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PREFACE 
 
 
Quantum gravity is the field of theoretical physics attempting to unify the theory of 

quantum mechanics, which describes three of the fundamental forces of nature, with general 
relativity, the theory of the fourth fundamental force: gravity. The ultimate goal is a unified 
framework for all fundamental forces-a theory of everything. This new book examines state-
of-art research in this field. 

In Chapter 1, the authors show how the quantum potential arises in various ways and 
trace its connection to quantum fluctuations and Fisher information along with its realization 
in terms of Weyl curvature. It represents a genuine quantization factor for certain classical 
systems as well as an expression for quantum matter in gravity theories of Weyl-Dirac type. 
Many of the facts and examples are extracted from the literature (with references cited) and 
we mainly provide connections and interpretation, with a few new observations. We 
deliberately avoid ontological and epistemological discussion and resort to a collection of 
contexts where the quantum potential plays a visibly significant role. In particular we sketch 
some recent results of F. and A. Shojai on Dirac-Weyl action and Bohmian mechanics which 
connects quantum mass to the Weyl geometry. Connections \`a la Santamato of the quantum 
potential with Weyl curvature arising from a stochastic geometry, are also indicated for the 
Schr\"odinger equation (SE) and Klein-Gordon (KG) equation. Quantum fluctuations and 
quantum geometry are linked with the quantum potential via Fisher information. Derivations 
of SE and KG from Nottale's scale relativity are sketched along with a variety of approaches 
to the KG equation. Finally connections of geometry and mass generation via Weyl-Dirac 
geometry with many cosmological implications are indicated, following M. Israelit and N. 
Rosen. 

Gravitationally bound quantum states of matter were observed for the first time thanks to 
the unique properties of ultra-cold neutrons (UCN). The neutrons were allowed to fall 
towards a horizontal mirror which, together with the Earth's gravitational field, provided the 
necessary confining potential well. In Chapter 2, we discuss the current status of the 
experiment, as well as possible improvements: the integral and differential measuring modes; 
the flow-through and storage measuring modes; resonance transitions between the quantum 
states in the gravitational field or between magnetically split sub-levels of a gravitational 
quantum state.  

This phenomenon and the related experimental techniques could be applied to various 
domains ranging from the physics of elementary particles and fields (for instance, spin-
independent or spin-dependent short-range fundamental forces or the search for a non-zero 
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neutron electric charge) to surface studies (for instance, the distribution of hydrogen in/above 
the surface of solids or liquids, or thin films on the surface) and the foundations of quantum 
mechanics (for instance, loss of quantum coherence, quantum-mechanical localization or 
experiments using the very long path of UCN matter waves in medium and in wave-guides).  

In the present article we focus on transitions between the quantum states of neutrons in 
the gravitational field, consider the characteristic parameters of the problem and examine 
various methods for producing such transitions. We also analyze the feasibility of 
experiments with these quantum transitions and their optimization with respect to particular 
physical goals.  

A classical dynamical system in a four-dimensional Euclidean space with universal time 
is considered in Chapter 3. The space is hypothesized to be originally occupied by a uniform 
substance, pictured as a liquid, which at some time became supercooled. Our universe began 
as a nucleation event initiating a liquid to solid transition. The universe we inhabit and are 
directly aware of consists of only the three-dimensional expanding phase boundary - a 
crystalline surface. Random energy transfers to the boundary from thermal fluctuations in the 
adjacent bulk phases are interpreted by us as quantum fluctuations, and give a physical 
realization to the stochastic quantization technique. Fermionic matter is modeled as screw 
dislocations; gauge bosons as surface acoustic waves. Minkowski space emerges dynamically 
through redefining local time to be proportional to the spatial coordinate perpendicular to the 
boundary. Lorentz invariance is only approximate, and the photon spectrum (now a phonon 
spectrum) has a maximum energy. Other features include a geometrical quantum gravitational 
theory based on elasticity theory, and a simple explanation of the quantum measurement 
process as a spontaneous symmetry breaking. Present, past and future are physically distinct 
regions, the present being a unique surface where our universe is being continually 
constructed. 

Starting from the action function we have derived a theoretical background that leads to 
quantization of gravity and the deduction of a correlation between the gravitational and 
inertial masses, which depends on the kinetic momentum of the particle. In Chapter 4, the 
authors show that there is a reaffirmation of the strong equivalence principle and 
consequently the Einstein's equations are preserved. In fact such equations are deduced here 
directly from this kinetic approach to Gravity. Moreover, we have obtained a generalized 
equation for inertial forces, which incorporates the Mach's principle into Gravitation. Also, 
we have deduced the equation of Entropy; the Hamiltonian for a particle in an 
electromagnetic field and the reciprocal fine structure constant. It is possible to deduce the 
expression of the Casimir force and also to explain the Inflation Period and the Missing 
Matter without assuming the existence of vacuum fluctuations. This new approach for 
Gravity will allow us to understand some crucial matters in Cosmology. An experiment has 
been carried out to check the theoretical correlation between the gravitational and inertial 
masses. The experiment and results are presented on appendix A. The experimental data are 
in strongly accordance with the theory. 

In Chapter 5, it is shown that the inclusion of quantum jumps, i.e., state vector reduction, 
in the semiclassical gravity construction opens a new avenue for the solution, on the one 
hand, of the serious difficulties of the construction per se and, on the other hand, of the 
challenging puzzles of dark energy and dark matter. In the problem of quantum gravity, the 
simplest and most natural construction is that of semiclassical gravity. In the latter, the 
energy-momentum tensor entering into the Einstein equation is represented by the expectation 
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value of the corresponding operator. In a conventional treatment, there exists no satisfactory 
generalization of normal ordering to curved spacetime. The renormalization of the energy-
momentum tensor is based on a set of axioms; one of the latter is that the tensor must be four-
divergence free. The results of the renormalization suffer from serious difficulties: an 
ambiguity and a nonlocal dependence on metric. In addition, the conventional treatment 
denounces the concept of particles and the Hamiltonian. It is commonly accepted that things 
look even worse when state reduction is involved in dynamics. In fact, the opposite situation 
occurs. The reduction, being nonlocal and instantaneous, implies a universal time and, as a 
consequence, the structure of spacetime as the direct product of cosmological time and space. 
This allows for introducing normal ordering, particles, and the Hamiltonian. The 
renormalized energy-momentum tensor is unique and involves at most second derivatives of 
metric. On that basis, semiclassical reductive quantum gravity is constructed---a theory in 
which metric is treated classically whereas a quantum treatment of matter includes state 
vector reduction. The theory is assumed to be fundamental. In the theory, the semiclassical 
Einstein equation is violated due to the following. First, the energy-momentum tensor is not 
divergence free. Second, the six space components of the Einstein tensor involve the second 
time derivative of metric, but the other four components involve only the first time derivative. 
Therefore the latter components must be continuous. The energy-momentum tensor should be 
complemented by a pseudo energy-momentum tensor with four degrees of freedom which 
would compensate for the breakdown both of the divergence freedom condition and of the 
continuity of the four components of the energy-momentum tensor. The compensatory tensor 
is, by definition, the energy-momentum tensor of pseudomatter. The latter is represented by a 
pressural dust, i.e., a perfect fluid with a constant pressure, which has four degrees of 
freedom. The pressural dust comprises both dark energy (cosmological constant) and dark 
matter. So the presence of dark energy and dark matter in the real world provides an 
observable evidence of characteristically quantum gravitational effects. That is a challenge to 
a conventional opinion that there exists no such recognized evidence. The reductive 
semiclassical Einstein equation is composed of ten equations for six space components of 
metric and four pseudomatter variables (density and four-velocity). The elimination of the 
latter variables results in the metric equation. Dark matter is represented by a pseudodust, 
which implies the fruitlessness of efforts to represent dark matter by any kind of ordinary 
matter. 

As explained in Chapter 6, Black Holes have always played a central role in 
investigations of quantum gravity. This includes both conceptual issues such as the role of 
classical singularities and information loss, and technical ones to probe the consistency of 
candidate theories. Lacking a full theory of quantum gravity, such studies had long been 
restricted to black hole models which include some aspects of quantization. However, it is 
then not always clear whether the results are consequences of quantum gravity per se or of the 
particular steps one had undertaken to bring the system into a treatable form. Over a little 
more than the last decade loop quantum gravity has emerged as a widely studied candidate for 
quantum gravity, where it is now possible to introduce black hole models within a quantum 
theory of gravity. This makes it possible to use only quantum effects which are known to 
arise also in the full theory, but still work in a rather simple and physically interesting context 
of black holes. Recent developments have now led to the first physical results about non-
rotating quantum black holes obtained in this way. Restricting to the interior inside the 
Schwarzschild horizon, the resulting quantum model is free of the classical singularity, which 
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is a consequence of discrete quantum geometry taking over for the continuous classical space-
time picture. This fact results in a change of paradigm concerning the information loss 
problem. The horizon itself can also be studied in the quantum theory by imposing horizon 
conditions at the level of states. Thereby one can illustrate the nature of horizon degrees of 
freedom and horizon fluctuations. All these developments allow us to study the quantum 
dynamics explicitly and in detail which provides a rich ground to test the consistency of the 
full theory. 
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Chapter 1

FLUCTUATIONS , GRAVITY ,
AND THE QUANTUM POTENTIAL

Robert Carroll∗

University of Illinois, Urbana, IL 61801

Abstract

We show how the quantum potential arises in various ways and trace its connection
to quantum fluctuations and Fisher information along with its realization in terms of
Weyl curvature. It represents a genuine quantization factor for certain classical sys-
tems as well as an expression for quantum matter in gravity theories of Weyl-Dirac
type. Many of the facts and examples are extracted from the literature (with references
cited) and we mainly provide connections and interpretation, with a few new observa-
tions. We deliberately avoid ontological and epistemological discussion and resort to
a collection of contexts where the quantum potential plays a visibly significant role.
In particular we sketch some recent results of F. and A. Shojai on Dirac-Weyl action
and Bohmian mechanics which connects quantum mass to the Weyl geometry. Con-
nections à la Santamato of the quantum potential with Weyl curvature arising from a
stochastic geometry, are also indicated for the Schrödinger equation (SE) and Klein-
Gordon (KG) equation. Quantum fluctuations and quantum geometry are linked with
the quantum potential via Fisher information. Derivations of SE and KG from Not-
tale’s scale relativity are sketched along with a variety of approaches to the KG equa-
tion. Finally connections of geometry and mass generation via Weyl-Dirac geome-
try with many cosmological implications are indicated, following M. Israelit and N.
Rosen.

1 The Schr̈odinger Equation

The quantum potential seems to have achieved prominence via the work of L. deBroglie and
D. Bohm plus many others on what is often now called Bohmian mechanics. There have
been many significant contributions here and we refer to [40, 41, 42, 43, 44, 47, 50, 54]

∗E-mail address: rcarroll@math.uiuc.edu



2 Robert Carroll

for a reasonably complete list of references. A good picture ofthe current theory can be
obtained from the papers by an American-German-Italian (AGI) group of Allori, Barut,
Berndl, Daumer, Dürr, Georgi, Goldstein, Lebowitz, Teufel, Tumulka, and Zanghi (cf. [8,
9, 19, 22, 23, 24, 25, 26, 69, 73, 74, 75, 76, 77, 78, 79, 87, 89, 87, 91, 92, 93, 94, 189, 190,
194]). We refer also to Holland [103, 104, 105, 106], Nikolić [134, 135, 136, 137, 138],
Floyd [83, 84], and Bertoldi, Faraggi, and Matone [27, 81, 82] for other approaches and
summaries. Other specific references will arise as we go along but we emphasize with
apologies that there are many more interesting papers omitted here which hopefully are
covered in [54].

First in a simple minded way one can look at a Schrödinger equation (SE)

− ~
2

2m
ψ′′ + V ψ = i~ψt; ψ = ReiS/~ (1.1)

leading to (′ ∼ ∂x)

St +
S2
x

2m
+ V − ~

2R′′

R
= 0; ∂t(R

2) +
1

m
(R2S′)′ = 0 (1.2)

P = R2 ∼ |ψ|2; Q = − ~
2

2m

R′′

R
⇒ St +

(S′)2

2m
+Q+ V = 0; Pt +

1

m
(PS′)′ = 0 (1.3)

Here Q is the quantum potential and in 3-dimensions for example one expresses this as
Q = −(~2/2m)(∆

√
ρ)/
√
ρ (R =

√
P , P ∼ ρ).

In a hydrodynamic mode one can write (1-dimension for simplicity and with the proviso
thatS 6= const.) p = S′ = mq̇ = mv (v a velocity or collective velocity) andρ = mP (ρ
an unspecified mass density) to obtain an Euler type hydrodynamic equation (∂ ∼ ∂x)

∂t(ρv) + ∂(ρv2) +
ρ

m
∂V +

ρ

m
∂Q = 0 (1.4)

REMARK 1.1. Given a wave functionψ with |ψ|2 representing a probability density
as in conventional quantum mechanics (QM) it is not unrealistic to imagine an ensemble
picture emerging here (as a “cloud” of particles for example). This will be analogous to
diffusion or fluid flow of course but can also be modeled on a Bohmian particle picture and
this will be discussed later in more detail. We note also that Q appears in the Hamilton-
Jacobi (HJ) type equation (1.3) but is not present in the SE (1.1). If one were to interpret
∂V as a hydrodynamical pressure term−(1/ρ)∂P then the SE would be unchanged and
the hydrodynamical equation (with no Q term) would be meaningful in the form

∂t(ρv) + ∂(ρv2) =
1

m
∂P (1.5)

Thinking of Q as a quantization of (1.5) yielding (1.4) leads then to the SE (1.1).�

REMARK 1.2. The development of the AGI school involves now

q̇ = v =
~

m
ℑψ

∗ψ′

|ψ|2 (1.6)
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and this is derived as the simplest Galilean and time reversal invariant form for velocity
transforming correctly under velocity boosts. This is a nice argument and seems to avoid
any recourse to Floydian time (cf. [50, 54]). �

Next we consider relations of diffusion to QM following Nagasawa, Nelson, et al (cf.
[131, 132, 133] - see also e.g. [67, 70, 86, 119, 120, 121]) and sketch some formulas for a
simple Euclidean metric where∆ =

∑

(∂/∂xi)2. Thenψ(t, x) = exp[R(t, x) + iS(t, x)]
satisfies a SEi∂tψ+ (1/2)∆ψ+ ia(t, x) ·∇ψ−V (t, x)ψ = 0 (~ = m = 1)) if and only if

V = −∂S
∂t

+
1

2
∆R+

1

2
(∇R)2 − 1

2
(∇S)2 − a · ∇S; (1.7)

0 =
∂R

∂t
+

1

2
∆S + (∇S) · (∇R) + a · ∇R

in the regionD = {(s, x) : ψ(s, x) 6= 0}. Solutions are often referred to as weak or
distributional but we do not belabor this point. From [131] there results

THEOREM 1.1. Letψ(t, x) = exp[R(t, x)+ iS(t, x)] be a solution of the SE above; then
φ(t, x) = exp[R(t, x) + S(t, x)] andφ̂ = exp[R(t, x)− S(t, x)] are solutions of

∂φ

∂t
+

1

2
∆φ+ a(t, x) · ∇φ+ c(t, x, φ)φ = 0; (1.8)

−∂φ̂
∂t

+
1

2
∆φ̂− a(t, x) · ∇φ̂+ c(t, x, φ)φ̂ = 0

where the creation and annihilation termc(t, x, φ) is given via

c(t, x, φ) = −V (t, x)− 2
∂S

∂t
(t, x) − (∇S)2(t, x)− 2a · ∇S(t, x) (1.9)

Conversely given(φ, φ̂) as above satisfying (1.8) it follows thatψ satisfies the SE with
V as in (1.9) (noteR = (1/2)log(φ̂φ) andS = (1/2)log(φ/φ̂) with exp(R) = (φ̂φ)1/2).�

From this one can conclude that nonrelativistic QM is diffusion theory in terms of
Schrödinger processes (described by(φ, φ̂) - more details later). Further it is shown that key
postulates in Nelson’s stochastic mechanics or Zambrini’s Euclidean QM (cf. [202]) can
both be avoided in connecting the SE to diffusion processes (since they are automatically
valid). Look now at Theorem 1.1 for one dimension and writeT = ~twithX = (~/

√
m)x;

then some simple calculation leads to

COROLLARY 1.1. Equation (1.8), written in the(X, T ) variables becomes

~φT +
~

2

2m
φXX +AφX + c̃φ = 0; −~φ̂T +

~
2

2m
φ̂XX −Aφ̂X + c̃φ̂ = 0; (1.10)

c̃ = −Ṽ (X,T )− 2~ST −
~

2

m
S2
X − 2ASX

Thus the diffusion processes pick up factors of~ and~/
√
m. �
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Next we sketch a derivation of the SE following scale relativity à la Nottale (cf. [58,
139, 140, 141, 142, 144] and [56, 64, 65, 66] for some refinements and variations); this
material is expanded in [40, 54].

REMARK 1.3. One considers quantum paths à la Feynman so thatlimt→t′ [X(t) −
X(t′)]2/(t−t′) exists. This impliesX(t) ∈ H1/2 whereHα meanscǫα ≤ |X(t)−X(t′)| ≤
Cǫα and from [80] for example this meansdimHX[a, b] = 1/2. Now one “knows” (see e.g.
[1]) that quantum and Brownian motion paths (in the plane) have H-dimension 2 and some
clarification is needed here. We refer to [125] where there is a paper on Wiener Brownian
motion (WBM), random walks, etc. discussing Hausdorff and other dimensions of various
sets. Thus given0 < λ < 1/2 with probability 1 a Browian sample functionX satisfies
|X(t + h)−X(t)| ≤ b|h|λ for |h| ≤ h0 whereb = b(λ). This leads to the result that with
probability 1 the graph of a Brownian sample function has Hausdorff and box dimension
3/2. On the other hand a Browian trail (or path) in 2 dimensions has Hausdorff and box
dimension 2 (note a quantum path can have self intersections, etc.). �

Now fractal spacetime here will mean some kind of continuous nonsmooth pathspace
so that a bivelocity structure is defined. One defines first

d+

dt
y(t) = lim∆t→0+

〈

y(t+ ∆t)− y(t)
∆t

〉

; (1.11)

d−
dt
y(t) = lim∆t→0+

〈

y(t)− y(t−∆t)

∆t

〉

Applied to the position vector x this yields forward and backward mean velocities,
namely (d+/dt)x(t) = b+ and (d−/dt)x(t) = b−. Here these velocities are defined
as the average at a point q and time t of the respective velocities of the outgoing and
incoming fractal trajectories; in stochastic QM this corresponds to an average on the
quantum state. The position vectorx(t) is thus “assimilated” to a stochastic process
which satisfies respectively after (dt > 0) and before (dt < 0) the instant t a relation
dx(t) = b+[x(t)]dt + dξ+(t) = b−[x(t)]dt + dξ−(t) whereξ(t) is a Wiener process (cf.
[133]). It is in the description ofξ that theD = 2 fractal character of trajectories is inserted;
indeed thatξ is a Wiener process means that thedξ’s are assumed to be Gaussian with mean
0, mutually independent, and such that

< dξ+i(t)dξ+j(t) >= 2Dδijdt; < dξ−i(t)dξ−j(t) >= −2Dδijdt (1.12)

where< > denotes averaging (D is now the diffusion coefficient). Nelson’s postulate (cf.
[133]) is thatD = ~/2m and this has considerable justification (cf. [139]). Note also that
(1.12) is indeed a consequence of fractal (Hausdorff) dimension 2 of trajectories follows
from < dξ2 > /dt2 = dt−1, i.e. precisely Feynman’s result< v2 >1/2∼ δt−1/2. Note
that Brownian motion (used in Nelson’s postulate) is known to be of fractal (Hausdorff)
dimension 2. Note also that any value ofD may lead to QM and forD → 0 the theory
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becomes equivalent to the Bohm theory. Now expand any functionf(x, t) in a Taylor
series up to order 2, take averages, and use properties of the Wiener processξ to get

d+f

dt
= (∂t + b+ · ∇+D∆)f ;

d−f

dt
= (∂t + b− · ∇ − D∆)f (1.13)

Let ρ(x, t) be the probability density ofx(t); it is known that for any Markov (hence
Wiener) process one has∂tρ+div(ρb+) = D∆ρ (forward equation) and∂tρ+div(ρb−) =
−D∆ρ (backward equation). These are called Fokker-Planck equations and one defines
two new average velocitiesV = (1/2)[b+ + b−] andU = (1/2)[b+ − b−]. Consequently
adding and subtracting one obtainsρt+ div(ρV ) = 0 (continuity equation) anddiv(ρU)−
D∆ρ = 0 which is equivalent todiv[ρ(U − D∇log(ρ))] = 0. One can show, using (1.13)
that the term in square brackets in the last equation is zero leading toU = D∇log(ρ).
Now place oneself in the(U, V ) plane and writeV = V − iU . Then write(dV/dt) =
(1/2)(d+ +d−)/dt and(dU/dt) = (1/2)(d+−d−)/dt. Combining the equations in (1.13)
one defines(dV/dt) = ∂t + V · ∇ and(dU/dt) = D∆ + U · ∇; then define a complex
operator(d′/dt) = (dV/dt)− i(dU/dt) which becomes

d′

dt
=

(

∂

∂t
− iD∆

)

+ V · ∇ (1.14)

One now postulates that the passage from classical mechanics to a new nondifferen-
tiable process considered here can be implemented by the unique prescription of replacing

the standardd/dt by d′/dt. Thus considerS =
〈

∫ t2
t1
L(x,V, t)dt

〉

yielding by least ac-

tion (d′/dt)(∂L/∂Vi) = ∂L/∂xi. Define thenPi = ∂L/∂Vi leading toP = ∇S (recall
the classical action principle withdS = pdq − Hdt). Now for Newtonian mechanics
write L(x, v, t) = (1/2)mv2 −U which becomesL(x,V, t) = (1/2)mV2 − U leading to
−∇U = m(d′/dt)V. One separates real and imaginary parts of the complex acceleration
γ = (d′V/dt to get

d′V = (dV − idU )(V − iU) = (dVV − dUU)− i(dUV + dVU) (1.15)

The forceF = −∇U is real so the imaginary part of the complex acceleration vanishes;
hence

dU
dt
V +

dV
dt
U =

∂U

∂t
+ U · ∇V + V · ∇U +D∆V = 0 (1.16)

from which∂U/∂t may be obtained. This is a weak point in the derivation since one has to
assume e.g. thatU(x, t) has certain smoothness properties. Now considerable calculation
leads to the SEi~ψt = −(~2/2m)∆ψ + Uψ and this suggests an interpretation of QM
as mechanics in a nondifferentiable (fractal) space. In fact (using one space dimension
for convenience) we see that ifU = 0 then the free motionm(d′/dt)V = 0 yields the
SE i~ψt = −(~2/2m)ψxx as a geodesic equation in “fractal” space. Further fromU =
(~/m)(∂

√
ρ/
√
ρ) andQ = −(~2/2m)(∆

√
ρ/
√
ρ) one arrives at a lovely relation, namely
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PROPOSITION 1.1. The quantum potential Q can be written in the formQ = −(m/2)U2

−(~/2)∂U . Hence the quantum potential arises directly from the fractal nonsmooth nature
of the quantum paths. Since Q can be thought of as a quantization of a classical motion we
see that the quantization corresponds exactly to the existence of nonsmooth paths. Conse-
quently smooth paths imply no quantum mechanics.

REMARK 1.4. In [5] one writes againψ = Rexp(iS/~) with field equations in the
hydrodynamical picture (1-D for convenience)

dt(m0ρv) = ∂t(m0ρv) +∇(m0ρv) = −ρ∇(u+Q); ∂tρ+∇ · (ρv) = 0 (1.17)

whereQ = −(~2/2m0)(∆
√
ρ/
√
ρ). The Nottale approach is used as above withdv ∼ dV

and du ∼ dU . One assumes that the velocity field from the hydrodynamical model agrees
with the real partv of the complex velocityV = v − iu sov = (1/m0)∇s ∼ 2D∂s and
u = −(1/m0)∇σ ∼ D∂log(ρ) whereD = ~/2m0. In this context the quantum potential
Q = −(~2/2m0)∆D√ρ/√ρ becomes

Q = −m0D∇ · u− (1/2)m0u
2 ∼ −(~/2)∂u − (1/2)m0u

2 (1.18)

Consequently Q arises from the fractal derivative and the nondifferentiability of space-
time again, as in Proposition 1.1. Further one can relateu (and hence Q) to an internal
stress tensor whereas thev equations correspond to systems of Navier-Stokes type.

REMARK 1.5. We note that it is the presence of± derivatives that makes possible the
introduction of a complex plane to describe velocities and hence QM; one can think of this
as the motivation for a complex valued wave function and the nature of the SE. �

REMARK 1.6. In [56] one extends ideas of Nottale and Ord (cf. [148, 149, 150, 151])
in order to derive an interesting nonlinear Schrödinger equation (NLSE) using a complex
diffusion coefficient and a hydrodynamic model.

1.1 The Schr̈odinger Equation in Weyl Space

We go now to Santamato [171] and derive the SE from classical mechanics in Weyl space
(i.e. from Weyl geometry - cf. also [18, 42, 43, 55, 108, 172, 199]). The idea is to relate the
quantum force (arising from the quantum potential) to geometrical properties of spacetime;
the Klein-Gordon (KG) equation is also treated in this spirit in [55, 172]. One wants to show
how geometry acts as a guidance field for matter (as in general relativity). Initial positions
are assumed random (as in the Madelung approach) and thus the theory is statistical and is
really describing the motion of an ensemble. Thus assume that the particle motion is given
by some random processqi(t, ω) in a manifold M (whereω is the sample space tag) whose
probability densityρ(q, t) exists and is properly normalizable. Assume that the process
qi(t, ω) is the solution of differential equations

q̇i(t, ω) = (dqi/dt)(t, ω) = vi(q(t, ω), t) (1.19)
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with random initial conditionsqi(t0, ω) = qi0(ω). Once the joint distribution of the random
variablesqi0(ω) is given the processqi(t, ω) is uniquely determined by (1.19). One knows
that in this situation∂tρ + ∂i(ρv

i) = 0 (continuity equation) with initial Cauchy data
ρ(q, t) = ρ0(q). The natural origin ofvi arises via a least action principle based on a
LagrangianL(q, q̇, t) with

L∗(q, q̇, t) = L(q, q̇, t)− Φ(q, q̇, t); Φ =
dS

dt
= ∂tS + q̇i∂iS (1.20)

Thenvi(q, t) arises by minimizing

I(t0, t1) = E[

∫ t1

t0

L∗(q(t, ω), q̇(t, ω), t)dt] (1.21)

wheret0, t1 are arbitrary and E denotes the expectation (cf. [40, 41, 131, 132, 133] for
stochastic ideas). The minimum is to be achieved over the class of all random motions
qi(t, ω) obeying (1.20) with arbitrarily varied velocity fieldvi(q, t) but having common
initial values. One proves first

∂tS +H(q,∇S, t) = 0; vi(q, t) =
∂H

∂pi
(q,∇S(q, t), t) (1.22)

Thus the value of I in (1.21) along the random curveqi(t, q0(ω)) is

I(t1, t0, ω) =

∫ t1

t0

L∗(q(, q0(ω)), q̇(t, q0(ω)), t)dt (1.23)

Let µ(q0) denote the joint probability density of the random variablesqi0(ω) and then
the expectation value of the random integral is

I(t1, t0) = E[I(t1, t0, ω)] =

∫

Rn

∫ t1

t0

µ(q0)L
∗(q(t, q0), q̇(t, q0), t)d

nq0dt (1.24)

Standard variational methods give then

δI =

∫

Rn

dnq0µ(0)

[

∂L∗

∂q̇i
(q(t1, q0), ∂tq(t1, q0), t)δq

i(t1, q0)− (1.25)

−
∫ t1

t0

dt

(

∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq)t, q0), t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t)

)

δqi(t, q0)

]

where one uses the fact thatµ(q0) is independent of time andδqi(t0, q0) = 0 (recall com-
mon initial data is assumed). Therefore

(A) (∂L∗/∂q̇i)(q(t, q0), ∂tq(t, q0), t) = 0; (1.26)

(B)
∂

∂t

∂L∗

∂q̇i
(q(t, q0), ∂tq(t, q0, t)−

∂L∗

∂qi
(q(t, q0), ∂tq(t, q0), t) = 0
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are the necessary conditions for obtaining a minimum of I. Conditions (B) are the usual
Euler-Lagrange (EL) equations whereas(A) is a consequence of the fact that in the most
general case one must retain varied motions withδqi(t1, q0) different from zero at the final
time t1. Note that sinceL∗ differs from L by a total time derivative one can safely replace
L∗ by L in (B) and putting (1.20) into(A) one obtains the classical equations

pi = (∂L/∂q̇i)(q(t, q0), q̇(t, q0), t) = ∂iS(q(t, q0), t) (1.27)

It is known now that ifdet[(∂2L/∂q̇i∂q̇j ] 6= 0 then the second equation in (1.22) is
a consequence of the gradient condition (1.27) and of the definition of the Hamiltonian
functionH(q, p, t) = piq̇

i − L. Moreover(B) in (1.26) and (1.27) entrain the HJ equation
in (1.63), (1.33). In order to show that the average action integral (1.24) actually gives a
minimum one needsδ2I > 0 but this is not necessary for Lagrangians whose Hamiltonian
H has the form

HC(q, p, t) =
1

2m
gik(pi −Ai)(pk −Ak) + V (1.28)

with arbitrary fieldsAi and V (particle of mass m in an EM field A) which is the form
for nonrelativistic applications; given positive definitegik such Hamiltonians involve suf-
ficiency conditionsdet[∂2L/∂q̇i∂q̇k] = mg > 0. Finally (B) in (1.26) withL∗ replaced
by L) shows that along particle trajectories the EL equations are satisfied, i.e. the particle
undergoes a classical motion with probability one. Notice here that in (1.22) no explicit
mention of generalized momenta is made; one is dealing with a random motion entirely
based on position. Moreover the minimum principle (1.21) defines a 1-1 correspondence
between solutionsS(q, t) in (1.22) and minimizing random motionsqi(t, ω). Providedvi

is given via (1.22) the particle undergoes a classical motion with probability one. Thus
once the Lagrangian L or equivalently the Hamiltonian H is given,∂tρ + ∂i(ρv

i) = 0 and
(1.22) uniquely determine the stochastic processqi(t, ω). Now suppose that some geomet-
ric structure is given on M so that the notion of scalar curvatureR(q, t) of M is meaningful.
Then we assume (ad hoc) that the actual Lagrangian is

L(q, q̇, t) = LC(q, q̇, t) + γ(~2/m)R(q, t) (1.29)

whereγ = (1/6)(n−2)/(n−1) with n = dim(M). Since bothLC and R are independent
of ~ we haveL→ LC as~→ 0.

Now for a differential manifold withds2 = gik(q)dq
idqk it is standard that in a trans-

plantationqi → qi + δqi one hasδAi = ΓikℓA
ℓdqk with Γikℓ general affine connection

coefficients on M (Riemannian structure is not assumed). In [171] it is assumed that for
ℓ = (gikA

iAk)1/2 one hasδℓ = ℓφkdq
k where theφk are covariant components of an

arbitrary vector (Weyl geometry). Then the actual affine connectionsΓikℓ can be found by
comparing this withδℓ2 = δ(gikA

iAk) and usingδAi = ΓikℓA
ℓdqk. A little linear algebra

gives then

Γikℓ = −
{

i
k ℓ

}

+ gim(gmkφℓ + gmℓφk − gkℓφm) (1.30)
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Thus we may prescribe the metric tensorgik and φi and determine via (1.30) the con-
nection coefficients. Note thatΓikℓ = Γiℓk and forφi = 0 one has Riemannian geometry.
Covariant derivatives are defined via

Ak,i = ∂iA
k − ΓkℓAℓ; Ak,i = ∂iAk + ΓℓkiAℓ (1.31)

for covariant and contravariant vectors respectively (whereS,i = ∂iS). Note Ricci’s lemma
no longer holds (i.e.gik,ℓ 6= 0) so covariant differentiation and operations of raising or
lowering indices do not commute. The curvature tensorRikℓm in Weyl geometry is intro-
duced viaAi,k,ℓ −Ai,ℓ,k = F imkℓA

m from which arises the standard formula of Riemannian
geometry

Rimkℓ = −∂ℓΓimk + ∂kΓ
i
mℓ + ΓinℓΓ

n
mk − ΓinkΓ

n
mℓ (1.32)

where (1.30) is used in place of the Christoffel symbols. The tensorRimkℓ obeys the same
symmetry relations as the curvature tensor of Riemann geometry as well as the Bianchi
identity. The Ricci symmetric tensorRik and the scalar curvature R are defined by the
same formulas also, viz.Rik = Rℓiℓk andR = gikRik. For completeness one derives here

R = Ṙ+ (n− 1)[(n − 2)φiφ
i − 2(1/

√
g)∂i(

√
gφi)] (1.33)

whereṘ is the Riemannian curvature built by the Christoffel symbols. Thus from (1.30)
one obtains

gkℓΓikℓ = −gkℓ
{

i
k ℓ

}

− (n− 2)φi; Γikℓ = −
{

i
k ℓ

}

+ nφk (1.34)

Since the form of a scalar is independent of the coordinate system used one may com-
pute R in a geodesic system where the Christoffel symbols and all∂ℓgik vanish; then (1.30)
reduces toΓikℓ = φkκ

i
ℓ + φℓδ

i
k − gkℓφi and hence

R = −gkm∂mΓikℓ + ∂i(g
kℓΓikℓ) + gℓmΓinℓΓ

n
mi − gmℓΓinℓΓnmℓ (1.35)

Further one hasgℓmΓinℓΓ
n
mi = −(n − 2)(φkφ

k) at the point in consideration. Putting
all this in (1.35) one arrives at

R = Ṙ+ (n− 1)(n − 2)(φkφ
k)− 2(n − 1)∂kφ

k (1.36)

which becomes (1.33) in covariant form. Now the geometry is to be derived from phys-
ical principles so theφi cannot be arbitrary but must be obtained by the same averaged
least action principle (1.21) giving the motion of the particle. The minimum in (1.21) is
to be evaluated now with respect to the class of all Weyl geometries having arbitrarily var-
ied gauge vectors but fixed metric tensor. Note that once (1.29) is inserted in (1.20) the
only term in (1.21) containing the gauge vector is the curvature term. Then observing that
γ > 0 whenn ≥ 3 the minimum principle (1.21) may be reduced to the simpler form
E[R(q(t, ω), t)] = min where only the gauge vectorsφi are varied. Using (1.33) this is
easily done. First a little argument shows thatρ̂(q, t) = ρ(q, t)/

√
g transforms as a scalar in
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a coordinate change and this will be called the scalar probability density of the random mo-
tion of the particle (statistical determination of geometry). Starting from∂tρ+ ∂i(ρv

i) = 0
a manifestly covariant equation for̂ρ is found to be∂tρ̂ + (1/

√
g)∂i(

√
gviρ̂) = 0. Now

return to the minimum problemE[R(q(t, ω), t)] = min; from (1.33) andρ̂ = ρ/
√
g one

obtains
E[R(q(t, ω), t)] = E[Ṙ(q(t, ω), t)]+ (1.37)

+(n− 1)

∫

M
[(n − 2)φiφ

i − 2(1/
√
g)∂i(

√
gφi)]ρ̂(q, t)

√
gdnq

Assuming fields go to 0 rapidly enough on∂M and integrating by parts one gets then

E[R] = E[Ṙ]− n− 1

n− 2
E[gik∂i(log(ρ̂)∂k(log(ρ̂)]+ (1.38)

+
n− 1

n− 2
E{gik[(n − 2)φi + ∂i(log(ρ̂)][(n − 2)φk + ∂k(log(ρ̂)]}

Since the first two terms on the right are independent of the gauge vector andgik is
positive definiteE[R] will be a minimum when

φi(q, t) = −[1/(n − 2)]∂i[log(ρ̂)(q, t)] (1.39)

This shows that the geometric properties of space are indeed affected by the presence of
the particle and in turn the alteration of geometry acts on the particle through the quantum
force fi = γ(~2/m)∂iR which according to (1.33) depends on the gauge vector and its
derivatives. It is this peculiar feedback between the geometry of space and the motion of
the particle which produces quantum effects.

In this spirit one goes now to a geometrical derivation of the SE. Thus inserting (1.39)
into (1.33) one gets

R = Ṙ+ (1/2γ
√

ρ̂)[1/
√
g)∂i(

√
ggik∂k

√

ρ̂)] (1.40)

where the value(n − 2)/6(n − 1) for γ is used. On the other hand the HJ equation (1.20)
can be written as

∂tS +HC(q,∇S, t)− γ(~2/m)R = 0 (1.41)

where (1.29) has been used. When (1.40) is introduced into (1.41) the HJ equation and the
continuity equation∂tρ̂ + (1/

√
g)(
√
gviρ̂) = 0, with velocity field given by (1.22), form

a set of two nonlinear PDE which are coupled by the curvature of space. Therefore self
consistent random motions of the particle (i.e. random motions compatible with (1.35)) are
obtained by solving (1.41) and the continuity equation simultaneously. For every pair of
solutionsS(q, t, ρ̂(q, t)) one gets a possible random motion for the particle whose invariant
probability density isρ̂. The present approach is so different from traditional QM that a
proof of equivalence is needed and this is only done for Hamiltonians of the form (1.28)
(which is not very restrictive). The HJ equation corresponding to (1.28) is

∂tS +
1

2m
gik(∂iS −Ai)(∂kS −Ak) + V − γ ~

2

m
R = 0 (1.42)
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with R given by (1.40). Moreover using (1.22) as well as (1.33) the continuity equation
becomes

∂tρ̂+ (1/m
√
g)∂i[ρ̂

√
ggik(∂kS −Ak)] = 0 (1.43)

Owing to (1.40), (1.42) and (1.43) form a set of two nonlinear PDE which must be
solved for the unknown functions S and̂ρ. Now a straightforward calculations shows that,
setting

ψ(q, t) =
√

ρ̂(q, t)exp](i/~)S(q, t)], (1.44)

the quantityψ obeys a linear PDE (corrected from [171])

i~∂tψ =
1

2m

{[

i~∂i
√
g

√
g

+Ai

]

gik(i~∂k +Ak)

}

ψ +

[

V − γ ~
2

m
Ṙ

]

ψ (1.45)

where only the Riemannian curvaturėR is present (any explicit reference to the gauge
vector φi having disappeared). (1.45) is of course the SE in curvilinear coordinates
whose invariance under point transformations is well known. Moreover (1.44) shows that
|ψ|2 = ρ̂(q, t) is the invariant probability density of finding the particle in the volume ele-
mentdnq at time t. Then following Nelson’s arguments that the SE together with the density
formula contains QM the present theory is physically equivalent to traditional nonrelativis-
tic QM. One sees also from (1.44) and (1.45) that the time independent SE is obtained via
S = S0(q) − Et with constant E and̂ρ(q). In this case the scalar curvature of space be-
comes time independent; since starting data att0 is meaningless one replaces the continuity
equation with a condition

∫

M ρ̂(q)
√
gdnq = 1.

REMARK 1.6. We recall that in the nonrelativistic context the quantum potential has
the formQ = −(~2/2m)(∂2√ρ/√ρ) (ρ ∼ ρ̂ here) and in more dimensions this corre-
sponds toQ = −(~2/2m)(∆

√
ρ/
√
ρ). Here we have a SE involvingψ =

√
ρexp[(i/~)S]

with corresponding HJ equation (1.42) which corresponds to the flat space 1-DSt +
(s′)2/2m+V +Q = 0 with continuity equation∂tρ+ ∂(ρS′/m) = 0 (takeAk = 0 here).
The continuity equation in (1.43) corresponds to∂tρ + (1/m

√
g)∂i[ρ

√
ggik(∂kS)] = 0.

ForAk = 0 (1.42) becomes

∂tS + (1/2m)gik∂iS∂kS + V − γ(~2/m)R = 0 (1.46)

This leads to an identificationQ ∼ −γ(~2/m)R where R is the Ricci scalar in the
Weyl geometry (related to the Riemannian curvature built on standard Christoffel symbols
via (1.33)). Hereγ = (1/6)[(n− 2)(n− 2)] as above which forn = 3 becomesγ = 1/12;
further the Weyl fieldφi = −∂ilog(ρ). Consequently (see below).

PROPOSITION 1.2. For the SE (1.45) in Weyl space the quantum potential isQ =
−(~2/12m)R where R is the Weyl-Ricci scalar curvature. For Riemannian flat spaceṘ = 0
this becomes via (1.40)

R =
1

2γ
√
ρ
∂ig

ik∂k
√
ρ ∼ 1

2γ

∆
√
ρ

√
ρ
⇒ Q = − ~

2

2m

∆
√
ρ

√
ρ

(1.47)
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as is should and the SE (1.45) reduces to the standard SE in the form i~∂tψ =
−(~2/2m)∆ψ + V ψ (Ak = 0). �

REMARK 1.7. In [172] (first paper) one begins with a generic 4-dimensional manifold
with torsion free connections and a metric tensorgµν (~ = c = 1 for convenience). Then
working with an average action principle based on [95] the particle motion and (Weyl)
spacetime geometry are derived in a gauge invariant manner (cf. Section 3.2). Thus an
integrable Weyl geometry is produced from a stochastic background via an extremization
procedure (see Section 3). An effective particle mass is taken asm2 − (R/6) ∼ m2(1 +
Q) ≈ m2exp(Q) corresponding toR/6 = −m2Q = −2

√
ρ/
√
ρ (here~ = c = 1

and one has signature(−,+,+,+) while the termexp(Q) arises from [182]). We refer to
[42, 43, 54, 55, 172] and Section 2 for details (for various other approaches see [18, 199]).�

1.2 Fisher Information Revisited

We recall first that the classical Fisher information associated with translations of a 1-D
observable X with probability densityP (x) (related to a quantum geometry probability
measureds2 =

∑

[(dpj)
2/pj ]) is

FX =

∫

dxP (x)([log(P (x)]′)2 > 0 (1.48)

(cf. [40, 43, 85, 96, 97, 98, 99, 160, 161]). One has a well known Cramer-Rao inequality
V ar(X) ≥ F−1

X whereV ar(X) ∼ variance of X. A Fisher length for X is defined via

δX = F
−1/2
X and this quantifies the length scale over whichp(x) (or betterlog(p(x)))

varies appreciably. Then the root mean square deviation∆X satisfies∆X ≥ δX. Let now
P be the momentum observable conjugate to X, andPcl a classical momentum observable
corresponding to the stateψ given viapcl(x) = (~/2i)[(ψ′/ψ)− (ψ̄′/ψ̄)]. One has then the
identity< p >ψ=< pcl >ψ following via integration by parts. Now define the nonclassical
momentum bypnc = p− pcl and one shows then

∆X∆p ≥ δX∆p ≥ δX∆pnc = ~/2 (1.49)

Then consider a classical ensemble of n-dimensional particles of mass m moving under
a potential V. The motion can be described via the HJ and continuity equations

∂s

∂t
+

1

2m
|∇s|2 + V = 0;

∂P

∂t
+∇ ·

[

P
∇s
m

]

= 0 (1.50)

for the momentum potentials and the position probability density P (note that there is no
quantum potential and this will be supplied by the information term). These equations
follow from the variational principleδL = 0 with Lagrangian

L =

∫

dt dnxP
[

(∂s/∂t) + (1/2m)|∇s|2 + V
]

(1.51)
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It is now assumed that the classical Lagrangian must be modifieddue to the existence of
random momentum fluctuations. The nature of such fluctuations is immateria and one can
assume that the momentum associated with position x is given byp = ∇s +N where the
fluctuation term N vanishes on average at each point x. Thus s changes to being an average
momentum potential. It follows that the average kinetic energy< |∇s|2 > /2m appearing
in the Lagrangian above should be replaced by< |∇s+N |2 > /2m giving rise to

L′ = L+ (2m)−1

∫

dt < N ·N >= L+ (2m)−1

∫

dt(∆N)2 (1.52)

where∆N =< N ·N >1/2 is a measure of the strength of the quantum fluctuations. The
additional term is specified uniquely, up to a multiplicative constant, by the three assump-
tions

1. Action principle:L′ is a scalar Lagrangian with respect to the fields P and s where
the principleδL′ = 0 yields causal equations of motion. Thus

(∆N)2 =

∫

dnx pf(P,∇P, ∂P/∂t, s,∇s, ∂s/∂t, x, t)

for some scalar functionf .

2. Additivity: If the system comprises two independent noninteracting subsystems with
P = P1P2 then the Lagrangian decomposes into additive subsystem contributions;
thusf = f1 + f2 for P = P1P2.

3. Exact uncertainty: The strength of the momentum fluctuation at any given time is
determined by and scales inversely with the uncertainty in position at that time. Thus
∆N → k∆N for x → x/k. Moreover since position uncertainty is entirely charac-
terized by the probability density P at any given time the functionf cannot depend
on s, nor explicitly ont, nor on∂P/∂t.

This leads to the result that (cf. [40, 54, 96])

(∆N)2 = c

∫

dnxP |∇log(P )|2 (1.53)

where c is a positive universal constant. Further for~ = 2
√
c andψ =

√
Pexp(is/~) the

equations of motion for p and s arising fromδL′ = 0 arei~∂ψ∂t = − ~2

2m∇2ψ + V ψ.

A second derivation is given in [161, 161]. Thus letP (yi) be a probability density and
P (yi + ∆yi) be the density resulting from a small change in theyi. Calculate the cross
entropy via

J(P (yi + ∆yi) : P (yi)) =

∫

P (yi + ∆yi)log
P (yi + ∆yi)

P (yi)
dny ≃ (1.54)
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≃
[

1

2

∫

1

P (yi)

∂P (yi)

∂yi
∂P (yi)

∂yk)
dny

]

∆yi∆yk = Ijk∆y
i∆yk

TheIjk are the elements of the Fisher information matrix. The most general expression
has the form

Ijk(θ
i) =

1

2

∫

1

P (xi|θi)
∂P (xi|θi)

∂θj
∂P (xi|θi)
∂θk

dnx (1.55)

whereP (xi|θi) is a probability distribution depending on parametersθi in addition to the
xi. ForP (xi|θi) = P (xi + θi) one recovers (1.54). If P is defined over an n-dimensional
manifold with positive inverse metricgik one obtains a natural definition of the information
associated with P via

I = gikIik =
gik

2

∫

1

P

∂P

∂yi
∂P

∂yk
dny (1.56)

Now in the HJ formulation of classical mechanics the equation of motion takes the form

∂S

∂t
+

1

2
gµν

∂S

∂xµ
∂S

∂xν
+ V = 0 (1.57)

wheregµν = diag(1/m, · · · , 1/m). The velocity fielduµ is given byuµ = gµν(∂S/∂xν).
When the exact coordinates are unknown one can describe the system by means of a prob-
ability densityP (t, xµ) with

∫

Pdnx = 1 and

(∂P/∂t) + (∂/∂xµ)(Pgµν(∂S/∂xν) = 0 (1.58)

These equations completely describe the motion and can be derived from the La-
grangian

LCL =

∫

P {(∂S/∂t) + (1/2)gµν (∂S/∂xµ)(∂S/∂xν) + V } dtdnx (1.59)

using fixed endpoint variation in S and P. Quantization is obtained by adding a term propor-
tional to the information I defined in (1.56). This leads to

LQM = LCL + λI =

∫

P

{

∂S

∂t
+

1

2
gµν

[

∂S

∂xµ
∂S

∂xν
+

λ

P 2

∂P

∂xµ
∂P

∂xν

]

+ V

}

dtdnx

(1.60)
Fixed endpoint variation in S leads again to (1.58) while variation in P leads to

∂S

∂t
+

1

2
gµν

[

∂S

∂xµ
∂S

∂xν
+ λ

(

1

P 2

∂P

∂xµ
∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

)]

+ V = 0 (1.61)

These equations are equivalent to the SE ifψ =
√
Pexp(iS/~) with λ = (2~)2.

REMARK 1.8. Following ideas in [55, 56, 139] we note in (1.60) forφµ ∼ Aµ =
∂µlog(P ) (cf. (1.39)) andPµ = ∂uS, a complex velocity can be envisioned leading to

|Pµ + i
√
λAµ|2 = P 2

µ + λA2
µ ∼ gµν

(

∂S

∂xµ
∂S

∂xν
+

λ

P 2

∂P

∂xµ
∂P

∂xν

)

(1.62)
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Further I in (1.56) is exactly known fromφµ so one has a direct connection between
Fisher information and the Weyl fieldφµ, along with motivation for a complex velocity.�

REMARK 1.9. Comparing now with [43] and quantum geometry in the formds2 =
∑

(dp2
j/pj) on a space of probability distributions we can define (1.56) as a Fisher infor-

mation metric in the present context. This should be positive definite in view of its relation
to (∆N)2 in (1.53) for example. Now forψ = Rexp(iS/~) one has (ρ ∼ ρ̂ here)

− ~
2

2m

R′′

R
≡ − ~

2

2m

∂2√ρ
√
ρ

= − ~
2

8m

[

2ρ′′

ρ
−
(

ρ′

ρ

)2
]

(1.63)

in 1-D while in more dimensions we have a form (ρ ∼ P )

Q ∼ −2~
2gµν

[

1

P 2

∂P

∂xµ
∂P

∂xν
− 2

P

∂2P

∂xµ∂xν

]

(1.64)

as in (1.63) (arising from the Fisher metric I of (1.56) upon variation in P in the Lagrangian).
It can also be related to an osmotic velocity fieldu = D∇log(ρ) viaQ = (1/2)u2 +D∇·u
connected to Brownian motion where D is a diffusion coefficient (cf. [56, 67, 86, 139]). For
φµ = −∂µlog(P ) we have thenu = −Dφ with Q = D2((1/2)(|u|2 −∇ · φ), expressing
Q directly in terms of the Weyl vector. This enforces the idea that QM is built into Weyl
geometry! �

2 Bohmian Mechanics and Weyl Geometry

From Chapters 1 and 2 we know something about Bohmian mechanics and the quantum
potential and we go now to the papers [178, 179, 180, 181, 182, 183, 185, 186] by A.
and F. Shojai to begin the present discussion (cf. also [2, 28, 29, 68, 129, 130, 163, 164,
165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 184, 187, 188]). for related work
from the Tehran school and [43, 55, 124, 147, 171, 172, 181] for linking of dBB theory
with Weyl geometry). In nonrelativistic deBroglie-Bohm theory the quantum potential is
Q = −(~2/2m)(∇2|Ψ|/|Ψ|). The particles trajectory can be derived from Newton’s law
of motion in which the quantum force−∇Q is present in addition to the classical force
−∇V . The enigmatic quantum behavior is attributed here to the quantum force or quantum
potential (withΨ determining a “pilot wave” which guides the particle motion). Setting
Ψ =

√
ρexp[iS/~] one has

∂S

∂t
+
|∇S|2
2m

+ V +Q = 0;
∂ρ

∂t
+∇ ·

(

ρ
∇S
m

)

= 0 (2.1)

The first equation in (2.1) is a Hamilton-Jacobi (HJ) equation which is identical to
Newton’s law and represents an energy conditionE = (|p|2/2m) + V +Q (recall from HJ
theory−(∂S/∂t) = E(= H) and∇S = p). The second equation represents a continuity
equation for a hypothetical ensemble related to the particle in question. For the relativistic
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extension one could simply try to generalize the relativisticenergy equationηµνPµP ν =
m2c2 to the form

ηµνP
µP ν = m2c2(1 +Q) =M2c2; Q = (~2/m2c2)(2|Ψ|/|Ψ|) (2.2)

M2 = m2

(

1 + α
2|Ψ|
|Ψ|

)

; α =
~

2

m2c2
(2.3)

This could be derived e.g. by settingΨ =
√
ρexp(iS/~) in the Klein-Gordon (KG)

equation and separating the real and imaginary parts, leading to the relativistic HJ equation
ηµν∂

µS∂νS = M2c2 (as in (2.1) - notePµ = −∂µS) and the continuity equation is
∂µ(ρ∂

µS) = 0. The problem ofM2 not being positive definite here (i.e. tachyons) is
serious however and in fact (2.2) is not the correct equation (see e.g. [180, 182, 185]).
One must use the covariant derivatives∇µ in place of∂µ and for spin zero in a curved
background there results

∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M2c2; (2.4)

To see this one must require that a correct relativistic equation of motion should not
only be Poincaré invariant but also it should have the correct nonrelativistic limit. Thus for
a relativistic particle of massM (which is a Lorentz invariant quantity)

A =

∫

dλ(1/2)M(r)(drµ/dλ)(drν/dλ) (2.5)

is the action functional whereλ is any scalar parameter parametrizing the pathrµ(λ) (it
could e.g. be the proper timeτ ). Varying the path viarµ → r′µ = rµ + ǫµ one gets

A→ A′ = A + δA = A +

∫

dλ

[

drµ
dλ

dǫµ

dλ
+

1

2

drµ
dλ

drµ

dλ
ǫν∂

νM

]

(2.6)

By least action the correct path satisfiesδA = 0 with fixed boundaries so the equation
of motion is

(d/dλ)(Muµ) = (1/2)uνu
ν∂µM; (2.7)

M(duµ/dλ) = ((1/2)ηµνuαu
α − uµuν)∂νM

whereuµ = drµ/dλ. Now look at the symmetries of the action functional viaλ → λ + δ.
The conserved current is then the HamiltonianH = −L+uµ(∂L/∂uµ) = (1/2)Muµu

µ =
E. This can be seen by settingδA = 0 where

0 = δA = A′ − A =

∫

dλ

[

1

2
uµu

µuν∂νM + Muµ
duµ

dλ

]

δ (2.8)

which means that the integrand is zero, i.e.(d/dλ)[(1/2)Muµu
µ] = 0. Since the proper

time is defined asc2dτ2 = drµdr
µ this leads to(dτ/dλ) =

√

(2E/Mc2) and the equation
of motion becomes

M(dvµ/dτ) = (1/2)(c2ηµν − vµvν)∂νM (2.9)
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wherevµ = drµ/dτ . The nonrelativistic limit can be derived by letting the particles velocity
be ignorable with respect to light velocity. In this limit the proper time is identical to the
time coordinateτ = t and the result is that theµ = 0 component is satisfied identically via
(r ∼ ~r)

M
d2r

dt2
= −1

2
c2∇M⇒ m

(

d2r

dt2

)

= −∇
[

mc2

2
log

(

M

µ

)]

(2.10)

whereµ is an arbitrary mass scale. In order to have the correct limit the term in parenthesis
on the right side should be equal to the quantum potential so

M = µexp[−(~2/m2c2)(∇2|Ψ|/|Ψ|)] (2.11)

The relativistic quantum mass field (manifestly invariant) isM =

µexp[(~2/2m)(2|Ψ|/|Ψ|)] and settingµ = m we get

M = mexp[(~2/m2c2)(2|Ψ|/|Ψ|)] (2.12)

If one starts with the standard relativistic theory and goes to the nonrelativistic limit
one does not get the correct nonrelativistic equations; this is a result of an improper de-
composition of the wave function into its phase and norm in the KG equation (cf. also [27]
for related procedures). One notes here also that (2.12) leads to a positive definite mass
squared. Also from [180] this can be extended to a many particle version and to a curved
spacetime. In summary, for a particle in a curved background one has (cf. [182] which we
continue to follow)

∇µ(ρ∇µS) = 0; gµν∇µS∇νS = M2c2; M2 = m2eQ; Q =
~

2

m2c2
2g|Ψ|
|Ψ| (2.13)

Since, following deBroglie, the quantum HJ equation (QHJE) in (2.13) can be written
in the form(m2/M2)gµν∇µS∇νS = m2c2 the quantum effects are identical to a change
of spacetime metric

gµν → g̃µν = (M2/m2)gµν (2.14)

which is a conformal transformation. The QHJE becomes theng̃µν∇̃µS∇̃νS = m2c2

where∇̃µ represents covariant differentiation with respect to the metricg̃µν and the con-
tinuity equation is theñgµν∇̃µ(ρ∇̃νS) = 0. The important conclusion here is that the
presence of the quantum potential is equivalent to a curved spacetime with its metric given
by (2.14). This is a geometrization of the quantum aspects of matter and it seems that there
is a dual aspect to the role of geometry in physics. The spacetime geometry sometimes
looks like “gravity” and sometimes reveals quantum behavior. The curvature due to the
quantum potential may have a large influence on the classical contribution to the curvature
of spacetime. The particle trajectory can now be derived from the guidance relation via
differentiation of (2.13) leading to the Newton equations of motion

M
d2xµ

dτ2
+ MΓµνκu

νuκ = (c2gµν − uµuν)∇νM (2.15)
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Using the conformal transformation above (2.15) reduces to the standard geodesic equa-
tion.

Now a general “canonical” relativistic system consisting of gravity and classical matter
(no quantum effects) is determined by the action

A =
1

2κ

∫

d4x
√−gR+

∫

d4x
√−g ~

2

2m

(

ρ

~2
DµSDµS −

m2

~2
ρ

)

(2.16)

whereκ = 8πG and c = 1 for convenience. It was seen above that via deBroglie the
introduction of a quantum potential is equivalent to introducing a conformal factorΩ2 =
M2/m2 in the metric. Hence in order to introduce quantum effects of matter into the action
(2.16) one uses this conformal transformation to get (1 +Q ∼ exp(Q))

A =
1

2κ

∫

d4x
√−ḡ(R̄Ω2 − 6∇̄µΩ∇̄µΩ)+ (2.17)

+

∫

d4x
√−ḡ

( ρ

m
Ω2∇̄µS∇̄µS −mρΩ4

)

+

∫

d4x
√−ḡλ

[

Ω2 −
(

1 +
~

2

m2

2̄
√
ρ

√
ρ

)]

where a bar over any quantity means that it corresponds to the nonquantum regime. Here
only the first two terms of the expansion ofM2 = m2exp(Q) in (2.13) have been used,
namelyM2 ∼ m2(1 + Q). No physical change is involved in considering all the terms.λ
is a Lagrange multiplier introduced to identify the conformal factor with its Bohmian value.
One uses herēgµν to raise of lower indices and to evaluate the covariant derivatives; the
physical metric (containing the quantum effects of matter) isgµν = Ω2ḡµν . By variation
of the action with respect tōgµν , Ω, ρ, S, and λ one arrives at the following quantum
equations of motion:

1. The equation of motion forΩ

R̄Ω + 62̄Ω +
2κ

m
ρΩ(∇̄µS∇̄µS − 2m2Ω2) + 2κλΩ = 0 (2.18)

2. The continuity equation for particles̄∇µ(ρΩ2∇̄µS) = 0

3. The equations of motion for particles (herea′ ≡ ā)

(∇̄µS∇̄µS −m2Ω2)Ω2√ρ+
~

2

2m

[

2
′

(

λ√
ρ

)

− λ2
′√ρ
ρ

]

= 0 (2.19)

4. The modified Einstein equations forḡµν

Ω2

[

R̄µν −
1

2
ḡµνR̄

]

−[ḡµν2
′−∇̄µ∇̄ν ]Ω2−6∇̄µΩ∇̄νΩ+3ḡµν∇̄αΩ∇̄αΩ+ (2.20)

+
2κ

m
ρΩ2∇̄µS∇̄νS −

κ

m
ρΩ2ḡµν∇̄αS∇̄αS + κmρΩ4ḡµν+

+
κ~

2

m2

[

∇̄µ
√
ρ∇̄ν

(

λ√
ρ

)

+ ∇̄ν
√
ρ∇̄µ

(

λ√
ρ

)]

− κ~
2

m2
ḡµν∇̄α

[

λ
∇̄α√ρ
√
ρ

]

= 0
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5. The constraint equationΩ2 = 1 + (~2/m2)[(2̄
√
ρ)/
√
ρ]

Thus the back reaction effects of the quantum factor on the background metric are con-
tained in these highly coupled equations. A simpler form of (2.8) can be obtained by taking
the trace of (2.20) and using (2.18) which producesλ = (~2/m2)∇̄µ[λ(∇̄µ√ρ)/√ρ]. A
solution of this via perturbation methods using the small parameterα = ~

2/m2 yields the
trivial solutionλ = 0 so the above equations reduce to

∇̄µ(ρΩ2∇̄µS) = 0; ∇̄µS∇̄µS = m2Ω2; Gµν = −κT(m)
µν − κT(Ω)

µν (2.21)

whereT
(m)
µν is the matter energy-momentum (EM) tensor and

κT(Ω)
µν =

[gµν2−∇µ∇ν ]Ω2

Ω2
+ 6
∇µΩ∇νΩ

ω2
− 2gµν

∇αΩ∇αΩ
Ω2

(2.22)

with Ω2 = 1+α(2̄
√
ρ/
√
ρ). Note that the second relation in (2.21) is the Bohmian equation

of motion and written in terms ofgµν it becomes∇µS∇µS = m2c2.

REMARK 2.1. In the preceeding one has tacitly assumed that there is an ensemble
of quantum particles so what about a single particle? One translates now the quantum
potential into purely geometrical terms without reference to matter parameters so that the
original form of the quantum potential can only be deduced after using the field equations.
Thus the theory will work for a single particle or an ensemble. One notes that the use
of ψψ∗ automatically suggests or involves an ensemble if (or its square root) it is to be
interpreted as a probability density. Thus the idea that a particle has only a probability of
being at or near x seems to mean that some paths take it there but others don’t and this is
consistent with Feynman’s use of path integrals for example. This seems also to say that
there is no such thing as a particle, only a collection of versions or cloud connected to the
particle idea. Bohmian theory on the other hand for a fixed energy gives a one parameter
family of trajectories associated toψ (see here [47, 50, 54] for details). This is because
the trajectory arises from a third order differential while fixing the solutionψ of the second
order stationary Schrödinger equation involves only two “boundary” conditions. As was
shown in [50] this automatically generates a Heisenberg inequality∆x∆p ≥ c~; i.e. the
uncertainty is built in when using the wave functionψ and amazingly can be expressed by
the operator theoretical framework of quantum mechanics. Thus a one parameter family
of paths can be associated with the use ofψψ∗ and this generates the cloud or ensemble
automatically associated with the use ofψ. In fact (cf. Remark 3.2) one might conjecture
that upon using a wave function discription of quantum particle motion, one opens the door
to a cloud of particles, all of whose motions are incompletely governed by the SE, since
one determining condition for particle motion is ignored. Thus automatically the quantum
potential will give rise to a force acting on any such particular trajectory and the “ensemble”
idea naturally applies to a cloud of identical particles. �

REMARK 2.2. Now first ignore gravity and look at the geometrical properties of the
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conformal factor given via

gµν = e4Σηµν ; e
4Σ =

M2

m2
= exp

(

α
2η
√
ρ

√
ρ

)

= exp

(

α
2η

√

|T|
√

|T|

)

(2.23)

whereT is the trace of the EM tensor and is substituted forρ (true for dust). The Einstein
tensor for this metric is

Gµν = 4gµν2ηexp(−Σ) + 2exp(−2Σ)∂µ∂νexp(2Σ); Σ =
α

4

2η
√
ρ

√
ρ

(2.24)

Hence as an Ansatz one can suppose that in the presence of gravitational effects the
field equation would have a form

Rµν −
1

2
Rgµν = κTµν + 4gµνe

Σ
2e−Σ + 2e−2Σ∇µ∇νe2Σ (2.25)

This is written in a manner such that in the limitTµν → 0 one will obtain (2.23). Taking
the trace of the last equation one gets−R = κT−122Σ+24(∇Σ)2 which has the iterative
solutionκT = −R+ 12α2[(2

√
R)/
√
R] leading to

Σ ∝ α[(2
√

|T|/
√

|T|)] ≃ α[(2
√

|R|)/
√

|R|)] (2.26)

to first order inα. One goes now to the field equations for this toy model. First from the
above one sees thatT can be replaced byR in the expression for the quantum potential
or for the conformal factor of the metric. This is important since the explicit reference to
ensemble density is removed and the theory works for a single particle or an ensemble.
So from (1.32), (1.24) for a toy quantum gravity theory one assumes the following field
equations

Gµν − κTµν − Zµναβexp
(α

2
Φ
)

∇α∇βexp
(

−α
2

Φ
)

= 0 (2.27)

whereZµναβ = 2[gµνgαβ − gµαgνβ] andΦ = (2
√

|R|/
√

|R|). The number 2 and the
minus sign of the second term are chosen so that the energy equation derived later will be
correct. Note that the trace of (2.27) is

R+ κT + 6exp(αΦ/2)2exp(−αΦ/2) = 0 (2.28)

and this represents the connection of the Ricci scalar curvature of space time and the trace
of the matter EM tensor. If a perturbative solution is admitted one can expand in powers of
α to findR(0) = −κT andR(1) = −κT − 6exp(αΦ0/2)2exp(−αΦ0/2) whereΦ(0) =
2

√

|T|/
√

|T|. The energy relation can be obtained by taking the four divergence of the
field equations and since the divergence of the Einstein tensor is zero one obtains

κ∇νTµν = αRµν∇νΦ−
α2

4
∇µ(∇Φ)2 +

α2

2
∇µΦ2Φ (2.29)
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For a dust withTµν = ρuµuν and uµ the velocity field, the conservation of mass law
is ∇ν(ρMuν) = 0 so one gets to first order inα ∇µM/M = −(α/2)∇µΦ or M2 =
m2exp(−αΦ) wherem is an integration constant. This is the correct relation of mass and
quantum potential. �

In [182] there is then some discussion about making the conformal factor dynamical
via a general scalar tensor action (cf. also [176]) and subsequently one makes both the
conformal factor and the quantum potential into dynamical fields and creates a scalar tensor
theory with two scalar fields. Thus first start with a general action

A =

∫

d4x
√−g

[

φR− ω∇µφ∇
µφ

φ
− ∇µQ∇

µQ

φ
+ 2Λφ+ Lm

]

(2.30)

The cosmological constant generally has an interaction term with the scalar field and
here one uses an ad hoc matter Lagrangian

Lm =
ρ

m
φa∇µS∇µS −mρφb − Λ(1 +Q)c + αρ(eℓQ − 1) (2.31)

(only the first two terms1 + Q from exp(Q) are used for simplicity in the third term).
Herea, b, c are constants to be fixed later and the last term is chosen (heuristically) in such
a manner as to have an interaction between the quantum potential field and the ensemble
density (via the equations of motion); further the interaction is chosen so that it vanishes in
the classical limit but this is ad hoc. Variation of the above action yields

1. The scalar fields equation of motion

R+
2ω

φ
2φ− ω

φ2
∇µφ∇µφ+ 2Λ+ (2.32)

+
1

φ2
∇µQ∇µQ+

a

m
ρφa−1∇µS∇µS −mbρφb−1 = 0

2. The quantum potential equations of motion

(2Q/φ) − (∇µQ∇µφ/φ2)− Λc(1 +Q)c−1 + αℓρexp(ℓQ) = 0 (2.33)

3. The generalized Einstein equations

Gµν − Λgµν = − 1

φ
Tµν − 1

φ
[∇µ∇ν − gµν2]φ+

ω

φ2
∇µφ∇νφ− (2.34)

− ω

2φ2
gµν∇αφ∇αφ+

1

φ2
∇µQ∇νQ− 1

2φ2
gµν∇αQ∇αQ

4. The continuity equation∇µ(ρφa∇µS) = 0
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5. The quantum Hamilton Jacobi equation

∇µS∇µS = m2φb−a − αmφ−a(eℓQ − 1) (2.35)

In (2.32) the scalar curvature and the term∇µS∇µS can be eliminated using (2.34) and
(2.35); further on using the matter Lagrangian and the definition of the EM tensor one has

(2ω − 3)2φ = (a+ 1)ρα(eℓQ − 1)− 2Λ(1 +Q)c + 2Λφ− 2

φ
∇µQ∇µQ (2.36)

(whereb = a+ 1). Solving (2.33) and (2.36) with a perturbation expansion inα one finds

Q = Q0 + αQ1 + · · · ; φ = 1 + αQ1 + · · · ; √ρ =
√
ρ0 + α

√
ρ1 + · · · (2.37)

where the conformal factor is chosen to be unity at zeroth order so that asα→ 0 (2.35) goes
to the classical HJ equation. Further since by (2.35) the quantum mass ism2φ+ · · · the first
order term inφ is chosen to beQ1 (cf. (2.13)). Also we will see thatQ1 ∼ 2

√
ρ/
√
ρ plus

corrections which is in accord with Q as a quantum potential field. In any case after some
computation one obtainsa = 2ωk, b = a+ 1, andℓ = (1/4)(2ωk + 1) = (1/4)(a+ 1) =
b/4 with Q0 = [1/c(2c − 3)]{[−(2ωk + 1)/2Λ]k

√
ρ0 − (2c2 − c + 1)} while ρ0 can be

determined (cf. [182] for details). Thus heuristically the quantum potential can be regarded
as a dynamical field and perturbatively one gets the correct dependence of quantum poten-
tial upon density, modulo some corrective terms.

