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PREFACE

Quantum gravity is the field of theoretical physics attempting to unify the theory of
guantum mechanics, which describes three of the fundamental forces of nature, with general
relativity, the theory of the fourth fundamental force: gravity. The ultimate goal is a unified
framework for all fundamental forces-a theory of everything. This new book examines state-
of-art research in thisfield.

In Chapter 1, the authors show how the quantum potential arises in various ways and
trace its connection to quantum fluctuations and Fisher information along with its realization
in terms of Weyl curvature. It represents a genuine quantization factor for certain classical
systems as well as an expression for quantum matter in gravity theories of Weyl-Dirac type.
Many of the facts and examples are extracted from the literature (with references cited) and
we mainly provide connections and interpretation, with a few new observations. We
deliberately avoid ontological and epistemological discussion and resort to a collection of
contexts where the quantum potentia plays a visibly significant role. In particular we sketch
some recent results of F. and A. Shojai on Dirac-Weyl action and Bohmian mechanics which
connects quantum mass to the Weyl geometry. Connections \'a la Santamato of the quantum
potential with Weyl curvature arising from a stochastic geometry, are aso indicated for the
Schr\"odinger equation (SE) and Klein-Gordon (KG) equation. Quantum fluctuations and
guantum geometry are linked with the quantum potential via Fisher information. Derivations
of SE and KG from Nottal€e's scale relativity are sketched along with a variety of approaches
to the KG equation. Finally connections of geometry and mass generation via Weyl-Dirac
geometry with many cosmological implications are indicated, following M. Israelit and N.
Rosen.

Gravitationally bound quantum states of matter were observed for the first time thanks to
the unique properties of ultra-cold neutrons (UCN). The neutrons were alowed to fal
towards a horizontal mirror which, together with the Earth's gravitational field, provided the
necessary confining potential well. In Chapter 2, we discuss the current status of the
experiment, as well as possible improvements: the integral and differential measuring modes;
the flow-through and storage measuring modes; resonance transitions between the quantum
states in the gravitational field or between magneticaly split sub-levels of a gravitationa
guantum state.

This phenomenon and the related experimental techniques could be applied to various
domains ranging from the physics of elementary particles and fields (for instance, spin-
independent or spin-dependent short-range fundamental forces or the search for a non-zero
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neutron electric charge) to surface studies (for instance, the distribution of hydrogen in/above
the surface of solids or liquids, or thin films on the surface) and the foundations of quantum
mechanics (for instance, loss of quantum coherence, guantum-mechanical localization or
experiments using the very long path of UCN matter waves in medium and in wave-guides).

In the present article we focus on transitions between the quantum states of neutrons in
the gravitational field, consider the characteristic parameters of the problem and examine
various methods for producing such transitions. We aso anayze the feasibility of
experiments with these quantum transitions and their optimization with respect to particular
physical goals.

A classical dynamical system in a four-dimensional Euclidean space with universal time
is considered in Chapter 3. The space is hypothesized to be originaly occupied by a uniform
substance, pictured as a liquid, which at some time became supercooled. Our universe began
as a nucleation event initiating a liquid to solid transition. The universe we inhabit and are
directly aware of consists of only the three-dimensional expanding phase boundary - a
crystalline surface. Random energy transfers to the boundary from thermal fluctuations in the
adjacent bulk phases are interpreted by us as quantum fluctuations, and give a physical
realization to the stochastic quantization technique. Fermionic matter is modeled as screw
dislocations; gauge bosons as surface acoustic waves. Minkowski space emerges dynamically
through redefining local time to be proportional to the spatial coordinate perpendicular to the
boundary. Lorentz invariance is only approximate, and the photon spectrum (now a phonon
spectrum) has a maximum energy. Other features include a geometrical quantum gravitationa
theory based on elasticity theory, and a simple explanation of the quantum measurement
process as a spontaneous symmetry breaking. Present, past and future are physically distinct
regions, the present being a unique surface where our universe is being continually
constructed.

Starting from the action function we have derived a theoretical background that |eads to
guantization of gravity and the deduction of a correlation between the gravitational and
inertial masses, which depends on the kinetic momentum of the particle. In Chapter 4, the
authors show that there is a reaffirmation of the strong equivalence principle and
consequently the Einstein's equations are preserved. In fact such eguations are deduced here
directly from this kinetic approach to Gravity. Moreover, we have obtained a generalized
equation for inertial forces, which incorporates the Mach's principle into Gravitation. Also,
we have deduced the equation of Entropy; the Hamiltonian for a particle in an
electromagnetic field and the reciproca fine structure constant. It is possible to deduce the
expression of the Casimir force and aso to explain the Inflation Period and the Missing
Matter without assuming the existence of vacuum fluctuations. This new approach for
Gravity will alow us to understand some crucial matters in Cosmology. An experiment has
been carried out to check the theoretical correlation between the gravitational and inertial
masses. The experiment and results are presented on appendix A. The experimental data are
in strongly accordance with the theory.

In Chapter 5, it is shown that the inclusion of quantum jumps, i.e., state vector reduction,
in the semiclassical gravity construction opens a new avenue for the solution, on the one
hand, of the serious difficulties of the construction per se and, on the other hand, of the
challenging puzzles of dark energy and dark matter. In the problem of quantum gravity, the
simplest and most natural construction is that of semiclassical gravity. In the latter, the
energy-momentum tensor entering into the Einstein equation is represented by the expectation
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value of the corresponding operator. In a conventional treatment, there exists no satisfactory
generalization of normal ordering to curved spacetime. The renormalization of the energy-
momentum tensor is based on a set of axioms; one of the latter is that the tensor must be four-
divergence free. The results of the renormalization suffer from serious difficulties. an
ambiguity and a nonlocal dependence on metric. In addition, the conventional treatment
denounces the concept of particles and the Hamiltonian. It is commonly accepted that things
look even worse when state reduction is involved in dynamics. In fact, the opposite situation
occurs. The reduction, being nonlocal and instantaneous, implies a universal time and, as a
conseguence, the structure of spacetime as the direct product of cosmological time and space.
This alows for introducing normal ordering, particles, and the Hamiltonian. The
renormalized energy-momentum tensor is unique and involves at most second derivatives of
metric. On that basis, semiclassical reductive quantum gravity is constructed---a theory in
which metric is treated classically whereas a quantum treatment of matter includes state
vector reduction. The theory is assumed to be fundamental. In the theory, the semiclassica
Einstein equation is violated due to the following. First, the energy-momentum tensor is not
divergence free. Second, the six space components of the Einstein tensor involve the second
time derivative of metric, but the other four components involve only the first time derivative.
Therefore the latter components must be continuous. The energy-momentum tensor should be
complemented by a pseudo energy-momentum tensor with four degrees of freedom which
would compensate for the breakdown both of the divergence freedom condition and of the
continuity of the four components of the energy-momentum tensor. The compensatory tensor
is, by definition, the energy-momentum tensor of pseudomatter. The latter is represented by a
pressural dust, i.e., a perfect fluid with a constant pressure, which has four degrees of
freedom. The pressural dust comprises both dark energy (cosmological constant) and dark
matter. So the presence of dark energy and dark matter in the real world provides an
observable evidence of characteristically quantum gravitational effects. That is a challenge to
a conventional opinion that there exists no such recognized evidence. The reductive
semiclassical Einstein eguation is composed of ten equations for six space components of
metric and four pseudomatter variables (density and four-velocity). The elimination of the
latter variables results in the metric equation. Dark matter is represented by a pseudodust,
which implies the fruitlessness of efforts to represent dark matter by any kind of ordinary
matter.

As explained in Chapter 6, Black Holes have aways played a central role in
investigations of quantum gravity. This includes both conceptual issues such as the role of
classical singularities and information loss, and technical ones to probe the consistency of
candidate theories. Lacking a full theory of quantum gravity, such studies had long been
restricted to black hole models which include some aspects of quantization. However, it is
then not always clear whether the results are consequences of quantum gravity per se or of the
particular steps one had undertaken to bring the system into a treatable form. Over a little
more than the last decade |oop quantum gravity has emerged as awidely studied candidate for
guantum gravity, where it is now possible to introduce black hole models within a quantum
theory of gravity. This makes it possible to use only quantum effects which are known to
arise also in the full theory, but still work in arather simple and physically interesting context
of black holes. Recent developments have now led to the first physical results about non-
rotating quantum black holes obtained in this way. Restricting to the interior inside the
Schwarzschild horizon, the resulting quantum model is free of the classical singularity, which
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is a consequence of discrete quantum geometry taking over for the continuous classical space-
time picture. This fact results in a change of paradigm concerning the information loss
problem. The horizon itself can aso be studied in the quantum theory by imposing horizon
conditions at the level of states. Thereby one can illustrate the nature of horizon degrees of
freedom and horizon fluctuations. All these developments alow us to study the quantum
dynamics explicitly and in detail which provides a rich ground to test the consistency of the
full theory.
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Chapter 1

FLUCTUATIONS , GRAVITY,
AND THE QUANTUM POTENTIAL

Robert Carroll*
University of lllinois, Urbana, IL 61801

Abstract

We show how the quantum potential arises in various ways and trace its connection
to quantum fluctuations and Fisher information along with its realization in terms of
Weyl curvature. It represents a genuine quantization factor for certain classical sys-
tems as well as an expression for quantum matter in gravity theories of Weyl-Dirac
type. Many of the facts and examples are extracted from the literature (with references
cited) and we mainly provide connections and interpretation, with a few new observa-
tions. We deliberately avoid ontological and epistemological discussion and resort to
a collection of contexts where the quantum potential plays a visibly significant role.
In particular we sketch some recent results of F. and A. Shojai on Dirac-Weyl action
and Bohmian mechanics which connects quantum mass to the Weyl geometry. Con-
nections a la Santamato of the quantum potential with Weyl curvature arising from a
stochastic geometry, are also indicated for the Schrodinger equation (SE) and Klein-
Gordon (KG) equation. Quantum fluctuations and quantum geometry are linked with
the quantum potential via Fisher information. Derivations of SE and KG from Not-
tale’s scale relativity are sketched along with a variety of approaches to the KG equa-
tion. Finally connections of geometry and mass generation via Weyl-Dirac geome-
try with many cosmological implications are indicated, following M. Israelit and N.
Rosen.

1 The Schiddinger Equation

The quantum potential seems to have achieved prominence via the work of L. deBroglie and
D. Bohm plus many others on what is often now called Bohmian mechanics. There have
been many significant contributions here and we refer to [40, 41, 42, 43, 44, 47, 50, 54]

*E-mail address: rcarroll@math.uiuc.edu
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for a reasonably complete list of references. A good picturhefcurrent theory can be
obtained from the papers by an American-German-Italian (AGI) group of Allori, Barut,
Berndl, Daumer, Diirr, Georgi, Goldstein, Lebowitz, Teufel, Tumulka, and Zanghi (cf. [8,
9,19, 22, 23, 24, 25, 26, 69, 73, 74, 75, 76, 77, 78, 79, 87, 89, 87, 91, 92, 93, 94, 189, 190,
194]). We refer also to Holland [103, 104, 105, 106], Nikoli¢ [134, 135, 136, 137, 138],
Floyd [83, 84], and Bertoldi, Faraggi, and Matone [27, 81, 82] for other approaches and
summaries. Other specific references will arise as we go along but we emphasize with
apologies that there are many more interesting papers omitted here which hopefully are
covered in [54].

First in a simple minded way one can look at a Schrodinger equation (SE)

h? .
—g "+ Vb = iy ¢ = Re/ (1.1)
leading to { ~ )
S:% hQR// 2 1 2 QI
Sit STV = Tl =05 0(R?) + —(RS') =0 (12)
h2 1" 1\2 1
P = R*~ [Y|?%; Q:——R—:>St+(5) +Q+V =0; P,+—(PS") =0 (1.3)
2m R 2m m

Here Q is the quantum potential and in 3-dimensions for example one expresses this as

Q = —(12/2m)(A\/p)/\/p (R = VP, P~ p).

In a hydrodynamic mode one can write (1-dimension for simplicity and with the proviso
thatS # const.) p = S’ = mq = mv (v a velocity or collective velocity) and = mP (p
an unspecified mass density) to obtain an Euler type hydrodynamic equation,)

A (pv) + 0(pv?) + Lov + ﬁ@Q =0 (1.4
m m

REMARK 1.1. Given a wave function) with || representing a probability density
as in conventional quantum mechanics (QM) it is not unrealistic to imagine an ensemble
picture emerging here (as a “cloud” of particles for example). This will be analogous to
diffusion or fluid flow of course but can also be modeled on a Bohmian particle picture and
this will be discussed later in more detail. We note also that Q appears in the Hamilton-
Jacobi (HJ) type equation (1.3) but is not present in the SE (1.1). If one were to interpret
0V as a hydrodynamical pressure ternil/p)093 then the SE would be unchanged and
the hydrodynamical equation (with no Q term) would be meaningful in the form

1
O(pv) + 0(pv?) = —OP (15)
Thinking of Q as a quantization of (1.5) yielding (1.4) leads then to the SE (1.10

REMARK 1.2. The development of the AGI school involves now

_hew
m [P

(1.6)

q=v
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and this is derived as the simplest Galilean and time revemsatiant form for velocity
transforming correctly under velocity boosts. This is a nice argument and seems to avoid
any recourse to Floydian time (cf. [50, 54]). |

Next we consider relations of diffusion to QM following Nagasawa, Nelson, et al (cf.
[131, 132, 133] - see also e.g. [67, 70, 86, 119, 120, 121]) and sketch some formulas for a
simple Euclidean metric wher = Y (9/0z%)2. Theniy(t,z) = exp|R(t,x) + iS(t, )]
satisfies a SEDyy) + (1/2)A¢ +ia(t,x) - Vip — V (¢, x)¢ = 0 (h = m = 1)) if and only if

v:_%—erlARJr ~(VR)? - (VS)Z—C"VS3 (1.7)
1
0:%_f+ “AS 4 (VS)-(VR) +a-VR

in the regionD = {(s,x) : ¥(s,z) # 0}. Solutions are often referred to as weak or
distributional but we do not belabor this point. From [131] there results

THEOREM 1.1 Lety)(t,z) = exp[R(t, v) +iS(t, )] be a solution of the SE above; then
o(t,x) = exp[R(t,z) + S(t,z)] and¢p = exp[R(t,x) — S(t, z)] are solutions of

% + %Aqﬁ +a(t,z) -Vo+c(t,x,p)p = 0; (1.8)
g‘f + A¢> —a(t,x) - Vo +clt,z,0)p =
where the creation and annlhllation ter, x, ¢) is given via
c(t,z, ) ==V (t,z) — 2%—?@ z) — (VS)2%(t,z) — 2a - VS(t,z) (1.9)

Conversely giverio, <;3) as above satisfying (1.8) it follows thdtsatisfies the SE with
V asin (1.9) (notek = (1/2)log(¢¢) andsS = (1/2)log(¢/d) with exp(R) = (¢¢)*/2).M

From this one can conclude that nonrelativistic QM is diffusion theory in terms of
Schrodinger processes (describec{byéﬁ) - more details later). Further it is shown that key
postulates in Nelson’s stochastic mechanics or Zambrini’'s Euclidean QM (cf. [202]) can
both be avoided in connecting the SE to diffusion processes (since they are automatically
valid). Look now at Theorem 1.1 for one dimension and wfite- ht with X = (h/\/m)z;
then some simple calculation leads to

COROLLARY 1.1 Equation (1.8), written in théX, T") variables becomes
h? - R - - -
hor + 5—¢xx + Adx + 0 =0; —hor + 5—¢dxx — Adx +ep=0;  (1.10)

2
é¢=-V(X,T) - 2hSr — h—sX —2ASy

Thus the diffusion processes pick up factorgi@nds/\/m. [
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Next we sketch a derivation of the SE following scale relativitla Nottale (cf. [58,
139, 140, 141, 142, 144] and [56, 64, 65, 66] for some refinements and variations); this
material is expanded in [40, 54].

REMARK 1.3. One considers quantum paths a la Feynman solthat.,/ [ X () —
X ())?/(t—t') exists. This impliesY (t) € H'/? whereH® means:® < | X (t)—X ()| <
Ce® and from [80] for example this meatigm gy X [a, b] = 1/2. Now one “knows” (see e.g.
[1]) that quantum and Brownian motion paths (in the plane) have H-dimension 2 and some
clarification is needed here. We refer to [125] where there is a paper on Wiener Brownian
motion (WBM), random walks, etc. discussing Hausdorff and other dimensions of various
sets. Thus gived < A < 1/2 with probability 1 a Browian sample functioN satisfies
|X(t+h) — X ()| < b|n|* for |h| < hg whereb = b()\). This leads to the result that with
probability 1 the graph of a Brownian sample function has Hausdorff and box dimension
3/2. On the other hand a Browian trail (or path) in 2 dimensions has Hausdorff and box
dimension 2 (note a quantum path can have self intersections, etc.). |

Now fractal spacetime here will mean some kind of continuous nonsmooth pathspace
so that a bivelocity structure is defined. One defines first

Z—:y(t) — limao, <y<t + AAti - y(t)> : (1.11)

Applied to the position vector x this yields forward and backward mean velocities,
namely (dy /dt)x(t) = by and (d_/dt)z(t) = b_. Here these velocities are defined
as the average at a point g and time t of the respective velocities of the outgoing and
incoming fractal trajectories; in stochastic QM this corresponds to an average on the
quantum state. The position vectoft) is thus “assimilated” to a stochastic process
which satisfies respectively aftetit( > 0) and before dt < 0) the instant t a relation
dz(t) = by [x(t)|dt + dé4(t) = b_[z(t)]dt + dé—_(t) where{(t) is a Wiener process (cf.
[133]). Itisin the description of that theD = 2 fractal character of trajectories is inserted;
indeed that is a Wiener process means that tkiés are assumed to be Gaussian with mean
0, mutually independent, and such that

< df+i(t)d§+j(t) >= 2D(5ijdt; < dg_i(t)df_j(t) >= —2D(5ijdt (112)

where< > denotes averagingXis now the diffusion coefficient). Nelson’s postulate (cf.
[133]) is thatD = h/2m and this has considerable justification (cf. [139]). Note also that
(1.12) is indeed a consequence of fractal (Hausdorff) dimension 2 of trajectories follows
from < d¢? > /dt? = dt™ ', i.e. precisely Feynman’s result v >'/2~ §t—1/2. Note

that Brownian motion (used in Nelson’s postulate) is known to be of fractal (Hausdorff)
dimension 2. Note also that any value®@fmay lead to QM and foD — 0 the theory
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becomes equivalent to the Bohm theory. Now expand any fungtiont) in a Taylor
series up to order 2, take averages, and use properties of the Wiener grozgss

(Zr—tf:(8t+b+-V+DA)f;%z(@ﬁ—b--V—DA)f (1.13)

Let p(x,t) be the probability density of(t); it is known that for any Markov (hence
Wiener) process one hasp + div(pby) = DAp (forward equation) an@;p + div(pb_) =
—DAp (backward equation). These are called Fokker-Planck equations and one defines
two new average velocitiel = (1/2)[b; + b_] andU = (1/2)[b+ — b_]. Consequently
adding and subtracting one obtajmst div(pV') = 0 (continuity equation) andiv(pU) —
DAp = 0 which is equivalent taiv[p(U — DVliog(p))] = 0. One can show, using (1.13)
that the term in square brackets in the last equation is zero leadifig+o DVliog(p).
Now place oneself in théU, V') plane and write) = V' — iU. Then write(dy/dt) =
(1/2)(dy +d-)/dt and(dy/dt) = (1/2)(d+ — d—)/dt. Combining the equations in (1.13)
one definegdy/dt) = 0, + V - V and(dy /dt) = DA + U - V; then define a complex
operator(d'/dt) = (dy/dt) — i(dy/dt) which becomes

!

% = <% — iDA) +V-V (1.14)
One now postulates that the passage from classical mechanics to a new nondifferen-

tiable process considered here can be implemented by the unique prescription of replacing

the standardi/dt by d'/dt. Thus consideS = < ttf L(z, V,t)dt> yielding by least ac-

tion (d'/dt)(0L/0V;) = OL/Ox;. Define therP; = dL/9V; leading toP = V& (recall

the classical action principle withS = pdq — Hdt). Now for Newtonian mechanics

write L(z,v,t) = (1/2)mv? — U which become<(z,V,t) = (1/2)mV? — i leading to

—Vi = m(d'/dt)V. One separates real and imaginary parts of the complex acceleration

v = (d'V/dt to get

dVy = (dy — ’idz,{)(V — ’iU) = (de - dz,{U) - i(dz,{V + dyU) (1.15)

The forceF' = —Vilis real so the imaginary part of the complex acceleration vanishes;

hence
dy dy_ . oU B
EV+EU—E+U-VV+V-VU+DAV_O (1.16)
from whichoU /9t may be obtained. This is a weak point in the derivation since one has to
assume e.g. thdf (x,t) has certain smoothness properties. Now considerable calculation
leads to the SEhy; = —(h?/2m)A+y + Uy and this suggests an interpretation of QM
as mechanics in a nondifferentiable (fractal) space. In fact (using one space dimension
for convenience) we see thatsif = 0 then the free motionn(d’/dt)V = 0 yields the
SEimp; = —(h%/2m)., as a geodesic equation in “fractal” space. Further fiérm=

(h/m)(8\/p//p) and@ = —(h*/2m)(A/p//p) One arrives at a lovely relation, namely
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PROPOSITION 1.1. The quantum potential Q can be written in the fagm= —(m/2)U?
—(h/2)0U. Hence the quantum potential arises directly from the fractal nonsmooth nature
of the quantum paths. Since Q can be thought of as a quantization of a classical motion we
see that the quantization corresponds exactly to the existence of nonsmooth paths. Conse-
guently smooth paths imply no guantum mechanics.

REMARK 1.4. In [5] one writes again) = Rexp(iS/h) with field equations in the
hydrodynamical picture (1-D for convenience)

di(mopv) = (mopv) + V(mopv) = —pV (u+Q); dp+V - (o) =0 (1.17)

where@ = —(h%/2mg)(A/p/\/p). The Nottale approach is used as above With- dy,
andd, ~ dy. One assumes that the velocity field from the hydrodynamical model agrees
with the real party of the complex velocit} = v — iu sov = (1/mg)Vs ~ 2DJs and

u = —(1/mg)Vo ~ Dolog(p) whereD = h/2my. In this context the quantum potential

Q = —(h?*/2my)AD,/p//p becomes
Q = —meDV - u — (1/2)mou? ~ —(1/2)0u — (1/2)mou? (1.18)

Consequently Q arises from the fractal derivative and the nondifferentiability of space-
time again, as in Proposition 1.1. Further one can relaend hence Q) to an internal
stress tensor whereas thequations correspond to systems of Navier-Stokes type.

REMARK 1.5. We note that it is the presence fderivatives that makes possible the
introduction of a complex plane to describe velocities and hence QM; one can think of this
as the motivation for a complex valued wave function and the nature of the SE. W

REMARK 1.6. In [56] one extends ideas of Nottale and Ord (cf. [148, 149, 150, 151])
in order to derive an interesting nonlinear Schrodinger equation (NLSE) using a complex
diffusion coefficient and a hydrodynamic model.

1.1 The Schiodinger Equation in Weyl Space

We go now to Santamato [171] and derive the SE from classical mechanics in Weyl space
(i.e. from Weyl geometry - cf. also [18, 42, 43, 55, 108, 172, 199]). The idea is to relate the
guantum force (arising from the quantum potential) to geometrical properties of spacetime;
the Klein-Gordon (KG) equation is also treated in this spirit in [55, 172]. One wants to show
how geometry acts as a guidance field for matter (as in general relativity). Initial positions
are assumed random (as in the Madelung approach) and thus the theory is statistical and is
really describing the motion of an ensemble. Thus assume that the particle motion is given
by some random procesg¥t, w) in a manifold M (wherev is the sample space tag) whose
probability densityp(q,t) exists and is properly normalizable. Assume that the process
q¢'(t,w) is the solution of differential equations

¢'(t,w) = (dg'/dt)(t,w) = v'(q(t,w), 1) (1.19)
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with random initial conditiong’ (o, w) = ¢j(w). Once the joint distribution of the random
variablesgf (w) is given the procesg'(¢,w) is uniquely determined by (1.19). One knows
that in this situationd;p + 9;(pv’) = 0 (continuity equation) with initial Cauchy data
p(q,t) = po(q). The natural origin ofs* arises via a least action principle based on a
LagrangianL(q, ¢, t) with

. . . as y
Thenvi(q,t) arises by minimizing
t1
Io.t) = B[ L*a(t.).d(t.0), ) (L.21)
to

wherety, t; are arbitrary and E denotes the expectation (cf. [40, 41, 131, 132, 133] for
stochastic ideas). The minimum is to be achieved over the class of all random motions
q¢'(t,w) obeying (1.20) with arbitrarily varied velocity field’(q, ) but having common
initial values. One proves first

= O VS, ),0) (1.22)

&S + H(q,VS,t) =0; v'(q,t) o

Thus the value of I in (1.21) along the random cug¥g, qo(w)) is

I(t1>t0>w) = /t 1L*(Q(vQO(W))v(j(t>QO(w))vt)dt (123)

0

Let u(qo) denote the joint probability density of the random variakjgss) and then
the expectation value of the random integral is

t1
I(ti,t0) = E[I(t1,t0,w / / 1(q0) L™ (q(t, q0),4(t, q0), t)d" qodt (1.24)
n to

Standard variational methods give then

oI :/nd"qw(o) [%L,*( (t1,90), 9q(t1,q0),t)8¢" (1, q0)— (1.25)

f 0 OL* OL* ;
- /;0 dt <a 8(]@ (q(taqO)aatq)taqO)ﬂt) - aql (Q(t7q())7atq(t7q0)7t)> 5q (taqO):|

where one uses the fact thafg) is independent of time anth (o, qo) = 0 (recall com-
mon initial data is assumed). Therefore

(A) (OL*/04")(a(t, q0), Oeq(t, qo),t) = O; (1.26)

0 OL* oL*

(B) aa—qz(q(ta QO), atQ(t7 q0, t) - a—qz(q(tﬂ q0)7 atq(t’ qo)’ t) =0
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are the necessary conditions for obtaining a minimum of |. @mm$ (B) are the usual
Euler-Lagrange (EL) equations wherddg is a consequence of the fact that in the most
general case one must retain varied motions Witlit1, qo) different from zero at the final
time ¢,. Note that sincd.* differs from L by a total time derivative one can safely replace
L* by L in (B) and putting (1.20) int¢gA) one obtains the classical equations

bi = (8L/8ql)(Q(t> QO)v Q(tv QO)v t) = ais(q(tv QO)v t) (127)

It is known now that ifdet[(9?L/0¢'0¢’] # 0 then the second equation in (1.22) is
a consequence of the gradient condition (1.27) and of the definition of the Hamiltonian
function H(q, p,t) = p;¢* — L. Moreover(B) in (1.26) and (1.27) entrain the HJ equation
in (1.63), (1.33). In order to show that the average action integral (1.24) actually gives a
minimum one need&§? > 0 but this is not necessary for Lagrangians whose Hamiltonian
H has the form

1 .
Ho(g,pt) = 59" (0 — Ai) (px — A) + V (1.28)

with arbitrary fieldsA; and V (particle of mass m in an EM field A) which is the form

for nonrelativistic applications; given positive definifg such Hamiltonians involve suf-
ficiency conditionsdet[0%L/0¢'0¢*] = mg > 0. Finally (B) in (1.26) with L* replaced

by L) shows that along particle trajectories the EL equations are satisfied, i.e. the particle
undergoes a classical motion with probability one. Notice here that in (1.22) no explicit
mention of generalized momenta is made; one is dealing with a random motion entirely
based on position. Moreover the minimum principle (1.21) defines a 1-1 correspondence
between solution$(q,¢) in (1.22) and minimizing random motiong(t,w). Providedv®

is given via (1.22) the particle undergoes a classical motion with probability one. Thus
once the Lagrangian L or equivalently the Hamiltonian H is givép,+ 9;(pv*) = 0 and

(1.22) uniquely determine the stochastic proagés w). Now suppose that some geomet-

ric structure is given on M so that the notion of scalar curvafife, ¢) of M is meaningful.

Then we assume (ad hoc) that the actual Lagrangian is

L(g,4,t) = Lc(g, d4,t) + v(h?/m)R(q, 1) (1.29)

wherey = (1/6)(n—2)/(n—1) withn = dim(M). Since bothL~ and R are independent
of i we havel. — L ash — 0.

Now for a differential manifold withis?> = g;;(q)dq'dq” it is standard that in a trans-
plantationg’ — ¢' + d¢° one hass A’ = T ,A’dq* with T, general affine connection
coefficients on M (Riemannian structure is not assumed). In [171] it is assumed that for
0 = (girA'AF)1/2 one hasé¢ = (¢,dq* where theg,, are covariant components of an
arbitrary vector (Weyl geometry). Then the actual affine connecfiypsan be found by
comparing this withs¢? = 5(g;x A*A*) and usinggA* = I , A*dq”. A little linear algebra
gives then

;ff == { kle } + gim(gmk(bf + gmﬂbk - gk@‘bm) (130)
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Thus we may prescribe the metric tenggr ard ¢; and determine via (1.30) the con-
nection coefficients. Note that,, = I, and for¢; = 0 one has Riemannian geometry.
Covariant derivatives are defined via

A{i‘ = 0 A% —THAY Ay, = 0iAL + T A (1.31)

for covariant and contravariant vectors respectively (witgre= 9;5). Note Ricci’'s lemma
no longer holds (i.e.g;x ¢ # 0) so covariant differentiation and operations of raising or
lowering indices do not commute. The curvature tenggy,  in Weyl geometry is intro-
duced viad’, , — A%, , = F' . ,A™ from which arises the standard formula of Riemannian
geometry v ;

Rippe = =00y + 01Tk + Thylg — Tii iy (1.32)
where (1.30) is used in place of the Christoffel symbols. The teﬁérg,ge obeys the same
symmetry relations as the curvature tensor of Riemann geometry as well as the Bianchi
identity. The Ricci symmetric tensak;;, and the scalar curvature R are defined by the
same formulas also, viZ2;, = R%,, andR = ¢'* R;;. For completeness one derives here

R=R+(n—1[(n—2)¢:i¢" —2(1//9)9%(/g¢")] (1.33)

whereR is the Riemannian curvature built by the Christoffel symbols. Thus from (1.30)
one obtains

R T N SUE Lo s s U B e

Since the form of a scalar is independent of the coordinate system used one may com-
pute R in a geodesic system where the Christoffel symbols addgil vanish; then (1.30)
reduces td'},, = ¢k} + ded;, — gred" and hence

R=—g""0,,Ty + 0i(¢"Thy) + g™ Ty Ty — g™ Ty Ty (1.35)

Further one hag®™I'! ,I'". = —(n — 2)(¢x¢") at the point in consideration. Putting
all this in (1.35) one arrives at

R=R+ (n—1)(n—2)(¢x¢") — 2(n — 1)0¢"* (1.36)

which becomes (1.33) in covariant form. Now the geometry is to be derived from phys-
ical principles so thep; cannot be arbitrary but must be obtained by the same averaged
least action principle (1.21) giving the motion of the particle. The minimum in (1.21) is
to be evaluated now with respect to the class of all Weyl geometries having arbitrarily var-
ied gauge vectors but fixed metric tensor. Note that once (1.29) is inserted in (1.20) the
only term in (1.21) containing the gauge vector is the curvature term. Then observing that
v > 0 whenn > 3 the minimum principle (1.21) may be reduced to the simpler form
E[R(q(t,w),t)] = min where only the gauge vectogs are varied. Using (1.33) this is
easily done. First a little argument shows th@t, t) = p(q,t)/,/g transforms as a scalar in
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a coordinate change and this will be called the scalar prabadénsity of the random mo-
tion of the particle (statistical determination of geometry). Starting filpp- 9;(pv') = 0
a manifestly covariant equation fgris found to bed;p + (1/,/9)0:(,/gv'p) = 0. Now
return to the minimum problen®'[R(q(t,w),t)] = min; from (1.33) andp = p/,/g one
obtains

E[R(q(t,w), 1)] = E[R(q(t,w), 1)+ (1.37)

+Hn=1) [ (= 26" ~ 200/ Va0 (0 (0.0 Vads
Assuming fields go to 0 rapidly enough o/ and integrating by parts one gets then

n—1

mszm—n_2

Elg"*8i(log ()0 (log(p)]+ (1.38)

+ 2B (¥ [0 — 201 + 0ilog ()] [(n — 26k + Billog )]}

Since the first two terms on the right are independent of the gauge vectaf*aisd
positive definiteE[R] will be a minimum when

¢i(q;t) = —=[1/(n — 2)|0i[log(p)(q,t)] (1.39)

This shows that the geometric properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the particle through the quantum
force f; = v(h?/m)0; R which according to (1.33) depends on the gauge vector and its
derivatives. It is this peculiar feedback between the geometry of space and the motion of
the particle which produces quantum effects.

