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Preface

This Edited Volume is based on the workshop on “Recent Developments in Quan-
tum Field Theory” held at the Max Planck Institute for Mathematics in the Sci-
ences in Leipzig (Germany) from July 20th to 22nd, 2007. This workshop was
the successor of two similar workshops held at the Heinrich-Fabri-Institute in
Blaubeuren in 2003 on “Mathematical and Physical Aspects of Quantum Field
Theories” and 2005 on “Mathematical and Physical Aspects of Quantum Grav-
ity!”.

The series of these workshops was intended to bring together mathemati-
cians and physicists to discuss basic questions within the non-empty intersection
of mathematics and physics. The general idea of this series of workshops is to
cover a broad range of different approaches (both mathematical and physical) to
specific subjects in mathematical physics. In particular, the series of workshops is
intended to also discuss the conceptual ideas on which the different approaches of
the considered issues are based.

The workshop this volume is based on was devoted to competitive methods
in quantum field theory. Recent years have seen a certain crisis in theoretical par-
ticle physics. On the one hand there is this phenomenologically overwhelmingly
successful Standard Model which is in excellent agreement with almost all of the
experimental data known to date. On the other hand this model also suffers from
conceptual weakness and mathematical rigorousness. In fact, almost all the ex-
perimentally confirmed statements derived from the Standard Model are based
on perturbation theory. The latter, however, uses renormalization theory which
actually still is not a mathematically rigorous theory. Despite recent progress, it is
clear that a deeper understanding of this issue has to be achieved in order to gain a
more profound understanding in elementary particle dynamics. Moreover, it seems
almost embarrassing that we have no idea what more than 90% of the energy in
the universe may look like. Even more demanding are the conceptual differences
between the basic ideas of a given quantum field theory and general relativity.
There is not yet a theory available which allows to combine the basic principles of
these two cornerstones of theoretical physics and which also reproduces (at least)
some of the experimentally verified predictions made by the Standard Model. A
quantum theory of gravity should cover or guide an extension or re-modeling of

1See the volume “Quantum Gravity — Mathematical Models and Experimental Bounds”,
B. Fauser, J. Tolksdorf, and E. Zeidler (eds.), Birkhduser Verlag, 2007.
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the particle physics side. These problems are among the driving forces in recent
developments in quantum field theory.

One competitive candidate for a unifying theory of quantum fields and gravity
is string theory. The present volume features a particular scope on these activities.
It turned out that the flow of communication between string theory and other
approaches is not entirely free, despite of a great effort of the organizers to allow
this to happen. The workshop showed, in very lively discussions, that there is a
need for exchanging ideas and for clarifying concepts between other approaches
and string theory. This might be a well suited topic for a following workshop. The
first chapter, by Bert Schroer, dwells partly on some of the difficulties to achieve
a better understanding between the ideas of string theory and algebraic quantum
field theory. In addition to Bert Schroer’s view, the editors are glad to point out,
that in several chapters of this book, and especially in the long last chapter, string
motivated ideas do entangle and interact with quantum field theory and provide
thereby competitive approaches.

The present volume covers several approaches to generalizations of quantum
field theories. A common theme of quite a number of them is the belief that the
structure of space-time will change at very small distances. The basic idea is that
probing space-time with quantum objects will yield a fuzzy structure of space-
time and the concept of a point in a smooth manifold is difficult to maintain.
Whatever the fuzzy structure of space-time may look like on a (very) small scale,
any such description of fuzzy space-time would have to yield a smooth structure
on a sufficiently large scale. How to resolve the discrepancy? One may start from
the outset with a discrete set and expect space-time and the causal structure to
be emergent phenomena. One might use ¢-deformation to introduce a, however
rigid, discrete structure, or one might study locally deformed space-times using
deformation quantization, a presently very much pursued approach. A very rad-
ical approach is proposed by the topos approach to physical theories. It allows
to reestablish a (neo-)realist interpretation of quantum theories and hence goes
conceptually far beyond the usual generalizations of quantum (field) theories.

Other activities in quantum field theory are tied to issues that are more math-
ematical in nature. While path integrals are suitable tools in particle, solid state,
and statistical physics, they are notoriously ill defined. This volume contains a
thorough mathematical discussion on path integrals. This discussion demonstrates
under what circumstances these highly oscillatory integrals can yield rigorous re-
sults. These methods are also used in the AdS/CFT infrared problem and thus
have implications for quantum holography, a major topic for discussions during
the workshop.

A number of contributions to this volume discuss different aspects of per-
turbative quantum field theory. Approaches include causal perturbation theory,
allowing to formulate quantum field theories more rigorously on curved space-time
backgrounds and Hopf algebraic methods, which help to clarify the complicated
process of renormalization.
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The last and by far most extensive contribution to this volume presents a
detailed mathematical discussion of several of the above topics. This article is
motivated by string theory covering categorical issues.

The idea of the third workshop was to provide a forum to discuss different
approaches to quantum field theories. The present volume provides a good cross-
section of the discussions. The refereed articles are written with the intention to
bring together experts working in different fields in mathematics and physics who
are interested in the subject of quantum field theory. The volume provides the
reader with an overview about a variety of recent approaches to quantum field
theory. The articles are purposely written in a less technical style than usual to
encourage an open discussion across the different approaches to the subject of the
workshop.

Since this volume covers rather different perspectives, the editors thought it
might be helpful to start the volume by providing a brief summary of each of the
various articles. Such a summary will necessarily reflect the editors’ understanding
of the subject matter.

Holography, especially in the form of AdS/CFT correspondence, plays a vital
role in recent developments in quantum field theory. The connection between a
bulk and a boundary quantum field theory has fascinating consequences and may
provide us with a pathway to a realistic interacting quantum field theory. A further
important point is that it can be used to derive area laws much alike Bekenstein’s
area law for black holes.

In his discussion of holography Bert Schroer also highlights several critical
aspects of quantum field theory. Furthermore, his contribution to this volume
provides quite a bit of historical details and insights into the original motivation
of the introduction of such concepts as light-cone quantization, the ancestor of
holography.

Schroer’s reflections on some socially driven mechanisms in the development
of physics are surely subjective and controversial. His pointed contributions during
the workshop made it, however, clear that his criticism should not be misunder-
stood as a no-go paradigm against other approaches, as also the variety of chapters
in this book suggest.

A very radical way to avoid concepts like ‘space-time points’, which is used
in general relativity but is in conflict with the uncertainty principle, is give up
the assumption of a continuum. Also Bernhard Riemann, when he introduced his
differential geometric concepts, was careful enough to note that the assumption of
a continuum at very small scales is an untested idealization. Topos theory allows
the usage of ‘generalized points’ in algebraic geometry. Lawvere studied elemen-
tary topoi to show that the foundation of mathematics is not necessarily tied to
set theory. Moreover, Lawvere showed that the logic attached to topoi is strong
enough to provide a foundation of the whole building of mathematics. The corre-
sponding chapter by Andreas Doéring summarizes and explains very clearly how
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topos theory might be useful to describe physical theories. He shows that topos
theory produces an internal logic and is capable to assign to all propositions of
the theory truth values. In that sense the topos approach overcomes foundational
problems of quantum theory, sub-summarized by the Kochen-Specker theorem.
Eventually, topos theory may also open a doorway to unify classical and quantum
physics. This in turn may yield deeper insights into a quantization of gravity.

Feynman path integrals are a widely used method in quantum mechanics and
quantum field theory. These integrals over a path space are relatives of Wiener in-
tegrals and provide a stochastic interpretation as also the “sum over histories”
interpretation. However, path integrals in quantum field theory are known to be
notoriously mathematically ill defined. In their contribution, Sergio Albeverio and
Sonia Mazzucchi present an introduction to a mathematical discussion of Feyn-
man path integrals as oscillatory integrals. Due to the oscillating integrand these
integrals may converge even for functions which are not Lebesgue integrable.

Using a stochastic interpretation, constructive quantum field theory deals
with path integrals of non-Gaussian, type. Hanno Gottschalk and Horst Thaler
apply this stochastic interpretation of path integrals to investigate the AdS/CFT
correspondence that is motivated by string theory. Especially the infra-red prob-
lem and the triviality results of ¢* theory are discussed in their contribution.
A comprehensive discussion of the encountered problems is presented and four
possible ways to escape triviality are discussed in the conclusions of their chapter.

Originally, mirror symmetry emerged from string theory as a duality of cer-
tain 2-dimensional field theories. Mirror symmetry has very remarkable mathe-
matical properties. In his contribution, Karl-Georg Schlesinger very clearly ex-
plains how mirror symmetry can be extended to the noncommutative torus. Such
a generalization of mirror symmetry to a noncommutative setting is motivated, for
example, by string theoretical considerations. The present work leads to decisive
statements and a conjecture about the algebraic structure of cohomological field
theories and deformations of the Fukaya category attached to commutative elliptic
functions. Higher n-categories and fc-multi-categories appear naturally in such a
development.

Using quantum field theoretical methods, Edward Witten made a number
of remarkable mathematical statements. Among them he presented an expression
for the volume of the moduli space of flat SU(2) bundles on a compact Riemann
surface of general genus. From this result follow the cohomology pairings of in-
tersections. Many heuristically obtained results, that is using formal path-integral
methods, where rigorously proved later on by mathematicians. In his contribu-
tion to the volume, Partha Guha presents a route to obtain similar results for flat
SU(3) bundles using the Verlinde formula. The results employ Euler-Zagier sums
and multiple zeta values in an intriguing and surprising way.
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60— deformed space-times are another approach to quantize gravity. Such a
description of space-time, however, suffers from several shortcomings. For exam-
ple, it is not Lorentz invariant. Moreover, such a deformation produces ‘quantum
effects’ on any scale, invalidating the theory on the classical level.

An interesting description of #— deformed space-times is provided by defor-
mation quantization. Such a description allows to introduce locally noncommu-
tative spaces which may fit more with the physical intuition. Stefan Waldmann
expertly reviews in his contribution the deformation quantization description of
0— deformed space-times. He also presents some motivation for the concepts used
in this approach and discusses the range of validity of these concepts.

Renormalization is known to be the salt which makes quantum field theory
digestible, i.e. to produce finite results. The scheme of renormalization was estab-
lished by physicists in the years 1950-80. The basic ideas of renormalization have
been made more mathematically concise by the work of Kreimer, Connes-Kreimer
and others using Hopf algebras. However, this approach was established only on
toy model QFTs. Walter D. van Suijlekom pushes the Hopf algebraic method into
the realm of physically interesting models, like non-Abelian gauge theories. The
corresponding chapter of this volume contains a clear and relatively nontechnical
description how the Hopf algebra method can be applied to Ward identities and
Slavnov-Taylor-identities.

Perturbative quantum field theory is well-known to be quite successful when
applied to the Standard Model. However, there is some belief that perturbation
theory is not fundamental. Recent developments exhibited a Hopf algebraic struc-
ture which may help to understand renormalization of Abelian and non-Abelian
Yang-Mills quantum field theories. Gravity has a rather different gauge theoretical
structure and is not amenable to the usual techniques used in Yang-Mills gauge
theories. Dirk Kreimer explains similarities between perturbatively treated quan-
tum Yang-Mills theories and Einstein’s theory of gravity. These similarities might
eventually allow to quantize gravity using standard perturbative methods.

Quantum field theory, celebrated presently as the fundamental approach to
formulate and describe quantum systems, has weak points when applied to sys-
tems having a degenerate lowest energy sector. Such systems do occur in solid-
state physics, for examples when studying the colors of gemstones, and cannot be
treated by the usually applied standard methods of quantum field theory. Christian
Brouder develops a method to deal with such degenerated quantum field theories.
Firstly the degenerated state is described via its cumulants, then these cumulant
correlations are turned into interaction terms. This extends to the edge the combi-
natorial complexity but reestablishes valuable tools from standard nondegenerate
quantum field theory, such as the Gell-Mann Low formula. The soundness of the
method exhibits itself in a short and clear proof of Hall’s generalized Dyson equa-
tion.
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The article by Ferdinand Brennecke and Michael Diitsch presents a summary
of the present state of the art of renormalization techniques in causal perturbation
theory. The main tools are the master action Ward identity and the quantum
action principle, which finally allow to use local interactions in the renormalization
process. A nice recipe style guide to the method is given in the conclusions.

In string theory certain dualities are known to play a crucial role in connecting
strongly coupled theories with weakly coupled theories. While the strong coupled
case is difficult to treat, the weakly coupled dual theory may admit a perturbative
regime. One such setting is found in matrix string theory in a non-Abelian Yang-
Mills setting. In his contribution to the volume, Matthias Blau sets up a quantum
mechanical toy model to discuss the geometry behind such dualities. He shows
that plane wave metrics play a certain role in the solution of the time dependent
harmonic oscillator. His discussion may serve as a blue print for the much more
complex noncommutative non-Abelian Yang-Mills case.

Loop quantum gravity is one of the approaches to gain insight into a theory
of quantum gravity. Technical problems like the resolution of the Hamiltonian
constraint make it difficult to evaluate loop quantum gravity in realistic situations.
Martin Bojowald reviews in his article an approach that uses effective actions in
canonical gravity to study quantum cosmology. He explains how solutions can be
obtained for an anharmonic oscillator model using integrability. The analogous
treatment of canonical quantum gravity yields a bouncing cosmological solution
which allows to avoid the big bang singularity.

Many proposals have been made to establish a mathematical modeling of
non-smooth structures on the Planck scale. One such model is developed by Felix
Finster starting from a discrete set of points. All additional structures like causal-
ity, Lorentz symmetry and smoothness at large scales have to be established as
emergent phenomena. Finster explains in his article how such structures may occur
(in principle) in a continuum limit of a set described by a specific discrete varia-
tional principle. Several small systems of this type are analyzed and the structure
of the emergent phenomena is discussed.

A recurrent theme in physics is the question: “How can space-time be math-
ematically modeled at very short distances?” Lattices emerging from a “g-defor-
mation” might provide one such candidate. Hartmut Wachter shows in his con-
tribution how a ¢-calculus approach to a non-relativistic particle can be worked
out.

The method of g-deformation was originally motivated as a regularization
scheme. Similarly, the idea of supersymmetry originated from the hope that super-
symmetric theories may have a better ultraviolet behavior. In his contribution,
Alexander Schmidt presents a discussion on how ¢-deformation can be extended
to a super-symmetric setting.



Xix

The book closes with a rather long chapter by Hisham Sati, Urs Schreiber
and Jim Stasheff. String theory replaces point-like particles by extended objects,
strings and in general branes. Such objects can still be described via differential
geometry on a background manifold, however, higher degree fields, like 3-form
fields, emerge naturally. Higher categorical tools prove to be advantageous to
investigate these higher differential geometric structures. Major ingredients are
parallel n-transport, higher curvature forms etc. and therefore the algebra of in-
variant polynomials, which embeds into the Weil algebra, which in turn projects
to the Chevalley-Eilenberg algebra. These algebras are best studied as differen-
tially graded commutative algebras (DGCAs). On the Lie algebra level this struc-
ture is accompanied by Lo -algebras which carry for example a (higher) Cartan-
Ehresmann connection. Natural questions from differential geometry, such as clas-
sifying spaces and obstructions to lifts etc. can now be addressed. The higher
category point of view generalizes, unifies and thereby explains many of the stan-
dard constructions.

The chapter is largely self contained and readable for non-experts despite
being densely written. It develops the relevant structures, gives explicit proofs,
and closes with an outlook how to apply these intriguing ideas to physics.
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Abstract. Revisiting the old problem of existence of interacting models of
QFT with new conceptual ideas and mathematical tools, one arrives at a
novel view about the nature of QFT. The recent success of algebraic methods
in establishing the existence of factorizing models suggests new directions
for a more intrinsic constructive approach beyond Lagrangian quantization.
Holographic projection simplifies certain properties of the bulk theory and
hence is a promising new tool for these new attempts.
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1. Historical background and present motivations for holography

No other theory in the history of physics has been able to cover such a wide
range of phenomena with impressive precision as QFT. However its amazing pre-
dictive power stands in a worrisome contrast to its weak ontological status. In
fact QFT is the only theory of immense epistemic strength which, even after more
than 80 years, remained on shaky mathematical and conceptual grounds. Unlike
any other area of physics, including QM, there are simply no interesting mathe-
matically controllable interacting models, which would show that the underlying
principles remain free of internal contradictions in the presence of interactions. The
faith in e.g. the Standard Model is based primarily on its perturbative descriptive
power; outside the perturbative domain there are more doubts than supporting
arguments.
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The suspicion that this state of affairs may be related to the conceptual and
mathematical weakness of the method of Lagrangian quantization rather then a
shortcoming indicating an inconsistency of the underlying principles in the pres-
ence of interactions can be traced back to its discoverer Pascual Jordan. It certainly
was behind all later attempts of e.g. Arthur Wightman and Rudolf Haag to find
a more autonomous setting away from the quantization parallelism with classical
theories which culminated in Wightman’s axiomatic setting in terms of vacuum
correlation functions and the Haag-Kastler theory of nets of operator algebras.

The distance of such conceptual improvements to the applied world of calcula-
tions has unfortunately persisted. Nowhere is the contrast between computational
triumph and conceptual misery more visible than in renormalized perturbation
theory, which has remained our only means to explore the Standard Model. Most
particle physicists have a working knowledge of perturbation theory and at least
some of them took notice of the fact that, although the renormalized perturbative
series can be shown to diverge and that in certain cases these divergent series are
Borel resumable. Here I will add some more comments without going into details.

The Borel re-sumability property unfortunately does not lead to an exis-
tence proof; the correct mathematical statement in this situation is that if the
existence can be established! by nonperturbative method then the Borel-resumed
series would indeed acquire an asymptotic convergence status with respect to the
solution, and one would for the first time be allowed to celebrate the numerical
success as having a solid ontological basis 2. But the whole issue of model exis-
tence attained the status of an unpleasant fact, something, which is often kept
away from newcomers, so that as a result there is a certain danger to confuse the
existence of a model with the ability to write down a Lagrangian or a functional
integral and apply some computational recipe.

Fortunately important but unfashionable problems in particle physics never
disappear completely. Even if they have been left on the wayside as “un-stringy”,
“unsupersymmetrizable” or too far removed from the “Holy Grail of a TOE”
and therefore not really career-improving, there will be always be individuals who
return to them with new ideas.

Indeed there has been some recent progress about the aforementioned exis-
tence problem from a quite unexpected direction. Within the setting of d=1+1
factorizing models the use of modular operator theory has led to a control over
phase space degrees of freedom which in turn paved the way to an existence proof.
Those models are distinguished by their simple generators for the wedge-localized
algebra [4]; in fact these generators turned out to possess Fourier-transforms with
mass-shell creation/annihilation operators, which are only slightly more compli-
cated than free fields. An important additional idea on the way to an existence

IThe existence for models with a finite wave-function renormalization constant has been estab-
lished in the early 60s and this situation has not changed up to recently. The old results only
include superrenormalizable models whereas the new criterion is not related to short-distance
restrictions but rather requires a certain phase space behavior (modular nuclearity).
2This is actually the present situation for the class of d=1+1 factorizing models [5].
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proof is the issue of the cardinality of degrees of freedom. In the form of the phase
space in QFT as opposed to QM this issue goes back to the 60s [1] and underwent
several refinements [2] (a sketch of the history can be found in [3]).

The remaining problem was to show that the simplicity of the wedge gen-
erators led to a “tame” phase space behavior, which guarantees the nontriviality
as well as the additional expected properties of the double cone localized algebras
obtained as intersections of wedge-localized algebras [5]. Although these models
have no particle creation through on-shell scattering, they exhibit the full infi-
nite vacuum polarization clouds upon sharpening the localization from wedges to
compact spacetime regions as e.g. double cones [6]. Their simplicity is only mani-
fest in the existence of simple wedge generators; for compact localization regions
their complicated infinite vacuum polarization clouds are not simpler than in other
QFT.

Similar simple-minded Ansétze for wedge algebras in higher dimensions can-
not, work since interactions which lead to nontrivial elastic scattering without also
causing particle creation cannot exist; such a No-Go theorem for 4-dimensional
QFT was established already in [7]. Nevertheless it is quite interesting to note
that even if with such a simple-minded Ansatz for wedge generators in higher di-
mensions one does not get to compactly localized local observables, one can in some
cases go to certain subwedge intersections [8, 9] before the increase in localization
leads to trivial algebras.

Whereas in the Lagrangian approach one starts with local fields and their
correlations and moves afterwards to less local objects such as global charges,
incoming fields? etc., the modular localization approach goes the opposite way
i.e. one starts from the wedge region (the best compromise between particles and
fields) which is most close to the particle mass-shell the S-matrix and then works
one’s way down. The pointlike local fields only appear at the very end and play the
role of coordinatizing generators of the double cone algebras for arbitrary small
sizes.

Nonlocal models are automatically “noncommutative” in the sense that the
maximal commutativity of massive theories allowed by the principles of QFT,
namely spacelike commutativity, is weakened by allowing various degrees of viola-
tions of spacelike commutativity. In this context the noncommutativity associated
with the deformation of the product to a star-product using the Weyl-Moyal for-
malism is only a very special (but very popular) case. The motivation for studying
noncommutative QFT for its own sake comes from string theory, and one should
not expect this motivation to be better than for string theory itself.

My motivation for having being interested in noncommutative theory dur-
ing the last decade comes from the observation that noncommutative fields can

3Incoming/outgoing free fields are only local with respect to themselves. The physically relevant
notion of locality is relative locality to the interacting fields. If incoming fields are relatively
local/almost local, the theory has no interactions.
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have simpler properties than commutative ones. More concretely: complicated two-
dimensional local theories may lead to wedge-localized algebras which are gen-
erated by noncommutative fields where the latter only fulfil the much weaker
wedge-locality (see above). Whereas in d=1+1 such constructions [4] may lead
via algebraic intersections to nontrivial, nonperturbative local fields, it is known
that in higher dimensions this simple kind of wedge generating field without vac-
uum polarization is not available. But interestingly enough one can improve the
wedge localization somewhat [10] before the further sharpening of localization via
algebraic intersections ends in trivial algebras.

These recent developments combine the useful part of the history of S-matrix
theory and formfactors with very new conceptual inroads into QFT (modular
localization, phase space properties of LQP). The idea to divide the difficult full
problem into a collection of simpler smaller ones is also at the root of the various
forms of the holography of the two subsequent sections.

The predecessor of lightfront holography was the so-called “lightcone quanti-
zation” which started in the early 70s; it was designed to focus on short-distances
and forget temporarily about the rest. The idea to work with fields which are
associated to the lightfront 2_ = 0 (not the light cone which is 22 = 0) as a
submanifold in Minkowski spacetime looked very promising but unfortunately the
connection with the original problem of analyzing the local theory in the bulk
was never addressed and as the misleading name “lightcone quantization” reveals,
the approach was considered as a different quantization rather then a different
method for looking at the same local QFT in Minkowski spacetime. It is not really
necessary to continue a separate criticism of “lightcone quantization” because its
shortcomings will be become obvious after the presentation of lightfront hologra-
phy (more generally holography onto null-surfaces).

Whereas the more elaborate and potentially more important lightfront holog-
raphy has not led to heated discussions, the controversial potential of the simpler
AdS/CFT holography had been enormous and to the degree that it contains in-
teresting messages which increase our scientific understanding it will be presented
in these notes.

Since all subjects have been treated in the existing literature, our presentation
should be viewed as a guide through the literature with occasionally additional
and (hopefully) helpful remarks.

2. Lightfront holography, holography on null-surfaces and the
origin of the area law

Free fields offer a nice introduction into the bulk-holography relation which, despite
its simplicity, remains conceptually non-trivial.

We seek generating fields Ay for the lightfront algebra A(LF') by following
the formal prescription z_ = 0 of the old “lightfront approach” [11]. Using the
abbreviation 4 = z° £ 2%, py = p® + p® ~ eF?, with 6 the momentum space
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rapidity :

App(ze, 1) = A@)|s o ~ / (- Onetseint (6, p )dbdp, +hc) (1)

1
<8x+ALF(x+,ml)ax;ALF(xg_,xlw ~ Pt S(zL — ')
Ty — ) +ie

|:893+ALF(37+7 JTL), axﬁrALF(x{iﬂ xl):| = 5l(x+ - JJ:'_)(S(JEL - J’JL)

The justification for this formal manipulation®* follows from the fact that the equiv-
alence class of a test function [f], which has the same mass shell restriction f Hy,
to the mass hyperboloid of mass m, is mapped to a unique test function frp
which “lives” on the lightfront [12, 13]. It only takes the margin of a newspaper
to verify the identity A(f) = A([f]) = Arr(frr). This identity does not mean
that the Apr generator can be used to describe the local substructure in the bulk.
The inversion involves an equivalence class and does not distinguish an individual
test-function in the bulk; in fact a finitely localized test function f(x4,2,) on LF
corresponds to a de-localized subspace in the bulk. Using an intuitive metaphoric
language one may say that a strict localization on LF corresponds to a fuzzy lo-
calization in the bulk and vice versa. Hence the pointwise use of the LF generators
enforces the LF localization and the only wedge-localized operators which can be
directly obtained as smeared Appr fields have a noncompact extension within a
wedge whose causal horizon is on LF. Nevertheless there is equality between the
two operator algebras associated to the bulk W and its (upper) horizon OW

A(W) = A(H(W)) C A(LF) = B(H). )

These operator algebras are the von Neumann closures of the Weyl algebras gen-
erated by the smeared fields A and Ay and it is only in the sense of this closure
(or by forming the double commutant) that the equality holds. Quantum field
theorists are used to deal with single operators. Therefore the knowledge about
the equality of algebras without being able to say which operators are localized
in subregion is somewhat unaccustomed. As will be explained later on, the finer
localization properties in the algebraic setting can be recovered by taking suitable
intersections of wedge algebras i.e. the structure of the family of all wedge algebras
determines whether the local algebras are nontrivial and in case they are permits to
compute the local net which contains all informations about the particular model.

This idea of taking the holographic projection of individual bulk fields can
be generalized to composites of free fields (as e.g. the stress-energy tensor). In
order to avoid lengthy discussions about how to interpret logarithmic chiral two-
point functions in terms of restricted test functions® we restrict our attention to

4We took the derivatives for technical reasons (in order to write the formulas without test
functions).

5This is a well-understood problem of chiral fields of zero scale dimension which is not directly
related to holography.
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where the dimensions of the composites D(kagl)) together with the degrees of the
derivatives of the delta functions obey the standard rule of scale dimensional con-
servation. In the commutator the transverse and the longitudinal part both appear
with delta functions and their derivatives yet there is a very important structural
difference which shows up in the correlation functions. To understand this point
we look at the second line in (1). The longitudinal (=lightlike) delta-functions
carries the chiral vacuum polarization the transverse part consists only of prod-
ucts of delta functions as if it would come from a product of correlation functions
of nonrelativistic Schrédinger creation/annihilation operators ¢*(z1), ¥(z1). In
other words the LF-fields which feature in this extended chiral theory are chimera
between QFT and QM ; they have one leg in QFT and n-2 legs in QM with the
“chimeric vacuum” being partially a (transverse) factorizing quantum mechani-
cal state of “nothingness” (the Buddhist nirvana) and partially the longitudinally
particle-antiparticle polarized LQP vacuum state of “virtually everything” (the
Abrahamic heaven).

Upon lightlike localization of LF to (in the present case) OW (or to a longi-
tudinal interval) the vacuum on A(OW') becomes a radiating KMS thermal state
with nonvanishing localization-entropy [13, 14]. In case of interacting fields there
is no change with respect to the absence of transverse vacuum polarization, but
unlike the free case the global algebra A(LF’) or the semi-global algebra A(OW)
is generally bigger than the algebra one obtains from the globalization using com-
pactly localized subalgebras, i.e. UocrpArr(O) C A(LF), O C LF. We will
return to this point at a more opportune moment.

The aforementioned “chimeric” behavior of the vacuum is related in a pro-
found way to the conceptual distinctions between QM and QFT [16]. Whereas
transversely the vacuum is tensor-factorizing with respect to the Born localization
and therefore leads to the standard quantum mechanical concepts of entanglement
and the related information theoretical (cold) entropy, the entanglement from re-
stricting the vacuum to an algebra associated with an interval in lightray direction
is a thermal KMS state with a genuine thermodynamic entropy. Instead of the
standard quantum mechanical dichotomy between pure and entangled restricted
states there are simply no pure states at all. All states on sharply localized operator
algebras are highly mixed and the restriction of global particle states (including
the vacuum) to the W-horizon A(0W) results in KMS thermal states. This is the
result of the different nature of localized algebras in QFT from localized algebras
in QM [16].



Constructive Use of Holographic Projections 7

Therefore if one wants to use the terminology “entanglement” in QFT one
should be aware that one is dealing with a totally intrinsic very strong form of
entanglement: all physically distinguished global pure states (in particular finite
energy states in particular the vacuum) upon restriction to a localized algebra
become intrinsically entangled and unlike in QM there is no local operation which
disentangles.

Whereas the cold (information theoretic) entanglement is often linked to the
uncertainty relation of QM, the raison d’etre behind the “hot” entanglement is
the phenomenon of vacuum polarization resulting from localization in quantum
theories with a maximal velocity. The transverse tensor factorization restricts the
Reeh-Schlieder theorem (also known as the “state-operator relation”). For a lon-
gitudinal strip (st) on LF of a finite transverse extension the LF algebra tensor-
factorizes together with the Hilbert space H = Hg; ® Hg; 1 and the Hg; projected
form of the Reeh-Schlieder theorem for a subalgebra localized within the strip
continues to be valid.

This concept of transverse extended chiral fields can also be axiomatically
formulated for interacting fields independently of whether those objects result
from a bulk theory via holographic projection or whether one wants to study QFT
on (non-hyperbolic) null-surfaces. These “lightfront fields” share some important
properties with chiral fields. In both cases subalgebras localized on subregions
lead to a geometric modular theory, whereas in the bulk this property is restricted
to wedge algebras. Furthermore in both cases the symmetry groups are infinite
dimensional; in chiral theories the largest possible group is (after compactification)
Diff(R), whereas the transverse extended version admits besides these pure lighlike
symmetries also x| -z mixing (x-dependent) symmetry transformations which
leave the commutation structure invariant.

There is one note of caution, unlike those conformal QFTs which arise as
chiral projections from 2-dimensional conformal QFT, the extended chiral mod-
els of QFT on the lightfront which result from holography do not come with a
stress-energy tensor and hence the diffeomorphism invariance beyond the Mébius
invariance (which one gets from modular invariance, no energy momentum tensor
needed) is not automatic. This leads to the interesting question if there are con-
cepts which permit to incorporate also the diffeomorphisms beyond the Mé&bius
transformations into a modular setting, a problem which will not be pursuit here.

We have formulated the algebraic structure of holographic projected fields
for bosonic fields, but it should be obvious to the reader that a generalization to
Fermi fields is straightforward. Lightfront holography is consistent with the fact
that except for d=1+1 there are no operators which “live” on a lightray since
the presence of the quantum mechanical transverse delta function prevents such a
possibility i.e. only after transverse averaging with test functions does one get to
(unbounded) operators.

It is an interesting question whether a direct “holographic projection” of in-
teracting pointlike bulk fields into lightfront fields analog to (1) can be formulated,
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thus avoiding the algebraic steps starting with wedge algebra. The important for-
mula which led to the lightfront generators is the mass shell representation of the
free field; if we would have performed the x_ = 0 limit in the two point function
the result would diverge. This suggests that we should start from the so-called
Glaser-Lehmann-Zimmermann (GLZ) representation [17] which is an on-shell rep-
resentation in terms of an infinite series of integrals involving the incoming particle
creation/annihilation operators

A(z) = Z%/dml.../d:ﬂn a(z; 21, ) ¢ A (@1)o A2) (4)

Az) = Z % /H dpl.../H dpy, et (X p*)&(pl, wDn) ¢ fl(pl)....fl(pn) :
A()Lr = A(@)z_=0

in which the coefficient functions a(x; x1, ...z,,) are retarded functions. The second
line shows that only the mass-shell restriction of these functions matter; the mo-
mentum space integration goes over the entire mass-shell and the two components
of the mass hyperboloid H,, are associated with the annihilation/creation part of
the Fourier transform of the incoming field. These mass-shell restrictions of the
retarded coefficient functions are related to multi-particle formfactors of the field
A. Clearly we can take z_ = 0 in this on-shell representation without apparently
creating any problems in addition to the possibly bad convergence properties of
such series (with or without the lightfront restriction) which they had from the
start. The use of the on-shell representation (4) is essential, doing this directly
in the Wightman functions would lead to meaningless divergences, as we already
noticed in the free field case.

Such GLZ formulas amount to a representation of a local field in terms of
other local fields in which the relation between the two sets of fields is very nonlocal.
Hence this procedure is less intuitive than the algebraic method based on relative
commutants and intersections of algebras. The use of a GLZ series also goes in
some sense against the spirit of holography which is to simplify certain aspects® in
order to facilitate the solution of certain properties of the theory (i.e. to preserve
the original aim of the ill-defined lightcone quantization), whereas to arrive at GLZ
representations one must already have solved the on-shell aspects of the model (i.e.
know all its formfactors) before applying holography.

Nevertheless, in those cases where one has explicit knowledge of formfactors,
as in the case of 2-dim. factorizing models mentioned in the previous section,
this knowledge can be used to calculate the scaling dimensions of their associated
holographic fields App. These fields lead to more general plektonic (braid group)
commutation relations which replace the bosonic relations of transverse extended
chiral observables (3). We refer to [15] in which the holographic scaling dimensions
for several fields in factorizing models will be calculated, including the Ising model
for which an exact determination of the scaling dimension of the order field is

SThose aspects for which holography does not simplify include particle and scattering aspects.
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possible. Although the holographic dimensions agree with those from the short
distance analysis (which have been previously calculated in [18]), the conceptual
status of holography is quite different from that of critical universality classes. The
former is an exact relation between a 2-dimensional factorizing model (change of
the spacetime ordering of a given bulk theory) whereas the latter is a passing
to a different QFT in the same universality class. The mentioned exact result in
the case of the Ising model strengthens the hope that GLZ representations and
the closely related expansions of local fields in terms of wedge algebra generating
on-shell operators [15] have a better convergence status than perturbative series.

By far the conceptually and mathematically cleanest way to pass from the
bulk to the lightfront is in terms of nets of operator algebras via modular theory.
This method requires to start from algebras in “standard position” i.e. a pair (A, Q)
such that the operator algebra A acts cyclically on the state vector Q i.e. AQ = H
and has no annihilators i.e. AQ =0 ~ A = 0. According to the Reeh-Schlieder
theorem any localized algebra A(O) forms a standard pair (A(O), Q) with respect
to the vacuum €2 and the best starting point for the lightfront holography is a
wedge algebra since the (upper) causal horizon OW of the wedge W is already half
the lightfront. The crux of the matter is the construction of the local substructure
on OW. The local resolution in longitudinal (lightray) direction is done as follows.

Let W be the xg — 3 wedge in Minkowski spacetime which is left invariant
by the xg — x3 Lorentz-boosts. Consider a family of wedges W, which are obtained
by sliding the W along the x4 = ¢ + x3 lightray by a lightlike translation a > 0
into itself. The set of spacetime points on LF' consisting of those points on W,
which are spacelike to the interior of W} for b > a is denoted by OW,, p; it consists
of points x4 € (a,b) with an unlimited transverse part z; € R?. These regions
are two-sided transverse slabs on LF'.

To get to intersections of finite size one may “tilt” these slabs by the ac-
tion of certain subgroups in G which change the transverse directions. Using the
2-parametric subgroup G, of G which is the restriction to LF of the two “transla-
tions” in the Wigner little group (i.e. the subgroup fixing the lightray in LF), it
is easy to see that this is achieved by forming intersections with Go- transformed
slabs OW, 5

aI/Va,b N g(aWa,b)v g e g2~ (5)

By continuing with forming intersections and unions, one can get to finite convex
regions O of a quite general shape.

The local net on the lightfront is the collection of all local algebras A(O),
O C LF and as usual their weak closure is the global algebra Ay r. For interacting
systems the global lightfront algebra is generally expected to be smaller than the
bulk, in particular one expects

ALp(OW) C A@OW) = A(W) (6)
Aprp(OW) = Uocow ArLr(0), AW) =Uccw A(C)
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where the semi-global algebras are formed with the localization concept of their
relative nets as indicated in the second line. The smaller left hand side accounts for
the fact that the formation of relative commutants as A(OW, ;) may not maintain
the standardness of the algebra because U, 5 A(0W,5)Q & H. In that case the
globalization of the algebraic holography only captures a global (i.e. not localized)
subalgebra of the global bulk and one could ask whether the pointlike procedure
using the GLZ representation leads to generating fields which generate a bigger
algebra gives more. The answer is positive since also (bosonic) fields with anoma-
lous short distance dimensions will pass the projective holography and become
anyonic fields on the lightray” On the other hand algebraic holography filters out
bosonic fields which define the chiral obervables. These chiral observables have a
DHR superselection theory. This leads to the obvious conjecture

Alg{proj hol} C Alg{DHR}. (7)

Here the left hand side denotes the algebra generated by applying projective holog-
raphy to the pointlike bulk fields and the right hand side is the smallest algebra
which contains all DHR superselection sectors of the LF observable (extended
chiral) algebra which resulted from algebraic holography.

It is worthwhile to emphasize that the connection between the operator al-
gebraic and the pointlike prescription is much easier on LF than in the bulk. In
the presence of conformal symmetries one has the results of Joerss [19]; looking at
his theorems in the chiral setting, an adaptation to the transverse extended chiral
theories on LF, should be straightforward. For consistency reasons such fields must
fulfil (3) I hope to come back to this issue in a different context.

One motivation for being interested in lightfront holography is that it is
expected to be helpful in dividing the complicated problem of classifying and con-
structing QFT's according to intrinsic principles into several less complicated steps.
In the case of d=1+1 factorizing models one does not need this holographic pro-
jection onto a chiral theory on the lightray for the mere existence proof. But e.g.
for the determination of the spectrum of the short distance scale dimension, it is
only holography and not the critical limit which permits to maintain the original
Hilbert space setting. It is precisely this property which makes it potentially inter-
esting for structural investigations and actual constructions of higher dimensional
QFT.

Now we are well-prepared to address the main point of this section: the area
law for localization entropy which follows from the absence of transverse vacuum
polarization. Since this point does not depend on most of the above technicalities,
it may be helpful to the reader to present the conceptual mathematical origin
of this unique® tensor-factorization property. The relevant theorem goes back to

"The standard Boson-Fermion statistics refers to spacelike distances and the lightlike statistics
resulting from projective holography is determined by the anomalous short distance dimensions
of the bulk field and not by their statistics.