REMARK 2.3. The gravitational effects determine the causal structure of spacetime
as long as quantum effects give its conformal structure. This does not mean that quantum
effects have nothing to do with the causal structure; they can act on the causal structure
through back reaction terms appearing in the metric field equations. The conformal factor
of the metric is a function of the quantum potential and the mass of a relativistic particle
is a field produced by quantum corrections to the classical mass. One has shown that the
presence of the quantum potential is equivalent to a conformal mapping of the metric. Thus
in different conformally related frames one feels different quantum masses and different
curvatures. In particular there are two frames with one containing the quantum mass field
and the classical metric while the other contains the classical mass and the quantum metric.
In general frames both the spacetime metric and the mass field have quantum properties so
one can state that different conformal frames are identical pictures of the gravitational and
quantum phenomena. We feel different quantum forces in different conformal frames. The
question then arises of whether the geometrization of quantum effects implies conformal
invariance just as gravitational effects imply general coordinate invariance. One sees here
that Weyl geometry provides additional degrees of freedom which can be identified with
quantum effects and seems to create a unified geometric framework for understanding both
gravitational and quantum forces. Some features here are: (i) Quantum effects appear in-
dependent of any preferred length scale. (ii) The quantum mass of a particle is a field. (iii)
The gravitational constant is also a field depending on the matter distribution via the quan-
tum potential (cf. [176, 183]). (iv) A local variation of matter field distribution changes the
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quantum potential acting on the geometry and alters it globally; the nonlocal character is
forced by the quantum potential (cf. [177]). �

2.1 Dirac-Weyl Action

Next (still following [182]) one goes to Weyl geometry based on the Weyl-Dirac action

A =

∫

d4x
√−g(FµνFµν − β2 WR+ (σ + 6)β;µβ

;µ + Lmatter (2.38)

HereFµν is the curl of the Weyl 4-vectorφµ, σ is an arbitrary constant andβ is a
scalar field of weight−1. The symbol “;” represents a covariant derivative under general
coordinate and conformal transformations (Weyl covariant derivative) defined asX;µ =
W∇µX −NφµX whereN is the Weyl weight of X. The equations of motion are then

Gµν = −8π

β2
(Tµν +Mµν) +

2

β
(gµνW∇αW∇αβ −W∇µW∇νβ)+ (2.39)

+
1

β2
(4∇µβ∇νβ − gµν∇αβ∇αβ) +

σ

β2
(β;µβ;ν − 1

2
gµνβ;αβ;α);

W∇µFµν =
1

2
σ(β2φµ + β∇µβ) + 4πJµ;

R = −(σ + 6)
W

2β

β
+ σφαφ

α − σW∇αφα +
ψ

2β

where
Mµν = (1/4π)[(1/4)gµνFαβFαβ − FµαF να (2.40)

and

8πTµν =
1√−g

δ
√−gLmatter

δgµν
; 16πJµ =

δLmatter
δφµ

; ψ =
δLmatter
δβ

(2.41)

For the equations of motion of matter and the trace of the EM tensor one uses invariance
of the action under coordinate and gauge transformations, leading to

W∇νTµν − T
∇µβ
β

= Jαφ
αµ −

(

φµ +
∇µβ
β

)

W∇αJα; (2.42)

16πT− 16πW∇µJµ − βψ = 0

The first relation is a geometrical identity (Bianchi identity) and the second shows the
mutual dependence of the field equations. Note that in the Weyl-Dirac theory the Weyl
vector does not couple to spinors soφµ cannot be interpreted as the EM potential; the
Weyl vector is used as part of the spacetime geometry and the auxillary field (gauge field)β
represents the quantum mass field. The gravity fieldsgµν andφµ and the quantum mass field
determine the spacetime geometry. Now one constructs a Bohmian quantum gravity which
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is conformally invariant in the framework of Weyl geometry. Ifthe model has mass this
must be a field (since mass has non-zero Weyl weight). The Weyl-Dirac action is a general
Weyl invariant action as above and for simplicity now assume the matter Lagrangian does
not depend on the Weyl vector so thatJµ = 0. The equations of motion are then

Gµν = −8π

β2
(Tµν +Mµν) +

2

β
(gµνW∇αW∇αβ −W∇µW∇νβ)+ (2.43)

+
1

β2
(4∇µβ∇νβ − gµν∇αβ∇αβ) +

σ

β2

(

β;µβ;ν − 1

2
gµνβ;αβ;α

)

;

W∇νFµν =
1

2
σ(β2φµ + β∇µβ); R = −(σ + 6)

W
2β

β
+ σφαφ

α − σW∇αφα +
ψ

2β

The symmetry conditions are

W∇νTµν − T(∇µβ/β) = 0; 16πT− βψ = 0 (2.44)

(recallT = T
µν
µν ). One notes that from (2.43) resultsW∇µ(β2φµ+β∇µβ) = 0 soφµ is not

independent ofβ. To see how this is related to the Bohmian quantum theory one introduces
a quantum mass field and shows it is proportional to the Dirac field. Thus using (2.43) and
(2.44) one has

2β +
1

6
βR =

4π

3

T

β
+ σβφαφ

α + 2(σ − 6)φγ∇γβ +
σ

β
∇µβ∇µβ (2.45)

This can be solved iteratively via

β2 = (8πT/R)− {1/[(R/6) − σφαφα]}β2β + · · · (2.46)

Now assumingTµν = ρuµuν (dust withT = ρ) we multiply (2.44) byuµ and sum to
get

W∇ν(ρuν)− ρ(uµ∇µβ/β) = 0 (2.47)

Then put (2.44) into (2.47) which yields

uνW∇νuµ = (1/β)(gµν − uµuν)∇νβ (2.48)

To see this write (assuminggµν∇νβ = ∇µβ)

W∇ν(ρuµuν) = uµW∇νρuµ + ρuνW∇νuµ ⇒ (2.49)

⇒ uµ
(

uµ∇µβ
β

)

+ uνW∇νuµ −
∇µβ
β

= 0⇒ uνW∇νuµ = (1− uµuµ)
∇µβ
β

=

(gµν − uµuµgµν)
∇νβ
β

= (gµν − uµuν)∇νβ
β
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which is (2.47). Then from (2.46)

β2(1) =
8πT

R ; β2(2) =
8πT

R

(

1− 1

(R/6) − σφαφα
2

√
T√

T

)

; · · · (2.50)

Comparing with (2.15) and (2.3) shows that we have the correct equations for the
Bohmian theory provided one identifies

β ∼M;
8πT

R ∼ m2;
1

σφαφα − (R/6) ∼ α (2.51)

Thusβ is the Bohmian quantum mass field and the coupling constantα (which depends
on ~) is also a field, related to geometrical properties of spacetime. One notes that the
quantum effects and the length scale of the spacetime are related. To see this suppose one
is in a gauge in which the Dirac field is constant; apply a gauge transformation to change
this to a general spacetime dependent function, i.e.

β = β0 → β(x) = β0exp(−Ξ(x)); φµ → φµ + ∂µΞ (2.52)

Thus the gauge in which the quantum mass is constant (and the quantum force is zero)
and the gauge in which the quantum mass is spacetime dependent are related to one another
via a scale change. In particularφµ in the two gauges differ by−∇µ(β/β0) and sinceφµ is
a part of Weyl geometry and the Dirac field represents the quantum mass one concludes that
the quantum effects are geometrized (cf. also (2.43) which shows thatφµ is not independent
of β so the Weyl vector is determined by the quantum mass and thus the geometrical aspect
of the manifold is related to quantum effects).

3 More on Klein Gordon Equations

We give several approaches here, from various points of view.

3.1 Bertoldi-Faraggi-Matone Theory

The equivalence principle (EP) of Faraggi-Matone (cf. [27, 44, 46, 51, 82]) is based on the
idea that all physical systems can be connected by a coordinate transformation to the free
situation with vanishing energy (i.e. all potentials are equivalent under coordinate trans-
formations). This automatically leads to the quantum stationary Hamilton-Jacobi equation
(QSHJE) which is a third order nonlinear differential equation providing a trajectory repre-
sentation of quantum mechanics (QM). The theory transcends in several respects the Bohm
theory and in particular utilizes a Floydian time (cf. [83, 84]) leading toq̇ = p/mQ 6= p/m
wheremQ = m(1 − ∂EQ) is the “quantum mass” and Q the “quantum potential”. Thus
the EP is reminscient of the Einstein equivalence of relativity theory. This latter served as
a midwife to the birth of relativity but was somewhat inaccurate in its original form. It is
better put as saying that all laws of physics should be invariant under general coordinate
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transformations (cf. [146]). This demands that not only the form but also the content of the
equations be unchanged. More precisely the equations should be covariant and all absolute
constants in the equations are to be left unchanged (e.g.c, ~, e, m andηµν = Minkowski
tensor). Now for the EP, the classical picture withScl(q,Q0, t) the Hamilton principal func-
tion (p = ∂Scl/∂q) andP 0, Q0 playing the role of initial conditions involves the classical
HJ equation (CHJE)H(q, p = (∂Scl/∂q), t)+(∂Scl/∂t) = 0. For time independent V one
writesScl = Scl0 (q,Q0) − Et and arrives at the classical stationary HJ equation (CSHJE)
(1/2m)(∂Scl0 /∂q)

2 + W = 0 whereW = V (q) − E. In the Bohm theory one looked
at Schrödinger equationsi~ψt = −(~2/2m)ψ′′ + V ψ with ψ = ψ(q)exp(−iEt/~) and
ψ(q) = R(qexp(iŴ /~) leading to

(

1

2m

)

(Ŵ ′)2 + V − E − ~
2R′′

2mR
= 0; (R2Ŵ ′)′ = 0 (3.1)

whereQ̂ = −~
2R′′/2mR was called the quantum potential; this can be written in the

Schwartzian formQ̂ = (~2/4m){Ŵ ; q} (via R2Ŵ ′ = c). Here{f ; q} = (f ′′′/f ′) −
(3/2)(f ′′/f ′)2. Writing W = V (q) − E as in above we have the quantum stationary HJ
equation (QSHJE)

(1/2m)(∂Ŵ ′/∂q)2 + W(q) + Q̂(q) = 0 ≡W = −(~2/4m){exp(2iS0/~); q} (3.2)

This was worked out in the Bohm school (without the Schwarzian connections) butψ =
Rexp(iŴ /~) is not appropriate for all situations and care must be taken (Ŵ = constant
must be excluded for example - cf. [82, 83, 84]). The technique of Faraggi-Matone (FM)
is completely general and with only the EP as guide one exploits the relations between
Schwarzians, Legendre duality, and the geometry of a second order differential operator
D2
x + V (x) (Möbius transformations play an important role here) to arrive at the QSHJE in

the form
1

2m

(

∂Sv0 (qv)

∂qv

)2

+ W(qv) + Qv(qv) = 0 (3.3)

wherev : q → qv represents an arbitrary locally invertible coordinate transformation.
Note in this direction for example that the Schwarzian derivative of the the ratio of two
linearly independent elements inker(D2

x + V (x)) is twice V (x). In particular given an
arbitrary system with coordinateq and reduced actionS0(q) the system with coordinateq0

corresponding toV −E = 0 involvesW(q) = (q0; q) where(q0, q) is a cocycle term which
has the form(qa; qb) = −(~2/4m){qa; qb}. In fact it can be said that the essence of the EP
is the cocycle conditon

(qa; qc) = (∂qcqb)2[(qa; qb)− (qc; qb)] (3.4)

In addition FM developed a theory of(x, ψ) duality (cf. [81])) which related the
space coordinate and the wave function via a prepotential (free energy) in the form
F = (1/2)ψψ̄ + iX/ǫ for example. A number of interesting philosophical points arise
(e.g. the emergence of space from the wave function) and we connected this to various
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features of dispersionless KdV in [44, 51] in a sort of extendedWKB spirit. One should
note here that although a formψ = Rexp(iŴ /~) is not generally appropriate it is correct
when one is dealing with two independent solutions of the Schrödinger equationψ and
ψ̄ which are not proportional. In this context we utilized some interplay between various
geometric properties of KdV which involve the Lax operatorL2 = D2

x + V (x) and of
course this is all related to Schwartzians, Virasoro algebras, and vector fields onS1 (see
e.g. [44, 45, 51, 52, 53]). Thus the simple presence of the Schrödinger equation (SE) in
QM automatically incorporates a host of geometrical properties ofDx = d/dx and the
circle S1. In fact since the FM theory exhibits the fundamental nature of the SE via its
geometrical properties connected to the QSHJE one could speculate about trivializing QM
(for 1-D) to a study ofS1 and∂x.

We import here some comments based on [27] concerning the Klein-Gordon (KG) equa-
tion and the equivalence principle (EP) (details are in [27] and cf. also [72]). One starts
with the relativistic classical Hamilton-Jacobi equation (RCHJE) with a potentialV (q, t)
given as

1

2m

D
∑

1

(∂kS
cl(q, t))2 + Wrel(q, t) = 0; (3.5)

Wrel(q, t) =
1

2mc2
[m2c4 − (V (q, t) + ∂tS

cl(q, t))2]

In the time-independent case one hasScl(q, t) = Scl0 (q)− Et and (3.3) becomes

1

2m

D
∑

1

(∂kS
cl
0 )2 + Wrel = 0; Wrel(q) =

1

2mc2
[m2c4 − (V (q)− E)2] (3.6)

In the latter case one can go through the same steps as in the nonrelativistic case and
the relativistic quantum HJ equation (RQHJE) becomes

(1/2m)(∇S0)
2 + Wrel − (~2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0 (3.7)

these equations imply the stationary KG equation

−~
2c2∆ψ + (m2c4 − V 2 + 2EV − E2)ψ = 0 (3.8)

whereψ = Rexp(iS0/~). Now in the time dependent case the (D+1)-dimensional RCHJE
is (ηµν = diag(−1, 1, · · · , 1)

(1/2m)ηµν∂µS
cl∂νS

cl + W′
rel = 0; (3.9)

W′
rel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)]

with q = (ct, q1, · · · , qD). Thus (3.9) has the same structure as (3.6) with Euclidean metric
replaced by the Minkowskian one. We know how to implement the EP by adding Q via
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(1/2m)(∂S)2 + Wrel +Q = 0 (cf. [82] and remarks above). Note now thatW′
rel depends

onScl requires an identification

Wrel = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S(q)] (3.10)

(S replacingScl) and implementation of the EP requires that for an arbitraryWa state
(q ∼ qa) one must have

Wb
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Q(qa)− (qa; qb) (3.11)

where

(pb|p) = [ηµνpbµp
b
ν/η

µνpµpν ] = pTJηJT p/pT ηp; Jµν = ∂qµ/∂qb
ν

(3.12)

(J is a Jacobian and these formulas are the natural multidimensional generalization - see [27]
for details). Furthermore there is a cocycle condition(qa; qc) = (pc|pb)[(qa; qb)− (qc; qb)].

Next one shows thatWrel = (~2/2m)[2(Rexp(iS/~))/Rexp(iS/~)] and hence the
corresponding quantum potential isQrel = −(~2/2m)[2R/R]. Then the RQHJE becomes
(1/2m)(∂S)2 + Wrel + Q = 0 with ∂ · (R2∂S) = 0 (here2R = ∂µ∂

µR) and this
reduces to the standard SE in the classical limitc → ∞ (note∂ ∼ (∂0, ∂1, · · · , ∂D) with
q0 = ct, etc. - cf. (3.9)). To see how the EP is simply implemented one considers the so
called minimal coupling prescription for an interaction with an electromagnetic four vector
Aµ. Thus setP clµ = pclµ + eAµ wherepclµ is a particle momentum andP clµ = ∂µS

cl is the
generalized momentum. Then the RCHJE reads as(1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0
whereA0 = −V/ec. ThenW = (1/2)mc2 and the critical caseW = 0 corresponds to the
limit situation wherem = 0. One adds the standard Q correction for implementation of the
EP to get(1/2m)(∂S − eA)2 +(1/2)mc2 +Q = 0 and there are transformation properties
(here(∂S − eA)2 ∼∑(∂µS − eAµ)2)

W(qb) = (pb|pa)Wa(qa) + (qa; qb); Qb(qb) = (pq|pa)Qa(qa)− (qa; qb) (3.13)

(pb|p) =
(pb − eAb)2
(p− eA)2

=
(p− eA)TJηJT (p− eA)

(p − eA)T η(p − eA)

Here J is a JacobianJµν = ∂qµ/∂qb
ν

and this all implies the cocycle condition again.
One finds now that (recall∂ · (R2(∂S − eA)) = 0 - continuity equation)

(∂S − eA)2 = ~
2

(

2R

R
− D2(ReiS/~)

ReiS/~

)

; Dµ = ∂µ −
i

~
eAµ (3.14)

and it follows that

W =
~

2

2m

D2(ReiS/~)

ReiS/~
; Q = − ~

2

2m

2R

R
; D2 = 2− 2ieA∂

~
− e2A2

~2
− ie∂A

~
(3.15)
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(∂S − eA)2 +m2c2 − ~
2 2R

R
= 0; ∂ · (R2(∂S − eA)) = 0 (3.16)

Note also that (3.9) agrees with(1/2m)(∂Scl − eA)2 + (1/2)mc2 = 0 after setting
Wrel = mc2/2 and replacing∂µScl by ∂µScl− eAµ. One can check that (3.16) implies the
KG equation(i~∂ + eA)2ψ +m2c2ψ = 0 with ψ = Rexp(iS/~).

REMARK 3.1. We extract now a remark about mass generation and the EP from [19].
Thus a special property of the EP is that it cannot be implemented in classical mechanics
(CM) because of the fixed point corresponding toW = 0. One is forced to introduce a
uniquely determined piece to the classical HJ equation (namely a quantum potential Q). In
the case of the RCHJE the fixed pointW(q0) = 0 corresponds tom = 0 and the EP then
implies that all the other masses can be generated by a coordinate transformation. Conse-
quently one concludes that masses correspond to the inhomogeneous term in the transfor-
mation properties of theW0 state, i.e.(1/2)mc2 = (q0; q). Furthermore by (3.13) masses
are expressed in terms of the quantum potential(1/2)mc2 = (p|p0)Q0(q0) − Q(q). In
particular in [82] the role of the quantum potential was seen as a sort of intrinsic self en-
ergy which is reminiscent of the relativistic self energy and this provides a more explicit
evidence of such an interpretation. �

REMARK 3.2. In a previous paper [47] (working with stationary states andψ sat-
isfying the Schrödinger equation (SE)−(~2/2m)ψ′′ + V ψ = Eψ) we suggested that the
notion of uncertainty in quantum mechanics (QM) could be phrased as incomplete informa-
tion. The background theory here is taken to be the trajectory theory of Bertoldi-Faraggi-
Matone-Floyd as above and the idea in [47] goes as follows. First recall that Floydian
microstates satisfy a third order quantum stationary Hamilton-Jacobi equation (QSHJE)

1

2m
(S′

0)
2 + W(q) +Q(q) = 0; Q(q) =

~
2

4m
{S0; q}; (3.17)

W(q) = − ~
2

4m
{exp(2iS0/~); q} ∼ V (q)−E

where{f ; q} = (f ′′′/f ′)− (3/2)(f ′′/f ′)2 is the Schwarzian andS0 is the Hamilton princi-
ple function. Also one recalls that the EP of Faraggi-Matone can only be implemented when
S0 6= const; thus considerψ = Rexp(iS0/~) with Q = −~

2R′′/2mR and(R2S′
0)

′ = 0
whereS′

0 = p andmQq̇ = p with mQ = m(1 − ∂EQ) andt ∼ ∂ES0. Thus microstates
require three initial or boundary conditions in general to determineS0 whereas the SE in-
volves only two such conditions. Hence in dealing with the SE in the standard QM Hilbert
space formulation one is not using complete information about the “particles” described
by microstate trajectories. The price of underdetermination is then uncertainty inq, p, t
for example. In the present note we will make this more precise and add further discus-
sion. Following [50] we now make this more precise and add further discussion. For the
stationary SE−(~2/2m)ψ′′ + V ψ = Eψ it is shown in [82] that one has a general formula

e2iS0(δ)/~ = eiα
w + iℓ̄

w − iℓ (3.18)
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(δ ∼ (α, ℓ)) with three integration constants,α, ℓ1, ℓ2 whereℓ = ℓ1+iℓ2 andw ∼ ψD/ψ ∈
R. Noteψ andψD are linearly independent solutions of the SE and one can arrange that
ψD/ψ ∈ R in describing any situation. Herep is determined by the two constants inℓ and
has a form

p =
±~Ωℓ1

|ψD − iℓψ|2 (3.19)

(wherew ∼ ψD/ψ above andΩ = ψ′ψD − ψ(ψD)′). Now let p be determined exactly
with p = p(q,E) via the Schrödinger equation andS′

0. Thenq̇ = (∂Ep)
−1 is also exact

so ∆q = (∂Ep)
−1(τ)∆t for someτ with 0 ≤ τ ≤ t is exact (up to knowledge ofτ ).

Thus given the wave functionψ satisfying the stationary SE with two boundary conditions
at q = 0 say to fix uniqueness, one can create a probability density|ψ|2(q,E) and the
functionS′

0. This determinesp uniquely and hencėq. The additional constant needed for
S0 appears in (3.18) and we can writeS0 = S0(α, q,E) since from (3.18) one has

S0 − (~/2)α = −(i~/2)log(β) (3.20)

andβ = (w+iℓ̄)/(w−iℓ) withw = ψD/ψ is to be considered as known via a determination
of suitableψ, ψD. Hence∂αS0 = −~/2 and consequently∆S0 ∼ ∂αS0δα = −(~/2)∆α
measures the indeterminacy inS0.

Let us expand upon this as follows. Note first that the determination of constants nec-
essary to fixS0 from the QSHJE is not usually the same as that involved in fixingℓ, ℓ̄ in
(3.18). In paricular differentiating in q one gets

S′
0 = − i~β

′

β
; β′ = − 2iℜℓw′

(w − iℓ)2 (3.21)

Sincew′ = −Ω/ψ2 whereΩ = ψ′ψD − ψ(ψD)′ we getβ′ = −2iℓ1Ω/(ψ
D − iℓψ)2

and consequently

S′
0 = − ~ℓ1Ω

|ψD − iℓψ|2 (3.22)

which agrees with p in (3.19) (±~ simply indicates direction). We see that e.g.S0(x0) =
i~ℓ1Ω/|ψD(x0)− iℓψ(x0)|2 = f(ℓ1, ℓ2, x0) andS′′

0 = g(ℓ1, ℓ2, x0) determine the relation
between(p(x0), p

′(x0)) and(ℓ1, ℓ2) but they are generally different numbers. In any case,
takingα to be the arbitrary unknown constant in the determination ofS0, we haveS0 =
S0(q,E, α) with q = q(S0, E, α) andt = t(S0, E, α) = ∂ES0 (emergence of time from
the wave function). One can then write e.g.

∆q = (∂q/∂S0)(Ŝ0, E, α)∆S0 = (1/p)(q̂, E)∆S0 = −(1/p)(q̂, E)(~/2)∆α (3.23)

(for intermediate values (̂S0, q̂)) leading to

THEOREM 3.1. With p determined uniquely by two “initial” conditions so that∆p is
determined and q given via (3.18) we have from (3.23) the inequality∆p∆q = O(~) which
resembles the Heisenberg uncertainty relation.
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COROLLARY 3.1. Similarly ∆t = (∂t/∂S0)(Ŝ0, E, α)∆S0 for some intermediate value
Ŝ0 and hence as before∆E∆t = O(~) (∆E being precise).

Note that there is no physical argument here; one is simply looking at the number of
conditions necessary to fix solutions of a differential equation. In fact (based on some cor-
resondence with E. Floyd) it seems somewhat difficult to produce a physical argument. We
refer also to Remark 3.1.2 for additional discussion. �

REMARK 3.3. In order to get at the time dependent SE from the BFM (Bertoldi-
Faraggi-Matone) theory we proceed as follows. From the previous discussion on the
KG equation one sees that (dropping the A terms) in the time independent case one has
Scl(q, t) = Scl0 (q)− Et

(1/2m)

D
∑

1

(∂kS
cl
0 )2 + Wrel = 0; Wrel(q) = (1/2mc2)[m2c4 − (V (q)− E)2] (3.24)

leading to a stationary RQHJE

(1/2m)(∇S0)
2 + Wrel − (~2/2m)(∆R/R) = 0; ∇ · (R2∇S0) = 0 (3.25)

This implies also the stationary KG equation

−~
2c2∆ψ + (m2c4 − V 2 + 2V E − E2)ψ = 0 (3.26)

Now in the time dependent case one can write(1/2m)ηµν∂µS
cl∂νS

cl + W′
rel = 0

whereη ∼ diag(−1, 1, · · · , 1) and

W′
rel(q) = (1/2mc2)[m2c4 − V 2(q)− 2cV (q)∂0S

cl(q)] (3.27)

with q ≡ (ct, q1, · · · , qD). Thus we have the same structure as (3.24) with Euclidean metric
replaced by a Minkowskian one. To implement the EP we have to modify the classical
equation by adding a function to be determined, namely(1/2m)(∂S)2 + Wrel + Q = 0
((∂S)2 ∼ ∑(∂µS)2 etc.). Observe that sinceW′

rel depends onScl we have to make the
identificationWrel = (1/2mc2)[m2c4− V 2(q)− 2cV (q)∂0S(q)] which differs fromW′

rel

sinceS now appears instead ofScl. Implementation of the EP requires that for an arbitrary
Wa state

Wb
rel(q

b) = (pb|pa)Wa
rel(q

a) + (qq; qb); Qb(qb) = (pb|pa)Qa(qa)− (qa; qb) (3.28)

where now(pb|p) = ηµνpbµp
b
ν/η

µνpµpν = pTJηJT p/pT ηp andJµν = ∂qµ/∂(qb)ν . This
leads to the cocycle condition(qa; qc) = (pc|pb)[(qq; qb)−(qc; qb)] as before. Now consider
the identity

α2(∂S)2 = 2(Rexp(αS))/Rexp(αS) − (2R/R)− (α∂ · (R2∂S)/R2) (3.29)
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and if R satisfies the continuity equation∂ · (R2∂S) = 0 one setsα = i/~ to obtain

1

2m
(∂S)2 = − ~

2

2m

2(ReiS/~)

ReiS/~
+

~
2

2m

2R

R
(3.30)

Then it is shown thatWrel = (~2/2m)(2(Rexp(iS/~))/Rexp(iS/~) so there results
Qrel = −(~2/2m)(2R/R). Thus the RQHJE has the form (cf. (3.14) - (3.16))

1

2m
(∂S)2 + Wrel −

~
2

2m

2R

R
= 0; ∂ · (R2∂S) = 0 (3.31)

Now for the time dependent SE one takes the nonrelativistic limit of the RQHJE.
For the classical limit one makes the usual substitutionS = S′ − mc2t so asc → ∞
Wrel → (1/2)mc2 + V and−(1/2m)(∂0S)2 → ∂tS

′ − (1/2)mc2 with ∂(R2∂S) =
0 → m∂t(R

′)2 + ∇ · ((R′)2∇S′) = 0. Therefore (removing the primes) (3.31) becomes
(1/2m)(∇S)2 +V +∂tS− (~2/2m)(∆R/R) = 0 with the time dependent nonrelativistic
continuity equation beingm∂tR2+∇·(R2∇S) = 0. This leads then (forψ ∼ Rexp(iS/~))
to the SE

i~∂tψ =

(

− ~
2

2m
∆ + V

)

ψ (3.32)

One sees from all this that the BFM theory is profoundly governed by the equivalence
principle and produces a usable framework for computation. It is surprising that it has not
attracted more adherents. �

3.2 Klein Gordon à La Santamato

The derivation of the SE in [171] (treated in Section 1.1) was modified in [172] to a deriva-
tion of the Klein-Gordon (KG) equation via a somewhat different average action principle.
Recall that the spacetime geometry in [171] was obtained from the average action principle
to obtain Weyl connections with a gauge fieldφµ (thus the geometry had a statistical ori-
gin). The Riemann scalar curvaturėR was then related to the Weyl scalar curvature R via
an equation

R = Ṙ− 3[(1/2)gµνφµφν + (1/
√−g)∂µ(

√−ggµνφν)] (3.33)

Explicit reference to the underlying Weyl structure disappears in the resulting SE and
we refer to Remark 1.7 for a few comments (cf. also [55] for an incisive review). We re-
call also here from [156, 157, 158, 159] (cf. [42, 43, 54]) that in the conformal geometry
the particles do not follow geodesics of the conformal metric alone; further the work in
[156, 157, 158, 159] is absolutely fundamental in exhibiting a correct framework for gen-
eral relativity via the conformal (Weyl) version. Summarizing from [171] and the second
paper in [172] one can say that traditional QM is equivalent (in some sense) to classical
statistical mechanics in Weyl spaces. The moral seems to be (loosly) that quantum me-
chanics in Riemannian spacetime is the same as classical statistical mechanics in a Weyl
space. In particular one wants to establish that traditional QM, based on wave equations
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and ad hoc probability calculus is merely a convenient mathematical construction to over-
come the complications arising from a nontrivial spacetime geometric structure. Here one
works from first principles and includes gauge invariance (i.e. invariance with respect to an
arbitrary choice of the spacetime calibration). The spacetime is supposed to be a generic
4-dimensional differential manifold with torsion free connectionsΓλµν = Γλνµ and a metric
tensorgµν with signature(+,−,−,−) (one takes~ = c = 1). Here the (restrictive) hypoth-
esis of assuming a Weyl geometry from the beginning is released, both the particle motion
and the spacetime geometric structure are derived from a single average action principle. A
result of this approach is that the spacetime connections are forced to be integrable Weyl
connections by the extremization principle.

The particle is supposed to undergo a motion in spacetime with deterministic trajecto-
ries and random initial conditions taken on an arbitrary spacelike 3-dimensional hypersur-
face; thus the theory describes a relativistic Gibbs ensemble of particles (cf. [95, 172] for
all this in detail and see also [54]). Both the particle motion and the spacetime connections
can be obtained from the average stationary action principle

δ

[

E

(
∫ τ2

τ1

L(x(τ, ẋ(τ))dτ

)]

= 0 (3.34)

This action integral must be parameter invariant, coordinate invariant, and gauge invari-
ant. All of these requirements are met if L is positively homogeneous of the first degree
in ẋµ = dxµ/dτ and transforms as a scalar of Weyl typew(L) = 0. The underlying
probabiity measure must also be gauge invariant. A suitable Lagrangian is then

L(x, dx) = (m2 − (R/6))1/2ds+Aµdx
µ (3.35)

whereds = (gµν ẋ
µẋν)1/2dτ is the arc length and R is the space time scalar curvature;

m is a parameterlike scalar field of Weyl type (or weight)w(m) = −(1/2). The factor 6
is essentially arbitrary and has been chosen for future convenience. The vector fieldAµ
can be interpreted as a 4-potential due to an externally applied EM field and the curvature
dependent factor in front ofds is an effective particle mass. This seems a bit ad hoc but
some feeling for the nature of the Lagrangian can be obtained from Section 1.1 (cf. also
[18]). The Lagrangian will be gauge invariant provided theAµ have Weyl typew(Aµ) = 0.
Now one can splitAµ into its gradient and divergence free partsAµ = Āµ − ∂µS, with
both S and Āµ having Weyl type zero, and with̄Aµ interpreted as and EM 4-potential
in the Lorentz gauge. Due to the nature of the action principle regarding fixed endpoints
in variation one notes that the average action principle is not invariant under EM gauge
transformationsAµ → Aµ + ∂µS; but one knows that QM is also not invariant under EM
gauge transformations (cf. [7]) so there is no incompatability with QM here.

Now the set of all spacetime trajectories accessible to the particle (the particle path
space) may be obtained from (3.34) by performing the variation with respect to the particle
trajectory with fixed metric tensor, connections, and an underlying probability measure.
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Thus (cf. [54, 95, 172]) the solution is given by the so-called Carathéodory complete figure
associated with the Lagrangian

L̄(x, dx) = (m2 − (R/6))1/2ds+ Āµdx
µ (3.36)

(note this leads to the same equations as (3.35) since the Lagrangians differ by a total differ-
entialdS). The resulting complete figure is a geometric entity formed by a one parameter
family of hypersurfacesS(x) = const. whereS satisfies the HJ equation

gµν(∂µS − Āµ)(∂νS − Āν) = m2 − R

6
(3.37)

and by a congruence of curves intersecting this family given by

dxµ

ds
=

gµν(∂νS − Āν)
[gρσ(∂ρS − Āρ)(∂σS − Āσ)]1/2

(3.38)

The congruence yields the actual particle path space and the underlying probability
measure on the path space may be defined on an arbitrary 3-dimensional hypersurface in-
tersecting all of the members of the congruence without tangencies (cf. [95]). The measure
will be completely identified by its probability current densityjµ (see [54, 172]). More-
over, since the measure is independent of the arbitrary choice of the hypersurface,jµ must
be conserved, i.e.∂µjµ = 0. Since the trajectories are deterministically defined by (3.38),
jµ must be parallel to the particle 4-velocity (3.38), and hence

jµ = ρ
√−ggµν(∂νS − Āν) (3.39)

with someρ > 0. Now gauge invariance of the underlying measure as well as of the
complete figure requires thatjµ transforms as a vector density of Weyl typew(jµ) = 0 and
S as a scalar of Weyl typew(S) = 0. From (3.39) one sees then thatρ transforms as a
scalar of Weyl typew(ρ) = −1 andρ is called the scalar probability density of the particle
random motion.

The actual spacetime affine connections are obtained from (3.34) by performing the
variation with respect to the fieldsΓλµν for a fixed metric tensor, particle trajectory, and
probability measure. It is expedient to tranform the average action principle to the form of
a 4-volume integral

δ

[
∫

Ω
d4x[(m2 − (R/6))(gµν j

µjν ]1/2 +Aµj
µ

]

= 0 (3.40)

whereΩ is the spacetime region occupied by the congruence (3.38) andjµ is given by
(3.39) (cf. [54, 172] for proofs). Since the connection fieldsΓλµν are contained only in the
curvature term R the variational problem (3.40) can be further reduced to

δ

[
∫

Ω
ρR
√−gd4x

]

= 0 (3.41)
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(here the HJ equation (3.37) has been used). This states that the average spacetime curva-
ture must be stationary under a variation of the fieldsΓλµν (principle of stationary average
curvature). The extremal connectionsΓλµν arising from (3.41) are derived in [172] using
standard field theory techniques and the result is

Γλµν =

{

λ
µ ν

}

+
1

2
(φµδ

λ
ν + φνδ

λ
µ − gµνgλρφρ); φµ = ∂µlog(ρ) (3.42)

This shows that the resulting connections are integrable Weyl connections with a gauge
fieldφµ (cf. [171] and Sections 1.1-1.2). The HJ equation (3.37) and the continuity equation
∂µj

µ = 0 can be consolidated in a single complex equation for S, namely

eiSgµν(iDµ − Āµ)(iDν − Āν)e−iS − (m2 − (R/6)) = 0; Dµρ = 0 (3.43)

HereDµ is (doubly covariant - i.e. gauge and coordinate invariant) Weyl derivative
given by (cf. [18])

DµT
α
β = ∂µT

α
β + ΓαµǫT

ǫ
β − ΓǫµβT

α
ǫ + w(T )φµT

α
β (3.44)

It is to be noted that the probability density (but not the rest mass) remains constant
relative toDµ. When written out (3.43) for a set of two coupled partial differential equations
for ρ andS. To any solution corresponds a particular random motion of the particle.

Next one notes that (3.43) can be cast in the familiar KG form, i.e.

[(i/
√−g)∂µ

√−g − Āµ]gµν(i∂ν − Āν)ψ − (m2 − (Ṙ/6))ψ = 0 (3.45)

whereψ =
√
ρexp(−iS) and Ṙ is the Riemannian scalar curvature built out ofgµν only.

We have the (by now) familiar formula

R = Ṙ− 3[(1/2)gµνφµφν + (1/
√−g)∂µ(

√−ggµνφν)] (3.46)

According to point of view(A) above in the KG equation (3.45) any explicit reference to
the underlying spacetime Weyl structure has disappeared; thus the Weyl structure is hidden
in the KG theory. However we note that no physical meaning is attributed toψ or to the
KG equation. Rather the dynamical and statistical behavior of the particle, regarded as a
classical particle, is determined by (3.43), which, although completely equivalent to the KG
equation, is expressed in terms of quantities having a more direct physical interpretation.

REMARK 3.4. The formula (3.46) goes back to Weyl [198] and the connection of
matter to geometry arises from (3.42). The time variable is treated in a special manner here
related to a Gibbs ensemble andρ > 0 is built into the theory. �
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3.3 Klein Gordon via Scale Relativity

In [40, 54] and Section 1.1 we sketched a few developments in the theory of scale relativity.
This is by no means the whole story and we want to give a taste of some further main
ideas while deriving the KG equation in this context (cf. [3, 58, 64, 65, 66, 139, 140,
141, 142, 143, 144, 145]). A main idea here is that the Schrödinger, Klein-Gordon, and
Dirac equations are all geodesic equations in the fractal framework. They have the form
D2/ds2 = 0 whereD/ds represents the appropriate covariant derivative. The complex
nature of the SE and KG equaton arises from a discrete time symmetry breaking based on
nondifferentiability. For the Dirac equation further discrete symmetry breakings are needed
on the spacetime variables in a biquaternionic context (cf. here [58]). First we go back
to [139, 140, 144] and sketch some of the fundamentals of scale relativity. This is a very
rich and beautiful theory extending in both spirit and generality the relativity theory of
Einstein (cf. also [57] for variations involving Clifford theory). The basic idea here is that
(following Einstein) the laws of nature apply whatever the state of the system and hence the
relevant variables can only be defined relative to other states. Standard scale laws of power-
law type correspond to Galilean scale laws and from them one actually recovers quantum
mechanics (QM) in a nondifferentiable space. The quantum behavior is a manifestation of
the fractal geometry of spacetime. In particular the quantum potential is a manifestation of
fractality in the same way as the Newton potential is a manifestation of spacetime curvature.
In this spirit one can also conjecture (cf. [144]) that this quantum potential may explain
various dynamical effects presently attributed to dark matter (cf. also [6]). Now for the KG
equation via scale relativity the derivation in the first paper of [58] seems the most concise
and we follow that at first (cf. also [140]). All of the elements of the approach for the
SE remain valid in the motion relativistic case with the time replaced by the proper time
s, as the curvilinear parameter along the geodesics. Consider a small incrementdXµ of a
nondifferentiable four coordinate along one of the geodesics of the fractal spacetime. One
can decompose this in terms of a large scale partLS < dXµ >= dxµ = vµds and a
fluctuationdξµ such thatLS < dξµ >= 0. One is led to write the displacement along a
geodesic of fractal dimensionD = 2 via

dXµ
± = d±x

µ + dξµ± = vµ±ds+ uµ±
√

2Dds1/2 (3.47)

Hereuµ± is a dimensionless fluctuation andd the length scale2D is introduced for di-
mensional purposes. The large scale forward and backward derivativesd/ds+ andd/ds−
are defined via

d

ds±
f(s) = lims→0±LS

〈

f(s+ δs)− f(s)

δs

〉

(3.48)

Applied toxµ one obtains the forward and backward large scale four velocities of the
form

(d/dx+)xµ(s) = vµ+; (d/ds−)xµ = vµ− (3.49)

Combining yields

d′

ds
=

1

2

(

d

ds+
+

d

ds−

)

− i

2

(

d

ds+
− d

ds−

)

; (3.50)
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Vµ =
d′

ds
xµ = V µ − iUµ =

vµ+ + vµ−
2

− iv
µ
+ − vµ−

2

For the fluctuations one has

LS < dξµ±dξ
ν
± >= ∓2Dηµνds (3.51)

One chooses here(+,−,−,−) for the Minkowski signature forηµν and there is a
mild problem because the diffusion (Wiener) process makes sense only for positive definite
metrics. Various solutions have been given and they are all basically equivalent, amounting
to the transformatin a Laplacian into a D’Alembertian. Thus the two forward and backward
differentials off(x, s) should be written as

(df/ds±) = (∂s + vµ±∂µ ∓D∂µ∂µ)f (3.52)

One considers now only stationary functions f, not depending explicitly on the proper
time s, so that the complex covariant derivative operator reduces to

(d′/ds) = (Vµ + iD∂µ)∂µ (3.53)

Now assume that the large scale part of any mechanical system can be characterized by
a complex actionS leading one to write

δS = −mcδ
∫ b

a
ds = 0; ds = LS <

√

dXνdXν > (3.54)

This leads toδS = −mc
∫ b
a Vνd(δxν) with δxν = LS < dXν >. Integrating by parts

yields

δS = −[mcδxν ]ba +mc

∫ b

a
δxν(dVµ/ds)ds (3.55)

To get the equations of motion one has to determineδS = 0 between the same two
points, i.e. at the limits(δxν)a = (δxν)b = 0. From (3.55) one obtains then a differential
geodesic equationdV/ds = 0. One can also write the elementary variation of the action as
a functional of the coordinates. So consider the point a as fixed so(δxν)a = 0 and consider
b as variable. The only admissable solutions are those satisfying the equations of motion
so the integral in (3.55) vanishes and writing(δxν)b asδxν givesδS = −mcVνδxν (the
minus sign comes from the choice of signature). The complex momentum is now

Pν = mcVν = −∂νS (3.56)

and the complex action completely characterizes the dynamical state of the particle. Hence
introduce a wave functionψ = exp(iS/S0) and via (3.56) one gets

Vν = (iS0/mc)∂ν log(ψ) (3.57)
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Now for the scale relativistic prescription replace the derivative ind/ds by its covariant
expressiond′/ds. Using (3.57) one transformsdV/ds = 0 into

− S2
0

m2c2
∂µlog(ψ)∂µ∂ν log(ψ) − S0D

mc
∂µ∂µ∂ν log(ψ) = 0 (3.58)

The choiceS0 = ~ = 2mcD allows a simplification of (3.58) when one uses the
identity

1

2

(

∂µ∂
µψ

ψ

)

=

(

∂µlog(ψ) +
1

2
∂µ

)

∂µ∂ν log(ψ) (3.59)

Dividing byD2 one obtains the equation of motion for the free particle∂ν [∂µ∂µψ/ψ] =
0. Therefore the KG equation (no electromagnetic field) is

∂µ∂µψ + (m2c2/~2)ψ = 0 (3.60)

and this becomes an integral of motion of the free particle provided the integration constant
is chosen in terms of a squared mass termm2c2/~2. Thus the quantum behavior described
by this equation and the probabilistic interpretation given toψ is reduced here to the de-
scription of a free fall in a fractal spacetime, in analogy with Einstein’s general relativity.
Moreover these equations are covariant since the relativistic quantum equation written in
terms ofd′/ds has the same form as the equation of a relativistic macroscopic and free
particle usingd/ds. One notes that the metric form of relativity, namelyV µVµ = 1 is not
conserved in QM and it is shown in [155] that the free particle KG equation expressed in
terms ofV leads to a new equality

VµVµ + 2iD∂µVµ = 1 (3.61)

In the scale relativistic framework this expression defines the metric that is induced by
the internal scale structures of the fractal spacetime. In the absence of an electromagnetic
field Vµ andS are related by (3.56) which can be writen asVµ = −(1/mc)∂µS so (3.61)
becomes

∂µS∂µS− 2imcD∂µ∂µS = m2c2 (3.62)

which is the new form taken by the Hamilton-Jacobi equation.

REMARK 3.5. We go back to [140, 155] now and repeat some of their steps in a
perhaps more primitive but revealing form. Thus one omits theLS notation and uses
λ ∼ 2D; equations (3.47) - (3.53) and (3.50) are the same and one writes nowd/ds for
d′/ds. Thend/ds = Vµ∂µ + (iλ/2)∂µ∂µ plays the role of a scale covariant derivative and
one simply takes the equation of motion of a free relativistic quantum particle to be given as
(d/ds)Vν = 0, which can be interpreted as the equations of free motion in a fractal space-
time or as geodesic equations. In fact now(d/ds)Vν = 0 leads directly to the KG equation
upon writingψ = exp(iS/mcλ) andPµ = −∂µS = mcVµ so thatiS = mcλlog(ψ) and
Vµ = iλ∂µlog(ψ). Then

(

Vµ∂µ +
iλ

2
∂µ∂µ

)

∂ν log(ψ) = 0 = iλ

(

∂µψ

ψ
∂µ +

1

2
∂µ∂µ

)

∂ν log(ψ) (3.63)
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Now some identities are given in [155] for aid in calculation here, namely

∂µψ

ψ
∂µ
∂νψ

ψ
=
∂µψ

ψ
∂ν
(

∂µψ

ψ

)

= (3.64)

=
1

2
∂ν
(

∂µψ

ψ

∂µψ

ψ

)

; ∂µ

(

∂µψ

ψ

)

+
∂µψ

ψ

∂µψ

ψ
=
∂µ∂µψ

ψ

The first term in the last equation of (3.63) is then(1/2)[(∂µψ/ψ)(∂µψ/ψ)] and the
second is

(1/2)∂µ∂µ∂
ν log(ψ) = (1/2)∂µ∂ν∂µlog(ψ) = (3.65)

= (1/2)∂ν∂µ∂µlog(ψ) = (1/2)∂ν
(

∂µ∂µψ

ψ
− ∂µψ∂µψ

ψ2

)

Combining we get(1/2)∂ν(∂µ∂µψ/ψ) = 0 which integrates then to a KG equation

−(~2/m2c2)∂µ∂µψ = ψ (3.66)

for suitable choice of integration constant (note~/mc is the Compton wave length).

Now in this context or above we refer back to Section 3.1 for example and writeQ =
−(1/2m)(2R/R) (~ = c = 1 for convenience here). Then recallψ = exp(iS/mλ) and
Pµ = mVµ = −∂µS with iS = mλlog(ψ). AlsoVµ = −(1/m)∂µS = iλ∂µlog(ψ) with
ψ = Rexp(iS/mλ) so log(ψ) = iS/mλ = log(R) + iS/mλ, leading to

Vµ = iλ[∂µlog(R) + (i/mλ)∂µS] = − 1

m
∂µS + iλ∂µlog(R) = Vµ + iUµ (3.67)

Then2 = ∂µ∂µ andUµ = λ∂µlog(R) leads to

∂µUµ = λ∂µ∂µlog(R) = λ2log(R) (3.68)

Further∂µ∂ν log(R) = (∂µ∂νR/R)− (RνRµ/R
2) so

2log(R) = ∂µ∂µlog(R) = (2R/R)− (
∑

R2
µ/R

2) = (3.69)

= (2R/R)−
∑

(∂µR/R)2 = (2R/R)− |U |2

for |U |2 =
∑

U2
µ. Hence viaλ = 1/2m for example one has

Q = −(1/2m)(2R/R) = − 1

2m

[

|U |2 +
1

λ
2log(R)

]

= (3.70)

= − 1

2m

[

|U |2 +
1

λ
∂µUµ

]

= − 1

2m
|U |2 − 1

2
div(~U )

(cf. Proposition 1.1). �
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3.4 Field Theoretic Methods

In trying to imagine particle trajectories of a fractal nature or in a fractal medium we are
tempted to abandon (or rather relax) the particle idea and switch to quantum fields (QF).
Let the fields sense the bumps and fractality; if one can think of fields as operator valued
distributions for example then fractal supports for example are quite reasonable. There
are other reasons of course since the notion of particle in quantum field theory (QFT)
has a rather fuzzy nature anyway. Then of course there are problems with QFT itself
(cf. [197]) as well as arguments that there is no first quantization (except perhaps in the
Bohm theory - cf. [134]). Some aspects of particles arising from QF and QFT methods,
especially in a Bohmian spirit are reviewed in [41, 54] and here we only briefly indicate
one approach due to Nikolić for bosonic fields (cf. [134, 135, 136, 137, 138] (cf. also
[37, 103, 104, 105, 106, 107] for other field aspects of KG). We refer also to [100, 197] for
interesting philosophical discussion about particles and localized objects in a QFT. Many
details are omitted and standard QFT techniques are assumed to be known (see e.g. [101])
and we will concentrate here on derivations of KG type equations. First note that the papers
[136] are impressive in producing a local operator describing the particle density current
for scalar and spinor fields in an arbitrary gravitational and electromagnetic background.
This enables one to describe particles in a local, general covariant, and gauge invariant
manner and this is reviewed in [54]. We follow here [135] concerning Bohmian particle
trajectories in relativistic bosonic and fermionic QFT. First we recall that there is no ob-
jection to a Bohmian type theory for QFT and no contradiction to Bell’s theorems etc.
(see e.g. [30, 75]). Without discussing philosophical aspects of such a theory we sim-
ply construct one following Nikolic. Thus consider first particle trajectories in relativistic
QM and posit a real scalar fieldφ(x) satisfying the Klein-Gordon equation in a Minkowski
metric ηµν = diag(1,−1,−1,−1) written as(∂2

0 − ∇2 + m2)φ = 0. Let ψ = φ+

with ψ∗ = φ− correspond to positive and negative frequency parts ofφ = φ+ + φ−.
The particle current isjµ = iψ∗

←→
∂µψ andN =

∫

d3xj0 is the positive definite num-
ber of particles (not the charge). This is most easily seen from the plane wave expan-
sion φ+(x) =

∫

d3ka(κ)exp(−ikx)/
√

(2π)32k0 since thenN =
∫

d3ka†(κ)a(κ) (see
above and [134, 136] where it is shown that the particle current and the decomposition
φ = φ+ + φ− make sense even when a background gravitational field or some other po-
tential is present). One can write alsoj0 = i(φ−π+ − φ+π−) whereπ = π+ + π− is the
canonical momentum (cf. [103]). Alternativelyφ may be interpreted not as a field con-
taing an arbitrary number of particles but rather as a one particle wave function. Here we
note that contrary to a field a wave function is not an observable and so doing we normal-
ize φ here so thatN = 1. The currentjµ is conserved via∂µjµ = 0 which implies that
N =

∫

d3xj0 is also conserved, i.e.dN/dt = 0. In the causal interpretation one postulates
that the particle has the trajectory determined bydxµ/dτ = jµ/2mψ∗ψ. The affine para-
meterτ can be eliminated by writing the trajectory equation asdx/dt = j(t,x)/j0(t,x)
wheret = x0, x = (x1, x2, x3) andj = (j1, j2, j3). By writing ψ = Rexp(iS) where
R, S) are real one arrives at a Hamilton-Jacobi (HJ) formdxµ/dτ = −(1/m)∂muS and
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the KG equation is equivalent to

∂µ(R2∂µS) = 0;
(∂µS)(∂µS)

2m
− m

2
+Q = 0 (3.71)

HereQ = −(1/2m)(∂µ∂µR/R is the quantum potential (c = ~ = 1). From the HJ
form and (3.71) plus the identityd/dτ = (dxµ/dt)∂µ one arrives at the equations of motion
m(d2xµ/dτ2) = ∂µQ. A typical trajectory arising fromdx/dt = j/j0 could be imagined
as an S shaped curve in thet − x plane (witht horizontal) and cut with a vertical line
through the middle of the S. The velocity may be superluminal and may move backwards
in time (at points wherej0 < 0). There is no paradox with backwards in time motion
since it is physically indistinguishable from a motion forwards with negative energy. One
introduces a physical number of particles viaNphys =

∫

d3x|j0|. Contrary toN =
∫

d3xj0
the physical number of particles is not conserved. A pair of particles one with positive and
the other with negative energy may be created or annihilated; this resembles the behavior
of virtual particles in convential QFT.

Now go to relativistic QFT where in the Heisenberg picture the Hermitian field operator
φ̂(x) satisfies

(∂2
0 −∇2 +m2)φ̂ = J(φ̂) (3.72)

whereJ is a nonlinear function describing the interaction. In the Schrödinger picture the
time evolution is determined via the Schrödinger equation (SE)H[φ,−iδ/δφ]Ψ[φ, t] =
i∂tΨ[φ, t] whereΨ is a functional with respect toφ(x) and a function oft. A normalized
solution of this can be expanded asΨ[φ, t] =

∑∞
−∞ Ψ̃n[φ, t] where theΨ̃n are unnormal-

ized n-particle wave functionals and the analysis proceeds from there (cf. [135]). In the
deBroglie-Bohm (dBB) interpretation the fieldφ(x) has a causal evolution determined by

(∂2
0 −∇2 +m2)φ(x) = J(φ(x))−

(

δQ[φ, t]

δφ(x)

)

φ(x)=φ(x)

; (3.73)

Q = − 1

2|Ψ|

∫

d3x
δ2|Ψ|
δφ2(x)

where Q is the quantum potential again. However the n particles attributed to the wave
functionψn also have causal trajectories determined by a generalization ofdx/dt = j/j0
as

dxn,j
dt

=

(

ψ∗
n(x

(n))
←→∇jψn(x(n))

ψ∗
n(x

(n))
←→
∂tjψn(x

(n))

)

t1=···=tn=t

(3.74)

where the n-particle wave function is

ψn(x
(n), t) =< 0|φ̂(t,x1) · · · φ̂(t,xn)|Ψ > (3.75)

These n-particles have well defined trajectories even when the probability (in the con-
ventional interpretation of QFT) of the experimental detection is equal to zero. In the dBB
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interpretation of QFT we can introduce a new causally evolvingparameteren[φ, t] defined
as

en[φ, t] = |Ψ̃n[φ, t]|2/
∞
∑

n′

|Ψ̃n′ [φ, t]|2 (3.76)

The evolution of this parameter is determined by the evolution ofφ given via (3.73) and
by the solutionΨ =

∑

Ψ̃ of the SE. This parameter might be interpreted as a probability
that there are n particles in the system at time t if the field is equal (but not measured!) to be
φ(x) at that time. However in the dBB theory one does not want a stochastic interpretation.
Hence assume thaten is an actual property of the particles guided by the wave func-
tion ψn and call it the effectivity of these n particles.This is a nonlocal hidden variable
attributed to the particles and it is introduced to provide a deterministic description of the
creation and destruction of particles (see [41, 54, 135] for more on this).

REMARK 3.6. In [134] an analogous fermionic theory is developed but it is even more
technical and we refer to [54] for a sketch. �

REMARK 3.7. In [138] one addresses the question of statistical transparency. Thus
the probabilitistic interpretation of the nonrelativistic SE does not work for the relativistic
KG equation (∂µ∂µ + m2)ψ = 0 (wherex = (x, t) and~ = c = 1) since|ψ|2 does not

correspond to a probability density. There is a conserved currentjµ = iψ∗←→∂µψ (where
a
←→
∂µb = a∂µb − b∂µa) but the time componentj0 is not positive definite. In [134, 135]

the equations that determine the Bohmain trajectories of relativistic quantum particles de-
scribed by many particle wave functions were written in a form requiring a preferred time
coordinate. However a preferred Lorentz frame is not necessary (cf. [25]) and this is de-
veloped in [138] following [25, 135]. First note that as in [25, 135] it appears that particles
may be superluminal and the principle of Lorentz covariance does not forbid superlumi-
nal velocities and conversly superluminal velocities do not lead to causal paradoxes (cf.
[25, 138]). As noted in [25] the Lorentz-covariant Bohmian interprtation of the many par-
ticle KG equation is not statistically transparent. This means that the statistical distribution
of particle positions cannot be calculated in a simple way from the wave function alone
without the knowledge of particle trajectories. One knows that classcal QM is statistically
transparent of course and this perhaps helps to explain why Bohmian mechanics has not
attracted more attention. However statistical transparency (ST) may not be a fundamental
property of nature as suggested by looking at standard theories (cf. [138]) The upshot is that
since statistical probabilities can be calculated via Bohmian trajectories that theory is more
powerful than other interpretations of general QM and we refer to [138] for discussion on
this, on the KG equation, and on Lorentz covariance. �

3.5 DeDonder-Weyl and Kg

We go here to a paper [137] which gives a manifestly covariant canonical method of
field quantization based on the classical DeDonder-Weyl formulation of field theory. The
Bohmian formulation is not postulated for intepretational purposes here but derived from
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purely technical requirements, namely covariance and consistency with standard QM. It
arises automatically as a part of the formalism without which the theory cannot be formu-
lated consistently. This together with the results of [134, 138] suggest that it is Bohmian
mechanics that might be the missing bridge between QM and relativity; further it should
play an important role in cosmology (cf. [54, 110, 119, 112, 113, 114, 115, 116, 117,
162, 191, 192, 193]). The classical covariant canonical DeDonder-Weyl formalism is given
first following the excellent development in [122] and for simplicity one real scalar field in
Minkowski spacetime is used. Thus (classical formulation) letφ(x) be a real scalar field
described by

A =

∫

d4xL; L =
1

2
(∂µφ)(∂µφ)− V (φ) (3.77)

As usual one has

πµ =
∂L

∂(∂µφ)
= ∂µφ; ∂µφ =

∂H

∂πµ
; ∂µπ

µ = −∂H

∂φ
(3.78)

where the scalar DeDonder-Weyl (DDW) Hamilonian (not related to the energy density) is
given by the Legendre transformH(πµ, φ) = πµ∂µφ−L = (1/2)πµπµ+V . The equations
(3.78) are equivalent to the standard Euler-Lagrange (EL) equations and by introducing the
local vectorSµ(φ(x), x) the dynamics can also be described by the covariant DDW HJ
equation and equations of motion

H

(

∂Sα

∂φ
, φ

)

+ ∂µS
µ = 0; ∂µφ = πµ =

∂Sµ

∂φ
(3.79)

Note here∂µ is the partial derivative acting only on the second argument ofSµ(φ(x), x);
the corresonding total derivative isdµ = ∂µ + (∂µφ)(∂/∂φ). Further the first equation in
(3.79) is a single equation for four quantitiesSµ so there is a lot of freedom in finding
solutions. Nevertheless the theory is equivalent to other formulations of classical field the-
ory. Now following [118] one considers the relation between the covariant HJ equation and
the conventional HJ equation; the latter can be derived from the former as follows. Using
(3.78), (3.79) takes the form(1/2)∂φSµ∂φSµ + V + ∂µS

µ = 0. Then using the equation
of motion in (3.79) write the first term as

1

2

∂Sµ
∂φ

∂Sµ

∂φ
=

1

2

∂S0

∂φ

∂S0

∂φ
+

1

2
(∂iφ)(∂iφ) (3.80)

Similarly using (3.79) the last term is∂µSµ = ∂0S
0 + diS

i − (∂iφ)(∂iφ). Now intro-
duce the quantityS =

∫

d3xS0 so that[∂S0(φ(x), x)/∂φ(x)] = [δS([φ(x, t)], t)/δφ(x, t)]
whereδ/δφ(x, t) ≡ [δ/δφ(x)]φ(x)=φ(x,t) is the space functional derivative. Putting this
together gives then

∫

d3x

[

1

2

(

δS

δφ(x, t)

)2

+
1

2
(∇φ)2 + V (φ)

]

+ ∂tS = 0 (3.81)
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which corresponds to the standard noncovariant HJ equation. The time evolution ofφ(x, t)
is given by∂tφ(x, t) = δS/δφ(x, t) which arises from the time component of (3.79). Note
that in deriving (3.81) it was necessary to use the space part of the equations of motion
(3.79) (this does not play an important role in classical physics but is important here).

Now for the Bohmian formulation look at the SÊHΨ = i~∂tΨ where we write

Ĥ =

∫

d3x

[

−~
2

2

(

δ

δφ(x)

)2

+
1

2
(∇φ)2 + V (φ)

]

; (3.82)

Ψ([φ(x)], t) = R([φ(x)], t)exp[iS([φ(x)], t)/~]

Then the complex SE equation is equivalent to two real equations

∫

d3x

[

1

2

(

δS

δφ(x)

)2

+
1

2
(∇φ)2 + V (φ) +Q

]

+ ∂tS = 0; (3.83)

∫

d3x

[

δR

δφ(x)

δS

δφ(x)
+ J

]

+ ∂tR = 0; Q = − ~
2

2R

δ2R

δφ2(x)
; J =

R

2

δ2S

δφ2(x)

The second equation is also equivalent to

∂tR
2 +

∫

d3x
δ

δφ(x)

(

R2 δS

δφ(x)

)

= 0 (3.84)

and this exhibits the unitarity of the theory because it provides that the norm
∫

[dφ(x)]2Ψ∗Ψ =
∫

[dφ(x)]R2 does not depend on time. The quantityR2([φ(x)], t) rep-
resents the probability density for fields to have the configurationφ(x) at time t. One can
take (3.83) as the starting point for quantization of fields (noteexp(iS/~) should be single
valued). Equations (3.83) and (3.84) suggest a Bohmian interpretation with deterministic
time evolution given via∂tφ. Remarkably the statistical predictions of this deterministic
interpretation are equivalent to those of the conventional interpretation. All quantum uncer-
tainties are a consequence of the ignorance of the actual initial field configurationφ(x, t0).
The main reason for the consistency of this interpretation is the fact that (3.84) with∂tφ
as above represents the continuity equation which provides that the statistical distribution
ρ([φ(x)], t) of field configurationsφ(x) is given by the quantum distributionρ = R2 at
any time t, provided thatρ is given byR2 at some initial time. The initial distribution is
arbitrary in principle but a quantum H theorem explains why the quantum distribution is
the most probable (cf. [195]). Comparing (3.83) with (3.81) we see that the quantum field
satisfies an equation similar to the classical one, with the addition of a term resulting from
the nonlocal quantum potential Q. The quantum equation of motion then turns out to be

∂µ∂µφ+
∂V (φ)

∂φ
+

δQ

δφ(x; t)
= 0 (3.85)

whereQ =
∫

d3xQ. A priori perhaps the main unattractive feature of the Bohmian formu-
lation appears to be the lack of covariance, i.e. a preferred Lorentz frame is needed and this
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can be remedied with the DDW presentation to follow.

