These authors
noted that for a vacuum solution of the Einstein equations, there are exactly
four functionally independent scalars that can be written using the lowest possible
derivatives of the metric. These are the four Weyl scalars (the eigenvalues of the Weyl
tensor), here written in Petrov’s compressed notation,

w1 = Tr (gWgW ),

w2 = Tr (gW εW ),

w3 = Tr (gWgWgW ),

w4 = Tr (gWgW εW ), (5.1)

where g is the four-metric, W is the Weyl tensor, and ε is the Levi–Civita totally
antisymmetric tensor.

Bergmann and Komar then propose to build a set of intrinsic pseudo-coordinates
for the point-events of spacetime as four suitable functions I [A] of the wT

I [A] = I [A][wT [g(x), ∂g(x)]
]
, A = 0, 1, 2, 3. (5.2)

Indeed, under the non-restrictive hypothesis that no spacetime symmetries are
present—in an analysis of the physical individuation of points, we must consider
generic solutions of the Einstein equations rather than the null-measure set of solutions
with symmetries—the I [A] can be used to label the point-events of spacetime, at least
locally. Since they are scalars, the I [A] are invariant under passive diffeomorphisms
(they are rather like the so-called ‘radar’ coordinates and therefore do not define a
coordinate chart in the usual sense), and by construction they are also constant under
the drag-along of tensor fields induced by active diffeomorphisms.

At this stage, however, it is far from clear how to explicitly use these intrinsic
coordinates to solve the puzzles raised by the hole argument, especially in view of
its connection with the Cauchy problem. For it is essential to realize that the hole
argument is inextricably entangled with the initial-value problem of general relativity,
although, strangely enough, it has never been explicitly and systematically discussed
in this context¹². The main reason for this neglect is plausibly given by the fact
that most authors have implicitly adopted the Lagrangian approach (or the manifold
way), in which the initial-value problem turns out to be intractable because of the

¹² It is interesting to note, however, that David Hilbert had stressed this point already in 1917
(Hilbert 1917).
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non-hyperbolic nature of Einstein’s equations. This is also the main reason why we
are obliged to turn to the Hamiltonian methods¹³.

Three circumstances make the recourse to the Hamiltonian formalism especially
propitious.

1. It is only within the Hamiltonian approach that can we separate the gauge
variables—which carry the descriptive arbitrariness of the theory—from the Dirac
observables, which are gauge-invariant quantities and are subject to hyperbolic
(and therefore causal or deterministic) evolution equations.

2. In the context of the Hamiltonian formalism, we can resort to Bergmann and
Komar’s theory of ‘general coordinate group symmetries’ (1972) to clarify the
significance of the passive view of active diffeomorphisms as on-shell¹⁴ dynamical
symmetries of the Einstein equations.

3. With respect to our main purpose of trying to understand the nature of point-
events in classical GR, it is only within the ADM Hamiltonian formulation of
GR that we can introduce a specific gauge-fixing (see §5.3.2.3) that can be invoked
for their physical (dynamical) individuation¹⁵.

5.3.2.2 Pure gravitational field: the ADM slicing of spacetime and the
canonical reduction
The ADM (Arnowitt et al. 1962) Hamiltonian approach starts with a slicing of
the four-dimensional manifold M4 into constant-time hypersurfaces �τ, indexed
by the parameter time τ, each equipped with coordinates σa (a = 1,2,3) and a
three-metric 3g (in components 3gab). In order to obtain the 4-geometry, we start
at a point on �τ, and displace it infinitesimally in a direction that is normal
to �τ. The resulting change in τ can be written as dτ = Ndτ, where N is
the so-called lapse function. In a generic coordinate system, such a displacement
will also shift the spatial coordinates: σa(τ + dτ) = σa(τ) + N adτ, where N a is
the shift vector. Then the interval between (τ, σa) and (τ + dτ, σa + dσa) results:
ds2 = N 2dτ2 − 3gab(dσa + N adτ)(dσb + N bdτ). The configurational variables N ,
N a, 3gab together with their ten conjugate momenta, index a twenty-dimensional
phase space¹⁶. Expressed (modulo surface terms) in terms of the ADM variables, the
Einstein-Hilbert action is a function of N , N a, 3gab and its first time derivative, or
equivalently of N , N a, 3gab and the extrinsic curvature 3Kab of the hypersurface �τ,
considered as an embedded manifold.

¹³ It is not by chance that the modern treatment of the initial value problem within the
Lagrangian configurational approach (Friedrich and Rendall 2000) must in fact mimic the
Hamiltonian methods.

¹⁴ We distinguish off-shell considerations, made within the variational framework before restricting
to the dynamical solutions, from on-shell considerations, made after such a restriction.

¹⁵ The individuation procedure outlined here is based on the technical results obtained by
Lusanna and Pauri (2004a, 2004b), see also Pauri and Vallisneri (2002): hereafter quoted as LP1,
LP2 and PV, respectively.

¹⁶ Of course, all these variables are in fact fields.
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Since the original Einstein equations are not hyperbolic, it turns out that the
canonical momenta are not all functionally independent, but satisfy four conditions
known as primary constraints. Four other secondary constraints arise when we
require that the primary constraints be preserved through evolution (the secondary
constraints are called the Super-Hamiltonian H0 ≈ 0, and the super-momentum
Ha ≈ 0, (a = 1, 2, 3) constraints, respectively). The eight constraints are given as
functions of the canonical variables that vanish on the constraint surface¹⁷. The
existence of such constraints implies that that not all the points of the twenty-
dimensional phase space represent physically meaningful states: rather, we are
restricted to the constraint surface where all the constraints are satisfied, i.e. to a
twelve-dimensional (20 − 8) surface which, on the other hand, does not possess the
geometrical structure of a true phase space. When used as generators of canonical
transformations, the eight constraints map points on the constraint surface to points
on the same surface; these transformations are known as gauge transformations and
form an eight-dimensional group.

To obtain the correct dynamics for the constrained system, we need to modify
the Hamiltonian variational principle to enforce the constraints; we do this by
adding the primary constraint functions to the Hamiltonian, after multiplying
them by arbitrary functions (the Lagrange–Dirac multipliers). If, following Dirac,
we make the reasonable demand that the evolution of all physical variables be
unique—otherwise we would have real physical variables that are indeterminate
and therefore neither observable nor measurable—then the points of the constraint
surface lying on the same gauge orbit, i.e. linked by gauge transformations, must
describe the same physical state.¹⁸ Conversely, only the functions in phase space
that are invariant with respect to gauge transformations can describe physical
quantities.

To eliminate this ambiguity and create a one-to-one mapping between points in
the phase space and physical states, we must impose further constraints, known as
gauge conditions or gauge fixings. The gauge fixings can be implemented by arbitrary
functions of the canonical variables, except that they must define a reduced phase
space that intersects each gauge orbit exactly once (orbit conditions). The number of
independent gauge fixings must be equal to the number of independent constraints
(i.e. 8 in our case). The canonical reduction proceeds by a cascade procedure: the
gauge fixings to the super-Hamiltonian and super-momentum come first (call it �4);
then the requirement of their time constancy fixes the gauges with respect to the
primary constraints. Finally the requirement of time constancy for these latter gauge
fixings determines the Lagrange multipliers. Therefore, the first level, �4, of gauge
fixing gives rise to a complete gauge fixing, call it �8, which is sufficient to remove all
the gauge arbitrariness.

¹⁷ Technically, these functions are said to be weakly zero. Conversely, any weakly vanishing
function is a linear combination of the weakly vanishing functions that define the constraint surface.

¹⁸ Actually in GR, there are further and subtler complications concerning the geometric
significance of the whole set of such transformations and the existence of geometrically inequivalent
states (see LP1, LP2, and PV).
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The �8 procedure reduces the original twenty-dimensional phase space to a copy
�4 of the abstract reduced phase space �̃4 having four degrees of freedom per
point (12 − 8 gauge fixings). Abstractly, this reduced phase space with its symplectic
structure is defined by the quotient of the constraint surface with respect to the
eight-dimensional group of gauge transformations and represents the space of the
abstract gauge-invariant observables of GR: two configurational and two momentum
variables. These observables carry the physical content of the theory in that they
represent the intrinsic degrees of freedom of the gravitational field (remember that at
this stage we are dealing with a pure gravitational field without matter).

The �8-dependent copy �4 of the abstract �̃4 is realized in terms of the symplectic
structure (Dirac brackets) defined by the given gauge fixings and coordinatized
by four Dirac observables [call such field observables qr(τ, �σ), ps(τ, �σ) (r,s = 1,2)].
The functional form of these Dirac observables provides a concrete realization of
the gauge-invariant abstract observables in the given gauge �8. Their expression,
in terms of the original canonical variables, depends upon the chosen gauge, so
that such observables, a priori, are neither tensors nor invariant under PDiff . Yet,
off shell, barring sophisticated mathematical complications, any two copies of �4
are diffeomorphic images of each other. Note that the canonical reduction, which
creates the distinction between gauge-dependent quantities and Dirac observables, is
made off shell. After the canonical reduction is performed, the theory is completely
determined: each physical state corresponds to one and only one set of canonical
variables that satisfies the constraints and the gauge conditions.

It is important to understand qualitatively the geometric meaning of the eight
infinitesimal off-shell Hamiltonian gauge transformations and thereby the geometric
significance of the related gauge fixings. (i) The transformations generated by the four
primary constraints modify the lapse and shift functions which, in turn, determine
how densely the spacelike hypersurfaces �τ are distributed in spacetime and also
the gravito-magnetism conventions; (ii) the transformations generated by the three
super-momentum constraints induce a transition on �τ from a given three-coordinate
system to another; (iii) the transformation generated by the super-Hamiltonian
constraint induces a transition from a given a priori ‘form’ of the 3 + 1 splitting of
M4 to another one, by operating deformations of the spacelike hypersurfaces in the
normal direction.

The manifest effect of the related gauge fixings emerges only at the end of the
canonical reduction and after the solution of the Einstein–Hamilton equations has been
worked out (i.e. on shell ), since the role of a complete gauge fixing �8 is essentially
that of choosing the functional form in which all the gauge variables depend upon the
Dirac observables. In particular, the metric and the extrinsic curvature (and thereby
also the complete definition of the �τ embedding) are not completely defined until
the Einstein–Hamilton equations are solved and the contribution of the Dirac
observables calculated.

Given the geometrical meaning of the gauge fixings, a complete �8 gauge fixing
includes a choice of the conventions about global simultaneity and gravito-magnetism,
together with the implicit definition of two global congruences of timelike observers



134 Mauro Dorato and Massimo Pauri

and an atlas of coordinate charts on the spacetime manifold, in particular, within the
Hole (see LP1 and LP2). In other words, a complete �8 defines for every τ a global,
non-inertial, extended, spacetime laboratory with its coordinates (hereafter denoted by
the acronym GLAB). Concerning the physical interpretation of all the variables
implied in the Hamiltonian approach to GR, it can be shown (see LP1) that, while
the Dirac observables essentially describe generalized tidal effects of the gravitational
field, the gauge variables, considered off shell, embody generalized inertial effects
connected to the definition of the GLAB in which measurements take place, i.e.
in which the gravitational phenomena manifestly appear¹⁹. Note that, unlike the
special relativistic case, all the conventions are determined dynamically. In particular,
different conventions within the same spacetime (the same ‘universe’) turn out to be
simply gauge-related options.

In conclusion, it is only after the initial conditions for the Dirac observables have
been arbitrarily selected on a Cauchy surface that one can determine dynamically
the whole four-dimensional chrono-geometry. Of course, once Einstein’s equations
have been solved, the metric tensor and all of its derived quantities, in particular the
light-cone structure, can be re-expressed in terms of Dirac observables in a gauge-fixed
functional form²⁰.

Two important points must be stressed.
First, before the gauge fixings are implemented, in order to carry out the canonical

reduction explicitly, we have to perform (off shell) a basic canonical transformation,
the so-called Shanmugadhasan transformation, bringing from the original canonical
variables to a new basis including the Dirac observables in a canonical subset in
such a way that they have zero Poisson brackets with all the other variables. Now,
the Shanmugadhasan transformation is highly non-local in the metric and curvature
variables: even though, at the end, for any τ, the Dirac observables qr(τ, �σ), ps(τ, �σ), are
fields indexed by the coordinate point σA, they are in fact highly non-local functionals
of the metric and the curvature over the whole surface �τ. We can write, symbolically:

qr(τ, �σ) = F[�τ]
r[(τ, �σ)| 3gab(τ, �σ), 3πcd (τ, �σ)

]
ps(τ, �σ) = G[�τ]s

[
(τ, �σ)| 3gab(τ, �σ), 3πcd (τ, �σ)

]
, r, s = 1, 2; (5.3)

where 3gab and 3πcd are the 3-metric and the conjugated 3-momentum components,
respectively.

¹⁹ Such a GLAB is a non-rigid, non-inertial frame (the only one existing in GR) centred on the
(in general) accelerated observer whose world-line is the origin of the 3-coordinates (Lusanna and
Pauri 2004a). The gauge-fixing procedure determines the appearance of phenomena by determining
uniquely the form of the inertial forces (Coriolis, Jacobi, centrifugal, …) in each point of a GLAB.
A crucial difference of this mechanism in GR with respect to the Newtonian case is the fact that the
inertial potentials depend upon tidal effects (i.e. on the Dirac observables), besides the coordinates
of the non-inertial frame.

²⁰ Conversely, as shown in PV, LP1, and LP2, in the absence of a dynamical theory of
measurement, the epistemic circuit of GR can be approximately closed via an experimental three-
step procedure that, starting from concrete radar measurements and using test-objects, ends up in a
complete and empirically coherent intrinsic individuating gauge fixing.
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Second: since the original canonical Hamiltonian in terms of the ADM variables is
zero, it happens to be written solely in terms of the eight constraints and Lagrangian
multipliers. This means, however, that this Hamiltonian generates purely harmless
gauge transformations connecting different admissible spacetime 3+1 splittings, so
that it cannot engender any real temporal change (in this connection see Earman
(2002); Belot and Earman (1999, 2001) ). The crucial point, however, is that, in the
case of the globally hyperbolic non-compact spacetimes, defined by suitable boundary
conditions and being asymptotically flat at spatial infinity, just like those of the
class we are dealing with in this work²¹, internal mathematical consistency entails
that the generator of temporal evolution is the so-called weak ADM energy, which
is obtained by adding the so-called DeWitt boundary surface term to the canonical
Hamiltonian²². Indeed, this quantity does generate real temporal modifications of the
canonical variables. Thus, the final Einstein–Hamilton–Dirac equations for the
Dirac observables are

q̇r = {qr , HADM}∗, ṗs = {ps , HADM}∗, r, s = 1, 2, (5.4)

where HADM is intended as the restriction of the weak ADM energy to �4 and where
the {·, ·}∗ are the Dirac brackets.

Then, the initial value problem runs as follows: (1) selection of a complete �8 (a
GLAB); (2) assignment of the initial values of the Dirac observables on a Cauchy
surface �τ0 , in that GLAB; (3) solution of the Einstein–Hamilton–Dirac equations.

At this point, it is important to realize that the space of Cauchy data is partitioned
into classes of gauge-equivalent data: all Cauchy data in a given class identify a single
spacetime (a ‘4-geometry’, or ‘universe’). This entails that the dynamical symmetries of
Einstein’s equations fall in two classes only: (i) those acting within a single Einstein
‘universe’; (ii) those mapping different ‘universes’ among themselves.

5.3.2.3 Pure gravitational field: the ‘intrinsic individuating gauge’, and the
metrical fingerprint
We can now turn to briefly illustrate the process of the dynamical individuation
of point-events. First of all we exploit a technical result by Bergmann and Komar
(1960), namely the fact that the four Weyl scalar invariants (5.1), once re-expressed
in terms of the ADM variables, turn out to be independent of the lapse function N
and the shift vector N a. This means that the intrinsic pseudo-coordinates are in fact
functionals of the variables 3gab and 3Kab only. Then we write

I [A][wT (g, ∂g)] ≡ Z [A][wT (3g, 3π)], A = 0, 1, 2, 3, (5.5)

(where the Z [A] represent the functions I [A] as re-expressed in terms of the ADM
variables) and select a completely arbitrary coordinate system σA ≡ [τ, σa] adapted to

²¹ As already said, it is the Christodoulou–Klainermann continuous family of spacetimes.
²² The ADM energy is a Noether constant of motion representing the total mass of the ‘universe’,

just one among the ten asymptotic Poincaré ‘charges’. The mathematical background of this result
can be found in Lusanna (2001) and references therein.



136 Mauro Dorato and Massimo Pauri

the �τ surfaces²³. Finally we apply the specific gauge fixing �4 defined by

χA ≡ σA − Z [A][wT [(3g(σB), 3π(σD)]
] ≈ 0, A = 0, 1, 2, 3, (5.6)

to the super-Hamiltonian (A = 0) and the super-momentum (A = 1,2,3) constraints.
This is indeed a good gauge fixing provided that the functions Z [A] are chosen to
satisfy the fundamental orbit conditions {Z [A],HB} �= 0, (A, B = 0, 1, 2, 3), which
ensure the independence of the χA and carry information about the Lorentz signature.
At the end of the gauge fixing procedure �8, the effect is that the values (i.e. the
evolution throughout the mathematical spacetimeM4) of the Dirac observables, whose
dependence on space (and on parameter time) is indexed by the chosen coordinates
σA, reproduce precisely σA as the Bergmann–Komar intrinsic pseudo-coordinates, in
the chosen gauge �8:

σA = Z [A][wT (qr(σB), ps(σ
C )|�8)], A = 0, 1, 2, 3; (5.7)

where the notation wT (q, p|�8) represents the functional form that the Weyl scalars
wT assume in the chosen gauge.

In the language of constraint theory, after the canonical reduction is per-
formed—and only for the solutions of the equations of motion—(5.7) becomes a
strong relation²⁴. Such a strong relation is in fact an identity with respect to σA, and
amounts to a ‘definition’ of the ‘radar’ coordinates σA as four scalars providing a physical
individuation of any point–event, in the gauge fixed coordinate system, in terms of the
intrinsic gravitational degrees of freedom.

In this way each of the point–events of spacetime is endowed with its own
metrical fingerprint extracted from the tensor field, i.e. the value of the four scalar
functionals of the Dirac observables (exactly four!)²⁵. The price that we have paid for
this achievement is that we have broken general covariance! This, however, is not
a drawback because every choice of 4-coordinates for a point (every gauge fixing,
in the Hamiltonian language), in any procedure whatsoever for solving Einstein’s
equations, amounts to breaking general covariance by definition. On the other hand
the whole extent of general covariance can be recovered by exploiting the gauge
freedom.

At first, this result may sound surprising: qua diffeomorphism-invariant quantities,
the intrinsic pseudo-coordinates can be forced within a ‘radar’ coordinate system
corresponding to any experimental arrangement. From the Hamiltonian viewpoint,
however, they are necessarily gauge-dependent functionals. It is not known, as
yet, whether the sixteen canonical variables of the Shanmugadhasan basis—which
include the Dirac observables—could be replaced by sixteen diffeomorphism-invariant
quantities (scalars) which, in particular, would include tensorial Dirac observables.

²³ Note that the σA are in fact ‘radar’ (scalar) coordinates.
²⁴ This means that the relation is expressed by functions which not only vanish on the constraint

surface but also have all vanishing derivatives in directions normal to the constraint surface.
²⁵ The fact that there are just four independent invariants for the vacuum gravitational field

should not be regarded as a coincidence. On the contrary, it is crucial for the purpose of point
individuation and for our gauge-fixing procedure. After all, recall that in general spacetimes with
matter there are fourteen invariants of this kind!
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This question could be answered in the positive if a main conjecture advanced in
Lusanna and Pauri (2004b), which is now under scrutiny, turned out to be true²⁶.
Then, the individuating functions of (5.7) would depend only on scalars and the
distinction between Dirac and gauge observables would become fully invariant. In this
case, one could speak of a fully objective (tensor-covariant) dynamical individuation
of point-events. Yet, obviously, the gauge-fixing procedure would still break general
covariance.

Note that the virtue of the elaborate construction described above does not
depend on the selection of a set of physically preferred coordinates, because by
modifying the functions I [A] of (5.2) we have the possibility of implementing any
‘radar’ coordinate transformation. So diffeomorphism invariance reappears under a
different suit: we find exactly the same functional freedom of DP in the functional
freedom of the choice of the pseudo-coordinates Z [A] (i.e. of the gauge-fixing �4).
Thus we see that, on shell, both at the Hamiltonian and at the Lagrangian level,
every gauge fixing, together with the choice of a GLAB, amounts to the selection of
radar manifold coordinates. Yet, we can now claim that any ‘radar’ coordinatization
of the manifold can be seen as embodying the physical individuation of points,
because it can be implemented—locally at least—as the Komar–Bergmann intrinsic
pseudo-coordinates after we choose the correct Z [A] and we select the proper gauge.

One crucial point concerning the hole argument still needs to be clarified.
It is clear that, for a full understanding of the role played within the Hamiltonian

description by the active diffeomorphisms of the hole argument, it is necessary that
they also be interpretable in some way as the manifold-way counterparts of suitable
Hamiltonian gauge transformations. Here, we can only limit ourselves to state that
this is actually possible by resorting to an important paper by Bergmann and Komar
(1972) about the general coordinate-group symmetries of Einstein equations. In fact,
it turns out (see LP1 and LP2) that active diffeomorphisms can be viewed as passive
transformations on the conjunction of the spacetime manifold and the function space
of the metric fields.

Thus, recalling the conclusion of §5.3.2.2 (concerning the partition of Cauchy
data in gauge classes), it follows that the Hamiltonian counterpart of active dif-
feomorphisms—qua dynamical symmetries—are of two kinds. While those of the
first kind induce mappings of the initial data on a Cauchy surface �τ0 into gauge-
equivalent Cauchy data of the same class, those of the second kind induce mappings
among Cauchy data of different classes. The crucial point, however, is that only
the first kind of diffeormorphisms can have a Lagrangian counterpart which is the
identity on �τ0 , and can thereby satisfy the assumptions of the hole argument. This
entails, therefore, that solutions of Einstein’s equations that within the hole differ by

²⁶ An evaluation of the degrees of freedom in connection with the Newman–Penrose formalism
for tetrad gravity (Stewart 1993) tends to corroborate the conjecture. In the Newman–Penrose
formalism we can define ten coordinate-independent quantities, namely the ten Weyl scalars. If
we add ten further scalars built using the extrinsic curvature, we have a total of twenty scalars
from which one should extract a canonical basis replacing the 4-metric and its conjugate momenta.
Consequently, it should be possible to find scalar Dirac observables, and scalar gauge variables.
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an active transformation on manifold points, when examined at the Hamiltonian level,
turn out to be solutions simply differing by a harmless gauge transformation within the
same Einstein ‘universe’. On the other hand, since the active diffeomorphisms of the
second kind are necessarily maps between different Einstein ‘universes’, they cannot
be the identity on the Cauchy surface, and therefore violate the assumptions of the
hole argument.

In conclusion, the difference among the solutions generated by active diffeo-
morphisms satisfying the conditions of the hole argument correspond to different
‘appearances’ of the intrinsic gravitational phenomena in different GLABs. This is
what the physical content of the Leibniz equivalence boils down to. It is seen,
therefore, that the hole argument has nothing to do with an alleged indeterminism
and that its philosophical bearing is dissolved.

Finally, our procedure for the dynamical individuation of ‘point-events’ also shows
why Stachel’s original proposal (Stachel 1993) of a fully covariant exploitation of the
Bergman–Komar invariants I [A] cannot work.

Here, we do not refer to Stachel’s broader perspective about the significance and
the possibility of generalizations of the hole story (see Stachel and Iftime 2005)
which, among other things, is intended to block the hole argument. Within our
context, we limit ourselves to stress the following: (a) spacetime does exist if a metric
field is defined; (b) this metric field must be a solution of Einstein’s equations; (c) the
active diffeomorphisms that purportedly keep the physical identity of point-events by
carrying them along in the fully covariant view are dynamical symmetries of Einstein’s
equations.

Now, how can we be sure that the functional dependence of the quantities
I [A][wT [g(x), ∂g(x)] is concretely characterized as relating to actual solutions of
Einstein’s equations corresponding to given initial data? Since in the actual case we
know that these quantities depend upon four Dirac observables and eight arbitrary
gauge variables, it follows that this arbitrariness, if not properly taken into account,
is unavoidably transferred into the individuation procedure and leaves it incomplete.
Speaking of general covariance in an abstract way hides the necessity of getting
rid of the above arbitrariness by a gauge fixing that, in turn, necessarily breaks
general covariance. In other words, a definite physical individuation entails a concrete
characterization of a GLAB, which is precisely what we do. The result is, in particular,
exactly what Stachel’s original suggestion intended to achieve, for our intrinsic gauge
shows that the Hamiltonian counterparts of active diffeomorphisms of the first kind do
map individuations of point-events into physically equivalent individuations. Indeed,
the on-shell Hamiltonian gauge transformation, connecting two different gauges,
is the passive counterpart of an active diffeomorphism DA, which determines the
drag-along coordinate transformation connecting the coordinates defined by the
two gauges, i.e. the so-called dual view of the active diffeomorphism. While the
active diffeomorphism carries along the identity of points by assumption, the
passive view attributes different physically individuated radar coordinates to the ‘same’
(mathematical) point. Consider, for example, on shell, two world-lines intersecting
at a point-event p within the hole. They define a ‘point-coincidence’ which is
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traditionally interpreted as a typical objective spacetime occurrence. Now, DA maps
these world-lines into different world-lines intersecting at the point p′ which is just
the point defined by applying DA to p, i.e. the ‘same’ physical point-event. From our
Hamiltonian point of view, the ‘same’ mathematical point gets different gauge-related
individuations while the form of the transformed world-lines is different because their
description is made in different GLABs, characterized by different inertial potentials.
It is seen, therefore, that for any point-event, a given individuation by means of
the Dirac observables is mapped into a physically equivalent, GLAB-dependent
individuation.

Finally, it must be stressed that the main reason why we succeeded in carrying
a concrete realization of Stachel’s original suggestion to its natural completion lies
in the possibility that the Hamiltonian method offers, of working off shell. In fact,
the DA, qua dynamical symmetries of Einstein’s equations, must act on solutions
at every stage of the procedure and fail to display the arbitrary part of the scalar
invariants. On the other hand, the Hamiltonian separation of the gauge variables
(characterizing the GLAB and ruling the generalized inertial effects) from the Dirac
observables (characterizing the tidal effects) is an off-shell procedure. As such, it
recovers the sought-after metrical fingerprint by working independently of the initial
value problem. Once again, this mechanism is a typical consequence of the special
role played by the gauge variables in GR²⁷.

5.3.2.4 Gravitational-field-cum-matter and the spacetime holistic texture
In conclusion, what is relevant to our discussion is that there is a remarkable class
of gauge fixings, (5.6), that is instrumental both to the solution of the Cauchy
problem and to the physical individuation of spacetime point-events. We propose
to call this gauge the intrinsic individuating gauge. As we have seen above, each
of the point-events of spacetime is endowed with its own physical individuation
(the right metrical fingerprint!) as the value of the four scalar functionals of the
Dirac observables (just four!), which describe the dynamical degrees of freedom of
the gravitational field. It is important to stress that, due to the independence of
the pseudo-coordinates from the lapse and shift functions, these degrees of freedom
are inextricably entangled with the structure of the whole 3-metric and 3-curvature
in a way that is strongly gauge dependent. This result appears prima facie as an
instantiation of three-dimensional holism. Since, however, the extrinsic curvature has
to do with the embedding of the hypersurface in M4, the Dirac observables do involve
geometrical elements external to the Cauchy hypersurface itself. Furthermore, since (5.7)
is four-dimensional and includes the temporal gauge (fixed by the scalar Z [0]), as
soon as the Einstein–Hamilton equations are solved and the evolution in τ of the
Dirac observables fully determined, a remarkable instantiation of a four-dimensional

²⁷ As already noted, if the main conjecture advanced by Lusanna and Pauri (2004b) is true, a
canonical basis should exist having an explicit scalar character. Consequently, it should be possible
to find scalar Dirac observables and scalar gauge variables. Then, the individuating functions of
(5.7) would depend on scalars only, and the distinction between Dirac and gauge observables would
become fully invariant.
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stratified holism is recovered which, however—unless the main conjecture advanced
in LP2 is verified—is relative to the GLAB. At this point we could even say that
the existence of physical point-events in our models of general relativity appears to be
synonymous with the existence of the Dirac observables for the gravitational field, and
advance the ontological claim that, physically, a vacuum Einstein spacetime is literally
identifiable with the autonomous degrees of freedom of such a structural field, while the
specific (gauge-dependent) functional form of the intrinsic pseudo-coordinates maps
such coordinates into the manifold’s points. The intrinsic gravitational degrees of
freedom are, as it were, fully absorbed in the individuation of point-events. Thus, in
this way, point-events also keep a special kind of property.

Let us now briefly look at the most general case of ADM models of GR with
matter fields, taking proper notice of the fact that we are still working with globally
hyperbolic pseudo-Riemannian 4-manifolds M4 which are asymptotically flat at
spatial infinity. The introduction of matter has the effect of modifying the Riemann
and Weyl tensors, namely the curvature of the four-dimensional substratum, and to
allow a measure of the gravitational field in a geometric way (for instance through
effects like the geodesic deviation equation). In the presence of matter, we have Dirac
observables for the gravitational field and Dirac observables for the matter fields which
satisfy the coupled Einstein–Hamilton equations. As it is to be expected, however,
even the functional form of gravitational observables is modified (relative to the
vacuum case) by the presence of matter. Since the gravitational Dirac observables
will still provide the individuating fields for point-events according to the conceptual
procedure presented in this chapter, matter will come to influence the very physical
individuation of spacetime point-events. Yet, the ontological conclusions reached above
are not altered at all.

Finally, even in the case with matter, time evolution is still ruled by the weak
ADM energy rather than by the simple canonical Hamiltonian. Therefore, the
temporal variation corresponds to a real change and not merely to a harmless gauge
transformation as in other models of GR²⁸.

5 .4 DEVELOPING HINTS FOR THE QUANTUM GRAVITY
PROGRAMME

Let us close our analysis with some hints for the quantum gravity programme that
are suggested by the above results (see LP2 for more details). As is well known,
there are today two inequivalent approaches: (i) the perturbative background-
dependent string formulation, on a Fock space containing elementary particles; (ii)
the non-perturbative background-independent loop quantum gravity formulation,
based on the non-Fock so-called polymer Hilbert space. The latter approach still
fails to accommodate elementary particles, although Ashtekar has advanced some

²⁸ These latter include, for instance, the spatially compact spacetime without boundary (or
simply closed models) which are exploited by Earman in his Thoroughly Modern McTaggart (2002).
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suggestions to define a coarse-grained structure as a bridge between standard coherent
states in the Fock space and some shadow states of the discrete quantum geometry
associated with the polymer Hilbert space.

Now, let us point out that (5.7) is a numerical identity that has a built-in non-
commutative structure, deriving from the Dirac–Poisson structure on its right-hand
side. The individuation procedure we have proposed transfers, as it were, the non-
commutative Poisson–Dirac structure of the Dirac observables onto the individuated
point-events, even if, of course, the coordinates on the left-hand side of the identity
(5.7) are c-number quantities. One could guess that such a feature might deserve
some attention in view of quantization, for instance by maintaining that the identity
(5.7) could still play some role at the quantum level. We will assume here, for the
sake of argument, that the main conjecture is verified, so that all the quantities we
consider are manifestly covariant.

Let us first lay down some qualitative premisses concerning the status of Minkowski
spacetime in relativistic quantum field theory (RQFT): call it micro-spacetime (see
Pauri 2000). Such a status is indeed quite remarkable. Since it is introduced into the
theory through the group-theoretical requirement of the relativistic invariance of the
statistical results of measurements with respect to the choice of macroscopic reference
frames, the micro-spacetime is therefore anchored to the macroscopic, medium-sized
objects that asymptotically define the experimental conditions in the laboratory.²⁹
Thus, the spatio-temporal properties of the micro Minkowski manifold, including its
basic causal structure, are, as it were, projected onto it from outside.

In classical field theories spacetime points play the role of individuals and we have
seen how point-events can be individuated dynamically in a richer and holistic way.
No such possibility, however, is consistently left open in a non-metaphorical way
in RQFT. From this point of view, Minkowski’s micro-spacetime in RQFT is in a
worse position than classical general relativistic spacetime: it lacks the existence of
Riemannian intrinsic pseudo-coordinates, as well as of all the non-dynamical (better,
operational, and pragmatic) additional macroscopic elements that are used for the
individuation of its points, like rigid rods and clocks in rigid and non-accelerated
motion, or various combinations of genidentical world-lines of free test particles, light
rays, clocks, and other test devices.

Summarizing, Minkowski’s micro-spacetime seems to be essentially functioning
like an instrumental but external translator of the symbolic structure of quantum
theory into the causal language of the macroscopic, irreversible traces constituting
the experimental findings within macro-spacetime. Such an external translator should
be regarded as an epistemic precondition for the formulation of RQFT in the sense of
Bohr, independently of one’s attitude towards the measurement problem in quantum
mechanics.

Thus, barring macroscopic Schrödinger’s cat-like states of the would-be quantum
spacetime, any conceivable formulation of a quantum theory of gravity would have
to respect, at the operational level, the epistemic priority of a classical spatio-temporal

²⁹ It is just in this asymptotic sense that a physical meaning is attributed to the classical
spatio-temporal coordinates upon which the quantum fields’ operators depend as parameters.
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continuum. In fact, the possibility of referring directly to ‘the quantum structure
of spacetime’ faces at the very least a serious conceptual difficulty, concerning the
localization of the gravitational field: what does it mean to talk about the values
of the gravitational field at a point if the metric field itself is subject to quantum
fluctuations? How could we identify point-events? In this case, we could no longer
tell whether the separation between two points is spacelike, null, or timelike since
quantum fluctuation of the metric could exchange past and future.

Accordingly, in order to give physical and operational meaning to the spatio-
temporal language, we would need some sort of instrumental background, math-
ematically represented by a manifold structure, which, at the quantum level, should
play more or less the role of a Wittgensteinian staircase. It is likely, therefore, that
in order to attribute meaning to the individuality of points at some spatio-temporal
scale—so as to build the basic structure of standard quantum theory—one should
split, as it were, the individuation procedure of point-events from the true quantum
properties, i.e. from the fluctuations of the gravitational field and the micro-causal
structure. Our canonical analysis tends to prefigure a new approach to quantization,
having in view a Fock space formulation which, unlike the loop quantum gravity,
could even lead to a background-independent incorporation of the standard model of
elementary particles (provided the Cauchy surfaces admit Fourier transforms). For a
quantization programme respecting relativistic causality, two options seem available
(see the discussion given in LP2):

1. Our individuation procedure suggests quantizing only the gravitational Dirac
observables (assumed now as scalars in force of the main conjecture (see LP2) ) of each
Hamiltonian gauge, as well as all the matter Dirac observables, and then exploit the
weak ADM energy of that gauge as the Hamiltonian for the functional Schrödinger
equation (of course there might be ordering problems). This quantization would
yield as many Hilbert spaces as gauge fixings, which would likely be grouped in
unitary equivalence classes (we leave aside the question of what could be the meaning
of inequivalent classes, were there any). In each Hilbert space the Dirac quantum
operators would be distribution-valued quantum fields on a mathematical micro-
spacetime parametrized by the 4-coordinates (τ, �σ) associated to the chosen gauge.
Strictly speaking, due to the non-commutativity of the operators Ẑ A associated to the
classical constraint σA − Z A ≈ 0 defining that gauge, there would be no spacetime
manifold of point-events to be mathematically identified by one coordinate chart over
the micro-spacetime but only a gauge-dependent non-commutative structure, which
is likely to lack any underlying topological structure. However, for each Hilbert
space, a coarse-grained spacetime of point-events (�)A(τ, �σ), superimposed on the
mathematical manifold M4, might be associated to each solution of the functional
Schrödinger equation, via the expectation values of the operators ẐA:

(�)A(τ, �σ) ≡ 〈�
∣∣∣Ẑ A

� [Q r(τ, �σ), Ps(τ, �σ)]
∣∣∣�〉, A = 0, 1, 2, 3; r, s = 1, 2; (5.8)

where Q r(τ, �σ) and Ps(τ, �σ) are now Dirac scalar field operators.
Let us stress that, by means of (5.8), the non-locality of the classical individuation

of point-events would be directly transferred to the basis of the ordinary, quantum
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non-locality. Also, one could evaluate in principle the expectation values of the
operators corresponding to the lapse and shift functions of that gauge. Since we
are considering a quantization of the 3-geometry (like in loop quantum gravity),
evaluating the expectation values of the quantum 3-metric, the quantum lapse
and the shift function could permit to reconstruct a coarse-grained foliation with
coarse-grained so-called Wigner–Sen–Witten hypersurfaces³⁰.

2. In order to avoid inequivalent Hilbert spaces, we could quantize before adding
any gauge fixing (i.e. independently of the choice of the 4-coordinates and the
physical individuation of point-events). For example, using the following rule of
quantization, which complies with relativistic causality: in a given scalar canonical
basis, quantize the two pairs of (scalar) gravitational Dirac observables and matter
Dirac observables, but leave the eight gauge variables as c-number classical fields. As in
Schrödinger’s theory with a time-dependent Hamiltonian, the momenta conjugate
to the gauge variables would be represented by functional derivatives. Assuming
that in the chosen canonical basis, seven among the eight constraints are gauge
momenta, we would thereby get seven Schrödinger equations. Then, as suggested
in (LP2), both the super-Hamiltonian and the weak ADM energy would become
operators and, if an ordering existed such that the eight ‘quantum constraints’
satisfied a closed algebra of the form [φ̂α, φ̂β] = Ĉαβγ φ̂γ and [ÊADM , φ̂α] = B̂αβ φ̂β,
(α, β, γ = 1, …, 8) (with the quantum structure functions Ĉαβγ, B̂αβ tending to the
classical counterparts for � 
→ 0), we might quantize by imposing nine integrable
coupled functional Schrödinger equations, with the associated usual scalar product

〈�
∣∣∣�〉 being independent of τ and of the gauge variables.
Again, we would have a mathematical micro-spacetime and a coarse-grained spacetime

of ‘point-events’. At this point, by going to coherent states, we could try to recover
classical gravitational fields. The 3-geometry (volumes, areas, lengths) would be
quantized, perhaps in a way that agrees with the results of loop quantum gravity.

It is important to stress that, according to both suggestions, only the Dirac
observables would be quantized. The upshot is that fluctuations in the gravitation-
al field (better, in the Dirac observables) would entail fluctuations of the point
texture that lends itself to the basic spacetime scheme of standard RQFT: such
fluctuating texture, however, could be recovered as a coarse-grained structure. This
would induce fluctuations in the coarse-grained metric relations, and thereby in
the causal structure, both of which would tend to disappear in a semiclassical
approximation. Such a situation should be conceptually tolerable, and even philo-
sophically appealing, especially if compared with the impossibility of defining a
causal structure within all of the attempts grounded upon a quantization of the
full 4-geometry. In this connection, it would be interesting to see whether the
fluctuations of the point-events metrical texture could have any relevance to the
macro-objectification issue of quantum theory (see Károlyházy et al. 1985 and
Penrose 1985).