8Holography on null-surfaces is the only context in which a quantum mechanical structure enters
a field theoretic setting.
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Borchers [20] and can be stated as follows. Let A; C B(H), ¢ = 1,2 be two operator
algebras with [Ay,U(a)A2U(a)*] =0 Va and U(a) a translation with nonnegative
generator which fulfils the cluster factorization property (i.e. asymptotic factoriza-
tion in correlation functions for infinitely large cluster separations) with respect
to a unique U (a)-invariant state vector Q°. It then follows that the two algebras
tensor factorize in the sense A;VAs = A;®A; where the left hand side denotes
the joint operator algebra.

In the case at hand the tensor factorization follows as soon as the open re-
gions O; C LF in A(O,) i = 1,2 have no transverse overlap. The lightlike cluster
factorization is weaker (only a power law) than its better known spacelike coun-
terpart, but as a result of the analytic properties following from the non-negative
generator of lightlike translations it enforces the asymptotic factorization to be
valid at all distances. The resulting transverse factorization implies the transverse
additivity of extensive quantities as energy and entropy and their behavior in ligh-
tray direction can then be calculated in terms of the associated auxiliary chiral
theory. A well-known property for spacelike separations.

This result [13, 14] of the transverse factorization may be summarized as
follows:

1. The system of LI subalgebras {A(O)}y - tensor-factorizes transversely
with the vacuum being free of transverse entanglement

A(0,U02) = A(0,) @ A(O,), (0,), N(O,), =0 (8)
(Q]A(0,) ® A(O,)| ) = (2[A(O,) [2) (Q A(O,)[ Q) .

2. Extensive properties as entropy and energy on LF are proportional to the
extension of the transverse area.

3. The area density of localization-entropy in the vacuum state for a system
with sharp localization on LF diverges logarithmically

. c
Sloc = ehg(l) 5 lnel + ... 9)

where ¢ is the size of the interval of “fuzziness” of the boundary in the lightray
direction which one has to allow in order for the vacuum polarization cloud to
attenuate and the proportionality constant c is (at least in typical examples)
the central extension parameter of the Witt-Virasoro algebra.

The following comments about these results are helpful in order to appreciate
some of the physical consequences as well as extensions to more general null-
surfaces.

As the volume divergence of the energy/entropy in a heat bath thermal sys-
tem results from the thermodynamic limit of a sequence of boxed systems in a
Gibbs states, the logarithmic divergence in the vacuum polarization attenuation

9Locality in both directions shows that the lightlike translates (Q|AU(a)B|Q) are boundary
values of entire functions and the cluster property together with Liouville’s theorem gives the
factorization.
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distance ¢ plays an analogous role in the approximation of the semiinfinitely ex-
tended OW by sequences of algebras whose localization regions approach W from
the inside. In both cases the limiting algebras are monads whereas the approxi-
mands are type I analogs of the “box quantization” algebras. In fact in the present
conformal context the relation between the standard heat bath thermodynamic
limit and the limit of vanishing attenuation length for the localization-caused vac-
uum polarization cloud really goes beyond an analogy and becomes an isomor-
phism.

This surprising result is based on two facts [13, 14]. On the one hand con-
formal theories come with a natural covariant “box” approximation of the ther-
modynamic limit since the continuous spectrum translational Hamiltonian can
be obtained as a scaled limit of a sequence of discrete spectrum conformal rota-
tional Hamiltonians associated to global type I systems. On the other hand it has
been known for some time that a heat bath chiral KMS state can always be re-
interpreted as the Unruh restriction applied to a vacuum system in an larger world
(a kind of inverse Unruh effect). Both facts together lead to the above formula for
the area density of entropy. In fact using the conformal invariance one can write
the area density formula in the more suggestive manner by identifying ¢ with the
conformal invariant cross-ratio of 4 points

2 (az —a1) (b1 — ba)
(b1 —a1) (b2 — az)

where a1 < ag < bs < by so that (aj,b;) corresponds to the larger localization
interval and (ag,bs) is the approximand which goes with the interpolating type
I algebras. At this point one makes contact with some interesting work on what
condensed matter physicist call the “entanglement entropy” '°.

One expects that the arguments for the absence of transverse vacuum fluctu-
ations carry over to other null-surfaces as e.g. the upper horizon 0D of the double
cone D. In the interacting case it is not possible to obtain 9D generators through
test function restrictions. For zero mass free fields there is, however, the possibility
to conformally transform the wedge into the double cone and in this way obtain
the holographic generators as the conformally transformed generators of A(OW).
In order to show that the resulting A(0D) continue to play their role even when
the bulk generators cease to be conformal one would have to prove that certain
double-cone affiliated inclusions are modular inclusions. We hope to return to this
interesting problem.

101 [21] the formula for the logarithmically increasing entropy is associated with a field theoretic
cutoff and the role of the vacuum polarization cloud in conjunction with the KMS thermal
properties (which is not compatible with a quantum mechanical entanglement interpretation [16])
are not noticed. Since there is no implementation of the split property, the idea of an attenuation
of the vacuum polarization cloud has no conceptual place in a path integral formulation. QM and
QFT are not distinguished in the functional integral setting and even on a metaphorical level
there seems to be no possibility to implement the split property.
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We have presented the pointlike approach and the algebraic approach next
to each other, but apart from the free field we have not really connected them.
Although one must leave a detailed discussion of their relation to the future, there
are some obvious observations one can make. Since for chiral fields the notion of
short-distance dimension and rotational spin (the action of the Ly generator) are
closely connected and since the algebraic process of taking relative commutators
is bosonic, the lightfront algebras are necessarily bosonic. A field, as the chiral
order variable of the Ising model with dimension %, does not appear in the al-
gebraic holography, but, as mentioned above, it is the pointlike projection of the
massive order variable in the factorizing Ising model in the bulk. On the other
hand an integer dimensional field as the stress-energy tensor, is common to both
formulations. This suggests that the anomalous dimensional fields which are miss-
ing in the algebraic construction may be recovered via representation theory of
the transverse extended chiral observable algebra which arises as the image of the
algebraic holography.

Since the original purpose of holography similar to that of its ill-fated light-
cone quantization predecessor, is to achieve a simplified but still rigorous descrip-
tion (for the lightcone quantization the main motivation was a better description
of certain “short distance aspects” of QFT), the question arises if one can use
holography as a tool in a more ambitious program of classification and construc-
tion of QFTs. In this case one must be able to make sense of inverse holography
i.e. confront the question whether, knowing the local net on the lightfront one can
only obtain at least part of the local substructure of the bulk. It is immediately
clear that one can construct that part in the bulk, which arises from intersecting
the LF-affiliated wedge algebras. The full net is only reconstructible if the action of
those remaining Poincaré transformations outside the 7-parametric LF covariance
group is known.

The presence of the M6bius group acting on the lightlike direction on null-
surfaces in curved spacetime resulting from bifurcate Killing horizons [22] has been
established in [23], thus paving the way for the transfer of the thermal results to
QFT in CFT. This is an illustration of symmetry enhancement, which is one of
holographies “magics”.

The above interaction-free case with its chiral Abelian current algebra struc-
ture (1) admits a much larger unitarily implemented symmetry group, namely the
diffeomorphism group of the circle. However the unitary implementers (beyond the
Mobius group) do not leave the vacuum invariant (and hence are not Wigner sym-
metries). As a result of the commutation relations (3) these Diff(S!) symmetries
are expected to appear in the holographic projection of interacting theories. These
unitary symmetries act only geometrically on the holographic objects; their action
on the bulk (on which they are also well-defined) is fuzzy i.e. not describable in
geometric terms. This looks like an interesting extension of the new setting of local
covariance [24].

The area proportionality for localization entropy is a structural property of
LQP which creates an interesting and hopefully fruitful contrast with Bekenstein’s
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area law [25] for black hole horizons. Bekenstein’s thermal reading of the area
behavior of a certain quantity in classical Einstein-Hilbert like field theories has
been interpreted as being on the interface of QFT with QG. Now we see that the
main support, namely the claim that QFT alone cannot explain an area behavior,
is not correct. There remains the question whether Bekenstein’s numerical value,
which people tried to understand in terms of quantum mechanical level occupation,
is a credible candidate for quantum entropy. QFT gives a family of area laws with
different vacuum polarization attenuation parameters € and it is easy to fix this
parameter in terms of the Planck length so that the two values coalesce. The
problem which I have with such an argument is that I have never seen a situation
where a classical value remained intact after passing to the quantum theory. This
does only happen for certain quasiclassical values in case the system is integrable.

3. From holography to correspondence: the AdS/CFT
correspondence and a controversy

The holography onto null-surfaces addresses the very subtle relation between bulk
quantum matter and the projection onto its causal/event horizon as explained in
the previous section. A simpler case of holography arises if the bulk and a lower
dimensional brane!! (timelike) boundary share the same maximally possible space-
time (vacuum) symmetry. The only case where this situation arises between two
global Lorentz manifolds of different spacetime dimension is the famous AdS/CFT
correspondence. In that case the causality leakage off a brane does not occur. In the
following we will use the same terminology for the universal coverings of AdS/CFT
as for the spacetimes themselves.

Already in the 60s the observation that the 15-parametric conformal sym-
metry which is shared between the conformal 3 4+ 1-dimensional compactified
Minkowski spacetime and the 5-dimensional Anti-de-Sitter space (the negative
constant curvature brother of the cosmologically important de Sitter spacetime)
brought a possible field theoretic relation between these theories into the fore-
ground; in fact Fronsdal [26] suspected that QFTs on both spacetimes share more
than the spacetime symmetry groups. But the modular localization theory which
could convert the shared group symmetry into a relation between two different
spacetime ordering devices (in the sense of Leibniz) for the same abstract quantum
matter substrate was not yet in place at that time. Over several decades the main
use of the AdS solution has been (similar to Gédel’s cosmological model) to show
that the Einstein-Hilbert field equations, besides the many desired solution (as
the Robertson-Walker cosmological models and the closely related de Sitter space-
time), also admit unphysical solutions (leading to timelike selfclosing worldlines,
time machines, wormholes etc.) and therefore should be further restricted.

H1n general the brane has a lower dimensional symmetry than its associated bulk and usually
denotes a d — 1 dimensional subspace which contains a time-like direction. Different from null-
surfaces branes have a causal leakage.
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The AdS spacetime lost this role of only providing counterexamples and be-
gan to play an important role in particle physics when the string theorist placed it
into the center of a conjecture about a correspondence between a particular maxi-
mally supersymmetric massless conformally covariant Yang-Mills model in d=1+3
and a supersymmetric gravitational model. The first paper was by J. Maldacena
[27] who started from a particular compactification of 10-dimensional superstring
theory, with 5 uncompactified coordinates forming the AdS spacetime. Since the
mathematics as well as the conceptual structure of string theory is poorly under-
stood, the string side was identified with one of the supersymmetric gravity models
which in spite of its being non-renormalizable admitted a more manageable La-
grangian formulation and was expected to have a similar particle content. On the
side of CFT he placed a maximally supersymmetric gauge theory of which calcu-
lations which verify the vanishing of the low order beta function already existed!?
(certainly a necessary prerequisite for conformal invariance). The arguments in-
volved perturbation theory and additional less controllable approximations. The
more than 4.700 follow up papers on this subject did essentially not change the
status of the conjecture. But at least some aspects of the general AdS/CFT cor-
respondence became clearer after Witten [28] exemplified the ideas in the field
theoretic context of a ®* coupling on AdS using a Euclidean functional integral
setting.

The structural properties of the AdS/CFT correspondence came out clearly
in Rehren’s [30] algebraic holography. The setting of local quantum physics (LQP)
is particularly suited for questions in which one theory is assumed as given and
one wants to construct its holographic projection or its corresponding model on
another spacetime. LQP can solve such problems of isomorphisms between models
without being forced to actually construct a model on either side (which functional
integration proposes to do but only in a metaphoric way). At first sight Rehren’s
setting rewritten in terms of functional integrals (with all the metaphoric caveats,
but done in the best tradition of the functional trade) looked quite different from
Witten’s functional representation. But thanks to a functional identity (explained
in the Diitsch-Rehren paper), which shows that fixing functional sources on a
boundary and forcing the field values to take on a boundary value via delta function
in the functional field space leads to the same result. In this way the apparent
disparity disappeared [31] and there is only one AdS/CFT correspondence within
QFT.

There are limits to the rigor and validity of functional integral tools in QFT.
Even in QM where they are rigorous an attempt to teach a course on QM based
on functional integrals would end without having been able to cover the standard
material. As an interesting mental exercise just image a scenario with Feynman
before Heisenberg. Since path integral representations are much closer to the old

12 An historically interesting case in which the beta function vanishes in every order is the massive
Thirring model. In that case the zero mass limit is indeed conformally invariant, but there is
no interacting conformal theory for which a perturbation can be formulated directly, it would
generate unmanageable infrared divergencies.
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quasiclassical Bohr Sommerfeld formulation the transition would have been much
smoother, but it would have taken a longer time to get to the operational core
of quantum theory; on the other hand quasiclassical formulas and perturbative
corrections thereof would emerge with elegance and efficiency.

Using the measure theoretical functional setting it is well-known that su-
perrenormalizable polynomial couplings can be controlled this way [35]. Realis-
tic models with infinite wave function renormalization constants (all realistic La-
grangian models in more than two spacetime dimensions have a trans-canonical
short distance behavior) do not fall into this amenable category. But even in low
dimensions, where there exist models with finite wave function renormalization
constants and hence the short distance prerequisites are met, the functional set-
ting of the AdS/CFT correspondence has an infrared problem!3!* of a nasty unre-
solved kind [37]. As the result of lack of an analog to the operator formulation in
QM the suggestive power, their close relation to classical geometric concepts and
their formal elegance functional integrals have maintained their dominant role in
particle physics although renormalized perturbation theory is better taken care of
in the setting of “causal perturbation”.'® An operator approach which is not only
capable to establish the mathematical existence of models but also permits their
explicit construction exists presently only in d = 1 + 1; it is the previously men-
tioned bootstrap-formfactor or wedge-localization approach for factorizing models.
Lagrangian factorizing models only constitute a small fraction.

For structural problems as holography, where one starts from a given the-
ory and wants to construct its intrinsically defined holographic image, the use
of metaphorical instruments as Euclidean functional integral representations is
suggestive but not really convincing in any mathematical sense. As in the case of
lightfront holography there are two mathematically controllable ways to AdS/CFT
holography; either using (Wightman) fields (projective holography) or using oper-
ator algebras (algebraic holography). The result of all these different methods can
be consistently related [31, 32].

The main gain in lightfront holography is a significant simplification of certain
properties as compared to the bulk. Even if some of the original problems of the
bulk come back in the process of holographic inversion they reappear in the more
amenable form of several smaller problems rather than one big one.

The motivation for field theorists being interested in the AdS/CFT correspon-
dence is similar, apart from the fact that the simplification obtainable through an
algebraic isomorphism is more limited (less radical) than that of a projection.

BInfrared problems of the kind as they appear in interacting conformal theories are strictly
speaking not susceptible to perturbation theoretical treatment and they also seem to pose serious
(maybe insoluble) problems in functional integral representations. In those cases where on knows
the exact form of the massless limit (Thirring model) this knowledge can be used to disentangle
the perturbative infrared divergences.

MEds. annotation: see the chapter by Gottschalk-Thaler in this volume.

15Eds. annotation: see the chapter by Diitsch-Brennecke in this volume.
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Nevertheless it is not unreasonable to explore the possibility whether some hid-
den property as for example a widespread conjecture partial integrability'® could
become more visible after a spacetime “re-packaging” of the quantum matter sub-
strate from CFT to AdS.

Despite many interesting analogies between chiral theories and higher di-
mensional QFT [36] little is known about higher-dimensional conformal QFTs.
There are Lagrangian candidates as for example certain supersymmetric Yang-
Mills theories which fulfil (at least in lowest order) some perturbative prerequisite
of conformality which consists in a vanishing beta-function. As mentioned before
perturbation theory for conformal QFT, as a result of severe infrared problems,
cannot be formulated directly. The prime example for such a situation is the mas-
sive Thirring model for which there exists an elegant structural argument for
B(g) = 0 and the knowledge about the non-perturbative massless version can then
be used to find the correct perturbative infrared treatment.

As far as I could see (with apologies in case of having overlooked some im-
portant work) none of these two steps has been carried out for SUSY-YM, so even
the conformal side of the Maldacena conjecture has remained unsafe territory.

There is one advantage which null-surface holography has over AdS/CFT
type brane holography. The cardinality of degrees of freedom adjusts itself to
what is natural for null-surfaces (as a manifold in its own right); for the lightfront
holography this is the operator algebra generated from extended chiral fields (3).
On the other hand this “thinning out” in holographic projections is of course the
reason why inverse holography becomes more complicated and cannot be done
with the QFT on one null surface only.

In the holography of the AdS/CFT correspondence the bulk degrees of free-
dom pass to a conformal brane; in contradistinction to the holography on null-
surfaces there is no reduction of degrees of freedom resulting from projection.
Hence the AdS/CFT isomorphism starting from a “normal” (causally complete
as formally arising from Lagrangians) 5-dimensional AdS leads to a conformal
field theory with too many degrees of freedom. Since a “thinning out” by hand
does not seem to be possible, the “physically health” of such a conformal QFT is
somewhat dodgy, to put it mildly.

In case one starts with a free Klein-Gordon field on AdS one finds that the
generating conformal fields of the CFT are special generalized free fields i.e. a kind
of continuous superpositions of free fields. They were introduced in the late 50s by
W. Greenberg and their useful purpose was (similar to AdS in classical gravity)
to test the physical soundness of axioms of QFT in the sense that if a system of
axioms allowed such solutions, it needed to be further restricted [33] (in that case
the so-called causal completion or time-slice property excluded generalized free
fields). It seems that meanwhile the word “physical” has changes its meaning, it
is used for anything which originated from a physicist.

16Global integrability is only possible in d = 1 + 1, but T am not aware of any theorem which
rules out the possibility of integrable substructures.
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In the opposite direction the degrees of freedom of a “normal” CFT become
“diluted” on AdS in the inverse correspondence. There are not sufficient degrees of
freedom for arriving at nontrivial compactly localized operators, the cardinality of
degrees of freedom is only sufficient to furnish noncompact regions as AdS wedges
with nontrivial operators, the compactly localized double cone algebras remain
trivial (multiples of the identity). In the setting based on fields this means that
the restriction on testfunction spaces is so severe that pointlike fields Aaqs(z) at
interior points = € int(AdS) do not exist in the standard sense as operator-valued
distributions on Schwartz spaces. They exist on much smaller test function spaces,
which contain no functions with compact localizations.

Both sides of the correspondence have been treated in a mathematically rigor-
ous fashion for free AdS (Klein-Gordon equation) theories and free (wave equation)
CFT [34, 32] where the mismatch between degrees of freedom can be explicated
and the structural arguments based on the principles of general QFT show that
this mismatch between the transferred and the natural cardinality of the degree
of freedom is really there. In terms of the better known Lagrangian formalism
the statement would be that if one starts from a Lagrange theory at one side the
other side cannot be Lagrangian. Of course both sides remain QFT in the more
general sense of fulfilling the required symmetries, have positive energy and being
consistent with spacelike commutativity. In the mentioned free field illustration an
AdS Klein-Gordon field is evidently Lagrangian whereas the corresponding confor-
mal generalized free field has no Lagrangian and cannot even be characterized in
terms of a local hyperbolic field equation. According to the best educated guess,
4-dimensional maximally supersymmetric Yang-Mills theories (if they exist and
are conformal) would be natural conformal QFTs “as we know it” and therefore
cannot come from a natural QFT on AdS. Needless to say again that there are
severe technical problems to set up a perturbation theory for conformally invariant
interactions, the known perturbative systematics breaks down in the presence of
infrared problems!”.

I belong to a generation for which not everything which is mathematically
possible must have a physical realization; in particular I do not adhere to the
new credo that every mathematically consistent idea is realized in some parallel
world (anthropic principle): no parallel universe for the physical realization of every
mathematical belch.

Generalized free fields'® and their interacting counterparts, which arise from
natural AdS free- or interacting- fields, remain in my view unphysical, but are

17 A well-known problem is the massive Thirring model which leads to 8 = 0 in all orders. In this
case one already knew the conformal limit in closed form and was able to check the correctness
of the relation by consistency considerations.

181t is interesting to note that the Nambu-Goto Lagrangian (which describes a classical relativis-
tic string) yields upon quantization a pointlike localized generalized free field with the well-known
infinite tower mass spectrum and the appearance of a Hagedorn limit temperature. As such it is
pointlike localized and there is no intrinsic quantum concept which permits to associate it with
any stringlike localization.
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of considerable mathematical interest. They do not fit into the standard causal
localization setting and they do not allow thermal KMS states without a limiting
Hagedorn temperature (both facts are related). Nature did not indicate that it
likes to go beyond the usual localizability and thermal behavior. If string theory
demands such things it is not my concern, let Max Tegmark find another universe
where nature complies with string theory.

Holography is a technical tool and not a physical principle. It simplifies cer-
tain aspects of a QFT at the expense of others (i.e. it cannot achieve miracles).
The use of such ideas in intermediate steps may have some technical merits, but
I do not see any scientific reason to change my viewpoint about physical admis-
sibility. The question of whether by changing the spacetime encoding one could
simplify certain properties (for example detect integrable substructures) of compli-
cated theories is of course very interesting, but in order to pursue such a line it is
not necessary to physically identify the changed theory. Such attempts, where only
one side needs to be physical and the role of holography would consist in expos-
ing certain structural features which remained hidden in the original formulation,
sound highly interesting to me.

There is however one deeply worrisome aspect of this whole development.
Never before has there been more than 4.700 publication on such a rather narrow
subject; in fact even nowadays, one decade after this gold-digger’s rush about
the AdS/CFT correspondence started, there is still a sizable number of papers
every month by people looking for nuggets at the same place but without bringing
Maldacena’s gravity-gauge theory conjecture any closer to a resolution. Even with
making all the allowances in comparison with earlier fashions, this phenomenon
is too overwhelming in order to be overlooked. Independent of its significance for
particle physics and the way it will end, the understanding of what went on and its
covering by the media will be challenging to historians and philosophers of science
in the years to come.

I know that it is contra bonos mores to touch on a sociological aspect in a
physics paper, but my age permits me to say that at no time before was the scien-
tific production in particle theory that strongly coupled to the Zeitgeist as during
the last two decades; never before had global market forces such a decisive impact
on the scientific production. Therefore it is natural to look for an explanation why
thousands of articles are written on an interesting (but not clearly formulated)
conjecture with hundreds of other interesting problems left aside; where does the
magic attraction come from? Is it the Holy Grail of a TOE which sets into mo-
tion these big caravans? Did the critical power of past particle physics disappear
in favor of acclamation? Why are the few critical but unbiased attempts only
mentioned by the labels given to them and not by their scientific content?

Since commentaries about the crisis in an area of which one is part run the
risk of being misunderstood, let me make perfectly clear that particle physics was a
speculative subject and I uphold that it must remain this way. Therefore I have no
problem whatsoever with Maldacena’s paper; it is in the best tradition of particle
physics, which was always a delicate blend of a highly imaginative and innovative
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contribution from one author with profoundly critical analysis of others. I am
worried about the loss of this balance. My criticism is also not directed against
the thousands of authors who enter this area in good faith believing that they are
working at an epoch-forming paradigmatic problem because their peers gave them
this impression. Even if they entered for the more mundane reason of carving out
a career, I would not consider this as the cause of the present problem.

The real problem is with those who by their scientific qualifications and
status are the intellectual leaders and the role models. If they abdicate their role
as critical mediators by becoming the whips of the TOE monoculture of particle
physics, then checks and balances will be lost. Would there have been almost 5000
publication, on a rather narrow theme (compared with other topics) in the presence
of a more critical attitude from leading particle physicists? No way. Would particle
theory, once the pride of theoretical physics with a methodological impact on many
adjacent areas, have fallen into disrespect and be the object of mock within the
larger physics community? The list of questions of this kind with negative answers
can be continued.

It is worthwhile to look back at times when the delicate balance between the
innovative and speculative on the one hand and the critical on the other was still
there. Young researchers found guidance by associating themselves to “schools of
thought” which where associated with geographical places and names as Schwinger,
Landau, Bogoliubov, Wheeler, Wightman, Lehmann, Haag... who represented dif-
ferent coexisting schools of thought. Instead of scientific cross fertilization between
different schools, the new globalized caravan supports the formation of a gigantic
monoculture and the loss of the culture of checks and balances.

Not even string theorists can deny that this unfortunate development started
with string theory. Every problem string theory addresses takes on a strange
metaphoric aspect, an effect which is obviously wanted as the fondness for the
use of the letter M shows. The above mentioned AdS/CFT topic gives an illus-
tration, which, with a modest amount of mathematical physics shows, the clear
structural QFT theorem as compared to the strange conjecture which even thou-
sands of publications were not able to liberate from the metaphoric twilight.

But it is a remarkable fact that, whenever string theorist explain their ideas
by QFT analogs in the setting of functional integrals, as was done by Witten in
[28] for the ¢* coupling, and on the other hand algebraic quantum field theorists
present their rigorous structural method for the same model in the same setting
[31], the two results agree (see also [37]).

This is good news. But now comes the bad news. Despite the agreement the
Witten camp, i.e. everybody except a few individuals, claim that there exist two
different types of AdS/CFT correspondences namely theirs and another one which
at least some of them refer to as the “German AdS/CFT correspondence”. Why
is that? I think I know but I will not write it.

At this point it becomes clear that it is the abandonment of the critical role
of the leaders which is fuelling this unhealthy development. Could a statement:
“X-Y-Z theory is a gift of the 21st century which by chance fell into the 20 century”
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have come from Pauli, Schwinger, or Feynman? One would imagine that in those
days people had a better awareness that mystifications like this could disturb the
delicate critical counterbalance which the speculative nature of particle physics
requires. The long range negative effect on particle theory of such a statement is
proportional to the prominence and charisma of its author.

There have been several books which criticize string theory. Most critics em-
phasize that the theory has not predicted a single observable effect and that there
is no reason to expect that this will change in the future. Although I sympathize
with that criticism, especially if it comes from experimentalists and philosophers,
I think that a theorist should focus his critique on the conceptual and mathemat-
ical structure and not rely on help from Karl Popper or dwell on the non-existent
observational support. Surprisingly I could not find any scholarly article in this
direction. One of the reasons may be that after 4 decades of development of string
theory such a task requires rather detailed knowledge about its conceptual and
mathematical basis. As a result of this unsatisfactory situation I stopped my crit-
ical article [29] from going into print and decided to re-write it in such a way that
the particle physics part is strengthened at the expense of the sociological sections.

The aforementioned situation of ignoring results which shed a critical light
on string theory or the string theorists version of the AdS/CFT correspondence is
perhaps best understood in terms of the proverbial executing of the messenger who
brings bad news; the unwanted message in the case at hand being the structural
impossibility to have Lagrangian QFTs with causal propagation on both sides of
the correspondence.

It seems that under the corrosive influence of more than 4 decades of string
theory, Feynman’s observation about its mode of arguing being based on finding
excuses instead of explanations, which two decades ago was meant to be provoca-
tive, has become the norm. The quantum gravity-gauge theory conjecture is a
good example of how a correct but undesired AdS/CFT correspondence is shifted
to the elusive level of string theory and quantum gravity so that the degrees of
freedom aspect becomes pushed underneath the rug of the elusive string theory,
where it only insignificantly enlarges the already very high number of metaphors.

There have been an increasing number of papers with titles as “QCD and
a Holographic Model of Hadrons”, “Early Time Dynamics in Heavy Ion Colli-
sions and AdS/CFT Correspondence”, “Confinement/Deconfinement Transition
in AdS/CFT”, “Isospin Diffusion in Thermal AdS/CFT with Flavour”, “Holo-
graphic Mesons in a Thermal Bath”, “Viscous Hydrodynamics and AdS/CFT”,
“Heavy Quark Diffusion from AdS/CFT” ... Ads/CFT for everything? Is string
theory bolstered by AdS/CFT really on the way to become a TOE for all of
physics, a theory for anything which sacrifices conceptual cohesion to amok run-
ning calculations? Or are we witnessing a desperate attempt to overcome the more
than 4 decade lasting physical disutility? Perhaps it is only a consequence of the
“liberating” effect of following prominent leaders who have forgone their duty as
critical mediators and preserver of conceptual cohesion.
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4. Concluding remarks

In these notes we revisited one of the oldest and still unsolved conceptual problems
in QFT, the existence of interacting models. Besides some new concrete results
about the existence of factorizing models (which only exist in d = 1+ 1), it is the
new method itself, with its promise to explore new fundamental and fully intrinsic
properties of QFT, which merits attention. A particularly promising approach for
the classification and construction of QFTs consists in using holographic lightfront
projections (and in a later stage work one’s way back into the bulk). In this
situation the holographic degrees of freedom are thinned out as compared to the
bulk i.e. the extended chiral fields have lesser number of degrees of freedom.

The concept of degrees of freedom used here is a dynamical one. Knowing
only a global algebra!® as the wedge algebra i.e. A(W) C B(H) as an inclusion into
the full algebra one uses fewer degrees freedom than one needs in order to describe
the full local substructure of A(W) i.e. knowing A(W) in the sense of a local net.
The degrees of freedom emerge always from relations between algebras whereas
the single algebra is a structureless monad [15]. Saying that the net A(LF') has
less degrees of freedom than the net associated with the bulk is the same as saying
that the knowledge of the LI affiliated wedges does not suffice to reconstruct
the local bulk structure. In this sense the notion of degrees of freedom depends
on the knowledge one has about a system; refining the net structure of localized
subalgebras of a global algebra increases the degrees of freedom.

The lightfront holography is a genuine projection with a lesser cardinality of
degrees of freedom i.e. without knowing how other Poincaré transformations out-
side the 7-parametric invariance group of the lightfront act it is not uniquely invert-
ible. On its own, i.e. without added information, the lightfront holography cannot
distinguish between massive and massless theories; a transverse extended chiral
theory does not know whether the bulk was massive or massless. The knowledge
of how the opposite lightray translation U(a_) acts on A(LF) restores unique-
ness; but this action is necessarily “fuzzy” i.e. non-geometric, purely algebraic.
Only upon returning to the spacetime ordering device in terms of the bulk it
becomes geometric.

The hallmark of null-surface holography is an area law for localization en-
tropy in which the proportionality constant is a product of a holographic matter
dependent constant times a logarithmic dependence on the attenuation length for
vacuum polarization.

By far the more popular holography has been the AdS/CFT correspondence.
Here its physical utility is less clear than the mathematical structure.

Is there really a relation between a special class of conformal gauge invariant
gauge theories with supersymmetric quantum gravity? Not a very probable con-
sequence of a change of an spacetime ordering device for a given matter substrate
which is what holography means. Integrable substructures within such conformal

9Knowing an operator algebra means knowing its position within the algebra B(H) of all oper-
ators. Knowing its net substructure means knowing the relative position of all its subalgebras.
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gauge theories which become more overt on the AdS-side? This appears a bit more
realistic, but present indications are still very flimsy.
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Topos Theory and ‘Neo-Realist’
Quantum Theory
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Abstract. Topos theory, a branch of category theory, has been proposed as
mathematical basis for the formulation of physical theories. In this article, we
give a brief introduction to this approach, emphasizing the logical aspects.
Each topos serves as a ‘mathematical universe’ with an internal logic, which
is used to assign truth-values to all propositions about a physical system. We
show in detail how this works for (algebraic) quantum theory.
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“The problem is all inside your head”, she said to me
the answer is easy if you take it logically

Paul Simon (from ‘50 Ways To Leave Your Lover’)

1. Introduction

The use of topos theory in the foundations of physics and, in particular, the foun-
dations of quantum theory was suggested by Chris Isham more than 10 years
ago in [14]. Subsequently, these ideas were developed in an application to the
Kochen-Specker theorem (with Jeremy Butterfield, [15, 16, 18, 19], for conceptual
considerations see [17]). In these papers, the use of a multi-valued, contextual logic
for quantum theory was proposed. This logic is given by the internal logic of a cer-
tain topos of presheaves over a category of contexts. Here, contexts typically are



26 Andreas Déring

abelian parts of a larger, non-abelian structure. There are several possible choices
for the context category. We will concentrate on algebraic quantum theory and use
the category V(R) of abelian von Neumann subalgebras of the non-abelian von
Neumann algebra of observables R of the quantum system, as first suggested in
[18].

The use of presheaves over such a category of contexts is motivated by
the very natural construction of the spectral presheaf X, which collects all the
Gel'fand spectra of the abelian subalgebras V' € V(R) into one larger structure.
The Gel’fand spectra can be seen as ‘local state spaces’, and the spectral presheaf
serves as a state space analogue for quantum theory. Interestingly, as Isham and
Butterfield showed, this presheaf is not like a space: it has no points (in a category-
theoretical sense), and this fact is exactly equivalent to the Kochen-Specker theo-
rem.

The topos approach was developed considerably in the series of papers [5,
6, 7, 8] by Chris Isham and the author. In these papers, it was shown how topos
theory can serve as a new mathematical framework for the formulation of physical
theories. The basic idea of the topos programme is that by representing the relevant
physical structures (states, physical quantities and propositions about physical
quantities) in suitable topoi, one can achieve a remarkable structural similarity
between classical and quantum physics. Moreover, the topos programme is general
enough to allow for major generalizations. Theories beyond classical and quantum
theory are conceivable. Arguably, this generality will be needed in a future theory
of quantum gravity, which is expected to go well beyond our conventional theories.

In this paper, we will concentrate on algebraic quantum theory. We briefly
motivate the mathematical constructions and give the main definitions.! Through-
out, we concentrate on the logical aspects of the theory. We will show in detail
how, given a state, truth-values are assigned to all propositions about a quantum
system. This is independent of any measurement or observer. For that reason, we
say that the topos approach gives a ‘neo-realist’ formulation of quantum theory.

1.1. What is a topos?

It is impossible to give even the briefest introduction to topos theory here. At the
danger of being highly imprecise, we restrict ourselves to mentioning some aspects
of this well-developed mathematical theory and give a number of pointers to the
literature. The aim merely is to give a very rough idea of the structure and internal
logic of a topos. In the next subsection, we argue that this mathematical structure
may be useful in physics.

There are a number of excellent textbooks on topos theory, and the reader
should consult at least one of them. We found the following books useful: [25, 9,
27, 20, 21, 1, 24].

IWe suppose that the reader is familiar with the definitions of a category, functor and natural
transformation.
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Topoi as mathematical universes. Every (elementary) topos £ can be seen as a
mathematical universe. As a category, a topos £ possesses a number of structures
that generalize constructions that are possible in the category Set of sets and
functions.? Namely, in Set, we can construct new sets from given ones in several
ways: let S, T be two sets, then we can form the cartesian product S xT', the disjoint
union S IIT and the exponential ST, the set of all functions from 7" to S. These
constructions turn out to be fundamental and can all be phrased in an abstract,
categorical manner, where they are called finite limits, colimits and exponentials,
respectively. By definition, a topos £ has all of these. One consequence of the
existence of finite limits is that each topos has a terminal object, denoted by 1.
This is characterized by the property that for any object A in the topos &, there
exists exactly one arrow from A to 1. In Set, a one-element set 1 = {x} is terminal.?

Of course, Set is a topos, too, and it is precisely the topos which usually
plays the role of our mathematical universe, since we construct our mathematical
objects starting from sets and functions between them. As a slogan, we have: a
topos £ is a category similar to Set. A very nice and gentle introduction to these
aspects of topos theory is the book [25]. Other good sources are [9, 26].

In order to ‘do mathematics’, one must also have a logic, including a deductive
system. Each topos comes equipped with an internal logic, which is of intuitionistic
type. We very briefly sketch the main characteristics of intuitionistic logic and the
mathematical structures in a topos that realize this logic.

Intuitionistic logic. Intuitionistic logic is similar to Boolean logic, the main
difference being that the law of excluded middle need not hold. In intuitionistic
logic, there is no axiom

FaV-a ()
like in Boolean logic. Here, —a is the negation of the formula (or proposition)
a. The algebraic structures representing intuitionistic logic are Heyting algebras.
A Heyting algebra is a pseudocomplemented, distributive lattice* with zero ele-
ment 0 and unit element 1, representing ‘totally false’ resp. ‘totally true’. The
pseudocomplement is denoted by —, and one has, for all elements a of a Heyting
algebra H,

aV-a<1,
in contrast to a V —a = 1 in a Boolean algebra. This means that the disjunc-
tion (“Or”) of a proposition « and its negation need not be (totally) true in a

2More precisely, small sets and functions between them. Small means that we do not have proper
classes. One must take care in these foundational issues to avoid problems like Russell’s paradox.
3Like many categorical constructions, the terminal object is fixed only up to isomorphism: any
two one-element sets are isomorphic, and any of them can serve as a terminal object. Nonetheless,
one speaks of the terminal object.

4Lattice is meant in the algebraic sense: a partially ordered set L such that any two elements
a,b € L have a minimum (greatest lower bound) a A b and a maximum (least upper bound)
aVbin L. A lattice L is distributive if and only if a V (bA¢c) = (aVb) A (aV c) as well as
aN(bVec)=(aAb)V(aAc)hold for all a,b,c € L.
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Heyting algebra. Equivalently, one has
-—a > A,
in contrast to =—a = « in Boolean algebras.

Obviously, Boolean logic is a special case of intuitionistic logic. It is known
from Stone’s theorem [29] that each Boolean algebra is isomorphic to an algebra
of (clopen, i.e., closed and open) subsets of a suitable (topological) space.

Let X be a set, and let P(X) be the power set of X, that is, the set of subsets
of X. Given a subset S € P(X), one can ask for each point x € X whether it lies
in S or not. This can be expressed by the characteristic function xs : X — {0,1},
which is defined as

1 ifzesS
Xs() = { 0 ifags
for all z € X. The two-element set {0,1} plays the role of a set of truth-values for
propositions (of the form “z € S7). Clearly, 1 corresponds to ‘true’, 0 corresponds
to ‘false’, and there are no other possibilities. This is an argument about sets, so
it takes place in and uses the logic of the topos Set of sets and functions. Set is
a Boolean topos, in which the familiar two-valued logic and the axiom () hold.
(This does not contradict the fact that the internal logic of topoi is intuitionistic,
since Boolean logic is a special case of intuitionistic logic.)