Thus one wants a quantum substitute for the classical covariant DDW HJ equation
(1/2)∂φSµ∂φS

µ + V + ∂µS
µ = 0. Define then the derivative

dA([φ], x)

dφ(x)
=

∫

d4x′
δA([φ], x′)

δφ(x)
(3.86)

whereδ/δφ(x) is the spacetime functional derivative (not the space functional derivative
used before in (3.81)). In particular ifA([φ], x) is a local functional, i.e. ifA([φ], x) =
A(φ(x), x) then

dA(φ(x), x)

dφ(x)
=

∫

d4x′
δA(φ(x′), x′)

δφ(x)
=
∂A(φ(x), x)

∂φ(x)
(3.87)

Thusd/dφ is a generalization of∂/∂φ such that its action on nonlocal functionals is
also well defined. An example of interest is a functional nonlocal in space but local in time
so that

δA([φ], x′)

δφ(x)
=
δA([φ], x′)

δφ(x, x0)
δ((x′)0 − x0)⇒ (3.88)

⇒ dA([φ], x)

dφ(x)
=

δ

δφ(x, x0)

∫

d3x′A([φ],x′, x0)

Now the first equation in (3.79) and the equations of motion become

1

2

dSµ
dφ

dSµ

dφ
+ V + ∂µS

µ = 0; ∂µφ =
dSµ

dφ
(3.89)

which is appropriate for the quantum modification. Next one proposes a method of quan-
tization that combines the classical covariant canonical DDW formalism with the standard
specetime asymmetric canonical quantization of fields. The starting point is the relation
between the noncovariant classical HJ equation (3.81) and its quantum analogue (3.83).
Suppressing the time dependence of the field in (3.81) we see that they differ only in the
existence of the Q term in the quantum case. This suggests the following quantum analogue
of the classical covariant equation (3.89)

1

2

dSµ
dφ

dSµ

dφ
+ V +Q+ ∂µS

µ = 0 (3.90)

HereSµ = Sµ([φ], x) is a functional ofφ(x) so Sµ at x may depend on the field
φ(x′) at all pointsx′. One can also allow for time nonlocalities (cf. [138]). Thus (3.91) is
manifestly covariant provided that Q given by (3.83) can be written in a covariant form. The
quantum equation (3.90) must be consistent with the conventional quantum equation (3.83);
indeed by using a similar procedure to that used in showing that (3.79) implies (3.81) one
can show that (3.90) implies (3.83) provided that some additional conditions are fulfilled.
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First S0 must be local in time so that (3.88) can be used. SecondSi must be completely
local so thatdSi/dφ = ∂Si/∂φ, which implies

diS
i = ∂iS

i + (∂iφ)
dSi

dφ
(3.91)

However just as in the classical case in this procedure it is necessary to use the space part
of the equations of motion (3.79). Therefore these classical equations of motion must be
valid even in the quantum case. Since we want a covariant theory in which space and time
play equal roles the validity of the space part of the (3.79) implies that its time part should
also be valid. Consequently in the covariant quantum theory based on the DDW formalism
one must require the validity of the second equation in (3.89). This requirement is nothing
but a covariant version of the Bohmian equation of motion written for an arbitrarily nonlocal
Sµ (this clarifies and generalizes results in [118]). The next step is to find a covariant
substitute for the second equation in (3.83). One introduces a vectorRµ([φ], x) which will
generate a preferred foliation of spacetime such that the vectorRµ is normal to the leaves
of the foliation. Then define

R([φ],Σ) =

∫

Σ
dΣµR

µ; S([φ], x) =

∫

Σ
dΣµS

µ (3.92)

whereΣ is a leaf (a 3-dimensional hypersurface) generated byRµ. Hence the covariant
version ofΨ = Rexp(iS) is Ψ([φ],Σ) = R([φ],Σ)exp(iS([φ],Σ)/~). ForRµ one pos-
tulates the equation

dRµ

dφ

dSµ

dφ
+ J + ∂µR

µ = 0 (3.93)

In this way a preferred foliation emerges dynamically as a foliation generated by the
solutionRµ of the equaitons (3.93) and (3.90). Note thatRµ does not play any role in
classical physics so the existence of a preferred foliation is a purely quantum effect. Now
the relation between (3.93) and (3.83) is obtained by assuming that nature has chosen a
solution of the formRµ = (R0, 0, 0, 0) whereR0 is local in time. Then integrating (3.93)
overd3x and assuming again thatS0 is local in time one obtains (3.83). Thus (3.93) is a
covariant substitute for the second equation in (3.83). It remains to write covariant versions
for Q and J and these are

Q = − ~
2

2R

δ2R

δΣφ2(x)
; J =

R

2

δ2S

δΣφ2(x)
(3.94)

whereδ/δΣφ(x) is a version of the space functional derivative in whichΣ is generated by
Rµ. Thus (3.93) and (3.90) with (3.94) represent a covariant substitute for the functional
SE equivalent to (3.84). The covariant Bohmian equations (3.89) imply a covariant version
of (3.85), namely

∂µ∂µφ+
∂V

∂φ
+
dQ

dφ
= 0 (3.95)
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Since the last term can also be written asδ(
∫

d4xQ)/δφ(x) the equation of motion (3.95)
can be obtained by varying the quantum action

AQ =

∫

d4xLQ =

∫

d4x(L −Q) (3.96)

Thus in summary the covariant canonical quantization of fields is given by equations
(3.89), (3.90), (3.93), and (3.94). The conventional functional SE corresponds to a special
class of solutions for whichRi = 0, Si are local, whileR0 andS0 are local in time. In
[137] a multifield generalization is also spelled out, a toy model is considered, and applica-
tions to quantum gravity are treated. The main result is that a manifestly covariant method
of field quantization based on the DDW formalism is developed which treats space and time
on an equal footing. Unlike the conventional canonical quantization it is not formulated in
terms of a single complex SE but in terms of two coupled real equations. The need for a
Bohmian formulation emerges from the requirement that the covariant method should be
consistent with the conventional noncovariant method. This suggests that Bohmian me-
chanics (BM) might be a part of the formalism without which the covariant quantum theory
cannot be formulated consistently.

4 Dirac Weyl Geometry

A sketch of Dirac Weyl geometry following [71] was given in [42] in connection with
deBroglie-Bohm theory in the spirit of the Tehran school (cf. [28, 29, 129, 130, 163, 164,
165, 166, 167, 168, 169, 170, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184,
185, 186, 187, 188]). We go now to [110, 111, 112, 113, 114, 115, 116, 117, 162] for a
very brief discussion of versions of the Dirac Weyl theory involved in discussing magnetic
monopoles, dark matter, quintessence, matter creation, etc. (see [54] for more in this direc-
tion). Thus go to [111] where in particular an integrable Weyl-Dirac theory is developed
(the book [110] is a lovely exposition but the work in [111] is somwhat newer). Note, as re-
marked in [126] (where twistors are used), the integrable Weyl-Dirac geometry is desirable
in order that the natural frequency of an atom at a point should not depend on the whole
world line of the atom. The first paper in [111] is designed to investigate the integrable
Weyl-Dirac (Int-W-D) geometry and its ability to create massive matter. For example in
this theory a spherically symmetric static geometric formation can be spatially confined
and an exterior observer will recognize it as a massive entity. This may be either a funda-
mental particle or a cosmic black hole both confined by a Schwarzschild surface. Here we
only summarize some basic features in order to establish notation, etc. and sketch the pre-
liminary theory (referring to [54] and the work of Israelit and Rosen for many examples).
Thus in the Weyl geometry one has a metricgµν = gνµ and a length connection vectorwµ
along with an idea of Weyl gauge transformation (WGT)

gµν → g̃µν = e2λgµν ; g
µν → g̃µν = e−2λgµν (4.1)

where λ(xµ) is an arbitrary differerentiable function. One is interested in covariant
quantities satisfyingψ → ψ̃ = exp(nλ)ψ where the Weyl power n is described via
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π(ψ) = n, π(gµν) = 2, andπ(gµν) = −2. If n = 0 the quantityψ is said to be gauge
invariant (in-invariant). Under parallel displacement one has length changes and for a vector

(i) dBµ = −BσΓµσνdx
ν ; (ii) B = (BµBνgµν)

1/2; (iii) dB = Bwνdx
ν (4.2)

(noteπ(B) = 1). In order to have agreement between (i) and (iii) one requires

Γλµν =

{

λ
µ ν

}

+ gµνw
λ − δλνwµ − δλµwν (4.3)

where

{

λ
µ ν

}

is the Christoffel symbol based ongµν . In order for (iii) to hold in any

gauge one must have the WGTwµ → w̃µ = wµ + ∂µλ and if the vectorBµ is transported
by parallel displacement around an infinitesimal closed parallelogram one finds

∆Bλ = BσKλ
σµνdx

µδxν ; ∆B = BWµνdx
µδxν ; (4.4)

Kλ
σµν = −Γλσµ,ν + Γλσν,µ − ΓασµΓ

λ
αν + ΓασνΓ

λ
αµ

is the curvature tensor formed from (4.3) andWµν = wµ,ν − wν,µ. Equations for the
WGT wmu → w̃µ and the definition ofWµν led Weyl to identifywµ with the potential
vector andWµν with the EM field strength; he used a variational principleδI = 0 with I =
∫

L
√−gd4xwith L built up fromKλ

σµν andWµν . In order to have an action invariant under
both coordinate transformations and WGT he was forced to useR2 (R the Riemannian
curvature scalar) and this led to the gravitational field.

Dirac revised this with a scalar fieldβ(xν) which under WGT changes viaβ → β̃ =
e−λβ (i.e. π(β) = −1). His in-invariant action integral is then (f,µ ≡ ∂µf )

I =

∫

[W λσWλσ − β2R+ β2(k − 6)wσwσ + 2(k − 6)βwσβ,σ+ (4.5)

+kβ,σβ,σ + 2Λβ4 + LM ]
√−gd4x

Here k is a parameter,Λ is the cosmological constant,LM is the Lagrangian density of
matter, and an underlined index is to be raised withgµν . Now according to (4.4) this is a
nonintegrable geometry but there may be situations when geometric vector fields are ruled
out by physical constraints (e.g. the FRW universe). In this case one can preserve the WD
character of the spacetime by assuming thatwν is the gradient of a scalar functionw so
thatwν = w,ν = ∂νw. One has thenWµν = 0 and from (4.4) results∆B = 0 yielding
an integrable spacetime (Int-W-D spacetime). To develop this begin with (4.5) but with
wν given bywν = ∂νw so the first term in (4.5) vanishes. The parameter k is not fixed
and the dynamical variables aregµν , w, andβ. Further it is assumed thatLM depends on
(gµν , w, β). For convenience write

bµ = (log(β)),µ = β,µ/β (4.6)
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and use a modified Weyl connection vectorWµ = wµ + bµ which is a gauge invariant
gradient vector. Write alsok − 6 = 16πκ and varying w in (4.5) one gets a field equation

2(κβ2W ν);ν = S (4.7)

where the semicolon denotes covariant differentiation with the Christoffel symbols and S is
the Weylian scalar charge given by16πS = δLM/δw. Varyinggµν one gets also

Gνµ = −8π
T νµ
β2

+ 16πκ

(

W νWµ −
1

2
δνµW

σWσ

)

+ (4.8)

+2(δνµb
σ
;σ − bν;µ) + 2bνbµ + δνµb

σ
σ − δνµβ2Λ

whereGνµ represents the Einstein tensor and the EM density tensor of ordinary matter is

8π
√−gT µν = δ(

√−gLM )/δgµν (4.9)

Finally the variation with respect toβ gives an equation for theβ field

R+ k(bσ;σ + bσbσ) = 16πκ(wσwσ − wσ;σ) + 4β2Λ + 8πβ−1B (4.10)

Note in (4.10) R is the Riemannian curvature scalar and the Dirac charge B is a conju-
gate of the Dirac gauge functionβ, namely16πB = δLM/δβ.

By a simple procedure (cf. [71]) one can derive conservation laws; consider e.g.
IM =

∫

LM
√−gd4x. This is an in-invariant so its variation due to coordinate transfor-

mation or WGT vanishes. Making use of16πS = δLM/δw, (4.9), and16πB = δLM/δβ
one can write

δIM = 8π

∫

(T µνδgµν + 2Sδw + 2Bδβ)
√−gd4x (4.11)

Via xµ → x̃µ = xµ + ηµ for an arbitrary infinitesimal vectorηµ one can write

δgµν = gλνη
λ
;µ + gµλη

λ
;ν ; δw = w,νη

ν ; δβ = β,νη
ν (4.12)

Taking into accountxµ → x̃µ we haveδIM = 0 and making use of (4.12) one gets
from (4.11) the energy momentum relations

T λµ;λ − Swµ − βBbµ = 0 (4.13)

Further considering a WGT with infinitesimalλ(xµ) one has from (4.11) the equation
S + T − βB = 0 with T = T σσ . One can contract (4.8) and make use of (4.7) and
S + T = βB giving again (4.10), so that (4.10) is a corollary rather than an independent
equation and one is free to choose the gauge functionβ in accordance with the gauge
covariant nature of the theory. Going back to the energy-momentum relations one inserts
S+T = βB into (4.13) to getT λµ;λ−Tbµ = SWµ. Now go back to the field equation (4.8)
and introduce the EM density tensor of theWµ field

8πΘµν = 16πκβ2[(1/2)gµνW λWλ −W µW ν ] (4.14)
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Making use of (4.7) one can proveΘλ
µ;ν−Θbµ = −SWµ and usingT λµ;λ−TBµ = SWµ

one has an equation for the joint energy momentum density

(T λµ + Θλ
µ);λ − (T + Θ)bµ = 0 (4.15)

One can derive now the equation of motion of a test particle (following [162]). Consider
matter consisting of identical particles with rest mass m and Weyl scalar chargeqs, being in
the stage of a pressureless gas so that the EM density tensor can be writtenT µν = ρUµUν

whereUµ is the 4-velocity and the scalar mass densityρ is given byρ = mρn with ρn the
particle density. Taking into account the conservation of particle number one obtains from
T λµ;λ − Tbµ = SWµ the equation of motion

dUµ

ds
+

{

µ
λ σ

}

UλUσ =
(

bλ +
qs
m
Wλ

)

(gµλ − UµUλ) (4.16)

In the Einstein gauge (β = 1) we are then left with

dUµ

ds
+

{

µ
λ σ

}

UλUσ =
qs
m
wλ(g

µλ − UµUλ) (4.17)

This gives a sketch of a powerful framework capable of treating many problems involv-
ing “mattter” and geometry. Connections to Section 2 are obvious and we have supplied
earlier additional relations to fluctuations via Fisher information and quantum geometry
(cf. also [40, 41, 42, 43, 54]). Many cosmological questions of great interest including dark
matter, quintessence, etc. are also treated in [110, 111, 112, 113, 114, 115, 116, 117] and
one can speculate about the original universe from many points of view. The inroads into
cosmology here seem to be an inevitable consequence of the presence of Weyl-Dirac theory
in dealing with quantum fluctuations via the quantum potential.

5 Remarks on Quantum Geometry

We gave a “hands on” sketch of quantum geometry in [43] and refer to [10, 11, 12, 16, 17,
35, 36, 59, 60, 61, 62, 63, 88, 96, 97, 102, 109, 123, 127, 128, 153, 154, 191, 192, 193, 201]
for background and extensive theory. Here we follow [43, 59, 60, 61, 62, 63] and briefly
extract from [43]. Roughly the idea is that for H the Hilbert space of a quantum system
there is a natural quantum geometry on the projective spaceP (H) with inner product<
φ|ψ >= (1/2~)g(φ,ψ)+ (i/2~)ω(φ,ψ) whereg(φ,ψ) = 2~ℜ(φ|ψ) is the natural Fubini-
Study (FS) metric andg(φ,ψ) = ω(φ, Jψ) (J2 = −1). On the other hand the FS metric
is proportional to the Fisher information metric of the formCos−1| < φ|ψ > |. Moreover
(in 1-D for simplicity) F ∝

∫

ρQdx is a functional form of Fisher information where Q is
the quantum potential andρ = |ψ|2. Finally one recalls that in a Riemannian flat spacetime
(with quantum matter and Weyl geometry) the Weyl-Ricci scalar curvature is proportional
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to Q. Thus assume H is separable with a complete orthonormal system {un} and for any
ψ ∈ H denote by[ψ] the ray generated byψ while ηn = (un|ψ). Define fork ∈ N

Uk = {[ψ] ∈ P (H); ηk 6= 0}; φk : Uk → ℓ2(C) : φk([ψ]) =

(

η1

ηk
, · · · , ηk−1

ηk
,
ηk+1

ηk
, · · ·

)

(5.1)
whereℓ2(C) denotes square summable functions. EvidentlyP (H) = ∪kUk andφk◦φ−1

j is
biholomorphic. It is easily shown that the structure is independent of the choice of complete
orthonormal system. The coordinaes for[ψ] relative to the chart(Uk, φk) are{zkn} given
via zkn = (ηn/ηk) for n < k andzkn = (ηn+1/ηk) for n ≥ k. To convert this to a real
manifold one can usezkn = (1/

√
2)(xkn + iykn) with

∂

∂zkn
=

1√
2

(

∂

∂xkn
+ i

∂

∂ykn

)

;
∂

∂z̄kn
=

1√
2

(

∂

∂xkn
− i ∂

∂ykn

)

(5.2)

etc. Instead of nondegeneracy as a criterion for a symplectic form inducing a bundle iso-
morphism betweenTM andT ∗M one assumes here that a symplectic form on M is a closed
2-form which induces at each pointp ∈ M a toplinear isomorphism between the tangent
and cotangent spaces at p. ForP (H) one can do more than simply exhibit such a natural
symplectic form; in fact one shows thatP (H) is a Kähler manifold (meaning that the funda-
mental 2-form is closed). Thus one can choose a Hermitian metricG =

∑

gkmndz
k
m ⊗ dz̄kn

with
gkmn = (1 +

∑

i

zki z̄
k
i )

−1δmn − (1 +
∑

1

zki z̄
k
i )

−2z̄kmz
k
n (5.3)

relative to the chartUk, φk). The fundamental 2-form of the metricG is
ω = i

∑

m,n g
k
mndz

k
m ∧ dz̄kn and to show that this is closed note thatω = i∂∂̄f where

locally f = log(1 +
∑

zki z̄
k
i ) (the local Kähler function). Note here that∂ + ∂̄ = d and

d2 = 0 implies∂2 = ∂̄2 = 0 sodω = 0 and thusP (H) is a K manifold (cf. [128] for K
geometry).

NowP (H) is the set of one dimensional subspaces or rays of H; for everyx ∈ H/{0},
[x] is the ray throughx. If H is the Hilbert space of a Schrödinger quantum system then
H represents the pure states of the system andP (H) can be regarded as the state manifold
(when provided with the differentiable structure below). One defines the K structure as
follows. OnP (H) one has an atlas{(Vh, bh, Ch)} whereh ∈ H with ‖h‖ = 1. Here
(Vh, bh, Ch) is the chart with domainVh and local model the complex Hilbert spaceCh
where

Vh = {[x] ∈ P (H); (h|x) 6= 0}; Ch = [h]⊥; bh : Vh → Ch; [x]→ bh([x]) =
x

(h|x) − h
(5.4)

This produces a analytic manifold structure onP (H). As a real manifold one uses
an atlas{(Vh, R ◦ bh, RCh)} where e.g.RCh is the realification ofCh (the real Hilbert
space withR instead ofC as scalar field) andR : Ch → RCh; v → Rv is the canonical
bijection (noteRv 6= ℜv). Now consider the form of the K metric relative to a chart



52 Robert Carroll

(Vh, R ◦ bh, RCh) where the metricg is a smooth section ofL2(TP (H),R) with local
expressiongh : RCh → L2(RCh,R); Rz 7→ ghRz where

ghRz(Rv,Rw) = 2νℜ
(

(v|w)

1 + ‖z‖2 −
(v|z)(z|w)

(1 + ‖z‖2)2
)

(5.5)

The fundamental formω is a section ofL2(TP (H),R), i.e. ωh : RCh →
L2(RCh,R);
Rz → ωhRz, given via

ωhRz(Rv,Rw) = 2νℑ
(

(v|w)

1 + ‖z‖2 −
(v|z)(z|w)

(1 + ‖z‖2)2
)

(5.6)

Then using e.g. (5.5) for the FS metric inP (H) consider a Schrödinger Hilbert space
with dynamics determined viaR×P (H)→ P (H) : (t, [x]) 7→ [exp(−(i/~)tH)x] where
H is a (typically unbounded) self adjoint operator in H. One thinks then of Kähler isomor-
phisms ofP (H) (i.e. smooth diffeomorphismsΦ : P (H) → P (H) with the properties
Φ∗J = J andΦ∗g = g). If U is any unitary operator on H the map[x] 7→ [Ux] is a K
isomorphism ofP (H). Conversely (cf. [42]) any K isomorphism ofP (H) is induced by a
unitary operator U (unique up to phase factor). Further for every self adjoint operator A in
H (possibly unbounded) the family of maps(Φt)t∈R given viaΦt : [x] → [exp(−itA)x]
is a continuous one parameter group of K isomorphisms ofP (H) and vice versa (every K
isomorphism ofP (H) is induced by a self adjoint operator where boundedness of A cor-
responds to smoothness of theΦt). Thus in the present framework the dynamics of QM is
described by a continuous one parameter group of K isomorphisms, which automatically
are symplectic isomorphisms (for the structure defined by the fundamental form) and one
has a Hamiltonian system. Next ideally one can suppose that every self adjoint operator
represents an observable and these will be shown to be in1 − 1 correspondence with the
real K functions.

One defines a (Riemann) metric (statistical distance) on the space of probability distri-
butionsP of the form

ds2PD =
∑

(dp2
j/pj) =

∑

pj(dlog(pj))
2 (5.7)

Here one thinks of the central limit theorem and a distance between probability distrib-
utions distinguished via a Gaussianexp[−(N/2)(p̃j−pj)2/pj] for two nearby distributions
(involving N samples with probabilitiespj , p̃j). This can be generalized to quantum me-
chanical pure states via (noteψ ∼ √pexp(iφ) in a generic manner)

|ψ >=
∑√

pje
iφj |j >; |ψ̃ >= |ψ > +|dψ >=

∑
√

pj + dpje
i(φj+dφj)|j > (5.8)

Normalization requiresℜ(< ψ|dψ >) = −1/2 < dψ|dψ > and measurements de-
scribed by the one dimensional projectors|j >< j| can distinguish|ψ > and |ψ̃ > ac-
cording to the metric (5.7). The maximum (for optimal disatinguishability) is given by the
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Hilbert space anglecos−1(| < ψ̃|ψ > |) and the corresponding line element (PS ∼ pure
state)

1

4
ds2PS = [cos−1(| < ψ̃|ψ > |)]2 ∼ 1− | < ψ̃|ψ > |2 =< dψ⊥|dψ⊥ >∼ (5.9)

∼ 1

4

∑ dp2
j

pj
+
[

∑

pjdφ
2
j − (

∑

pjdφj)
2
]

(called the Fubini-Study (FS) metric) is the natural metric on the manifold of Hilbert space
rays. Here

|dψ⊥ >= |dψ > −|ψ >< ψ|dψ > (5.10)

is the projection of|dψ > orthogonal to|ψ >. Note that ifcos−1(| < ψ̃|ψ > | = θ then
cos(θ) = | < ψ̃|ψ > | andcos2(θ) = | < ψ̃|ψ > |2 = 1− Sin2(θ) ∼ 1− θ2 for smallθ.
Henceθ2 ∼ 1 − cos2(θ) = 1 − | < ψ̃|ψ > |2. The term in square brackets (the variance
of phase changes) is nonnegative and an appropriate choice of basis makes it zero. In [35]
one then goes on to discuss distance formulas in terms of density operators and Fisher
information but we omit this here. Generally as in [201] one observes that the angle in
Hilbert space is the only Riemannian metric on the set of rays which is invariant uder unitary
transformations. In any eventds2 =

∑

(dp2
i /pi),

∑

pi = 1 is referred to as the Fisher
metric (cf. [128]). Note in terms ofdpi = p̃i − pi one can writed

√
p = (1/2)dp/

√
p with

(d
√
p)2 = (1/4)(dp2/p) and think of

∑

(d
√
pi) as a metric. Alternatively fromcos−1(| <

ψ̃|ψ > | one obtainsds12 = cos−1(
∑√

p1i
√
p2i) as a distance inP. Note from (5.10)

thatds212 = 4cos−1| < ψ1|ψ2 > | ∼ 4(1 − |(ψ1|ψ2)|2 ≡ 4(< dψ|dψ > − < dψ|ψ ><
ψ|dψ >) begins to look like a FS metric before passing to projective coordinates. In this
direction we observe from [128] that the FS metric can be expressed also via

∂∂̄log(|z|2) = φ =
1

|z|2
∑

dzi ∧ dz̄i −
1

|z|4
(

∑

z̄idzi

)

∧
(

∑

zidz̄i

)

(5.11)

so for v ∼ ∑

vi∂i + v̄i∂̄i andw ∼ ∑

wi∂i + w̄i∂̄i and |z|2 = 1 one hasφ(v,w) =
(v|w) − (v|z)(z|w).

Now recall the material on fisher information in Section 1.2 and the results on the SE
in Weyl space in Section 1.1 to confirm the connection of quantum geometry as above to
Fisher information, Weyl curvature, and the quantum potential. Several features arise which
deserve emphasis (cf. also [55])

• Philosophically the wave function seems to be inevitably associated to a cloud or
ensemble (cf. Remarks 2.1 and 3.2). This provides meaning forpsi = Rexp(iS/~)
with R =

√
ρ and ρ = ψ∗ψ representing a probability density. Connections to

hydrodynamics, diffusion, and kinetic theory are then natural and meaningful.

• From the ensemble point of view or by statistical derivations as in Section 1.1 one
sees that spacetime geometry should also be conceived of in statistical terms at the
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quantum level. This is also connected with the relativistic theory and the quantum
potential (in various forms) is exhibited as a fundamental ingredient of both QM and
spacetime geometry.

• Bohmian type mechanics plays a fundamental role in providing unification of all
these ideas. Similarly fractal considerations as in Nottale’s scale relativity lead to
important formulas consistent with the pictures obtained via Bohmian mechanics and
the quantum potential.

• Quantum geometry in a projective Hilbert space is connected to all these matters as
indicated in this section.
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[74] D. Dürr, S. Goldstein, and N. Zanghi, quant-ph 0308038
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[136] H. Nikolić, Int. Jour. Mod. Phys.D12 (2003), 407-444 (hep-th 0202204);Phys. Lett.
B, 527(2002), 119-124 (gr-qc 0111024) and 529 (2002), 265

[137] H. Nikolić, hep-th 0407228
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Abstract 

Gravitationally bound quantum states of matter were observed for the first time thanks to 
the unique properties of ultra-cold neutrons (UCN). The neutrons were allowed to fall towards 
a horizontal mirror which, together with the Earth's gravitational field, provided the necessary 
confining potential well. In this paper we discuss the current status of the experiment, as well 
as possible improvements: the integral and differential measuring modes; the flow-through 
and storage measuring modes; resonance transitions between the quantum states in the 
gravitational field or between magnetically split sub-levels of a gravitational quantum state.  

This phenomenon and the related experimental techniques could be applied to various 
domains ranging from the physics of elementary particles and fields (for instance, spin-
independent or spin-dependent short-range fundamental forces or the search for a non-zero 
neutron electric charge) to surface studies (for instance, the distribution of hydrogen in/above 
the surface of solids or liquids, or thin films on the surface) and the foundations of quantum 
mechanics (for instance, loss of quantum coherence, quantum-mechanical localization or 
experiments using the very long path of UCN matter waves in medium and in wave-guides).  

In the present article we focus on transitions between the quantum states of neutrons in 
the gravitational field, consider the characteristic parameters of the problem and examine 
various methods for producing such transitions. We also analyze the feasibility of experiments 
with these quantum transitions and their optimization with respect to particular physical goals.  
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1 Introduction 

The quantum motion of a particle with mass m  in the terrestrial gravitational field and the 
acceleration g  above an ideal horizontal mirror is a well-known problem in quantum 
mechanics which allows an analytic solution involving special functions known as Airy 
functions. The solutions of the corresponding Schrödinger equation with linear potential were 
discovered in 1920th [1] and can be found in major textbooks on quantum mechanics [2–7]. 
For a long time, this problem was considered only as a good theoretical exercise in quantum 
mechanics. The main obstacle for observing these quantum states experimentally was the 
extreme weakness of the gravitational interaction with respect to electromagnetic one, which 
meant that the latter could produce considerable false effects. In order to overcome this 
difficulty, an electrically neutral long-life particle (or quantum system) must be used for 
which an interaction with a mirror can be considered as an ideal total reflection. Ultracold 
neutrons (UCN) were discussed in this respect in refs. [8, 9]. UCN [10, 11] represent an 
extremely small initial part of total neutron flux. A reactor with very high neutron flux is 
therefore required. These quantum states were observed and investigated for the first time in a 
series of experiments [12–15] performed at the high-flux reactor at the Institut Laue-Langevin 
in Grenoble. Other quantum optics phenomena invetsigated with neutrons are presented in 
ref. [16]. 

To observe the gravitationally bound states, two experimental techniques were used. The 
first one, the so-called “integral” flow-through mode, is a measurement of the neutron flux 
through a narrow horizontal slit between a mirror below and an absorber/scatterer above it, 
which is used to scan the neutron density distribution above the mirror. This experimental 
technique allowed us to observe, for the first time, the non-continuous (discrete) behavior of 
the neutron flux. This observation was interpreted as being due to quantum states of neutrons 
corresponding to their vertical motion in the slit. Another, more sophisticated, so-called 
“differential” mode is based on specially developed position-sensitive neutron detectors with 
a very high spatial resolution, which made it possible to begin more detailed studies of this 
system and, in particular, to measure the spatial distributions of neutrons as a function of their 
height above a mirror (the square of the neutron wave function). 

The present article does not claim to give an exhaustive overview of the different, rapidly 
developing applications of this beautiful phenomenon; it simply focuses on areas of particular 
interest to our research at present. In section 2, we start by giving a brief presentation of the 
phenomenon itself and in section 3 we describe the first experiment in which the ground 
quantum state was observed. Section 4 is devoted to a discussion of the “differential” 
measuring mode. Some of the interesting consequences of this experiment in different 
domains of physics (such as the search for exotic particles and spin-independent or spin-
dependent short-range fundamental interactions; foundations of quantum mechanics) are 
discussed in section 5. Particular attention is paid to further developments of this experiment. 
In section 6, we present for the first time a feasibility analysis and theoretical description of 
the observation of resonance transitions between the quantum states. Such transitions could 
be induced by various interactions: by strong forces (if the mechanical oscillations of a 
bottom mirror are applied with a frequency corresponding to the energy difference between 
the quantum states), by electromagnetic forces (oscillating magnetic field), or probably even, 
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at the limit of experimental feasibility, by gravitational forces (oscillating mass in the vicinity 
of the experimental setup). Some other methodological applications are also discussed. 

2 The Properties of the Quantum States of Neutron 
in the Earth’s Gravitational Field 

The wave function ( )zψ of the neutron in the Earth’s gravitational field satisfies the 
Schrödinger equation: 
 

 
2 2

2

( ) ( ) ( ) 0
2

+ − =
h d z E mgz z
m d z

ψ ψ . (2.1) 

 
An ideal mirror at 0=z  could be approximated as an infinitely high and sharp potential 

step (infinite potential well). Note that the neutron energy in the lowest quantum state, as will 
be seen a little later, is of the order of 1210−  eV and is much lower than the effective Fermi 

potential of a mirror, which is close to 710−  eV. The range of increase of this effective 
potential does not exceed a few nm, which is much shorter than the neutron wavelength in the 
lowest quantum state ~10 µm. This effective infinite potential gives a zero boundary 
condition for the wave function: 

 
 ( )0 0= =zψ . (2.2) 

 
The exact analytical solution of equation (1) which is regular at 0=z , is the so-called 

Airy-function 
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represents a characteristic scale of the problem, C being the normalization constant. For 
neutrons at the Earth’s surface the value of 0z  is equal to 5.87 µm. The equation (2.2) 
imposes the quantization condition: 
 

 0=n nz z λ  (2.5) 
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where nλ  are zeros of the Airy function. They define the quantum energies: 
 

 0=n nE mgz λ . (2.6) 
 
For the 4 lowest quantum states they are equal to: 
 
 nλ ={2.34, 4.09, 5.52, 6.79, …} (2.7) 
 

and for the corresponding energies, we obtain: 
 
 =nE {1.4, 2.5, 3.3, 4.1, …} peV. (2.8) 
 
It is useful to obtain an approximate quasi-classical solution of this problem [2–4,7]. This 

approximation is known to be valid, for this problem, with a very high accuracy, which is of 
the order of 1% even for the lowest quantum state. In accordance with the Bohr-Sommerfeld 
formula, the neutron energy in quantum states qc

nE  ( 1, 2,3,...=n ) is equal to: 
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The exact energies nE  as well as the approximate quasi-classical values qc

nE  have the 

same property: they depend only on m , g  and on the Planck constant h , and do not depend 
on the properties of the mirror. 

The simple analytical expression (2.9) shows that the energy of n-th state increases as 
qc 2/3�nE n  with increasing n . In other words, the distance between the neighbor levels 

decreases with increasing n . 
In classical mechanics, a neutron with energy nE  in a gravitational field could rise to the 

maximum height of: 
 
 /=n nz E mg . (2.10) 
 
In quantum mechanics, the probability of observing a neutron in n-th quantum state with 

energy nE  at a height z is equal to the square of the modulus of its wave function 
2

nψ  in 

this quantum state. For the 4 lowest quantum states, neutron residence probability 
2

nψ as a 

function of height above a mirror z is presented in Fig. 1 (see [2–6,12,13]). Formally, these 
functions do not equal zero at any height 0>z . However, as soon as a height z is greater 
than some critical value nz , specific for every n-th quantum state and approximately equal to 
the height of the neutron classical turning point, then the probability of observing a neutron 
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approaches zero exponentially fast. Such a pure quantum effect of the penetration of neutrons 
to a classically forbidden region is the tunneling effect. For the 4 lowest quantum states, the 
values of the classical turning points are equal to: 

 
 nz ={13.7, 24.0, 32.4, 39.9,…} µm. (2.11) 
 
An asymptotic expression for the neutron wave functions ( )n zψ  at large heights > nz z  

[3, 4, 7] in the classically forbidden region is: 
 

 1/ 4 3/ 22( ( )) exp
3

−  → − 
 

n n n n nz Cψ ξ ξ ξ , (2.12) 

 
for →∞nξ . Here nC  are known normalization constants and 

 

 0= −n n
n

z
z

ξ λ . (2.13) 

 
As soon as such a height nz  is reached, the neutron wave function ( )n zψ  starts 

approaching zero exponentially fast. 
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Fig. 1. Neutron presence probability as a function of height above the mirror z  for the 1st, 2nd, 3rd and 
4th quantum states. 
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3 Discovery of the Ground Quantum State in the “Integral” 
Flow-Through Mode 

Such a wave-function shape allowed us to propose a method for observing the neutron 
quantum states. The idea is to measure the neutron transmission through a narrow slit ∆z  
between a horizontal mirror on the bottom and a scatterer/absorber on top (which we shall 
refer to simply as a scatterer if not explicitly called otherwise). If the scatterer is much higher 
than the turning point for the corresponding quantum state ∆ � nz z , then neutrons pass such 

a slit without significant losses. When the slit decreases, the neutron wave function ( )n zψ  
starts penetrating up to the scatterer and the probability of neutron losses increases. If the slit 
size is smaller than the characteristic size of the neutron wave function in the lowest quantum 
state 1z , then such a slit is not transparent for neutrons. Precisely this phenomenon was 
measured in a series of our recent experiments [12–15]. 
 

1
2

3

4

5
6

 

Fig. 2. A basic scheme of the first experiment. From left to right: the vertical bold lines indicate the 
upper and lower plates of the input collimator (1); the solid arrows correspond to classical neutron 
trajectories (2) between the input collimator and the entrance slit between the mirror (3, the empty 
rectangle below) and the scatterer (4, the black rectangle above). The dotted horizontal arrows illustrate 
the quantum motion of neutrons above the mirror (5), and the black box represents a neutron detector 
(6). The size of the slit between the mirror and the scatterer could be changed and measured. 

A basic scheme of this experiment is presented in Fig. 2. The experiment (also described 
in ref.[17]) consists of measuring of the neutron flux (with an average velocity of 5–10 m/s) 
through a slit between a mirror and a scatterer as a function of the slit size. The size of the slit 
between the mirror and the scatterer can be finely adjusted and precisely measured. The 
scatterer’s surface, while macroscopically smooth and flat, is microscopically rough, with 
roughness elements measuring in microns. In the classical approximation, one can imagine 
that this scatterer eliminates those neutrons whose vertical velocity component is sufficient 
for them to reach its surface. Roughness elements on the scatterer’s surface lead to the 
diffusive (non-specular) reflection of neutrons and, as a result, to the mixing of the vertical 
and horizontal velocity components. Because the horizontal component of the neutron 
velocity in our experiment greatly exceeds its vertical component, such mixing leads to 
multiple successive impacts of neutrons on the scatterer/absorber and, as a result, to the rapid 
loss of the scattered neutrons. The choice of the absorbing material on the surface of the 
scatterer/absorber does not play a role, as has been verified experimentally in ref. [15]. 
Therefore the main mechanism causing the disappearance of neutrons is their scattering on 
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the rough surface of the scatterer/absorber. This is why it is simply called a scatterer 
hereafter. 

The neutron flux at the front of the experimental setup (in Fig. 2 on the left) is uniform 
over height and isotropic over angle in the ranges which exceed the slit size and the angular 
acceptance of the spectrometer respectively by more than one order of magnitude. The 
spectrum of the horizontal neutron velocity component is shaped by the input collimator with 
two plates, which can be adjusted independently to a required height. The background caused 
by external thermal neutrons is suppressed by ‘‘4π  shielding’’ of the detector. A low-
background detector measures the neutron flux at the spectrometer exit. Two discrimination 
windows in the pulse height spectrum of the 4He detector are set as follows: 1) a “peak” 
discrimination window corresponds to the narrow peak of the reaction 3 He+ → +n t p and 
provides low background; 2) a much broader range of amplitudes allowes the “counting of all 
events”. This method make it possible to suppress the background efficiently: when the 
scatterer height is zero and the neutron reactor is “on” then the count rate corresponds, within 
statistical accuracy, to the detector background measured with the neutron reactor “off”. 

Ideally, the vertical and horizontal neutron motions are independent. This is valid if the 
neutrons are reflected specularly from the horizontal mirror and if the influence of the 
scatterer, or that of any other force, is negligible to those neutrons which penetrate through 
the slit. If so, the horizontal motion of the neutrons (with an average velocity of 5–10 m/s) is 
ruled by the classical laws, while in the vertical direction we observe the quantum motion 
with an effective velocity of a few centimeters per second and with a corresponding energy 
(2.9) of a few peV ( 1210−  eV). The degree of validity of each condition is not obviously a 
priori and was therefore verified in related experiments.  

The length of the reflecting mirror below the moving neutrons is determined from the 
energy-time uncertainty relation ∆ ∆ � hE t , which may seem surprising given the 
macroscopic scale of the experimental setup. The explanation is that the observation of 
quantum states is only possible if the energy separation between neighboring levels 
( 1/3

1 1/+∆ = − �n n nE E E n , see (2.8)) is greater (preferably, much greater) than the level 

width Eδ . As the quantum number n increases, the energy separation ∆ nE  between the 
neighboring levels decreases until the levels ultimately merge into a classical continuum. 
Clearly, the lower quantum states are simpler and more convenient to measure in 
methodological terms. As to the width of a quantum state, it is determined by its lifetime or 
(in our case) by the observation time, i.e. by the neutron’s flight time above the mirror. Thus, 
the length of the mirror is determined by the minimum time of observation of the neutron in a 
quantum state and should fulfill the condition 0.5 ms∆ ≥τ . In our experiments, the average 
value of the horizontal neutron velocity was chosen to be close to 10 m/s or to 5 m/s, 
implying that a mirror 10 cm in length was long enough. 

The vertical scale of the problem, on the other hand, is determined by the momentum-
coordinate uncertainty relation /∆ ⋅∆ � hzv z m . The reason is that the smaller the vertical 
component of the neutron velocity, the larger the neutron wavelength corresponding to this 
motion component. However, the classical height to which a neutron can rise in the 
gravitational field cannot be less than the quantum-mechanical uncertainty in its position, i.e. 
less than the neutron wavelength. In fact, it is this condition which specifies the lowest bound 
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state of a neutron in a terrestrial gravitational field. The uncertainty in height is then ~15 µm, 
whereas the uncertainty in the vertical velocity component is ~1.5 cm/s.  

 

 

Fig. 3. Neutron flux through a slit between a horizontal mirror and a scatterer above it is given as a 
function of the distance between them obtained in the first experiment [12,13]. Experimental data are 
averaged over 2-µm intervals. The dashed line represents quantum-mechanical calculations in which 
both the level populations and the energy resolution of the experiment are treated as free parameters 
being determined by the best fit to the experimental data. The solid line corresponds to classical 
calculations. The dotted line is for a simplified model involving only the lowest quantum state. 

The results of the first measurement presented in Fig. 3 (see refs. [12, 13]) differ 
considerably from the classical dependence and agree well with the quantum-mechanical 
prediction. In particular, it is firmly established that the slit between the mirror and the 
scatterer is opaque if the slit is narrower than the spatial extent of the lowest quantum state, 
which is approximately 15 µm. The dashed line in Fig. 3 shows the results of a quantum-
mechanical calculation, in which the level populations and the height (energy) resolution 
were treated as free parameters. The solid line shows the classical dependence normalized so 
that, at sufficiently large heights (above 50–100 µm), the experimental results are described 
well by the line. The dotted line given for illustrative purposes describes a simplified situation 
with the lowest quantum state alone, i.e. in drawing this line only the uncertainty relation was 
taken into account. As can be seen from Fig. 3, the statistics and energy resolution of the 
measurements are still not good enough to detect quantum levels at a wide slit, but the 
presence of the lowest quantum state is clearly revealed. 

 

 

Fig. 4. Neutron flux through a slit between a horizontal mirror and a scatterer above it is given as a 
function of the distance between them obtained in the second experiment [15]. 
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However, as was shown experimentally (Fig. 4) and explained theoretically in ref. [15], 
even when the height (energy) resolution and statistics are improved considerably compared 
to those in refs. [12, 13], further significant improvement of resolution in the “integral” 
measuring mode presented is scarcely achievable due to one fundamental constraint: the finite 
sharpness of the dependence on height of the probability of neutron tunneling through the 
gravitational barrier between the allowed heights for neutrons and the height of the scatterer 
[15]. As is demonstrated in this article, the neutron flux ( )∆F z  as a function of the scaterrer 

position ∆z  above the turning point nz  (∆ > nz z ) can be written within the quasi-classical 
approximation, for a given level, as: 
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where 0z  is given in (2.4) and α  is a constant. The exponent factor after this constant 
represents here the probability for the neutron to pass from the classically allowed region to 
the scatterer/absorber, i.e. the probability of tunneling through the gravitation barrier. This 
dependence describes the experimental data reasonably well (see Fig. 4) and gives a simple 
explanation for the existence of intrinsic resolution related to the tunneling effect. Roughly 
speaking, to resolve experimentally the nearest states 1+n  and n , the distance 1+ −n nz z  
should be smaller than a characteristic scale of the function (3.1), which is approximately 
equal to 0 5.87 µm=z . This condition can be satisfied only for the ground state because 

even for the first excited state the difference 2 1 8 m− ≈z z µ  is comparable with 0z . 
Nevertheless, the theoretical description of the measured experimental data within the 

model of the tunneling of neutrons through this gravitational barrier shows reasonable 
agreement between the extracted parameters of the quantum states and their theoretical 
prediction. In order to increase the accuracy of this experiment further in the mode which 
involves scanning the neutron density using a scatterer at various heights, we are working in 
two directions: First of all, further development [18] of the theoretical description of this 
experiment could allow us to reduce the theoretical uncertainties in the determination of 
quantum states parameters to the velev of a few percent. On the other hand, experimental 
efforts related to improving the accuracy of the absolute positioning of the scatterer [19, 20] 
would produce a comparable level of accuracy. 

To summarize this section, it can be said that the lowest quantum state of neutrons in the 
gravitational field was clearly identified using the “flow-through” mode, which measures the 
neutron flux as a function of an absorber/scatterer height. This observation itself already 
makes many interesting applications possible. Higher quantum states could also be resolved. 
However, such a measurement is much more complicated because the energy (or height) 
resolution of the present method is limited by one main factor: the finite sharpness of the 
dependence on height of neutron tunneling through the gravitational barrier between the 
classically allowed height and the scatterer height. 
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4 Studies of the Neutron Quantum States in “Differential” 
Flow-Through Mode 

In order to resolve higher quantum states clearly and measure their parameters accurately, we 
must adopt other methods, such as for example, the “differential” method, which uses 
position-sensitive neutron detectors with a very high spatial resolution, which were developed 
specifically for this particular task [21]. 

 

 

Fig. 5. The results of the measurement of the neutron density above a mirror in the Earth’s gravitational 
field are obtained using a high-resolution plastic nuclear-track detector with uranium coating. The 
horizontal axis corresponds to a height above the mirror in microns. The vertical axis gives the number 
of events in an interval of heights. The solid line shows the theoretical expectation under the 
assumption that the spatial resolution is infinitely high. Calculated populations of the quantum states 
correspond to those measured by means of two scatterers using the method shown in Fig. 6. 

1

4

 

Fig. 6. A scheme of the experiment with a long bottom mirror (1, shown as the open box) and with two 
scatterers (2, 3, shown as the black boxes). The first scatterer (2, on the left) shapes the neutron 
spectrum. It is installed at the constant height of 42 µm. The second scatterer (3, on the right) analyses 
the resulting neutron spectrum. Its height is varied. The detector (4), shown as the black box, measures 
the total neutron flux at the exit of the slit between the mirror and the analyzing scatterer. The distance 
between the scatterers is equal to 9 cm. 
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The direct measurement of the spatial density distribution in a standing neutron wave is 
preferable to its investigation with the aid of a scatterer whose height can be adjusted. The 
former technique is differential, since it permits the simultaneous measurement of the 
probability that neutrons reside at all heights of interest. The latter technique is integral, since 
the information on the probability that neutrons reside at a given height is in fact obtained by 
the subtraction of the values of neutron fluxes measured for two close values of the scatterer 
height. Clearly, the differential technique is much more sensitive than the integral one and 
makes it possible to gain the desired statistical accuracy much faster. This is of prime 
importance considering the extremely low counting rate in this experiment, even with the use 
of the highest UCN flux available today. Furthermore, the scatterer employed in the integral 
technique inevitably distorts the measured quantum states by deforming their eigen-functions 
and shifting their energy values. The finite accuracy of taking these distortions into account 
results in systematic errors and ultimately limits the attainable accuracy of the measurement 
of the quantum state parameters. For these and other reasons, the use of a position-sensitive 
detector to directly measure the probability of neutron residence above the mirror is highly 
attractive. However, until now there were no neutron detectors with the spatial resolution 
of ~1 µm needed for this experiment. We therefore had to develop such a detector and 
measuring technique. The result was a plastic track nuclear detector (CR39) with a thin 
uranium coating (235UF4), described in ref. [21]. The tracks created by the entry into the 
plastic detector of a daughter nucleus produced by the neutron-induced fission of a 235U 
nucleus were increased to ~1 µm in diameter by means of chemical development in an 
alkaline solution. The developed detector was scanned with an optical microscope over a 
length of several centimeters with an accuracy of ~1 µm. The sensitive 235U layer is thin 
enough (<1 µm) for the coordinates of neutron entry into the uranium layer to almost coincide 
with the coordinates of daughter nucleus entry into the plastic. On the other hand, the 
sensitive layer is thick enough to ensure high UCN detection efficiency (~30 %). The 
measuring technique and the preliminary analysis of the results are described in ref. [15]. 

The feasibility of this technique was demonstrated in the second experiment and the 
results are presented in Fig. 5 [15]. This is the first direct measurement of the neutron density 
above the mirror with a spatial resolution of 1-2 µm. The theoretical curve presented in Fig. 5 
is calculated with known neutron wave functions and with the quantum level populations and 
the zero height above the mirror as free parameters. The spatial detector resolution is assumed 
to be perfect. A comparison of the experimental data with the theoretical prediction suggests 
that: firstly, the measured presence probability for neutrons above the mirror on the whole 
domain of ∆z  corresponds closely to the theoretical prediction; secondly, the spatial detector 
resolution can be estimated, for instance, using the steepest portion of the dependence near 
the zero height, which is equal to ~1.5 µm; finally, even a relatively small neutron density 
variation of ~10%, which is to be expected for the mixture of several quantum states 
employed in this experiment, can be measured using this technique. It should be noted that 
this measurement was performed in the special geometry of the mirror and the scaterrers 
shown in Fig.6. A long bottom mirror (1) was used with two scatterers (2) and (3). The first 
scatterer gives the neutron spectrum the desirable shape and is installed at the constant height 
of 42 µm. The second one analyses the resulting neutron spectrum; its height is varied. The 
detector (4), shown as the black box, measures the total neutron flux at the exit of the slit 
between the mirror and the analyzing scatterer. The distance between the scatterers is equal to 
9 cm. 



V.V. Nesvizhevsky and K.V. Protasov 76

However, the measurement presented in Fig. 5 is merely a test of the detector for spatial 
resolution and is not optimized for studying the neutron quantum states in this system. In ref. 
[20], the measurement with the position-sensitive detector was analyzed from the standpoint 
of its optimization for the identification of neutron quantum states. Fig. 1 depicts the 
probability 2 ( )n zψ  of neutron detection at a height z  above the mirror surface for 4 pure 

quantum states. Clearly, every dependence 2 ( )n zψ  has n  maxima and 1−n  minima 
between them with zero values at the minima, which is characteristic of any standing wave. 
An ideal experiment would consist of the extraction of one or several pure quantum states 
higher than the first one ( 1>n ) and the direct measurement of neutron detection probability 
against the height above the mirror with the aid of a position-sensitive detector with a spatial 
resolution of ~1 µm. 

 

step

 

Fig. 7. A scheme of the experiment with a small negative step on the lower mirror, which allows the 
transition of neutrons to higher quantum states (to the region to the right of the step). 

Let us consider a possible method for carrying out such an experiment. One or two lower 
quantum states can be selected with a scatterer by the conventional method adopted in all our 
previous experiments, which showed that the spectrometer resolution is sufficient for this. 
The method for transferring neutrons from the lower quantum states to the higher quantum 
states was considered in ref. [22]. It involves the fabrication of a small negative step on the 
lower mirror, as shown in Fig. 7. Neutrons are in quantum states both to the left of the step 
and to the right of the step. However, the corresponding wave functions have shifted relative 
to each other by the step height step∆z . By passing through the step, neutrons are redistributed 

from the thn  quantum state prior to the step before step( ) ( )= + ∆nz z zψ ψ  over the quantum 

state after ( ) ( )= nz zψ ψ  after the step with some probabilities 2
step( )∆nk zβ . In this case, the 

step can be treated as an infinitely fast perturbation and therefore the transition matrix 
element step( )∆nk zβ  is: 

 

 step step
0

( ) ( ) ( )
∞

∆ = + ∆∫nk n kz z z z dzβ ψ ψ . (4.1) 

 
Fig. 8 shows the calculated probability 2

1 step( )∆k zβ  of transition from the 1st quantum 

state, prior to passing through the step, to the 1st, 2nd, 3rd and 4th quantum states after passing 
through the step. 
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When the negative step is large enough, for instance is equal to (–15 µm), the probability 
2

11β  to detect neutrons in the lowest quantum state after passing through the step is extremely 

small. The similar probability 2
1nβ  for neutron transitions from higher initial quantum states is 

also low. Any overlap integral 2
1nβ  for step 15 m∆ = −z µ  is small, since the spatial 

dimension of the neutron wave function in the lowest quantum state 1( )zψ  is smaller than 
15 µm.  
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Fig. 8. Probability of neutron transition from the 1st quantum state, prior to transit through the step, to 
the 1st, 2nd, 3rd and 4th quantum states on transit through the step as a function of the step height step∆z . 
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Fig. 9. Probability of neutron residence versus height above the mirror on neutron transit through a 
negative 15-µm step for two cases: one and two lowest quantum states prior to the passage through the 
step. 

Fig. 9 shows the probability of neutron detection above the mirror depending on the 
height after the neutron passes through the negative 15-µm step. The probability is plotted in 
two cases: for one and two quantum states prior to passing through the step. It is evident that 
the expected spatial variation of neutron density is clearly defined and can be measured. The 
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reason for such a strong neutron density variation in the case of the elimination of the lowest 
quantum state is simple: we can see from Fig. 1 that only the lowest quantum state has a peak 
near 10 µm. The remaining low-lying quantum states possess a minimum at this height. 
Therefore, several lower quantum states ( 1>n ) are “coherently” combined: the probability 
of neutron detection at a height of ~10 µm is systematically much lower than for neighboring 
heights. 

This idea was demonstrated in the last experiment performed in the summer of 2004 [23]. 
A neutron beam with a horizontal velocity component of ~5 m/sec and a vertical velocity 
component of 1–2 cm/sec, which corresponds to the energy of the lowest neutron quantum 
state in the gravitational field above a mirror, is selected using a bottom mirror (1) and a 
scatterer/absorber (3) positioned above it at a height of ~20 µm. A second mirror (2) is 
installed 21 µm lower than the first mirror (1). The precision of the optical components’ 
adjustment and the neutron detection resolution are equal to ~1 µm.  

 

 

Fig. 10. The neutron density distribution in the gravitational field is measured using position-sensitive 
detectors of extra-high spatial resolution. The circles indicate experimental results. The solid curve 
corresponds to the theoretical expectation under the assumption of an ideally efficient scatterer able to 
select a single quantum state above the mirror (1) and no parasitic transitions between the quantum 
states above the mirror (2). The dotted curve corresponds to the more realistic fit using precise wave-
functions and free values for the quantum states populations (for simplicity, the intereference terms 
between different levels are neglected). The detector background is constant in the range from –3 mm 
to +3 mm below and above the presented part of the detector. 

Typical results of a few days’ detector exposure in such an experiment are presented in 
Fig. 10. Even if the analysis of these data has not yet been completed and the fine details of 
the quantum states can not be extracted, we can see clearly that the experimental approach 
developed here allows us to obtain a very pronounced variation of the wave function and can 
thus be considered as very promising. 

The characteristic behavior of the neutron wave functions in the quantum states in the 
gravitational field above the mirror, as well as the successful initial testing of the position-
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sensitive detector with a uranium coating, suggest that it will be possible to identify neutron 
quantum states by directly measuring the neutron detection probability above a mirror using 
the position-sensitive detector. It should be noted that this detector could be also used to 
measure the velocity distribution in quantum states. To do so, we need simply to shift the 
detector a few centimeters downstream to the bottom mirror edge: the spatial spread of the 
picture thus obtained will not be sensitive to the initial position of the neutron above the 
mirror but to its velocity.  

Thus, the two techniques considered and the available fluxes of UCN are already 
sufficient for a broad range of applications. Let us analyze them briefly, before considering 
further developments of this experiment, related to resonance transitions between different 
quantum states and thus to a much more precise measurement of the parameters of these 
quantum states. 

5 Use of Neutron Quantum States in Different Domains 
of Physics 

As we have already mentioned in section 3, further development [18] of the theoretical 
description of this experiment and experimental efforts related to improving the accuracy of 
the absolute positioning of the scatterer [19, 20] could allow us to achieve close to a few 
percent accuracy in the determination of quantum state parameters. It should also be noted 
that the direct measurement of the spectral variation of neutron density above mirror in the 
quantum states seem to be quite promising. For this reason we are rather confident that, even 
at this early stage we can already obtain some interesting physical results using this method. 

For instance, as shown in ref. [24] and presented here in section 5.1, a competitive upper 
limit for short-range fundamental forces was obtained simply from the very fact that the 
gravitationally bound quantum states exist. Moreover, if any additional short-range 
interaction were to exist (of whatever nature: new hypothetical particles, supplementary 
spatial dimensions, etc.), this would change the parameters of the neutron quantum states. 
Therefore, the precise measurement of these parameters gives an upper limit for unknown 
interactions.  

This experiment can also be used to search for the axion – a hypothetical particle which 
strongly violates CP invariance; the characteristic distance for this interaction is comparable 
to the characteristic length of our problem 0z . This is discussed in section 5.2 and can be 
considered within the more general context of studies of spin-gravity interaction. 

This method could be used for studies related to the foundations of quantum mechanics, 
such as for instance, the quantum-mechanical localization (also known as quantum revivals, 
see section 5.3) [25], or various extensions of quantum mechanics [26, 27] (see section 5.4). 
One should note here that the present method provides two unique opportunities: on the one 
hand, it provides a rare combination of quantum states and gravitation that is favorable for 
testing possible extensions of quantum mechanics; on the other hand, UCN can be reflected 
from the surface up to ~105 times without loss, i.e. much more than for optical phenomena, 
which means that any kind of localization can be better studied using UCN. Finally, as 
presented in section 5.5, this method could be useful for such problems of high long-term 
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interest as the loss of quantum coherence in the systems with gravitational interaction (see, 
for instance, refs. [28, 29]). 

5.1 Search for Non-newtonian Gravity 

According to the predictions of unified gauge theories, super-symmetry, super-gravity and 
string theory, there exist a number of light and massless particles [30]. An exchange of such 
particles between two bodies gives rise to an additional force. Additional fundamental forces 
at short distances have been intensively studied, in particular over the past few years in the 
light of the hypothesis about “large” supplementary spatial dimensions proposed by 
Antoniadis, Arkami-Hamed, Dimopoulos and Dvali [31] and based on earlier ideas presented 
in [32–35]. A review of theoretical works and recent experimental results can be found in 
[36–40]. This hypothesis could be verified using neutrons because the absence of an electric 
charge makes it possible to strongly suppress the false electromagnetic effects [41]. It was 
noticed in [42] that the measurement of the neutron quantum states in the earth’s gravitational 
field is sensitive to such extra forces in the sub-micrometer range. In the case of 3=n  extra 
dimensions, the characteristic range lies just within the nanometre domain [31, 41] which is 
accessible in this experiment. The first attempt to establish a model-dependent boundary in 
the range 1–10 µm was presented in [40]. 

An effective gravitational interaction in the presence of an additional Yukawa-type force 
is conventionally parameterized as: 

 

 ( )/1 2
eff ( ) 1 −= + r

G
m mV r G e

r
λα  (5.1) 

 
Here, G is the Newtonian gravitational constant, 1m  and 2m  are interacting masses, r 

their relative distance, Gα  and λ  are the strength and characteristic range of this 
hypothetical interaction. 

The dependence of neutron flux on the slit size is sensitive to the presence of quantum 
states of neutrons in the potential well formed by the earth’s gravitational field and the mirror. 
In particular, the neutron flux was found to be equal to zero within the experimental accuracy 
if the slit size ∆z  was smaller than the characteristic spatial size (a quasi-classical turning 
point height) of the lowest quantum state of ~15 µm in this potential well. The neutron flux at 
the slit size 10 m∆ <z µ  in the second experiment [15] was lower by at least a factor of 200 
than that for the lowest quantum state ( 20 m∆ ≈z µ ). 

If an additional short-range force of sufficiently high strength were to act between the 
neutrons and the mirror then it would modify the quantum states parameters: an attractive 
force would “compress” the wave functions towards the mirror, while a repulsive force would 
shift them up. In this experiment, no deviation from the expected values was observed within 
the experimental accuracy. This accuracy is defined by the uncertainty in the slit size, which 
can be conservatively estimated as ~30% for the lowest quantum state [15]. 

As we mentioned in section 2, the motion of neutrons in this system over the vertical axis 
z could be considered, in a first, relatively good approximation, as a one-dimensional problem 
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for which the mirror provides an infinitely high potential. The interaction between neutrons 
and the Earth is described by the first term in eq. (5.1) and can be approximated by the usual 
linear potential ( )= +r R z : 

 
 ( ) =V z mgz  (5.2) 

 
with 2/=g GMm R , R being the Earth’s radius, M its mass. 

The second term in eq. (5.1) introduces an additional interaction. Due to the short range 
of this interaction, its main contribution is provided by the interaction of neutrons with a thin 
surface layer of the mirror and the scatterer. 

Let us first estimate the interaction of neutrons with the mirror due to this additional term 
if this interaction is attractive. If the mirror’s density is constant and equal to mρ , then an 
additional potential of the interaction between the neutrons and the mirror, in the limit of 
small λ , is given by [24]: 

 
 /

0'( ) −= − zV z U e λ  (5.3) 
 
with 2

0 m2= GU G mπ α ρ λ . 
The simplest upper limit on the strength of an additional interaction follows from the 

condition that this additional interaction does not itself create any bound state. It is known [7] 
that for an exponential attractive ( 0 0>U ) potential (5.3) this means that 
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This condition gives a boundary for an additional potential strength: 
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ρ  being the Earth’s average density. In this experiment, both densities are close to each other 

m≈ρ ρ , therefore their ratio m/ρ ρ  is close to 1. However, a suitable choice of mirror material 
(coating) would easily allow us to gain a factor of 3–5 in the sensitivity in future experiments. 
We obtain the following numerical boundary: 
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Here, 1 µm is chosen as a natural scale for this experiment. This limit is presented in Fig. 

11 in comparison with the limits from the Casimir-like and van der Waals force measurement 
experiments [38], as well as from experiments on protonium atoms. An additional force 
between a nucleus and an antiproton would change the spectrum of such an atom. The most 
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precise measurement of the energy spectrum of antiprotonic atoms was done for 3He+ and 
4He+ atoms by the ASAKUSA collaboration at the antiproton decelerator at CERN [44]. No 
deviation was found from the values expected within the QED calculations [43]. An 3σ  
upper limit on Gα  from this experiment was established in [24]: 

 
 283.3 10= ×Gα . (5.7) 

 

 

Fig. 11. The constraints on Gα  following from this experiment [12, 13] (the solid line) in comparison 

with that from the measurement of the Casimir and the van derWaals forces [35] (the short dashed 
lines). The long dashed line shows a limit which can be easily obtained by an improvement of this 
experiment. The solid horizontal line represents the limit established from the atomic experiment [41]. 
Dash-dotted line shows the limit which would be obtained if one equals the strength of this additional 
hypothetical interaction to the value of effective Fermi potential for Pb [43]. 

It is necessary to note that, in the realistic case, one has to establish a condition of non-
existence of an additional bound state for the sum of (5.2) and (5.3) but not for the interaction 
(5.3) alone. The presence of the linear potential modifies slightly the critical value in (5.4). 
For instance, for 1 m=λ µ  it is approximately equal to 1.0 and for 0.1 m=λ µ  it is equal 
to 0.74. For smaller λ , this value tends to 0.72. It is possible to explain qualitatively why the 
strength of an additional interaction should be higher in the presence of the mgz-potential than 
without it. When a bound state has just appeared, then its wave function is extremely spread. 
If a supplementary “external” confining potential is added, it does not allow the wave 
function to be spread and thus a stronger potential is needed to create a bound state. 

The range of presented λ  is 1 nm–10 mµ . A deviation from a straight line in the solid 
curve at 1 nm is due to the finite range of increase of the mirror effective nuclear potential 
(impurities on the surface and its roughness). The same effect at 10 m≈λ µ  is due to 
“interference” between the potentials (5.2) and (5.3). 

Unfortunately, this experiment does not allow us to establish a competitive limit for a 
repulsive interaction. In this case, there could be no “additional” bound state. Here, instead of 
the condition of “non-existence” of a bound state, one could consider the critical slit size for 
which the first bound state appears in this system. Such an approach would be model-
dependent due to uncertainties in the description of the interaction of neutrons with the 
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scatterer. Nevertheless, it is possible to obtain a simple analytical expression for small λ  and 
to show explicitly a difference in the sensitivity of this experiment to an attractive and to a 
repulsive additional interaction. 

 

 ( )02
m

1 exp /=
h h

G
R

mg m
ρα λ λ

π ρ λ λ λ
 (5.8) 

 
with 0 /= nE mgλ δ , nEδ  being the precision of determination of the n-th quantum state 
energy. 

A direct comparison of relation (5.8) to (5.5) shows that the limit (5.8) at small λ  is 
sufficiently less restrictive than the limit for an attractive one (5.5) due to the exponential 
factor. On the other hand, it would be possible to achieve as strict a limit for a repulsive 
interaction as for an attractive one, if the mirror was coated with a material with negative 
Fermi potential. 

As a conclusion, let us emphasize that even though this experiment was never designed to 
search for additional short-range forces it provides the competitive limit (5.5) in the 
nanometer range. However, it could be easily improved in the same kind of experiment by 
making some obvious modifications. For instance, one could choose a mirror material 
(coating) with a higher density. A significant improvement to such a limit would only seem 
possible by using the “storage” method, which would allow a gain in accuracy of a few orders 
of magnitude. 

A more significant gain in the sensitivity could be achieved in dedicated neutron 
experiments. Simply as a qualitative illustration of the potential capacities of experiments 
with neutrons, it can be said that if the strength of this additional hypothetical interaction were 
equal to the value of effective Fermi potential for Pb [46] this equality would produce the 
limit presented by the dash-dotted line in Fig. 11. 