³⁰ This foliation is called the Wigner-Sen-Witten foliation due to its properties at spatial infinity
(see Lusanna 2001).
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Finally, in spacetimes with matter, this procedure would entail quantizing the
generalized tidal effects and the action-at-a-distance potentials between matter elements,
but not the inertial aspects of the gravitational field. As we have seen, the latter
aspects are connected with gauge variables whose variations reproduce all the possible
viewpoints of local accelerated timelike observers. Quantizing also the gauge variables
would be tantamount to quantizing the metric together with the passive observers and
their reference frames, a fact that is empirically meaningless.³¹

5.5 STRUCTURAL SPACETIME REALISM

The discussion in the previous sections is substantially grounded upon the fact that
GR is a gauge theory. Henneaux and Teitelboim (1992) gave a very general definition
of gauge theories:

These are theories in which the physical system being dealt with is described by more variables
than there are physically independent degrees of freedom. The physically meaningful degrees
of freedom then re-emerge as being those invariant under a transformation connecting the
variables (gauge transformation). Thus, one introduces extra variables to make the description
more transparent, and brings in at the same time a gauge symmetry to extract the physically
relevant content.

The relevant fact is that, while from the point of view of the constrained
Hamiltonian mathematical formalism general relativity is a gauge theory like any
other (e.g. electromagnetism and Yang–Mills theories), from the physical point of
view it is radically different. For, in addition to creating the distinction between what
is observable and what is not, the gauge freedom of GR is unavoidably entangled
with the constitution of the very stage, spacetime, where the play of physics is enacted:
a stage, however, which also takes an active part in the play. In other words, the
gauge mechanism has the dual role of making the dynamics unique (as in all gauge
theories), and of fixing the spatio-temporal, dynamical background (the GLAB). It is
only after a complete gauge fixing (i.e. after the individuation of a GLAB), and after
having found the solution of Einstein’s equations, that the mathematical manifold
M4 gets a physical individuation.

Unlike theories such as electromagnetism (or even Yang–Mills), in GR we
cannot rely from the beginning on empirically validated, gauge-invariant dynamical
equations for the local fields. In order to get equations for local fields we must pay
the price of general covariance which, by ruling out any background structure at
the outset, conceals at the same time the intrinsic properties of point-events. With
reference to the definition of Henneaux and Teitelboim, we could say, therefore, that
the introduction of extra variables does indeed make the mathematical description
of general relativity more transparent, but it also makes its physical interpretation
more obscure and intriguing, at least prima facie. Actually, our analysis discloses a

³¹ Of course, such observers have nothing to do with dynamical measuring objects, which should
be realized in terms of the Dirac observables of matter.
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deeper distinction of philosophical import. For it highlights a remarkable ontological
and functional split of the metric tensor that can be briefly described as follows.
On the one hand, the Dirac observables holistically specify the ontic structure of
spacetime. On the other, we have seen that the gauge variables specify, as it were,
the in-built epistemic component of the metric structure. Actually, in completing
the structural properties of the general-relativistic spacetime, they play multiple
roles: first of all, their fixing is necessary in order to solve Einstein’s equations
and to reconstruct the four-dimensional chrono-geometry emerging from the Dirac
observables: they are essential to get a manifestly covariant and local metric field as
a ten-dimensional tensor (the transparency of Henneaux and Teitelboim); but their
fixing is also necessary in order to allow empirical access to the theory through the
definition of a spatio-temporal laboratory.

The isolation of the epistemic component of the metric hidden behind Leibniz
equivalence³², which surfaces in the physical individuation of point-events, renders
even more glaring the ontological diversity and prominence of the gravitational field
with respect to all other fields, as well as the difficulty of reconciling the nature of
the gravitational field with the standard approach of theories based on a background
spacetime (to wit, string theory and perturbative quantum gravity in general). Any
attempt at linearizing such theories unavoidably leads to looking at gravity from the
perspective of a spin-2 theory in which the graviton stands on the same ontological
level as other quanta: in the standard approach of background-dependent theories
of gravity, photons, gluons, and gravitons all live on the stage on an equal footing.
From the point of view gained in this chapter, however, non-linear gravitons are at
the same time both the stage and the actors within the causal play of photons, gluons,
as well as of other ‘material characters’ like electrons and quarks.

We can, therefore, say that general covariance represents the horizon of a priori
possibilities for the physical constitution of spacetime, possibilities that must be
actualized within any given solution of the dynamical equations.

We believe in conclusion that these results cast some light over the intrinsic
structure of general relativistic spacetime that had disappeared behind the Leibniz
equivalence. While Leibniz could exploit the principle of sufficient reason since for
him space was uniform, in GR the upshot is that space (spacetime) is not uniform at
all and shows a rich structure. In a way, in the context of GR, the Leibniz equivalence
ends up hiding the very nature of spacetime, instead of disclosing it.

5.5.1 The Nature of Point-Events and Overcoming
the Substantivalism/Relationism Debate

In 1972, Bergmann and Komar wrote:

in general relativity the identity of a world point is not preserved under the theory’s widest
invariance group. This assertion forms the basis for the conjecture that some physical theory

³² As distinct from what could be called its ontic component, corresponding to the Dirac
observables.
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of the future may teach us how to dispense with world points as the ultimate constituents of
spacetime altogether.

Indeed, would it be possible to build a fundamental theory that is grounded in the
reduced phase space parametrized by the Dirac observables? This would be an abstract
and highly non-local theory of classical gravitation but, transparency aside, it would
lack all the epistemic machinery (the gauge freedom) which is indispensable for the
application of the theory. Therefore, we see that, even in the context of classical
gravitational theory, the spatio-temporal continuum is an epistemic precondition
playing a role which is not too dissimilar from that enacted by the Minkowski
micro-spacetime in RQFT. We find here much more than a clear instantiation of
the relationship between canonical structure and locality that pervades contemporary
theoretical physics throughout.

Can this basic freedom in the choice of the local realizations be equated with
‘taking away from space and time the last remnant of physical objectivity’, as Einstein
suggested? We believe that, discounting Einstein’s ‘spatial worry’ with realism as
locality (and separability), a significant kind of spatio-temporal objectivity survives. It
is true that— if the main conjecture of LP2 is not verified—the functional form of the
Dirac observables as well as the stratified holistic structure discussed above depend
upon the particular choice of the GLAB; yet, there is no a priori physical individuation
of the manifold points independently of the metric field. As a consequence, there
is a sense in which it is not legitimate to say that the individuation procedures
corresponding to different gauges individuate different point-events. Given the
conventional nature of the primary mathematical individuation of manifold points
through n-tuples of real numbers, we could say, instead, that the identity of point-
events is constituted by the non-local values of gravitational degrees of freedom, while
the underlying point structure of the mathematical manifold may be changed at will.
A really different physical individuation should only be attributed to different initial
conditions for the Dirac observables (i.e. to a different ‘universe’).

Taking into account our results as a whole, we want to spend a few words about
their implications for the traditional debate on the absolutist/relationalist dichotomy
as well as for some issues surrounding structural realism in general.

First of all, let us recall that, in remarkable contrast with respect to the traditional
historical presentation of Newton’s absolutism vis-à-vis Leibniz’s relationism, Newton
had a much deeper understanding of the nature of space and time. In a well-known
passage of De Gravitatione (see Janiak 2004: 21, 25), he expounds what could be
defined as a structuralist view of space and time³³. He writes:

Perhaps now it is maybe expected that I should define extension as substance or accident or
else nothing at all. But by no means, for it has its own manner of existence which fits neither
substance nor accidents … so the parts of space are individuated by their positions, so that if
any two could change their positions, they would change their individuality at the same time
and each would be converted numerically into the other qua individuals. The parts of duration

³³ This reading has been clearly prefigured by DiSalle (1994).
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and space are only understood to be the same as they really are only because of their mutual
order and position (propter solum ordinem et positiones inter se); nor do they have any principle
of individuation apart from that order and position, which consequently cannot be altered.

We have just disclosed the fact that the points of general-relativistic spacetimes,
quite unlike the points of the homogeneous Newtonian space, are endowed with
a remarkably rich non-pointlike and holistic structure furnished by the metric field.
Therefore, the general-relativistic metric field itself or, better, its independent degrees
of freedom, have the capacity of characterizing the ‘mutual order and positions’ of
points dynamically, and in fact much more than this, since such mutual order is
altered by the presence of matter³⁴.

In conclusion, we agree with Earman and Norton that the hole argument is a
decisive blow against strict manifold substantivalism. However, the isolation of the
intrinsic structure hidden behind the Leibniz equivalence—leading to our point
structuralism—does not support the standard relationist view either.

Indeed, a new kind of holistic and structuralistic conception of spacetime emerges
from our analysis, including elements common to the tradition of both substantivalism
(spacetime has an autonomous existence independently of other bodies or matter
fields) and relationism (the physical meaning of spacetime depends upon the relations
between bodies or, in modern language, the specific reality of spacetime depends
(also) upon the (matter) fields it contains). Indeed, even though the metric field does
not embody the traditional notion of substance (rather than being ‘wholly present’, it
has ‘temporal parts’), it exists and plays a role for the individuation of point-events.
On the other hand, each point-event itself, though holistically individuated by the
metric field, has—to paraphrase Newton—‘its own manner of existence’, since it
‘is’ the ‘values’ of the intrinsic degrees of freedom of the gravitational field. Finally,
in presence of matter, such values become dependent also on the values of the Dirac
observables of matter fields and in the sense specified above they are ‘relational’.

More precisely, by referring to Earman’s third criterion (R3) for relationism (see
1989: 14), ‘No irreducible, monadic, spatiotemporal properties, like ‘‘is located at
spacetime point p’’ appears in a correct analysis of the spatiotemporal idiom’, we
observe the following. If by ‘spacetime point’ we mean our physically individuated
point-event instead of a point on the naked manifold, then—because of the
autonomous existence of the intrinsic degrees of freedom of the gravitational field (an
essential ingredient of GR)—there is a sense in which the above-mentioned spatio-
temporal property should be admitted in our spatio-temporal idiom. In another sense,
however, our results seem to imply a different sort of relationism, since the values
of the ‘radar’ coordinates of any point-event that one obtains after the gauge-fixing
procedure are irreducibly and holistically dependent upon the choice of the GLAB.
Since in a different GLAB we obtain different values, such values are not intrinsically
possessed. In conclusion, the point-events (the relata) exist (entity realism), but their

³⁴ Let us stress that our results concerning the holistic structure of point-events do not depend
upon the specific gauge-fixing methodology. If we are interested in ‘seeing’ that structure of point-
events in a given Einstein ‘universe’, there is no other way but relying on the technique of the
intrinsic individuating gauge.
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nature (their magnitudes, or properties they instantiate) are extrinsic or relational and
not intrinsic or monadic. This form of relationism, however, unlike the traditional
form of spacetime relationism, involves the relational and holistic nature of the
properties of point-events.

These remarks show how the structural texture of spacetime in classical GR does
not force us to abandon the typical entity realist attitude toward both the metric
field and its points. As our case study seems to indicate, we must reject the ontic
structural realist claim that (the metrical) relations can exist without their relata (the
points). At the same time, we can distance ourselves from the epistemic structural
realist’s prudence in denying existence to entities (in our case, point-events): despite
their holistic texture, the identity of point-events is sufficiently well characterized
by the distinct values of the Dirac observables they exemplify. However, in view
of the distinctions introduced at the end of §5.2.1, the fact that the properties of
point-events are relationally dependent on the choice of a GLAB entails a somewhat
weaker form of entity realism. In sum, we can use structural realism to defend both
(i) a moderate form of theory realism about the approximate truth of Einstein’s
field equations (within the limits fixed by their domain of application) and (ii) a
full-blown realism about spacetime in GR. As far as Quantum Gravity is concerned,
the fluctuations of the Dirac observables do not eliminate the structuralist and holistic
nature of the coarse-grained texture of ‘quantum spacetime’. However, it would be
difficult to claim that some kind of intrinsic individuality survives for ‘point-events’.

We acknowledge that the validity of our results is restricted to the class of models
of GR we worked with. Yet, we were interested in an instantiation of a question
of principle, and we wanted to argue that there is a basic class of models of GR
embodying both a real notion of temporal change and a new structuralistic and holistic
view of spacetime.
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6
Time and Structure in Canonical Gravity

Dean Rickles

ABSTRACT

In this chapter I wish to make some headway on understanding what kind of problem the
‘problem of time’ is, and offer a possible resolution—or, rather, a new way of understanding
an old resolution.¹ The response I give is a variation on a theme of Rovelli’s evolving constants
of motion strategy (more generally: ‘correlation’ strategies). I argue that by giving correlation
strategies a structuralist basis, a number of objections to the standard account can be blunted.
Moreover, I show that the account I offer provides a suitable ontology for time (and space) in
both classical and quantum canonical general relativity.

6 .1 INTRODUCTION

Interpreting modern-day fundamental physical theories is hard. Our four best
theories—three quantum field theories (describing the strong, electro-weak, and
electromagnetic forces) and one classical field theory describing gravity—are gauge
theories.² Interpreting these theories is complicated by the presence of a special
class of symmetries (gauge symmetries) whose action does not ‘disturb’ any ‘qual-
itative’ properties and relations; only non-observable, non-qualitative features of a

¹ I am referring to the problem of time that appears in canonical formulations of both classical
and quantum GR, and also in certain diffeomorphism-invariant covariant quantum field theories
(e.g. topological quantum field theories: see Baez (this volume) for a clear and elementary account).
More generally, though I cannot demonstrate the fact here, any theory that is independent of a fixed
metric (or connection) on space or spacetime will be subject to the problems considered here. Since
it is likely that the ‘final’ theory of quantum gravity will be of this form, the problem of time will
almost inevitably be a problem for that theory, or, at least, will play a role in its development and
eventual formulation.

² I should point out that this claim is not entirely uncontentious. Weinstein (2001) has argued
that certain features of general relativity—namely, the fact that the gauge groups of the first three
theories are Lie groups and can be viewed as acting at spacetime points whereas in general relativity
the candidate for the gauge group (the diffeomorphism group) acts on the points themselves and is
not a Lie group—debar it from being classified as a gauge theory proper. See Earman (2003a) for a
defence of the contrary view based on the Hamiltonian formulation of general relativity.
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theory (or family of models) are affected.³ This leads to empirically superfluous
elements—‘surplus structure’ in Redhead’s sense (Redhead 1975); ‘gauge freedom’
in physicists’ jargon—in the description of such theories that must be be dealt with
in some way, either by ‘elimination’ or ‘accommodation’. While classically inert,
the decision regarding how to deal with the gauge freedom can lead to non-trivial
differences at the quantum level (i.e. inequivalent quantizations). The root cause of
interpretative headaches in the context of gauge theories is, then, the gauge freedom;
the problem facing philosophers (and physicists!) is to explicate and provide some
account of both the gauge symmetries and the elements that are acted upon by those
symmetries.

The interpretative problems of gauge theory take on what is arguably their most
pathological form in the context of the problem of space (better known as the ‘hole
argument’) and the problem of time.⁴ I will argue that the latter problem is essentially
just a recapitulation of the former, although focused upon the Hamiltonian rather
than the diffeomorphism constraint. Therefore, I think that one should respond to
the problems in the same way: I favour a non-reductive gauge-invariant conception
of observables coupled with a kind of structuralism. My main aims in this chapter
are as follows: (1) to explain the problem of time in a way that is accessible to
philosophers; (2) to provide a critique of the usual responses; (3) to disentangle the
debate between substantivalists and relationalists from the problem of time; and (4)
to defend a structuralist resolution of the problem of time.

6.2 CONSTRAINTS, GAUGE, AND HOLES

In their recent survey of the problem of time in quantum gravity, Belot and Earman
note that there is a ‘sentiment—which is widespread among physicists working on
canonical quantum gravity—that there is a tight connection between the interpretive
problems of general relativity and the technical and conceptual problems of quantum
gravity’ (2001: 214). Belot and Earman share this sentiment, and go even further in
claiming that certain proposals for understanding the general covariance of general
relativity underwrite specific proposals for quantizing gravity. These proposals are
then seen as being linked to ‘interpretive views concerning the ontological status
of spacetime’ (ibid.). I agree with their former claim but strongly disagree with the
latter: such proposals cannot be seen as linked with stances concerning the ontological

³ Belot (2003) offers a detailed philosophical survey of gauge theories; I refer the reader
unacquainted with the basic details of the concept of ‘gauge’ to this insightful article. Redhead
(2003) is an exceptionally clear, and more elementary, guide to the interpretation of gauge theories.
Earman (2003a) examines the concepts of gauge theory from the perspective of the constrained
Hamiltonian formalism—indeed, Earman (2003a: 153) speaks of the constrained Hamiltonian
formalism as an ‘apparatus … used to detect gauge freedom’.

⁴ The best places to learn about the problem of time are (still) Isham (1994) and Kuchař (1992).
Belot and Earman (1999, 2001) give two excellent philosophical examinations of the problem; the
latter is more comprehensive and technically demanding than the former. I am much indebted to
this quadruplet of articles.
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status of spacetime vis-à-vis relationalism vs. substantivalism (for reasons that will be
discussed in what follows).

The crucial claim they make, for the purposes of this chapter, is that the gauge
invariance reading of the general covariance of general relativity ‘seems to force us
to accept that change is not a fundamental reality in classical and quantum gravity’
(ibid.). I agree with Belot and Earman that, like the hole argument, the problem of
time is an aspect of the more general problem of interpreting gauge theories. I also
agree with Earman’s claim that the problems do not only have teeth in the quantum
context, but bite in the classical context too (see Earman 2002: 6)—indeed, I don’t
find all that much to distinguish the two cases. In order to fully appreciate this
problem, we need to take a brief detour to introduce a variety of concepts: gauge and
constraints; phase spaces and possible worlds; and the interpretative problems and
and options in gauge theory, including the hole argument.

6.2.1 Hamiltonian Systems: Constraints and Gauge

In this section I introduce the Hamiltonian formalism of theories, and show how the
constraints arise in systems whose description possesses surplus structure.⁵ I relate
the presence of a certain class of constraints (those that are first class) to the presence
of gauge freedom. Finally, I outline, in broad strokes, how one tackles the problem
of interpreting the theories considered. This brief primer should provide enough of
the technical apparatus required to understand the classical and quantum problems
of time and change.

A Hamiltonian system is represented by a triple 〈�, ω, H〉 consisting of a manifold
� (the cotangent bundle T∗Q, where Q is the configuration space of a system),
a tensor ω (a symplectic, closed, non-degenerate 2-form), and a function H (the
Hamiltonian H : � → R). These elements interact to give the kinematical and
dynamical structure of a classical theory. The manifold inherits its structure from the
tensor, making it into a phase space with a symplectic geometry. The points of this
space are taken to represent physically possible states of some classical system (i.e.
set of particles, a system of fields, a fluid, etc.). Finally the Hamiltonian function
selects a class of curves from the phase space that are taken to represent physically
possible histories of the system (given the symplectic structure of the space). Any
system represented by such a triple will be deterministic in the sense that knowing
which phase point represents the state of the system at an initial time, there will be a
unique curve through that point whose points represent the past and future states of
the system.⁶ The physical interpretation of this framework is as follows. Recall that

⁵ The presentation I give here relies heavily upon Dirac (1964), Henneaux and Teitelboim
(1992), and the articles in Ehlers and Friedrich (1994).

⁶ In a little more detail: Hamilton’s equations determine a map f → Xf between smooth
functions f on � and vector fields Xf on �. Integrating a vector field Xf associated to the smooth
function f gives a unique curve through each point of �. The symplectic structure gives the set
C∞(�) of smooth function on � the structure of a Poisson algebra by means of the Poisson bracket
{f, g} between pairs of functions f and g. {f, g} is interpreted as giving the rate of change of g with
respect to the set of curves generated by f such that g is constant along the curves generated by f just
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the phase space is given by the cotangent bundle of the configuration space, where
points of the configuration space represent possible instantaneous configurations of
some system (relative to an inertial frame). The cotangent bundle is the set of pairs
(q, p), where q is an element of the configuration space and p is a covector at q.
Thinking of q as representing the position of a system leads to the view that p
represents that system’s momentum. The value of the Hamiltonian at a point of
phase space is the energy of the system whose state is represented by that point. The
physically measurable properties of a Hamiltonian system are described by functions
A(q, p) : � → R in terms of a canonical basis (a set of canonical variables), with
position qi and momenta pi, satisfying Poisson bracket relations:

{qi, pj} = δij (6.1)

Systems described in such terms are rather simple to interpret: each point, (p, q),
in the phase space represents a distinct physically possible world. Furthermore, since
there is a unique curve through each point of phase space, one can interpret the
phase space as directly representing the physically possible states of a system, and the
curves as directly representing the physically possible histories of a system. A simple
one-to-one understanding of the representation relation is possible that does not
lead to indeterminism or underdetermination as regards the canonical variables, the
possibilities, or the possible worlds.

Weakening the geometry of the phase space, and moving to gauge systems, however,
puts pressure on this simple direct interpretation,⁷ precisely because indeterminism
breaks down and the canonical variables are underdetermined. When one considers
systems with redundant variables and symmetries—such as Maxwell’s theory and
general relativity—the formulation contains constraints, where the constraints are
relations of the form φm(qi, pi) = 0 (i = 1, …, m) holding between the canonical
variables. Such constraints are a by product of the Legendre transform taking one
from a Lagrangian to a Hamiltonian description of a system.⁸ These are known as
primary constraints. If these constraints should be preserved by evolution a new set of
constraints is generated to carry out this job. These are called secondary constraints.

in case {f, g} = 0. For any observable A (a function of the canonical variables), the time evolution
is given by Ȧ = {A, H}.

⁷ Note that I don’t say that such an interpretation isn’t possible. It is, provided one either accepts
the consequence of indeterminism and underdetermination, or else finds another way to deal with
them.

⁸ The idea of gauge freedom manifests itself at the level of the Lagrangian formalism too. The
action principle δ

∫
L(q, q̇)dt = 0 allows us to derive Euler–Lagrange equations. Sometimes—in

general relativity, for example—these equations will be non-hyperbolic, they can’t be solved for all
accelerations. This results in a singular Lagrangian, revealing itself in the singularity of the Hessian
∂2L/∂ q̇k∂ q̇h. This implies that when we Legendre transform to the Hamiltonian formulation, the
canonical momenta are not independent, but will satisfy a set of relations called primary constraints,
related to the identities of the Lagrange formalism. As I mention below, preserving these under
evolution may require the imposition of higher-order constraints. Once one has a situation where
all the constraints are preserved by the motion, one will have defined a submanifold where all of the
constraints are satisfied—this is the ‘constraint surface’ C. See Earman (2003a: 144–5) for a clear
explanation of these constraints and their relation to the singularity of the Hessian.
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One may wish to repeat the procedure on these, resulting in tertiary constraints, and
so on.

The first change to note in the shift from a Hamiltonian system to a constrained
Hamiltonian system is that the symplectic form is replaced by a presymplectic form σ,
so that the phase space C of a gauge system inherits its geometrical structure from
this. The presymplectic form induces a partitioning of the phase space into subspaces
(not necessarily manifolds) known as gauge orbits, such that each point x in the phase
space lies in exactly one orbit [x]. Once again we choose a Hamiltonian function on
phase space, such that the value at a phase point represents the energy. However,
in this case, given the weaker geometrical structure induced by the presymplectic
form, the Hamiltonian is not able to determine a unique curve through the phase
points. Instead, there are infinitely many curves through the points. However, the
presymplectic form does supply the phase space with sufficient structure to determine
which gauge orbit a point representing the past or future state will lie in. Hence, for
two curves t → x(t) and t → x′(t) intersecting the same initial phase point x(0), we
find that the gauge orbit containing x(t) is the same as that containing x′(t): i.e.,
[x(t)] = [x′(t)].

In a constrained system, each classical observable is represented by a function
P : C → R on the phase space. But given that the future phase points of an initial
phase point are underdetermined, it will be impossible to uniquely predict the future
value of the observables. Hence, there appears to be a breakdown of determinism;
the initial-value problem does not appear to be well posed, as it is for standard
Hamiltonian systems. The reason is clear enough: there is a unique curve through
each phase point in a Hamiltonian system but infinitely many curves through the
phase points of a gauge system.

Yet there are many theories that are gauge theories and that are evidently not
indeterministic in any pathological sense. The trick for restoring determinism and
recovering a well-posed initial-value problem is to be restrictive about what one takes
the observables to be. Rather than allowing any real-valued functions on the phase
space to represent physical observables, one simply chooses those that are constant on
gauge orbits, such that if [x] = [y] then f(x) = f(y). Such quantities are said to be
gauge invariant. The initial-value problem is well posed for such quantities since for
an initial state xt=0, and curves x(t) and x′(t) through xt=0, f[x(t1)] = f[x′(t1)].

Another important distinction—perhaps the most important as far as the problem
of time goes—between constraints is that holding between first class and second class
constraints. A constraint φk is said to be first class if its Poisson bracket with any other
constraints is given as a linear combination of the constraints:

{φk, φi} = C
j
kiφj, ∀i. (6.2)

Any constraint not satisfying these relations is second class. Our sole concern is
with the first class constraints. The appearance of such constraints in a theory
implies that the dynamics is restricted to a submanifold C of the full phase space
�;—i.e. the constraint surface. Dynamical evolution on C has a representation
in terms of an infinite family of physically equivalent trajectories. This is how
the appearance of gauge freedom is represented in the constrained Hamiltonian
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formalism. Projecting out from C to � results in ambiguity, for any quantities
that differ only by a combination of constraints come out as equal on C. This
ambiguity is a formal counterpart of the ‘many-one’ problems encountered in both
electrodynamics formulated in terms of the vector potential and the hole argument
(touched upon below); it can be seen, as such, as the origin of one kind of surplus
structure; namely, that associated with gauge freedom.

A dynamical variable P (a function of the ps and qs: P(q, p) ) is first class iff it has
weakly vanishing Poisson bracket with all of the constraints:⁹

{P, φj} ≈ 0, j = 1, …, j. (6.3)

These quantities comprise the observables of the classical theory. They are defined by
their invariance under the symmetries generated by the constraints. These symmetries
are the gauge symmetries of the theory; thus, in a gauge theory the observables are
defined by gauge invariance.

The constraints occurring in general relativity are all first class, implying that
they generate gauge transformations. Crucially, the constraints also make up the
Hamiltonian of general relativity: it is a sum of first class constraints. In a constrained
Hamiltonian system, the observables must commute with the Hamiltonian since
it is a constraint (or, rather, a linear combination of such)—in a gauge theory
this translates into the condition that the observables must be gauge invariant. As
always, the Hamiltonian generates motion via Poisson brackets of observables with
the Hamiltonian. In this case, since the Hamiltonian vanishes on C, this implies
that motion is ‘pure gauge’. Already we see a potential problem for the evolution
of the theory’s observables if the observables are defined to be the gauge-invariant
quantities. The problem is this: the constraints of the theory pick out a submanifold
(the constraint surface) on which observables must have vanishing Poisson bracket
with the constraints. In the case of the Hamiltonian constraint (on which more
below), the different points of this manifold correspond to states of the system at
different times (indexed by parameter time τ). Since the constraints generate gauge
transformations (i.e. along a gauge orbit) this implies that time evolution is itself a
gauge transformation! This, in capsule form, is the problem of the frozen formalism
of the classical theory. Let me say a little more about the kinds of constraints that
appear in general relativity and how the concept of gauge freedom arises in this
context.

6.2.2 Constraints and Gauge in General Relativity

The Lagrangian for general relativity contains a number of variables appearing
without their corresponding velocities.¹⁰ This implies that when we define the canon-
ical momenta pi = ∂L/∂ q̇i of the Hamiltonian formulation, we find that they vanish.

⁹ The condition of weak vanishing refers to equality on the constraint surface embedded in the
phase space. I say more about this in §6.2.2.

¹⁰ Such terms become Lagrange multipliers in the Hamiltonian formulation. There are two
types: the lapse function N and the shift vector Ni. These two expressions tell us how much a slice
� is to be ‘pushed forwards in time’: the former acts normally and the latter tangentially.
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This is a sure sign that the Hamiltonian formulation will possess constraints. Two
families of constraints are picked up when we perform the Legendre transform from
the Lagrangian to the Hamiltonian formulation of general relativity: diffeomorphism
constraints and Hamiltonian constraints—three diffeomorphism constraints per
space point and one Hamiltonian constraint per space point.¹¹ The diffeomorphism
constraints generate infinitesimal transformations (three-dimensional diffeomorph-
isms) of � onto itself; they have the effect of ‘sliding’ Cauchy data along � in the
direction of the shift vector Ni. The Hamiltonian constraints generate infinitesimal
transformations of � onto some slice �

′
displaced normally to � in M; hence, data

is ‘pushed’ orthogonal to � in the direction of the lapse function N. The Hamiltonian
of general relativity is a sum of these constraints such that setting lapse to zero gives a
Hamiltonian that is identical to the diffeomorphism constraint and setting the shift
to zero gives a Hamiltonian that is identical to the Hamiltonian constraint.

Recall that in geometrodynamics (cf. Arnowitt et al. 1962) the points in the
phase space of GR are given by pairs (q, p) —where q is a Riemannian metric on a
3-manifold � and p is related to the extrinsic curvature K of � describing the way it
is embedded in a four-dimensional Lorentzian manifold. In GR, the pair must satisfy
the four constraint equations, and this condition picks out a surface in the phase
space called the constraint surface. The observables of the theory are those quantities
that have vanishing Poisson bracket with all of the constraints.¹² According to the
geometrodynamical programme, each point on the constraint surface represents a
physically possible (i.e. by the lights of general relativity) spacelike hypersurface of
a general relativistic spacetime. Points lying on the complement of this surface are
also 3-manifolds, but they do not represent physically possible spacetimes; they have
metric and extrinsic curvature tensors that are incompatible with those needed to
qualify as a 3-space imbedded in a general relativistic spacetime: if anything, they
represent physically impossible states.

The constraint surface comes equipped with a set of transformations C → C that
partition the surface into subspaces known as ‘gauge orbits’ (the transformations
are the gauge transformations). The natural interpretation of the gauge orbits is

¹¹ In the connection formalism a further constraint is picked up, namely the Gauss constraint.
This generates infinitesimal (global) gauge transformations. It is the only constraint that Yang–Mills
theories possess, and, since these are taken to be gauge theories par excellence, this might provide
further motivation for gauge theoretical interpretations of general relativity.

¹² Much has been made of the fact that the Poisson bracket algebra of the constraints does
not close, and, therefore, does not form a Lie algebra. Steven Weinstein, for one, argues that this
feature mitigates against viewing general relativity as a gauge theory. This leads him to the view that
diffeomorphisms should not be viewed as gauge transformations (cf. Weinstein 1999). In fact, a
more general structure called a Dirac algebra is formed that has the group of spatial diffeomorphisms,
Diff(�), as a subgroup. This has been interpreted as implying that general relativity is not, properly
speaking, a gauge theory, since it lacks a feature of Yang–Mills theories—the term ‘gauge theory’
commonly being reserved for Yang–Mills theories (cf. Earman 2003a: 151). I agree with Earman
that this is largely ‘label mongering’ (2003a: 151-2). We can use ‘gauge’ to refer to Yang–Mills
theories or we can use it to refer to theories containing arbitrary functions of time. We might even
use the term more generally to refer to theories containing ‘redundancy’ of a certain specified type.
However, it might still be instructive to see what feature is missing from GR that supposedly robs
it of gauge theory status.



Time and Structure in Canonical Gravity 159

as representing equivalence classes of diffeomorphic models of general relativistic
spacetimes. We face the problem we faced in interpreting electrodynamics: do we
take the points of the orbits to represent the same state of affairs or does each point
represent a distinct possibility? This leads us into the general problem of interpreting
gauge theories (and, in particular, gauge freedom). In the case of general relativity the
gauge freedom concerns the points of the spatial manifold and how the metric field
(and other fields) are to be spread out over them: the intrinsic geometry of the metric
is indifferent as to which points play which role in the overall relational structure
determined by the fields. Satisfaction of the constraints by a solution gives a class of
‘spreadings’ that are compatible with Einstein’s equation and some—those related by
gauge transformations—may differ only in how the fields are spread about over the
points. The hole argument uses general covariance (active diffeomorphism invariance)
to demonstrate that a manifold substantivalist conception of spacetime—i.e. the view
that spacetime points are real and have their identities fixed independently of any
fields defined with respect to them—implies that general relativity is indeterministic.
The conclusion follows by applying a diffeomorphism to any dynamical fields to
the future of an initial slice through spacetime; general covariance implies that the
resulting pair of diffeomorphic models (differing in how the metric is distributed
over the points) solve Einstein’s equation; therefore, if the points are real then the
equations of motion cannot determine how the metric will evolve into the future.
This procedure is essentially reapplied in the case of the problem of time: since the
data on an initial slice is gauge equivalent to that on a later slice (i.e. time evolution
is a gauge transformation—a diffeomorphism) they must describe a qualitatively
identical state of affairs, differing only in which points lie under which bits of the
fields. However, a substantivalist will, on the above view, have to keep them apart,
giving a peculiar indeterministic world in which nothing observable (qualitative)
changes! However, the prospects are no better for a relationalist, who will generally
have to identify gauge-equivalent states, for the time-evolved slices will have to be
identified, thus freezing out any kind of evolution and eradicating change.

6.2.3 Interpreting Gauge Theories

From what I have said so far we can see that there are two competing interpretations
of a gauge theory: on the one hand there is a one-to-one interpretation of the
phase points where we are now viewing the constraint surface as phase space, such
that each point (curve) represents a distinct possible state (history) of a system;
on the other hand there is a many-to-one interpretation according to which many
phase points (namely, those within the same gauge orbit) represent a single possible
state of a system.¹³ The former leads to indeterminism and (if not supplemented

¹³ This option is available because the phase points lying within the same gauge orbit are
related by a gauge transformation: if they represent real possibilities then they represent qualitatively
indistinguishable possibilities differing solely with respect to which individuals get which properties.
Hence, the one-to-one interpretation of the representation relation if interpreted simplistically will
lead to haecceitistic differences between the worlds represented by the solutions.
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by a gauge-invariant account of the observables) an ill-posed initial-value problem,
while the latter involves surplus structure that can be eradicated, but only in a way
that violates such things as locality and (manifest) covariance.¹⁴ Hence, though the
interpretations will be empirically equivalent (at least, at the classical level) the choice
is, ontologically speaking, a non-trivial matter.

The key problem in trying to interpret gauge theories is knowing what to do
with the gauge freedom, the surplus that results from the equivalence of the points
within the same gauge orbits (ontologically: the indistinguishability of the worlds
represented by such points). There are multiple options, and hence, multiple ways of
interpreting gauge theories. Let us call an interpretation that takes each phase point
as representing a distinct physically possible state of a system a direct interpretation.
Hence, each point xi in a gauge orbit [x] represents a distinct possibility. However,
such a direct interpretation leads to a form of indeterminism for the reasons outlined
in §6.2.1. But, since each of the phase points represents a distinct physical possibility,
there is (strictly speaking) no surplus structure according to such an interpretation
perhaps with the exception of the ‘impossible’ states: each bit of the formalism plays
a role in representing reality. Recall also that the indeterminism is of a very peculiar
kind: the multiple futures that were compatible with an initial state were physically
(read ‘qualitatively’) indistinguishable, for they are represented by points lying within
the same gauge orbit. Hence, the indeterminism concerns haecceitistic differences.
However, for realists the indeterminism will still constitute a problem, though it is
not insurmountable. As Belot notes (1998: 538):

if we supplement this account of the ontology of the theory with an account of measurement
which implies that its observable quantities are gauge-invariant, then the indeterminism will
not interfere with our ability to derive deterministic predictions from the theory.

Using this method one can help oneself to gauge invariance at the level of observable
ontology and remain neutral about the rest (spacetime points, quantum particles,
shifted worlds, vector potentials, etc.).

Let us call an interpretation that takes many phase points (from within the same
gauge orbit) as representing a single physically possible state of a system an indirect
interpretation. There are two ways of achieving such an interpretation. The first
method simply takes the representation relation between phase points from within
the same gauge orbit and physically possible states to be many-to-one. Since the
points of a gauge orbit represent physically indistinguishable possibilities, there is no
indeterminism on this approach. Redhead suggests that ‘the ‘‘physical’’ degrees of
freedom [i.e. the fields] at [a future] time t are being multiply represented by points on
the gauge orbit … in terms of the ‘‘unphysical’’ degrees of freedom’ (2003: 130).¹⁵

¹⁴ Locality is lost since the points of gauge orbits represent states that differ in how a catalogue of
properties gets distributed over a domain of points; since such points are identified in many-to-one
accounts, the notion of properties attaching to points is lost—though this has been contested
(quite rightly, in my opinion) on the grounds that the properties can be seen as (dynamically)
‘individuating’ the points (cf. Pooley, this volume). Covariance is seen to be put under pressure by
the fact that the original symmetry is removed in some many-to-one accounts.

¹⁵ Redhead’s analysis seems to suggest that this is the only way to interpret the direct formulation
(speaking in terms of vector potentials)—though he mentions that a gauge-invariant or gauge-fixing
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The gauge freedom is simply an artefact of the formalism. There are superficial
similarities between this approach and the modified direct approach mentioned by
Belot above. However, the stance taken on this approach is that not all of the phase
points represent distinct possibilities. Even on the modified direct approach this is
false. The latter approach simply says that the question of whether or not all of the
phase points represent distinct possibilities is irrelevant to the observable content of
the theory; the observables are indifferent as to what state underlies them provided
the states are gauge-related.

The second method involves treating the gauge orbits rather than phase points
as the fundamental objects of one’s theory. By taking the set of gauge orbits as
the points of a new space, and endowing this set with a symplectic structure,
one can construct a phase space for a Hamiltonian system—this new space is
known as the reduced phase space,¹⁶ and the original is the enlarged phase space.¹⁷
Hence, the procedure amounts to giving a direct interpretation of the reduced phase
space—i.e. one that takes each gauge orbit as representing a distinct physically
possible state—but an indirect interpretation of the enlarged phase space. The
resulting system is deterministic since real-valued functions on the reduced space
correspond to gauge-invariant functions on the enlarged space. In effect, the structure
of the reduced space encodes all of the gauge-invariant information of the enlarged
space even though no gauge symmetry remains (i.e. there is no gauge freedom). Note,
however, that complications can arise in reduced space methods: the reduced space
might not have the structure of a manifold, and so will not be able to play the role
of a phase space; or some phenomena might arise that requires the gauge freedom
to be retained, such as the Aharonov–Bohm effect (cf. Earman 2003a: 158–9 and
Redhead 2003: 132). If these complications do arise, one can nonetheless stick to the
claim that complete gauge orbits represent single possible worlds, as per the above
method.¹⁸

account can resolve the indeterminism. But clearly, it is open to us to give a direct interpretation
and accept the qualitatively indistinguishable worlds that are represented by the isomorphic futures
(points within the gauge orbit).

¹⁶ In order to distinguish this approach from the previous one, let us call it a reductive
interpretation. Note that this matches Leibniz’s form of relationalism since it can be seen as
enforcing the Principle of Identity of Indiscernibles (∀F∀xy : Fx ≡ Fy → x = y) on phase points
within the same gauge orbit. Thus, to complete the analogy, an enlarged phase space � would
correspond to that containing phase points related by the symmetries associated withGN (the Galilean
group of Newtonian mechanics representing indistinguishable shifted, rotated, and boosted worlds)
and the reduced phase space �̃ would correspond to the space with the symmetries removed:
�̃ = �/GN.