In this spirit one goes now to a geometrical derivation of the SE. Thus inserting (1.39)
into (1.33) one gets

R = R+ (1/29v/$)[1/v/9)9:(v/99" O/ D)) (1.40)

where the valug¢n — 2)/6(n — 1) for v is used. On the other hand the HJ equation (1.20)
can be written as

oS + Hco(q, VS, t) —y(h*/m)R =0 (1.41)

where (1.29) has been used. When (1.40) is introduced into (1.41) the HJ equation and the
continuity equatiord;p + (1/\/§)(\/§v’ﬁ) = 0, with velocity field given by (1.22), form

a set of two nonlinear PDE which are coupled by the curvature of space. Therefore self
consistent random motions of the particle (i.e. random motions compatible with (1.35)) are
obtained by solving (1.41) and the continuity equation simultaneously. For every pair of
solutionsS(q, t, p(q,t)) one gets a possible random motion for the particle whose invariant
probability density isp. The present approach is so different from traditional QM that a
proof of equivalence is needed and this is only done for Hamiltonians of the form (1.28)
(which is not very restrictive). The HJ equation corresponding to (1.28) is

2
8t5 + ig”k(&S — A,)(@kS — Ak) +V - ’Yh—R =0 (142)
2m m
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with R given by (1.40). Moreover using (1.22) as well as (1.3®) ¢tontinuity equation
becomes

0ip + (1/my/9)0i[p/99™ (OrS — Ag)] = 0 (1.43)

Owing to (1.40), (1.42) and (1.43) form a set of two nonlinear PDE which must be
solved for the unknown functions S apd Now a straightforward calculations shows that,
setting

¥(g;t) = v/ pla, t)expl(i/h)S(q, t)], (1.44)
the quantityy) obeys a linear PDE (corrected from [171])

. ) 2
ihdy) = L { [ma“@ + Ai] g* (ihdy, + Ak)} Y+ [V — yh—R] 0 (1.45)
2m N{ m
where only the Riemannian curvatufe is present (any explicit reference to the gauge
vector ¢; having disappeared). (1.45) is of course the SE in curvilinear coordinates
whose invariance under point transformations is well known. Moreover (1.44) shows that
[¥|2 = p(q,t) is the invariant probability density of finding the particle in the volume ele-
mentd™q at time t. Then following Nelson’s arguments that the SE together with the density
formula contains QM the present theory is physically equivalent to traditional nonrelativis-
tic QM. One sees also from (1.44) and (1.45) that the time independent SE is obtained via
S = So(q) — Et with constant E angi(g). In this case the scalar curvature of space be-
comes time independent; since starting datg & meaningless one replaces the continuity
equation with a conditior],, 5(¢)\/gd"q = 1.

REMARK 1.6. We recall that in the nonrelativistic context the quantum potential has
the form@ = —(n?/2m)(9%\/p/\/p) (p ~ p here) and in more dimensions this corre-
sponds taQ = —(h?/2m)(A/p/\/p). Here we have a SE involving = /pexp|(i/h)S]
with corresponding HJ equation (1.42) which corresponds to the flat space 14
(s")2/2m +V + Q = 0 with continuity equatiord;p + 9(pS’ /m) = 0 (take A, = 0 here).

The continuity equation in (1.43) correspondsdk@ + (1/m./g)i[p\/39"" (01S)] = 0.
For A, = 0 (1.42) becomes

S + (1/2m)g*9;S0,S + V — ~v(h*/m)R = 0 (1.46)

This leads to an identificatio) ~ —~(h?/m)R where R is the Ricci scalar in the
Weyl geometry (related to the Riemannian curvature built on standard Christoffel symbols
via (1.33)). Herey = (1/6)[(n — 2)(n — 2)] as above which fon = 3 becomesy = 1/12;
further the Weyl fieldp; = —9;log(p). Consequently (see below).

PROPOSITION 1.2 For the SE (1.45) in Weyl space the quantum potential) is=
—(h?/12m) R where R is the Weyl-Ricci scalar curvature. For Riemannian flat sRaee)
this becomes via (1.40)

1 : 1A h? A
R=———0;g" 0k \/p ~ 5—\/5 Q= AV (1.47)

21V/p VP 2m /P
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as is should and the SE (1.45) reduces to the standard SE in tiveif@;y) =
—(R2/2m) A + Vap (A = 0). [ |

REMARK 1.7. In [172] (first paper) one begins with a generic 4-dimensional manifold
with torsion free connections and a metric tenggy (. = ¢ = 1 for convenience). Then
working with an average action principle based on [95] the particle motion and (Weyl)
spacetime geometry are derived in a gauge invariant manner (cf. Section 3.2). Thus an
integrable Weyl geometry is produced from a stochastic background via an extremization
procedure (see Section 3). An effective particle mass is takemn’as (R/6) ~ m?(1 +
Q) ~ mPexp(Q) corresponding taR/6 = —m?Q = —0,/p/\/p (hereh = ¢ = 1
and one has signatufe-, +, +, +) while the termexp(Q) arises from [182]). We refer to
[42, 43, 54, 55, 172] and Section 2 for details (for various other approaches see [188199]).

1.2 Fisher Information Revisited

We recall first that the classical Fisher information associated with translations of a 1-D
observable X with probability density?(x) (related to a quantum geometry probability

measurels” = 3_[(dp;)*/p;]) is
Fy = / dz P(x)([log(P(z)]')? > 0 (1.48)

(cf. [40, 43, 85, 96, 97, 98, 99, 160, 161]). One has a well known Cramer-Rao inequality
Var(X) > Fy' whereVar(X) ~ variance of X. A Fisher length for X is defined via
0X = F)}W and this quantifies the length scale over whigh) (or betterlog(p(x)))
varies appreciably. Then the root mean square devidtidnsatisfiesA X > §.X. Let now

P be the momentum observable conjugate to X, Bid classical momentum observable
corresponding to the stategiven viap.(z) = (h/2i)[(v' /1) — (¢’ /2)]. One has then the
identity < p >, =< py > following via integration by parts. Now define the nonclassical
momentum byp,,. = p — py and one shows then

AXAp > 6XAp > 0XApp. = h/2 (1.49)

Then consider a classical ensemble of n-dimensional particles of mass m moving under
a potential V. The motion can be described via the HJ and continuity equations

0s 1 9 opP Vs

E—F%’VS’ +V =0; EJrV'[PE}_O (1.50)
for the momentum potential and the position probability density P (note that there is no
guantum potential and this will be supplied by the information term). These equations
follow from the variational principlé L = 0 with Lagrangian

L= / dt 'z P [(s/0t) + (1/2m)|Vs]* + V] (1.51)
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Itis now assumed that the classical Lagrangian must be modifiedo the existence of
random momentum fluctuations. The nature of such fluctuations is immateria and one can
assume that the momentum associated with position x is given-byWs + N where the
fluctuation term N vanishes on average at each point x. Thus s changes to being an average
momentum potential. It follows that the average kinetic enetgyWs|> > /2m appearing
in the Lagrangian above should be replacedbys + N|? > /2m giving rise to

U:L+@mra/ﬁ<N3N>:L+@mﬁa/ﬁ@Nf (1.52)

whereAN =< N - N >1/2is a measure of the strength of the quantum fluctuations. The
additional term is specified uniquely, up to a multiplicative constant, by the three assump-
tions

1. Action principle: L’ is a scalar Lagrangian with respect to the fields P and s where
the principled L’ = 0 yields causal equations of motion. Thus

(AN)? = /d"wpf(P, VP,0P/0t,s,Vs,0s/0t,x,t)

for some scalar functiorf..

2. Additivity: If the system comprises two independent noninteracting subsystems with
P = P, P, then the Lagrangian decomposes into additive subsystem contributions;
thUSf =fi+ fo for P = P\ P.

3. Exact uncertainty: The strength of the momentum fluctuation at any given time is
determined by and scales inversely with the uncertainty in position at that time. Thus
AN — kAN for x — z/k. Moreover since position uncertainty is entirely charac-
terized by the probability density P at any given time the funciiozannot depend
on s, nor explicitly ont, nor ongP/ot.

This leads to the result that (cf. [40, 54, 96])

(ANP:c/w%PquPW (1.53)
where c is a positive universal constant. Furtherifer 2,/c and+y = v/ Pexp(is/h) the
equations of motion for p and s arising frahh’ = 0 areih%—f = —%V% + V.

A second derivation is given in [161, 161]. Thus i&ty*) be a probability density and
P(y* + Ay') be the density resulting from a small change in ghe Calculate the cross
entropy via

TP+ ) P = [ P+ By iog TS

) y ~ (1.54)
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1 1 JP(y') OP(y') ALk i ALk

~ [ = 4 . d"y| Ay'Ay® = L Ay'A
[2 / Ply) oy oyf) © YTV RV TSy

Thel;; are the elements of the Fisher information matrix. The most general expression

has the form OP(110) OP(27]07)
. 1 1 P(x"0") OP(x"|0"
I.(0") == —— . d" 1.55
() = 5 / P(zi|07) 963 agk ¢ " (1.55)
where P(z%|6%) is a probability distribution depending on paramet#rg addition to the

x'. For P(z%|6") = P(z' + 6") one recovers (1.54). If P is defined over an n-dimensional
manifold with positive inverse metrig?* one obtains a natural definition of the information

associated with P via

ik
, g 1 0P OP
I=¢%, =2 | = Z——q" 1.56
9= | Bagort Y (1.56)
Now in the HJ formulation of classical mechanics the equation of motion takes the form

oS 1 oS 0S
+ pny

ot 29 OxH Oxv

whereg"” = diag(1/m,--- ,1/m). The velocity fieldu* is given byu* = ¢"(9S/0z").
When the exact coordinates are unknown one can describe the system by means of a prob-
ability density P(¢, 2#) with [ Pd"z = 1 and

(OP/dt) + (9/9z")(Pg" (9S/0z") = 0 (1.58)

+V =0 (1.57)

These equations completely describe the motion and can be derived from the La-
grangian

Low = [ P{(0S/00) + (1/2)g" (05/0s)(05/00") + VY did'a (1.59)

using fixed endpoint variation in S and P. Quantization is obtained by adding a term propor-
tional to the information | defined in (1.56). This leads to

05 1 W{as 9S A 9P 9P

Low=Lop+M= [P{Z pogw | 2222 4 2 2 &
@M oLt / { ot T29 |owr o T P2 owr 0av

} + V} dtd"z
(1.60)

Fixed endpoint variation in S leads again to (1.58) while variation in P leads to

2
o5 1W[asas (1 oP 9P 2 apﬂﬂ/:o

2 Ozt Hxv P2 ozt dxv P Ozrox?

These equations are equivalent to the SE # +/Pexp(iS/h) with A = (2h)2.

REMARK 1.8. Following ideas in [55, 56, 139] we note in (1.60) foy, ~ A, =
Oulog(P) (cf. (1.39)) andP, = 9,5, a complex velocity can be envisioned leading to

0S oS A OP 8P>

(1.62)

P+ VAP = P2+ A2 ~ g =
[PutiVA4,| w AN I Gon oar P2 oak o0
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Further 1 in (1.56) is exactly known from,, soone has a direct connection between
Fisher information and the Weyl fieldl,, along with motivation for a complex velocityll

REMARK 1.9. Comparing now with [43] and quantum geometry in the fats =
Z(dp?/pj) on a space of probability distributions we can define (1.56) as a Fisher infor-
mation metric in the present context. This should be positive definite in view of its relation
to (AN)? in (1.53) for example. Now for) = Rexp(iS/k) one hasf ~ p here)

2/)// <p/> 2]
e (1.63)
4 4

in 1-D while in more dimensions we have a form~+ P)

B2 R B %2 82@ B K2
2n R~ 2m Jp  8m

2
1 o9oPorP 2 0°P } (1.64)

~ —2R2 g™ - - _-_~Z-
@ 2 [Pz Ozt Qxv P OxHOxV

as in (1.63) (arising from the Fisher metric | of (1.56) upon variation in P in the Lagrangian).
It can also be related to an osmotic velocity field= DViog(p) viaQ = (1/2)u?+ DV -u
connected to Brownian motion where D is a diffusion coefficient (cf. [56, 67, 86, 139]). For
¢, = —0,log(P) we have thent = —D¢ with Q = D?((1/2)(|u|? — V - ¢), expressing

Q directly in terms of the Weyl vector. This enforces the idea that QM is built into Weyl
geometry! |

2 Bohmian Mechanics and Weyl Geometry

From Chapters 1 and 2 we know something about Bohmian mechanics and the quantum
potential and we go now to the papers [178, 179, 180, 181, 182, 183, 185, 186] by A.
and F. Shojai to begin the present discussion (cf. also [2, 28, 29, 68, 129, 130, 163, 164,
165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 184, 187, 188]). for related work
from the Tehran school and [43, 55, 124, 147, 171, 172, 181] for linking of dBB theory
with Weyl geometry). In nonrelativistic deBroglie-Bohm theory the quantum potential is
Q = —(R%/2m)(V?|¥|/|¥|). The particles trajectory can be derived from Newton’s law

of motion in which the quantum force V(@ is present in addition to the classical force
—VV. The enigmatic quantum behavior is attributed here to the quantum force or quantum
potential (with¥ determining a “pilot wave” which guides the particle motion). Setting

U = /pexpliS/h] one has

05 _|vS]
ot 2m

+V—|—Q:0;@+V-<pv—5>20 (2.2)
ot m

The first equation in (2.1) is a Hamilton-Jacobi (HJ) equation which is identical to
Newton’s law and represents an energy condifids: (|p|?/2m) + V + Q (recall from HJ
theory—(0S/0t) = E(= H) andV.S = p). The second equation represents a continuity
equation for a hypothetical ensemble related to the particle in question. For the relativistic
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extension one could simply try to generalize the relativishergy equatiom,,, P* P =
2¢? to the form

NuwP*PY = m22(1+ Q) = M2c?; Q = (h?/m>c?)(0|¥|/|¥)) (2.2)
2 _ 0| R
M (1 oy > = —3 (2.3)

This could be derived e.g. by setting = /pexp(iS/h) in the Klein-Gordon (KG)
equation and separating the real and imaginary parts, leading to the relativistic HJ equation
NuwOtSo”S = M2c% (as in (2.1) - noteP* = —§“S) and the continuity equation is
du(po*S) = 0. The problem ofM? not being positive definite here (i.e. tachyons) is
serious however and in fact (2.2) is not the correct equation (see e.g. [180, 182, 185]).
One must use the covariant derivativég in place ofd, and for spin zero in a curved
background there results

V,.(pV*S) = 0; g"'V,SV,S = M (2.4)

To see this one must require that a correct relativistic equation of motion should not
only be Poincaré invariant but also it should have the correct nonrelativistic limit. Thus for
a relativistic particle of mas®t (which is a Lorentz invariant quantity)

2 = / AN(L/2)I(r) (e fAN) (dr AN (2.5)

is the action functional wherg is any scalar parameter parametrizing the path\) (it

could e.g. be the proper timg. Varying the path via-, — rL =r, + €, oOne gets

dr, de*  1dr, drt
I _ — B e Tl 1 4
Ql—>21_91+59l_91+/d>\[d)\ d)\+2d>\ d}\eyaim (2.6)
By least action the correct path satisfi®@s = 0 with fixed boundaries so the equation
of motion is

(d/dX\)(Muy,) = (1/2)u,u” 0,90, (2.7)
M(duy, /dN) = ((1/2)nm uau® — uyu, )0"M
whereu,, = dr,/dX\. Now look at the symmetries of the action functional ia- A + 6.
The conserved current is then the Hamiltonfar= —£ 4w, (0£/0u,) = (1/2)Mu,ut =
E. This can be seen by settingl = 0 where

g
0=0A=2A —A= /d)\[ uu“uaim—ki)ﬁuucfi)\ ) (2.8)

which means that the integrand is zero, i(é/d\)[(1/2)Mu,u"] = 0. Since the proper
time is defined ag?dr? = dr,dr* this leads tqdr/d)\) = \/(2E/Mc?) and the equation
of motion becomes

M(dv,,/d7) = (1/2)( 0 — v,0,)0" M (2.9)
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wherev,, = dr,/dr. The nonrelativistic limit can be derived by letting the particles velocity
be ignorable with respect to light velocity. In this limit the proper time is identical to the
time coordinater = ¢ and the result is that the = 0 component is satisfied identically via

(-~ 1)
2 1 2 2
zm% = 3PV = m (%) S v {%log (%)} (2.10)

wherey is an arbitrary mass scale. In order to have the correct limit the term in parenthesis
on the right side should be equal to the quantum potential so

M = pewp[—(A* /m*c)(V?|¥|/|¥])] (2.11)

The relativistic quantum mass field (manifestly invariant) it =
wexp[(h?/2m)(0|T|/|¥|)] and setting, = m we get

M = meap((h? /m*e)(O[¥|/|¥])] (2.12)

If one starts with the standard relativistic theory and goes to the nonrelativistic limit
one does not get the correct nonrelativistic equations; this is a result of an improper de-
composition of the wave function into its phase and norm in the KG equation (cf. also [27]
for related procedures). One notes here also that (2.12) leads to a positive definite mass
squared. Also from [180] this can be extended to a many patrticle version and to a curved
spacetime. In summary, for a particle in a curved background one has (cf. [182] which we
continue to follow)

AL
m2c2 ||

V.(pVH'S) = 0; ¢"'V,SV,S = M2c?; M? = m?e; Q= (2.13)
Since, following deBroglie, the quantum HJ equation (QHJE) in (2.13) can be written
in the form (m?/9M?)g"*'V .SV, S = m?c? the quantum effects are identical to a change
of spacetime metric
Guv — guu = (mz/mQ)g,uu (2-14)

which is a conformal transformation. The QHJE becomes g1/, SV, S = m?c?
where@u represents covariant differentiation with respect to the mefricand the con-
tinuity equation is thery,, V,(pV,S) = 0. The important conclusion here is that the
presence of the quantum potential is equivalent to a curved spacetime with its metric given
by (2.14). This is a geometrization of the quantum aspects of matter and it seems that there
is a dual aspect to the role of geometry in physics. The spacetime geometry sometimes
looks like “gravity” and sometimes reveals quantum behavior. The curvature due to the
guantum potential may have a large influence on the classical contribution to the curvature
of spacetime. The patrticle trajectory can now be derived from the guidance relation via
differentiation of (2.13) leading to the Newton equations of motion

>zt

WW + MIE u¥u” = (g™ — ulu” )V, M (2.15)
-



18 Robert Carroll

Using the conformal transformation above (2.15) reduceststindard geodesic equa-
tion.

Now a general “canonical” relativistic system consisting of gravity and classical matter
(no quantum effects) is determined by the action

1 h? m?
A= g [davmre [deygl (Goaspis-T0p) @19

wherex = 87G andc = 1 for convenience. It was seen above that via deBroglie the
introduction of a quantum potential is equivalent to introducing a conformal faxtoe

92 /m? in the metric. Hence in order to introduce quantum effects of matter into the action
(2.16) one uses this conformal transformation to get @ ~ exp(Q))

9 — i / '/ TGRO? — 6V,QVH0)+ (2.17)

4 2 4 4 = 2 hz D\/7

/dx\/_( 02V, 5VHS — me> /dw\/—_g)\{Q —( +_7>]
where a bar over any quantity means that it corresponds to the nonquantum regime. Here
only the first two terms of the expansion Mt? = m2exp(Q) in (2.13) have been used,
namelyd? ~ m?2(1 + Q). No physical change is involved in considering all the teris.
is a Lagrange multiplier introduced to identify the conformal factor with its Bohmian value.
One uses herg,, to raise of lower indices and to evaluate the covariant derivatives; the
physical metric (containing the quantum effects of matteg),js = ngu,,. By variation
of the action with respect tg,,, €2, p, S, and A one arrives at the following quantum
equations of motion;

1. The equation of motion fdn
_ 2 _ _
RO+ 600 + %pQ(VHSV“S —2m202) + 2kAQ = 0 (2.18)

2. The continuity equation for particlég, (pQ2V+S) =0

3. The equations of motion for particles (hefe= a)

_ h2 ap) o’
(V,SVHS — m?QH)Q2/p + 5 [D <%> — A%ﬂ =0 (2.19)

4. The modified Einstein equations fgy,

_ 1 _ _ _ _ .
0? [RW - igﬂ”R] 0D =V, V,]Q% =6V, QV,Q+37,, V.QVQ+ (2.20)
+ pQ2V SV,S — —pQ 29wV aSV®S + kmpQ* g, +
A

e () e (3] 2 p ] -
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5. The constraint equatidd® = 1 + (h%/m?)[(0/p)/\/7)

Thus the back reaction effects of the quantum factor on the background metric are con-
tained in these highly coupled equations. A simpler form of (2.8) can be obtained by taking
the trace of (2.20) and using (2.18) which produges: (h?/m?)V ,[A(V*\/p)/\/p)- A
solution of this via perturbation methods using the small parameter 2 /m? yields the
trivial solution A = 0 so the above equations reduce to

Vu(pQ?VHS) = 0; V,SVAS = m?Q% &, = —kT(7) — kT (2.21)

whereS,([’J) is the matter energy-momentum (EM) tensor and

90—V, V,]0% VOV, Q V. QVeQ
[ - Q2u ] +6 = 2 - 2g;w 792 (222)

Iigffll,) =
with Q% = 1+a(0,/p/,/p). Note that the second relation in (2.21) is the Bohmian equation
of motion and written in terms of,,,, it becomesv,,SV#S = m?c?.

REMARK 2.1. In the preceeding one has tacitly assumed that there is an ensemble
of quantum particles so what about a single particle? One translates now the quantum
potential into purely geometrical terms without reference to matter parameters so that the
original form of the quantum potential can only be deduced after using the field equations.
Thus the theory will work for a single particle or an ensemble. One notes that the use
of ¥y* automatically suggests or involves an ensemble if (or its square root) it is to be
interpreted as a probability density. Thus the idea that a particle has only a probability of
being at or near x seems to mean that some paths take it there but others don't and this is
consistent with Feynman’s use of path integrals for example. This seems also to say that
there is no such thing as a particle, only a collection of versions or cloud connected to the
particle idea. Bohmian theory on the other hand for a fixed energy gives a one parameter
family of trajectories associated o (see here [47, 50, 54] for details). This is because
the trajectory arises from a third order differential while fixing the solutioof the second
order stationary Schrodinger equation involves only two “boundary” conditions. As was
shown in [50] this automatically generates a Heisenberg inequalitthp > ch; i.e. the
uncertainty is built in when using the wave functigrand amazingly can be expressed by
the operator theoretical framework of quantum mechanics. Thus a one parameter family
of paths can be associated with the use)gf* and this generates the cloud or ensemble
automatically associated with the useyaf In fact (cf. Remark 3.2) one might conjecture
that upon using a wave function discription of quantum particle motion, one opens the door
to a cloud of particles, all of whose motions are incompletely governed by the SE, since
one determining condition for particle motion is ignored. Thus automatically the quantum
potential will give rise to a force acting on any such particular trajectory and the “ensemble”
idea naturally applies to a cloud of identical particles. |

REMARK 2.2. Now first ignore gravity and look at the geometrical properties of the
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conformal factor given via

m? O,./p 0,/|%
G = €y € = —5 =ewp (a%> = exp (a :'/% |> (2.23)

where¥ is the trace of the EM tensor and is substitutedddtrue for dust). The Einstein
tensor for this metric is

_ v aUpp
& = 49, 0pexp(—=X) + 2exp(—2%)0,0,exp(2X); ¥ = ZT (2.24)
P
Hence as an Ansatz one can suppose that in the presence of gravitational effects the
field equation would have a form

1
Ruw — §Rg,uu =K% + 49#V€ED€_E + 26_22Vﬂv1’€22 (2.25)

This is written in a manner such that in the lirdit,, — 0 one will obtain (2.23). Taking
the trace of the last equation one getR = T — 1203+ 24(VX)? which has the iterative
solutionkT = —R + 12a0[(0vR)/VR] leading to

5 oc af(@/[E]/VED] = ol(B/R])/V/RI) (2.26)

to first order ince. One goes now to the field equations for this toy model. First from the
above one sees thatcan be replaced bR in the expression for the quantum potential

or for the conformal factor of the metric. This is important since the explicit reference to
ensemble density is removed and the theory works for a single particle or an ensemble.
So from (1.32), (1.24) for a toy quantum gravity theory one assumes the following field
equations

G — KT — 3aperp (%cp) Vevlerp (—%@) —0 (2.27)

where3, a3 = 2[9uw9as — Juagvs] and® = (O+/|R|//|R|). The number 2 and the
minus sign of the second term are chosen so that the energy equation derived later will be

correct. Note that the trace of (2.27) is
R + KT + 6exp(ad/2)dexp(—a®/2) =0 (2.28)

and this represents the connection of the Ricci scalar curvature of space time and the trace
of the matter EM tensor. If a perturbative solution is admitted one can expand in powers of
ato findR® = —xT andRM = kT — 6exp(ad®/2)Dexp(—ad’/2) whered(©) =
D\/W/\/@. The energy relation can be obtained by taking the four divergence of the
field equations and since the divergence of the Einstein tensor is zero one obtains

a2

2
KV T, = AR, VY0 — =V, (V) + %V,@D@ (2.29)
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For a dust with,,, = pu,u, andu, the velocity field, the conservation of mass law
is V¥ (pMu,) = 0 so one gets to first order in V, /M = —(a/2)V,P or M? =
m2exp(—a®) wherem is an integration constant. This is the correct relation of mass and
quantum potential. |

In [182] there is then some discussion about making the conformal factor dynamical
via a general scalar tensor action (cf. also [176]) and subsequently one makes both the
conformal factor and the quantum potential into dynamical fields and creates a scalar tensor
theory with two scalar fields. Thus first start with a general action

A= / d*z\/—g [5257?, — wv“ﬂ;w‘z’ — V“QXMQ +2A0 + £, (2.30)

The cosmological constant generally has an interaction term with the scalar field and
here one uses an ad hoc matter Lagrangian

e, = %Qsav“sws —mpg® — A(1+ Q)° + ap(e’? — 1) (2.31)

(only the first two termsl + @ from exp(Q) are used for simplicity in the third term).
Herea, b, c are constants to be fixed later and the last term is chosen (heuristically) in such
a manner as to have an interaction between the quantum potential field and the ensemble
density (via the equations of motion); further the interaction is chosen so that it vanishes in
the classical limit but this is ad hoc. Variation of the above action yields

1. The scalar fields equation of motion

2
R+ %ng _ %v%vm oA (2.32)
1
+ 5 VHQV,Q + - pp* VISV ,S — mbpdt ! =0
¢ m

2. The quantum potential equations of motion
(0Q/9) — (V,QV*/d%) — Ac(1 4+ Q) ! + alpexp(£Q) = 0 (2.33)

3. The generalized Einstein equations

1 1
B — NG = —— T — —[VIVY — g O] + — VHGVY h— (2.34)
¢ o) ¢
_w HTOBN b+ iquvVQ _ b HTYQV o Q
2¢29 « ¢2 2¢2g [e}%

4. The continuity equatioi,,(p$?V#S) = 0
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5. The quantum Hamilton Jacobi equation

VISV S = m?¢"™" — ame™ (!9 — 1) (2.35)

In (2.32) the scalar curvature and the tevitiS'V S can be eliminated using (2.34) and
(2.35); further on using the matter Lagrangian and the definition of the EM tensor one has

2
(2w —3)0¢ = (a + 1)pa(e’@ — 1) — 2A(1 + Q)° + 2A¢ — aquV”Q (2.36)
(whereb = a 4 1). Solving (2.33) and (2.36) with a perturbation expansion ione finds
Q=Qo+aQi+ - ; d=1+aQi+; Vp=p+aypi+- (237

where the conformal factor is chosen to be unity at zeroth order so that-a$ (2.35) goes

to the classical HJ equation. Further since by (2.35) the quantum massis - - - the first

order term ing is chosen to b&); (cf. (2.13)). Also we will see tha®); ~ 0,/p/,/p plus
corrections which is in accord with Q as a quantum potential field. In any case after some
computation one obtains= 2wk, b=a+1,and! = (1/4)2wk +1) = (1/4)(a + 1) =

b/4 with Qo = [1/c(2¢ — 3)[{[—(2wk + 1)/2A]k\/pg — (2¢* — ¢ + 1)} while p, can be
determined (cf. [182] for details). Thus heuristically the quantum potential can be regarded
as a dynamical field and perturbatively one gets the correct dependence of quantum poten-
tial upon density, modulo some corrective terms.

REMARK 2.3. The gravitational effects determine the causal structure of spacetime
as long as quantum effects give its conformal structure. This does not mean that quantum
effects have nothing to do with the causal structure; they can act on the causal structure
through back reaction terms appearing in the metric field equations. The conformal factor
of the metric is a function of the quantum potential and the mass of a relativistic particle
is a field produced by quantum corrections to the classical mass. One has shown that the
presence of the quantum potential is equivalent to a conformal mapping of the metric. Thus
in different conformally related frames one feels different quantum masses and different
curvatures. In particular there are two frames with one containing the quantum mass field
and the classical metric while the other contains the classical mass and the quantum metric.
In general frames both the spacetime metric and the mass field have quantum properties so
one can state that different conformal frames are identical pictures of the gravitational and
guantum phenomena. We feel different quantum forces in different conformal frames. The
guestion then arises of whether the geometrization of quantum effects implies conformal
invariance just as gravitational effects imply general coordinate invariance. One sees here
that Weyl geometry provides additional degrees of freedom which can be identified with
guantum effects and seems to create a unified geometric framework for understanding both
gravitational and quantum forces. Some features here are: (i) Quantum effects appear in-
dependent of any preferred length scale. (ii) The quantum mass of a particle is a field. (iii)
The gravitational constant is also a field depending on the matter distribution via the quan-
tum potential (cf. [176, 183]). (iv) A local variation of matter field distribution changes the
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guantum potential acting on the geometry and alters it glpb#ie nonlocal character is
forced by the quantum potential (cf. [177]). |

2.1 Dirac-Weyl Action

Next (still following [182]) one goes to Weyl geometry based on the Weyl-Dirac action

A= [ doyTGEL "~ B VR (04 05,5 + Sater (239

Here F},, is the curl of the Weyl 4-vecto,,, o is an arbitrary constant and is a
scalar field of weight-1. The symbol “;” represents a covariant derivative under general
coordinate and conformal transformations (Weyl covariant derivative) defined, as-
WVMX — N, X whereN is the Weyl weight of X. The equations of motion are then

2
B = (T 4 M) + 5<g“”ananﬁ — WV )+ (2.39)

+%(4V”ﬁv”ﬁ — gV BVaB) + 5 (BB — %Q’Wﬁ”‘ﬁ;a);

g

7
1

VLY = So(B2" + BVMB) + Am T,

Wop (0
R=—(0+6)—— +00ad” — 0" Vg + -
(04 6)—5 + 060 6ot 35
where
MM = (1/4n)[(1/4)g" FOP F,5 — FIF™ (2.40)
and
1 5\/ _ggmatter 5£matter 5£matter
ITTHY = ; 16 JH = ;= 241
V=A™ 56, T o0 (241)

For the equations of motion of matter and the trace of the EM tensor one uses invariance
of the action under coordinate and gauge transformations, leading to
VH3

Wy, g T W™ — <¢“ - %5) WV 0 d%; (2.42)

167T — 167V V. J* — Bip = 0

The first relation is a geometrical identity (Bianchi identity) and the second shows the
mutual dependence of the field equations. Note that in the Weyl-Dirac theory the Weyl
vector does not couple to spinors gp cannot be interpreted as the EM potential; the
Weyl vector is used as part of the spacetime geometry and the auxillary field (gaug§ field)
represents the quantum mass field. The gravity figldeind¢,, and the quantum mass field
determine the spacetime geometry. Now one constructs a Bohmian quantum gravity which
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is conformally invariant in the framework of Weyl geometry. tie model has mass this
must be a field (since mass has non-zero Weyl weight). The Weyl-Dirac action is a general
Weyl invariant action as above and for simplicity now assume the matter Lagrangian does
not depend on the Weyl vector so thit = 0. The equations of motion are then

G = —Z—Z(SM” + M") + %(gWananﬁ - WYY g)+ (2.43)
1 oy 1 .
+@Mvwvw—gWVWVMU+%(ﬁ%w—gwwﬂ%>;
w
VLB = So( + BYI) R = ~(0 +6)— + 000" ~ oV V6, +
The symmetry conditions are
WY, —(VHB/6) = 0; 167T — B1p =0 (2.44)

(recallT = T/}7)). One notes that from (2.43) resultsv ,(82¢# + BV#3) = 0 s0¢,, is not
independent of.. To see how this is related to the Bohmian quantum theory one introduces
a quantum mass field and shows it is proportional to the Dirac field. Thus using (2.43) and
(2.44) one has

4 % o

Dﬂ + %572 = ?E + Uﬂ¢a¢a + 2(0’ — 6)¢7V76 + 5

This can be solved iteratively via

VHBY .3 (2.45)

3% = (87F/R) — {1/[(R/6) — 0¢ag|} OB + - -- (2.46)

Now assumingg”” = putu” (dust with® = p) we multiply (2.44) byu,, and sum to
get

V., (pu) = p(w, V' B/B) = 0 (2.47)
Then put (2.44) into (2.47) which yields

WVt = (1/8)(g" — )V, (2.48)

To see this write (assuming”’'V, 3 = V#73)

WY, (putu?) = WV, put + pu? WV Ut = (2.49)
o uﬂvuﬂ vW no_ Vﬂﬁ _ vW Mo Y Vﬂﬁ —
=u ( 3 +u”"" Vyu 5 =0=>u"V,u' = (1 —u'u,) 7=

V.0 V.0

(9" = wuug™) 2 = (g — uu)
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which is (2.47). Then from (2.46)

8T

) 3%
R )

320 = 323 = o (2.50)

L 1 OvV%
R (R/G) — 0PaP* ﬁ

Comparing with (2.15) and (2.3) shows that we have the correct equations for the
Bohmian theory provided one identifies
8rT 9 1

Bl g~ G G = (R6)

~a (2.51)

Thusg is the Bohmian quantum mass field and the coupling constéwhich depends
on h) is also a field, related to geometrical properties of spacetime. One notes that the
qguantum effects and the length scale of the spacetime are related. To see this suppose one
is in a gauge in which the Dirac field is constant; apply a gauge transformation to change
this to a general spacetime dependent function, i.e.

B =po — B(x) = Boexp(—E(x)); ¢u — ¢u + OuE (2.52)

Thus the gauge in which the quantum mass is constant (and the quantum force is zero)
and the gauge in which the quantum mass is spacetime dependent are related to one another
via a scale change. In particulgy, in the two gauges differ by-V,,(3/60) and sincep,, is
a part of Weyl geometry and the Dirac field represents the quantum mass one concludes that
the quantum effects are geometrized (cf. also (2.43) which shows thanot independent
of 3 so the Weyl vector is determined by the quantum mass and thus the geometrical aspect
of the manifold is related to quantum effects).

3 More on Klein Gordon Equations

We give several approaches here, from various points of view.