In an arbitrary topos, there is a special object €2, called thesubobject classifier,
that takes the role of the set {0,1} ~ {false,true} of truth-values. Let B be an
object in the topos, and let A be a subobject of B. This means that there is
a monic A — B, generalizing the inclusion of a subset S into a larger set X.
Like in Set, we can also characterize A as a subobject of B by an arrow from
B to the subobject classifier 2. (In Set, this arrow is the characteristic function
Xxs : X — {0,1}.) Intuitively, this characteristic arrow from B to £ tells us how
A ‘lies in” B. The textbook definition is:

Definition 1. In a category C with finite limits, a subobject classifier is an ob-
ject Q, together with a monic true : 1 — €, such that to every monic m : A — B
in C there is a unique arrow x which, with the given monic, forms a pullback square

A

m true

B

% Q

5 A monic is the categorical version of an injective function. In the topos Set, monics exactly are
injective functions.
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In Set, the arrow true : 1 — {0, 1} is given by true(x) = 1. In general, the
subobject classifier 2 need not be a set, since it is an object in the topos £, and the
objects of £ need not be sets. Nonetheless, there is an abstract notion of elements
(or points) in category theory that we can use. The elements of Q are the truth-
values available in the internal logic of our topos &, just like ‘false’ and ‘true’, the
elements of {false,true}, are the truth-values available in the topos Set.

To understand the abstract notion of elements, let us consider sets for a
moment. Let 1 = {*} be a one-element set, the terminal object in Set. Let S be
a set and consider an arrow e from 1 to S. Clearly, e(x) € S is one element of S.
The set of all functions from 1 to S corresponds exactly to the elements of S. This
idea can be generalized to other categories: if there is a terminal object 1, then
we consider arrows from 1 to an object A in the category as elements of A. For
example, in the definition of theindextruelas element in a truth object subobject
classifier the arrow true : 1 — € is an element of €. It may happen that an object
A has no elements, i.e., there are no arrows 1 — A. It is common to consider
arrows from subobjects U of A to A as generalized elements, but we will not need
this except briefly in subsection 5.1.

As mentioned, the elements of the subobject classifier, understood as the
arrows 1 — €2, are the truth-values. Moreover, the set of these arrows forms a
Heyting algebra (see, for example, section 8.3 in [9]). This is how (the algebraic
representation of) intuitionistic logic manifests itself in a topos. Another, closely
related fact is that the subobjects of any object A in a topos form a Heyting al-
gebra.

1.2. Topos theory and physics

A large part of the work on topos theory in physics consists in showing how states,
physical quantities and propositions about physical quantities can be represented
within a suitable topos attached to the system [5, 6, 7, 8]. The choice of topos will
depend on the theory type (classical, quantum or, in future developments, even
something completely new). Let us consider classical physics for the moment to
motivate this.

Realism in classical physics. In classical physics, one has a space of states S,
and physical quantities A are represented by real-valued functions f4 : S — R.%
A proposition about a physical quantity A is of the form “A € A”, which means
“the physical quantity A has a value in the (Borel) set A”. This proposition is
represented by the inverse image fgl(A) C S. In general, propositions about
the physical system correspond to Borel subsets of the state space S. If we have
two propositions “A € A7, “B € Ay” and the corresponding subsets f;l(Al),
f];l(Ag), then the intersection fgl(Al) N fgl(Ag) corresponds to the proposition

SWe assume that f4 is at least measurable.
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“A e Ay and B € Ay”, the union fgl(Al) U fgl(Ag) corresponds to “A € A; or
B € Ay”, and the complement S\fgl(Al) corresponds to the negation “A ¢ A;”.
Moreover, given a state s, i.e., an element of the state space S, each proposition is
either true or false: if s lies in the subset of S representing the proposition, then
the proposition is true, otherwise it is false. Every physical quantity A has a value
in the state s, namely f4(s) € R. Thus classical physics is a realist theory in which
propositions have truth-values independent of measurements, observers etc. The
logic is Boolean, since classical physics is based on constructions with sets and
functions, i.e., it takes place in the topos Set. We take this as a rule: if we want
to describe a physical system S as a classical system, then the topos Set is used.
This means no departure from what is ordinarily done, but it emphasizes certain
structural and logical aspects of the theory.

Instrumentalism in quantum theory. In quantum theory, the mathematical
description is very different. Physical quantities A are represented by self-adjoint
operators A on a Hilbert space H. While H can be called a space of states, the
states ¢ € ‘H play a very different role from those in classical theory. In particular,
a state 1 does not assign values to all physical quantities, only to those for which
1) happens to be an eigenstate. The spectral theorem shows that propositions
“A € A” are represented by projection operators E [A € A] on Hilbert space.
Unless v is an eigenstate of A, such a proposition is neither true nor false (except
for the trivial cases E [A e Al = 6, which represents trivially false propositions,
and E[A €Al = 1, which represents trivially true propositions). The mathematical
formalism of quantum theory is interpreted in an instrumentalist manner: given
a state 1, the proposition “A € A” is assigned a probability of being true, given
by the expectation value p(A € A;)) := (1| E[A € A]|4). This means that upon
measurement of the physical quantity A, one will find the measurement result to lie
in A with probability p(A € A;). This interpretation depends on measurements
and an external observer. Moreover, the measurement devices (and the observer)
are described in terms of classical physics, not quantum physics.

The motivation from quantum gravity. An instrumentalist interpretation can-
not describe closed quantum systems, at least there is nothing much to be said
about them from this perspective. A theory of quantum cosmology or quantum
gravity will presumably be a quantum theory of the whole universe. Since there
is no external observer who could perform measurements in such a theory, in-
strumentalism becomes meaningless. One of the main motivations for the topos
programme is to overcome or circumvent the usual instrumentalism of quantum
theory and to replace it with a more realist account of quantum systems. The idea
is to use the internal logic of a topos to assign truth-values to propositions about
the system.

In order to achieve this, we will sketch a new mathematical formulation of
quantum theory that is structurally similar to classical physics. The details can be
found in [5, 6, 7, 8] and references therein.
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Plan of the paper. The starting point is the definition of a formal language
L(S) attached to a physical system S. This is done in section 2 and emphasizes
the common structure of classical and quantum physics. In section 3, we introduce
the topos associated to a system S in the case of quantum theory, and in section
4 we briefly discuss the representation of £(S) in this topos. The representation
of states and the assignment of truth-values to propositions is treated in section
5, which is the longest and most detailed section. Section 6 concludes with some
remarks on related work and on possible generalizations.

2. A formal language for physics

There is a well-developed branch of topos theory that puts emphasis on the log-
ical aspects. As already mentioned, a topos can be seen as the embodiment of
(higher-order) intuitionistic logic. This point of view is expounded in detail in
Bell’s book [1], which is our standard reference on these matters. Other excellent
sources are [24] and part D of [21]. The basic concept consists in defining a formal
language and then finding a representation of it in a suitable topos. As usual in
mathematical logic, the formal language encodes the syntactic aspects of the the-
ory and the representation provides the semantics. Topoi are a natural ‘home’ for
the representation of formal languages encoding intuitionistic logic, more precisely,
intuitionistic, higher-order, typed predicate logic with equality. Typed means that
there are several primitive species or kinds of objects (instead of just sets as prim-
itives), from which sets are extracted as a subspecies; predicate logic means that
one has quantifiers, namely an existence quantifier 3 (“it exists”) and a universal
quantifier V (“for all”). Higher-order refers to the fact that quantification can take
place not only over variable individuals, but also over subsets and functions of
individuals as well as iterates of these constructions. Bell presents a particularly
elegant way to specify a formal language with these properties. He calls this type
of language a local language, see chapter 3 of [1].

Let S denote a physical system to which we attach a higher-order, typed
language £(.S). We can only sketch the most important aspects here, details can
be found in section 4 of [5]. The language £(S) does not depend on the theory
type (classical, quantum, ...), while its representation of course does. The language
contains at least the following type symbols: 1,2, > and R. The symbol ¥ serves
as a precursor of the statelobject (see below), the symbol R is a precursor of
the quantity-value object, which is where physical quantities take their values.
Moreover, we require the existence of function symbols of the form A : ¥ — R.
These are the linguistic precursors of physical quantities. For each type, there exist
variables of that type. There are a number of rules how to form terms and formulae
(terms of type Q) from variables of the various types, including the definition of
logical connectives A (“And”), V (“Or”) and — (“Not”). Moreover, there are axioms
giving rules of inference that define how to get new formulae from sets of given
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formulae. As an example, we mention the cut rule: if I is a set of formulae and «
and ( are formulae, then we have

I''a ol:p
r:p

(here, any free variable in o must be free in I or ). This is a purely formal rule
about how formulae can be manipulated in this calculus, to be read from top to
bottom. In a representation, where the formulae aquire an interpretation and a
‘meaning’, this expresses that if I" implies «, and « and I'" together imply 3, then
T" also implies 8. The axioms and rules of inference are chosen in a way such that
the logical operations satisfy the laws of intuitionistic logic.

The formal language £(S) captures a number of abstract properties of the
physical system S. For example, if S is the harmonic oscillator, then we expect to
be able to speak about the physical quantity energy in all theory types, classical or
quantum (or other). Thus, among the function symbols A : ¥ — R, there will be
one symbol E : ¥ — R which, in a representation, will become the mathematical
entity describing energy. (Which mathematical object that will be depend on the
theory type and thus on the representation.)

The representation of the language £(.5) takes place in a suitable, physically
motivated topos £. The type symbol 1 is represented by the terminal object 1 in
&, the type symbol 2 is represented by the subobject classifier 2. The choice of
an appropriate object ¥ in the topos that represents the symbol ¥ depends on
physical insight. The representing object X is called the state object, and it plays
the role of a generalized state space. What actually is generalized is the space, not
the states: X is an object in a topos &£, which need not be a topos of sets, so ¥ need
not be a set or space-like. However, as an object in a topos, ¥ does have subobjects.
These subobjects will be interpreted as (the representatives of) propositions about
the physical quantities, just like in classical physics, where propositions correspond
to subsets of state space. The propositions are of the form “A € A”, where A now
is a subobject of the object R that represents the symbol R. The object R is
called the quantity-value object, and this is where physical quantities take their
values. Somewhat surprisingly, even for ordinary quantum theory this is not the
real number object in the topos. Finally, the function symbols A : ¥ — R are
represented by arrows between the objects ¥ and R in the topos &.

In classical physics, the representation is the obvious one: the topos to be
used is the topos Set of sets and mappings, the symbol ¥ is represented by a
symplectic manifold S, which is the state space, the symbol R is represented by
the real numbers and function symbols A : 3 — R are represented by real-valued
functions f4 : S — R. Propositions about physical quantities correspond to subsets
of the state space.
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3. The context category V(R) and the topos of presheaves
SetV®”

We will now discuss the representation of £(S) in the case that S is to be described
as a quantum system. We assume that S is a non-trivial system that —in the usual
description— has a Hilbert space H of dimension 3 or greater, and that the physical
quantities belonging to S form a von Neumann algebra R(S) C B(H) that contains
the identity operator 17

From the Kochen-Specker theorem [23] we know that there is no state space
model of quantum theory if the algebra of observables is B(H) (for the general-
ization to von Neumann algebras see [4]). More concretely, there is no state space
S such that the physical quantities are real-valued functions on S. The reason is
that if there existed such a state space S, then each point (i.e., state) s € S would
allow to assign values to all physical quantities at once, simply by evaluating the
functions representing the physical quantities at s. One can show that under very
mild and natural conditions, this leads to a mathematical contradiction.

For an abelian von Neumann algebra V', there is no such obstacle: the Gel’fand
spectrum Xy of V' can be interpreted as a state space, and the Gel’fand transforms
A of self-adjoint operators Ac V', representing physical quantities, are real-valued
functions on Xy . The Gel’fand spectrum Xy of an abelian von Neumann alge-
bra V consists of the pure states A on V (see e.g. [22]). Each A € £y also is a
multiplicative state; for all /T, Be V', we have

MAB) = A(A)N(B),
which, for projections P € P(V), implies
A(P) = A(P?) = A(P)A(P) € {0,1}.

Finally, each A € Xy is an algebra homomorphism from V to C. The Gel’fand
spectrum Yy, is equipped with the weak* topology and thus becomes a compact
Hausdorff space.

Let A € V and define

ZZEVHC

The function A is called the Gel’fand tmnsform of A. It is a continuous functlon
such that im A = spA In particular, if A is self- adjoint, then )\(A) € spA C R.

"There should arise no confusion between the von Neumann algebra R = R(S) and the symbol
R of our formal language, we hope.
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The mapping

V — O(Zy)
A\*—>Z

is called the Gel’fand transformation on V. It is an isometric *-isomorphism be-
tween V and C'(Xy).8

This leads to the idea of considering the set V(R) of non-trivial unital abelian
von Neumann subalgebras of R.% These abelian subalgebras are also called con-
texts. V(R) is partially ordered by inclusion and thus becomes a category. There
is an arrow iy+y : V) — V if and only if V/ C V, and then iy/y is just the in-
clusion (or the identity arrow if V/ = V). The category V(R) is called the contezt
category and serves as our index category. The process of going from one abelian
algebra V to a smaller algebra V' C V can be seen as a process of coarse-graining:
the algebra V' contains less physical quantities (self-adjoint operators), so we can
describe less physics in V/ than in V. We collect all the ‘local state spaces’ Xy
into one large object:

Definition 2. The spectral presheaf ¥ is the presheaf'® over V(R) defined

a) on objects: for all V € V(R), Xy, = Xy is the Gel’fand spectrum of V,
b) on arrows: for all ivry, B(iviv) : By — Ly is given by restriction, A — A|y-.

The spectral presheaf was first considered by Chris Isham and Jeremy But-
terfield in the series [15, 16, 18, 19] (see in particular the third of these papers).
The presheaves over V(R) form a topos SetV®™  The arrows in this topos are
natural transformations between the presheaves. Isham and Butterfield developed
the idea that this is the appropriate topos for quantum theory. The object ¥ in
Set”R)™ gserves as a state space analogue. In the light of the new developments
in [5]-[8], using formal languages, we identify X as the state object in SetV(R)™
i.e., the representative of the symbol ¥ of our formal language £(.5).

Isham and Butterfield showed that the Kochen-Specker theorem is exactly
equivalent to the fact that the spectral presheaf ¥ has no elements, in the sense
that there are no arrows from the terminal object 1 in SetVR)”" to . It is not
hard to show that having an element of X would allow the assignment of real values
to all physical quantities at once.

80f course, all this holds more generally for abelian C*-algebras. We concentrate on von Neumann
algebras, since we need these in our application.

9The unit in each abelian subalgebra V € V(R) is the identity operator 1, which is the same
unit as in R. We exclude the trivial algebra (CT, which is a subalgebra of all other subalgebras.
10A presheaf over V(R) is a contravariant functor from V(R) to Set, and obviously, X is of this
kind. In our notation, presheaves will always be underlined.
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4. Representing £(S) in the presheaf topos Set” ™"

The quantity-value object for quantum theory. We already have identified the
topos for the quantum-theoretical description of a system S and the state object
Y in this topos. Let V € V(R) be a context, then [V :={V' € V(R) | V' C V}
denotes the set of all subalgebras of V', equipped with the partial order inherited
from V(R). It can be shown that the symbol R should be represented by the
following presheaf [7]:

Definition 3. The presheaf R of order-preserving and -reversing functions on
V(R) is defined

a) on objects: for all V. € V(R), Ry = {(u,v) | p :lV — R is order-
preserving, v :|V — R is order-reversing and p < v}, where p < v means
that for all V' € |V, one has p(V') < v(V');

b) on arrows: for all iviv, R (iyiy) : Ry, — RTy, is given by restriction,
(ks v) = (plve, vlve).

Here, an order-preserving function p : |V — R is a function such that V" C V'
(where V', V" €|V) implies p(V") < u(V’). Order-reversing functions are defined
analogously.

The presheaf R is not the real-number object R in the topos SetV(R)UP,
which is the constant presheaf defined by R(V) := R for all V and R(iy+v) : R = R
as the identity. From the Kochen-Specker theorem, we would not expect that
physical quantities take their values in the real numbers. (This does not mean that
the results of measurements are not real numbers. We do not discuss measurement
here.) More importantly, the presheaf R takes into account the coarse-graining
inherent in the base category V(R): at each stage V, a pair (u, ) consisting of an
order-preserving and an order-reversing function defines a whole range or interval
[£(V),v(V)] of real numbers, not just a single real number. (It can happen that
w(V) =v(V).) If we go to a smaller subalgebra V' C V', which is a kind of coarse-
graining, then we have (V') < p(V) and v(V') > v(V), so the corresponding
interval [u(V"), v(V")] can only become larger.

The representation of function symbols A : ¥ — R. In order to represent a
physical quantity A belonging to the system S as an arrow from X to the presheaf
R of ‘values’, we have to use a two-step process.

1. We first need the spectral order on self-adjoint operators in a von Neumann
algebra R [28, 10]. This is defined for all A, B € Ry, with spectral families £
resp. BB as

A<,B:s (VAeR: E{} > ED).
Equipped with the spectral order, the set of self-adjoint operators in a von Neu-
mann algebra becomes a boundedly complete lattice.
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Let A € R be the self-adjoint operator representing A. We use the spectral
order on each abelian subalgebra V' € V(R) and define

0°(A)y = \{B € Via | B >, A},
3 Ay = \{C eV | C <, A}

We call these mappings outer and inner daseinisation, respectively.'! The outer
daseinisation 60(2)V of A to the context V is the approximation from above by
the smallest self-adjoint operator in V' that is spectrally larger than A. Likewise,
the inner daseinisation 5i(/T)V is the approximation from below by the largest self-
adjoint operator in V that is spectrally smaller then A. Since the spectral order is
coarser than the usual, linear order, we have, for all V,

§'(A)y < A< 5°(A)y

One can show that the spectra of §'(A)y and 50(/T)v are subsets of the spectrum
of /T, which seems physically very sensible. If we used the approximation in the
linear order, this would not hold in general. The approximation of self-adjoint
operators in the spectral order was suggested by de Groote [11 12. V' CV,
then, by construction, §'(A)y <, §'(A)y and §°(A)y, >, 6°(A)y, which implies

-~

51 (A)y < 8 (A)v,
(A > 8°(A)y

In this sense, the approximations to A become coarser if the context becomes
smaller.

2. Now that we have constructed a pair (5i(g)v,5°(ﬁ)v) of operators ap-
proximating A from below and from above for each context V, we can define a
natural transformation & (;1\) from X to R in the following way: let V € V(R) be
a context, and let A € 3y, be a pure state of V. Then define, for all V' €|V,

ua(V') = A8 (A)vr) = 8 (A)yr(N),

where §i(A)y is the Gel'fand transform of the self-adjoint operator 5’(2) . From
the theory of abelian C*-algebras, it is known that A(6%(A)y) € sp(5’(A) 1) (see

g. [22]). Let V', V" €|V such that V" C V'. We saw that 6¢(A)y» < 6°(A)y,
which implies A(8°(A)y») < A(8'(A)y+), so pr 1LV — R is an order-preserving
function. Analogously, let

(V') = M0 (A)vr) = 82(A)yr (N)

Daseinisation’ comes from the German word Dasein, which means existence. More specifically,
we borrow from Heidegger’s existential philosophy, where ‘Da-sein’ means ‘being-there’; being in
the world. I hope it is needless to say that the coinage daseinisation (meaning the act of bringing
into existence) is slightly tongue-in-cheek.
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for all V/ €]V. We obtain an order-reversing function vy :|V — R. Then, for all
V eV(R), let

-~

S(A)(V) Xy — RTy
A (pa; va)-

By construction, these mappings are the components of a natural transformation

-~

0(A): ¥ — RZ. For all V,V’ € V(R) such that V' C V, we have a commuting
diagram

5, Z(ivv) b
S(A)(V) S(A)(V')
By R= (iyrv) Ry

The arrow 5(2) : 2 — RT in the presheaf topos SetYR)™ is the representative
of the physical quantity A, which is abstractly described by the function symbol
A ¥ — R in our formal language. The physical content, namely the appropriate
choice of the self-adjoint operator A from which we construct the arrow 5(;1\), is
not part of the language, but part of the representation.'?

The representation of propositions. As discussed in subsection 1.2, in clas-
sical physics the subset of state space S representing a proposition “A € A” is
constructed by taking the inverse image fgl (A) of A under the function represent-
ing A. We will use the analogous construction in the topos formulation of quantum
theory: the set A is a subset (that is, subobject) of the quantity-value object R
in classical physics, so we start from a subobject (in Set”®™) @ of the presheaf
R™”. We get a subobject of the state object X by pullback along 5(2), which we
denote by 5(A)~1(©).13 For details see subsection 3.6 in [7] and also [13].

In both classical and quantum theory, propositions are represented by subob-
jects of the quantity-value object (state space S resp. spectral presheaf ¥). Such
subobjects are constructed by pullback from subobjects of the quantity-value ob-
ject (real numbers R resp. presheaf of order-preserving and -reversing functions
R?). The interpretation and meaning of such propositions is determined by the
internal logic of the topos (Set resp. Setv(R)op). In the classical case, where Set is
used, this is the ordinary Boolean logic that we are familiar with. In the quantum

12The current scheme is not completely topos-internal yet. It is an open question if every arrow
from X to R comes from a self-adjoint operator. This is why we start from a self-adjoint operator
A to construct & (,Z) We are working on a more internal characterization.

13This is a well-defined categorical construction, since the pullback of a monic is a monic, so we
get a subobject of X from a subobject of R.
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case, the internal logic of the presheaf topos Set”®™ has to be used. This in-
tuitionistic logic can be interpreted using Kripke-Joyal semantics, see e.g. chapter
VI in [27].

The Heyting algebra structure of subobjects. In the next section, we discuss
the representation of states in the topos SetY®™ and the assignment of truth-
values to propositions. Before doing so, it is worth noting that the subobjects of
Y form a Heyting algebra (since the subobjects of any object in a topos do), so
we have mapped propositions “A € A” (understood as discussed) to a distributive
lattice with a pseudocomplement. Together with the results from the next section,
we have a completely new form of quantum logic, based upon the internal logic
of the presheaf topos Set” ™" . Since this is a distributive logic and since the
internal logic of a topos has powerful rules of inference, this kind of quantum logic is
potentially much better interpretable than ordinary quantum logic of the Birkhoff-
von Neumann kind. The latter type of quantum logic and its generalizations are
based on nondistributive structures and lack a deductive system.

5. Truth objects and truth-values

In classical physics, a state is just a point of state space.' Since, as we saw, the
spectral presheaf ¥ has no elements (or, global elements!'®), we must represent
states differently in the presheaf topos Set” ()™

5.1. Generalized elements as generalized states

One direct way, suggested in [13], is the following generalization: ¥ has no global
elements 1 — X, but it does have subobjects U — Y. In algebraic geometry and
more generally in category theory, such monics (and, more generally, arbitrary
arrows) are called generalized elements [25]. We could postulate that these sub-
objects, or some of them, are ‘generalized states’. Consider another subobject of
X that represents a proposition “A € A” about the quantum system, given by its
characteristic arrow xg : ¥ — €. Then we can compose these arrows

U—->YX—-0Q

to obtain an arrow U — . This is not a global element 1 —  of ©, and by
construction, it cannot be, since X has no global elements, but it is a generalized
element of 2. It might be possible to give a physical meaning to these arrows

One might call this a pure state, though this is not customary in classical physics. Such a state
actually is a point measure on state space, in contrast to more general probability measures that
describe general states. We only consider pure states here and identify the point measure with
the corresponding point of state space.

5Elements 1 — P of a presheaf P are called global elements or global sections in category theory.
We follow this convention to avoid confusion with points or elements of sets.
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U — Q if one can (a) give physical meaning to the subobject U < X, making
clear what a generalized state actually is, and (b) give a logical and physical
interpretation of an arrow U — ). While a global element 1 — 3 is interpreted as
a truth-value in the internal logic of a topos, the logical interpretation of an arrow
U — € is not so clear.

We want to emphasize that mathematically, the above construction is per-
fectly well-defined. It remains to be worked out if a physical and logical meaning
can be attached to it.

5.2. The construction of truth objects

We now turn to the construction of so-called ‘truth objects’ from pure quantum
states 1, see also [6]. (To be precise, a unit vector ¢ in the Hilbert space H
represents a vector state ¢, : R — C on a von Neumann algebra, given by
oy (A) := (Y| Aly) for all A € R. If R = B(H), then every @y is a pure state.)
Of course, the Hilbert space H is the Hilbert space on which the von Neumann
algebra of observables R C B(H) is represented. This is the most direct way
in which Hilbert space actually enters the mathematical constructions inside the
topos SetV (R However, we will see how this direct appeal to Hilbert space
possibly can be circumvented.

Given a subobject of ¥ that represents some proposition, a truth object will
allow us to construct a global element 1 — X of 3, as we will show in subsection 5.4.
This means that from a proposition and a state, we do get an actual truth-value
for that proposition in the internal logic of the topos Set”®™  The construction
of truth objects is a direct generalization of the classical case.

For the moment, let us consider sets. Let S be a subset of some larger set X,
and let x € X. Then

(z€8) & (SeU)),

where U (z) denotes the set of neighborhoods of = in X. The key observation is that
while the Lh.s. cannot be generalized to the topos setting, since we cannot talk
about points like z, the r.h.s. can. The task is to define neighborhoods in a suitable
manner. We observe that U(x) is a subset of the power set PX = P(X), which is
the same as an element of the power set of the power set PPX = P(P(X)).

This leads to the idea that for each context V € V(R), we must choose an
appropriate set of subsets of the Gel’fand spectrum X, such that these sets of
subsets form an element in PPY. Additionally, the subsets we choose at each
stage V' should be clopen, since the clopen subsets P (X,/) form a lattice that is

isomorphic to the lattice P(V') of projections in V. If P € V is a projection, then
the corresponding clopen subset of Xy, is

Sy :={reny | A(P)=1}.
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Conversely, given a clopen subset S € P, (3 ), we denote the corresponding pro-

jection in P(V) by ]33. It is given as the inverse Gel’fand transform of the charac-
teristic function of S.

The main difficulty lies in the fact that the spectral presheaf ¥ has no global
elements, which is equivalent to the Kochen-Specker theorem. A global element, if
it existed, would pick one point Ay from each Gel’fand spectrum Xy (V € V(R))
such that, whenever V' C V, we would have A\yy = Ay|ys. If we had such global
elements, we could define neighborhoods for them by taking, for each V' € V(R),
neighborhoods of Ay in Xy, .

Since no such global elements exist, we cannot expect to have neighborhoods
of points at each stage. Rather, we will get neighborhoods of sets at each stage V',
and only for particular V', these sets will have just one element. In any case, the
sets will depend on the state ¢ in a straightforward manner. We define:

Definition 4. Let ¢p € H be a unit vector, let ﬁd, the projection onto the corre-
sponding one-dimensional subspace (i.e., ray) of H, and let P (X,,) be the clopen
subsets of the Gel’fand spectrum X,,. If S € P, (Zy,), then Ps € P(V) denotes the

corresponding projection. The truth object TV = (T‘[})VGV(R) is given by
YV € V(R): T} = {S € Pu(Sy) | (¢ Ps |[v) = 1}.
At each stage V, T‘[} collects all subsets S of ¥, such that the expectation

value of the projection corresponding to this subset is 1. From this definition, it is
not clear at first sight that the set Tq‘z} can be seen as a set of neighborhoods.

Lemma 5. We have the following equalities:

YV € V(R) : T} = {S € Pu(Sy) | (¢] Ps|v) = 1}
={SePulZ v)|Ps>Pw}
= {S € Pa(Zy) | Ps = 8°(Py)v}
={SePulZy)|52 S(so(ﬁw)v}

Proof. 1f (| Ps |¢)) = 1, then 1 lies entirely in the subspace of Hilbert space that
Ps projects onto. This is equivalent to Pg > Pw Since Py € P(V) and (5"(P¢)V is
the smallest projection in V' that is larger than Pw,w we also have Ps > 4° (Pw)

In the last step, we simply go from the projections in V' to the corresponding
clopen subsets of Xy,. d

This reformulation shows that ’JI‘?} actually consists of subsets of the Gel’fand
spectrum X, that can be seen as some kind of neighborhoods, not of a single

point of X,, but of a certain subset of ¥ , namely S, (Py)v In the simplest case,

160n projections, the spectral order <s and the linear order < coincide.
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we have ﬁw € P(V), so 5"(1%,)\/ = ﬁﬂw Then Sé"(f’w)v = S5 , and this subset

contains a single element, namely the pure state A such that
A(Py) =1

and )\(@) =0foral Q € P(V) such that @ﬁw = 0. In this case, ’JI""[j actually
consists of all the clopen neighborhoods of the point A in X;,.

ﬁw’

In general, if ]3¢ does not lie in the projections P(V'), then there is no subset of
Xy that Corresponds directly to Pw We must first approximate Pw by a projection
in V, and (5"(P¢)V is the smallest projection in V larger than P¢ The projection
50(P¢)V corresponds to a subset S o(Py)v C ¥, that may contain more than one

element. However, ’JI‘?} can still be seen as a set of neighborhoods, but now of this
set SéO(ﬁw)v rather than of a single point.

It is an interesting and non-trivial point that the (outer) daseinisation
50(131p)v (V € V(R)) shows up in this construction. We did not discuss this here,
but the subobjects of ¥ constructed from the outer daseinisation of projections
play a central role in the representation of a certain propositional language PL(.S)
that one can attach to a physical system S [5, 6]. Moreover, these subobjects are
‘optimal’ in the sense that, whenever V' C V, the restriction from Sé“(ﬁ)v to
Sso (P)yr is surjective, see Theorem 3.1 in [6]. This property can also lead the way
to a more internal characterization of truth-objects, without reference to a state
1 and hence to Hilbert space.

5.3. Truth objects and Birkhoff-von Neumann quantum logic

In this short subsection, we want to consider truth objects from the point of view
of ordinary quantum logic, which goes back to the famous paper [3] by Birkhoff
and von Neumann. This is a small digression, since an important part of the topos
approach is to replace ordinary quantum logic by the internal logic of the topos
SetYR)™ 1t may still be useful to understand how our constructions relate to
Birkhoff-von Neumann quantum logic.

For now, let us assume that R = B(H), then we write P(H) := P(B(H)) for
the lattice of projections on Hilbert space. In their paper, Birkhoff and von Neu-
mann identify a proposition “A € A” about a quantum system with a projection
operator E[A € A] € P(H) via the spectral theorem [22] and interpret the lattice
structure of P(H) as giving a quantum logic. This is very different from the topos
form of quantum logic, since P(H) is a non-distributive lattice, leading to all the
well-known interpretational difficulties.

The implication in ordinary quantum logic is given by the partial order on
P(H): a proposition “A € A;” implies a proposition “B € Ay” (where we can
have B = A) if and only if E[A € A;] < E[B € Ay] holds for the corresponding
projections.
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The idea now is that, given a pure state 1) and the corresponding projection
P¢ onto a ray, we can collect all the projections larger than or equal to Pw We
denote this by

TV :={PeP(H)| P> P}

The propositions represented by these projections are exactly those propositions
about the quantum system that are (totally) true if the system is in the state ).
Totally true means ‘true with probability 1’ in an instrumentalist interpretation.
If, for example, a projection E [A € Al is larger than ﬁw and hence contained in TY,
then, upon measurement of the physical quantity A, we will find the measurement
result to lie in the set A with certainty (i.e., with probability 1).

T% is a maximal (proper) filter in P(H). Every pure state ¢ gives rise to such
a maximal filter 7%, and clearly, the mapping ) — T¥ is injective. We can obtain
the truth object T¥ from the maximal filter 7% simply by defining

YW eV(R): TV =T NV.

In each context V', we collect all the projections larger than ﬁ¢. On the level
of propositions, we have all the propositions about physical quantities A in the
context V that are totally true in the state .

5.4. The assignment of truth-values to propositions

We return to the consideration of the internal logic of the topos Set”®™ and
show how to define a global element 1 — € of the subobject classifier from a clopen
subobject S of ¥ and a truth object TY. The subobject S represents a proposition
about the quantum system, the truth object T% represents a state, and the global
element of © will be interpreted as the truth-value of the proposition in the given
state. Thus, we make use of the internal logic of the topos Set”(R)™ of presheaves
over the context category V(R) to assign truth-values to all propositions about a
quantum system.

It is well known that the subobject classifier 2 in a topos of presheaves is the
presheaf of sieves (see e.g. [27]). A sieve o on an object A in some category C is a
collection of arrows with codomain A with the following property: if f : B — A is
ino and g : C — B is another arrow in C, then fog: C — A is in o, too. In other
words, a sieve on A is a downward closed set of arrows with codomain A. Since
the context category V(R) is a partially ordered set, things become very simple:
the only arrows with codomain V are the inclusions iy . Since such an arrow is
specified uniquely by its domain V’, we can think of the sieve o on V as consisting
of certain subalgebras V/ of V. If V' € 0 and V" C V', then V" € 0.

The restriction mappings of the presheaf £ are given by pullbacks of sieves.
The pullback of sieves over a partially ordered set takes a particularly simple form:
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Lemma 6. If o is a sieve on 'V € V(R) and V' C V, then the pullback o - iyry is
given by oN [ V'. (This holds analogously for sieves on any partially ordered set,
not just V(R)).

Proof. For the moment, we switch to the arrows notation. By definition, the pull-
back o - iy/y is given by

a - iV’V b {’iv//v/ | iv/v [e) ’iv//v/ 6 O'}

We now identify arrows and subalgebras as usual and obtain (using the fact that
V" C V' implies V" C V)

{ivlivl | tyry otynys € O'} ~ {V” C Vv’ | V" e O'} :U/" No.

Since | V' is the maximal sieve on V', the pullback o - iy is given as the inter-
section of o with the maximal sieve on V'. ]

The name " S of the subobject S is the unique arrow 1 — PY = 0 into
the power object of ¥ (i.e., the subobjects of X) that ‘picks out’ S among all
subobjects. TS is a global element of PX. Here, one uses the fact that power
objects behave like sets, in particular, they have global elements. Since we assume
that S is a clopen subobject, we also get an arrow 1 — P, X into the clopen power
object of X, see [6]. We denote this arrow by "S™, as well.

Since TY € PP, is a collection of clopen subobjects of ¥, it makes sense
to ask if S is among them; an expression like "S7 € TY is well-defined. We define,
for all V € V(R), the valuation

(TS eT)y :={V' CV|S(V')eTl}.
At each stage V', we collect all those subalgebras of V' such that S(V”) is contained
in T‘Z},.

In order to construct a global element of the presheaf of sieves ), we must
first show that v("S™ € T¥)y is a sieve on V. In the proof we use the fact that
the subobjects obtained from daseinisation are optimal in a certain sense.

Proposition 7. v("S7 € T?)y :={V' CV | S(V') € T} is a sieve on V.

Proof. As usual, we identify an inclusion morphism 7y with V” itself, so a sieve on
V consists of certain subalgebras of V. We have to show that if V/ € v("S™ € T?)y
and V" C V', then V" € v("S" € T¥)y. Now, V' € v("S? € T¥)y means
that S(V') € T{},, which is equivalent to S(V') D ﬁéo(ﬁw)w' Here, §5°(13w)v'
is the component at V' of the sub-object SsoB,) = (ﬁéo(f’w)v)VGV(R) of ¥ ob-
tained from daseinisation of ﬁw. According to Thm. 3.1 in [6], the sub-object
S 5o(By) is optimal in the following sense: when restricting from V' to V", we have
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E(iv"\/')(ﬁ(;o(ﬁw)v,) = §5°(13w)v~’ i.e., the restriction is surjective. By assumption,
S

(VY2 S , which implies

= 2§0(Py)y
S(V") 2 E(ivrv ) (S(V)) 2 Z(ivev ) (Sse(pyy,,) = Sso(By)yn-
This shows that V” € T%, and hence V" € v("S7 € T%)y . O

Finally, we have to show that the sieves v("S™ € T%)y, V € V(R), actually
form a global element of €, i.e., they all fit together under the restriction mappings
of the presheaf Q:

Proposition 8. The sieves v("S™ € T¥)y, V € V(R), (see Prop. 7) form a global
element of Q.

Proof. From Lemma 6, is suffices to show that, whenever V' C V, we have v("S™ €
)y = o("S7 € T)yN [V If V€ (787 € T¥)y, then S(V”) € TV, which
implies V" € v("S™ € T?)y. Conversely, if V" €|V’ and V" € v("S™ € TY)y,
then, again, S(V") € ']T"w,,,, which implies V" € v("S7 € TY)y. O

The global element v("S™ € T%) = (v("S™ € T%)v )yey(r) of L is interpreted
as the truth-value of the proposition represented by S € P (X) if the quantum
system is in the state ¢ (resp. T%). This assignment of truth-values is

e contextual, since the contexts V € V(R) play a central role in the whole
construction

e global in the sense that every proposition is assigned a truth-value

e completely independent of any notion of measurement or observer, hence we
call our scheme a ‘neo-realist’ formulation of quantum theory

e topos-internal, the logical structure is not chosen arbitrarily, but fixed by the
topos Set”™™ | This topos is directly motivated from the Kochen-Specker
theorem

e non-Boolean, since there are (a) more truth-values than just ‘true’ and ‘false’
and (b) the global elements form a Heyting algebra, not a Boolean algebra.
There is a global element 1 of , consisting of the maximal sieve |V at each
stage V', which is interpreted as ‘totally true’, and there is a global element
0 consisting of the empty sieve for all V', which is interpreted as ‘totally
false’. Apart from that, there are many other global elements that represent
truth-values between ‘totally true’ and ‘totally false’. These truth-values are
neither numbers nor probabilities, but are given by the logical structure of
the presheaf topos Set”®™ Since the Heyting algebra of global elements of
Q, i.e., of truth-values, is a partially ordered set only, there are truth-values
v1, U2 such that neither v; < v9 nor vy < vy, which is also different from two-
valued Boolean logic where simply 0 < 1 (i.e., ‘false’<‘true’). The presheaf
topos Set”®™ has a rich logical structure.
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6. Conclusion and outlook

The formulation of quantum theory within the presheaf topos SetV(®)™ gives a
theory that is remarkably similar to classical physics from a structural perspective.
In particular, there is a state object (the spectral presheaf ¥) and a quantity-value
object (the presheaf R of order-preserving and -reversing functions). Physical
quantities are represented by arrows between ¥ and R .

One of the future tasks will be the incorporation of dynamics. The process
of daseinisation behaves well with respect to the action of unitary operators, see
section 5.2 in [7], so it is conceivable that there is a ‘Heisenberg picture’ of dy-
namics. Commutators remain to be understood in the topos picture. On the other
hand, it is possible to let a truth-object T% change in time by applying Schrédinger
evolution to . It remains to be shown how this can be understood topos-internally.