¹⁷ Thus the points of the reduced space correspond to gauge orbits of the original enlarged
space. Curves in the reduced space contain information about which gauge orbits the system (as
represented by the enlarged space) passes through.

¹⁸ One can even help oneself to haecceitistic notions on this interpretation by utilizing Lewis’s
idea of ‘cheap quasi-haecceitism’ (1983: 395): as long as one distinguishes between possibilities and
possible worlds one can view each gauge orbit as the sum total of possibilities compatible with a
single world. On the reduced account this option is not available: hence, the desire to accommodate
certain modal talk and concepts may be called upon to play a role in the choice of representational
geometric space.
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There is another method that involves taking only a single phase point from each
gauge orbit as representing a physically possible state of a system. To do this one
must introduce gauge-fixing conditions that pick out a subset of phase points (a
gauge slice) such that each element of this subset is a unique representative from
each gauge orbit (cf. Govaerts 2001: 63). Gauge fixing thus ‘freezes out’ the gauge
freedom of the enlarged phase space.¹⁹ This method leads to an interpretation that
is neither direct nor indirect; I shall call it a selective interpretation. There is a serious
problem—known as a Gribov obstruction (ibid. 64)—facing certain gauge-fixing
procedures, for some lead to different coverings of the space of gauge orbits that,
while being gauge invariant, are not physically equivalent. The obstruction implies
that the gauge conditions do not result in a unique ‘slicing’ of phase space, but may
result in the selection of two or more points from within the same gauge orbit.²⁰

Each of these interpretative options is seen to be applicable in both general
relativity and quantum gravity; indeed, they are seen to play a crucial role in both
their technical and philosophical foundations, though not, I say, to the extent that
Belot and Earman suggest. Recall that the hole argument is based upon a direct, local
interpretation of the models of general relativity. The argument is connected to the
nature of spacetime since the gauge freedom is given by (active) diffeomorphisms
of spacetime points (or by ‘drag-alongs’ of fields over spacetime points). What we
appear to have in the hole argument is an expression of the old Leibniz shift argument
couched in the language of the models of general relativity (qua gauge theory), with
diffeomorphisms playing the role of the translations. Earman and Norton (1987) see
a direct, local interpretation as being implied by spacetime (manifold) substantivalism
(i.e. the view that spacetime points, as represented by a differentiable manifold, exist
independently of material objects). Clearly, this view is then going to be analogous to
the interpretation of Maxwell’s theory that takes the vector potential as a physically
real field. Such an interpretation is indeterministic: the time evolution of the potential
can only be specified up to a gauge transformation. Earman and Norton extract
a similar indeterminism from the direct interpretation in the spacetime case, and
use this conclusion to argue against substantivalism. The ‘problem of time’ applies
the reasoning of the hole argument (as broadly catalogued in my direct, indirect,
reductive, and selective interpretations) to the evolution of data off an initial spatial
slice. One’s interpretation of the gauge freedom then has an impact on the question
of whether or not time and change exist! However, the problems will remain in some
form on any account that views the diffeomorphism invariance of general relativity
as a gauge freedom in the theory.

¹⁹ With reference to the hole argument, the present interpretative move would correspond to
imposing a condition such that exactly one localization of the metric field relative to the points
was chosen. However, in this case, it is difficult to see what could be gained by such a move; there
is no symmetry or geometrical structure available to explain the various invariance principles and
conservation laws.

²⁰ As Redhead notes (2003: 132), in the case of non-Abelian gauge theories, the application of
the gauge-fixing method leads to a breakdown of unitarity (in perturbative field theory) that has
to be dealt with by the ad hoc introduction of ‘fictitious’ ghost fields—thus replacing one type of
surplus structure with another.
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6.3 WHAT IS THE PROBLEM OF TIME?

There are two ways of understanding the problem of time: (1) in terms of states and
(2) in terms of observables. These lead to quite distinct conceptual problems: the
former leads to a problem of time and the latter leads to a problem of change.²¹ The
first problem concerns the fact that distinct Cauchy surfaces of the same model will
be connected by the Hamiltonian constraint, and therefore will be gauge related.
The gauge-invariant view demands that we view them as representing the same state
of affairs. The second problem concerns the observables: no gauge-invariant quantity
will distinguish between Cauchy surfaces of the above sort. Together, these problems
constitute the frozen formalism problem of classical general relativity. Each of these
classical problems transforms into a quantum version.

Let us fix some formalism so we can see how these two problems arise. We are
working in the Hamiltonian formulation so we start by splitting spacetime into
a space part and a time part. Thus, the spacetime manifold M is a background
structure with the topological structure M = R × �, with � a spatially compact
3-manifold. We begin with a phase space �, which we shall take to be the cotangent
bundle defined over the space of Riemannian metrics on �.²² Points in phase space
are then given by pairs (qab, pab), with qab a 3-metric on � and pab a symmetric
tensor on �. The physical (instantaneous) states of the gravitational field are given by
points x ∈ �̃ ⊂ �, where �̃ is the constraint surface consisting of points that satisfy
the diffeomorphism (vector) and Hamiltonian (scalar) constraints: Ha = H⊥ = 0.
These two constraints allow data to be evolved by taking the Poisson bracket of
the latter with the former; thus {O,Ha} changes O ∈ C∞� by a Lie derivative
tangent to � and is generated by a spatial diffeomorphism, while {O,H⊥} changes
O in the direction normal to �. The Hamiltonian for the theory is given by
H = ∫

�
d3x NaHa + NH⊥, where Na and N are Lagrange multipliers called the

shift vector and lapse function respectively. The dynamics are thus entirely generated

²¹ If one believes that change is a necessary condition for time then the second problem will
naturally pose a problem of time too, and vice versa. The necessity of time for ‘real’ (i.e. non-
illusory) change is fairly obvious, but the (Aristotelian) converse, that time requires change, has been
questioned in the philosophical literature (e.g. Shoemaker 1969).

²² I follow ‘standard procedure’ of couching my discussion in terms of the metric variables.
However, I should point out that the canonical approach based on these variables is now defunct and
has been replaced by the connection (Ashtekar variables: cf. Ashtekar 1986) and loop representations
(a nice introduction is Ashtekar and Rovelli 1992). These result in simpler expressions for the
constraints and solutions for the Hamiltonian constraint (none were known for the metric variables!).
The justification for sticking with the metric variables is simply that the problem of time afflicts
any canonical approach and takes on much the same form regardless of which variables one
coordinatizes the phase space with. Generally, one can simply imagine replacing any expression
involving functionals of the metric with functionals of these other variables. I should also note
that the relation between the connection and metric representations of general relativity is one of
a canonical transformation on the phase space. The idea is that we ‘change basis’ from one set of
variables to a new set of variables such that the Poisson bracket relations are preserved by these new
variables. It can happen that a new set of variables simplifies certain situations, and can even help
with conceptual problems. This is just what happened in the ‘connection-variable turn’.
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by (first class) constraints.²³ The implication is that the evolution of states (i.e.
motion) is pure gauge!

What I have described above is general relativity as a constrained Hamiltonian
system. The observables Oi for such H = 0 systems are defined as follows:

O ∈ Oi iff {O, H} ≈ 0. (6.4)

This condition states that observables must have weakly vanishing Poisson brackets
with all of the constraints; i.e. they must vanish on the constraint surface. From
this vantage point, the observables argument is well nigh ineluctable. I mentioned
above that the dynamics is generated by constraints; or, in other words, the dynamics
takes place on the constraint surface, and evolution is along the Hamiltonian vector
fields XH generated by the constraints on this surface (i.e. along the gauge orbits).
Therefore, the observables are constants of the motion: dO

dt (q(t), p(t) ) = 0 (where t
is associated to some foliation given by a choice of lapse and shift). This much gives
us our two problems in the classical context. As Earman sums it up: ‘the Hamiltonian
constraints generate the motion, motion is pure gauge, and the observables of the
theory are constants of the motion in the sense that they are constant along the gauge
orbits’ (2003a: 152). Now to the quantum problems.

Depending upon one’s interpretative strategy with regard to the constraints at the
classical level, there will be distinct quantization methods for the classical theory,
and these correspond to different strategies for tackling the problem of time.²⁴
Quantization along such lines splits into two types: one can either quantize on the
extended phase space or on the reduced phase space. The former method, ‘constrained
quantization’, is due to Dirac (1964): classical constraints are imposed as operator
constraints on the physical states of the quantum theory. The latter method reduces
the number of degrees of freedom of the extended phase space by factoring out
the action of the symmetries generated by the constraints. Hence, the reduced
space is the space of orbits of the extended space; it is a (quotient) manifold and
inherits a symplectic structure (see Marsden and Weinstein 1974): gauge invariance
is automatic on the reduced phase space, for observables on the reduced space will
correspond to gauge-invariant functions on the unreduced space. The extended and
reduced phase spaces are equivalent on a classical level, but generally they will be
inequivalent on a quantum level (cf. Gotay 1984), so the choice is non-trivial.

In brief, and papering over a number of technical subtleties, the constrained
(extended phase space) quantization method runs as follows:

• Choose quantum states (representation space F ):

ψ[q] ∈ L2(Riem(�, μ) ) (6.5)

²³ Dirac’s ‘conjecture’ for such constraints is that they generate gauge transformations:
‘transformations … corresponding to no change in the physical state, are transformations for
which the generating function is a first class constraint’ (Dirac 1964: 23).

²⁴ Since they associate methods of dealing with the constraints (to eliminate the gauge freedom
or not) with particular interpretational stances on spacetime ontology, it is in just this way that
Belot and Earman claim that quantization methods are linked to the substantivalism/relationalism
debate and, therefore, that quantum gravity is also implicated in the grand old debate.
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• Represent the canonical variables qab, pab on F as:

q̂ab(x)ψ[q] = qabψ[q] (6.6)

p̂ab(x)ψ[q] = i(
∂

∂qab
)ψ[q] (6.7)

• Impose the diffeomorphism and Hamiltonian constraints:

Ĥaψ[q] = 3∇bp̂
b
aψ[q] = 0 (6.8)

Ĥ⊥ψ[q] = Gabcd
∂2

∂qac∂qbd
ψ[q] −3 R(q)ψ[q] = 0²⁵ (6.9)

• Find a representation of a subset of classical variables on the physical state space,
such that the operators commute with all of the quantum constraints.²⁶

The classical observables argument filters through into this quantum set-up since,
by analogy with the classical observables, the quantum observables Ôi are defined as
follows:

Ô ∈ Ôi iff [Ô, Ĥ] ≈ 0. (6.10)

Note that the weak equality ‘≈’ is now defined on the solution space of the quantum
constraints; i.e. F0 = {� : Ĥ� = 0}. Clearly, if eq. 6.10 did not hold, then there
could be possible observables whose measurement would ‘knock’ a state � out of
F0. The state version of the problem then follows simply from the fact that the
quantum Hamiltonian annihilates physical states: Ĥ� = 0. What motivates this
view is the idea common to gauge theories that if a pair of classical configurations
q and q′ are gauge related then, for any observable O you could care to choose,
O(q) = O(q′); so we should impose gauge invariance at the level of quantum states
too: thus, ψ(q) = ψ(q′). The diffeomorphism constraint, eq. 6.8, is particularly
easy to comprehend along such lines; it simply says that for any diffeomorphism
d : � → �, and state �[q], �[q] = �[d∗q]—in other words, no quantum state
should be able to distinguish between gauge-related 3-metrics. Were this not the case,
one could use the quantum theory to distinguish between classically indistinguishable
states. The Hamiltonian constraint is more problematic, for it generates changes in
data ‘flowing off’ �, and is seen as generating evolution. If we forbid quantum states
to distinguish between states related by the Hamiltonian constraint, then there is
clearly no evolution, for we must identify the ‘evolved’ slices �0 and �t+d∗t because
evolution is a gauge motion (a diffeomorphism).

According to the alternative method, reduced phase space quantization, the
constraints are solved for prior to quantization (i.e. at the classical level). To solve
the constraints, one divides �̃ by its gauge orbits [x]i� . This yields a space �̃red

²⁵ Gabcd is the DeWitt supermetric defined by [| detq |1/2 [(qabqcd − 1
2 qacqbd)], and 3R(q)

is the scalar curvature of q on an initial hypersurface �. The equation (6.9) is known as the
‘Wheeler–DeWitt equation’.

²⁶ One must also find an inner product making these self-adjoint—no easy matter when there
is no background metric or connection!
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equipped with a symplectic form ω̃. The resulting symplectic geometry (�̃red, ω̃)
is the reduced phase space, and in the case of general relativity corresponds to the
space of non-isometric (vacuum) spacetimes. Thus, the symmetries generated by the
constraints are factored out and one is left with an intrinsic geometrical structure
of standard Hamiltonian form. In this form the canonical quantization is carried
out as usual, and the observables are automatically gauge invariant when considered
as functions on the enlarged space. However, since one of the constraints (the
Hamiltonian constraint) was associated with time evolution, in factoring its action
out the dynamics is eliminated, since time evolution unfolded along a gauge orbit (i.e.
instants of time correspond to the points ‘parametrizing’ a gauge orbit). Thus, on this
approach, states of general relativity are given by points in the reduced phase space,
as opposed to the enlarged phase space used in constrained quantization approach.²⁷

Of course, one can completely remove the ambiguity associated with gauge freedom
by imposing the appropriate gauge conditions, thus allowing for an unproblematic
direct interpretation. However, in the case of general relativity (and other non-
Abelian gauge theories) the geometrical structure of the constraint surface and the
gauge orbits can prohibit the implementation of gauge conditions, so that some
gauge slices will intersect some gauge orbits more than once, or not at all. If the
former occurs then some states will be multiply represented (i.e. surplus remains);
if the latter occurs, some genuine possibilities will not be represented in the phase
space and, therefore, will not be deemed possible. One frequently finds that the
reduced phase space method is mixed with gauge-fixation methods, so that one has
a partially reduced space, with the remaining gauge freedom frozen by imposing
gauge conditions. Such an approach is used by a number of internal time responses
to the problem of time. The idea is that one first solves the diffeomorphism
constraint and then imposes gauge conditions on the gauge freedom generated by
the Hamiltonian constraint. This is essentially the position of Kuchař (see below),
and constant mean curvature approaches (see Carlip 1998 for a clear and thorough
review). Before we consider the technical proposals for dealing with the problem of
time, let us first review some of the philosophical debate concerning the nature of
the problem.

6.4 A SNAPSHOT OF THE PHILOSOPHICAL DEBATE

The philosophical debate on the problem of time (what little there is of it!) has,
I think, tended to misunderstand the kind of problem it is; often taking it to be

²⁷ Little is known about the structure of the space of 3-geometries; the (Wilson) loop variables
offer the best hope of carrying out the proposed reduction, or, rather, coordinatizing the reduced
space. The diffeomorphism constraint is solved by stipulating that the quantum states be knot
invariants. The Gauss constraint that is picked up in the loop representation is easily solved since
the Wilson loops are gauge invariant. However, the Hamiltonian constraint is still problematic,
though at least some solutions can be found. See Brügmann (1994) for more details on these points.
Thiemann has done more than anyone to make the Hamiltonian constraint respectable (see e.g.
Thiemann 1996). However, there are problems even with his version.
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nothing more than a result of eradicating indeterminism by applying the quotienting
procedure for dealing with gauge freedom. This point of view can be seen quite
clearly in action in a recent ‘mini-debate’ between John Earman (2002) and Tim
Maudlin (2002), where both authors see the restoration of determinism via hole
argument type considerations as playing a central role. Thus, Earman writes that ‘[i]n
a constrained Hamiltonian system the intrinsic dynamics … is obtained by passing to
the reduced phase space by quotienting out the gauge orbits. When this is done for a
theory in which motion is pure gauge, there is an ‘‘elimination of time’’ in that the
dynamics on the reduced phase space is frozen’ (2002: 14).²⁸ Before I outline some
of the ‘standard’ responses, and my own response, it will prove instructive to examine
Maudlin’s views and his criticism of Earman’s account. I will argue that Maudlin
seriously misunderstands the nature of the problem of time.²⁹ Let us begin with
Earman’s account of the problem, and highlight its relation to other conceptions of
time and change.

6.4.1 Time Series from A to D

Before we consider Maudlin’s assessment of the problem of time, and of Earman’s
account of it, we had better have a grip on what is at stake, on what exactly the
problem is saying about time and change (at least, according to Earman). To do this
it will be useful to compare and contrast the various ways in which time and change
have been understood, to see what the problem rules out. We introduce Earman’s
preferred account, based on his notion of a ‘D-series’, and show how it compares with
the A-, B-, and C-series accounts in the philosophical literature on the philosophy of
time.

According to McTaggart (1927: §§305–6), ‘positions in time … as time appears
to us prima facie, are distinguished in two ways’: first, ‘each position is Earlier than
some and Later than some of the others’; secondly, ‘each position is either Past,
Present or Future’. The distinctions encoded in the first category are permanent,
while the latter category are not: ‘If M is ever earlier than N, it is always earlier.
But an event, which is now present, was future, and will be past.’ The ‘movement’
or ‘flow’ of time is understood as ‘later and later terms [passing] into the present’,
or, equivalently, ‘as presentness [passing] into later and later terms’. The first way
of understanding temporal flow corresponds to sliding the B-series ‘backwards’ over

²⁸ However, it is not entirely clear from the text whether Earman endorses the view that it is
only when reduction is carried out that there is a problem of time. In any case, this is wrong since
the problem remains whether or not one reduces the phase space; the problem concerns the gauge
equivalence of states that are supposed to represent different instants of time: how can there be time
and change if time evolution is along a gauge orbit, if it is a gauge transformation?

²⁹ As I just mentioned, Earman too appears to agree with the claim that it is quotienting in a
bid to restore determinism that leads to the eradication of time evolution. This is false, as I have
said, and as I shall argue in more detail below; however, I think the resolution Earman gives is
along the right lines (as I explain in §6.5.2). I should point out that both Earman and Maudlin do,
however, give the correct presentation of the observables argument as a problem of change; indeed,
as I shall explain below, Earman and Maudlin appear to converge at this point, though they claim
to fundamentally differ.
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a fixed A-series (a fixed present); the second way corresponds to the opposite, the
sliding of the A-series ‘forwards’ over a fixed B-series. McTaggart then famously
argues from this basis to the unreality of time. First, he argues—from the premiss
that time involves change—that the B-series depends upon the A-series, so that the
only way that events can change is with respect to their A-determinations, not their
B-relations. The event ‘death of Queen Anne’ does not change per se; it changes by
becoming ever more past, having been future. A-series (tensed) propositions, such as
‘the Battle of Waterloo is past’, are true at some times (those after the battle), but not
at others (those before the battle). Replacing this with a B-series version differs in this
respect; the proposition ‘the Battle of Waterloo is earlier than this judgement’ is either
always true or always false, it does not change its value as a result of the permanency
of the B-series. On these grounds, McTaggart concludes that time requires the
A-series: if time requires change, and events change only in terms of their A-series
determinations, then time requires the A-series. But then McTaggart argues that the
A-series, and therefore time, is inherently contradictory, for the A-determinations are
mutually exclusive, and yet any and ‘every event has them all’ (1927: §329). A single
event is present, will be past, and has been future. However, there is, as McTaggart
realizes, no contradiction here: no event has these simultaneously. But these tensed
verbs, is present, will be past, and has been future, need cashing out. McTaggart (cf.
ibid., §330) suggests that ‘X has been Y ’ is tantamount to ‘X is Y at t < t0’; ‘X will
be Y ’ is tantamount to ‘X is Y at t > t0’; and ‘X (temporally) is Y ’ is tantamount
to ‘X is Y at t = t0’. In other words, the analysis requires there to be ‘moments’
of past, present, and future time. But, McTaggart asks, what are these moments?
The A-determinations cannot fix them once and for all, for the same reasons as with
events. If we attempt to say that the moments do not have their A-determinations
simultaneously, then the analysis must be reapplied: a moment M is future and will
be present and then past, which we then rewrite as above, thus courting the same
problem, producing ‘higher-order’ moments, ad infinitum.

So, without the A-series there is no change; the B-series alone is not sufficient for
time, because time involves change. Moreover, the B-series depends on the A-series,
since the former is essentially temporal (McTaggart 1908: 461): the distinctions it
marks out are temporal, and yet without the A-series there is no time; therefore,
there is no B-series! So much for the A- and B-series; what is left to put in their
place? McTaggart suggests that an ordering remains, the C-series, but it cannot be
temporal, for it does not involve change. The C-series consists of an ordering of
events themselves.³⁰ That we have a string of events, X, Y, Z, implies that there is any
change no more than the ordering of the letters of the alphabet implies change. When
the A-series is superimposed on the C-series, however, then the C-series becomes a
B-series.

³⁰ For a relationalist about time this is simply what time really is. There is little sense in saying
that the relationalist is an eliminativist about time; he simply reduces it, or at least redefines time
in terms of material happenings (non-temporal entities). (There are, I think, analogies to reductive
theories of modality here; especially Lewis’s definition of modal notions in terms of a (non-modal)
plurality of concrete worlds (Lewis 1986)—this analogy is stretched further when we discuss Julian
Barbour’s solution to the problem of time below in §6.5.2.)
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McTaggart’s analysis relies on the notion that change applies to events; the
argument is grounded in times and events. What of objects? It seems that objects
change their properties. Indeed, this is what most people mean by change. Change in
events, if it is of the kind suggested by McTaggart, is somewhat spurious; it does not
exhaust what is meant by change. But, in any case, McTaggart believes that any kind
of change, including the changes that objects undergo, requires an A-series. Modern
philosophers of time are divided on this point, and the schools of thought can be split
according to whether they agree with McTaggart or not about the necessity of the
A-series for change. The nay-sayers are grouped into the category of B-theorists or
‘detensers’, and the yea-sayers are grouped into the cateory of A-theorists or ‘tensers’.
The A-theorists will say that the B-theorists cannot properly accommodate the notion
of the passage of time—that, following McTaggart, they claim is essential—and can,
at best, allow that it is an illusion. The B-theorist denies that passage is necessary for
time and change, and is happy to see it done away with. Both sides claim support
from physics: B-theorists generally wield spacetime theories (special relativity) and
the A-theorists wield mechanical theories such as quantum mechanics.

The A-theorists’ and B-theorists’ theories are often said to underwrite a ‘dynamic’
and ‘static’ conception of time respectively. The static conception represents the
moments of time as an ‘eternally’ existing line, such that each individual moment is
equally as real as any other. No fundamental ontological distinction is to be made
regarding any ‘elements’ or ‘sections’ of the line. This is not the case with the dynamic
conception according to which the different times are assigned different ontological
status: Broad’s ‘growing block’ theory, for example, views the future as unreal, and
the past and present as real; the presentist denies reality to any times other than
the present.

There are many and varied ways of responding to McTaggart (token-reflexive
or indexical analyses of tenses;³¹ presentism, non-property-based becoming, etc.);
however, the most important for my purposes is the class of responses that attempt to
ground a notion of real time and change within the B-series alone (see, for example,
Mellor 1998). Both Earman and I agree that the B-series is sufficient for change in
the sense that different properties and relations are instantiated at different times,
such that if those times were equal we would have a contradiction—in Wheeler’s
words ‘time is what stops everything happening at once’! But strip the dynamical
A-determinations from the world and one is left with a static block of events ordered
earlier to later; indeed, it isn’t clear that ‘earlier’ and ‘later’ can be anything other than
arbitrary directions, for it is the dynamical flow that gives direction to the B-series
ordering a direction, and this belongs to the A-series.

Earman introduces a character called ‘Modern McTaggart’, who attempts to revive
the conclusions of old McTaggart by utilizing a gauge-theoretic interpretation of

³¹ This line of response grounds the moments of time mentioned above contextually by supplying
a Now, and combining this with the B-series (see Russell 1940 and Reichenbach 1947). Thus, one
provides a notion of presentness with, say, the time of utterance of a sentence, St, and then analyses
the tenses in terms of this ‘present’ and a string of earlier and later times. ‘The Battle of Waterloo is
Past’ is parsed as ‘The Battle of Waterloo is earlier than St’.
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general relativity. Earman is dismissive of A-theories; he claims that they are not
part of the scientific image, though he does at least pay lip-service to Shimony’s
attempt to account for ‘transience’. Earman sets up the problem of time as a
McTaggartesque consequence of the Hamiltonian formulation of general relativity.
The problem targets B-series change—different properties at different times—in that
‘no genuine physical magnitude takes on different values at different times’ (2002:
2–3). The problem is that given the gauge-theoretic conception of observables as
gauge invariants, and given that time evolution is a gauge transformation (being
generated by a first class constraint), the observables mustn’t change from one
time to the next.³² On the assumption that time requires change, and assuming
that the observables exhaust what might undergo change (that is, assuming that
the set is complete), it appears that a version of McTaggart’s conclusion follows:
time is unreal according to Hamiltonian general relativity! If we deny that time
requires change, then though there might be temporal evolution, because it is along
a gauge orbit, there will be no qualitative, B-series change; just fixed values. Earman’s
response is to argue that general relativity is nonetheless compatible with change,
though in neither the B- nor the A-series senses. Instead he introduces a ‘D-series’
ontology consisting of a ‘time ordered series of occurrences or events, with different
occurrences or events occupying different positions in the series’ (2002: 3). These
are events formed from the coincidence quantities familiar from Einstein’s ‘point-
coincidence argument’. Earman writes that ‘[t]he occurrence or non-occurrence of a
coincidence event is an observable matter [in the technical sense of observable] … and
that one such event occurs earlier than another such event is also an observable
matter … Change now consists in the fact that different positions in the D-series
are occupied by different coincidence events’ (ibid. 14). Thus, Earman maintains
that his D-series is temporally ordered. But this is simply McTaggart’s C-series;
and, according to McTaggart, that ordering was not temporal. Earman owes us,
but does not give us—claiming that those who demand that Becoming is required
for change ‘are stuck in the manifest image’ (ibid. 5)—an explanation of how
this is a temporal series, and in what sense change can be said to occur. He does
tell us in what sense it does not occur, for according to Earman, ‘common sense
B-series property change is not to be found in physical events themselves but only
in the mode in which we represent these events to ourselves’ (ibid.). However, as
I later demonstrate, Earman cannot make do with a single D-series; if he must
have it, then he must have many. Let us next see what Maudlin makes of Earman’s
account.

³² Again, I feel that Earman limits the problem too much by focusing on the removal of the
gauge freedom as the source of the problems, rather than the gauge freedom itself. Thus, he
writes that for that ‘class of gauge theories where the very dynamics is implemented by a gauge
transformation … [w]hat such a theory describes when the gauge freedom … is killed is a world
without B-series change’ (2002: 7). I say the B-series change is ruled out regardless of whether the
gauge freedom is removed. The difference is subtle: when the gauge freedom is removed, time itself
is removed, for time evolution is along a gauge orbit; when the gauge freedom is retained, there
is time evolution of a sort, but it is gauge, therefore there is no B-series change. Earman is clearly
clinging to the idea that without change there is no time; but the formalism does not force this.
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6.4.2 Maudlin versus Earman

Maudlin is responding to the aforementioned paper of Earman, wherein the latter
upholds the seriousness of the problem of frozen dynamics, and defends a response
to the problem based on the idea that there is, at a fundamental level, no B-series
type change according to general relativity. As we saw, Earman argues that changes
in the magnitudes of things are, at best, an artefact of the local representations
(a particular chart, for example) we might choose to use to describe the world.
What is real is a series of events, a D-series. Earman is very much taken with the
Hamiltonian formalism, and believes that the frozen dynamics is something that
must be accommodated by any sound interpretation of canonical general relativity.
I agree. Maudlin does not; rather, he thinks the frozen formalism involves ‘some
Alice-in-Wonderland logic’ (ibid. 13)! Maudlin distinguishes two separate arguments
in Earman’s paper that appear to lead to the frozen formalism: the ‘Hamiltonian
Argument’ and the ‘Observables Argument’—corresponding, more or less, to my
‘states’ and ‘observables’ arguments. He takes the crux of the Hamiltonian Argument
to consist in the following observation:

Applying this standard method [‘quotienting out’] to the GTR does indeed restore the
determinism of the theory—but at a price. The price is that the dynamics of the theory
becomes ‘pure gauge’; that is, states of the mathematical model which we had originally
taken to represent physically different conditions occurring at different times are now deemed
equivalent since they are related by a ‘gauge transformation’. We find that what we took to be
an ‘earlier’ state of the universe is ‘gauge equivalent’ to what we took to be a ‘later’ state. If
gauge equivalent states are taken to be physically equivalent, it follows that there is no physical
difference between the ‘earlier’ and the ‘later’ states: there is no real physical change. (ibid. 2)

Maudlin’s claim is that ‘the key to the Hamiltonian Argument’ is based ‘in the
freedom to foliate’ (ibid. 7). A specific foliation is an essential ingredient of any
Hamiltonian formulation, for we need an initial data set on a hypersurface. However,
in relativistic theories there are many ways to slice up the spacetime manifold M.
Given an arbitrary foliation, a phase space can be constructed so that points of
this space represent instantaneous states (in this case 3-geometries). The complete
four-dimensional solution (i.e. a model of general relativity) is given by a trajectory
through the phase space. One and the same solution can be represented by many
different trajectories depending upon the foliation that one chooses. He then claims
that this yields an indeterminism of the kind that the quotienting procedure is
used to eradicate; one can make foliations that agree up to some point, and then
diverge thereafter. But, he claims that it is a faux indeterminism. The quotienting is
unnecessary, and not only is it unnecessary it leads to ‘silly’ claims such as ‘change
is not real, but merely apparent’ (ibid. 11). Claims, says Maudlin, that Earman
thinks are revealed about the deep structure of general relativity by the constrained
Hamiltonian formalism. For Maudlin, any such interpretation is absurd. As he
explains:

Any interpretation which claims that the deep structure of the theory says that there is no
change at all—and that leaves completely mysterious why there seems to be change and why
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the merely apparent changes are correctly predicted by the theory—so separates our experience
from physical reality as to render meaningless the evidence that constitutes our grounds for
believing the theory. So the only real question is not that the constrained Hamiltonian
formalism is yielding nonsense in this case, but why it is yielding nonsense. And the freedom
to foliate provides the perfectly comprehensible answer. (ibid. 12)

Maudlin’s opening line here is facetious. First, the canonical approach is a formal
framework not an interpretation. Prima facie, on a surface reading of the formalism
there appears to be no scope for change, therefore, given the apparent existence of
change, something is wrong. However, there is scope for interpreting the formalism
so as to introduce change, as I show in §6.5.2. We can, on these interpretations,
say why the surface reading is ‘yielding nonsense’. The answer is related to the
gauge-invariant response to the hole argument (the response that is supposed to cause
the problems of change in the first place): only change with respect to the manifold
is ruled out; if we focus on those quantities that are independent of the manifold
we can restore change by considering the ‘evolving’ relationships between these
quantities.³³ As regards the observables argument, he rather oddly simply regurgitates
what is the gauge-theoretical lesson of general relativity, that local quantities cannot
be observables:

the Observables Argument gets any traction only by considering candidates for observables
(values at points of the bare manifold) which are neither the sorts of things one actually uses the
GTR to predict nor the sorts of things one would expect—quite apart from diffeomorphism
invariance—to be observables. (ibid. 18)

Thus, Maudlin has in fact simply accepted the gauge-invariance interpretation
without realizing it; he mistakenly thinks that the gauge interpretation goes hand in
hand with the quotienting procedure. That values at the points of the bare manifold
are not the things one predicts cannot be separated from the issues of diffeomorphism
invariance, for it is precisely this that results in the problems for local field quantities
that we have seen in the hole argument. Thus, we can agree, and Earman will
agree, that the observables argument gets off the ground by considering the ‘wrong’
type of observables, but this is to adopt a substantive response that buys into the
gauge-theoretical interpretation! (I return to this point below, for it backfires on his
account of the Hamiltonian argument.)

Maudlin concludes from this ‘double debunking’ that the frozen formalism
problem is simply a result of either a ‘bad choice of formalism or a bad choice of
logical form of an observable’ (ibid. 18). I proceed to attack Maudlin’s account of
the problem in two stages.

First, putting aside his analysis of the source of the indeterminism that requires
the framework of gauge theory (which I consider below), Maudlin’s responses to the
indeterminism are: (1) ignore it; (2) gauge-fix it: and (3) quotient it. He thinks that
the first two are ‘viable solutions’ to the problem, but that the third rests on some
kind of confusion (it is being applied in a domain where it should not be). Not

³³ In §6.6 I suggest that we should view the correlations themselves as observables, following
Rovelli’s interpretation.
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so. The underdetermined local field quantities that gauge invariance is invoked to
dispel cannot simply be ignored. To ignore them is to tend towards anti-realism, for
it amounts to the suggestion that we should worry neither about how our theories
represent nor about what they represent. The gauge-fixing response essentially sides
with those who believe that the problem of change is a real problem, for it is
tantamount to a resolution in terms of gauge-invariant quantities: one fixes a set
of coordinates, thus breaking general covariance, and defines the quantities with
respect to the points of this coordinate system. Maudlin doesn’t give an example
of a viable gauge fixing, but the only ones I know of will involve using either
the invariants of the gravitational field or else some ideal, phenomenological dust
field, or some other material objects: these are wholly unrealistic idealizations. The
quotienting procedure is one way to sop up the indeterminism, but it is not the
only way: nobody said that quotienting was the root of the problem, yet Maudlin
appears convinced that it is. Quotienting would certainly eradicate any kind of
evolution, since the evolution happens along a gauge orbit and the points (‘temporal
instants’) would be identified in a quotienting strategy. But even unreduced the
points represent indistinguishable states so that there will be no qualitative difference
between one instant and the next: there will be no B-series (or A-series!) change.
Bizarrely, Maudlin does not even consider gauge-invariant observables as a viable
response! Yet the observables he suggests as the kinds of things we actually measure
are of just this kind: e.g. ‘the amount by which light from the sun is redshifted
when it reaches the Earth’ and ‘the position of the perihelion of Mercury relative
to the sun’ (2002: 13, my italics). Or almost of the kind, for Maudlin assumes that
the time of measurement is unproblematic. But of course, the freedom to foliate
means that a time choice will be arbitrary: the time of measurement is far from
unproblematic! Position relative to the sun when? How is the ‘when’ of the first
quantity determined? To fix matters one will need to invoke a physical clock. One
then considers the above observables suggested by Maudlin when the clock reads a
certain figure. Maudlin even gives an example where a physical clock is invoked: ‘the
position of the perihelion of Mercury after some number of orbits’. Here Mercury
is being used as a clock, the orbits being the ‘ticks’. However, now the position
will need to be defined relationally, presumably by the Earth or some other useful
reference object: we don’t just measure the position simpliciter in general relativity,
we always assume a frame. If we don’t want the frame to be arbitrary, we had better
make it physical. In case we do use an arbitrary frame, we had better be able to
demonstrate that the quantity in question is independent of the specific choice. If
Maudlin disagrees with this then he is talking about something other than general
relativity, for he is apparently assuming that time is a fixed background structure.
If he agrees, which I’m sure he must, then the observables are just (what I shall
later call) ‘correlation observables’, and are, more or less, the same as Earman’s
‘coincidence observables’ that we met earlier. He gives an example of what he takes
to be a good quantity for general relativity that brings this similarity to the fore:
thus, he writes that ‘[w]hat we can identify by observation are the points that
satisfy definite descriptions such as ‘‘the point where these geodesics which originate
here meet’’, and against these sorts of [local] quantities Earman’s diffeomorphism
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argument has exactly zero force’ (ibid.). Indeed, but here Maudlin is essentially
gauge-fixing spacetime points and then constructing gauge-invariant quantities by
attaching them to the physically defined points—the reasoning (as Chris Isham
likes to put it) that for some quantity ‘φ’, physical object ‘thing’, and space point
x: φ(thing) is gauge invariant but φ(x) is not. If Maudlin is willing to go this far,
then why not allow that change is accounted for with just such observables: the
evolution and change concerns the relations between things or quantities, rather
than the having and losing of properties at times? One can form a chain of values
for φ by using the values of ‘thing’ as the ‘ticks’ of a clock—this is essentially what
Rovelli proposes (see §6.5.2). Moreover, all of this is perfectly possible in the context
of the Hamiltonian formulation. Indeed, on the preferred choice of polarization,
holonomies, with no local spacetime dependence, are used as the fundamental
variables, thus taking on board the lesson that Maudlin has clearly internalized
without being aware of it.³⁴

Secondly, Maudlin diagnoses the Hamiltonian argument as the freedom to foliate
a spacetime in general relativity. Different slicings of spacetime yield different
trajectories through phase space, which are to represent four-dimensional solutions.
But, says Maudlin, we can make a pair of foliations agree up to a point (so that their
corresponding phase trajectories do likewise) and diverge thereafter (again, likewise
for the trajectories). This results in an indeterminism to which the three options
listed above apply. The quotienting option removes the indeterminism by declaring
the solutions equivalent, and forming a reduced phase space out of the equivalence
classes. Maudlin thinks this is absurd for the reasons given. But the source of
the indeterminism is not the freedom to foliate a spacetime, it is the freedom to
drag the dynamical fields around without generating a distinguishable scenario. The
indeterminism concerns ‘local’ quantities that are attached to manifold points. Any
local quantities will be altered by the dragging. We cannot even assume that we have
a spacetime in the Hamiltonian formulation, since for that to be the case we require
a solution.

Thus, Maudlin can claim that he is willing to accept the indeterminism that
follows from such gauge transformations rather than quotienting if he likes,³⁵ but
the fact that the indeterminism is unobservable is tantamount to saying that the time
evolution is unobservable, which simply lets the problem in through the back door.
As regards the observables argument it seems to me, as I hope to have demonstrated,
that far from showing it to be ‘broken-backed’, Maudlin has simply taken a stance

³⁴ As further evidence that Maudlin misunderstands the nature of the problems of time and
change, he mentions that on the basis of his arguments, the quantum gravitational problems of time
and change might be ‘equally chimerical’ (ibid. 18). His worry is that if local observables cause a
problem in the classical theory ‘then we should anticipate difficulties in defining the observables in
the quantum version’ (ibid. 19). But no one is suggesting that we use these kinds of observables!
There are proofs that no such observables are available in general relativity, classical or quantum
(Torre 1993). These quantities are not forced upon us in the Hamiltonian formulation.

³⁵ Something he is willing to do on the grounds that the indeterminism is ‘completely phoney’
(ibid. 9; see also p. 16).
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(and a highly non-trivial one at that) with respect to the observables argument.
Specifically, he opts for the view that the ‘proper’ observables of general relativity
are relational quantities involving intersections of quantities.³⁶ However, what is
missing from Maudlin’s suggested quantities is a time of occurrence (or, in some
cases, the position of occurrence). It is not enough to say that two things meet at a
point; one must say when they meet, and to do this one needs a clock. Likewise, it
is not enough to say when something happens, one must say where it happens. And
the ‘when’ and ‘where’ are not given a priori; one can arbitrarily shift the points of
the manifold around, so these cannot ground the where and the when. There is no
background temporal or spatial structure in general relativity, so this will have to be
a physical clock or a physical reference frame. The coincidence of the hand of the
clock and the meeting of the geodesics is a diffeomorphism-invariant quantity that
satisfies the constraints. It is a constant of the motion, so it does not change over
time.³⁷ It will certainly be hard to write such a quantity as a phase function, but that
is not of moment for what is at stake here. As I argued, the observables Maudlin
mentions sound suspiciously like Earman’s coincidence quantities. This is just what
many physicists take to be the ‘lesson’ of the hole argument and the problem
of time: the proper observables are independent of the manifold and, therefore,
independent of time as well as space. One way of understanding the observable
content of the theory is to view the points of spacetime as relationally (dynamically)
individuated in the manner Maudlin suggests; this was, of course, Stachel’s position
too (see, for example, Stachel 1993). The problem remains: how do we reconcile
this with the manifest change we seem to observe? I review some options in the
next section.