3.1 Bertoldi-Faraggi-Matone Theory

The equivalence principle (EP) of Faraggi-Matone (cf. [27, 44, 46, 51, 82]) is based on the
idea that all physical systems can be connected by a coordinate transformation to the free
situation with vanishing energy (i.e. all potentials are equivalent under coordinate trans-
formations). This automatically leads to the quantum stationary Hamilton-Jacobi equation
(QSHJE) which is a third order nonlinear differential equation providing a trajectory repre-
sentation of quantum mechanics (QM). The theory transcends in several respects the Bohm
theory and in particular utilizes a Floydian time (cf. [83, 84]) leading te p/mg # p/m
wheremg = m(1 — JgQ) is the “quantum mass” and Q the “quantum potential”. Thus
the EP is reminscient of the Einstein equivalence of relativity theory. This latter served as
a midwife to the birth of relativity but was somewhat inaccurate in its original form. It is
better put as saying that all laws of physics should be invariant under general coordinate
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transformations (cf. [146]). This demands that not only threnfbut also the content of the
equations be unchanged. More precisely the equations should be covariant and all absolute
constants in the equations are to be left unchanged {e/g.e, m andr,,, = Minkowski

tensor). Now for the EP, the classical picture with(q, Q°, t) the Hamilton principal func-

tion (p = 95 /9q) and P°, Q° playing the role of initial conditions involves the classical

HJ equation (CHIEHN (¢, p = (05%/9q),t) + (0S5 /9t) = 0. For time independent V one
writes S = Sg!(¢,Q°) — Et and arrives at the classical stationary HJ equation (CSHJE)
(1/2m) (0S5 /0q)? + 2 = 0 where2 = V(q) — E. In the Bohm theory one looked

at Schrodinger equationgy; = —(h?/2m)y" + Vi with ¢p = 1)(q)exp(—iEt/h) and

¥(q) = R(qexp(iW /h) leading to

1 W2 +V —E— PR 0; (R*W"Y =0 (3.1)
2m 2mR N '
whereQ = —h%2R"/2mR was called the quantum potential; this can be written in the

Schwartzian formQ = (h2/4m){W;q} (via R2W' = ¢). Here{f;q} = (f"/}) —
(3/2)(f"/f")%. Writing 20 = V(q) — E as in above we have the quantum stationary HJ
equation (QSHJE)

(1/2m)(OW’ /0q)* + W(q) + Q(q) = 0 = W = —(h? /4m){exp(2iSo/h);q}  (3.2)

This was worked out in the Bohm school (without the Schwarzian connectiong)but
Rexp(iW /h) is not appropriate for all situations and care must be takén= constant
must be excluded for example - cf. [82, 83, 84]). The technique of Faraggi-Matone (FM)
is completely general and with only the EP as guide one exploits the relations between
Schwarzians, Legendre duality, and the geometry of a second order differential operator
D? + V(x) (Mdbius transformations play an important role here) to arrive at the QSHJE in

the form
1 <<958 (¢")

2m 0q?

wherev : ¢ — ¢" represents an arbitrary locally invertible coordinate transformation.
Note in this direction for example that the Schwarzian derivative of the the ratio of two
linearly independent elements ker (D2 + V(z)) is twice V(z). In particular given an
arbitrary system with coordinateand reduced actiofiy(q) the system with coordinatg’
corresponding t&” — E = 0 involves23(q) = (¢°; ¢) where(¢°, ¢) is a cocycle term which
has the form(¢®; ¢°) = —(h?/4m){q%; ¢°}. In fact it can be said that the essence of the EP
is the cocycle conditon

2
) L 0(q) + () = 0 (3.3)

(4% ¢°) = (0geq")*[(¢": ") — (¢°: ¢")] (3.4)

In addition FM developed a theory dfc, ) duality (cf. [81])) which related the
space coordinate and the wave function via a prepotential (free energy) in the form
T = (1/2)y) + iX/e for example. A number of interesting philosophical points arise
(e.g. the emergence of space from the wave function) and we connected this to various
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features of dispersionless KdV in [44, 51] in a sort of extendédB spirit. One should

note here that although a forg = Reacp(iW/h) is not generally appropriate it is correct
when one is dealing with two independent solutions of the Schrodinger equatard

) which are not proportional. In this context we utilized some interplay between various
geometric properties of KdV which involve the Lax operafor = D? + V(z) and of
course this is all related to Schwartzians, Virasoro algebras, and vector fielgs (see

e.g. [44, 45, 51, 52, 53]). Thus the simple presence of the Schrodinger equation (SE) in
QM automatically incorporates a host of geometrical propertie® pf= d/dx and the

circle S*. In fact since the FM theory exhibits the fundamental nature of the SE via its
geometrical properties connected to the QSHJE one could speculate about trivializing QM
(for 1-D) to a study ofS' andd,.

We import here some comments based on [27] concerning the Klein-Gordon (KG) equa-
tion and the equivalence principle (EP) (details are in [27] and cf. also [72]). One starts
with the relativistic classical Hamilton-Jacobi equation (RCHJE) with a poteWitfal ¢)
given as

D

1

5 2 _(0k8(4,1))* + Wie(g, t) = 0; (3.5)
1

W, (g, t) = m?c* — (V(q,t) + 8,5%(q,1))?]

2mc?
In the time-independent case one ¥65q,t) = S§'(q) — Et and (3.3) becomes

[m*c* — (V(q) — E)?] (3.6)

D
1 cl\2 _ N —
—2 El (9 S —l— 0,1 = 0 Qﬂrel(q) = omc?

In the latter case one can go through the same steps as in the nonrelativistic case and
the relativistic quantum HJ equation (RQHJE) becomes

(1/2m)(VSo)? + W, — (K2/2m)(AR/R) = 0; V - (R?*VSy) =0 (3.7)
these equations imply the stationary KG equation
—R2AEAY + (Mt — V24 2EV — E*)p =0 (3.8)

wherey = Rexp(iSp/h). Now in the time dependent case the (D+1)-dimensional RCHJE
is (77”” = dlag(_lv 17 T 1)

(1/2m)n 9,59, 8" + 2., = 0; (3.9)

rer = (1/2me*)[m*c! = V2(q) — 2¢V (q)95 ()]

with ¢ = (ct,q1,- -+ ,qp). Thus (3.9) has the same structure as (3.6) with Euclidean metric
replaced by the Minkowskian one. We know how to implement the EP by adding Q via
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(1/2m)(8S)? + 2V, + Q = 0 (cf. [82] and remarks above). Note now ta._, depends
on S requires an identification

W, = (1/2me?)[m?c* — VZ(q) — 2¢V ()8 S(q)] (3.10)

(S replacing S°) and implementation of the EP requires that for an arbitfaF§ state
(¢ ~ ¢*) one must have

W, (¢") = (PP W% (") + (¢% ¢%); Q%(¢%) = (P [p")Q(¢®) — (¢%¢°)  (3.11)
where
®’lp) = "™ bl /" pupy) = p" I p/p np; Jh = 0" /0q"” (3.12)

(J is a Jacobian and these formulas are the natural multidimensional generalization - see [27]
for details). Furthermore there is a cocycle conditigh ¢¢) = (p°[p®)[(¢%: ¢°) — (¢%; ¢°)].

Next one shows thall,.; = (h?/2m)[0(Rexp(iS/h))/Rexp(iS/h)] and hence the
corresponding quantum potentiak@s.; = —(h%/2m)[0R/R]. Then the RQHJE becomes
(1/2m)(08)? + W,er + Q@ = 0 with 9 - (R%29S) = 0 (heredR = §,0"R) and this
reduces to the standard SE in the classical limit oo (noted ~ (g, 01, -+ ,0p) with
qo = ct, etc. - cf. (3.9)). To see how the EP is simply implemented one considers the so
called minimal coupling prescription for an interaction with an electromagnetic four vector
A,,. Thus setP¢ = p¢! + eA,, wherep!! is a particle momentum anBS' = 9,5 is the
generalized momentum. Then the RCHJE readd g&m) (05 — eA)? + (1/2)mc? = 0
whereAy = —V/ec. Then2J = (1/2)mc? and the critical casgl = 0 corresponds to the
limit situation wherem = 0. One adds the standard Q correction for implementation of the
EP to get(1/2m)(9S — eA)* + (1/2)mc? + Q = 0 and there are transformation properties
(here(dS — eA)? ~ >2(0,5 — eA,)?)

W(q") = P’p")W"(¢*) + (¢ 4"); Q°(¢") = (Pp")Q"(¢*) — (¢";¢")  (3.13)

by P —eA)?  (p—eA)"InJ" (p—eA)
(p ‘p) = (p — 6A)2 - (p— eA)Tn(p —eA)

Here J is a Jacobiai, = 0¢*/0¢®" and this all implies the cocycle condition again.
One finds now that (recall - (R?(9S — eA)) = 0 - continuity equation)

OR  D?*(Re™S/M i
(85 — 614)2 = FL2 (F — W 5 DN = (% — ﬁ@Au (314)

and it follows that

B h2 D2(ReiS/h). h2 DR'

e _ 2ie A0 B e A2 B 1e0A
2m  ReiS/h 7 29m R

h h? h

(3.15)
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O
(05 — eA)? + m?c? — rﬁfR =0; 0-(R*0S —eA)) =0 (3.16)

Note also that (3.9) agrees wiflh/2m) (95 — eA)? + (1/2)mc? = 0 after setting
2,; = mc?/2 and replacing,, S¢ by 9,5 — eA,,. One can check that (3.16) implies the
KG equation(ihd + eA)?y + m2c?yp = 0 with ¢p = Rexp(iS/h).

REMARK 3.1. We extract now a remark about mass generation and the EP from [19].
Thus a special property of the EP is that it cannot be implemented in classical mechanics
(CM) because of the fixed point correspondingZtb= 0. One is forced to introduce a
uniquely determined piece to the classical HJ equation (namely a quantum potential Q). In
the case of the RCHJE the fixed poiii(¢°) = 0 corresponds tan = 0 and the EP then
implies that all the other masses can be generated by a coordinate transformation. Conse-
guently one concludes that masses correspond to the inhomogeneous term in the transfor-
mation properties of they? state, i.e.(1/2)mc? = (¢°; q). Furthermore by (3.13) masses
are expressed in terms of the quantum poterti#R)mc? = (p|p°)Q°(¢°) — Q(g). In
particular in [82] the role of the quantum potential was seen as a sort of intrinsic self en-
ergy which is reminiscent of the relativistic self energy and this provides a more explicit
evidence of such an interpretation. |

REMARK 3.2. In a previous paper [47] (working with stationary states gndat-
isfying the Schrodinger equation (SE)A2/2m)y"” + Vi = Ev)) we suggested that the
notion of uncertainty in guantum mechanics (QM) could be phrased as incomplete informa-
tion. The background theory here is taken to be the trajectory theory of Bertoldi-Faraggi-
Matone-Floyd as above and the idea in [47] goes as follows. First recall that Floydian
microstates satisfy a third order quantum stationary Hamilton-Jacobi equation (QSHJE)

1

2
5= (S0)? + 20(a) + Qla) = 0; Qo) = 1 {So:a} 317)

2
W(a) = 1 {eap(2iSo/R)sa} ~ V(o) ~ B

where{f;q} = (f"/f")— (3/2)(f"/f")? is the Schwarzian an8 is the Hamilton princi-

ple function. Also one recalls that the EP of Faraggi-Matone can only be implemented when
So # const; thus consider) = Rexp(iSy/h) with Q@ = —h?R"/2mR and(R2S))) = 0
whereS{, = p andmg¢ = p with mg = m(1 — 9gQ) andt ~ 9gSy. Thus microstates
require three initial or boundary conditions in general to determinehereas the SE in-
volves only two such conditions. Hence in dealing with the SE in the standard QM Hilbert
space formulation one is not using complete information about the “particles” described
by microstate trajectories. The price of underdetermination is then uncertaigty,in

for example. In the present note we will make this more precise and add further discus-
sion. Following [50] we now make this more precise and add further discussion. For the
stationary SE-(h?/2m)y" + Vi = E1 it is shown in [82] that one has a general formula

2iS0(0)/h _ ez’az 1: zi (3.18)
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(6 ~ (a, £)) with three integration constants, /1, /> wherel = ¢; +ily andw ~ P /4 €
R. Notew and«? are linearly independent solutions of the SE and one can arrange that
YP /1 € R in describing any situation. Hegeis determined by the two constantsfiand

has a form
+hQ

P — ity
(Wherew ~ P /+) above and) = ¢/¢P — 4(y”)"). Now let p be determined exactly
with p = p(q, E) via the Schrodinger equation a$fj. Theng = (9gp)~" is also exact
soAg = (Ogp)~t(r)At for somer with 0 < 7 < t is exact (up to knowledge of).
Thus given the wave function satisfying the stationary SE with two boundary conditions
atq = 0 say to fix uniqueness, one can create a probability demgify(q, £) and the
function S{. This determineg uniquely and hence. The additional constant needed for
Sp appears in (3.18) and we can wriig = Sy(«, g, F) since from (3.18) one has

So — (h/2)ac = —(ih/2)log () (3.20)

andg = (w+if)/(w—if) with w = ¥ /2 is to be considered as known via a determination
of suitabley, ¢. Henced, Sy = —h/2 and consequenthASy ~ 9,500 = —(h/2)Aa
measures the indeterminacy.$p.

p (3.19)

Let us expand upon this as follows. Note first that the determination of constants nec-
essary to fixS, from the QSHJE is not usually the same as that involved in fixingin
(3.18). In paricular differentiating in q one gets

G 2R’
5o = B’ F= (w — if)>

Sincew’ = —Q/y? whereQ = /P — (yP) we getd = —2it1Q/(pP — ile)?

and consequently

(3.21)

, he1Q2

Sp = “T0D il (3.22)
which agrees with p in (3.194{#% simply indicates direction). We see that eSj(xo) =
ihe1Q) | WP (z0) — ilab(x0)|? = f (41,2, 0) andSY = g(¢1, {2, 7o) determine the relation
between(p(zo), p’'(z0)) and(¢1, ¢2) but they are generally different numbers. In any case,
taking « to be the arbitrary unknown constant in the determinatio&fwe haveS,; =
So(g, E, ) with ¢ = ¢q(Sp, E, ) andt = t(Sp, E, ) = 9pSy (emergence of time from
the wave function). One can then write e.g.

Aq = (9g/9S0) (S, E, @) ASy = (1/p)(4, E)ASy = —(1/p)(d, E)(h/2)Aa (3.23)

(for intermediate valuesSp, §)) leading to

THEOREM 3.1 With p determined uniquely by two “initial” conditions so thalp is
determined and g given via (3.18) we have from (3.23) the inequalitthq = O(/) which
resembles the Heisenberg uncertainty relation.
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COROLLARY 3.1 Similarly At = (9t/0S0) (S0, E, ) AS, for some intermediate value
Sp and hence as befotk EAt = O(h) (AE being precise).

Note that there is no physical argument here; one is simply looking at the number of
conditions necessary to fix solutions of a differential equation. In fact (based on some cor-
resondence with E. Floyd) it seems somewhat difficult to produce a physical argument. We
refer also to Remark 3.1.2 for additional discussion. |

REMARK 3.3. In order to get at the time dependent SE from the BFM (Bertoldi-
Faraggi-Matone) theory we proceed as follows. From the previous discussion on the
KG equation one sees that (dropping the A terms) in the time independent case one has
S(q,t) = S§'(q) - Bt

D
(1/2m) > " (OkS§)? + Wrey = 0; Wyai(q) = (1/2me*)[m*c* — (V(g) — E)?] (3.24)
1

leading to a stationary RQHJE
(1/2m)(VSo)? + Wit — (B /2m)(AR/R) = 0; V - (R*VS)) =0 (3.25)
This implies also the stationary KG equation
—R2EAY + (M — V24 2VE - E?)Yp =0 (3.26)

Now in the time dependent case one can wfitg2m)n** 9,59, 5 + W', = 0

wheren ~ diag(—1,1,--- ,1) and
rer(@) = (1/2me?)[m?c* = V3(q) - 2¢V ()95 (q)] (3.27)

with ¢ = (ct, q1,- - ,gp). Thus we have the same structure as (3.24) with Euclidean metric
replaced by a Minkowskian one. To implement the EP we have to modify the classical
equation by adding a function to be determined, nanigf2m)(05)? + W, + Q = 0
((0S)? ~ 32(9,5)% etc.). Observe that sin@’. ; depends ot we have to make the
identification?0,; = (1/2mc?)[m?c* — V2(q) — 2¢V (q)90.S(g)] which differs from20
sinceS now appears instead 6F'. Implementation of the EP requires that for an arbitrary
2 state

W (q") = (P°Ip")We(a*) + (6% ¢"); Q%(d") = (P*Ip")Q"(¢") — (¢“;4")  (3.28)
where now(p®|p) = n*pbpl /n* pupy = p* InJ p/p p and JY = dq*/0(¢")". This
leads to the cocycle conditid®; ¢°) = (p°|p°)[(¢; ¢°) — (¢°: ¢*)] as before. Now consider
the identity

o?(05)? = O(Rexp(aS))/Rexp(aS) — (OR/R) — (ad - (R*0S)/R?) (3.29)



32 Robert Carroll

and if R satisfies the continuity equation (R20S) = 0 one setsy = i/h to obtain

i(as)Z B h2 D(ReiS/h) ’:LZ OR

_— 3.30
2m 2m  ReS/h om R ( )

Then it is shown tha®l,..; = (A%/2m)(0(Rexp(iS/h))/Rexp(iS/h) so there results
Qre = —(R%/2m)(0R/R). Thus the RQHJE has the form (cf. (3.14) - (3.16))

1
2m

2 W* OR . 2 _
((95) +Qnre[ - %7 — 0, (9 (R 85) =0 (331)

Now for the time dependent SE one takes the nonrelativistic limit of the RQHJE.
For the classical limit one makes the usual substitufor= S’ — mc?t so asc — oo
W, — (1/2)me? +V and —(1/2m)(0p5)* — 9,.S" — (1/2)mc? with (R?0S) =
0 — md(R)? + V- ((R)?VS') = 0. Therefore (removing the primes) (3.31) becomes
(1/2m)(VS)? +V +8:S — (h%/2m)(AR/R) = 0 with the time dependent nonrelativistic
continuity equation beingud; R*+V-(R?V S) = 0. This leads then (fop) ~ Rexp(iS/h))
to the SE

2
ihop) = <—2h—mA + V) " (3.32)

One sees from all this that the BFM theory is profoundly governed by the equivalence
principle and produces a usable framework for computation. It is surprising that it has not
attracted more adherents. |

3.2 Klein Gordon a La Santamato

The derivation of the SE in [171] (treated in Section 1.1) was modified in [172] to a deriva-
tion of the Klein-Gordon (KG) equation via a somewhat different average action principle.
Recall that the spacetime geometry in [171] was obtained from the average action principle
to obtain Weyl connections with a gauge field (thus the geometry had a statistical ori-
gin). The Riemann scalar curvatufewas then related to the Weyl scalar curvature R via
an equation

R=R—3[(1/2)g" ¢udv + (1/V/=9)0u(vV—99" )] (3.33)

Explicit reference to the underlying Weyl structure disappears in the resulting SE and
we refer to Remark 1.7 for a few comments (cf. also [55] for an incisive review). We re-
call also here from [156, 157, 158, 159] (cf. [42, 43, 54]) that in the conformal geometry
the particles do not follow geodesics of the conformal metric alone; further the work in
[156, 157, 158, 159] is absolutely fundamental in exhibiting a correct framework for gen-
eral relativity via the conformal (Weyl) version. Summarizing from [171] and the second
paper in [172] one can say that traditional QM is equivalent (in some sense) to classical
statistical mechanics in Weyl spaces. The moral seems to be (loosly) that quantum me-
chanics in Riemannian spacetime is the same as classical statistical mechanics in a Weyl
space. In particular one wants to establish that traditional QM, based on wave equations
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and ad hoc probability calculus is merely a convenient matkieadaonstruction to over-

come the complications arising from a nontrivial spacetime geometric structure. Here one
works from first principles and includes gauge invariance (i.e. invariance with respect to an
arbitrary choice of the spacetime calibration). The spacetime is supposed to be a generic
4-dimensional differential manifold with torsion free connectidt}s, = I'}, and a metric
tensorg,,,, with signature(+, —, —, —) (one takesh = ¢ = 1). Here the (restrictive) hypoth-

esis of assuming a Weyl geometry from the beginning is released, both the particle motion
and the spacetime geometric structure are derived from a single average action principle. A
result of this approach is that the spacetime connections are forced to be integrable Weyl
connections by the extremization principle.

The particle is supposed to undergo a motion in spacetime with deterministic trajecto-
ries and random initial conditions taken on an arbitrary spacelike 3-dimensional hypersur-
face; thus the theory describes a relativistic Gibbs ensemble of particles (cf. [95, 172] for
all this in detail and see also [54]). Both the particle motion and the spacetime connections
can be obtained from the average stationary action principle

5 [E ( / " L(x(f,ﬁc(T))dTﬂ —0 (3.34)

T1

This action integral must be parameter invariant, coordinate invariant, and gauge invari-
ant. All of these requirements are met if L is positively homogeneous of the first degree
in £# = dz*/dr and transforms as a scalar of Weyl typ¢L) = 0. The underlying
probabiity measure must also be gauge invariant. A suitable Lagrangian is then

L(z,dz) = (m? — (R/6))'/?ds + A, dz" (3.35)

whereds = (guua'c“ﬁc”)l/ 2dr is the arc length and R is the space time scalar curvature;
m is a parameterlike scalar field of Weyl type (or weight)n) = —(1/2). The factor 6

is essentially arbitrary and has been chosen for future convenience. The vectot field
can be interpreted as a 4-potential due to an externally applied EM field and the curvature
dependent factor in front afs is an effective particle mass. This seems a bit ad hoc but
some feeling for the nature of the Lagrangian can be obtained from Section 1.1 (cf. also
[18]). The Lagrangian will be gauge invariant provided thehave Weyl typaw(A4,,) = 0.

Now one can split4,, into its gradient and divergence free pats = A, — 9,5, with

both S and A, having Weyl type zero, and witt,, interpreted as and EM 4-potential

in the Lorentz gauge. Due to the nature of the action principle regarding fixed endpoints
in variation one notes that the average action principle is not invariant under EM gauge
transformationsd,, — A, + 9,5, but one knows that QM is also not invariant under EM
gauge transformations (cf. [7]) so there is no incompatability with QM here.

Now the set of all spacetime trajectories accessible to the particle (the particle path
space) may be obtained from (3.34) by performing the variation with respect to the particle
trajectory with fixed metric tensor, connections, and an underlying probability measure.



34 Robert Carroll

Thus (cf. [54, 95, 172]) the solution is given by the so-calleda@héodory complete figure
associated with the Lagrangian

L(z,dz) = (m? — (R/6))?ds + A, dz" (3.36)

(note this leads to the same equations as (3.35) since the Lagrangians differ by a total differ-
ential dS). The resulting complete figure is a geometric entity formed by a one parameter
family of hypersurfaces$(x) = const. whereS satisfies the HJ equation

_ _ s R

9”008 = 4,0, = A) =m® - = (3.37)

and by a congruence of curves intersecting this family given by

dzt g (0,8 — A)

ds  [g77(0,8 — A,)(055 — Ag)|1/2 (3.38)

The congruence yields the actual particle path space and the underlying probability
measure on the path space may be defined on an arbitrary 3-dimensional hypersurface in-
tersecting all of the members of the congruence without tangencies (cf. [95]). The measure
will be completely identified by its probability current density (see [54, 172]). More-
over, since the measure is independent of the arbitrary choice of the hypersyitfanest
be conserved, i.e),j* = 0. Since the trajectories are deterministically defined by (3.38),

j* must be parallel to the particle 4-velocity (3.38), and hence

i* = pv=g9" (0,5 — A,) (3.39)

with somep > 0. Now gauge invariance of the underlying measure as well as of the
complete figure requires thgt transforms as a vector density of Weyl typéj*) = 0 and

S as a scalar of Weyl type(S) = 0. From (3.39) one sees then thatransforms as a
scalar of Weyl typev(p) = —1 andp is called the scalar probability density of the particle
random motion.

The actual spacetime affine connections are obtained from (3.34) by performing the
variation with respect to the fieldéﬁl, for a fixed metric tensor, particle trajectory, and
probability measure. It is expedient to tranform the average action principle to the form of
a 4-volume integral

0 [ / d*a(m® — (R/6))(gu3"i"]"/* + Aw*‘] =0 (3.40)
Q
where(Q is the spacetime region occupied by the congruence (3.38)j/anmsl given by

(3.39) (cf. [54, 172] for proofs). Since the connection fidltfg are contained only in the
curvature term R the variational problem (3.40) can be further reduced to

) [ / pR\/—_gd‘lx} =0 (3.41)
Q
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(here the HJ equation (3.37) has been used). This states ¢havdhage spacetime curva-
ture must be stationary under a variation of the fidrg§ (principle of stationary average
curvature). The extremal connectioﬁ%w arising from (3.41) are derived in [172] using
standard field theory techniques and the result is

A 1
Fi\w = { v } + 5(‘15#51)/\ + ¢1/52 - g,uuQAPQSp); ¢,u = a,ulog(P) (3.42)

This shows that the resulting connections are integrable Weyl connections with a gauge
field ¢, (cf. [171] and Sections 1.1-1.2). The HJ equation (3.37) and the continuity equation
d,g* = 0 can be consolidated in a single complex equation for S, namely

e®g" (iD, — A,)(iD, — A,)e™™ — (m* — (R/6)) = 0; Dup =0 (3.43)

Here D, is (doubly covariant - i.e. gauge and coordinate invariant) Weyl derivative
given by (cf. [18])

D,T% = 8,T% +T%.T% — T, sT% + w(T)$,T% (3.44)

It is to be noted that the probability density (but not the rest mass) remains constant
relative toD,,. When written out (3.43) for a set of two coupled partial differential equations
for p andS. To any solution corresponds a particular random motion of the particle.

Next one notes that (3.43) can be cast in the familiar KG form, i.e.

[(i/v/=9)0uv/—9 — Au)g" (10, — A — (m® — (R/6))) = 0 (3.45)

wherey = | /pexp(—iS) and R is the Riemannian scalar curvature built outgpf only.
We have the (by now) familiar formula

R=R—3[(1/2)g" ¢udv + (1/V/=9)0u(vV—99" ¢1)] (3.46)

According to point of view(A) above in the KG equation (3.45) any explicit reference to
the underlying spacetime Weyl structure has disappeared; thus the Weyl structure is hidden
in the KG theory. However we note that no physical meaning is attributetldoto the
KG equation. Rather the dynamical and statistical behavior of the particle, regarded as a
classical particle, is determined by (3.43), which, although completely equivalent to the KG
equation, is expressed in terms of quantities having a more direct physical interpretation.

REMARK 3.4. The formula (3.46) goes back to Weyl [198] and the connection of
matter to geometry arises from (3.42). The time variable is treated in a special manner here
related to a Gibbs ensemble and- 0 is built into the theory. |
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3.3 Klein Gordon via Scale Relativity

In [40, 54] and Section 1.1 we sketched a few developments in the theory of scale relativity.
This is by no means the whole story and we want to give a taste of some further main
ideas while deriving the KG equation in this context (cf. [3, 58, 64, 65, 66, 139, 140,
141, 142, 143, 144, 145]). A main idea here is that the Schrodinger, Klein-Gordon, and
Dirac equations are all geodesic equations in the fractal framework. They have the form
D?/ds*> = 0 where D/ds represents the appropriate covariant derivative. The complex
nature of the SE and KG equaton arises from a discrete time symmetry breaking based on
nondifferentiability. For the Dirac equation further discrete symmetry breakings are needed
on the spacetime variables in a biquaternionic context (cf. here [58]). First we go back
to [139, 140, 144] and sketch some of the fundamentals of scale relativity. This is a very
rich and beautiful theory extending in both spirit and generality the relativity theory of
Einstein (cf. also [57] for variations involving Clifford theory). The basic idea here is that
(following Einstein) the laws of nature apply whatever the state of the system and hence the
relevant variables can only be defined relative to other states. Standard scale laws of power-
law type correspond to Galilean scale laws and from them one actually recovers quantum
mechanics (QM) in a nondifferentiable space. The quantum behavior is a manifestation of
the fractal geometry of spacetime. In particular the quantum potential is a manifestation of
fractality in the same way as the Newton potential is a manifestation of spacetime curvature.
In this spirit one can also conjecture (cf. [144]) that this quantum potential may explain
various dynamical effects presently attributed to dark matter (cf. also [6]). Now for the KG
equation via scale relativity the derivation in the first paper of [58] seems the most concise
and we follow that at first (cf. also [140]). All of the elements of the approach for the
SE remain valid in the motion relativistic case with the time replaced by the proper time
s, as the curvilinear parameter along the geodesics. Consider a small increxiteat a
nondifferentiable four coordinate along one of the geodesics of the fractal spacetime. One
can decompose this in terms of a large scale pait< dX* >= dz = v,ds and a
fluctuationdé# such thatL S < dé# >= 0. One is led to write the displacement along a
geodesic of fractal dimensiab = 2 via

dXY = dya” + deff = vlids + ufvV/2Dds"/? (3.47)

Hereu!, is a dimensionless fluctuation andd the length se@lds introduced for di-
mensional purposes. The large scale forward and backward derivédfiwes andd/ds_

are defined via p F(s 1 85) — £(s)
. — s+0s)— f(s
Ef(s) = lzms_,oiLS< 5s >
Applied toz* one obtains the forward and backward large scale four velocities of the
form

(3.48)

(d/dxy)at(s) = vl (d/ds_ )t = vt (3.49)

Combining yields

d 1/ d d i d d
a1 _ifd 4, 3.50
ds 2 <ds+ + ds_> 2 <ds+ ds_> ’ (3:50)
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d ol 4ot ot — o
H— P — n_gTTH — + - + —
% dsx Vv U 5 7 5

For the fluctuations one has

LS < dehidey >= F2DnM"ds (3.51)

One chooses heret, —, —, —) for the Minkowski signature forn*” and there is a
mild problem because the diffusion (Wiener) process makes sense only for positive definite
metrics. Various solutions have been given and they are all basically equivalent, amounting
to the transformatin a Laplacian into a D’Alembertian. Thus the two forward and backward
differentials of f (x, s) should be written as

(df /ds=) = (05 + V20, F DO*D,) (3.52)

One considers now only stationary functions f, not depending explicitly on the proper
time s, so that the complex covariant derivative operator reduces to

(d'/ds) = (V* +iDO")d, (3.53)

Now assume that the large scale part of any mechanical system can be characterized by
a complex actior® leading one to write

b
06 = —mc5/ ds =0; ds = LS < \/dXvdX, > (3.54)

This leads t&d& = —mc ff V,d(6x") with 6z¥ = LS < dXV >. Integrating by parts
yields

b
66 = —[meoz’]’ + mc/ dz¥(dV,,/ds)ds (3.55)
a

To get the equations of motion one has to deterndiGe= 0 between the same two
points, i.e. at the limit§oz"), = (dz="), = 0. From (3.55) one obtains then a differential
geodesic equatiod)’/ds = 0. One can also write the elementary variation of the action as
a functional of the coordinates. So consider the point a as fix¢th39, = 0 and consider
b as variable. The only admissable solutions are those satisfying the equations of motion
so the integral in (3.55) vanishes and writit@x"” ), asoz” givesd& = —mcV,dz” (the
minus sign comes from the choice of signature). The complex momentum is now

P, =mceV, = -0,6 (3.56)

and the complex action completely characterizes the dynamical state of the particle. Hence
introduce a wave functiogh = exp(i&/S) and via (3.56) one gets

V, = (169 /me)d,log () (3.57)
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Now for the scale relativistic prescription replace the den#e ind/ds by its covariant
expression!’ /ds. Using (3.57) one transform&’/ds = 0 into

62 SoD
0 0"10g ()00, log (V) — =

The choiceGy = h = 2mcD allows a simplification of (3.58) when one uses the

identity
% (apz”ﬂ)> = (@Llog(?ﬂ) + %QL) 0*9"1log(v) (3.59)

Dividing by D? one obtains the equation of motion for the free part@§* o, /¢] =
0. Therefore the KG equation (no electromagnetic field) is

" + (m*c /W) =0 (3.60)

0"0,,0,log()) =0 (3.58)

mc

and this becomes an integral of motion of the free particle provided the integration constant
is chosen in terms of a squared mass terfa? /42, Thus the quantum behavior described

by this equation and the probabilistic interpretation giveryts reduced here to the de-
scription of a free fall in a fractal spacetime, in analogy with Einstein's general relativity.
Moreover these equations are covariant since the relativistic quantum equation written in
terms ofd’/ds has the same form as the equation of a relativistic macroscopic and free
particle usingd/ds. One notes that the metric form of relativity, namélyV,, = 1 is not
conserved in QM and it is shown in [155] that the free particle KG equation expressed in
terms of) leads to a new equality

VIV, + 2DV, = 1 (3.61)

In the scale relativistic framework this expression defines the metric that is induced by
the internal scale structures of the fractal spacetime. In the absence of an electromagnetic
field V* and G are related by (3.56) which can be writen3s= —(1/mc)0,& so (3.61)
becomes

M"G0,6 — 2imcDI*9,6 = m*c? (3.62)

which is the new form taken by the Hamilton-Jacobi equation.

REMARK 3.5. We go back to [140, 155] now and repeat some of their steps in a
perhaps more primitive but revealing form. Thus one omits s notation and uses
A ~ 2D; equations (3.47) - (3.53) and (3.50) are the same and one write® fibwfor
d’'/ds. Thend/ds = V9, + (i\/2)0"0,, plays the role of a scale covariant derivative and
one simply takes the equation of motion of a free relativistic quantum particle to be given as
(d/ds)V” = 0, which can be interpreted as the equations of free motion in a fractal space-
time or as geodesic equations. In fact n@yds)V” = 0 leads directly to the KG equation
upon writingy = exp(i&/meA) andPH = —0*S = mcV* so thati& = meAlog() and
VH = iAd*log(v). Then

o

(wau + %aﬂau> 9"log(¥)) = 0 = i) (7@ + %aﬂau> 9" log(v)  (3.63)
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Now some identities are given in [155] for aid in calculatiomehaamely
8%8”6% _ away <8u¢> _
(G (G (G (G
o+ ¢(9M¢> <8“1,Z)> ot Op OO
8 Oy =
< b0 )T e T T

The first term in the last equation of (3.63) is they2)[(0" /) (0, /4)] and the
second is

(3.64)

(1/2)0"0,0"1og(4) = (1/2)0"9" 0, log(1)) = (3.65)
= /2009, loglw) = (17200 (L - LU
Combining we get(1/2)9" (0*0,v /1) = 0 which integrates then to a KG equation

—(R*/m*c*) 0 O = 1 (3.66)
for suitable choice of integration constant (nagenc is the Compton wave length).