Mulvey and Banaschewski have recently shown how to define the Gel’fand
spectrum of an abelian C*-algebra 2 in any Grothendieck topos, using constructive
methods (see [2] and references therein). Spitters and Heunen made the following
construction in [13]: one takes a non-abelian C*-algebra 2 and considers the topos
of (covariant) functors over the category of abelian subalgebras of . The algebra
2 induces an internal abelian C*-algebra 2 in this topos of functors. (Internally,
algebraic operations are only allowed between commuting operators.) Spitters and
Heunen observed that the Gel'fand spectrum of this internal algebra basically is
the spectral presheaf.!” It is very reassuring that the spectral presheaf not only
has a physical interpretation, but also such a nice and natural mathematical one.
Spitters and Heunen also discuss integration theory in the constructive context.
These tools will be very useful in order to regain actual numbers and expectation
values from the topos formalism.

Since the whole topos programme is based on the representation of formal
languages, major generalizations are possible. One can represent the same lan-
guage L£(5) in different topoi, as we already did with Set for classical physics and
SetYR)” for algebraic quantum theory. For physical theories going beyond this,
other topoi will play a role. The biggest task is the incorporation of space-time
concepts, which will, at the very least, necessitate a change of the base category.
It is also conceivable that the ‘smooth topoi’ of synthetic differential geometry
(SDG) will play a role.
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1. Introduction

The study of oscillatory integrals of the form

=", e sy 1)

is a classical topic, largely developed in connections with several applications in
mathematics, such as the theory of Fourier integral operators [51, 66], and in
physics (for instance in optics, see, e.g., [26]). In the expression on the right hand
side of (1) ® denotes a real valued “phase function”, f a complex valued function
and € € R" a real parameter. Well known examples of integrals of the form (1)

are the Fresnel integrals
/ i’ f (x)dx
R

applied in the theory of wave diffraction and the Airy integrals

/R eiz® f(z)dx
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applied in the theory of the rainbow. The fundamental feature of the integral (1)
is the oscillatory behavior of the term "%, which allows to define the integral
as an improper Riemann integral even if the function f is not summable, by
exploiting the cancelations due to the alternating of the sign of the integrand. This
property makes oscillatory integrals the suitable mathematical objects representing
the physical concept of coherent superposition, that is of interference. It is thus not
surprising that, besides optics, electromagnetism and hydrodynamics, one of the
most suggestive and powerful applications of oscillatory integrals can be found in
non relativistic quantum mechanics. Indeed in 1942 R. Feynman [38], inspired by
a paper by Dirac [35], proposed an alternative formulation of quantum mechanics
using heuristic infinite dimensional oscillatory integrals. According to Feynman the
solution of the Schrédinger equation, describing the time evolution of the state of
a quantum particle moving under the influence of a (real-valued) potential V'

{ ihBp = — LAy + Ve @)
"/)(va) = 1/)0(@

(m denotes the mass of the particle and % the reduced Planck constant), should be
given by a “sum over all possible histories”. In other words the wave function of
the system at time ¢ evaluated at the point 2 € R? should be given by an integral
on the space of continuous paths v ending at time t at the point x:

"

bty x) = “t/ RSy (1(0) Dy . 3)
{7y (t)==}

St(y) is the classical action of the system evaluated along the path ~

5:0) =80 = [ Visatends. 800 = [ pds

and D~ denotes a heuristic “flat” measure on the space of paths. The heuristic
expression (3) can be regarded as an infinite dimensional analogue of the integral
(1):

"

I = “/Fei%(”)f(v)dv : (4)

that is an oscillatory integral on an (infinite dimensional) space of paths I' with
€ = h. The Feynman path integral approach of quantum mechanics is particularly
suggestive as it creates a connection between the classical Lagrangian description
of the physical world and the quantum one, reintroducing in quantum mechanics
the concept of trajectory, which had been banned by the traditional formulation
of quantum theory. Formula (3) provides a quantization method allowing, at least
heuristically, to associate to each classical Lagrangian a quantum evolution. Feyn-
man himself extended the path integral approach to the description of the dynam-
ics of more general quantum systems, including the quantum fields, and producing
a heuristic calculus that, from a physical point of view, often works even in cases
where other methods fail.

o
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Another feature of oscillatory integrals which makes representation (3) par-
ticularly interesting is the existence of a well known theory allowing one to study
the asymptotic behavior of integrals (1) when e is regarded as a small parame-
ter converging to 0. Originally introduced by Stokes and Kelvin and successively
developed by several mathematicians, in particular van der Corput (who, by the
way, was particularly interested in applications to number theory), the “stationary
phase method” provides a powerful tool to handle the asymptotics of (1) as e | 0.
According to it, the main contribution to the asymptotic behavior of the integral
should come from those points = € R belonging to the critical manifold:

{(E € RNa | (I)I(x) - O}a

that is the points which make stationary the phase function ®. The asymptotic
analysis of oscillatory integrals is successfully applied to different areas of mathe-
matics such as the theory of (partial) differential equations, the singularity theory
and the number theory.

The extension of these techniques to the infinite dimensional case and in
particular to the Feynman formula (3) makes very intuitive the study of the semi-
classical limit of quantum mechanics, that is the study of the detailed behavior of
the wave function 9 in the case the Planck constant % is regarded as a small pa-
rameter. According to an (heuristic) application of the stationary phase method,
in the limit # | 0 the main contribution to the integral (3) should come from
those paths v which make stationary the action functional S;. These, by Hamil-
ton’s least action principle, are exactly the classical orbits of the system. Moreover
the heuristic applications of the asymptotic expansion of Feynman path integrals
(and related Euclidean path integrals) in quantum field theory gives interesting
results connected to the study of solitons resp. instantons, resp. in the case of
certain gauge fields, of topological invariants (see, e.g., [73, 74, 59, 68] for physical
discussion and e.g. , [76], [41] and [3] for Euclidean path integrals).

Despite its fascinating features, formula (3) lacks of mathematical rigor, in-
deed the Lebesgue “flat” measure D+ on the space on paths does not have a
mathematical meaning (it is quite simple to see that on an infinite dimensional
Hilbert space it is not possible to construct a Lebesgue-type measure, that is a
o—additive regular measure which is invariant by translations and rotations and
such that the measure of bounded open sets is strictly positive and finite). Feyn-
man himself was aware of this problem as he writes “one must feel as Cavalieri
must have felt calculating the volume of a pyramid before the invention of the
calculus”. The challenge to give meaning to Feynman’s heuristic calculus and to
define rigorously oscillatory integrals (4) in infinite dimension, as well as to de-
velop an infinite dimensional version of the stationary phase method, was left to
mathematicians (see also, e.g. [3, 50, 58]).

The difficulties are twofold:

e First of all one has to define an integration theory on a space of paths, that is
on an infinite dimensional space. We recall that integration theory in spaces
of continuous functions was present at Feynman’s time thanks in particular
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to the work by Wiener on Brownian motion in the 20’s (particularly in 1923)
and much successive work by Cameron, Martin and others giving rise to the
theory of stochastic processes, see e.g.[3]. However there is no mention of
Wiener integrals in Feynman’s papers.

e In the definition of Feynman path integrals one should exploit the oscillatory
behavior of the integrand. In principle the convergence of the integral should
be given by the cancelations due to this oscillatory behavior.

In the next section we shall briefly describe a solution of this problem, while
in section 3 several interesting applications of Feynman path integrals to quantum
mechanics and quantum fields will be mentioned. Due to limitation of space and
time, we will mainly concentrate on lines of research directly connected to our own
ones and with recent developments. In particular some very interesting topics have
to be left out, e.g. extensions to Dirac systems see, e.g. [54, 55], hyperbolic systems
[78], oscillatory complex Gaussian integrals, see also e.g., the extensive references
in [3, 12, 58, 61].

2. The mathematical realization of Feynman path integrals

In this section we shall see how the definition and the main properties of classical
oscillatory integrals in finite dimension can be extended to the case where the
integration is performed on an infinite dimensional Hilbert space.

A systematic treatment of finite dimensional oscillatory integrals, as well as
their application to the theory of Fourier integral operators, can be found in the
work by Hormander [51] (see also, e.g., [36] and [66]). According to Hérmander,
the integral (1) can be computed even when the function f is not summable by
exploiting the cancelations due to the oscillatory behavior of the integrand. The
oscillatory integral is defined as the limit of a sequence of regularized integrals.

Definition 1. Let f : R® — C be a Borel function and ® : R — R a phase
function. If for each test function ¢ € S(R™) such that $(0) = 1 the integrals
®(x)

I(£,0) = [ (2mie) 26 f(a)(0)da

exist for all § > 0 and lims_.o I5(f, ¢) exists and is independent of ¢, then the limit
is called the oscillatory integral of f with respect to % and denoted by

T e
/ e« fla)yde=1
R‘Il

In the special case where the phase function is a quadratic form, the oscilla-
tory integral is called Fresnel integral (following the name given to certain integrals
in optics, see [12]).

(f)- ()

The existence of the integral I O (f) can be proved for large classes of functions
®, f [51, 52, 36, 66, 17], even though a complete direct characterization of the class
for which the integral is well defined is still an open problem. However, for suitable
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®, it is possible to find an interesting set of “integrable functions”, for which the
oscillatory integral I®(f) can be explicitly computed in terms of an absolutely
convergent integral thanks to a Parseval-type equality.

Given a (finite or infinite dimensional) real separable Hilbert space (H, ( , )),
whose elements are

denoted by x,y € H, let us denote by F(H) the space of complex functions
on H which are Fourier transforms of complex bounded variation measures on H:

feFM),  f) = /H ey ().

F(H) is a Banach algebra of functions, where the product is the pointwise one,
the unit element is the function identically one 1, i.e. 1(z) = 1 Vo € H and the
norm of a function f is given by the total variation of the corresponding measure

py:
£ 117y = Npsgll = sup Y~ [u(E)],

where the supremum is taken over all sequences {F;} of pairwise disjoint Borel
subsets of H, such that U; E; = H. It is possible to prove [17] that if f € F(R"™),
. D

f = fiy, and for phase functions ® such that F'® has a Fourier transform

: = i
F? which is integrable (in Lebesgue sense) with respect to #, then the oscillatory
integral I®(f) exists and it is given by the following “Parseval formula”:

1) = [ Foydus(a) (6)

Equation (6) holds for smooth phase functions ® of at most even polynomial
growth at infinity.
Equation (6) allows, in the case ® is an homogeneous polynomial and under regu-
larity assumptions on the function f, to compute (see [17]) the detailed asymptotic
expansion of the integral I o (f) in fractional powers of the parameters /i around
a degenerate (or non degenerate) critical point, with a strong control on the re-
mainders. The study of the asymptotics of oscillatory integrals in the case where
the critical manifold contains degenerate critical points is related with singularity
theory and catastrophe theory [27, 36, 26].

The generalization of these results to the infinite dimensional case involves
several technical difficulties. Indeed in the 60’s Cameron [28] proved that it is not

possible to realize the heuristic Feynman measure
#5°()

en D~

d =——
e () [er Dy

as a complex measure on the space of paths, as it would have infinite total vari-
ation (even locally). This means that for Feynman integrals it is not possible to
implement an integration theory in the traditional Lebesgue sense.
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The main idea to overcome this problem is dualization. In other words the

integral
£~y "
O WD” = [ @) = 16(5)

ehSU(’Y

has to be realized as a linear continuous functional on a suitable topological algebra
of “integrable functions”, generalizing the idea of (Radon) measure as linear func-
tional on the space of bounded continuous functions (on locally compact spaces).
Among the different approaches to the mathematical definition of the “Feynman
functional”, the most implemented are the theory of infinite dimensional oscilla-
tory integrals on Hilbert (resp. Banach spaces) [12] and the white noise calculus
[50]. In the following we shall extensively describe the first approach and give some
elements of the latter.

Let us denote by (H,( , )) an infinite dimensional real separable Hilbert
space, ® : H — R a phase function and f : H — C a complex valued function. An
infinite dimensional oscillatory integral on the Hilbert space H can be defined as
the limit of a sequence of finite dimensional approximations, as proposed in [37, 7].

Definition 2. A function f : H — C is said to be integrable with respect to the
phase function ® : H — R if for any sequence P,, of projectors onto n-dimensional
subspaces of H, such that P, < P,y1 and P, — 1 strongly as n — oo (1 being the
identity operator in H), the finite dimensional approximations

—

‘P(PnL)
/ 2 F(Px)d(Py ),
Py H

are well defined (in the sense of definition 1) and the limit

lim e F(Poa)d(Poz) (7)
n—oo PWH

exists and is independent of the sequence {Py,}.

In this case the limit is called oscillatory integral of f with respect to the phase

function ® and is denoted by

i3] — 'L"N:P’> d
1 (f)—/He f(@)dz.

As in the finite dimensional case, the basic question is the characterization
of the class of functions f and ® for which the integral I®(f) is well defined.
According to [12, 37, 7], in the case where f belongs to the Banach algebra F(H)
of C—valued functions on H which are Fourier transform of bounded complex
measures on H and @ is of the form ® = &y + V, where ®( is a quadratic form
and V € F(H), then I®(f) can be explicitly computed in terms of a Parseval type
equality. In the following the small parameter ¢ will be replaced by i because of
its meaning in the applications to quantum mechanics.



A Survey of Feynman Path Integrals 55

Theorem 1. Let L : H — H be a self adjoint trace class operator, such that I — L
is invertible. Let f,V € F(H). Let us consider the phase function ® : H — C,
given by

O(z) = Dg(z) + V(x), r€eH (8)

with ®g(x) = M Then the infinite dimensional oscillatory integral I®(f)
is well defined and it is given by

[+ @ = [ oD s
H

H
= (det(I—L))_l/Q/ e_%ﬁ(x’(l_L)ﬂwu _iy(dx).
H feon
det(I — L) is the Fredholm determinant of the operator (I — L) (that is the product
of the eigenvalues of I — L). The right hand side is explicitly computable (e.g. by
an expansion in powers of e"%V ) as fe"®V € F(H).

This result has been recently generalized [18] to phase functions of the form
O (z) = Do(x) + AP(z), x €H, (9)

where ®q is of the type handled in theorem 1, A € RT and P is a fourth order
polynomial. In this case the integral I?(f), f € F(H), is still computable in terms
of a Parseval type equality:

1) = [ b payin = [ Fa)dng (10)

with F'® defined by

n— oo

F®(z) = lim (27rih)_"/2/ e Pnt:Pry) o 5 2(Pav) g p )
PyH

— Eleie T VR@ ) o3 (L) omiMP()) (11)

where the expectation is taken with respect to N(0, Iy), the centered standard
Gaussian measure associated with H. Analogously one has

I*(f) = Bl (e VR )edtE e ), (12)

It is possible to prove that the right hand side of (12) is an analytic function for
Im(X) < 0 and continuous for I'm(\) = 0. Moreover a corresponding result can be
proved for ® = &g+ AP + V, with V € F(H).

The infinite dimensional oscillatory integrals have some interesting proper-
ties, which are important as they mirror some heuristic features of formal Feynman
path integrals, in the case where the Hilbert space H is a space of paths . First of
all they have simple transformation properties under “translations and rotations”
in paths space, reflecting the fact that dz should represent a flat measure. They
satisfy a Fubini-type theorem, concerning iterated integration in paths space, al-
lowing, in the physical applications, to construct a one parameter group of unitary
operators associated to the time evolution described by the Schrédinger equation.
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They can be approximated by finite dimensional oscillatory integrals, allowing a
sequential (“time slicing”) approach very close to Feynman’s original derivation.
They are also related, via the Parseval type equality (12), to (Gaussian) proba-
bilistic integrals, allowing an “analytic continuation approach” (largely developed
by several authors [28, 29, 56, 57, 58, 69, 14, 8, 79]).

Moreover, the functional I®(f) satisfies a “duality property”, in other words
the application

feFM) = I%(f)

is continuous in the norm of the Banach algebra F(H). The duality property is
central also in other approaches, e.g. [30] and [15]. Tt is also the main idea of the
white noise calculus approach [50], where the Feynman functional I®(f) is realized
as the pairing between the function f and an infinite dimensional distribution Tg
(in the framework of the Hida calculus):

I*(f) = 1(Te, fls)
where the Gelfand triple is

(S) C L*(S'(R®), N(0, Ir2rs)) C (S,

N(0, I12(rsy) being the Gaussian white noise measure, (S) = (S(IR®)) being essen-
tially an infinite dimensional analogue of S(R®) C L?(R®), and correspondingly
(8" = (§'(R®)) an infinite dimensional analogue of §’'(R?), the space of tempered
distributions.

It is worthwhile to underline that, within all the approaches, the phase func-
tion ® which can be handled are essentially of the form (8), except for the pos-
sibility of including functions V' of the form of a Laplace transform of bounded
measures, and some singular V', see, for example [12, 15, 50, 63]. The only approach
which is able to handle a (quartic) polynomial term as in (9) and the correspond-
ing method of stationary phase seems to be the infinite dimensional oscillatory
integrals approach described above.

3. Applications

3.1. Quantum mechanics

The first application of the infinite dimensional oscillatory integrals is the math-
ematical realization of the Feynman path integral representation for the solution
of the Schrodinger equation. Let us consider the Cameron-Martin space H;, that
is the Hilbert space of absolutely continuous paths v : [0,#] — R? with y(t) = 0
and square integrable weak derivative fot 4(s)?ds < oo, endowed with the inner
product

{(y1,72) :/o 41(8) « A2(s)ds.
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Let us consider Schrodinger equation (2) with a potential V' which is the sum
of an harmonic oscillator term and a bounded perturbation which is the Fourier
transform of a complex bounded variation measure on R%:

1
V(z) = ixQQ:U + v(z), r € R v e F(RY),

with Q2 being a positive symmetric d x d matrix.

By taking as initial datum 19 € L?(R%) belonging to F(R?), it is possible to
prove that the infinite dimensional oscillatory integral with respect to the quadratic
phase function ®(v) = L ~v € Hy, of the functional f on the Cameron-Martin

2h
space given by
v fly) = e~ fJ(v(S)H)QQ(v(S)H)dSGf%v(v(S)er)dS)%(,y(o) +2), v EeH,

can be computed by means of a Parseval type equality and is a representation of
the solution of the Schrodinger equation:

()

bty ) = /H 5 f(7)dy

_ / o B o= f&(’y(s)—&-x)ﬂz('y(s)-&-x)dse—%’U(’Y(S)+$)d$)w0(ry(0) + x)dy
He

1"

. / Sy (1(0)Dy . (13)
{7y (#)=x}

The study of the asymptotics of the integral (13) in the limit & | 0 is directly
related to the study of the “semiclassical expansions” of quantum mechanics. The
first rigorous results on the generalization of the method of the stationary phase
to the infinite dimensional case can be found in [13]. These results were further
developed in [72, 7]. By considering an infinite dimensional oscillatory integral of
this form

I(h) ::/ e (@2 e 7V@) f(2)dx
H

where V, f € F(H) satisfy suitable regularity and growing conditions, one can
prove that

e the phase function ®(z) = (x,x)/2—V(z) has only non degenerate stationary
points

e the oscillatory integral I(%) is a C* function of the parameter i

e its asymptotic expansion in powers of & when i — 0 depends only on the
derivatives of V' and f at the critical points.

It is important to underline that, under additional assumptions on V, it is
possible to prove that the asymptotic expansion is Borel summable so that it allows
the unambiguous determination of the function I(%) itself [72]. These results can be
applied to the study of the asymptotic behavior of the solution of the Schrédinger
equation in the limit where the Planck constant 7 is regarded as a small parameter
converging to 0. In fact, by assuming that the potential v is the Fourier transform
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of a complex bounded variation measure on R% and that the initial datum has the
following form

Yo(z) = e%s(x)x(x), r € R?

with x € C$°(R?) and s € C°(RY), it is possible to prove that the infinite di-
mensional oscillatory integral representation for the solution of the Schrédinger
equation

/ e (0 e g J§ () +0)Q () F0)ds o= [ vV () +0)ds g 51OV +2)y (4(0) + )y
He

has an asymptotic expansion in powers of A, depending only on classical features of
the system. This technique yields an independent (Feynman path integral) rigorous
derivation of Maslov’s results on the WKB-type asymptotics of the solution of
Schrédinger equation, with, in addition, strong control on the remainders.

Another interesting application of the infinite dimensional stationary phase
method is the study of the trace of the Schréodinger group

Tr[e_%Ht]

and its asymptotic behavior when i — 0 [5, 6]. For potentials of the (usual) type
“harmonic oscillator plus Fourier transform of measure” it is possible to prove
a trace formula of Gutzwiller’s type, relating the asymptotic of the trace of the
Schrédinger group and the spectrum of the quantum mechanical energy operator
H with the classical periodic orbits of the system. Gutwiller’s trace formula, which
is a basis of the theory of quantum chaotic systems, is the quantum mechanical
analogue of Selberg’s trace formula, relating the spectrum of the Laplace-Beltrami
operator on manifolds with constant negative curvature with the periodic geodesics
on those manifolds.

Infinite dimensional oscillatory integrals can be also applied to the quan-
tum theory of open systems, in particular to the mathematical realization of the
“Feynman-Vernon influence functional”. Let us consider a quantum system A,
with state space L2(R%), interacting with a quantum system B, with state space
L?(RY), representing a reservoir. Let us assume that the total Hamiltonian of the
compound system is Hap = Ha + Hp + Hj, where H4 and Hp are both Hamil-
tonians describing harmonic oscillators perturbed by bounded potentials v4,vp
belonging to F(R") and F(RY) respectively. The interaction Hamiltonian is of
the form H; = z4Cxp, where 4 € R? and xp € RY represent the spatial coordi-
nates of the system A and B respectively, while C : RV — R? is a matrix. Under
suitable assumptions on the initial state of the compound system it is possible
to prove that the reduced density operator kernel of the system A (obtained by
tracing out the environmental coordinates) is heuristically given by

paltia,y) =" [, eh A5 E ()5 (3(0),7/(0)DDy ) (14)

¥ (H)=y
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where F' is the formal Feynman-Vernon influence functional

F(v,7) (15)

— « -0 e%(SB(F)fsB(F,))e%(SI(Ff"/)st(F,"Y/))pB(]_—‘(0)7F’(O))DI‘DI‘/dQ”'
I'(t)=Q
Under suitable assumptions on the initial state of the compound system it is pos-
sible to prove that the heuristic formula (14) can be realized in terms of an infinite
dimensional oscillatory integral on the Cameron-Martin space H; [9]. This result
has been applied to the study of the Caldeira-Leggett model for the description of
the quantum Brownian motion.

An alternative description of a quantum system interacting with an exter-
nal environment is the stochastic Schrédinger equation, where the influence of
the reservoir is modeled by a noise term. Among the large number of stochastic
Schrédinger equations proposed by several authors, we consider for instance the
Belavkin equation, describing the time evolution of a quantum particle submitted
to the measurement of its position:

dip(t, x) = — L Hy(t,2)dt — 32¢(t, z)dt + VAzp(t, 2)dW (t)
(16)
w(ovx) = 1#0(55) (ta (E) € [OaT] X Rda

(where A > 0 is a coupling constant and W is a d-dimensional Brownian motion).
It is possible to prove that the solution of the stochastic Schrodinger equation
admits a Feynman path integral representation in terms of a well defined infinite
dimensional oscillatory integral [10], providing a rigorous mathematical realization
of the heuristic formula [67, 16] for the state of the system in the case the observed
trajectory is the path w:

Yt z,w) =~ /{ " }e%st(v)e*/\ Jo ) =) dse 0 4 (0)) Dy " (17)
v(t)=x

One can see that, as an effect of the correction term e~*Jo (V(®)=w()*ds que to
the measurement, the paths giving the main contribution to the integral are those
closer to the observed trajectory w.

The extensions of these results to the case where the potential V in the
Schrodinger equation (2) has polynomial growth, i.e. V(z) = ;xQQ:B + M2V with
Q:RY - R% X\ > 0and z € R? has been recently obtained in the case 2N = 4
[18], also when both Q and A are time-dependent [19]. The extension of the method
of the stationary phase to oscillatory integrals with polynomial phase function is
rather delicate and still under study. First results in this direction concerning the
trace of the heat semigroup Trle~ %], ¢ > 0, with H = —%A + Mx|?V, can be
found in [20], where the case of a degenerate critical point of the phase function
is handled.
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3.2. Quantum fields

Heuristic Feynman path integrals have been applied to many problems in quantum
field theory. A particularly interesting application of Feynman path integrals can
be found in a paper by Witten [80], who conjectured that there should be a con-
nection between quantum gauge field theories on a 3-dimensional manifold based
on the Chern-Simons action (an object originally introduced for pure differential
geometric - topological considerations) and the Jones polynomial, a link invariant.
In the Feynman path integral formulation of Chern-Simons theory, the integration
is performed on a space of geometric objects, i.e. on a space of connections.

Let M be a smooth 3-dimensional oriented manifold without boundary, let G
be a compact connected Lie group (the “gauge group”) with a finite dimensional
representation R (in the following the group elements will be identified with their
representatives). Let us denote by g the Lie algebra of G, by I" the space of g-
valued connection 1-forms and by A € T its elements. Let Scg : I' — R be the
Chern-Simons action, defined by

SCS(A)EE/ Tr(A/\dA—&—gA/\A/\A), (18)
A Sy 3
where k is a non-zero real constant and the trace is evaluated in the given rep-
resentation R. The application Scg is metric independent and invariant under
diffeomorphisms. The couple (A, S(A)) represents a classical topological gauge
field.

Let us consider the functions f : I' — C of the form

F(A) = [[ Tr(Hol(A, 1)),

i=1

where (l1, ...,1,), is an n-tuple of loops in M whose arcs are pairwise disjoint and
Hol(A,1) denotes the holonomy of A around I. According to Witten’s conjecture
the heuristic Feynman integrals

"

- / e'Ses(A f(A)DA (19)
r

should represent topological invariants.

In the case where M = S% and G = SU(2), the heuristic integral (19) should
give the Jones polynomials, if G = SU(n) the Homfly polynomials and if G =
SO(n) the Kauffman polynomials (all objects of the theory of knots).

Gauge transformations can be given by differentiable functions x : M — G which
act on a connection A by

A x LAy 4+ xtdy.
The Chern-Simons functional Scg(A) changes to

Ses(x " Ax + x " tdx) = Scs(A) — kW (x)
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with
1

Wa(x) = Tom /M Tr(x tdy A x " tdx A x " tdy).

It can be shown that the function ¢*® : I' — C is gauge invariant if and only if the
quantization condition
kWu(x) C27Z  Vx (20)

is satisfied (see, e.g., [70]). For abelian G the quantity W, (x) vanishes, but for a
general semisimple Lie group G this quantity does not vanish and the quantization
condition of the coupling constant (20) has to be required [70].

A partial mathematical realization of Witten’s theory was provided in the
case M = R3 by Frohlich and King [39]. Rigorous “algebraic” results, without
however any direct relation to Witten’s heuristic path integral approach, can be
found in [71].

In the framework of the theory of infinite dimensional oscillatory integrals,
the rigorous mathematical realization of the integral (19)

©[esetpapa = 10(p)
I

can be implemented by exploiting suitable gauges, at least under some restriction
on (M, G).

If M is a general manifold with H'(M) = 0 and G is abelian, the integral
I®(f) has been constructed both as an infinite dimensional oscillatory integral [23]
and as a white noise functional [64]. In this case, the integral I®(f) represents the
Gauss linking number of knots. The case where H'(M) # 0 has been studied by
Adams [1] by simplicial methods (related to those first pointed out in [23] on the
basis of [25].

For manifolds M = R? or M = ¥ x R, (X being a compact manifold) and G
non abelian, the construction of the Feynman functional can be implemented in
the framework of the white noise calculus, by exploiting a particular gauge trans-
formation (axial gauge) [24]. In this gauge the Chern-Simons action Scg loses the
cubic term and the phase function ® in the integral becomes a quadratic form. The
construction of the observables, that is the integrals (19), is rather technical and
has been implemented in [47]. Analogous results have been obtained in the case
where M = S! x S? or M = S! x 3, where ¥ is an oriented surface, and G is not
abelian by exploiting the “Blau-Thompson’s quasi axial gauge”, also called “torus
gauge”[48, 49, 34]. These computations have been performed for “general colored
links”. First partial results on the asymptotics in & — oo by a rigorous infinite
dimensional stationary phase method applied to a regularized Chern-Simons func-
tional expressed in terms of Wiener integrals are in [22], where connections with
Vassiliev’s invariants are mentioned (these invariants appear in a heuristic asymp-
totic expansion of the Chern-Simons oscillatory integrals). Much remains obviously
to do, but it seems that lucky combination of geometrical-algebraic ideas and rigor-
ous infinite dimensional analysis related to oscillatory integrals (and probabilistic
integrals) might lead to further exiting developments.
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A Comment on the Infra-Red Problem
in the AdS/CFT Correspondence

Hanno Gottschalk and Horst Thaler

Abstract. In this note we report on some recent progress in proving the
AdS/CFT correspondence for quantum fields using rigorously defined Eu-
clidean path integrals. We also comment on the infra-red problem in the
AdS/CFT correspondence and argue that it is different from the usual IR
problem in constructive quantum field theory. To illustrate this, a triviality
proof based on hypercontractivity estimates is given for the case of an ultra-
violet regularized potential of type : ¢* :. We also give a brief discussion on
possible renormalization strategies and the specific problems that arise in this
context.
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tum field theory, triviality results, functional integrals, generating functionals.

1. Introduction

Often, the AdS/CFT correspondence between string theory or some other theory
including quantized gravity on bulk AdS and super-symmetric Yang-Mills theory
on its conformal boundary [12, 17] is formulated in terms of Euclidean path in-
tegrals. In the absence of mathematically rigorous approaches to path integrals
of string type (see however [1]) or even gravity, it seems to be reasonable to use
the well-established theory of constructive quantum field theory (QFT) [5] as a
testing lab for some aspects of the more complex original AdS/CFT conjecture.
That such simplified versions of the AdS/CFT correspondence are in fact possible
was already noted by Witten [17] (see also [8]) and further elaborated by [4]. In
[6] we give a mathematically rigorous version of the latter work (in [9] one finds
some related ideas), leaving however the infra-red (IR) problem open. In this note
we come back to the IR problem and we show how the difference between the IR
problem in the AdS/CFT correspondence as compared with the usual IR problem
in constructive QFT leads to somewhat unexpected results.
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The authors would like to underline that, in contrast to [6], the present article
is rather focused on ideas and thus leaves space for the interpretation of the validity
of the results. We will comment on that in several places.

The article is organized as follows: In the following section we introduce the
mathematical framework of AdS/CFT correspondence and define rigorous proba-
bilistic path integrals on AdS. In Section 3 we recall the main results from [4, 6],
i.e. that the generating functional that is obtained from imposing certain boundary
conditions at the conformal boundary (which is the way generating functionals are
defined in string theory) can in fact be written as a usual generating functional of
some other field theory. From the latter form it is then easy to extract structural
properties, e.g. reflection positivity of the functional, in the usual way. Somewhat
unexpectedly, it is not clear whether a functional integral can be associated to
the boundary theories. These statements hold for all sorts of interactions with a
IR-cut-off. In Section 4 the IR-problem in this version of the AdS/CFT corre-
spondence is discussed on a heuristic level. We also sketch the proof of triviality
of the generating functional of the conformally invariant theory on the conformal
boundary of AdS for the case of an UV-regularized : ¢* : interaction. We briefly
survey strategies that might be candidates to overcome the triviality obstacle at a
non-rigorous level and we comment on specific problems with such strategies. The
final section gives some preliminary conclusions and an outlook on open research
problems in understanding further the mathematical basis of AdS/CFT.

2. Functional integrals on AdS

Let us consider the d+2 dimensional ambient space R%? = Rt2 with inner product
of signature (—, +,...,+,—),ie. (2= —(?+G+-- '+<c21+1 7@4_2 where ¢ € R%2.
Then the submanifold defined by {¢ € R%2 : ¢(2 = —1} is a d + 1 dimensional
Lorentz manifold with metric induced by the ambient metric. It is called the d + 1
dimensional Anti de Sitter (AdS) space. Formal Wick rotation ¢; — i¢; converts
the ambient space into the space R*+1:! with signature (+, ..., +, —). Under Wick
rotation, the AdS space is converted to the Hyperbolic space Ht! : {¢ € RI*! .
¢2 = —1,¢? > 0}, which is a Riemannian submanifold of the ambient d + 2
dimensional Minkowski space. We call H%*+! the Euclidean AdS space.

It has been established with full mathematical rigor that Euclidean random
fields that fulfil the axioms of invariance, ergodicity and reflection positivity give
rise, via an Osterwalder—Schrader reconstruction theorem, to local quantum field
theories on the universal covering of the relativistic AdS, cf. [3, 10] justifying
the above sketched formal Wick rotation. Hence a constructive approach with
reflection positive Euclidean functional integrals is viable.

It is convenient to work in the so called half-space model of Euclidean AdS
(henceforth the word Euclidean will be dropped). This coordinate system is ob-
tained via the change of variables (; = x;/z,i = 1,...,d, (441 = — (22 +22—1)/22,
Ca+2 = (22 + 22 +1)/22 which maps RT™ = {(z,2) € R*! : 2 > 0} to HI+!.
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We will use the notation z for (z,z1,...,24) € Riﬂ. The metric on Riﬂ is given
by g = (dz? + dx% + - - - + dx?)/2* which implies that the canonical volume form
is dgz = 279 dz Adxy A -+ A deg. The conformal boundary of H4+! then is the
d-dimensional Euclidean space R? with metric ds? = dz} + - -+ + da? which is
obtained via the limit z — 0 and a conformal transformation of the AdS metric.
Of course, the upshot of the AdS/CFT correspondence is that the action of the
Lorentz group on the AdS space H?*! gives rise to an action of the conformal group
transformations on the conformal boundary. One thus expects an AdS symmetric
QFT (or string/quantum gravity. . .theory) on the bulk H¢*! to give, if properly
restricted to the conformal boundary, a conformally invariant theory on R<.

We will now make this precise. On the hyperbolic space H*! one has two
invariant Green’s functions (“bulk-to-bulk propagators”) for the operator —Ay +
m?, with A, the Laplacian and m? a real number suitably bounded from below,
that differ by scaling properties towards the conformal boundary

Gil(z, 252 ,2") =72 (2u) 2+ F(Ay, Ay + 59420, +1—-d;—2u™t)  (21)
Here F is the hypergeometric function, u = %, Ag = %i%\/ d? + 4m?
ra
for z — 0 in one or two of the arguments, the bulk-to-boundary and boundary-to-
boundary propagators are obtained

=: % +v,v>0and y+ = [4, 6]. Taking pointwise scaling limits

Ay
Hy(z,x;2") = leil_r}o TG (2, w2 2) = e <m> (2:2)

and
ot (z,2') = lim 272 Hy (2, 2;0)) = ya(z — /) 7284, (2.3)

z—0

If (2.2) or (2.3) do not define locally integrable functions, the expressions on the
right hand side are defined via analytic continuation in the weights A4. An im-
portant relation between G,, G_, H; and «a_ is the covariance splitting formula
for G_ given by

G-wa) = Grle)+ [ [ HilwnPa ) H )y, (24)
Rd JRd
with ¢ = 2v.

We now pass on to the description of mathematically well-defined functional
integrals. Let D = D(H*! R) be the infinitely differentiable, compactly sup-
ported functions on H%t! endowed with the topology of compact convergence.
The propagator G is the resolvent function to the Laplacian A, with Dirichlet
boundary conditions at conformal infinity, from which it follows that G is stochas-
tically positive, (f, f)-1 = G+ (f, f) = fyarr gparr G+ (2, 2) f(2) f(2') dgzdga’ >0

Vf € D, and reflection positive as long as m? > —d;. The latter value is de-

termined by the lower bound of the spectrum of A, on H*l. In explicit, if
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0: (z,z1,2a,...,2q4) — (z,—21,Z2,...,24) is the reflection in xi-direction, then
forany fe Dy ={heD: (_)—Olfxl < 0} we have

/ ()o@ f (@) dyzd,z’ >0,
d+1 XHd+1

cf. [5]. Here, f,(x) = f(u~'z) for u € Iso(H+!).

Consequently, via application of Minlos theorem, there exists a unique prob-
ability measure pg, on the measurable space (D',B), where D' is the topo-
logical dual space of D and B the associated Borel sigma algebra, such that
I e Pdug, (¢) = e2(ff)=1. By setting o(f)(@) = ¢(f) we define the canon-
ical random field associated with pg, , i.e. a random variable valued distribution.
In the following we omit the distinction between ¢ and ¢ and write ¢ for both.

Let Ba, A C H%! be the smallest sigma algebra generated by the functions
D' > ¢ — (o, f), suppf € A and M(A) be the functions that are B-measurable.
We use the special abbreviations By = Byyepdtiiz, >0y and My = M(B,). Then
pa, is reflection positive, i.e.

N OF(§)F(¢) dug, (¢) >0, VF € My. (2.5)

The reflection OF(¢) is defined as F(¢g) with (¢y, f) = (¢, fu-1) Vo € D', f €
D and u € Iso(H9*t1). (., .) is the duality between D’ and D induced by the
L?(H9*! d,z) inner product.

Let {Va} : D' — R be a set of interaction potentials indexed by the net of
bounded, measurable subsets A in H%*+!. In particular these sets have finite volume
|A| = [, dgz. We require that the following conditions hold:

(i) Integrability: e=¥2 € LY(D',duc, ) VA;

(ii) Locality: Vi € M (By);
(iii) Invariance: Va(¢y) = Vy-14(9) pa,—a.s..
(iv) Additivity: Vi + Vi = Vauar for ANA = 0.