5.2 Search for the Axion and Spin-Gravity Interaction 

Axions are well-known as a possible solution to the strong CP problem as well as an 
interesting darkmatter candidate [47]. One of the most remarkable predictions associated with 
the axion is that it yields a parity and time-reversal violating, monopole-dipole coupling 
between spin and matter [48]. Experimental and astrophysical observations imply that the 
mass of the axion must lie between 1 eVµ  and 1 meV, corresponding to a range between 20 
cm and 0.2 mm [49]. This range is commonly referred to as the “axion window.” An 
exhastive review of theoretical and experimental activities to search for the axion can be 
found in [30]. 

Axions mediate a CP violating monopole-dipole Yukawa-type gravitational interaction 
potential [48] 
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between spin and matter where p sg g  is the product of couplings at the scalar and polarized 

vertices and λ  is the range of the force. Here r  is the distance between the neutron and the 
nucleus and /n r r=

r r
 a unitary vector. 

Untill now, only a few experiments placed upper limits on the product coupling p sg g  in 

a system of magnetized media and test masses. Of the experiments covering the axion 
window, one of them [50] had peak sensitivity near 100 mm (2 eVµ  axion mass) and another 
[51] had peak sensitivity near 10 mm (20 eVµ  axion mass). 

Let us make an initial qualitative estimation of the limit of the axion coupling constant 
which can be established from the existing experiment. The upper limit for which the peak of 
sensitivity is clearly close 10 mµ .  

By analogy with the demonstration presented in the previous section where an additional 
interaction between (5.1) the neutron and the mirror’s nuclei created an additional neutron-
mirror interaction potential (5.3), in the case of the interaction (5.9), a neutron with a given 
projection of spin on the vertical (g) axis will see an additional potential with the following 
shape created by the whole mirror: 

 

 0 /
0 2( )

4 2
−=

hp s zmg g
U z e

m c
λπ ρ λ

π
. (5.10) 

 
This potential, considered as a perturbation, will produce a positive energy shift 0ε  (in 

the first order of the perturbation theory) for one of two possible spin projections and a 
negative energy shift 0−ε . Thus obtained, the energy splitting can be constrained from the 
experimental data. For instance, we can propose a very rough and robust upper limit if we 
says that this splitting is smaller than at least half of the energy difference between two 
gravitational levels: 
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Therefore the limit of the axion coupling constant will be given by 
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(here the exponential function is replaced by 1, because the size of the wave function is of the 
order of ten micrometers whereas the range of the interaction, for the axion window, is higher 
than 100 microns).  

To obtain a naive estimation for 1 mmλ = , we can suppose that 1 peV∆ =E (i.e. the 

energy difference between two gravitational levels), 34000 kg/m=mρ : 
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This limit is at least a few orders of magnitude better than the limit obtained in the 

experiments [50, 51]. 
In principle, a very competitive constraint could be obtained using the present flow-

through method for spin-dependent short-range forces in a dedicated experiment with 
polarized neutrons. By alternating the neutron spin in such an experiment an accuracy of 
~ 3 410 10− −−  could easily be achieve (instead of 1 considered in the estimation given here). 
The main simplification in the case of spin-dependent forces is the relative nature of the 
measurement, because the neutron spin can be easily flipped with a high accuracy. In contrast 
to that, spin-independent forces can not be “switched off”. We would therefore need an 
absolute measurement in this case. 

Let us emphasize that this discussion can be seen as a part of the wider search for spin-
gravity interaction. The idea that a nuclear particle may possess a gravitoelectric dipole 
moment was proposed about forty years ago by Kobsarev and Okun [52] and by Leitner and 
Okubo [53]. A brief review of experimental and theoretical activity on this question can be 
found in [54]. Here we would like to emphasize that this problem has been discussed at length 
in a number of recent articles, with arguments for [52] and against [56] this kind of term 
(5.10) in the interaction of fermions with an external gravitational field, and that the 
inrtoduction of polarized neutrons into our experiment does not represent a difficult 
experimental challenge. 

5.3 Quantum Revivals 

The application of this experiment to quantum mechanical localization (also known as 
quantum revivals) was considered in detail in a recent review article by Robinett [25]. Let us 
remind the reader of the main ideas presented there and the feasibility of such a measurement 
in our experimental setup. 

Quantum revivals are characterized by initially localized quantum states which have a 
short-term, quasi-classical time evolution, which then can spread significantly over several 
orbits, only to reform later in the form of a quantum revival in which the spreading reverses 
itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. 

The study of the time-development of wave packet solutions of the Schrödinger equation 
often makes use of the concept of the overlap 0|tψ ψ  of the time-dependent quantum state 

| tψ  with the initial state 0|ψ . This overlap is most often referred to as the autocorrelation 
function. 

For one-dimensional bound state systems, where a wave packet is expanded in terms of 
energy eigenfunctions ( )n xψ  with quantized energy eigenvalues nE  in the form 

 

 /

1
( , ) ( )

∞
−

=

=∑ hniE t
n n

n
x t a x eψ ψ  (5.14) 
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with 
 

 * ( ) ( , )
∞

−∞

= ∫n na x x t dxψ ψ  (5.15) 

 
the autocorrelation function can be written as: 
 

 2 /

1
( )

∞

=

=∑ hniE t
n

n
A t a e  (5.16) 

 
and the evaluation of ( )A t  in this form for initially highly localized wave packets will be 
investigated experimentally. 

If a localized wave packet is excited with an energy spectrum which is tightly spread 
around a large central value of the quantum number 0n  so that 0 1∆� �n n , it is possible to 

expand the individual energy eigenvalues, ( )≡nE E n , about this value, giving 
 

 2 20 0
0 0 0 0 0

''( ) '''( )( ) ( ) '( )( ) ( ) ( ) ...
2! 3!

≈ + − + − + − +
E n E nE n E n E n n n n n n n  (5.17) 

 
This gives the time-dependence of each individual quantum eigenstate through the 

factors: 
 

 
32

00 0 0 2 ( ) // 2 ( ) / 2 ( ) / −− −= ⋅ ⋅ ⋅h supern cl rev i n n TiE t i t i n n T i n n Te e e e e πω π π , (5.18) 
 

where each term in the expansion (after the first which is an unimportant overall phase not 
observable experimentally) defines an important characteristic time scale, via: 
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π
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0

12
'''( )
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h

superT
E n

π
. (5.19) 

 
The second term in the expansion is associated with the classical period of motion in the 

bound state. It can also be shown that the wave packet near the revival time revT  returns to 
something like its initial form, exhibiting the classical periodicity. In the special case when 

/rev clT T  is an integer, the revival occurs exactly in phase with the original time-development, 

and is exact (in that ( )A t  returns to exactly unity). For some realistic systems, with higher 

order terms in the expansion in Eq. (5.17), the superrevival time, superT  also becomes very 

important. 
To obtain the order of magnitude of the different characteristic times introduced 

previously, one can consider a neutron in the second state. For this state, the value of the 
classical turning point (2.11) is equal to 2 24 m=z µ . The classical periodicity of the system 
is given by 
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 222 4.4 ms= ≈cl
zT
g

. (5.20) 

 
The revival time appears to be equal to 
 

 
2
016 46 ms= ≈

h
rev

mzT
π

. (5.21) 

 
With the neutrons of 5 m/s velocity, a 25 cm long mirror is needed to observe this revival 

phenomenon. 
All the methodical developements for this kind of experiments are already available: the 

position-sensitive detector discussed in section 3 can provide the spatial resolution of 1 mµ , 
the absorber/scatterer and a suitable mirror geometry (see sections 2 and 3) make it possible 
to chose the necessary number of quantum states, and the phase of the wave function can be 
fixed by a special collimator at the entry to the system. 

5.4 Search for a Logarithmic Term in the Schrödinger Equation 

As discussed in refs. [26, 27], an extension of quantum mechanics with an additional 
logarithmic term in the Schrödinger equation assumes quasi-elastic scattering of UCN at the 
surface, with extremely small, but nevertheless measurable, energy changes. Such spectral 
measurements of high resolution with UCN were themselves methodologically challenging. 
They were also motivated by a long-standing anomaly in the storage of UCN in traps [57]. 
These experiments [58, 59] allowed the authors to constrain such quasi-elasticity at ~10-11 eV 
per collision, under the assumption of a “random walk” in phase space at each neutron 
collision with the wall: a non-zero result at this level was reported in ref. [58] at the limit of 
experimental sensitivity, but was not confirmed later in ref. [59], measured in the same setup 
with slightly better statistical sensitivity but with worse energy resolution.  

A significant increase in the accuracy of neutron gravitational spectrometry using the 
high-resolution position-sensitive neutron detectors presented here allows us to improve many 
times over the upper limit for the probability and for the minimum energy transfer values for 
the quasi-elastic scattering of UCN at the surface [60]. Moreover, we can now consider 
energy changes at a single reflection, rather then having to follow the integral effects of many 
collisions, as in refs. [58, 59]. In addition to this, the present limit concerns one specific 
component of the neutron velocity along the vertical axis before reflection and after it. Also 
any deviation from conventional quantum mechanics can be verified in a more direct way 
with the quantum limit used here for the minimum possible initial energy, or velocity.  

Such constraints, however, present a broader interest and could be considered in a more 
general model-independent way: how precisely do we know that UCN conserve their energy 
at wall reflections or during UCN storage in material traps? 

Let us remind the reader of the details of the experimental set up used in the last run. A 
neutron beam with a horizontal velocity component of ~5 m/sec and a vertical velocity 
component of 1-2 cm/sec, which corresponds to the energy of the lowest neutron quantum 
state in the gravitational field above a mirror, is selected using a bottom mirror (1) and a 
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scatterer/absorber (3) positioned above it at a height of ~20 µm. A second mirror (2) is 
installed 21 µm lower than the first mirror (1). If the UCN bounce elastically on the mirror (2) 
surface in the zone between the scatterer’s (3) exit edge and the position-sensitive detector 
(4), the measured spatial variation of the neutron density as a function of height would 
correspond to that shaped by the mirrors (1,2) and the scatterer (3) in the zone upstream of the 
scatterer’s (3) exit edge. If they do not, then the excess number of neutrons observed in the 
higher position would be attributed to their quasi-elastic reflection from the mirror (2) 
surface. The experimental setup is designed in such a way that any known parasitic effects 
(vibration of the mirrors and the scatterer, residual magnetic field gradients, quasi-specular 
reflections of UCN from mirrors or at residual dust particles) should be small enough not to 
cause a significant change in the spectrum of vertical neutron velocities (see refs. [8-9, 
19-22]). 

We will not discuss the possible microscopic mechanisms of quasi-elastic reflections of 
UCN at surfaces; we shall simply consider this problem in phenomenological terms. A simple 
conservative upper limit for the quasi-elastic scattering/heating probability (versus average 
energy transfer) following UCN reflection from the lower polished glass mirror could be 
calculated, assuming an ideal scatterer able to select a single quantum state above the mirror 
(1) in Fig. 7. Populations of all quantum states above the mirror (2) can be precisely 
calculated in this case [22]. They provide the neutron density distribution, presented by the 
solid curve in Fig. 10. We know in fact that a few neutrons at higher quantum states should 
survive [15] producing a density distribution close to one presented by the dotted curve in 
Fig. 10. However, we do not attempt to take such neutrons into account and intentionally 
sacrifice the sensitivity of the present limit in favor of maximum reliability and transparency. 
Such an estimation could be further improved with the present experimental data using a 
more sophisticated theoretical analysis based on ref. [15]. It would however be slightly 
model-dependent in such a case. For the simplified approach chosen, the solid line in Fig. 10 
is considered as “background” for the measurement of quasi-elasticity and any additional 
events above this line would be supposed to be due to quasi-elastic scattering. Fig. 12 
illustrates the results of the treatment of the experimental data presented in Fig. 10. 

The straightforward calculation of such a constraint provides the solid curve in Fig. 12 
under the following assumptions: 1) all additional events higher than the solid curve in Fig. 
10 are attributable to quasi-elastic scattering/heating; 2) the energy is assumed to change in 
one step (due to the low probability of such an event); 3) we take the number of quasi-
classical collisions in such a system [15].  

The rather sharp decrease with height of the neutron density on a characteristic scale of a 
few microns simplifies considerably the present calculation. For large enough ∆E  values, 
any excess counts above the constant background level bg /∆ ∆N h  in the height range 

60 m>h µ  are attributed to quasi-elastic scattering/heating. Quasi-elastically scattered 
neutrons could be observed at any height between zero and 0( ) /+ ∆E E mg , where 0E  is the 

initial energy of vertical motion and ∆E  is the energy gain. If 0∆ �E E , the total number of 

background events is approximately equal to bg∆ ∆
∆

N E
h mg

, neglecting the initial spectral line 
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width 60 m<h µ . At 3σ confidence level, we would observe an excess qelN  of events at 

60 m>h µ , if it is equal to: 
 

 bg
qel 3

∆ ∆
=

∆

N EN
h mg

. (5.22) 

 

 

Fig. 12. The solid curve corresponds to constraints for quasi-elastic scattering of UCN at a flat glass 
surface: the total probability of such a scattering per one quasi-classical bounce versus average energy 
transfer at “3σ” confidence level. The dotted curve shows the possible improvement of such constraints 
in the flow-through measuring mode. The dashed curve indicates a further increase in sensitivity in the 
storage measuring mode. The circles correspond to theoretical predictions for the present experiment in 
accordance with refs. [14-15, 17]. The stars indicate analogous predictions for measurements with the 
experimental setup [8-9, 19-22] inclined to various angles. The triangles show the value of the energy 
change expected in refs. [14-15, 17] (for a higher initial neutron velocity than that in the present 
experiment). The thin dotted and dashed curves indicate schematically the constraints if the initial 
spectral shape line were to be taken into account. 

With the horizontal velocity component horv  and the mirror length L  between the 

scatterer’s exit edge and the detector (see Fig. 7), the total number qelN  of quasi-classical 

bounces is: 
 

 bounces
0

hor
22

=
LN
E v

g m

. (5.23) 

 
Thus, with the total number 0N  of neutrons in the initial spectral line, we would be able 

to observe quasi-elastic scattering at 3σ confidence level if its probability qel ( )∆P E  is equal 

to: 
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As is evident from eq. (5.24), qel ( )∆P E  increases as ∆E , thus decreasing the sensitivity 

of the present constraint at large energy changes. The sensitivity is also lower at energy 
changes smaller than the initial spectral line width of ~60 µm (here the constraint is estimated 
numerically). Therefore the best sensitivity is achieved at the energy change comparable to 
one or few initial spectral line widths, as shown in Fig. 12. 

The constraint presented shows the high degree of elasticity of neutron reflections in the 
range 12 1010 3 10  eV− −∆ − ⋅�E E∆ ; this is important for the further development of precision 
neutron spectrometry experiments. Further improvements in the sensitivity of such constraints 
by an order of magnitude are feasible in the flow-through measuring mode, by improved 

shielding of the neutron detectors (a factor bg∆

∆

N
h

 in eq. (5.24)), by increasing the length of 

the bottom mirror (a factor 1/ L  in eq. (5.24)), by further increasing the scatterer efficiency, 
and by using a narrower initial neutron spectrum (a factor 0E  in eq. (5.24)). On the other 

hand, a broader initial spectrum could allow us to increase the factor N  in eq. (5.24) and 
therefore to improve the sensitivity at higher ∆E  values (sacrificing the sensitivity at lower 
∆E  values).  

An almost order-of-magnitude gain in the minimum measurable energy change could be 
achieved by providing a proper theoretical account (in accordance with ref. [15], for instance) 
of the spectrum-shaping properties of the scatterer, or by a differential measurement of the 
vertical spectrum evolution using bottom mirrors of different lengths. Possible improvements 
in the flow-through mode are illustrated by the dotted curve in Fig. 12. One should note that 
any jumps in energy by a value significantly lower than 1 peV would clearly contradict to the 
observation of quantum states of neutrons in the gravitational field [12–15, 21–23] and 
therefore they are not analyzed in the present article. The minimum energy increase 
considered corresponds to the energy difference between neighboring quantum states in the 
gravitational field. 

A much higher increase in sensitivity could be achieved in the storage measuring mode 
with the long storage of UCN at specular trajectories in a closed trap (the dashed curve in Fig. 
12 or better). 

As an example of a possible application of the present constraint, let us compare it to the 
theoretical prediction in accordance with refs. [58,59]. This model assumes the replacement 
of “continuous interaction” of UCN with a gravitational field by a sequence of “collisions 
with the field”. The time interval δτ  between the “collisions” is defined as the time during 
which the mass “does not know that there is an interaction” since the kinetic energy change 

Eδ  (by falling) is too small to be resolved. From the uncertainty principle: 
 

 
2

⋅ ≈
hEδτ δ , or vert

vert33  (peV)
2

≈ =
hmgvE vδ  (5.25) 

 
where vertv  is in m/s. 
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For the vertical velocity component vert 2.5 cm/s≈v  in our present experiment, the 

expected energy change is 138 10  eV−≈ ⋅Eδ  (shown as the circle in Fig. 12). The “100%” 
probability of quasi-elastic scattering is slightly higher than the 3σ  experimental constraint 
(the solid line in Fig. 12). However, considering the expected probability value of ~10% and 
low experimental sensitivity at small ∆E  values, one needs to further improve the sensitivity 
of the present constraint.  

On the other hand, a slight modification of the experimental setup would allow us to 
verify clearly the considered hypothesis. Namely, the whole apparatus should be turned by a 
significant angle relative to the direction of the gravitational field. In this case, the vertical 
velocity component is comparable to the longitudinal velocity of 5–10 m/s. The transversal 
velocity component (relative to the bottom mirror) is very small, just equal to the one in the 
experiment [12–15, 21–23]. All sensitivity estimations for quasi-elastic scattering/heating are 
analogous to those given above (see Fig. 12). However, the theoretically predicted effect 
could be as high as ~10-11 eV (depending on the inclination angle) – just in the range of the 
best sensitivity of the present constraint: the stars in Fig. 12. In order to measure a 
hypothetical cooling of UCN at their quasi-elastic reflections, we must first of all select a 
higher quantum state ( 1>n ) and then follow the evolution of the corresponding neutron 
spectrum. The sensitivity estimations in the energy range 00 < ∆ <E E  would be about as 
strong as those for the quasi-elastic heating if the experiment was optimized for this purpose. 
Such measurements would be significantly easier to perform than the measurement of the 
gravitationally bound quantum states because they do not require such record levels of energy 
and spatial resolution. 

5.5 Search for the Loss of Quantum-Mechanical Coherence 

The fundamental loss of quantum coherence because of gravitational interaction is an issue of 
high long-term scientific interest. As it was pointed out even in the first publication [28], 
neutron interference experiments could be sensitive to this phenomenon. The quantity 
defining the sensitivity of such an experiment is the characteristic time of observation of an 
interference pattern. In the experiment [61] with thermal neutrons this value was about 300 µs 
(which corresponds to the energy 212 10  GeV−⋅ ). In our experimental setup, in the flow-
through measuring mode the observation time could be as high as ~60 ms ( 2310  GeV− ). A 
measurement of the localization phenomenon, described in this article, could give a direct 
estimation of the effect of the fundamental loss of quantum coherence. A much longer 
observation time would be possible in the storage measuring mode in our experiment. On the 
other hand, even better constraints for the loss of quantum coherence would be obtained by 
measuring neutron oscillations between two quantum states due to a small mixing interaction 
(for instance, a magnetic one) in some analogy to the experiment mentioned in ref. [29]. 

6 Transitions between the Quantum States 

The observation of transitions between the quantum states would allow a qualitatively new 
step in this research. These transitions can be initiated in various ways and by different forces 



V.V. Nesvizhevsky and K.V. Protasov 92

(strong, electromagnetic, gravitational). In this section we will study, for the first time, 
different options, giving estimations of probabilities of these transitions. 

The mechanical vibration of a mirror would be the simplest way of inducing such 
transitions. This vibration means a periodical variation of the boundary condition created due 
to the effective Fermi potential of the bottom mirror (i.e. due to strong forces). In fact, we 
already observed this kind of transitions induced by nuclear forces, in our last experiment. To 
suppress neutrons in the ground state, the mirror was assembled in a special way so as to 
produce a negative step (Fig. 7). This trick can be considered as an infinitely fast change of 
the Hamiltonian which produces a change in the occupation numbers, i.e. the transitions 
between the levels. 

Another way to produce transitions between the levels is to introduce a varying gradient 
of magnetic field (i.e. by electromagnetic forces). Until now, all magnetic effects have been 
considered as parasitic and able to blur the gravitational levels. Considerable efforts were 
therefore needed to avoid undesirable interaction between the neutron magnetic moment and 
an external magnetic field. Now that once the existence of the gravitational levels is well-
established, a controlled magnetic field can be introduced to manage transitions between the 
levels. Experimentally, it is easy to produce such a gradient with any form of time-
dependence, in particular, perfectly harmonic oscillations. 

However, the most interesting way to produce the transitions is by variation of the 
gravitational field. This could be done, for instance, by the rotation of a massive body close to 
the experimental set up. This kind of transition is, of course, very difficult to observe. The 
aim of this study is therefore to evaluate the feasibility of performing this kind of experiment 
with current and future neutron facilities. 

A measurement of transitions between the gravitational levels can be used to study the 
properties of neutrons. For instance, if we look for transitions induced by a variable electric 
field and we establish an upper limit on such transitions, we can establish a limit for the 
electric charge of the neutron. 

6.1 General Expressions for Transition Amplitudes 

Let us remind the reader of the main formulas [3] which will be used hereafter concerning the 
transitions between the quantum levels (two states of the discrete spectrum). We are 
interested in the transitions induced by a periodical external interaction considered as a 
perturbation and which, in order to obtain simple analytic expressions, is considered to be 
harmonic. 

The Hamiltonian �H  of the problem can be written in the form 
 
 � � �

0 ( )H H V t= +  (6.1) 
 

where � 0H  corresponds to the unperturbed gravitational problem ( 0)z >  
 

 �
� 2

0 2
pH mgz
m

= +  (6.2) 
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and 
 

 �
0 0( ) ( ) ( )i t i tV t V z e V z eω ω−= +  (6.3) 

 
is a harmonic perturbation with 0 ( )V z  which depends on z . This particular harmonic form 
of excitation is chosen to obtain analytic results and can in some cases be achieved in an 
experiment. 

A solution Ψ  of the Schrödinger equation 
 

 � �( )0 ( )i H V t
t

∂Ψ
= + Ψ

∂
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can thus be written as a sum 
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If we put (6.5) in (6.4) and taking into account (6.6) we obtain: 
 

 �(0) (0)( )k
k k k

k k

dai a V t
dt

Ψ = Ψ∑ ∑h . (6.7) 

 
By multiplying the last equation by *(0)

mΨ  and by integrating over z , we obtain: 
 

 ( )m
mk k

k

dai V t a
dt

=∑h  (6.8) 

 
with the matrix element: 

 

 �*(0) (0)( ) ( )mk m kV t V t dz= Ψ Ψ∫ . (6.9) 

 
The last differential equation describes an evolution of the quantum system. If we 

suppose that at a moment 0t = , the system was, for instance, in a ground state ( 1k = ) 
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 1(0) 1a =  and (0) 0ma =  for any 1m ≠ , 
 
then we can calculate, at least numerically, a probability to find the system in the state n  for 
any moment t  as 

 

 
2( ) ( )n nP t a t= . (6.10) 

 

As we said previously, the choice of a perturbation interaction � ( )V t  in a harmonic form 
(6.3) allows us to obtain an analytic expression for the probability (6.10) if we consider the 
problem of only two coupled states. Physically, this situation is produced when the frequency 
ω  of the excitation is close to the difference (0) (0)

0 1( ) /n nE Eω = − h  (resonance regime). Let 

us suppose therefore that the difference 1nε ω ω= −  is very small and that in the matrix 
element (6.9) of the perturbation (6.3), we can leave only the dominant term with this small 
frequency: 

 

 �*(0) (0) *
1 1 0 1 1( ) ( ) ( )i t i t
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By omitting all other terms, we obtain a system of two coupled equations relating the 

amplitudes of presence in the ground and in the n-th state: 
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 (6.12) 

 
This system can be easily solved, for instance, by the standard Laplace transformation. If 

we suppose that at 0t =  the system is in the ground state, the probability of finding it in the 
n-th excited state appears to be equal to: 

 

 
2

2 20
2( ) ( ) sinΩ

= = Ω
Ωn nP t a t t  (6.13) 

 
with 
 

 1
0Ω =

h
nF

 and 
2

2 2
0 4

ε
Ω = Ω + . 

 
This is a well-known Raby formula describing an oscillation of the system between the 

two coupled states with the frequency 2Ω . The probability of presence in an excited state 
oscillates between 0 and 2 2

0 /Ω Ω . 
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Fig. 13. The transition probability from the ground to the excited states as a function of frequency of a 
perturbation interaction / 2=ν ω π . 

The maximum probability as a function of frequency has a resonance-like behavior 
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 (6.14) 

 
and is presented in Fig. 13. The resonance frequencies given in this figure correspond to 
transitions from the ground state 1=n  to the first three excited states. The energy spectrum 
of the system becomes denser with increasing n  (the levels become closer to each other). 
The width of this resonance is defined by the matrix element of the perturbation 1nF  and is 
equal to 
 

 14Γ =n nF . (6.15) 
 
To resolve the two nearest states with n  and 1+n , their energy difference 

1 1+ +− = hn n nnE E ω  should be smaller than the corresponding width: 
 
 1+ > Γh nn nω . (6.16) 
 
In other words, the matrix element 1nF  should not be very big 
 

 1
1 4

+<
h nn

nF ω
 (6.17) 

 
to populate only one excited state. 
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For an exact resonance 0ε = , formula (6.13) becomes 
 
 2

0( ) sin= ΩnP t t . (6.18) 
 
For a very small period of time (or a very small matrix element 1nF ), this probability is 

seen to depend quadratically on time: 
 
 2 2

0( ) ≈ ΩnP t t  (6.19) 
 
(this formula is valid even when not in an exact resonance). We can say that this probability 
becomes close to 1 if: 

 

 1 1nF t
≈

h
. (6.20) 

 
We can say that to have a non-negligible transition probability, the observation time τ  

should be of the order of: 
 

 
1

≈
h

nF
τ . (6.21) 

 
By combining this condition with the condition of the resolution of two neighboring 

states (6.17), we conclude that, to observe a resonance transition, the neutron life time in the 
system should be higher than: 

 

 
1

4

+

>
nn

τ
ω

. (6.22) 

 
For instance, for a transition between the ground state 1=n  and first excited state 
2=n , the corresponding frequency is approximately equal to 150 Hz and we obtain 
4 ms>τ . For neighbor higher excited states, this time should be even greater. We would 

remind the reader that in the last experiment the time of presence of neutron in the system 
was close to 25 ms. 

If the condition (6.22) is not satisfied, the transitions may also occur but in several states 
simultaneously. This is true in particular, in the case mentioned in the introduction to this 
chapter: the transition due to the sudden change of the mirror height (negative step). The 
neutrons from the ground state (before the step) populate a few low excited states (after the 
step). The transition exists but it is not a resonance one. 
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6.2 Transitions Induced by a Magnetic Field 

As we mentioned at the beginning of this section, the magnetic field B  easily couples to the 

neutron magnetic moment �µ  by: 
 

 � � �
int ( )H V t≡ = −µB  (6.23) 

 
and thus can be used to induce transitions between the gravitational levels. To obtain the 
desirable effect, one can introduce an oscillating magnetic field with a gradient along the z 
axis (which is also the direction of the magnetic field itself): 
 

 sinzB z tβ ω= . (6.24) 
 
For this interaction, the matrix element 1nF  is equal to: 
 
 1 n 1n nF zµ β=  (6.25) 
 

where nµ  is the neutron magnetic moment and 
 

 *
1 1n nz z dzψ ψ= ∫ . 

 
This matrix element can be calculated numerically with the well-known Airy function 

and, for instance for 2n = , appears to be equal to 
 
 21 00.653=z z  (6.26) 
 

where 0 5.87 m=z µ  is the characteristic length of the problem introduced previously. 
This can be easily achieved, even in the current experimental setup. The gradient of the 

magnetic field β  necessary to introduce a transition between the first two levels with a 
probability close to one (6.20) is equal to: 

 

 
n 12z t

β
µ

=
h

. (6.26a) 

 
For the present experiment with 25 ms=t , we obtain 10 Gs/cm≈β , which can be 

achieved without major difficulty. It is planned to conduct this experiment in the very near 
future. 

Let us emphasize that the studies of transitions induced by a magnetic field would 
represent a very efficient tool for the search for the loss of quantum coherence induced by 
gravity. The time evolution (6.13) of the two-level system is modified in the presence of such 



V.V. Nesvizhevsky and K.V. Protasov 98

effects and can be constrained experimentally without any major difficulty. This is another 
reason why the experiments on magnetic transitions between the gravitational levels are of 
high priority. 

6.3 Transitions Induced by a Gravitational Field 

The most interesting transition would be the one induced by gravitational interaction, for 
instance, by a massive body motion in the vicinity of the setup. Compared to the Coulomb 
interaction, this process is analogous to an excitation of the Coulomb atom by an electric 
charge moving near the atom. In a field theory picture, this excitation is induced by a virtual 
photon. In the case of a transition between the gravitational levels induced by a moving body, 
one would speak of a virtual graviton. Strictly speaking, the theoretical description of both 
processes does not require the explicit introduction of these virtual particles. We could not 
therefore say that the detection of the gravitational transition would be an unambiguous 
demonstration of the existence of the graviton. Nevertheless, this experiment would be a very 
important step towards this goal. 

The main difficulty is obviously due to the very weak interaction constant. Let us 
therefore simply estimate the probability of such a transition in order to charge on the 
feasibility of its observation in the near future, let us say within a decade. 

Let us suppose that a transition is induced by an oscillating body moving just above the 
neutron situated at distance z above the mirror. Thus the distance between the neutron and the 
body is equal to: 

 

 (1 cos )
2
Lr a t zω= + − + ∆ −  (6.27) 

 
where L is the linear size of the body, a is an amplitude of oscillations and ∆  is the minimal 
distance between the body and the mirror. This oscillating body will introduce an additional 
gravitational interaction: 
 

 �
int

mMH G
r

=   (6.28) 

 
M being the mass of the body. z is small with respect to L and this interaction 

Hamiltonian can be developed in series on z. The linear term is equal to: 
 

 �

( )
int 2

4
1 2 (1 cos )

mM zH G
L L tζ ω

≈
+ −

 (6.29) 

 
Here ∆  is neglected with respect to L and /x a L=  is introduced. The function: 
 

 
( )2

1( )
1 2 (1 cos )

f t
tζ ω

=
+ −

 (6.30) 
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is not harmonic but it is quite easy to calculate its development in Fourier series: 
 

 ( ) in t
n

n
f t c e ω

∞

=−∞

= ∑   (6.31) 

 
with the coefficients: 
 

 
( )

2 / 2
1

22
0

1 ( 1) ( 1)( )
2 1 4 1

in t n
n

n nc f t e dt
π ω

ωω ηη
π ζ ζ η

− + + − −
= =

+ −
∫  (6.32) 

 
where 
 

 
1 11 1 4

2 2
η ζ

ζ ζ
= + − + . (6.33) 

 
As a function of ζ , η  increases continuously from 0 to 1. 

In particular, the coefficient corresponding to the first harmonic 1c is equal to: 
 

 
( )1 3/ 2

2
1 4

c ζ
ζ

=
+

.  (6.34) 

 
This coefficient as a function of ζ  has a maximum for 1/ 2ζ =  and its maximum value 

is equal to 
 
 1 0.192c = . (6.35) 
 
Let us note that the coefficient describing the difference between the neighbor harmonics 

is equal to: 
 

 ( )1/ 2 2 3 0.268η ζ = = − ≈ . (6.36) 

 
This means that the higher terms decrease quite rapidly with n and, in first 

approximation, the interaction (6.30) can be considered as harmonic and can be represented, 
for the optimal choice 1/ 2ζ = , as: 

 

 �
int 3.08 i tmM zH G e

L L
ω≈ . (6.37) 
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This Hamiltonian is now considered as a perturbation � ( )V t  and its matrix element 21F  
between the first two states’ wave functions is equal to: 

 

 21
21 0.77 zmMF G

L L
= , (6.38) 

 
where 21z  is the same as in (6.26). 

Obviously, for any realistic experiment, the condition (6.20) will be hardly fulfilled for 
the gravitational interaction. Even if the neutron life time is chosen as the time of observation 
(this hypothesis implies successfully storing neutrons at a given gravitational level over a 
very long period, which is actually an extremely challenging task) and the characteristic size 
of the oscillating body equals to 20 cmL =  with high density 3 320 10  kg/mρ = ⋅  (i.e. 

160 kgM = ), the value of the product (6.20) appears to be small: 
 

 21 0.01F t
≈

h
. (6.39) 

 
This means that the probability of a corresponding transition would be of the order of 
410− . With existing sources of UCN, the detection of those transitions would scarcely seem 

possible.  
However, the probability of transition increases if we choose other levels, for instance, 

highly excited neighboring levels. We can show that the matrix element 1n nz +  behaves, for 

1n � , as: 
 
 2/3

1 0.57n nz nξ+ ≈ , (6.40) 
 

i.e. increases quite rapidly with n, whereas the transition frequency will decrease: 
 

 1/3
1

−
+ �n n nω . (6.41) 

 
Hence the technical realization of the experiment would be even simpler. 

Note also that increasing the size L of the oscillating body produces very limited gain 
because the amplitude of the transition depends linearly on L: 21F L� , whereas its mass will 

grow very rapidly 3M L�  and make the experiment much more complicated. 
Taking into account these circumstances, we can conclude that an experimental 

observation of a transition between two gravitational levels, induced by the motion of a body 
seems relatively unlikely in the near future with the existing neutron sources. 
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6.4 Transitions Induced by an Electrical Field 

By studying transitions between the levels induced by an oscillating electric field, we can 
establish an upper limit on (or find) the neutron charge. 

As an example, let us consider a system where the mirror is one of the plates of a 
condenser. If we apply a varying electric field a perturbation Hamiltonian: 

 

 � �
int n( )≡ = i tH V t e Ee zω  (6.42) 

 

ne  being the neutron charge, E  the strength of the electric field. 

For this interaction, the matrix element 1nF is equal to: 
 
 1 n 1=n nF e Ez . (6.43) 
 
Thus an upper limit for the probability of transition to the nth state limP  will give an upper 

limit on the neutron charge: 
 

 n lim
1

<
h

n

e P
Ez t

. (6.44) 

 
In an experiment with the electric field 710  V/m≈E , with t compatible with the 

neutron life time, 3
lim 10−≈P  must be achieved in order to obtain an actual limit on the 

neutron electric charge equal to 21
n 10−<e e . The best limit is produced with the 

interferometer experiment using very cold neutrons [62]. It should be noted that ultracold 
neutrons were also used to establish the limit [63]. 

6.5 Transitions Induced by the Combined Effect of Different Excitations 

Nevertheless a much tighter constraint for the neutron electric charge can be obtained and a 
transition induced by a moving massive body can be observed experimentally. The idea is to 
conduct an interference experiment where we measure a transition induced by two different 
causes, for instance, by a variable gradient of the magnetic field and a varying electric field or 
an oscillating body. 

The matrix element nkF  of such a transition would be equal to the sum: 
 
 big small= +nk nk nkF F F  (6.45) 

 
of a big big

nkF  (for instance, magnetic) and a small small
nkF  (electric or gravitational) terms. The 

transition probability would be proportional to: 
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22 big small big( ) 2+ ≈ +� nk nk nk nkP t F F F F . (6.46) 

 
By an adequate choice of the relative phase of these two perturbations, we can obtain 

another probability: 
 

 
2big small big( ) 2− −� nk nk nkP t F F F . (6.47) 

 
Thus, an asymmetry is proportional to: 
 

 
small

big

( ) ( ) 2
( ) ( )

+ −

+ −

−
= ≈

+
nk

nk

FP t P tA
P t P t F

. (6.48) 

 
With the estimation obtained previously (6.39), this kind of measurement seems to be 

conceivable in future experiments. 
Of course, exactly the same idea of combined perturbations can be used to improve the 

limit on the neutron electric charge. 

Conclusion 

Gravitationally bound quantum states of neutrons were recently discovered in the 
measurement of neutron transmission through a narrow horizontal slit between a mirror below 
and an absorber/scatterer above it. The first experiment allowed us to identify clearly the 
ground quantum state in this system [12, 13]. Later, with improved height (energy) resolution 
and statistics, we were also able to measure also the first excited quantum state [15]. We 
showed that the process of the loss of neutrons in an absorber/scatterer could be very 
precisely described using a model of neutron tunneling through the gravitational barrier 
between the classically allowed height and the absorber/scatterer height [15]. Further progress 
with this experiment using the flow-through measuring mode is limited to a large degree by 
one fundamental factor: the finite sharpness of the dependence on height of neutron tunneling 
through this gravitational barrier. Nevertheless, with a more suitable and precise theoretical 
description [18] and improvements to the absolute distance calibration [19, 20], we can 
expect to achieve a few percent accuracy in the determination of quantum state parameters. 

In order to resolve higher excited quantum states clearly and measure their parameters 
accurately, we investigate another method based on position-sensitive neutron detectors of 
very high spatial resolution [21, 22]. The direct measurement of the spatial density 
distribution in a standing wave is preferred to its investigation with the aid of an 
absorber/scatterer whose height can be adjusted. The former technique is differential, since it 
permits the simultaneous measurement of the probability that neutrons reside at all heights of 
interest. The latter technique is integral, since the information on the probability that neutrons 
reside at a given height is in fact obtained by the subtraction of the values of neutron fluxes 
measured for two close values of the scatterer height. Clearly, the differential technique is 
much more statistically sensitive. Furthermore, the scatterer employed in the integral 
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technique inevitably distorts the measured quantum states; the finite accuracy of taking these 
distortions into account results in methodological errors and ultimately limits the attainable 
accuracy of the measurement of the quantum state parameters. The feasibility of the 
differential technique was demonstrated in refs. [15, 23].  

The two techniques considered and the available fluxes of UCN are already sufficient for 
a broad range of applications. Thus, as this was shown in ref. [24], this experiment could be 
used to establish a competitive limit for short-range fundamental forces. However, it is from 
other specially designed neutron experiments that further progress in the nanometer range of 
distances can be expected. In order to be competitive in the micrometer range, we have to 
improve accuracy by many orders of magnitude, which can only be possible using the 
technique of resonance transitions between the quantum states. This experiment can also be 
used to search for the axion – a hypothetical particle which strongly violates CP-invariance; 
the characteristic distance for this interaction should be comparable to the characteristic 
length of our problem 0z . The very fact that the neutron quantum states exist provides the 
best constraint at this distance. An improvement by many orders of magnitude would seem to 
be easily achievable. This method could also be used for studies related to the foundations of 
quantum mechanics, such as for instance, quantum-mechanical localization (revivals 
phenomenon) or various extensions of quantum mechanics. For instance, it could be used to 
clearly rule out, or confirm, the presence of the logarithmic term in the Schrödinger equation 
in some models. It should be also noted that the present method provides two unique 
opportunities: on the one hand, it provides a rare combination of quantum states and 
gravitation that is favorable for testing possible extensions of quantum mechanics; on the 
other hand, UCN can be reflected from the surface ~105 times without loss, i.e. much more 
than for optical phenomena, which means that any kind of localization can be better studied 
with UCN. Finally, this method could be very useful for such problems of high interest as the 
fundamental loss of quantum coherence in systems with gravitational interaction. 

Other methodological applications of the gravitationally bound quantum states and 
related techniques lie outside the subject of the present discussion of quantum gravity 
phenomena. We will therefore not discuss them in detail but simply mention a number of 
them. These experiments helped us to find an alternative approach to the problem of the 
neutron-tight valve for UCN traps able to operate in the broad range of temperatures needed 
for precision experiments with UCN storage. This is of crucial importance for precision 
neutron lifetime experiments. The existing solutions suffer from highly disturbing side 
effects: the so-called gravitational valve [64] modifies the spectrum of the stored UCN, 
whereas the so-called liquid valve [65,66] means the unavoidable use of fomblin oil with the 
accompanying effect of quasi-elastic scattering [67,68], producing large false effects also. 
Other methodological applications include the possibility of studying the distribution of 
hydrogen above/below solid or liquid surfaces, or the investigation of thin film on surfaces. 
These two subjects will be considered in more detail in separate publications. 

A qualitatively new step in accuracy could be achieved even with the existing UCN 
density if the resonance transitions between the gravitationally bound quantum states were 
observed. These transitions could be initiated in various ways and by different forces (strong, 
electromagnetic, gravitational). In this article we presented for the first time a feasibility 
analysis and theoretical description of the observation of resonance transitions between the 
quantum states. All the above-mentioned applications of gravitationally bound quantum states 
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for various physical problems would benefit considerably from the increase in accuracy 
which the technique of resonance transitions could bring. Moreover, a new class of highly 
competitive experiments could be considered, such as better constraints for the electric 
neutrality of neutrons, or the resonance transitions between the quantum states due to the 
gravitational interaction. It is clear that any increase in the energy resolution in measurements 
of the resonance transitions between the quantum states requires a high density of UCN. We 
therefore consider new approaches in order for significantly increasing the UCN densities, 
such as the thermalization of neutrons in gels of ultracold nanoparticles [69]. 
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Chapter 3

QUANTUM MECHANICS, QUANTUM GRAVITY,
AND APPROXIMATE LORENTZ INVARIANCE

FROM A CLASSICAL PHASE-BOUNDARY UNIVERSE

Michael Grady
Department of Physics, SUNY Fredonia, Fredonia , NY 14063 , USA

Abstract

A classical dynamical system in a four-dimensional Euclidean space with universal
time is considered. The space is hypothesized to be originally occupied by a uniform
substance, pictured as a liquid, which at some time became supercooled. Our uni-
verse began as a nucleation event initiating a liquid to solid transition. The universe
we inhabit and are directly aware of consists of only the three-dimensional expand-
ing phase boundary - a crystalline surface. Random energy transfers to the boundary
from thermal fluctuations in the adjacent bulk phases are interpreted by us as quantum
fluctuations, and give a physical realization to the stochastic quantization technique.
Fermionic matter is modeled as screw dislocations; gauge bosons as surface acoustic
waves. Minkowski space emerges dynamically through redefining local time to be pro-
portional to the spatial coordinate perpendicular to the boundary. Lorentz invariance
is only approximate, and the photon spectrum (now a phonon spectrum) has a maxi-
mum energy. Other features include a geometrical quantum gravitational theory based
on elasticity theory, and a simple explanation of the quantum measurement process
as a spontaneous symmetry breaking. Present, past and future are physically distinct
regions, the present being a unique surface where our universe is being continually
constructed.

1 Introduction

In the following, a new picture of the big bang and the underlying structure of the universe
is proposed, based on a classical field theory in a four-dimensional Euclidean space with a
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universal time (a 4+1 dimensional theory)[1, 2, 3, 4]. The big bang is treated as a nucle-
ation event for a first-order phase transition (pictured as a liquid to solid transition) and our
universe is the three-dimensional phase boundary between the expanding solid and preex-
isting liquid phases. This classical brane-theory appears to have the potential to explain a
diverse set of phenomena – Lorentz invariance, quantum fluctuations and zero-point energy,
quantum superposition and measurement, elementary fermions and bosons, gauge forces,
gravity, the big bang and a non-decelerating expansion of the universe. It is possibly rich
enough to give a “theory of everything” from a relatively simple base-theory consisting of
a small number of elementary atoms or molecules and basic elastic forces holding them
together. In this model, all of the forces and particles of standard particle theory are sec-
ondary effects, consisting of the collective excitations and dislocations of the base-theory,
just as in condensed matter physics where such excitations play a pivotal role, reducing the
elementary degrees of freedom to a mere background for the more interesting and important
collective excitations.

We begin by assuming a four-dimensional Euclidean space, filled with a uniform fluid
at some temperature, undergoing thermal fluctuations. In addition to the four spatial dimen-
sions, there is also a universal time. Another possibility would be to start already with a
five-dimensional Minkowski space, however this does not seem to be necessary. This liquid
was cooling, became supercooled, and at some point a solid crystal nucleated. This was
the big bang. The universe begins as a fluctuation, already at a finite size, because in order
to grow rather than shrink, the initial crystal must be large enough that the positive surface
energy is less than the negative volume energy relative to the liquid. In such a model there
is no physical singularity at the beginning and there is no reason for the universe to be par-
ticularly hot or dense at this time either (more on this later). Thesurfaceof the solid, the
phase boundary, is an expanding three-dimensional space, our universe. This differs from
other “bubble universe” pictures, where the universe is theinterior of a3-d bubble. In fact,
it bears an uncanny resemblance to the simple “expanding balloon” model which is often
used as an example of a uniformly expanding curved space. However the present model
differs in that the interior and exterior of the balloon are real spaces, though not directly
observed by us. We are directly aware only of the phase boundary separating the phases,
which we refer to as the “present”. As the crystal grows, this hypersurface, our universe,
expands. Already there is a variance with the usualΛ = 0 Friedmann universes. Namely,
our universe is closed, but will expand forever. The pressure on the surface caused by the
energy difference of the two phases acts something like a repulsive cosmological constant.
This universe actually expands faster as time goes on, not slower. If, as is likely, dissipation
is present, it will eventually approach a constant rate. (This assumes a constant amount of
supercooling – if the base liquid cools more, the expansion rate could continue to increase
as the degree of supercooling increases. Without dissipation, the expansion rate increases
exponentially). Recent astrophysical evidence shows that the expansion rate is not slowing,
but may even be speeding up[5] which is consistent with this scenario.

In the following, the emergence of a quantum field theory on the surface and the ori-
gin of quantum fluctuations is discussed in section two. The relation between real and
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imaginary time path integrals is clarified as a difference between non-equilibrium and equi-
librium statistical mechanics. Section three deals with the dynamical realization of Lorentz
invariance and special relativity, including possible tests of the theory, and consequences for
cosmic ray physics. In Section four, the description of photons as surface acoustic waves
is explored. The Plank relation,E = hν, and zero point energy are derived, with Plank’s
constant being essentially the four-dimensional temperature. Section five describes the in-
terpretation and realization of quantum superpositions and quantum measurements. Section
six discusses four-dimensional dislocations as candidates for elementary fermions. The pos-
sibility of modeling quarks as partial dislocations, which, in ordinary crystals are naturally
confined, is explored. Section seven outlines the likely gravitational theory that results from
the relationship between the curvature of the surface and the presence of dislocations and
interstitials, following previous analogies drawn by many authors between elasticity theory
and general relativity. Modeling fermions as screw dislocations introduces a natural relation
between spin and torsion, as in the Einstein-Cartan theory, which may be a good continuum
approximation to the underlying lattice theory. Whatever gravitational theory that results is
automatically a quantum theory of gravity since the 4-D thermal fluctuations are present in
the surface. Section eight discusses the cosmology of the model, including possible diffi-
culties in fitting observations. Section nine discusses the rather different nature of time that
the model presents and relates it to Whitehead’s conception of time. The different causality
structure due to the model having a preferred frame is discussed (special relativity is only
approximately realized).

2 Quantum Field Theory from a Classical Field Theory

The basic theory needed to describe this expanding phase boundary is non-equilibrium clas-
sical statistical mechanics. The boundary itself may be describable in terms of dynamical
critical phenomena[6]. The solid, in some sense, lies in the past, since we have been there
earlier, although it still exists in the present when observed from the higher dimension. The
liquid represents the future, since that is where we are going, but it also exists now, as an
undifferentiated, fluctuating medium. To distinguish the current states of the solid and the
liquid from our own past and future, they may be called the “current past” and “current
future”. They differ from our past and future because changes may have occurred after the
solid was formed, and the future certainly will be different when we arrive there. To the
extent that the solid is frozen, however, our past may be accurately preserved within it. We
may not be aware of the existence of the liquid due to its uniformity. However, the bound-
ary which we inhabit is in thermal contact with both the liquid and solid phases, and can
certainly exchange energy with them. Actually, since the surface is continuously colonizing
new parts of the liquid, the mountain, in this case, is moving to Mohammed. Energy fluctu-
ations that were present in the adjacent liquid will be incorporated into the “new surface” an
instant later. These will interact with propagating surface modes which are passed from the
“old surface” to the “new surface” as each layer is added. Thus waves riding the interface
will experience random energy fluctuations from this thermal contact. These random 4-d
thermal fluctuations could explain quantum fluctuations.
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It is well known that in ordinary quantum theory, if Minkowski space is analytically
continued to Euclidean space, quantum fluctuations behave as higher-dimensional thermal
fluctuations, i.e. the Feynman path integral becomes an ordinary statistical mechanical
partition function in 4 (+1) dimensions (in equilibrium statistical mechanics there is an
implied time dimension). Plank’s constant is proportional to the temperature of the four-
dimensional Euclidean space. The existence of a 1-1 mapping between quantum field the-
ory and statistical mechanics in one more dimension opens the possibility that the physical
reality that quantum theories are describing actually corresponds to a higher dimensional
classical theory, one for which, if all degrees of freedom were accounted for, would consti-
tute a dynamical system of some kind. Aside from the important new feature of an extra
dimension, this is essentially the point of view of Nelson[7], whose stochastic quantization
technique attempts to explain the fluctuations of quantum mechanics through interaction
with an otherwise unobservable fluctuating background field. Stochastic quantization was
extended to field theory by Parisi and Wu[8], who showed the equivalence of the Euclidean
path integral to a stochastic process controlled by a Langevin equation, which operated in
a fictitious new time, completely unrelated to ordinary time. Whereas this can be seen as
simply a mathematical tool, some have speculated that the reformulation could be closer to
reality. Of course, to the extent that mathematical formulations are equivalent, it does not
really matter to the physicist which is “more real”, however if our current theories are only
approximations, then such considerations make sense in trying to find a more correct and
accurate theory. If a stochastic differential equation explains quantum fluctuations, then this
would likely be the case, since in most cases one can picture such equations as approxima-
tions resulting from more detailed deterministic dynamical systems for which some degrees
of freedom have been averaged over.

The main problem in making sense of this connection between quantum systems and
classical systems in one higher dimension is the analytic continuation to imaginary time,
and the lack of any apparent connection between the “Langevin time” of a Langevin simula-
tion and real time. However, if one considers the behavior of fields that live on an expanding
phase boundary in a 4-d Euclidean space, such a connection can be made. If one accepts
the Langevin time itself as real time, then there will be a connection between it and the
fourth spatial coordinate at the surface (the coordinate perpendicular to the surface), due to
the motion of the surface. For the sake of simplicity it will be assumed to travel at con-
stant speed. For observers riding the surface, the fourth spatial coordinate will be nearly
indistinguishable from time, since they increase in lockstep. In a following section it will
be argued that this identification leads to a “spatialization” of time from which all of the
properties of special relativity arise - in particular it will be seen that clocks constructed
from dislocations and surface modes do not keep universal time, but rather the local time of
special relativity.

The remaining question is why quantum field theory is given in terms of a real-time
path integral with an oscillating exponential rather than the imaginary-time version with a
real exponential. It is perhaps not a question of real or imaginary time which is a math-
ematical transformation with no apparent physical basis, but the rather less exotic notion
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of real vs. imaginary frequency describing oscillatory vs. overdamped motions. This can
also be seen as the difference between non-equilibrium and equilibrium statistical mechan-
ics. If the universe were a single phase in equilibrium then it could be described by an
equilibrium statistical mechanical ensemble. Correlation functions would be decaying real
exponentials. The corresponding Langevin equation would be dominated by dissipative
forces and the corresponding path integral would be Euclidean (i.e. the imaginary time
version). However, an expanding phase boundary is a decidedly non-equilibrium object.
It breaks time translation invariance and at least one spatial translational invariance. One
may also have propagating modes present on the surface, due to conservation laws. Such
propagating modes exhibit oscillatory rather than dissipative behavior, and occur in many
3-d systems[6]. They lead to various complications in the theory of dynamical critical phe-
nomena, and are a crucial feature in the dynamical theory of phase transitions. In many
cases these systems are still describable by a stochastic differential equation - acomplex
Langevin equation, where non-dissipative forces play a crucial role[6, 12]. Solutions are
oscillating but contain random phase and amplitude fluctuations. The Fourier transforms of
correlation functions contain real-axis poles.

A number of authors have shown that the Parisi-Wu stochastic quantization can be per-
formed directly in Minkowski space, the result being a complex Langevin equation which
will be exhibited shortly[9, 10]. This completes the logical connection. To sum, fields
which represent dislocations or collective modes on a moving phase boundary in a 4-d
Euclidean space are likely describable by a complex Langevin equation, which approx-
imates the behavior of the larger deterministic dynamical system which fills the entire
Euclidean space. This complex Langevin equation has an equivalent path-integral repre-
sentation (meaning the two systems have the same correlation functions), which resembles
the Minkowski space path integral of quantum field theory. Some details will likely be
different, however. For instance, it does not seem likely that dissipation will be entirely
absent from the surface. This could be countered by an energy input, resulting in a steady-
state rather than an isolated system. Such a system lacks time-reversal invariance at some
level, which could have observable consequences (and perhaps help to explain CP non-
conservation in theK0 − K̄0 system).

The Langevin equation is a first-order differential equation with a fluctuating random
force. It was first applied to the case of Brownian motion of a small particle in a background
of randomly moving molecules colliding with it. Ifv represents the velocity of the particle,
then the Langevin equation is

v̇ = −γv + F + η(t) (1)

Theγv term is the frictional force exerted by the fluid,F is an applied external force (if
present) such as an electric field, andη(t) is the fluctuating force designed to mimic the
many collisions between the fluid which is assumed to be in thermodynamic equilibrium
at some temperature and the particle. In the absence of forceF , the particle exhibits a
random walk in position. Without the damping term it would also perform a random walk
in velocity, and the kinetic energy would increase without bound. However, any amount of
dissipation is sufficient to stabilize it and the particle’s average kinetic energy will become
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equal to1
2kTd, whered is the number of spatial dimensions,T is the fluid temperature,

and k is Boltzmann’s constant. If one wants to extend this treatment to an oscillator, a
problem arises in that a position dependent force cannot be incorporated into a first order
equation. The Hamilton equations are, of course, first order, but there are two of them. By
introducing a complex variableb = (p + ix)/

√
2, b∗ = (p − ix)/

√
2, one can write the

Hamilton equations for one degree of freedom as a single complex equation:

ḃ = i
∂H

∂b∗
. (2)

To explore these ideas in more detail, consider the system of a single harmonic oscillator
interacting with a bath of other harmonic oscillators[12]. The simple harmonic oscillator
in coordinatesx =

√
mωx′, p = p′/

√
mω, wherex′ andp′ are the usual coordinate and

momentum has the Hamiltonian
H = ωb∗b (3)

Here,k is the spring constant andω ≡
√

k/m. The Hamilton equation (2) becomes

ḃ = iωb. (4)

Interestingly, this formalism can be easily extended to the damped oscillator[12, 13] by
allowing ω to become complex. Replacingω with ω + iγ gives the equation of motion for
the damped oscillator,

ḃ = iωb − γb. (5)

Here, the complex formalism goes beyond the real formalism, since the Hamiltonian does
not technically exist for the damped oscillator unless auxiliary fields are added[13]. Note
that this is not a fully complex Hamiltonian function which would result in doubling the
number of equations of motion and producing an overdetermined system. Rather, the
Hamiltonian takes values along a ray other than the real axis. If we add a fluctuating force,
one obtains a complex Langevin equation,

ḃ = iωb − γb + η(t). (6)

This equation can be derived as the equation of motion of a tagged oscillator interacting
with a collection of “bath” oscillators whose behavior is averaged over[12]. The bath pro-
vides both the random force and the damping. It can be used, for instance, to describe
the behavior of a single-mode laser interacting with a thermal medium and thermal mirror
fluctuations[12, 14]. Similarly, it can also be used to describe propagating modes in dy-
namical critical phenomena[6]. Thus the complex Langevin equation is a well-established
equation for describing oscillating or propagating modes in a random medium.

If the Parisi-Wu quantization is applied to the Minkowski field theory directly, it has
been shown[9, 10] that the correlation functions derived from the path integral

∫

Dφ exp(iS(φ)/h̄) (7)
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can be obtained from the long-time behavior of the Langevin equation

φ̇ = iδS/δφ∗ − ǫφ + η(x, t) (8)

wheret is a fictitious “Langevin time” unrelated to the real time in the path integral,x
represents the four space-time variables,xi, with i = 1..4, and the Gaussian noise term has
the following correlation function:

< η∗(x, t)η(x′, t′) >= 2h̄δ4(x − x′)δ(t − t′). (9)

Field correlations are computed at equal Langevin times and the damping,ǫ, is taken to zero
after correlation functions are calculated. Equation 8 appears to be a multivariate version of
equation 6 (the first term being generalized to the RHS of equation 2) with the Minkowski
actionS playing the role of a Hamiltonian. For example, for the complex scalar field,

S =

∫

(|∂µφ|2 − m2φ∗φ)d4x (10)

one obtains the complex Langevin equation

φ̇ = i(−∂2φ/∂x2
4 + ∇2φ − m2φ) − ǫφ + η(t) (11)

One can understand the difference in sign between the spatial and local-temporal (x4) deriv-
ative terms in relation to the different dynamic behavior of the interface in these directions.
If one thinks ofφ as a displacement field of elementary atoms from their quiescent-crystal
locations, one expects oscillatory behavior in the spatial directions. The sign of the∇2

term is such as to provide the usual restoring force from neighboring atoms making this
possible. A negative restoring force, as exists in the time direction, leads to an instability,
as occurs in aφ4 theory with a negative mass-squared term, for example. This will result in
translational motion (a soft mode). If we think of the membrane as the physically relevant
object, it is in translational motion in the temporal direction. Therefore the “Minkowski
signature” of the D’ Alembertian operator would appear to be directly related to the dy-
namics of the phase boundary, which is itself, of course, controlled by the Lagrangian of
the “base-theory” of the elementary atoms. The fact that the instability that resulted in the
motion of the phase boundary is a phase transition of the base-theory, which is likely driven
by a spontaneous symmetry breaking, suggests that the Minkowski space we are familiar
with is due to a spontaneous symmetry breaking from original space-time symmetry of the
base-theory. Such a dynamical origin for Minkowski space, and the consequences of spe-
cial relativity that result, is in rather distinct contrast to the kinematical origin postulated
by Einstein. Indeed it is more like the view held by Lorentz and others who clung to the
idea of a cosmic ether, even if invisible. The crystal and liquid in the picture presented here
is a form of ether, which, however, is only invisible at low energies. When photon wave-
lengths get close to the elementary lattice spacings, then the deviation from linearity of their
phonon-like dispersion relations in this theory will become apparent, and the existence of
the crystal will have observable effects. These ideas are expanded in secs. III & IV.
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Getting back to the Langevin equation under discussion, we nowconsider the conse-
quences of our somewhat different interpretation of the Langevin time coordinate. The
usual treatment calculates correlation functions at equal Langevin times, whereas we are
essentially locking the Langevin time to the ordinary time through the presumed uniform
motion of the phase boundary. It is important to see whether this will make any difference
in the relationship to the quantum field theory. One notices a peculiarity in equation 11
when subjected to dimensional analysis. Taking the usual dimension of[ℓ−1] for theφ field
and [ℓ] for xi and t variables leads to different dimensions for theφ̇ and2φ terms. One
common solution is to let the fictitious time have dimensions[ℓ2][9, 11]. Then dimensional
consistency is obtained and̄h comes out dimensionless. However, since we want the ficti-
tious time to become the real time, another solution must be taken. Introducing a parameter
a with dimensions of length, which can be taken to be the lattice spacing, rewrite equation
11 as

φ̇ = ia(−∂2φ/∂x2
4 + ∇2φ − m2φ) − aǫφ + η(x, t) (12)

where
< η∗(x, t)η(x′, t′) > = 2ah̄δ4(x − x′)δ(t − t′). (13)

The two times now have the same dimensionality, the equation is dimensionally consistent
and the two factors ofa, one multiplyingS and one multiplyinḡh will cancel in the path
integral (̄h will now be set to unity). For the free field theory we are considering here, the
Langevin equation can be solved[8, 9, 11], with a long time stationary correlation function

D(x − x′, t − t′) ≡ lim
t,t′→∞

< φ∗(x, t)φ(x′, t′) > (14)

(with t − t′ fixed) given by

D(x − x′, t − t′) =
2a

(2π)5

∫

d4k

∫

dω
e−ik(x−x′)−iω(t−t′)

ω2 + a2(k2 − m2 + iǫ)2
. (15)

Settingt − t′ = x4 − x′
4, we get a free propagator of

D(x − x′) =
1

(2π)4

∫

d4k
e−ik(x−x′)e−a|(k2−m2)(x4−x′

4
)|

k2 − m2 + iǫ
. (16)

This is slightly modified from the usual field-theory propagator which results from tak-
ing equal Langevin times,t = t′. However, the extra exponential factor affects only the
off mass-shell propagator, and even for that is highly suppressed by the factor of the lat-
tice spacing, a reasonable guess for which might be around10−16 (eV)−1. It thus seems
unlikely that this extra factor would affect calculations at today’s accelerator energies. It
breaks Lorentz invariance explicitly. As mentioned before, this theory is only approxi-
mately Lorentz invariant. Lorentz invariance is good at energies small compared to the in-
verse lattice spacing. From a more fundamental point of view, the rest frame of the crystal
is a preferred frame and calculations should be performed in that frame. However, observ-
able effects of this frame dependence are limited to very high energies. These are possibly
accessible through studies of cosmic rays (see sec. III).
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To sum, building on the known equivalence of the Minkowski pathintegral to a sto-
chastic process involving a complex Langevin equation, it has been shown that ordinary
quantum field theory may result from the dynamical critical behavior of an expanding phase
boundary in a four-dimensional Euclidean space. In this picture, quantum fluctuations are
actually thermal fluctuations in the higher dimensional space.

3 Special Relativity Realized Dynamically

The underlying theory pictured above is a classical dynamical system lying in the 4-D
Euclidean space, governed by a universal Newtonian time. It is proposed that Minkowski
space is the result of restricting attention to the hypersurface representing the phase bound-
ary, and choosing local time to be the spatial coordinate perpendicular to the moving bound-
ary. In calling it a Minkowski space, we are considering only a small portion of the surface
which can be taken to be approximately flat. Globally, the spatial geometry is hyperspher-
ical, and the space is a positively curved pseudo-Riemannian space similar to the positive-
curvature case of the Robertson-Walker metric of standard General-Relativity-based big-
bang cosmology.

To show the emergence of Minkowski space locally, a more detailed model is needed.
If the phase boundary is considered the boundary between a liquid and crystalline solid,
with the solid growing into the liquid, then a reasonable model for the photon is the sur-
face acoustic wave, and for elementary fermions, screw dislocations in the crystal. The
surface acoustic wave is a propagating solution within the surface that decays exponentially
away from the surface. It obeys a phonon-like dispersion relation, with a speed somewhat
below that of shear bulk waves. It is well known from the 1938 work of Frenkel and Kon-
torova [15] and of Frank and Eshelby in 1949 [16] that screw dislocations obey the Lorentz
contraction formula with the speed of light replaced by the speed of transverse sound. In
other words, the pattern of crystal distortion that surrounds the dislocation becomes ellip-
tical for a moving dislocation, with the strain pattern in the direction of motion shrinking
according to the Lorentz contraction formula. An “object” made from an array of such dis-
locations really does shrink in the direction of motion. In addition, the effective mass of the
dislocation grows with velocity according to the relativistic formula (more precisely the en-
ergy and crystal-momentum transform according to the Lorentz transformation)[16, 17, 18].
Therefore, screw dislocations are prohibited from being accelerated beyond the velocity of
transverse sound in a crystal, because the kinetic energy becomes infinite in that limit. In
a real crystal, however, this limit can be exceeded by introducing a moving dislocation
from an adjacent compatible medium where the sound speed is higher. The supersonic
dislocation rapidly decelerates to subsonic velocities by emitting “vacuum Cerenkov radi-
ation” [17, 18]. It is also conceivable to exceed the limit by violating the approximations
of continuum linear elasticity theory on which these results are based. This relativistic be-
havior appears to be followed for any reasonable dislocation model for which perturbations
are subject to continuum linear elasticity theory[18]. It is not immediately clear what the
minimum requirements are[19], but coupling to a single type of phonon with a relativistic
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dispersion relation is necessary, and may be sufficient. Coupling to other types of phonons
is possible only if these either have the same velocity or have an energy gap. The main point
here is there can not be more than one limiting velocity for low-energy excitations. For in-
stance, ordinary edge dislocations obey a more complicated set of contraction equations
involving both the longitudinal and transverse sound velocities[16, 17].

Considering again the phase boundary universe model, if all matter is made up of screw
dislocations then the above considerations strongly suggest that measuring rods constructed
from “dislocation arrays” will obey the Lorentz contraction. For now, consider only obser-
vations made from the rest frame of the crystal. A measuring rod willphysicallyshrink if
moving with respect to this frame along the rod’s direction. The Lorentz transformation
also involves time, however. The Lorentz contraction and mass increase certainly will have
physical effects on clocks that are constructed from moving dislocations. Günther [20] has
investigated using the breather solution of the sine-Gordon equation as a clock (sine-Gordon
soliton kinks are a lower-dimensional dislocation model). He finds such a clock slows with
velocity in accordance with the usual time-dilation formula. If length and time standards
are both based on solitons, full Lorentz invariance ensues.