Now in this context or above we refer back to Section 3.1 for example and @rite
—(1/2m)(OR/R) (h = ¢ = 1 for convenience here). Then recall= exp(i&/mA) and
B =mV, = —0,6 with i& = mAlog()). AlsoV, = —(1/m)0,6 = i\d,log(v)) with
1 = Rexp(iS/mA) solog(y) = i&/m\ = log(R) + iS/mA, leading to

Y, = i\Bulog(R) + (i/mA)9,S] = —%aus 4 iXdulog(R) =V, +iU,  (3.67)
ThenO = 0*0,, andU,, = \J,log(R) leads to
O"U, = \0"9,log(R) = ADlog(R) (3.68)
Furtherd”d,log(R) = (99, R/R) — (R, R,/R?) so
Dlog(R) = 0"dylog(R) = (OR/R) — (Y _ R%/R*) = (3.69)
= (OR/R) = ) (8,R/R)* = (OR/R) - [U?
for [U]* = - U2. Hence via\ = 1/2m for example one has

@ =—(1/2m)(OR/R) = ~5 VP +

%Dlog(R)} = (3.70)

_ Y ton | = - e - Laiw
=5 [\U! +)\8 Uu}— 2m‘U’ 2dzv(U)

(cf. Proposition 1.1). |
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3.4 Field Theoretic Methods

In trying to imagine particle trajectories of a fractal nature or in a fractal medium we are
tempted to abandon (or rather relax) the particle idea and switch to quantum fields (QF).
Let the fields sense the bumps and fractality; if one can think of fields as operator valued
distributions for example then fractal supports for example are quite reasonable. There
are other reasons of course since the notion of particle in quantum field theory (QFT)
has a rather fuzzy nature anyway. Then of course there are problems with QFT itself
(cf. [197]) as well as arguments that there is no first quantization (except perhaps in the
Bohm theory - cf. [134]). Some aspects of particles arising from QF and QFT methods,
especially in a Bohmian spirit are reviewed in [41, 54] and here we only briefly indicate
one approach due to Nikoli¢ for bosonic fields (cf. [134, 135, 136, 137, 138] (cf. also
[37, 103, 104, 105, 106, 107] for other field aspects of KG). We refer also to [100, 197] for
interesting philosophical discussion about particles and localized objects in a QFT. Many
details are omitted and standard QFT techniques are assumed to be known (see e.g. [101])
and we will concentrate here on derivations of KG type equations. First note that the papers
[136] are impressive in producing a local operator describing the particle density current
for scalar and spinor fields in an arbitrary gravitational and electromagnetic background.
This enables one to describe particles in a local, general covariant, and gauge invariant
manner and this is reviewed in [54]. We follow here [135] concerning Bohmian particle
trajectories in relativistic bosonic and fermionic QFT. First we recall that there is no ob-
jection to a Bohmian type theory for QFT and no contradiction to Bell's theorems etc.
(see e.g. [30, 75]). Without discussing philosophical aspects of such a theory we sim-
ply construct one following Nikolic. Thus consider first particle trajectories in relativistic
QM and posit a real scalar fieltl z) satisfying the Klein-Gordon equation in a Minkowski
metric n,, = diag(1,—1,—1,—1) written as(93 — V2 + m?)¢ = 0. Lety = ¢T

with ¢* = ¢~ correspond to positive and negative frequency part of ¢* + ¢

The particle current ig, = z‘zp*ﬁlw and N = [d3zj is the positive definite num-

ber of particles (not the charge). This is most easily seen from the plane wave expan-
sion ¢t (z) = [ d3ka(k)exp(—ikz)/+/(27m)32ko since thenN = [ d®ka'(k)a(k) (see
above and [134, 136] where it is shown that the particle current and the decomposition
¢ = ¢T + ¢~ make sense even when a background gravitational field or some other po-
tential is present). One can write algp= i(¢~ 7" — ¢T7~) wherer = 7t + 7~ is the
canonical momentum (cf. [103]). Alternatively may be interpreted not as a field con-
taing an arbitrary number of particles but rather as a one particle wave function. Here we
note that contrary to a field a wave function is not an observable and so doing we normal-
ize ¢ here so thatv = 1. The currentj, is conserved vid,j* = 0 which implies that
N=] d3z;jo is also conserved, i.elN/dt = 0. In the causal interpretation one postulates
that the particle has the trajectory determinedib¥ /dr = j*/2ma*+. The affine para-
meterr can be eliminated by writing the trajectory equationdagdt = j(t,x)/jo(t,x)
wheret = 20, x = (2!,22,2%) andj = (5!, 52, 52). By writing ¢y = Rexp(iS) where

R, S) are real one arrives at a Hamilton-Jacobi (HJ) fatetf /dr = —(1/m)0™"S and
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the KG equation is equivalent to

Here@ = —(1/2m)(0"0,R/R is the quantum potentiat (= & = 1). From the HJ

form and (3.71) plus the identiyy/dr = (dz*/dt)0, one arrives at the equations of motion

m(d%z#/dT?) = O"Q. A typical trajectory arising fromlx/dt = j/jo could be imagined
as an S shaped curve in the- x plane (with¢ horizontal) and cut with a vertical line
through the middle of the S. The velocity may be superluminal and may move backwards
in time (at points whergy, < 0). There is no paradox with backwards in time motion
since it is physically indistinguishable from a motion forwards with negative energy. One
introduces a physical number of particles Wg;,; = [ d3z|jo|. Contrary toN = [ d®zj
the physical number of particles is not conserved. A pair of particles one with positive and
the other with negative energy may be created or annihilated; this resembles the behavior
of virtual particles in convential QFT.

O"(R29,,8) = 0;

Now go to relativistic QFT where in the Heisenberg picture the Hermitian field operator

¢ () satisfies
(05— V2 +m*)é = J(9) (3.72)

whereJ is a nonlinear function describing the interaction. In the Schrodinger picture the
time evolution is determined via the Schrodinger equation (BE), —id/0¢|¥[p,t] =
10, ¥ [p,t] whereW is a functional with respect to(x) and a function of. A normalized
solution of this can be expanded &$p, 1] = >.°°_ U,,[¢, ] where the¥,, are unnormal-
ized n-particle wave functionals and the analysis proceeds from there (cf. [135]). In the
deBroglie-Bohm (dBB) interpretation the fiefdx) has a causal evolution determined by

6Q[¢, ])
00(%) / gx)=s(x)

/d3 62|\II|
Ty 502 (x

where Q is the quantum potential again. However the n particles attributed to the wave
function ¢,, also have causal trajectories determined by a generalizatidr @k = j/jo

as
dxp, _ (7/’3(3”(”)) Vj%(x("))) (3.74)
dt P (@) 8§,y (™) bt —t

where the n-particle wave function is

(8 — V2 + m)(z) = J(o(x)) - ( ; (3.73)

U (x™ 1) =< 0|p(t,%1) - - D(t, %) | ¥ > (3.75)

These n-particles have well defined trajectories even when the probability (in the con-
ventional interpretation of QFT) of the experimental detection is equal to zero. In the dBB
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interpretation of QFT we can introduce a new causally evolyiagmetee,, [¢, t] defined
as

enl,t] = [Wnlo, 1117/ Y W [0, ]| (3.76)

The evolution of this parameter is determined by the evolutiohgifren via (3.73) and
by the solution¥ = " U of the SE. This parameter might be interpreted as a probability
that there are n particles in the system at time t if the field is equal (but not measured!) to be
¢(x) at that time. However in the dBB theory one does not want a stochastic interpretation.
Hence assume that,, is an actual property of the particles guided by the wave func-
tion 1, and call it the effectivity of these n particles. This is a nonlocal hidden variable
attributed to the particles and it is introduced to provide a deterministic description of the
creation and destruction of particles (see [41, 54, 135] for more on this).

REMARK 3.6. In[134] an analogous fermionic theory is developed but it is even more
technical and we refer to [54] for a sketch. |

REMARK 3.7. In [138] one addresses the question of statistical transparency. Thus
the probabilitistic interpretation of the nonrelativistic SE does not work for the relativistic
KG equation §#9,, + m?)y) = 0 (wherez = (x,t) andh = ¢ = 1) since||*> does not
correspond to a probability density. There is a conserved cujtert mp*?w (where
a O = adb — bo*a) but the time component’ is not positive definite. In [134, 135]
the equations that determine the Bohmain trajectories of relativistic quantum particles de-
scribed by many particle wave functions were written in a form requiring a preferred time
coordinate. However a preferred Lorentz frame is not necessary (cf. [25]) and this is de-
veloped in [138] following [25, 135]. First note that as in [25, 135] it appears that particles
may be superluminal and the principle of Lorentz covariance does not forbid superlumi-
nal velocities and conversly superluminal velocities do not lead to causal paradoxes (cf.
[25, 138]). As noted in [25] the Lorentz-covariant Bohmian interprtation of the many par-
ticle KG equation is not statistically transparent. This means that the statistical distribution
of particle positions cannot be calculated in a simple way from the wave function alone
without the knowledge of particle trajectories. One knows that classcal QM is statistically
transparent of course and this perhaps helps to explain why Bohmian mechanics has not
attracted more attention. However statistical transparency (ST) may not be a fundamental
property of nature as suggested by looking at standard theories (cf. [138]) The upshot is that
since statistical probabilities can be calculated via Bohmian trajectories that theory is more
powerful than other interpretations of general QM and we refer to [138] for discussion on
this, on the KG equation, and on Lorentz covariance. |

3.5 DeDonder-Weyl and Kg

We go here to a paper [137] which gives a manifestly covariant canonical method of
field quantization based on the classical DeDonder-Weyl formulation of field theory. The
Bohmian formulation is not postulated for intepretational purposes here but derived from
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purely technical requirements, namely covariance and densig with standard QM. It
arises automatically as a part of the formalism without which the theory cannot be formu-
lated consistently. This together with the results of [134, 138] suggest that it is Bohmian
mechanics that might be the missing bridge between QM and relativity; further it should
play an important role in cosmology (cf. [54, 110, 119, 112, 113, 114, 115, 116, 117,
162, 191, 192, 193]). The classical covariant canonical DeDonder-Weyl formalism is given
first following the excellent development in [122] and for simplicity one real scalar field in
Minkowski spacetime is used. Thus (classical formulation)let) be a real scalar field
described by

A= [alagi 2= 50°0)0,0) - V(0 @.77)
As usual one has
_ 0L s 09 __99
”M‘m@@_a%“%¢_aw’%ﬂ"a¢ (3.78)

where the scalar DeDonder-Weyl (DDW) Hamilonian (not related to the energy density) is
given by the Legendre transforfnz#, ¢) = 7#0,¢— £ = (1/2)r#m,+V. The equations
(3.78) are equivalent to the standard Euler-Lagrange (EL) equations and by introducing the
local vectorS*(¢(z),z) the dynamics can also be described by the covariant DDW HJ
equation and equations of motion

o 7
H <%,¢> +0,58" =0; 0'¢p =7t = % (3.79)

Note here),, is the partial derivative acting only on the second argumest'¢d(z), x);
the corresonding total derivative d, = 0, + (9,¢)(0/0¢). Further the first equation in
(3.79) is a single equation for four quantiti®4 so there is a lot of freedom in finding
solutions. Nevertheless the theory is equivalent to other formulations of classical field the-
ory. Now following [118] one considers the relation between the covariant HJ equation and
the conventional HJ equation; the latter can be derived from the former as follows. Using
(3.78), (3.79) takes the forif1/2)0,5,0,5" + V + 0,5* = 0. Then using the equation
of motion in (3.79) write the first term as

10S,05* 108°905° 1 ;

Similarly using (3.79) the last term &,5* = 9y5° + d;S" — (0;¢)(9'$). Now intro-
duce the quantity = [ @25 so thatjo.S°(¢(z), z)/0¢(x)] = [0S([(x, )], t)/d¢(x,t)]
whered/0p(x,t) = [0/0¢(x)]4(x)=¢(x,t) IS the space functional derivative. Putting this
together gives then

[ s [; (5 ¢?it)>2 +5(VOP + V()

+9,8=0 (3.81)
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which corresponds to the standard noncovariant HJ equattoatifie evolution of(x, t)

is given byd,¢(x,t) = 0S/dp(x,t) which arises from the time component of (3.79). Note
that in deriving (3.81) it was necessary to use the space part of the equations of motion
(3.79) (this does not play an important role in classical physics but is important here).

Now for the Bohmian formulation look at the JE¥ = i, ¥ where we write

s | R0 N\
i [ d [—5 (5o0) * 30797 +V(6) (382)
V([¢(x)], 1) = R([¢(x)], t)expliS([p(x)],)/h]
Then the complex SE equation is equivalent to two real equations
1/ 66 \* 1
/ B [5 <Wx)> 5(v¢>) V(e)+ Q| + 8,6 (3.83)
3 R 06 } ' __h_2 SR R 26
[ | s5ts00 7] + 27 =0 Q= 3nsgty /= 35
The second equation is also equivalent to
9 3 0 ( 5 06 >:
R +/d xM(X) R 5o 0 (3.84)

and this exhibits the unitarity of the theory because it provides that the norm
[1do(x))>¥*¥ = [[dp(x)]R? does not depend on time. The quantity([¢(x)],t) rep-
resents the probability density for fields to have the configurafior) at time t. One can
take (3.83) as the starting point for quantization of fields (met®iS /) should be single
valued). Equations (3.83) and (3.84) suggest a Bohmian interpretation with deterministic
time evolution given viad;¢. Remarkably the statistical predictions of this deterministic
interpretation are equivalent to those of the conventional interpretation. All quantum uncer-
tainties are a consequence of the ignorance of the actual initial field configugétioty).
The main reason for the consistency of this interpretation is the fact that (3.84pumith
as above represents the continuity equation which provides that the statistical distribution
p([#(x)],t) of field configurationsp(x) is given by the quantum distribution = R? at
any time t, provided thap is given by%? at some initial time. The initial distribution is
arbitrary in principle but a quantum H theorem explains why the quantum distribution is
the most probable (cf. [195]). Comparing (3.83) with (3.81) we see that the quantum field
satisfies an equation similar to the classical one, with the addition of a term resulting from
the nonlocal quantum potential Q. The quantum equation of motion then turns out to be
ov )

0"0,¢ + 8;@ + 5¢(f; ) =0 (3.85)
whereQ = [ d3x@Q. A priori perhaps the main unattractive feature of the Bohmian formu-
lation appears to be the lack of covariance, i.e. a preferred Lorentz frame is needed and this
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can be remedied with the DDW presentation to follow.

Thus one wants a quantum substitute for the classical covariant DDW HJ equation
(1/2)045,04S* +V + 9,5" = 0. Define then the derivative

dA([¢],$) — /d4x/5‘4([¢]>xl)
dg(x) 3¢ ()
whered/d¢(z) is the spacetime functional derivative (not the space functional derivative

used before in (3.81)). In particular £([¢], ) is a local functional, i.e. ifA([¢],z) =
A(¢p(x),z) then

(3.86)

WBOD2) _ [ g2l )2) _ 04000 (387)

de(x) ()  9¢(x)

Thusd/d¢ is a generalization ofl/0¢ such that its action on nonlocal functionals is
also well defined. An example of interest is a functional nonlocal in space but local in time

so that
5A(l¢], =) _ 5A([¢] =")
6o () oo (x,29)

AWLD) 8 [
o)~ S | AL

Now the first equation in (3.79) and the equations of motion become

5((2")° — 2% = (3.88)

148, ds" i 0 g 5"

248 36 +V 439,84 =0; "¢ = i (3.89)
which is appropriate for the quantum maodification. Next one proposes a method of quan-
tization that combines the classical covariant canonical DDW formalism with the standard
specetime asymmetric canonical quantization of fields. The starting point is the relation
between the noncovariant classical HJ equation (3.81) and its quantum analogue (3.83).
Suppressing the time dependence of the field in (3.81) we see that they differ only in the
existence of the Q term in the quantum case. This suggests the following quantum analogue
of the classical covariant equation (3.89)

1dS, ds* u
5%%4"/-1—@%—6“5 =0 (390)

Here S* = SH([¢],z) is a functional of¢(z) so S* at x may depend on the field
¢(x') at all pointsz’. One can also allow for time nonlocalities (cf. [138]). Thus (3.91) is
manifestly covariant provided that Q given by (3.83) can be written in a covariant form. The
guantum equation (3.90) must be consistent with the conventional quantum equation (3.83);
indeed by using a similar procedure to that used in showing that (3.79) implies (3.81) one
can show that (3.90) implies (3.83) provided that some additional conditions are fulfilled.
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First S° must be local in time so that (3.88) can be used. Se&naust be completely
local so thatdS? /d¢ = 9S°/d¢, which implies

my:aﬁhuawéi (3.91)

d¢
However just as in the classical case in this procedure it is necessary to use the space part

of the equations of motion (3.79). Therefore these classical equations of motion must be
valid even in the quantum case. Since we want a covariant theory in which space and time
play equal roles the validity of the space part of the (3.79) implies that its time part should
also be valid. Consequently in the covariant quantum theory based on the DDW formalism
one must require the validity of the second equation in (3.89). This requirement is nothing
but a covariant version of the Bohmian equation of motion written for an arbitrarily nonlocal
S* (this clarifies and generalizes results in [118]). The next step is to find a covariant
substitute for the second equation in (3.83). One introduces a VBE(Gp], ) which will
generate a preferred foliation of spacetime such that the vétas normal to the leaves
of the foliation. Then define

%(e). =) = [

&hﬁﬁ@ﬁ@w%:/dﬁﬁﬂ (3.92)
>

by
whereY is a leaf (a 3-dimensional hypersurface) generatedibly Hence the covariant
version of¥ = Rexp(iS) is ¥([¢], X) = R([¢], X)exp(i&S([¢],X)/h). For R* one pos-
tulates the equation

dR¥ dSH

do do

In this way a preferred foliation emerges dynamically as a foliation generated by the

solution R* of the equaitons (3.93) and (3.90). Note tl#&t does not play any role in
classical physics so the existence of a preferred foliation is a purely quantum effect. Now
the relation between (3.93) and (3.83) is obtained by assuming that nature has chosen a
solution of the formk* = (R°,0,0,0) whereR° is local in time. Then integrating (3.93)
over d>z and assuming again that’ is local in time one obtains (3.83). Thus (3.93) is a
covariant substitute for the second equation in (3.83). It remains to write covariant versions
for Q and J and these are

+J+0,R =0 (3.93)

R? %R R 26

= mne@ T 2 Rew 290

whered /dx.¢(x) is a version of the space functional derivative in whicls generated by
R, Thus (3.93) and (3.90) with (3.94) represent a covariant substitute for the functional
SE equivalent to (3.84). The covariant Bohmian equations (3.89) imply a covariant version
of (3.85), namely

oV dQ

ma@+5$ Fraall (3.95)
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Since the last term can also be writtendg$ d*zQ)/d¢(x) the equation of motion (3.95)
can be obtained by varying the quantum action

Ao = / d'zLq = / d*z(€ - Q) (3.96)

Thus in summary the covariant canonical quantization of fields is given by equations
(3.89), (3.90), (3.93), and (3.94). The conventional functional SE corresponds to a special
class of solutions for whictk’ = 0, S* are local, whileR" and S° are local in time. In
[137] a multifield generalization is also spelled out, a toy model is considered, and applica-
tions to quantum gravity are treated. The main result is that a manifestly covariant method
of field quantization based on the DDW formalism is developed which treats space and time
on an equal footing. Unlike the conventional canonical quantization it is not formulated in
terms of a single complex SE but in terms of two coupled real equations. The need for a
Bohmian formulation emerges from the requirement that the covariant method should be
consistent with the conventional noncovariant method. This suggests that Bohmian me-
chanics (BM) might be a part of the formalism without which the covariant quantum theory
cannot be formulated consistently.

4 Dirac Weyl Geometry

A sketch of Dirac Weyl geometry following [71] was given in [42] in connection with
deBroglie-Bohm theory in the spirit of the Tehran school (cf. [28, 29, 129, 130, 163, 164,
165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
185, 186, 187, 188]). We go now to [110, 111, 112, 113, 114, 115, 116, 117, 162] for a
very brief discussion of versions of the Dirac Weyl theory involved in discussing magnetic
monopoles, dark matter, quintessence, matter creation, etc. (see [54] for more in this direc-
tion). Thus go to [111] where in particular an integrable Weyl-Dirac theory is developed
(the book [110] is a lovely exposition but the work in [111] is somwhat newer). Note, as re-
marked in [126] (where twistors are used), the integrable Weyl-Dirac geometry is desirable
in order that the natural frequency of an atom at a point should not depend on the whole
world line of the atom. The first paper in [111] is designed to investigate the integrable
Weyl-Dirac (Int-W-D) geometry and its ability to create massive matter. For example in
this theory a spherically symmetric static geometric formation can be spatially confined
and an exterior observer will recognize it as a massive entity. This may be either a funda-
mental particle or a cosmic black hole both confined by a Schwarzschild surface. Here we
only summarize some basic features in order to establish notation, etc. and sketch the pre-
liminary theory (referring to [54] and the work of Israelit and Rosen for many examples).
Thus in the Weyl geometry one has a meyji¢ = g,,, and a length connection vector,

along with an idea of Weyl gauge transformation (WGT)

Guw = G = € Gus; ¢ — G = e g (4.1)

where A(z*) is an arbitrary differerentiable function. One is interested in covariant
quantities satisfying) — 1 = exp(nA)y where the Weyl power n is described via
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7(Y) = n, 7(gw) = 2, andn(g"”) = —2. If n = 0 the quantityy is said to be gauge
invariant (in-invariant). Under parallel displacement one has length changes and for a vector

(i) dB* = —B°T* dz"; (ii) B = (B*B"g,,)"?; (iii) dB = Buw,dz" (4.2)

(noter(B) = 1). In order to have agreement between (i) and (iii) one requires

r, = { ,fy } + g’ — Sy, — 63w, 4.3)

where{ M/\V } is the Christoffel symbol based ap,. In order for (iii) to hold in any

gauge one must have the WG, — w, = w, + d, A and if the vectorB* is transported

by parallel displacement around an infinitesimal closed parallelogram one finds
AB* = B°K), dz"5z"; AB = BW,,,dz"5z"; (4.4)

opuv

K) =-T* +1* —T% 1A 4727

oy ou,v oV, ou- av ovt ap

is the curvature tensor formed from (4.3) and,, = w,, — w,,. Equations for the
WGT wy,, — w, and the definition of¥V,,, led Weyl to identifyw, with the potential
vector and¥/,,,, with the EM field strength; he used a variational princifle= 0 with I =

[ L/—gd*z with L built up from K, andW,,,,. In order to have an action invariant under
both coordinate transformations and WGT he was forced toRfs¢R the Riemannian
curvature scalar) and this led to the gravitational field.

Dirac revised this with a scalar fielé(=*) which under WGT changes via — 3 =
e *3 (i.e. 7(3) = —1). His in-invariant action integral is therf(, = 0,.f)

I= /[WA"WAU — PR+ P (k — 6)ww, + 2(k — 6)Bw’ 8o+ (4.5)

+kBgBo + 203" + L)/ —gd's

Here k is a parameted is the cosmological constant,, is the Lagrangian density of
matter, and an underlined index is to be raised with. Now according to (4.4) this is a
nonintegrable geometry but there may be situations when geometric vector fields are ruled
out by physical constraints (e.g. the FRW universe). In this case one can preserve the WD
character of the spacetime by assuming thatis the gradient of a scalar functian so
thatw, = w, = d,w. One has thedV,, = 0 and from (4.4) resulta\ B = 0 yielding
an integrable spacetime (Int-W-D spacetime). To develop this begin with (4.5) but with
w, given byw, = J,w so the first term in (4.5) vanishes. The parameter k is not fixed
and the dynamical variables agg,, w, and3. Further it is assumed that,; depends on
(9uw» w, 3). For convenience write

by = (109(6))# = 67#/5 (4.6)
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and use a modified Weyl connection vectdi, = w, + b, which is a gauge invariant
gradient vector. Write alsb — 6 = 167« and varying w in (4.5) one gets a field equation

2(kB*WY),, =S (4.7)

where the semicolon denotes covariant differentiation with the Christoffel symbols and S is
the Weylian scalar charge given b§n.S = 0L /dw. Varying g,,, one gets also

v TV v 1 v o
GY = —8775—’; + 167k (W Wy = 50, W Wg> -+ (4.8)

+2(84b, — bY,) + 207, + 8507 — 84 62A

whereG], represents the Einstein tensor and the EM density tensor of ordinary matter is
8m/—gT" = 6(v/=gLu)/Ogum (4.9)
Finally the variation with respect 16 gives an equation for thé field
R+ (b7, + b7by) = 167k (w”w, — w?) + 45°A + 875 'B (4.10)

Note in (4.10) R is the Riemannian curvature scalar and the Dirac charge B is a conju-
gate of the Dirac gauge functigh namelyl6xB = 0Ly /d03.

By a simple procedure (cf. [71]) one can derive conservation laws; consider e.g.
Iy = fLJV[\/—_gd4$. This is an in-invariant so its variation due to coordinate transfor-
mation or WGT vanishes. Making use t§rS = 0L, /dw, (4.9), andl6mB = d L /03
one can write

0y =87 /(T‘“’(Sgw, + 256w + 2B6B)/—gdix (4.12)
Via z#* — z# = z# 4+ n* for an arbitrary infinitesimal vectay* one can write

S = Gy + Guaniys ow = w, s 58 = B,n” (4.12)
Taking into account” — z* we havedl,; = 0 and making use of (4.12) one gets
from (4.11) the energy momentum relations

T\ — Swy — BBb, =0 (4.13)

Further considering a WGT with infinitesimalz*) one has from (4.11) the equation
S+ T —pB = 0withT = T7. One can contract (4.8) and make use of (4.7) and
S + T = BB giving again (4.10), so that (4.10) is a corollary rather than an independent
equation and one is free to choose the gauge fungtion accordance with the gauge
covariant nature of the theory. Going back to the energy-momentum relations one inserts
S+T = B into (4.13) to ge’rT;j;A —Tb,, = SW,. Now go back to the field equation (4.8)
and introduce the EM density tensor of g, field

8O = 16mk52[(1/2)g" W Wy — WHWY] (4.14)
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Making use of (4.7) one can prog;,, —©b, = —SW, and usingl\, - T B, = SW,,
one has an equation for the joint energy momentum density

(T} + 00 — (T +O)b, =0 (4.15)

One can derive now the equation of motion of a test particle (following [162]). Consider
matter consisting of identical particles with rest mass m and Weyl scalar chalgging in
the stage of a pressureless gas so that the EM density tensor can be TitittenoU+U”
whereU* is the 4-velocity and the scalar mass dengitg given byp = mp,, with p,, the
particle density. Taking into account the conservation of particle number one obtains from
Ty, — Tb, = SW, the equation of motion

avt Jz Apro s BA _ R
- +{)\U}UU —<b)\+mW,\)(g URUN) (4.16)

In the Einstein gauges(= 1) we are then left with

7
% + { v } U7 = Ly (g - U0 (4.17)
This gives a sketch of a powerful framework capable of treating many problems involv-

ing “mattter” and geometry. Connections to Section 2 are obvious and we have supplied
earlier additional relations to fluctuations via Fisher information and quantum geometry
(cf. also [40, 41, 42, 43, 54]). Many cosmological questions of great interest including dark
matter, quintessence, etc. are also treated in [110, 111, 112, 113, 114, 115, 116, 117] and
one can speculate about the original universe from many points of view. The inroads into
cosmology here seem to be an inevitable consequence of the presence of Weyl-Dirac theory
in dealing with quantum fluctuations via the quantum potential.

5 Remarks on Quantum Geometry

We gave a “hands on” sketch of quantum geometry in [43] and refer to [10, 11, 12, 16, 17,
35, 36, 59, 60, 61, 62, 63, 88, 96, 97, 102, 109, 123, 127, 128, 153, 154, 191, 192, 193, 201]
for background and extensive theory. Here we follow [43, 59, 60, 61, 62, 63] and briefly
extract from [43]. Roughly the idea is that for H the Hilbert space of a quantum system
there is a natural quantum geometry on the projective spdé€) with inner product<

oY >= (1/2h)g(¢, ) + (i/2h)w(p, ) whereg(p, ) = 2hR(4|) is the natural Fubini-
Study (FS) metric ang(¢,v)) = w(¢, Jy) (J?> = —1). On the other hand the FS metric

is proportional to the Fisher information metric of the fofias—t| < ¢[«) > |. Moreover

(in 1-D for simplicity) § < | pQdz is a functional form of Fisher information where Q is
the quantum potential and= |¢)|2. Finally one recalls that in a Riemannian flat spacetime
(with quantum matter and Weyl geometry) the Weyl-Ricci scalar curvature is proportional
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to Q. Thus assume H is separable with a complete orthonormensys.,,} and for any
1 € H denote by¢] the ray generated by while n,, = (u,|¢). Define fork € N

Mk e Mk
(5.1)
wherel?(C) denotes square summable functions. EvideR{§l) = U,Uy andgbkogbj_l is
biholomarphic. Itis easily shown that the structure is independent of the choice of complete
orthonormal system. The coordinaes fgi relative to the char{Uy, ¢;,) are {z¥} given
via 28 = (n,/me) for n < kandzf = (n,11/n) for n > k. To convert this to a real
manifold one can use' = (1/v/2)(xk + iyk) with

o 1o 09N 2 1[0 .9 52)

ozk 2 \oxk " Toyk ) ozk /2 \oxk  oyk '
etc. Instead of nondegeneracy as a criterion for a symplectic form inducing a bundle iso-
morphism betweef M andT™ M one assumes here that a symplectic form on M is a closed
2-form which induces at each poipte M a toplinear isomorphism between the tangent
and cotangent spaces at p. FofH) one can do more than simply exhibit such a natural
symplectic form; in fact one shows th&t /) is a Kahler manifold (meaning that the funda-
mental 2-form is closed). Thus one can choose a Hermitian n&tscy " ¢F  d2F @ dzF
with

G = (L4 ) 0 — (L4 2F2F) 7228 28 (5.3)
7 1

relative to the chartUy, ¢x). The fundamental 2-form of the metri® is
W = i), Ihdzh, A dZ) and to show that this is closed note that= i0df where

locally f = log(1 + 3" zFzF) (the local Kahler function). Note here that+ 0 = d and
d? = 0 implies9? = 9% = 0 sodw = 0 and thusP(H) is a K manifold (cf. [128] for K
geometry).

Now P(H) is the set of one dimensional subspaces or rays of H; for everyd/{0},
[x] is the ray throughe. If H is the Hilbert space of a Schrodinger quantum system then
H represents the pure states of the systemR{#) can be regarded as the state manifold
(when provided with the differentiable structure below). One defines the K structure as
follows. On P(H) one has an atla§(V}, b, Cy)} whereh € H with |h|] = 1. Here
(Vp, b, Cp,) is the chart with domairV}, and local model the complex Hilbert spa€g
where

x
Vi = {[z] € P(H); (hlx) # 0}; Cp = [A]*5 by : Vi — Chs (2] — bp([2]) = i)~ h
(5.4)
This produces a analytic manifold structure B4H). As a real manifold one uses
an atlas{(V},, R o by, RC},)} where e.g. RC}, is the realification ofC}, (the real Hilbert
space withR instead ofC as scalar field) and& : C;, — RCj; v — Rw is the canonical

bijection (noteRv # Rv). Now consider the form of the K metric relative to a chart
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(Vi, R o by, RCy) where the metrigy is a smooth section af»(T'P(H),R) with local
expressiony” : RCy, — La(RCy,R); Rz — g} where

() (@)
(R o) = 20 e~ ) &9

The fundamental formw is a section ofLo(TP(H),R), ie. w" : RC, —
La(RCp, R);
Rz — wh_, given via

wh_(Rv, Rw) = 2v% ( (vlw) (v]2)(zlw) > (5.6)

L lz)2 (L +12%)2

Then using e.g. (5.5) for the FS metric #{ H) consider a Schrddinger Hilbert space
with dynamics determined viR x P(H) — P(H) : (t,[z]) — [exp(—(i/h)tH)x] where
H is a (typically unbounded) self adjoint operator in H. One thinks then of Kahler isomor-
phisms of P(H) (i.e. smooth diffeomorphism& : P(H) — P(H) with the properties
®*J = J and®*g = g). If U is any unitary operator on H the map| — [Uz] is a K
isomorphism ofP(H ). Conversely (cf. [42]) any K isomorphism &f(H) is induced by a
unitary operator U (unique up to phase factor). Further for every self adjoint operator A in
H (possibly unbounded) the family of map$;).cr given via®; : [z] — [exp(—itA)z]
is a continuous one parameter group of K isomorphismB(df) and vice versa (every K
isomorphism ofP(H) is induced by a self adjoint operator where boundedness of A cor-
responds to smoothness of ttg). Thus in the present framework the dynamics of QM is
described by a continuous one parameter group of K isomorphisms, which automatically
are symplectic isomorphisms (for the structure defined by the fundamental form) and one
has a Hamiltonian system. Next ideally one can suppose that every self adjoint operator
represents an observable and these will be shown to be-ii correspondence with the
real K functions.