(v) Non-degeneracy: VA =0 pg,—a.s. if [A| = 0.
Then, using (i), we obtain a family of interacting measures on (D', B), indexed
by the net {A}, by setting dug, o = e’VAduGJr/ZA with Z, = fD, e~ Va dpa, -
Furthermore, using (ii)—(v) we get whenever A = A

. OFF dug, A = ZLA/ S (Fa"u) (Fe—VA+) duc, >0, VF € My, (2.6)
where A = AN {z € H¥*! : z; > 0}. Hence reflection positivity is preserved
under the perturbation. Furthermore, from the invariance of pg. under Iso(HA+1)
we get that u.pic, A = pa, ua- Here u € Iso(H*!) induces an action on D’ via
¢ — ¢, and u, is the pushforward under this action. Consequently, if the limit
(in distribution) pg, mer1 = limy rgas1 g, A exists and is unique, the limiting
measure is invariant under Iso(H?*!) and reflection positive. Invariance follows
from the equivalence of the nets {A} and {uA} and the postulated uniqueness of
the limit over the net {A}.
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Let us next consider functional integrals associated with the Green’s function
G_. In the case when 2v < d (& m? < 0) we get that a_ is stochastically positive
since @ (F, ) = fuuma 0 (2,2) (@) f(2') doda’ = C—yy [y [k~ | f(R)? dk > 0.
f denotes the Fourier transform of f wrt. , f(k) = (2r)~%/2 Jga €% f(2) dx. Fur-
thermore, a_ is reflection positive in z;-direction (in the usual sense, cf. [5]) if and
only if —v > —1, which is also known as the unitarity bound. It is clear from the de-
composition (2.4) that G_ is stochastically positive if G and a_ are both stochas-
tically positive. The reflection positivity of G_ does not follow from the reflection
positivity of G4 and a_ due to the non-local effect of H,. We will however not need
it here. We thus conclude that for supspec(Ay) < m? < 0 a unique probability
measure pg_ on (D', B) with Laplace transform [, e/ dug_(¢) = ez {fif)-1-
exists. Here (f, f)_1,— = G_(f, f). The perturbation of uc_ with an interaction
can now be discussed in analogy with the above case — where however the reflec-
tion positivity for the perturbed measure remains open, as reflection positivity of
the free measure does not necessarily hold.

3. Two generating functionals

On the string theory side of the AdS/CFTcorrespondence, generating functionals
for the boundary theory are calculated fixing boundary conditions at the confor-
mal boundary (so called Dirichlet boundary conditions). Little is known about the
mathematical properties of such kinds of generating functionals. E.g. their sto-
chastic and reflection positivity is far from obvious, leaving the linkage to path
integrals and relativistic physics open. It was noticed by Diitsch and Rehren [4]
that such kinds of generating functionals can however be re-written in terms of
ordinary generating functionals, from which the structural properties can be read
of in the usual way. These ideas in [6] have been made fully rigorous in the context
of constructive QFT. We will now briefly review these results.

The generating functional Z(f)/Z(0), f € S(R% R), the space of Schwartz
functions, in the AdS/CFT correspondence from a string theoretic point of view
can be described as follows: Let ¢ be some scalar quantum field that is included
in the theory (e.g. the dilaton field) and let V, be the (IR and eventually UV-
regularized) effective potential for that field obtained via integrating out the re-
maining degrees of freedom (leaving open the question how such an “integral”
can be defined). To simplify the model and for the sake of concreteness we will
sometimes assume that Vj is of polynomial type. Formally,

2() :/ e=S0(®)=Va(®) gy — /5(% eSO gy (3.1)
P0=0|gud+1=1

where Sy = |[V|? + m2¢?, ¢g = @|sma+1 are suitably rescaled boundary values
of the field ¢ and d¢ is the heuristic flat measure on the space of all field con-
figurations. The first step in making this formal expression rigorous is to replace



72 Hanno Gottschalk and Horst Thaler

e=%0(®) d¢ with a well-defined probabilistic path integral. It turns out that duc_ (¢)
is the right candidate and hence for the moment restriction to m? < 0 is necessary.

In a second step we have to make sense out of the boundary condition
¢o = f or the functional delta distribution on the boundary values of the field,
respectively. Using the covariance splitting formula (2.4) we obtain the splitting
p—(z) = ¢4 (x) + [ga Hi(z,2")pa_ (') dz’, where ¢4 are the canonical random
fields associated with G+ and ¢,_ is the canonical random field associated to
the functional measure ji_, i.e. the Gaussian measure with generating functional
eza-(f.f) living on the conformal boundary of H?+!,

The following step is to construct a finite dimensional approximation v, _ of
the boundary field ¢,_ by projecting it via a basis expansion to R™. Thereafter,
one can implement the delta distribution as a delta distribution on R™. Finally
one can remove the finite dimensional approximation via a limit n — oco. It turns
out that this limit exists and is unique up to a diverging multiplicative constant.
This constant however drops out in the quotient Z(f)/Z(0). With the projection
to the first n terms of the basis expansion denoted by p,, and 7 a linear mapping
from this space to R™ we get

iy 1 )
CA,/ / 5(11)&7 . 77pnf)e—\/)\(¢++CH-¢—("7 waf))d,uGJr((bJr)e ;(wa,,A_l/Ja,)dwa7

- CAie*%(f,(pnafpn)‘lf)/ erA(¢++cH+(pnf))dMG+(¢,+) = Z,(f), (3.2)

’
1
_ |detA_|2
- 4
(2m) %

. _itpatpy Jp €O D dpg (64)
Z(f)/Z(O) = ’ﬂll—{{.lo Zn(f)/Zn(O) - e DfD/ e_VA(¢+)d/JG+(¢+)

where A_ := (nppa_p,n~ ')~ and Ca_ . One can then show that

(3.3)
converges under rather weak continuity requirements on V), that are fulfilled e.g. for
UV-regularized potentials in arbitrary dimension and for P(¢)s potentials without
UV cut-offs in d+1 = 2. Obviously, the limit does not depend on the details of the
finite dimensional approximation. For the details we refer to [6]. We now realize
that the right hand side of (3.3) also makes sense for m? > 0 and we adopt (3.3)
as a definition of (3.1).

At this point one would like to associate a boundary field theory to the
generating functional C(f) = Z(f)/Z(0). In order to obtain a functional in-
tegral associated to C : S = S(RY,R) — R we require that C is continuous
wrt. the Schwartz topology, normalized, C(0) = 1 and stochastically positive,
=1 ZiAC(fj + fi) 2 0¥ n € N, f; € S,2; € C. Furthermore, in order to
have a well defined passage from Euclidean time to real time QFT one requires
reflection positivity Z?,l:l ZiziC(fj0+ fi) >0V ne N, f; € S,z € C. Here
Sy ={f € S:suppf C {r € R?: z; > 0}}. Finally, the theory obtained at the
boundary should be conformally invariant, provided the IR cut-off A is removed
from V) via taking the limit of the generating functionals wrt. the net {A}.
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It has been pointed out in [4, 11, 16] that an alternative representation of the
functional (3.3) answers a number of the questions raised above. Let ¢(z) = ¢(z, x)
be the canonical random field associated with the measure ug,. The idea is to
smear ¢(z, ) in the z-variable with a test function f € D(RY,R) and then scale
z — 0. In the light of (2.1), one has to multiply ¢(z, f) = (¢, . ® f) with a factor
272+ in order to obtain a finite result in the limit. We set

Y. (f) :/ (@2 24 5.01) o= Va(9) dpc, (¢). (3.4)

Clearly, under the conditions on Vj given in the preceding section and for A = 0A,
Y.(f)/Y.(0) defines a continuous, normalized, stochastically positive and reflection
positive generating functional for all z > 0. Using the fact that G4 (J, ® f) is in
the Cameron-Martin space of the measure pig_ , one gets with f, = 27845, @ f,
cf. [6],

Yo(f)/Y2(0) = exC+f) / e MO P dpg, (9)/Y-(0). (35)

We now want to take the limit z — 0. Using (2.2) one can show under rather
weak continuity requirements on V} that the functional integral on the rhs of (3.5)
converges to fD/ e~ ValotH ) qnq . (¢). The prefactor however diverges. The reason
is that the limit in (2.3) is only a pointwise limit for z # z’ and not a limit in the
sense of tempered distributions. One can however show that [6]

/]Rd /]Rd ay(z,y)f (@) f (y)dxdy =

lim 22+ / LGtz @) )y~

z—0

v 2 [V]
2 () S [ oo

= lim 224+ /R | Gz @ ety - (Com()1.0). - (39)

z—0

Here a; = fooo(fol cos(wt)(1 — t2)*~ 2dt) 2w~ ~1dy. Thus, the right hand side of
(3.5) multiplied with e~ 3 (Corr(2)f.f) converges and we obtain the limiting functional

C(f) = lime 3CmEL (v (£)/Y.(0))

z—0

- hn%e%[G+<fz,fz>—(Corr(z>f,f>] e VAOTCL ) du (6)/Y2(0)
Z—> D/

_ gosrn o N Dduc, (9) (3.7)

Jp eV D dpc, (9)
This, together with a~' = —c?a, establishes the crucial identity [4, 6]

C(f) =C(cf), Vf € SRLR). (3.8)
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Let us now investigate the structural properties of the generating functional C :
S — R. If there were not the correction factor (Corr(z)f, f), C would be stochas-
tically positive and reflection positive as the limit of functionals with that prop-
erty, since we can combine (3.7) and (3.8) for a representation of C. However,
due to the signs in (3.6) S > f — e—2(Corr(2)f.f) € R is not stochastically posi-
tive and consequently the stochastic positivity of e~z(Corr@f0) (Y, (f)/Y.(0)) is
at least unclear. Hence we do not have any reason to believe that the limiting
functional C is stochastically positive and can be associated with a probabilistic
functional integral. An exception is the case where V) = 0 where we can dwell
on the fact that S 5 f — ez () e R is manifestly stochastically positive since

2v
alk) = C-, (Bﬂ) € R with C_, > 0. It is therefore questionable if one can

use the AdS/CFT correspondence to generate conformally invariant models in
statistical mechanics.

We next investigate the question of reflection positivity. Since the correlation
length of the distributional kernels of Corr(z) is zero, we get that (Corr(z)(fj,0 +
f):(fio + f)) = (Corr(2)fj0, fi.0) + (Corr(z)fi, fi) = (Corr(2)f;, f;) +
(Corr(z) fi, fi) for f; € Sy. Consequently, Vf; € St,21,...,2, € C and A such
that OA = A we get

n

Z C(fjo+ fi)zjz1 = lim Z (Y(cfio +cfi)/Y2(0)) 220 > 0 (3.9)

=1 =1

with zg = zje’%(co”(z)cfi’cfj). For a proof that the reflection positivity of gener-
ating functionals implies the reflection positivity of Schwinger functions [5] also
in the absence of stochastic positivity, cf. [7]. As in [4, 6, 16], we thus come to
the conclusion that the crucial property for the existence of a relativistic theory is
preserved in the AdS/CFT correspondence.

Finally we address the invariance properties of the limiting generating func-
tional C. For being the generating functional of a CFT, we require invariance under
conformal transformations, i.e. C(f) = C(A;!f,) Vf € S where u is an element of
the conformal group on R% and

o) = e (22) 510

X

Certainly, as long as an interaction with IR cut-off is included in the definition of
C = Cp, conformal invariance can not hold. Using the identification of ISO(Hd+1)
and the conformal group on R¢, we get that H, intertwines the respective repre-
sentations on function spaces, i.e. [6]

N H,y (z,z;u~ (")), (3.11)

Hy(u(z,z);2") = ‘det (%)
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Combining this, the conformal invariance of oy under the given representation of
the conformal group and (3.3) we obtain

CAN M fu) = Cun(f) Vf € S. (3.12)

Hence, if the generating functionals {Cx} have a unique limit C wrt. the net {A},
then C is reflection positive and conformally invariant and hence is the generating
functional of a boundary CFT.

4. The infra-red problem and triviality

In this section we investigate the net limit of {Ca} which is needed to establish
the full AdS/CFT correspondence. This problem has been left open in [6] and we
will show that this kind of IR problem behaves somewhat wired.

The reason is the following: When we identified the generating functionals Cx
and Cy, we have seen from the latter functional that it originated from a usual QFT
generating functional with z~2+4, ® f giving rise to a source term which needs
to be considered in the limit z — 0. As (3.6) shows, this source term corresponds
to an interaction of an “exterior field” with the quantum field ¢ which, already
for the free field, has zero expectation but infinite fluctuations in the limit z — 0.
Without any correction term, this would have led to a generating functional which
converges to zero for any f # 0. We already then needed an ultra-local correction
term to deal with the prescribed infinite energy fluctuations.

If we now switch on the interaction, a shift term H, f in the bulk theory
is generated, cf. (3.7). If we for example restrict to polynomial interactions, this
shift leads to re-defined f-dependent couplings that diverge towards the conformal
boundary. This again leads to an infinite energy transfer and it is probable that
this infinite amount of energy plays havoc with the generating functional. Here we
will show that in some situations this indeed happens.

Let us first investigate the behavior of the shift H f towards the conformal
boundary. Let f € S be such that f(0) # 0. Choosing spherical coordinates, we
denote by fiada(r) the integral of f(x) over the angular coordinates. We get from
(2.2) via a change of coordinates

e 1
H, f(z,0) = 7+27A++d/ (
0

1+ 72

Ay
) frad(Z’I“)T‘dild’l“ (4.1)

1472
f(0) x T(A4 — d/2)T(d/2)/2T(AL), hence Hy f(z,z) ~ z=8++4 if f(x) # 0 by
translation invariance.
Let us now work with the generating functional as defined by (3.7). The
prefactor on the rhs is independent of A, hence we have to investigate the behavior

of
_ fD, G*VA(¢+H+JP)duG+(¢)
Jp e V2@ dpug , ())

A
and we see that the integral on the rhs converges to f(0) fooo ( L ) T =1y —

CA(f) (4.2)
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We restrict ourselves to the simplest possible case - an ultra-violet regularized ¢*
potential in arbitrary dimensions d + 1

Vi() = A /A Lot (@) do (4.3)

where ¢,, denotes the random field ¢ with UV-cut off k. Due to this cut-off,
the locality axiom in Section 2 will in general be violated. This however does
not matter in the following discussion. We furthermore require that G (z,z') =
E[¢x(z)¢i(z")] is a bounded function in 2 and 2’. E stands for the expectation
wrt. i, . The Wick ordering in (4.3) is taken wrt. G4, for simplicity. The shifted
potential then is given by

4
4 J (2 =g T
V(6 + Hyf) = A / g (j) o @WH ) @) dyr. (44)

Taking the expected value of the shifted potential wrt. ug,, one obtains Ax
x [\(H4 f)*dgz which in the light of (4.1) clearly diverges as A/ H?*! whenever
f#0.

Let us now focus on a specific class of cut-offs of the form A(zp) = A(zo,1) =
[20, A] x [—1,1]*% where we keep | > 0,A > 0 arbitrarily large but fixed. Let
V (20, [)(¢) = Va(zo) (¢ + Hy f). Since dgz = 2=~ 'dzdx we obtain the scaling of
the expected shifted interaction energy

BGof) = EWVGofl=A[ [ () e de i
[20,A] J[=1,1] x4

—d—4(A—d
2 (Ay—a)

~

as zg — 0. (4.5)

Let us next investigate the fluctuations in the shifted energy as zg — 0. Denoting
the standard deviation of V' (zg, f) with o (2o, f), we obtain using (4.4) and E[: ¢% :
(z) : 67 ()] = aldap G (2, )% a,bEN,

J(ZOa f) - [24/ Gi (ga ﬂ)4dg£dgg
A(Z[))Xz
L9 / @ QG ) gy
20 X2

bor [ A WO ey ey
A(ZO)X2
1/2

6 [ QU W @ pdady|  (40)
A(z0)*2

—d—3(A1L—d
2 (Ay—a)

+

~

or slower as zp — 0,

where we took the factors G} out of the integral and replaced them with a ma-
jorizing constant in order to obtain an upper bound on the scaling. Apparently, the
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quotient v(zo, f) = 20(z0, f)/E (20, f) ~ z$+_d scales down to zero if m? > 0. Us-
ing the Chebychev inequality sicr, (|V (20, ) — E(z0, f)| < E(z0, £)/2) < (0, )’
we see from this that V (2o, f) — o0 pg,-a.s..

To determine the behavior of CA(ZO)( f) for f # 0 we however need an argu-

ment based on the hypercontractivity estimate ||F||, < (p — 1)"/?||F||2 VF that
are in the LP(D', B, jug. )-closure of the span of Wick monomials : ¢(f1)---¢(fs) :
with s < n. Applying this to V(zo, f) = Va(zy) (¢ + Hy f) with n = 4 one obtains

[len (V(Zo,f) < M) < pe, <|V(zo,f) — E(z0, f)| > M)

2 2
2?
< WHV(ZO; ) — E(zo, f)||§
W“’ — 1) V(20 f) — Ez0, FII}

= (20, f)"(p— 1) (4.7)

The next step is to optimize this estimate wrt. p for zg — 0. Equivalently, one
can ask for the minimum of the logarithm of the rhs wrt. to p. Taking the p-
derivative of this expression and setting it zero yields 0 = logv(zo, f) + %

2log(p(z0) — 1) with p(zp) the optimal p. Apparently, p(zg) — oo as zg — 0 and

thus 2p(z0)/(p(20) — 1) — 2, hence p(zg) scales as
pz0) ~ e x y(z0, )72~ Cemtx 2 B2, (4.8)
Combining (4.7) and (4.8) yields

[ 27ex <V(207 f) < )

IN

_ - 2e™ ! xy(20,f)71/?
(20, )¢ Dxy(z0. )7 (6_1 x (2o, f)_l/Q — 1) ’

o2 (a0, )T

d—A 2
2GR

(4.9)

We have thus seen that the portion of the probability space where V (2, f) does
not get large as zg — 0 has a rapidly falling probability. We need an estimate
that controls the negative values on this exceptional set. The ultra-violet cut-off
implies : ¢ : (z) > —BcZ, B independent of &, ¢, = sup, , |Gx(z,y)|, pa,-a-s.,
which provides us with a pointwise lower bound for V (zg, f )_that is depending on
zo as

V(zo, f) > =ABc2|A(20)| = —[AB2(20)% x (2 = A~ /d pe, —as. (4.10)
Combination of (4.9) and (4.10) gives for zy sufficiently small

d—A 2
LA/

E |:€7V(Zg,f)i| S eféE(zo,f)+e[ABci(21)d’]x(zc)_diA—d)/d—QCe—lx =0 (411)
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if AL > 3d & m? > 6d%. Furthermore, by Jensen’s inequality and E[V (2, 0)] = 0,
Ele™V(00)] > ¢EV(z0.00] — 1, (4.12)
which implies that for m? sufficiently large

E[e~V (20./)]

CX(ZO)(f) = W — 0 as zg — 0, (4.13)

We have thus obtained the following result:

Theorem 4.1. If the generating functional C(f) = limp Ca(f) exists for the UV-
reqularized : ¢* :-interaction and is unique (as required in order to obtain conformal
invariance from AdS-invariance) it is also trivial (C(f) = 0 if f # 0) provided
m? > 6d>.
The above triviality result relies on three crucial assumptions.

(i) The potential is quartic, cf. (4.3);

(ii) There is a UV-cut-off;

(iii) The mass is sufficiently large.
In order to assess the relevance of the triviality result for the general case, let us
give some short comments on the role of each of these assumptions:

(i) At the cost of a more restrictive mass bound, assumption (i) can easily
be relaxed from quartic to polynomial interactions. For non-polynomial interac-
tions, however, the hypercontractivity estimate can not be used. This might be of
relevance, if we consider V' as an effective potential, which in general will be non
polynomial.

(ii) The fact that there is a UV-cut-off enters our triviality argument via
(4.10). When removing the UV-cut-off at least in dimension d+1 = 2, we therefore
have to modify the triviality argument. It turns out that the bound obtained from
the hypercontractivity estimate [5, 6] for the UV-problem is not good enough
to reproduce the above argument. It seems to be necessary to combine UV and
IR-hypercontractivity bounds in a single estimate in order to obtain triviality
without cut-offs in d + 1 dimensions. We will come back to this point elsewhere.

(i) The mass bound to us rather seems to be a technical consequence of
the methods used and not so much a true necessity for the onset of triviality.
Different methods, e.g. based on decoupling via Dirichlet- and Neumann boundary
conditions on a partition of H?*! [5] e.g. combined with large deviation methods
might very well lead to less restrictive mass bounds or eliminate them completely.

On a heuristic level, the problem that expectation and variance of the shifted
potential and the non shifted potential will have different scalings under the limit
A /' HH prevails for a large class of polynomial and non-polynomial interactions
with and without cut-offs. Thus, in our eyes, the three assumptions (i)—(iii) are not
essential but rather technical. The result above therefore should be taken rather as
an example of what can happen in the AdS/CFT correspondence than a definite
mathematical statement. Of course, at the present and very preliminary state of
the affair, everybody is free to think differently.



Infra-Red Problem in AdS/CFT 79

5. Conclusions and outlook

In this section we give an essentially non-technical discussion on repair strategies
that would cure the obstacle of triviality.

(i) coupling constant renormalization: The simplest way to deal with the di-
vergences in the potential energy V(zp, f) would be to make A\ a zp-dependent
quantity. In fact, a naive guess at the scaling behavior suggests that A(zg) ~
zg+4(A+7d) would compensate for the increase in the expected value of the inter-
action energy V(zo, f) such that with the modified coupling lim,, .o E[V (20, f)] =
AC' [pa f*dx converges to a constant with C' = (y4T(Ay — d/2)I(d/2)/20(AL))?,
cf. (4.1) and the paragraph thereafter. Furthermore, one can expect that the sub-
leading terms (j = 1...41in (4.4)) converge to zero and do not affect the generating
functional. It thus seems reasonable that with this renormalization the generating
functional gives in the limit zg — 0

C(f) = e3@+ NI =AC fpa f* do (5.1)

which is reflection positive as a limit of reflection positive functionals (it is man-
ifestly not stochastically positive for all A > 0 and hence gives a nice illustration
for the destruction of stochastic positivity due to the correction term in (3.6) and
(3.7). The problem with this functional however is that the additional term in the
interaction is an ultra local term and hence does not influence the corresponding
real time CFT — which is a free theory determined by the analytic continuation of
a4 . Hence this sort of renormalization only trades in another kind of triviality for
the triviality observed in Section 4.

(ii) bulk counterterms: Such terms can simply be added to the (formal) La-
grangian. The problem to use this method in the AdS/CFT correspondence is
twofold: Firstly, the infra-red divergences that are occurring in V(zo, f) are f-
dependent. If we however want to cure them with f-dependent counterterms,
the renormalization description of C,(.,) becomes f-dependent. Bulk countert-
erms however only preserve the structural properties of stochastic and reflection
positivity, if the same renormalization prescription is chosen for all f. Hence, f-
dependent counterterms would lead to a limiting functional, for which it is not
known, whether it is reflection positive or not. The situation is worsened from the
observation that, unlike in other IR problems, in the AdS/CFT correspondence
the divergences in the nominator and denominator scale differently - as seen in our
triviality result. This means for bulk counterterms, that, if they are working out
fine for the nominator, they probably create new divergences in the denominator.
Different renormalizations for the potential in the nominator and in the denomina-
tor in the limit might lead to a non normalizable vacuum for the boundary theory,
which does not make sense.

(ili) boundary counterterms: The problems described above for bulk coun-
terterms also have to be taken into account for boundary counterterms. Further-
more, while bulk counterterms, at least if they are not f-dependent, do not spoil
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the conformal invariance of the boundary theory, boundary counterterms theo-
retically might do so. Hence one needs a separate argument to show that they
don’t. But there is still another problem with boundary counterterms. We have
seen that we can not take it for granted that a limiting functional measure ex-
ists for the boundary theory. But if the boundary theory is not described by a
functional integral p,q., it is not clear how to define boundary counterterms on a
mathematical basis: recall that a counterterm (at a finite value of the cut-off zg is
defined by dibd. renz (@) = e Fren (209 dppq (¢)/ fD(]Rd) e~ Lren (209 dpuy,q (') and
it is not obvious how this can be defined if upq. is not a measure.

(iv) giving up generating functionals: The triviality result of Section 4 relied
on the scaling behavior of the expected value of V' (zg, f) under the limit zg — 0.
This expected value can be associated with the Witten graph Q) which gives rise
to the first order contribution to the four point function [y, H?zl H (z, fi)dgx
which is converging as long as suppf; Nsuppf; = 0 if j # [, cf (2.2) and (4.1)
(see also [11] for concrete calculations). One may thus hope that the triviality
result of Section 4 is an artefact of using generating functionals which makes
it necessary to evaluate Schwinger functions at unphysical coinciding points. A
reasonable approach to the infra-red problem in AdS/CFT would thus be to use
(3.7) to define reflection positive Schwinger functions with cut off and then remove
the cut-off for the Schwinger functions at physical (non coinciding) points, only.
This might then work out without further renormalization along the lines of [5],
as divergences might only occur on the diagonal. If this is true, triviality does only
occur on the level of generating functionals — which are reminiscent of the Laplace
transform of a functional measure for the boundary theory that might not exist in
the present context.
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Some Steps Towards Noncommutative
Mirror Symmetry on the Torus
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Abstract. Starting from motivating examples, we discuss some aspects of the
question how to extend mirror symmetry to the case of the noncommutative
torus. Following the - by now classical - approach of Dijkgraaf to mirror
symmetry on elliptic curves, we will see how elliptic deformations of special
functions (especially, the elliptic gamma function) arise. In the final section
we indicate a possible way how these results might relate to deformations of
Fukaya categories of elliptic curves.
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1. Introduction

Mirror symmetry is a duality symmetry between certain two dimensional super-
conformal field theories which was discovered in the context of string theory in
the early 1990s. Applied to sigma models, this leads to a completely new sym-
metry between Calabi-Yau spaces (of, in general, even differing topology). It is
an open question if and how this duality might extend to the case of noncommu-
tative spaces. There is far reaching work using the language of noncommutative
algebraic geometry (see e.g. [11], [12], [19] and literature cited therein, to give a
non-exhaustive selection), dealing with this question. We will follow a much more
modest goal in these notes, restricting completely to the case of noncommutative
elliptic curves (i.e. a noncommutative torus equipped with some additional struc-
ture). We still think that an approach focused on only one class of examples is
justified since even in the commutative case the elliptic curve provides a highly
nontrivial example for homological mirror symmetry.



84 Karl-Georg Schlesinger

The extension of mirror symmetry to noncommutative spaces is definitely
not an example of generalization for the sake of generalization. We restrict, here,
to two motivating examples (for additional motivation, see e.g. [12]).

In [20] the geometric Langlands correspondence is related to mirror symme-
try for sigma models with a Hitchin moduli space target, for the special case of
vanishing B-field. If a B-field is turned on in the sigma model, one gets a de-
formation to a noncommutative setting (twisted D-modules, quantum geometric
Langlands correspondence). More generally, coupling of a B-field to both sides of
the duality, the A- and the B-model, needs a noncommutative extension of mirror
symmetry (see [24]).

Another concrete example of this type is provided by the D5-brane gauge
theory in type IIB string theory. Here, the generalization to the noncommutative
case is not just an option but is necessary for the existence of a space-filling
coisotropic brane (which is decisive for the existence of a D-module structure on
A-branes in [20]). We refer to [34] for the details of this example.

These notes are organized as follows: First, we review some needed results for
the classical case of (commutative) elliptic curves. Next, we give our results for the
noncommutative case (for the details we refer, again, to [34]). Especially, we suggest
a formal extension of Gromov-Witten invariants to the case of noncommutative
elliptic curves. In the final section, we give some preliminary arguments how our
results might relate to certain exotic deformations of the Fukaya category of an
elliptic curve. This is work in progress.

2. Elliptic curves

Mirror symmetry for elliptic curves was extensively studied in the mid 1990s (see
especially [8], [9], [10], [16], [31]). It was a prime motivating source for the homo-
logical mirror symmetry conjecture of [17]. A proof of homological mirror symme-
try for elliptic curves was established in [29]. The Strominger-Yau-Zaslow conjec-
ture ([39]), proposing another mathematical formulation of mirror symmetry, was
proved for elliptic curves (and, more generally, for Abelian varieties) in [18].

An elliptic curve E ; is a smooth 2-torus equipped with a holomorphic and
a symplectic structure. The holomorphic structure - parameterized by 7 - is given
by the representation of the elliptic curve as

C/(Z®Zr)

with 7 = 71 + im» € C from the upper half plane H, i.e. 75 > 0. The symplectic
structure - parameterized by ¢ € H - is given by the complexified K&hler class
[w] € H? (Et -, C) with
w = —W—tdz ANdzZ
T2
and for t = t; + ite the area of the elliptic curve is given by to. Mirror symmetry
relates the elliptic curves E; , and E ;.
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For the symplectic structure, we have the Gromov-Witten invariants Fy, de-
fined as the generating functions for counting d-fold connected covers of E} . in
genus g. One can combine the functions F; into a two-variable partition function

Z(g,)) =exp» N972F,(q)

g=1

with ¢ = e?™. This is the famous partition function of Hurwitz which he used
already in [14] to count connected covers of elliptic curves.

The partition function Z (g, A) can be calculated in three different ways (see
Theorem 1 - Theorem 3 of [8]). The first case is a large N calculation in terms of
U (N) Yang-Mills theory on E; ;. The second possibility is a calculation in terms
of a Dirac fermion on the elliptic curve. Starting from Dirac spinors b, ¢ on the
elliptic curve with action

S = / (bdc + Abd>c)
B

one shows that the operator product expansion defines a fermionic representation
of the Wi, algebra. The partition function can be calculated as a generalized
trace (as defined in [2]) of this algebra, leading to

1 dz 2 1 2
Z(g\) =q = (1 pxp)l L ope—n
(@:2) =q 247{2“2 IT (1t +2q% +—gve

PEL>o+3

where p runs over the positive half integers. For the action and the partition
function above - and for the sequel of this paper - we have changed the nota-
tion to denote the parameter values of the mirror elliptic curve by ¢ and 7. It
is this representation of Z (¢, A) which leads to the famous theorem of Dijkgraaf,
Kaneko, Zagier stating that the functions Fj (¢) are quasi-modular forms (i.e.
F, € Q[Es, Ey, Eg] where Es, E4, Eg are the classical Eisenstein series of weight
2, 4, and 6, respectively) and have weight 6g — 6.

Finally, as in the case of Calabi-Yau 3-folds, by mirror symmetry Z (¢, A) can
be calculated as the partition function of a Kodaira-Spencer theory. In the case of
elliptic curves, this is given by the action of a simple real bosonic field with (830)3
interaction term, i.e. by the action

S () =/E (%&ﬂw % (—i3¢)3>
(see [8], [9] for the details).

3. Noncommutative elliptic curves

In this section, we will consider the question how the fermionic representation of
Z (g, \) generalizes to the case of the noncommutative torus. The first question we
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have to consider is how a holomorphic structure can be introduced on the noncom-
mutative torus since the smooth noncommutative torus — as in the commutative
case — is not sufficient to consider mirror symmetry. A number of different ap-
proaches to this topic exist in the literature. Since the partition function Z (g, A)
involves the modular parameter ¢, ranging over the whole family of elliptic curves,
we will follow the approach of [35], [37] where noncommutative elliptic curves are
introduced by extending the range of ¢, i.e. we get a larger family including the
case of noncommutative elliptic curves. Concretely, in [35], [37] it is shown that
one can view the noncommutative torus as the degenerate limit |¢| — 1 of classical
elliptic curves (observe that since ¢t € H and g = >, |¢| < 1 for classical elliptic
curves). The noncommutative smooth torus (see [6]) can be introduced as a de-
generate limit of a family of foliations where the foliations are defined by classical
elliptic curves. In the limit, the foliation space becomes non-Hausdorff as a classi-
cal topological space but the algebras of functions still have a well-behaved limit.
The limit of the algebras of functions is the noncommutative algebra defining the
noncommutative smooth torus. In much the same way, one can introduce noncom-
mutative elliptic curves as the degenerate limit of foliations defined by classical
elliptic curves by studying the category of coherent sheaves instead of the algebra
of functions. Again, the category of coherent sheaves has a well-behaved limit,
leading to the notion of a noncommutative elliptic curve. We will make use of
these results by using the fact that we can study the question of the generalization
of Z (q,\) to noncommutative elliptic curves by considering the limit |¢q| — 1. We
would like to stress at this point that the category of coherent sheaves on noncom-
mutative elliptic curves as introduced in [37] differs from the approach followed in
[26] where holomorphic vector bundles on the smooth noncommutative torus are
used.

Obviously, we can not directly perform this limit. This is very much related
to the fact that there exist only very few results on g-analysis for |¢| = 1. We will
make use of the fact that there exists an elliptic deformation of the ¢-deformed
gamma function and this elliptic gamma function (which has two deformation
parameters) allows to take a limit in which a single unimodular deformation pa-
rameter arises ([32], [33]). In this sense, the elliptic gamma function includes the
g-gamma function case with |g| = 1. We will therefore consider the problem of
taking the limit |¢| — 1 for Z (g, A) in the more general form of looking for an
elliptic analogue of Z (g, \). For simplicity, we will completely restrict to the case
A = 0. The general case can be treated in a completely analogous way (one has to
replace the classical Jacobi theta function with the generalized theta functions of
[16] for X # 0, see [34]).

Using the substitution ¢ — ¢2, we have

dz . 1 ..
Z (4,0 g — ] (1 +2¢7") <1+—q2]“>
2miz 5o z

-1 dz 2 ( q 2)
= 12 p— . .
q ]{27”.2( 2q;4%) 27
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where
n—1
= [ (1 —ad)
7=0

is the g¢-shifted factorial and

o0

(@:9) = [] (1 — ag’)

j=0
the limit n — oo which exists for |g| < 1. Remember that the classical Jacobi

theta function
n=-4oo

Z Z7an2

n—=—oo

can be expressed in the form of the Jacobi triple product as
q
I (z,q) = (—2¢:4%) (——;qQ) (%)
z 00

i.e. Z(q,0) is basically given by an integral over the first two factors of 4 (z, q).
Rewriting (a; q), in terms of the function I'; with

(see [36]), we have

log(Q)
and
(7Et)
d q
Z(q’o):q_%%Qz 1 (q) log(—2) )’
Tz og(—z og(—2
Ly ( log(g) )Fq2 (7 log(g) )
For ¢,p € C with |q|,|p| < 1 let
X | _ - lgitlphtl
I'(z; = -
Gar) = [ —— 5
J,k=0

be the elliptic gamma function of [32], [33]. Then an elliptic generalization of
Z (q,0) - which allows to take the limit to unimodular ¢ — is given by

l ( ¢ l( 7)( 1)( ))) ( a 1( )( 1>( )))
2(log +log(y 2(1o +log
> g(q g(p g(aq g(p

2miz log(~2) 2\ _log=2) . .o o\
I (et 2 72) T (-~ sttty 4-7°)

It is an open question for future research if this partition function can be related

to a fermion system on the noncommutative torus in the limit of unimodular g.

1

Z(q,p,0) = q_ﬁp_%j{
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As in the classical case of commutative elliptic curves, we can use the elliptic
partition function to define Gromov-Witten invariants. Concretely, in the classical
case the definition of the partition function as

Z(q,\) = exp <Z N2, (q)>

g=1
implies that we can calculate the Gromov-Witten invariants Fj as

P 1 0292 log(Z)
77 (2g-2)! 0292

We can now use this equation, applied to the elliptic partition function from above,
as a definition of elliptic Gromov-Witten invariants Fy (g, p). The limit to a single
unimodular parameter can be used as a definition of Gromov-Witten invariants
for noncommutative elliptic curves.

Again, it is an open question what these invariants measure on the noncom-
mutative torus. Definitely, they are not invariants of the smooth noncommutative
torus since their commutative limit is a symplectic invariant. If they are in any
sense nice invariants, they should go along with deformations of Floer homology
and the Fukaya category of classical elliptic curves. Since the elliptic gamma func-
tion is a much more complicated and considerably richer object than the classical
Jacobi theta function, we expect that the noncommutative Gromov-Witten invari-
ants should be related to deformations of the Fukaya category of an elliptic curve
to an algebraically even more complicated object. Without being able, at present,
to answer the open questions sketched here, we will give an argument in the next
section that exotic deformations of the Fukaya category of an elliptic curve should,
indeed, exist.

A=0

4. Exotic deformations of the Fukaya category

This section contains material on work in progress. The work of [4] and [35] sug-
gests that the Fukaya category of F; ; is closely related to the category of projective
modules over a noncommutative torus (where the deformation of the algebra of
functions is induced from the choice of symplectic structure involved in the def-
inition of E; ;). Let us assume this to be true in the sequel. We will argue that
the moduli space of the Fukaya category (and consequently the moduli space of
its bounded derived version), which is an object of central interest in homolog-
ical mirror symmetry (see [17]), should possibly be larger than usually assumed
(i.e. larger than the so called extended moduli space of [17], [40] for the mirror
symmetric dual).

Consider the noncommutative torus T (see [6] for the definition). As men-
tioned above, we assume that the category Proj (Tg)) of projective modules over
the algebra of functions on 73 is closely related to the Fukaya category of some
elliptic curve (see [26] for a detailed discussion of this relationship). We now make
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a special choice of object M of Proj (Té) by assuming that M is a Heisenberg
module (see e.g. [27]). As shown in [28] one can attach a two dimensional noncom-
mutative gauge theory to M. While M has to be viewed as the noncommutative
counterpart of a vector bundle on Tg), i.e. it refers to the classical gauge theory, it
is also discussed in [28] how to quantize this theory. In conclusion, starting from
M and turning on the deformation parameter i, we arrive at a two dimensional
quantized gauge theory (see also [7] for related work). As in the commutative case
(see [5]), it was shown in [28] that this gauge theory is a cohomological field theory.
In the limit & — 0O this field theory reduces to the usual cohomological field theory
on an elliptic curve E¢ » which is studied in [5] and determines the Gromov-Witten
invariants of E; ;. An algebraic model for this cohomological field theory is given
by the Fukaya category Fuk(E; ;) of E; ,. It is therefore natural to assume that
the quantized cohomological field theory gained from M can algebraically be de-
scribed by some deformation F; of Fuk(E; ;). Now define the following 2-category
F (Tg)): For any Heisenberg module M take Fj; as an object. Since it should be
possible to reproduce M from Fj; in the limit A — 0, we assume that we can
treat all the other non-Heisenberg modules of Proj (Té) as trivial categories in
some sense. We then define the 1-morphisms as functors and the 2-morphisms as
natural transformations in the obvious way. This argument suggests that the mod-
uli space of Fuk(E; ;) should be larger than usually assumed and should possibly
include deformations of Fuk(E; ;) into 2-categories (observe that by considering
the limit A — 0, for which Fy; — M, F (Té) is a continuous deformation of
Proj(T3)).

Remark 4.1. The argument above shows that F (Tg)) should be at least a 2-category.
Since noncommutative deformations sometimes relate to higher categorical struc-
tures, one can a priori not exclude that ¥y might itself be a 2-category (or a
bicategory) and F (Tg)) might therefore be an even higher category. We will give
an argument below that this should, indeed, be the case.