For our case, assuming only length contraction and observing from the crystal rest
frame, a simple light-clock where a flash of light is given off and bounces off a mirror
held by a rigid frame to the light source, then back to a detector near the source, in either
transverse or longitudinal orientations, exhibits time dilation following the usual treatment
in special relativity. However, although the argument is the same, the assumptions are dif-
ferent. At this point we have not assumed anything about moving frames of reference. We
are simply observing a moving rod and a moving clock from the rest frame of the crystal,
where we know the speed of sound (light), and know it is isotropic (we are always assuming
an isotropic crystal). This is all that is needed to demonstrate time dilation from Lorentz
contraction of the light-clock. We notice that when observed from this frame, rods shrink,
and clocks slow down due to physical, dynamical effects. Energy and crystal-momentum
of dislocations also obey relativistic equations[16, 17, 18].

Now we ask what coordinate system is a reasonable one for a moving observer to use?
Of course, the moving observer will use the shrunken rod to measure distance and the slow
clock to measure time - what other reasonable choice does s/he have? It is also natural for
moving observers to choose their local time coordinate to be along their own world line,
and spatial hypersurfaces to consist of points all with the same time coordinate, with syn-
chronization performed using light signals. The full forward Lorentz transformation, which
consists not only of scale changes inherent in Lorentz contraction and time dilation, but also
in the aforementioned axis rotations, ensues. This now allows us to transform coordinates
between the crystal rest frame, and the natural frame of a moving observer. Inverting this
transformation is simply a matter of mathematics. As is well known but seems to have been
initially unappreciated by Lorentz, this inverse Lorentz transformation has the same form
as the forward transformation, with the relative frame velocity negated. The point is that
once the full forward Lorentz transformation is realized, fully reciprocal special relativity
results simply due to the mathematics of the Lorentz transformation. In Einstein’s special
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relativity, this is due to the symmetry of the underlying Minkowski space - a kinematical
symmetry. All frames are exactly equivalent. Although our result is the same, conceptually
it is very different, since the Minkowski space has resulted from a dynamical symmetry of
the moving boundary solution. Unlike in the Einstein picture, the Lorentz contraction and
time dilation have different causes in different frames in this picture. From the crystal rest
frame, the shrinking of a moving rod and slowing of a clock are physical effects, caused
by motion within the stationary crystal. From the moving frame, the observation that a rod
and clock in the crystal rest framealsoappear to be shortened and slowed are more of an
illusion, created by using moving instruments, and a bent reference frame, with its different
notion of simultaneity. Because these points of view are conceptually different (kinematic
vs. dynamic symmetry), Lorentz, Larmor, Langevin and others held on to the latter view
for some time after special relativity won acceptance[21]. In fact, the view of relativity
given above is very similar to that of Lorentz, who introduced the concept of local time
given above. The unobservability of the ether in this continuum theory eventually led to
the demise of this viewpoint. However, if the underlying medium is not a continuum, but
a lattice (which itself may lie in a continuum), then at high enough energies differences
between the stationary and moving observer must eventually show up. This is because un-
like the photon, the phonon dispersion relation is not a straight line. For a linear isotropic
material in three dimensions it is given by

ω2(k) = (2c/a)2(
3

∑

i=1

sin2(kia/2)). (17)

Surface phonons follow a similar dispersion relation. One has to get to within about 20%
of the maximum frequency before the phonon curve differs from the photon curve by more
than 1%. Above this point significant dispersion occurs. A very fast-moving light clock
which blue-shifted the light into this frequency region would show measurable deviations.
The crystal rest frame will be the only frame in which the speed of light at these high
frequencies remains isotropic. It therefore becomes an observable preferred frame - the
ether is detectable.

These considerations suggest a number of ways that this theory could be checked ex-
perimentally. Of course, the lattice spacing could always be made impossibly small, eras-
ing all observable effects. Observations of very-high-energy cosmic rays can put a lower
bound on the lattice spacing. Assuming the Plank relationE = h̄ω (a possible origin of
which is given in the next section) and settingh̄ = 1, the definite identification of cos-
mic ray photons at energies of a few times1013 eV [22] means the high-energy cutoff of
the photon dispersion relation must lie above this, so probablya < 10−14 (eV)−1. An
interesting enigma in Cosmic Ray physics is the presence of an “ankle” in the spectrum
around1018 eV, where the drop in intensity with energy becomes less steep, along with
the apparent absence of the expected cutoff due to interactions with the cosmic microwave
background radiation (CMB)[23]. This Greisen-Zatsepin-Kuzmin (GZK) cutoff [24] is due
to pion photo-production from interactions between the cosmic ray particle (assumed a pro-
ton or light nucleus) and CMB photons. This effectively limits cosmic rays of energy above
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5 × 1019 eV to a relatively short travel distance - within the local supercluster (photons
and heavy nuclei are also limited by similar mechanisms involving starlight). However, the
number of cosmic rays at this energy and higher, although small in absolute event counts,
does not show any diminution from the earlier trend. In other words, there is no observa-
tional evidence for the GZK cutoff. Another puzzle is that if the very high energy cosmic
rays do come from nearby sources, then, they would be expected to point to within a few de-
grees of their sources, despite the deflection of magnetic fields, due to the high momentum
of the particles. However, there appears to be no correlation with possible nearby sources. A
photon energy cutoff in the range1016 to 1019 eV could invalidate the Lorentz transforma-
tion which is used to derive the GZK cutoff from the known behavior in the center-of-mass
frame[25]. It would also affect the decays of other high-energy particles, such as neutral pi-
ons. A1020 eV neutral pion could not decay into two photons, but at minimum into 10,000
photons for a photon energy cutoff of1016 eV. This would be highly suppressed due to the
large power of the fine structure constant required. If the weak bosons had similar cutoffs,
then it seems the neutral pion could be made almost stable above a certain energy. Decay
of the neutron could be similarly suppressed. If one or more of these neutral particles could
travel cosmological distances above a certain energy threshold, it could possibly explain
the ankle, due to the addition of a new species to the particle mix. High-energy neutral
particles should point toward their sources even at great distances, since they are not much
affected by magnetic fields (there is still some effect through magnetic moments). Interest-
ingly, Farrar and Biermann have shown that the observed directions of some of the highest
energy events can be correlated with distant quasars[26]. This would be consistent with the
scenario sugested here.

4 Photons as Surface Acoustic Waves

Generically, surface acoustic waves (SAW’s) traveling in thex-direction on a solid surface
atz = 0, with the solid occupying the half-spacez < 0 takes the form[27, 28]

uj = u0je
i(kx−ωt)+κz (18)

with k, ω, andκ real, andκ ∝ k at least for smallk. Hereuj is the elastic displacement field
for the solid, which is defined only forz ≤ 0. Typically most of the energy in surface waves
is confined to a region within a few wavelengths of the surface. The most common SAW is
the Rayleigh wave, first described by Lord Rayleigh in 1885[27, 28]. It is polarized in the
saggital plane (perpendicular to the surface), and consists of motion that is both transverse
and longitudinal. It is dispersionless in the continuum version and has a typical phonon dis-
persion law on the lattice[29]. This wave does not seem to be a promising one to model the
photon after, however, since it has only one polarization, regardless of the dimensionality
of the surface. The Rayleigh wave is the only type of surface wave for the simplest case of
a flat linear elastic half-space. However, if the surface is allowed to have properties differ-
ent from the bulk, such as a different density, elastic constant, surface tension, curvature,
roughness, piezoelectricity, magnetoelasticity, etc. then another surface wave will usually
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exist, a Love wave[30, 31, 32, 33]. This wave, originally derived for a finite slab of different
material deposited on the half-space[34], has a shear-horizontal (SH) polarization, thus for
a three dimensional surface would have two transverse polarizations. The Love wave also
exists for a thin surface layer such as a thermodynamic phase boundary[31, 35, 36]. It can
be seen as a perturbation of the SH surface skimming bulk wave (SSBW) that exists even
for the simple half-space. The SSBW is a wave that does not decay below the surface. This
solution is unstable with respect to virtually any surface property that retards the wave speed
near the surface, which will turn it into an SH surface wave with exponential decay away
from the surface, i.e. a Love wave[30, 31]. The Love wave is somewhat dispersive, due to
the introduction of a quantity with dimensions of length that characterizes the surface-layer
thickness. However if this is no more than a few lattice spacings, then the dispersion is
similar to that of an ordinary phonon. Adding a liquid to the external space complicates but
does not significantly change the situation. However, the case being envisioned here has a
more complicated boundary condition than has been considered in the surface-wave liter-
ature, since the boundary is growing, perhaps rapidly. This can perhaps be treated by the
method of virtual power[37], and is briefly considered by Maugin[31] and also by Kosevich
and Tutov [36]. The transfer of momentum to the “new surface” of the growing crystal will
modify the usual traction-free boundary condition of the Raleigh-wave solution. It is this
latter boundary condition which prevents the SH polarization from existing in the simple
half-space[28]. The violation of this boundary condition by the growing crystal is further
evidence that SH waves probably do exist in this case.

Since the weak interactions also need to be accounted for, probably more structure
needs to be incorporated into the model. If we imagine the elementary molecules to be
non-spherical, then they have their own non-trivial symmetry group, compatible with but
distinct from that of the crystal. This basis symmetry group could account for internal
symmetries. For instance, if the molecule can be represented by a 4-d vector with nearest-
neighbor Heisenberg-like interactions, then an SO(4) symmetry (isomorphic to SU(2)×
SU(2)), which may be partially broken by other interactions, will exist. The spontaneous
breaking of this symmetry will result in surface magnons[38]. These come in both acoustic
and optical varieties. The surface magnons can also mix with surface elastic waves through
the magneto-elastic effect, reminiscent of electroweak unification. These possibilities need
to be examined in detail - they are mentioned here to indicate the rich possibilities for model
building that occur in surface modes. It is also worth noting that a promising approach to
incorporating chiral fermions on the lattice, necessary for a lattice approach to the weak
interactions, incorporates a fourth spatial dimension, with the chiral fermions living on a
domain wall[2, 39]. The picture of the universe presented here seems ideal for the realiza-
tion of this mechanism.

A universal property of all surface modes is the exponential decay as the bulk is en-
tered, characterized by a decay length proportional to the wavelength. This property can
be used to derive the Plank relationE = h̄ω, perhaps the most fundamental equation of
quantum mechanics, from the equipartition theorem. If we assume that all elementary de-
grees of freedom are thermally excited (actually not a completely good assumption due to
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conservation laws and partial non-ergodicity - see discussion below), then the equipartition
theorem will give equal energy to each harmonic degree of freedom of amountkT4, where k
is Boltzmann’s constant andT4 is the 4-d temperature. For a surface wave with decay length
κ = bk, whereb is a constant, taking into account the energy of a wave being proportional
to its square, one has an energy depth profile (1-d energy density)

E = E0e
2κx4 (19)

wherex4 is taken to be zero at the surface, and becomes negative inside the medium. The
energy in the monatomic surface layer itself is given byE0a. The total energy can be
computed by

Etot =

∫ 0

−∞
Edx4 = E0/(2κ) (20)

Settingκ = bk (proportionality of decay length to wavelength),ω = ck, and the total
energy tokT4, one can solve for the surface layer energy,E0a, now denotedE3

E3 = (2bakT4/c)ω (21)

which is the Plank relation if̄h = 2bakT4/c. This is consistent with the thermal explana-
tion of quantum mechanics given above, namely thath̄ is essentially the 4-d temperature,
with the necessary factors ofa and c to fix the dimensions. The essential feature which
gives higher frequency excitations higher energy on the surface is the higher concentra-
tion of SAW energy near the surface, compared to lower frequency excitations which are
more spread out in the fourth dimension. Thus equal sharing of energy in four dimensions
naturally leads to unequal energies on the 3-d surface, as embodied in the Plank relation.

Not all surface modes will necessarily become excited for two reasons. First is the ef-
fect of global conservation laws, and second is the probable lack of full thermodynamic
equilibrium. Consider the liquid degrees of freedom directly above the growing surface.
These are presumably in thermal equilibrium in their liquid environment. When the surface
arrives, they are rather suddenly thrust into a new environment with modified interactions
due to the translational symmetry breaking of the crystallization. They therefore do not
have much time to adjust to these new conditions by the time they can be considered part of
the new crystal surface. Eventually they reach a new equilibrium state well after the surface
has passed and they become part of the bulk. Thus the surface degrees of freedom are in a
transitional state. With the arrival of crystalline order comes a new conserved quantity, the
crystal momentum. It is a consequence of the remaining discrete translational invariance
but technically is a permutation invariance of the atomic position variables, resulting in
conservation of wave number for phonons[40]. Since this is only a single global constraint
(or three constraints in three dimensions) it would not appear to limit the allowed random
excitations much. However, satisfying global conservation laws requires global correla-
tions, and these take a long time to establish. Therefore one expects to have to satisfy
conservation laws locally. This means that one should not expect widely separated thermal
excited phonons whose wave vectors happen to add to zero. Rather one expects standing
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waves or standing wave packets where the zero net wave vector requirement is met pairwise
and locally. Thus the random vibrational thermal energy of the liquid will re-organize on
the surface primarily as such standing waves, with the amplitudes of constituent travelling
waves locked, and phases randomly fluctuating. This may represent the zero-point energy
of the photon field. Since each travelling wave mode is not independently excited, the net
energy assigned to each is one-half that of the standing wave, i.e1

2 h̄ω.
However, if a travelling propagating wave already exists on the surface (perhaps excited

by dislocation interactions etc.) then it will be preserved by the crystal momentum law, and,
since it is now an allowed excitation can exist independently of the standing wave and be
given the full equipartition energy of̄hω, on top of what it gets from the zero-point excita-
tion. One wonders how multiple photon excitations can arise in such a picture, which will
lead to a discussion of resonances in coupled oscillator systems. Before embarking on that,
it is worth noting that all of the discussion here concerning zero-point energies and photon
excitations is in one sense unnecessary, since once the formal equivalence of the stochastic
evolution of the phase boundary and the quantum system is accepted, one can merely plug
in the QED or standard model Lagrangian and obtain the equivalent Langevin equation for
the phase boundary evolution, which will, due to the above equivalence, necessarily include
all of the known particle excitations and quantum effects. The discussion here is therefore
not to prove that each feature of quantum mechanics is included, but rather to illustrate how
each quantum feature might be manifested in the phase boundary evolution. In a similar
sense, energy quantization is not as apparent in the path integral formulation of quantum
mechanics as it is in the canonical formulation, but it has to be there, and can be seen from
multiple poles of the propagator.

A collection of coupled oscillators, even if somewhat non-linear, is generally not er-
godic. This was demonstrated by the famous computer simulation of Fermi, Pasta and
Ulam in which they coupled 64 harmonic oscillators with non-linear couplings, expect-
ing to see the approach to equilibrium[41, 42, 43]. Instead they found that most modes
remained unexcited with energy pouring back and forth between a few modes as in the
Wilberforce pendulum - in other words a limit cycle as opposed to chaos. The only modes
that participated were those that met or were very close to the resonance condition

∑

i

niωi = 0 (22)

where theni are integers[42, 43]. This was later understood in terms of the KAM theorem
(Kolmogorov, Arnol’d, Moser), which essentially states that for small non-linearities only
regions near resonant surfaces in phase space will get occupied. Full chaos only ensues
when these resonant regions grow large enough to be overlapping[44]. Phenomena such
as down-conversion or harmonic generation in the presence of small non-linearities can be
understood in terms of the resonance condition. The n-photon state takes the form of an
nth order resonance from this point of view. The integers in the resonance condition are the
correspondents to energy quantization. The degree of excitation is consistent with that of
a single nth harmonic photon with which the state is resonantly linked. Therefore it seems
plausible that the Plank relation and full photon spectrum, including zero point energy, does
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have a realization in the propagating modes of the phase boundary as it moves through the
random medium.

5 Quantum Superposition and Measurement - Zitterbwegung
and Spontaneous Symmetry Breaking

The picture described above treats quantum fluctuations as thermal fluctuations in the 4+1
dimensional space. In such a picture quantum tunneling is explained classically as thermal
activation, i.e. due to a random kick of extra energy which results from thermal contact
with the liquid and solid phases. Due to such thermal fluctuations, energy is not conserved
over short time periods; it is conserved only in the average over time. Thermal fluctuations
may create a kind of zitterbewegung – very rapid variation at small scales, that enforces
the uncertainty principle and allows for superpositions. The ensemble average implied in
a quantum expectation value is replaced by a time average. For rapid fluctuations which
cover the ergodic subspace in times short compared to the time between measurements,
these should yield identical results. Over very short time periods, additional correlations
may appear in the time-averaged case, since the classical system is in a particular state at
any one time, so subsequent states will retain some memory of previous states.

This more classical evolution affords the opportunity to explain the quantum measure-
ment process as a spontaneous symmetry breaking event. Anderson has suggested that mea-
suring devices incorporate spontaneous symmetry breaking in their operation[45]. Ne’eman
has also espoused this viewpoint. In addition, he has shown that EPR type correlations
can occur in classical systems with gauge symmetries, with the gauge connection enforc-
ing long-distance correlations among fluctuating variables[46]. More detailed models have
been considered in [47] and [48].

When a classical statistical mechanical system undergoes a spontaneous symmetry
breaking, the ergodic phase space splits into non-communicating subspaces. From that
point on, the system remains trapped in one of the subspaces. Which subspace is chosen
is simply determined by the subspace the system happened to be in at the time of symme-
try breaking. A measuring device is postulated to be any device that can couple its order
parameter to a quantum system and that includes a control that can initiate spontaneous
symmetry breaking of that order parameter. The measuring device, originally with an un-
broken symmetry, couples to the system under study becoming strongly correlated with it.
Then an adjustment is made to the potential of the measuring device which initiates spon-
taneous symmetry breaking. The measurement takes place at this time, when the ensemble
of possible future states of the combined system splits into non-ergodic subensembles cor-
responding to the possible values of the order parameter, also corresponding to possible
values of the measured quantity. Future evolution is confined to a single subensemble in
the usual manner of a classical symmetry-breaking phase transition. In this picture mea-
surements are well defined, the collapse is a physical event, and a clear distinction exists
between what constitutes a measuring device and what does not. The symmetry breaking
barrier does not even have to be infinitely high - all that is required is that the tunneling
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time of the post measurement state to be long compared to the time scale of the experiment.
This is in contrast to what occurs if the same concept of spontaneous symmetry breaking is
applied to explain measurement in standard quantum mechanics. Here it is difficult to see
how even spontaneous symmetry breaking can break the superposition, especially if mea-
suring devices are finite so tunneling probabilities are not quite zero (e.g. ref. [47] still uses
the Everett interpretation to deal with the “collapse”). Nevertheless it is assumed that when
the universe undergoes a cosmological phase transition it does not end up in a superposition
of the possible outcomes but rather “measures itself” so as to fall into a single vacuum. In
the new picture given here, an event like this is in the same category as a measurement and
the result of both is a physical collapse of the available future phase space.

Because the “current past” is continuously undergoing 4-d thermal fluctuations, it is
only frozen to the extent that the ensemble is limited due to spontaneous symmetry break-
ing. Thus questions such as “which slit did the electron go through” or “which direction
was the spin pointing” are as meaningless here as they are in standard quantum mechanics.
This is because the details of history are continuously being rewritten as both the current
past and present fluctuate. Only to the extent that the ensemble is limited by spontaneous
symmetry breaking can one make definite statements about past events. EPR (Einstein-
Podolsky-Rosen) states, which consist of two separated spins in a net spin-0 state, can
only undergo correlated fluctuations which obey the global angular-momentum conserva-
tion law. The spin direction of each particle will fluctuate in such a way that its partner
fluctuates oppositely. Measurement of either spin is performed by spontaneously breaking
the spin direction symmetry, after which a barrier will exist preventing further fluctuations
of either particle. Such a process was envisioned in [46]. Such non-local correlations may
seem odd, but they are formed by the causal process of separating the particles, and do not
violate causality (causality is arbitrated from the crystal rest frame, where universal and
local time are equivalent).

6 Dislocations as Candidates for Elementary Fermions

Dislocations, particularly screw dislocations and their variants, provide a rich building
ground for models of elementary particles. In this section a detailed model will not be
attempted, but rather the general problem of extending the screw dislocation into four di-
mensions will be discussed, which will result in a four-dimensional string.

The idea of representing elementary particles as dislocations in a medium is a rather old
one. Burton talked of “strain-figures” that could move through a medium and interact[49].
Although most 19th century physicists considered matter to be separate from the ether,
Larmor suggested the possibility of matter particles being singularities in the ether itself
and sought a unified theory of matter and radiation through the properties of a single
medium[50, 51]. In more recent times the modeling of elementary particles as topologi-
cal solitons (a type of dislocation) has intrigued many, with the Skyrmion picture of the
nucleon being perhaps the most successful.
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The screw dislocation in three dimensions has a number of features that liken it to an
elementary fermion. The left and right handed versions can be pair-produced or annihilated,
and their elastic interactions have a number of electromagnetic analogies, the most often
cited being to magnetostatics[18, 52, 53, 54]. Although double dislocations are not totally
prohibited, they are very unfavorable energetically. Screw dislocations are, of course, line
defects, so cannot be compared directly to point particles. One is tempted to interpret the
line defect as a world-line. However, this implies an extension to four dimensions. An
isolated screw dislocation is unfortunately not an option in four dimensions. This can be
seen in a number of ways. If one circles a screw dislocation in three dimensions, then one
finds after a single loop that one has advanced one lattice spacing to the next sheet of atoms
in the direction of the dislocation. The degree of non-closure of the loop is represented
by the Burgers vector of the dislocation, which for a screw dislocation on a cubic lattice
is one lattice spacing long and in the same direction as the dislocation, or opposite for an
oppositely-handed dislocation. Although the transition is gradual, the point on the loop at
which one can be deemed to be on the next level can be arbitrarily defined - the set of these
points for all possible loops is called the Volterra surface. The freedom of choice of the
Volterra surface can be thought of as a form of gauge invariance. There are many atoms far
from the dislocation which have moved some fraction of a lattice spacing from their original
lattice positions, but there is not much stress associated with this since all of the neighboring
atoms have moved a similar amount. Stresses are concentrated only around the dislocation
line. If one tries to embed this structure into a non-dislocated 4-d lattice, then those atoms
far from the dislocation which are shifted from their original lattice positions by near 1/2
of a lattice spacing will fit badly the undislocated lattices adjacent to them in the fourth
dimension, where the atoms are all at their original undislocated positions. The energy
of such a structure is proportional to the four-volume - it is no longer a one-dimensional
dislocation. The other way one can see there is something wrong in simply promoting the
screw dislocation to four dimensions, is that a loop apparently surrounding the dislocation
can be moved into the fourth dimension, where the dislocation does not exist, and shrunk
to a point. Thus there is no longer a consistent topological classification of this object.

The screw dislocation can be extended into the fourth dimension by copying it onto each
successive 3-lattice as the fourth coordinate is changed. This produces a wall of identical
dislocations. The solution is translational invariant in the fourth dimension and involves no
new stresses, since each atom is exactly one lattice spacing away from its neighbor in the
fourth direction. However, we now have a domain wall in 4-d or line in each 3-d slice. For
an elementary particle we want something closer to a point in 3-d. An obvious solution
would be to wrap the domain wall around onto itself into a small tube, the 3-d cross-section
of which would be a string. The bending of the wall introduces stresses which favor a larger
string, but this is opposed to the ordinary screw stress proportional to the string length, so
there is the possibility of a stable equilibrium size. Going back to the 3-d cross-section, the
Volterra surface is any surface bounded by the string. A loop that threads the string will
pass through the Volterra surface and detect the dislocation.



Quantum Mechanics, Quantum Gravity, and Approximate LorentzInvariance... 127

Assuming a planar loop in the 3-d cross-section introduces a direction, the spatial nor-
mal to this plane (the temporal direction is also normal). This suggests the possible inter-
pretation of a spin direction. Another strong possibility is that the constituent screw disloca-
tions are not straight but form spiral helices. Ordinary screw dislocations often take helical
form through a process that involves absorption of interstitials or vacancies[18, 53, 54]. The
plane of the helix introduces another spatial direction which could be related to spin or spin
precession. Interstitials are important in that they introduce curvature into the crystal[55].
Such curvature is absolutely necessary to produce the large-scale hyper-spherical spatial
geometry inherent in the cosmological scenario outlined above. It also allows a connection
between particle properties and gravitation.

One additional property of crystal dislocations that may provide an intriguing parallel to
the strong interactions is the existence of partial dislocations[18, 53]. Under favorable con-
ditions, a dislocation may split into two or more partial dislocations with fractional Burgers
vectors. Such objects cannot exist in isolation since they would involve dislocating the
entire lattice - resulting in infinite energy. These partial dislocations are linked by a sheet
containing a stacking fault, which produces an attractive force proportional to the sheet
area (the partial dislocations also repel each other through other elastic forces, resulting in
an equilibrium separation). The possible analogy between quarks and partial dislocations,
with gluons being related to the associated stacking faults is compelling. Confinement and
fractional charge are inherent and linked properties of these configurations. Another com-
mon feature of dislocations in ordinary crystals is the formation of dislocation networks.
These are ordered or disordered collections of either partial or full dislocations and anti-
dislocations, with zero net Burgers vector. New kinds of dislocations can be defined from
defects in an otherwise ordered dislocation network. For instance the chiral condensate
could be modeled as a network of partial dislocations and associated stacking faults. Nu-
cleons and mesons could then be modeled as dislocations and excitations of this underlying
network, which is reminiscent of the Skyrmion approach. Ordered dislocation networks
can have dislocations which can form an ordered network which can itself have higher-
order dislocations, producing a possible hierarchy of dislocations several levels deep.

7 Gravity as Elasticity of Space

The similarities between the General Theory of Relativity and the theory of elasticity have
been remarked upon by many authors. Sakharov spoke of relating General Relativity to
a “metrical elasticity of space”[56]. Kokarev has likened space-time to a “strongly-bent
plate” [57]. Several authors have developed three-dimensional continuum models of dislo-
cations that resemble three-dimensional gravity[58].

Screw dislocations themselves do not result in curvature - rather they introduce torsion
into the lattice, since an observer circling a screw dislocation finds themselves transported
forward, along the dislocation direction. Two sources of curvature have been put forward
- disclinations and extra matter (primarily interstitials). Disclinations are large angular de-
fects. For example, the pentagons in a geodesic dome can be thought of as disclinations
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in an otherwise flat hexagonal tiling, and produces obvious curvature in the surface. The
problem with disclinations is that they produce curvature only in large finite chunks, rather
than building up from many small pieces. So, whereas a disclination is a good model for
a cosmic string[59], it is not a good candidate for an elementary particle. We are therefore
left with the extra matter concept, which has been championed by Kroner[55]. In Kroner’s
theory, the geometry of the resulting continuum model is characterized by both curvature,
the source of which is extra matter, and torsion, which is caused by dislocations[54, 55, 60].
The obvious four-dimensional generalization would be the Einstein-Cartan-Sciama-Kibble
theory of gravity, which supplements the usual Einstein equations with an equation relating
spin density to the torsion tensor[61, 62]. Torsion effects are too small to be detected exper-
imentally, so this theory is, so far, experimentally indistinguishable from General Relativity.
In order to satisfy the equivalence principle, the absorption of interstitials by dislocations
mentioned above would have to be a universal property, with the degree of absorption pro-
portional to the energy, so that curvature could couple to the energy-momentum tensor. It
is not clear that this would necessarily happen, however it could be forced by symmetries,
since due to the Bianchi identity the Einstein tensor can only couple to a conserved quan-
tity. Not all interstitials are necessarily absorbed. Unabsorbed interstitials are an intriguing
dark-matter candidate. Unlike ordinary particles they do not persist, since they are true 4-d
point defects. Their behavior is more like that of instantons. Their fleeting existence could
make their detection difficult other than through their gravitational effects.

Regardless of the details of the gravitational theory that results, it will necessarily be
a quantum theory of gravitation. This is because the evolution of the spatial hypersurface
is influenced by the thermal fluctuations in the surrounding medium which are the source
of quantum fluctuations in this picture. One certainly expects thermally induced curvature
fluctuations. However, if the elementary lattice spacing is much larger than the Plank length,
it is likely that such curvature fluctuations would be small, and gravitation would remain, in
practical terms, a largely classical theory. As distances approached the lattice spacing, then
the continuum theory (presumably a generalization of General Relativity) would have to be
replaced with an appropriate lattice theory, just as continuum elasticity theory can be used
for a crystal only for distances large compared to the lattice spacing. Of course, just as in
ordinary crystallography, the lattice theory itself may be based on an underlying continuous
space. The resolution of singularity problems in general relativity are more likely to come
from the transition to an appropriate lattice theory than from the incorporation of quantum
effects, unless the lattice spacing is of order the Plank length or smaller.

8 Cosmological Consequences

The model of an expanding phase boundary provides good explanations for some cosmo-
logical puzzles but introduces additional problems as well. Phase nucleation is a common
way for structure to arise from chaos spontaneously. It naturally creates an expanding uni-
verse starting from a very small but not infinitesimal seed. Only if the initial fluctuation is
above a certain minimum size, will the crystal grow - otherwise surface tension effects will
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remelt it back into the liquid. There would not seem to be a horizon problem because there
is plenty of time before the big bang to establish causal contact, thermodynamic equilibrium
etc. Also there is the “flatness problem” which, in a non-inflationary universe, requires a
careful fine-tuning of parameters to create a universe as long lasting as ours which never-
theless has a reasonable matter density and is close to being spatially flat in the present era.
Phase transitions only occur when there is a fine tuning between various terms in the Hamil-
tonian, so a system undergoing a phase transition is alreadynaturally fine tunedbetween
forces that favor the transition and those that don’t. The other ingredient this model likely
has which could reduce the need for fine-tuning would be dissipation, which could tame
runaway solutions like inflation. In general, surface growth which is not diffusion-limited
is controlled by the volume energy (which results in the liberation of latent heat), surface
tension, and dissipation. The outward pressure from the volume energy takes the form of a
repulsive cosmological constant and the 3-d surface tension may act like the ordinary spatial
curvature term, but it is not immediately clear how to take dissipation into account within
the standard Friedmann models. Comparison to ordinary phase transitions would suggest a
period of slow growth at first, which accelerated as the surface term became less important,
finally approaching a steady state constant growth rate. One can also consider the possibil-
ity that the background conditions responsible for the supercooling could vary over time. If
this is allowed then a more complex growth-rate history could be accommodated.

An intriguing possibility for matter generation would be collisions between different
crystal universes. Where crystals join, a lot of dislocations are formed. The join-boundary
of two 3-d surfaces is a 2-d surface. Therefore, dislocations produced in such collisions
would be distributed on 2-d surfaces within the combined 3-d surface of the joined crystals.
Interestingly, matter in the universe is primarily distributed on a network of 2-d surfaces
surrounding large voids. One can imagine this resulting from the twisting and folding of
the join-boundary of a single cosmic collision or from a number of such events.

This scenario may have difficulty explaining both the uniformity of element abundances
and of the cosmic background radiation. Helium could be produced in the cosmic collisions
referred to above in much the same way as in the hot big-bang, but conditions would likely
vary somewhat from place to place. A single large collision might be able to produce a fairly
uniform result. Cosmic collisions, in addition to creating matter in the form of dislocations
would also produce a lot of thermal radiation. Again, this could be fairly uniform for
the case of a single large collision. This scenario shares some features with the colliding-
branes string-model picture recently proposed by Khoury et. al.[63], although the geometry
is rather different.

9 Discussion

At first glance, the idea that space could be crystalline would seem at odds with the notion
of spatial isotropy. Wouldn’t the axis directions create preferred directions in space? For
distances large compared to the lattice spacing, this is not necessarily so. For instance,
the long distance behavior of an isotropic crystal (one with isotropic elastic constants) is
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well approximated by isotropic linear elasticity theory which has full rotational invariance.
Another example is lattice gauge theory. Here forces along axis directions differ from
those along non-axis directions at short distances, but full rotational symmetry emerges
at distances large compared to the lattice spacing. The longer lattice paths in diagonal
directions are exactly compensated by the larger multiplicity of such paths. Also the surface
of a growing crystal is more labile than the interior, resulting in features that are less “solid”.
For instance, even sessile dislocations can move through growth, via formation of kinks and
jogs, though they are essentially locked in place once formed. Glissile dislocations (those
that can move freely through the crystal) may themselves essentially stop in the bulk by
transferring all of their momentum to the “growth tip” through a mechanism similar to a
Newton’s cradle onto which balls are added continuously, or a whip with a growing tip.

The similarities between condensed matter physics and particle physics are many.
Phonons are surprisingly similar to photons. They can be thought of as Goldstone bosons
resulting from the breaking of translation invariance, or as gauge fields relating to the re-
maining discrete translational invariance, which due to lattice periodicity, may be repre-
sented by an angular order parameter[45]. The counterpart to the Higgs mechanism is the
plasma mechanism[64]. Even the chiral properties of the weak interaction may have an
analog in the behavior of3He-A[65]. Several gauge theories of dislocations have been
proposed[66, 67]. What is being proposed here can be thought of as going all the way with
this program, namely hypothesizing that particle physicsis condensed matter physics. The
main experimental signature of such a proposal, regardless of the details, would be the ef-
fects of a finite lattice spacing. Besides the dramatic cutoff of gauge boson spectra above
a certain energy, one can look for effects of dispersion near the cutoff. The lattice also
makes all ultraviolet divergences finite, which will introduce small effects in higher order
corrections. This also adds impetus to proposals that a serious effort be made to search
experimentally for violations of Lorentz invariance[68]. The effects of living on a physical
lattice are somewhat different from string-inspired Lorentz-invariance violations. The other
experimental signature this scenario has in common with other extra-dimension scenarios
is the possibility of energy conservation violation beyond the statistical violation already
discussed and interpreted as quantum fluctuations[2]. One can imagine the possibility of a
high-energy interaction radiating a longitudinal phonon into the bulk, for instance, which
would look like a missing-energy event. This can be made rare by either a very weak cou-
pling to these modes or by giving them a low frequency cutoff (a mass). Radiation forward
into the liquid could be prevented by having the surface growing at a rate exceeding the
sound speed in the liquid. Another possible experimental signature to look for would be ef-
fects of dissipation including lack of time reversal invariance. Although conservation laws
may prevent dissipation on the surface itself, the bulk phases undoubtedly are dissipative.
The moving phase boundary breaks time reversal invariance spontaneously. Both T and
CPT invariance could be broken.

A final note concerning time in this theory is the special role played by the present. The
edifice of the universe is constructed at the present surface from material provided by the
undifferentiated current-future (liquid) state. The past, being a solid, is more fixed, though



Quantum Mechanics, Quantum Gravity, and Approximate LorentzInvariance... 131

still can undergo some fluctuations. Present, past and future are different, distinguishable
phases. This would seem to conform with our personal experience better than the picture
presented in special relativity, where the present is not distinguished, and the future seems
as well-formed as the past. Indeed, according to Einstein, “For us believing physicists, the
distinction between past, present, and future is only an illusion, even if a stubborn one[69].”
Davies states, “The four-dimensional space-time of physics makes no provision whatever
for either a ‘present-moment’ or a ‘movement’ of time[70].” Quantum mechanics could
play a possible role in blurring the future in the standard picture, but this depends on a
definite resolution to the measurement problem. The phase boundary scenario, in contrast,
matches well with the “process philosophy” concept of time as advanced by Whitehead,
who talks of a “concresence” unfolding at the present where the indefinite future is molded
into a definite past[71].

The preferred frame offered by the crystal rest frame also gives a different point of view
for causality arguments. One can imagine the possibility of interactions that occur by faster-
than-light mechanisms, just as a bullet can exceed the speed of sound in an ordinary crystal.
Although in some frames of reference, cause may appear to precede effect, this will never
occur in the crystal rest frame, regardless of interaction speed. Since Lorentz invariance is
only approximate, all frames are not equivalent. The correct result is that observed in the
preferred frame. Thus there is no longer a paradox created by faster-than-light interactions
by which one could travel backwards in time and kill one’s grandfather, for instance. Time
always goes forward and effect follows cause in the crystal rest frame. Of course there
is no evidence that any interaction or particle can exceed the speed of light, and ordinary
dislocations probably can not, as previously discussed, but the removal of this causality
paradox opens the door to such a possibility a crack wider.

10 Conclusion

At first glance this theory appears to be an anachronism - a neo-Lorentzian classical ether
theory. Modifying special relativity and reintroducing an ether are probably the last thing
that would enter the mind of a 20th or 21st century physicist, followed perhaps by a classi-
cal explanation of quantum mechanics. However, there are many ways in which this theory
fits with modern ideas. The idea that we live on a membrane is becoming popular in string
theory, and also for introducing chiral fermions into lattice gauge theory. Stochastic quan-
tization, though never fully accepted in the realm of quantum mechanics, came very close
to giving a classical statistical-mechanical explanation of quantum fluctuations. The very
many analogies between particle physics and condensed-matter physics, especially in the
realm of gauge field theories and spontaneous symmetry breaking, has led to tremendous
sharing of ideas from one field to the other. The main difference between these is sim-
ply between relativistic and non-relativistic spacetime symmetries. One other difference is
that, whereas in elementary particle physics gauge symmetries and Goldstone bosons are
usually considered to be essentially separate mechanisms for producing massless particles
(which conflict in the Higgs mechanism to give a mass), in condensed matter physics the
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gauge particles (phonons) can themselves be pictured as a typeof Goldstone boson associ-
ated with the breaking of translational symmetry. A vector order parameter yields a vector
Goldstone boson and a tensor order parameter (associated with breaking of rotational in-
variance) should produce a tensor Goldstone boson (the graviton). Gauge invariance is
actually born from the ambiguities in defining the unperturbed lattice[45]. This economy
of ideas (gauge bosons as Goldstone bosons) is appealing and may help to explain why
some symmetries are gauged and others are not. To benefit from this analogy, however, an
ether-type background would appear to be necessary to provide the required translational
symmetry breaking.

The idea of a moving, expanding, phase boundary, where relativistic space-time
emerges as a dynamical symmetry, integrates these ideas into a coherent picture; the big-
bang and gravity, from the flexible geometry of the interface, are incorporated almost for
free. The quantum measurement process is also vastly clarified in this picture as a con-
sequence of spontaneous symmetry breaking. Ideas from chaos and ergodic theory, non-
equilibrium statistical mechanics and dynamical critical phenomena play an important role.
When these are added, a classical theory doesn’t look so classical anymore.

Not much has been mentioned in this paper concerning the base-theory. What new
sets of even more elementary particles (called elementary atoms above) and forces must be
postulated for the underlying base-theory, upon which the dislocations and surface waves
(our current set of elementary particles in this picture) can be built? Hopefully it is a simpler
set than we currently have in the standard model. It seems possible that one or two types
of elementary atoms, combined with ashort-rangeforce, repulsive at small distances and
attractive at long, could be enough. Some model building seems to be in order, starting with
extending simple crystal models to four dimensions.

In closing, one cannot help but speculate whether Einstein would have liked this idea.
Certainly he may have disagreed with the reintroduction of the ether which he so strongly
fought against, as well as the notion of a preferred frame. However from the point of view
of the more fundamental base-theory there is no preferred frame – it is introduced through
a spontaneous symmetry breaking, so the principle of relativity is safe there. Einstein’s
discomfort with the inherently probabilistic nature of quantum mechanics is well known,
so perhaps he would be pleased with the application of his ideas on Brownian motion toward
the explanation of quantum fluctuations, as well as the replacement of quantum mechanics
with a deterministic (though chaotic) theory. Finally, there is the essentially geometric
basis for electromagnetism and possibly all interactions through the picture of a dislocated
crystal. This bears a rather strong resemblance to unified field theories that he worked on in
his later years. On balance, this theory seems relatively in concert with the ideas of Einstein.
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Abstract 

Starting from the action function we have derived a theoretical background that leads to 
quantization of gravity and the deduction of a correlation between the gravitational and 
inertial masses, which depends on the kinetic momentum of the particle. We show that there is 
a reaffirmation of the strong equivalence principle and consequently the Einstein's equations 
are preserved. In fact such equations are deduced here directly from this kinetic approach to 
Gravity. Moreover, we have obtained a generalized equation for inertial forces, which 
incorporates the Mach's principle into Gravitation. Also, we have deduced the equation of 
Entropy; the Hamiltonian for a particle in an electromagnetic field and the reciprocal fine 
structure constant. It is possible to deduce the expression of the Casimir force and also to 
explain the Inflation Period and the Missing Matter without assuming the existence of vacuum 
fluctuations. This new approach for Gravity will allow us to understand some crucial matters 
in Cosmology. An experiment has been carried out to check the theoretical correlation 
between the gravitational and inertial masses. The experiment and results are presented on 
appendix A. The experimental data are in strongly accordance with the theory. 

1 Introduction 

Quantum Gravity was originally studied, by Dirac and others, as the problem of quantizing 
General Relativity. This approach has many difficulties, detailed by Isham [1]. In the 1970's 
physicists tried an even more conventional approach: simplify the Einstein's equations by 
pretending that they are almost linear, and then apply the standard methods of quantum field 
theory to the thus-oversimplified equations. But this method, too, failed. In the 1980's a very 
different approach, known as string theory, became popular. For a while there are many 
enthusiasts of string theory. But the mathematical difficulties in string theory are formidable, 
and it is far from clear that they will be resolved any time soon. At the end of 1997 Isham [2] 
pointed out several "Structural Problems Facing Quantum Gravity Theory". At the beginning 
of this new century, the problem of quantizing the gravitational field was still open. 
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In this work we propose a new approach to Quantum Gravity. Starting from the 
generalization of the action function we have derived a theoretical background that leads to 
quantization of gravity. The Einstein's equations of the General Relativity are deduced 
directly from this theory of Quantum Gravity. Also, it leads to a complete description of the 
Electromagnetic Field, providing a consistent unification of gravity with electromagnetism. 

2 Theory 

We start with the action for a free-particle that, as we know, is given by: 
 

 ∫−=
b

a
dsS α  

 
where α is a quantity which characterize the particle. 

In Relativistic Mechanics, the action can be written in the following form [3]: 
 

 dtcVcLdtS
t

t

t

t∫ ∫ −−== 2

1

2

1

221α  

 
where 

 

 221 cVcL −−= α  
 
is the Lagrange's function. 

In Classical Mechanics the Lagrange's function for a free-particle is, as we know, given 
by: 2aVL =  where V  is the speed of the particle and a  a quantity hypothetically [4] given 
by : 

 
 2ma =  

 
where m  is the mass of the particle. However, there is no distinction about the kind of mass 
(if gravitational mass, gm , or inertial mass im )neither about its sign ( )± . 

The correlation between a  and α  can be established based on the fact that on the limit 
∞→c  the relativistic expression for L  must be reduced to the classic expression 

2aVL = .The result [5] is: cVL 22α= . Therefore, if mcac == 2α  we obtain 
2aVL = . Now, we must decide if gmm =  or imm = . We will see in this work that the 

definition of gm  includes im . Thus the right option is gm , i.e., 

 
 .ma g 2=  
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Consequently, cmg=α  and the generalized expression for the action for a free-particle 

will have the following form: 
 

 
b

g a
S m c ds= − ∫  (1) 

 
or 

 

 1 2222

1

dtcVcmS
t

t g −−= ∫  (2) 

 
where the Lagrange's function is 

 

 1 222 .cVcmL g −−=  (3) 

 

The integral dtcVcmS
t

t g
222 12

1
−= ∫  preceded by the plus sign cannot have a 

minimum. Thus, the integrand of Eq.(2) must be always positive. Therefore, if 0>gm  then 

necessarily 0>t ; if 0<gm  then 0<t . The possibility of 0<t  is based on the well-

known equation 22
0 1 cVtt −±=  of Einstein's Theory. 

Thus if the gravitational mass of a particle is positive then t  is also positive and therefore 

given by 22
0 1 cVtt −+= . This leads to the well-known relativistic prediction that the 

particle goes to the future if cV → . However, if the gravitational mass of the particle is 

negative then t  is negative and given by 22
0 1 cVtt −−= . In this case the prediction is 

that the particle goes to the past if cV → . Consequently, 0<gm  is the necessary 

condition for the particle to go to the past. Further on it will be derived a correlation between 
gravitational and inertial masses, which contains the possibility of 0<gm . 

The Lorentz's transforms follow the same rule for 0>gm  and 0<gm , i.e., the sign 

before 221 cV−  will be ( )+  when 0>gm  and ( )−  if 0<gm . 

The momentum, as we know, is the vector VLp
rr

∂∂= .Thus from Eq.(3) we obtain 
 

 
1 22

.VM
cV

Vm
p g

g r
r

r
=

−±
=  (4) 
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The sign ( )+  in the equation above will be used when 0>gm  and the sign ( )−  if 

0<gm . Henceforth, by simplicity the signs ( )±  before 221 cV−  will be omitted. 

The derivate dtpdr  is the inertial force iF  which acts on the particle. If the force is 

perpendicular to the speed we have 
 

 
1 22

.
dt
Vd

cV

m
F g

i

r
r

−
=  (5) 

 
However, if the force and the speed have the same direction, we find that 
 

 
( )1 2

322
.

dt
Vd

cV

m
F g

i

r
r

−
=  (6) 

 

From Mechanics [6] we know that LVp −⋅
rr

 denotes the energy of the particle, thus we 
can write 

 

 
1

2

22

2

.cM
cV

cm
LVpE g

g
g =

−
=−⋅=

rr  (7) 

 
This fundamental equation presents the concept of Gravitational Energy, gE , in addition 

to the well-known concept of Inertial Energy, iE , and shows that gE  is not null for 0=V , but 

it has the finite value 
 

 2
0 cmE gg =  (8) 

 
This is the particle's gravitational energy at rest. 
The Eq.(7) can be rewritten in the following form: 
 

 

( )

2
2 2

2 2

2
2 2

2 2

0

1

1
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g
g g g
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 
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= + =

144424443

 (9) 
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By analogy to the Eq.(8), 2
0 cmE ii = into the equation above, is the inertial energy at rest. 

Thus, Kiii EEE += 0  is the total inertial energy, where KiE  is the kinetic inertial energy. 
From the Eqs.(7) and (9) we thus obtain 

 

 
1

2

22

2

.cM
cV

cmE i
i

i =
−

=  (10) 

 
For small velocities ( )cV <<  we obtain 
 
 2

2
12 VmcmE iii +≈  (11) 

 
where we recognize the classical expression for the kinetic inertial energy of the particle. 

The expression for the kinetic gravitational energy, KgE , is easily deduced by comparing 

of the Eqs.(7) and (9). The result is 
 

 .E
m
m

E Ki
i

g
Kg =   (12) 

 
In the presented picture, we can say that the gravity , gr , into a gravitational field 

produced by a particle of gravitational mass gm  depends on the particle's gravitational 

energy, gE ( given by Eq.(7)), because we can write 

 

 222

2

22 r
M

G
cr
cM

G
cr

E
Gg ggg −=−=−=  (13) 

 

where ( ) 2
1221 −

−= cVmM gg  is the relativistic gravitational mass defined in the 

Eqs.(4)and (7). 
On the other hand, as we know, the gravitational force is conservative. Thus, 

gravitational energy, in agreement with the energy conservation law, can be expressed by the 
decrease of the inertial energy, i.e., 

 
 ig EE ∆∆ −=  (14) 

 
This equation expresses the fact that the decrease of gravitational energy corresponds to 

an increase of the inertial energy. 
Therefore a variation iE∆  in iE  yields a variation ig EE ∆∆ −=  in gE . 

Thus iii EEE ∆+= 0 ; igggg EEEEE ∆∆ −=+= 00 and 
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 00 igig EEEE +=+  (15) 

 
Comparison between (7) and (10) shows that 00 ig EE = . Consequently we have 

 
 2 000 iigig EEEEE =+=+  (16) 

 
However Kiii EEE += 0 .Thus(16)becomes 
 
 0 .EEE Kiig −=  (17) 

 
Note the symmetry in the equations of iE  and gE  .Substitution of Kiii EEE −=0  into 

(17) yields 
 
 2 Kigi EEE =−  (18)  

 
Squaring the Eqs.(4) and (7) and comparing the result, we find the following correlation 

between gravitational energy and momentum : 
 

 222
2

2

.cmp
c
E

g
g +=  (19) 

 
The energy expressed as a function of the momentum is, as we know, called Hamiltonian 

or Hamilton's function: 
 

 222 .cmpcH gg +=  (20)  

 
It is known that starting from the Schrödinger equation we may obtain the well-known 

expression for energy of a particle in periodic motion inside a cubical box of edge length 
L  [ 7 ]. The result now is 

 

 321
8 2

22

,...,,n
Lm

hnE
g

n ==  (21) 

 
Note that the term 22 8 Lmh g  (energy) will be minimum for maxLL =  where maxL  is 

the maximum edge length of a cubical box whose maximum diameter 
 

 3maxmax Ld =  (22) 
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is equal to the maximum "diameter" of the Universe. 
The minimum energy of a particle is obviously its inertial energy at rest 22 cmcm ig = . 

Therefore we can write 
 

 2
2

22

8
cm

Lm
hn

g
maxg

=  

 
Then from the equation above follows that 
 

 
8max

g cL
nhm ±=  (23) 

 
whence we see that there is a minimum value for gm  given by 

 

 ( ) 8max
ming cL

hm ±=  (24)  

 

The relativistic gravitational mass ( ) 2
1221 −

−= cVmM gg , defined in the Eqs.(4) 

and (7), shows that 
 
 ( ) ( )mingming mM =  (25)  

 

The box normalization leads to conclusion that the propagation number λπ2== kk
r

 

is restricted to the values Lnk π2= . This is deduced assuming an arbitrarily large but 

finite cubical box of volume 3L  [8]. Thus we have 

 
 λnL =  
 
From this equation we conclude that 
 

 
min

max
max

Ln
λ

=  

 
and 

 
 minminminmin nL λλ ==  
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Since 1=minn . Therefore we can write that 
 
 minmaxmax LnL =  (26) 
 
From this equation we thus conclude that 
 
 minnLL =  (27) 
 

or 
 

 
n

LL max=  (28) 

 

Multiplying (27) and (28) by 3  and reminding that 3Ld = , we obtain 
 

 
n

ddorndd max
min ==  (29) 

 
Equations above show that the length (and therefore the space) is quantized. 
By analogy to (23) we can also conclude that 
 

 ( ) 8min

max
maxg cL

hnM ±=  (30) 

 

since the relativistic gravitational mass, ( ) 2
1221 −

−= cVmM gg , is just a multiple of 

gm . 

Equation (26) tells us that maxmaxmin nLL = . Thus Eq.(30) can be written as follows 
 

 ( ) 8

2

max

max
maxg cL

hn
M ±=  (31) 

 
Comparison of (31) with (24) shows that 
 
 ( ) ( )

2
mingmaxmaxg mnM =  (32) 

 
which leads to following conclusion that 

 
 ( )

2
mingg mnM =  (33) 
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This equation shows that the gravitational mass is quantized. 
Substitution of (33) into (13) leads to quantization of gravity, i.e., 
 

 
( )

( )
4

2
2

2

min

max

mingg

gn

nr
Gm

n
r

GM
g

=

=









−=−=

 (34) 

 
From the Hubble's law follows that 
 

 ( )2maxmaxmax dH~lH~V ==  
 

 ( )2minminmin dH~lH~V ==  
 
whence 
 

 
min

max

min

max

d
d

V
V

=  

 
Equations (29) tell us that maxminmax ndd = . Thus the equation above gives 
 

 
max

max
min n

V
V =  (35) 

 
which leads to following conclusion 

 

 
n

V
V max=  (36) 

 
this equation shows that velocity is also quantized. 

From this equation one concludes that we can have maxVV =  or 2maxVV = , but 

nothing in between. This shows clearly that maxV  cannot be equal to c  (speed of light in 
vacuum). Thus follows that 
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( )

( )
( )

.numberbigaisnwhere
..........................................

nVVnn
TardionsnVVnn

cnVVnn

nVVnn
..........................

TachyonsVVn
VVn
VVn

x

xmaxx

xmaxx

xmaxx

xmaxx

max

max

max

22
11

11

33
22

1

+=+=
+=+=

←===
−−−−−−−−−−−−−−−−−−−−−−−−

−=−=

==
==
==

  

 
Then c  is the upper limit of speed of the Tardions and also the lower limit of speed of 

the Tachyons. Obviously that limit is always the same in all inertial frames. Therefore c  can 
be used like a reference speed, which we may compare any speed V , as occurs in the 

relativistic factor 221 cV− . Thus in this factor c  not refers to maximum propagation speed 
of the interactions such as suggest some authors; c  is just a speed limit which is the same in 
any inertial frame. 

The temporal coordinate 0x  of the space-time is now tVx max=0  ( ctx =0  is then 

obtained when cVmax→ ). Substitution of ( )lH~nnVVmax ==  into this equation yields 

( )( )lxH~nVxt max
00 1== . On the other hand, since lH~V = and nVV max=  then we can 

write that nH~Vl max
1−= . Thus ( ) ( ) maxtH~ntH~lx ==0 . Therefore we can finally write 

 

 ( )( )1 0 ntlxH~nt max==  (37) 
 

which shows the quantization of time. 
Now let us go back to Eq. (20) which will be called the gravitational Hamiltonian to 

distinguish it from the inertial Hamiltonian iH : 
 

 222 .cmpcH ii +=  (38) 

 
Consequently, the Eq. (18) can be rewritten in the following form: 
 
 2 igi HHH ∆=−  (39) 
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where iH∆ is the variation on the inertial Hamiltonian or inertial kinetic energy. A 

momentum variation p∆  yields a variation iH∆  given by: 
 

 ( ) 42224222 cmcpcmcppH iii +−++= ∆∆  (40) 

 
Substituting Eqs.(20), (38) and (40) into (39) and making 0=p , we obtain 
 

 .cmcmcpcmcm iiig 




 −+=− 2422222 2 ∆  

 
From this equation we derive the general expression of correlation between the 

gravitational and inertial mass, i.e., 
 

 112
2

.m
cm
pmm i
i

ig 












−








+−=

∆
 (41) 

 

Note that for ( )25cmp i>∆  the value of gm  becomes negative. 

Equation (41) can also be expressed in terms of velocity V of the particle. Starting from 
(4) we can write 

 

 ( ) ( )( )
( ) 221 cVV

VVmm
pp gg

∆

∆∆
∆

+−

+−
=+  

 
For 0=V ; 0=p . Thus the equation above reduces to: 
 
 ( ) ( )21 cVVmmp gg ∆∆∆∆ −−=  

 
From the Eq.(16) we obtain: 
 
 ( ) iiiiiiig EEEEEEEE ∆∆ −=+−=−= 0000 22  

 
However, Eq.(14) tells us that gi EE ∆∆ =− ; it leads to gig EEE ∆+= 0  or gig mmm ∆+= . Thus, 

in the expression of p∆  we can replace ( )gg mm ∆−  by im , i.e., 

 

 ( )21 cVVmp i ∆∆∆ −=  
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We can therefore write 
 

 
( )1 2cV

cV
cm
p

i −
=

∆
 (42) 

 
By substitution of the expression above into Eq.(41) we thus obtain: 
 

 ( ) 112 2
1

22
iig mcVmm 



 −−−=

−
 (43)  

 
For 0=V  the Eq.(43) gives  
 
 ig mm =  

 
Therefore, in this case, the previously obtained quantized relation (33), ( )mingg mnM 2=  , 

becomes 
 
 ( )

2
minii mnm =  (44) 

 
which shows the quantization of inertial mass. 

Finally, by dividing both members of Eq.(43)by 221 cV− we readily obtain 
 

 ( ) 112 2
1

22
iig McVMM 



 −−−=

−
 (45)  

 
The Lorentz's force is usually written in the following form: 
 

BVqEqdtPd
rrrr

×+=  
 

where 221 cVVmP i −=
rr

. However, Eq.(4) tell us that 221 cVVmp g −=
r

. 

Therefore, the expressions above must be corrected by multiplying its members by 

ig mm ,i.e., 

 

 p
cV

Vm

cV
Vm

m
m

m
m

P gi

i

g

i

g r
rr

r
=

−
=

−
=

2222 11
 

 
and 
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 ( )
i

g

i

g

m
m

BVqEq
m
m

P
dt
d

dt
pd rrrrr

×+=







=  (46) 

 
That is now the general expression for Lorentz's force. 
When the force is perpendicular to the speed, the Eq.(5) gives 

( ) 221 cVdtVdmdtpd g −=
rr

.By comparing with Eq.(46) we thus obtain 

 

 ( )( ) BVqEqdtVdcVmi

rrrr
×+=− 221  

 
Starting from this equation, well-known experiments have been carried out in order to 

verify the relativistic expression: 221 cVmi − . 

In general, the momentum variation p∆  is expressed by tFp ∆∆ =  where F  is the 
applied force during a time interval t∆ . Note that there is no restriction concerning the 
nature of the force F , i.e., it can be mechanical, electromagnetic, etc. 

For example, we can look on the momentum variation p∆  as due to absorption or 
emission of electromagnetic energy by the particle ( by means of radiation and/or by means 
of Lorentz's force upon the charge of the particle). 

In the case of radiation (any type), p∆  can be obtained as follows. It is known that the 
radiation pressure , dP , upon an area dxdydA =  of a volume dxdydzd =V  of a 

particle( the incident radiation normal to the surface dA )is equal to the energy dU  absorbed 
per unit volume ( )VddU .i.e.,  

 

 
dAdz
dU

dxdydz
dU

d
dUdP === V  (47) 

 
Substitution of vdtdz =  ( v  is the speed of radiation) into the equation above gives 
 

 
( )

v
dD

v
dAdtdU

d
dUdP === V  (48) 

 
Since dFdPdA =  we can write: 
 

 
v

dUdFdt =  (49) 

 
However we know that dtdpdF= , then 
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v

dUdp =  (50) 

 
From Eq.(48) follows that 
 

 
v
dDddPddU VV ==  (51) 

 
Substitution into (50) yields 
 

 2v
dDddp V

=  (52) 

 
or 

 

 ∫ ∫∫ =
Dp

dDd
v

dp
0 020

1 V V∆
 

 
whence 

 

 2v
Dp V

=∆  (53) 

 
This expression is general for all types of waves. Including non-electromagnetic waves 

like sound waves. In this case, v  in Eq.(53), will be the speed of sound in the medium and D  
the intensity of the sound radiation. 

In the case of electromagnetic waves, the Electrodynamics tells us that v  will be given 
by 

 

 

( ) 




 ++

===
11

2
2ωεσµεκ

ω

rrr

c
dt
dzv  

 

Where rk  is the real part of the propagation vector k
r

; ir ikkkk +==
r

 ; ε , µ and σ, 

are the electromagnetic characteristics of the medium in which the incident (or emitted) 
radiation is propagating ( 0εεε r=  where rε  is the relative dielectric permittivity and 

mF /10854.8 12
0

−×=ε  ; 0µµµ r=  where rµ  is the relative magnetic permeability and 

m/H7
0 104 −×= πµ ; σ  is the electrical conductivity). For an atom inside a body , the 

incident(or emitted) radiation on this atom will be propagating inside the body , and 
consequently , σ=σbody , ε=εbody, µ=µbody. 
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It is then evident that the index of refraction vcnr =  will be given by 
 

 ( ) 11
2

2 




 ++== ωεσµε rr

r v
cn  (54) 

 
On the other hand, from Eq.(50) follows that 
 

 
rn

c
U

c
c

v
Up =






=∆  

 
Substitution into Eq.(41) yields 
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For ωεσ >> , the expression (54) gives 
 

 
4

2

f
c

v
cnr π

µσ
==  (56) 

 
Substitution of (56) into (55) leads to 
 

 
i
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2
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This equation shows that atoms of ferromagnetic materials with very-high µ  can have its 

gravitational masses strongly reduced by means of Extremely Low Frequency (ELF) 
electromagnetic radiation. It also shows that atoms of superconducting materials (due to very-
high σ  ) can also have its gravitational masses strongly reduced by means of ELF 
electromagnetic radiation. 

Alternatively, we may put Eq.(55) as a function of the power density ( or intensity ), D , 
of the radiation. The integration of (51) gives vDU V= . Thus we can write (55) in the 
following form: 
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where Vim=ρ . 
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For ωεσ >> , rn  will be given by (56) and consequently (57) becomes 
 

 1
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ig m
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 (58) 

 

The vector ( )vUD rr
V= , which we may define from (48), has the same direction of the 

propagation vector k
r

 and evidently corresponds to the Poynting vector. Then D
r

 can be 

replaced by HE
rr

× .Thus we can write ( ) ( )[ ] ( ) 21 EvvEEBEEHD µµµ ==== . 

For ωεσ >>  the Eq.(54) tells us that µσπfv 4=  consequently we obtain 
 

 
µπ

σ
f

ED
4

2=  

 
This expression refers to the instantaneous values of D  and E . The average value for 

2E  is equal to 2
2

1
mE  because E  varies sinusoidaly ( mE  is the maximum value for E ). 

Consequently equation above tells us that the average density D  is given by 
 

 
µπ

σ
f

ED m 4
2

2
1=  

 
Substitution of this expression into (58) yields the expression for gm . Substitution of the 

expression of D  into (58) gives 
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 (59a) 

 
Note that for extremely-low frequencies the value of 3−f  in this equation becomes 

highly expressive. 
Since vBE =  the equation (59a) can also be putted as a function of B , i.e., 
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For conducting materials with m/S710≈σ ; 1=rµ ; 3310 m/kg≈ρ  the expression 
(59b) gives 

 

 ig mB
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This equation shows that the decreasing in the gravitational mass of these conductors can 

become experimentally detectable for example, starting from 100Teslas at 10mHz. 
One can then conclude that an interesting situation arises when a body penetrates a 

magnetic field in the direction of its center. The gravitational mass of the body decreases 
progressively. This is due to the intensity increase of the magnetic field upon the body while 
it penetrates the field. In order to understand this phenomenon we might, based on (45), think 
of the inertial mass as being formed by two parts: one positive and another negative. Thus, 
when the body penetrates the magnetic field its negative inertial mass increase, but its total 
inertial mass decreases, i.e., although there is an increase of inertial mass, the total inertial 
mass (which is equivalent to gravitational mass) will be reduced. 

On the other hand, Eq.(4) shows that the velocity of the body must to increase as 
consequence of the gravitational mass decreasing since the momentum is conserved. Consider 
for example a spacecraft with velocity sV  and gravitational mass gM . If gM  is reduced to 

gm  then the velocity becomes ( ) sggs VmMV =′ In addition, Eqs. 5 and 6 tell us that the 

inertial forces depend on gm . Only in the particular case of ig mm =  the expressions (5) 

and (6) reduce to the well-known Newtonian expression amF i= . Consequently, one can 
conclude that the inertial effects on the spacecraft will also be reduced due to the decreasing 
of its gravitational mass. Obviously this leads to a new concept of aerospace flight. 

Now consider an electric current ftsinii π20=  through a conductor. Since the current 

density, J
r

, is expressed by ESddiJ
rrr

σ== , then we can write that 

( ) ftsinSiSiE πσσ 20== . Substitution of this equation into (59a) gives 
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 (59c) 

 
If the conductor is a supermalloy rod ( )mm40011 ××  then 000100,r =µ  

(initial); 38770 m/kg=ρ ; m/S. 61061 ×=σ  and 26101 mS −×= . Substitution of these 
value into equation above yields the following expression for the gravitational mass of the 
supermalloy rod: 
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 ( ) ( )[ ]{ } ( )smismg mftsinfi.m 1210715121 434
0

12 −×+−= − π  

 
Some oscillators like the HP3325A ( Op.002 High Voltage Output ) can generate 

sinusoidal voltages with extremely-low frequencies down to Hzf 6101 −×=  and amplitude 

up to 20V ( into Ω50  load). The maximum output current is ppA.080  . 

Thus, for ( )ppA.A.i 0800400 =  and Hz.f 610252 −×<  the equation above shows 

that the gravitational mass of the rod becomes negative at 22 ππ =ft ; for 

Hz.f 61071 −×≅  at h.s.ft 8401047141 5 ≅×==  it shows that ( ) ( )smismg mm −≅ . 

It is important to realize that this is not the unique way of decreasing the gravitational 
mass of a body. It was noted earlier that the expression (53) is general for all types of waves 
including non-electromagnetic waves like sound waves for example. In this case, the velocity 
v  in (53) will be the speed of sound in the body and D  the intensity of the sound radiation. 
Thus from (53) we can write that 
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It can easily shown that vAfD 2222 ρπ=  where 22 vPA πρλ= ; A  and P  are 

respectively the amplitude and maximum pressure variation of the sound wave. Therefore we 
readily obtain 
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Substitution of this expression into (41) gives 
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This expression shows that in the case of sound waves the decreasing of gravitational 

mass is relevant for very strong pressures only. 
It is known that in the nucleus of the Earth the pressure can reach values greater than 

21310 m/N . The equation above tells us that sound waves produced by pressure variations 
of this magnitude can cause strong decreasing of the gravitational mass at the surroundings of 
the point where the sound waves were generated. This obviously must cause an abrupt 
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decreasing of the pressure at this place since pressure = weight /area = mgg/area). 
Consequently a local instability will be produced due to the opposite internal pressure. The 
conclusion is that this effect may cause Earthquakes. 