6.5 CATALOGUE OF RESPONSES

Those approaches to classical and quantum gravity that attempt to understand
these theories without change and time existing at a fundamental level I shall call
timeless, and those that disagree I call timefull. An alternative pair of names for
these views, suggested by Kuchař, are ‘Parmenidean’ and ‘Heraclitean’ respectively
(1993b). But it is important to note that the debate here is not directly connected
to the debate in the philosophy of time between ‘A-theorists’ and ‘B-theorists’ (or
‘tensers’ and ‘detensers’, if you prefer). Both of these latter camps agree that time
exists, but disagree as to its nature. By contrast, the division between timefull and
timeless interpretations concerns whether or not time (at a fundamental level) exists
simpliciter! I begin by reviewing several timefull responses.

³⁶ Note that Maudlin gives no account as to the nature of the ‘individual’ elements participating
in these intersections. The standard line is to take these elements as having some physical reality
independently of the relation; but this leads to serious problems as we shall see in §6.5.2.

³⁷ As I intimated above, and as I will discuss in §6.5.2, by stringing a sequence of such quantities
together one can get a fairly robust account of change.
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6.5.1 Timefull Stratagems

Recall that the observables argument required that in order to class as kosher, the
relevant observables must have vanishing Poisson brackets with all of the constraints.
This idea filtered through into the quantum version, modified appropriately. Like
Maudlin, Kuchař has been a vociferous opponent of this ‘liberal’ gauge-invariant
approach to observables.³⁸ He agrees with the plan to the level of the diffeomorphism
constraint, so that {O,Ha} ≈ 0, [Ô, Ĥa] ≈ 0 and Ha� = 0; but does not agree that
we should apply the same reasoning to the Hamiltonian constraint. Thus, neither
states nor observables should distinguish between metrics connected by Diff (�):
only the 3-geometry 3G counts. But the alterations generated by the Hamiltonian
constraint are a different matter says Kuchař:

[H⊥] generates the dynamical change of data from one hypersurface to another. The
hypersurface itself is not directly observable, just as the points x ∈ � are not directly observable.
However, the collection of the canonical data (qab(1), pab(1) ) on the first hypersurface is
clearly distinguishable from the collection (qab(2), pab(2) ) of the evolved data on the second
hypersurface. If we could not distinguish between those two sets of data, we would never be
able to observe dynamical evolution. (1993b: 20)

Ditto for states: the Wheeler–DeWitt equation does not say that an evolved
state is indistinguishable from some initial state—as the diffeomorphism constraint
does—rather, it ‘tells us how the state evolves’ (ibid. 21). More colourfully:

I would say that the state of the people in this room now, and their state five minutes ago
should not be identified. These are not merely two different descriptions of the same state.
They are physically distinguishable situations. (Ashtekar and Stachel 1991: 139)

Thus, Kuchař concludes that ‘if we could observe only constants of motion, we
could never observe any change’ (ibid.). On this basis he distinguishes between two
types of variable: observables and perennials. The former class are dynamical variables
that remain invariant under spatial diffeomorphisms but do not commute with
the Hamiltonian constraint; while the latter are observables that do commute with
the Hamiltonian constraint. Kuchař’s key claim is that one can observe dynamical
variables that are not perennials.³⁹

In their assessment of Kuchař’s proposal, Belot and Earman (1999: 183) claim
that he ‘endeavours to respect the spirit of general covariance of general relativity
without treating it as a principle of gauge invariance’. For this reason they see his
strategy as underwritten by substantivalism. I argue against the connection between

³⁸ Though, unlike Maudlin, he has a constructive alternative that submits to quantization. He
also takes the problem of time much more seriously than Maudlin; he doesn’t think that it can
simply be ignored. The positions end up being very different, with Maudlin occupying a position
almost identical to Earman and, as will become evident, Rovelli.

³⁹ He goes further than this, arguing that perennials are in fact hard to come by. I do not deal
with this aspect of his argument here. In fact, I think that relational observables show that they are
not at all hard to come by. How one makes a quantum theory out of these is, of course, quite another
matter. The hard task is to find quantum operators that correspond to such classical observables
without facing operator ordering ambiguities, and so on.
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the denial of gauge invariance and substantivalism in Rickles (2005a); for now I
note that Kuchař does treat general covariance as a principle of gauge invariance as
far as the diffeomorphisms of � are concerned (and additionally, in the connection
representation, as far as the SO(3) Gauss constraint goes). Observables are gauge-
invariant quantities on his approach; the crucial point is simply that the Hamiltonian
constraint should not be seen as a generator of gauge transformations. Viewed in this
light, according to Belot and Earman’s own taxonomy (ibid., §2), Kuchař’s position
should more properly be seen as underwritten by a relationalist interpretation of
space coupled with a substantivalist interpretation of time! Let me spell out some
more of the details of Kuchař’s idea.

Kuchař’s claim that observables should not have to commute with the Hamiltonian
constraint leads almost inevitably to the conclusion that the observables do not act
on the space of solutions; or, as he puts it ‘if � ∈ F0 and F̂ is an observable,
F̂� /∈ F0’ (1993b: 26). This, amongst other things, motivates the internal time
strategy, where an attempt is made to construct a time variable T from the classical
phase space variables. This strategy conceives of general relativity (as described by �)
as a parametrized field theory. The idea is to find a notion of time before quantization
hidden amongst the phase space variables so that a time-dependent Schrödinger
equation can be constructed; the quantum theory’s states then evolve with respect
to the background time picked out at the classical level. Kuchař’s method involves
finding four (scalar) fields XA = (T (x; q, p],Za(x; q, p]) (where A = 0, 1, 2, 3 and
a = 1, 2, 3) from the full phase space � that when defined on � represents a
spacelike embedding XA : � → M of a hypersurface � in the spacetime manifold
M (without metric). These kinematical variables are to be understood as positions in
the manifold, and the dynamical variables (separated out from the former variables
within the phase space) are observables evolving along the manifold. The constraints
are then understood as conditions that identify the momenta PA conjugate to XA

with the energy-momenta of the remaining degrees of freedom: they thus determine
the evolution of the true gravitational degrees of freedom between hypersurfaces.

There are two broadly ‘technical’ ways of dealing with Kuchař’s arguments. The
first involves demonstrating that general relativity is not a parametrized field theory;
the second involves showing that observing change is compatible with the view that
all observables are constants of the motion. I deal with the second when I get to the
timeless responses; the first I outline now. Clearly, we need to test whether or not
the identification between the phase space � of general relativity and the phase space
ϒ of a parameterized field theory goes through. The proposal requires that there is
a canonical transformation � : ϒ → � such that �(ϒ) = �. However, there can
be no such transformation because ϒ is a manifold while � is not (cf. Torre 1993).
Hence, there are serious, basic technical issues standing in the way of this approach:
general relativity is not a parameterized field theory!

Along more ‘philosophical’ lines, one might perhaps question the line of reasoning
that led Kuchař to deny that observables commute with all of the constraints in
the first place. Is it an empirical input that determines the break, or is it something
internal to the theory? I think that it is neither, but is instead an intuitive belief that
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change is a real feature of the world, and that change happens when things change by
changing in the values of their observables. He takes the fact that the liberal gauge-
invariance position entails that observables are constants of the motion as providing
a reductio of that view, and as providing a counter-example to Dirac’s conjecture
that first class constraints generate gauge transformations. But there are ways of
understanding change; we can understand change as the possession of incompatible
properties by things at different times (ruled out by the gauge interpretation), but
we can incorporate a notion of change as variation: the rug, for example, changes
from blue to green as one moves across it. Or, one can get a simulacrum of
change by piecing together unchanging parts, as one finds in the old-fashioned
movies. All we really need to do is explain the appearance of change; to assume a
substantial metaphysics of time and change and then base ones physical theories on
this metaphysics is a dangerous move in my opinion. Intuition strongly suggests that
there is a unique notion of simultaneity; physics suggests that our intuitions need to
be revised. Regardless of this, if the problem of time can be resolved in a liberalistic
gauge-invariant way, then we should opt for that on the grounds that violating the
‘first class constraint’–‘gauge transformation’ connection, which has worked so well
in other gauge theories, is too high a price to pay. In keeping it we can retain a
unified interpretative picture of these theories.

An alternative (internal) timefull approach uses matter variables coupled to space-
time geometry instead of (functionals) of the gravitational variables as above. Thus,
one might consider a space-filling dust field, each mote of which is considered
to be a clock (i.e. the proper time of the motes gives a preferred time vari-
able and, therefore, amounts to fixing a foliation). These variables are once again
used to ‘label’ spacetime points. This includes an internal time variable against
which systems can evolve, and which can function as the fixed background for
the construction of the quantum theory. Another internal approach, unimodular
gravity, amounts to a modification of general relativity, according to which the
cosmological constant is taken to be a dynamical variable for which the conjugate
is taken to be ‘cosmological’ time.⁴⁰ The upshot of this is that the Hamiltoni-
an constraint is augmented by a cosmological constant term λ + q− 1

2 (x), x ∈ �,
giving the super-Hamiltonian constraint λ + q− 1

2 (x)H⊥(x) = 0. The presence of
this extra term (or, rather, its conjugate τ) unfreezes the dynamics, thus allow-
ing for a time-dependent Schrödinger equation describing dynamical evolution
with respect to τ. The conceptual details of this approach are, however, more
or less in line with gauge-fixation methods like that mentioned above.⁴¹ Another
popular, but now aged approach is that which takes surfaces of constant mean

⁴⁰ The idea to use unimodularity as a response to the problem of time was originally suggested by
Unruh (1989). For a nice philosophical discussion of unimodular gravity see Earman (2003b)—§6
of his paper focuses the discussion on the problem of time. See also Isham (1993: 63).

⁴¹ Isham (ibid. 62) goes so far as to say that it is in line with reference fluid methods since it
amounts to the imposition of a coordinate condition (on the metric γab): det γab(xi) = 0. See ibid.
60–2 for more details on the notion of a reference fluid and how it might offer a solution to the
problem of time.
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curvature τ = qabp
ab/

√
det q = const. as providing a time coordinate by providing

a privileged foliation of spacetime.⁴²
The basic idea underlying each of these approaches is to introduce some preferred

internal time variable so that general relativity can be set up as a time-dependent
system describing the evolution in time of a spatial geometry (possibly involving the
extrinsic curvature and possibly coupled to matter or some reference fluid). With
this background time parameter in hand, the quantization proceeds along the lines
of other quantum field theories since there will be a non-zero Hamiltonian for the
theory. Naturally, the selection of a preferred time coordinate breaks the general
covariance of the theory, for it is tantamount to accepting that there is a preferred
reference frame. One would have to demonstrate that the resulting quantum theory
is independent of the choice.⁴³

I do not think that these timefull approaches are the correct direction to go.
Aside from the technical difficulties, they either represent a step backwards towards
unphysical, ad hoc, or arbitrary background structures, or else they point to the idea
that a ‘robust’ or ‘external’ notion of time is required to get a quantum theory up
and running. The proposals in the next subsection show that this is simply false.

Before I leave the ‘timefull’ methods, I should first mention one more related
approach: Hájiček’s perennial formalism (1996, 1999), according to which the
dynamics is constructed solely from the geometry of phase space, and no reference
is made to spacetime. The idea is to begin with some system whose time evolution
is well understood, like a Newtonian system, and transform the spacetime structure
into a phase space structure so that a quantum time evolution can be reconstructed
from phase space objects. Then one attempts to find similar phase spaces for
systems without background spacetimes, effectively ‘guessing’ a theory. This approach
links technically to Kuchař’s scheme, but conceptually it links up to the timeless
approaches—especially Rovelli’s evolving constants scheme. However, questions
need to be asked about the way the phase space is constructed, for it is not
intrinsically done, but is parasitic on what we know of phase spaces for systems with
background spacetime structure (fixed metrics and connections). If the virtue of this
approach is that it retains background independence, then we would surely like the
formalism to reflect this property.⁴⁴

6.5.2 Timeless Stratagems

We come now to the timeless strategies; the most radical of which is surely Barbour’s.
I deal with this first, and then outline the view I favour. Butterfield (2001) has written
a fine account of Barbour’s timelessness as outlined in the latter’s book The End of

⁴² This approach was first suggested by York (1971). See Beig (1994) for a nice discussion.
⁴³ Note that Kuchař’s approach escapes this objection since it quantizes the ‘multi-time’

formalism according to which dynamical evolution takes place along deformations of arbitrary
hypersurfaces embedded in M (see Isham 1993: 46).

⁴⁴ Compare this with Earman’s point that the relationalist should be able to construct his theories
in relationally pure vocabulary, rather than ‘piggy backing’ on substantivalist formulations (1989:
135).



180 Dean Rickles

Time (2003); he describes the resulting position as ‘a curious, but coherent, position
which combines aspects of modal realism à la Lewis and presentism à la Prior’ (ibid.
291). I agree that these aspects do surface; however, I disagree with his account on
several key substantive points. In particular, I will argue—contra Butterfield—that
Barbour’s brand of timelessness is connected to a denial of persistence, and as such
is not timeless at all; rather, it is changeless. I go further: far from denying time,
Barbour has in fact reduced it (or, rather, the instants of time) to the points of a
relative configuration space!

The central structure in Barbour’s vision is the space of Riemannian 3-metrics mod-
ulo the spatial diffeomorphism group (known as ‘superspace’): Riem(�)/Diff (�).
Choosing this space as the configuration space of the theory amounts to solving
the diffeomorphism constraint; this is Barbour’s relative configuration space that he
labels ‘Platonia’ (ibid. 44). The Hamiltonian constraint (i.e. the Wheeler–DeWitt
equation, eq. 6.9) is then understood as giving (once solved, and ‘once and for all’
(Barbour 1994: 2875) ) a static probability distribution over Platonia that assigns
amplitudes to 3-geometries (�, q) in accordance with |�[q] |2. Each 3-geometry is
taken to correspond to a ‘possible instant of experienced time’ (ibid.) This much
is bullet biting and doesn’t get us far as it stands; there remains the problem of
accounting for the appearance of change. This he does by introducing his notion
of a ‘time capsule’, or a ‘special Now’, by which he means ‘any fixed pattern that
creates or encodes the appearance of motion, change or history’ (Barbour 2003:
30). Barbour conjectures that the relative probability distribution determined by the
Wheeler–DeWitt equation is peaked on time capsules; as he puts it ‘the timeless
wavefunction of the universe concentrates the quantum mechanical probability on
static configurations that are time capsules, so that the situations which have the
highest probability of being experienced carry within them the appearance of time
and history’ (ibid.). What sense are we to make of this scheme?

Barbour’s approach is indeed timeless in a certain sense: it contains no reference
to a background temporal metric in either the classical or quantum theory. Rather,
the metric is defined by the dynamics, in true Machian style. Butterfield mentions
that Barbour’s denial of time might sound (to a philosopher) like a simple denial
of temporal becoming—i.e. a denial of the A-series conception of time. He rightly
distances Barbour’s view from this B-series conception. Strictly speaking, there is
neither an A-series nor a B-series on Barbour’s scheme. Barbour believes that space
is fundamental, rather than spacetime.⁴⁵ This emerges from his Machian analysis
of general relativity. What about Butterfield’s mention of presentism and modal
realism? Where do they fit in?

Presentism is the view which says that only presently existing things actually exist.⁴⁶
The view is similar in many respects to modal actualism, the view that only actually

⁴⁵ I might add that Belot writes that he does ‘not know of any philosopher who entertains, let
alone advocates, substantivalism about space as an interpretive option for GR’ (1996: 83). I think
that Barbour’s proposal ends up looking like just such an interpretative option—a position recently
defended by Pooley (2002).

⁴⁶ The consensus amongst philosophers seems to be that special and general relativity are
incompatible with presentism (cf. Callender (2000), Savitt (2000), and Saunders (2002) ). I
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existing things exist simpliciter. Yet Butterfield claims that Barbour’s view blends with
modal realism. What gives? We can make sense of this apparent mismatch as follows:
Barbour believes that there are many Nows that exist ‘timelessly’, even though we
happen to be confined to one. The following passage brings the elements Butterfield
mentions out to the fore:⁴⁷

All around ow … are other Nows with slightly different versions of yourself. All such nows
are ‘other worlds’ in which there exist somewhat different but still recognizable versions of
yourself. (ibid. 56)

Clearly, given the multiplicity of Nows, this cannot be presentism conceived of along
Priorian lines, though we can certainly see the connection to modal realism; talk of
other nows being ‘simultaneously present’ (ibid.) surely separates this view from the
Priorian presentist’s thesis. That Barbour’s approach is not a presentist approach is
best brought out by the lack of temporal flow; there is no A-series change. Such a
notion of change is generally tied to presentism. Indeed, the notion of many nows
existing simultaneously sounds closer to eternalism than presentism; i.e. the view
that past and future times exist with as much ontological robustness as the present
time. These points also bring out analogies with the ‘many-worlds’ interpretation of
quantum mechanics; so much so that a more appropriate characterization might be a
‘many-Nows’ theory.⁴⁸ Thus, I don’t think that Butterfield’s is an accurate diagnosis.
What is the correct diagnosis?

There is a view, which has become commonplace since the advent of special
relativity, that objects are four-dimensional; objects are said to ‘perdure’, rather than
‘endure’: this latter view is aligned to a three-dimensionalist account according to
which objects are wholly present at each time they exist; the former view is known
as ‘temporal part theory’. The four-dimensionalist view is underwritten by a wide
variety of concerns: for metaphysicians these concerns are to do with puzzles about
change; for physics-minded philosophers they are to do with what physical theory has
to say. Change over time is characterized by differences between successive temporal
parts of individuals. Whichever view one chooses, the idea of persisting individuals
plays a role; without this, the notion of change is simply incoherent, for change
requires there to be a subject of change. Although Barbour’s view is usually taken
to imply a three-dimensionalist interpretation (by Butterfield for one), I think it is
also perfectly compatible with a kind of temporal parts type theory. However, rather

think that special relativity allows for presentism in a certain sense—we simply need to modify
what we mean by ‘present’ in this context, distinguishing it from what we mean in Newtonian
mechanics—and that general relativity (classical and quantum) too allows for presentism in the
canonical formulation (a view recently defended by Monton (2001) in the context of timefull, ‘fixed
foliation’ strategies). But we need to distinguish the kind of presentism that classical and quantum
general relativity allows for from that which special relativity allows for, and that Newtonian
mechanics allows for. However, this is not the place to argue the point.

⁴⁷ Fans of Lewis’s On The Plurality of Worlds (1986) will notice a remarkable similarity to a
certain famous passage from that work. Hence the suggested link to modal realism alluded to earlier.

⁴⁸ Indeed, Barbour himself claims that his approach suggests what he calls a ‘many-instants …
interpretation of quantum mechanics’ (ibid.). However, it seems clear that the multiplicity of Nows
is as much a classical as a quantum feature.
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than the structure of time being linear (modelled by R), it is, in a very rough sense,
non-linear (modelled by relative configuration space) and the ‘temporal evolution’
is probabilistic (governed by a solution to the Hamiltonian constraint). We see that
the parts themselves do not change or endure and they cannot perdure since they are
three-dimensional items and the parts occupying distinct 3-spaces (and, indeed, the
3-spaces themselves) are not genidentical; rather, the quantum state ‘jumps’ around
from Now to Now in accordance with the Hamiltonian constraint in such a way
that the parts contain records that ‘appear’ to tell a story of linear evolution and
persistence. Properly understood, then, Barbour’s views arise from a simple thesis
about identity over time, i.e. a denial of persistence:

We think things persist in time because structures persist, and we mistake the structure for
substance. But looking for enduring substance is like looking for time. It slips through your
fingers. (ibid. 49)

In denying persisting individuals, Barbour has given a philosophical grounding for
his alleged timelessness. However, as I mentioned earlier, the view that results might
be seen as not at all timeless: the relative configuration space, consisting of Nows,
can be seen as providing a reduction of time, in much the same way that Lewis’s
plurality of worlds provides a reduction of modal notions.⁴⁹ The space of Nows
is given once and for all and does not alter, nor does the quantum state function
defined over this space, and therefore the probability distribution is fixed too. But
just as modality lives on in the structure of Lewis’s plurality, so time lives on in
the structure of Barbour’s Platonia. However, also like Lewis’s plurality, believing in
Barbour’s Platonia requires substantial imagination stretching. Of course, this isn’t
a knock-down objection; with a proposal of this kind I think we need to assess its
cogency on a cost versus benefit basis. As I show below, I think that the same result (a
resolution of the problem of time) can be achieved on a tighter ontological budget.
However, I think there is real value in Barbour’s analysis of the problem of time,
and philosophers of time would do well to further consider the connections between
Lewis’s and Barbour’s reductions, and the stand-alone quality of the view of time
that results.⁵⁰

Not quite as radical as Barbour’s are those timeless views that accept the funda-
mental timelessness of general relativity and quantum gravity that follows from the
gauge-invariant conception of observables, but attempt to introduce a thin notion
of time and change into this picture. A standard approach along these lines is to
account for time and change in terms of time-independent correlations between
gauge-dependent quantities. The idea is that one never measures a gauge-dependent
quantity, such as position of a particle; rather, one measures ‘position at a time’,
where the time is defined by some physical clock.⁵¹ Thus, in the general relativistic

⁴⁹ Roughly, Lewis’s idea is that the notions of necessity and possibility are to be cashed out in
terms of holding at all or some of a class of ‘flesh and blood’ worlds.

⁵⁰ I expect that the view of most philosophers of time would be that Barbour has simply outlined
a variation of eternalism, albeit a peculiar one.

⁵¹ See the exchange between DeWitt, Rovelli, Unruh, and Kuchař in Asktekar and Stachel
(1991: 137–40) for a nice quick introduction to the timeless vs. timefull views: Rovelli and DeWitt
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context, we might consider the spatial volume of the universe, V = ∫
�

√−det g d3x;
this is gauge dependent (for compact �) and, therefore, is not an observable. Now
suppose we wish to measure some quantity defined over �, say the total matter
density ρ(x), ∀ixi ∈ �. Of course, this too is a gauge-dependent quantity; but the
correlation between V and ρ when they take on a certain value is gauge independent.
In this way, one can define an instant of time; one can write τ = ρ(V) or τ = V(ρ).
One can then use these correlations to function as a clock giving a monotonically
increasing time parameter τ against which to measure some other quantities—this
is admittedly a rather loose example, but gets the point across well enough. Unruh
objects to this method along the following lines:

one could [try to] define an instant of time by the correlation between Bryce DeWitt talking
to Bill Unruh in front of a large crowd of people, and some event in the outside world one
wished to measure. To do so however, one would have to express the sentence ‘Bryce DeWitt
talking to Bill Unruh in front of a large crowd of people’ in terms of physical variables of
the theory which is supposed to include Bryce DeWitt, Bill Unruh, and the crowd of people.
However, in the type of theory we are interested in here, those physical variables are all time
independent, they cannot distinguish between ‘Bryce DeWitt talking to Bill Unruh in front
of a large crowd of people’ and ‘Bryce DeWitt and Bill Unruh and the crowd having grown
old and died and rotted in their graves.’ … The subtle assumption [in the correlation view] is
that the individual parts of the correlation, e.g. DeWitt talking, are measurable when they are
not. (1991: 267)

Belot and Earman question Unruh’s interpretation of the correlation view, and
suggest that it might be better understood ‘as a way of explaining the illusion of
change in a changeless world’ (2001: 234). The basic idea is that one deals in
quantities of the form ‘clock-1-reads-t1-when-and-where-clock-2-reads-t2’. We get
the illusion of change by (falsely) taking the elements of these relative (correlation)
observables to be capable of being measured independently of the correlation. They
suggest that Rovelli’s notion of evolving constants of motion is a good way of ‘fleshing
out’ the relative observables view.

Rovelli’s evolving constants of motion proposal is made within the framework of
a gauge-invariant interpretation. He accepts the conclusion that quantum gravity
describes a fundamentally timeless reality, but argues that sense can be made of
dynamics and change within such a framework. Take as a naive example of an
observable m = ‘the mass of the rocket’. This cannot be an observable of the theory
since it changes over (coordinate) time; it fails to commute with the constraints,
{m, H} �= 0, because it does not take on the same value on each Cauchy surface.
Rovelli’s idea is to construct a one-parameter family of observables (constants of the
motion) that can represent the sorts of changing magnitudes we observe. Instead of
speaking of, say, ‘the mass of the rocket’ or ‘the mass of the rocket at t’, which are both
gauge-dependent quantities (unless t is physical), one speaks instead of ‘the mass of
the rocket when it entered the asteroid belt’, m(0), and ‘the mass of the rocket when it

are firmly in favour of the correlation view, while Unruh and Kuchař are firmly against it. I outline
Unruh’s and Kuchař’s objections below.
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reached Venus’, m(1), and so on up until m(n). These quantities are gauge invariant,
and, hence, constants of the motion; but, by stringing them together in an appropriate
manner, we can explain the appearance of change in a property of the rocket. The
change we normally observe taking place is to be described in terms of a one-parameter
family of constants of motion, {m(t)}t∈R, an evolving constant of motion.⁵²

A similar criticism to Unruh’s comes from Kuchař (1993b: 22), specifically
targeting Rovelli’s approach. Kuchař takes Rovelli to be advocating the view that
observing ‘a changing dynamical variable, like Q [a particle’s position, say], amounts
to observing a one-parameter family Q′(τ1) := Q′ + P′τ = Q − P(T − τ), τ ∈ R of
perennials’ (ibid. 22). By measuring Q′(τ) at τ1 and τ2 ‘one can infer the change of
Q from T = τ1 to T = τ2’ (ibid.). So the idea is that a changing observable can be
constructed by observing correlations between two dynamical variables T and Q, so
that varying τ allows one a notion of ‘change of Q with respect to T’. Kuchař objects
that one has no way of observing τ that doesn’t smuggle in non-perennials. But this
is a non sequitur; one doesn’t need to observe τ independently of Q: we can simply
stipulate that the two are a ‘package deal’, inseparable. In this way, I think both
Unruh’s and Kuchař’s objections can be successfully dealt with. I outline this view
further in the next section, where I attempt to strengthen the correlation solution.

Rovelli’s approach has a certain appeal from a philosophical point of view. It bears
similarities to four-dimensionalist views on time and persistence. The basic idea of
both of these views is that a changing individual can be constructed from unchanging
parts. Change over time is conceptually no different from variation over a region
of space. (I think philosophers of time might perhaps profit from a comparison of
Rovelli’s proposal with four-dimensionalist views.) However, technically, it is hard to
construct such families of constants of motion as phase functions on the phase space
of general relativity. To the extent that they can be constructed at all, they result in
rather complicated functions that are hard to represent at the quantum level (i.e. as
quantum operators on a Hilbert space: cf. Hájiček 1996: 1369), and face the full
force of the factor ordering difficulties (cf. Ashtekar and Stachel (eds.) 1991: 139).⁵³
For this, and other, reasons, Rovelli has recently shifted to something more like the
original correlation view I outlined above (see Rovelli 2002; rather surprisingly, his
earlier 1991 paper contains much the same view).

As with the evolving constants of motion programme, Rovelli believes that the
observables of general relativity and quantum gravity are relative quantities expressing
correlations between dynamical variables. The problem Rovelli sets himself in his
partial observables programme, as if in answer to Unruh’s complaint, is this: ‘how can a

⁵² Rovelli, in collaboration with Connes (1994), has argued that the ‘flow’ of time can be
explained as a ‘thermodynamical’ effect, and is state-dependent. The thermal time is given by
the state-dependent flow generated by the statistical state s over the algebra of observables:
dq
dt = −{q, log s}. Hence, the Hamiltonian is given by −log s, so that the (statistical) state that a
system occupies determines the Hamiltonian and the associated flow. Rovelli connects this idea
up to his evolving constants proposal by identifying the thermal time flow with the one-parameter
group of automorphisms of the algebra of observables (as given by the Tomita flow of a state).

⁵³ But see Montesinos et al. (1999) for a construction of such a family for a simple SL(2, R)
model.
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correlation between two nonobservable [gauge-dependent] quantities be observable?’
(ibid. 124013-1). He distinguishes between partial and complete observables, where
the former is defined as a physical quantity to which we can associate a measurement
leading to a number, and the latter is defined as a quantity whose value (or probability
distribution) can be predicted by the relevant theory, i.e. a (gauge-invariant) Dirac
observable. Partial observables can be measured but not predicted, and complete
observables are correlations between partial observables that can be both measured
and predicted. The above question can then be rephrased in these terms: ‘how can
a pair of partial observables make a complete observable?’ (see p. 124013-5). His
answer is somewhat surprising, for he argues that this question is just as applicable
to classical non-relativistic theories as it is to relativistic theories. However, to make
sense of the answer, there is a further distinction to be made within the class of partial
observables that only holds in non-general relativistic (more generally: background
dependent) theories: dependent and independent. These can be understood as follows:
take two partial observables, q and t (position and time); if we can write q(t) but
not t(q) then we say that q is a dependent partial observable and t is an independent
partial observable. He then traces the confusion in Unruh’s objection to the notion of
localization in space and time and, in particular, that this makes no sense in the context
of general relativistic physics. The absolute localization admitted in non-relativistic
theories means that the distinction can be disregarded in such quantum theories since
‘the space of observables reproduces the fixed structure of spacetime’ (p. 124013-1).
However, where the structure of spacetime is dynamical, t and q are partial observables
for which we cannot assume that an external clock or spatial reference frame exists.
Going back to Unruh’s example, we see that Unruh, DeWitt, and the crowd of people
are analogues of partial observables. Unruh assumes that the dependent/independent
distinction must hold. However, this is just what Rovelli denies:

A pre-GR theory is formulated in terms of variables (such as q) evolving as functions of
certain distinguished variables (such as t). General relativistic systems are formulated in terms
of variables … that evolve with respect to each other. General relativity expresses relations
between these, but in general we cannot solve for one as a function of the other. Partial
observables are genuinely on the same footing. (Rovelli, ibid. 124013-3)

The theory describes relative evolution of (gauge-dependent) variables as functions
of each other. No variable is privileged as the independent one (cf. Montesinos et al.
1999: 5).⁵⁴ How does this resolve the problem of time? The idea is that coordinate
time evolution and physical evolution are entirely different beasts. To get physical
evolution, all one needs is a pair C, C consisting of an extended configuration space

⁵⁴ Earman appears to endorse this view, and claims that the events (he calls them ‘Komar
events’) formed by such coincidences between gauge-dependent variables can be strung together
to give a temporal evolution, generating a ‘D-series’. However, I think that coincidences narrow
the class of observables down too much. Moreover, I argue below that if Earman means to follow
this kind of account—and I think it is clear that he does (see e.g. Earman 2002: 22)—of the
evolution of observables, then the D-series cannot be formed: a unique series is incompatible with
the multi-fingered time evolution that goes in tandem with the relational approach—Earman is no
doubt aware of this, but, to the best of my knowledge, nowhere makes it explicit.
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(coordinated by partial observables) and a function on T∗C giving the dynamics.
The dynamics concerns the relations between elements of C, and though the
individual elements do not have a well-defined evolution, relations between them
(i.e. correlations) do: they are independent of coordinate time.

Let me spell this out some more, for my own response is based on Rovelli’s,
albeit with an interpretative twist. Consider two non-gauge-invariant (i.e. gauge-
dependent) functions α and β. These are our partial observables; we can suppose that
α is the volume of a compact hypersurface and that β is the matter density defined
on a compact hypersurface. Recall that neither of these quantities is predictable, for
their evolution will be gauge dependent. We want to construct from this pair of
partial observables a complete observable Eτ

α|β (where τ will be understood to be a
‘clock’ variable). To do this we consider the relational quantity that is formed by
correlating the values of the two partial observables. We arbitrarily take one of the
partial observables to be the ‘clock’, whose values will parameterize the evolution of
the other. Let β be the clock. Eτ

α|β then gives the quantity that gives the value of
α when, under the flow generated by the constraints, the value of β is τ. Thus, a
partial observable is evolved along a gauge flow, such that the evolution is a gauge
transformation, and is to be understood as a clock ‘ticking’ along the gauge orbit. On
its own, of course, this is an expression of the problem of change since evolution along
a gauge orbit is just the problem! But when we correlate another partial observable
with the values at which β = τ we form a time-independent observable since the
value of α when β = τ does not change. Variation in τ allows for the formation
of a 1-parameter family of complete observables that correspond to empirically
observable change.⁵⁵ The evolution does not occur with respect to some background
time parameter, but with respect to the values of the arbitrary clock; the complete
observables will enable us to predict the value of α at the ‘time’ β = τ. More precisely,
the evolution will be a map Eτ : Eτ0

α|β → Eτ+τ0
α|β , taking complete observables into

complete observables. The fact that the clock β is arbitrary (since it can be chosen from
C∞(C) ⊂ C∞(�) ) implies that the theory is a multi-fingered time formalism: there
are numerous (infinitely many) choices that one can make for the clocks, and so there
are numerous times—though not all choices will be ‘good’ clocks physically speaking.

The multi-fingered time result implies that Earman’s D-series of coincidence
events—which I take to be of the form of Rovelli’s complete observables, albeit
including the four invariant components of the gravitational field (of which he speaks
as if it were unique)—cannot be applicable. Earman (2002: 14) claims that ‘[t]he
occurrence or non-occurrence of a coincidence event is an observable matter’ and
that when ‘one such event occurs earlier than another such event’ that ‘is also an
observable matter’; ‘[c]hange now consists in the fact that different positions in the
D-series are occupied by different coincidence events’. This is not equivalent to the
B-series, consisting of a string of events which are either earlier-than, later-than, or
simultaneous with each other, because, according to Earman, that ‘can be described

⁵⁵ This is why the response matches temporal parts theories: temporal parts do not change in
themselves, but by forming an individual from a string of such parts a persisting, changing thing
emerges.
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in terms of the time independent correlations between gauge dependent quantities
which change with time’ (ibid. 15). B-series change is an artefact of the local
representations (the elements of the equivalence class of metrics) rather than a real
feature of the world, that associated with the equivalence class itself (for which his
D-series is supposed to apply). This is a strange way of viewing the content of B-series
time, and I have never seen any philosophers of time dabbling with such concepts
before: why does the B-series depend on gauge-dependent quantities? Perhaps it is a
way to understand the B-series given an ontology that sticks by the gauge-dependent
quantities, but for different ontologies it needn’t follow. If, for example, we adopt an
ontology of events then it seems that Earman has simply constructed a B-series all over
again. If we view the ontology as per Rovelli’s partial/complete observables approach
then the multi-fingered time makes the D-series dependent on an arbitrary choice of
clock. If we are to make any sense of Earman’s D-series within this framework then
it will be as one series among infinitely many, each corresponding to a clock choice.
But then it does nothing more than to give a name to Eτi

α|β.
However, both Earman and Rovelli appear to want to cling to the notion that

the elements of the relations (the partial observables or coinciding elements) have
some independent physical reality.⁵⁶ This is most explicit in Rovelli, who takes the
extended configuration space (physically impossible states and all!) to have physical
significance as the space of the partial observables. I agree that, without empirical
evidence to the contrary, the extended space should be retained since it gives us more
conceptual elbow room; but I favour a view whereby gauge invariance itself picks out
the physical parts of this space. The interpretation then follows the correlation view,
but with the correlates and the correlations understood as simply different aspects of
one and the same basic structure. The natural interpretation of Rovelli’s view is that
there is no physical distinction between gauge-dependent and independent quantities.
This implies that there are physically real quantities that are not predictable, even
though we can associate a measurement procedure with them; indeed, Rovelli claims
that these variables ‘are the quantities with the most direct physical interpretation in
the theory’ (ibid. 124013-7)—I discuss this, what I take to be a problematic issue
with Rovelli’s approach, in Rickles (2005b).

It is interesting to note how this links up to Belot and Earman’s interpretative
taxonomy regarding constraints and spacetime ontology. Since Belot and Earman
equate the view that there are physically real quantities that do not commute with
the constraints with (straightforward) substantivalism, it appears that Rovelli would
have to class as a substantivalist, for his partial observables are just such quantities!
Combined with the role reversal of Kuchař given earlier, this makes something of
a mockery of their taxonomy, for they have Kuchař and Rovelli as the archetypical
substantivalist and relationalist respectively. This, I would urge, is yet another aspect

⁵⁶ Note that Rovelli reads the gauge-fixation methods involving dust variables, curvature scalars,
and the like as partial observables. What occurs in these strategies is that the partial observables are
taken to be independent so that they are able to function as coordinate systems. However, as Rovelli
notes, since the dependent and independent players can have their roles permuted, the distinction
collapses (ibid. 124013-4).
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of my claim that the relationalist/substantivalist controversy doesn’t get any support
from those problems with their roots in the interpretation of gauge symmetries (see
Rickles 2005a). However, I think better justice can be done to Rovelli’s view if we
take the measurability of the gauge-dependent quantities as derived from the more
fundamental correlations of which they are a part. I explain this structuralist gloss on
Rovelli’s position in the next section.

6.6 ENTER STRUCTURALISM

Rovelli, and other defenders of the correlations view,⁵⁷ are of the opinion that
the observables of general relativity and quantum gravity are relative quantities
that express correlations between dynamical, and hence gauge-dependent, variables.
The problems posed to the correlation-type timeless strategies are based upon an
understanding that is couched in terms of relationalism. The fact that correlations
between material systems are required to define instants of time (and points of space)
does indeed look, superficially, to entail relationalism. I suspect that this entailment is
what was motivating the objections of Unruh and Kuchař. The assumption was that
if it is relations doing the work, then the relata must have some physical significance
independently of these relations. This is just what I deny: the distinction between
material systems and space and time simply amounts to different aspects of one
and the same physical structure (cf. Stein 1967). It is not that relations can be free
standing; maybe they can, but in this case we have clear relata entering into the
relations: DeWitt, Unruh, and a crowd of people! The question concerns the relative
ontological priority of these relata over the relations. Relationalists will argue that the
relations supervene upon the relata so that the relata are fundamental. Substantivalists
will argue that the relata enter into their relations only in virtue of occupying a
position in some underlying spatio-temporal structure that exists independently of
both the relations and relata. An alternative position will see the relata as being
some kind of epiphenomena or ‘by-product’ resulting from intersections occurring
between the relations. But there is a middle way between these two extremes: neither
relations nor relata have ontological priority. The relata are individuated in virtue
of the relations and the relations are individuated by the relata.⁵⁸ Thus, the idea is
to understand the correlation view structurally: one cannot ontologically decompose
or factor the relative observables in to their relata, since the relata have no physical

⁵⁷ Others include DeWitt (see Ashtekar and Stachel 1991: 137), Marolf (1994), Page and
Wooters (1983), and, on the philosophical side, Earman (2002: see below). The proposal of Page
and Wooters’ involves the idea that one deals with conditional probabilities for outcomes of pairs
of observables. One then takes the observables as defining an instant of time (qua the value of a
physical clock variable) at which the other observable is measured. A notion of evolution emerges in
terms of the dependence of conditional probabilities on the values of the (internally defined) clock
variables.