The view we have suggested here is that Fj; appears as a categorical gener-
alization of the module M while F (T3) should be seen as a (higher) categorical
generalization of Proj (Tg)) It is natural to assume then that there might exist
even higher categorical deformatlons of these objects, i.e. we suggest to construct
a 2-category deforrnatlon FM of Fjs and from this — by replacmg F,r with FM in
the construction of F' (Te) ~ a deformation F® (Tg)) of F (T@) which is at least
a 3-category. Proceeding iteratively in this way, we could arrive at an n-category
Fo=1 (72).

So, the construction above suggests that there might even exist n-category
deformations of Fuk(FE; -) beyond the 2-category deformation F (Té), further en-
larging the moduli space.

Let us now discuss the structural properties of the cohomological field theory
on T3, studied in [28], in more detail. As is shown there, this field theory has a
BRST supercharge Q with respect to which it is a cohomological field theory. It
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follows from the general properties of the BRST-complex of a cohomological field
theory that the operator product expansion of the theory should determine the
structure of an A.-algebra. This A-algebra should — as in the commutative case
— be the formal completion of an A,-category (by introducing a formal value zero
for undefined products), which in the limit where T2 is send to the commutative el-
liptic curve E , becomes the A-category determined by the usual cohomological
field theory of [5] on Ey ;.

In the next step, we have to consider the inherent Morita equivalence on
the cohomological field theory studied in [28] (for a general overview on Morita
equivalence for noncommutative tori and its consequences we refer the reader to
[30]). At the classical level, Morita equivalence means that the Heisenberg module
M is actually a bimodule for the algebras of functions on the Morita equivalent
noncommutative tori Té and T2. But there is strong evidence that Morita equiv-
alence extends to a duality between the full quantized field theories defined from
M on T2 and Té, respectively (see [1], [3], [38]). This suggests that the abstract
Ao-category, related to the noncommutative cohomological field theory, should
have different — dual — realizations on 72 and Té.

Assume a precise notion of field theoretic realization of the A, -category
would be available. From the above discussion, one has to conclude then that
what one should actually consider from the quantum field theory point of view is
all realizations of the Ay-category (this is very much in accordance with the results
gained in [13] in a different setting; in the noncommutative case this viewpoint
seems unavoidable, due to Morita equivalence). One might be tempted to introduce
the following 2-category as the correct algebraic framework, therefore: Objects
should be the realizations of the A..-category and 1- and 2-morphisms should be
given by the obvious functors and natural transformations. But this is not what
one really wants from the physics perspective: The morphisms of the realization of
the A.-category should correspond to the fields (ghost-fields, anti-ghost-fields) of
the cohomological field theory. Given two realizations, we do not only want to know
which fields are mapped onto each other (as would be the information given by a
functor) but also how they are mapped to each other, i.e. we would like to know the
precise transformation rule of the fields. As a consequence, the correct algebraic
structure should not be that of a 2-category but that of an fc-multicategory as
introduced in [21], [22]: The objects and the horizontal morphisms should be that
of the realization of the A, -category while the vertical morphisms and the 2-cells
should give the above mentioned transformation rules. Since an A..-category is
not a proper category, one can not expect to get a double category, here, but has
to assume the full structure of an fc-multicategory. In conclusion, we make the
following conjecture:

Conjecture 4.2. The algebraic structure, defined by the operator product expansion
of the cohomological field theory on T3 discussed in [28], should be given — correctly
taking into account Morita equivalence — by an fe-multicategory.
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Returning to the deformation F (Tg)) of Fuk (E: ;), we therefore conjecture

that F (Té) should be given as the 2-category of all the fc-multicategories attached
to the projective modules M in the way just described (actually, the dependence
should now be not on T3 but on the Morita equivalence class of T3).

Remark 4.3. It follows immediately that F (Tg)) should have much more structure
than that of a simple 2-category since every object is not just a category but an fc-
multicategory. We suspect that F (Té) gives an example of a next higher categorical
analogue of an fc-multicategory, especially, it should be a generalization of a 3-
category.

There is also a more mathematical argument suggesting the same conclu-
sion: If mirror symmetry generalizes to the noncommutative setting, one would
expect that there is a dual description of F (Tg)) as something like a category of
coherent sheaves on a noncommutative torus. In the commutative case, the ring
of classical theta functions gives a basis for global sections of line bundles. The
noncommutative elliptic curve should then relate to a deformed ring of theta func-
tions. This is indeed the case but the product of quantum theta functions is only
partially defined, i.e. quantum theta functions do no longer form a ring but a linear
category (see [23]). Vector bundles over a noncommutative elliptic curve (in the
classical case corresponding to projective modules over the algebra of functions)
should therefore correspond to categories with a module like structure. Conse-
quently, the category of vector bundles and anything like a derived category of
vector bundles (or derived category of coherent sheaves) should have the structure
of a bicategory. Since in the classical case higher Massey products, turning the
category of coherent sheaves into an A..-category, have to be taken into account
to make homological mirror symmetry work (see [25]), we actually have to expect
an A.-version of a bicategory (we can probably not expect the strictified version
of a bicategory, called a 2-category, to appear on the nose, here). Again, Morita
equivalence and the precise transformations induced by it on such A,,-bicategories
have to be taken into account for noncommutative elliptic curves and we finally
arrive at the conclusion that the noncommutative analogue of the category of co-
herent sheaves - and therefore, if mirror symmetry holds, also F (Té) - should be
a generalization of a 3-category in the sense of a next higher categorical analogue
of an fc-multicategory.

Future work is intended to deal with the question if these exotic and very rich
deformations of the Fukaya category of an elliptic curve are in any way related to
the elliptic deformation of the Hurwitz partition function, as introduced above.

5. Conclusion and outlook

The relation of the Fukaya category on X to a category of modules on a noncom-
mutative deformation of X is argued in [15] to hold also for certain holomorphic
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symplectic manifolds X, especially for X = T*. This means that also four di-
mensional noncommutative gauge theory might have a relation to deformations of
Fukaya categories. This would mean that for noncommutative field theories the al-
gebraic structure of two and four dimensional theories could be much more similar
than in the commutative case (where e.g. no generalization of the full vertex alge-
bra structure of two dimensional conformal field theory to higher dimensions has
been found, so far). Observe that in this case the noncommutative field theories —
since they are supposed to define deformations of cohomology theories — should be
well-defined, especially they should be renormalizable. This is very different e.g.
from deriving noncommutative field theories from open strings ending on D-branes
with B-field backgrounds where the noncommutative field theories appear only as
effective limits. We think that this indicates that the quantum field theories behind
deformations of Fukaya categories should provide an extremely interesting testing
ground for the subject of noncommutative quantum field theory.
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Abstract. We use Witten’s volume formula to calculate the cohomological
pairings of the moduli space of flat SU(3) connections. The cohomological
pairings of moduli space of flat SU(2) connections are known from the work of
Thaddeus-Witten-Donaldson, but for higher holonomy groups these pairings
are largely unknown. We make some progress on these problems, and show
that the pairings can be expressed in terms of multiple zeta functions.
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1. Introduction

This article emerges from the recently obtained connection between quantum field
theory and algebraic geometry and it is devoted to the study of some cohomological
properties of the moduli space of flat SU(3) connections over a Riemann surface.
Roughly speaking, one can study the cohomological pairings in three different
ways: the first method was due to Thaddeus [33], the second one by Witten [39,
40], Donaldson [13] also proposed another method. The most up-to-date one was
proposed by Jeffrey and Kirwan [25, 26]. In an interesting paper Earl and Kirwan
[14] studied a generalization of the ring structure of the cohomology for the SU(2)
and SU(3) moduli spaces. They addressed the general case n > 3, by constructing
a complete set of generators for the ideal of relations, by suitably generalising the
Mumford relations.
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The moduli space M (n, d) of semistable rank n degree d holomorphic vector
bundles with fixed determinant on a compact Riemann surface ¥ is a smooth
Kéahler manifold when n and d are coprime [2, 3, 12, 31]. Jeffrey and Kirwan
[25, 26] gave full details of a mathematically rigorous proof of certain formulas
for intersection pairings in the cohomology of moduli space M (n,d) with complex
coefficients. These formulas have been found by Witten by formally applying his
version of non-Abelian localization to the infinite-dimensional space A of all U(n)-
connections on Y and the group of gauge transformations. Jeffrey and Kirwan
used a non-Abelian localization technique to a certain finite-dimensional extended
moduli space from which a moduli space M (n, d) of semistable rank n degree d may
be obtained by ordinary symplectic reduction. In this way they obtained Witten’s
formulas. It has been known (see [24]) that a moduli space of flat connections
on principal G-bundles over ¥ is a Marsden-Weinstein symplectic quotient of a
finite-dimensional symplectic manifold [17] by a G-action.

We use Verlinde’s formula [33, 36] of conformal field theory and complex ge-
ometry. Verlinde’s formula gives the dimension of the space of conformal blocks in
the WZW model on a Riemann surface. Verlinde’s [36] result on the diagonaliza-
tion of the fusion algebra gives a compact formula for the dimension of the space
of conformal blocks. This formula coincides with the dimension of H?(Mg, L®¥),
where Mg is the moduli space of flat G bundles over the Riemann surface ¥,
of genus g and L is the generator of Pic(Mg). The formula for the dimension
of these spaces, which is independent of the Riemann surface ¥, was proven by
Tsuchiya, Ueno and Yamada [34]. The Verlinde formula has given rise to a great
deal of excitement and new mathematics of infinite-dimensional variety (it is an
ind-scheme) [9, 15, 28]. An ind-scheme is a directed system of schemes, that is, an
ind-object of the category of schemes.

We can write the celebrated formula of Verlinde as

1
dim H' (M, L%%) =) P (1.1)

o 0,

Here, a runs over the representatives of G which are the highest weights of inte-
grable representations of the corresponding affine group G at level k and Say is
a matrix arising from the modular transformation of the character of the affine
group G at level k. If Xa(7) is the character of G at level k with highest weight «,
then S is defined by the formula

Xa(=1/7) = Sapxs(7)-
8

As an example we see that when G = SU(2), then

2 ap o T+ DE 4D
S”_(k+2) sin 2 .
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Hence we obtain

dim H(M, L¥F) = )9t W( ) (1.2)
= sm kjﬁ

The volume of the moduli space is obtained from the Verlinde formula (1.1)
and is given by

Vol (M) = lim k™" dim H°(M, LZ). (1.3)
The Hirzebruch-Riemann-Roch formula is
dim H°(M, L®*) = (exp(kei (L)) Td(M), M),
where T'd(M) denotes the Todd class. For large k, this yields (for G = SU(2))

k.3g—3
(3g — 3)!
Since ¢;1(L) is represented by the symplectic form w in de Rham cohomology,

(1 (L)*97% M)
(39—3)!

dim HO(M, L®*) ~ {c1(L)?973, M).
coincides with the volume of the moduli space Vol(M).

Incidentally, Witten gave a volume formula in [39] for the moduli space of
flat connections for general G. It is given by

o 2g—2
Vol(M) = #2(G).(Vol(G)) Z( ! (1.4)

(27T)d1m./\/l dim a)Qg—Q

where « runs over all the irreducible representations of G. Here, $Z(G) is the
number of elements in the center of G.

In principle, Witten’s volume formula is applicable to any G. But unfortu-
nately some computational difficulties arise when G = SU(n) for n > 3. In this
case one faces the problem to find the matrix S, from the modular transformation
of the Weyl-Kac character formula [19, 23].

In this article we obtain the volume formula for G = SU(3) by computing
the matrix Sag:

8 sin ™\ sin Az sin (A A) (1.5)
V6(k+3)  k+3 k+3 k+3 '
The computation of the volume formula is a two step process. At first we obtain the

Verlinde formula for the moduli space of SU(3) of flat connections by substituting
the value of Sop in (1.1). We obtain

Sox =

Proposition 1.1.

29—2pg—1
R ok (k+3)%97%6 1 292
dim H°(M, L®F) = 269—6 Z ( T Ao (>\1+>\2)) o
PV sin k+3 sin k+3 sin E+3
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In the next step, using the above formula and Witten’s prescription for large
k limit, we obtain the volume of the moduli space of flat SU(3) connections; this
yields

Proposition 1.2.

691 S e a) o o
VOI(M)SU(3)) = SW Z nj (29 2)n2 (29 2)(711 + n2) (29-2)
ni,n2

Here, a multiple zeta function appears in the volume of flat SU(3) connections
VOI(M)SU(3) :

o0

1
Cg(Aa 29 - 2) = Z 29—2_ 2g—2

e PN (ny + ng)29-2

(1.6)

It is a member of a family of a much larger class of zeta functions, known as multiple
zeta functions. The Euler-Zagier multiple zeta functions are nested generalizations
of the Riemann zeta function [37, 38]. They are defined as

Cr(S1y...,88) = Z ny*teeengtk
0<ny < --<ng
Here, 51, ,8, € Z, 51 > 2, s; > 1 for 2 < j < k. For k = 1 this reduces to
Riemann’s zeta function. We call k the length or depth of s and [s| = 3 s; the
weight of s.

Unlike as for the Riemann zeta function one could determine several algebraic
relations between the multiple zeta values (MZV). One type of such relations
appears when one multiplies two such series. In fact, one gets a linear combination
of MZV. A simple example is stated below:

) =Y Y =

n>1 m>1

ST Y+ = s, ) + (s 8) + s+ 8).

n>m n<m n=m

This is a quadratic relation among zeta values. In general the quadratic relation
is given as

()¢ = Yo

This manipulation leads to the definition of a product called stuffle product [6].
This is a formal sum defined recursively by

aP xbQ = a(P xbQ) + b(aP x Q) + (a + b)(P * Q).
A simple example is

((5)* = 2((s, ) +((25).
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Then for s = 2, ((2) = 72/6 and ((4) = 71/90, we obtain
4

(2.2)= > (mn) 2=

120
m>n>1
Another example is ((2)¢(3) = ¢(2,3) + ¢(3,2) + ¢(5).

Remark. In the same way as the stuffle product arises in the reorganization of
multiple sums, multiple integrals lead to the definition of the shuffle product of
words over an alphabet (with two letters) X = {x¢,z1}. The words are given as
X* = {a@ab . 25}, This product is defined by the same formula as the
stuffle product except that the last term in the sum is omitted. The algebraic
relations between multiple polylogarithms
z™M
Li(gys(2) = > = |zl <1Vs;>1

ni>ng>-np>1 1

is generated by the shuffle relation. In fact, these multiple polylogarithms can be
expressed as iterated Chen integrals, and from this representation one obtains the
shuffle relations (for an example, see [7]).

In our case, Zagier [41, 42] gave a formula for calculating the values of this
particular multiple zeta function. This result is also derived using the stuffle prod-
uct. The key formula to compute our volume form is given by

o0

Zm :g 3 < ot >C(r)((3sr). (L1.7)

m,n 0<r<s;reven

Witten’s volume formula can be extended to the moduli space of vector bun-
dles with marked points 21, 22,...,2, € X,. We associate to each marked point
z; an irreducible representation I' of Gg. If A is the highest weight of I, then
(A, Qmaz) < k where aunq, is the highest root and (, ) is the basic inner product
(see appendix, [23]): alternatively A is in the fundamental domain of the action
of the affine Weyl group at level k 4+ h on the Cartan subalgebra (Lie algebra of
the maximal torus). We sum over representations I' for which, if A is the highest
weight of T'y, the representation of dimension (n + 1) and all the marked points
are labeled by I';,,. We associate a complex vector space to each labeled Riemann
surface.

The generalized Verlinde formula for a group G in the presence of marked
points [39] is
k 1 P

j=0 0,5 i=1

and the vector space HO (Mg, L @ @,T',,,) is independent of the details of the
positions of the marked points.
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Similarly, the volume of the generalized moduli space can be obtained from
this generalized Verlinde formula (1.8) by extracting the term at the large & limit
(1.3).

The volume formula for G = SU(2) with marked points is given as

Vol (M,) =2

1
"99—1729—2+p n29—2+p

zp: I, sin(wnti)' (1.9)
n=1

Our strategy is to compute the volume using the Verlinde formula in the
large k limit rather than using Witten’s volume formula directly, and this will be
our recipe to find the volume of the moduli space.

Unlike the SU(2) case, we obtain the volume formula for the moduli space
of flat SU(3) connections in terms of multiple zeta functions or double Bernoulli
numbers [4, 5].

We obtain the volume formula of the moduli space of flat SU(3) connections
over one marked point Riemann surface.

Proposition 1.3.

36971 sin 7nity. sin mnote. sinw(ng + n2)(t1 + ta2)
= 569-6,69-3 29—1_2g—1 —
269669 n29 10297 (4 ng)29-1

VOIF (Mt)

t1 and to are restricted to
0<t; <1.

When we expand the sine terms, we obtain a comprehensive volume formula for
finding the intersection pairings of moduli space.

Witten’s idea is based on the symplectic volume of the moduli space of flat
connections. The moduli space M of flat connections of any semi-simple group G
is a symplectic variety with a symplectic form w. The volume of the moduli space
of flat SU(n) connections is

1
Vol¥ (M) = —'/ w',
T JMm
where 7 = (n? —1)(g —1) = (g9 —1)dimG is the dimension of the moduli space.

Witten showed in [39] that the Reidemeister torsion of a Riemann surface,
equipped with a flat connection, determines a natural volume form on the moduli
space of flat connections, which agrees with the symplectic volume. Given a chain
complex C, that computes H,. (3, ad(E)), we define the torsion 7(C,) as a vector
in

(det Ho(X,ad(E))) ™! @ det Hy(X,ad(E)) @ det Ho(%,ad(E))) ™ .
For an irreducible flat connection:

Ho (2, ad(E)) = Hy (S, ad(E)) = 0.
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So 7(C,) defines a vector in det Hy (X, ad(E)). Witten [39] gave the actual road
map to compute the volume of M.

Motivation. The result of this paper first appeared in [20]. Apparently one would
ask why do we need another paper to study cohomological pairings, when Jeffrey
and Kirwan [25, 26] gave full details of a mathematically rigorous proof of Wit-
ten’s formulas for intersection numbers in the moduli spaces of flat connections.
Indeed, the knowledge of the volume formula in principle allows us to calculate
the full list of cohomology pairings for the moduli space of arbitrary rank. The
main difficulty comes from computation. Our article is an explicit example of the
computation of intersection pairings in the cohomology of the moduli space of flat
SU(3) connections. This involves the computation of multiple zeta functions and
hence it is fairly difficult to compute intersection pairings for higher rank vector
bundles. Our approach is based on the volume of the moduli spaces of parabolic
bundles prescribed by Witten. The Jeffrey-Kirwan formulation yields formulas for
all intersection numbers, whereas our approach yields formulas for the intersection
numbers of restricted cases. For example, we exclude some cases that could yield
the intersection numbers of some algebraic cycles in the moduli spaces.

2. Background about moduli space

Let us give a quick description of a moduli space [3]. Let X, be a compact Rie-
mann surface of genus g. Let £ be the G bundle over ¥, — here G can be any
compact Lie group. For simplicity we shall work with the special case G = SU(n).
Let us consider the space of flat G' connections over a Riemann surface ¥,. We
consider the space Hom(m(%,), G)/G, which parameterizes the conjugacy classes
of homomorphisms

wl(Zg) — G. (2.1)

Now, 71(X,) has generators Ay, As,- -+, Ag, B1, B, - -+ , By that satisfy
g
[114: B =1. (2.2)
i=1
It follows that H'(X,, G) is the quotient by G of the subset of G29 lying over 1 in
the map GY x G9 — G given by [[[A;, B;]. This shows clearly that H'(X,, G) is
a compact Hausdorff space.

We fix our structure group G = SU(n). Let us consider a point z € X,.
Suppose we cut out a small disc D around the point . We fix the holonomy of
the connection around the disc D to be exp(2wip/n), where p and n are coprime
to each other. Actually this holonomy exp(2mip/n) around the point x ensures the
irreducibility of the connection.

Consider a map

fq:SU(n)? x SU(n)? — SU(n)
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defined by
g
(Al, Bl, ceey Ag, Bg) La— HAZBZAZ_lBZ_l

In particular we select the subspace W, = f; ! (exp(2mip/n) of SU(n)%.

A point, say z, in the space SU(n)9 x SU(n)9 is considered to be reducible if
there exists a matrix T in SU(n) such that (T A, T, TB,T~'...) are all diagonal.
When n > 2, we should include also those points where there exist matrices that
can be simultaneously block diagonalized, for example, in the case of SU(3) this
would go into S(U(2) x U(1)). If z is a reducible point of SU(n)?9, then f,(z) = I,
so the connections take values in the Abelian subgroup of SU(n).

Now it follows that the diagonal conjugation action of SU(n)/Z(G) = PU(n)
(where Z(G) is the center of SU(n)) on SU(n)?9 clearly preserves W, and also
by Schur’s Lemma that the restriction of the action is free. Hence, the quotient
Wy/PU(n) is a smooth compact Hausdorff space, it is a manifold of dimension
2(g — 1) dim G at all irreducible points (i.e. when the image of 7 (X) generates G

).

We can give an equivalent description of this moduli space in the holomorphic
way (see [2, 21, 22]). The space of connections A over E is an affine space modeled
on Q!(X,,ad E), such that the tangent space of A at any point is canonically
identified with Q!(%,,ad E). Let us consider a decomposition of

QY (2,,ad E) ® C = QM0(%,,ad EC) @ Q%1(%,, ad E°).

If we consider an isomorphism between Q!(3,,ad E) and Q%!(2,,ad EY), we ob-
tain a complex structure on the modeled space of A and hence also on A. We
say that A is the space of 9 operators on EC. In the holomorphic picture we
must restrict to a stable bundle [30] in order to obtain a smooth moduli space.
A holomorphic vector bundle FE is semi-stable over a Riemann surface, if for all
sub-bundles F' it satisfies

degF < degFE
rankF — rankE’

Here, “degree” stands for the value of the first Chern class. The vector bundle £
is a stable bundle if this inequality is strict. When the degree and the rank are
coprime, then all the semi-stable bundles are stable. In this holomorphic picture
the moduli space is interpreted as the space of gauge equivalence classes of stable
vector bundles, i.e. M(X,G) = A% /G, where Aut(E®) = G acts on A° with the
constant scalars as the only isotropy group. The celebrated theorem of Narasimhan
and Seshadri [31] connects both the pictures and it states that stable bundles
arising from the representations of 7, give irreducible representations.
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Theorem 2.1 (Narasimhan-Seshadri). [31] A holomorphic vector bundle of rank
n s stable, if and only if it arises from an irreducible projective unitary repre-
sentation of the fundamental group. Moreover, isomorphic bundles correspond to
equivalent representations.

The more general moduli spaces of flat SU(n) connections over punctured
Riemann surfaces have been studied by Mehta and Seshadri [29]. In the presence
of a marked point on > , We associate a conjugacy class of S U(n) to it:

e2mivi/n 0 0
2miy2/n
e
0 0 c. 627\'74"‘%”/774

for all 0 < 7; < 1, where > ;v = 0. The holonomy around this marked
point takes its value in this conjugacy class. In presence of the marked points
21, %2, - .., Zp We associate a set of conjugacy classes I'; of SU(n). Consider a ho-
momorphism

m(Eg—(z1UzU...Uz)) — G
such that the loop around each z; takes values in I';, and the moduli space is the
quotient by G of the fibre over 1 in the multiplication map
Fl XFQ Xoeee er—>SU(TL)

In other words, when we factor out the conjugacy, then we obtain the moduli space
of parabolic bundles with weight (y1,...,7,). The dimension of the generalized
moduli space [3] is

»
2(g—1)dim G+ ) _dimT;.
j=1
This moduli space of parabolic bundles over the punctured Riemann surface
can be given a holomorphic picture, too. Mehta and Seshadri [29] have given
the notion of stability in this case. This involves assigning weights given by the
eigenvalues of I'; at each marked point.

3. Volume of the moduli space of SU(2) flat connections

Let us quickly recapitulate the known case. We recall that S,z is obtained from
the modular transformation induced on the characters of level k. Let x,(7) be
the character of the affine group é, then by the modular transformation 7 — %
[11, 27], we obtain matrix S,g, where « is the highest weight.

Xa(—2) = 3 Supxs(r).
B
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The key to construct this character is from the Weyl-Kac formula (for example
[11, 27]). We define the character of the representation L(A) to be the function

chx(t) = trpy exp(t)

where ¢ € £ and £ is the Cartan subalgebra of s/l; The Weyl-Kac character formula
is given by

_ 2 sign(w) exp(w(A + p)[t)
t’I“L()\) eXp(t) - Z Sign(w) exp(w(/’)|t)

where summations run over w in the Weyl group. The Weyl-Kac character formula
is essentially the same as the Weyl character formula, but it differs in two minor
ways, i.e. besides the usual root vectors, we also describe states by the number
operator and the c-number term. Then k is the eigenvalue of the number operator.
The affine Weyl group Wag is the semi-direct product of the ordinary Weyl
group and the translation T given by the co-root AV of the highest root .

2 asinw(i+1)(j+1)

S.. — 3
Y (k +2 ) k+2
Using Verlinde’s formula, we obtain
1
dim HO(M, L*) = — 2972
( )= OJ)

J
1
R.H.S = Z(g)%’*2
]' 7.]

k

_ k + 2 g—1 1 2g—2
- ( 2 ) Z( sin w(j+1) ) .
J=0 ~ k+2

Since our goal is to obtain a formula for the volume of the moduli space M,
we need to extract a term proportional to k4ime M = [39=3 for k — co0. The two
regions, namely j < k and k — j < k, make equal contributions. In order to see
this we use asymptotic analysis.

3.1. Asymptotic analysis and computation of volume of moduli spaces
We want to show that this is asymptotic to

2k39-3 1

29—1729-2" r29—2
r=1

We assume that g > 2 and writen = 2g—2 > 2. We also replace k by I = k42,
so the sum is:

as k — oo.

-1 1

! 2 n
Y= (5)"/ Z(W) :
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We divide this sum into the combination from j < [1/2, j > [/2: these are essentially
the same, hence it suffices to treat the first one. For € > 0, we write

1/2 [el] ] 1/2

Lo n 1,
;(sinﬁj/l) *;(Sinﬂjﬂ) +[§;1(si—nﬂ'j/l)

=S5S+T, say .

We want to compare the sum S with §' = Z;o 1( )™, The difference S — S’ arises

from two factors — approximating the sin function by its derivative and changing
the range of summation. For the first case we have, for small € and j/I < ¢,

mj/l > sin(mj/1) > mj/l - 1/6(mj/1)°.

This implies that, for some constant C,

l 1 k™
< (——)" < 1
() < o) < (S + PR
So
[el] [el] / el 2 X
— n S C . S Clln— ,
|Jz=; sin Tj ;(m) | ;j"*Q
for some C’ (since these are O(l) terms in the sum).
For the second factor:
00 [el] I oo I
Sy = Sy = o
j=1 7T‘7 j=1 m lel]+1 ™

by comparing with the integral feolo x~"dx. Hence, we see that S — S’ is O(I"™1).
Finally consider the other term 7"

1/2

1
T = (———=)"
[%1 sin(7j /1)

In this sum
sin(mj/l) > d(e)

say so, for fixed ¢, T = O(l) (the number of terms in the sum). Putting all of
this together, we see that

”/2 (2 " o(n!
2o

which gives the required result.
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Hence, for large k£ we obtain

k
E42 E+2
2 ) ;<W(j+1))

R =

dim HO(M, L*) ~ 2(

29—1729—2 n29—2"
n=1

This finally yields
k3g73

dim HO(M, L*) =2 ¢(2g9 —2). (3.1)

From the algebraic geometry point of view this dimension can be expressed
via the Hirzebruch-Riemann-Roch theorem [18]

dim HO(M, L*) = (exp(ke1(L)).Td(M), M)

2g—17.‘-2g—2

and for large k,
k.3g—3
(39 —3)!
Now ¢; (L) is represented by the symplectic form w in de Rham cohomology. Hence
{er (L)% M)
(3g — 3)!
coincides with Vol(M). Equating the expressions (3.1) and (3.2), we obtain

dim HO(M, L*) ~ (c1(L)?973, M). (3.2)

1 oo
— —(29—2)
Vol(M) = 2(2772)57_1 Z" 9
n=1
((29-2)
(2n2)o1
This is known as Witten’s volume formula [39] of the moduli space of flat SU(2)
connections.

4. Volume of the moduli space of flat SU(3) connections

—

We first recall some definitions of affine SU(3) characters (for example [11, 27]).

—

The affine SU(3) characters are labeled by a highest weight A = Ay A1 +X2A2 where
the A;’s are the fundamental weights and the set of components {);} contains non-

—

negative integers. If the height of affine SU(3) is n = k + 3 with level k > 0, the

highest weights corresponding to unitary representations satisfy A1 +Xo < k. Thus,
(k+1)(k+2) _ (n=1)(n—2)
2 = 2

there are independent affine characters. To see these more
explicitly, let us consider shifted weight A = A+ A; + As = p1 A1 4+ p2As. Unitarity
of the representations implies that A belongs to the fundamental domain W,

W={X=piA1 +p2As, p;>1 and pi+ps <n-—1},
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where the A;’s are the fundamental weights and the set of components {p;} are
truncated by the level k. W is known as the Weyl alcove (see for example [8, 16,
27)).

Our starting point will be the Weyl-Kac character for SU(3). We obtain the
matrix Sap (see details in [27]) from the modular transformations 7 — —2 of x.
The S matrix of SU(3) is given below.

8 sin ™ sin o sin LGYRE))
6(k+3) k+3 k43 k+3 7

Sox = (4.1)

which can be also derived from Weyl-Kac factorized form [11]:

T T2 T(A1+A2)
sin 5+3 sin k+3 sin 7k+3

A =

2
sin 3 sin k

T3 3
after normalization.

Note that k + 3 is the shifting of level k, and the shifting will be exactly
equal to the Coxeter number of the group G. The Coxeter number of SU(n) is
n. Substituting the modular transformation Spy in (4.1), we obtain the Verlinde

formula for the moduli space of flat SU(3) connections.

2g—2
k4 3)29-2691 1
dimHO(./\/l L’“) = L Z .
’ 2797 s T T2 T(A1+A2
A1, A2 Sin k+3 sin k+3 sin E+3

(4.2)

Here the summation satisfies \; + Xy < k + 2.
To find the volume our goal is again to extract the term proportional to
k,dimc./\/l _ k,Sg—8

for k — oo.
Like in the SU(2) case, here the contribution for large k comes from 3 different
regions. Finally, we obtain

oo

dim HOM, IF) ~ 30 a1 L 1 !
1m ( ) )N W 727 )\2972 )\2972 ()\1+)\2)2g—2
A1=1,x=1"1 2
k8g78
dim HO(M, LF) ~ 3——————6971¢, (29 — 2),

(2)69—629—1
where the generalized zeta function

Cq(29 — 2) Z ny (29-2) (2972)(711 +ng)~(2972) (4.3)

can be expressed in terms of double Bernoulli numbers [4, 5, 32] or multiple zeta
functions [41, 42].

Hence, using the Riemann-Roch formula, for large K — oo we obtain
k.Sg—S

im HO(M, LF) ~ ————
dim H°(M, L") By —9)1

(e1(L)*7%, M).
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Again, ¢1(L) is represented by the symplectic form w and the term
{er (L)%, M)
(8g — 8)!
coincides with Vol(M). Hence we obtain
g—1

Wég@g -2).

VO](M)SU(3) = 3 (27‘(

Finally, using the formula [42] of the multiple zeta function

o0

1 4 2s —r—1
et DI (RO PR G C S

m,n 0<r<s;reven
we obtain following examples.

Example : For g = 2 we know the value of the zeta function from Zagier [41, 42]:
(2(2) = (27)/7!36. So the volume is

6 (2m)8
(2m)6.2° 7136
This is the first generalization of Witten’s result [39] for the moduli space of SU(2)
flat connections to the moduli space of flat SU(3) connections.

Vol(M) = 3. =1/4.7!

5. Cohomological pairings of the moduli space

This is the central theme of the whole article. Our goal here is to find out the
cohomological pairings of the moduli space of flat SU(3) connections on the Rie-
mann surface. Our recipe to find the volume will be to use a generalized Verlinde
formula (for the marked point case) (1.8) in the large k-limit. This volume formula
contains all the information of certain cohomological pairings.

5.1. Review of Donaldson-Thaddeus-Witten’s work on SU(2) moduli space

Let M; be the moduli space of flat SU(2) connections. For a rational number
0 <t < 1, we consider M; to be the moduli space of flat connections on ¥, — x,
such that monodromy around z is in the conjugacy classes of SU(2)

T— < exp(imt) 0 ) '

0 exp(—int)

One can show that for ¢ close to 1, M; is a CP! bundle over the moduli space

M.
cP! —— M,

l

My
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For M,, we still have a natural symplectic structure w, but the periods of w
are no longer integers. Then w is expressed by a + th in H?(M;) generated by
a € H*(M;y) and h € H?(M,;) takes value 1 on the fibre. Hence, for small ¢ its
symplectic volume will be

Vol® (M) = ( (a +th)®972 [My]).

1
(3g — 2)!

Using the relation h? = b € H*[M;], we can expand the above expression:

(39=2
]_ 3 — . e oao
G 2 (ojpq M, 5.1)
T =0

On the other hand we use Witten’s prescription [39] to obtain the volume
of the moduli space of flat SU(2) connections over the Riemann surface with p-
marked points from the generalized Verlinde formula (1.8) in the large & limit.

vy sin(mnt;)

P _ [T,
Vol (My) = 2. 29— 177257 24p Z n29—2+p

n=1

This volume for the one marked point case is

sm n7rt

Vol(M) = o= Wg - Z T (5.2)

Equating the two expressions (5.1) and (5.2), one obtains the pairing in terms of
Bernoulli numbers.

m!
(g—1—m)!
where m = 3g — 3 — 25 and we have used
(-1 2m)
ok 2% -

<a/'mbn7 [M]) _ (_1)9 21—5](29—1—m _ 2)Bm—g+1

C(2k) =

This exactly coincides with Thaddeus’ formula [33] which is verified by Donaldson
[13] using topological gluing techniques extracted from the Verlinde algebra.

After the demonstration of the known case, we shall give our result in the
remaining part of the article.

5.2. Cohomological pairings for SU(3) connections

Our goal is to obtain the cohomological pairings for the moduli space of flat SU(3)
connections.

To begin with, let M; be the moduli space of flat SU(3) connections over
a Riemann surface ¥, — =z having one marked point x such that the holonomy
around z is characterized by two rational numbers t1, to satisfying 0 < ¢; < 1
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and 0 < t3 < 1. The prescribed holonomy around x takes values in the conjugacy
classes of SU(3)

eQTritl/3 0 0
O ~ 0 eQTritg/3 0
0 0 6727r7i(t1+t2)/3

Then, for small values of ¢, M; is the bundle over the ordinary smooth moduli
space and the flag manifold is the fibre on it. It can be represented by

F — M,
My
In other words, the fibre is a flag manifold
F_ SU@3)  SL(3,C)
S U()xUu(l) Bt

where BT is the Borel subgroup of SL(3,C). We now give a brief description of
the flag manifold from the classic Bott and Tu [10].

5.2.1. Flag manifolds and cohomology. We define a flag in a complex vector space
V' of dimension n as a sequence of subspaces

VicVecC...... C Vp, dimcV; =i.

Let Fl(V) be the collection of all flags in V. Any flag can be carried into any other
flag in V' by an element of the general linear group GL(n,C), and the stabilizer
of a flag is the Borel subgroup BT of the upper triangular matrices. Then, the set
FI(V) is isomorphic to the coset space GL(n,C)/B*. The quotient of any smooth
manifold by the free action of a compact Lie group is again a smooth manifold.
Hence, FI(V) is a manifold and it is called the flag manifold of V.

Similarly, we can construct a flag structure on bundles. Let 7 : E — M be
a C'* complex vector bundle of rank n over a manifold M. The associated flag
bundle FI(F) is obtained from FE by replacing each fibre E, by the flag manifold
FI(E,), the local trivialization

¢ : Elu, 2 Uy x C"
induces a natural trivialization
FI(E)|y, ~ Uy x FI(C™).

Since GL(n,C) acts on FI(C™) we may take the transition function of FI(FE) to
be those of E.

Let us discuss a few things about split manifolds. Given a map o : FI(E) —
M we can define a split manifold as follows:

1. the pull back of E to F(E) splits into a direct sum of line bundles
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2. 0* embeds H*(M) in H*(FI(E)).
The split manifold FI(E) is obtained by a sequence of n — 1 projectivization. We
shall now apply all these to obtain cohomology rings of flag manifolds.

Proposition 5.1. The associated flag bundle FI(E) of a vector bundle is the split
manifold.

Proof: Given in Bott [10] (chapter 4). O
If FE is a rank n complex vector bundle over M, then the cohomology ring of
its projectivization is

H*(P(E)) = H*(M)[c1, ..., cn,dy, ..., dn] [{C(S)C(Q) = 7°C(E)},

where c1, ....., ¢, are the Chern classes of the universal subbundle S and dy, ...... ,dn
are the classes of the universal quotient bundle Q. Also C(S) and C(Q) denote the
total Chern classes of S and Q. respectively. The flag manifold is obtained from a
sequence of (n — 1) projectivizations

H*(FI(E))
= H*(M)[C(51), -+, C(Sn-1),C(Q1, s @n—1)]/C(S1)...C(Sn—-1)C(Qn-1)
—C(B).
If
hi = Cy(Si), i=1l.n—1
hyn = C(anl)a

then we have

n

H*(FUE)) = H* (M) [h1, . ha) /(][ (1 + B)) = C(B)).
i=1
In order to obtain the cohomology ring of the flag manifold F' [10], we have to
consider a trivial bundle over a point.

n

H*(F) = Rlhy, ... ho] /([ J (1 + i) = 1).

i=1
For the special case n = 3, we obtain
3
H*(F) = Rlhy, ha, hs] /(] [ (1 + hi) = 1).
i=1

5.2.2. Computation of the intersection pairings. We are going to apply our pre-
vious scheme. Since My is a bundle over M7, we can pull back the cohomology
from the base manifold M. In fact, it is not hard to see that the symplectic form
w represents the class

a+tihy +tahs € H2(Mt),
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where a € H*(M;) and h; € H*(M,). So from this symplectic form the volume
will be the following

Vol® (M) = ( !(a + t1hy + t2he)2970 [M,]).

1
(89 —5)
When we expand this expression, then we obtain the following results.
Proposition 5.2.