One defines a (Riemann) metric (statistical distance) on the space of probability distri-
butionsP of the form

dspp =Y _(dp}/p;) = pj(dlog(p;))? (5.7)

Here one thinks of the central limit theorem and a distance between probability distrib-
utions distinguished via a Gaussiarp[—(N/2)(p; —p;)*/p;] for two nearby distributions
(involving N samples with probabilities;, p;). This can be generalized to quantum me-
chanical pure states via (note~ /pexp(i¢) in a generic manner)

[ >=>" D% > [ >= |1 > +[dp >=> \/p; + dp;e % T)|j > (5.8)

Normalization require®t(< ¢|dy >) = —1/2 < dip|dyy > and measurements de-
scribed by the one dimensional projectdjs>< j| can distinguishz) > and|y > ac-
cording to the metric (5.7). The maximum (for optimal disatinguishability) is given by the
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Hilbert space angleos™!(| < zﬁ\zp > |) and the corresponding line elemeit{ ~ pure
state)

Tdshs = [cos (| < B > P ~ 1 -] <o > P =< dpsldy, >~ (5.9

1 dp3
~ Z p—j + [ijd¢? - (ijd%)z}
(called the Fubini-Study (FS) metric) is the natural metric on the manifold of Hilbert space

rays. Here
dypy >=|dyp > —[tp ><p|dyp > (5.10)

is the projection ofdy > orthogonal tojy) >. Note that ifcos™!(| < ¢|¢) > | = 6 then

cos(0) = | < | > | andcos?(0) = | < Y| > [ =1 — Sin*(0) ~ 1 — 62 for smalld.
Henced? ~ 1 — cos?(A) = 1 — | < ¥|¢p > [2. The term in square brackets (the variance

of phase changes) is nonnegative and an appropriate choice of basis makes it zero. In [35]
one then goes on to discuss distance formulas in terms of density operators and Fisher
information but we omit this here. Generally as in [201] one observes that the angle in
Hilbert space is the only Riemannian metric on the set of rays which is invariant uder unitary
transformations. In any event? = > (dp?/p:;), >.p; = 1 is referred to as the Fisher
metric (cf. [128]). Note in terms afp; = p; — p; one can writel,/p = (1/2)dp//p with

(dy/p)? = (1/4)(dp?/p) and think ofy_(d,/p;) as a metric. Alternatively fromos™!(| <

Py > | one obtainsisis = cos™!(3 \/p1i/P2i) @s a distance ifP. Note from (5.10)
thatds?, = 4cos Y < ¥1|he > | ~ 4(1 — (1 [12)]? = 4(< dp|dyp > — < dyp|yp ><

¥|dy >) begins to look like a FS metric before passing to projective coordinates. In this
direction we observe from [128] that the FS metric can be expressed also via

8dlog(|2|?) = ¢ = # > dz ndz — # (Z Zidzi) A (Z zidzi) (5.11)

so forv ~ S v0; + v;0; andw ~ > w;d; + w;0; and |z|? = 1 one hasp(v,w) =
(v|w) — (v|2)(z|w).

Now recall the material on fisher information in Section 1.2 and the results on the SE
in Weyl space in Section 1.1 to confirm the connection of quantum geometry as above to
Fisher information, Weyl curvature, and the quantum potential. Several features arise which
deserve emphasis (cf. also [55])

e Philosophically the wave function seems to be inevitably associated to a cloud or
ensemble (cf. Remarks 2.1 and 3.2). This provides meaningsioe Rexp(iS/h)
with R = /p andp = "1 representing a probability density. Connections to
hydrodynamics, diffusion, and kinetic theory are then natural and meaningful.

e From the ensemble point of view or by statistical derivations as in Section 1.1 one
sees that spacetime geometry should also be conceived of in statistical terms at the
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quantum level. This is also connected with the relativisteotly and the quantum
potential (in various forms) is exhibited as a fundamental ingredient of both QM and
spacetime geometry.

e Bohmian type mechanics plays a fundamental role in providing unification of all
these ideas. Similarly fractal considerations as in Nottale’s scale relativity lead to
important formulas consistent with the pictures obtained via Bohmian mechanics and
the quantum potential.

e Quantum geometry in a projective Hilbert space is connected to all these matters as
indicated in this section.
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GRAVITATIONAL FIELD: STATE OFTHE ART
APPLICATIONSAND PERSPECTIVES
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Abstract

Gravitationally bound quantum states of matter were observed for the first time thanks to
the unique properties of ultra-cold neutrons (UCN). The neutrons were allowed to fall towards
a horizontal mirror which, together with the Earth's gravitational field, provided the necessary
confining potential well. In this paper we discuss the current status of the experiment, as well
as possible improvements: the integral and differential measuring modes; the flow-through
and storage measuring modes; resonance transitions between the quantum states in the
gravitationa field or between magnetically split sub-levels of a gravitational quantum state.

This phenomenon and the related experimental techniques could be applied to various
domains ranging from the physics of elementary particles and fields (for instance, spin-
independent or spin-dependent short-range fundamental forces or the search for a non-zero
neutron electric charge) to surface studies (for instance, the distribution of hydrogen in/above
the surface of solids or liquids, or thin films on the surface) and the foundations of quantum
mechanics (for instance, loss of quantum coherence, quantum-mechanica localization or
experiments using the very long path of UCN matter waves in medium and in wave-guides).

In the present article we focus on transitions between the quantum states of neutrons in
the gravitational field, consider the characteristic parameters of the problem and examine
various methods for producing such transitions. We a so analyze the feasibility of experiments
with these quantum transitions and their optimization with respect to particular physical goals.
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1 Introduction

The quantum motion of a particle with mass m in the terrestrial gravitationa field and the
acceleration g above an ideal horizontal mirror is a well-known problem in quantum

mechanics which alows an analytic solution involving specia functions known as Airy
functions. The solutions of the corresponding Schrodinger equation with linear potential were
discovered in 1920th [1] and can be found in magjor textbooks on quantum mechanics [2—7].
For along time, this problem was considered only as a good theoretical exercise in quantum
mechanics. The main obstacle for observing these quantum states experimentally was the
extreme weakness of the gravitational interaction with respect to electromagnetic one, which
meant that the latter could produce considerable false effects. In order to overcome this
difficulty, an electrically neutral long-life particle (or quantum system) must be used for
which an interaction with a mirror can be considered as an ideal total reflection. Ultracold
neutrons (UCN) were discussed in this respect in refs. [8, 9]. UCN [10, 11] represent an
extremely small initial part of total neutron flux. A reactor with very high neutron flux is
therefore required. These quantum states were observed and investigated for the first timein a
series of experiments [12-15] performed at the high-flux reactor at the Institut Laue-Langevin
in Grenoble. Other quantum optics phenomena invetsigated with neutrons are presented in
ref. [16].

To observe the gravitationally bound states, two experimental techniques were used. The
first one, the so-called “integral” flow-through mode, is a measurement of the neutron flux
through a narrow horizontal dlit between a mirror below and an absorber/scatterer above it,
which is used to scan the neutron density distribution above the mirror. This experimental
technique allowed us to observe, for the first time, the non-continuous (discrete) behavior of
the neutron flux. This observation was interpreted as being due to quantum states of neutrons
corresponding to their vertical motion in the dlit. Another, more sophisticated, so-called
“differential” mode is based on specially developed position-sensitive neutron detectors with
a very high spatial resolution, which made it possible to begin more detailed studies of this
system and, in particular, to measure the spatial distributions of neutrons as a function of their
height above amirror (the square of the neutron wave function).

The present article does not claim to give an exhaustive overview of the different, rapidly
developing applications of this beautiful phenomenon; it simply focuses on areas of particular
interest to our research at present. In section 2, we start by giving a brief presentation of the
phenomenon itself and in section 3 we describe the first experiment in which the ground
guantum state was observed. Section 4 is devoted to a discussion of the “differentia”
measuring mode. Some of the interesting consequences of this experiment in different
domains of physics (such as the search for exotic particles and spin-independent or spin-
dependent short-range fundamental interactions; foundations of quantum mechanics) are
discussed in section 5. Particular attention is paid to further developments of this experiment.
In section 6, we present for the first time a feasibility analysis and theoretical description of
the observation of resonance transitions between the quantum states. Such transitions could
be induced by various interactions. by strong forces (if the mechanical oscillations of a
bottom mirror are applied with a frequency corresponding to the energy difference between
the quantum states), by electromagnetic forces (oscillating magnetic field), or probably even,
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at the limit of experimental feasibility, by gravitational forces (oscillating mass in the vicinity
of the experimental setup). Some other methodological applications are also discussed.

2 TheProperties of the Quantum States of Neutron
in the Earth’s Gravitational Field

The wave function w(z)of the neutron in the Earth’s gravitational field satisfies the
Schradinger equation:

n? d*w(2)
2m d?z

+(E-mg2)yw(2) =0. (2.1

Anideal mirror at z=0 could be approximated as an infinitely high and sharp potential
step (infinite potential well). Note that the neutron energy in the lowest quantum state, as will

be seen alittle later, is of the order of 10 eV and is much lower than the effective Fermi

potential of a mirror, which is close to 107" eV. The range of increase of this effective
potential does not exceed afew nm, which is much shorter than the neutron wavelength in the
lowest quantum state ~10 um. This effective infinite potential gives a zero boundary
condition for the wave function:

v(2=0)=0. (22)

The exact analytical solution of equation (1) which isregular at z=0, is the so-called
Airy-function

z,

Z,=3 " (2.4)
2m’g

represents a characteristic scale of the problem, C being the normalization constant. For
neutrons at the Earth’s surface the value of 7, is equal to 5.87 um. The equation (2.2)

w(z)=CAi [ij . (2.3)

Here

imposes the quantization condition:

2, = 24, (25)
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where A, are zeros of the Airy function. They define the quantum energies:
E,=mgzA,. (2.6)
For the 4 lowest quantum states they are equal to:
A, ={2.34,4.09,5.52,6.79, ...} (2.7)
and for the corresponding energies, we obtain:
E, ={14,253341, ..} peV. (2.8)

It is useful to obtain an approximate quasi-classical solution of this problem [2—4,7]. This
approximation is known to be valid, for this problem, with a very high accuracy, which is of
the order of 1% even for the lowest quantum state. In accordance with the Bohr-Sommerfeld

formula, the neutron energy in quantum states E° (n=1,2,3,...) isequal to:

<< ol

The exact energies E,, as well as the approximate quasi-classical values E* have the

same property: they depend only on m, g and on the Planck constant 7, and do not depend

on the properties of the mirror.
The simple analytical expression (2.9) shows that the energy of n-th state increases as

E* [0 n”® with increasing N. In other words, the distance between the neighbor levels
decreases with increasing N .

In classical mechanics, a neutron with energy E, in agravitational field could rise to the
maximum height of:

z,=E,Img. (2.10)

In quantum mechanics, the probability of observing a neutron in n-th quantum state with

. : : : 2.

energy E, at aheight zis equal to the square of the modulus of its wave function |wn| in
this quantum state. For the 4 lowest quantum states, neutron residence probability |l,z/n|2as a
function of height above a mirror z is presented in Fig. 1 (see [2-6,12,13]). Formally, these
functions do not equal zero at any height z> 0. However, as soon as a height z is greater
than some critical value z,, specific for every n-th quantum state and approximately equal to

the height of the neutron classical turning point, then the probability of observing a neutron
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approaches zero exponentially fast. Such a pure quantum effect of the penetration of neutrons
to a classically forbidden region is the tunneling effect. For the 4 lowest quantum states, the
values of the classical turning points are equal to:

z ={13.7,24.0,32.4,39.9,...} um. (2.11)

An asymptotic expression for the neutron wave functions y,(2) at large heights 2> Z,
[3, 4, 7] inthe classically forbidden region is:

v, (&, (2) > C&Y exp(—gcfﬁ’z) . (2.12)

for & — oo.Here C_ are known normalization constants and

n

g=%2_,. (2.13)
z,

As soon as such a height z, is reached, the neutron wave function y, (z) starts
approaching zero exponentially fast.

1st quamtum state 2nd quantum state
. — Z, micron — . . . — Z, micron
0 10 20 30 40 50 0 10 20 30 40 50
3rd quantum state 4th quantum  state
/\ A /\ . A .
0 10 20 30 40 50 0 10 20 30 40 50

Fig. 1. Neutron presence probability as a function of height above the mirror z for the 1%, 2™, 3 and
4™ quantum states.
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3 Discovery of the Ground Quantum Statein the®Integral”
Flow-Through Mode

Such a wave-function shape alowed us to propose a method for observing the neutron
guantum states. The idea is to measure the neutron transmission through a narrow dit Az
between a horizontal mirror on the bottom and a scatterer/absorber on top (which we shall
refer to simply as a scatterer if not explicitly called otherwise). If the scatterer is much higher

than the turning point for the corresponding quantum state Az[] Z_, then neutrons pass such

a dlit without significant losses. When the slit decreases, the neutron wave function y/, (2)

starts penetrating up to the scatterer and the probability of neutron losses increases. If the dlit
size is smaller than the characteristic size of the neutron wave function in the lowest quantum
state Z, then such a dlit is not transparent for neutrons. Precisely this phenomenon was
measured in a series of our recent experiments [12-15].

4
6
1
#
Fig. 2. A basic scheme of the first experiment. From left to right: the vertical bold lines indicate the
upper and lower plates of the input collimator (1); the solid arrows correspond to classical neutron
trajectories (2) between the input collimator and the entrance dlit between the mirror (3, the empty
rectangle below) and the scatterer (4, the black rectangle above). The dotted horizontal arrows illustrate

the quantum motion of neutrons above the mirror (5), and the black box represents a neutron detector
(6). The size of the dlit between the mirror and the scatterer could be changed and measured.

A basic scheme of this experiment is presented in Fig. 2. The experiment (also described
in ref.[17]) consists of measuring of the neutron flux (with an average velocity of 5-10 m/s)
through a dlit between a mirror and a scatterer as a function of the dlit size. The size of the dit
between the mirror and the scatterer can be finely adjusted and precisely measured. The
scatterer’s surface, while macroscopically smooth and flat, is microscopically rough, with
roughness elements measuring in microns. In the classical approximation, one can imagine
that this scatterer eliminates those neutrons whose vertical velocity component is sufficient
for them to reach its surface. Roughness elements on the scatterer’s surface lead to the
diffusive (non-specular) reflection of neutrons and, as a result, to the mixing of the vertica
and horizontal velocity components. Because the horizontal component of the neutron
velocity in our experiment greatly exceeds its vertical component, such mixing leads to
multiple successive impacts of neutrons on the scatterer/absorber and, as a result, to the rapid
loss of the scattered neutrons. The choice of the absorbing material on the surface of the
scatterer/absorber does not play a role, as has been verified experimentally in ref. [15].
Therefore the main mechanism causing the disappearance of neutrons is their scattering on
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the rough surface of the scatterer/absorber. This is why it is simply called a scatterer
hereafter.

The neutron flux at the front of the experimental setup (in Fig. 2 on the left) is uniform
over height and isotropic over angle in the ranges which exceed the dlit size and the angular
acceptance of the spectrometer respectively by more than one order of magnitude. The
spectrum of the horizontal neutron velocity component is shaped by the input collimator with
two plates, which can be adjusted independently to a required height. The background caused
by external therma neutrons is suppressed by ‘4z shielding’’ of the detector. A low-
background detector measures the neutron flux at the spectrometer exit. Two discrimination
windows in the pulse height spectrum of the “He detector are set as follows: 1) a “peak”

discrimination window corresponds to the narrow peak of the reaction n +*Heo>t+ p and

provides low background; 2) a much broader range of amplitudes allowes the “counting of all
events’. This method make it possible to suppress the background efficiently: when the
scatterer height is zero and the neutron reactor is “on” then the count rate corresponds, within
statistical accuracy, to the detector background measured with the neutron reactor “off”.
Ideally, the vertical and horizontal neutron motions are independent. This is valid if the
neutrons are reflected specularly from the horizontal mirror and if the influence of the
scatterer, or that of any other force, is negligible to those neutrons which penetrate through
the dlit. If so, the horizontal motion of the neutrons (with an average velocity of 5-10 m/s) is
ruled by the classical laws, while in the vertical direction we observe the quantum motion
with an effective velocity of a few centimeters per second and with a corresponding energy

(2.9) of afew peV (10 eV). The degree of validity of each condition is not obviously a
priori and was therefore verified in related experiments.

The length of the reflecting mirror below the moving neutrons is determined from the
energy-time uncertainty relation AEAt[ 7%, which may seem surprising given the
macroscopic scale of the experimental setup. The explanation is that the observation of
guantum states is only possible if the energy separation between neighboring levels

(AE,=E, ,-E, U1/ N3, see (2.8)) is greater (preferably, much greater) than the level

width 6E . As the quantum number n increases, the energy separation AE, between the

neighboring levels decreases until the levels ultimately merge into a classical continuum.
Clearly, the lower quantum states are simpler and more convenient to measure in
methodologica terms. As to the width of a quantum state, it is determined by its lifetime or
(in our case) by the observation time, i.e. by the neutron’s flight time above the mirror. Thus,
the length of the mirror is determined by the minimum time of observation of the neutronin a
quantum state and should fulfill the condition A7 > 0.5 ms. In our experiments, the average
value of the horizonta neutron velocity was chosen to be close to 10 m/s or to 5 m/s,
implying that a mirror 10 cm in length was long enough.

The vertical scale of the problem, on the other hand, is determined by the momentum-
coordinate uncertainty relation AV, -Az[l 7/ m. The reason is that the smaller the vertical
component of the neutron velocity, the larger the neutron wavelength corresponding to this
motion component. However, the classical height to which a neutron can rise in the

gravitational field cannot be less than the quantum-mechanical uncertainty in its position, i.e.
less than the neutron wavelength. In fact, it is this condition which specifies the lowest bound
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state of a neutron in aterrestrial gravitational field. The uncertainty in height is then ~15 pm,
whereas the uncertainty in the vertical velocity component is~1.5 cn/s.

Fig. 3. Neutron flux through a dlit between a horizontal mirror and a scatterer above it is given as a
function of the distance between them obtained in the first experiment [12,13]. Experimental data are
averaged over 2-um intervals. The dashed line represents quantum-mechanical calculations in which
both the level populations and the energy resolution of the experiment are treated as free parameters
being determined by the best fit to the experimental data. The solid line corresponds to classical
calculations. The dotted lineis for asimplified model involving only the lowest quantum state.

The results of the first measurement presented in Fig. 3 (see refs. [12, 13]) differ
considerably from the classical dependence and agree well with the quantum-mechanical
prediction. In particular, it is firmly established that the dlit between the mirror and the
scatterer is opague if the dit is narrower than the spatial extent of the lowest quantum state,
which is approximately 15 um. The dashed line in Fig. 3 shows the results of a quantum-
mechanical calculation, in which the level populations and the height (energy) resolution
were treated as free parameters. The solid line shows the classical dependence normalized so
that, at sufficiently large heights (above 50-100 um), the experimental results are described
well by the line. The dotted line given for illustrative purposes describes a simplified situation
with the lowest quantum state alone, i.e. in drawing this line only the uncertainty relation was
taken into account. As can be seen from Fig. 3, the statistics and energy resolution of the
measurements are still not good enough to detect quantum levels at a wide dlit, but the
presence of the lowest quantum stateis clearly reveaed.

0,06
0,05

- 0,04+

Count rate, s
o
=Y
8
1

o

9
o
1

0,01+

0,00

Slit size, um

Fig. 4. Neutron flux through a dlit between a horizontal mirror and a scatterer above it is given as a
function of the distance between them obtained in the second experiment [15].
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However, as was shown experimentally (Fig. 4) and explained theoretically in ref. [15],
even when the height (energy) resolution and statistics are improved considerably compared
to those in refs. [12, 13], further significant improvement of resolution in the “integral”
measuring mode presented is scarcely achievable due to one fundamental constraint: the finite
sharpness of the dependence on height of the probability of neutron tunneling through the
gravitational barrier between the allowed heights for neutrons and the height of the scatterer

[15]. Asis demonstrated in this article, the neutron flux F(AZ) asafunction of the scaterrer

position Az above the turning point zZ, (Az > z,) can be written within the quasi-classical
approximation, for agiven level, as:

3
_ 2
F(A2) [ Exp| —aExp —g[AZ Zn] , 3.1)

z,

where 7, is given in (2.4) and « is a constant. The exponent factor after this constant

represents here the probability for the neutron to pass from the classically allowed region to
the scatterer/absorber, i.e. the probability of tunneling through the gravitation barrier. This
dependence describes the experimental data reasonably well (see Fig. 4) and gives a smple
explanation for the existence of intrinsic resolution related to the tunneling effect. Roughly

speaking, to resolve experimentally the nearest states n+1 and n, the distance z,,, — Z,
should be smaller than a characteristic scale of the function (3.1), which is approximately
equal to Z, =5.87 pm. This condition can be satisfied only for the ground state because

even for the first excited state the difference z, — z, ~ 8 um is comparable with 7.

Nevertheless, the theoretical description of the measured experimental data within the
model of the tunneling of neutrons through this gravitational barrier shows reasonable
agreement between the extracted parameters of the quantum states and their theoretical
prediction. In order to increase the accuracy of this experiment further in the mode which
involves scanning the neutron density using a scatterer at various heights, we are working in
two directions: First of all, further development [18] of the theoretical description of this
experiment could allow us to reduce the theoretical uncertainties in the determination of
guantum states parameters to the velev of a few percent. On the other hand, experimental
efforts related to improving the accuracy of the absolute positioning of the scatterer [19, 20]
would produce a comparable level of accuracy.

To summarize this section, it can be said that the lowest quantum state of neutrons in the
gravitational field was clearly identified using the “flow-through” mode, which measures the
neutron flux as a function of an absorber/scatterer height. This observation itself already
makes many interesting applications possible. Higher quantum states could also be resolved.
However, such a measurement is much more complicated because the energy (or height)
resolution of the present method is limited by one main factor: the finite sharpness of the
dependence on height of neutron tunneling through the gravitational barrier between the
classically allowed height and the scatterer height.
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4 Studies of the Neutron Quantum Statesin “ Differential”
Flow-Through Mode

In order to resolve higher quantum states clearly and measure their parameters accurately, we
must adopt other methods, such as for example, the “differential” method, which uses
position-sensitive neutron detectors with a very high spatial resolution, which were devel oped
specificaly for this particular task [21].

300 +

200 +

Number of counts
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Height in microns above the mirror

Fig. 5. The results of the measurement of the neutron density above a mirror in the Earth’s gravitational
field are obtained using a high-resolution plastic nuclear-track detector with uranium coating. The
horizontal axis corresponds to a height above the mirror in microns. The vertical axis gives the number
of events in an interval of heights. The solid line shows the theoretical expectation under the
assumption that the spatial resolution is infinitely high. Calculated populations of the quantum states
correspond to those measured by means of two scatterers using the method shown in Fig. 6.
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Fig. 6. A scheme of the experiment with along bottom mirror (1, shown as the open box) and with two
scatterers (2, 3, shown as the black boxes). The first scatterer (2, on the left) shapes the neutron
spectrum. It isinstalled at the constant height of 42 um. The second scatterer (3, on the right) analyses
the resulting neutron spectrum. Its height is varied. The detector (4), shown as the black box, measures
the total neutron flux at the exit of the dit between the mirror and the analyzing scatterer. The distance
between the scatterersis equal to 9 cm.
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The direct measurement of the spatial density distribution in a standing neutron wave is
preferable to its investigation with the aid of a scatterer whose height can be adjusted. The
former technique is differential, since it permits the simultaneous measurement of the
probability that neutrons reside at all heights of interest. The latter technique is integral, since
the information on the probability that neutrons reside at a given height isin fact obtained by
the subtraction of the values of neutron fluxes measured for two close values of the scatterer
height. Clearly, the differential technique is much more sensitive than the integral one and
makes it possible to gain the desired statistical accuracy much faster. This is of prime
importance considering the extremely low counting rate in this experiment, even with the use
of the highest UCN flux available today. Furthermore, the scatterer employed in the integral
technique inevitably distorts the measured quantum states by deforming their eigen-functions
and shifting their energy values. The finite accuracy of taking these distortions into account
results in systematic errors and ultimately limits the attainable accuracy of the measurement
of the quantum state parameters. For these and other reasons, the use of a position-sensitive
detector to directly measure the probability of neutron residence above the mirror is highly
attractive. However, until now there were no neutron detectors with the spatial resolution
of ~1 um needed for this experiment. We therefore had to develop such a detector and
measuring technique. The result was a plastic track nuclear detector (CR39) with a thin
uranium coating (**UF,), described in ref. [21]. The tracks created by the entry into the
plastic detector of a daughter nucleus produced by the neutron-induced fission of a 2°U
nucleus were increased to ~1 um in diameter by means of chemical development in an
alkaline solution. The developed detector was scanned with an optical microscope over a
length of several centimeters with an accuracy of ~1 pm. The sensitive 2°U layer is thin
enough (<1 um) for the coordinates of neutron entry into the uranium layer to aimost coincide
with the coordinates of daughter nucleus entry into the plastic. On the other hand, the
sensitive layer is thick enough to ensure high UCN detection efficiency (~30 %). The
measuring technigue and the preliminary analysis of the results are described in ref. [15].

The feasibility of this technique was demonstrated in the second experiment and the
results are presented in Fig. 5[15]. Thisisthe first direct measurement of the neutron density
above the mirror with a spatial resolution of 1-2 um. The theoretical curve presented in Fig. 5
is calculated with known neutron wave functions and with the quantum level populations and
the zero height above the mirror as free parameters. The spatial detector resolution is assumed
to be perfect. A comparison of the experimental data with the theoretical prediction suggests
that: firstly, the measured presence probability for neutrons above the mirror on the whole
domain of Az corresponds closely to the theoretical prediction; secondly, the spatial detector
resolution can be estimated, for instance, using the steepest portion of the dependence near
the zero height, which is equal to ~1.5 um; finaly, even a relatively small neutron density
variation of ~10%, which is to be expected for the mixture of several guantum states
employed in this experiment, can be measured using this technique. It should be noted that
this measurement was performed in the special geometry of the mirror and the scaterrers
shown in Fig.6. A long bottom mirror (1) was used with two scatterers (2) and (3). The first
scatterer gives the neutron spectrum the desirable shape and is installed at the constant height
of 42 um. The second one analyses the resulting neutron spectrum; its height is varied. The
detector (4), shown as the black box, measures the total neutron flux at the exit of the dlit
between the mirror and the analyzing scatterer. The distance between the scatterersis equal to
9cm.
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However, the measurement presented in Fig. 5 is merely atest of the detector for spatial
resolution and is not optimized for studying the neutron quantum states in this system. In ref.
[20], the measurement with the position-sensitive detector was analyzed from the standpoint
of its optimization for the identification of neutron quantum states. Fig. 1 depicts the

probability y(z) of neutron detection at a height z above the mirror surface for 4 pure

guantum states. Clearly, every dependence 1//5(2) has N maxima and N—1 minima
between them with zero values at the minima, which is characteristic of any standing wave.
An ideal experiment would consist of the extraction of one or several pure quantum states
higher than the first one (N> 1) and the direct measurement of neutron detection probability

against the height above the mirror with the aid of a position-sensitive detector with a spatial
resolution of ~1 pm.

>
»
»

Fig. 7. A scheme of the experiment with a small negative step on the lower mirror, which alows the
transition of neutrons to higher quantum states (to the region to the right of the step).

Let us consider a possible method for carrying out such an experiment. One or two lower
guantum states can be selected with a scatterer by the conventional method adopted in all our
previous experiments, which showed that the spectrometer resolution is sufficient for this.
The method for transferring neutrons from the lower quantum states to the higher quantum
states was considered in ref. [22]. It involves the fabrication of a small negative step on the
lower mirror, as shown in Fig. 7. Neutrons are in quantum states both to the left of the step
and to the right of the step. However, the corresponding wave functions have shifted relative

to each other by the step height AZS(ep . By passing through the step, neutrons are redistributed
from the n™ quantum state prior to the step Wy,.(2) =, (Z2+AZ,) over the quantum

state 4, (2) =, (2) after the step with some probabilities 35 (Az,,) . In this case, the

step can be treated as an infinitely fast perturbation and therefore the transition matrix
dement B, (AZ,,) is

B (A2e) = [, (2+ Az )y, (D)dz. (4.)

Fig. 8 shows the calculated probability Sy (AZ,,,) of transition from the 1% quantum

state, prior to passing through the step, to the 1%, 2™, 3" and 4™ quantum states after passing
through the step.
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When the negative step is large enough, for instance is equal to (15 pm), the probability
ﬂfl to detect neutrons in the lowest quantum state after passing through the step is extremely

small. The similar probability ﬂnzl for neutron transitions from higher initial quantum statesis
also low. Any overlap integral ﬂnzl for Az, =-15pm is small, since the spatia
dimension of the neutron wave function in the lowest quantum state /,(2) is smaller than

15 pm.

1->1 tliansition 1->2 tliansitim

Step , micron Step , micron
20 40 60 -60 20 40 60
1->3 trl'ansition 1->4 trl'arsitim
0.8 0.8
0.6 0.6
0.4 0.4
2 0.2
Step , micron Step , micron
€0 40 -20 20 40 60 -0 -40 -2 20 40 60

Fig. 8. Probability of neutron transition from the 1% quantum state, prior to transit through the step, to
the 1%, 2", 3 and 4" quantum states on transit through the step as a function of the step height AZ .

Z, micron Z, micron
0O 10 20 30 40 50 0O 10 20 30 40 %

Fig. 9. Probability of neutron residence versus height above the mirror on neutron transit through a
negative 15-um step for two cases: one and two lowest quantum states prior to the passage through the

step.

Fig. 9 shows the probability of neutron detection above the mirror depending on the
height after the neutron passes through the negative 15-um step. The probahility is plotted in
two cases: for one and two quantum states prior to passing through the step. It is evident that
the expected spatial variation of neutron density is clearly defined and can be measured. The
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reason for such a strong neutron density variation in the case of the elimination of the lowest
guantum state is simple: we can see from Fig. 1 that only the lowest quantum state has a peak
near 10 um. The remaining low-lying quantum states possess a minimum at this height.
Therefore, several lower quantum states (N >1) are “coherently” combined: the probability
of neutron detection at a height of ~10 um is systematically much lower than for neighboring
heights.

This idea was demonstrated in the last experiment performed in the summer of 2004 [23].
A neutron beam with a horizontal velocity component of ~5 m/sec and a vertical velocity
component of 1-2 cm/sec, which corresponds to the energy of the lowest neutron quantum
state in the gravitational field above a mirror, is selected using a bottom mirror (1) and a
scatterer/absorber (3) positioned above it at a height of ~20 um. A second mirror (2) is
installed 21 pum lower than the first mirror (1). The precision of the optica components
adjustment and the neutron detection resolution are equal to ~1 pum.
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Fig. 10. The neutron density distribution in the gravitational field is measured using position-sensitive
detectors of extra-high spatial resolution. The circles indicate experimental results. The solid curve
corresponds to the theoretical expectation under the assumption of an ideally efficient scatterer able to
select a single quantum state above the mirror (1) and no parasitic transitions between the quantum
states above the mirror (2). The dotted curve corresponds to the more realistic fit using precise wave-
functions and free values for the quantum states populations (for simplicity, the intereference terms
between different levels are neglected). The detector background is constant in the range from -3 mm
to +3 mm below and above the presented part of the detector.

Typical results of afew days detector exposure in such an experiment are presented in
Fig. 10. Even if the analysis of these data has not yet been completed and the fine details of
the quantum states can not be extracted, we can see clearly that the experimental approach
developed here allows us to obtain a very pronounced variation of the wave function and can
thus be considered as very promising.

The characteristic behavior of the neutron wave functions in the quantum states in the
gravitational field above the mirror, as well as the successful initial testing of the position-
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sensitive detector with a uranium coating, suggest that it will be possible to identify neutron
guantum states by directly measuring the neutron detection probability above a mirror using
the position-sensitive detector. It should be noted that this detector could be also used to
measure the velocity distribution in quantum states. To do so, we need simply to shift the
detector a few centimeters downstream to the bottom mirror edge: the spatial spread of the
picture thus obtained will not be sensitive to the initial position of the neutron above the
mirror but to its velocity.

Thus, the two techniques considered and the available fluxes of UCN are aready
sufficient for a broad range of applications. Let us analyze them briefly, before considering
further developments of this experiment, related to resonance transitions between different
guantum states and thus to a much more precise measurement of the parameters of these
quantum states.

5 Useof Neutron Quantum Statesin Different Domains
of Physics

As we have aready mentioned in section 3, further development [18] of the theoretica
description of this experiment and experimental efforts related to improving the accuracy of
the absolute positioning of the scatterer [19, 20] could alow us to achieve close to a few
percent accuracy in the determination of quantum state parameters. It should also be noted
that the direct measurement of the spectral variation of neutron density above mirror in the
guantum states seem to be quite promising. For this reason we are rather confident that, even
at this early stage we can aready obtain some interesting physical results using this method.

For instance, as shown in ref. [24] and presented here in section 5.1, a competitive upper
limit for short-range fundamental forces was obtained simply from the very fact that the
gravitationally bound quantum states exist. Moreover, if any additional short-range
interaction were to exist (of whatever nature: new hypothetical particles, supplementary
spatial dimensions, etc.), this would change the parameters of the neutron quantum states.
Therefore, the precise measurement of these parameters gives an upper limit for unknown
interactions.

This experiment can also be used to search for the axion — a hypothetical particle which
strongly violates CP invariance; the characteristic distance for this interaction is comparable
to the characteristic length of our problem z,. This is discussed in section 5.2 and can be

considered within the more general context of studies of spin-gravity interaction.

This method could be used for studies related to the foundations of quantum mechanics,
such as for instance, the quantum-mechanical localization (also known as quantum revivals,
see section 5.3) [25], or various extensions of quantum mechanics [26, 27] (see section 5.4).
One should note here that the present method provides two unique opportunities. on the one
hand, it provides a rare combination of quantum states and gravitation that is favorable for
testing possible extensions of quantum mechanics; on the other hand, UCN can be reflected
from the surface up to ~10° times without loss, i.e. much more than for optical phenomena,
which means that any kind of localization can be better studied using UCN. Finaly, as
presented in section 5.5, this method could be useful for such problems of high long-term
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interest as the loss of quantum coherence in the systems with gravitational interaction (see,
for instance, refs. [28, 29]).