Consider a sphere of radius r  around the point where the sound waves were generated 
(at km,0001≈  depth; the Earth's radius is km,3786 ). If the maximum pressure, at the 

explosion place ( sphere of radius 0r ), is 21310 m/NPmax ≈  and the pressure at the distance 

kmr 10=  is ( ) 292
0 10 m/NPrrP maxmin ≈=  then we can consider that in the sphere 

21110 m/NPPP minmax ≈= .Thus assuming s/mv 310≈  and 3310 m/kg≈ρ  we can calculate 

the variation of gravitational mass in the sphere by means of the equation of gm , i.e., 
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The transitory loss of this great amount of gravitational mass may produce evidently a 

strong pressure variation and consequently a strong Earthquake. 
Finally, we can evaluate the energy necessary to generate that sound waves. From (48) 

we can write 21610 m/WvPD maxmax ≈= . Thus, the released power is 

( ) WrDP max
212

00 104 ≈= π  and the energy E∆ released at the time interval t∆  must be 

tPE ∆∆ 0= . Assuming st 310−≈∆  we readily obtain 
 
 MegatonsjoulestPE 418

0 1010 ≈≈= ∆∆  
 
This is the amount of energy released by a magnitude 9 earthquake ( )9=sM , i.e., 

( ) joules.E sM. 184415 1010741 ≅×= + . The maximum magnitude in the Richter scale is 12. 
Note that the sole releasing of this energy at 1000km depth ( without the effect of 
gravitational mass decreasing) cannot produce an Earthquake, since the sound waves reach 
1km depth with pressures less than 10N/cm2. 

Let us now return to the principal development of the Gravity Theory. 
The equivalence between frames of non-inertial reference and gravitational fields 

presupposed ig mm ≡  because the inertial forces was given by amF ii
rr

= , while the 

equivalent gravitational forces, by gmF gg
rr

= . Thus, to satisfy the equivalence ( ga rr
≡  and 
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gi FF ≡
r

) it was necessary that ig mm ≡ . Now, the inertial force, iF
r

, is given by Eq.(6), and 

from the Eq.(13) we can obtain the gravitational force, gF
r

. Thus, gi FF
rr

≡  leads to 
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2
3

2
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m
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ggg
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−
≡

−
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
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


′

′
≡

≡
−−′

′
≡

−

r
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whence results 

 
 ga rr

≡  
 
Consequently, the equivalence is evident, and therefore the Einstein's equations from the 

General Relativity continue obviously valid. 
The new expression for iF  (Eqs.(5) and (6)) shows that the inertial forces are 

proportional to the gravitational mass, gm . This means that these forces result from the 

gravitational interaction between the particle and the other gravitational masses of the 
Universe, just as Mach’s principle predicts. Therefore the new expression for the inertial 
forces incorporates the Mach’s principle into Gravitation Theory, and furthermore reveals that 
the inertial effects upon a particle can be reduced because, as we have seen, the gravitational 
mass may be reduced. When ig mm =  the nonrelativistic equation for inertial forces, 

amF gi
rr

= , reduces to amF ii
rr

= . This is the well-known Newton's second law for motion. 

In Einstein's Special Relativity Theory the motion of a free-particle is described by means 
of 0=Sδ  [9]. Now based on Eq.(1), 0=Sδ  will be given by the following expression 

 
 ∫ =−= .dscmS g 0δδ  

 
which also describes the motion of the particle inside the gravitational field. Thus, the 
Einstein's equations from the General Relativity can be derived starting from 
( ) 0=+ gm SSδ , where gS and mS  refer to action of the gravitational field and the action of 

the matter, respectively [10]. 
The variations gSδ and mSδ  can be written as follows[11]: 

 

 ( )
16 2

1
3

Ωδ
π

δ dggRgR
G

cS ik
ikikg −−= ∫  (60) 
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2
1 Ωδδ dggT
c

S ik
ikm −−= ∫  (61) 

 
where ikR is the Ricci's tensor; ikg  the metric tensor and ikT  the matter's energy-momentum 
tensor: 
 

 ( ) ikkigik PgPT ++= µµε  (62) 

 
where P  is the pressure and 2cgg ρε =  is now, the density of gravitational energy, gE , of the 

particle; gρ  is then the density of gravitational mass of the particle, i.e., gm  at the volume 

unit. 
Substitution of (60) and (61) into 0=+ gm SS δδ  yields 

 

 ( ) 0
16 4

8
2
1

3

=−−−∫ Ωδ
π

π dggTRgR
G

c ik
ikc

G
ikik  

 
whence, 

 
 ( ) 04

8
2
1 =−− ikc

G
ikik TRgR π  (63) 

 
because the ikgδ  are arbitrary. 

The Eqs.(63) in the following forms; 
 
 4

8
2
1

ikc
G

ikik TRgR π=−  (64) 

 
or 

 
 4

8
2
1 .TRgR k

ic
Gk

i
k
i

πδ =−  (65) 

 
are the Einstein's equations from the General Relativity. 

Making on the obtained equations for the gravitational field, the transition to the Classical 
Mechanics, we obtain: 

 

 44 2 g
g G

c
G ρπ

ε
π∆Φ =








=  (66) 

 
This is the nonrelativistic equation for the gravitational field, whose general solution is 
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 2∫−=
rc
d

G g Vε
Φ  (67) 

 
This equation express the nonrelativistic potential of the gravitational field for any 

distribution of mass. In particular, for only one particle with gravitational energy 
2cmE gg = , the result is 

 
 2rcGEg−=Φ  (68) 

 
Thus, the gravity gr  into the gravitational field created by the particle is 
 

 222 .
r
m

G
cr

E
G

r
g gg

rr
r

−=−=
∂
∂

−=
Φ

 (69) 

 

Therefore, the gravitational force gF
r

 which acts on that field, upon another particle of 

gravitational mass gm′  is then given by: 

 

 2r
mm

GgmF gg
gg r
rr ′

−=′=  (70) 

 
If 0>gm  and 0<′gm , or 0<gm  and 0>′gm  the force will be repulsive; the force 

will never be null due to the existence of a minimum value for gm  (see Eq. (24)). However, if 

0<gm  and 0<′gm , or 0>gm  and 0>′gm  the force will be attractive. Just for 

ig mm =  and ig mm ′=′  we obtain the Newton's attraction law. 

Since the gravitational interaction can be repulsive, besides attractive, such as the 
electromagnetic interaction, then the graviton must have spin 1 and not 2. Consequently, the 
gravitational forces are also gauge forces because they are yield by the exchange of so-called 
"virtual" quanta of spin 1, such as the electromagnetic forces and the weak and strong nuclear 
forces. 

Let us now deduce the Entropy Differential Equation starting from the Eq.(55). 
Comparison of the Eqs.(55) and (41) shows that pcUnr ∆= . For small velocities ( )cV << , 

cmp i<<∆ , so that 2cmUn ir << . Under these circumstances, the development of the 

Eq.(55) in power of ( )2cmUn ir , gives 
 

 
2

2 i
i

r
ig m

cm
Unmm 








−=  (71) 
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In the particular case of thermal radiation, it is usual to relate the energy of the photons 
to temperature, through the relationship kTh ≈ν  where KJ.k 2310381 −×=  is the 

Boltzmann's constant. Thus, in that case, the energy absorbed by the particle will be 
kThU ηνη ≈= , where η is a particle-dependent absorption/emission coefficient. 

Therefore, Eq.(71) may be rewritten in the following form: 
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  (72) 

 
For electrons at T=300K, we have 
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Comparing Eq.(72) with Eq.(18), we obtain 
 

 
2
1 22

.
m
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c
knE

i

r
Ki 
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=

η
 (73) 

 
The derivative of KiE  with respect to temperature T  is 
 

 ( ) ( )2
ir

Ki mTckn
T

E η=
∂
∂

 (74) 

 
Thus, 
 

 
( )

2

2
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kTn

T
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T
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rKi η
=

∂
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 (75) 

 
Substitution of 0iiKi EEE −=  into Eq.(75) gives 
 

 
( )

2

2
0

cm
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T
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T
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T
i
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
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 (76) 

 
By comparing the Eqs.(76) and (73) and considering that 00 =∂∂ TEi  because 0iE  

does not depends on T , the Eq.(76) reduces to 
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 ( ) 2 Kii ETET =∂∂  (77)  
 
However, Eq.(18) shows that giKi EEE −=2  therefore Eq.(77) becomes 

 
 ( )TETEE iig ∂∂−=  (78) 

 
Here, we can identify the energy iE  with the free-energy of the system-F and gE  with 

the internal energy of the system-U, thus we can write the Eq.(78) in the following form: 
 
 ( )TFTFU ∂∂−=  (79) 
 
This is the well-known equation of Thermodynamics. On the other hand, 

remembering UQ ∂+∂=∂ τ  (1stprinciple of Thermodynamics) and 
 
 TSUF −=  (80) 
 

(Helmholtz's function), we can easily obtain from (79), the following equation: 
 
 .STQ ∂+∂=∂ τ  (81) 
 
For isolated systems, 0=∂τ , we thus have 
 
 STQ ∂=∂  (82) 
 

which is the well-know Entropy Differential Equation. 
Let us now consider the Eq.(55) in the ultra-relativistic case where the inertial energy of 

the particle 2cME ii =  is very greater than its inertial energy at rest 2cmi  . Comparison 

between (4) and (10) leads to 2cVEp i=∆  which, in the ultra-relativistic case, gives 

cMcEcVEp iii ≅≅= 2∆ . On the other hand, comparison between (55) and (41) shows that 

pcUnr ∆= . Thus 22 cmcMpcUn iir >>≅=∆ . Consequently, Eq.(55) reduces to 
 
 2 2cUnmm rig −=  (83) 

 
Therefore, the action for such particle, in agreement with the Eq.(2), is 
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 (84) 

 
The integrant function is the Lagrangean, i.e., 
 

 121 22222 cVUncVcmL ri −+−−=  (85) 
 
Starting from the Lagrangean we can find the Hamiltonian of the particle, by means of 

the well-known general formula: 
 
 ( ) .LVLVH −∂∂=  
 
The result is: 
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=  (86) 

 
The second term on the right hand side of the Eq.(86) results from the particle's 

interaction with the electromagnetic field. Note the similarity between the obtained 
Hamiltonian and the well-known Hamiltonian for the particle in a electromagnetic field[12]: 

 

 1 222 .QcVcmH i ϕ+−=  (87) 
 
in which Q  is the electric charge and ϕ , the field's scalar potential. The quantity ϕQ  
expresses, as we know, the particle's interaction with the electromagnetic field. Such as the 
second term on the right hand side of the Eq.(86). 

It is therefore evident that it is the same quantity, expresses by means of different 
variables. 

Thus, we can conclude that, in ultra-high energy conditions ( )22 cmcMUn iir >≅ , the 
gravitational and electromagnetic fields can be described by the same Hamiltonian, i.e., in 
these circumstances they are unified ! 

It is known that starting from that Hamiltonian we may obtain a complete description of 
the electromagnetic field. This means that from the present theory for gravity we can also 
derive the equations of the electromagnetic field. 

Due to 2cMpcUn ir ≅= ∆  the second term on the right hand side of the Eq.(86) can 
be written as follows 
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whence 

 

 ( )
r

QQcMcV i
0

222

4
24

πε
′

=−  

 
The factor ( )24 22 −cV  becomes equal to 2 in the ultra-relativistic case, then follows 

that 
 

 
4

2
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r
QQcM i πε
′

=  (88) 

 
From (44) we know that there is a minimum value for iM  given by ( ) ( )minimini mM = . 

The Eq.(43) shows that ( ) ( )miniming mm =  and Eq.(23) gives 

( ) maxmaxming cdhcLhm 838 ±=±= . Thus we can write 

 

 ( ) ( ) 83 maxminimini cdhmM ±==  (89) 

 
According to (88) the value ( )

22 cM mini  is correlated to ( ) maxminmin rQrQQ 0
2

0 44 πεπε =′  , i.e., 

 

 ( )2
4

2

0

2

cM
r

Q
mini

max

min =
πε

 (90) 

 
where minQ  is the minimum electric charge in the Universe ( therefore equal to minimum 

electric charge of the quarks, i.e., e3
1 ); maxr  is the maximum distance between Q  and Q′ , 

which should be equal to the so-called "diameter", cd , of the visible Universe ( cc ld 2=  

where cl  is obtained from the Hubble's law for cV =  , i.e., 1−= H~clc ). Thus from (90) we 
readily obtain 
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( )
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min 0 max

2 1
0 max

1
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24

96

cQ hc d d

hc H d

e

πε

πε −

= =

= =

=

%  (91) 

 
whence we find 

 
 m.d max

301043 ×=  
 
This will be the maximum "diameter" that the Universe will reach. Consequently, Eq.(89) 

tells us that the elementary quantum of matter is 
 

 ( ) kg.cdhm maxmini
73109383 −×±=±=  

 
Now by combination of gravity and the uncertainty principle we will derive the 

expression of the Casimir force. 
An uncertainty im∆  in im  produces an uncertainty p∆  in p and therefore an 

uncertainty gm∆  in gm , which according to Eq.(41) , is given by 
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From the uncertainty principle for position and momentum, we know that the product of 

the uncertainties of the simultaneously measurable values of corresponding position and 
momentum components is at least of the order of magnitude of h  , i.e., 

 
 h~rp∆∆  
 
Substitution of r~p ∆∆ h into(92)yields 
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Therefore if 
 

 
cm

r
i∆

∆ h
<<  (94) 
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then the expression (93) reduces to: 
 

 
2
rc

mg ∆
∆ h

−≅  (95) 

 
Note that gm∆  does not depend on gm . 

Consequently, the uncertainty F∆  in the gravitational force 2rmGmF gg ′−= , will be 

given by 
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The amount ( ) m.cG 353 106112
1 −×=h  is called the Planck length, planckl ,( the length 

scale on which quantum fluctuations of the metric of the space time are expected to be of 
order unity). Thus, we can write the expression of F∆  as follows 
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or 

 

 
480 4

0
0 r
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π

 (98) 

 
which is the expression of the Casimir force for ( ) 22

0 960 plancklAA π== . 

This suggests that 0A  is an elementary area related to existence of a minimum length 

planckmin lk~d = . What is in accordance with the quantization of space (29) which point out 

the existence of mind  . 
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One can be easily shown that the minimum area related to mind  is the area of an 

equilateral triangle of side length mind  ,i.e., 
 

 ( ) ( ) 22
4
32

4
3

planckminmin lk~dA ==  

 
On the other hand, the maximum area related to mind  is the area of an sphere of radius 

mind  ,i.e., 
 
 222

planckminmax lk~dA ππ ==  

 
Thus, the elementary area  
 

 222
0 planckAminA lk~dA δδ ==  (99) 

 
must have a value between minA  and maxA , i.e., 

 
 πδ << A4

3  
 

The previous assumption that ( ) 22
0 960 plancklA π=  shows that 22 960 πδ =k~A  

what means that 91465 .k~. <<  
Therefore we conclude that  
 

 10 34 .mlk~d planckmin
−≈=  (100) 

 
The esimaln −  area after 0A  is 
 

 ( ) 0
22 AnndA minA ==δ  (101) 

 
One can also be easily shown that the minimum volume related to mind  is the volume of 

an regular tetrahedron of edge length mind  , i.e., 
 

 ( ) ( ) 33
12

23
12

2
planckminmin lk~d ==Ω  

 
The maximum volume is the volume of a sphere of radius mind , i.e., 
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 ( ) ( ) 33
3
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3

4
planckminmax lk~d ππΩ ==  

 

Thus, the elementary volume 333
0 planckVminV lk~d δδΩ ==  must have a value between 

minΩ and maxΩ , i.e., 
 

 ( ) 3
4

12
2 πδ << V  

 
On the other hand, the esimaln −  volume after 0Ω  is 
 

 ( ) .n,...,,,nnnd maxminV 3210
33 === ΩδΩ   

 
The existence of maxn  given by (26), i.e., 
 

 ( ) 6430 101043 ≈×=

===

planck

minmaxminmaxmax

lk~.

ddLLn
 

 
shows that the Universe must have a finite volume whose value at the present stage is 
 

 ( ) 333
0

3
pVminVminpUpUp ddddn δδΩΩ ===  

 

where pd  is the present length scale of the Universe. In addition as ( ) 3
4

12
2 πδ << V  we 

conclude that the Universe must have a polyhedral space topology with volume between the 
volume of a regular tetrahedron of edge length pd  and the volume of the sphere of 

diameter pd . 

A recent analysis of astronomical data suggests not only that the Universe is finite, but 
also that it has a dodecahedral space topology [13,14], what is in strong accordance with the 
theoretical predictions above. 

From (22) and (26) we have that .dndL minmaxmaxmax 33 ==  Since (100) 

gives mdmin
3410−≅  and 6410≅maxn  we conclude that mLmax

3010≅ . From the Hubble's 

law and (22) we have that ( ) ( ) maxmaxmaxmax LH~dH~lH~V 232 === where 
1181071 −−×= s.H~ . Therefore we obtain s/mVmax

1210≅ . 

Now multiplying (98) by 2n  the expression of 0F  we obtain 
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which is the general expression of the Casimir force. 

Thus we conclude that the Casimir effect is just a gravitational effect related to the 
uncertainty principle. 

Note that the Eq.(102) arises only when im∆  and im′∆  satisfy Eq.(94). If only im∆  

satisfies Eq.(94), i.e., rcmi ∆∆ h<<  but rcmi ∆∆ h>>′  then gm∆  and gm′∆  will be 

respectively given by 
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Consequently, the expression (96) becomes 
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However, from the uncertainty principle for energy and time we know that 
 
 t~E ∆∆ h  (104) 
 
Therefore we can write the expression (103) in the following form: 
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From the General Relativity Theory we know that 00gcdtdr −= . If the field is 

weak then 2
00 21 cg φ−−= and ( ) ( )222 11 crGmcdtccdtdr −=+= φ . For 

122 <<crGm  we obtain cdtdr ≅ . Thus, if rddr ′=  then tddt ′= . This means that we 

may change ( )ct ′∆  by ( )r∆  into (105). The result is 
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or 
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Now the Casimir force is repulsive, and its intensity is the half of the intensity previously 

obtained (102). 
Consider the case when both im∆  and im′∆  do not satisfy Eq.(94), and 
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In this case, ig mm ∆∆ ≅  and ig mm ′≅′ ∆∆ . Thus, 
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whence 
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The force will be attractive and its intensity will be the fourth part of the intensity given 

by the first expression (102) for the Casimir force. 
There is a crucial cosmological problem to be solved: the problem of the hidden mass. 

Most theories predict that the amount of known matter, detectable and available in the 
universe, is only about 1/10 to 1/100 of the amount needed to close the universe. That is, to 
achieve the density sufficient to close-up the universe by maintaining the gravitational 
curvature (escape velocity equal to the speed of light) at the outer boundary. 

The Eq.(45) may solve this problem. We will start by substituting the well-known 

expression of Hubble's law for velocity, lH~V = , into Eq.(45). ( 1181071 −−×= s.H~  is the 
Hubble constant). The expression obtained shows that particles which are at distances 

( )( ) m.H~cll 26
0 103135 ×===  have quasi null gravitational mass ( )mingg mm = ; beyond 

this distance, the particles have negative gravitational mass. Therefore, there are two well-
defined regions in the Universe; the region of the bodies with positive gravitational masses 
and the region of the bodies with negative gravitational mass. The total gravitational mass of 
the first region, in accordance with Eq.(45), will be given by 
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where 1im  is the total inertial mass of the bodies of the mentioned region; cV <<1  is the 
average velocity of the bodies at region 1. The total gravitational mass of the second region is 
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where 2V  is the average velocity of the bodies ; 22
222 1 cVmM ii −=  and 2im is the 

total inertial mass of the bodies of region 2. 
Now consider that from Eq.(7), we can write 
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c
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where ξ  is the energy density of matter. 
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Note that the expression of ξ  only reduces to the well-known expression 2cρ , where ρ  

is the sum of the inertial masses per volume unit, when ig mm = . Therefore, in the 

derivation of the well-known difference  
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 (108) 

 
which gives the sign of the curvature of the Universe [15], we must use 2cgUρξ =  instead 

of 2cUρξ = .The result obviously is 
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where 
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gUM  and UV  are respectively the total gravitational mass and the volume of the 

Universe. 
Substitution of 1gM  and 2gM  into expression (110) gives 

 

 
U

iiiU

gU

mm
cVcV

m

V











−















−
−

−
+

=

2222
2

22
2

1
2

1
3

ρ  

 
where 21 iiiU mmm +=  is the total inertial mass of the Universe. 

The volume 1V  of the region 1 and the volume 2V  of the region 2, are respectively given 

by 1
32

2
3
0

2
1 22 VVV −== clandl ππ where m.H~clc

261081 ×==  is the 

so-called "radius" of the visible Universe. Moreover, 111 Vii m=ρ  and 222 Vii m=ρ . Due to 

the hypothesis of the uniform distribution of matter in the space, follows that 21 ii ρρ = .Thus, 
we can write 
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Similarly, 
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Substitution of 2im  into the expression of gUρ  yields 
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Due to cV ≅2 , we conclude that the term between bracket (hidden mass) is very greater 

than iUm10 . The amount iUm  is the mass of known matter in the universe (1/10 to 1/100 of 
the amount needed to close the Universe). 

Consequently, the total mass 
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must be sufficient to close the Universe. This solves therefore the problem of the hidden 
mass. 

There is another cosmological problem to be solved: the problem of the anomalies in the 
spectral red-shift of certain galaxies and stars. 

Several observers have noticed red-shift values that cannot be explained by the Doppler-
Fizeau effect or by the Einstein effect (the gravitational spectrum shift, supplied by Einstein's 
theory). 

This is the case of the so-called Stefan's quintet (a set of five galaxies which were 
discovered in 1877), whose galaxies are located at approximately the same distance from the 
Earth, according to very reliable and precise measuring methods. But, when the velocities of 
the galaxies are measured by its red-shifts , the velocity of one of them is much greater than 
the velocity of the others. 

Similar observations have been made on the Virgo constellation and spiral galaxies. Also 
the Sun presents a red-shift greater than the predicted value by the Einstein effect. 

It seems that some of these anomalies can be explained if we consider the Eq.(45) in the 
calculation of the gravitational mass of the point of emission. 
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The expression of the gravitational spectrum shift, supplied by Einstein's theory [16] is 
given by 
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 (111) 

 
where 1ω  is the frequency of the light at the point of emission ; 2ω  is the frequency at the 

point of observation; 1φ  and 2φ  are respectively, the Newtonian gravitational potentials at 
the point of emission and at the point of observation. 

This expression has been deduced from 000 gtt −=  [17] which correlates own time 

(real time), t , with the temporal coordinate x0 of the space-time ( cxt 0
0 =  ). 

When the gravitational field is weak , the temporal component 00g  of the metric tensor is 

given by 221 c/goo φ−−= [18].Thus we readily obtain 
 

 21 2
0 rcGmtt g−=  (112) 

 
Curiously, this equation tell us that we can have 0tt <  when 0>gm  ; and 0tt >  for 

0<gm . In addition, if Grcmg 22= , i.e., if 22 cGmr g=  ( Schwarzschild radius ) we 

obtain 0=t . 
Let us now consider the well-known process of stars' gravitational contraction. It is 

known that the destination of the star is directly correlated to its mass. If the star's mass is less 
than 1.4M  ( Schemberg-Chandrasekhar's limit), it becomes a white dwarf. If its mass 
exceeds that limit, the pressure produced by the degenerate state of the matter no longer 
counterbalances the gravitational pressure, and the star's contraction continues. Afterwards 
occur the reactions between protons and electrons (capture of electrons), where neutrons and 
anti-neutrinos are produced. 

The contraction continues until the system regains stability ( when the pressure produced 
by the neutrons is sufficient to stop the gravitational collapse). Such systems are called 
neutron stars. 

There is also a critical mass for the stable configuration of neutron stars. This limit has 
not been fully defined as yet, but it is known that it is located between 1.8M  and 2.4M . 
Thus, if the mass of the star exceeds 2.4M  , the contraction will continue. 

According to Hawking[19] collapsed objects cannot have mass less than 

kg.Gc 810114 −×=h . This means that, with the progressing of the compression, the 
neutrons cluster must become a cluster of superparticles where the minimal inertial mass of 
the superparticle is 
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 ( ) 1011 8 .kg.m spi
−×=  (113) 

 
Symmetry is a fundamental attribute of the Universe that enables an investigator to study 

particular aspects of physical systems by themselves. For example, the assumption that space 
is homogeneous and isotropic is based on Symmetry Principle. Also here, by symmetry, we 
can assume that there are only superparticles with mass ( ) kg.m spi

81011 −×=  in the cluster 

of superparticles. 
Based on the mass-energy of the superparticles ( ~1018 GeV ) we can say that they belong 

to a putative class of particles with mass-energy beyond the supermassive Higgs bosons ( the 
so-called X bosons). It is known that the GUT's theories predict an entirely new force 
mediated by a new type of boson, called simply X (or X boson ). The X bosons carry both 
electromagnetic and color charge, in order to ensure proper conservation of those charges in 
any interactions. The X bosons must be extremely massive, with mass-energy in the 
unification range of about 1016 GeV. 

If we assume the superparticles are not hypermassive Higgs bosons then the possibility 
of the neutrons cluster to become a Higgs bosons cluster before becoming a superparticles 
cluster must be considered. On the other hand, the fact that superparticles must be so massive 
also means that it is not possible to create them in any conceivable particle accelerator that 
could be built. They can exist as free particles only at a very early stage of the Big Bang from 
which the universe emerged. 

Let us now imagine the Universe coming back for the past. There will be an instant in 
which it will be similar to a neutrons cluster, such as the stars at the final state of gravitational 
contraction. Thus, with the progressing of the compression, the neutrons cluster becomes a 
superparticles cluster. Obviously, this only can occur before 10-23s(after the Big-Bang). 

The temperature T of the Universe at the 10-43s< t < 10-23s period can be calculated by 
means of the well-known expression[20]: 

 

 ( )1010 2
12322 −−≈ tT  (114) 

 
Thus at st 4310 −≅  ( at the first spontaneous breaking of symmetry ) the temperature 

was KT 3210≈  (∼1019GeV).Therefore, we can assume that the absorbed electromagnetic 
energy by each superparticle, before st 4310 −≅ , was JkTU 9101×>=η  ( see Eqs.(71) 

and (72) ). By comparing with ( ) Jcm spi
82 109×≅ , we conclude that ( )cmU spi> . 

Therefore, the unification condition ( )22 cmcMUn iir >≅  is satisfied. This means that, before 

st 4310 −≅ , the gravitational and electromagnetic interactions were unified. 

From the unification condition ( )2cMUn ir ≅ , we may conclude that the superparticles' 

relativistic inertial mass ( )spiM  is 
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Comparing with the superparticles' inertial mass at rest (113), we conclude that 
 
 ( ) ( ) 1011 8kg.mM spispi

−×=≈  (116) 

 
From Eqs.(83) and (115), we obtain the superparticle's gravitational mass at rest, i.e., 
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and consequently, the superparticle's relativistic gravitational mass, is 
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Thus, the gravitational forces between two superparticles , according to (13), is given by: 
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Due to the unification of the gravitational and electromagnetic interactions at that period, 

we have 
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From the equation above we can write 
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Now assuming that 
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the Eq.(121) can be rewritten in the following form: 
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which is the well-known reciprocal fine structure constant . 

For KT 3210=  the Eq.(122) gives 
 

 ( )

( )
( )

100
12

5

2

≈

















= Tn

c
G

m
M

r
spi

spi κηψ
h

 (124) 

 
This value has the same order of magnitude that the exact value(1/137) of the reciprocal 

fine structure constant. 
From equation (120) we can write: 
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The term between parenthesis has the same dimensions that the linear momentum pr . 

Thus (125) tells us that 
 
 .rp h

rr
=⋅  (126) 

 
A component of the momentum of a particle cannot be precisely specified without loss of 

all knowledge of the corresponding component of its position at that time ,i.e., a particle 
cannot precisely localized in a particular direction without loss of all knowledge of its 
momentum component in that direction . This means that in intermediate cases the product of 
the uncertainties of the simultaneously measurable values of corresponding position and 
momentum components is at least of the order of magnitude of h ,i.e., 
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 h≥r.p∆∆  (127) 
 
This relation, directly obtained here from the Unified Theory, is the well-known relation 

of the Uncertainty Principle for position and momentum. 
According to Eq.(83), the gravitational mass of the superparticles at the center of the 

cluster becomes negative when ( )spir mckTn >22η , i.e., when 
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According to Eq.(114) this temperature corresponds to stc

4310−≈ . 
With the progressing of the compression, more superparticles into the center will have 

negative gravitational mass. Consequently, there will have a critical point in which the 
repulsive gravitational forces between the superparticles with negative gravitational masses 
and the superparticles with positive gravitational masses will be so strong that an explosion 
will occur. This is the experiment that we call the Big Bang. 

Now, starting from the Big Bang to the present time. Immediately after the Big Bang, the 
superparticles' decompressing begins. The gravitational mass of the most central superparticle 
will only be positive when the temperature becomes smaller than the critical temperature, 

KTcritical
3210≈ . At the maximum state of compression ( exactly at the Big Bang ) the 

volumes of the superparticles was equal to the elementary volume minV dδΩ =0  and the 

volume of the Universe was ( ) 33
initialVminV dnd δδΩ ==  where initiald  was the initial length 

scale of the Universe. At this very moment the average density of the Universe was equal to 
the average density of the superparticles, thus we can write 
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where ( ) kgM Ui

5310≈  is the inertial mass of the Universe. It has already been shown that 

.mlk~d planckmin
3410−≈=  Then, from the Eq.(128), we obtain: 

 
 10 14 mdinitial

−≈  (129)  
 
After the Big Bang the Universe expands itself from initiald  up to crd  ( when the 

temperature decreasing reaches the critical temperature KTcritical
3210≈ , and the gravity 

becomes attractive). Thus, it expands by initialcr dd − , under effect of the repulsive gravity 
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during to a time stc

4310−≈  .Thus, 
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The Eq.(83), gives 
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The temperature at the beginning of the Big Bang (t=0) should have been very greater 

than KTcritical
3210≈ . Thus, χ  must be a very big number. Then it is easily seen that 

during this period, the Universe expanded at an astonishing rate. Thus, there is an evident 
inflation period, which ends at st c

4310 −≈ . 
With the progressing of the decompression the superparticles cluster becomes a neutrons 

cluster. This means that the neutrons are created without its antiparticle, the antineutron. Thus 
it solves the matter/antimatter dilemma that is unresolved in many cosmologies. 

Now a question: How did the primordial superparticles appear at the beginning of the 
Universe? It is a proven quantum fact that a wave function Ψ  may collapse and that at this 
moment all the possibilities that it describes are suddenly expressed in reality. This means 
that, through this process, particles can be suddenly materialized. 

The materialization of the primordial superparticles into a critical volume denotes 
knowledge of what would happen starting from that initial condition, fact that points towards 
the existence of a Creator. 

Conclusion 

We have described a coherent way for the quantization of gravity, which provides a 
consistent unification of gravity with electromagnetism. As we have seen, this new approach 
will allow us to understand some crucial matters in Quantum Cosmology. 
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The equation of correlation between gravitational and inertial masses, which has been 
derived directly from the theory of gravity, has relevant technological consequences. We have 
seen that gravitational mass can be negative at specific conditions. This means that it will be 
possible to build gravitational binaries (gravitational motors), and to extract energy from any 
site of a gravitational field. Obviously, the Gravity Control will be also very important to 
Transportation Systems. On the other hand, negative gravitational mass suggests the 
possibility of dipole gravitational radiation. This fact is highly relevant because now we may 
build transceivers to operate with gravitational waves. Furthermore, the receiver would allow 
us to directly observe for the first time the Cosmic Microwave Background in Gravitational 
Radiation, which would picture the Universe at the beginning of the Big-Bang. 

Appendix A 

In the beginning of this work it was shown (Eq.59c) that when an alternating electric current 
passes through a conductor its gravitational mass is reduced in accordance with the following 
expression 
 

 ( )[ ]{ }164121 342234 mfScim ig −+−= σρπµ  (A1) 

 
In this equation i refers to the instantaneous electric current; 0µµµ r=  is the magnetic 

permeability of the conductor; c is the speed of light; ρ is the density (kg/m3) of the 
conductor; S is the area of the cross section(m2) of the conductor; σ is the electric 
conductivity of the conductor (S/m); mi is the inertial mass of the conductor and f the 
frequency of the electric current (Hz). 

If the conductor is a mumetal wire with the following characteristics: relative magnetic 
permeability = µr = 100,000; electrical conductivity = m/S. 61091 ×=σ ; density = 

38740 −= m.kgρ . Then (A1) gives 
 

 ( )[ ]{ } (11084121 34436 mfSi.m ig −×+−= −  (A2)  

 
If A.ii 600 =≅ , mHzf 10=  and the wire has diameter = 0.127mm then substitution 

of these values into (A2) yields 
 
 986 m.m ig −=  (A3) 
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Thus, if the length of the wire is ml 10=  then g.kg.Slmi 111011 3 =×== −ρ  and 

consequently results g.mg 77−= The electrical resistance R  of the wire is 

Ωσ 4414.SlR ==  and the average power required (true power) is 

( ) W.iRRIcosIVP rmsrmsrms 59742
2

0
2 ≅=== ϕ As we know in an AC circuit the apparent 

power is 2
rmsap ZIP = (volt-amp), where Z  is the impedance; the reactive power is 

2
rmsq XIP = , ϕZsinX =  is the reactive impedance. These powers are related by means of 

the following equation: 222
qap PPP += . It is easy to see that the powers apP  and qP  depend 

on the frequency f , but P  is independent of f . Therefore if we decrease f  the power P  
won't be altered. 

Note that decreasing the frequency down to Hzµ1  we can increase 1000 times the area 
S  (mumetal wire with 4mm diameter). Then by keeping the same current ( A.i 60≅ ) the 
result will be the same of (A3), i.e., ig m.m 986−= However, due to the increasing of the 

area S  the value of im  increases 1000 times, ie., kg.Slmi 11== ρ  and consequently the 

gravitational mass becomes kg.mg 77−= By increasing the length of the wire from 10m 

up to 10,000m we obtain 
 
 kg,mg 7007−=  

In this case the power required (true power) will be the same, i.e., W.P 5974≅ since the 
resistance R  of the wire will be the same: Ωσ 4414.SlR == . 

This means that we can produce a gravitational lift force 
 
 N,.,gmF g 46075897007 −=×−==  
 

with power requirements of 74.59W only. 
Next, we will describe an experiment, in which there has been observed strong decreases 

in weight of a thin mumetal wire (0.127mm diameter; 10m length; 1.1g mass) when it has 
been subjected to sinusoidal currents of 1.20App with extremely-low frequencies (ELF) of 
5mHz, 10mHz , and 15mHz. 

The mumetal wire has the characteristics previously mentioned. 
The ELF sinusoidal currents were generated by a HP3325A (Op.002 High Voltage Output) 

which can generate sinusoidal voltages with extremely-low frequencies down to f = 1×10-6Hz and 
amplitude up to 20V ( 40Vpp into Ω50  load ). The maximum output current is ppA.080  . 
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Note: The curve a hanging flexible wire assumes when supported at its ends
and acted upon by a uniform gravitational field is called catenary. Note that
the extreme parts of the Mumetal wire make catenaries which will be
inverted after        t ~12s if f = 5mHz, after t ~11s  if 10mHz, and after  t ~10s
if 15mHz.
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Fig. 1. Experimental Set-up. 

As shown in figure 1, an amplifier has been connected to the HP3325A in order to 
increase the maximum output current up to ppA.201 . The mumetal wire sandwiched by 2 

transparent Plexiglass plates (150×250×2mm) has been placed over a balance and connected 
to the system amplifier/ HP3325A. 

The mass of mumetal wire has been measured while passing through it an ELF electric 
current. For the mass measurements we used a XL-500 Pan balance with maximum weight 
capability of 500g and resolution of 0.01g. 

We have started applying through the wire a sinusoidal current of ppA.201  (amplitude 

A.i 6000 = ) and frequency f = 5mHz. Then at st 5=  the balance showed a mass decrease 
of ~ 27.3% with respect to initial mass of the wire. The mass decrease becomes equal to 
100% at st 9≅ . 
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For 10mHz at st 5=  the balance showed a mass decrease of ~18.2%. The mass decrease 
becomes equal to 100% at st 8≅ . For 15mHz at st 5=  the balance showed a mass decrease 
of ~36.4%. The mass decrease becomes equal to 100% at st 7≅ . 

Since the weight is given by gmP g
rr

=  and gr  is not altered, we conclude that the 

experimental results refers to gm  ,i.e., the gravitational mass of the mumetal wire is 

decreased ( independently of its inertial mass) when an electric current with extremely-low 
frequency passes through it. 

Table 1 - Experimental results of gm∆  and correlation ( )initialgg mm  for the Mumetal 

wire (mg(initial) = mi(initial) = 1.10g; through the wire a sinusoidal current of ppA.201  

(amplitude A.i 6000 = )). Experimental data are the average of 10 measurements. The 
standard deviation of the single data is between 3 and 5%. 

5mHz 10mHz 15mHz 

∆mg 
( g ) 

mg/mg(initial) 
 

∆mg 
( g ) 

mg/mg(initial) 
∆mg 
( g ) 

mg/mg(initial) 
 

 
t 

(s) 

Exp The Exp The Exp The Exp The Exp The Exp The 
5 0.3 0.21 0.7 0.81 0.2 0.31 0.8 0.72 0.4 0.38 0.6 0.65 
10 1.3 1.42 -0.2 -0.29 2.1 2.04 -0.9 -0.85 2.1 2.13 -0.9 -0.94 
15 4.2 4.16 -2.8 -2.78 4.7 4.84 -3.3 -3.40 3.7 3.68 -2.4 -2.35 
20 7.9 7.90 -6.2 -6.18 7.4 7.21 -5.7 -5.55 3.5 3.33 -2.2 -2.03 
25 12.0 12.13 -9.9 -10.03 8.3 8.13 -6.5 -6.39 1.3 1.44 -0.2 -0.31 
30 16.3 16.39 -13.8 -13.90 7.4 7.21 -5.7 -5.55 0.2 0.16 0.8 0.85 
35 20.5 19.14 -17.6 -17.40 4.7 4.84 -3.3 -3.40 0.1 0.10 0.9 0.91 
40 23.2 23.30 -20.1 -20.18 2.1 2.04 -0.9 -0.85 0.9 0.83 0.2 0.25 
45 25.1 25.27 -21.8 -21.97 0.2 0.31 0.8 0.72 2.9 2.79 -1.6 -1.54 

50 26.1 25.94 -22.7 -22.58 0.0 0.00 1.0 1.00 3.8 3.81 -2.5 -2.46 

• The mass of the plexiglass plates is greater than g1.26 . See Fig.1. 

Table1 presents the mass decreases, gm∆ , as function of t . The theoretical values of 

gm∆ , calculated as follows 
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are also on that Table to be compared with those supplied by the experiment. 

The values of the correlation mg/m(initial)(experimental and theoretical results) as function 
of the instantaneous currents i  have been plotted on the Fig.2 to be compared. There is a 
strongly accordance with the experimental data and theory. 
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Fig. 2. Distribution of the correlation mg/mg (initial) as a function of i. 

The strong variations in the gravitational mass of the mumetal wire correlated to the 
small values of electric current and applied voltages show that the observed phenomenon 
cannot be attributed to ion winds or other electrokinetic effects (Charge asymmetries, etc. ). It 
tells us precisely about the theoretical correlation between gravitational and inertial mass 
deduced in this work. 
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Appendix B 

It was noted earlier that when an alternating electric current passes through a conductor its 
gravitational mass is reduced in accordance with the following expression 
 

 ( ){ }4 3 2 2 4 3 4
01 2 1 64 sin 2 1g im i c S f ft mµ π ρ σ π = − + −  

 (B1) 

 
 
 
 
 
 
 
 
                          (a) 
 
 
 
 
 
 
                          (b) 
 
 
 
 
 
 
                          (c) 
 
 
 
 

T=1/f 

φ 

ELF sinusoidal waves
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ELF pulsed waves

T/2

φ 

∆t << T ELF working wave
(ELF ww) 

T/2

 

Fig. 3 - ELF working waves 

In this equation i0 refers to amplitude of the electric current; 0µµµ r=  is the magnetic 

permeability of the conductor; c is the speed of light; ρ is the density (kg/m3) of the 
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conductor; S is the area of the cross section(m2) of the conductor; σ is the electric 
conductivity of the conductor (S/m); mi is the inertial mass of the conductor and f the 
frequency of the electric current (Hz). We have shown that the gravitational mass of a 
supermalloy wire is strongly decreased when the electric current through the wire has 
extremely-low frequency. As we have seen, for i0 = 0.04A and f ≅ 1.7 × 10-6Hz at t = 1/4f = 
1.47 × 105 s ≅ 40.8h Eq.(59) gives mg(sm) ≅ - mi(sm). 

The period of this wave is too long. In order to reduce the period of the wave we can 
reduce the diameter of the wire. For example, in the case of supermalloy or mumetal wire 
0.005" diameter, the period will be strongly reduced down to ~100s. In addition, by digitizing 
the top of this ELF wave, as shown in Fig.3, we may produce a ELF digitized wave which 
obviously becomes much more adequate for practical use. 

 

                          (a)                                                         (c)

                                                            

                                     (b)                                                                (d)
                                                             

F = (mg(sm) / mi(sm))P0 ; P0 =mi(sm) g

ELF ww
Generator

ELF ww
Generator

Supermalloy

LIFT

LIFT

Gravitational
waves (GW)will
be radiated from
the supermalloy
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of the variation of
its gravitational

mass (due to ELF
electromagnetic

field).

ELF antenna
(supermalloy)

GW GW

ELF ww
Generator

i

Coil
(Supermalloy wire) Coil

(Supermalloy wire)
Coil
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Fig. 4. Schematic diagram of system using gravity control: (a) and (b) The generation of Gravitational 
Lift Force. (c) The Gravitational Motor (d) The Gravitational Radiation Transmitter. 
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This possibility points to some interesting systems as shown in Fig. 4. Figures 4(a) and 
4(b) show the generation of Lift Force. Figure 4(c) shows a new concept of motor : the 
Gravitational Motor, also based on the gravity control. 

When the gravitational field of an object changes, the changes ripple outwards through 
spacetime. These ripples are called gravitational radiation or gravitational waves. 

The existence of gravitational waves follows from the General Theory of Relativity. In 
Einstein's theory of gravity the gravitational waves propagate at the speed of light. 

Just as electromagnetic waves (EM), gravitational waves (GW) too carry energy and 
momentum from their sources. Unlike EM waves, however, there is no dipole radiation in 
Einstein's theory of gravity. The dominant channel of emission is quadrupolar. But the 
existence of negative gravitational mass suggest the possibility of dipole gravitational 
radiation. 

This fact is highly relevant because now we can build a gravitational wave transmitter to 
generate detectable levels of gravitational radiation. Gravitational waves are very suitable as a 
means of transmitting information because of their low interaction an therefore low 
scattering. In figure 4(d) we present the Gravitational Radiation Transmitter, a new concept 
of transmitter that arises from this new technology. 

The phenomenon of gravitational mass decreasing in a conductor when an alternating 
electric current passes through it, such as described by (B1), is a macroscopic reflex of the 
gravitational mass decreasing of its atoms. Note that in (B1), the variables ρ ,µ ,σ  are 
macroscopic characteristics of the conductor and consequently the decreasing factor 
( )ig mm  will be the same for all types of atoms inside the conductor. This phenomenon is 

general for any kinds of conductors including plasmas. Thus, if a plasma contains different 
types of ions then the Eq. (B1) can be used to express the gravitational mass of each one of 
these ions. As the decreasing factor is the same for all ions inside the plasma, the different 
gravitational masses of the ions arise only due to the difference among their inertial masses. 

Consider a Carbon Plasma confined within a toroidal chamber. The plasma has density 
328 m/Kg=ρ  and electric conductivity m/S410≈σ  at temperature K,T 00016= . An 

ELF electric current (ELF working wave) is induced through the Plasma. If this ELF working 
wave is a sequence of tops similar to region very close to the amplitude of the original wave, 
of ELF electric current, then we can assume 12 ≅ftsin π  in (B1), and consequently when 
this ELF current passes through the Carbon Plasma the gravitational mass of the carbon ions, 

gCm , will be reduced and given by 

 
 

( )[ ]{ } iCgC mfSim 110121 344
0

33 −+−= −
 

 
Note that, the equation above shows that in practice it is possible to reduce strongly the 

gravitational masses of the Carbon ions, for example, if the diameter of the cross section of 
the plasma toroid is 5mm ( )2510961 m.S −×= , mHZf 10=  and Ai 1160 ≅ . 
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Usually a Carbon plasma is produced by evaporating a thin graphite wire within some 
hundred nanoseconds (exploding the wire by means of a strong electric current). To ensure a 
good energy input and a homogeneous plasma a preheating system is used. 

Equation (4) shows that the velocities of the Carbon ions must increase as a consequence 
of the decreasing of its gravitational masses since the momentum is conserved. In practice the 
gravitational mass decreasing can easily reach 100 times. This means that the velocities of the 
ions can be increased a 100 times, which is equivalent to an increasing of 10,000 times in 
temperature ( since 2VT ∆∆ ∝  ), i.e., it is equivalent to increase the initial temperature of 
the plasma from 16,000K up to 1.6×108 K. 

In other words, in this case, the velocities of the Carbon ions inside the toroid should be 
the same as if the temperature of the plasma was to reach 1.6×108K. 

As we know nuclear reactions can occur at temperatures greater than 107K. 
Consequently, if Hydrogen atoms are sprayed into this Artificial Plasma the well-known 
CNO Cycle may occur, i.e., 
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The total energy released in these reactions is, as we know, 24.7MeV. Note that the initial 

12
6 C  acts like a kind of catalyst in the process, since it appears again at the end of the 
process. On the other hand, it is easy to see that by controlling the amount of Hydrogen 
sprayed into the toroid it is possible to control the total energy produced in nuclear reactions. 

The mass-13 isotope of Nitrogen ( )13
7 N  is unstable with half-life of 9.97 minutes. This 

means that there is a delay of 9.97 minutes to occur the beta decays reaction: 
ν++→ +eCN 13

6
13

7 . However we can put a smaller amount of 14
7 N  (stable) inside the 

toroidal chamber before the Carbon plasma is produced. When the plasma is produced and 
the ELF current applied, the decreasing factor ( )ig mm  for the 14

7 N  ions will be the same 

of the Carbon ions and consequently the velocities of the 14
7 N  ions will also be increased at 

the same proportion of the Carbon ions. Therefore the following reactions 
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of the CNO cycle can occur without delaying. Although we have illustrated the CNO cycle 
starting with Carbon, it is known that similar sequences are possible starting with 14

7 N  

or 15
8 O . 
If instead of Nitrogen we put Hydrogen inside the toroidal chamber before the plasma is 

produced, then the velocities of the 1
1 H  ions will also be increased at the same proportion of 

the Carbon ions since the decreasing factor ( )ig mm  for the 1
1 H  ions will also be the same 

as the Carbon ions. Consequently, in this case reactions of the Proton-Proton Cycle can 
occur, i.e., 
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The total energy released in these reactions is also 24.7MeV. 
It is important to note that in this case, the reactions of the Proton-Proton Cycle and CNO 

cycle occur simultaneously inside the toroidal chamber. 
On the other hand if, instead of 1

1 H  we put 2
1 H  (Deuterium) inside the toroidal 

chamber then the following reactions can occur 
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Appendix C 

In this appendix we will show that strong fluxes of ELF radiation upon electric/electronic 
circuits can suddenly increase the electric currents and consequently to damage these circuits. 

Let us consider an electric current I  through a conductor subjected to electromagnetic 
radiation with power density D  and frequency f . 

Under these circumstances the gravitational mass gem  of the electrons of the conductor, 

according to Eq. (58), is given by 
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where kg.me

3110119 −×= . 
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Note that gem , becomes less than the inertial mass, em . If the radiation upon the 

conductor has extremely-low frequency (ELF radiation) then gem  can be strongly reduced. 

For example, if Hzf 610−≈ , 2510 m/WD ≈  and the conductor is made of copper 

( 0µµ ≅ ; m/S. 71085 ×=σ  and 38900 m/kg=ρ ) then 
 

 1
4

≈



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
cf

D
ρπ

µσ
 

 
and consequently ege m.m 10≈ . 

According to Eq.(6) the force upon each free electron is given by 
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−
=  (C2) 

 
where E  is the applied electric field. Therefore the decreasing of gem  produces an increase 

in the velocity V  of the free electrons and consequently the drift velocity dV  is also 

increased. It is known that the density of electric current J  through a conductor [21] is 
given by 
 

 VJ de

rr
∆=  (C3) 

 
where e∆  is the density of the free electric charges ( For cooper conductors 

3101031 m/C.e ×=∆  ). Therefore increasing dV produces an increase in the electric 

current I . Thus if gem  is reduced 10 times ( )ege m.m 10≈  the drift velocity dV  is increased 

10 times as well as the electric current. This sudden increase in the electric currents of 
electric/ electronic circuits can cause damage. 

In order for the ELF radiation to arrive at each electron, the flux density D  must be 
greater than minD  given by 

 

 
2

A
hfD
electron

min =  (C4) 

 
where electronA  is the "area of cross section" of the electron. We know that the leptons should 
have length scale less than 10-19m [22]. This means that an electron has a maximum, "radius" 
of re~10-19m. The plausible relation given by Brodsky and Drell [23] for the simplest 
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composite theoretical model of the electrons, cerg D=− 2  or ceDIRAC rgg D=− ,where 

m.c
131093 −×=D  and m.g 1010112 −×=−  [24] gives an electron radius of 

 
 mre

2210−≈  
 
Therefore assuming mAelectron

4510−≈  (C4) gives 
 
 10 212 fDmin ≈  (C5) 
 
Thus, for Hzf 610−≈  we have 21 m/WDmin≈ . 

Since the orbital electrons moment of inertia is given by ( ) 2
jjii rmI Σ= , where im  

refers to inertial mass and not to gravitational mass, then the momentum ωiIL =  of the 
conductor orbital electrons are not affected by the ELF radiation. Consequently this radiation 
just affects the conductor free electron velocities. 

Appendix D 

Here we will show that the possible existence of ELF radiation into solar radiation can 
explain the anomalous acceleration which has been observed on the Pioneer 10 and 11 
spacecrafts in the solar system [25] and also the anomalous behavior of mechanical systems 
during solar eclipses observed by Allais [26] with paraconical pendula and Saxl and Allen 
[27] with a torsion pendulum and measurements with gravimeters. 

Equation (58) shows that the presence of ELF radiation (frequency ranging between 
Hz. µ10  down to nHz.10  ) into solar radiation can slightly reduce the gravitational masses 

of any body in the solar system. The gravitational mass of these bodies become less than their 
inertial masses, im , as expressed by 
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The total energy of the spacecraft (Hamiltonian) according to (20), is 

2222 cmcpH g+= . Therefore the decreasing of gm  reduces the total energy of the 

spacecraft, and consequently its acceleration. This explains the fact that the Pioneer 10 and 11 
spacecrafts, launched by NASA, in the early 1970s, are receding from the sun slightly more 
slowly than they should be. 
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Similarly, the ELF solar radiation slightly reduces the gravitational mass of the Earth, 

⊕gM , and consequently it becomes smaller than its inertial mass ⊕iM . 

From Electrodynamics we know that radiation with frequency f propagating within a 
material with electromagnetic characteristics ε, µ and σ has the amplitudes of its waves 
attenuated by e−1=0.37 (37%) when it penetrates a distance z, given by 
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The radiation is mostly absorbed if it penetrates a distance δ≅5z. 
Based on this equation we can easily conclude that the ELF solar radiation is mostly 

absorbed by the moon, therefore during the eclipses, when the moon passes in front of the 
sun, the ELF solar radiation ceases to fall upon the Earth and, according to (D1), the 
gravitational mass of the Earth increases ( ⊕gM  becomes equal to ⊕iM  ) slightly increasing 

the gravity 2rGMg g⊕= . Similarly, the gravitational mass of the pendulum, gm , also 

increases slightly during the eclipse. Since the period, T , of the pendulum is given by 
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one can conclude that during the eclipses the pendulum's periods are slightly decreased. This 
means that their motion becomes faster during the eclipses, such as has been observed in the 
experiments of Allais, Saxl and Allen. 

Appendix E 

Equation (70) shows that the gravitational interaction can be repulsive, besides attractive. 
Therefore, as with electromagnetic interaction, the gravitational interaction must be produced 
by the exchange of "virtual" quanta of spin 1 and mass null, i.e., the gravitational "virtual" 
quanta (gravitons) must have spin 1 and not 2. 

It is known that the gravitational interaction is instantaneously communicated to all the 
particles of the Universe. This means that the velocity of the gravitational "virtual" quanta 
must be infinite. 

Consider a Mumetal ELF antenna as showed in Fig.5. The ELF electric current through it 
is ftsinitsiniie πω 200 == . According to (59c) the gravitational mass of the antenna is 
given by 
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 ( )[ ]{ }164121 342234 mfScim ieg −+−= σρπµ  (E1) 

 
where ρ ,µ ,σ  and S  are respectively the density, the magnetic permeability, the electric 
conductivity and the area of the antenna cross section. 

It is easy to see that the ELF electric current yields a variation in the gravitational mass of 
the antenna, which is detected instantaneously by all particles of the Universe, i.e., the 
gravitational "virtual" quanta emitted from the antenna will instantaneously reach all 
particles. 

When a particle absorbs photons, the momentum of each photon is transferred to particle 
and, in accordance with (41), the gravitational mass of the particle is altered. Similarly to the 
photons the gravitational "virtual" quanta have mass null and momentum. Therefore the 
gravitational masses of the particles are also altered by the absorption of gravitational 
"virtual" quanta. 
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Fig. 5. Mumetal ELF antenna 

If the gravitational "virtual" quanta are emitted by an antenna (like a Mumetal ELF 
antenna) and absorbed by a similar antenna, tunned to the same frequency f , the changes on 
the gravitational mass of the receiving antenna, in accordance with the principle of resonance, 
will be similar to changes occurred on the transmitting antenna, and consequently the induced 
current through the receiving antenna has the same frequency f  and, in agreement with (E1), 
must be similar to electric current through the transmitting antenna. The Fig. 6 shows the 
emission and detection of gravitational "virtual" quanta by two Mumetal ELF antennas. 
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Note that the changes of gravitational mass of the antenna also produce the so-called 
gravitational waves which are ripples in the geometry of the spacetime. This is produced by 
the changes on the gravitational field of the antenna. When the gravitational field changes, the 
changes ripple outwards through space and take a finite time to reach other objects. In Einstein's theory 
of gravity these ripples (gravitational waves) propagate at the speed of light (c). 

Therefore the velocity of the gravitational waves is much less than the velocity ( ∞ ) of 
the gravitational "virtual" quanta (gravitons). There is another fundamental difference 
between the gravitational waves and gravitons: the gravitational waves are real unlike the 
gravitons which are virtual . 

Note that a Mumetal ELF antenna emits gravitons and gravitational waves 
simultaneously. Thus it is not only a gravitational antenna: it is a macroscopic quantum 
gravitational antenna because can also emit and detect gravitational "virtual" quanta, which 
can to transmit information instantaneously from any distance in the Universe without 
scattering. 
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Fig. 6. Transmitter and Receiver of gravitational “Virtual” Quanta 
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Unlike the electromagnetic waves the gravitational waves have low interaction and 
consequently low scattering. Therefore gravitational waves are suitable as a means of 
transmitting information. However, when the distance between transmitter and receiver is too 
large, for example of the order of magnitude of several light-years, the transmission of 
information by means of gravitational waves becomes impracticable due to the long time 
necessary to receive the information. The velocity of the gravitational waves is equal to the 
speed of light ( c ) therefore the delay would be in the order of several years. 

The velocity of the gravitational "virtual " quanta is infinite thus there is no delay during 
the transmissions. The scattering of this radiation is null. Therefore this gravitational "virtual" 
radiation or gravitational "virtual" waves are very suitable as a means of transmitting 
information at any distances including astronomical distances. 

In order to check these theoretical predictions we propose the following experiment: A 
transmitter and a receiver both with Mumetal antennas will be placed in two very distant 
places, like Mars and Earth ( the distance is ~7.9X1010m). Electromagnetic waves or 
gravitational real waves emitted from Mars will need ~ 4.4 minutes to arrive at Earth. There 
is no delay in the case of gravitational "virtual" waves due to their infinite velocity. Therefore 
simply checking that there is no delay during the transmission by using Mumetal antennas we 
can check the existence of the gravitons. 

Since the gravitational masses of the antennas vary during the transmissions then another 
way to check the existence of the gravitons is to measure the weight of the receiving and 
transmitting antennas during the transmissions. In this case is not necessary to put the 
antennas in very distant places. 

It is easy to see that the information transportation with infinite velocity by means of 
gravitons promises to be quite useful for the Internet (Quantum Internet) and also for the 
development of Quantum Teleportation Systems. 

By operating with infinite velocity and not with the speed of light these systems will 
solve in the future the problem of the cosmic transportation of long range, since it is 
impracticable for spacecrafts − even with velocities very close to light speed − to reach places 
whose distances are greater than 100 light-years. 
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Abstract

It is shown that the inclusion of quantum jumps, i.e., state vector reduction, in
the semiclassical gravity construction opens a new avenue for the solution, on the one
hand, of the serious difficulties of the construction per se and, on the other hand, of the
challenging puzzles of dark energy and dark matter. In the problem of quantum grav-
ity, the simplest and most natural construction is that of semiclassical gravity. In the
latter, the energy-momentum tensor entering into the Einstein equation is represented
by the expectation value of the corresponding operator. In a conventional treatment,
there exists no satisfactory generalization of normal ordering to curved spacetime. The
renormalization of the energy-momentum tensor is based on a set of axioms; one of
the latter is that the tensor must be four-divergence free. The results of the renor-
malization suffer from serious difficulties: an ambiguity and a nonlocal dependence
on metric. In addition, the conventional treatment denounces the concept of particles
and the Hamiltonian. It is commonly accepted that things look even worse when state
reduction is involved in dynamics. In fact, the opposite situation occurs. The reduc-
tion, being nonlocal and instantaneous, implies a universal time and, as a consequence,
the structure of spacetime as the direct product of cosmological time and space. This
allows for introducing normal ordering, particles, and the Hamiltonian. The renor-
malized energy-momentum tensor is unique and involves at most second derivatives
of metric. On that basis, semiclassical reductive quantum gravity is constructed—a
theory in which metric is treated classically whereas a quantum treatment of matter in-
cludes state vector reduction. The theory is assumed to be fundamental. In the theory,
the semiclassical Einstein equation is violated due to the following. First, the energy-
momentum tensor is not divergence free. Second, the six space components of the
Einstein tensor involve the second time derivative of metric, but the other four com-
ponents involve only the first time derivative. Therefore the latter components must
be continuous. The energy-momentum tensor should be complemented by a pseudo
energy-momentum tensor with four degrees of freedom which would compensate for
the breakdown both of the divergence freedom condition and of the continuity of the
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four components of the energy-momentum tensor. The compensatory tensor is, by de-
finition, the energy-momentum tensor of pseudomatter. The latter is represented by a
pressural dust, i.e., a perfect fluid with a constant pressure, which has four degrees of
freedom. The pressural dust comprises both dark energy (cosmological constant) and
dark matter. So the presence of dark energy and dark matter in the real world provides
an observable evidence of characteristically quantum gravitational effects. That is a
challenge to a conventional opinion that there exists no such recognized evidence. The
reductive semiclassical Einstein equation is composed of ten equations for six space
components of metric and four pseudomatter variables (density and four-velocity).
The elimination of the latter variables results in the metric equation. Dark matter is
represented by a pseudodust, which implies the fruitlessness of efforts to represent
dark matter by any kind of ordinary matter.

Introduction

Quantum Gravity in a broad sense is a theory that would combine, or unify General Rela-
tivity and Quantum Theory. To construct such a theory is today at the core of fundamental
physics. The construction is faced with two problems: (i) The description and dynamics
of spacetime structure, especially metric, under the quantum treatment of matter; (ii) The
description and dynamics of quantum matter in the presence of gravity. In a narrow sense,
the term quantum gravity refers to the problem (i).

The present study is dedicated mainly to the problem (i). The problem (ii) is considered
only so far as it concerns the problem (i).

In general relativity, metric is a dynamical variable, so it seems quite natural to quantize
it along with matter variables. A realization of such a program would result in totally
quantum gravity [K], [BT]. But totally quantum gravity is confronted with a problem of
principle—that of the interpretation of state vector. In particular, it is absolutely unclear
what meaning may be assigned to state vector reduction, i.e., quantum jumps. A standard
interpretation of a state vector pertaining to a quantum system is formulated in terms of the
results of experiments which might be performed on the system. In totally quantum gravity
where all dynamical variables are quantized, the universe represents a perpetually closed
quantum system, on which no experiments might be performed.

In the problem (i), the simplest and most natural construction is semiclassical quantum
gravity, in which metric is treated classically [Mø], [Ro], [St], [CH2], [V]. From the above it
might be assumed that semiclassical gravity may be a fundamental theory. Classical metric
removes the problem of the interpretation of the state vector of the universe.

The basic equation of general relativity is the Einstein equation:Gµν = 8πκTµν, µ,ν =
0,1,2,3, whereG is the Einstein tensor,κ is the gravitational constant (c = 1), andT is the
energy-momentum tensor. In semiclassical gravity, the latter is represented by an effective
quantity—the expectation value of the corresponding operator:Tµν := (Ψ, ̂TµνΨ) whereΨ
is a state vector of quantum matter.

In a conventional treatment of semiclassical gravity [Wa], there exists no satisfactory
generalization of the vacuum state and normal ordering to curved spacetime, which com-
plicates significantly the problem of the renormalization of the effective tensorTµν. The
renormalization is based on a set of axioms [Wa]; one of those is that the tensorTµν must be
divergence free:Tµν

;ν = 0. The results of the renormalization suffer from serious difficul-
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ties [Wa], [V]: an ambiguity; a nonlocal dependence on metric; a failure on the chronology
horizon. In addition, the conventional treatment denounces the concept of particles and the
Hamiltonian [BD], [Fu].

It is commonly accepted that things look even worse when state vector reduction is
involved in dynamics [CH1]:Tµν and, as a consequence,Gµν become discontinuous. In
fact, the opposite situation occurs. The reduction, being nonlocal and instantaneous, implies
a universal time and, as a consequence, the structure of spacetime as the direct product
of cosmological time and space with metricds2 = dt2 + gi j dxidxj [M2]. That allows for
introduction of the vacuum state, normal ordering, particles, and the Hamiltonian. The
renormalized tensorTµν is unique and involves at most second derivatives of metric.

On that basis, semiclassical reductive quantum gravity is constructed—a theory in
which metric is treated classically whereas a quantum treatment of matter includes state
vector reduction, i.e., quantum jumps. The theory is assumed to be fundamental.

In semiclassical reductive quantum gravity, the semiclassical Einstein equation is vio-
lated due to the following. First, the tensorTµν is not divergence free,Tµν

;ν 6= 0. Second,
the six space componentsGi j (i, j = 1,2,3) of the Einstein tensor involve the second time
derivative of metric, ¨gi j , but the other four componentsG0µ involve only the first time
derivative,ġi j . Under state vector reduction, the discontinuity of ¨gi j is feasible, butgi j and
ġi j must be continuous. ThereforeG0µ must be continuous. The tensorTµν should be com-
plemented by a pseudo energy-momentum tensorΘµν with four degrees of freedom which
would compensate for both the inequalityTµν

;ν 6= 0 and the discontinuity ofT0µ. The com-
pensatory tensorΘµν is, by definition, the energy-momentum tensor of pseudomatter. The
latter is represented by a perfect fluid with a constant pressure, which has just four de-
grees of freedom. We call such a fluid a pressural dust. ThusΘµν = (σ + π)υµυν − πgµν
whereσ is the density,π = const is the pressure, andυµ is the four-velocity. Now we
put π = −Λ/8πκ, ε := σ + π , so that the pressural dust comprises both dark energy (the
cosmological constantΛ) and dark matter represented by an incoherent dust,ευµυν . It
follows that the presence of dark energy and dark matter in the real world provides an ob-
servable evidence of characteristically quantum gravitational effects. That is a challenge
to a conventional opinion that “. . . to date, there is no recognized experimental evidence of
characteristicallyquantumgravitational effects” [CH1].

The reductive semiclassical Einstein equation is of the formGµν −Λgµν = 8πκ(Tµν +
ευµυν). It is composed of ten equations for the six components of metric,gi j , and the four
dark matter variables,ε and υµ. The elimination of those variables results in the metric
equationB00Bi j −B0iB0 j = 0 whereBµν := Gµν −Λgµν − 8πκTµν. The metric equation
represents six equations for the sixgi j .

In the absence of dark matter, the metric equation reduces to the semiclassical Einstein
equation with the cosmological constant. The latter equation is generally violated, so that
dark matter is indispensable.

Generally, the conditionsυ2
0 ≥ 1 andυ2

i ≥ 0 may be violated, so that dark matter is
represented by a pseudodust rather than by an ordinary dust. This implies the fruitlessness
of efforts to represent dark matter by any kind of ordinary matter whatever.