Vol¥ (M) =)

k.l

1
(89— 5— k— D)IkIl!

Fith (a2 nn, ().

But to get the exact pairing, we have to use the knowledge of Witten’s volume
function for small t1,t2, and also we use the following identities viz.

hi=be H* hi=c €H* -hhy=d €H*
h%hg =e EHG; —h%hl Zf EHG.
Note that h?hy = —hih2 is a fundamental class of the Flag manifold, these are

top cohomology modules. The key lemma for obtaining the cohomology ring over
the moduli space M follows from the Leray-Hirsch theorem [10].

Theorem 5.3. (Leray-Hirsch) Let £ be a fibre bundle over a manifold M with
fibre F. Assume M has finite good cover and suppose there are global cohomology
classes e1,ea,...,e. on & which — when restricted to each fibre — freely generate
the cohomology of the fibre. Then H*(E) is a free module over H*(M) with basis
{61, €9, . .. ,6,«}, 1.€.

H*(E) = H* (M) ® Rley, e, ....., ]
>~ [H*(M) @ H*(F).

Now we formulate an important statement.

Lemma 5.4. The fundamental classes of M, are the product of the fundamental
classes of the moduli space without marked point My and the fundamental classes
of the flag manifold.

We use the same recipe, i.e., extracting the volume from the generalized
Verlinde formula (1.8), to find the volume of the moduli space.

—

If we feed the value of S,g of SU(3) obtained from the modular transfor-
mation of the Weyl-Kac character into the Verlinde formula (1.8) and repeat the
derivation as in the previous section, we obtain the torsion volume
B 3.69°1 sin 7wnqty sin wnats sinw(ng + ne2)(t1 + t2)

279—7769—3 n?gflnggfl(nl + TL2)2971

Vol (M) .
This is the generalization of Witten’s volume formula for the moduli space of flat
SU(3) connections. It is the volume of the moduli space of flat SU(3) connections
over a Riemann surface of genus g with one marked point.
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After a tedious calculation which makes use of the Taylor expansion of
sinmnity, sinmnaty and sinw(ng 4+ ng)(t; + t2), the above expression for small
t1, to gives us a comprehensive formula:

Proposition 5.5.

3.6971
VOI(M ) 27g 77T6g 3 ZZ X

(_1)31+32+137T231+2j2+j3t2(i1+i3*j4)+1 2(j2+7a)+2

(271 + D)!(242 4+ 11273 — 252)1 (244 + 1)In397272p207202 72 () 4 pp)29=2a—2

This is the key formula for getting the cohomology pairings of the moduli
space of flat SU(3) connections, and is Witten’s volume formula for moduli space
of flat SU(3) connections. This formula is too bigm but can be handled for some
lower genus cases.

5.3. Concrete examples

It is clear that the two volumes of the moduli space, namely the symplectic volume
Vol¥(M,) and the volume from Verlinde’s formula Vol(M;) in claim (1.9) are
equal.

Using this simple prescription we obtain explicit examples of the cohomologi-
cal pairings of the moduli space of flat SU(3) connections. This pairing is expressed
in terms of a multiple zeta function [41, 42] or double Bernoulli numbers [4, 5].
Equating the powers of ¥}, we obtain explicit pairings.

1. We consider genus = 3. Thus we obtain

3.715131.22.8.9.10
(a'%e' frIM]) = WCSUB)-

From Zagier’s formula we now come to know that the value of this function
2m)%./71.36. Hence

(a'%e! F1IM]) = (10.9.3.6.2).(2%.5!)/4.36.2° = 5.9.15 = 675.
2. Once again consider genus = 3. We obtain

10.9.8.6.7!6!.22

(@2 M) = = e

¢(2,4)
2
i.e.
(a'® f2[M]) = 10.9.8.5!.2% /2% = 1350.

Thus, we gave two explicit examples of pairings. Indeed it is really hard to
compute any arbitrary higher genus pairings. We hope that our readers realize the
degree of complications for further computations of intersection pairings.
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a Deformation Point of View
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Abstract. In this review we discuss the global geometry of noncommutative
field theories from a deformation point of view: The space-times under consid-
eration are deformations of classical space-time manifolds using star products.
Then matter fields are encoded in deformation quantizations of vector bun-
dles over the classical space-time. For gauge theories we establish a notion
of deformation quantization of a principal fibre bundle and show how the
deformation of associated vector bundles can be obtained.
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1. Introduction

Noncommutative geometry is commonly believed to be a reasonable candidate for
the marriage of classical gravity theory in form of Einstein’s general relativity on
one hand and quantum theory on the other hand. Both theories are experimentally
well-established within large regimes of energy and distance scales. However, from
a more fundamental point of view, the coexistence of these two theories becomes
inevitably inconsistent when one approaches the Planck scale where gravity itself
gives significant quantum effects.

Since general relativity is ultimately the theory of the geometry of space-
time it seems reasonable to use notions of ‘quantum geometry’ known under the
term noncommutative geometry in the sense of Connes [11] to achieve appropri-
ate formulations of what eventually should become quantum gravity. Of course,
this ultimate goal has not yet been reached but techniques of noncommutative
geometry have been used successfully to develop models of quantum field theories
on quantum space-times being of interest of their own. Moreover, a deeper un-
derstanding of ordinary quantum field theories can be obtained by studying their
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counterparts on ‘nearby’ noncommutative space-times. On the other hand, people
started to investigate experimental implications of a possible noncommutativity
of space-time in future particle experiments.

Such a wide scale of applications and interests justifies a more conceptual
discussion of noncommutative space-times and (quantum) field theories on them in
order to clarify fundamental questions and generic features expected to be common
to all examples.

In this review, we shall present such an approach from the point of view of
deformation theory: noncommutative space-times are not studied by themselves
but always with respect to a classical space-time, being suitably deformed into
the noncommutative one. Clearly, this point of view can not cover all possible
(and possibly interesting) noncommutative geometries but only a particular class.
Moreover, we focus on formal deformations for technical reasons. It is simply
the most easy approach where one can rely on the very powerful machinery of
algebraic deformation theory. But it also gives hints on approaches beyond formal
deformations: finding obstructions in the formal framework will indicate even more
severe obstructions in any non-perturbative approach.

In the following, we discuss mainly two questions: first, what is the appro-
priate description of matter fields on deformed space-times and, second, what are
the deformed analogues of principal bundles needed for the formulation of gauge
theories. The motivation for these two questions should be clear.

The review is organized as follows: in Section 2, we recall some basic def-
initions and properties concerning deformation quantizations and star products
needed for the set-up of noncommutative space-times. We discuss some funda-
mental examples as well as a new class of locally noncommutative space-times.
Section 3 is devoted to the study of matter fields: we use the Serre-Swan theorem
to relate matter fields to projective modules and discuss their deformation theory.
Particular interest is put on the mass terms and their positivity properties. In
Section 4 we establish the notion of deformation quantization of principal fibre
bundles and discuss the existence and uniqueness results. Finally, in Section 5 we
investigate the resulting commutant and formulate an appropriate notion of as-
sociated (vector) bundles. This way we make contact to the results of Section 3.
The review is based on joint works with Henrique Bursztyn on one hand as well
as with Martin Bordemann, Nikolai Neumaier and Stefan Wei on the other hand.

2. Noncommutative space-times

In order to implement uncertainty relations for measuring coordinates of events
in space-time it has been proposed already very early to replace the commuta-
tive algebra of (coordinate) functions by some noncommutative algebra. In [17] a
concrete model for a noncommutative Minkowski space-time was introduced with
commutation relations of the form

9, 3] = iAg" (2.1)
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where X plays the role of the deformation parameter and has the physical dimension
of an area. Usually, this area will be interpreted as the Planck area. Moreover, 6 is
a real, antisymmetric tensor which in [17] and many following papers is assumed
to be constant: in [17] this amounts to require that 0* belongs to the center of
the new algebra of noncommutative coordinates. In fact, the approach in [17] was
more subtle: the constants 6# are subject to a tensor transforming non-trivially
under Lorentz transformations in such a way that the whole algebra is endowed
with a representation of the Lorentz (in fact Poincaré) group by *-automorphisms.
This was achieved by adding the whole Lorentz orbit of a constant tensor 6# with
rank 4. Unfortunately, in the vast majority of the follow-up papers this feature of
Lorentz invariance has been neglected. In the following we shall ignore symmetries,
too, as in the end we focus on generic space-times without symmetries anyway.
However, if there is a reasonably large symmetry group present, one can always
perform the construction parallel to [17] and add the orbit of the Poisson tensor
under the symmetry group.

Instead of constructing an abstract algebra where commutation relations like
(2.1) are fulfilled, it is convenient to use a ‘symbol calculus’ and encode (2.1)
already for the classical coordinate functions by changing the multiplication law
instead. For functions f and g on the classical Minkowski space-time one defines
the Weyl-Moyal star product by

frg=poc?? @m®aw(fqyg), (2.2)

where p(f ® g) = fg denotes the undeformed, pointwise product. Then (2.1) holds
for the classical coordinate functions with respect to the x-commutator.

Clearly, one has to be slightly more careful with expressions like (2.2): in
order to make sense out of the infinite differentiations the functions f and g first
should be C'*°. But then the exponential series does not converge in general whence
a more sophisticated analysis is required. Though this can be done in a completely
satisfying way for this particular example, we shall not enter this discussion here
but consider (2.2) as a formal power series in the deformation parameter A\. Then x
becomes an associative C[[\]]-bilinear product for C°°(IR*)[[\]], i. e. a star product
in the sense of [3]. It should be noted that the interpretation of (2.2) as formal
series in A is physically problematic: A is the Planck area and hence a physically
measurable and non-zero quantity. Thus our point of view only postpones the
convergence problem and can be seen as a perturbative approach.

With this example in mind, one arrives at several conceptual questions: The
first is that Minkowski space-time is clearly not a very realistic background when
one wants to consider quantum effects of ‘hard’ gravity. Here already classically
nontrivial curvature and even nontrivial topology may arise. Thus one is forced
to consider more general and probably even generic Lorentz manifolds instead.
Fortunately, deformation quantization provides a well-established and successful
mathematical framework for this geometric situation.
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Recall that a star product on a manifold M is an associative C[[\]]-bilinear
multiplication x for f,g € C°°(M)[[A]] of the form

o0
f*g:Z/\TCT(f,g), (23)
r=0
where Co(f,g) = fg is the undeformed, pointwise multiplication and the C, are
bidifferential operators. Usually, one requires 1x f = f = f*1 for all f. It is easy to
see that {f, g} = 1(C1(f.g)—Ci(g, f)) defines a Poisson bracket on M. Conversely,
and this is the highly nontrivial part, any Poisson bracket {f,¢g} = 6(d f,dg),
where
0 € T(A*TM), [6,0] =0 (2.4)
is the corresponding Poisson tensor, can be quantized into a star product [14,29].
Beside these existence results one has a very good understanding of the classifica-
tion of such star products [20,29, 31], see also [15,19] for recent reviews and [40]
for an introduction.

With this geometric interpretation the Weyl-Moyal star product on Minkowski
space-time turns out to be a deformation quantization of the constant Poisson
structure

0= 16””i A 4 .

2 Ozr OV

On a generic space-time M there is typically no transitive action of isometries

which would justify the notion of a ‘constant’ bivector field. Thus a star product

* on M is much more complicated than (2.2) in general: already the first order

term is a (nontrivial) Poisson structure and for the higher order terms one has to
invoke the (unfortunately rather inexplicit) existence theorems.

Thus answering the first question by using general star products raises the
second: what is the physical role of a Poisson structure on space-time? While on
Minkowski space-time with constant 6 we can view the finite number of coefficients
0" € R as parameters of the theory this is certainly no longer reasonable in
the more realistic geometric framework: there is an infinity of Poisson structures
on each manifold whence an interpretation as ‘parameter’ yields a meaningless
theory. Instead, 6 has to be considered as a field itself, obeying its own dynamics
compatible with the constraint of the Jacobi identity [6, ] = 0. Unfortunately, up
to now a reasonable ‘field equation’ justified by first principles seems to be missing.

This raises a third conceptual question, namely why should there be any Pois-
son structure on M and what are possible experimental implications? In particu-
lar, the original idea of introducing a noncommutative structure was to implement
uncertainty relations forbidding the precise localization of events. The common
believe is that such quantum effects should only play a role when approaching
the Planck scale. Now it turns out that the quantum field theories put on such a
noncommutative Minkowski space-time (or their Euclidian counterparts) suffer all
from quite unphysical properties: Typically, the noncommutativity enters in long-
distance/low-energy features contradicting our daily life experience. Certainly, a
last word is not said but there might be a simple explanation why such effects

(2.5)
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should be expected: the global 0 (constant or not) yields global effects on M. This
was the starting point of a more refined notion of noncommutative space-times
advocated in [1,23] as locally noncommutative space-times. Roughly speaking,
without entering the technical details, it is not M which should become noncom-
mutative but TM. Here the tangent bundle is interpreted as the bundle of all
normal charts on M and for each normal chart with origin p € M one constructs
its own star product *,. The crucial property is then that x, is the pointwise,
commutative product outside a (small) compact subset around p. This way, the
long-distance behavior (with respect to the reference point p) is classical while
close to p there is a possibly even very strong noncommutativity. In some sense,
this is an implementation of an idea of Julius Wess, proposing that the transition
from classical geometry to quantum geometry should be understood as a kind of
phase transition taking place at very small distances [42]. Of course, the concep-
tual question about the physical origin of the corresponding Poisson structure on
TM as well as the convergence problem still persists also in this approach.

Ignoring these questions about the nature of #, we shall assume in the fol-
lowing that we are given a star product x on a manifold M which can be either
space-time itself or its tangent bundle in the locally noncommutative case. Then
we address the question how to formulate reasonable field theories on (M, %). Here
we shall focus on classical field theories which still need to be quantized later on.
On the other hand, we seek for a geometric formulation not relying on particular
assumptions about the underlying classical space-time.

3. Matter fields and deformed vector bundles

In this section we review some results from [6,9,35,39].

In classical field theories both bosonic and fermionic matter fields are given
by sections of appropriate vector bundles. For convenience, we choose the vector
bundles to be complex as also the function algebra C'*° (M) consists of complex-
valued functions. However, the real case can be treated completely analogously.
Thus let E — M be a complex vector bundle over M. Then the E-valued fields
are the (smooth) sections I'*°(E) which form a module over C*°(M) by pointwise
multiplication. Thanks to the commutativity of C°°(M) we have the freedom to
choose this module structure to be a right module structure for later convenience.

It is a crucial feature of vector bundles that I'°(FE) is actually a finitely
generated and projective module:

Theorem 3.1 (Serre-Swan). The sections I'°(E) of a vector bundle E — M are
a finitely generated and projective C°°(M)-module. Conversely, any such module
arises this way up to isomorphism.

Recall that a right module €4 over an algebra A is called finitely generated
and projective if there exists an idempotent e = e € M,,(A) such that €4 = eA"
as right A-modules. More geometrically speaking, for any vector bundle £ — M
there is another vector bundle F — M such that their Whitney sum E & F
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is isomorphic to a trivial vector bundle M x C* — M. Note that the Serre-
Swan theorem has many incarnations, e.g. the original version was formulated
for compact Hausdorff spaces and continuous sections/functions. Note also that
for our situation no compactness assumption is necessary (though it drastically
simplifies the proof) as manifolds are assumed to be second countable.

Remark 3.2. The Serre-Swan theorem is the main motivation for noncommutative
geometry to consider finitely generated and projective modules over a not neces-
sarily commutative algebra A as ‘vector bundles’ over the (noncommutative) space
described by A in general.

For physical applications in field theory one usually has more structure on £
than just a bare vector bundle. In particular, for a Lagrangian formulation a ‘mass
term’ in the Lagrangian is needed. Geometrically such a mass term corresponds
to a Hermitian fibre metric h on E. One can view a Hermitian fibre metric as a
map

h:T(E) x T'*°(E) — C*(M), (3.1)
which is C-linear in the second argument and satisfies h(¢,v) = h(v, @), h(p, 0¥ f) =
h(o, ) f as well as

h(¢,¢) >0 (3.2)
for ¢, € T°°(F) and f € C°°(M). The pointwise non-degeneracy of h is equiva-
lent to the property that

I(E) 3 ¢ — h(g,-) € I7(ET) (3-3)

is an anti-linear module isomorphism. Note that the sections of the dual vec-
tor bundle E* — M coincide with the dual module, i.e. we have I'°(E*) =
Homgoe (ar) (I (E), C*°(M)).

In order to encode now the positivity (3.2) in a more algebraic way suitable
for deformation theory, we have to consider the following class of algebras: First,
we use a ring of the form C = R(i) with i = —1 for the scalars where R is an
ordered ring. This includes both R and R[[A]], where positive elements in R[[\]]
are defined by

o)
a= Z Aa,>0 if a,, >0. (3.4)

r=r0o
In fact, this way R[[\]] becomes an ordered ring whenever R is ordered. More
physically speaking, the ordering of R[[\]] refers to a kind of asymptotic positivity.
Then the algebras in question should be *-algebras over C: Indeed, C*°(M) is a
*-algebra over C where the *-involution is the pointwise complex conjugation.
For the deformed algebras (C*°(M)[[A]],*) we require that the star product is

Hermitian, i.e.

frg=g9+f (3.5)
for all f,g € C°(M)[[A]]. For a real Poisson structure 6 this can be achieved by a
suitable choice of *.
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For such a *-algebra we can now speak of positive functionals and positive
elements [7] by mimicking the usual definitions from operator algebras, see e.g. [33]
for the case of (unbounded) operator algebras and [38] for a detailed comparison.

Definition 3.3. Let A be a *-algebra over C = R(i). A C-linear functional w : A —
C is called positive if w(a*a) > 0 for all a € A. An element a € A is called positive
if w(a) > 0 for all positive functionals w.

We denote the convex cone of positive elements in A by AT. It is an easy
exercise to show that for A = C°°(M) the positive functionals are the compactly
supported Borel measures and A consists of functions f with f(z) > 0 for all
reM.

Using this notion of positive elements and motivated by [30], the algebraic
formulation of a fibre metric is now as follows [6,9]:

Definition 3.4. Let €4 be a right A-module. Then an inner product (-,-) on €4 is
a map

<-,->:€AX€A —MA, (3.6)
which is C-linear in the second argument and satisfies (x,y) = (y,z)", (z,y-a) =
(z,y) a, and (z,y) = 0 for all y implies x = 0. The inner product is called strongly
non-degenerate if in addition

Eadx — <JJ,->EE*=H0mA(8A,A) (3.7)
is bijective. It is called completely positive if for all n € N and z1,...,2, € €4
one has ((z;,z;)) € M,,(A)*.

Clearly, a Hermitian fibre metric on a complex vector bundle endows I'*°(F)
with a completely positive, strongly non-degenerate inner product in the sense of
Definition 3.4.

With the above definition in mind we can now formulate the following defor-
mation problem [6]:

Definition 3.5. Let x be a Hermitian star product on M and £ — M a complex
vector bundle with fibre metric h.

1. A deformation quantization e of E is a right module structure e for I'*°(E)[[\]]
with respect to x of the form

pof=> NR(¢,f) (3.8)
r=0
with bidifferential operators R, and Ro(¢, f) = ¢f.

2. For a given deformation quantization e of E a deformation quantization of A
is a completely positive inner product h for (I'*°(E)[[A]], ®) of the form

h($, ) =Y ANhe(¢,1) (3.9)
r=0

with (sesquilinear) bidifferential operators h, and hy = h.
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In addition, we call two deformations e and e equivalent if there exists a
formal series of differential operators

o)
T=id+ Y XT;:T¥(E)[N] — T=(E)[A], (3.10)
r=1
such that
T(pe f)=T(¢)ef. (3.11)
With other words, T is a module isomorphism starting with the identity in order \°
such that T is not visible in the classical/commutative limit. Conversely, starting
with one deformation e and a T like in (3.10), one obtains another equivalent
deformation e by defining @ via (3.11). Similarly, we define two deformations h
and h to be isometric if there exists a self-equivalence U with

h(¢, ) = h(U(¢),U(¥)). (3.12)

The relevance of the above notions for noncommutative field theories should now
be clear: for a classical matter field theory modeled on E — M we obtain the cor-
responding noncommutative field theory by choosing a deformation e (if it exists!)
together with a deformation h (if it exists!) in order to write down noncommutative
Lagrangians involving expressions like L(¢) = h($, ¢) + - -.

Note that naive expressions like ¢ x ¢ do not make sense geometrically, even
on the classical level: sections of a vector bundle can not be ‘multiplied” without
the extra structure of a fibre metric h unless the bundle is trivial and trivialized.
In this particular case we can of course use the canonical fibre metric coming from
the canonical inner product on C™. We refer to [35,39] for a further discussion.

We can now state the main results of this section, see [6,9] for detailed proofs:

Theorem 3.6. For any star product * on M and any vector bundle E — M
there exists a deformation quantization e with respect to x which is unique up to
equivalence.

Theorem 3.7. For any Hermitian star product x on M and any fibre metric h on
E — M and any deformation quantization e of E there exists a deformation
quantization h of h which is unique up to isometry.

The first theorem relies heavily on the Serre-Swan theorem and the fact that
algebraic Kp-theory is stable under formal deformations [32]. In fact, projections
and hence projective modules can always be deformed in an essentially unique
way. The second statement follows for much more general deformed algebras than
only for star products, see [9].

Remark 3.8.

1. In case M is symplectic, one has even a rather explicit Fedosov-like construc-
tion for e and h in terms of connections, see [36].

2. Tt turns out that also I'*°(End(E)) becomes deformed into an associative alge-
bra (I'*°(End(E))[[A]], ') such that I'°(E)[[A]] becomes a Morita equivalence
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bimodule between the two deformed algebras x and x’. Together with the de-
formation h of h one obtains even a strong Morita equivalence bimodule [9].
3. Note also that the results of the two theorems are more than just the ‘anal-
ogy’ used in the more general framework of noncommutative geometry: we
have here a precise link between the noncommutative geometries and their
classical/commutative limits via deformation. For general noncommutative
geometries it is not even clear what a classical/commutative limit is.

4. Deformed principal bundles

This section contains a review of results obtained in [5] as well as in [41].

In all fundamental theories of particle physics the field theories involve gauge
fields. Geometrically, their formulation is based on the use of a principal bundle
pr : P — M with structure group G, i.e. P is endowed with a (right) action
of G which is proper and free whence the quotient P / G = M is again a smooth
manifold. All the matter fields are then obtained as sections of associated vector
bundles by choosing an appropriate representation of G.

In the noncommutative framework there are several approaches to gauge the-
ories: for particular structure groups and representations notions of gauge theories
have been developed by Jurco, Schupp, Wess and coworkers [24-28|. Here the fo-
cus was mainly on local considerations and the associated bundles but not on the
principal bundle directly. Conversely, there is a purely algebraic and intrinsically
global formulation of Hopf-Galois extensions where not only the base manifold M
is allowed to be noncommutative but even the structure group is replaced by a
general Hopf algebra, see e.g. [12] and references therein for the relation of Hopf-
Galois theory to noncommutative gauge field theories. However, as we shall see
below, in this framework which a priori does not refer to any sort of deforma-
tion, in general only very particular Poisson structures on M can be used. Finally,
in [37] a local approach to principal Gl(n, C) or U(n) bundles was implicitly used
via deformed transition matrices.

We are now seeking for a definition of a deformation quantization of a princi-
pal bundle P for a generic structure Lie group G, arbitrary M and arbitrary star
product x on M without further assumptions on P. In particular, the formulation
should be intrinsically global.

The idea is to consider the classical algebra homomorphism

pr*: C®(M) — C*(P) (4.1)

and try to find a reasonable deformation of pr*. The first idea would be to find a

star product xp on P with a deformation pr* = > °2 ; A\"pr*, of pr*; = pr* into
an algebra homomorphism

pr*(f xg) = pr*(f) xp pr*(g) (4.2)

with respect to the two star products x and *p. In some sense this would be the

first (but not the only) requirement for a Hopf-Galois extension. In fact, the first
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order of (4.2) implies that the classical projection map pr is a Poisson map with
respect to the Poisson structures induced by x on M and xp on P. The following
example shows that in general there are obstructions to achieve (4.2) already on
the classical level:

Ezample. Consider the Hopf fibration pr : S — S? (which is a nontrivial prin-
cipal S'-bundle over S?) and equip S? with the canonical symplectic Poisson
structure. Then there exists no Poisson structure on S® such that pr becomes a
Poisson map. Indeed, if there would be such a Poisson structure then necessarily
all symplectic leaves would be two-dimensional as symplectic leaves are mapped
into symplectic leaves and S? is already symplectic. Fixing one symplectic leaf in
53 one checks that pr restricted to this leaf is still surjective and thus provides a
covering of S2. But S? is simply connected whence the symplectic leaf is itself a
52, This would yield a section of the nontrivial principal bundle pr : S% — S2, a
contradiction.

Remark 4.1. Note that there are prominent examples of Hopf-Galois extensions
using quantum spheres, see e.g. [21] and references therein. The above example
shows that when taking the semi-classical limit of these g-deformations one obtains
Poisson structures on S? which are certainly not symplectic. Note that this was a
crucial feature in the above example. A further investigation of these examples is
work in progress.

The above example shows that the first idea of deforming the projection
map into an algebra homomorphism leads to hard obstructions in general, even
though there are interesting classes of examples where the obstructions are absent.
However, as we are interested in an approach not making too much assumptions
in the beginning, we abandon this first idea. The next weaker requirement would
be to deform pr* not into an algebra homomorphism but only turning C*°(P) into
a bimodule. This would have the advantage that there is no Poisson structure on
P needed. However, a more subtle analysis shows that again for the Hopf fibration
such a bimodule structure is impossible if one uses a star product on S? coming
from the symplectic Poisson structure. Thus we are left with a module structure:
for later convenience we choose a right module structure and state the following
definition [5]:

Definition 4.2. Let pr : P O G — M be a principal G-bundle over M and * a
star product on M. A deformation quantization of P is a right x-module structure
o for C*°(P)[[A]] of the form

Fef=Fprf+> Xg.(F,f), (4.3)

r=1
where g, : C®°(P) x C*(M) — C*(P) is a bidifferential operator (along pr) for
all r > 1, such that in addition one has the G-equivariance

g (Fef)=g'Fef (4.4)
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for all F'€ C(P)[[N]], f € C=(M)[[\]] and g € G.

Note that as G acts on P from the right, the pull-backs with the actions of
g € G provide a left action on C*°(P) in (4.4). Then this condition means that
the G-action commutes with the module multiplications.

Note that the module property F o (f xg) = (F o f) e g implies that the
constant function 1 acts as identity. Indeed, since 1 x 1 = 1 the action of 1 via e
is a projection. However, in zeroth order the map F — F e 1 is just the identity
and hence invertible. But the only invertible projection is the identity map itself.
Thus

Fel=F (4.5)
for all F' € C°°(P)[[]\]], so the module structure e is necessarily unital.

Finally, we call two deformation quantizations e and e equivalent, if there
exists a G-equivariant equivalence transformation between them, i.e. a formal series
of differential operators T'=id + Y o, A\"T, on C°°(P)[[A]] such that

T(Fef)=T(F)ef and g¢'T=Tg" (4.6)

for all F € C®(P)[[N]], f € C*(M)[[\]] and g € G.
We shall now discuss the existence and classification of such module struc-
tures. For warming up we consider the situation of a trivial principal fibre bundle:

Ezample. Let P = M x G be the trivial (and trivialized) principal G-bundle over
M with the obvious projection. For any star product x on M we can now ex-
tend x to C°(M x G)[[A]] by simply acting only on the M-coordinates in the
Cartesian product. Here we use the fact that we can canonically extend multidif-
ferential operators on M to M x G. Clearly, all algebraic properties are preserved
whence in this case we even get a star product xp = * ® p with the undeformed
multiplication u for the G-coordinates. In particular, C*°(M x G)[[A]] becomes a
right module with respect to x. So locally there are no obstructions even for the
strongest requirement (4.2) and hence also for (4.3).

The problem of finding e is a global question whence we can not rely on local
considerations directly. The most naive way to construct a e is an order-by-order
construction: In general, one has to expect obstructions in each order which we
shall now compute explicitly. This is a completely standard approach from the
very first days of algebraic deformation theory [13,18] and will in general only
yield the result that there are possible obstructions: in this case one needs more
refined arguments to ensure existence of deformations whence the order-by-order
argument in general is rather useless. In our situation, however, it turns out that
we are surprisingly lucky.

The following argument applies essentially to arbitrary algebras and module
deformations and should be considered to be folklore. Suppose we have already
found g¢ = pr*, 01, ..., 0k such that

k
Fo¥) f=Fpr'f+Y N o (F, f) (4.7)

r=1
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is a module structure up to order \* and each p, fulfils the G-equivariance condi-
tion. Then in order to find gpy; such that e(Ft1) = (k) 1 \k+1y ) is a module
structure up to order \*+! we have to satisfy

ok+1(F, f)pr*g — orv1(F, fg) + ok (Fpr™ f, g)

k
= Z (Qr(Fa Ck+17r(fa g)) - «Qr(«gk+177’(Fv f)a g)) = Rk(Fa I g)a (48)
r=1
for all F € C*°(P)[[A]] and f,g € C*°(M)[[A]]. Here C, denotes the r-th cochain
of the star product x as in (2.3). In order to interpret this equation we consider
the o, as maps
0, C=(M)3 f — o,( f) € Diffop(P) (4.9)
and similarly
Ry, C%(M) x C™(M) 3 (f,9) — Ri(f,g) € Diffop(P). (4.10)

Viewing Diffop(P) as C°°(M)-bimodule via pr* in the usual way, we can now re-
interpret (4.8) as equation between a Hochschild one-cochain g1 and a Hochschild
two-cochain Ry
(5Qk+1 =R (4.11)
in the Hochschild (sub-)complex HCY;z(C> (M), Diffop(P)) consisting of differ-
ential cochains taking values in the bimodule Diffop(P). Here § is the usual
Hochschild differential. Using the assumption that the gg, . .., o have been chosen
such that ) is a module structure up to order A\* it is a standard argument to
show
0R; = 0. (4.12)
Thus the necessary condition for (4.11) is always fulfilled by construction whence
(4.11) is a cohomological condition: The equation (4.11) has solutions if and only
if the class of Ry, in the second Hochschild cohomology HHZ4(C (M), Diffop(P))
is trivial.
In fact, we have also to take care of the G-equivariance of giy1. If all the
00, ---, o satisfy the G-equivariance then it is easy to see that also Ry has the
G-equivariance property. Thus we have to consider yet another subcomplex of the
differential Hochschild complex, namely

HC35(C™ (M), Diffop(P)€) € HC3(C (M), Diffop(P)). (4.13)

Thus the obstruction for (4.11) to have a G-equivariant solution is the Hochschild
cohomology class
[Ri] € HH3,5(C>° (M), Diffop(P)%). (4.14)

A completely analogous order-by-order construction shows that also the ob-
structions for equivalence of two deformations e and e can be formulated using
the differential Hochschild complex of C°° (M) with values in Diffop(P)“. Now the
obstruction lies in the first cohomology HHY:(C'> (M), Diffop(P)%).

The following (nontrivial) theorem solves the problem of existence and unique-
ness of deformation quantizations now in a trivial way [5]:
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Theorem 4.3. Let pr: P — M be a surjective submersion.

1. We have
) Diffop,.,(P) fork=0

HHE. . (C°° (M), Diffop(P)) = ver 4.15
{4 (C (M), Diffop(P) {{0} oy )

2. If in addition pr: P O G — M 1is a principal G-bundle then we have

) Diffop,,(P)¢ fork =0

HHE. . (C>° (M), Diffop(P)%) = ver 4.16
{4 (C (M), Diffop(P)°) {{0} oy (40

The main idea is to proceed in three steps: first one shows that one can
localize the problem to a bundle chart. For the local situation one can use the
explicit homotopies from [4] to show that the cohomology is acyclic. This is the
most nontrivial part. By a suitable partition of unity one can glue things together
to end up with the global statement. For a detailed proof we refer to [5].

From this theorem and the previous considerations we obtain immediately
the following result [5]:

Corollary 4.4. For every principal G-bundle pr : P O G — M and any star
product = on M there exists a deformation quantization e which is unique up to
equivalence.

In particular, the deformation for the trivial bundle as in Example 4 is the
unique one up to equivalence.
Remark 4.5.

1. It should be noted that the use of Theorem 4.3 gives existence and unique-
ness but no explicit construction of deformation quantizations of principal
bundles. Here the cohomological method is not sufficient even though in [5]
rather explicit homotopies were constructed which allow to determine further
properties of e.

2. In the more particular case of a symplectic Poisson structure on M, Weiss
used in his thesis [41] a variant of Fedosov’s construction which gives a much
more geometric and explicit approach: there is a well-motivated geometric
input, namely a symplectic covariant derivative on M as usual for Fedosov’s
star products and a principal connection on P. Out of this the module mul-
tiplication e is constructed by a recursive procedure. The dependence of e
on the principal connection should be interpreted as a global version of the
Seiberg-Witten map [34], now of course in a much more general framework
for arbitrary principal bundles, see also [2,24,25].

3. For the general Poisson case a more geometric construction is still missing.
However, it seems to be very promising to combine global formality theorems
like the one in [16] or the approach in [10] with the construction [41]. These
possibilities will be investigated in future works.
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5. The commutant and associated bundles

Theorem 4.3 gives in addition to the existence and uniqueness of deformation
quantizations of P also a description of the differential commutant of the right
multiplications by functions on M via e: we are interested in those formal series
D =2 A" D, € Diffop(P)[[\]] of differential operators with the property

D(Fef)=D(F)ef (5.1)

for all F' € C*°(P)[[\]] and f € C°(M)[[A]]. In particular, if Dy = id then (5.1)
gives a self-equivalence. Clearly, the differential commutant

XK = {D e Diffop(P)[[\] | D satisfies (5.1)} C Diffop(P)[[A]] (5.2)

is a subalgebra of Diffop(P)[[\]] over C[[A]].

Note that there are other operators on C°°(P)[[A]] which commute with all
right multiplications, namely the highly non-local pull-backs ¢g* with g € G. This
was just part of the Definition 4.2 of a deformation quantization of a principal
bundle. However, in this section we shall concentrate on the differential operators
with (5.1) only.

Before describing the commutant it is illustrative to consider the classical
situation. Here the commutant is simply given by the vertical differential operators

Diffop,.,(P) = {D € Diffop(P) | D(Fpr*f) = D(F)pr*f} (5.3)

by the very definition of vertical differential operators. Alternatively, the com-
mutant is the zeroth Hochschild cohomology. More interesting is now the next
statement which gives a quantization of the classical commutant, see [5].

Theorem 5.1. There ezists a C[[\]]-linear bijection

¢ : Diffop,,, (P)[[N]] — % C Diffop(P)[\] (5.4)
of the form
o =id+> N (5.5)

which is G-equivariant, i.e.
9o =0dyg" (5.6)
for all g € G. The choice of such a ¢' induces an associative deformation % of

Diffop,,.,(P)[[A]] which is uniquely determined by x up to equivalence. Finally, o
induces a left (Diffop,.(P)[[A]],*')-module structure o on C*(P)[[\]] via

Do F =g (D)F. (5.7)

The proof relies on an adapted symbol calculus for the differential opera-
tors Diffop(P): using an appropriate G-invariant covariant derivative V' on P
which preserves the vertical distribution and a principal connection on P one can
induce a G-equivariant splitting of the differential operators Diffop(P) into the
vertical differential operators and those differential operators which differentiate
at least once in horizontal directions. Note that this complementary subspace has
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no intrinsic meaning but depends on the choice of V¥ and the principal con-
nection. A recursive construction gives the corrections terms ¢, (D) for a given
D € Diffop,,,(P), heavily using the fact that the first Hochschild cohomology
HH},5(C> (M), Diffop(P)) vanishes. Since the commutant itself is an associative
algebra the remaining statements follow.

Corollary 5.2. For the above choice of ¢ the resulting deformation x' as well as
the module structure are G-invariant, i.e. we have

g (D' D)=g*D«' ¢*D and g*(De F)=g*De g*F (5.8)
for all D, D € Diffop,.,.(P)[[\]] and F € C=(P)[[\]].

This follows immediately from the G-equivariance of @ and the G-equivariance
of ¢'.

Remark 5.3. A simple induction shows that the commutant of (Diffop,,(P)[[A]], *')
inside all differential operators Diffop(P)[[A]] is again (C°°(M)[[A]], %), where both
algebras act by ¢ and e, respectively. This way C°°(P)[[A]] becomes a (¥, %)-
bimodule such that the two algebras acting from left and right are mutual com-
mutants inside all differential operators. Though this resembles already much of
a Morita context, it is easy to see that C°°(P)[[\]] is not a Morita equivalence
bimodule, e.g it is not finitely generated and projective. However, as we shall see
later, there is still a close relation to Morita theory to be expected.

Remark 5.4. Note that classically pr* : C°°(M) — Diffop(P) is an algebra homo-
morphism, too. Thus the questions raised at the beginning of Section 4 can now
be rephrased as follows: for a bimodule deformation of C*°(P) into a bimodule
over C*°(M)[[A]] equipped with possibly two different star products for the left
and right action, one has to deform pr* into a map

pr* : O (M)[[A]] — (Diffop,, (P)[[A]], +) (5.9)

such that the image is a subalgebra. In this case, we can induce a new product x,
also for C*°(M)[[\]] making C*°(P)[[A]] a bimodule for the two, possibly different,
star product algebras (C*° (M)[[A]], ¥},) from the left and (C°°(M)[[A]], *) from the
right. Note that this is the only way to achieve it since +' is uniquely determined
by *. Thus it is clear that we have to expect obstructions in the general case
as there might be no subalgebra of (Diffop,.,(P)[[A]],*") which is in bijection to
C*(M)[[A]]. Even if this might be the case, the resulting product +}, might be
inequivalent to x. Note however, that we have now a very precise framework for
the question whether pr* can be deformed into a bimodule structure.

Remark 5.5. As a last remark we note that changing x to an equivalent * via an
equivalence transformation ® yields a corresponding right module structure e by
Fef =F ¢ ®(f), (5.10)

which is still unique up to equivalence by Theorem 4.3. It follows that the commu-
tants are equal (for this particular choice of ®) whence the induced deformations
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«" and % coincide. An equivalent choice of & would result in an equivalent ¥ . This
shows that we obtain a well-defined map

Def(C*°(M)) — Def(Diffop,,.,(P)) (5.11)

for the sets of equivalence classes of associative deformations. In fact, the resulting
deformations +" are even G-invariant, whence the above map takes values in the
smaller class of G-invariant deformations Def g (Diffop,,, (P)).