⁵⁸ Thus, though admittedly similar, this should be distinguished from Teller’s brand of relational
holism (see his 1991). Teller argues that in some cases—entanglement is the example he focuses
on—we should view relations as being primitive (non-supervenient).
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significance ‘outside’ (i.e. independently of) the correlations. But one need not imbue
the relations themselves with ontological primacy either. Thus, one can evade the
objection that gauge-dependent quantities are independently measurable by taking
the correlations and correlates to be interdependent.

I shall call the overall structure formed from such correlations a correlational
network, and the correlates I shall call correlata. It is important to note that the
correlata need not be material objects, and we can find suitable items from the
vacuum case. One is able to use (any) four invariants of the metric tensor to provide
an intrinsic coordinate system that one can use to set up the necessary correlational
network.⁵⁹ Thus, this approach does not imply relationalism; but it does not imply
substantivalism either (neither sophisticated nor straightforward). The reason is, of
course, that those interpretations require a stance to be taken with regard to the
primacy of some category of object (points, fields, or whatever). Each of these other
positions is problematic in the context of the problem of time since they both require
that some set of objects take the ontological burden to function as a clock or a field
of clocks.

Earman too seems to defend a version of the correlation view. His account is based
on his notion of coincidence events; thus, quoting a passage already quoted, he writes:

The occurrence or non-occurrence of a coincidence event is an observable matter … and that
one such event occurs earlier than another such event is also an observable matter. … Call
this series of coincidence events the D-series … Change now consists in the fact that different
positions in the D-series are occupied by different coincidence events. (2002: 14)

Earman claims that the coincidence event (represented by the functional relationship
gμν(φλ): ‘the Komar state’) ‘floats free of the points of M’ and ‘captures the intrinsic,
gauge-independent state of the gravitational field’ (ibid.). General covariance implies
that if this state is represented by one spacetime model it is also represented by any
model from a diffeomorphism class of its copies. Now, Earman’s interpretation of
this, and his resolution of the problem of time, is to claim that the notion of spacetime
points, properties localized to points, and change couched in terms of relationships
between these, is to be found ‘in the representations’ and not ‘in the world’ (ibid.).
This conclusion is clearly bound to the idea that in order to have any kind of change,
a subject is required to undergo the change and persist under the change. In getting
rid of the notion of a subject (i.e. spacetime points), Earman sees the only way out
as abolishing change. The idea that change is a matter of representation is one way
(not a particularly endearing one, say I) of accounting for the psychological impulse
to believe that the world itself contains changing things, though I think it needs

⁵⁹ This is, of course, the method developed by Bergmann and Komar (1972). They used the
four eigenvalues of the Riemann tensor. Dorato and Pauri (this volume) use this method and these
‘Weyl scalars’ to argue for a form of structuralism they call ‘spacetime structural realism’. This is a
far cry from what I have in mind since they retain fairly robust notions of independent object (the
metric field) in their approach. Hans Westman, of The Perimeter Institute, has shown how one can
build up an entire manifold structure (which he has named the ‘point-coincidence manifold’) from
such invariant quantities (i.e. observables). In this case the correlational network would simply be
represented by the point-coincidence manifold.



190 Dean Rickles

spelling out in much more detail than Earman has given us. But—quite aside from
the fact that I don’t think the existence of spacetime points is ruled out⁶⁰—I don’t
see why Earman needs to go to this extreme; there is variation in the structure formed
from the various correlations. True, we don’t get any notion or account of time flow
from this variation, but that is a hard enough problem outside general relativity and
quantum gravity anyway (but see Connes and Rovelli 1994).

However, some other remarks of Earman’s show that he doesn’t have in mind
the same view as mine. For instance, Earman (2002: 16–17) makes the following
observations:

[T]he gauge interpretation of diffeomorphism invariance … calls into question the traditional
choices for conceiving the subject vs. attribute distinction. The extremal choices traditionally
on offer consist of taking individuals to be nothing but bundles of properties vs. taking
individuals to have a ‘thisness’ (haecceitas) that is not explained by their properties. The gauge
interpretation of GTR doesn’t provide any grounds for haecceitas of spacetime points. Nor
does it fit well with taking spacetime points as bundles of properties since it denies that the
properties that were supposed to make up the bundle are genuine properties. The middle way
between the haecceitas view and the bundles-of-properties view takes individuals and properties
to require each other, the slogan being that neither exists independently of the states of affairs
in which individuals instantiate properties.

As Earman goes on to explain, in the context of general relativity this middle way
fares no better than the bundle-of-properties view since the gauge interpretation of
general covariance ‘implies that the state of affairs composed of spacetime points
instantiating, say, metrical properties do not capture the literal truth about physical
reality; rather, these states of affairs are best seen as representations of a reality … that
itself does not have this structure.’ What Earman means by ‘representation’ in this
context, is, I think, what Rovelli calls a ‘local universe’ (1992): a physically possible
world in which properties are ‘attached’ to spacetime points. However, as Earman
and Rovelli point out, this is not how general relativity represents the world; it does
so by means of an equivalence class of such local universes, yielding a very ‘non-local’
description. If we extend the account Earman gives to include relations rather than
simply properties (which clearly do require subjects of some sort) then we can in fact
get directly at the structure Earman mentions.

Instead of the view Earman outlines, I have something more along the lines of
Skyrms’s ‘Tractarian Nominalism’ (1981). The idea here is to understand individuals,
properties, and relations as ‘abstractions’ from the structure of the world (from facts)
but not as existing independently of that structure: ‘We may conceive of the world
not as a world of individuals or as a world of properties and relations, but as a
world of facts—with individuals and relations being equally abstractions from the
facts’ (p. 199). Likewise, the ‘totality of facts’ (the structure of the world) itself is
‘composed’ of such facts. As regards the question of ontological priority, then, we see
that relations and relata share the same status: ‘the Tractarian Nominalist … takes
both objects and relations quite seriously, and puts them on par. Neither is reduced

⁶⁰ For example, Simon Saunders’s (2003) account of identity allows that spacetime points exist
as individual objects while respecting diffeomorphism symmetry.
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to the other’ (p. 202). Armstrong too defends a similar account, and it is perhaps
even more applicable to Unruh’s decomposition problem. Thus, speaking in terms
of ‘states of affairs’ rather than ‘facts’, he writes that ‘while by an act of selective
attention they [individuals, properties, and relations] may be considered apart from
states of affairs in which they figure, they have no existence outside states of affairs’
(1987: 578). Likewise, the correlations are the fundamental things; they are things
that can be measured and predicted. The correlata are measurable only in virtue of
their position in the correlation, and have no independence outside this. However,
the correlata are our epistemic ‘access point’ to the correlations, and this is why, I
think, Rovelli imbues his partial observables with fundamental significance. If his
position is to escape the interpretative troubles highlighted by Unruh and Kuchař,
however, the primacy needs to be reversed and shifted to the complete observables.
By taking these seriously, as ontologically basic, those difficulties are easily resolvable.

This structuralist way of understanding the correlation view avoids Unruh’s and
Kuchař’s objections, and it sidesteps Earman’s worry. Not only does it resolve these
objections, and the problem of time, it also provides a suitable ontological framework
for classical and quantum gravity, according to which there are neither primitive
points nor objects to be individuated. Rather, one has a correlational network that
fluctuates quantum mechanically as a whole. This, I suggest, is a safe and sane
ontological basis from which to view time and space in both classical and quantum
(canonical) gravity.

6.7 CONCLUSION

There are two aspects to the problem of time, concerning both the states and
observables. These each have both a classical and a quantum variant. I argued that
the problems struck whether or not one reduced the phase space to the space of
physical states (contra Maudlin). The responses split into two broad categories:
timefull and timeless. I argued against the former strategies on the ground that
they either break covariance by introducing external background structure, or else
assume that a time variable is required for the construction of a quantum theory.
The timeless approaches show that this is false. I defended the correlation view from
objections by Unruh and Kuchař by utilizing the notion of non-decomposability of
the correlations. I claimed that this latter notion is best understood structurally.
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7
The Case for Background Independence

Lee Smolin

ABSTRACT

The aim of this chapter is to explain carefully the arguments behind the assertion that
the correct quantum theory of gravity must be background independent. We begin by
recounting how the debate over whether quantum gravity must be background independent
is a continuation of a long-standing argument in the history of physics and philosophy over
whether space and time are relational or absolute. This leads to a careful statement of what
physicists mean when we speak of background independence. Given this we can characterize
the precise sense in which general relativity is a background-independent theory. The leading
background-independent approaches to quantum gravity are then discussed, including causal
set models, loop quantum gravity, and dynamical triangulations, and their main achievements
are summarized along with the problems that remain open. Some first attempts to cast
string/M theory into a background-independent formulation are also mentioned.

The relational/absolute debate has implications also for other issues such as unification and
how the parameters of the standard models of physics and cosmology are to be explained. The
recent issues concerning the string theory landscape are reviewed and it is argued that they
can only be resolved within the context of a background-independent formulation. Finally,
we review some recent proposals to make quantum theory more relational.

7 .1 INTRODUCTION

During the last three decades research in theoretical physics has focused on four key
problems, which, however, remain unsolved. These are

1. The problem of quantum gravity.

2. The problem of further unifying the different forces and particles, beyond the
partial unification of the standard model.

3. The problem of explaining how the parameters of the standard models of particles
physics and cosmology, including the cosmological constant, were chosen by
nature.

4. The problem of what constitutes the dark matter and energy, or whether the
evidence for them is to be explained by modifications in the laws of physics at
very large scales.
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One can also mention a fifth unsolved problem, that of resolving the controversies
concerning the foundations of quantum mechanics.

All five problems have remained unsolved, despite decades of determined effort by
thousands of extremely talented people. While a number of approaches have been
studied, most expectations have been put on string theory as it appears to provide
a uniquely compelling unification of physics. Given that the correct perturbative
dynamics for gauge fields, fermions, and gravitons emerges from a simple action
expressed in terms of worldsheets and that, in addition, there are strong indications¹
that the quantum corrections to these processes are finite to each order of string
perturbation theory (Berkovits 2004; D’Hoker and Phong 2002a, 2002b), it is
hard not to take string theory seriously as a hypothesis about the next step in the
unification of physics. At the same time, there remain open problems.

Despite knowing a great deal about the different perturbative string theories
and the dualities that relate them, it is widely believed that a more fundamental
formulation exists. This would give us a set of equations, solutions to which would
give rise to the different perturbative string theories. While there is a lot of evidence
for the existence of this more fundamental formulation, in the dualities that relate
the different string perturbation theories, there is as yet no agreed-upon proposal as
to either the principles or the equations of this formulation.

It is also unfortunately the case that the theory makes, as yet, no falsifiable
predictions for doable experiments, by which the applicability of the theory to nature
could be checked. This is because of the landscape of discrete vacua which have been
uncovered in the last few years. Powerful effective field theory² arguments have made
it plausible that the theory comes in an infinite number of versions (DeWolfe et al.
2005). These appear to correspond to an infinite number of possible universes and
low-energy phenomenologies. Even if one imposes the minimal phenomenological
constraints of a positive vacuum energy and broken supersymmetry, there are argued
to be still a vast (> 10500) number of theories (Kachru et al. 2003). There thus
appears to be no uniqueness and no predictability so far as observable parameters are
concerned, for example, one can get any gauge group and many different spectra of
Higgs and fermions.

Of course, these two issues are related. It seems very likely that the challenge posed
by the landscape would be resolved if we had a more fundamental formulation of
string theory. This would enable us to establish which of the vacua described by
effective field theory are truly solutions to the exact theory. It would also allow us to
study the dynamics of transformations between different vacua.

Another striking feature of the present situation is that we have no unique
predictions for the post-standard model physics which will be explored in upcoming
experiments at the LHC. This is true in spite of the fact that we have had three
decades since the formulation of the standard model to discover a convincing theory
that would give us unique predictions for these experiments. The theory many of

¹ But no proof.
² These are ordinary classical field theories which are argued to describe low-energy limits of

string theories, whose existence is conjectured, but not demonstrated.
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our colleagues believe, the supersymmetric extension of the standard model, has too
many parameters to yield unique predictions for those experiments.

It is beyond doubt that research in string theory has nonetheless led to a large
number of impressive results and conjectures, some of great mathematical beauty.
Several mathematical conjectures have been suggested by work in string theory
that turned out to be provable by more rigorous means. A number of interesting
conjectures and results have been found for the behaviour of supersymmetric gauge
theories. All of this suggests that string theory has been worth pursuing. At the
same time, the present situation is very far from what was expected when people
enthusiastically embraced string theory twenty years ago.

If so much effort has not been rewarded with success, it might be reasonable
to ask whether some wrong assumption was made somewhere in the course of
the development of the theory. The purpose of this chapter is to propose such a
hypothesis. This hypothesis is made with an open-minded spirit, with the hopes of
stimulating discussion.

To motivate my hypothesis, we can start by observing that theorists’ choices of
how to approach the key issues in fundamental physics are largely determined by
their views on three crucial questions.

• Must a quantum theory of gravity be background independent, or can there be a
sensible and successful background-dependent approach?

• How are the parameters of the standard models of physics and cosmology to be
determined?

• Can a cosmological theory be formulated in the same language we use for descriptions
of subsystems of the universe, or does the extension of physics from local to cosmological
require new principles or a new formulation of quantum theory?

It is the first issue that divides most string theorists from those who pursue
alternative approaches to quantum gravity.

The most basic argument for background independence is simply that the
experimental success of general relativity proves that the geometry of spacetime is
dynamical. The geometry evolves according to equations of motion just like any
other field in physics. Hence, in any quantum theory of spacetime the spacetime
geometry should be treated as a quantum dynamical degree of freedom. It seems
impossible that this most basic insight of Einstein’s theory should be reversed and
physics go back to a formulation in which fields, particles, or strings move on a fixed,
non-dynamical background. But that is how string theory has been formulated, up
till now.

It is sometimes asserted that string theory incorporates general relativity, because
the Einstein equations (up to higher-order corrections) are a necessary condition that
must be satisfied by a spacetime on which a string is to propagate consistently. This
is true, but it is not the only necessary condition that must be satisfied. All string
theories so far formulated explicitly in terms of the dynamics of the string worldsheets
require supersymmetry or an equivalent constraint, to cancel an instability which
manifests itself as the presence of a tachyon. In all known cases this requires that
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the spacetime have a timelike or null killing field³. This reduces the possible cases to
the measure zero subset of solutions of Einstein’s equations in which the geometry is
stationary and hence non-dynamical.

While there have been attempts to construct string theory on time-dependent back-
grounds, unfortunately, no explicit construction of amplitudes for string propagation
have ever been written down for such backgrounds. This is why the evidence for the
existence of the vast numbers of string theories making up the landscape is restricted
to effective field theory.

This brings us to the second issue, which determines the attitude different people
take to the landscape. There are, roughly, three possible approaches: (1) a unique
theory leading to unique predictions. (2) Anthropic approaches, according to which
our universe may be very different from a typical member of an ensemble or
landscape of theories⁴. (3) Dynamical, or evolutionary approaches, according to
which the dynamics of reproduction of universes results in our universe being a
typical member of the ensemble (Smolin 1997a). The first has been, traditionally, the
basis of the hopes for a unified theory, but the recent results suggest that unification
leads not to a single, unique theory, but to a multitude of possible theories. This
leaves the other two options.

The third issue has been long appreciated by those who have attempted to
formulate a sensible quantum theory of cosmology, but it has recently been raised
in the contexts of attempts to resolve the problems of the landscape in terms of
cosmological theories and hypotheses.

In this chapter I would like to make two observations and a hypothesis about these
issues.

• These three debates are closely related and they are unlikely to be resolved
separately.

• These three debates are aspects of a much older debate, which has been central
to thinking about the nature of space and time, going back to the beginning of
physics. This is the debate between relational and absolute theories of space and time.

In particular, as I will explain below, background-dependent attempts at quantum
gravity and anthropic approaches to the landscape are the contemporary manifest-
ations of the absolute side of the old debate. Similarly, background-independent
approaches to quantum gravity and dynamical or evolutionary approaches to the
landscape are firmly within the relational tradition.

Now here is my thesis, which it is the task of this chapter to support:

The reason that we do not have a fundamental formulation of string theory, from
which it might be possible to resolve the challenge posed by the landscape, is that it has been
so far developed as a background-dependent theory. This is despite there being compelling
arguments that a fundamental theory must be background independent. Whether string

³ This is because the algebra of supersymmetry transformations closes on the Hamiltonian,
which generates a symmetry in time.

⁴ A critique of the attempts to resolve the landscape problem through the anthropic principle is
given in Smolin (2004a).
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theory turns out to describe nature or not, there are now few alternatives but to approach the
problems of unification and quantum gravity from a background-independent perspective.

This essay is written with the hope that perhaps some who have avoided thinking
about background-independent theories might consider doing so now. To aid
those who might be so inclined, in the next section I give a sketch of how the
absolute/relational debate has shaped the history of physics since before the time of
Newton. Then, in §7.3, I explain precisely what is meant by relational and absolute
theories. §7.4 asks whether general relativity is a relational theory and explains why
the answer is: partly. We then describe, in §7.5, several relational approaches to
quantum gravity. There have been some remarkable successes, which show that it is
possible to get highly non-trivial results from background-independent approaches
to quantum gravity (Smolin 2004b). At the same time, there remain open problems
and challenges. Both the successes and open problems yield lessons for any future
attempt to make a background-independent formulation of string theory or any
other quantum theory of gravity.

§§7.6 to 7.8 discuss what relationalism has to offer for the problems in particle
physics such as unification and predictability. It is argued that the apparent lack of
predictability emerging from studies of the string theory landscape is a symptom of
relying on background-dependent methodologies in a regime where they cannot offer
sensible answers. To support this, I show that relationalism suggests methodologies
by which multiverse theories may nevertheless make falsifiable predictions.

Many theorists have asserted that no approach to quantum gravity should be taken
seriously if it does not offer a solution to the cosmological constant problem. In §7.9
I show that relational theories do offer new possibilities for how that most recalcitrant
of issues may be resolved.

§7.10 explores another application of relationalism, which is to the problem of
how to extend quantum theory to cosmology. I review several approaches which
have been called ‘relational quantum theory’. These lead to formulations of the
holographic principle suitable for quantum gravity and cosmology.

7.2 A BRIEF HISTORY OF RELATIONAL TIME

The debate about whether space and time are relational is central to the history of
physics. Here is a cartoon sketch of the story⁵.

Debate about the meaning of motion goes back to the Greeks. But the issues of
interest for us came into focus when Newton proposed his form of dynamics in his
book Principia Mathematica, published in 1687. Several of his rough contemporaries,
such as Descartes, Huygens, and Leibniz, espoused relational notions of space and
time, according to which space and time are to be defined only in terms of
relationships among real objects or events. Newton broke with his contemporaries

⁵ A full historical treatment of the relational/absolute debate is in Barbour’s book (Barbour 1989,
2001).
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to espouse an absolute notion of space and time, according to which the geometry of
space and time provided a fixed, immutable, and eternal background, with respect to
which particles moved. Leibniz responded by proposing arguments for a relational
view that remain influential to this day ⁶.

Leibniz’s argument for relationalism was based on two principles, which have been
the focus of many books and papers by philosophers to the present day. The principle
of sufficient reason states that it must be possible to give a rational justification for
every choice made in the description of nature. I will refer the interested reader to
the original texts (Leibniz 1698; Francks and Woolhouse 1999; Alexander 1956)
for the arguments given for it, but it is not hard to see the relevance of this
principle for contemporary theoretical physics. A theory that begins with the choice
of a background geometry, among many equally consistent choices, violates this
principle. So does a theory that allows some parameters to be freely specified, and
allows no mechanism or rational argument why one value is observed in nature.

One circumstance that the principle of sufficient reason may be applied to is
spacetimes with global symmetries. Most distributions of matter in such a space
will not be invariant under the symmetries. One can then always ask, why is the
universe where it is, rather than ten feet to the left, or rotated 30 degrees? Or, why
did the universe not start five minutes later? This is sometimes called the problem of
underdetermination: nothing in the laws of physics answers the question of why the
whole universe is where it is, rather than translated or rotated.

As there can be no rational answer why the universe is where it is, and not ten
feet to the left, the principle of sufficient reason says this question should not arise
in the right theory. One response is to demand a better theory in which there
is no background spacetime. If all there is to space is an emergent description
of relations between particles, questions about whether the whole universe can be
translated in space or time cannot arise. Hence, the principle of sufficient reason
motivates us to eliminate fixed background spacetimes from the formulation of
physical law.

Conversely, if one believes that the geometry of space is going to have an absolute
character, fixed in advance, by some a priori principles, you are going to be led to posit
a homogeneous geometry. For what, other than particular states of matter, would be
responsible for inhomogeneities in the geometry of space? But then spacetime will
have symmetries which leave you prey to the argument just given. So from the other
side also, we see that the principle of sufficient reason is hard to square with any idea
that spacetime has a fixed, absolute character.

One way to formulate the argument against background spacetime is through a
second principle of Leibniz, the identity of the indiscernible. This states that any two
entities which share the same properties are to be identified. Leibniz argues that were
this not the case, the first principle would be violated, as there would be a distinction
between two entities in nature without a rational basis. If there is no experiment
that could tell the difference between the state in which the universe is here, and the

⁶ Some essential texts, accessible to physicists, are Leibniz (1698); Francks and Woolhouse
(1999); Alexander (1956).
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state in which it is translated ten feet to the left, they cannot be distinguished. The
principle says that they must then be identified. In modern terms, this is something
like saying that a cosmological theory should not have global symmetries, for they
generate motions and charges that could only be measured by an observer at infinity,
who is hence not part of the universe. In fact, when we impose the condition that
the universe is spatially compact without boundary, general relativity tells us there
are no global spacetime symmetries and no non-zero global conserved charges⁷.

But it took physics a long time to catch up to Leibniz’s thinking. Even if
philosophers were convinced that Leibniz had the better argument, Newton’s view
was easier to develop, and took off, whereby Leibniz’s remained philosophy. This is
easy to understand: a physics where space and time are absolute can be developed
one particle at a time, while a relational view requires that the properties of any one
particle are determined self-consistently by the whole universe.

Leibniz’s criticisms of Newton’s physics were sharpened by several thinkers, the
most influential of which was Mach (1893), who in the late nineteenth century
gave an influential critique of Newtonian physics on the basis of its treatment of
acceleration as absolute.

Einstein was among those whose thinking was changed by Mach. There is a
certain historical complication, because what Einstein called ‘Mach’s principle’ was
not exactly what Mach wrote. But that need not concern us here. The key idea
that Einstein got from, or read into, Mach, was that acceleration should be defined
relative to a frame of reference that is dynamically determined by the configuration
of the whole universe, rather than being fixed absolutely, as in Newton’s theory.

In Newton’s mechanics, the distinction between who is accelerating and who is
moving uniformly is a property of an absolute background spacetime geometry, that
is fixed independently of the history or configuration of matter. Mach proposed,
in essence, eliminating absolute space as a cause of the distinction between acceler-
ated and non-accelerated motion, and replacing it with a dynamically determined
distinction. This resolves the problem of underdetermination, by replacing an a
priori background with a dynamical mechanism. By doing this Mach showed us
that a physics that respects Leibniz’s principle of sufficient reason is more predictive,
because it replaces an arbitrary fact with a dynamically caused and observationally
falsifiable relationship between the local inertial frames and the distribution of matter
in the universe. This for the first time made it possible to see how, in a theory
without a fixed background, properties of local physics, thought previously to be
absolute, might be genuinely explained, self-consistently, in terms of the whole
universe.

There is a debate about whether general relativity is ‘Machian’, which is partly due
to confusion over exactly how the term is to be applied. But there is no doubt that
general relativity can be characterized as a partly relational theory, in a precise sense
that I will explain below.

⁷ That is, special solutions may have symmetries. But, as we will discuss in §7.4, there are no
symmetries acting on the space of physical solutions of the theory, once these have been identified
with equivalence classes under diffeomorphisms (Kuchař 1976, 1982).
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To one schooled in the history of the relational/absolute debate⁸, it is easy to
understand the different choices made by different theorists as reflecting different
expectations and understandings of that debate (Earman 1989; Norton 1987; Smolin
2001a; Rovelli 1991; Barbour and Pfister 1996). The same can be said about the
debates about the merits of the Anthropic Principle as a solution to the very puzzling
situation that string theory has found itself in recently (Smolin 2004a). To explain
why, we need some precise definitions.

7.3 WHAT PHYSICISTS MEAN WHEN WE TALK
ABOUT RELATIONAL SPACE AND TIME

While many physicists have been content to work with background-dependent
theories, from the earliest attempts at quantum gravity there has been a community
of those who shared the view that any approach must be background independent.
Among them, there has been a fair amount of discussion and reflection concerning
the roots of the notion of background independence in older relational views of space
and time. From this has emerged a rough consensus as to what may be called the
physicists’ relational conception of space and time ⁹.

Any theory postulates that the world is made up of a very large collection of
elementary entities (whether particles, fields, events, or processes). Indeed, the fact
that the world has many things in it is essential for these considerations—it means
that the theory of the world may be expected to differ in important aspects from
models that describe the motion of a single particle, or a few particles in interaction
with each other.

The basic form of a physical theory is framed by how these many entities acquire
properties. In an absolute framework the properties of any entity are defined with
respect to a single entity—which is presumed to be unchanging. An example is
the absolute space and time of Newton, according to which positions and motions
are defined with respect to this unchanging entity. Thus, in Newtonian physics the
background is three-dimensional space, and the fundamental properties are a list
of the positions of particles in absolute space as a function of absolute time: xa

i (t).
Another example of an absolute background is a regular lattice, which is often used
in the formulation of quantum field theories. Particles and fields have the property
of being at different nodes in the lattice, but the lattice does not change in time.

The entities that play this role may be called the background for the description
of physics. The background consists of presumed entities that do not change in

⁸ The understanding that working physicists like myself have of the relevance of the relation-
al/absolute debate to the physical interpretation of general relativity and contemporary efforts
towards quantum gravity is due mainly to the writings and conference talks of a few physi-
cists—primarily John Stachel (1989) and Julian Barbour (1984, 2000). Also important were the
efforts of philosophers who, beginning in the early 1990s were kind enough to come to conferences
on quantum gravity and engage us in discussion.

⁹ Philosophers distinguish several versions of relationalism (Saunders 2003), among which, what
is described here is what some philosophers call eliminative relationalism.
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time, but which are necessary for the definition of the kinematical quantities and
dynamical laws.

The most basic statement of the relational view is that

R1 There is no background.

How then do we understand the properties of elementary particles and fields? The
relational view presumes that

R2 The fundamental properties of the elementary entities consist entirely in relationships
between those elementary entities.

Dynamics is then concerned with how these relationships change in time.
An example of a purely relational kinematics is a graph. The entities are the nodes.

The properties are the connections between the nodes. The state of the system is just
which nodes are connected and which are not. The dynamics is given by a rule which
changes the connectivity of the graph.

We may summarize this as

R3 The relationships are not fixed, but evolve according to law. Time is nothing but
changes in the relationships, and consists of nothing but their ordering.

Thus, we often take background independent and relational as synonymous. The
debate between philosophers that used to be phrased in terms of absolute versus
relational theories of space and time is continued in a debate between physicists who
argue about background-dependent versus background-independent theories.

It should also be said that for physicists relationalism is a strategy. As we shall see,
theories may be partly relational, i.e. they can have varying amounts of background
structure. One can then advise that progress is achieved by adopting the

Relational strategy: Seek to make progress by identifying the background structure in
our theories and removing it, replacing it with relations which evolve subject to dynamical
law.

Mach’s principle is the paradigm for this strategic view of relationalism. As
discussed above, Mach’s suggestion was that replacing absolute space as the basis
for distinguishing acceleration from uniform motion with the actual distribution
of matter would result in a theory that is more explanatory, and more falsifiable.
Einstein took up Mach’s challenge, and the resulting success of general relativity
can be taken to vindicate both Mach’s principle and the general strategy of making
theories more relational.

7.4 GENERAL RELATIVITY AS A PARTLY RELATIONAL
THEORY

Even if quantum gravity is not a quantization of general relativity, the right quantum
theory of gravity must have general relativity as an appropriate limit. By this we
mean that we must recover the basic principles that underlie how general relativity
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describes nature, as well as all of its solutions. As a result, it is not possible to have a
useful discussion about how space and time are to be understood in quantum gravity
unless we have a clear understanding of the physical interpretation of classical general
relativity. This is the task of this section.

As I will describe, general relativity can be characterized as a partly relational
theory. As such, it serves as a good example of the power of the relational strategy.

There is one clarification that should be stated at the outset: the issue of
whether general relativity is Machian or relational is only interesting if we take
general relativity as a possible cosmological theory. This means that we take the
spatial topology to be compact, without boundary. In some models of subsys-
tems of the universe, one does not do this. In these cases space has a boundary
and one has to impose conditions on the metric and fields at the boundary.
These boundary conditions become part of the background, as they indicate
that there is a region of spacetime outside the dynamical system which is being
modelled.

There is of course nothing wrong with modelling subsystems of the universe with
boundaries on which we impose boundary conditions. One way to do this is to
assume that the system under study is isolated, so that as one moves away from it the
spacetime satisfies asymptotic conditions. But the boundary or asymptotic conditions
can only be justified by the assertion that the system modelled is a subsystem of
the universe. No fundamental theory could be formulated in terms that require the
specification of boundary or asymptotic conditions because those conditions imply
that there is a part of the universe outside the region being modelled. Thus, one
cannot assert that a theory defined only with the presence of such conditions can be
fundamental.

But at the same time, the fact that asymptotic conditions can be imposed does
not mean general relativity is not fundamental, since it can also be formulated for
cosmologies by making the universe compact without boundary. It does mean that it
is only interesting to ask if general relativity is a relational theory in the cosmological
case¹⁰.

General relativity is a complicated theory and there has been a lot of confusion
about it. However, I will show now why it is considered to be mainly, but not purely,
a relational theory. One reason it is complicated is that there are several layers of
structure.

• Dimension
• Topology
• Differential structure
• Signature
• Metric and fields

We denote a spacetime by (M , gab, f ), where M refers to the first four properties,
gab is the metric, and f stands for all the other fields.

¹⁰ But it is worth asking whether the fact that GR allows models with boundary conditions
means that it is incomplete, as a fundamental theory.
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It is true that in general relativity the dimension, topology, differential structure,
and signature are fixed. They can be varied from model to model, but they are
arbitrary and not subject to law. These do constitute a background¹¹.

Then why do we say the theory is relational? Given this background, we can define
an equivalence relation called a diffeomorphism. A diffeomorphism φ is a smooth,
invertible map from a manifold to itself ¹²

φ(M , gab, f ) → (M ′, g ′
ab, f ′) (7.1)

which takes a point p to another point φ · p, and drags the fields along with it by

(φ · f )(p) = f (φ−1 · p) (7.2)

The diffeomorphisms of a manifold constitute a group, Diff (M ), called the group of
diffeomorphisms of the manifold. The basic postulate which makes GR a relational
theory is

R4 A physical spacetimes is defined to correspond, not to a single (M , gab, f ), but to an
equivalence class of manifolds, metrics, and fields under all actions of Diff (M ). This
equivalence class may be denoted {M , gab, f }.

The important question for physics is, what information is coded inside an
equivalence class {M , gab, f }, apart from the information that is put into the
specification of M ?

The key point is that the points and open sets that define the manifold are not
preserved under Diff (M ), because any diffeomorphism except the identity takes
points to other points. Thus, the information coded in the equivalence classes cannot
be described simply as the values of fields at points.

The answer is that

1. Dimension and topology are coded in {M , gab, f }
2. Apart from those, all that there is, is a system of relationships between events.

Events are not points of a manifold, they are identifiable only by coincidences
between the values of fields preserved by the actions of diffeomorphisms.

The relations between events are of two kinds:

(a) causal order (i.e. which events causally precede which, given by the lightcone
structure).

(b) measure (the spacetime volumes of sets defined by the causal order).

It can be shown that the information in a spacetime {M , gab, f } is completely
characterized by the causal structure and the measure (Malament to appear).
Intuitively, this is because the conformal metric¹³ determines, and is determined by,

¹¹ A very interesting question is whether the restriction to fixed dimension and topology is
essential or may be eliminated by a deeper theory.

¹² More generally to another manifold.
¹³ Defined as the equivalence class of metrics related by local conformal transformations

gab → g ′
ab = φ2gab, where φ is a function.
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the light cones and hence the causal structure. The remaining conformal factor then
determines the volume element.

The problem of underdetermination raised in §7.2 is solved by the identification,
in R4, of physical histories with equivalence classes. For the spatially compact case,
once we have modded out by the diffeomorphisms, there remain no symmetries
on the space of solutions (Kuchař 1976, 1982). But why should we mod out by
diffeomorphisms? As Einstein intuited in his famous ‘hole argument’, and Dirac
codified, one must mod out by diffeomorphisms if one is to have deterministic
evolution from initial data (Stachel 1989; Earman 1989; Norton 1987; Smolin
2001a; Rovelli 1991, 2004).

This establishes that, apart from the specification of topology, differential structure,
and dimension, general relativity is a relational physical theory.

7.4.1 The Problem of Time and Related Issues

As I emphasized at the beginning of this section, a truly fundamental theory cannot
be formulated in terms of boundaries or asymptotic conditions. This, together with
diffeomorphism invariance, implies that the Hamiltonian is a linear combination of
constraints¹⁴. This is no problem for defining and solving the evolution equations,
but it does lead to subtleties in the question of what is an observable. One
important consequence is that one cannot define the physical observables of the
theory without solving the dynamics. In other words, as Stachel emphasizes, there
is no kinematics without dynamics. This is because all observables are relational, in
that they describe relations between physical degrees of freedom. You cannot just
ask what is happening at a manifold point, or an event, labelled by some coordinate,
and assume you are asking a physically meaningful question. The problem is that
because of diffeomorphism invariance, points are not physically meaningful without
a specification of how a point or event is to be identified by the values of some
physical degrees of freedom. As a result, even observables that refer to local points or
regions of physical spacetime are non-local in the sense that as functions of initial
data they depend on data in the whole initial slice.

As a result, the physical interpretation of classical general relativity is more subtle
than is usually appreciated. In fact, most of what we think we understand naively
about how to interpret classical GR applies only to special solutions with symmetries,
where we use the symmetries to define special coordinates. These methods do not
apply to generic solutions, which have no symmetries. It is possible to give a physical
interpretation to the generic solutions of the theory, but only by taking into account
the issues raised by the facts that all physical observables must be diffeomorphism
invariant, and the related fact that the Hamiltonian is a sum of constraints (Rovelli
2004).

We see here a reflection of Leibniz’s principles, in that the interpretation that must
be given to generic solutions, without symmetries, is completely different from that
given to the measure zero of solutions with symmetries.

¹⁴ This is reviewed in Rovelli (2004); Thiemann (2001); Smolin (2001a).
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One can actually argue something stronger (Smolin 2001a): Suppose that one
could transform general relativity into a form in which one expressed the dynamics
directly in terms of physical observables. That is, observables which commute with
all the constraints, but still measure local degrees of freedom. Then the solutions with
symmetries might just disappear. This is because, being diffeomorphism invariant,
such observables can distinguish points only by their having different values of fields.
Such observables must degenerate when one attempts to apply them to solutions
with symmetries. Thus, expressed in terms of generic physical observables, there may
be no symmetric solutions. If this is true this would be a direct realization of the
identity of the indiscernible in classical general relativity.

Thus, even at the classical level, there is a distinction between background-
independent and background-dependent approaches to the physical interpretation.
If one is interested only in observables for particles moving within a given spacetime,
one can use a construction that regards that spacetime as fixed. But if one wants
to discuss observables of the gravitational field itself, one cannot use background-
dependent methods, for those depend on fixing the gravitational degrees of freedom
to one solution. To discuss how observables vary as we vary the solution to the
Einstein equations we need functions of the phase space variables that make sense
for all solutions. Then one must work on the full space of solutions, in either
configuration space or phase space.

One can see this with the issue of time. If by time you mean time experienced
by observers following world-lines in a given spacetime, then we can work within
that spacetime. For example, in a given spacetime time can be defined in terms of
the causal structure. But if one wants to discuss time in the context in which the
gravitational degrees of freedom are evolving, then one cannot work within a given
spacetime. One constructs instead a notion of time on the infinite dimensional phase
or configuration space of the gravitational field itself. Thus, at the classical level,
there are clear solutions to the problems of what is time and what is an observable in
general relativity.

Any quantum theory of gravity must address the same issues. Unfortunately,
background-dependent approaches to quantization evade these issues, because they
take for granted that one can use the special symmetries of the non-dynamical
backgrounds to define physical observables. To usefully address issues such as
the problem of time, or the construction of physical observables, in a context
that includes the quantum dynamics of the spacetime itself, one must work in a
background-independent formulation.

However, while the problem of time has been addressed in the context of
background-independent approaches to quantum gravity, the problem has not been
definitively solved. The issue is controversial and there is strong disagreement among
experts. Some believe the problem is solved, at least in principle, by the application
of the same insights that lead to its solution in classical general relativity (Rovelli
2004). Others believe that new ideas are needed (Smolin 2001a). While I will not
dwell on it here, the reader should be aware that the problem of time is a key
challenge that any complete background-independent quantum theory of gravity
must solve.
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7.5 RELATIONALISM AND THE SEARCH
FOR THE QUANTUM THEORY OF GRAVITY

We next consider how the debate between relational and absolute approaches to
spacetime reappears in the search for a quantum theory of gravity.

Let us begin by noting that conventional quantum theories are background-
dependent theories. The background structures for a quantum theory include space
and time, either Newtonian or, in the case of quantum field theory (QFT), some
fixed, background spacetime. There are additional background structures connected
with quantum mechanics, such as the inner product. It is also significant that the
background structures in quantum mechanics are connected to the background space
and time. For example, the inner product codes probability conservation, in a given
background time coordinate.

Thus, when we attempt to unify quantum theory with general relativity we have to
face the question of whether the resulting theory is to be background dependent or not.
There are two kinds of approaches, which take the two possible answers—yes and no.
These are called background-independent and background-dependent approaches.

Background-dependent approaches study quantum theory on a background of
a fixed classical spacetime. These can be quantum theories of gravity in a limited
sense in which they study the quantization of gravitational waves defined as moving
(to some order of approximation) on a fixed background spacetime. One splits the
metric into two pieces

gab = bab + hab (7.3)

where bab is the background metric, a fixed solution to the Einstein equations, and
hab is a perturbation of that solution. In a background-dependent approach one
quantizes hab using structures that depend on the prior specification of bab, as if hab
were an ordinary quantum field, or some substitute such as a string.

Background-dependent approaches include

• perturbative quantum general relativity;
• string theory.

Perturbative quantum general relativity does not lead to a good theory, nor are the
problems cured by modifying the theory so as to add supersymmetry or other terms
to the field equations.

It is hard to imagine a set of better-motivated conjectures than those that drove
interest in string theory. Had string theory succeeded as a background-dependent
theory, it would have served as a counter-argument to the thesis of this essay¹⁵.
Conversely, given that the problems string theory faces seem deeply rooted in the
structure of the theory, it may be worthwhile to examine the alternative, which is
background-independent theories.