Let us turn to the general problem of (the interpretation of) quantum reduction. The
latter gives rise to a jump of the classical quantities ¨gi j . It is these classical jumps that
provide an operationalistic meaning to quantum reduction.
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Furthermore, a jump of ¨gi j determines the exact time at which a state vector reduction
happens. (Quantum mechanics does not determine the time.)

1 Quantum Gravity as a Unification of General Relativity
and Quantum Theory

In this section, we cite some information on General Relativity and Quantum Theory which
is used in what follows.

1.1 The Problem of Unification

Quantum Gravity in a broad sense is a theory that should combine, or unify General Rela-
tivity and Quantum Field Theory—the two theories which form the basis of contemporary
physics. The construction of such a theory sought after by both relativists and elementary
particle physicists is today at the core of fundamental physics. The construction is faced
with two problems:

(i) The establishment of spacetime structure, especially metric, and its dynamics;
(ii) The description and dynamics of quantum fields in the presence of gravity.
In a narrow sense, the term quantum gravity refers to the problem (i). It is this problem

that the present study is mainly devoted to. The problem (ii) is considered only so far as it
has to do with the problem (i).

1.2 General Relativity

The classical theory of gravitation is General Relativity. In the latter, both spacetime struc-
ture, including metric, i.e.,(M4,g) , and matter are treated classically. The basic equation
of general relativity is the Einstein equation [S]

Gµν = 8πκTµν , µ,ν = 0,1,2,3 (1)

whereGµν is the Einstein tensor,Tµν is the energy-momentum tensor of matter, andκ is the
gravitational constant(c = 1).

In view of the identity
Gµν

;ν ≡ 0 (2)

the energy-momentum tensor should be divergence free:

Tµν
;ν = 0 (3)

which provides the equation of motion for matter.
The simplest description of matter is that by means of a perfect fluid, whose energy-

momentum tensor is
Tµν = (ρ+ p)uµuν − pgµν (4)

whereρ is the density,p is the pressure, anduµ is the four-velocity. The special casep = 0
is called (incoherent) dust, or incoherent matter. The equation of motion (1.2.3) for the
perfect fluid reads

w(uν
;νuµ+uµ

;νuν)+w,νuνuµ− p,µ = 0 (5)



Semiclassical Reductive Quantum Gravity 201

where
w := ρ+ p (6)

In the case of
p = const (7)

the equation of motion (1.2.5) containsp andρ only in the combination (1.2.6). We will
call a perfect fluid withp = const6= 0 a pressural dust.

1.3 Quantum Theory

The basic concepts of Quantum Theory are these: OperatorÔ , in particular, a field opera-
tor φ̂ defined on spacetime; state vectorΨ ; expectation value, or average value(Ψ,ÔΨ) ;
observable represented by a selfadjoint operator.

In the Schrödinger picture, dynamics, i.e., time evolution is determined by the
Schrödinger equation

dΨ
dt

= −iĤΨ (8)

(~ = 1) whereĤ is the Hamiltonian.
The interpretation of the state vector depends on measurement theory.

2 Difficulties of General Relativity and Quantum Theory

In this section, we touch upon and discuss some difficulties of General Relativity and Quan-
tum Theory—ingredients of Quantum Gravity—which bear on the subject of our study.

2.1 The Existence of Physically Nonequivalent Solutions to the Cauchy
Problem

It is commonly known that there are four degrees of freedom in the solution to the Cauchy
problem in general relativity [W1], [LL]. On the other hand, a diffeomorphismF : M4 →
M4 involves exactly four degrees of freedom too. For a Ricci flat spacetime, the different
solutions are diffeomorphic, i.e., physically equivalent [SW], [FM]. To fix a solution, four
complementary conditions should be introduced [W1].

The situation changes dramatically when spacetime is not Ricci flat. What follows in
this subsection is a concise refined account of the relevant results of [M1], [M2].

Let the complementary conditions be

g0i(x) = 0, i = 1,2,3 (9)

R(x) = f (x) (10)

wherex = (xµ) are (local) coordinates,gµν(x) is metric tensor,R(x) is the scalar curvature,
and f (x) is a function onM4. The equations

Ri
j − 1

2Rgi
j = 8πκT i

j , i, j = 1,2,3
R= f

(11)
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(Rµ
ν is the Ricci tensor) form a system of seven equations for the seven metric components

gi j , g00. The four equations

Rµ
0−

1
2

Rgµ
0 = 8πκTµ

0 , µ= 0,1,2,3 (12)

are constraints on initial conditions.
The system (2.1.3) may be rewritten in the form of

Ri
j = 8πκT i

j , 1≤ i < j ≤ 3 (3 equations)
R1

1−R2
2 = 8πκ(T1

1 −T2
2 )

R2
2−R3

3 = 8πκ(T2
2 −T3

3 )
R= f
8πκTµ

µ + f = 0

(13)

The highest time derivatives involved inRi
j , (R

1
1−R2

2) , (R2
2−R3

3) , andRareg̈i j andġ00 .
Let matter be represented by a spin 1 fieldAµ with the energy-momentum tensor [BD]

Tµν =
1
ζ

{

Aµ
(

Aρ
;ρ

)

,ν +Aν
(

Aρ
;ρ

)

,µ−gµν

[

Aσ (

Aρ
;ρ

)

,σ +
1
2

(

Aρ
;ρ

)2
]}

(14)

whereζ is a parameter determining the choice of gauge. We find

T i
j = − 1

2ζ
gi

j(A
0)2g00g̈00+ ˜T i

j (15)

Tµ
0 =

1
2ζ

AµA0g00g̈00+ ˜Tµ
0 (16)

where the terms involving ¨g00 are singled out. Turning back to the system (2.1.5), we see
that the quantities

T i
j = ˜T i

j for j 6= i (17)

and
T1

1 −T2
2 = ˜T1

1 − ˜T2
2 , T2

2 −T3
3 = ˜T2

2 − ˜T3
3 (18)

do not involve ¨g00 , but the quantity

Tµ
µ = −1

ζ
(A0)2g00g̈00+ ˜Tµ

µ (19)

does involve ¨g00 .
Thus there are seven quasilinear equations (2.1.5) for(gi j , g00), the highest time deriv-

atives being(g̈i j , g̈00).
Now let g andḡ be solutions to the system (2.1.5) with the functionsf and f̄ , respec-

tively. If the ranges of those functions are different,

ran f̄ 6= ran f (20)

theng andḡ are nondiffeomorphic. Indeed,

ḡ = F∗g (21)
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implies
R̄= F∗R (22)

so that
ranR̄= ranR (23)

which does not hold.
Thus there are solutions to the Cauchy problem which are physically non-

equivalent. It is the degree of freedom described by the functionf that brings about the
nonequivalence.

2.2 The Problem of Dark Energy and Dark Matter

General relativity and especially cosmology are confronted with the problems of dark en-
ergy (or cosmological constant) and dark matter [D], [Ri], [St], [R], [Fr], [C], [MR]. To wit,
the Einstein equation should be extended:

Gµν −Λgµν = 8πκ(Tµν +Tdark matter
µν ) (24)

whereΛ is the cosmological constant. In terms of a perfect fluid, the treatment of the
problem is this:

for dark energy p = −ρ , p = − Λ
8πκ

(25)

for dark matter p≈ 0, |uiu
i | ≪ 1 (cold dark matter) (26)

The existence of dark energy and the nature of dark matter are challenging puzzles.

2.3 The Measurement Problem

The measurement problem in quantum theory per se is beyond the scope of our study; but
some issues of the problem will be touched upon in what follows. So we restrict our-
selves here to quoting d’Espagnat: “The problem of measurement in quantum mechanics
is considered as nonexistent or trivial by an impressive body of theoretical physicists and
as presenting almost insurmountable difficulties by a somewhat lesser but steadily growing
number of their colleagues” [E1]; “. . . measurement constitutes a riddle, and a great many
theories were put forward as attempts to solve this riddle. The number is so considerable
indeed that to try and review them all would be an almost impossible undertaking” [E2].

2.4 Indeterminacy of the Time of State Vector Reduction

In most formulations of quantum mechanics, there appears the following problem: At which
precise time does a state vector reduction happen? [Rv]. The answer to this question is that
quantum mechanics without a dynamical theory of reduction does not determine the time
of the latter. We quote von Neumann [N]: “. . . we must always divide the world into two
parts, the one being the observed system, the other the observer. In the former, we can
follow up all physical processes (in principle at least) arbitrary precisely. In the latter, this
is meaningless. The boundary between the two is arbitrary to a very large extent.” The
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point is that the unitary time evolution (1.3.1) of the resulting component of the state vector
after the reduction is the same as before.

According to this view, the question “when does the measurement, i.e., the reduction
happen” is meaningless.

Rovelli [Rv] has claimed that “contrary to that view, quantum mechanicsdoesgive a
precise answer to this question, although a peculiar answer.” The idea is based on measuring
an observable represented by a projection operator related to the coupled system formed by
an observed system and an observer system. The range of the operator is the state ripe for
registering possible results, i.e., the reduction.

But we argue that the measurement of the projection operator poses the same question:
What is the time when the measurement result occurs? So it is impossible to tear apart the
vicious circle.

3 Semiclassical Quantum Gravity as a Fundamental Theory

In this section, we argue that there is reason to consider semiclassical quantum gravity as a
fundamental theory.

3.1 Totally Quantum Gravity: The Universe as a Perpetually Closed
Quantum System and the Problem of Interpretation of State Vector

In general relativity, metric is a dynamical variable, so that it seems quite natural to quantize
it along with matter field variables. A realization of such a program would result in totally
quantum gravity [K], [BT], [GSR], [HI], [DN], [CH1], [IPS], [P1].

We argue that totally quantum gravity is confronted with a problem of principle—the
problem of the interpretation of state vector. A standard interpretation of a state vector
pertaining to a quantum system may be either epistemological or ontological; but in either
case it is formulated in terms of results of experiments which might be performed on the
system. We quote Penrose [P2]: “Suppose the state-vector is|Ψ〉. Then we can consider
making an observation corresponding to the observableQ = |Ψ〉〈Ψ|. The state|Ψ〉 is the
only one, up to proportionality, for which the observableQ yields the result 1 with certainty.
The state must ‘know’ that it has to produce this result in the event that the observationQ
is actually performed. This is a completely objective property, so the fact that the state is
(proportional to)|Ψ〉 is an objective property of the world.

I am expressing a point of view here which, for some reason, is not often maintained.
One frequently hears the opposing view that ‘the state-vector merely expresses our state of
knowledge about a system’, or ‘the state-vector is expressing a property of ensembles of
systems rather than of a single system.’ However, the point of view that I am expressing
is that the state-vector is clearly defining an objective property of asingle system. It is
not a ‘testable’ property of that system in the sense that we can perform an experiment
on it to determine what its state|Ψ〉 actually is, but it is an ‘objective’ property of that
individual system in the sense that the state of that one system is characterized by the results
of experiments that onemightperform on it.”

Thus even if the interpretation is ontological, i.e., objective, it is operationalistic. In
totally quantum gravity, the universe represents a perpetually closed quantum system, on
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which no experiments might be performed. We quote Goldstein and Teufel [GT]: “One of
the most fascinating applications of quantum gravity is to quantum cosmology. Orthodox
quantum theory attains physical meaning only via its predictions about the statistics of
outcomes of measurements of observables, performed by observers that are not part of
the system under consideration, and seems to make no clear physical statements about the
behaviour of a closed system, not under observation. The quantum formalism concerns the
interplay between—and requires for its very meaning—two kinds of objects: a quantum
system and a more or less classical apparatus. It is hardly imaginable how one could make
any sense out of this formalism for quantum cosmology, for which the system of interest is
the whole universe, a closed system if there ever was one.”

In particular, it is absolutely unclear what meaning may be assigned to state vector
reduction, i.e., quantum jumps.

Another point that should be taken into account is the principle of equivalence [Wh]:
“. . . on the one hand, the principle of equivalence provides the possibility to geometrisize
gravitational fields and, on the other, it gives limits,. . . , under which gravitation cannot be
interpreted as a usual field.”

At the conclusion of this subsection, we quote Weinstein [We]: “Gravity, however,
has resisted quantization. There exist several current research programmes in this area,
including superstring theory and canonical quantum gravity. One often comes across the
claim that the gravitational field must be quantized, and that quantization will give rise to a
. . . local uncertainty in the gravitational field. Here we will examine this claim, and see how
the very things that make general relativity such an unusual ‘field’ theory not only make the
quantization of the theory so technically difficult, but make the very idea of a ‘fluctuating
gravitational field’ so problematic.”

3.2 Interpretation of Quantum Theory and Classical Concepts: Advocating
Semiclassical Gravity

Orthodox quantum theory requires, for its physical formulation, classical concepts relating
to a classical world, in which experimental results occur. We quote Butterfield and Isham
[BI]: “We dub our first approach to interpreting quantum theory, ‘instrumentalism’. . . It in-
cludes views that apply to quantum theory some general instrumentalism about all scientific
theories; and views that advocate instrumentalism only about quantum theory, based on spe-
cial considerations about that subject. We will not comment on the first group, since we see
no special connections with quantum gravity. . .

On the other hand, some views in the second group do have connections with quantum
gravity, albeit ‘negative’ ones. Thus consider the Copenhagen interpretation of quantum
theory: understood, not just as the minimal statistical interpretation of the quantum for-
malism in terms of frequencies of measurement result, but as insisting on a classical realm
external to the quantum system, with a firm ‘cut’ between them, and with no quantum de-
scription of former. In so far as this classical realm is talking about ‘quantum gravity’, we
are making a category error by trying to apply quantum theory to something that forms part
of the classical background of that theory: ‘what God has put assunder, let no man bring
together’. . .
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If it is indeed wrong to quantize the gravitational field, it becomes an urgent question
how matter—which presumably is subject to the laws of quantum theory—should be incor-
porated in the overall scheme. To discuss this, we shall focus on the so-called ‘semiclassical
quantum gravity’ approach. Here, one replaces the right-hand side of Einstein’s field equa-
tions by a quantum expectation value, so as to couple a classical spacetime metric. . . to
quantized matter. . . ”

3.3 Semiclassical Gravity

Thus there is good reason to believe that semiclassical gravity [Mø], [Ro], [S], [CH1], [V],
[BI] may be a fundamental theory.

The semiclassical Einstein equation retains the form of (1.2.1):

Gµν = 8πκTµν (27)

but now
Tµν := (Ψ, ̂TµνΨ) (28)

where ̂Tµν is the energy-momentum tensor operator andΨ is a state vector of quantized
matter, i.e., quantum fieldŝφ. Thus

Gµν = Gµν[g] (29)

̂Tµν = ̂Tµν[g, φ̂] (30)

whereg = {gµν}.
It should be realized that in spite of the fact that the quantity (3.3.2) is of the form

of a quantum expectation value (the average value), the interpretation of it is by no means
statistical: the quantity (3.3.2) does not relate to the averaging over a set of any measurement
results. As long asΨ is a state vector of the matter of the whole universe, (3.3.2) is, in fact,
not an “average value” but rather an “effective quantity”. It is (3.3.2) and (3.3.1) that give
an ontological, objective meaning to the state vectorΨ.

The above argument lifts the following objection by Belinfante against (3.3.1), (3.3.2)
[B]: “This would be most unusual, to equate a c-number to an expectation value of a q-
number, and I think this violates the principles of quantum theory. Suppose, we had a
situation which were a superposition of states, say 40% probability for one state of the
matter and 60% probability for a different state. Suppose one did a million experiments;
then one would expect a correlation between the measured actual state of the matter and
the surrounding gravitational field. That is, one would in 400000 cases find one gravita-
tional field and in 600000 cases a different gravitational field. If, however, the gravitational
field were given by the expectational value, one should in all 1000000 cases find the same
gravitational field, obtained by a 40-60 average.” See also [I].

4 Conventional Semiclassical Construction and its Difficulties

In this section, we describe a conventional construction of semiclassical gravity and serious
difficulties that it runs into [S], [CH1], [BI], [Wa], [V].
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4.1 Spacetime Structure

In the conventional semiclassical construction, the spacetime structure is the same as in
general relativity. Spacetime is defined as a pair

(M,g) (31)

whereM is a connected four-dimensional HausdorffC∞ manifold andg is a Lorentzian
metric onM [HE].

It is the poorness of the structure (4.1.1) that results in serious difficulties of the con-
ventional construction.

4.2 Renormalization of the Energy-Momentum Tensor

In this and the next subsection we closely follow [Wa]. Since quantum fieldsφ̂ are well de-
fined only as distributions on spacetime, the operator̂Tµν (3.3.4) involves taking the product
of distributions at the same spacetime point. Consequently, some regularization is needed
to define the effective energy-momentum tensorTµν (3.3.2).

Normal ordering gives an entirely satisfactory prescription for defining the latter. How-
ever, there is no satisfactory straightforward generalization of normal ordering to curved
spacetime (4.1.1). Namely, in a generic spacetime (4.1.1), there is no preferred vacuum
state.

It is useful to take an axiomatic approach and seek to determineTµν by the properties
one would expect it to satisfy. There are four such properties [Wa] including (1.2.3):

Tµν
;ν = 0 (32)

4.3 Difficulties

There are two principal difficulties which confront any attempt to calculate matter effects
in (3.3.1). First, there is a two-parameter ambiguity in the definition ofTµν. The second
difficulty is this: The classical Einstein equation (1.2.1) is of second order in derivatives
of the metric, butTµν (3.3.2) contains terms of fourth order in derivatives of the metric. In
addition, except in some simple, special cases,Tµν is a highly nonlocal functional of the
metric.

4.4 Failure on the Chronology Horizon

The best way to present the issue is to quote Vissar [V]:
“There are points on the chronology horizon where semiclassical Einstein equations

fail to hold."
Note that the semiclassical Einstein equations [(3.3.1)] fail for a subtle reason; they fail

simply because at some points the RHS [(3.3.2)] fails to exist, not necessary because the
RHS is infinite. . .

The physical interpretation is that semiclassical quantum gravity fails to hold (at some
points) on the chronology horizon; a fact which can be read in two possible ways:
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1. If you assume that semiclassical quantum gravity is the fundamental theory (at best
a minority opinion, and there are very good reasons for believing that this is not the case),
then byreductio ad absurdumthe chronology horizon must fail to form. Chronology is
protected, essentially byfiat.

2. If you are willing to entertain the possibility that semiclassical quantum gravity is
not the whole story (the majority opinion), then it follows from the above that issues of
chronology protection cannot be settled at the semiclassical level. Chronology protection
must then be settled (one way or another) at the level of a full theory of quantum gravity.”

It must be emphasized that the case in point is theconventionalsemiclassical construc-
tion based on the poor spacetime structure (4.1.1).

4.5 Nonexistence of a Universal Vacuum State and Consequences

The poorness of the spacetime structure in the case of a generic curved spacetime results
in rather specific features of the conventional semiclassical quantum gravity [BD], [Fu],
[F]. There exists no well defined universal vacuum state, and, as a consequence, there are
no universal creation/annihilation operators. Those facts imply the denouncement of the
concept of particles. Finally, the Hamiltonian and the Schrödinger picture are abandoned.

Here we turn our attention to the problem of the greation/annihilation operators. We
quote Weinberg [W2]: “. . . there is a deeper reason for constructing the Hamiltonian out
of creation and annihilation operators, which goes beyond the need to quantize any pre-
existing field theory like electrodynamics, and has nothing to do with whether particles
can actually be produced or destroyed. The great advantage of this formalism is that if
we express the Hamiltonian as a sum of products of creation and annihilation operators,
with suitable non-singular coefficients, then theS-matrix will automatically satisfy a cru-
cial physical requirement, the cluster decomposition principle, which says in effect that
distant experiments yield uncorrelated results. Indeed, it is for this reason that formalism
of creation and annihilation operators is widely used in non-relativistic quantum statistical
mechanics, where the number of particles is tipically fixed. In relativistic quantum theories,
the cluster decomposition principle plays a crucial part in making field theory inevitable.”

4.6 The Problem of State Vector Reduction

The status of the conventional semiclassical gravity looks even worse when state vector re-
duction is involved in dynamics [CH1]. The effective energy-momentum tensorTµν (3.3.2)
and, by (3.3.1), the Einstein tensorGµν become discontinuous. The four componentsG0µ

involve only the first time derivatives of metric components, ˙gi j [W1], [LL]. Therefore a
quantum jump of theT0µ would result in that of ˙gi j , which is inadmissible.

5 Reductive Semiclassical Construction: Semiclassical
Reductive Quantum Gravity

In this section, we advance a novel semiclassical construction—including state vector re-
duction.
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5.1 Quantum Jumps and Spacetime Structure

Be that as it may, quantum jumps, i.e., state vector reduction should be incorporated into
quantum gravity. In the case of semiclassical gravity, which is the theme of our study, the
incorporation of quantum jumps results first of all in the enrichment of spacetime structure.
To wit, the jumps, being nonlocal and instantaneous, imply the existence of a universal
time. The latter, in its turn, implies the structure of spacetime as the direct product of
cosmological time and cosmological space:

M = M4 = T ×S, M ∋ p = (t,s)
t ∈ T ⊂ R , s∈ S

(33)

The one-dimensional manifoldT is the universal cosmological time, the three-dimensional
manifoldS is a cosmological space. The tangent spaceMp at a pointp∈ M is

Mp = Tt ⊕Ss, p = (t,s) (34)

Now metric may be made into the form of

g = dt⊗dt−ht (35)

whereht is a Riemannian metric onSdepending on time, i.e.,

g(x) = dt2 +gi j (x)dxidxj , x = (t,~x), gi j = −hi j , ~x↔ s∈ S (36)

So in semiclassical reductive quantum gravity, spacetime structure is given by (4.1.1),
(5.1.1), (5.1.2), (5.1.3). That structure corresponds to the complementary conditions

g0µ = δ0µ , µ= 0,1,2,3 (37)

which fix a solution to the Cauchy problem.

5.2 Creation/Annihilation Operators and the Vacuum State

Consider, e.g., a real scalar field operatorϕ̂. We have an expansion

ϕ̂(p) = ∑
j

{ f j(p)â j (t)+ f ∗j (p)â†
j (t)} , p = (t,s) (38)

where f j is a field mode, ˆa j/â†
j is an annihilation/creation operator,

[â j(t), â
†
j ′(t)] = δ j j ′ , [â j(t), â j ′(t)] = [â†

j (t), â
†
j ′ ] = 0 (39)

and for a free field
d
dt
{â†

j (t)â j (t)} = 0 (40)

The vacuum state is defined by

â j(t)Ψvac = 0 (41)

The uniqueness of the creation/annihilation operators and the vacuum state relies heav-
ily on the spacetime structure (5.1.1), (5.1.2).
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5.3 The Energy-Momentum Tensor

The energy-momentum tensor operator is normally ordered:

̂Tµν =: ̂Tµν : (42)

The modesf j and by the same token the expansion (5.2.1) relate to an arbitrarily fixed value
of time, so that they depend only on metric, i.e.,gi j , but not on the time derivative of the
latter. The energy-momentum tensor operator involves at most second derivatives of metric.

The renormalization ofTµν is defined by (5.3.1) rather than (4.2.1), so that the latter
equality does not hold:

Tµν
;ν 6= 0 (43)

5.4 Violation of the Semiclassical Einstein Equation

The semiclassical Einstein equation

Gµν = 8πκTµν , Tµν = (Ψ, ̂TµνΨ) (44)

is violated both by state vector reduction and in view of the inequality (5.3.2). This crucial
issue calls for a careful study.

The spacetime structure (5.1.1), (5.1.2) implies a canonical decomposition of the Ein-
stein equation (5.4.1) into space and time/time-space parts:

Gi j = 8πκTi j (six equations) (45)

G0µ = 8πκT0µ (four equations) (46)

The space components of the Einstein tensor,Gi j , involve the second time derivatives
g̈kl of the metric tensor componentsgkl [W1], [LL]. It is reasonable to assume that quantum
jumps ofTi j result in those of ¨gkl . That is quite conceivable from the physical point of view:
A jump of force (Ti j ) causes a jump of acceleration ( ¨gkl).

On the other hand, the time/time-space components,G0µ, involve only the first time
derivatives ˙gkl [W1], [LL]. The latter should be continuous, not to mentiongkl themselves.

In order to compensate for the quantum jumps, it would suffice to retain (5.4.2) and
extend (5.4.3). It is this approach that has been exploited in [M1], [M2]. But in view of the
inequality (5.3.2), it seems appropriate to extend (5.4.1) as a whole.

5.5 Compensatory Pseudo Energy-Momentum Tensor
and Pseudomatter

We extend the semiclassical Einstein equation (5.4.1) by complementing the effective
energy-momentum tensorTµν of matter with a compensatory pseudo energy-momentum
tensorΘµν:

Gµν = 8πκ(Tµν + Θµν) (47)

The componentsG0µ must be continuous, so that the componentsΘ0µ have to compen-
sate for jumps of the four componentsT0µ. Therefore the compensatory tensorΘµν should
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involve four degrees of freedom, i.e., four functions on the spacetime manifoldM. Equation
(5.5.1) implies

(Tµν + Θµν);ν = 0 (48)

which is an extension of (1.2.3).
We introduce the concept of pseudomatter by callingΘµν the energy-momentum tensor

of the latter.

5.6 Pseudomatter as Pressural Dust

The simplest way to treat pseudomatter is to consider it to be a perfect fluid. Then

Θµν = (σ+ π)υµυν −πgµν (49)

whereσ is the density,π is the pressure, andυµ is the four-velocity. We have

Θµν
;ν = ε(υν

;νυµ+ υµ
;νυν)+ ε,νυνυµ−π,µ (50)

where
ε := σ+ π (51)

In the case of
π = const (52)

(5.6.2) involvesσ andπ only in the combination (5.6.3), so that we assume that the equation
of state for the fluid is (5.6.4), i.e., the fluid is a pressural dust. Then there are four degrees
of freedom represented by the functionsε andυµ—in view of

υµυµ = υ2
0 + υiυi = 1 (53)

5.7 Dark Energy, Dark Matter, and the Reductive Semiclassical Einstein
Equation

Now we put

π = − Λ
8πκ

(54)

Equation (5.5.1) amounts to

Gµν −Λgµν = 8πκ(Tµν + ευµυν) (55)

which includes dark energy, or cosmological constantΛ, and dark matter:ευµυν,

ρdark matter= ε (56)

We call (5.7.2) the reductive semiclassical Einstein equation.
In the simplest case,

|υµ| = δ0µ (cold dark matter) (57)

so that (5.7.2) reduces to

Gµν −Λgµν = 8πκ(Tµν + εδµ0δν0) (58)
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Thus semiclassical reductive quantum gravity leads naturally to the concepts of dark
energy and dark matter. It follows that the presence of dark energy and dark matter in
the real world provides an observable evidence of characteristically quantum gravitational
effects. That is a challenge to a conventional opinion that “. . . to day, there is no recognized
experimental evidence of characteristicallyquantumgravitational effects” [CH1].

5.8 The Metric Equation

The reductive semiclassical Einstein equation

Gµν −Λgµν = 8πκ(Tµν + ευµυν) (59)

represents a system of ten equations for the six components of the metric tensorgi j and the
four dark matter variablesε, υµ.

The dark matter variables can be eliminated easily. Introducing the notation

Bµν := Gµν −Λgµν −8πκTµν B̄µν :=
1

8πκ
Bµν (60)

we obtain
B̄µν = ευµυν (61)

We have
B̄i j = ευiυ j = (ευiυ0)(ευ jυ0)/ευ2

0 (62)

Now
ευ2

0 = B̄00 (63)

and
ευiυ0 = B̄0i (64)

Thus we obtain
B00Bi j −B0iB0 j = 0 (65)

which represents six equations for the sixgi j . We call (5.8.7) the metric equation. It is a
dynamical equation for metric. In order that (5.8.7) be linear in ¨gi j , T0µ should not involve
those derivatives: the latter are involved inBi j .

Having regard to the spacetime structure given by (4.1.1), (5.1.1), (5.1.2), (5.1.3), the
metric equation may be written in an intrinsic, i.e., coordinate-independent form:

BTT ⊗BSS−BTS⊗BTS= 0 (66)

where
B = G−Λg−8πκT (67)

and
BTT = B00, BSS, BST = BTS= B0S (68)

are projections onTt/Ss in (5.1.2).
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5.9 The Exact Time of a State Vector Reduction

Let us return to the problem of the time of state vector reduction. In semiclassical reductive
quantum gravity, the exact time of a state vector reduction is that of a jump of the classical
quantities ¨gi j . Note that classical metric is by no means an “apparatus” which causes reduc-
tion; on the contrary, it is the latter that produces the jump of ¨gi j , which, in turn, manifests
itself in the dynamics of metric, matter, and dark matter. It is those classical jumps of ¨gi j

that give an operationalistic meaning to the quantum reduction.

5.10 The FLRW Universe

In the Friedmann-Lemaı̂tre-Robertson-Walker model,

υi = 0, υ2
0 = 1 (69)

and for a closed universe (k = 1), the reductive semiclassical Einstein equation (5.7.2) re-
duces to

2RR̈+ Ṙ2+1−ΛR2 = −8πκpR2 (70)

3(Ṙ2 +1)−ΛR2 = 8πκ(ρ+ ε)R2 (71)

whereR= R(t) is the radius of the universe. The matter variablesρ andp (usuallyp= p(ρ))
are determined by matter dynamics, (5.10.2) is the equation of motion forR, and (5.10.3)
determinesε.

Let us obtain an equation connecting the change of the total densityρ + ε with the
pressurep. Introducing the notation

p̃ := p− Λ
8πκ

(72)

ρ̃ := ρ+ ε+
Λ

8πκ
(73)

we have
2RR̈+ Ṙ2+1 = −8πκ p̃R2 (74)

3Ṙ2 +3 = 8πκρ̃R2 (75)

From (5.10.7) follows
6ṘR̈= 8πκ ˙̃ρR2+16πκρ̃RṘ (76)

EliminatingR̈andṘ2 from (5.10.6), (5.10.7), (5.10.8), we obtain

˙̃ρR3 +3(p̃+ ρ̃)R2Ṙ= 0 (77)

i.e.,
d(ρ+ ε)

dt
R3 +3(p+ ρ+ ε)R2Ṙ= 0 (78)

or
d
dt

[(ρ+ ε)R3] = −p
dR3

dt
(79)
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The volume of the universe [LL]

V = 2π2R3 (80)

so that
d
dt

[(ρ+ ε)V] = −p
dV
dt

(81)

5.11 Basic Dynamical Equations of Semiclassical Reductive Quantum
Gravity

Basic dynamical equations of semiclassical reductive quantum gravity as a complete theory
are metric and matter equations:

The metric equation:

B00Bi j −B0iB0 j = 0 (82)

The matter equations:
The Schrödinger equation

dΨ
dt

= − ̂HΨ, ̂H = ̂Ht (83)

State vector reduction equation

quantum jump dynamical equation (84)

The subject of the present study concerns (5.11.1). A version of state vector reduction
theory, including (5.11.3), compatible with the present study has been advanced in [M2].

Let

ευ0υµ = B̄0µ ∼ α → 0 (85)

then

ευiυ j = B̄i j =
B̄0iB̄0 j

B̄00
∼ α → 0 (86)

so

ευ0υµ = B̄0µ ∼ α → 0⇒ ευµυν = B̄µν ∼ α → 0 (87)

Thus in the absence of dark matter, the metric equation reduces to the semiclassical Einstein
equation with the cosmological constant

Gµν −Λgµν = 8πκTµν (88)

But generally, in view of Subsection 5.4, this equation is violated, so that dark matter is
indispensable.
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5.12 Dark Matter as Pseudodust

Let us return to the reductive semiclassical Einstein equation

Gµν −Λgµν = 8πκ(Tµν + ευµυν) (89)

The quantities
ευµυν = B̄µν (90)

are determined from a solution to the metric equation (5.11.1).
We find

ε = B̄µ
µ (91)

υ2
0 =

B00

Bµ
µ

, υ2
i =

(B0i)
2

B00B
µ
µ

(92)

For an ordinary dust, for which
υ2

0 ≥ 1, υ2
i ≥ 0 (93)

the condition
B00B

µ
µ ≥ 0 (94)

should hold. But the metric equation does not guarantee the fulfilment of this condition.
Thus we discard the condition (5.12.6) and introduce the term pseudodust. So generally,
dark matter is represented by a pseudodust rather than by an ordinary dust. This implies the
fruitlessness of efforts to represent dark matter by any kind of ordinary matter whatever.

5.13 Cold Dark Matter

Let us consider the case of cold dark matter in more detail. We define cold dark matter by
the following inequalities:

|υiυi | ≪ 1 (95)

|ευiυ j | ≪ |Ti j | (96)

From those and (5.6.5), (5.8.3), (5.8.2), (5.12.3), (5.8.1) follows

υ2
0 ≈ 1 (97)

B̄00 ≈ ε (98)

B00B
µ
µ ≈ (8πκ)2ε2 > 0 see(5.12.6) (99)

Bi j ≈ 0 (100)

In the first approximation inυi ,

Bi j = 0, i.e., Gi j −Λgi j = 8πκTi j (101)

Now metricgkl is determined by (5.13.7);B0µ are determined by thegkl ;

ε = B̄00 =
1

8πκ
B00 (102)
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υi =
B̄0i

B̄00υ0
=

B0i

B00υ0
, υ0 = ±1 (103)

the inequalities (5.13.1), (5.13.2) amount to

|B0iB
i
0| ≪ B2

00 (104)

|B̄0iB̄0 j | ≪ |B̄00Ti j | (105)

respectively.

Conclusion

There are pros and contras of both totally quantum gravity and semiclassical one. None
of those pros and contras may be reckoned as decisive. In such a situation, it seems most
productive to compare actual constructions. One such a constructions is advanced here—in
comparison with some others.
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Abstract

Black Holes have always played a central role in investigations of quantum gravity.

This includes both conceptual issues such as the role of classical singularities and

information loss, and technical ones to probe the consistency of candidate theories.

Lacking a full theory of quantum gravity, such studies had long been restricted to

black hole models which include some aspects of quantization. However, it is then not

always clear whether the results are consequences of quantum gravity per se or of the

particular steps one had undertaken to bring the system into a treatable form. Over a

little more than the last decade loop quantum gravity has emerged as a widely studied

candidate for quantum gravity, where it is now possible to introduce black hole models

within a quantum theory of gravity. This makes it possible to use only quantum effects

which are known to arise also in the full theory, but still work in a rather simple and

physically interesting context of black holes. Recent developments have now led to

the first physical results about non-rotating quantum black holes obtained in this way.

Restricting to the interior inside the Schwarzschild horizon, the resulting quantum

model is free of the classical singularity, which is a consequence of discrete quantum

geometry taking over for the continuous classical space-time picture. This fact results

in a change of paradigm concerning the information loss problem. The horizon itself

can also be studied in the quantum theory by imposing horizon conditions at the level

of states. Thereby one can illustrate the nature of horizon degrees of freedom and

horizon fluctuations. All these developments allow us to study the quantum dynamics

explicitly and in detail which provides a rich ground to test the consistency of the full

theory.

∗E-mail address: bojowald@gravity.psu.edu



220 Martin Bojowald

1 Introduction

Black holes in classical general relativity are, compared to other astrophysical objects, dis-

tinguished by the presence of singularities, where curvature and tidal forces diverge and

where space-time stops, and horizons, which can separate off regions from causal contact

from another region. Both properties have long been suspected to be changed in a quantum

theory of gravity: Singularities denote points where the classical theory breaks down, and at

least space-like ones which lie to the past or future of observers are supposed to be removed

in a more complete quantum theory. Horizons, on the other hand, are still expected to play

an important role also in quantum gravity. The horizon surface should at most be smeared

out due to fluctuations in the causal structure on which the concept of horizons relies. For

massive black holes (compared to the Planck mass) these horizon fluctuations should be

negligible for most purposes such that the classical picture still applies. Instead of mod-

ifying the horizon on large scales, quantum gravity is expected to provide a microscopic

picture which shows how to build a macroscopic horizon from Planck scale ingredients. If

successful, this will then result in a statistical explanation of black hole entropy.

In more detail, the main issues concerning black holes in quantum gravity are as fol-

lows:

Singularities: Are they indeed removed and, if yes, what replaces them? There are ar-

guments that not all singularities are equal, with space-like ones to be removed and

time-like ones to persist in order to rule out unwanted (such as negative mass) solu-

tions [1]. Also the issue of naked singularities and cosmic censorship arises in this

context.

Horizons: First of all, one has to see what an adequate definition of a horizon in quantum

gravity could be. The original concept of the event horizon relies on the classical

causal structure of all of space-time as well as the presence of singularities in the

future. The quasi-local concept of isolated or dynamical horizons [2] uses much

weaker assumptions about the structure of space-time such that it is better suited to a

quantum treatment at least for large, semiclassical black holes which have only weak

curvature at the horizon. For microscopic or primordial black holes, space-time even

around the horizon cannot be treated as a smooth classical geometry with a classical

causal structure. Here it is not clear if a quantum concept of horizon can even be

applied.

If there is an applicable notion of quantum horizon, the issue of black hole entropy

can be analyzed. By identifying and counting quantum states uniquely characterizing

a horizon of a given area one can compute black hole entropy and compare with the

expected semiclassical Bekenstein–Hawking formula. Moreover, detailed pictures of

the horizon structure and its fluctuations can be developed which shed more light on

quantum gravity in general. If matter fields are present, the horizon should shrink

from Hawking radiation which provides insights on how gravity interacts with matter

at the quantum level.

Both: Systems such as black holes with singularities as well as horizons have led to much

confusion in attempts to guess the outcome of quantum gravity from early glimpses
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obtained from mainly semiclassical considerations. This is most commonly ex-

pressed in the infamous information loss paradox according to which information

falling into the singularity implies a non-unitary quantum evolution and thus presum-

ably fundamental limitations to knowledge [3]. These ideas obviously do not take

into account what happens to singularities in quantum gravity and thus have to be

revisited once a more complete treatment is available.

All these issues probe different aspects of the full theory of quantum gravity and re-

quire different techniques. A common feature, except for the entropy counting of isolated

horizons, is that they are dynamical aspects such that the Hamiltonian constraint operator

in a canonical quantization or an alternative evolution equation is essential. In particular,

both black hole singularities as well as their horizons require inhomogeneous situations and

an approximation by spatial homogeneity, which works well in cosmological cases, is not

sufficient in general to grasp all the important physical aspects. This has the advantage of

providing many non-trivial tests of quantum gravity which go beyond what is possible in

homogeneous cosmological models.

It certainly also implies that the treatment is more complicated, and indeed progress on

the problems listed here has been mixed. The strongest results exist for the counting of black

hole entropy of static or isolated horizons which has been derived in different approaches

[4, 5, 6, 7, 8]. This has been possible since the isolation (or even extremality in [4]) allows

one to ignore the complicated quantum dynamics and still compute the correct number of

physical states. Moreover, only the horizon itself is important such that its inhomogeneous

neighborhood does not have much influence. This changes if one also wants to study, e.g.,

horizon fluctuations since they are dynamical and require the neighborhood in which the

horizon fluctuates. Thus, both the quantum dynamics and inhomogeneous configurations

have to be handled, and there are not many results within a full candidate of quantum gravity

so far.

Similarly, the issue of singularities relies on dynamical aspects which for most of the

time was too complicated to allow definitive conclusions as to whether or not singulari-

ties persist in quantum gravity. In the last few years, there has been progress on the ho-

mogeneous situation of cosmological singularities [9, 10, 11] which have been shown to

be removed by quantum gravity [12]. Analogous techniques are now also available for

some inhomogeneous situations such as the spherically symmetric model [13, 14] which

is classically relevant for non-rotating black holes. This has led to an extension of the

non-singularity statements from homogeneous models to the spherically symmetric one

[15]. Moreover, with new results about quantum horizons a consistent picture of quantum

physics of black holes is emerging.

This chapter is also intended as an introduction, by way of examples, to some of the

techniques of quantum geometry with an emphasis on aspects which are typical for a loop

quantization and essential for physical issues. The main theme will be the understanding of

quantum dynamics in inhomogeneous situations and problems surrounding it.
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2 Classical Aspects of Spherically Symmetric Systems

A spherically symmetric metric is most easily written in polar coordinates (x,ϑ,ϕ) and

takes the form (with dΩ2 = dϑ2 + sin2 ϑdϕ2)

ds2 = −N(x, t)2dt2 +qxx(x, t)(dx+Nx(x, t)dt)2 +qϕϕ(x, t)dΩ2 (1)

where fields only depend on time t and the coordinate x of the 1-dimensional radial manifold

B. This expression makes use of the lapse function N(x, t) and shift vector Nx(x, t) which

are prescribed by the slicing of space-time into spatial constant-t slices: coordinate time

translations are generated by the vector field

∂

∂t
= Nn+Nx ∂

∂x
(2)

with the unit vector field n being normal to the slices. The spatial metric on those slices is

then

dq2 = qxx(x, t)dx2 +qϕϕ(x, t)dΩ2 (3)

and extrinsic curvature

Kab = 1
2
Lnqab , (4)

which determines the conjugate πab = − 1
2

√
detq(Kab −qabKc

c ) to the metric in a canonical

formulation [16], takes a similar form K = Kxx(x, t)dx2 +Kϕϕ(x, t)dΩ2.

A well-known example is obtained by the spherically symmetric vacuum solution to

Einstein’s field equations, the Schwarzschild metric [17]

ds2 = −(1−2M/x)dt2 +
1

1−2M/x
dx2 + x2dΩ2 (5)

with the mass parameter M. It has the following properties: If we first restrict our attention

to larger x > 2M, the metric is static since its coefficients do not depend on time and Nx = 0.

When x becomes large compared to the mass, i.e. if we approach the asymptotic regime far

away from the black hole, the metric becomes asymptotically flat. The black hole region

is characterized by the horizon which appears at x = 2M as a coordinate singularity in

the Schwarzschild metric and can be defined in a coordinate independent manner as the

outer boundary of a region where trapped surfaces, i.e. envelops of light rays which cannot

expand outwards to infinity, occur. If we enter the black hole region through the horizon

we notice that now t becomes a space-like coordinate since the tt component changes sign.

The role of coordinate time is then played by x on which the metric coefficients depend.

Thus, the interior is not static, but since the metric components now do not depend on the

spatial coordinate t it is homogeneous (of Kantowski–Sachs form).

2.1 Metric and Triad

The metric components qϕϕ = x2, qxx = (1− 2M/x)−1 and N2 = −gtt = 1− 2M/x can be

used to characterize the three different regimes of a massive black hole with mass M ≫ 1:

At asymptotic infinity we have x ≫ 2M ≫ 1 and thus

qϕϕ ≫ 1 qxx ∼ 1 .
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At the horizon we have x ∼ 2M and

qϕϕ ≫ 1 qxx ≫ 1

while at the singularity we have 0 ∼ x ≪ 2M and

qϕϕ ≪ 1 |qxx| ≪ 1 N ≫ 1 .

In the latter case, qxx is relevant only if we approach the singularity on slices with t constant

which are time-like inside the horizon. The lapse function, on the other hand, is the relevant

metric component if we approach the singularity on slices which are space-like inside.

These regimes of metric components can be used for a first glimpse on how a quan-

tization may deal with the singularity or horizon. From cosmological models it is known

that expressions for, e.g., curvature components can be modified when they become large,

cutting off classical divergences (in isotropic cosmology they are all inverse powers of

the scale factor [18], or spin connection components in anisotropic models [11]). Simi-

larly here, some spin connection components contain information about intrinsic curvature.

Their form can be obtained from the general expression (see, e.g., [19])

Γi
a = −εi jkeb

j(∂[aek
b] +

1
2
ec

kel
a∂[cel

b]) (6)

where ei
a are components of the co-triad (i.e. ei

aei
b = qab) and eb

j of its inverse. In spherical

symmetry, co-triads take a special form just as the metric (3) does. Since it does not matter

how a triad is rotated, it need not be exactly invariant under the rotation group acting on

space, but it is enough for it to be invariant up to a gauge rotation. This is realized for

co-triads of the form

ei
aτidxa = ex(x)τ3dx+(e1(x)τ1 + e2(x)τ2)dϑ+(e1(x)τ2 − e2(x)τ1)sinϑdϕ

=: ex(x)τ3dx+ eϕ(x)Λ̄(x)dϑ+ eϕ(x)Λ(x)sinϑdϕ (7)

where we use SU(2) generators τ j = − i
2
σ j with Pauli matrices σ j, and Λ =: cosητ2 +

sinητ1 and Λ̄ := exp(−π
2
τ3)Λexp(π

2
τ3) are defined to have unit norm in su(2), i.e. cosη =

e1/eϕ and sinη =−e2/eϕ with e2
ϕ = e2

1 +e2
2. Infinitesimal rotations of space now act by Lie

derivatives on e with respect to superpositions of vector fields X = sinϕ∂ϑ + cotϑcosϕ∂ϕ,

Y = −cosϕ∂ϑ + cotϑsinϕ∂ϕ, and Z = ∂ϕ, while gauge rotations of the triad act by conju-

gation in su(2). We thus obtain explicitly

LX e = (e1τ1 + e2τ2)cosϕdϕ− (−e2τ1 + e1τ2)
cosϕ

sinϑ
dϑ =

[

e,
cosϕ

sinϑ
τ3

]

LY e = (e1τ1 + e2τ2)sinϕdϕ− (−e2τ1 + e1τ2)
sinϕ

sinϑ
dϑ =

[

e,
sinϕ

sinϑ
τ3

]

LZe = 0

showing that any rotation in space simply amounts to a gauge rotation of the triad. The

corresponding metric is thus invariant under rotations, and indeed a co-triad (7) implies a

metric of the form (3) with

qxx = e2
x , qϕϕ = e2

1 + e2
2 = e2

ϕ . (8)
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A spherically symmetric spin connection takes the form

Γi
aτidxa = Γxτ3dx+ΓϕΛ̄Γdϑ+ΓϕΛΓ sinϑdϕ+ τ3 cosϑdϕ (9)

where the last term must be added since a connection transforms differently from a co-triad

under gauge transformations. Indeed,

LX(τ3 cosϑdϕ) = −τ3

(

sinϕ

sinϑ
dϕ+

cosϑcosϕ

sin2 ϑ
dϑ

)

= d
(cosϕ

sinϑ
τ3

)

LY (τ3 cosϑdϕ) = −τ3

(

cosϕ

sinϑ
dϕ− cosϑsinϕ

sin2 ϑ
dϑ

)

= d

(

sinϕ

sinϑ
τ3

)

and LZ(τ3 cosϑdϕ) = 0 such that we have the correct transformation of Γ with the same

gauge rotation as above.

The explicit formula (6) applied to a spherically symmetric co-triad shows that

Γx = −η′ , Γϕ = −e′ϕ/ex , ΛΓ = Λ̄ , (10)

with Λ̄ as defined for the co-triad, such that the ϕ-component Γϕ is gauge invariant while Γx

is pure gauge. Modifications to classical behavior similar to those in cosmological models

can now be expected, e.g., from the spin connection component Γϕ = −√
qϕϕ

′/
√

qxx when

metric components become small. Classically, this expression diverges at small qxx, which

can be changed in a quantum theory for the corresponding operator. Since, as we will

see later, Γϕ appears in the equations of motion, a modification here would change the

behavior of solutions. Horizons of massive black holes would remain unmodified since

there both metric components are large. The singularity, however, looks less clear: only

for time-like slices does qxx become small, indicating a modification and the possibility

of removal of the singularity. But if we approach the singularity on space-like slices with

x constant, in the interior N2 (playing then the role of qxx) remains large which does not

suggest modifications. Indeed, the slices then are homogeneous and Γϕ vanishes identically

which means that we will need another measure for the removal of singularities in this case.

At asymptotic infinity, however, we would encounter severe problems since qxx is close

to one at which point modifications can already be noticeable, spoiling the classical limit

of the theory. This is a sign of using the wrong variables since the modification is a conse-

quence of quantum effects, and the success of a quantization can depend significantly on the

choice of fundamental variables. Indeed, there are variables better suited to a demarkation

of the different regimes than the metric. This is in particular the case for the densitized triad

defined by Ea
i = ea

i |det(e
j

b)| where ea
i is the inverse of the co-triad e compatible with the

metric. A spherically symmetric densitized triad is of the general form

E = Ex(x)τ3 sinϑ
∂

∂x
+(E1(x)τ1 +E2(x)τ2)sinϑ

∂

∂ϑ
+(E1(x)τ2 −E2(x)τ1)

∂

∂ϕ
(11)

written down as an su(2) valued densitized vector field. The gauge invariant components

are Ex and (Eϕ)2 = (E1)2 +(E2)2 whose relation with the metric components is

|Ex| = qϕϕ Eϕ =
√

qxxqϕϕ (12)
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(note that Ex can be positive or negative depending on the orientation sgndetE =
sgnEx(Eϕ)2 of the triad). The angular components have the same internal directions Λ

and Λ̄ as the co-triad.

For the Schwarzschild solution with |Ex| = x2 and Eϕ = x/
√

1−2M/x we now have

the following behavior: At asymptotic infinity

|Ex| ≫ 1 Eϕ ≫ 1 ,

at the horizon

|Ex| ≫ 1 Eϕ ≫ 1

and at the singularity

|Ex| ≪ 1 Eϕ ≪ 1 .

Thus, irrespective of the approach to the singularity, the behavior is just as needed for

unmodified classical behavior far away from the black hole all the way up to the horizon,

while inverse triad components, such as the spin connection component

Γϕ = −(Ex)′/2Eϕ (13)

will be modified at the singularity with small Eϕ.

2.2 Basic Variables

For detecting the classical singularity it seems much more reliable to use the densitized

triad rather than the metric, which is also the case in homogeneous models with an explicit

impact on the removal of singularities [10]. Indeed, the densitized triad as a basic variable

is important in other ways, too: it arises naturally when one attempts to quantize gravity in

a background independent manner. These two issues, the fate of classical singularities and

background independence, are superficially quite different but turn out to be deeply related.

Most recent progress in a background independent quantization of general relativity has

come after a reformulation in terms of Ashtekar variables [20, 21] where the densitized triad

Ea
i plays the role of a momentum canonically conjugate to the Ashtekar connection Ai

a =
Γi

a − γKi
a with the spin connection Γi

a as a function of Ea
i via (6), extrinsic curvature Ki

a =
eb

i Kab and the Barbero–Immirzi parameter γ > 0 [22]. The extrinsic curvature components

here make Ai
a canonically conjugate to Ea

i , while the spin connection provides Ai
a with the

transformation properties of a connection. This reformulation thus casts general relativity

as a gauge theory and does not only bring it formally closer to other interactions but also

leads to a direct way for a background independent quantization.

Usually, a field theory would be quantized by smearing the fields with test functions

over 3-dimensional regions so as to make their classical Poisson *-algebra well defined.

For instance, a scalar φ with Lagrangian
√

detq(1
2
φ̇2 + 1

2
qab∂aφ∂bφ + V (φ)) on a back-

ground metric qab (assuming lapse function N = 1 and shift vector Na = 0) has momen-

tum pφ =
√

detqφ̇ which transforms as a density (which is often ignored when the back-

ground metric is fixed as, e.g., Minkowski space). This has the singular Poisson relations

{φ(x), pφ(y)} = δ(x,y). However, if we smear the fields with test functions f and g on

space to obtain φ[ f ] :=
R √

detq f (x)φ(x)d3x and pφ[g] :=
R

g(x)pφ(x)d
3x we obtain the
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well-defined Poisson algebra {φ[ f ], pφ[g]} =
R √

detq f (x)g(x)d3x. This does not contain

δ-functions, but does depend on the background metric q which is not available for a back-

ground independent formulation of gravity. The very first step of a background independent

quantization of general relativity, therefore, has to face the problem that the physical fields,

with the metric or densitized triad among them, need to be smeared for a well-defined

algebra to be represented on a Hilbert space, but that a background metric must not be

introduced.

For a scalar, there is a simple way out: as is easily verified, we still obtain a well-defined

algebra if we only smear pφ for which we do not need a background metric since it is

already a density. Similarly, in the case of gravity we can evade the problem in Ashtekar’s

formulation since with connections and densitized vector fields as basic variables there

is a natural, background independent smearing leading to a well-defined algebra: Instead

of 3-dimensional smearings for all basic fields we use a 1-dimensional smearing of the

connection and a 2-dimensional one for the densitized triad, giving rise to holonomies

he(A) = P exp

Z
e
τiA

i
aėadt (14)

along edges e in space, and fluxes

FS(E) =
Z

S
τiEa

i nad2y (15)

through surfaces S. (We use the tangent vector ėa to the curve e and the co-normal na to the

surface S, both of which are defined without reference to a metric.)

It turns out that this smearing is sufficient for a well-defined classical Poisson algebra

which even has a unique diffeomorphism invariant representation [23, 24, 25, 26, 27]. This

representation defines the basic framework of loop quantum gravity [28, 29, 30, 31]. States

are represented usually in the connection representation ψ[A] on which holonomies act as

multiplication operators and fluxes as derivative operators. This can all be done rigorously

thanks to a rich structure on the infinite dimensional space of connections which is under

much better control than the space of metrics. As a consequence, flux operators have dis-

crete spectra implying a discrete structure of spatial geometry [32, 33, 34] which is also

realized in symmetric models [35, 36]. Moreover, since flux spectra are discrete and con-

tain zero, there are no densely defined inverse operators. Instead there are techniques [37]

which allow one to quantize co-triad or other inverse components of the basic Ea
i by opera-

tors which reduce to the inverse in a classical regime but modify the classical divergence at

small values. This has already been described and used above for the spherically symmetric

spin connection component. Here, it is important that those expressions are taken as func-

tions of the densitized triad components and not metric components. These effects come

from properties of flux operators as basic operators in a background independent formula-

tion which relies on the densitized triad as basic variable and so far is not known in a metric

formulation. Indeed, as observed before, the densitized triad is much better suited to sepa-

rate the classical singularity from other regimes such that modifications are only expected

there.



Quantum Riemannian Geometry and Black Holes 227

2.3 Dynamics

Up until now we have discussed kinematical properties of the spherically symmetric sys-

tem. The dynamical behavior of triad and connection (or extrinsic curvature) components

is dictated by the Hamiltonian constraint

H[N] = (2G)−1

Z
B

dxN(x)|Ex|−1/2
(

(K2
ϕEϕ +2KϕKxEx)+(1−Γ2

ϕ)Eϕ +2Γ′
ϕEx

)

(16)

in terms of the spin connection component Γϕ as before and the extrinsic curvature compo-

nents in

K = Kx(x)τ3dx+(K1(x)τ1 +K2(x)τ2)dϑ+(K1(x)τ2 −K2(x)τ1)sinϑdϕ (17)

where again only Kx and K2
ϕ = K2

1 +K2
2 are gauge invariant. In addition, there is the diffeo-

morphism constraint

D[Nx] = (2G)−1

Z
B

Nx(x)(−2EϕK′
ϕ +KxEx′) . (18)

Physical fields (Kx,E
x;Kϕ,Eϕ) have to solve the constraint equations H[N] = 0 = D[Nx]

for all functions N and Nx on B (except for possible boundary conditions which we ignore

here) and evolve in coordinate time according to Hamiltonian equations of motion Ėx =
{Ex,H[N] + D[Nx]}, etc. to be computed with the Poisson relations {Kx(x1),E

x(x2)} =
−2Gδ(x1,x2), {Kϕ(x1),E

ϕ(x2) = −Gδ(x1,x2). For the triad components this gives

Ėx = 2NKϕ

√

|Ex|+NxEx′ (19)

Ėϕ = N(KϕEϕ +KxEx)|Ex|−1/2 +(NxEϕ)′ (20)

which, when solved for the extrinsic curvature components, agrees with their geometrical

definition via

Ki
a = eb

i Kab = (2N)−1eb
i L∂t−Nx∂x

e j
ae

j

b (21)

from (4) and (2). Evaluating this for a spherically symmetric co-triad (7) or densitized triad

(11) indeed gives spherically symmetric components

Kx = N−1(ėx − (Nxex)
′) , Kϕ = N−1(ėϕ −Nxe′ϕ)

and the same internal directions ΛK = Λ, Λ̄K = Λ̄ as those of the triad. The extrinsic

curvature components then have Hamiltonian equations of motion

K̇x = −NKϕKx|Ex|−1/2 + 1
2
NK2

ϕEϕ|Ex|−3/2 +(NxKx)
′

+ 1
2
N|Ex|−1/2

(

Eϕ|Ex|−1 − 1
4
(Ex′)2(|Ex|Eϕ)−1 −Ex′Eϕ′(Eϕ)−2 +Ex′′(Eϕ)−1

)

+ 1
2
N′

(

Ex′(Eϕ)−1|Ex|−1/2 −2
√

|Ex|Eϕ′(Eϕ)−2
)

+N′′√|Ex|(Eϕ)−1 (22)

K̇ϕ = − 1
2
NK2

ϕ|Ex|−1/2 +NxK′
ϕ

+ 1
2
N|Ex|−1/2(1

4
(Ex′)2(Eϕ)−2 −1)+ 1

2
N′√|Ex|Ex′(Eϕ)−2 . (23)
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These coupled non-linear equations are difficult to solve in general, but the Schwarz-

schild solution can easily be reproduced by assuming staticity: Kx = Kϕ = Nx = 0 which

already implies that the diffeomorphism constraint is satisfied. Equations (22) and (23)

then assume the form of consistency conditions for the lapse function in order to ensure the

existence of a static slicing. Both conditions are identically satisfied for a lapse function

N ∝ Ex′/Eϕ (24)

using that Eϕ and Ex are subject to the constraint equation

(Γ2
ϕ −1)Eϕ −2Γ′

ϕEx = (1
4
(Ex′)2/(Eϕ)2 −1)Eϕ +(Ex′/Eϕ)′Ex = 0

following from (16) with Kx = 0 = Kϕ and Γϕ from (13).

It remains to solve this constraint for Ex and Eϕ. If we choose our radial coordinate

such that |Ex| = x2, this simplifies to a differential equation

−2x3Eϕ′ +3x2Eϕ − (Eϕ)3 = 0

whose solution Eϕ(x) = x(1 + c/x)−1/2 is the Schwarzschild component for Eϕ with c =
−2M, which then also reproduces the correct lapse function from (24).

This shows how the dynamical equations appear in a canonical formalism, and also

how special the simplicity of the static Schwarzschild solution is. With slight modifications

to the equations, e.g. coming from quantum modifications, the assumption of staticity will

no longer be consistent since two conditions K̇x = 0 = K̇ϕ have to be satisfied by only one

function N. Thus, quantum corrections are expected to change the static behavior of the

classical solution, even though it would come from only small changes outside the horizons

of massive black holes. What this means for the inside where quantum effects dominate

around the singularity has to be analyzed by direct methods from quantum gravity.

3 Quantization: Overview

Even though the vacuum spherically symmetric system has only a finite number of phys-

ical degrees of freedom given by the black hole ADM mass and its conjugate momentum

[38, 39, 40], a Dirac quantization requires field theory techniques in order to deal with

infinitely many kinematical degrees of freedom. Almost all of these degrees of freedom

will then be removed by the Hamiltonian constraint which acts as a functional differential

or difference operator. Thus, many of the field theoretic aspects of the full theory can be

probed here which also implies a corresponding level of complication. So far, the system is

not fully understood in a loop quantization even in the vacuum case, and other techniques

which can be applied more easily to this system do not allow definitive conclusions about

the singularity. It is therefore necessary at this stage to refer to approximation methods.

These methods allow different glimpses which one can then try to bring together for a con-

sistent picture. Here, we briefly collect different classes of approximations, which will be

described in more detail in the following sections.
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3.1 Homogeneous Techniques

Currently, loop techniques for homogeneous geometries, following techniques introduced

in [41], are fully developed to a degree that one can analyze properties of physical solutions.

(The main open issue is the physical inner product, about which not much is known even in

the simplest cases [42, 43].) There are explicit expressions for the most important operators

such as the volume operator [35], matter Hamiltonians or the Hamiltonian constraint [9,

10, 11] which is a big advantage compared to the full theory where the ubiquitous volume

operator cannot be diagonalized even in principle. The constraint equation takes the form

of a difference equation for the wave function in the triad representation which explicitly

shows how one can evolve through the classical singularity. Moreover, one can define

effective classical equations with diverse correction terms [44, 45, 46, 47, 48, 49, 50]. They

capture the main quantum effects [44, 51, 52, 53, 54, 55, 56, ] and can be analyzed more

easily than the quantum difference equation directly (see, e.g., [59, 60, 61, 62, 63, 64, 65]).

In some cases these effective classical equations provide an intuitive explanation for the

removal of singularities since they display bouncing behavior of a cosmological solution.

This can also be used to model the case of matter collapsing into a black hole. As a model,

the ball of matter can be assumed to be homogeneous such that the collapse of the outer

shell radius is described by effective equations for an isotropic system. These equations

are modified at small scales, i.e. when the ball collapses to a certain size. In the modified

regime there are matter systems which show a bounce, which now can be interpreted as the

collapsing matter parts repelling each other and bouncing back after maximal contraction.

So far, this is not much different from a bouncing universe and indeed described by the

same equations. The difference is that the matter ball does not present the full system, but

that there is also the outside. Without specifying the matter content there, one can try to

match the interior to a generalized Vaidya metric outside allowing for matter radiated away.

This allows to study the formation or disappearance of horizons which may or may not

shield the bounce replacing the classical singularity [66].

Limitations of these techniques are that only the interior carries quantum effects, while

the outside is described by a generalized Vaidya metric of general relativity. Some quantum

effects are transported to the outside by matching to the effective interior, which then enter

the Vaidya solution effectively through a non-standard energy momentum tensor. This still

shows possible changes in the behavior of horizons, but is of course more indirect than a

complete inhomogeneous analysis.

A different approach using homogeneous techniques only applies to the Schwarzschild

solution which is homogeneous inside the horizon. One can then describe the interior by

a quantum equation which as in cosmological cases, is a difference equation not breaking

down at the classical singularity. Also here we thus obtain a mechanism to evolve through a

classical singularity, and there are many more non-trivial aspects which only arise in a loop

quantization and show its consistency [67]. In particular, the singularity is removed, but the

horizon which presents another boundary to the classical interior remains.

3.2 Extrapolation

The previous analysis provides a picture of a non-zero Schwarzschild black hole interior

which one can now extrapolate in two ways: The non-singular interior first has to be em-
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bedded in a full space-time which can happen in several different ways. Moreover, for a

realistic black hole this must be generalized to the presence of matter. While there are many

gaps to be filled in by detailed constructions and calculations, one can already see different

implications for the issue of information loss [68].

3.3 Inhomogeneous Techniques

Operators for the spherically symmetric system (with or without matter) are now available

explicitly at a level similar to that in homogeneous models [13, 14]. In particular, there is

a similar simplification in the volume operator which translates to matrix elements of the

Hamiltonian constraint also being known explicitly. However, the constraint is much more

difficult to analyze since it now presents a functional difference equation in infinitely many

kinematical variables. The construction and regularization of the constraint is more subtle

compared to homogeneous cases, but similar to the full theory where there are different

versions. These can then be studied explicitly and their physical implications analyzed,

leading possibly to conclusions as to which operator is most suited for the full theory.

Even though the singularity issue is not yet solved in generality, there are indications

that a mechanism similar to that in homogeneous models is at work. This will then pro-

vide a large class of systems where one and the same mechanism, derived from basic loop

properties, provides a removal of singularities in non-trivial ways.

There are regimes where the constraint operator can be approximated by a simpler ex-

pression. Interestingly, this is true in particular in the neighborhood of isolated or slowly

evolving horizons [69] such that horizon properties such as fluctuations and its growth

from infalling matter or shrinking from Hawking radiation can be analyzed. Moreover,

the regime provides perturbation techniques which allow us to study general properties of

the constraint operator and matter Hamiltonians.

3.4 Full Theory

The full theory has a rigorous quantum representation [70] and well-defined candidates for

the Hamiltonian constraint [71]. Understanding the dynamics in general is certainly very

complicated, and even computing matrix elements of the constraint is involved. Most full

results which contribute to the physical picture are thus non-dynamical: Spatial geometry

is discrete [32, 33, 34] as a characteristic of the full quantum representation, and there are

well-defined quantum matter Hamiltonians [37]. Black hole (and cosmological) horizons

can be introduced as a boundary provided they are isolated [2]. This condition ensures that

the dynamics at the boundary is not essential and allows the correct counting of black hole

entropy [7, 8].

4 Homogeneous Techniques

In the Schwarzschild interior r < 2M one can choose a homogeneous slicing such that the

metric is of the Kantowski–Sachs form

ds2 = −N(T )2dT 2 +(2M/T −1)dR2 +T 2dΩ2 (25)
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with T = r, R = t and a lapse function N(T )2 = T/(2M −T ). The spatial metric is then

related to a homogeneous triad of the form (11) where Ex and Eϕ are constants on spa-

tial slices. Their conjugates are given by Ashtekar connection components of the general

spherically symmetric and homogeneous form

Ai
aτidxa = Axτ3dx+AϕΛ̄Adϑ+AϕΛA sinϑdϕ+ τ3 cosϑdϕ (26)

which in this case are simply proportional to extrinsic curvature components Kx = −Ax/γ

and Kϕ = −Aϕ/γ since Γ = τ3 cosϑdϕ from (9) and (10) with homogeneity. Moreover,

ΛA = Λ (as defined for the triad) follows from the Gauss constraint. Since Λ is constant in a

homogeneous model and subject to gauge rotations, we will fix it to Λ = τ2 in this section,

such that Λ̄ = τ1. The symplectic structure for the 4-dimensional phase space is determined

by {Kx,E
x} = −2G, {Kϕ,Eϕ} = −G.