5.1 Search for Non-newtonian Gravity

According to the predictions of unified gauge theories, super-symmetry, super-gravity and
string theory, there exist a number of light and massless particles [30]. An exchange of such
particles between two bodies gives rise to an additional force. Additional fundamental forces
at short distances have been intensively studied, in particular over the past few years in the
light of the hypothesis about “large” supplementary spatia dimensions proposed by
Antoniadis, Arkami-Hamed, Dimopoulos and Dvali [31] and based on earlier ideas presented
in [32-35]. A review of theoretical works and recent experimental results can be found in
[36—40]. This hypothesis could be verified using neutrons because the absence of an electric
charge makes it possible to strongly suppress the false electromagnetic effects [41]. It was
noticed in [42] that the measurement of the neutron quantum states in the earth’ s gravitational
field is sensitive to such extra forces in the sub-micrometer range. In the case of N =3 extra
dimensions, the characteristic range lies just within the nanometre domain [31, 41] which is
accessible in this experiment. The first attempt to establish a model-dependent boundary in
the range 1-10 um was presented in [40].

An effective gravitational interaction in the presence of an additional Y ukawa-type force
is conventionally parameterized as:

V,, () = G@(u age™") (5.1)

Here, G is the Newtonian gravitational constant, M and M, are interacting masses, r

their relative distance, oz and A are the strength and characteristic range of this

hypothetical interaction.

The dependence of neutron flux on the dlit size is sensitive to the presence of quantum
states of neutrons in the potential well formed by the earth’s gravitational field and the mirror.
In particular, the neutron flux was found to be equal to zero within the experimental accuracy
if the dlit size Az was smaller than the characteristic spatial size (a quasi-classical turning
point height) of the lowest quantum state of ~15 pum in this potential well. The neutron flux at
the dit size Az<10 xm in the second experiment [15] was lower by at least a factor of 200

than that for the lowest quantum state (Az = 20 pm).

If an additional short-range force of sufficiently high strength were to act between the
neutrons and the mirror then it would modify the quantum states parameters. an attractive
force would “compress” the wave functions towards the mirror, while a repulsive force would
shift them up. In this experiment, no deviation from the expected values was observed within
the experimental accuracy. This accuracy is defined by the uncertainty in the dit size, which
can be conservatively estimated as ~30% for the lowest quantum state [15].

Aswe mentioned in section 2, the motion of neutrons in this system over the vertical axis
z could be considered, in afirst, relatively good approximation, as a one-dimensional problem
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for which the mirror provides an infinitely high potential. The interaction between neutrons
and the Earth is described by the first term in eq. (5.1) and can be approximated by the usual

linear potential (r = R+2):
V(2) = mgz (5.2)

with g = GMm/ R?, Rbeing the Earth’sradius, M its mass.

The second term in eg. (5.1) introduces an additional interaction. Due to the short range
of this interaction, its main contribution is provided by the interaction of neutrons with athin
surface layer of the mirror and the scatterer.

Let usfirst estimate the interaction of neutrons with the mirror due to this additional term

if this interaction is attractive. If the mirror’s density is constant and equal to p,,, then an

additional potential of the interaction between the neutrons and the mirror, in the limit of
small A, isgiven by [24]:

V'(z2)=-U,e?* (5.3)

with U, = 22Ga mp, A°.

The simplest upper limit on the strength of an additional interaction follows from the
condition that this additional interaction does not itself create any bound state. It is known [7]
that for an exponential attractive (U, > 0) potential (5.3) this means that

2
Umd™ _72. (5.4)

hZ

This condition gives a boundary for an additional potential strength:

g =0722 £ TR (5.5)
7 p, MgAZ mi A

L being the Earth’ s average density. In this experiment, both densities are close to each other
p~ p, thereforetheir ratio p/ p iscloseto 1. However, a suitable choice of mirror material

(coating) would easily allow usto gain afactor of 3-5 in the sensitivity in future experiments.
We obtain the following humerical boundary:

o =1x10° (“‘Tm) . (5.6)

Here, 1 umis chosen as a natural scale for this experiment. This limit is presented in Fig.
11 in comparison with the limits from the Casimir-like and van der Waal s force measurement
experiments [38], as well as from experiments on protonium atoms. An additional force
between a nucleus and an antiproton would change the spectrum of such an atom. The most



82 V.V. Nesvizhevsky and K.V. Protasov

precise measurement of the energy spectrum of antiprotonic atoms was done for *He" and
*He* atoms by the ASAKUSA collaboration at the antiproton decelerator at CERN [44]. No
deviation was found from the values expected within the QED calculations [43]. An 3o

upper limit on |aG| from this experiment was established in [24]:

|| =3.3x10%. (5.7)
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Fig. 11. The constraints on ¢ following from this experiment [12, 13] (the solid line) in comparison

with that from the measurement of the Casimir and the van derWaals forces [35] (the short dashed
lines). The long dashed line shows a limit which can be easily obtained by an improvement of this
experiment. The solid horizontal line represents the limit established from the atomic experiment [41].
Dash-dotted line shows the limit which would be obtained if one equals the strength of this additional
hypothetical interaction to the value of effective Fermi potential for Pb [43].

It is necessary to note that, in the realistic case, one has to establish a condition of non-
existence of an additional bound state for the sum of (5.2) and (5.3) but not for the interaction
(5.3) adone. The presence of the linear potential modifies slightly the critical value in (5.4).
For instance, for A =1 um it is approximately equal to 1.0 and for 4 =0.1 zm it isequa

to 0.74. For smaller A, thisvaluetendsto 0.72. It is possible to explain qualitatively why the
strength of an additional interaction should be higher in the presence of the mgz-potential than
without it. When a bound state has just appeared, then its wave function is extremely spread.
If a supplementary “external” confining potential is added, it does not alow the wave
function to be spread and thus a stronger potential is needed to create a bound state.

The range of presented A4 is1 nm-10 zm. A deviation from a straight line in the solid
curve a 1 nm is due to the finite range of increase of the mirror effective nuclear potential
(impurities on the surface and its roughness). The same effect a¢ 4 ~10 um is due to
“interference” between the potentials (5.2) and (5.3).

Unfortunately, this experiment does not allow us to establish a competitive limit for a
repulsive interaction. In this case, there could be no “additional” bound state. Here, instead of
the condition of “non-existence” of a bound state, one could consider the critical dlit size for
which the first bound state appears in this system. Such an approach would be model-
dependent due to uncertainties in the description of the interaction of neutrons with the
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scatterer. Nevertheless, it is possible to obtain a simple analytical expression for small 4 and
to show explicitly a difference in the sensitivity of this experiment to an attractive and to a
repulsive additional interaction.

Uy =—-"———F——exp(4/ 1) (5.8)

with 4, =0E,/mg, JE, being the precision of determination of the n-th quantum state

energy.

A direct comparison of relation (5.8) to (5.5) shows that the limit (5.8) at small A is
sufficiently less restrictive than the limit for an attractive one (5.5) due to the exponential
factor. On the other hand, it would be possible to achieve as strict a limit for a repulsive
interaction as for an attractive one, if the mirror was coated with a material with negative
Fermi potential.

Asaconclusion, let us emphasize that even though this experiment was never designed to
search for additional short-range forces it provides the competitive limit (5.5) in the
nanometer range. However, it could be easily improved in the same kind of experiment by
making some obvious modifications. For instance, one could choose a mirror material
(coating) with a higher density. A significant improvement to such a limit would only seem
possible by using the “storage” method, which would allow a gain in accuracy of afew orders
of magnitude.

A more significant gain in the sensitivity could be achieved in dedicated neutron
experiments. Simply as a qualitative illustration of the potential capacities of experiments
with neutrons, it can be said that if the strength of this additional hypothetical interaction were
equal to the value of effective Fermi potential for Pb [46] this equality would produce the
limit presented by the dash-dotted linein Fig. 11.

5.2 Search for the Axion and Spin-Gravity Interaction

Axions are well-known as a possible solution to the strong CP problem as well as an
interesting darkmatter candidate [47]. One of the most remarkable predictions associated with
the axion is that it yields a parity and time-reversal violating, monopole-dipole coupling
between spin and matter [48]. Experimental and astrophysical observations imply that the
mass of the axion must lie between 1 €V and 1 meV, corresponding to a range between 20

cm and 0.2 mm [49]. This range is commonly referred to as the “axion window.” An
exhastive review of theoretical and experimental activities to search for the axion can be
found in [30].

Axions mediate a CP violating monopole-dipole Y ukawa-type gravitational interaction
potential [48]

~ on(1 1)_,
V(r)=hg.g.—| —+—=|e 5.9
(r) 95955 (M rzj (5.9)
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between spin and matter where g, g, is the product of couplings at the scalar and polarized

vertices and A isthe range of the force. Here r is the distance between the neutron and the

nucleusand N=r/r aunitary vector.
Untill now, only a few experiments placed upper limits on the product coupling g,g; in

a system of magnetized media and test masses. Of the experiments covering the axion
window, one of them [50] had peak sensitivity near 100 mm (2 1€V axion mass) and another
[51] had peak sensitivity near 10 mm (20 1€V axion mass).

Let us make an initial qualitative estimation of the limit of the axion coupling constant
which can be established from the existing experiment. The upper limit for which the peak of
sensitivity isclearly close 10 um.

By analogy with the demonstration presented in the previous section where an additional
interaction between (5.1) the neutron and the mirror’s nuclel created an additional neutron-
mirror interaction potential (5.3), in the case of the interaction (5.9), a neutron with a given
projection of spin on the vertical (g) axis will see an additional potential with the following
shape created by the whole mirror:

gpgs ﬂ-hpm)“ e—ZO//i

U(z)= 47  2m’c

(5.10)

This potential, considered as a perturbation, will produce a positive energy shift &, (in
the first order of the perturbation theory) for one of two possible spin projections and a
negative energy shift —¢,. Thus obtained, the energy splitting can be constrained from the

experimental data. For instance, we can propose a very rough and robust upper limit if we
says that this splitting is smaller than at least half of the energy difference between two
gravitational levels:

2¢, s%(E2 -E) %AE (5.11)

Therefore the limit of the axion coupling constant will be given by

9,9, 2AEnY
—;flc :—th 2 (5.12)

(here the exponential function is replaced by 1, because the size of the wave function is of the
order of ten micrometers whereas the range of the interaction, for the axion window, is higher
than 100 microns).

To obtain a naive estimation for 4 =1 mm, we can suppose that AE =1 peV (i.e. the

energy difference between two gravitational levels), p,, = 4000 kg/m®:
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9,9
fic

=2.10". (5.13)

This limit is at least a few orders of magnitude better than the limit obtained in the
experiments [50, 51].

In principle, a very competitive constraint could be obtained using the present flow-
through method for spin-dependent short-range forces in a dedicated experiment with
polarized neutrons. By alternating the neutron spin in such an experiment an accuracy of
~10° -10" could easily be achieve (instead of 1 considered in the estimation given here).
The main simplification in the case of spin-dependent forces is the relative nature of the
measurement, because the neutron spin can be easily flipped with a high accuracy. In contrast
to that, spin-independent forces can not be “switched off”. We would therefore need an
absolute measurement in this case.

Let us emphasize that this discussion can be seen as a part of the wider search for spin-
gravity interaction. The idea that a nuclear particle may possess a gravitoelectric dipole
moment was proposed about forty years ago by Kobsarev and Okun [52] and by Leitner and
Okubo [53]. A brief review of experimental and theoretical activity on this question can be
found in [54]. Here we would like to emphasize that this problem has been discussed at length
in a number of recent articles, with arguments for [52] and against [56] this kind of term
(5.10) in the interaction of fermions with an externa gravitational field, and that the
inrtoduction of polarized neutrons into our experiment does not represent a difficult
experimental challenge.

5.3 Quantum Revivals

The application of this experiment to quantum mechanica localization (also known as
guantum revivals) was considered in detail in arecent review article by Robinett [25]. Let us
remind the reader of the main ideas presented there and the feasibility of such a measurement
in our experimental setup.

Quantum revivals are characterized by initialy localized quantum states which have a
short-term, quasi-classical time evolution, which then can spread significantly over severa
orbits, only to reform later in the form of a quantum revival in which the spreading reverses
itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident.

The study of the time-development of wave packet solutions of the Schrédinger equation

often makes use of the concept of the overlap (z//t |¢//0> of the time-dependent quantum state

|1//t> with the initial state |1//0> . This overlap is most often referred to as the autocorrelation

function.
For one-dimensiona bound state systems, where a wave packet is expanded in terms of
energy eigenfunctions y/, (x) with quantized energy eigenvalues E, in the form

w(xt)=3 ap, (e (5.14)

n=1
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with
a, = [ v (0w (x (515
the autocorrel ation function can be written as:
At) = i|an|2 gst/ (5.16)
1

and the evaluation of A(t) in this form for initialy highly localized wave packets will be
investigated experimentally.

If alocalized wave packet is excited with an energy spectrum which is tightly spread
around alarge central value of the quantum number n, sothat n,J An[l 1, itispossibleto

expand theindividua energy eigenvalues, E, = E(n), about this value, giving

E(n) ~ E(n,) + E'(n,)(n—ny) +%(n— n,)’ +%(n— )’ +.. (5.17)

This gives the time-dependence of each individual quantum eigenstate through the
factors:

i i - i —n)? 27(n-ng)®/T.
eIEnt/h :em)ot ‘e|27z(n o)/ Ty 'e|27r(n )/ Trew e' 7(N=19)" I Toyper (5.18)

where each term in the expansion (after the first which is an unimportant overall phase not
observable experimentally) defines an important characteristic time scale, via:

T, =22t AT g Tope _ Lemh
|E'(ny)| [E"(ny)| |E"(ny))

(5.19)

The second term in the expansion is associated with the classical period of motion in the
bound state. It can aso be shown that the wave packet near the revival time T, returns to
something like its initial form, exhibiting the classical periodicity. In the special case when
T, /T, isaninteger, the revival occurs exactly in phase with the original time-development,
and is exact (in that |A(t)| returns to exactly unity). For some realistic systems, with higher
order terms in the expansion in Eq. (5.17), the superrevival time, T, aso becomes very

important.
To obtain the order of magnitude of the different characteristic times introduced
previously, one can consider a neutron in the second state. For this state, the value of the

classical turning point (2.11) isequal to z, =24 um. The classical periodicity of the system
isgiven by
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T, =2 %% ~a4ms. (5.20)
g

Therevival time appears to be equal to

_16mz;

7h

~46 ms. (5.21)

rev

With the neutrons of 5 m/s velocity, a 25 cm long mirror is needed to observe this revival
phenomenon.

All the methodical developements for this kind of experiments are aready available: the
position-sensitive detector discussed in section 3 can provide the spatial resolution of 1 zm,

the absorber/scatterer and a suitable mirror geometry (see sections 2 and 3) make it possible
to chose the necessary number of quantum states, and the phase of the wave function can be
fixed by a special collimator at the entry to the system.

5.4 Search for aLogarithmic Term in the Schrédinger Equation

As discussed in refs. [26, 27], an extension of quantum mechanics with an additional
logarithmic term in the Schrédinger equation assumes quasi-elastic scattering of UCN at the
surface, with extremely small, but nevertheless measurable, energy changes. Such spectra
measurements of high resolution with UCN were themselves methodologically challenging.
They were also motivated by a long-standing anomaly in the storage of UCN in traps [57].
These experiments [58, 59] allowed the authors to constrain such quasi-elasticity at ~10™ eV
per collision, under the assumption of a “random walk” in phase space at each neutron
collision with the wall: a non-zero result at this level was reported in ref. [58] at the limit of
experimental sensitivity, but was not confirmed later in ref. [59], measured in the same setup
with slightly better statistical sensitivity but with worse energy resolution.

A significant increase in the accuracy of neutron gravitational spectrometry using the
high-resol ution position-sensitive neutron detectors presented here allows us to improve many
times over the upper limit for the probability and for the minimum energy transfer values for
the quasi-elastic scattering of UCN at the surface [60]. Moreover, we can now consider
energy changes at a single reflection, rather then having to follow the integral effects of many
collisions, as in refs. [58, 59]. In addition to this, the present limit concerns one specific
component of the neutron velocity along the vertical axis before reflection and after it. Also
any deviation from conventional quantum mechanics can be verified in a more direct way
with the quantum limit used here for the minimum possible initial energy, or velocity.

Such constraints, however, present a broader interest and could be considered in a more
general model-independent way: how precisely do we know that UCN conserve their energy
at wall reflections or during UCN storage in material traps?

Let us remind the reader of the details of the experimental set up used in the last run. A
neutron beam with a horizontal velocity component of ~5 m/sec and a vertical velocity
component of 1-2 cm/sec, which corresponds to the energy of the lowest neutron quantum
state in the gravitational field above a mirror, is selected using a bottom mirror (1) and a
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scatterer/absorber (3) positioned above it at a height of ~20 um. A second mirror (2) is
installed 21 um lower than thefirst mirror (1). If the UCN bounce elastically on the mirror (2)
surface in the zone between the scatterer’s (3) exit edge and the position-sensitive detector
(4), the measured spatia variation of the neutron density as a function of height would
correspond to that shaped by the mirrors (1,2) and the scatterer (3) in the zone upstream of the
scatterer’s (3) exit edge. If they do not, then the excess number of neutrons observed in the
higher position would be attributed to their quasi-elastic reflection from the mirror (2)
surface. The experimental setup is designed in such a way that any known parasitic effects
(vibration of the mirrors and the scatterer, residual magnetic field gradients, quasi-specular
reflections of UCN from mirrors or at residual dust particles) should be small enough not to
cause a significant change in the spectrum of vertical neutron velocities (see refs. [8-9,
19-22]).

We will not discuss the possible microscopic mechanisms of quasi-elastic reflections of
UCN at surfaces; we shall simply consider this problem in phenomenological terms. A simple
conservative upper limit for the quasi-elastic scattering/heating probability (versus average
energy transfer) following UCN reflection from the lower polished glass mirror could be
calculated, assuming an ideal scatterer able to select a single quantum state above the mirror
(1) in Fig. 7. Populations of all quantum states above the mirror (2) can be precisely
calculated in this case [22]. They provide the neutron density distribution, presented by the
solid curve in Fig. 10. We know in fact that a few neutrons at higher quantum states should
survive [15] producing a density distribution close to one presented by the dotted curve in
Fig. 10. However, we do not attempt to take such neutrons into account and intentionally
sacrifice the sensitivity of the present limit in favor of maximum reliability and transparency.
Such an estimation could be further improved with the present experimental data using a
more sophisticated theoretical analysis based on ref. [15]. It would however be dlightly
model-dependent in such a case. For the simplified approach chosen, the solid line in Fig. 10
is considered as “background” for the measurement of quasi-elasticity and any additional
events above this line would be supposed to be due to quasi-elastic scattering. Fig. 12
illustrates the results of the treatment of the experimental data presented in Fig. 10.

The straightforward calculation of such a constraint provides the solid curve in Fig. 12
under the following assumptions. 1) all additiona events higher than the solid curve in Fig.
10 are attributable to quasi-elastic scattering/heating; 2) the energy is assumed to change in
one step (due to the low probability of such an event); 3) we take the number of quasi-
classical collisonsin such asystem [15].

The rather sharp decrease with height of the neutron density on a characteristic scale of a
few microns simplifies considerably the present calculation. For large enough AE values,

any excess counts above the constant background level AN, /Ah in the height range
h>60 um are attributed to quasi-elastic scattering/heating. Quasi-elastically scattered
neutrons could be observed at any height between zero and (E, + AE)/ mg , where E; isthe
initial energy of vertical motion and AE isthe energy gain. If AELl E,, the total number of

AN
b9 A—E neglecting the initial spectral line
h mg

background events is approximately equa to
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width h<60 um. At 3o confidence level, we would observe an excess qu, of events at

h>60 um, if itisequal to:

(5.22)

0,1

1E-3 4.

Probability of the energy change

1E-4

10™ 10" 107 10°
Energy change, eV

Fig. 12. The solid curve corresponds to constraints for quasi-elastic scattering of UCN at a flat glass
surface: the total probability of such a scattering per one quasi-classical bounce versus average energy
transfer at “3c” confidence level. The dotted curve shows the possible improvement of such constraints
in the flow-through measuring mode. The dashed curve indicates a further increase in sensitivity in the
storage measuring mode. The circles correspond to theoretical predictions for the present experiment in
accordance with refs. [14-15, 17]. The stars indicate analogous predictions for measurements with the
experimental setup [8-9, 19-22] inclined to various angles. The triangles show the value of the energy
change expected in refs. [14-15, 17] (for a higher initial neutron velocity than that in the present
experiment). The thin dotted and dashed curves indicate schematically the constraints if the initial
spectral shape line were to be taken into account.

With the horizontal velocity component Vv, and the mirror length L between the
scatterer’s exit edge and the detector (see Fig. 7), the total number N, of quasi-classical

bouncesis:

Nbounoes = ; :
2 [2E,
. Vior
g m

Thus, with the total number N, of neutronsin the initial spectral line, we would be able

(5.23)

to observe quasi-elastic scattering a 3o confidence level if its probability P (AE) is equal

to:
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Pe‘ (AE) = qu = 3 ANbg A_EE Evh (524)
‘ NO ’ Nbounca NOL Ah mg g m

Asisevident from eq. (5.24), P, (AE) increases as VAE , thus decreasing the sensitivity

of the present constraint at large energy changes. The sensitivity is also lower at energy
changes smaller than the initial spectral line width of ~60 um (here the constraint is estimated
numerically). Therefore the best sensitivity is achieved at the energy change comparable to
one or few initial spectral line widths, as shown in Fig. 12.

The constraint presented shows the high degree of elasticity of neutron reflections in the
range AE[110? —3.10™ eV AE ; thisisimportant for the further development of precision
neutron spectrometry experiments. Further improvements in the sensitivity of such constraints
by an order of magnitude are feasible in the flow-through measuring mode, by improved

AN

shielding of the neutron detectors (a factor 7;:9 in eq. (5.24)), by increasing the length of
A

the bottom mirror (afactor 1/L in eg. (5.24)), by further increasing the scatterer efficiency,
and by using a narrower initial neutron spectrum (a factor \/E in eg. (5.24)). On the other

0
hand, a broader initial spectrum could allow us to increase the factor N in eq. (5.24) and
therefore to improve the sensitivity at higher AE values (sacrificing the sensitivity at lower
AE values).

An almost order-of-magnitude gain in the minimum measurable energy change could be
achieved by providing a proper theoretical account (in accordance with ref. [15], for instance)
of the spectrum-shaping properties of the scatterer, or by a differential measurement of the
vertical spectrum evolution using bottom mirrors of different lengths. Possible improvements
in the flow-through mode are illustrated by the dotted curve in Fig. 12. One should note that
any jumps in energy by avalue significantly lower than 1 peV would clearly contradict to the
observation of quantum states of neutrons in the gravitationa field [12-15, 21-23] and
therefore they are not analyzed in the present article. The minimum energy increase
considered corresponds to the energy difference between neighboring quantum states in the
gravitational field.

A much higher increase in sensitivity could be achieved in the storage measuring mode
with the long storage of UCN at specular trgjectories in a closed trap (the dashed curvein Fig.
12 or better).

As an example of a possible application of the present constraint, let us compare it to the
theoretical prediction in accordance with refs. [58,59]. This model assumes the replacement
of “continuous interaction” of UCN with a gravitational field by a sequence of “collisions
with the field”. The time interval 67 between the “collisions’ is defined as the time during
which the mass “does not know that there is an interaction” since the kinetic energy change
OoE (by falling) istoo small to be resolved. From the uncertainty principle:

57-55% ,or 5E ~ hmg% = /33, (peV) (5.25)

where v, ., isinm/s.

vert
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For the vertical velocity component v, =2.5cn/s in our present experiment, the

expected energy change is SE~8-10™ eV (shown as the circle in Fig. 12). The “100%”
probability of quasi-elastic scattering is dightly higher than the 3o experimenta constraint
(the solid line in Fig. 12). However, considering the expected probability value of ~10% and
low experimental sensitivity at small AE values, one needs to further improve the sensitivity
of the present constraint.

On the other hand, a dight modification of the experimental setup would alow us to
verify clearly the considered hypothesis. Namely, the whole apparatus should be turned by a
significant angle relative to the direction of the gravitationa field. In this case, the vertical
velocity component is comparable to the longitudinal velocity of 5-10 m/s. The transversa
velocity component (relative to the bottom mirror) is very small, just equal to the one in the
experiment [12-15, 21-23]. All sensitivity estimations for quasi-elastic scattering/heating are
analogous to those given above (see Fig. 12). However, the theoreticaly predicted effect
could be as high as ~10™ eV (depending on the inclination angle) — just in the range of the
best sensitivity of the present constraint: the stars in Fig. 12. In order to measure a
hypothetical cooling of UCN at their quasi-elastic reflections, we must first of al select a
higher quantum state (n>1) and then follow the evolution of the corresponding neutron

spectrum. The sensitivity estimations in the energy range 0< AE < E;, would be about as

strong as those for the quasi-elastic heating if the experiment was optimized for this purpose.
Such measurements would be significantly easier to perform than the measurement of the
gravitationally bound quantum states because they do not require such record levels of energy
and spatia resolution.

5.5 Search for the L oss of Quantum-M echanical Coherence

The fundamental loss of quantum coherence because of gravitational interaction is an issue of
high long-term scientific interest. As it was pointed out even in the first publication [28],
neutron interference experiments could be sensitive to this phenomenon. The quantity
defining the sensitivity of such an experiment is the characteristic time of observation of an
interference pattern. In the experiment [61] with thermal neutrons this value was about 300 s
(which corresponds to the energy 2-10% GeV ). In our experimental setup, in the flow-

through measuring mode the observation time could be as high as ~60 ms (10% GeV ). A
measurement of the localization phenomenon, described in this article, could give a direct
estimation of the effect of the fundamental loss of quantum coherence. A much longer
observation time would be possible in the storage measuring mode in our experiment. On the
other hand, even better constraints for the loss of quantum coherence would be obtained by
measuring neutron oscillations between two quantum states due to a small mixing interaction
(for instance, a magnetic one) in some analogy to the experiment mentioned in ref. [29].

6 Transtionsbetween the Quantum States

The observation of transitions between the quantum states would alow a qualitatively new
step in this research. These transitions can be initiated in various ways and by different forces
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(strong, electromagnetic, gravitational). In this section we will study, for the first time,
different options, giving estimations of probabilities of these transitions.

The mechanical vibration of a mirror would be the simplest way of inducing such
transitions. This vibration means a periodical variation of the boundary condition created due
to the effective Fermi potential of the bottom mirror (i.e. due to strong forces). In fact, we
aready observed this kind of transitions induced by nuclear forces, in our last experiment. To
suppress neutrons in the ground state, the mirror was assembled in a special way so as to
produce a negative step (Fig. 7). This trick can be considered as an infinitely fast change of
the Hamiltonian which produces a change in the occupation numbers, i.e. the transitions
between the levels.

Another way to produce transitions between the levels is to introduce a varying gradient
of magnetic field (i.e. by electromagnetic forces). Until now, all magnetic effects have been
considered as parasitic and able to blur the gravitational levels. Considerable efforts were
therefore needed to avoid undesirable interaction between the neutron magnetic moment and
an external magnetic field. Now that once the existence of the gravitational levels is well-
established, a controlled magnetic field can be introduced to manage transitions between the
levels. Experimentaly, it is easy to produce such a gradient with any form of time-
dependence, in particular, perfectly harmonic oscillations.

However, the most interesting way to produce the transitions is by variation of the
gravitational field. This could be done, for instance, by the rotation of a massive body close to
the experimental set up. This kind of transition is, of course, very difficult to observe. The
aim of this study is therefore to evaluate the feasibility of performing this kind of experiment
with current and future neutron facilities.

A measurement of transitions between the gravitational levels can be used to study the
properties of neutrons. For instance, if we look for transitions induced by a variable electric
field and we establish an upper limit on such transitions, we can establish a limit for the
electric charge of the neutron.

6.1 General Expressionsfor Transition Amplitudes

Let us remind the reader of the main formulas [3] which will be used hereafter concerning the
transitions between the quantum levels (two states of the discrete spectrum). We are
interested in the transitions induced by a periodical externa interaction considered as a
perturbation and which, in order to obtain simple analytic expressions, is considered to be
harmonic.

The Hamiltonian H of the problem can be written in the form

H=H,+V(t) (6.1)

where Pio corresponds to the unperturbed gravitational problem (z > 0)

o= P gz 62)
2m
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and
V(t) =V, (2)€" +V,(2)e ' (6.3)

is a harmonic perturbation with V() which depends on z. This particular harmonic form

of excitation is chosen to obtain analytic results and can in some cases be achieved in an
experiment.
A solution W of the Schrodinger equation

ih%yz(ﬂ(ﬁ—g(t))‘l’ (6.4)

can thus be written as asum

¥=>a/tv (6.5)
k

_ig(®
over solutions W@ =, (2)€ " of the unperturbed Schrodinger equation

(0)
iha\g—tk =H,vO. (6.6)

If we put (6.5) in (6.4) and taking into account (6.6) we obtain:
iny o da, _ >aV)re. (6.7)
k dt K
By multiplying the last equation by \P;ﬁo’ and by integrating over z, we obtain:

ihdﬁ=ZmG (h)a, (6.8)
dt X
with the matrix element:
Vi () = [ WOV (1) ¥ Oz (6.9)

The last differential equation describes an evolution of the quantum system. If we
suppose that at amoment t = 0, the system was, for instance, in aground state (K =1)
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a(0)=1and a,(0)=0 forany m=1,

then we can calculate, at least numerically, a probability to find the system in the state n for
any moment t as

P.(t) =|a, ()] - (6.10)

As we said previously, the choice of a perturbation interaction v (t) in aharmonic form

(6.3) alows us to obtain an analytic expression for the probability (6.10) if we consider the
problem of only two coupled states. Physically, this situation is produced when the frequency

@ of the excitation is close to the difference @,, = (E\” — E\”)/# (resonance regime). Let
us suppose therefore that the difference € = @, —@ is very small and that in the matrix
element (6.9) of the perturbation (6.3), we can leave only the dominant term with this small

frequency:
V., (1) = j POV (1) P Odz ~ € j vV, (2w, dz=F €. (6.11)

By omitting al other terms, we obtain a system of two coupled equations relating the
amplitudes of presencein the ground and in the n-th state:

ih%“ —F 6a,
; | (6.12)
ihd—? =F.e"a,.

This system can be easily solved, for instance, by the standard Laplace transformation. 1f
we suppose that at t =0 the system isin the ground state, the probability of finding it in the
n-th excited state appears to be equal to:

p 2 QF .,
(1) =|a, (1) =Esm Ot (6.13)

with

F 2
Q. =—L and 0?2-02+% .
° °T 4

This is a well-known Raby formula describing an oscillation of the system between the
two coupled states with the frequency 2. The probability of presence in an excited state

oscillates between 0 and QF / Q7.
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Fig. 13. The transition probability from the ground to the excited states as a function of frequency of a
perturbation interaction v = w/ 27 .

The maximum probability as a function of frequency has a resonance-like behavior

QZ (legl)2
Poc(®) =—2 = h ~ (6.14)
Q (a)_a) )2 + (ZFnl)
nl hZ

and is presented in Fig. 13. The resonance frequencies given in this figure correspond to
transitions from the ground state N =1 to the first three excited states. The energy spectrum
of the system becomes denser with increasing n (the levels become closer to each other).

The width of this resonance is defined by the matrix element of the perturbation F, and is
equal to

', =4F

n nl-

(6.15)

To resolve the two nearest states with N and n+1, their energy difference

E...—E, =ha,,,, should be smaller than the corresponding width:
ho,.,>T,. (6.16)
In other words, the matrix element F_; should not be very big
ho
F,< %ﬂ (6.17)

to populate only one excited state.



96 V.V. Nesvizhevsky and K.V. Protasov

For an exact resonance ¢ = 0, formula (6.13) becomes
P(t)=sin’Qt. (6.18)

For a very small period of time (or a very small matrix element F_,), this probability is
seen to depend quadratically on time:

P.(t) = Q3t’ (6.19)

(this formulais vaid even when not in an exact resonance). We can say that this probability
becomes closeto 1 if:

F.t
T ~1. 6.20
5 (6.20)

We can say that to have a non-negligible transition probability, the observation time 7
should be of the order of:

TR —. (6.21)

By combining this condition with the condition of the resolution of two neighboring
states (6.17), we conclude that, to observe a resonance transition, the neutron life time in the
system should be higher than:

T>

(6.22)
[0}

nn+1

For instance, for a transition between the ground state N=1 and first excited state
n=2, the corresponding frequency is approximately equal to 150 Hz and we obtain
7 >4 ms. For neighbor higher excited states, this time should be even greater. We would
remind the reader that in the last experiment the time of presence of neutron in the system
was closeto 25 ms.

If the condition (6.22) is not satisfied, the transitions may also occur but in several states
simultaneously. This is true in particular, in the case mentioned in the introduction to this
chapter: the transition due to the sudden change of the mirror height (negative step). The
neutrons from the ground state (before the step) populate a few low excited states (after the
step). Thetransition exists but it is not a resonance one.
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6.2 TransitionslInduced by a Magnetic Field

As we mentioned at the beginning of this section, the magnetic field B easily couples to the

neutron magnetic moment ,@l by:

Hin=V(t)=—1uB (6.23)

and thus can be used to induce transitions between the gravitational levels. To obtain the
desirable effect, one can introduce an oscillating magnetic field with a gradient along the z
axis (which is also the direction of the magnetic field itself):

B, = fzsinwt . (6.24)
For this interaction, the matrix element F_; isequal to:

Fu = 1,82, (6.25)

where 4, isthe neutron magnetic moment and

Ly = _[‘//;Z‘/ﬁdz-

This matrix element can be calculated numerically with the well-known Airy function
and, for instance for N = 2, appears to be equal to

z,, =0.653z, (6.26)

where z, =5.87 pm isthe characteristic length of the problem introduced previously.

This can be easily achieved, even in the current experimental setup. The gradient of the
magnetic field £ necessary to introduce a transition between the first two levels with a

probability close to one (6.20) isequal to:

_h
/un 212t

Y;; (6.26a)

For the present experiment with t =25 ms, we obtain £ ~10 Gs/cm, which can be

achieved without mgjor difficulty. It is planned to conduct this experiment in the very near
future.

Let us emphasize that the studies of transitions induced by a magnetic field would
represent a very efficient tool for the search for the loss of quantum coherence induced by
gravity. The time evolution (6.13) of the two-level system is modified in the presence of such
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effects and can be constrained experimentally without any major difficulty. This is another
reason why the experiments on magnetic transitions between the gravitational levels are of
high priority.