¹⁵ A more detailed summary of the results achieved in string theory and other approaches to
quantum gravity, together with a list of problems that remain unsolved, is given in Smolin (2003).
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In recent years there has been healthy development of a number of different
background-independent approaches to quantum gravity. These include,

• Causal sets;
• Loop quantum gravity (or spin foam models);
• Dynamical triangulations models;
• Certain approaches to non-commutative geometry (Connes and Moscovici 2005);
• A number of approaches that posit a fundamental discrete quantum theory from

which classical spacetime is conjectured to emerge at low energies (Dreyer 2004);
• Attempts to formulate string theory as a background-independent theory.

I will briefly describe the first three. These are well enough understood to illustrate
both the strengths of the relational view for quantum gravity and the hard issues that
any such approach must overcome.

7.5.1 The Causal Set Theory

To describe the causal set model we need the definition of a causal set.
A causal set is a partially ordered set such that the intersection of the past and

future of any pair of events is a finite set. The elements of the causal set are taken to
be physical events and their partial ordering is taken to code the relation of physical
causation.

The basic premisses of the causal set model are Bombelli et al. (1987); Martin
et al. (2001); Rideout and Sorkin (2000, 2001); Rideout (2002):

1. A history of the universe consists of nothing but a causal set. That is, the
fundamental events have no properties except their mutual causal relations¹⁶.

2. The quantum dynamics is defined by assigning to each history a complex number
which is to be its quantum amplitude¹⁷.

The motivation for the causal set hypothesis comes from the expectation that the
geometry of spacetime becomes discrete at the Planck scale. This leads one to expect
that, given any classical spacetime {M , gab}, one will be able to define a causal set C
which approximates it. The precise sense in which this is possible is:

We say that a causal set C approximates a classical spacetime, {M , gab, f }, if, to
each event e in C , there is an event e in {M , gab, f }, such that (1) the causal relations
are preserved and (2) there is on average 1 event e coming from C per Planck volume
of {M , gab, f }.

We note that when a causal set does approximate a classical spacetime, it does so
because it is the result of a fair sampling of the relations that define the spacetime,
which are the causal order and measure.

¹⁶ The events of a causal set are sometimes called ‘elements’ to emphasize the principle that each
corresponds to a finite element of spacetime volume.

¹⁷ In the causal set literature the dynamics is sometimes formulated in terms of quantum measure
theory, which is a variant of the consistent histories formulation of quantum mechanics.
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However if the discrete quantum theory is to be more fundamental there should be
a procedure to define the classical spacetime {M , gab, f } from some kind of classical
or low energy limit of the causal set theory. This has not yet been achieved. A main
reason is the following problem, which we call the inverse problem for causal sets
(Markopoulou and Smolin forthcoming).

The inverse problem for causal sets: Given a classical spacetime {M , gab, f }, it is
easy to define a causal set C which approximates it in the sense just defined. But almost
no causal set C approximates a low-dimensional manifold in this sense. Moreover, we
do not have a characterization, expressed only in terms of the relations in a causal set,
C , which would allow us to pick out those causal sets that do approximate spacetimes.
We can only do this by first constructing classical spacetimes, and then extracting
from them a causal set that approximates them. Moreover no dynamical principle has
been discovered which would generate causal sets C that either directly approximate
low-dimensional classical spacetimes, or have coarse grainings or approximations that
do so.

This is an example of a more general class of problems, which stems from the fact
that combinatorially defined discrete structures are very different from continuous
manifolds.

A very general combinatorial structure is a graph. The possibility of a correspond-
ence between a graph and a smooth geometry is based on two definitions.

Definition: The metric on a graph � is defined by g( j, k) for two nodes k and j is
the minimal number of steps to walk from j to k along the graph.

Definition: A graph � is said to approximate a manifold and metric {M , gab} if
there is an embedding of the nodes of � into points of {M , gab} such that the graph
distance g( j, k) is equal to the metric distance between the images of the nodes in
{M , gab}.

It is easy to see that the following issue confronts us.

Inverse problem for graphs. Given any {M , gab} it is easy to construct a graph
� that approximates it. But, assuming only that the dimension is much less than
the number of nodes, for almost no graphs do there exist low-dimensional smooth
geometries that they approximate.

Because of the inverse problem, it is fair to say that the causal set programme has
unfortunately so far failed to lead to a good physical theory of quantum gravity, But
it is useful to review the logic employed:

Logic of the causal set programme:

• GR is relational, and the fundamental relations are causal relations.
• But GR is continuous and it is also non-quantum mechanical.
• We expect that a quantum theory of spacetime should tell us if the set of physical

events is discrete.
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• Therefore a quantum spacetime history should consist of a set of events which is a
discrete causal structure.

• Moreover, the causal structure is sufficient to define the physical classical spacetime,
so it should be sufficient to describe a fundamental quantum history.

• But this programme so far fails because of the inverse problem.

Given the seriousness of the inverse problem, it is possible to imagine that the
solution is that there are more fundamental relations, besides those of causality. It
should be said that this direction is resisted by some proponents of causal sets, who
are rather ‘purist’ in their belief that the relation of causality is sufficient to constitute
all of physics. But a possible answer to this question is given by another programme,
loop quantum gravity, where causal relations are local changes in relational structures
that describe the quantum geometry of space (Markopoulou 1997, 2002).

7.5.2 Loop Quantum Gravity

Loop quantum gravity was initiated in 1986 and is by now a well-developed research
programme, with on the order of 100 practitioners. There is now a long list of results,
many of them rigorous. Here I will briefly summarize the key results that bear on the
issue of relational space and time¹⁸.

7.5.2.1 Basic Results of Loop Quantum Gravity
Loop quantum gravity is based on the following observation, introduced by Sen and
Ashtekar for general relativity and extended to a large class of theories including
general relativity and supergravity in spacetime dimensions three and higher¹⁹.

• General relativity and supergravity, in any spacetime dimension greater than or
equal to 2 + 1, can be rewritten as gauge theories, such that the configuration
space is the space of a connection field, Aa, on a spatial manifold �. The metric
information is contained in the conjugate momenta. The gauge symmetry includes
the diffeomorphisms of a spacetime manifold, usually taken to be � × R. The
dynamics takes a simple form that can be understood as a constrained topological
field theory. This means that the action contains one term, which is a certain
topological field theory called BF theory, plus another term which generates a
quadratic constraint.

Consider such a classical gravitational theory, T , whose histories are described as
diffeomorphism equivalence class of connections and fields, {M , Aa, f }. To define
the action principle one must assume that the topology, dimension, and differential
structure of spacelike surfaces, � , are fixed.

The following results have then been proven (Smolin 2004b):

¹⁸ For details of the results, including those mentioned below, and references, see Smolin
(2004b). Books on loop quantum gravity include Ashtekar (1988, 1991); Gambini and Pullin
(1996); Rovelli (2004); Thiemann (2001) and review papers include Ashtekar and Lewandowski
(2004); Rovelli (1998); Smolin (1992, 1997b); Baez (1998, 2000); Perez (2003).

¹⁹ See for example, Smolin (2002) and (2004b) and references contained therein.
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1. The quantization of T results in a unique Hilbert space, H , of diffeomorphism-
invariant states. There is a recent uniqueness theorem (Lewandowski et al. 2005;
Fleischhack 2004; Sahlmann 2002a, 2002b; Sahlmann and Thiemann 2003a,
2003b; Okolow and Lewandowski 2003), which guarantees that for dimension of
� two or greater, there is a unique quantization of a gauge field such that (i) the
Wilson loops are represented by operators that create normalizable states, (ii) its
algebra with the operator that measures electric field flux is represented faithfully,
and (iii) the diffeomorphisms of � are unitarily implemented without anomaly.

This unique Hilbert space has a beautiful description. There is an orthonormal
basis of H whose elements are in one-to-one correspondence with the embeddings
of certain labelled graphs � in �. (The label set varies depending on the dimension,
matter fields, and with supersymmetry.)

Because H carries a unitary representation of Diff (�) it is possible rigorously
to mod out by the action of diffeomorphisms and construct a Hilbert space,
Hdiff , of spatially diffeomorphism-invariant states. This has a normalizable basis
in one-to-one correspondence with the diffeomorphism classes of the embeddings
in � of the labelled graphs.

This is a very satisfactory description from the point of view of relationalism.
There is no more relational structure than a graph, as two nodes are distinguished
only by their pattern of connections to the rest of the graph. The labels come
from the theory of representation of a group or algebra A. The edges are labelled
by representations of A, which describe properties shared between the nodes
they connect. The labels on nodes are invariants of A, which likewise describe
properties shared by the representations on edges incident on those nodes.

Because there is a background topology, there is additional information coded
in how the edges of the graph knot and link each other. Given the choice of
background topology, this information is also purely relational.

2. A quantum history is defined by a series of local moves on graphs that take the
initial state to the final state (Markopoulou 1997, 2002). The set of local moves
in each history define a causal set.

Hence, the events of the causal set arise from local changes in another set of
relations, that which codes the quantum geometry of a spatial slice. The structure
that merges the relational structure of graphs with that of causal sets is now called
a causal spin foam.

3. The amplitudes for local moves that follow from the quantization of the Einstein
equations are known in closed form. The sums over those amplitudes are known to
be ultraviolet finite. Similarly, the quantum Einstein equations in the Hamiltonian
form have been implemented by exact operator equations on the states.

In the case of a spin foam model for 2 + 1 gravity coupled to massive particles, it
has been shown in detail that the theory can be re-summed, yielding an effective
field theory on a non-commutative spacetime (Freidel and Livine 2005). This
provides an explicit demonstration of how physics in classical spacetime can
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emerge from a non-trivial background-independent quantum theory of gravity.
The resulting effective field theory has in addition deformed Poincaré symmetry,
which confirms, in this case, the general conjecture that the low-energy limit of
loop quantum gravity has deformed Poincaré symmetry (Smolin 2004b).

4. The quantum spacetime is discrete in that each node of the graph corresponds to
a finite quanta of spatial volume. The operators that correspond to volumes, areas,
and lengths are finite, and have discrete spectra with finite non-zero minimal
values. Hence a graph with a finite number of nodes and edges defines a region
of space with finite volume and area.

5. There are a number of robust predictions concerning subjects like black hole
entropy. Evidence has recently been found that both cosmological and black hole
singularities bounce, so the evolution of the universe continues through apparent
classical cosmological singularities.

6. There are explicit constructions of semiclassical states, coarse-grained measure-
ments of which reproduce classical geometries. Excitations of these states, with
wavelengths long in Planck units, relative to those classical geometries, have been
shown to reproduce the physics of quantum fields and linearized gravitational
waves on those backgrounds.

7.5.2.2 Open Problems of Loop Quantum Gravity
There are of course many, in spite of the fact that the theory is well defined.

• Classical limit problem: Find the ground state of the theory and show that it is a
semiclassical state, excitations of which are quantum field theory and classical GR.

• Do science problem: By studying the excitations of semiclassical states, make
predictions for doable experiments that can test the theory up or down.

• Remove the remaining background-dependence problem: The results so far defined
depend on the fact that the dimension and topology of the spatial manifold, �, is
fixed, so that the graphs are embedded in �. This helps by lessening the inverse
problem. Can this be removed—and the inverse problem solved—so that all
the structure that was background for previous theories, including dimension and
topology, is explained as following from solutions to a relational theory²⁰?

We note that in some formulations of spin foam models, the dependence on a
fixed background topology is dropped, so that the states and histories are defined as
pure combinatorial structures. But this makes the problem of recovering classical
general relativity from the low energy limit more complicated.

• The problem of time: The different proposals that have been made to resolve the
problem of time in quantum gravity and cosmology can all be studied in detail
in loop quantum gravity and related cosmological models. While there are some
interesting results, the opinion of this author is that the problem remains open.

²⁰ For more on the inverse problem and its implications, see Markopoulou and Smolin (in
preparation).
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These are hard problems, and remain unsolved, but some progress is being made
on all of them.

It is important to mention that there are real possibilities for experimental tests
of the theory. This is because the discrete structure of space and time implies
modifications in the usual relations between energy and momenta

E2 = p2 + m2 + lpE3 + … (7.4)

This turns out to have implications for experiments currently under way, having
to do with ultra-high-energy cosmic rays and gamma ray bursts, amongst others²¹.
Loop quantum gravity appears to make predictions for these experiments (Smolin
2005).

7.5.2.3 Lessons from Loop Quantum Gravity for the Relational Programme
So far as the relational/absolute debate is concerned, loop quantum gravity (LQG)
teaches us several lessons:

• So long as we keep as background those aspects of space and time that are
background for classical GR (the topology, dimension, and differential struc-
ture), we can find a quantum mechanical description of the metric and fields.
Thus LQG is partly relational, in exactly the same way that GR is partly
relational.

• Loop quantum gravity does give us a detailed description of quantum spa-
tial and spacetime geometry. There are many encouraging results, such as
finiteness, and the derivation of an explicit language of states, histories, and
observables for general background-independent theories of quantum gravity. It
is possible to do non-trivial computations to study the dynamics of quantum
spacetime, and applications to physical problems such as black holes and cos-
mology yield results that are sensible and, in some cases, testable. It is very
satisfying that the description of quantum geometry and quantum histories
is formulated using beautiful relational structures such as graphs and causal
sets.

• This description is flexible and can accommodate different hypotheses as to the
dimension of spacetime, matter couplings, symmetries, and supersymmetries.

• There do remain hard open problems having to do with how a classical spacetime is
to emerge from a purely background-independent description. A related challenge
is to convincingly resolve the problem of time. Nevertheless, significant progress
is being made on these problems (Freidel and Livine 2005), and it even appears
to be possible to derive predictions for experiment by expanding around certain
semiclassical states (Smolin 2005).

• The main barrier to making an entirely relational theory of quantum spacetime
appears to be the inverse problem.

²¹ See Smolin (2004b) for a brief review of this important subject, with additional references.



216 Lee Smolin

7.5.3 Causal Dynamical Triangulation Models

These are models for quantum gravity, based on a very simple construction (Ambjorn
et al. 1992, 2004; Ambjorn 1995; Agishtein and Migdal 1992). A quantum spacetime
is represented by a combinatorial structure, which consists of a large number N of
d dimensional simplexes (triangles for two dimensions, tetrahedra for three, etc.)
glued together to form a discrete approximation to a spacetime. Each such discrete
spacetime is given an amplitude, which is acquired from a discrete approximation to
the action for general relativity. Additional conditions are imposed, which guarantee
that the resulting structure is the triangulation of some smooth manifold (otherwise
there is a severe inverse problem.) For simplicity the edge lengths are taken to be
all equal to a fundamental scale, which is considered a short distance cut-off.²² One
defines the quantum theory of gravity by a discrete form of the sum over histories
path integral, in which one sums over all such discrete quantum spacetimes, each
weighted by its amplitude.

These models were originally studied as an approach to Euclidean quantum gravity
(that is the path integral sums over spacetimes with Euclidean signature, rather than
the Lorentzian signature of physical spacetime). In these models the topology is
not fixed, so one has a model of quantum gravity in which one can investigate the
consequences of removing topology from the background structure and making it
dynamical (Ambjorn et al. 1992, 2004; Ambjorn 1995; Agishtein and Migdal 1992).

More recently, a class of models have been studied corresponding to Lorentzian
quantum gravity. In these cases additional conditions are fixed, corresponding to the
existence of a global time slicing, which restricts the topology to be of the form of
� × R, where � is a fixed spatial topology (Ambjorn et al. 2000a, 2000b, 2001a,
2001b, 2002; Ambjorn and Loll 1998; Loll 2001; Dittrich and Loll 2002)²³.

Some of the results relevant for the debate on relationalism include,

• In the Euclidean case, for spacetime dimensions d > 2, the sum over topologies
cannot be controlled. The path integral is, depending on the parameters of the
action chosen, unstable to the formation of either an uncontrolled spawning
of ‘baby universes’, or to a crunch down to degenerate triangulations. Neither
converges to allow a coarse-grained approximation in terms of smooth manifolds
of any dimension.

• In the Lorentzian case, when the simplices have spacetime dimension d = 2, 3, 4,
where the topology is fixed and the formation of baby universes suppressed,
there is evidence for convergence to a description of physics in manifolds whose
macroscopic dimension is the same as the microscopic dimension. For the case
of d = 4 the results are recent and highly significant (Ambjorn et al. 2000a,
2000b, 2001a, 2001b, 2002, 2004, 2005a, 2005b, 2005c; Ambjorn and Loll

²² There is a different, but related approach, called Regge calculus, in which the triangulations
are fixed while the edge lengths are varied.

²³ The condition of a fixed global time slicing can be relaxed to some extent (Markopoulou and
Smolin 2004).
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1998; Loll 2001; Dittrich and Loll 2002). In particular, there is now detailed
numerical evidence for the emergence of 3 + 1 dimensional classical spacetime at
large distances from a background-independent quantum theory of gravity (ibid.).

• The measure of the path integral is chosen so that each triangulation corres-
ponds to a diffeomorphism class {M , gab, f }. The physical observables such as
correlation functions measured by averaging over the triangulations correspond to
diffeomorphism-invariant relational observables in spacetime.

These results are highly significant for quantum gravity. It follows that earlier
conjectures about the possibility of defining quantum gravity through the Euclidean
path integral cannot be realized. The sum has to be done over Lorentzian spacetimes
to have a hope of converging to physics that has a coarse-grained description in
smooth spacetimes. Further, earlier conjectures about summing over topologies in
the path integral also cannot be realized.

As far as relationalism is concerned we reach a similar conclusion to that of loop
quantum gravity. There is evidence for the existence of the quantum theory when
structures including topology, dimension, and signature are fixed, as part of the
background structure, just as they are in classical general relativity. When this is
done one has a completely relational description of the dynamics of a discrete version
of metric and fields. Furthermore, in the context of each research programme there
has recently been reported a detailed study showing how classical spacetime emerges
from an initially discrete, background independent theory. This is an analytic result
in the case of spin foam models in 2 + 1 dimensions, with matter (Freidel and
Livine 2005), and numerical results in 3 + 1 dimensions in the causal dynamical
triangulations case (Ambjorn et al. 2000a, 2000b, 2001a, 2001b, 2002, 2004, 2005a,
2005b, 2005c; Ambjorn and Loll 1998; Loll 2001; Dittrich and Loll 2002). This is
very encouraging, given that the problem of how classical spacetime emerges is the
most challenging problem facing background-independent approaches to quantum
gravity.

7.5.4 Background-Independent Approaches to String and M Theory

It has been often argued that string theory requires a background-independent
formulation. This is required, not just because any quantum theory of gravity must
be background independent, but because there is a need to unify all the different
perturbative string theories into one theory. As this must combine theories defined
on different backgrounds, it must not be restricted by the choice of a particular
background.

There are some claims that string theory does not need a background-independent
formulation, and can be instead defined for fixed boundary or asymptotic conditions
as dual to a field theory on a fixed background, as in the AdS/CFT correspondence.
To respond to this, it first should be emphasized that the considerable evidence in
favour of some form of an AdS/CFT correspondence falls short of a proof of actual
equivalence, which would be needed to say that a full quantum theory of gravity,
rather than just limits of correlation functions taken to the boundary, is coded in
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the dual conformal field theory (Arnsdorf and Smolin 2001; Smolin 2003). But even
granting the full Maldacena conjecture it is hard to see how a theory defined only in
the presence of boundary or asymptotic conditions, as interesting as that would be,
could be taken as a candidate for a complete formulation of a fundamental theory
of spacetime. This is because the boundary or asymptotic conditions can only be
interpreted physically as standing for the presence of physical degrees of freedom
outside the theory. For example, the timelike or null killing fields at the boundary
stand for the reading of a clock which is not part of the physical systems. Such
a formulation cannot be applied to cosmological problems, where the problem is
precisely to formulate a consistent theory of the entire universe as a closed system.
General relativity with spatially compact boundary conditions is such a theory.
Hence, it seems reasonable to require that a quantum theory of gravity, which is
supposed to reproduce general relativity, must also make sense as a theory of a whole
universe, as a closed system.

Some string theorists have also claimed that string theory does not need a
background-independent formulation, because the fact that string perturbation
theory is, in principle, defined on many different backgrounds is sufficient. This
assertion rests on exaggeration and misunderstanding. First, string perturbation
theory is so far only defined on stationary backgrounds that have timelike killing
fields. But this is a measure zero of solutions to the Einstein equations. It is, however,
difficult to believe that a consistent string perturbation theory can be defined on
generic solutions to the Einstein equations because, in the absence of timelike killing
fields, one cannot have spacetime supersymmetry, without which the spectrum will
typically contain a tachyon²⁴.

More generally, this assertion misses completely the key point that general relativity
is itself a background-independent theory. Although we sometimes use Einstein’s
equations as if they were a machine for generating solutions, within which we then
study the motion of particles of fields, this way of seeing the theory is inadequate
as soon as we want to ask questions about the gravitational degrees of freedom
themselves. Once we ask about the actual local dynamics of the gravitational field, we
have to adopt the viewpoint which understands general relativity to be a background-
independent theory within which the geometry is completely dynamical, on an equal
footing with the other degrees of freedom. The correct arena for this physics is not
a particular spacetime, or even the linearized perturbations of a particular spacetime.
It is the infinite dimensional phase space of gravitational degrees of freedom. From
this viewpoint, individual spacetimes are just trajectories in the infinite dimensional
phase or configuration space; they can play no more of a role in a quantization of
spacetime than a particular classical orbit can play in the quantization of an electron.

To ask for a background-independent formulation of string theory is to ask only
that it conserve the fact that the dynamics of the Einstein equations does not require,
indeed does not allow, the specification of a fixed background metric. For, if one

²⁴ There are a few exceptions, but typically non-supersymmmetric string theories have tachyons.
Also, note that for none of the theories in the landscape is it known how to construct the free string
worldsheet theory.
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means anything at all by a quantum theory of gravity, one certainly means a theory by
which the degrees of freedom of the classical theory emerge from a suitable limit of a
Hilbert space description. This does not commit one to the belief that the elementary
degrees of freedom are classical metrics or connections, nor does it commit one to a
belief that the correct microscopic dynamics have to do with the Einstein equations.
But it does imply that a quantum theory must have a limit in which it reproduces the
correct formulation of general relativity as a dynamical system, which is to say in the
background-independent language of the classical phase space. It would seem very
unlikely that such a background-independent formulation can emerge as a classical
limit of a theory defined only on individual backgrounds, which are just trajectories
in the exact phase space.

In fact, there have been a few attempts to develop a background-independent
approach to string andM theory (Smolin 2000a, 2000c, 2000d, 2001b, forthcoming;
Azuma and Bagnoud 2002; Bagnoud et al. 2002; Azuma et al. 2001; Azuma 2001).
These have been based on two lessons from loop quantum gravity: (i) Background-
independent quantum theories of gravity can be based on matrix models, so long
as their formulation depends on no background metric. Such a model can be based
on matrices valued in a group, as in certain formulations of spin foam models. (ii)
The dynamics of all known gravitational theories can be understood by beginning
with a topological field theory and then extending the theory so as to minimally
introduce local degrees of freedom. This can be extended to supergravity, including
the eleven-dimensional theory (Ling and Smolin 2001; Smolin 1997c).

By combining these, a strategy was explored in which a background-independent
formulation of string or M theory was to be made which is an extension of a matrix
Chern–Simons theory (Smolin, 2000a, 2000c, 2000d, 2001b, forthcoming; Azuma
and Bagnoud 2002; Bagnoud et al. 2002; Azuma et al. 2001; Azuma 2001). The
Chern–Simons theory provides a starting point which may be considered a membrane
dynamics, but without embedding in any background manifold. The background
manifold and embedding coordinates then arise from classical solutions to the
background-independent membrane model. It was then found that background-
dependent matrix models of string and M theory emerged by expanding around
these classical solutions.

A recent development in this direction is a proposal for how to quantize a certain
reduction of M theory non-perturbatively (Smolin forthcoming).

These few, preliminary, results, indicate that it is not difficult to invent and study
hypotheses for background-independent formulations of string theory.

7.6 RELATIONALISM AND REDUCTIONISM

I would now like to broaden the discussion by asking: Does the relational view have
implications broader than the nature of space and time? I will argue that it does²⁵. A
starting point for explaining why is to begin with a discussion of reductionism.

²⁵ The arguments of this and the following sections are developed from Smolin (1997a).
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To a certain degree, reductionism is common sense. When a system has parts, it
makes sense to base an understanding of it on the laws that the parts satisfy, as well
as on patterns that emerge from the exchanges of energy and information among the
parts. In recent years we have learned that very complex patterns can emerge when
simple laws act on the parts of a system, and this has led to the development of the
study of complex systems. These studies have shown that there are useful principles
that apply to such complex systems and these may help us to understand an array
of systems from living cells to ecosystems to economic systems. But this is not in
contradiction to reductionism, it is rather a deepening of it.

But there is a built-in limit to reductionism. If the properties of a complex system
can be understood in terms of their parts, then we can keep going and understanding
the parts in terms of their parts, and so on. We can keep looking at parts of parts
until we reach particles that we believe are elementary, which means they cannot be
further divided into parts. These still have properties; for example, we believe that
the elementary particles have masses, positions, momenta, spin, and charges.

When we reach this point we have to ask what methodology we can follow to
explain the properties of the elementary particles. As they have no parts, reductionism
will not help us. At this point we need a new methodology.

Most thinking about elementary particle physics has taken place in the context of
quantum field theory and its descendants such as string theory, which are background-
dependent theories. Let us start by asking how well these background-dependent
theories have done resolving the problem of how to attribute properties to particles
thought to be elementary. After this we will see if background-independent theories
can do better.

In a background-dependent theory, the properties of the elementary entities
have to do with their relationships to the background. This is clear in ordinary
quantum field theory, where we understand particles to be representations of the
Poincaré group and other externally imposed symmetries and gauge invariances. In
these theories the particle states are labelled precisely by how they transform under
symmetries of the background. The specification of the gauge and symmetry groups
are indeed part of the background, because they are fixed for all time, satisfy no
dynamical principles, and do not evolve.

The search for an explanation of the properties of the elementary particles within
quantum field theory and string theory has been based on three hypotheses:

Unification: All the forces and particles are different quantum states of some elementary
entities.

This elementary entity was at first thought, by Einstein and his friends, to be a field,
giving rise to the once maligned subject of unified field theory. In more recent times
it is thought to be a string. These are not so far apart, for a low-energy approximation
to a string theory is a unified field theory. So most actual calculations in string
theory involve classical calculations in unified field theories that are descendants of
the theories Einstein and friends such as Kaluza and Klein studied many years ago.

But is unification enough of a criterion to pick out the right theory of nature?
By itself it cannot be, for there are an infinite number of symmetry algebras which
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have the observed symmetries as a subalgebra. There is however a second hypothesis
which is widely believed.

Uniqueness: There exists exactly one consistent unified theory of all the interactions
and particles.

If this hope is realized, then it suffices to find that one unified theory. The first
fully consistent unified theory to be found will be the only one that can be found and
it will thus have to be the true theory of nature. It has even been said that, because
of this, physics no longer needs experimental input to progress. At the advent of
string theory, this kind of talk was very common. The transition from physics as an
experimental science to physics based on finding the single unified theory was even
called the passage from modern to postmodern physics.

Given that, in a background-dependent theory, particles are classified by repres-
entations of the symmetries of the vacuum, it follows that the more unified a theory
is the larger the symmetry of the background must be. This leads to the conjecture of

Maximal symmetry: The unique unified theory will have the largest possible symmetry
group consistent with the basic principles of physics, such as quantum theory and relativity.

These three conjectures have driven much of the work in high-energy physics
the last three decades. They led first to grand unified theories (large internal gauge
groups), then to higher dimensional theories (which have larger symmetry groups)
and also to supersymmetry.

While these conjectures come very naturally to anyone with training in elementary
particle physics, it must be emphasized that they have arisen from a methodology
which is thoroughly background dependent. The idea that the states of a theory are
classified by representations of a symmetry group, however used to it we have become,
makes no sense apart from a theory in which there is a fixed background, given by the
spacetime geometry and the geometry of the spaces in which the fields live. Theories
without a background, where the geometry is dynamical and time dependent, such as
general relativity, have no symmetry groups which act on the space of their solutions.
In general relativity symmetries only arise as accidental symmetries of particular
solutions, they have no role in the formulation of the equations or space of solutions
of the theory itself ²⁶.

So the methodology of looking for theories with maximal symmetry only makes
sense in a background-dependent context. Still, since an enormous amount of work
has gone into pursuit of this idea we can ask how far it actually gets us.

The most important thing to know about how this programme turned out is that
string theories at the background-dependent level did not turn out to be unique.
There turn out to be five string theories in flat ten-dimensional spacetime background.
Each of them becomes an infinite number of theories when the background is taken
to be a static but curved spacetime. Many of these are spacetimes in which a certain
number of dimensions remain flat while the others are compactified.

²⁶ It must be emphasized that we are talking here of global symmetries, not gauge invariances.
Spaces of states or of solutions do not transform under gauge transformations, they are left invariant.
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To preserve the notion of a unique unification it was conjectured that there is
nevertheless a unique unification of all the string theories, which has been called
M theory. This was motivated by the discovery of evidence for conjectured duality
transformations that relate states of the different string theories. This theory, which
has so far not been constructed, is conjectured to include all the string theories in ten
dimensions, plus one more theory, which is eleven-dimensional supergravity. This is
the largest consistent possible supersymmetric gravity theory and, at least at a classical
level, naturally incorporates many of the symmetries known or conjectured that act
on states of the different string theories.

The search for M theory has mostly followed the methodology which follows
the three principles we mentioned. One posits a maximal symmetry algebra Amax
that contains at least the eleven-dimensional super-Poincaré algebra and then tries
to construct a theory based on it. Candidates for this symmetry algebra include the
infinite dimensional algebra E10 (Damour et al. 2002) and compact superalgebras
which have the eleven-dimensional super-Poincaré algebra as a subalgebra such as
Osp(1, 32) and Osp(1, 64).

However, not much work has been done on the problem of constructing M
theory, despite it being apparently necessary for the completion of the programme of
unification through symmetry. It is interesting to ask why this is.

If M theory is to be a unification of all the different background-dependent string
theories, and hence treat them all on an equal footing, it cannot be formulated in
terms of any single spacetime background. Hence, we expect that M theory must be
a background-independent theory.

However, background-independent theories are very different from background-
dependent theories, as we have seen already in this chapter. One reason for the lack
of interest in background-independent approaches to M theory might be simply
that it is difficult for someone schooled in background-dependent methods to make
the transition to the study of background-independent theories.

But there is a better reason, which is that there is a built-in contradiction to
the idea of M theory. As I just emphasized, the idea that M theory is based
on the largest possible symmetry is one that only makes sense in a background-
dependent context. But as we have also just seen, M theory must be background
independent.

One way out is to posit that the symmetry of M theory, while acting formally like
a background, will not be the symmetry of any classical metric geometry. Indeed this
is true of the possibilities studied such as E11 and Osp(1, 32). Still they privilege those
geometries whose symmetries are subalgebras of the posited fundamental symmetry,
such as the super-Poincaré algebra. It thus seems hard to avoid a situation in which
the solutions which are background spacetimes of maximal symmetry will play a
privileged role in the theory. This is unlike the case of general relativity in which the
solutions of maximal symmetry may have special properties, like being the ground
state with certain asymptotic conditions, but play no special role in the formulation
of the dynamics of the theory.

If we are to formulate M theory as a truly background-independent theory, we
need a new methodology, tailored to background-independent theories. In the next
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section we will begin a discussion of what a background-independent approach to
unification might look like.

Before we do, there is one more issue about background-dependent theories that
we should consider. If the hypothesis of unification is correct, then what accounts for the
fact that the observed particles and forces have the particular properties which distinguish
them?

The basic strategy of all modern theories of unification is to answer this question
with the mechanism of:

Spontaneous symmetry breaking: The distinctions between the observed particles
and interactions result from a vacuum state of the theory not being invariant under all
the symmetries of the dynamics.

This means that the properties that distinguish the different particles and forces
from each other are due precisely to their relationship with a choice of background,
which is a vacuum state of the theory. If a theory can have different vacuum states,
which preserve different subgroups of the symmetries of the dynamics, then the
properties of the particles and forces will differ in each. Hence we see explicitly that
in these theories the properties of particles are determined by their relationship to
the background.

However, notice that something new is happening here, which is quite important
for the relational/absolute debate. The point of spontaneous symmetry breaking is that
the choice of background is a consequence of the dynamics and can also reflect the
history of the system. Hence theories that incorporate spontaneous symmetry breaking
take a step in the direction of relational theories in which the properties of elementary
particles are determined by their relationships with a dynamically chosen vacuum state.

But if the choice of vacuum state is to be determined dynamically, the fundamental
dynamics must be formulated in a way that is independent of a choice of background.
That is, the more spontaneous symmetry breaking is used to explain distinctions
between particles and interactions, the more the fundamental theory must be
background independent.

In conventional quantum field theories this is realized to some extent. But the back-
ground of spacetime is generally not part of the dynamics. In string theory the choice
of solution can involve the geometry and topology of space and time. Hence, we arrive
again at the necessity to ground string theory on a background-independent theory.

7.6.1 The Challenge of the String Theory Landscape

Before we turn to see how to approach the problem of unification from a background-
independent theory, we should try to draw some lessons from the status of the search
based on background-dependent methods.

We can begin by asking, what tools have string theorists used to study the problem
of unification?

A principal tool invoked in much recent work in string theory is effective field
theory. An effective field theory is a semiclassical field theory which is constructed to
represent the behaviour of the excitations of a vacuum state of a more fundamental
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theory below some specified energy scale. They have the great advantage that one
can study a theory expanded around a particular solution, treating that solution as a
fixed background. This lets us use many of the intuitions and tools developed in the
study of background-dependent theories. But there are also disadvantages to the use
of effective field theory. One is that the threshold of evidence required to establish as
likely a string background is weakened. Whereas it was at first thought necessary to
prove perturbative finiteness around the background to all orders, it is now thought
sufficient to display a classical solution to an effective field theory, which is some
version of supergravity coupled to branes.

But no effective field theory can stand on its own, for these are not consistent
microscopic theories. The reliability of effective field theory must always be justified
by an appeal to its derivation from that more fundamental theory. In the applications
where it was first developed, effective field theory is derived as an approximation to a
more fundamental theory. This is true in QCD (Quantum Chromodynamics) and
the standard model, as well as in its applications to nuclear physics and condensed
matter physics.

We can see this easily by considering cases in which we believe there is no
good fundamental theory, such as interacting quantum field theories in five or
more dimensions. We can construct effective field theories to our heart’s content to
describe the low-energy physics in such contexts. These may be approximations to
cut-off quantum field theories, for example, based on lattices. But they are unlikely to
be approximations to any Poincaré-invariant theories. This is because there is strong
evidence that the only Poincaré-invariant quantum field theories in more than four
spacetime dimensions are free.

However, in string theory, effective field theory is being used in a context where
we do not know that there is a more fundamental theory. That more fundamental
theory, if it exists, is the conjectured background-independent unification of the
different string theories. But since we do not have this theory, in the form of a set of
either equations or principles, we cannot be assured that it exists. Hence, by relying
on effective field theory we may get ourselves in the situation in which we are studying
semiclassical theories which are not approximations to any more fundamental theory.

But, nevertheless, if one insists on confining investigations to background-
dependent methods, there is little alternative to reliance on effective field theory. In
the absence of a derivation from a full quantum theory, one can still posit that the
existence of a consistent effective field theory is sufficient to justify belief in a string
background, and see where this takes us. One requires a weak form of consistency,
which is that excitations of the solution, were they to exist, would be weakly coupled.
Not surprisingly, perhaps, this approach leads to evidence for a landscape consisting
of an infinite number of discrete string backgrounds (De Wolf et al. 2005). Even
restricting the counting to backgrounds that have positive vacuum energy and broken
supersymmetry leads to estimates of 10500 or more discrete vacua (Kachru et al.
2003).

It is interesting to note that the term ‘landscape’ implies the existence of a
function, h, the height, such that the discrete vacua are at local minima of h. In the
recent literature, the height h is a potential or free energy. While it is clear what is



The Case for Background Independence 225

meant by this, it is perhaps worrying that the concept of energy is problematic in
a cosmological or quantum gravity context. This is because, once the gravitational
degrees of freedom are included, the energy of cosmological spacetimes is constrained
to vanish. All cosmological solutions to diffeomorphism-invariant theories have the
same energy; zero. There is in cosmology no ground state with zero energy; solutions
with different potential energies are no more or less likely to exist, they just expand
at different rates. Even if the background geometry is assumed fixed, energy and free
energy are only defined on a background that has a timelike killing field.

But what could the height be, if not energy? The context which inspired the
original use of the term landscape in string theory Smolin (1997a) was mathematical
models of natural selection, in which the height h measures the fitness, which is the
number of viable²⁷ progeny of a state. The term was introduced in (Smolin 1997a)
to evoke the methodologies by which fitness landscapes are studied.

However, in the recent string theory literature on landscapes, the analogy to
natural selection is not invoked. What then is the height? If it is energy, then that
implies the existence of a fixed background, with a timelike killing field. But what
is the background, when the space we are considering is a space of different vacua,
with different geometries and topologies? There seems to be a confusion in which
reference to a structure that depends on a fixed background is being invoked in the
description of the space of possible backgrounds.

Another way to see that the notion of a fixed background is sneaking back into
the theory is to consider the assumptions behind the probabilistic studies of the
landscape.

There are, broadly speaking, two kinds of methods that might be brought to
bear to the study of probability distributions on such landscapes of states. One
may study distributions that are in equilibrium, and hence static, or one may study
non-equilibrium and hence time-dependent distributions.

Almost all the recent work on probability distributions in the string theory
landscape have taken the first kind of approach. Some, but not all, of this work
evokes what we may call

The anthropic hope: There are a vast number of unified theories, and a vast number
of regions of the universe where they may act. Out of all of these, there will be a very small
fraction where the laws of physics allow the existence of intelligent life. We find ourselves
in one of these. Because the number of universes and theories is so vast, theory can make
few predictions except those that follow from requiring our own existence.

The reliance on the anthropic principle is unfortunate, because it can be shown
that the use of the anthropic principle cannot lead to any falsifiable predictions. This
is argued in detail in Smolin (2004a), to which the reader is referred. As a result, one
has to suspect that a search for a unified theory of physics that in the end invokes the
anthropic principle has reached a reductio ad absurdum. Somewhere along the line,
in the search for a unified string theory, a wrong turn has been taken.

²⁷ Meaning they will have their own progeny.
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It could be that the wrong turn is that string theory is based on physical hypotheses
that have nothing to do with nature. But if this is not the case, some wrong direction
must have been taken in the path that led from the conjecture of a unique unification
within string theory to the present invocations of the anthropic principle.

We can see from the survey of the situation we just made that the dilemma we
have arrived at seems to involve trying to use background-dependent notions, like
energy, to do physics in a setting that must be background independent. For if there
is a space of possible backgrounds, on which we are to do dynamics, it is obvious
that the form of dynamics we employ cannot make reference to any given fixed
background. Hence, it seems reasonable to suggest that the wrong turn is the failure
to search for a background-independent foundation for the theory.