4.1 Quantum Representation

Loop quantum gravity is based on spin network states which are generated by holonomies as

multiplication operators. Similarly, homogeneous models in loop quantum cosmology are

based on a representation [72] which emerges from holonomies of homogeneous connec-

tions and which turns out to be inequivalent to the usual Schrödinger representation used in

a Wheeler–DeWitt like quantization. For the Kantowski–Sachs model an orthonormal basis

of states is given by the family

〈Kϕ,Kx|µ,ν〉 = exp(− i
2
γ(µKϕ +νKx)) µ,ν ∈ R,µ ≥ 0 (27)

such that the kinematical Hilbert space is non-separable. (There are arguments to reduce

this to a separable Hilbert space as in [73] using properties of observables [74].) One can see

one of the basic loop properties that only exponentials of connection or extrinsic curvature

components are represented directly, but not the components themselves: It is clear that,

e.g., exp(−iγKx/2) acts directly as a shift operator

̂exp(−iγκKx)|µ,ν〉 = |µ,ν+2κ〉 (28)

but since this operator family is not represented continuously, this does not allow us to

obtain an operator for Kx by differentiation. Indeed,

〈µ,ν| ̂exp(−iγκKx)|µ,ν〉 = 〈µ,ν|µ,ν+2κ〉 = δ0,κ

is not continuous at κ = 0. This is different from a Wheeler–DeWitt quantization where

extrinsic curvature components would be basic operators represented directly. Instead,

here we have to express those components through holonomies such as exp(γKxτ3) =
cos(1

2
γKx)+2τ3 sin(1

2
γKx) and use the action

cos(1
2
γKx)|µ,ν〉 = 1

2
(|µ,ν+1〉+ |µ,ν−1〉) (29)

sin(1
2
γKx)|µ,ν〉 = i

2
(|µ,ν−1〉− |µ,ν+1〉) . (30)

Another difference to the Wheeler–DeWitt representation arises for triad operators

which in the Wheeler–DeWitt case would be simply multiplication operators on a wave
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function in the metric representation and thus have continuous spectra. In the loop case,

however, the triad operators

Êx = i
ℓ2

P

4π

∂

∂Kx

Êϕ = i
ℓ2

P

8π

∂

∂Kϕ
(31)

with the Planck length ℓP =
√

8πG~ have the basis states (27) as eigenstates

Êx|µ,ν〉 = 1
8π γℓ2

Pν|µ,ν〉 Êϕ|µ,ν〉 = 1
16π γℓ2

Pµ|µ,ν〉 (32)

and thus discrete spectra (i.e., normalizable eigenstates). Again, this is different from the

Wheeler–DeWitt quantization but directly analogous to full loop quantum gravity. In partic-

ular the volume V = 4πEϕ
√

|Ex| has a quantization with discrete spectrum with eigenvalues

Vµ,ν = 2π(γℓ2
P/8π)3/2µ

√

|ν| . (33)

4.2 Inverse Triad Components

It is often necessary to quantize inverse powers of densitized triad components, for instance

for matter Hamiltonians or curvature components. Since the basic triad operators have

discrete spectra containing zero, they do not have densely defined inverses which could

otherwise be used for this purpose. Nevertheless one can proceed, and in the end have

regular properties, by rewriting the classical inverse in an equivalent way and quantizing the

new expression [37]. We demonstrate this for the spatial curvature given by 3R = 2/|Ex| for

which we need an inverse of Ex. This can be taken as a measure for the classical singularity

where it diverges. Since there is no direct way of quantizing this expression via an inverse

of Êx we first write

Eϕ sgnEx

2
√

|Ex|
=

−1

8πG
{Kx,V} =

1

4πγG
trτ3e−γKxτ3{eγKxτ3 ,V}

where the first step replaces the inverse power of Ex by only positive powers occurring in V

at the expense of introducing Kx for which we do not have a direct quantization. Neverthe-

less, in the next step we obtain an equivalent expression which only contains exponentials

of Kx which we can quantize directly. Using the volume operator and turning the Poisson

bracket into a commutator then yields a densely defined operator

̂Eϕ sgnEx

√

|Ex|
=

−i

2πγG~
trτ3e−γKxτ3 [eγKxτ3 ,V̂ ] (34)

=
4i

γℓ2
P

(sin(1
2
γKx)V̂ cos(1

2
γKx)− cos(1

2
γKx)V̂ sin(1

2
γKx))

with eigenvalues

2

γℓ2
P

(Vµ,ν+1 −Vµ,ν−1) = 1
2

√

γℓ2
P

8π
µ(

√

|ν+1|−
√

|ν−1|) . (35)
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Since Êϕ has eigenvalues γℓ2
Pµ/16π, we can write

ŝgnEx

√

|Ex|
|µ,ν〉 = (γℓ2

P/8π)−1/2(
√

|ν+1|−
√

|ν−1|) (36)

which has the expected behavior for |ν| ≫ 1 but behaves very differently from the classical

expectation for small |ν|.
Taking this as a measure for the singularity indicates that it is removed in quantum

gravity since the eigenvalues remain finite even when ν = 0 at the classical singularity.

Nevertheless, a final confirmation of an absence of singularities can only come from con-

siderations of the dynamics which must allow us to evolve further even when we reach a

point corresponding to the classical singularity. Only then can we conclude that the singu-

larity as a boundary of space-time has been removed.

4.3 Dynamics

The spherically symmetric Hamiltonian constraint (16) can be used to find the expression

for the homogeneous Kantowski–Sachs interior

H[N] = (2G)−1N|Ex|−1/2
(

(K2
ϕ +1)Eϕ +2KϕKxEx)

)

(37)

where we used Γϕ = 0 with homogeneity in (13). There are different terms in this expres-

sion, those quadratic in K and the K-independent one which comes from the spin connection

in the curvature of the Ashtekar connection. In the full theory there would only be curva-

ture components of Ai
a in the Euclidean part εi jkF i

abEa
j Eb

k of the constraint, which can be

represented via holonomies by using

sa
1sb

2F i
ab(x)τi = (hα −1)/∆+O(∆)

where α is a small loop of coordinate area ∆ and with tangent vectors s1 and s2. For small

∆ in a limit removing a regulator one can use hα as an excellent approximation for the

curvature components, and stick this together with quantizations of the triad components

to obtain a quantization of the constraint [71]. This is different in a homogeneous context

(or in any symmetric model where some directions are homogeneous) because we have

only exponentials of connection components, but not holonomies with an adjustable edge

length that shrinks in a continuum limit. Nevertheless, since the constraint operator in the

full theory is based on holonomies quantizing the F-components, this has to be the case

also for symmetric models related to the full theory. The only possibility to use hα as

a good approximation is then given when the arguments of the exponentials are small in

semiclassical regimes where the classical constraint is to be reproduced. In other regimes,

one does not expect the classical constraint to be of any value for guidance and in fact

usually obtains strong quantum corrections.

In a semiclassical regime one has small curvature such that the extrinsic curvature com-

ponents can be assumed to be small when checking the classical limit of the constraint.

However, Ashtekar connection components are not necessarily small since for them also

the spin connection plays a role. Here, another difference to the full theory arises: while

in general spin connection components do not have coordinate independent meaning and
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in fact can be made arbitrarily small in any neighborhood, some of the components (such

as (13) in the spherically symmetric model) obtain invariant meaning in a symmetric con-

text where only transformations respecting the symmetry are allowed. Usually, unless the

model has flat symmetry orbits such that the spin connection vanishes, one cannot expect

the components to be small even in semiclassical regimes. This requires a special treatment

of the spin connection in symmetric models, which is possible in a general manner [11, 14].

For this reason we have started the quantization in this model with extrinsic curvature com-

ponents and will also use them instead of Ashtekar connection components in holonomies

when constructing the Hamiltonian constraint.

One may ask what the relation to the full theory then is where holonomies of the

Ashtekar connection are basic, while holonomies of a tensor such as extrinsic curvature

cannot even be defined. The arguments presented before explain why extrinsic curvature is

important to analyze the classical limit, but this does not show the contact to the full theory.

This will be much clearer in inhomogeneous models which are in between homogeneous

ones and the full theory. Here, we will have directions along symmetry orbits, for which

the techniques just described will apply, and inhomogeneous directions for which we will

use holonomies of the Ashtekar connection as in the full theory. As we will discuss in more

detail in the quantization of the spherically symmetric model, all this fits into a general

scheme which allows to derive expressions in all different classes of models.

We can now express the terms quadratic in curvature components via holonomies, such

as

K2
ϕ +1 = − 2

γ2δ2
trτ3(e

−δγKϕτ1e−δγKϕτ2eδγKϕτ1eδγKϕτ2 + γ2δ2τ3)+O(δ)

and

KxKϕ =
2

γ2δ2
trτ1(e

−δγKxτ2e−δγKϕτ3eδγKxτ2eδγKϕτ3)+O(δ) .

Triad components, together with Pauli matrices in the traces, can be obtained in the right

combinations from the Poisson brackets

τ3

Eϕ

√

|Ex|
= − 1

4πγδG
e−δγKxτ3{eδγKxτ3 ,V}

as already used for (34), and

τ1

√

|Ex| = − 1

4πγδG
e−δγKϕτ1{eδγKϕτ1 ,V} .

In all expressions, besides the volume V = 4π
R

dx
√

|Ex|Eϕ only holonomies h
(δ)
x :=

e−γδKxτ3 , h
(δ)
ϑ := e−γδKϕτ1 and h

(δ)
ϕ := e−γδKϕτ2 of the symmetric Ashtekar connection (26),

expressed through extrinsic curvature components, occur which can be quantized directly.

In a more symmetric form, which as we will see later also applies in general, we write

(K2
ϕ +1)Eϕ +2KxKϕEx

√

|Ex|
∼ 1

2πγ3δ3G
tr((hϑhϕh−1

ϑ h−1
ϕ + γ2δ2τ3)hx{h−1

x ,V}

+hxhϑh−1
x h−1

ϑ hϕ{h−1
ϕ ,V}+hϕhxh−1

ϕ h−1
x hϑ{h−1

ϑ ,V})

=
1

4πγ3δ3G
∑
IJK

εIJK tr
(

(hIhJh−1
I h−1

J − γ2δ2F(Γ)IJ)hK{h−1
K ,V}

)
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with the curvature components F(Γ)IJ of the spin connection, i.e. here

F(Γ) = dΓ = −τ3 sinϑdϑ∧dϕ

such that only F(Γ)ϑϕ := iXϕ iXϑ
F(Γ) =−τ3 appears, with the symmetry generators Xϑ = ∂ϑ

and Xϕ = (sinϑ)−1∂ϕ.

Quantizing and evaluating the action explicitly through the action of basic operators

leads to a constraint operator of the form

Ĥ(δ) = −iN(γ3δ3Gℓ2
P)

−1 ∑
IJK

εIJK tr
(

(h
(δ)
I h

(δ)
J h

(δ)−1
I h

(δ)−1
J − γ2δ2F(Γ)IJ)h

(δ)
K [h

(δ)−1
K ,V̂ ]

)

= −2iN(γ3δ3Gℓ2
P)

−1

(

8sin
δγKϕ

2
cos

δγKϕ

2
sin

δγKx

2
cos

δγKx

2

×
(

sin
δγKϕ

2
V̂ cos

δγKϕ

2
− cos

δγKϕ

2
V̂ sin

δγKϕ

2

)

+

(

4sin2 δγKϕ

2
cos2 δγKϕ

2
+ γ2δ2

)

×
(

sin
δγKx

2
V̂ cos

δγKx

2
− cos

δγKx

2
V̂ sin

δγKx

2

))

(38)

where δ > 0 is regarded as a parameter analogous to the edge length in the full theory.

From the holonomy operators one obtains shifts in the labels when acting on a state |µ,ν〉
which in the triad representation given by the coefficients ψµ,ν in a decomposition |ψ〉 =

∑µ,ν ψµ,ν|µ,ν〉 leads to the difference equation

0 = (Ĥ(δ)ψ)µ,ν = 2δ
√

|ν+2δ|(ψµ+2δ,ν+2δ −ψµ−2δ,ν+2δ) (39)

+ 1
2
(
√

|ν+δ|−
√

|ν−δ|)
(

(µ+4δ)ψµ+4δ,ν −2(1+ γ2δ2)µψµ,ν +(µ−4δ)ψµ−4δ,ν

)

−2δ
√

|ν−2δ|(ψµ+2δ,ν−2δ −ψµ−2δ,ν−2δ) .

We are now in a position to analyze whether or not there is a singularity in the quantum

theory. There are a few key differences to the usual classical formulation, the first one

coming from the fact that we are using triad variables. Compared to a metric formulation,

this provides us with an additional sign factor sgnEx determining the orientation of space.

Accordingly, there are two regions of minisuperspace separated by the line Ex = 0 where the

classical singularity would be. We have already seen that the classical divergence of inverse

powers of Ex does not occur in a loop quantization, but the real test of a singularity can

only come from the dynamics: starting with initial values in one region of minisuperspace

we need to find out whether we can uniquely evolve to the other side, through the classical

singularity. In the quantum theory this is done for the wave function which we can prescribe

for sufficiently many initial values at some ν > 0 and additional boundary values at µ = 0 so

as to provide a good initial value formulation for the difference equation (39) as described

in detail in [10]. One can then see by direct inspection that indeed this will uniquely fix

the wave function not just at positive ν where we started, but also at negative ν, at the

other side of the classical singularity. Thus, quantum geometry automatically allows us to

evolve through the classical singularity which therefore is removed from quantum gravity.
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Intuitively, the region of negative ν corresponds to a region of a space-time diagram at the

other side of the singularity, as sketched in Fig. 1, which therefore is no longer a boundary

but a region of high curvature where the classical theory and its smooth space-time picture

break down [67].
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Figure 1: Interior of a Schwarzschild black hole with the quantum region (hatched) replac-

ing the classical singularity. This allows to extend space-time to the new upper region. How

these regions are embedded in a full space-time is left unspecified here.

There are many basic aspects which are playing together in just the right way for this

result to hold true. They all come directly from the loop quantization and are not put

in by hand; in fact, they had been recognized as essential for a background independent

quantization a few years before their role in removing classical singularities emerged. The

loop representation is important in two ways since via discrete triad spectra it leads to

the kinematical results of non-diverging inverse powers of densitized triad components,

and through the representation of holonomies to the dynamical constraint as a difference

operator. Moreover, the theory is based on densitized triads which, as discussed before,

has consequences for the position of classical singularities in minisuperspace important for

how one can evolve through them. This automatically provides us with the sign factor

from orientation and thus a region beyond the classical singularity. Still, also the dynamical

law has to be of the right form for an evolution to this other side of minisuperspace to be

possible.

Thus, we have a few essential effects which automatically come from a loop quanti-

zation. Once recognized and identified, they can easily be copied in other quantization

schemes inspired by loop quantum gravity and cosmology. However, in such a case one

has to guess anew in each model what the relevant basic properties would be since there

is no underlying scheme for guidance. With the loop quantization we have such a general

scheme which just needs to be evaluated in different models. Only then can the results be
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regarded as reliable expectations for quantum gravity, rather than possibly artificial conse-

quences of choices made. The sign of triad components, for instance, appears automatically

and then gives rise to the additional side of the classical singularity to which we can evolve.

In loop inspired approaches without a link to the full theory, however, the sign is introduced

by hand by extending the range of metric variables to negative values. While this leads

to similar results in isotropic models [75], except that the geometrical meaning of the sign

remains unclear, there are differences in the black hole interior [76]. In particular, this ap-

proach would suggest that even the horizon can be penetrated by the homogeneous quantum

evolution despite the fact that space-time becomes inhomogeneous outside. This problem

does not occur in the quantization described here since the horizon remains a boundary

(corresponding to µ = 0).

4.4 Effective Dynamics

The non-singular quantum dynamics is obviously very different from the classical one even

though they can be shown to agree in classical regions at large densitized triad components

and small curvature [77]. In between, there is a regime where equations of motion of

the classical type, i.e. ordinary differential equations in coordinate time, should be able to

describe the system even though quantum effects are already at work. One can think of

these equations as describing the position of wave packets which spread only slightly in

semiclassical regimes [45, 46, 47]. Quantum effects will then provide modifications, e.g.

where inverse powers of densitized triad components occur in a matter Hamiltonian which

are replaced by regular expressions in quantum geometry. This provides different means

to calculate implications of quantum effects which can so far be done in homogeneous

situations.

For instance if we assume the distribution of a matter system collapsing into a black

hole to be isotropic, its outer radius Ra(t) is described by a solution a(t) to the Friedmann

equation, with R being the coordinate radius where we cut off spatial slices from a closed

FRW model. If we choose a scalar φ with potential V (φ) and momentum pφ, we have the

Friedmann equation

a(ȧ2 +1) =
8πG

3
(1

2
a−3 p2

φ +a3V (φ)) (40)

which develops a singularity corresponding to the part of the final black hole singularity

covered by matter.

The corresponding effective classical equations are modified by replacing the classically

diverging a−3 in the matter Hamiltonian with a regular function d(a) derived from finite

inverse scale factor operators such as (34) [78, 79]. Including two ambiguity parameters j

(a half integer) and 0 < l < 1, this can be parameterized as

d(a) j,l := a−3 pl(3a2/γ jℓ2
P)

3/(2−2l) (41)

with

pl(q) =
3

2l
q1−l

(

1

l +2

(

(q+1)l+2 −|q−1|l+2
)

(42)

− 1

l +1
q
(

(q+1)l+1 − sgn(q−1)|q−1|l+1
)

)

.
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The essential property of d(a) j,l is that it is increasing from zero for a2 < 1
3
γ jℓ2

P which

through the Friedmann equation implies a different dynamical behavior at small volume.

This model then provides an intuitive explanation for the removal of classical singularities

even at the effective level since the equations lead to a bounce at non-zero a: due to the

modified density the kinetic term is negligible at small a, and matter evolution equations

from the modified matter Hamiltonian imply friction of φ [80]. The potential term is then

dominating and almost constant which means that the bounce is approximately of de Sitter

form [52]. In this interpretation of collapsing matter this means that it does not collapse

completely but rebounds after a point of minimal contraction is reached.

So far, we had only access to the inside of the matter contribution which we assumed to

be isotropic. The solution can now be matched to a suitable solution describing the outside,

which would be able to tell us, for instance, whether horizons form. For pressure-less

matter one can match to the static Schwarzschild solution as in the Oppenheimer–Snyder

model [81]. This is the case classically only for dust, which however can develop pressure if

quantum modifications come into play. (This is in agreement with our earlier observations

that quantum effects will not allow the presence of a static vacuum solution.) We have

thus chosen the more general scalar matter which has pressure even classically. Physically,

pressure leads to shock waves at the outer boundary giving rise to a non-static exterior. This

can be described by a generalized Vaidya metric

ds2 = −(1−2M(χ,v)/χ)dv2 +2dvdχ+χ2dΩ2 (43)

which we can match to the interior (Fig. 2) by requiring equal induced metric and extrinsic

curvature at the time-like matching surface Σ defined by r = R inside and χ = χ(v) outside.
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Figure 2: A closed Friedmann–Robertson–Walker model and a generalized Vaidya metric

are matched to form a collapse model. Singularities are indicated by dashed lines and the

matching surface by dotted lines. The bottom parts of the diagrams are cut off since they

depend on details of the solutions. The left hand side shows the classical case with a future

singularity, while the right hand side shows the singularity-free effective case.

In this way we can see what the collapsing matter implies for the outside space-time at

least in a neighborhood [66]. To have access to the full outside all the way up to an asymp-

totic observer we would need to specify the matter content outside. While this is possible

e.g. as the same scalar matter as inside, only inhomogeneous, it would not necessarily be

correct physically. In fact, we have modified only the classical equations describing the

interior, while we did not use effective equations outside. When the matter distribution
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extends over a large region in the early stages, one does not expect strong modifications,

but this is not clear close to the bounce. In this region, the interior equations are strongly

modified, and this is transferred to the outside via the matching conditions in a rather in-

direct way: We use the classical generalized Vaidya metric, but did not specify the matter

content. It is effectively the energy momentum tensor which carries quantum effects from

the interior to the outside via the matching. Prescribing the outside matter content would

remove this transfer and stop us from seeing possible quantum effects outside.

We write the interior metric as

ds2 = −dt2 +X(r, t)2dr2 +Y (r, t)2dΩ2

with X(r, t) = a(t)/(1 + r2/4) and Y (r, t) = rX(r, t). On the matching surface r = R of the

interior and χ = χ(v) of the generalized Vaidya exterior the metric and extrinsic curvature

have to agree. From the metrics we obtain

χ|Σ = Y |Σ (44)

and
dv

dt

∣

∣

∣

∣

Σ

= (1−2M/χ−2dχ/dv)−1/2
∣

∣

∣

Σ
(45)

while the extrinsic curvature, computed again from (21), gives us

YY ′

X

∣

∣

∣

∣

Σ

= χ
1−2M/χ−dχ/dv

√

1−2M/χ−2dχ/dv

∣

∣

∣

∣

∣

Σ

(46)

and

0 = ∂vM +
d2χ

dv2
+

(

1− 2M

χ
−3

dχ

dv

)(

M

χ
−∂χM

)

(47)

which yields a condition for ∂M/∂χ at constant v.

With dχ/dv|Σ = χ̇|Σ/v̇|Σ and (44) we use (46) to write the square root in (45) in terms

of Y ′ and Ẏ which leads to
dv

dt

∣

∣

∣

∣

Σ

=
(Y ′/X + Ẏ )

1−2M/Y

∣

∣

∣

∣

Σ

. (48)

Using (44) and defining c := Y ′/X , (46) becomes

c2(1−2M/χ+2dχ/dv) = (1−2M/χ−dχ/dv)2

which with

(dχ/dv)2 = Ẏ 2(1−2M/χ−2dχ/dv)

(following from dχ/dv = χ̇/v̇ and (45)) gives c2 = 1−2M/χ+ Ẏ 2. Thus,

2M|Σ = (YẎ 2 +Y (1− c2))|Σ . (49)

A trapped surface forms in a generalized Vaidya metric when 2M = χ, which lies on

the matching surface if 2M = Y . From (49) this yields the simple condition

|Ẏ | = c = Y ′/X (50)
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which for FRW reduces to

|ȧ| = (1−R2/4)/R . (51)

Assuming, for now, that this condition will be satisfied at a time t(R) during collapse, we

obtain a horizon covering the bounce (Fig. 3). The squared norm of its normal is given by

∂vM(1− 2∂χM) which can be computed from (47) using dM/dv = ∂vM + ∂χMdχ/dv and

turns out to be zero if the horizon condition (51) is satisfied. The horizon is thus always

null when it first intersects the matching surface.

After the first trapped surface forms on the matching surface, |ȧ| continues to increase

before it turns around when the peak in d(a) j,l is reached. From then on, |ȧ| decreases

and reaches ȧ = 0 at the bounce. In between, the trapped surface condition (51) will be

satisfied a second time at an inner horizon. Unlike the outer one, it lies in the modified

regime where energy conditions are effectively violated and ä > 0 [44]. It is also null at the

matching surface but can become time-like soon and evaporate later. Similarly, the outer

horizon can become time-like when matter having experienced the quantum modifications

starts to propagate through it. Thus, also the outer horizon can evaporate and shrink toward

the matching surface at later times, when the inner matter is already expanding.

The horizon thus evaporates and the bouncing matter has a chance to reappear. Indeed,

the condition (51) will be satisfied also at a time after the bounce where ȧ is now positive.

Thus, the horizon will intersect again with the matter shells and disappear. At such a point,

however, the matching breaks down since dv/dt diverges when 2M = Y and Ẏ > 0. From

a single matching of the interior we obtain only a part of the collapse before a horizon

disappears. At the endpoint of the horizon the interior coordinate t ceases to be good, and

we have to match to another patch (Fig. 3).

Σ

Figure 3: Sketch of the bouncing effective interior, covered by evaporating horizons

(dashed). Constant v (outside) and t (inside) slices are dotted. The matching described in

the text only refers to the part before the inner horizon collides with the expanding matter

after the bounce.
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The precise position of the horizon only follows when we specify the matter content and

field equations (i.e. Einstein’s equations or modified ones) and integrate with M and ∂M/∂χ

as boundary conditions at the matching surface. Since we leave this open, we do not get

precise information on the horizon but only qualitative properties. After some time into the

collapse, the horizon is expected to shrink since modifications in the interior imply small

violations of energy conditions (which also allow the bounce to take place). Radiation of

negative energy implies, analogously to Hawking radiation, that the horizon becomes time-

like and shrinks. Later, it can meet the matching surface again at which point the matter

becomes visible from behind the horizon. If the initial mass was large, it takes a long time

for the bounce to occur and the matter to reemerge such that for most of the time the system

looks like a classical black hole to an outside observer.

It is not guaranteed that a horizon forms at all since fulfillment of the horizon condition

depends on initial values. In particular, once we choose R to specify the matching surface in

the interior, Eq. (51) fixes the value for ȧ which needs to be reached for a horizon to occur.

Classically, ȧ is unbounded as we approach the singularity such that the condition will

always be true at one point and there is always a horizon covering the classical singularity in

this model. With the effective equations, however, ȧ is bounded for given initial conditions,

and depending on the value of R it can happen that the horizon condition is never fulfilled.

In this case, there would not be a black hole but only a matter distribution collapsing to high

densities and rebounding. This rules out black holes of a certain type, in particular those

of small mass: Starting with a configuration such that a horizon forms, we can decrease

R toward zero without changing a(t). The right hand side of (51) then increases and at

one point the condition can no longer be fulfilled. Since with decreasing R we carve out

a smaller piece of the homogeneous interior, the total initial mass is smaller, giving us a

lower bound for the mass of black holes in this model. Precise values have to be derived

from more detailed models, but this argument shows that large, astrophysical black holes

will be unaffected while primordial ones of small masses do not form [66].

5 Extrapolation

We have seen two results from homogeneous techniques employed in the preceding section:

• At the fully quantum level of the Kantowski–Sachs model describing the Schwarz-

schild black hole interior the singularity is absent (Fig. 1).

• Matter systems allow effective classical equations for their collapse such that the clas-

sical singularity is replaced by a bounce sometimes shrouded by a horizon (Fig. 3).

Both results have been arrived at with very different techniques, and have different physical

meaning. The first one only applies to the vacuum case but provides us with a strict result

as to how the classical singularity is replaced in quantum gravity. It directly shows that

general relativity is singular because it relies on the smooth classical space-time picture.

This picture breaks down at high curvature and has to be replaced by discrete quantum

geometry, providing a non-singular evolution.

The second result works with matter but is more intuitive, only giving a picture from

effective classical equations. It provides a physical, rather than geometrical explanation
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for the failure of general relativity in strong curvature regimes. Singularities in general

relativity can be understood as a consequence of the always attractive nature of classical

gravity: Once matter collapses to a sufficiently high density, be it an isolated part or the

whole universe, there is nothing to prevent total collapse into a singularity. Viewing the

Friedmann equation, e.g. with scalar matter, as describing a mechanics system with the

matter energy density serving as potential shows this by the fact that the energy density

decreases as a function of a at fixed φ and pφ, in particular the kinetic term 1
2
a−3 p2

φ. Thus,

there is an attractive force driving the system toward a = 0 (or, as usually expressed in

cosmology, positive pressure which thermodynamically is defined as the negative change

of energy with volume). The modification of a−3 by the regular function d(a) in (41),

which turns around at a peak value and then approaches zero rather than infinity at a = 0,

implies that now the energy density increases as a function of volume at small scales. This

can be interpreted as quantum gravity becoming repulsive at small scales, which can then

easily prevent total collapse into a singularity. Moreover, at non-zero but small scales this

repulsive component is still active and leads to modified behavior. For instance, in an

expanding universe it implies that the expansion is accelerated leading directly to inflation

[44]. In the interpretation of collapsing matter, the same effect makes the horizon shrink

after the bounce such that only the strong quantum region is covered.

Since we have used approximations, the question arises how these partial results can fit

into a full picture of quantum black holes. The first result indicates that space-time can be

extended through classical singularities, but since it gives us access only to the interior, it is

not clear if the new region we reach can also be accessed from an outside observer. (If not,

the black hole would appear as a wormhole through which one can travel into a new region

of the universe.) The second result now indicates that we can in fact access the new region

since there is only one matching region outside the collapsing matter, suggesting a picture

as in Fig. 4.

However, here it is important to bear in mind that we only effectively described matter

outside falling into the collapsing shells. In a more realistic model, there would be such

inhomogeneous matter colliding with the homogeneous core and making it more heavy.

This can then lead to singularities forming in the outside region. For their resolution we

would again have to use quantum geometry and face the same problem as to whether or not

this will lead to a new region accessible from the outside.

It is clear that a decisive answer can only be obtained with inhomogeneous techniques,

which we are going to describe in the next section. Still, even at this level one can see

that there are only a few possible scenarios which can be distinguished by using inhomo-

geneous properties of quantum geometry. Irrespective of which outcome inhomogeneous

models will show us, one can already see special features of quantum geometry leading to

a new paradigm about black hole evaporation. For the first time, this takes into account

a resolution of the classical singularity with implications for apparent loss of information

[68]. In fact, while Hawking radiation still emerges in a neighborhood of the dynamical

horizon and is still approximately thermal, this is by no means everything coming out of the

black hole at late times. Infalling matter now evolves through the quantum region of high

curvature and reappears later, restoring correlations which are not recovered by Hawking

radiation alone. In particular, there is no reason for the final state measured on all of future

null infinity to be mixed if we started with a pure initial state. In the usual picture one would
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Figure 4: Combination of Figs. 1 and 3 where the quantum region around the classical

singularity is shrouded by an evaporating horizon (dashed). The dotted line marks the

boundary of the part of space-time unaffected by the strong curvature inside.

cut out the quantum region (or the place of the classical singularity) and consider the future

space-time without allowing penetration through that region. Future null infinity then stops

at the intersection with the dotted line in Fig. 4, and a state retrieved at this part of null

infinity is indeed mixed since it is obtained by averaging over the rest to the future. In this

way, both the singularity problem and the information loss paradox are resolved by loop

quantum gravity.

6 Inhomogeneous Techniques

For the spherically symmetric model we need to perform the loop quantization for inho-

mogeneous configurations (17) and (11) such that the basic fields now depend on the radial

coordinate x. Instead of using states such as (27) with a finite number of labels, we now

have a field theory with infinitely many kinematical degrees of freedom. An orthonormal

basis of states is given by [13]

〈Ax,Kϕ| . . . ,kn,µn,kn+1,µn+1, . . .〉 = ∏
n

exp(1
2
ikn ∫

en

Axdx)exp(−iµnγKϕ(vn)) (52)

with countably many labels kn ∈Z and 0 ≤ µn ∈R labeling edges en and vertices vn, respec-

tively, of a 1-dimensional graph in the radial line. Note that, as already indicated before, we

are using exponentials of the extrinsic curvature component Kϕ along homogeneous direc-

tions but holonomies of the connection component Ax along the inhomogeneous direction.

Both exponentials are represented as multiplication operators.
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Spatial geometry is encoded in densitized triad operators acting by

Êx(x)| . . . ,kn,µn, . . .〉 =
γℓ2

P

8π

kn+(x) + kn−(x)

2
| . . . ,kn,µn, . . .〉 (53)Z

I
Êϕ| . . . ,kn,µn, . . .〉 =

γℓ2
P

8π ∑
vn∈I

µn| . . . ,kn,µn, . . .〉 (54)

where n±(x) is the edge label to the right (left) of x, and I is an interval on the radial line

(over which we need to integrate Eϕ since it is a density). As before in the homogeneous

case we also obtain densely defined operators for inverse powers of the triad components,

which can in particular be done for the inverse of Eϕ in the spin connection component

(13).

6.1 Hamiltonian Constraint

For the Hamiltonian constraint (16) we again have to obtain curvature components from

holonomies, now using holonomies of Ax for the inhomogeneous radial direction and ex-

ponentials of Kϕ for homogeneous directions along symmetry orbits. Terms containing

the spin connection component Γϕ belonging to homogeneous directions will be quantized

separately. One may wonder if this procedure will easily give the right components in the

Hamiltonian constraint, given that it has the rather simple expression (16) in terms of ex-

trinsic curvature components while we are using the Ashtekar connection component Ax.

As we will see, the general scheme will yield automatically the right combination of com-

ponents by a straightforward construction of loops to be used in holonomies.

To see this in detail, we first note the difference between Ax and Kx, which is given by

the x-component of the spin connection. For a general spherically symmetric triad it takes

the form

Γ = −η′τ3dx+
Ex′

2Eϕ
Λdϑ− Ex′

2Eϕ
Λ̄sinϑdϕ+ τ3 cosϑdϕ (55)

as in (9) with (10). Here, we recognize (13) as used before as the component along homo-

geneous directions. This component is a scalar (noting that both Ex′ and Eϕ are densities of

weight one), while the x-component Γx = −η′ does not have covariant meaning and indeed

can be made arbitrarily small locally by a suitable gauge transformation. This is analo-

gous to the situation in the full theory, while the gauge invariant meaning of Γϕ mimics

homogeneous models.

Even though Γx can be made arbitrarily small locally by a gauge transformation, we

cannot assume this when constructing a suitable Hamiltonian constraint operator. Thus, it

must be built into the construction so as to combine with Ax from radial holonomies to give

Kx as in the expression for the constraint. This KϕKx-term in the constraint can, according to

the general construction where connection or extrinsic curvature components derive from

closed holonomies, only come from a loop which has one edge along a symmetry orbit

and one in the radial direction. Starting in a point v, such a holonomy is of the form

h
(δx)
x h

(δ)
ϕ (v+)(h

(δx)
x )−1(h

(δ)
ϕ (v))−1 with a new vertex v+ displaced from v by a coordinate

distance δx of the radial edge. (We distinguish between δx for the radial direction and δ for

the angular directions since the continuum limit is technically different in both cases.) This
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term appears together with Λ̄(v) (coming from quantizing the triad components) in a trace

whose expansion in δ

−2tr(hxhϕ(v+)h−1
x hϕ(v)−1Λ̄(v))

∼−2γδ(Kϕ(v+) tr(Λ(v+)Λ̄(v))+2Kϕ(v+)∫ Axdx tr(τ3Λ(v+)Λ̄(v)))

= γδ(Kϕ(v+)sin(η+−η)+Kϕ(v+)∫ Axdxcos(η+−η))

= δδxγKϕ(v)(Ax(v)+η′(v))+O(δ2) (56)

has all the right terms, with Ax coming directly from the radial holonomy and η(v+) in

δη′ ∼ η(v+)−η(v) from the internal direction Λ(v+) at the new vertex. The other term of

the form K2
ϕ is obtained from angular holonomies only, as in the homogeneous case,

−2tr(hϑhϕh−1
ϑ h−1

ϕ τ3) ∼ δ2γ2K2
ϕ . (57)

The matrices τ3 and Λ̄(v) in the traces come from Poisson brackets expressing triad com-

ponents as in the homogeneous constraint. Moreover, the spin connection components in

(16) are again expressed through the curvature

F(Γ) = −Γ′
ϕΛdx∧dϑ+Γ′

ϕΛ̄sinϑdx∧dϕ+(Γ2
ϕ −1)τ3 sinϑdϑ∧dϕ

of the spin connection. Through

∑
IJK

εIJK tr(δIδJF(Γ)IJhK{h−1
K ,V}) ∝ (Γ2

ϕ −1){Ax,V}−2Γ′
ϕ{−γKϕ,V})

we obtain the additional terms of the constraint, where we included the length parameters

δI (i.e. δx for I = x and δ for ϑ or ϕ).

This demonstrates how the general procedure works without additional input: We

use exponentials of extrinsic curvature components for homogeneous directions and

holonomies of Ashtekar connection components for inhomogeneous ones as dictated by the

background independent representation. Spin connection components for inhomogeneous

directions then come in the right form to combine with extrinsic curvature components,

while those in homogeneous directions are split off and quantized separately. This is pos-

sible because those components, in contrast to the inhomogeneous ones, do have covariant

meaning. This ties together the constructions in homogeneous models and the full theory,

and at the same time opens a direct route to effective classical equations: Homogeneous

spin connection components usually contain inverse powers of the densitized triad, such as

(13). When they are quantized, the classical divergence will be removed implying modifi-

cations at small scales. in homogeneous models this has been used, e.g., in the Bianchi IX

case where it has been shown to remove the classical chaos [82, 83]. Similarly, one can use

this mechanism to derive effective classical equations for the spherically symmetric model

and find possible consequences.

Before trusting those effective equations in the inhomogeneous case one needs to make

sure that there is a well-defined Hamiltonian constraint operator emerging from the proce-

dure described here. So far, we have only discussed those holonomies and spin connection

components which give us the contributions to the constraint, but they must now be stuck

together with quantizations of triad components so as to build a well-defined operator for



246 Martin Bojowald

the whole expression. Moreover, since the expression (16) is an integrated density, one has

to discretize the integration first and then, after quantizing the individual terms, perform the

continuum limit removing the regulator. The discretization had already been understood

above, with v and v+ being the endpoints of a discrete interval of size δx, and we convinced

ourselves that the continuum limit of the discretization will yield the correct result. In more

detail, one writes

H[N] =
Z

dxN(x)H (x) ∼ ∑
n

δ
(n)
x N(vn)H (vn)

where we discretized the radial line into intervals of coordinate length δ
(n)
x , each one con-

taining the point vn. Classically, both expressions can be made to agree for any subdivision

by choosing points vn in the intervals according to the mid point theorem. Alternatively, if

one wants to fix the vn to be endpoints of the intervals, the discretization agrees with the

classical constraint in the continuum limit in which n → ∞ and δ
(n)
x → 0 for all n.

For the Hamiltonian constraint in general each term in the sum then has contributions

of the form

δxH (v) ∝ ∑
I,J,K

εIJK tr(hIJhK [h−1
K ,V̂ ]) (58)

where we sum over triples (I,J,K) of independent directions which in symmetric models

are given by generators of the symmetry transformations ((ϑ,ϕ) in the spherically sym-

metric case), and in the full theory or inhomogeneous directions of a symmetric model by

edges of a graph (x in spherical symmetry). The holonomies hIJ are formed according to the

symmetry: if both directions I and J are inhomogeneous, hIJ is a holonomy along a closed

loop αIJ constructed from edges in the IJ-plane of a graph to act on; if at least one of the

two directions is homogeneous, hIJ = hIhJh−1
I h−1

J −γ2δIδJF̂IJ with hI being exponentials of

the (su(2)-valued) extrinsic curvature components belonging to the I-direction for a homo-

geneous direction I or holonomies along an inhomogeneous direction. (The appearance of

F(Γ) can be understood as a correction term since loops made from holonomies along vec-

tor fields generating symmetries do not close if orbits have non-zero curvature [84].) The

size of loops αIJ or single holonomies is determined by the size δx of the discretization. The

final holonomy hK either belongs to an edge transversal to both directions I and J, or again

to exponentiated extrinsic curvature components if K is homogeneous. These combinations

are chosen in such a way that hIJ yields the correct curvature components, the commutator

gives the necessary triad components, and both terms together provide just the right product

of lattice sizes such as δx in order for the sum to take the form of a Riemann summation of

the original integral. In the full theory, this procedure only results in the so-called Euclidean

part of the constraint which can be used to construct the Lorentzian constraint [71]. In the

models used here, however, the prescription (58) is sufficient even for Lorentzian signature.

This can now be illustrated and applied in the spherically symmetric model where the

first case above cannot appear since there is only one inhomogeneous direction. We have

thus two cases, one in which direction I or J is radial, resulting in the first product of

holonomies discussed above, combined with a commutator

hϕ[h−1
ϕ ,V̂ ] = V̂ − cos 1

2
γKϕV̂ cos 1

2
γKϕ − sin 1

2
γKϕV̂ sin 1

2
γKϕ

−2Λ(cos 1
2
γKϕV̂ sin 1

2
γKϕ − sin 1

2
γKϕV̂ cos 1

2
γKϕ) .
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In the second case we have the other product of holonomies and a commutator

hx[h
−1
x ,V̂ ] = V̂ − cos 1

2
∫ AxV̂ cos 1

2
∫ Ax − sin 1

2
∫ AxV̂ sin 1

2
∫ Ax

+2τ3(cos 1
2
∫ AxV̂ sin 1

2
∫ Ax − sin 1

2
∫ AxV̂ cos 1

2
∫ Ax) .

The integration here is over an interval of size δx such that in the limit of a fine discretization

this term is of order δx as needed for the Riemann sum.

What we did not specify yet is how the discretization is adapted to a graph the con-

structed operator is supposed to act on, i.e. whether v and maybe v± are already vertices of

the graph or arbitrary points. At this point, choices need to be made which lead to different

versions of the constraint. The same choices arise in the full theory [85, 86, 87], but they

can be studied much more easily in the spherically symmetric model such that it may be

possible to rule out some versions.

It is already non-trivial to check that different versions lead to well-defined operators

at all. For this, the action after performing the continuum limit, in which the number of

discretization points becomes infinite, must be finite. If the action were non-zero at each

discretization point, there would not be a well-defined operator in the limit and the regulator

could not be removed. One would then only deal with a lattice regulated theory rather than

a quantization of the continuum theory. In the full theory, there is a well-defined operator

because the action of the constraint is zero unless a discretization point is already a vertex.

Starting with states with finitely many vertices then leads to a densely defined operator.

This comes about in the full theory because the constraint contains the volume operator in

such a way that it acts only on planar vertices if there is no vertex already present in the

graph. Since the full volume operator annihilates all planar vertices, there are only finitely

many contributions from the vertices already present.

In spherical symmetry, however, all vertices are planar since graphs are just 1-

dimensional. This simple general argument is thus not available and it is not obvious that

the same construction scheme will result in a well-defined operator. It turns out, however,

that this is the case as a consequence of how triad components in the constraint are quan-

tized: a discretization point which is not already a vertex of the graph to act on will be

annihilated such that only finitely many contributions from the vertices remain. One can

thus use the same type of operator, just with adaptations to the symmetric situation.

Nevertheless, one can also choose different constructions where the discretization is

given directly by the graph, i.e. discretization intervals would be complete edges of the

graph. Since endpoints of discretization intervals are always vertices of a state, the con-

tinuum limit would then require also states to change and become finer and finer. In this

picture, the continuum limit of the constraint operator can only be tested on states which

are suited to the continuum behavior, while there are also other states where discreteness

is essential and where the classical constraint would be corrected from quantum effects.

Moreover, in the continuum limit the number of vertices diverges and the constraint opera-

tor becomes ill-defined just as the usual Wheeler–DeWitt operator is. Both schemes result

in well-defined operators, but they lead to quite different equations of motion and require

different conceptual viewpoints about the continuum limit. When the continuum limit is to

be ensured for each state, one requires in a sense that the classical equations are sensible at

arbitrarily small scales, and corrections could only come from quantum uncertainties. In the

second picture, on the other hand, the classical continuum picture arises only after a certain
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coarse graining, or by working only with states which are not sensitive to the microscopic

structure. If one chooses a state which is sensitive to small scales, or looks very closely

at small scales of even a semiclassical state, then corrections to the classical expressions

arise, for instance as a consequence of the underlying discreteness. This second viewpoint

has been taken successfully in cosmological models, and is, as we will see, also fruitful in

black hole models.

6.2 Dynamics

Since the constraint operator is again constructed from holonomies which act by shifting

the labels, it implies difference equations for states in a triad representation. (Note that

also in the spherically symmetric model the triad representation exists, unlike in the full

theory where flux operators do not commute [88].) These equations are now not only partial

difference equations but also have many independent variables. Interestingly, the type of

difference equation is very different for the two versions of the constraint operator: in the

second case the number of edges and vertices of the original state is unchanged and the

operator only acts on the labels. This results in difference equations with independent

variables ke for each edge and µv for each vertex. Since the operator does not change the

number of edges and vertices, one obtains coupled difference equations in a fixed number

of variables for each sector given by the number of vertices.

In the first version of the constraint, however, the situation is very different. Now,

new vertices are created and edges split in each action of the operator. Thus, for a triad

representation it is not enough to work with a fixed number of vertices. Rather, all graphs

have to be taken into account for the equation, which implies that one has to deal with

infinitely many independent variables and thus functional difference equations.

We thus return to the simpler type of difference equation implied by the other version

of the constraint and discuss what one can already say about the singularity issue. First of

all, one will have to identify classical singularities on minisuperspace in order to study the

constraint equation in a neighborhood. In an isotropic model this is simple since the only

way is for the volume to go to zero [10]. Similarly, one can identify the classical singularity

on an anisotropic minisuperspace where all densitized triad components would go to zero.

The situation is not so clear in midisuperspaces such as spherical symmetry since there are

more possibilities for a singularity to develop. Even though this has not been settled in

general, there are many cases where a singularity is characterized by Ex approaching zero

(which on classical solutions such as Schwarzschild implies that Eϕ becomes zero, too).

This is also in agreement with the general mechanism removing singularities seen so far in

homogeneous models: there it is the sign coming from orientation which leads to different

regions of minisuperspace separated by the classical singularity. The quantum evolution, as

we have seen in the Kantowski–Sachs model, can then allow us to evolve between the two

regions, thus removing the classical singularity as a boundary.

The role of orientation is now played by sgnEx since detq = Ex(Eϕ)2. Since Ex depends

on the radial position, or the edge after quantization, the boundary of our midisuperspace

has many components which we can identify with an inhomogeneous classical singularity,

corresponding to the fact that inhomogeneous singularities behave differently in their dif-

ferent points. For the states this means that we encounter a section of a classical singularity
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each time an edge label ke becomes zero. As in homogeneous models, we can then use

the evolution equation in the triad representation in order to see if an evolution through this

part of the boundary is possible. Since the structure of the difference equation for a given

edge label is very similar to the homogeneous equation, one can expect that the boundary

indeed disappears and that the quantum evolution connects regions of midisuperspace cor-

responding to different local orientations. There would thus be no singular boundary, and

the same mechanism as in homogeneous models could also remove spherically symmetric

singularities.

This scenario has been verified in [15], noting a crucial difference to homogeneous

models wich require a symmetric ordering of the constraint. Thus, quantization choices

are reduced by looking at less symmetric models, so far in such a way which maintains

the validity of the general picture. Yet, there are also open issues left for a general under-

standing. For instance, while the results are independent of the matter Hamiltonian and

can be extended to cylindrical gravitational wave models, thus also allowing local degrees

of freedom, they are so far based only one type of the constraint which leads to difference

equations easier to deal with. The behavior with the other version is not easy to see, but if it

is singularity free, too, the mechanism is likely to be different. Most importantly, the kind

of initial/boundary value problem suitable for the constraint equations needs to be analyzed

in more detail to guarantee that there are suitable and sufficiently many solutions with the

correct classical limit. At this point the anomaly issue, i.e. whether two constraint opera-

tors with different lapse functions have the correct commutator, becomes important. These

considerations thus provide a promising and treatable way to distinguish different versions

of the quantization by their physical implications, which can then be extrapolated to the full

theory.

6.3 Horizons

A feature of black holes which is new compared to cosmological models, and which re-

quires inhomogeneous situations, is given by the presence of horizons. Global concepts

such as the event horizon are, of course, not helpful in our case since we would need to

solve the Hamiltonian constraint completely before being able to discuss this issue. There

are more practical definitions such as apparent horizons which, however, are much more

general and do not distinguish between fully dynamical situations and almost static sys-

tems. The quantum behavior would be most easy to analyze if we can define horizons

locally and in a controlled manner which does not require the full dynamics at once. Such

a concept is presented by isolated [2] or slowly evolving dynamical horizons [89], which

even quite unexpectedly simplify the spherically symmetric Hamiltonian constraint in their

neighborhood.

6.3.1 Definition

There are three main parts to the definition of an isolated horizon ∆ with spatial sections

S ∼= S2 of given area a0, embedded into the space manifold Σ by ι : S → Σ [90, 30]:

(i) The canonical fields (Ai
a,E

a
i ) on the horizon are completely described by a single

field W = 1
2
ι∗Airi on S which is a U(1)-connection obtained from the pull-back of the
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Ashtekar connection to S. Here, ri is an internal direction on the horizon chosen such

that W is a connection in the spin bundle on S2 and riEa
i =

√
detqra on the horizon

with the internal metric q on S and the outward normal ra to S in Σ.

(ii) The intrinsic horizon geometry, given by the pull-back of the 2-form Σi
ab := εabcEc

i to

S, is determined by the curvature F = dW of W by

F = −2π

a0

ι∗Σiri . (59)

(iii) The constraints hold on S.

A further consequence of the isolated horizon conditions [90] is that the curvature F

of the pull-back of Ai
a to S has to equal the curvature of W : riF (ι∗Ai) = 2dW . This can be

seen as one of the distinguishing features of an isolated horizon since even slowly evolving

horizons at rate ε (related to the expansion of horizon cross sections [89]) will break it,

though just by an amount of the order ε2.

When the horizon is introduced as a boundary, condition (i) is used to identify the

horizon degrees of freedom represented by the field W . Condition (ii) then shows that these

degrees of freedom are fields of a Chern–Simons theory on the horizon. It is the main

condition since it relates the horizon degrees of freedom to the bulk geometry, which after

quantization selects the relevant quantum states to be counted. Condition (iii), on the other

hand, does not play a big role since an isolated horizon as boundary implies a vanishing

lapse function on S for the Hamiltonian constraint which then is to be imposed only in the

bulk.

Thus, when computing black hole entropy in this way, as we will describe later, the

Hamiltonian constraint does not play any role since it does not act at the boundary, and the

Hamiltonian generating evolution along the horizon need not be considered. In the spheri-

cally symmetric model one can hope that the constraint is simple enough for an application

in this case, either to generate evolution or to impose the horizon not as a boundary but

inside space such that the constraint would have to be imposed. In the latter case, moreover,

we will not be able to have an independent boundary theory which is then matched to the

bulk, but would have to find the relevant degrees of freedom within the original quantum

theory.

6.3.2 Spherical Symmetry

We can now evaluate the conditions for spherically symmetric connections of the form

A = Ax(x)τ3dx+Aϕ(x)Λ̄A(x)dϑ+Aϕ(x)ΛA(x)sinϑdϕ+ τ3 cosϑdϕ (60)

and densitized triads (11), where in general the internal directions ΛA and Λ are different.

The connection component Ax has been discussed before, while the relation AϕΛA = ΓϕΛ̄−
γKϕΛ, following from the definition of the Ashtekar connection together with (9), (10) and

(17), implies A2
ϕ = Γ2

ϕ + γ2K2
ϕ.

We choose ri := sgn(Ex)δi,3 such that in fact riEa
i = |Ex|sinϑ∂x with the intrinsic hori-

zon area element |Ex|sinϑ of a metric |Ex|dΩ2. Thus, W = 1
2
riι

∗Ai = 1
2

sgn(Ex)cosϑdϕ
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whose integrated curvature given by
H

S dW = −2πsgn(Ex(x)) agrees with the Chern num-

ber of the spin bundle, depending on the orientation given by sgn(Ex).

Evaluating (59) first shows that in the spherically symmetric context it is not restrictive

since we have a0 = 4π|Ex(S)| and the right hand side given by − 1
2

sgn(Ex(S)) equals F

for all E. This is not surprising since the spherically symmetric intrinsic geometry of S

is already given by the total area which is fixed from the outset. (What is free is the sign

of Ex(S), or orientation, which confirms ideas of [91].) Now the first condition plays a

major role, which we evaluate in the form riF (ι∗Ai) = 2dW [90]. Since F (ι∗A) = (A2
ϕ −

1)τ3 sinϑdϑ ∧ dϕ, the condition requires Aϕ = 0 which will be the main restriction we

have to impose on quantum states in addition to the constraints. This condition Aϕ = 0

selects 2-spheres in a spherically symmetric space-time corresponding to cross-sections of

a horizon. Indeed, for the Schwarzschild solution we have Aϕ = Γϕ since the extrinsic

curvature vanishes. With (13) and the Schwarzschild triad we obtain the correct condition

x = 2M for the horizon. In general, A2
ϕ = Γ2

ϕ + γ2K2
ϕ = 0 implies Γϕ = 0 and Kϕ = 0.

A slowly evolving horizon at rate ε satisfies the condition riF (ι∗Ai) = 2dW only up to

terms of the order ε2. Thus, Aϕ is not exactly zero but must be small of order ε, which then

is true also for Γϕ and Kϕ.

6.3.3 Dynamics

In spherical symmetry we can locate a horizon on a state [69], which must be at a vertex in

order for Kϕ = 0 to be sharp enough. The condition that Kϕ be zero for an isolated horizon

or small for a slowly evolving horizon then leads to important simplifications which allow

a perturbative treatment of the dynamics around the horizon. Indeed, when acting with the

constraint at the horizon both terms made from holonomies hIJ contain factors of sin 1
2
γKϕ

at the horizon vertex or a neighboring one which must then be small. Ignoring those terms

in an approximation leads to an operator which is diagonal on the spin network states (52)

and thus easy to solve as a constraint or to use for generating time evolution at a boundary.

The additional terms ignored in this approximation can then be included in a perturbative

treatment of the near horizon dynamics.

Without many calculations this already shows how the horizon fluctuates dynamically.

Classically an isolated horizon has constant area which thus commutes with the Hamil-

tonian constraint. This is also true at the quantum level to leading order of the above ap-

proximation since the area operator Â(S) = 4π|Êx(S)| has the same eigenstates (52) as the

leading order constraint. Thus, at this level the horizon area is an observable not just when

the horizon is treated as a boundary, but also if its full neighborhood is quantized. However,

there are additional terms which arise in higher orders of the perturbation scheme. There

are two reasons for horizon area fluctuations even in the isolated case: While classically

Kϕ = 0 exactly at the horizon and only this value is important, the quantization does not

allow this to hold arbitrarily sharply. Otherwise, the volume of a shell around the horizon,

which depends on the conjugate momentum Eϕ of Kϕ could not be sharp independently of

the mass which would contradict semiclassical properties to hold true at least for massive

black holes. Secondly, the constraint operator acting at the horizon itself depends on neigh-

boring values of Kϕ through hϕ(v+) in (56). This would give non-zero contributions even if

Kϕ at the horizon would be zero exactly.
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Both terms lead to small dynamical changes in the horizon area coming from typical

quantum gravity properties. The first reason is quantum uncertainty which does not allow a

sharp condition Kϕ = 0, and the second space-discreteness and non-locality which implies

that not only Kϕ at the horizon itself is relevant but also the values in neighboring vertices

which are not necessarily zero. For large black holes, the correction terms are expected

to be small: uncertainty will not change the horizon area much compared to its already

large size, and in neighboring vertices of a semiclassical state Kϕ will still be extremely

small. Thus, for large black holes the horizon area is an excellent observable, while for

microscopic black holes large fluctuations are expected which may even prevent horizons

as they are known classically. This agrees with the picture we have obtained from effective

equations and matching techniques before.

7 Full Theory

The methods developed so far in symmetric models mimic those of the full theory, with

some adaptations to preserve the symmetry. In this section, for completeness, we describe

what this looks like in the full theory and discuss applications which work without assuming

symmetries.

7.1 Representation

As discussed before, the full theory of loop quantum gravity is based on holonomies for

arbitrary edges in space and fluxes for surfaces, forming the basic classical Poisson algebra.

In the connection representation, states are functionals on the infinite dimensional space of

connections [92, 93, 70] through holonomies, and a dense subspace of the Hilbert space is

spanned by cylindrical functions

ψ(A) = fγ(he1
(A), . . . ,hen

(A)) (61)

which depend on only finitely many holonomies. Since there is now no symmetry require-

ment, the edges can be arbitrary curves in space and form a graph γ with vertices at their

intersection points. The inner product for two states associated with the same graph is given

by

〈 fγ|gγ〉 =
Z

SU(2)n
∏
e∈γ

dµH(he) fγ(h1, . . . ,hn)
∗gγ(h1, . . . ,hn) (62)

with the Haar measure dµH on the structure group SU(2). For two functions with different

graphs, they need to be extended to a bigger one which is always possible by cutting edges

or inserting new ones on which the extended state depends trivially. An orthonormal basis

is given by spin network states [94, 95], associated with graphs labeled by irreducible SU(2)

representations je at edges and contraction matrices Cv at vertices, of the form

Tγ, j,C(A) = ∏
v∈γ

Cv ·∏
e∈γ

ρ je(he(A)) (63)

where the representation matrices ρ je(he(A)) evaluated in edge holonomies are multiplied

together in vertices according to the symbols Cv.
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Fluxes are quantized as derivative operators in the connection representation since the

densitized triad is conjugate to the Ashtekar connection. Replacing the triad components in

(15) by functional derivatives and acting on a cylindrical function, we obtain

F̂S fγ = −8πiγ~G

Z
S

d2yτina

δ

δAi
a(y)

fγ(h(A))

= −iγℓ2
P ∑

e∈γ

Z
S

d2yτina

δhe

δAi
a(y)

d fγ(h)

dhe

which has contributions only from intersection points y of the surface S of the flux with

the graph γ associated with the state. Moreover, each derivative operator for an intersection

point can be seen to be equivalent to an angular momentum operator such that its spec-

trum is discrete and equidistant. Since there is a finite sum over all such contributions, the

spectrum of flux operators is discrete, too. Not all the angular momentum operators in-

volved necessarily commute, and so triad operators do not always commute with each other

such that a triad representation does not exist [88] (unlike in the symmetric models studied

before).

The densitized triad describes spatial geometry, and spatial quantum geometry is en-

coded in flux operators. From the basic ones one can construct geometrical operators such

as the area [32, 33] or volume operator [34] which also have discrete spectra. Thus, quantum

spatial geometry is discrete in a precise way, given by the spectra of geometric operators.

The area spectrum is known completely, but for the volume operator this is impossible to

compute explicitly since arbitrarily large matrices would have to be diagonalized. Spatial

geometry at the quantum level is thus rather complicated in general if explicit calculations

need to be done.

This translates to the Hamiltonian constraint and other operators, for which the volume

operator plays a crucial role. Classically, the Hamiltonian constraint is given by [21]

H[N] = (8πG)−1

Z
d3xN(x)|detE|−1/2(F i

abEa
j Eb

k εi jk −2(1+ γ2)Ki
[aK

j

b]E
a
i Ek

b) (64)

with the curvature F i
ab of the Ashtekar connection, and the extrinsic curvature Ki

a =
γ−1(Γi

a −Ai
a) a function of the basic variables through (6). Both parts of the constraint

can be quantized using building blocks similar to (58), resulting in a well-defined operator

[71] even when matter Hamiltonians are included [37]. Edges for the holonomies have to

be chosen, which can be done in a diffeomorphism invariant manner and even in such a

way that the quantization is anomaly free at least on states satisfying the diffeomorphism

constraint [96].

Which version of the quantization is the correct one, however, is still an open issue

since in particular the classical limit and that of perturbations on a classical background

(“gravitons”) are difficult to analyze. Moreover, finding and interpreting solutions in full

generality is complicated by technical and conceptual problems.

It is thus important to devise approximation schemes, other than symmetry reduction as

employed before, in order to shed light on physical properties of the full theory. One pow-

erful possibility consists in imposing an isolated horizon as a boundary [90] since boundary

conditions imply that the constraint is not to be imposed there (a constraint has lapse func-

tion going to zero at the isolated horizon). Thus, also at the quantum level the constraint
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operator can be ignored and aspects of the basic quantum representation receive physical

meaning. Indeed, boundary degrees of freedom are obtained from intersections of spin net-

work states with the horizon surface, and flux operators are important to select physical

states corresponding to an isolated horizon. By counting those states and comparing with

the Bekenstein–Hawking expectation the theory can be tested.

7.2 Black Hole Entropy

An isolated horizon S with prescribed area a0 as a boundary leads to an additional boundary

term in the symplectic structure [90],

Ω = (8πγG)−1

Z
d3x∂Ai

a ∧∂Ea
i +

a0

2π
(16πγG)−1

Z
S

d2yrir j∂Ai
a ∧∂A

j

bεab (65)

where we denote differentials on field space by ∂, εab is the anti-symmetric tensor on the

boundary surface, and ri the internal vector as in the definition of an isolated horizon. The

boundary term to the symplectic structure can be recognized as that of a U(1) Chern–Simons

theory which thus describes the horizon degrees of freedom by the U(1) connection Wa =
1
2
riA

i
a.

We quantize the full system by using quantum geometry in the bulk and quantum

Chern–Simons theory on the horizon. Doing this results in the curvature F = dW becoming

an operator with equidistant spectrum which, via (59) needs to be matched to the flux riΣ
i

through the horizon. As shown before, quantum geometry indeed implies a flux operator

with equidistant spectrum such that the matching is possible at the quantum level. Since

also the pre-factors match, there are always solutions to the horizon condition which can

now be counted, for a given area a0, to compute the entropy as the logarithm of the number

of states.

This results in an expression for entropy which is proportional to the horizon area [7, 8],

confirming expectations from semiclassical considerations. Intuitively, entropy counts the

number of ways that one can construct a macroscopic horizon of area a0 from elementary

discrete parts [97] (which is generalized in this picture since there is not just one elemen-

tary type but different ones given by the spin label of an intersection point with a spin

network). Since the discreteness scale is set by the Barbero–Immirzi parameter γ, the num-

ber of possible such configurations and thus entropy must depend on γ. Indeed, γ appears in

the constant of proportionality between entropy and area which allows us to fix γ by requir-

ing the Bekenstein–Hawking law. Moreover, since there are different types of black holes

— charged, distorted, rotating or with non-standard matter couplings — and the value is

already fixed by the simplest case of a Schwarzschild black hole, one can test the theory

since now entropy must result in the right way without any further parameter to tune. This

is indeed the case [98, 99], providing a non-trivial test of the theory.

The scale of discreteness is then fixed which, since it must be small enough, can already

be confronted with observations. It turns out that γ = 0.2735 [100, 101] is of the order

one such that the discreteness lies around
√

γℓP ≈ 1
2
ℓP and is thus much too small to be

observable directly. Indeed there have long been reasons to expect a scale of discreteness

around the Planck length which is now confirmed by detailed calculations in loop quantum

gravity. It is not at all obvious that this comes about since there are many non-trivial steps
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in the derivation, and mistakes in the foundations of the theory could easily lead to larger

values which could already be in conflict with observations.

At this point it is important to consider the physical meaning of γ. It can be seen as

a fundamental parameter setting the scale of discreteness which is thus characteristic of

quantum gravity. (In fact, one can express the continuum limit as a limit γ → 0 [77].) In

usual arguments, this is expected to be done by ℓP, which has to appear anyway just for di-

mensional reasons. However, in ℓP only the gravitational constant G and Planck’s constant

~ enter such that the Planck length is already fixed by classical gravity and quantum me-

chanics alone. Since these theories are unrelated to full quantum gravity, there is no reason

for γ to equal one even though one can expect a value of the order one from dimensional

arguments. A precise value for the scale of discreteness can only come from a detailed

quantum theory of gravity and calculations which are sensitive to the underlying discrete

structure, as realized by loop quantum gravity.

8 Conclusion

In the preceding sections we described the current status of what black holes look like from

the viewpoint of non-perturbative, background independent quantum gravity. There are re-

sults obtained with different approximations to the full theory which provide a consistent

picture of black holes without pathologies or puzzles, such as the singularity problem or the

information loss paradox, perceived earlier from general relativity alone or from combina-

tions of classical gravity and quantum field theory on a background.

The main type of approximation used here is that of a symmetry reduction as often em-

ployed in classical or quantum physics. This allows to study the background independent

quantum dynamics and its characteristic features in different explicit ways. Compared to

the full theory, there are several technical simplifications for instance from a volume oper-

ator with explicitly known spectrum. But also at a conceptual level, the interpretation of

solutions or physical situations is simplified.

Even though special properties of a given symmetric model, such as simplifying coor-

dinate or field transformations, have not been made use of and essential ingredients have

rather been modeled on the full theory, the question arises what one could do without sym-

metry assumptions. For a fair judgment one has to bear in mind that background indepen-

dence in quantum field theory is a new concept, which is introduced non-perturbatively.

There are hardly any comparable results in other realistic quantum field theories, and quan-

tum gravity introduces its own conceptual issues to the theory. Moreover, the fact that com-

mon perturbative approximation schemes are not available is a consequence of the property

of gravity that a split into a free field theory plus perturbations is not possible. One thus has

to deal with the fully non-linear framework which otherwise is usually avoided in quantum

field theory. Loop quantum gravity provides a framework in which these hard questions,

which sooner or later will have to be faced by any approach to quantum gravity, are being

confronted directly.

A consequence of the non-linearity is that operators, even if they can be defined in

a well-defined manner, are by no means unique since there are often factor ordering or

regularization choices. Loop quantum gravity, nevertheless, has succeeded in finding char-

acteristic effects from a background independent quantization. Details, of course, depend
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on several quantization choices, but one can directly investigate the robustness of results

to ambiguities. As described here, this allows one to solve conceptual problems in the

physics of black holes, and also in cosmology as detailed elsewhere [102, 79, 103], while

parameters can be fixed in detail by consistency conditions or phenomenology.
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