6.3 TranstionsInduced by a Gravitational Field

The most interesting transition would be the one induced by gravitational interaction, for
instance, by a massive body motion in the vicinity of the setup. Compared to the Coulomb
interaction, this process is analogous to an excitation of the Coulomb atom by an electric
charge moving near the atom. In afield theory picture, this excitation is induced by a virtual
photon. In the case of a transition between the gravitational levels induced by a moving body,
one would speak of a virtual graviton. Strictly speaking, the theoretical description of both
processes does not require the explicit introduction of these virtual particles. We could not
therefore say that the detection of the gravitational transition would be an unambiguous
demonstration of the existence of the graviton. Nevertheless, this experiment would be a very
important step towards this goal.

The main difficulty is obviousy due to the very weak interaction constant. Let us
therefore simply estimate the probability of such a transition in order to charge on the
feasibility of its observation in the near future, let us say within a decade.

Let us suppose that a transition is induced by an oscillating body moving just above the
neutron situated at distance z above the mirror. Thus the distance between the neutron and the
body isequal to:

r:%+ a(l-coswt)+A-z (6.27)

where L is the linear size of the body, a is an amplitude of oscillations and A is the minimal
distance between the body and the mirror. This oscillating body will introduce an additional
gravitational interaction:

Hin = G@ (6.28)

M being the mass of the body. z is small with respect to L and this interaction
Hamiltonian can be developed in serieson z The linear termis equal to:

Hix ~gMM 2 4 i (6.29)
L L (1+2£(1-cosat))

Here A isneglected with respect to L and X = a/ L isintroduced. The function:

F(t) = 1 (6.30)

(1+2£ (1-cosat))’
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isnot harmonic but it is quite easy to calculate its development in Fourier series:

ft)=> ce™ (6.31)
with the coefficients:
o 7 : 1 (n+1) —(n-1)7n?
G=o— | flt)e™™dt= ™ _ (6.32)
27 4 C1+4C (1—772)
where
n=1+2_L fivac. (6:33)
20 20

Asafunction of ¢, 17 increases continuously from Oto 1.

In particular, the coefficient corresponding to the first harmonic C;is equa to:

2¢

_ 6.34
(1+45)™* (639

Cl =

This coefficient as afunction of ¢ has amaximum for ¢ =1/2 and its maximum value
isequd to

¢, =0.192. (6.35)

Let us note that the coefficient describing the difference between the neighbor harmonics
isequd to:

n(¢=1/2)=2-/3~0.268. (6.36)

This means that the higher terms decrease quite rapidly with n and, in first
approximation, the interaction (6.30) can be considered as harmonic and can be represented,
for the optimal choice ' =1/2, as:

Hin ~ 3.086@%&‘* . (6.37)
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This Hamiltonian is now considered as a perturbation Q(t) and its matrix element F,,
between the first two states’ wave functionsis equal to:

F, = O.77Gm%,

3 (6.38)

where Z,, isthe sameasin (6.26).

Obviously, for any realistic experiment, the condition (6.20) will be hardly fulfilled for
the gravitational interaction. Even if the neutron life time is chosen as the time of observation
(this hypothesis implies successfully storing neutrons at a given gravitational level over a
very long period, which is actually an extremely challenging task) and the characteristic size

of the oscillating body equals to L =20 cm with high density p =20-10° kg/m® (i.e.
M =160 kg), the value of the product (6.20) appears to be small:

% ~0.01. (6.39)

This means that the probability of a corresponding transition would be of the order of

10™*. With existing sources of UCN, the detection of those transitions would scarcely seem
possible.
However, the probability of transition increases if we choose other levels, for instance,

highly excited neighboring levels. We can show that the matrix element Z , behaves, for
nt 1,as

z,.,, ~057¢n*°, (6.40)
i.e. increases quite rapidly with n, whereas the transition frequency will decrease:

o, 0n*3. (6.41)

n+1n

Hence the technical realization of the experiment would be even simpler.
Note also that increasing the size L of the oscillating body produces very limited gain

because the amplitude of the transition depends linearly onL: F,, [J L, whereas its mass will

grow very rapidly M [ L* and make the experiment much more complicated.

Taking into account these circumstances, we can conclude that an experimental
observation of atransition between two gravitational levels, induced by the motion of a body
seems relatively unlikely in the near future with the existing neutron sources.
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6.4 TransitionsInduced by an Electrical Field

By studying transitions between the levels induced by an oscillating electric field, we can
establish an upper limit on (or find) the neutron charge.

As an example, let us consider a system where the mirror is one of the plates of a
condenser. If we apply avarying eectric field a perturbation Hamiltonian:

Hix =V (t) =e Bz (6.42)

€, being the neutron charge, E the strength of the electric field.

For thisinteraction, the matrix element F_;isequal to:

F,=eEz,. (6.43)

Thus an upper limit for the probability of transition to the nth state P,

Y Will give an upper

limit on the neutron charge:

JP - (6.44)

& < Ez t

In an experiment with the electric field E ~10" V/m, with t compatible with the

neutron life time, P. ~10° must be achieved in order to obtain an actual limit on the

lim
neutron electric charge equal to €, <10%'e. The best limit is produced with the

interferometer experiment using very cold neutrons [62]. It should be noted that ultracold
neutrons were also used to establish the limit [63].

6.5 TransitionsInduced by the Combined Effect of Different Excitations

Nevertheless a much tighter constraint for the neutron electric charge can be obtained and a
transition induced by a moving massive body can be observed experimentally. The ideais to
conduct an interference experiment where we measure a transition induced by two different
causes, for instance, by a variable gradient of the magnetic field and avarying electric field or
an oscillating body.

The matrix element F, of such atransition would be equal to the sum:

I:nk = I:ntliig + Fnina” (645)

of abig Fniig (for instance, magnetic) and a small Fni“a" (electric or gravitational) terms. The
transition probability would be proportional to:
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P.() 0| [ = |Foe[ + 2FsmFss, (6.46)

By an adequate choice of the relative phase of these two perturbations, we can obtain
another probability:

P.(t) 0[R2 —2F e (6.47)

Thus, an asymmetry is proportional to:

small
PM+P®) R
With the estimation obtained previously (6.39), this kind of measurement seems to be
conceivable in future experiments.
Of course, exactly the same idea of combined perturbations can be used to improve the
limit on the neutron electric charge.

Conclusion

Gravitationally bound quantum states of neutrons were recently discovered in the
measurement of neutron transmission through a narrow horizonta dlit between amirror below
and an absorber/scatterer above it. The first experiment alowed us to identify clearly the
ground quantum state in this system [12, 13]. Later, with improved height (energy) resolution
and statistics, we were aso able to measure also the first excited quantum state [15]. We
showed that the process of the loss of neutrons in an absorber/scatterer could be very
precisely described using a model of neutron tunneling through the gravitational barrier
between the classically allowed height and the absorber/scatterer height [15]. Further progress
with this experiment using the flow-through measuring mode is limited to a large degree by
one fundamental factor: the finite sharpness of the dependence on height of neutron tunneling
through this gravitational barrier. Nevertheless, with a more suitable and precise theoretical
description [18] and improvements to the absolute distance calibration [19, 20], we can
expect to achieve afew percent accuracy in the determination of quantum state parameters.

In order to resolve higher excited quantum states clearly and measure their parameters
accurately, we investigate another method based on position-sensitive neutron detectors of
very high spatial resolution [21, 22]. The direct measurement of the spatial density
distribution in a standing wave is preferred to its investigation with the aid of an
absorber/scatterer whose height can be adjusted. The former technique is differential, since it
permits the simultaneous measurement of the probability that neutrons reside at all heights of
interest. The latter technique isintegral, since the information on the probability that neutrons
reside at a given height is in fact obtained by the subtraction of the values of neutron fluxes
measured for two close values of the scatterer height. Clearly, the differential technique is
much more statistically sensitive. Furthermore, the scatterer employed in the integral
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technique inevitably distorts the measured quantum states; the finite accuracy of taking these
distortions into account results in methodological errors and ultimately limits the attainable
accuracy of the measurement of the quantum state parameters. The feasibility of the
differential technique was demonstrated in refs. [15, 23].

The two techniques considered and the available fluxes of UCN are aready sufficient for
a broad range of applications. Thus, as this was shown in ref. [24], this experiment could be
used to establish a competitive limit for short-range fundamenta forces. However, it is from
other specially designed neutron experiments that further progress in the nanometer range of
distances can be expected. In order to be competitive in the micrometer range, we have to
improve accuracy by many orders of magnitude, which can only be possible using the
technique of resonance transitions between the quantum states. This experiment can also be
used to search for the axion — a hypothetical particle which strongly violates CP-invariance;
the characteristic distance for this interaction should be comparable to the characteristic

length of our problem Zz,. The very fact that the neutron quantum states exist provides the

best constraint at this distance. An improvement by many orders of magnitude would seem to
be easily achievable. This method could also be used for studies related to the foundations of
guantum mechanics, such as for instance, quantum-mechanical localization (revivals
phenomenon) or various extensions of quantum mechanics. For instance, it could be used to
clearly rule out, or confirm, the presence of the logarithmic term in the Schrédinger equation
in some models. It should be aso noted that the present method provides two unique
opportunities. on the one hand, it provides a rare combination of quantum states and
gravitation that is favorable for testing possible extensions of quantum mechanics; on the
other hand, UCN can be reflected from the surface ~10° times without loss, i.e. much more
than for optical phenomena, which means that any kind of localization can be better studied
with UCN. Finally, this method could be very useful for such problems of high interest as the
fundamental loss of quantum coherence in systems with gravitationa interaction.

Other methodological applications of the gravitationally bound quantum states and
related techniques lie outside the subject of the present discussion of quantum gravity
phenomena. We will therefore not discuss them in detail but simply mention a number of
them. These experiments helped us to find an alternative approach to the problem of the
neutron-tight valve for UCN traps able to operate in the broad range of temperatures needed
for precision experiments with UCN storage. This is of crucia importance for precision
neutron lifetime experiments. The existing solutions suffer from highly disturbing side
effects: the so-called gravitational valve [64] modifies the spectrum of the stored UCN,
whereas the so-called liquid valve [65,66] means the unavoidable use of fomblin oil with the
accompanying effect of quasi-elastic scattering [67,68], producing large false effects aso.
Other methodological applications include the possibility of studying the distribution of
hydrogen above/below solid or liquid surfaces, or the investigation of thin film on surfaces.
These two subjects will be considered in more detail in separate publications.

A qualitatively new step in accuracy could be achieved even with the existing UCN
density if the resonance transitions between the gravitationally bound quantum states were
observed. These transitions could be initiated in various ways and by different forces (strong,
electromagnetic, gravitational). In this article we presented for the first time a feasibility
analysis and theoretical description of the observation of resonance transitions between the
guantum states. All the above-mentioned applications of gravitationally bound quantum states
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for various physical problems would benefit considerably from the increase in accuracy
which the technique of resonance transitions could bring. Moreover, a new class of highly
competitive experiments could be considered, such as better constraints for the electric
neutrality of neutrons, or the resonance transitions between the quantum states due to the
gravitational interaction. It is clear that any increase in the energy resolution in measurements
of the resonance transitions between the quantum states requires a high density of UCN. We
therefore consider new approaches in order for significantly increasing the UCN densities,
such as the thermalization of neutronsin gels of ultracold nanoparticles [69].
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Chapter 3

QUANTUM MECHANICS, QUANTUM GRAVITY,
AND APPROXIMATE LORENTZ INVARIANCE
FROM A CLASSICAL PHASE-BOUNDARY UNIVERSE

Michael Grady
Department of Physics, SUNY Fredonia, Fredonia, NY 14063 , USA

Abstract

A classical dynamical system in a four-dimensional Euclidean space with universal
time is considered. The space is hypothesized to be originally occupied by a uniform
substance, pictured as a liquid, which at some time became supercooled. Our uni-
verse began as a nucleation event initiating a liquid to solid transition. The universe
we inhabit and are directly aware of consists of only the three-dimensional expand-
ing phase boundary - a crystalline surface. Random energy transfers to the boundary
from thermal fluctuations in the adjacent bulk phases are interpreted by us as quantum
fluctuations, and give a physical realization to the stochastic quantization technique.
Fermionic matter is modeled as screw dislocations; gauge bosons as surface acoustic
waves. Minkowski space emerges dynamically through redefining local time to be pro-
portional to the spatial coordinate perpendicular to the boundary. Lorentz invariance
is only approximate, and the photon spectrum (now a phonon spectrum) has a maxi-
mum energy. Other features include a geometrical quantum gravitational theory based
on elasticity theory, and a simple explanation of the quantum measurement process
as a spontaneous symmetry breaking. Present, past and future are physically distinct
regions, the present being a unique surface where our universe is being continually
constructed.

1 Introduction

In the following, a new picture of the big bang and the underlying structure of the universe
is proposed, based on a classical field theory in a four-dimensional Euclidean space with a
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universal time (a 4+1 dimensional theory)[1, 2, 3, 4]. The big bang is treated as a nucle-
ation event for a first-order phase transition (pictured as a liquid to solid transition) and our
universe is the three-dimensional phase boundary between the expanding solid and preex-
isting liquid phases. This classical brane-theory appears to have the potential to explain a
diverse set of phenomena — Lorentz invariance, quantum fluctuations and zero-point energy,
guantum superposition and measurement, elementary fermions and bosons, gauge forces,
gravity, the big bang and a non-decelerating expansion of the universe. It is possibly rich
enough to give a “theory of everything” from a relatively simple base-theory consisting of

a small number of elementary atoms or molecules and basic elastic forces holding them
together. In this model, all of the forces and particles of standard particle theory are sec-
ondary effects, consisting of the collective excitations and dislocations of the base-theory,
just as in condensed matter physics where such excitations play a pivotal role, reducing the
elementary degrees of freedom to a mere background for the more interesting and important
collective excitations.

We begin by assuming a four-dimensional Euclidean space, filled with a uniform fluid
at some temperature, undergoing thermal fluctuations. In addition to the four spatial dimen-
sions, there is also a universal time. Another possibility would be to start already with a
five-dimensional Minkowski space, however this does not seem to be necessary. This liquid
was cooling, became supercooled, and at some point a solid crystal nucleated. This was
the big bang. The universe begins as a fluctuation, already at a finite size, because in order
to grow rather than shrink, the initial crystal must be large enough that the positive surface
energy is less than the negative volume energy relative to the liquid. In such a model there
is no physical singularity at the beginning and there is no reason for the universe to be par-
ticularly hot or dense at this time either (more on this later). 3indaceof the solid, the
phase boundary, is an expanding three-dimensional space, our universe. This differs from
other “bubble universe” pictures, where the universe idrterior of a 3-d bubble. In fact,
it bears an uncanny resemblance to the simple “expanding balloon” model which is often
used as an example of a uniformly expanding curved space. However the present model
differs in that the interior and exterior of the balloon are real spaces, though not directly
observed by us. We are directly aware only of the phase boundary separating the phases,
which we refer to as the “present”. As the crystal grows, this hypersurface, our universe,
expands. Already there is a variance with the usuat 0 Friedmann universes. Namely,
our universe is closed, but will expand forever. The pressure on the surface caused by the
energy difference of the two phases acts something like a repulsive cosmological constant.
This universe actually expands faster as time goes on, not slower. If, as is likely, dissipation
is present, it will eventually approach a constant rate. (This assumes a constant amount of
supercooling — if the base liquid cools more, the expansion rate could continue to increase
as the degree of supercooling increases. Without dissipation, the expansion rate increases
exponentially). Recent astrophysical evidence shows that the expansion rate is not slowing,
but may even be speeding up[5] which is consistent with this scenario.

In the following, the emergence of a quantum field theory on the surface and the ori-
gin of quantum fluctuations is discussed in section two. The relation between real and
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imaginary time path integrals is clarified as a difference between non-equilibrium and equi-
librium statistical mechanics. Section three deals with the dynamical realization of Lorentz
invariance and special relativity, including possible tests of the theory, and consequences for
cosmic ray physics. In Section four, the description of photons as surface acoustic waves
is explored. The Plank relatio; = hv, and zero point energy are derived, with Plank’s
constant being essentially the four-dimensional temperature. Section five describes the in-
terpretation and realization of quantum superpositions and quantum measurements. Section
six discusses four-dimensional dislocations as candidates for elementary fermions. The pos-
sibility of modeling quarks as partial dislocations, which, in ordinary crystals are naturally
confined, is explored. Section seven outlines the likely gravitational theory that results from
the relationship between the curvature of the surface and the presence of dislocations and
interstitials, following previous analogies drawn by many authors between elasticity theory
and general relativity. Modeling fermions as screw dislocations introduces a natural relation
between spin and torsion, as in the Einstein-Cartan theory, which may be a good continuum
approximation to the underlying lattice theory. Whatever gravitational theory that results is
automatically a quantum theory of gravity since the 4-D thermal fluctuations are present in
the surface. Section eight discusses the cosmology of the model, including possible diffi-
culties in fitting observations. Section nine discusses the rather different nature of time that
the model presents and relates it to Whitehead’s conception of time. The different causality
structure due to the model having a preferred frame is discussed (special relativity is only
approximately realized).

2 Quantum Field Theory from a Classical Field Theory

The basic theory needed to describe this expanding phase boundary is non-equilibrium clas-
sical statistical mechanics. The boundary itself may be describable in terms of dynamical
critical phenomena[6]. The solid, in some sense, lies in the past, since we have been there
earlier, although it still exists in the present when observed from the higher dimension. The
liquid represents the future, since that is where we are going, but it also exists now, as an
undifferentiated, fluctuating medium. To distinguish the current states of the solid and the
liquid from our own past and future, they may be called the “current past” and “current
future”. They differ from our past and future because changes may have occurred after the
solid was formed, and the future certainly will be different when we arrive there. To the
extent that the solid is frozen, however, our past may be accurately preserved within it. We
may not be aware of the existence of the liquid due to its uniformity. However, the bound-
ary which we inhabit is in thermal contact with both the liquid and solid phases, and can
certainly exchange energy with them. Actually, since the surface is continuously colonizing
new parts of the liquid, the mountain, in this case, is moving to Mohammed. Energy fluctu-
ations that were present in the adjacent liquid will be incorporated into the “new surface” an
instant later. These will interact with propagating surface modes which are passed from the
“old surface” to the “new surface” as each layer is added. Thus waves riding the interface
will experience random energy fluctuations from this thermal contact. These random 4-d
thermal fluctuations could explain quantum fluctuations.
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It is well known that in ordinary quantum theory, if Minkowski space is analytically
continued to Euclidean space, quantum fluctuations behave as higher-dimensional thermal
fluctuations, i.e. the Feynman path integral becomes an ordinary statistical mechanical
partition function in 4 (+1) dimensions (in equilibrium statistical mechanics there is an
implied time dimension). Plank’s constant is proportional to the temperature of the four-
dimensional Euclidean space. The existence of a 1-1 mapping between quantum field the-
ory and statistical mechanics in one more dimension opens the possibility that the physical
reality that quantum theories are describing actually corresponds to a higher dimensional
classical theory, one for which, if all degrees of freedom were accounted for, would consti-
tute a dynamical system of some kind. Aside from the important new feature of an extra
dimension, this is essentially the point of view of Nelson[7], whose stochastic quantization
technique attempts to explain the fluctuations of quantum mechanics through interaction
with an otherwise unobservable fluctuating background field. Stochastic quantization was
extended to field theory by Parisi and Wu[8], who showed the equivalence of the Euclidean
path integral to a stochastic process controlled by a Langevin equation, which operated in
a fictitious new time, completely unrelated to ordinary time. Whereas this can be seen as
simply a mathematical tool, some have speculated that the reformulation could be closer to
reality. Of course, to the extent that mathematical formulations are equivalent, it does not
really matter to the physicist which is “more real”, however if our current theories are only
approximations, then such considerations make sense in trying to find a more correct and
accurate theory. If a stochastic differential equation explains quantum fluctuations, then this
would likely be the case, since in most cases one can picture such equations as approxima-
tions resulting from more detailed deterministic dynamical systems for which some degrees
of freedom have been averaged over.

The main problem in making sense of this connection between quantum systems and
classical systems in one higher dimension is the analytic continuation to imaginary time,
and the lack of any apparent connection between the “Langevin time” of a Langevin simula-
tion and real time. However, if one considers the behavior of fields that live on an expanding
phase boundary in a 4-d Euclidean space, such a connection can be made. If one accepts
the Langevin time itself as real time, then there will be a connection between it and the
fourth spatial coordinate at the surface (the coordinate perpendicular to the surface), due to
the motion of the surface. For the sake of simplicity it will be assumed to travel at con-
stant speed. For observers riding the surface, the fourth spatial coordinate will be nearly
indistinguishable from time, since they increase in lockstep. In a following section it will
be argued that this identification leads to a “spatialization” of time from which all of the
properties of special relativity arise - in particular it will be seen that clocks constructed
from dislocations and surface modes do not keep universal time, but rather the local time of
special relativity.

The remaining question is why quantum field theory is given in terms of a real-time
path integral with an oscillating exponential rather than the imaginary-time version with a
real exponential. It is perhaps not a question of real or imaginary time which is a math-
ematical transformation with no apparent physical basis, but the rather less exotic notion
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of real vs. imaginary frequency describing oscillatory vs. overdamped motions. This can
also be seen as the difference between non-equilibrium and equilibrium statistical mechan-
ics. If the universe were a single phase in equilibrium then it could be described by an
equilibrium statistical mechanical ensemble. Correlation functions would be decaying real
exponentials. The corresponding Langevin equation would be dominated by dissipative
forces and the corresponding path integral would be Euclidean (i.e. the imaginary time
version). However, an expanding phase boundary is a decidedly non-equilibrium object.
It breaks time translation invariance and at least one spatial translational invariance. One
may also have propagating modes present on the surface, due to conservation laws. Such
propagating modes exhibit oscillatory rather than dissipative behavior, and occur in many
3-d systems[6]. They lead to various complications in the theory of dynamical critical phe-
nomena, and are a crucial feature in the dynamical theory of phase transitions. In many
cases these systems are still describable by a stochastic differential equattomplax
Langevin equation, where non-dissipative forces play a crucial role[6, 12]. Solutions are
oscillating but contain random phase and amplitude fluctuations. The Fourier transforms of
correlation functions contain real-axis poles.

A number of authors have shown that the Parisi-Wu stochastic quantization can be per-
formed directly in Minkowski space, the result being a complex Langevin equation which
will be exhibited shortly[9, 10]. This completes the logical connection. To sum, fields
which represent dislocations or collective modes on a moving phase boundary in a 4-d
Euclidean space are likely describable by a complex Langevin equation, which approx-
imates the behavior of the larger deterministic dynamical system which fills the entire
Euclidean space. This complex Langevin equation has an equivalent path-integral repre-
sentation (meaning the two systems have the same correlation functions), which resembles
the Minkowski space path integral of quantum field theory. Some details will likely be
different, however. For instance, it does not seem likely that dissipation will be entirely
absent from the surface. This could be countered by an energy input, resulting in a steady-
state rather than an isolated system. Such a system lacks time-reversal invariance at some
level, which could have observable consequences (and perhaps help to explain CP non-
conservation in thég® — K9 system).

The Langevin equation is a first-order differential equation with a fluctuating random
force. It was first applied to the case of Brownian motion of a small particle in a background
of randomly moving molecules colliding with it. if represents the velocity of the particle,
then the Langevin equation is

U= —yv+ F+n(t) (1)

The vv term is the frictional force exerted by the fluifl, is an applied external force (if
present) such as an electric field, apd) is the fluctuating force designed to mimic the
many collisions between the fluid which is assumed to be in thermodynamic equilibrium
at some temperature and the particle. In the absence of fordbe particle exhibits a
random walk in position. Without the damping term it would also perform a random walk
in velocity, and the kinetic energy would increase without bound. However, any amount of
dissipation is sufficient to stabilize it and the particle’s average kinetic energy will become
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equal to%de, whered is the number of spatial dimensiorig, is the fluid temperature,

and k is Boltzmann's constant. If one wants to extend this treatment to an oscillator, a
problem arises in that a position dependent force cannot be incorporated into a first order
equation. The Hamilton equations are, of course, first order, but there are two of them. By
introducing a complex variable = (p + iz)/v/2, b* = (p — iz)/v/2, one can write the
Hamilton equations for one degree of freedom as a single complex equation:

. OH
b=i—.
"o
To explore these ideas in more detail, consider the system of a single harmonic oscillator
interacting with a bath of other harmonic oscillators[12]. The simple harmonic oscillator

in coordinatest = /mwz', p = p’//mw, wherex’ andp’ are the usual coordinate and
momentum has the Hamiltonian

(2)

H = wbd 3)
Here,k is the spring constant and= /k/m. The Hamilton equation (2) becomes

b = iwb. (4)

Interestingly, this formalism can be easily extended to the damped oscillator[12, 13] by
allowing w to become complex. Replacingwith w + iy gives the equation of motion for
the damped oscillator,

b = iwb — ~b. (5)

Here, the complex formalism goes beyond the real formalism, since the Hamiltonian does
not technically exist for the damped oscillator unless auxiliary fields are added[13]. Note
that this is not a fully complex Hamiltonian function which would result in doubling the
number of equations of motion and producing an overdetermined system. Rather, the
Hamiltonian takes values along a ray other than the real axis. If we add a fluctuating force,
one obtains a complex Langevin equation,

b= iwb — b+ n(t). (6)

This equation can be derived as the equation of motion of a tagged oscillator interacting
with a collection of “bath” oscillators whose behavior is averaged over[12]. The bath pro-
vides both the random force and the damping. It can be used, for instance, to describe
the behavior of a single-mode laser interacting with a thermal medium and thermal mirror
fluctuations[12, 14]. Similarly, it can also be used to describe propagating modes in dy-
namical critical phenomena[6]. Thus the complex Langevin equation is a well-established
equation for describing oscillating or propagating modes in a random medium.
If the Parisi-Wu quantization is applied to the Minkowski field theory directly, it has

been shown[9, 10] that the correlation functions derived from the path integral

| Doexpis(o)/n) ™
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can be obtained from the long-time behavior of the Langevin equation

¢ = i65/0¢" — e+ 1(x,t) (8)

wheret is a fictitious “Langevin time” unrelated to the real time in the path integral,
represents the four space-time variableswith i = 1..4, and the Gaussian noise term has
the following correlation function:

< ¥ (z, (', t) >= 2k (z — ')t — t'). 9)

Field correlations are computed at equal Langevin times and the dampmtaken to zero

after correlation functions are calculated. Equation 8 appears to be a multivariate version of
equation 6 (the first term being generalized to the RHS of equation 2) with the Minkowski
action S playing the role of a Hamiltonian. For example, for the complex scalar field,

5= [0~ m*¢"o)a's (10
one obtains the complex Langevin equation
¢ = i(=0%¢/0x] + V2 — m’¢) — b +1(t) (11)

One can understand the difference in sign between the spatial and local-temppdar{v-

ative terms in relation to the different dynamic behavior of the interface in these directions.
If one thinks of¢ as a displacement field of elementary atoms from their quiescent-crystal
locations, one expects oscillatory behavior in the spatial directions. The sign &f’the
term is such as to provide the usual restoring force from neighboring atoms making this
possible. A negative restoring force, as exists in the time direction, leads to an instability,
as occurs in @* theory with a negative mass-squared term, for example. This will result in
translational motion (a soft mode). If we think of the membrane as the physically relevant
object, it is in translational motion in the temporal direction. Therefore the “Minkowski
signature” of the D’ Alembertian operator would appear to be directly related to the dy-
namics of the phase boundary, which is itself, of course, controlled by the Lagrangian of
the “base-theory” of the elementary atoms. The fact that the instability that resulted in the
motion of the phase boundary is a phase transition of the base-theory, which is likely driven
by a spontaneous symmetry breaking, suggests that the Minkowski space we are familiar
with is due to a spontaneous symmetry breaking from original space-time symmetry of the
base-theory. Such a dynamical origin for Minkowski space, and the consequences of spe-
cial relativity that result, is in rather distinct contrast to the kinematical origin postulated
by Einstein. Indeed it is more like the view held by Lorentz and others who clung to the
idea of a cosmic ether, even if invisible. The crystal and liquid in the picture presented here
is a form of ether, which, however, is only invisible at low energies. When photon wave-
lengths get close to the elementary lattice spacings, then the deviation from linearity of their
phonon-like dispersion relations in this theory will become apparent, and the existence of
the crystal will have observable effects. These ideas are expanded in secs. Il & IV.
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Getting back to the Langevin equation under discussion, wecunsgider the conse-
guences of our somewhat different interpretation of the Langevin time coordinate. The
usual treatment calculates correlation functions at equal Langevin times, whereas we are
essentially locking the Langevin time to the ordinary time through the presumed uniform
motion of the phase boundary. It is important to see whether this will make any difference
in the relationship to the quantum field theory. One notices a peculiarity in equation 11
when subjected to dimensional analysis. Taking the usual dimensjén‘dfor the ¢ field
and[(] for z; and¢ variables leads to different dimensions for thand O¢ terms. One
common solution is to let the fictitious time have dimensi@®§9, 11]. Then dimensional
consistency is obtained aridcomes out dimensionless. However, since we want the ficti-
tious time to become the real time, another solution must be taken. Introducing a parameter
a with dimensions of length, which can be taken to be the lattice spacing, rewrite equation
11 as

¢ = ia(~0°9/0x] + V2 — m’9) — ae + 1)(x, 1) (12)
where
< n*(z, t)n(a’,t') > = 2ahé* (x — 2')o(t — /). (13)

The two times now have the same dimensionality, the equation is dimensionally consistent
and the two factors af, one multiplyingS and one multiplyingi will cancel in the path
integral ¢ will now be set to unity). For the free field theory we are considering here, the
Langevin equation can be solved[8, 9, 11], with a long time stationary correlation function

D(x—a2t-t)= ttl/im < ¢*(x,t)p(2' ) > (14)

(with ¢ — t’ fixed) given by

D t t 2@ d4k p —zk(:v /) —iw(t—t") 15
(== - / / ww2+a2 k? —m? +ie)? (15)

Settingt — ¢’ = 24 — 2}, we get a free propagator of

1 . e—ik(ac—x’)e—a\(kz2—m2)(x4—xﬁl)|
D(m—gg’):w/dk R . (16)

This is slightly modified from the usual field-theory propagator which results from tak-
ing equal Langevin timeg, = ¢'. However, the extra exponential factor affects only the
off mass-shell propagator, and even for that is highly suppressed by the factor of the lat-
tice spacing, a reasonable guess for which might be araanéf (eV)~!. It thus seems
unlikely that this extra factor would affect calculations at today’s accelerator energies. It
breaks Lorentz invariance explicitly. As mentioned before, this theory is only approxi-
mately Lorentz invariant. Lorentz invariance is good at energies small compared to the in-
verse lattice spacing. From a more fundamental point of view, the rest frame of the crystal
is a preferred frame and calculations should be performed in that frame. However, observ-
able effects of this frame dependence are limited to very high energies. These are possibly
accessible through studies of cosmic rays (see sec. lll).
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To sum, building on the known equivalence of the Minkowski patkgral to a sto-
chastic process involving a complex Langevin equation, it has been shown that ordinary
quantum field theory may result from the dynamical critical behavior of an expanding phase
boundary in a four-dimensional Euclidean space. In this picture, quantum fluctuations are
actually thermal fluctuations in the higher dimensional space.

3 Special Relativity Realized Dynamically

The underlying theory pictured above is a classical dynamical system lying in the 4-D
Euclidean space, governed by a universal Newtonian time. It is proposed that Minkowski
space is the result of restricting attention to the hypersurface representing the phase bound-
ary, and choosing local time to be the spatial coordinate perpendicular to the moving bound-
ary. In calling it a Minkowski space, we are considering only a small portion of the surface
which can be taken to be approximately flat. Globally, the spatial geometry is hyperspher-
ical, and the space is a positively curved pseudo-Riemannian space similar to the positive-
curvature case of the Robertson-Walker metric of standard General-Relativity-based big-
bang cosmology.

To show the emergence of Minkowski space locally, a more detailed model is needed.
If the phase boundary is considered the boundary between a liquid and crystalline solid,
with the solid growing into the liquid, then a reasonable model for the photon is the sur-
face acoustic wave, and for elementary fermions, screw dislocations in the crystal. The
surface acoustic wave is a propagating solution within the surface that decays exponentially
away from the surface. It obeys a phonon-like dispersion relation, with a speed somewhat
below that of shear bulk waves. It is well known from the 1938 work of Frenkel and Kon-
torova [15] and of Frank and Eshelby in 1949 [16] that screw dislocations obey the Lorentz
contraction formula with the speed of light replaced by the speed of transverse sound. In
other words, the pattern of crystal distortion that surrounds the dislocation becomes ellip-
tical for a moving dislocation, with the strain pattern in the direction of motion shrinking
according to the Lorentz contraction formula. An “object” made from an array of such dis-
locations really does shrink in the direction of motion. In addition, the effective mass of the
dislocation grows with velocity according to the relativistic formula (more precisely the en-
ergy and crystal-momentum transform according to the Lorentz transformation)[16, 17, 18].
Therefore, screw dislocations are prohibited from being accelerated beyond the velocity of
transverse sound in a crystal, because the kinetic energy becomes infinite in that limit. In
a real crystal, however, this limit can be exceeded by introducing a moving dislocation
from an adjacent compatible medium where the sound speed is higher. The supersonic
dislocation rapidly decelerates to subsonic velocities by emitting “vacuum Cerenkov radi-
ation” [17, 18]. It is also conceivable to exceed the limit by violating the approximations
of continuum linear elasticity theory on which these results are based. This relativistic be-
havior appears to be followed for any reasonable dislocation model for which perturbations
are subject to continuum linear elasticity theory[18]. It is not immediately clear what the
minimum requirements are[19], but coupling to a single type of phonon with a relativistic
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dispersion relation is necessary, and may be sufficient. @aufw other types of phonons

is possible only if these either have the same velocity or have an energy gap. The main point
here is there can not be more than one limiting velocity for low-energy excitations. For in-
stance, ordinary edge dislocations obey a more complicated set of contraction equations
involving both the longitudinal and transverse sound velocities[16, 17].