It is then interesting to note that the invocation of static probability distributions
harks back to the absolute perspective. To see this we can ask, what is the time
with respect to which the probability distribution is considered to be static? It
cannot be the time within a given spacetime background, because the probability
distribution lives on the space of possible backgrounds. Single universes may evolve,
and may come and go, but there is hypothesized to be nevertheless a static and
eternal distribution of universes with different properties. It is to this distribution,
which exists absolutely and for all time, that we must go for an explanation of any
properties of our universe. Thus, at the level of multiverses, static distributions on
landscapes have more in common with Aristotle’s way of thinking about cosmology
than with general relativity.

Is there then an alternative methodology for treating the landscape, which would
naturally arise from a background-independent theory? I would like to claim there
is. The next sections are devoted to its motivation and description.

7.7 A RELATIONAL APPROACH TO THE PROBLEMS
OF UNIFICATION AND DETERMINATION OF THE

STANDARD MODEL PARAMETERS

Let us then assume we agree on the need to formulate a unified theory in a
background-independent framework. Even without having a complete formulation
of this kind in hand, it may be of interest to ask, what would a background-
independent approach to the problem of unification look like? How would it address
the problems raised in the last section? To approach these questions we return to the
question of how we are to explain the properties of the elementary particles.

In a relational theory, as I explained earlier, the properties of the elementary
entities can only have to do with relations they have to other elementary entities. Let
us explore the implications of this.

The first implication is that any relational system with a large number of parts
must be complex, in the sense of having no symmetries. The reason is Leibniz’s
principle of the identity of the indiscernible: if two entities have the same relations
to the rest, they are to be identified. Each individual entity must then have a unique
set of relations to the rest.
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The elementary entities in general relativity are the events. An event is characterized
by the information coming to it, from the past. We may call the information received
by an event in spacetime, the view of that event. It literally consists of what an
observer at that event would see looking out at their backwards light cone.

It follows that any two events in a spacetime must have different views. This
implies that

1. There are no symmetries.
2. The spacetime is not completely in thermal equilibrium.

These are in fact true of our universe. The universe may be homogeneous above
the enormous scale of 300Mpc, but on every smaller scale there is structure. Similarly,
while the microwave background is in thermal equilibrium, numerous bodies and
regions are out of equilibrium with each other.

Julian Barbour and I call a spacetime in which the view of each event is distinct
a Leibniz spacetime. We note, with some wonder, that the fact that our universe
is not completely in thermal equilibrium is due to the fact that gravitationally
bound systems have negative specific heat, and therefore cannot evolve to unique
equilibrium configurations. Furthermore, gravity causes small fluctuations to grow
that would otherwise be damped. This is why the universe is filled with galaxies and
stars. Thus, gravity, which as Einstein taught us is the force that necessarily exists due
to the relational character of space and time, is at the same time the agent that keeps
the world out of equilibrium and causes fluctuations to grow rather than to dissipate,
which is a necessary condition for it to have a completely relational description.

There is a further consequence of taking the relational view seriously. In a relational
theory, the relations that define the properties of elementary entities are not static
they evolve in time according to some law. This means that the properties by which
we characterize the interaction of an elementary particle with the rest of the universe
are likely to include some which are not fixed a priori by the theory, but depend on
solutions to dynamical equations. We can expect that this applies to all of the basic
properties that characterize particles such as masses and charges.

7.8 RELATIONALISM AND NATURAL SELECTION

How far can we go to a relational explanation of the properties of the elementary
particles in the standard model? While the anthropic principle itself is not explanatory,
it is useful to go back to its starting point, which is an apparently true observation,
which we may call

The anthropic observation: Our universe is much more complex (in for example its
astrophysics and chemistry) than most universes with the same laws but different values of
the parameters of those laws (including masses, charges, etc.)

This requires explanation. Unfortunately no principle has been found that explains
the values of the physical parameters (which can be taken to be the parameters of the
standard models of particle physics and cosmology). Given recent progress in string
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theory, there is no reason to expect such a principle to exist. Instead, as the relational
argument suggests, those parameters are environmental, and can differ in different
solutions of the fundamental theory. We then require a dynamical explanation for
the anthropic observation. For it to be science, the explanation must make falsifiable
predictions that are testable by real experiments.

There is only one mode of explanation I know of, developed by science, to explain
why a system has parameters that lead to much more complexity than typical values
of those parameters. This is natural selection.

It may be observed that natural selection is to some extent part of the movement
from absolute to relational modes of explanation. There are several reasons to
characterize it as such.

• Natural selection follows the relational strategy. Before it, properties that characterize
species were believed to be eternal, and to have a priori explanations. These are
replaced by a characterization of species that is relational and evolves in time as a
result of interactions between it and other species.

• The properties natural selection acts on, such as fitness, are relational quantities, in
that they summarize consequences of relations between the properties of a species and
other species.

• These properties are not fixed in advance, they evolve lawfully.
• A relational system requires a dynamical mechanism of individuation, leading to enough

complexity that each element can be individuated by its relations to the rest. Natural
selection acts in this way, for example, it inhibits two species from occupying
exactly the same niche. By doing so it increases the complexity, measured in terms
of the relations between the different species.

This suggests the application of the mode of explanation of natural selection to
cosmology.

This has been developed in Smolin (1997a), and it is successful in that it does
lead to predictions that are falsifiable, but so far not falsified. The idea, briefly, is the
following.

To apply natural selection to a population, there must be:

• A space of parameters for each entity, such as the genes or the phenotypes.
• A mechanism of reproduction.
• A mechanism for those parameters to change, but slightly, from parent to child.
• Differentiation, in that reproductive success strongly depends on the parameters.

By simple statistical reasoning, the population will evolve so that it occupies places
in the parameter space leading to atypically large reproductive success, compared to
typical parameter values. (Note that creatures with randomly chosen genes are dead.)

This can be applied to cosmology:

• The space of parameters is the space of parameters of the standard models of
physics and cosmology. This is the analogue of phenotype. At a deeper level, this
is to be explained by a space analogous to genotypes such as the space of possible
string theories. This leads to the term the string theory landscape.
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• The mechanism of reproduction is the formation of black holes. It is long
conjectured that black hole singularities bounce, leading to the formation of new
universes through new big bangs. There is increasing evidence that this is true in
loop quantum gravity.

• We may conjecture that the low-energy parameters do change in such a bounce.
There are a few calculations that support this (Smolin 2004a).

• The mechanism of differentiation is that universes with different parameters will
have different numbers of black holes.

This leads to a simple prediction: our universe has many more black holes than
universes with random values of the parameters. This implies that most ways to
change the parameters of the standard models of particle physics and cosmology
should have fewer black holes.

This leads to testable predictions. I’ll mention one here: there can be no neutron
stars with masses larger than 1.6 times the mass of the sun. I will not explain here
how this prediction follows, but simply note that it is falsifiable²⁸. So far all neutron
stars observed have masses less than 1.45 solar masses, but new ones are discovered
regularly.

7.9 WHAT ABOUT THE COSMOLOGICAL CONSTANT
PROBLEM?

It is becoming clearer and clearer that the hardest problem faced by theoretical
physics is the problem of accounting for the small value of the cosmological constant
problem. The problem is so hard that it constitutes the strongest arguments yet
given for an anthropic explanation, following an argument of Weinberg (2000a,
2000b).²⁹

Given that background-dependent theories have failed to resolve it, it is important
to ask whether background-independent approaches have done any better.

We mention several interesting results here:

• There is an argument for the relaxation of the cosmological constant in LQG,
analogous to the Pecci–Quinn mechanism (Alexander 2005). This relies on a
connection between the cosmological constant and parity breaking, which is
natural within LQG.

• Volovik has argued, in a particular example, that if spacetime is emergent from more
fundamental quantum degrees of freedom, then there is a dynamical mechanism
which relaxes the ground state energy (Volovik 2005). This mechanism is missed
if one formulates the theory in terms of an effective field theory that describes only
the low-energy collective excitations on a fixed background.

²⁸ Details of the argument can be found in Smolin (1997a, 2004a).
²⁹ See Smolin (2004a) for a summary, references, and critique.
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• Dreyer argues that the cosmological constant problem is in fact an artiefact of
background-dependent approaches (Dreyer 2004). He proposes that the problem
arises from the unphysical splitting of the degrees of freedom of a fundament-
al, background-dependent theory into a background, which has only classical
dynamics, and quantum excitations of it. He presents an example from condensed
matter physics in which exactly this occurs. In his model, one can calculate the
ground state energy two ways: in terms of the fundamental Hamiltonian, which
is a function of the elementary degrees of freedom, and in terms of an effective
low-energy Hamiltonian which describes collective, emergent low-energy degrees
of freedom. The zero point energy in the latter overestimates the ground state
energy computed in the fundamental theory.

• The only approach to quantum gravity that predicted the correct magnitude
of the observed cosmological constant is the causal set theory (Ahmed et al.
2004). There it naturally comes out that a universe with many events has a small
cosmological constant. Whether the mechanism that works there extends to other
background-independent approaches is an interesting open question.

While all these results are preliminary, what is remarkable is that new possibilities
for resolving the cosmological constant problem appear when the problem is posed
in a background-independent theory.

7.10 THE ISSUE OF EXTENDING QUANTUM THEORY
TO COSMOLOGY

Let us now turn to the third issue raised in the introduction, whether a cosmological
theory can be formulated in the same language as theories of small parts of the universe,
or requires a new formulation. An aspect of this is the problem of quantum cosmology.
In recent years new proposals to resolve this stubborn problem have been formulated
in the context of background-independent approaches to quantum gravity.

7.10.1 Relational Approaches to Quantum Cosmology

In the last ten years several new proposals have been made concerning the foundational
issues in quantum cosmology, which have gone under the name of relational quantum
theories³⁰. These have been inspired by the general philosophy of relationalism.

These approaches have been put forward, in slightly different ways, by Crane,
Rovelli, and Markopoulou (Crane 1993a, 1993b, 1995; Rovelli 1996; Markopoulou
2000a, 2000b, 2000c; Hawkins et al. 2003). The mathematical apparatus needed to
formalize this view has been studied by Butterfield and Isham (1997, 1998, 1999,
2000). While they differ as to details, they agree that a quantum theory of cosmology
is not to be formulated in the language of ordinary quantum mechanics.

³⁰ For references for this section, see the corresponding discussion and references in Smolin
(2004b).
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One way to state the problem is to ask how we understand the quantum state: is it
a complete and objective description of a physical system, in which case, how do we
account for the measurement problem? Or is it a description of the information or
knowledge that an observer has about a system they have isolated and studied? If this
is the case, can we apply quantum theory to cosmology—or indeed to any system
that contains observers?

There is a hint of relationalism in Bohr, who argued for a view something like the
latter. Bohr always insisted that while there must be a line between the system and
observer, that line is flexible; it may be drawn anywhere. This is frustrating for those
who want to believe in a realist interpretation of the quantum state. A realist would
argue that the observer and her instruments are physical systems. Consequently there
must be a description in which they are included in the system being studied. Bohr
replies there is no contradiction, because now we are speaking of the knowledge a
second observer has of a system containing the first observer. According to Bohr then,
each observer has a different wave function that describes the system they observe.

Relational approaches to quantum theory formalize this point of view. Rather than
taking the Everett/many worlds view, and describing many universes in terms of a
single quantum state, they posit that it requires many quantum states to describe a
single universe. Each of these quantum states corresponds to a way of dividing the
universe into two subsystems, such that one includes an observer.

A relational approach to quantum theory was proposed by Crane (1993a, 1993b,
1995), in a paper that anticipated some aspects of the holographic principle (t’Hooft
1993; Susskind 1995). In that paper, Crane proposed that there is no quantum state
associated with the universe as a whole. Instead, there is a quantum state associated
with every way of introducing an imaginary spatial boundary, splitting the universe
into two. By analogy with topological field theory, he proposed that the Hilbert spaces
on boundaries of 3 + 1 dimensional spacetime should be built up out of state spaces
of Chern–Simons theory. When fully developed, this proposal became the very
fruitful isolated horizon approach to the quantum geometry and entropy of horizons.

Rovelli then developed a general framework for relational quantum theory (Rovelli
1996). The approaches of Rovelli, however, left open the precise structure that is to
tie together the network of Hilbert spaces and algebras necessary to describe a whole
universe. A template for such structure was given in the work of Butterfield and
Isham, who showed how the consistent histories formulation could be interpreted in
terms of a sheaf of Hilbert spaces (Butterfield and Isham 1997, 1998, 1999, 2000).

Markopoulou proposed that the structure tying together the different Hilbert
spaces is the causal structure of spacetime (Markopoulou 2000a, 2000b, 2000c;
Hawkins et al. 2003). In this formulation there is a Hilbert space for every event in
a quantum spacetime. The state at each event is a density matrix that describes the
quantum information available to an observer at that event. There are consistency
conditions that prescribe how the flow of quantum information in a spacetime
follows the causal structure of that spacetime. This is a generalization of quantum
theory, for there need not be a quantum state associated with the whole system.
(Indeed, it is related to a large class of such generalizations studied by Butterfield and
Isham.)
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This leads to a relational formulation of the holographic principle, sketched in
(Markopoulou and Smolin (1999). The basic idea is that the events are associated
with elements of surface. Each corresponds to a quantum channel, through which
information flows from its causal past to its causal future. The area of such a channel
is defined to be a measure of its channel capacity.

7.10.2 Relational Approaches to Going beyond Quantum Theory

Relational quantum theory gets us out of the paradoxes that arise from trying to
describe the universe with a single quantum state. Still, there is, unfortunately, a
problem with these approaches. This stems from the fact that the system of quantum
states depends on the causal structure of spacetime being fixed. But in a quantum
theory of gravity one is supposed to take a quantum sum over all possible histories
of the universe, each with a different causal structure. This is to say that relational
quantum theories appear to be as background dependent as ordinary quantum
theory, it is just that they differ in how they are background dependent.

Can there be a fully background-independent approach to quantum theory? I
believe that the answer is only if we are willing to go beyond quantum theory, to
a hidden variables theory. I would like in closing then to briefly mention work in
progress in this direction.

We know from the experimental disproof of the Bell inequalities that any viable
hidden variables theory must be non-local. This suggests the possibility that the
hidden variables are relational. That is, rather than giving a more detailed description
of the state of an electron, relative to a background, the hidden variables may give a
description of relations between that electron and the others in the universe.

The possibility of a relational hidden variables theory is suggested by a simple
counting argument: in classical mechanics of N point particles, in three-dimensional
space there are 6N phase space degrees of freedom. In quantum theory this is
described by a complex function on the 3N dimensional configuration space—the
wave function.

But a relational theory has in principle N 2 degrees of freedom, at least one for
every pair of particles. Most of these are unobservable, by any local observer, because
they involve relations between particles near to us and those very far away. Thus, any
working out of a relational theory will have to treat them probabilistically. This will
require a probability distribution, which is a real function on N 2 variables.

A real function on N 2 variables has much more information in it than a complex
function on 3N variables. Thus, one can imagine deriving quantum mechanics for
3N variables from statistical mechanics for N 2 variables. Such a theory would be a
non-local hidden variables theory.

This leads to a simple conjecture

Perhaps all the extra information, N 2 as compared to N , necessary for a completely
relational theory, is the non-local hidden variables?

In the last few years two such relational hidden variables theories have been written
down. Markopoulou and I have proposed one (Markopoulou and Smolin 2003), and
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Stephen Adler (2002) proposes another. In our theory the non-local hidden variables
are coded in a graph on N nodes, which is argued to arise from the low-energy limit
of a relational theory like loop quantum gravity.

It is too soon to see if these theories will be successful. But they offer hope that
taking relational ideas seriously may lead to a successful attack on all five of the
problems mentioned in the introduction.

7.11 CONCLUSIONS

In this chapter I have described several partly relational, or background-independent,
theories:

• General relativity.
• Relational approaches to quantum gravity, including loop quantum gravity, causal

set models, causal dynamical triangulation models, and relational approaches to
string/M theory.

• Relational approaches to extending quantum theory to cosmology.

Each is partly successful. Several are more successful than less relational alternatives.
But none is completely successful and none is completely relational. They are
not completely relational because each still has background structure, which is
non-dynamical and must be specified in advance.

However, I believe we do learn something very important from these examples:

In several instances, the relational theory turns out to be more predictive and more
falsifiable than background-dependent theories.

In particular, cosmological natural selection leads to falsifiable predictions, which
anthropic approaches to the landscape so far do not. Furthermore, there is the very
real possibility that the Planck scale will be probed in upcoming experiments, such as
GLAST and AUGER (Smolin 2004b). Background-independent theories appear to
give predictions for these experiments (Smolin 2005). String theory cannot, because
it takes the symmetry of the background as input.

Why is this the case? I can only make some brief remarks here. The difference
between relational and non-relational theories is between:

1. Explanations that refer ultimately to a network of relationships amongst equally
physical entities, which evolve dynamically.

versus

2. Explanations that refer to relationships between dynamical entities and an a priori,
non-dynamical, background.

The former are more constrained, hence harder to construct. More of what is
observed is subject to law, as there is no background to be freely chosen. Hence,
it appears that relational, background-independent theories are more testable, and
more explanatory.
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This is the reason for my provocative hypothesis. If it is true that the reason
that string theory finds itself in the situation described in the introduction is that no
background-dependent theory could successfully solve the five key problems mentioned
there. If this is true, then the only thing to do is to go back and work on the less studied
road of relational theories.

At the same time, I have tried here to explain the key problems still faced by the
relational road. Some of these have to do with the problem of time. Others have
to do with the inverse problem. We saw it in the discussion of causal set models,
which are the only purely relational theories I discussed. The inverse problem is
that there are many more discrete relational structures than those that approximate
local, continuous structures such as classical spacetimes. So a purely relational theory
that explains the fact that the world, at least on scales larger than the Planck scale,
appears to be continuous and low-dimensional, must explain why those local and
low dimensional structures dominate in an ensemble of histories most of which don’t
remotely resemble local, low-dimensional structures.

Let me close by recalling the extent to which the last three decades of theoretical
physics are anomalous, compared with the previous history of physics. Many ideas
have been studied, but few have been subject to the only kind of test that really
matters, which is experiment. The hope behind this chapter and the work it represents
is that by following the relational strategy we may be led to invent theories that are
more falsifiable, whose study will lead us back to the normal practice of science where
theory and experiment evolve hand in hand.
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8
Quantum Quandaries: A Category-Theoretic

Perspective

John Baez

ABSTRACT

General relativity may seem very different from quantum theory, but work on quantum
gravity has revealed a deep analogy between the two. General relativity makes heavy use of
the category nCob, whose objects are (n − 1)-dimensional manifolds representing ‘space’ and
whose morphisms are n-dimensional cobordisms representing ‘spacetime’. Quantum theory
makes heavy use of the category Hilb, whose objects are Hilbert spaces used to describe ‘states’,
and whose morphisms are bounded linear operators used to describe ‘processes’. Moreover,
the categories nCob and Hilb resemble each other far more than either resembles Set, the
category whose objects are sets and whose morphisms are functions. In particular, both Hilb
and nCob but not Set are ∗-categories with a nonCartesian monoidal structure. We show
how this accounts for many of the famously puzzling features of quantum theory: the failure
of local realism, the impossibility of duplicating quantum information, and so on. We argue
that these features only seem puzzling when we try to treat Hilb as analogous to Set rather
than nCob, so that quantum theory will make more sense when regarded as part of a theory
of spacetime.

8.1 INTRODUCTION

Faced with the great challenge of reconciling general relativity and quantum theory,
it is difficult to know just how deeply we need to rethink basic concepts. By now it
is almost a truism that the project of quantizing gravity may force us to modify our
ideas about spacetime. Could it also force us to modify our ideas about the quantum?
So far this thought has appealed mainly to those who feel uneasy about quantum
theory and hope to replace it by something that makes more sense. The problem is
that the success and elegance of quantum theory make it hard to imagine promising
replacements. Here I would like to propose another possibility, namely that quantum
theory will make more sense when regarded as part of a theory of spacetime. Furthermore,
I claim that we can only see this from a category-theoretic perspective—in particular,
one that de-emphasizes the primary role of the category of sets and functions.
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Part of the difficulty of combining general relativity and quantum theory is that
they use different sorts of mathematics: one is based on objects such as manifolds,
the other on objects such as Hilbert spaces. As ‘sets equipped with extra structure’,
these look like very different things, so combining them in a single theory has always
seemed a bit like trying to mix oil and water. However, work on topological quantum
field theory has uncovered a deep analogy between the two. Moreover, this analogy
operates at the level of categories.

We shall focus on two categories in this chapter. One is the category Hilb
whose objects are Hilbert spaces and whose morphisms are linear operators between
these. This plays an important role in quantum theory. The other is the category
nCob whose objects are (n − 1)-dimensional manifolds and whose morphisms are
n-dimensional manifolds going between these. This plays an important role in
relativistic theories where spacetime is assumed to be n-dimensional: in these theories
the objects of nCob represent possible choices of ‘space’, while the morphisms—called
‘cobordisms’—represent possible choices of ‘spacetime’.

While an individual manifold is not very much like a Hilbert space, the category
nCob turns out to have many structural similarities to the category Hilb. The goal of
this chapter is to explain these similarities and show that the most puzzling features
of quantum theory all arise from ways in which Hilb resembles nCob more than the
category Set, whose objects are sets and whose morphisms are functions.

Since sets and functions capture many basic intuitions about macroscopic objects,
and the rules governing them have been incorporated into the foundations of
mathematics, we naturally tend to focus on the fact that any quantum system has
a set of states. From a Hilbert space we can indeed extract a set of states, namely
the set of unit vectors modulo phase. However, this is often more misleading than
productive, because this process does not define a well-behaved map—or more
precisely, a functor—from Hilb to Set. In some sense the gap between Hilb and
Set is too great to be usefully bridged by this trick. However, many of the ways in
which Hilb differs from Set are ways in which it resembles nCob! This suggests that
the interpretation of quantum theory will become easier, not harder, when we finally
succeed in merging it with general relativity.

In particular, it is easy to draw pictures of the objects and morphisms of nCob, at
least for low n. Doing so lets us visualize many features of quantum theory. This is not
really a new discovery: it is implicit in the theory of Feynman diagrams. Whenever
one uses Feynman diagrams in quantum field theory, one is secretly working in some
category where the morphisms are graphs with labelled edges and vertices, as shown
in Figure 8.1.

The precise details of the category depend on the quantum field theory in question:
the labels for edges correspond to the various particles of the theory, while the labels
for vertices correspond to the interactions of the theory. Regardless of the details,
categories of this sort share many of the structural features of both nCob and Hilb.
Their resemblance to nCob, namely their topological nature, makes them a powerful
tool for visualization. On the other hand, their relation to Hilb makes them useful
in calculations.
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Figure 8.1. A Feynman diagram

Though Feynman diagrams are far from new, the fact that they are morphisms
in a category only became appreciated in work on quantum gravity, especially
string theory and loop quantum gravity. Both these approaches stretch the Feynman
diagram concept in interesting new directions. In string theory, Feynman diagrams
are replaced by ‘string worldsheets’: two-dimensional cobordisms mapped into an
ambient spacetime, as shown in Figure 8.2. Since these cobordisms no longer have
definite edges and vertices, there are no labels anymore. This is one sense in which
the various particles and interactions are all unified in string theory. The realization
that processes in string theory could be described as morphisms in a category was
crystallized by Segal’s definition of ‘conformal field theory’ (Segal 2004).

Figure 8.2. A string worldsheet

Loop quantum gravity is moving towards a similar picture, though with some
important differences. In this approach processes are described by ‘spin foams’. These
are a two-dimensional generalization of Feynman diagrams built from vertices, edges,
and faces, as shown in Figure 8.3. They are not mapped into an ambient spacetime:
in this approach spacetime is nothing but the spin foam itself—or more precisely,
a linear combination of spin foams. Particles and interactions are not ‘unified’ in
these models, so there are labels on the vertices, edges, and faces, which depend
on the details of the model in question. The category-theoretic underpinnings of
spin foam models were explicit from the very beginning (Baez 1998), since they
were developed after Segal’s work on conformal field theory, and also after Atiyah’s
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Figure 8.3. A spin foam

work on topological quantum field theory (Atiyah 1989), which exhibits the analogy
between nCob and Hilb in its simplest form.

There is not one whit of experimental evidence for either string theory or loop
quantum gravity, and both theories have some serious problems, so it might seem
premature for philosophers to consider their implications. It indeed makes little
sense for philosophers to spend time chasing every short-lived fad in these fast-
moving subjects. Instead, what is worthy of reflection is that these two approaches to
quantum gravity, while disagreeing heatedly on so many issues (Smolin 2001; Vaas
2004), have so much in common. It suggests that in our attempts to reconcile the
quantum-theoretic notions of state and process with the relativistic notions of space
and spacetime, we have a limited supply of promising ideas. It is an open question
whether these ideas will be up to the task of describing nature. But this actually
makes it more urgent, not less, for philosophers to clarify and question these ideas
and the implicit assumptions upon which they rest.

Before plunging ahead, let us briefly sketch the contents of this paper. In §8.2
we explain the analogy between nCob and Hilb by recalling Atiyah’s definition
of ‘topological quantum field theory’, or ‘TQFT’ for short. In §8.3, we begin by
noting that unlike many familiar categories, neither Hilb nor nCob is best regarded
as a category whose objects are sets equipped with extra structures and properties,
and whose morphisms are functions preserving these extra structures. In particular,
operators between Hilbert spaces are not required to preserve the inner product.
This raises the question of precisely what role the inner product plays in the category
Hilb. Of course the inner product is crucial in quantum theory, since we use it
to compute transition amplitudes between states—but how does it manifest itself
mathematically in the structure of Hilb? One answer is that it gives a way to ‘reverse’
an operator T : H → H ′, obtaining an operator T ∗ : H ′ → H called the ‘adjoint’
of T such that

〈T ∗φ, ψ〉 = 〈φ, T ψ〉
for all ψ ∈ H and φ ∈ H ′. This makes Hilb into something called a ‘∗-category’: a
category where there is a built-in way to reverse any process. As we shall see, it is
easy to compute transition amplitudes using the ∗-category structure of Hilb. The
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category nCob is also a ∗-category, where the adjoint of a spacetime is obtained
simply by switching the roles of future and past. On the other hand, Set cannot
be made into a ∗-category. All this suggests that both quantum theory and general
relativity will be best understood in terms of categories quite different from the
category of sets and functions.

In §8.4 we tackle some of the most puzzling features of quantum theory, namely
those concerning joint systems: physical systems composed of two parts. It is in the
study of joint systems that one sees the ‘failure of local realism’ that worried Einstein
so terribly (Einstein et al. 1935), and was brought into clearer focus by Bell (1964).
Here is also where one discovers that one ‘cannot clone a quantum state’—a result
due to Wooters and Zurek (1982) which serves as the basis of quantum cryptography.
As explained in §8.4, both these phenomena follow from the failure of the tensor
product to be ‘Cartesian’ in a certain sense made precise by category theory. In
Set, the usual product of sets is Cartesian, and this encapsulates many of our usual
intuitions about ordered pairs, like our ability to pick out the components a and
b of any pair (a, b), and our ability to ‘duplicate’ any element a to obtain a pair
(a, a). The fact that we cannot do these things in Hilb is responsible for the failure
of local realism and the impossibility of duplicating a quantum state. Here again the
category Hilb resembles nCob more than Set. Like Hilb, the category nCob has a
non-Cartesian tensor product, given by the disjoint union of manifolds. Some of the
mystery surrounding joint systems in quantum theory dissipates when one focuses
on the analogy to nCob and stops trying to analogize the tensor product of Hilbert
spaces to the Cartesian product of sets.

This chapter is best read as a follow-up to my paper ‘Higher-Dimensional Algebra
and Planck-Scale Physics’ (2001), since it expands on some of the ideas already on
touched upon there.

8.2 LESSONS FROM TOPOLOGICAL QUANTUM FIELD
THEORY

Thanks to the influence of general relativity, there is a large body of theoretical physics
that does not presume a fixed topology for space or spacetime. The idea is that after
having assumed that spacetime is n-dimensional, we are in principle free to choose
any (n − 1)-dimensional manifold to represent space at a given time. Moreover,
given two such manifolds, say S and S′, we are free to choose any n-dimensional
manifold-with-boundary, say M , to represent the portion of spacetime between
them, so long as the boundary of M is the union of S and S′. In this situation we
write M : S → S ′, even though M is not a function from S to S ′, because we may
think of M as the process of time passing from the moment S to the moment S′.
Mathematicians call M a cobordism from S to S ′. For example, in Figure 8.4 we
depict a two-dimensional manifold M going from a one-dimensional manifold S
(a pair of circles) to a one-dimensional manifold S′ (a single circle). Physically, this
cobordism represents a process in which two separate spaces collide to form a single
one! This is an example of ‘topology change’.
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S

S ′

M

��

Figure 8.4. A cobordism

All this has a close analogue in quantum theory. First, just as we can use any
(n − 1)-manifold to represent space, we can use any Hilbert space to describe the
states of some quantum system. Second, just as we can use any cobordism to represent
a spacetime going from one space to another, we can use any operator to describe
a process taking states of one system to states of another. More precisely, given
systems whose states are described using the Hilbert spaces H and H ′, respectively,
any bounded linear operator T : H → H ′ describes a process that carries states of
the first system to states of the second. We are most comfortable with this idea when
the operator T is unitary, or at least an isometry. After all, given a state described as a
unit vector ψ ∈ H , we can only be sure T ψ is a unit vector in H ′ if T is an isometry.
So, only in this case does T define a function from the set of states of the first system
to the set of states of the second. However, the interpretation of linear operators as
processes makes sense more generally. One way to make this interpretation precise is
as follows: given a unit vector ψ ∈ H and an orthonormal basis φi of H ′, we declare
that the relative probability for a system prepared in the state ψ to be observed in
the state φi after undergoing the process T is |〈φi , T ψ〉|2. By this, we mean that
the probability of observing the system in the ith state divided by the probability of
observing it in the jth state is

|〈φi , T ψ〉|2
|〈φj , T ψ〉|2 .

The use of non-unitary operators to describe quantum processes is not new. For
example, projection operators have long been used to describe processes like sending
a photon through a polarizing filter. However, these examples traditionally arise
when we treat part of the system (e.g. the measuring apparatus) classically. It is often
assumed that at a fundamental level, the laws of nature in quantum theory describe
time evolution using unitary operators. But as we shall see in §8.3, this assumption
should be dropped in theories where the topology of space can change. In such
theories we should let all the morphisms in Hilb qualify as ‘processes’, just as we let
all morphisms in nCob qualify as spacetimes.

Having clarified this delicate point, we are now in a position to clearly see a
structural analogy between general relativity and quantum theory, in which (n − 1)-
dimensional manifolds representing space are analogous to Hilbert spaces, while
cobordisms describing spacetime are analogous to operators. Indulging in some lofty



246 John Baez

Table 8.1. Analogy between general relativity and quantum theory

General relativity Quantum theory

(n − 1)-dimensional manifold Hilbert space
(space) (states)
cobordism between (n − 1)-dimensional manifolds operator between Hilbert spaces
(spacetime) (process)
composition of cobordisms composition of operators
identity cobordism identity operator

rhetoric, we might say that space and state are aspects of being, while spacetime and
process are aspects of becoming. We summarize this analogy in Table 8.1.

This analogy becomes more than mere rhetoric when applied to topological
quantum field theory (Baez 2001). In quantum field theory on curved spacetime,
space and spacetime are not just manifolds: they come with fixed ‘background
metrics’ that allow us to measure distances and times. In this context, S and S′ are
Riemannian manifolds, and M : S → S ′ is a Lorentzian cobordism from S to S ′: that
is, a Lorentzian manifold with boundary whose metric restricts at the boundary to
the metrics on S and S ′. However, topological quantum field theories are an attempt
to do background-free physics, so in this context we drop the background metrics:
we merely assume that space is an (n − 1)-dimensional manifold and spacetime is a
cobordism between such manifolds. A topological quantum field theory then consists
of a map Z assigning a Hilbert space of states Z (S) to any (n − 1)-manifold S and
a linear operator Z (M ) : Z (S) → Z (S ′) to any cobordism between such manifolds.
This map cannot be arbitrary, though: for starters, it must be a functor from the
category of n-dimensional cobordisms to the category of Hilbert spaces. This is a
great example of how every sufficiently good analogy is yearning to become a functor.

However, we are getting a bit ahead of ourselves. Before we can talk about functors,
we must talk about categories. What is the category of n-dimensional cobordisms,
and what is the category of Hilbert spaces? The answers to these questions will allow
us to make the analogy in Table 8.1 much more precise.

First, recall that a category consists of a collection of objects, a collection of
morphisms f : A → B from any object A to any object B, a rule for composing
morphisms f : A → B and g : B → C to obtain a morphism g f : A → C , and for
each object A an identity morphism 1A : A → A. These must satisfy the associative
law f (gh) = ( fg)h and the left and right unit laws 1A f = f and f 1A = f whenever
these composites are defined. In many cases, the objects of a category are best thought
of as sets equipped with extra structure, while the morphisms are functions preserving
the extra structure. However, this is true neither for the category of Hilbert spaces nor
for the category of cobordisms.

In the category Hilb we take the objects to be Hilbert spaces and the morphisms
to be bounded linear operators. Composition and identity operators are defined as
usual. Hilbert spaces are indeed sets equipped with extra structure, but bounded
linear operators do not preserve all this extra structure: in particular, they need not
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preserve the inner product. This may seem like a fine point, but it is important, and
we shall explore its significance in detail in §8.3.

In the category nCob we take the objects to be (n − 1)-dimensional manifolds
and the morphisms to be cobordisms between these. (For technical reasons math-
ematicians usually assume both to be compact and oriented.) Here the morphisms
are not functions at all! Nonetheless we can ‘compose’ two cobordisms M : S → S′
and M ′ : S ′ → S ′′, obtaining a cobordism M ′M : S → S ′′, as in Figure 8.5. The
idea here is that the passage of time corresponding to M followed by the passage of
time corresponding to M ′ equals the passage of time corresponding to M ′M . This is
analogous to the familiar idea that waiting t seconds followed by waiting t ′ seconds is
the same as waiting t ′ + t seconds. The big difference is that in topological quantum
field theory we cannot measure time in seconds, because there is no background
metric available to let us count the passage of time. We can only keep track of
topology change. Just as ordinary addition is associative, composition of cobordisms
satisfies the associative law:

(M ′′M ′)M = M ′′(M ′M ).

S

S ′

M

��

S ′′

M ′

��

Figure 8.5. Composition of cobordisms

Furthermore, for any (n − 1)-dimensional manifold S representing space, there is a
cobordism 1S : S → S called the ‘identity’ cobordism, which represents a passage of
time during which the topology of space stays constant. For example, when S is a
circle, the identity cobordism 1S is a cylinder, as shown in Figure 8.6. In general, the
identity cobordism 1S has the property that

1SM = M

and
M1S = M

whenever these composites are defined. These properties say that an identity cobor-
dism is analogous to waiting 0 seconds: if you wait 0 seconds and then wait t more
seconds, or wait t seconds and then wait 0 more seconds, this is the same as waiting
t seconds.
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S

S

1S

��

Figure 8.6. An identity cobordism

A functor between categories is a map sending objects to objects and morphisms to
morphisms, preserving composition and identities. Thus, in saying that a topological
quantum field theory is a functor

Z : nCob → Hilb,

we merely mean that it assigns a Hilbert space of states Z (S) to any (n − 1)-
dimensional manifold S and a linear operator Z (M ) : Z (S) → Z (S′) to any n-
dimensional cobordism M : S → S ′ in such a way that:

• For any n-dimensional cobordisms M : S → S ′ and M ′ : S ′ → S ′′,

Z (M ′M ) = Z (M ′)Z (M ).

• For any (n − 1)-dimensional manifold S,

Z (1S) = 1Z (S).

Both these axioms make sense if one ponders them a bit. The first says that the
passage of time corresponding to the cobordism M followed by the passage of time
corresponding to M ′ has the same effect on a state as the combined passage of
time corresponding to M ′M . The second says that a passage of time in which no
topology change occurs has no effect at all on the state of the universe. This seems
paradoxical at first, since it seems we regularly observe things happening even in the
absence of topology change. However, this paradox is easily resolved: a topological
quantum field theory describes a world without local degrees of freedom. In such a
world, nothing local happens, so the state of the universe can only change when the
topology of space itself changes.

Unless elementary particles are wormhole ends or some other sort of topological
phenomenon, it seems our own world is quite unlike this. Thus, we hasten to reassure
the reader that this peculiarity of topological quantum field theory is not crucial to our
overall point, which is the analogy between categories describing space and spacetime
and those describing quantum states and processes. If we were doing quantum field
theory on curved spacetime, we would replace nCob with a category where the objects
are n-dimensional Riemannian manifolds and most of the morphisms are Lorentzian
cobordisms between these. In this case a cobordism M : S → S ′ has not just a
topology but also a geometry, so we can use cylinder-shaped cobordisms of different
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‘lengths’ to describe time evolution for different amounts of time. The identity
morphism is then described by a cylinder of ‘length zero’. This degenerate cylinder
is not really a Lorentzian cobordism, which leads to some technical complications.
However, Segal showed how to get around these in his axioms for a conformal field
theory (Segal 2004). There are some further technical complications arising from
the fact that, except in low dimensions, we need to use the C*-algebraic approach to
quantum theory, instead of the Hilbert space approach (Arageorgis et al. 2002). Here
the category Hilb should be replaced by one where the objects are C∗-algebras and the
morphisms are completely positive maps between their duals (Hawkins et al. 2003).

Setting aside these nuances, our main point is that treating a TQFT as a functor
from nCob to Hilb is a way of making very precise some of the analogies between
general relativity and quantum theory. However, we can go further! A TQFT is more
than just a functor. It must also be compatible with the ‘monoidal category’ structure
of nCob and Hilb, and to be physically well behaved it must also be compatible
with their ‘∗-category’ structure. We examine these extra structures in the next two
sections.

8.3 THE ∗-CATEGORY OF HILBERT SPACES

What is the category of Hilbert spaces? While we have already given an answer,
this is actually a tricky question, one that makes many category theorists acutely
uncomfortable.

To understand this, we must start by recalling that one use of categories is to
organize discourse about various sorts of ‘mathematical objects’: groups, rings, vector
spaces, topological spaces, manifolds, and so on. Quite commonly these mathematical
objects are sets equipped with extra structure and properties, so let us restrict attention
to this case. Here by structure we mean operations and relations defined on the set
in question, while by properties we mean axioms that these operations and relations
are required to satisfy. The division into structure and properties is evident from
the standard form of mathematical definitions such as ‘a widget is a set equipped
with … such that …’ Here the structures are listed in the first blank, while the
properties are listed in the second.

To build a category of this sort of mathematical object, we must also define
morphisms between these objects. When the objects are sets equipped with extra
structure and properties, the morphisms are typically taken to be functions that preserve
the extra structure. At the expense of a long digression we could make this completely
precise—and also more general, since we can also build categories by equipping not
sets but objects of other categories with extra structure and properties. However, we
prefer to illustrate the idea with an example. We take an example closely related to
but subtly different from the category of Hilbert spaces: the category of complex
vector spaces.