Considering again the phase boundary universe model, if all matter is made up of screw
dislocations then the above considerations strongly suggest that measuring rods constructed
from “dislocation arrays” will obey the Lorentz contraction. For now, consider only obser-
vations made from the rest frame of the crystal. A measuring rodplkicallyshrink if
moving with respect to this frame along the rod’s direction. The Lorentz transformation
also involves time, however. The Lorentz contraction and mass increase certainly will have
physical effects on clocks that are constructed from moving dislocations. Gunther [20] has
investigated using the breather solution of the sine-Gordon equation as a clock (sine-Gordon
soliton kinks are a lower-dimensional dislocation model). He finds such a clock slows with
velocity in accordance with the usual time-dilation formula. If length and time standards
are both based on solitons, full Lorentz invariance ensues.

For our case, assuming only length contraction and observing from the crystal rest
frame, a simple light-clock where a flash of light is given off and bounces off a mirror
held by a rigid frame to the light source, then back to a detector near the source, in either
transverse or longitudinal orientations, exhibits time dilation following the usual treatment
in special relativity. However, although the argument is the same, the assumptions are dif-
ferent. At this point we have not assumed anything about moving frames of reference. We
are simply observing a moving rod and a moving clock from the rest frame of the crystal,
where we know the speed of sound (light), and know it is isotropic (we are always assuming
an isotropic crystal). This is all that is needed to demonstrate time dilation from Lorentz
contraction of the light-clock. We notice that when observed from this frame, rods shrink,
and clocks slow down due to physical, dynamical effects. Energy and crystal-momentum
of dislocations also obey relativistic equations[16, 17, 18].

Now we ask what coordinate system is a reasonable one for a moving observer to use?
Of course, the moving observer will use the shrunken rod to measure distance and the slow
clock to measure time - what other reasonable choice does s/he have? It is also natural for
moving observers to choose their local time coordinate to be along their own world line,
and spatial hypersurfaces to consist of points all with the same time coordinate, with syn-
chronization performed using light signals. The full forward Lorentz transformation, which
consists not only of scale changes inherent in Lorentz contraction and time dilation, but also
in the aforementioned axis rotations, ensues. This now allows us to transform coordinates
between the crystal rest frame, and the natural frame of a moving observer. Inverting this
transformation is simply a matter of mathematics. As is well known but seems to have been
initially unappreciated by Lorentz, this inverse Lorentz transformation has the same form
as the forward transformation, with the relative frame velocity negated. The point is that
once the full forward Lorentz transformation is realized, fully reciprocal special relativity
results simply due to the mathematics of the Lorentz transformation. In Einstein’s special
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relativity, this is due to the symmetry of the underlying Mimkgki space - a kinematical
symmetry. All frames are exactly equivalent. Although our result is the same, conceptually
it is very different, since the Minkowski space has resulted from a dynamical symmetry of
the moving boundary solution. Unlike in the Einstein picture, the Lorentz contraction and
time dilation have different causes in different frames in this picture. From the crystal rest
frame, the shrinking of a moving rod and slowing of a clock are physical effects, caused
by motion within the stationary crystal. From the moving frame, the observation that a rod
and clock in the crystal rest fransso appear to be shortened and slowed are more of an
illusion, created by using moving instruments, and a bent reference frame, with its different
notion of simultaneity. Because these points of view are conceptually different (kinematic
vs. dynamic symmetry), Lorentz, Larmor, Langevin and others held on to the latter view
for some time after special relativity won acceptance[21]. In fact, the view of relativity
given above is very similar to that of Lorentz, who introduced the concept of local time
given above. The unobservability of the ether in this continuum theory eventually led to
the demise of this viewpoint. However, if the underlying medium is not a continuum, but
a lattice (which itself may lie in a continuum), then at high enough energies differences
between the stationary and moving observer must eventually show up. This is because un-
like the photon, the phonon dispersion relation is not a straight line. For a linear isotropic
material in three dimensions it is given by

3
Wik) = (20/@)2(2 sin?(k;a/2)). 17)
i=1

Surface phonons follow a similar dispersion relation. One has to get to within about 20%
of the maximum frequency before the phonon curve differs from the photon curve by more
than 1%. Above this point significant dispersion occurs. A very fast-moving light clock
which blue-shifted the light into this frequency region would show measurable deviations.
The crystal rest frame will be the only frame in which the speed of light at these high
frequencies remains isotropic. It therefore becomes an observable preferred frame - the
ether is detectable.

These considerations suggest a number of ways that this theory could be checked ex-
perimentally. Of course, the lattice spacing could always be made impossibly small, eras-
ing all observable effects. Observations of very-high-energy cosmic rays can put a lower
bound on the lattice spacing. Assuming the Plank relatioa- 7w (a possible origin of
which is given in the next section) and settihg= 1, the definite identification of cos-
mic ray photons at energies of a few timeE?3 eV [22] means the high-energy cutoff of
the photon dispersion relation must lie above this, so probably 1014 (eV)~'. An
interesting enigma in Cosmic Ray physics is the presence of an “ankle” in the spectrum
around10'® eV, where the drop in intensity with energy becomes less steep, along with
the apparent absence of the expected cutoff due to interactions with the cosmic microwave
background radiation (CMB)[23]. This Greisen-Zatsepin-Kuzmin (GZK) cutoff [24] is due
to pion photo-production from interactions between the cosmic ray particle (assumed a pro-
ton or light nucleus) and CMB photons. This effectively limits cosmic rays of energy above
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5 x 10 eV to a relatively short travel distance - within the local supercluster (photons
and heavy nuclei are also limited by similar mechanisms involving starlight). However, the
number of cosmic rays at this energy and higher, although small in absolute event counts,
does not show any diminution from the earlier trend. In other words, there is no observa-
tional evidence for the GZK cutoff. Another puzzle is that if the very high energy cosmic
rays do come from nearby sources, then, they would be expected to point to within a few de-
grees of their sources, despite the deflection of magnetic fields, due to the high momentum
of the particles. However, there appears to be no correlation with possible nearby sources. A
photon energy cutoff in the rang®'® to 10'° eV could invalidate the Lorentz transforma-

tion which is used to derive the GZK cutoff from the known behavior in the center-of-mass
frame[25]. It would also affect the decays of other high-energy particles, such as neutral pi-
ons. A10%° eV neutral pion could not decay into two photons, but at minimum into 10,000
photons for a photon energy cutoff b9 eV. This would be highly suppressed due to the
large power of the fine structure constant required. If the weak bosons had similar cutoffs,
then it seems the neutral pion could be made almost stable above a certain energy. Decay
of the neutron could be similarly suppressed. If one or more of these neutral particles could
travel cosmological distances above a certain energy threshold, it could possibly explain
the ankle, due to the addition of a new species to the particle mix. High-energy neutral
particles should point toward their sources even at great distances, since they are not much
affected by magnetic fields (there is still some effect through magnetic moments). Interest-
ingly, Farrar and Biermann have shown that the observed directions of some of the highest
energy events can be correlated with distant quasars[26]. This would be consistent with the
scenario sugested here.

4 Photons as Surface Acoustic Waves

Generically, surface acoustic waves (SAW’s) traveling in:itkdirection on a solid surface
at z = 0, with the solid occupying the half-spaee< 0 takes the form[27, 28]

uj = quei(km—wt)—l-Hz (18)

with k, w, andx real, ands o k at least for smalk. Hereu; is the elastic displacement field

for the solid, which is defined only far < 0. Typically most of the energy in surface waves

is confined to a region within a few wavelengths of the surface. The most common SAW is
the Rayleigh wave, first described by Lord Rayleigh in 1885[27, 28]. It is polarized in the
saggital plane (perpendicular to the surface), and consists of motion that is both transverse
and longitudinal. Itis dispersionless in the continuum version and has a typical phonon dis-
persion law on the lattice[29]. This wave does not seem to be a promising one to model the
photon after, however, since it has only one polarization, regardless of the dimensionality
of the surface. The Rayleigh wave is the only type of surface wave for the simplest case of
a flat linear elastic half-space. However, if the surface is allowed to have properties differ-
ent from the bulk, such as a different density, elastic constant, surface tension, curvature,
roughness, piezoelectricity, magnetoelasticity, etc. then another surface wave will usually
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exist, a Love wave[30, 31, 32, 33]. This wave, originally dedfor a finite slab of different
material deposited on the half-space[34], has a shear-horizontal (SH) polarization, thus for
a three dimensional surface would have two transverse polarizations. The Love wave also
exists for a thin surface layer such as a thermodynamic phase boundary[31, 35, 36]. It can
be seen as a perturbation of the SH surface skimming bulk wave (SSBW) that exists even
for the simple half-space. The SSBW is a wave that does not decay below the surface. This
solution is unstable with respect to virtually any surface property that retards the wave speed
near the surface, which will turn it into an SH surface wave with exponential decay away
from the surface, i.e. a Love wave[30, 31]. The Love wave is somewhat dispersive, due to
the introduction of a quantity with dimensions of length that characterizes the surface-layer
thickness. However if this is no more than a few lattice spacings, then the dispersion is
similar to that of an ordinary phonon. Adding a liquid to the external space complicates but
does not significantly change the situation. However, the case being envisioned here has a
more complicated boundary condition than has been considered in the surface-wave liter-
ature, since the boundary is growing, perhaps rapidly. This can perhaps be treated by the
method of virtual power[37], and is briefly considered by Maugin[31] and also by Kosevich
and Tutov [36]. The transfer of momentum to the “new surface” of the growing crystal will
modify the usual traction-free boundary condition of the Raleigh-wave solution. It is this
latter boundary condition which prevents the SH polarization from existing in the simple
half-space[28]. The violation of this boundary condition by the growing crystal is further
evidence that SH waves probably do exist in this case.

Since the weak interactions also need to be accounted for, probably more structure
needs to be incorporated into the model. If we imagine the elementary molecules to be
non-spherical, then they have their own non-trivial symmetry group, compatible with but
distinct from that of the crystal. This basis symmetry group could account for internal
symmetries. For instance, if the molecule can be represented by a 4-d vector with nearest-
neighbor Heisenberg-like interactions, then an SO(4) symmetry (isomorphic to SU(2)
SU(2)), which may be partially broken by other interactions, will exist. The spontaneous
breaking of this symmetry will result in surface magnons[38]. These come in both acoustic
and optical varieties. The surface magnons can also mix with surface elastic waves through
the magneto-elastic effect, reminiscent of electroweak unification. These possibilities need
to be examined in detail - they are mentioned here to indicate the rich possibilities for model
building that occur in surface modes. It is also worth noting that a promising approach to
incorporating chiral fermions on the lattice, necessary for a lattice approach to the weak
interactions, incorporates a fourth spatial dimension, with the chiral fermions living on a
domain wall[2, 39]. The picture of the universe presented here seems ideal for the realiza-
tion of this mechanism.

A universal property of all surface modes is the exponential decay as the bulk is en-
tered, characterized by a decay length proportional to the wavelength. This property can
be used to derive the Plank relatidh = 7w, perhaps the most fundamental equation of
guantum mechanics, from the equipartition theorem. If we assume that all elementary de-
grees of freedom are thermally excited (actually not a completely good assumption due to
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conservation laws and partial non-ergodicity - see discadsgtow), then the equipartition
theorem will give equal energy to each harmonic degree of freedom of akibynthere k

is Boltzmann’s constant ariq, is the 4-d temperature. For a surface wave with decay length
k = bk, whereb is a constant, taking into account the energy of a wave being proportional
to its square, one has an energy depth profile (1-d energy density)

E = Eye? (19)

wherezx, is taken to be zero at the surface, and becomes negative inside the medium. The
energy in the monatomic surface layer itself is given iy:. The total energy can be
computed by

0
Etot = /_ Ed.%'4 = E()/(2l€) (20)

Settingk = bk (proportionality of decay length to wavelength), = ck, and the total
energy tokTy, one can solve for the surface layer enetfyq, now denotedts

Es = (2bakTy/c)w (21)

which is the Plank relation if. = 2bakTy/c. This is consistent with the thermal explana-
tion of quantum mechanics given above, namely tha essentially the 4-d temperature,
with the necessary factors afandc to fix the dimensions. The essential feature which
gives higher frequency excitations higher energy on the surface is the higher concentra-
tion of SAW energy near the surface, compared to lower frequency excitations which are
more spread out in the fourth dimension. Thus equal sharing of energy in four dimensions
naturally leads to unequal energies on the 3-d surface, as embodied in the Plank relation.
Not all surface modes will necessarily become excited for two reasons. First is the ef-
fect of global conservation laws, and second is the probable lack of full thermodynamic
equilibrium. Consider the liquid degrees of freedom directly above the growing surface.
These are presumably in thermal equilibrium in their liquid environment. When the surface
arrives, they are rather suddenly thrust into a new environment with modified interactions
due to the translational symmetry breaking of the crystallization. They therefore do not
have much time to adjust to these new conditions by the time they can be considered part of
the new crystal surface. Eventually they reach a new equilibrium state well after the surface
has passed and they become part of the bulk. Thus the surface degrees of freedom are in a
transitional state. With the arrival of crystalline order comes a new conserved guantity, the
crystal momentum. It is a consequence of the remaining discrete translational invariance
but technically is a permutation invariance of the atomic position variables, resulting in
conservation of wave number for phonons[40]. Since this is only a single global constraint
(or three constraints in three dimensions) it would not appear to limit the allowed random
excitations much. However, satisfying global conservation laws requires global correla-
tions, and these take a long time to establish. Therefore one expects to have to satisfy
conservation laws locally. This means that one should not expect widely separated thermal
excited phonons whose wave vectors happen to add to zero. Rather one expects standing
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waves or standing wave packets where the zero net wave vegtorament is met pairwise

and locally. Thus the random vibrational thermal energy of the liquid will re-organize on
the surface primarily as such standing waves, with the amplitudes of constituent travelling
waves locked, and phases randomly fluctuating. This may represent the zero-point energy
of the photon field. Since each travelling wave mode is not independently excited, the net
energy assigned to each is one-half that of the standing wa\@dze

However, if a travelling propagating wave already exists on the surface (perhaps excited
by dislocation interactions etc.) then it will be preserved by the crystal momentum law, and,
since it is now an allowed excitation can exist independently of the standing wave and be
given the full equipartition energy dfw, on top of what it gets from the zero-point excita-
tion. One wonders how multiple photon excitations can arise in such a picture, which will
lead to a discussion of resonances in coupled oscillator systems. Before embarking on that,
it is worth noting that all of the discussion here concerning zero-point energies and photon
excitations is in one sense unnecessary, since once the formal equivalence of the stochastic
evolution of the phase boundary and the quantum system is accepted, one can merely plug
in the QED or standard model Lagrangian and obtain the equivalent Langevin equation for
the phase boundary evolution, which will, due to the above equivalence, necessarily include
all of the known particle excitations and quantum effects. The discussion here is therefore
not to prove that each feature of quantum mechanics is included, but rather to illustrate how
each quantum feature might be manifested in the phase boundary evolution. In a similar
sense, energy quantization is not as apparent in the path integral formulation of quantum
mechanics as it is in the canonical formulation, but it has to be there, and can be seen from
multiple poles of the propagator.

A collection of coupled oscillators, even if somewhat non-linear, is generally not er-
godic. This was demonstrated by the famous computer simulation of Fermi, Pasta and
Ulam in which they coupled 64 harmonic oscillators with non-linear couplings, expect-
ing to see the approach to equilibrium[41, 42, 43]. Instead they found that most modes
remained unexcited with energy pouring back and forth between a few modes as in the
Wilberforce pendulum - in other words a limit cycle as opposed to chaos. The only modes
that participated were those that met or were very close to the resonance condition

Z niw; = 0 (22)

where then; are integers[42, 43]. This was later understood in terms of the KAM theorem
(Kolmogorov, Arnol'd, Moser), which essentially states that for small non-linearities only
regions near resonant surfaces in phase space will get occupied. Full chaos only ensues
when these resonant regions grow large enough to be overlapping[44]. Phenomena such
as down-conversion or harmonic generation in the presence of small non-linearities can be
understood in terms of the resonance condition. The n-photon state takes the form of an
ntt order resonance from this point of view. The integers in the resonance condition are the
correspondents to energy quantization. The degree of excitation is consistent with that of
a single i harmonic photon with which the state is resonantly linked. Therefore it seems
plausible that the Plank relation and full photon spectrum, including zero point energy, does
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have a realization in the propagating modes of the phase bouada moves through the
random medium.

5 Quantum Superposition and Measurement - Zitterbwegung
and Spontaneous Symmetry Breaking

The picture described above treats quantum fluctuations as thermal fluctuations in the 4+1
dimensional space. In such a picture quantum tunneling is explained classically as thermal
activation, i.e. due to a random kick of extra energy which results from thermal contact
with the liquid and solid phases. Due to such thermal fluctuations, energy is not conserved
over short time periods; it is conserved only in the average over time. Thermal fluctuations
may create a kind of zitterbewegung — very rapid variation at small scales, that enforces
the uncertainty principle and allows for superpositions. The ensemble average implied in
a quantum expectation value is replaced by a time average. For rapid fluctuations which
cover the ergodic subspace in times short compared to the time between measurements,
these should yield identical results. Over very short time periods, additional correlations
may appear in the time-averaged case, since the classical system is in a particular state at
any one time, so subsequent states will retain some memory of previous states.

This more classical evolution affords the opportunity to explain the quantum measure-
ment process as a spontaneous symmetry breaking event. Anderson has suggested that mea-
suring devices incorporate spontaneous symmetry breaking in their operation[45]. Ne’eman
has also espoused this viewpoint. In addition, he has shown that EPR type correlations
can occur in classical systems with gauge symmetries, with the gauge connection enforc-
ing long-distance correlations among fluctuating variables[46]. More detailed models have
been considered in [47] and [48].

When a classical statistical mechanical system undergoes a spontaneous symmetry
breaking, the ergodic phase space splits into hon-communicating subspaces. From that
point on, the system remains trapped in one of the subspaces. Which subspace is chosen
is simply determined by the subspace the system happened to be in at the time of symme-
try breaking. A measuring device is postulated to be any device that can couple its order
parameter to a quantum system and that includes a control that can initiate spontaneous
symmetry breaking of that order parameter. The measuring device, originally with an un-
broken symmetry, couples to the system under study becoming strongly correlated with it.
Then an adjustment is made to the potential of the measuring device which initiates spon-
taneous symmetry breaking. The measurement takes place at this time, when the ensemble
of possible future states of the combined system splits into non-ergodic subensembles cor-
responding to the possible values of the order parameter, also corresponding to possible
values of the measured quantity. Future evolution is confined to a single subensemble in
the usual manner of a classical symmetry-breaking phase transition. In this picture mea-
surements are well defined, the collapse is a physical event, and a clear distinction exists
between what constitutes a measuring device and what does not. The symmetry breaking
barrier does not even have to be infinitely high - all that is required is that the tunneling
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time of the post measurement state to be long compared to thestiate of the experiment.

This is in contrast to what occurs if the same concept of spontaneous symmetry breaking is
applied to explain measurement in standard quantum mechanics. Here it is difficult to see
how even spontaneous symmetry breaking can break the superposition, especially if mea-
suring devices are finite so tunneling probabilities are not quite zero (e.qg. ref. [47] still uses
the Everett interpretation to deal with the “collapse”). Nevertheless it is assumed that when
the universe undergoes a cosmological phase transition it does not end up in a superposition
of the possible outcomes but rather “measures itself” so as to fall into a single vacuum. In
the new picture given here, an event like this is in the same category as a measurement and
the result of both is a physical collapse of the available future phase space.

Because the “current past” is continuously undergoing 4-d thermal fluctuations, it is
only frozen to the extent that the ensemble is limited due to spontaneous symmetry break-
ing. Thus questions such as “which slit did the electron go through” or “which direction
was the spin pointing” are as meaningless here as they are in standard quantum mechanics.
This is because the details of history are continuously being rewritten as both the current
past and present fluctuate. Only to the extent that the ensemble is limited by spontaneous
symmetry breaking can one make definite statements about past events. EPR (Einstein-
Podolsky-Rosen) states, which consist of two separated spins in a net spin-0 state, can
only undergo correlated fluctuations which obey the global angular-momentum conserva-
tion law. The spin direction of each particle will fluctuate in such a way that its partner
fluctuates oppositely. Measurement of either spin is performed by spontaneously breaking
the spin direction symmetry, after which a barrier will exist preventing further fluctuations
of either particle. Such a process was envisioned in [46]. Such non-local correlations may
seem odd, but they are formed by the causal process of separating the particles, and do not
violate causality (causality is arbitrated from the crystal rest frame, where universal and
local time are equivalent).

6 Dislocations as Candidates for Elementary Fermions

Dislocations, particularly screw dislocations and their variants, provide a rich building
ground for models of elementary particles. In this section a detailed model will not be
attempted, but rather the general problem of extending the screw dislocation into four di-
mensions will be discussed, which will result in a four-dimensional string.

The idea of representing elementary particles as dislocations in a medium is a rather old
one. Burton talked of “strain-figures” that could move through a medium and interact[49].
Although most 19th century physicists considered matter to be separate from the ether,
Larmor suggested the possibility of matter particles being singularities in the ether itself
and sought a unified theory of matter and radiation through the properties of a single
medium[50, 51]. In more recent times the modeling of elementary particles as topologi-
cal solitons (a type of dislocation) has intrigued many, with the Skyrmion picture of the
nucleon being perhaps the most successful.
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The screw dislocation in three dimensions has a number ofremathat liken it to an
elementary fermion. The left and right handed versions can be pair-produced or annihilated,
and their elastic interactions have a number of electromagnetic analogies, the most often
cited being to magnetostatics[18, 52, 53, 54]. Although double dislocations are not totally
prohibited, they are very unfavorable energetically. Screw dislocations are, of course, line
defects, so cannot be compared directly to point particles. One is tempted to interpret the
line defect as a world-line. However, this implies an extension to four dimensions. An
isolated screw dislocation is unfortunately not an option in four dimensions. This can be
seen in a number of ways. If one circles a screw dislocation in three dimensions, then one
finds after a single loop that one has advanced one lattice spacing to the next sheet of atoms
in the direction of the dislocation. The degree of non-closure of the loop is represented
by the Burgers vector of the dislocation, which for a screw dislocation on a cubic lattice
is one lattice spacing long and in the same direction as the dislocation, or opposite for an
oppositely-handed dislocation. Although the transition is gradual, the point on the loop at
which one can be deemed to be on the next level can be arbitrarily defined - the set of these
points for all possible loops is called the Volterra surface. The freedom of choice of the
\olterra surface can be thought of as a form of gauge invariance. There are many atoms far
from the dislocation which have moved some fraction of a lattice spacing from their original
lattice positions, but there is not much stress associated with this since all of the neighboring
atoms have moved a similar amount. Stresses are concentrated only around the dislocation
line. If one tries to embed this structure into a non-dislocated 4-d lattice, then those atoms
far from the dislocation which are shifted from their original lattice positions by near 1/2
of a lattice spacing will fit badly the undislocated lattices adjacent to them in the fourth
dimension, where the atoms are all at their original undislocated positions. The energy
of such a structure is proportional to the four-volume - it is no longer a one-dimensional
dislocation. The other way one can see there is something wrong in simply promoting the
screw dislocation to four dimensions, is that a loop apparently surrounding the dislocation
can be moved into the fourth dimension, where the dislocation does not exist, and shrunk
to a point. Thus there is no longer a consistent topological classification of this object.

The screw dislocation can be extended into the fourth dimension by copying it onto each
successive 3-lattice as the fourth coordinate is changed. This produces a wall of identical
dislocations. The solution is translational invariant in the fourth dimension and involves no
new stresses, since each atom is exactly one lattice spacing away from its neighbor in the
fourth direction. However, we now have a domain wall in 4-d or line in each 3-d slice. For
an elementary particle we want something closer to a point in 3-d. An obvious solution
would be to wrap the domain wall around onto itself into a small tube, the 3-d cross-section
of which would be a string. The bending of the wall introduces stresses which favor a larger
string, but this is opposed to the ordinary screw stress proportional to the string length, so
there is the possibility of a stable equilibrium size. Going back to the 3-d cross-section, the
Volterra surface is any surface bounded by the string. A loop that threads the string will
pass through the Volterra surface and detect the dislocation.
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Assuming a planar loop in the 3-d cross-section introduceseatéhn, the spatial nor-
mal to this plane (the temporal direction is also normal). This suggests the possible inter-
pretation of a spin direction. Another strong possibility is that the constituent screw disloca-
tions are not straight but form spiral helices. Ordinary screw dislocations often take helical
form through a process that involves absorption of interstitials or vacancies[18, 53, 54]. The
plane of the helix introduces another spatial direction which could be related to spin or spin
precession. Interstitials are important in that they introduce curvature into the crystal[55].
Such curvature is absolutely necessary to produce the large-scale hyper-spherical spatial
geometry inherent in the cosmological scenario outlined above. It also allows a connection
between particle properties and gravitation.

One additional property of crystal dislocations that may provide an intriguing parallel to
the strong interactions is the existence of partial dislocations[18, 53]. Under favorable con-
ditions, a dislocation may split into two or more partial dislocations with fractional Burgers
vectors. Such objects cannot exist in isolation since they would involve dislocating the
entire lattice - resulting in infinite energy. These partial dislocations are linked by a sheet
containing a stacking fault, which produces an attractive force proportional to the sheet
area (the partial dislocations also repel each other through other elastic forces, resulting in
an equilibrium separation). The possible analogy between quarks and partial dislocations,
with gluons being related to the associated stacking faults is compelling. Confinement and
fractional charge are inherent and linked properties of these configurations. Another com-
mon feature of dislocations in ordinary crystals is the formation of dislocation networks.
These are ordered or disordered collections of either partial or full dislocations and anti-
dislocations, with zero net Burgers vector. New kinds of dislocations can be defined from
defects in an otherwise ordered dislocation network. For instance the chiral condensate
could be modeled as a network of partial dislocations and associated stacking faults. Nu-
cleons and mesons could then be modeled as dislocations and excitations of this underlying
network, which is reminiscent of the Skyrmion approach. Ordered dislocation networks
can have dislocations which can form an ordered network which can itself have higher-
order dislocations, producing a possible hierarchy of dislocations several levels deep.

7 Gravity as Elasticity of Space

The similarities between the General Theory of Relativity and the theory of elasticity have
been remarked upon by many authors. Sakharov spoke of relating General Relativity to
a “metrical elasticity of space”[56]. Kokarev has likened space-time to a “strongly-bent
plate” [57]. Several authors have developed three-dimensional continuum models of dislo-
cations that resemble three-dimensional gravity[58].

Screw dislocations themselves do not result in curvature - rather they introduce torsion
into the lattice, since an observer circling a screw dislocation finds themselves transported
forward, along the dislocation direction. Two sources of curvature have been put forward
- disclinations and extra matter (primarily interstitials). Disclinations are large angular de-
fects. For example, the pentagons in a geodesic dome can be thought of as disclinations
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in an otherwise flat hexagonal tiling, and produces obviousature in the surface. The
problem with disclinations is that they produce curvature only in large finite chunks, rather
than building up from many small pieces. So, whereas a disclination is a good model for
a cosmic string[59], it is not a good candidate for an elementary particle. We are therefore
left with the extra matter concept, which has been championed by Kroner[55]. In Kroner’s
theory, the geometry of the resulting continuum model is characterized by both curvature,
the source of which is extra matter, and torsion, which is caused by dislocations[54, 55, 60].
The obvious four-dimensional generalization would be the Einstein-Cartan-Sciama-Kibble
theory of gravity, which supplements the usual Einstein equations with an equation relating
spin density to the torsion tensor[61, 62]. Torsion effects are too small to be detected exper-
imentally, so this theory is, so far, experimentally indistinguishable from General Relativity.
In order to satisfy the equivalence principle, the absorption of interstitials by dislocations
mentioned above would have to be a universal property, with the degree of absorption pro-
portional to the energy, so that curvature could couple to the energy-momentum tensor. It
is not clear that this would necessarily happen, however it could be forced by symmetries,
since due to the Bianchi identity the Einstein tensor can only couple to a conserved quan-
tity. Not all interstitials are necessarily absorbed. Unabsorbed interstitials are an intriguing
dark-matter candidate. Unlike ordinary particles they do not persist, since they are true 4-d
point defects. Their behavior is more like that of instantons. Their fleeting existence could
make their detection difficult other than through their gravitational effects.

Regardless of the details of the gravitational theory that results, it will necessarily be
a quantum theory of gravitation. This is because the evolution of the spatial hypersurface
is influenced by the thermal fluctuations in the surrounding medium which are the source
of quantum fluctuations in this picture. One certainly expects thermally induced curvature
fluctuations. However, if the elementary lattice spacing is much larger than the Plank length,
it is likely that such curvature fluctuations would be small, and gravitation would remain, in
practical terms, a largely classical theory. As distances approached the lattice spacing, then
the continuum theory (presumably a generalization of General Relativity) would have to be
replaced with an appropriate lattice theory, just as continuum elasticity theory can be used
for a crystal only for distances large compared to the lattice spacing. Of course, just as in
ordinary crystallography, the lattice theory itself may be based on an underlying continuous
space. The resolution of singularity problems in general relativity are more likely to come
from the transition to an appropriate lattice theory than from the incorporation of quantum
effects, unless the lattice spacing is of order the Plank length or smaller.

8 Cosmological Consequences

The model of an expanding phase boundary provides good explanations for some cosmo-
logical puzzles but introduces additional problems as well. Phase nucleation is a common
way for structure to arise from chaos spontaneously. It naturally creates an expanding uni-
verse starting from a very small but not infinitesimal seed. Only if the initial fluctuation is
above a certain minimum size, will the crystal grow - otherwise surface tension effects will
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remelt it back into the liquid. There would not seem to be a loorigroblem because there

is plenty of time before the big bang to establish causal contact, thermodynamic equilibrium
etc. Also there is the “flatness problem” which, in a non-inflationary universe, requires a
careful fine-tuning of parameters to create a universe as long lasting as ours which never-
theless has a reasonable matter density and is close to being spatially flat in the present era.
Phase transitions only occur when there is a fine tuning between various terms in the Hamil-
tonian, so a system undergoing a phase transition is alneatyally fine tunedetween

forces that favor the transition and those that don’t. The other ingredient this model likely
has which could reduce the need for fine-tuning would be dissipation, which could tame
runaway solutions like inflation. In general, surface growth which is not diffusion-limited

is controlled by the volume energy (which results in the liberation of latent heat), surface
tension, and dissipation. The outward pressure from the volume energy takes the form of a
repulsive cosmological constant and the 3-d surface tension may act like the ordinary spatial
curvature term, but it is not immediately clear how to take dissipation into account within
the standard Friedmann models. Comparison to ordinary phase transitions would suggest a
period of slow growth at first, which accelerated as the surface term became less important,
finally approaching a steady state constant growth rate. One can also consider the possibil-
ity that the background conditions responsible for the supercooling could vary over time. If
this is allowed then a more complex growth-rate history could be accommodated.

An intriguing possibility for matter generation would be collisions between different
crystal universes. Where crystals join, a lot of dislocations are formed. The join-boundary
of two 3-d surfaces is a 2-d surface. Therefore, dislocations produced in such collisions
would be distributed on 2-d surfaces within the combined 3-d surface of the joined crystals.
Interestingly, matter in the universe is primarily distributed on a network of 2-d surfaces
surrounding large voids. One can imagine this resulting from the twisting and folding of
the join-boundary of a single cosmic collision or from a number of such events.

This scenario may have difficulty explaining both the uniformity of element abundances
and of the cosmic background radiation. Helium could be produced in the cosmic collisions
referred to above in much the same way as in the hot big-bang, but conditions would likely
vary somewhat from place to place. A single large collision might be able to produce a fairly
uniform result. Cosmic collisions, in addition to creating matter in the form of dislocations
would also produce a lot of thermal radiation. Again, this could be fairly uniform for
the case of a single large collision. This scenario shares some features with the colliding-
branes string-model picture recently proposed by Khoury et. al.[63], although the geometry
is rather different.

9 Discussion

At first glance, the idea that space could be crystalline would seem at odds with the notion
of spatial isotropy. Wouldn't the axis directions create preferred directions in space? For
distances large compared to the lattice spacing, this is not necessarily so. For instance,
the long distance behavior of an isotropic crystal (one with isotropic elastic constants) is
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well approximated by isotropic linear elasticity theory whitas full rotational invariance.
Another example is lattice gauge theory. Here forces along axis directions differ from
those along non-axis directions at short distances, but full rotational symmetry emerges
at distances large compared to the lattice spacing. The longer lattice paths in diagonal
directions are exactly compensated by the larger multiplicity of such paths. Also the surface
of a growing crystal is more labile than the interior, resulting in features that are less “solid”.
For instance, even sessile dislocations can move through growth, via formation of kinks and
jogs, though they are essentially locked in place once formed. Glissile dislocations (those
that can move freely through the crystal) may themselves essentially stop in the bulk by
transferring all of their momentum to the “growth tip” through a mechanism similar to a
Newton’s cradle onto which balls are added continuously, or a whip with a growing tip.

The similarities between condensed matter physics and particle physics are many.
Phonons are surprisingly similar to photons. They can be thought of as Goldstone bosons
resulting from the breaking of translation invariance, or as gauge fields relating to the re-
maining discrete translational invariance, which due to lattice periodicity, may be repre-
sented by an angular order parameter[45]. The counterpart to the Higgs mechanism is the
plasma mechanism[64]. Even the chiral properties of the weak interaction may have an
analog in the behavior ofHe-A[65]. Several gauge theories of dislocations have been
proposed[66, 67]. What is being proposed here can be thought of as going all the way with
this program, namely hypothesizing that particle phy@eondensed matter physics. The
main experimental signature of such a proposal, regardless of the details, would be the ef-
fects of a finite lattice spacing. Besides the dramatic cutoff of gauge boson spectra above
a certain energy, one can look for effects of dispersion near the cutoff. The lattice also
makes all ultraviolet divergences finite, which will introduce small effects in higher order
corrections. This also adds impetus to proposals that a serious effort be made to search
experimentally for violations of Lorentz invariance[68]. The effects of living on a physical
lattice are somewhat different from string-inspired Lorentz-i