A complex vector space is a set V equipped with extra structure consisting of
operations called addition

+ : V × V → V
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and scalar multiplication
· : C × V → V ,

which in turn must have certain extra properties: commutativity and associativity
together with the existence of an identity and inverses for addition, associativity
and the unit law for scalar multiplication, and distributivity of scalar multiplication
over addition. Given vector spaces V and V ′, a linear operator T : V → V ′ can be
defined as a function preserving all the extra structure. This means that we require

T (ψ + φ) = T (ψ) + T (φ)

and
T (cψ) = cT (ψ)

for all ψ, φ ∈ V , and c ∈ C. Note that the properties do not enter here. Mathem-
aticians define the category Vect to have complex vector spaces as its objects and
linear operators between them as its morphisms.

Now compare the case of Hilbert spaces. A Hilbert space H is a set equipped with
all the structure of a complex vector space but also some more, namely an inner
product

〈·, ·〉 : H × H → C.

Similarly, it has all the properties of a complex vector spaces but also some more: for
all φ, ψ, ψ′ ∈ H and c ∈ C we have the equations

〈φ, ψ + ψ′〉 = 〈φ, ψ〉 + 〈φ, ψ′〉,
〈φ, cψ〉 = c〈φ, ψ〉,
〈φ, ψ〉 = 〈ψ, φ〉,

together with the inequality
〈ψ, ψ〉 ≥ 0

where equality holds only if ψ = 0; furthermore, the norm defined by the inner
product must be complete. Given Hilbert spaces H and H ′, a function T : H → H ′
that preserves all the structure is thus a linear operator that preserves the inner
product:

〈Tφ, T ψ〉 = 〈φ, ψ〉
for all φ, ψ ∈ H . Such an operator is called an isometry.

If we followed the pattern that works for vector spaces and many other mathemat-
ical objects, we would thus define the category Hilb to have Hilbert spaces as objects
and isometries as morphisms. However, this category seems too constricted to suit
what physicists actually do with Hilbert spaces: they frequently need operators that
aren’t isometries! Unitary operators are always isometries, but self-adjoint operators,
for example, are not.

The alternative we adopt in this chapter is to work with the category Hilb
whose objects are Hilbert spaces and the morphisms are bounded linear operators.
However, this leads to a curious puzzle. In a precise technical sense, the category of
finite-dimensional Hilbert spaces and linear operators between these is equivalent to
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the category of finite-dimensional complex vector spaces and linear operators. So, in
defining this category, we might as well ignore the inner product entirely! The puzzle
is thus what role, if any, the inner product plays in this category.

The case of general, possibly infinite-dimensional Hilbert spaces is subtler, but
the puzzle persists. The category of all Hilbert spaces and bounded linear operators
between them is not equivalent to the category of all complex vector spaces and
linear operators. However, it is equivalent to the category of ‘Hilbertizable’ vector
spaces—that is, vector spaces equipped with a topology coming from some Hilbert
space structure—and continuous linear operators between these. So, in defining this
category, what matters is not the inner product but merely the topology it gives rise
to. The point is that bounded linear operators don’t preserve the inner product, just
the topology, and a structure that is not preserved might as well be ignored, as far as
the category is concerned.

My resolution of this puzzle is simple but a bit upsetting to most category theorists.
I admit that the inner product is inessential in defining the category of Hilbert spaces
and bounded linear operators. However, I insist that it plays a crucial role in making
this category into a ∗-category!

What is a ∗-category? It is a category C equipped with a map sending each
morphism f : X → Y to a morphism f ∗ : Y → X , satisfying

1∗
X = 1X ,

( fg)∗ = g∗f ∗,

and
f ∗∗ = f .

To make Hilb into a ∗-category we define T ∗ for any bounded linear operator
T : H → H ′ to be the adjoint operator T ∗H ′ → H , given by

〈T ∗ψ, φ〉 = 〈ψ, Tφ〉.
We see by this formula that the inner products on both H and H ′ are required to
define the adjoint of T .

In fact, we can completely recover the inner product on every Hilbert space from
the ∗-category structure of Hilb. Given a Hilbert space H and a vector ψ ∈ H , there
is a unique operator Tψ : C → H with Tψ(1) = ψ. Conversely, any operator from
C to H determines a unique vector in H this way. So, we can think of elements of
a Hilbert space as morphisms from C to this Hilbert space. Using this trick, an easy
calculation shows that

〈φ, ψ〉 = Tφ
∗ Tψ.

The right-hand side is really a linear operator from C to C, but there is a canonical
way to identify such a thing with a complex number. So, everything about inner
products is encoded in the ∗-category structure of Hilb. Moreover, this way of
thinking about the inner product formalizes an old idea of Dirac. The operator Tψ

is really just Dirac’s ‘ket’ |ψ〉, while Tφ
∗ is the ‘bra’ 〈φ|. Composing a ket with a bra,

we get the inner product.
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This shows how adjoints are closely tied to the inner product structure on Hilbert
space. But what is the physical significance of the adjoint of an operator, or more
generally the ∗ operation in any ∗-category? Most fundamentally, the ∗ operation
gives us a way to ‘reverse’ a morphism even when it is not invertible. If we think of
inner products as giving transition amplitudes between states in quantum theory, the
equation 〈T ∗φ, ψ〉 = 〈φ, T ψ〉 says that T ∗ is the unique operation we can perform
on any state φ so that the transition amplitude from T ψ to φ is the same as that from
ψ to T ∗φ. So, in a suggestive but loose way, we can say that the process described
by T ∗ is some sort of ‘time-reversed’ version of the process described by T . If T
is unitary, T ∗ is just the inverse of T . But, T ∗ makes sense even when T has no
inverse!

This suggestive but loose relation between ∗ operations and time reversal becomes
more precise in the case of nCob. Here the ∗ operation really is time reversal.
More precisely, given an n-dimensional cobordism M : S → S ′, we let the adjoint
cobordism M∗ : S ′ → S to be the same manifold, but with the ‘past’ and ‘future’
parts of its boundary switched, as in Figure 8.7. It is easy to check that this makes
nCob into a ∗-category.

S

S ′

M

��

S ′

S

M∗

��

Figure 8.7. A cobordism and its adjoint

In a so-called unitary topological quantum field theory (the terminology is a bit
unfortunate), we demand that the functor Z : nCob → Hilb preserve the ∗-category
structure in the following sense:

Z (M∗) = Z (M )∗.

All the TQFTs of interest in physics have this property, and a similar property holds
for conformal field theories and other quantum field theories on curved spacetime.
This means that in the analogy between general relativity and quantum theory, the
analogue of time reversal is taking the adjoint of an operator between Hilbert spaces. To
‘reverse’ a spacetime M : S → S ′ we formally switch the notions of future and past,
while to ‘reverse’ a process T : H → H ′ we take its adjoint.

Taking this analogy seriously leads us in some interesting directions. First, since
the ∗ operation in nCob is given by time reversal, while ∗ operation in Hilb is
defined using the inner product, there should be some relation between time reversal
and the inner product in quantum theory! The details remain obscure, at least to
me, but we can make a little progress by pondering the following equation, which
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we originally introduced as a ‘trick’ for expressing inner products in terms of adjoint
operators:

〈φ, ψ〉 = Tφ
∗ Tψ.

An equation this important should not be a mere trick! To try to interpret it,
suppose that in some sense the operator Tψ describes ‘the process of preparing
the system to be in the state ψ’, while Tφ

∗ describes the process of ‘observing
the system to be in the state φ’. Given this, Tφ

∗ Tψ should describe the pro-
cess of first preparing the system to be in the state ψ and then observing
it to be in the state φ. The above equation then relates this composite pro-
cess to the transition amplitude 〈φ, ψ〉. Moreover, we see that ‘observation’
is like a time-reversed version of ‘preparation’. All this makes a rough intuit-
ive kind of sense. However, these ideas could use a great deal of elaboration
and clarification. I mention them here mainly to open an avenue for further
thought.

Second, and less speculatively, the equation Z (M∗) = Z (M )∗ sheds some light on
the relation between topology change and the failure of unitarity, mentioned already
in §8.2. In any ∗-category, we may define a morphism f : x → y to be unitary if
f ∗f = 1x and ff ∗ = 1y. For a morphism in Hilb this reduces to the usual definition
of unitarity for a linear operator. One can show that a morphism M in nCob is
unitary if M involves no topology change, or more precisely, if M is diffeomorphic to
the Cartesian product of an interval and some (n − 1)-dimensional manifold. (The
converse is true in dimensions n ≤ 3, but it fails in higher dimensions.) A TQFT
satisfying Z (M∗) = Z (M )∗ maps unitary morphisms in nCob to unitary morphisms
in Hilb, so for TQFTs of this sort, absence of topology change implies unitary time
evolution. This fact reinforces a point already well known from quantum field theory
on curved spacetime, namely that unitary time evolution is not a built-in feature of
quantum theory but rather the consequence of specific assumptions about the nature
of spacetime (Arageorgis et al. 2002).

To conclude, it is interesting to contrast nCob and Hilb with the more familiar
category Set, whose objects are sets and whose morphisms are functions. There is no
way to make Set into a ∗-category, since there is no way to ‘reverse’ the map from the
empty set to the one-element set. So, our intuitions about sets and functions help us
very little in understanding ∗-categories. The problem is that the concept of function
is based on an intuitive notion of process that is asymmetrical with respect to past
and future: a function f : S → S′ is a relation such that each element of S is related
to exactly one element of S ′, but not necessarily vice versa. For better or worse, this
built-in ‘arrow of time’ has no place in the basic concepts of quantum theory.

Pondering this, it soon becomes apparent that if we want an easy example of a
∗-category other than Hilb to help build our intuitions about ∗-categories, we should
use not Set but Rel, the category of sets and relations. In fact, quantum theory can
be seen as a modified version of the theory of relations in which Boolean algebra
has been replaced by the algebra of complex numbers! To see this, note that a linear
operator between two Hilbert spaces can be described using a matrix of complex
numbers as soon as we pick an orthonormal basis for each. Similarly, a relation R



254 John Baez

between sets S and S ′ can be described by a matrix of truth values, namely the truth
values of the propositions yRx where x ∈ S and y ∈ S ′. Composition of relations can
be defined as matrix multiplication with ‘or’ and ‘and’ playing the roles of ‘plus’ and
‘times’. It is easy to check that this is associative and has an identity morphism for
each set, so we obtain a category Rel with sets as objects and relations as morphisms.
Furthermore, Rel becomes a ∗-category if we define the relation R∗ by saying that
xR∗y if and only if yRx. Just as the matrix for the linear operator T ∗ is the conjugate
transpose of the matrix for T , the matrix for the relation R∗ is the transpose of the
matrix for R.

So, the category of Hilbert spaces closely resembles the category of relations. The
main difference is that binary truth values describing whether or not a transition
is possible are replaced by complex numbers describing the amplitude with which
a transition occurs. Comparisons between Hilb and Rel are a fruitful source of
intuitions not only about ∗-categories in general but also about the meaning of
‘matrix mechanics’. For some further explorations along these lines, see the work of
Abramsky and Coecke (2004).

8.4 THE MONOIDAL CATEGORY OF HILBERT SPACES

An important goal of the enterprise of physics is to describe, not just one physical
system at a time, but also how a large complicated system can be built out of smaller
simpler ones. The simplest case is a so-called ‘joint system’: a system built out of
two separate parts. Our experience with the everyday world leads us to believe that
to specify the state of a joint system, it is necessary and sufficient to specify states of
its two parts. (Here and in what follows, by ‘states’ we always mean what physicists
call ‘pure states’.) In other words, a state of the joint system is just an ordered pair of
states of its parts. So, if the first part has S as its set of states, and the second part has
T as its set of states, the joint system has the Cartesian product S × T as its set of
states.

One of the more shocking discoveries of the twentieth century is that this is wrong.
In both classical and quantum physics, given states of each part we get a state of the
joint system. But only in classical physics is every state of the joint system of this
form! In quantum physics are also ‘entangled’ states, which can only be described as
superpositions of states of this form. The reason is that in quantum theory, the states
of a system are no longer described by a set, but by a Hilbert space. Moreover—and
this is really an extra assumption—the states of a joint system are described not by
the Cartesian product of Hilbert spaces, but by their tensor product.

Quite generally, we can imagine using objects in any category to describe physical
systems, and morphisms between these to describe processes. In order to handle
joint systems, this category will need to have some sort of ‘tensor product’ that gives
an object A ⊗ B for any pair of objects A and B. As we shall explain, categories
of this sort are called ‘monoidal’. The category Set is an example where the tensor
product is just the usual Cartesian product of sets. Similarly, the category Hilb is a
monoidal category where the tensor product is the usual tensor product of Hilbert



Quantum Quandaries 255

spaces. However, these two examples are very different, because the product in Set is
‘Cartesian’ in a certain technical sense, while the product in Hilb is not. This turns
out to explain a lot about why joint systems behave so counter-intuively in quantum
physics. Moreover, it is yet another way in which Hilb resembles nCob more than
Set.

To see this in detail, it pays to go back to the beginning and think about Cartesian
products. Given two sets S and T , we define S × T to be the set of all ordered
pairs (s, t) with s ∈ S and t ∈ T . But what is an ordered pair? This depends on our
approach to set theory. We can use axioms in which ordered pairs are a primitive
construction, or we can define them in terms of other concepts. For example, in
1914, Wiener defined the ordered pair (s, t) to be the set { { {s}, ∅}, {t} }. In 1922,
Kuratowski gave the simpler definition (s, t) = { {s}, {s, t} }. We can use the still
simpler definition (s, t) = {s, {s, t} } if our axioms exclude the possibility of sets that
contain themselves. Various other definitions have also been tried. In traditional set
theory we arbitrarily choose one approach to ordered pairs and then stick with it.
Apart from issues of convenience or elegance, it does not matter which we choose, so
long as it ‘gets the job done’. In other words, all these approaches are all just technical
tricks for implementing our goal, which is to make sure that (s, t) = (s′, t ′) if and
only if s = s′ and t = t ′.

It is a bit annoying that the definition of ordered pair cannot get straight to the
point and capture the concept without recourse to an arbitrary trick. It is natural
to seek an approach that focuses more on the structural role of ordered pairs in
mathematics and less on their implementation. This is what category theory provides.

The reason traditional set theory arbitrarily chooses a specific implementation of
the ordered pair concept is that it seems difficult to speak precisely about ‘some thing
(s, t)—I don’t care what it is—with the property that (s, t) = (s′, t ′) iff s = s′ and
t = t ′’. So, the first move in category theory is to stop focusing on ordered pairs and
instead focus on Cartesian products of sets. What properties should the Cartesian
product S × T have? To make our answer applicable not just to sets but to objects
of other categories, it should not refer to elements of S × T . So, the second move in
category theory is to describe the Cartesian product S × T in terms of functions to
and from this set.

The Cartesian product S × T has functions called ‘projections’ to the sets S and
T :

p1 : S × T → S, p2 : S × T → T .

Secretly we know that these pick out the first or second component of any ordered
pair in S × T :

p1(s, t) = s, p2(s, t) = t.

But, our goal is to characterize the product by means of these projections without
explicit reference to ordered pairs. For this, the key property of the projections is
that given any element s ∈ S and any element t ∈ T , there exists a unique element
x ∈ S × T such that p1(x) = s and p2(x) = T . Furthermore, as a substitute for
elements of the sets S and T , we can use functions from an arbitrary set to these sets.
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Thus, given two sets S and T , we define their Cartesian product to be any set
S × T equipped with functions p1 : S × T → S, p2 : S × T → T such that for
any set X and functions f1 : X → S, f2 : X → T , there exists a unique function
f : X → S × T with

f1 = p1f , f2 = p2f .

Note that with this definition, the Cartesian product is not unique! Wiener’s
definition of ordered pairs gives a Cartesian product of the sets S and T , but so does
Kuratowski’s, and so does any other definition that ‘gets the job done’. However,
this does not lead to any confusion, since one can easily show that any two choices
of Cartesian product are isomorphic in a canonical way. For a proof of this and
other facts about Cartesian products, see for example the textbook by McLarty
(1995).

All this generalizes painlessly to an arbitrary category. Given two objects A and B
in some category, we define their Cartesian product (or simply product) to be any
object A × B equipped with morphisms

p1 : A × B → A, p2 : A × B → B,

called projections, such that for any object X and morphisms f1 : X → A, f2 : X → B,
there is a unique morphism f : X → A × B with f1 = p1f and f2 = p2f . The
product may not exist, and it may not be unique, but it is unique up to a canonical
isomorphism. Category theorists therefore feel free to speak of ‘the’ product when it
exists.

We say a category has binary products if every pair of objects has a product.
One can also talk about n-ary products for other values of n, but a category with
binary products has n-ary products for all n ≥ 1, since we can construct these
as iterated binary products. The case n = 1 is trivial, since the product of one
object is just that object itself (up to canonical isomorphism). The only remaining
case is n = 0. This is surprisingly important. A 0-ary product is usually called a
terminal object and denoted 1: it is an object such that that for any object X
there exists a unique morphism from X to 1. Terminal objects are unique up
to canonical isomorphism, so we feel free to speak of ‘the’ terminal object in a
category when one exists. The reason we denote the terminal object by 1 is that
in Set, any set with one element is a terminal object. If a category has a terminal
object and binary products, it has n-ary products for all n, so we say it has finite
products.

It turns out that these concepts capture much of our intuition about joint
systems in classical physics. In the most stripped-down version of classical physics,
the states of a system are described as elements of a mere set. In more elaborate
versions, the states of a system form an object in some fancier category, such as the
category of topological spaces or manifolds. But, just like Set, these fancier categories
have finite products—and we use this fact when describing the states of a joint
system.

To sketch how this works in general, suppose we have any category with finite
products. To do physics with this, we think of any of the objects of this category as
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describing some physical system. It sounds a bit vague to say that a physical system is
‘described by’ some object A, but we can make this more precise by saying that states
of this system are morphisms f : 1 → A. When our category is Set, a morphism of
this sort simply picks out an element of the set A. In the category of topological
spaces, a morphism of this sort picks out a point in the topological space A—and
similarly for the category of manifolds, and so on. For this reason, category theorists
call a morphism f : 1 → A an element of the object A.

Next, we think of any morphism g : A → B as a ‘process’ carrying states of the
system described by A to states of the system described by B. This works as follows:
given a state of the first system, say f : 1 → A, we can compose it with g to get a
state of the second system, g f : 1 → B.

Then, given two systems that are described by the objects A and B, respectively,
we decree that the joint system built from these is described by the object A × B.
The projection p1 : A × B → A can be thought of as a process that takes a state of
the joint system and discards all information about the second part, retaining only
the state of the first part. Similarly, the projection p2 retains only information about
the second part.

Calling these projections ‘processes’ may strike the reader as strange, since
‘discarding information’ sounds like a subjective change of our description of the
system, rather than an objective physical process like time evolution. However, it
is worth noting that in special relativity, time evolution corresponds to a change of
coordinates t �→ t + c, which can also be thought of as change of our description
of the system. The novelty in thinking of a projection as a physical process really
comes, not from the fact that it is ‘subjective’, but from the fact that it is not
invertible.

With this groundwork laid, we can use the definition of ‘product’ to show that
a state of a joint system is just an ordered pair of states of each part. First suppose
we have states of each part, say f1 : 1 → A and f2 : 1 → B. Then there is a unique
state of the joint system, say f : 1 → A × B, which reduces to the given state of
each part when we discard information about the other part: p1f = f1 and p2f = f2.
Conversely, every state of the joint system arises this way, since given f : 1 → A × B
we can recover f1 and f2 using these equations.

However, the situation changes drastically when we switch to quantum theory!
The states of a quantum system can still be thought of as forming a set. However,
we do not take the product of these sets to be the set of states for a joint quantum
system. Instead, we describe states of a system as unit vectors in a Hilbert space,
modulo phase. We define the Hilbert space for a joint system to be the tensor product
of the Hilbert spaces for its parts.

The tensor product of Hilbert spaces is not a Cartesian product in the sense
defined above, since given Hilbert spaces H and K there are no linear operators
p1 : H ⊗ K → H and p2 : H ⊗ K → K with the required properties. This means
that from a (pure) state of a joint quantum system we cannot extract (pure) states of
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its parts. This is the key to Bell’s ‘failure of local realism’. Indeed, under quite general
conditions one can derive Bell’s inequality from the assumption that pure states of a
joint system determine pure states of its parts, so violations of Bell’s inequality should
be seen as an indication that this assumption fails.

The Wooters–Zurek argument that ‘one cannot clone a quantum state’ (1982) is
also based on the fact that the tensor product of Hilbert spaces is not Cartesian. To
get some sense of this, note that whenever A is an object in some category for which
the product A × A exists, there is a unique morphism

� : A → A × A

such that p1� = 1A and p2� = 1A. This morphism is called the diagonal of A,
since in the category of sets it is the map given by �(a) = (a, a) for all a ∈ A, whose
graph is a diagonal line when A is the set of real numbers. Conceptually, the role
of a diagonal morphism is to duplicate information, just as the projections discard
information. In applications to physics, the equations p1� = 1A and p2� = 1A says
that if we duplicate a state in A and then discard one of the two resulting copies, we
are left with a copy identical to the original.

In Hilb, however, since the tensor product is not a product in the category-theoretic
sense, it makes no sense to speak of a diagonal morphism � : H → H ⊗ H . In fact,
a stronger statement is true: there is no natural (i.e. basis-independent) way to choose
a linear operator from H to H ⊗ H other than the zero operator. So, there is no way
to duplicate information in quantum theory.

Since the tensor product is not a Cartesian product in the sense explained above,
what exactly is it? To answer this, we need the definition of a ‘monoidal category’.
Monoidal categories were introduced by Mac Lane (1963) in the early 1960s,
precisely in order to capture those features common to all categories equipped with a
well-behaved but not necessarily Cartesian product. Since the definition is a bit long,
let us first present it and then discuss it:

Definition. A monoidal category consists of:

(i) a category M,
(ii) a functor ⊗ : M × M → M,

(iii) a unit object I ∈ M,
(iv) natural isomorphisms called the associator:

aA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C),

the left unit law:
�A : I ⊗ A → A,

and the right unit law:
rA : A ⊗ I → A,

such that the following diagrams commute for all objects A, B, C , D ∈ M:
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(v)

(A ⊗ B) ⊗ (C ⊗ D)

A ⊗ (B ⊗ (C ⊗ D))

A ⊗ ((B ⊗ C) ⊗ D)(A ⊗ (B ⊗ C)) ⊗ D

((A ⊗ B) ⊗ C) ⊗ D

aA,B,C⊗D

�����������������������

1A⊗aB,C ,D

��������������aA,B⊗C ,D ��

aA,B,C ⊗1D

���
��

��
��

��
��

�

aA⊗B,C ,D

�����������������������

(vi)

(A ⊗ I ) ⊗ B
aA,I ,B ��

rA⊗1B ������������ A ⊗ (I ⊗ B)

1A⊗�B������������

A ⊗ B

This obviously requires some explanation! First, it makes use of some notions we
have not explained yet, ruining our otherwise admirably self-contained treatment of
category theory. For example, what is M × M in clause (ii) of the definition? This is
just the category whose objects are pairs of objects in M, and whose morphisms are
pairs of morphisms in M, with composition of morphisms done componentwise. So,
when we say that the tensor product is a functor ⊗ : M × M → M, this implies that
for any pair of objects x, y ∈ M there is an object x ⊗ y ∈ M, while for any pair of
morphisms f : x → x′, g : y → y′ in M there is a morphism f ⊗ g : x ⊗ y → x′ ⊗ y′
in M. Morphisms are just as important as objects! For example, in Hilb, not only can
we take the tensor product of Hilbert spaces, but also we can take the tensor product
of bounded linear operators S : H → H ′ and T : K → K ′, obtaining a bounded
linear operator

S ⊗ T : H ⊗ K → H ′ ⊗ K ′.

In physics, we think of S ⊗ T as a joint process built from the processes S and T
‘running in parallel’. For example, if we have a joint quantum system whose two
parts evolve in time without interacting, any time evolution operator for the whole
system is given by the tensor product of time evolution operators for the two parts.

Similarly, in nCob the tensor product is given by disjoint union, both for objects
and for morphisms. In Figure 8.8 we show two spacetimes M and M ′ and their
tensor product M ⊗ M ′. This as a way of letting two spacetimes ‘run in parallel’, like
independently evolving separate universes. The resemblance to the tensor product
of morphisms in Hilb should be clear. Just as in Hilb, the tensor product in nCob
is not a Cartesian product: there are no projections with the required properties.
There is also no natural choice of a cobordism from S to S ⊗ S. This means that
the very nature of topology prevents us from finding spacetimes that ‘discard’ part
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S1

S2

M
��

S ′
1

S ′
2

M ′
��

S1 ⊗ S ′
1

S2 ⊗ S ′
2

M⊗M ′
��

Figure 8.8. Two cobordisms and their tensor product

of space, or ‘duplicate’ space. Seen in this light, the fact that we cannot discard or
duplicate information in quantum theory is not a flaw or peculiarity of this theory.
It is a further reflection of the deep structural analogy between quantum theory and the
conception of spacetime embodied in general relativity.

Turning to clause (iii) in the definition, we see that a monoidal category needs
to have a ‘unit object’ I . This serves as the multiplicative identity for the tensor
product, at least up to isomorphism: as we shall see in the next clause, I ⊗ A ∼= A
and A ⊗ I ∼= A for every object A ∈ M. In Hilb the unit object is C regarded as a
Hilbert space, while in nCob it is the empty set regarded as an (n − 1)-dimensional
manifold. Any category with finite products gives a monoidal category in which the
unit object is the terminal object 1.

This raises an interesting point of comparison. In classical physics we describe
systems using objects in a category with finite products, and a state of the system
corresponding to the object A is just a morphism f : 1 → A. In quantum physics
we describe systems using Hilbert spaces. Is a state of the system corresponding to
the Hilbert space H the same as a bounded linear operator T : C → H ? Almost,
but not quite! As we saw in §8.3, such operators are in one-to-one correspondence
with vectors in H : any vector ψ ∈ H corresponds to an operator Tψ : C → H with
Tψ(1) = ψ. States, on the other hand, are the same as unit vectors modulo phase.
Any non-zero vector in H gives a state after we normalize it, but different vectors
can give the same state, and the zero vector does not give a state at all. So, quantum
physics is really different from classical physics in this way: we cannot define states
as morphisms from the unit object. Nonetheless, we have seen that the morphisms
T : C → H play a fundamental role in quantum theory: they are just Dirac’s ‘kets’.

Next, let us ponder clause (iv) of the definition of monoidal category. Here we see
that the tensor product is associative, but only up to a specified isomorphism, called the
‘associator’. For example, in Hilb we do not have (H ⊗ K ) ⊗ L = H ⊗ (K ⊗ L),
but there is an obvious isomorphism

aH ,K ,L : (H ⊗ K ) ⊗ L → H ⊗ (K ⊗ L)

given by
aH ,K ,L((ψ ⊗ φ) ⊗ η) = ψ ⊗ (φ ⊗ η).

Similarly, we do not have C ⊗ H = H and H ⊗ C = H , but there are obvious
isomorphisms

�H : C ⊗ H → H , rH : H ⊗ C → H .
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Moreover, all these isomorphisms are ‘natural’ in a precise sense. For example, when
we say the associator is natural, we mean that for any bounded linear operators
S : H → H ′, T : K → K ′, U : L → L′ the following square diagram commutes:

(H ⊗ K ) ⊗ L
aH ,K ,L ��

(S⊗T )⊗U
��

H ⊗ (K ⊗ L)

S⊗(T⊗U )
��

(H ′ ⊗ K ′) ⊗ L′ aH ′ ,K ′ ,L′
�� H ′ ⊗ (K ′ ⊗ L′)

In other words, composing the top morphism with the right-hand one gives the
same result as composing the left-hand one with the bottom one. This compatibility
condition expresses the fact that no arbitrary choices are required to define the
associator: in particular, it is defined in a basis-independent manner. Similar but
simpler ‘naturality squares’ must commute for the left and right unit laws.

Finally, what about clauses (v) and (vi) in the definition of monoidal category?
These are so-called ‘coherence laws’, which let us manipulate isomorphisms with the
same ease as if they were equations. Repeated use of the associator lets us construct an
isomorphism from any parenthesization of a tensor product of objects to any other
parenthesization—for example, from ( (A ⊗ B) ⊗ C) ⊗ D to A ⊗ (B ⊗ (C ⊗ D) ).
However, we can actually construct many such isomorphisms—and in this example,
the pentagonal diagram in clause (v) shows two. We would like to be sure that all such
isomorphisms from one parenthesization to another are equal. In his fundamental
paper on monoidal categories, Mac Lane (1963) showed that the commuting
pentagon in clause (v) guarantees this, not just for a tensor product of four objects,
but for arbitrarily many. He also showed that clause (vi) gives a similar guarantee for
isomorphisms constructed using the left and right unit laws.

8.5 CONCLUSIONS

Our basic intuitions about mathematics are to some extent abstracted from our
dealings with the everyday physical world (Lakoff and Núñez 2000). The concept
of a set, for example, formalizes some of our intuitions about piles of pebbles,
herds of sheep, and the like. These things are all pretty well described by classical
physics, at least in their gross features. For this reason, it may seem amazing
that mathematics based on set theory can successfully describe the microworld,
where quantum physics reigns supreme. However, beyond the overall ‘surprising
effectiveness of mathematics’, this should not really come as a shock. After all,
set theory is sufficiently flexible that any sort of effective algorithm for making
predictions can be encoded in the language of set theory: even Peano arithmetic
would suffice.

But, we should not be lulled into accepting the primacy of the category of sets
and functions just because of its flexibility. The mere fact that we can use set theory
as a framework for studying quantum phenomena does not imply that this is the
most enlightening approach. Indeed, the famously counter-intuitive behaviour of the
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microworld suggests that not only set theory but even classical logic is not optimized
for understanding quantum systems. While there are no real paradoxes, and one can
compute everything to one’s heart’s content, one often feels that one is grasping these
systems ‘indirectly’, like a nuclear power plant operator handling radioactive material
behind a plate glass window with robot arms. This sense of distance is reflected in
the endless literature on ‘interpretations of quantum mechanics’, and also in the
constant invocation of the split between ‘observer’ and ‘system’. It is as if classical
logic continued to apply to us, while the mysterious rules of quantum theory apply
only to the physical systems we are studying. But of course this is not true: we are
part of the world being studied.

To the category theorist, this raises the possibility that quantum theory might make
more sense when viewed, not from the category of sets and functions, but within
some other category: for example Hilb, the category of Hilbert spaces and bounded
linear operators. Of course it is most convenient to define this category and study it
with the help of set theory. However, as we have seen, the fact that Hilbert spaces
are sets equipped with extra structure and properties is almost a distraction when
trying to understand Hilb, because its morphisms are not functions that preserve this
extra structure. So, we can gain a new understanding of quantum theory by trying to
accept Hilb on its own terms, unfettered by preconceptions taken from the category
Set. As Corfield (2003) writes: ‘Category theory allows you to work on structures
without the need first to pulverise them into set theoretic dust. To give an example
from the field of architecture, when studying Notre Dame cathedral in Paris, you
try to understand how the building relates to other cathedrals of the day, and then
to earlier and later cathedrals, and other kinds of ecclesiastical building. What you
don’t do is begin by imagining it reduced to a pile of mineral fragments.’

In this chapter, we have tried to say quite precisely how some intuitions taken
from Set fail in Hilb. Namely: unlike Set, Hilb is a ∗-category, and a monoidal
category where the tensor product is non-Cartesian. But, what makes this really
interesting is that these ways in which Hilb differs from Set are precisely the ways it
resembles nCob, the category of (n − 1)-dimensional manifolds and n-dimensional
cobordisms going between these manifolds. In general relativity these cobordisms
represent ‘spacetimes’. Thus, from the category-theoretic perspective, a bounded
linear operator between Hilbert spaces acts more like a spacetime than a function.
This not only sheds a new light on some classic quantum quandaries, it also bodes
well for the main task of quantum gravity, namely to reconcile quantum theory with
general relativity.

At best, we have only succeeded in sketching a few aspects of the analogy between
Hilb and nCob. In a more detailed treatment we would explain how both Hilb and
nCob are ‘symmetric monoidal categories with duals’—a notion which subsumes
being a monoidal category and a ∗-category. Moreover, we would explain how unitary
topological quantum field theories exploit this fact to the hilt. However, a discussion
of this can be found elsewhere (Baez and Dolan 1995), and it necessarily leads us into
deeper mathematical waters which are not of such immediate philosophical interest.
So, instead, I would like to conclude by saying a bit about the progress people have
made in learning to think within categories other than Set.
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It has been known for quite some time in category theory that each category has its
own ‘internal logic’, and that while we can reason externally about a category using
classical logic, we can also reason within it using its internal logic—which gives a
very different perspective. For example, our best understanding of intuitionistic logic
has long come from the study of categories called ‘topoi’, for which the internal logic
differs from classical logic mainly in its renunciation of the principle of excluded
middle (Boileau and Joyal 1981; Coste 1972; Mitchell 1972). Other classes of
categories have their own forms of internal logic. For example, ever since the work
of Lambek and Scott (1986), the typed lambda-calculus, so beloved by theoretical
computer scientists has been understood to arise as the internal logic of ‘Cartesian
closed’ categories. More generally, Lawvere’s algebraic semantics allows us to see any
‘algebraic theory’ as the internal logic of a category with finite products (Lawvere
1963).

By now there are many textbook treatments of these ideas and their ramifications,
ranging from introductions that do not assume prior knowledge of category theory
(Crole 1993; McLarty 1995), to more advanced texts that do (Barr and Wells 1983;
Johnstone 2002; Lambek and Scott 1986; MacLane and Moerdijk 1992). Lawvere
has also described how to do classical physics in a topos (Lawvere 1979; Lawvere and
Schanuel 1986). All this suggests that the time is ripe to try thinking about quantum
physics using the internal logic of Hilb, or nCob, or related categories. However, the
textbook treatments and even most of the research literature on category-theoretic
logic focus on categories where the monoidal structure is Cartesian. The study of
logic within more general monoidal categories is just beginning. More precisely,
while generalizations of ‘algebraic theories’ to categories of this sort have been studied
for many years in topology and physics (Loday et al. 1997; Markl et al. 2002),
it is hard to find work that explicitly recognizes the relation of such theories to
the traditional concerns of logic, or even of quantum logic. For some heartening
counter-examples, see the work of Abramsky and Coecke (2004), and also of Mauri
(internet resource). So, we can only hope that in the future, more interaction between
mathematics, physics, logic, and philosophy will lead to new ways of thinking about
quantum theory—and quantum gravity—that take advantage of the internal logic
of categories like Hilb and nCob.
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337–92.

and S. Schanuel (eds.) (1986) Categories in Continuum Physics. Berlin: Springer-Verlag.
Loday, J.-L., J. Stasheff, and A. Voronov (eds.) (1997) Operads: Proceedings of Renaissance

Conferences. Providence, RI: American Mathematical Society.

www.cwru.edu/artsci/math/wells/pub/ttt.html
www.math.ucla.edu/~asl/bsl/0903/0903-001.ps


Quantum Quandaries 265

Mac Lane, S. (1963) ‘‘Natural Associativity and Commutativity’’. Rice Univ. Stud. 49: 28–46.
and I. Moerdijk (1992) Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Berlin: Springer-Verlag.
McLarty, C. (1995) Elementary Categories, Elementary Toposes. Oxford: Clarendon Press.
Markl, M., S. Shnider, and J. Stasheff (2002) Operads in Algebra, Topology and Physics.

Providence, RI: American Mathematical Society.
Mauri, L. (internet resource) ‘‘Algebraic Theories in Monoidal Categories’’. Available at

www.math.rutgers.edu/∼mauri.
Mitchell, W. (1972) ‘‘Boolean Topoi and the Theory of Sets’’. J. Pure Appl. Alg. 2: 261–74.
Segal, G. (2004) ‘‘The Definition of a Conformal Field Theory’’. In U. L. Tillmann (ed.),

Topology, Geometry and Quantum Field Theory: Proceedings of the 2002 Oxford Symposium
in Honour of the 60th Birthday of Graeme Segal. Cambridge: Cambridge University Press.

Smolin, L. (2001) Three Roads to Quantum Gravity. New York: Basic Books.
(2003) ‘‘How Far are We from the Theory of Quantum Gravity?’’ ArXiv:hep-

th/0303185.
Vaas, R. (2004) ‘‘The Duel: Strings Versus Loops.’’ Trans. M. Bojowald and A. Sen.

ArXiv:physics/0403112.
Wootters, W. K., and W. H. Zurek (1982) ‘‘A Single Quantum Cannot Be Cloned’’. Nature,

299: 802–3.

www.math.rutgers.edu/~mauri


This page intentionally left blank 



Index

absolute acceleration 100
absolute object 20, 21, 102, 203
Aharonov-Bohm effect 161
Anthropic Principle 199, 203, 225, 227
Ashtekar variables 18, 19, n. 163
Ashtekar, A., n. 42
Atiyah, M., 243

background independence 1, 2, 9, 18, 102,
196

and non-perturbative approach to QG n. 18
and structuralism 20–25
and topological quantum field theory 246

Barbour, J., 88, 90, 179
Bell, J., 12
Bergmann-Komar coordinates 122, 130, 135
Bohr, N., 231
Braithwaite, R., 31

Cassirer, E., 26–28, 30
category theory

∗-category 243, 251
∗-category of Hilbert spaces 249–254
category 246
cobordism 241, 244
functor 246, 248
Hilb category 241, 246
Lorentzian cobordism 246
monoidal category 258
monoidal category of Hilbert

spaces 254–261
nCob category 241, 247

Cauchy problem 130, 139
causal set (causet) 15, 210

inverse problem 211
coincidence events 189
constructive realism 43
Copenhagen interpretation 12
correlational network 189

De Gravitatione 146
diffeomorphism constraint see general

relativity, Hamiltonian formulation 153
diffeomorphism invariance 9, 22, 94, 97, 99,

202, 206, 207
versus permutation invariance 90, 112
active 130, 138, 159
passive 138

Dirac observables 131, 133, 136, 139, 142,
145, 185

for gravitational field 140
for matter field 140

Earman, J., 89, 166, 171, n. 185
Eddington, A., 26–28
Equivalence Principle n. 40
Erlangen Programme 26
Euclidean quantum gravity 216

Feynman diagram 241
fibre bundle n. 57, 104
Friedman M., 20

gauge freedom see gauge theory 153
gauge symmetry see gauge theory 152
gauge theory 4, 144, 152

and determinism 156
diffeomorphism group as a gauge

group n. 152
first class constraint 156
gauge freedom 6, 22, 144, 146, 153, n. 155,

159, 160, 166, 167, n. 170
gauge orbit 156
gauge symmetry 152
Gribov obstruction 162
indeterminism 162
interpretation of 153, 159–162
second class constraint 156

general covariance 3, 144, 145, 159, 176,
189

as gauge invariance 154
broken 136

general relativity
3-space approach 90
ADM-variables 131, 135
as constrained Hamiltonian system 164
as gauge theory 4, n. 152, 157–159
as partly relational theory 204
frozen formalism problem 163
Hamiltonian formulation 4, 131, 144

connection formalism n. 158
diffeomorphism constraint 153, 158
gauge fixing 132
Gauss constraint n. 158, n. 166
Hamiltonian constraint 153, 158, 166,

176



268 Index

general relativity (cont.)
primary constraints in 132
secondary constraints in 132

Hamiltonian formulation
diffeomorphism constraint 5

Hamiltonian formulation
Hamiltonian constraint 5

geometrodynamics 4, 18, 44, 158
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