To make contact with the deformed vector bundles from Section 3 we consider
now the association process. Recall that on the classical level one starts with a
(continuous) representation 7 of G on a finite-dimensional vector space V. Then
the associated vector bundle is

E=PxgV — M, (5.12)

where the fibred product is defined via the equivalence relation (p-g,v) ~ (p, 7(g)v)
as usual. As the action of G on P is proper and free, F is a smooth manifold again
and, in fact, a vector bundle over M with typical fibre V. Rather tautologically,
any vector bundle is obtained like this by association from its own frame bundle.
For the sections of F one has the canonical identifications

°(E) = C>®(P,V)¢ (5.13)

as right C°°(M)-modules, where the G-action of C*°(P, V) is the obvious one.
After this preparation it is clear how to proceed in the deformed case. From
the G-equivariance of e we see that

D(B)[[N] = C%(P,V)“[[N] € C(P,V)[[A] (5.14)

is a x-submodule with respect to the restricted module multiplication e. It induces
a right x-module structure for I'*°(E)[[A]] which we still denote by e. This way we
recover the deformed vector bundle as in Section 3.

Moreover, we see that the End(V')-valued differential operators Diffop(P) ®
End(V') canonically act on C°°(P, V') whence ((Diffop,.,(P) ® End(V))[[A], *') acts
via o on C*(P,V)[[A]] in such a way that the action commutes with the e-
multiplications from the right. By the G-invariance of ¥’ we see that the invariant
elements (Diffop,,(P) ® End(V))G [[A]] form a +’-subalgebra which preserves (via
o) the e-submodule C* (P, V)%[[\]]. Thus we obtain an algebra homomorphism

((Diffopyer (P) @ End(V) O[N], #') — (D= (End(E)[AL ) (5.15)

where ¥’ on the left hand side is the deformation from Remark 3.8, part 2.
We conclude this section with some remarks and open questions:
Remark 5.6.

1. The universal enveloping algebra valued gauge fields of [24,25] can now easily
be understood. For two vertical vector fields &,n € Diffop,,,(P) we have an
action on C*°(P)[[A]] via e’-left multiplication. In zeroth order this is just
the usual Lie derivative .Z¢. Now the module structure says that

§o' (ne' F)—ne (§o'F)=([§,n]v)e' F (5.16)
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for all FF € C™(P)[[\]]. Here [¢, 0], = &+ n— n*' € € Diffop,,, (P)[[A]] is
the ¥-commutator. In general, this commutator is a formal series of vertical
differential operators but not necessarily a vector field any more. Note that
(5.16) holds already on the level of the principal bundle.

2. For noncommutative gauge field theories we still need a good notion of gauge
fields, i.e. connection one-forms, and their curvatures within our global ap-
proach. Though there are several suggestions from e.g. [27] a conceptually
clear picture seems still to be missing.

3. In a future project we plan to investigate the precise relationship between
(Diffop,, (P)[[A]], *") and the Morita theory of star products [6-8]. Here (5.15)
already suggests that one can re-construct all algebras Morita equivalent to
(C°(M)[[N]],*) out of .
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Abstract. We describe the Hopf algebra structure of Feynman graphs for
non-Abelian gauge theories and prove compatibility of the so-called Slavnov—
Taylor identities with the coproduct. When these identities are taken into
account, the coproduct closes on the Green’s functions, which thus generate
a Hopf subalgebra.
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1. Introduction

Quantum field theories have been widely accepted in the physics community,
mainly because of their well-tested predictions. One of the famous numbers pre-
dicted by quantum electrodynamics is the electromagnetic moment of the electron
which has been tested up to a previously unencountered precision.

Unfortunately, quantum field theories are perceived with some suspicion by
mathematicians. This is mainly due to the appearance of divergences when naively
computing probability amplitudes. These infinities have to be dealt with properly
by an apparently obscure process called renormalization.

Nevertheless, mathematical interest has been changing lately in favor of quan-
tum field theories, the general philosophy being that such a physically accurate
theory should have some underlying mathematically rigorous description. One of
these interests is in the process of renormalization, and has been studied in the con-
text of Hopf algebras [6, 3]. Of course, the process of renormalization was already
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quite rigorously defined by physicists in the early second half of the previous cen-
tury. However, the structure of a coproduct describing how to subtract divergence
really clarified the process.

One could argue though that since the elements in the Hopf algebra are indi-
vidual Feynman graphs, it is a bit unphysical. Rather, one would like to describe
the renormalization process on the level of the 1PI Green’s functions, since these
correspond to actual physical processes. Especially for (non-Abelian) gauge theo-
ries, the graph-by-graph approach of for instance the BPHZ-procedure is usually
replaced by more powerful methods based on BRST-symmetry and the Zinn-Justin
equation (and its far reaching generalization: the Batalin-Vilkovisky formalism).
They all involve the 1PI Green’s functions or even the full effective action that is
generated by them.

The drawback of these latter methods, is that they rely heavily on functional
integrals and are therefore completely formal. One of the advantages of BPHZ-
renormalization is that if one accepts the perturbative series of Green’s function in
terms of Feynman graphs as a starting point, the procedure is completely rigorous.
Of course, this allowed the procedure to be described by a mathematical structure
such as a Hopf algebra.

In this article, we prove some of the results on Green’s functions starting
with the Hopf algebra of Feynman graphs for non-Abelian gauge theories. We
derive the existence of Hopf subalgebras generated by the 1PI Green’s functions.
We do this by showing that the coproduct takes a closed form on these Green’s
functions, thereby relying heavily on a formula that we have previously derived
[14]. Already in [1] Hopf subalgebras were given for any connected graded Hopf
algebra as solutions to Dyson-Schwinger equations. It turned out that there was a
close relation with Hochschild cohomology. It was argued by Kreimer in [8, 7] that
— for the case of non-Abelian gauge theories — the existence of Hopf subalgebras
follows from the validity of the Slavnov—Taylor identities inside the Hopf algebra
of (QCD) Feynman graphs. We now fully prove this claim by applying a formula
for the coproduct on Green’s functions that we have derived before in [14]. In fact,
that formula allowed us to prove compatibility of the Slavnov—Taylor identities
with the Hopf algebra structure.

This paper is organized as follows. In Section 2, we start by giving some back-
ground from physics. Of course, this can only be a quick lifting of the curtain and
is meant as a motivation for the present work. In Section 3, we make precise our
setup by defining the Hopf algebra of Feynman graphs and introduce several com-
binatorial factors associated to such graphs. We put the process of renormalization
in the context of a Birkhoff decomposition.

Section 4 contains the derivation of the Hopf algebra structure at the level of
Green’s functions, rather then the individual Feynman graphs. We will encounter
the crucial role that is played by the so-called Slavnov—Taylor identities.
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2. Preliminaries on perturbative quantum field theory

We start by giving some background from physics and try to explain the origin of
Feynman graphs in the perturbative approach to quantum field theory.

We understand probability amplitudes for physical processes as formal expan-
sions in Feynman amplitudes, thereby avoiding the use of path integrals. We make
this more explicit by some examples taken from physics.

Example 1. The interaction of the photon with the electron in quantum electrody-
namics (QED) is described by the following expansion,

Ay et e e

Here all graphs appear that can be built from the vertex that connects a wiggly line
(the photon) to two straight lines (the electron).

Example 2. The quartic gluon self-interaction in quantum chromo dynamics is

given by
B X X
= + 4 4o
&

This expansion involves the gluon vertex of valence 8 and 4 (wiggly lines), as well
as the quark-gluon interaction (involving two straight lines)

We shall call these expansions Green’s functions. Of course, this names orig-
inates from the theory of partial differential equations and the zeroth order terms
in the above expansions are in fact Green’s functions in the usual sense. We use the
notation G ~< and G * for the Green’s function, indicating the external structure
of the graphs in the above two expansions, respectively.

From these expansions, physicists can actually derive numbers, giving the
probability amplitudes mentioned above. The rules of this game are known as
the Feynman rules; we briefly list them for the case of quantum electrodynamics.
Feynman rules for non-Abelian gauge theories can be found in most standard
textbooks on quantum field theory (see for instance [2]).
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Assigning a momentum k to each edge of a graph, we have:

: <5uu+ by (1€)>

’\N\];vw T k2 +ie k2 + ie
_ 1
k Yk +m
k3
k1 —< = —iey"0(ky + ko + k3).
ks

Here, e is the electron charge, m the electron mass and v* are 4 x 4 Dirac gamma
matrices; they satisfy y#v" + y¥~y* = —2§*¥. Also, € is an infrared regulator and
& € Ris the so-called gauge fixing parameter. In addition to the above assignments,
one integrates the above internal momenta k (for each internal edge) over R

Example 3. Consider the following electron self-energy graph

According to the Feynman rules, the amplitude for this graph is

v = /d4k (evu)v”(m +1kn) + m(my) (_ kj:uie + (I<:2kitfiue)2 - Q) @

with summation over repeated indices understood.

The alert reader may have noted that the above improper integral is actually
not well-defined. This is the typical situation — happening for most graphs — and
are the famous divergences in perturbative quantum field theory. This apparent
failure can be resolved, leading eventually to spectacularly accurate predictions in
physics.

The theory that proposes a solution to these divergences is called renormal-
ization. This process consists of two steps. Firstly, one introduces a regularization
parameter that controls the divergences. For instance, in dimensional regulariza-
tion one integrates in 4 + z dimensions instead of in 4, with z a complex number.
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Adopting certain rules' for this integration in complex dimensions, one obtains for
instance for the above integral (1):

U(I')(z) ~ I'(z)Pol(p),

where the I' on the left-hand-side is the graph and the I' on the right-hand-side
is the gamma function from complex analysis. Moreover, Pol(p) is a polynomial
in the external momentum p. The previous divergence has been translated into a
pole of the gamma function at z = 0 and we have thus obtained a control on the
divergence.

The second step in the process of renormalization is subtraction. We let T be
the projection onto the pole part of Laurent series in z, i.e.,

oo
E anz" :E ap2"

n=-—oo n<0

More generally, we have a projection on the divergent part in the regularizing
parameter. This is the origin of the study of Rota-Baxter algebras in the setting
of quantum field theories [5]. We will however restrict ourselves to dimensional
regularization, which is a well suited regularization for gauge theories. For the
above graph I, we define the renormalized amplitude R(I") by simply subtracting
the divergent part, that is, R(I') = U(I') — T'[U(T")]. Clearly, the result is finite
for z — 0. More generally, a graph I' might have subgraphs v C T' which lead
to sub-divergences in U(T"). The so-called BPHZ-procedure (after its inventors
Bogoliubov, Parasiuk, Hepp and Zimmermann) provides a way to deal with those
sub-divergences in a recursive manner. It gives for the renormalized amplitude:

R() = U(T) )+ > CUT/y) (2a)

yCT

where C' is the so-called counterterm defined recursively by

CT)=-T |UTD)+ ) _ CHUT/7)|. (2b)

yCI'

The two sums here are over all subgraphs in a certain class; we will make this more
precise in the next section.

2.1. Gauge theories

We now focus on a special class of quantum field theories — quantum gauge theories
— which are of particular interest for real physical processes. Without going into
details on what classical gauge field theories are, we focus on the consequences
on the quantum side of the presence of a classical gauge symmetry. Such a gauge
symmetry acts (locally) on the classical fields by gauge transformations and these
! Essentially, one only needs the rule that the formula familiar in integer dimension [ dP e k? —
AP/2 holds for complex dimension D as well. Indeed, using Schwinger parameters, or, equiva-

lently, the Laplace transform, one can write 1/k2 as the integral over s > 0 of e—sk?,
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transformations form a group, the gauge group. This group is typically infinite
dimensional, since it consists of functions on space-time taking values in a Lie
group. For quantum electrodynamics this Lie group is Abelian and just U(1), for
quantum chromo dynamics — the theory of gluons and quarks — it is SU(3).

When (perturbatively) quantizing the gauge theory, one is confronted with
this extra infinity. A way to handle it is by fizing the gauge, in other words,
choosing an orbit under the action of the gauge group. All this can be made
quite precise in BRST-quantization. Although in this process the gauge symmetry
completely disappears, certain identities between Green’s functions appear. This is
a purely ‘quantum property’ and therefore interesting to study. In addition, being
identities between full Green’s functions, it is interesting with a view towards
nonperturbative quantum field theory.

For quantum electrodynamics, the identities are simple and linear in the
Green’s functions:

U@ =u(G7). (3)
These are known as Ward identities since they were first derived by Ward in [15].
The apparent mismatch between the number of external lines on the left and right-
hand-side is resolved because the vertex graphs are considered at zero momentum
transfer. This means that the momentum on the photon line is evaluated at p = 0.
For non-Abelian gauge theories such as quantum chromo dynamics (QCD),

the identities are quadratic in the fields and read:

v(e=)u(a™)=v(a) v(e):
U(G““{)U(G“)ZU(G“)U(G ); (4)
U(GM{) U(Gm{):U(Gx) v(e=).

The dotted and straight line here corresponds to the ghost and quark, respectively.
After their inventors, they are called the Slavnov-Taylor identities [11, 12].

The importance of these identities lie in the fact that they are compatible
with renormalization under the condition that gauge invariance is compatible with
the regularization procedure. In fact, it turns out that dimensional regularization
satisfies this requirement, see for instance Section 13.1 of [9]. As a consequence, the
Slavnov-Taylor identities hold after replacing U by R or C in the above formula.
For instance, in the case of quantum electrodynamics one obtains the identity
Z1 = Zy actually derived by Ward, where Z; = C(G' ™%) and Z, = C(G ~). For
quantum chromo dynamics on the other hand, one derives the formulae

7= 7= 7= VZ X

7—zi= 2z W:(Zw)3/2: Z=" (%)

where the notation is as above: Z" := C(G"). The above formula can be readily
obtained from the above Slavnov—Taylor identities (4) afterreplacing U by C .
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They are the key to proving renormalizability of non-Abelian gauge theories, let
us try to sketch this argument.

First of all, the different interactions that are present in the theory can be
weighted by a coupling constant. For example, in QCD there are four different in-
teractions: gluon-quark, gluon-ghost, cubic and quartic gluon self-interaction. All
of these come with their own coupling constants and gauge invariance (or rather,
BRST-invariance) requires them to be identical. In the process of renormalization,
the coupling constants are actually not constant and depend on the energy scale.
This is the running of the coupling constant and is the origin of the renormal-
ization group describing how they change. For QCD, the four coupling constants
9o, w19, = 19, ¢+ 90, X are expressed in terms of the original coupling constant
g as

7 asd \/Z—x (6)
Wﬂa 9o, ¥ = 7 - g.
We see that the Slavnov—Taylor identities guarantee that the four coupling con-
stants remain equal after renormalization.

The above compatibility of renormalization with the Slavnov-Taylor identi-
ties is usually derived using the Zinn-Justin equation (or the more general BV-
formalism) relying heavily on path integral techniques. Our goal in the next sec-
tions is to derive this result taking the formal expansion of the Green’s functions
in Feynman graphs as a starting point. We will work in the setting of the Connes-
Kreimer Hopf algebra of renormalization.

9o, = =

3. The Hopf algebra of Feynman graphs

We suppose that we have defined a (renormalizable) quantum field theory and
specified the possible interactions between different types of particles. We indicate
the interactions by vertices and the propagation of particles by lines. This leads
us to define a set R = Ry U Rg of vertices and edges; for QED we have

Ry ={~<};  Rp={—) ~~}

whereas for QCD we have,
RV:{sm<, m:::7 ‘m'g’ ggg}; Rg ={ —— . Q0000 ) -

We stress for what follows that it is not necessary to define the set explicitly.

A Feynman graph is a graph built from vertices in Ry and edges in Rg.
Naturally, we demand edges to be connected to vertices in a compatible way,
respecting the type of vertex and edge. As opposed to the usual definition in
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graph theory, Feynman graphs have no external vertices, they only have external
lines. We assume those lines to carry a labelling.

An automorphism of a Feynman graph is a graph automorphism leaving the
external lines fixed and respects the types of vertices and edges. This definition
is motivated by the fact that the external lines correspond physically to particles
prepared for some collision experiment — the interior of the graph — and those lines
are thus fixed. The order of the group of automorphisms Aut(I') of a graph I" is
called its symmetry factor and denoted by Sym(I"). Let us give two examples:

Sym (~n(Opran ) = 2; Sym(—&—) =1.

For disconnected graphs, the symmetry factor is given recursively as follows. Let
IV be a connected graph; we set

Sym(T' T') = (n(T,T’) + 1)Sym(T")Sym(T"), (7)

with (I, I) the number of connected components of I' that are isomorphic to I".
We define the residue res(I') of a graph I" as the vertex or edge the graph
reduces to after collapsing all its internal vertices and edges to a point. For example,

res <wv~<<> :w< and res( f"’:\v’; )

Henceforth, we will restrict to graphs with residue in R; these are the relevant
graphs to be considered for the purpose of renormalization.

For later use, we introduce another combinatorial quantity, which is the num-
ber of insertion places I' | v for the graph v in T'. It is defined as the number of
elements in the set of vertices and internal edges of I" of the form res(y) € R. For
disconnected graphs v = 1 U -+ U ~,, the number T" | v counts the number of
n — tuples of disjoint insertion places of the type res(y1),- - ,res(yn).

We exemplify this quantity by

MAO\M—{ =2 whereas «MOW»‘—&——%—:G

Here, one allows multiple insertions of edge graphs (i.e. a graph with residue in
REg) on the same edge; the underlying philosophy is that insertion of an edge graph
creates a new edge.

For the definition of the Hopf algebra of Feynman graphs [3], we restrict
to one-particle irreducible (1PI) Feynman graphs. These are graphs that are not
trees and cannot be disconnected by cutting a single internal edge. For example,
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all graphs in this paper are one-particle irreducible, except the following which is
one-particle reducible:

010N

Connes and Kreimer then defined the following Hopf algebra. We refer to the
appendix for a quick review on Hopf algebras.

Definition 4. The Hopf algebra H of Feynman graphs is the free commutative Q-
algebra generated by all 1PI Feynman graphs, with counit ¢(I') = 0 unless T' = {),
in which case €(0) = 1, coproduct,

AM)=T®1+18T+ > v&T/y,
y&r

where the sum is over disjoint unions of subgraphs with residue in R. The antipode
is given recursively by,

S(C)=-T =Y ST/ (8)

VG

Two examples of this coproduct, taken from QED, are:

AR = D14 16t 2w 9~O-.
A(»®w)m®w®1+1®»®w+2~< NOS

# 20 @t oo o 2O

The above Hopf algebra is an example of a connected graded Hopf algebra, i.e.
H = @®,enH", H* = C and

n
H*H' ¢ H* AH") =Y HF@ H' .
k=0

Indeed, the Hopf algebra of Feynman graphs is graded by the loop number L(T")
of a graph T'; then H° consists of rational multiples of the empty graph, which is
the unit in H, so that H° = Q1.

Remark 5. One can enhance the Feynman graphs with an external structure. This
involves the external momenta on the external lines and can be formulated mathe-
matically by distributions, see for instance [3]. The case of quantum electrodynam-
ics has been worked out in detail in [13].
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3.1. Renormalization as a Birkhoff decomposition

We now demonstrate how to obtain Equation (2) for the renormalized amplitude
and the counterterm for a graph as a Birkhoff decomposition in the group of
characters of H. Let us first recall the definition of a Birkhoff decomposition.

We let [ : C' — G be a loop with values in an arbitrary complex Lie group G,
defined on a smooth simple curve C' C P;(C). Let Cy be the two complements of
C in P{(C), with co € C_. A Birkhoff decomposition of / is a factorization of the
form

1) = 1-(:) () (2€0),
where [1 are (boundary values of) two holomorphic maps on Cy, respectively, with
values in G. This decomposition gives a natural way to extract finite values from
a divergent expression. Indeed, although [(z) might not holomorphically extend to
C4, l4(2) is clearly finite as z — 0.

We now look at the group G(K) = Homg(H, K) of K-valued characters of a
connected graded commutative Hopf algebra H, where K is the field of convergent
Laurent series in 2.2 The product, inverse and unit in the group G(K) are defined
by the respective equations:

¢ *P(X) = (¢ ® ¥, A(X)),
¢~ (X) = $(S(X)),
e(X) = e(X),
for ¢, € G(K). We claim that a map ¢ € G(K) is in one-to-one correspon-

dence with loops [ on an infinitesimal circle around z = 0 and values in G(Q) =
Homg(H, Q). Indeed, the correspondence is given by

P(X)(2) = 1(z)(X),

2In the language of algebraic geometry, there is an affine group scheme G represented by H in
the category of commutative algebras. In other words, G = Homg(H, . ) and G(K) are the
K-points of the group scheme.
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and to give a Birkhoff decomposition for [ is thus equivalent to giving a factoriza-
tion ¢ = ¢_' * ¢, in G(K). It turns out that for graded connected commutative
Hopf algebras such a factorization exists.

Theorem 6 (Connes—Kreimer [3]). Let H be a graded connected commutative Hopf
algebra. The Birkhoff decomposition of | : C — G (given by an algebra map ¢ :
H — K) exists and is given dually by

- (X) =e(X) =T [m(¢- ®¢)(1® (1 - €)A(X)]
and ¢4 = ¢_ x .
The graded connected property of H assures that the recursive definition

of ¢_ actually makes sense. In the case of the Hopf algebra of Feynman graphs
defined above, the factorization takes the following form:

¢-(T) = =T [$(T) + D _ - (1)s(T/7)

iy

6+(I) = &) + o- (D) + Y 6-(1)(L'/7)
¥CT
The key point is now that the Feynman rules actually define an algebra map
U : H — K by assigning to each graph I' the regularized Feynman rules U(T),
which are Laurent series in z. When compared with Equations (2) one concludes
that the algebra maps Uy and U_ in the Birkhoff factorization of U are precisely
the renormalized amplitude R and the counterterm C, respectively. Summarizing,
we can write the BPHZ-renormalization as the Birkhoff decomposition U = C~'*R
of the map U : H — K dictated by the Feynman rules.

Although the above construction gives a very nice geometrical description of
the process of renormalization, it is a bit unphysical in that it relies on individual
graphs. Rather, as mentioned before, in physics the probability amplitudes are
computed from the full expansion of Green’s functions. Individual graphs do not
correspond to physical processes and therefore a natural question to pose is how
the Hopf algebra structure behaves at the level of the Green’s functions. We will
see in the next section that they generate Hopf subalgebras, i.e. the coproduct
closes on Green’s functions. In proving this, the Slavnov—Taylor identities turn
out to play an essential role.

4. The Hopf algebra of Green’s functions

For a vertex or edge r € R we define the 1PI Green’s function by

=14+ Z

res(I")=r

(9)

where the sign is + if 7 is a vertex and — if it is an edge. The restriction of the
sum to graphs I' at loop order L(I') = L is denoted by G7.
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Proposition 7 ([14]). The coproduct takes the following form on the 1PI Green’s

functions:
r
Z Z Sym Sym( )7® ’

¥ res(I)=r

with the sum over ~y over all disjoint unions of 1PI graphs.

The sketch of the proof is as follows. First, one writes the coproduct A as a
sum of maps A, where these maps only detects subgraphs isomorphic to y. One
then proves the above formula for A, with v a 1PI graph using simply the orbit-
stabilizer theorem for the automorphism group of graphs. Finally, writing A, in
terms of A, and A,/ one proceeds by induction to derive the above expression.

One observes that the coproduct does not seem to close on Green’s functions
due to the appearance of the combinatorial factor I' | 7. Let us try to elucidate
this and compute these factors explicitly.

Let mr , be the number of vertices/internal edges of type r appearing in T,
for r € R. Moreover, let n, , be the number of connected components of v with
residue r. Since insertion of a vertex graph (i.e. with residue in Ry ) on a vertex v
in I' prevents a subsequent insertion at v of a vertex graph with the same residue,
whereas insertion of an edge graph (i.e. with residue in Rg) creates two new edges
and hence two insertion places for a subsequent edge graph, we find the following

expression,
mr, Mre+ Nye — 1
e T () T (),

n
vERy Y/ eeRg v5e

Indeed, the binomial coefficients arise for each vertex v since we are choosing 7. ,
out of mr , whereas for an edge e we choose n, . out of mr . with repetition.
We claim that this counting enhances our formula to the following

vV\MI,v e\ —Mr,e F
> IT @ IT @ ®syT(r)' (10)

res(I")=r v€ERv eERE

Before proving this, we explain the meaning of the inverse of Green’s functions
in our Hopf algebra. Since any Green’s function starts with the identity, we can
surely write its inverse formally as a geometric series. Recall that the Hopf algebra
is graded by loop number. Hence, the inverse of a Green’s function at a fixed
loop order is in fact well-defined; it is given by restricting the above formal series
expansion to this loop order. In the following, also rational powers of Green’s
functions will appear; they will be understood in like manner.

Proof of Eq. (10). Let us simplify a little and consider a scalar field theory with
just one type of vertex and edge, i.e. R ={ <, — }. We consider the sum

I | ’Y _ Mywe v! mr,v Ny e! Mre + Ny v — 1
Z Sm Z Sym () Z Sy Yes

Ny,v Nyv
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naturally split into a sum over vertex and edge graphs. We have also inserted the
above combinatorial expression for the number of insertion places. Next, we write
Yo = Yove and try factorize the sum over 7, into a sum over v, (connected) and
~.. Some care should be taken here regarding the combinatorial factors but let us
ignore them for the moment. In fact, if we fix the number of connected components

hO(7,) of 7, in the sum to be ny we can write

v Vo) +1 v
3 nV!SyPy*: 3 $ (s ) ”V!syv

b
m ny m
RO (yy)=nv (7) hO(vy)=nv YoV ()
Vo Vo =Y
v v — v

with 7, a connected graph. Here, we have simply inserted 1,

)

3 n(v, ) +1 3 (v, %) _
" nv 7 ny
Yo sYo Yo
VoV e
which follows directly from the definition of n(v,,~,) as the number of connected
components of v, isomorphic to 7, . Now, by definition Sym(y.~) = (n(v,~,) +
1)Sym(~,)Sym(v,) for a connected graph v/, so that we obtain for the above sum

277{7 Z (nvfl)lfyig:...:((;vil)nv’

/ : "
o Symn) oA, Sym(v)

by applying the same argument ny times. Recall also the definition of the Green’s
function G? from Eq. (9). A similar argument applies to the edge graphs, leading
to a contribution (1 — G¢)"E, with ng the number of connected components of
Ye. When summing over ny and ng, taking also into account the combinatorial
factors, we obtain:

i <mF,v) (G — 1) i (mF,e +ng — 1) (1= GOYE = (GV)™re (GO) e,

ny ng

ny =0 ng=0

The extension to the general setting where the set R contains different types of
vertices and edges is straightforward. (I

An additional counting of the number of edges and numbers of vertices in I’
gives the following relations:

2mp,e + Ne(res(T)) = Z Ne(v)mr
vERYy

where N,(r) is the number of lines (of type e) attached to r € R. For instance
Nc(~) equals 2 if e is an electron line and 1 if e is a photon line. One checks the
above equality by noting that the left-hand-side counts the number of internal half
lines plus the external lines which are connected to the vertices that appear at the
right-hand-side, taken into account their valence.



150 Walter D. van Suijlekom

With this formula, we can write Eq. (10) as

r)/2 e r
A(Gr) _ H Ge Ne(r)/ Z H (W) ® Sym(F) (11)

res(I)=r v

This is still not completely satisfactory since it involves the number of vertices
in I' which prevents us from separating the summation of I' from the other terms.
We introduce the following notation for the fraction of Green’s functions above:

1/(N(v)—-2)
G’U

with N(v) the total number of edges attached to v. Before we state our main
theorem, let us motivate the definition of these elements in the case of QCD.

Example 8. In QCD, there are four vertices and the corresponding elements X,
are given by,

— 3/2_, X}{: Gw

The combinations of the Green’s functions are identical to those appearing in for-
mulas (5). Indeed, as we will see in a moment, setting them equal in H is com-
patible with the coproduct.

Although motivated by the study of the Slavnov—Taylor identities in non-
Abelian gauge theories, the following result holds in complete generality.

Theorem 9. The ideal I = (X, — Xy )ver, @5 a Hopf ideal, i.e.
A cIoH+H®I, el)=0,  S(I)clI.

Proof. Let us write the above Eq. (11) in terms of the X,’s:

r
A(GT)ZH Z H N(v) 2)mp ®SYT(F)

e res(I)=r v’

In this expression, X,/ appears with a certain power, say s, and we can replace
(Xy)® by (X,)® as long as we add the term (X,/)® — (X,)®. This latter term can
be factorized as X, — X, times a certain polynomial in X, and X,, and thus
corresponds to an element in I. As a result, we can replace all X,.’s by X, for
some fixed v modulo addition of terms in I ® H.

The second step uses the following equality between vertices and edges:

> (N@') = 2)mp,y =2L+ N(r) -2 (13)
v'€ERy
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in terms of the loop number L and residue r of I'. The equality follows by an easy
induction on the number of internal lines of T' (cf. [14]). Finally, one can separate
the sum over I' at a fixed loop order to obtain

o0

A(Gr’) _ H N (r) Z 2L+N(r 2% Gt (14)

e L=0

understood modulo terms in I ® H. From this one derives that A(X, — X,-) lies in
I ® H+ H ®1 as follows. Let us first find a more convenient choice of generators
of I. By induction, one can show that

X, — X, = ( XN (©)-2) _ XéN(v'H)(N(v)fm) Pol(X,, X/),

where Pol is a (formally) invertible series in X, and X, . In fact, it starts with a
nonzero term of order zero. By multiplying out both denominators in the X, and
X, we arrive at the following set of (equivalent) generators of I

’ A ) ’ N('U)72 ) — y
(GU)N(@ )—2 H (Ge)(N(u) 2)Ne(v)/2 (Gv ) H (Ge)(N(’L) 2)N(v')/2

with v,v" € Ry. A little computation shows that the first leg of the tensor product
in the coproduct on these two terms coincide, using Eq. (14). As a consequence, one
can combine these terms to obtain an element in H ® I modulo the aforementioned
terms in I ® H needed to arrive at (14). O

As a consequence, we can work on the quotient Hopf algebra H=H /1.
Suppose we work in the case of a non-Abelian gauge theory such as QCD, with
the condition that the regularization procedure is compatible with gauge invariance
such as dimensional regularization (see also [10]). In such a case, the map U : H —
K defined by the (regularized) Feynman rules vanishes on the ideal I because of
the Slavnov-Taylor identities. Hence, it factors through an algebra map from H
to the field K. Since H is still a commutative connected Hopf algebra, there is a
Birkhoff decomposition U = C~! * R as before with C' and R algebra maps from
H to K. This is the crucial point, because it implies that both C and R vanish
automatically on I. In other words, both the counterterms and the renormalized
amplitudes satisfy the Slavnov—Taylor identities. In particular, the C(X,)’s are
the terms appearing in Eq. (5) which coincide because C(I) = 0. Note also that
in H expression (14) holds so that the coproduct closes on Green’s functions, i.e.
they generate Hopf subalgebras.

As a corollary to this, we can derive a generalization of Dyson’s formula
originally derived for QED [4]. It provides a relation between the renormalized
Green’s function written in terms of the coupling constant g and the unrenormal-
ized Green’s function written in terms of the bare coupling constant defined by
go = C(X,)g for some v € Ry.
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Corollary 10 (Dyson’s formula). The following analogue of Dyson’s formula for
QFED holds in general,

R(G)(g) = [[ (25)""2 U(G7)(g0),

e

where Z, = C(G°).

Proof. This follows from an application of R = C « U to G" using Eq. (14) while
counting the number of times the coupling constant g appears when applying the

Feynman rules to a graph with residue » and loop number L. In fact, this number
is 3, (N(v) — 2)mr,, which is also 2L + N(r) — 2 as noted before. O

Appendix A. Hopf algebras

For convenience, let us briefly recall the definition of a (commutative) Hopf algebra.
It is the dual object to a group and, in fact, there is a one-to-one correspondence
between groups and commutative Hopf algebras.

Let G be a group with product, inverse and identity element. We consider
the algebra of representative functions H = F(G). This class of functions is such
that F(G x G) ~ F(G) ® F(G). For instance, if G is a (complex) matrix group,
then F(G) could be the algebra generated by the coordinate functions x;; so that
xij(g9) = gi; € C are just the (¢, 7)’th entries of the matrix g.

Let us see what happens with the product, inverse and identity of the group
on the level of the algebra H = F(G). The multiplication of the group can be seen
as amap G x G — G, given by (g, h) — gh. Since dualization reverses arrows, this
becomes a map A : H — H ® H called the coproduct and given for f € H by

A(f)(g,h) = f(gh).
The property of associativity on G becomes coassociativity on H:

(A®id)o A= (id® A)o A, (A1)

stating simplify that f((gh)k) = f(g(hk)).
The unit e € G gives rise to a counit, as a map ¢ : H — C, given by
e(f) = f(e) and the property eg = ge = g becomes on the algebra level

(id®e)o A =id = (e®id) o A, (A2)

which reads explicitly f(ge) = f(eg) = f(9).
The inverse map g — ¢!, becomes the antipode S : H — H, defined by
S(f)(g) = f(g~1). The property gg—! = g~1g = e, becomes on the algebra level:

m(S®id)o A =m(id® S)o A = 1ge, (A3)

where m : H ® H — H denotes pointwise multiplication of functions in H.
From this example, we can now abstract the conditions that define a general
Hopf algebra.
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Definition 11. A Hopf algebra H is an algebra H, together with two algebra maps
A:H®H — H (coproduct), e : H — C (counit), and a bijective C-linear map
S: H — H (antipode), such that equations (A1)—(A3) are satisfied.

If the Hopf algebra H is commutative, we can conversely construct a (com-
plex) group from it as follows. Consider the collection G of multiplicative linear
maps from H to C. We will show that G is a group. Indeed, we have the convo-
lution product between two such maps ¢,y defined as the dual of the coproduct:
(p*x)(X) = (¢ ®@Y)(A(X)) for X € H. One can easily check that coassociativ-
ity of the coproduct (Eq. (A1)) implies associativity of the convolution product:
(px1) x x = ¢ (¥ * x). Naturally, the counit defines the unit e by e(X) = e(X).
Clearly e *x ¢ = ¢ = ¢ x e follows at once from Eq. (A2). Finally, the inverse is con-
structed from the antipode by setting ¢—(X) = ¢(S(X)) for which the relations
¢l =¢px ¢! = e follow directly from Equation (A3).

With the above explicit correspondence between groups and commutative
Hopf algebras, one can translate practically all concepts in group theory to Hopf
algebras. For instance, a subgroup G’ C G corresponds to a Hopf ideal I C F(G)
in that F(G’") ~ F(G)/I and vice versa. The conditions for being a subgroup can
then be translated to give the following three conditions defining a Hopf ideal I in
a commutative Hopf algebra H

AN CI®H+H®I, €eI)=0,  SI)cCI.
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Abstract. We review recent ideas [1] how gravity might turn out to be a
renormalizable theory after all.
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1. Introduction

Renormalizable perturbative quantum field theories are embarrassingly success-
ful in describing observed physics. Whilst their mathematical structure is still
a challenge albeit an entertaining one, they are testimony to some of the finest
achievements in our understanding of nature. The physical laws as far as they
are insensitive to the surrounding geometry seems completely described by such
theories. Alas, if we incorporate gravity, and want to quantize it, we seem at a
loss.

In this talk, we report on some recent work [1] which might give hope. Our
main purpose is to review the basic idea and to put it into context.

As in [1], we will proceed by a comparison of the structure of a renormalizable
theory, quantum electrodynamics in four dimensions, and gravity.

It is the role of the Hochschild cohomology [2] in those two different situations,
which leads to surprising new insights. We will discuss them at an elementary level
for the situation of pure gravity. We also allow, in the spirit of the workshop for
the freedom to muse about conceptual consequences at the end.

Talk given at the “Max Planck Institute for Mathematics in the Natural Sciences”, Leipzig. Work
supported in parts by grant NSF-DMS/0603781. Author supported by CNRS.
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2. The structure of Dyson—Schwinger Equations in QED,

2.1. The Green functions

Quantum electrodynamics in four dimensions of space-time (QEDy) is described
in its short-distance behavior by four Green functions

GVrov iy GbvAY GiF? (1)
corresponding to the four monomials in its Lagrangian
— - — 1
L=y 00 = bmp =y - Avy — L F2. 2

Here, G' = G'(a, L), with « the fine structure constant and L = Ing?/u?, so
that we work in a MOM (momentum) scheme, subtract at ¢> = u2, project the
vertex function to its scalar formfactor G¥7'?% with UV divergences evaluated at
zero photon momentum. Similarly the other Green functions are normalized as to
be the multiplicative quantum corrections to the tree level monomials above, in
momentum space.

In perturbation theory, the degree of divergence of a graph I with f external
fermion lines and m external photon lines in D dimensions is

wp(l) = 2 f +m =D — (D= 4)([| ~1) = wi(T) = > f +m 4. 3)

This is independent of the loop number for QEDy, D = 4, and is a sole func-
tion of the number and type of external legs. wp(I') determines the number of
derivatives with respect to masses or external momenta needed to render a graph
logarithmically divergent, and hence identifies the top-level residues, which drive
the iteration of Feynman integrals according to the quantum equations of motion
3].

We define these four Green functions as an evaluation by renormalized Feyn-
man rules of a series of one-particle irreducible (1PI) Feynman graphs I' € FG;.
These series are determined as a fixpoint of the following system in Hochschild
cohomology.

XUrov = 1N QR BYTONR (Xt (a)), (4)
k=1
00 _ _
xX¥vrAY + Z akB/_lf_’YlAw’k(de.Amec(a))a (5)
k=1
00 _ _
XYmoo Z akB’Jlﬁm’lZJ,k(mewQQk(a)), (6)
k=1
> 12 1
X = 1o Y et BET (X Q2 ). (™)

k=1
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Here,
Bik _ Z B1, Vi € RqED, (8)
[v[=Fk, A" (7)=0,7€FG;

is a sum over all Hopf algebra primitive graphs with given loop number k£ and
contributing to superficially divergent amplitude ¢, and

. - bij(, X,I) 1 1
Bi(X) = pe;> X[y maxf(T) (y|X) Y

where maxf(T") is the number of maximal forests of I', | X |, is the number of distinct
graphs obtainable by permuting edges of X, bij(vy, X, T") is the number of bijections
of external edges of X with an insertion place in 7 such that the result is I'; and
finally (v]X) is the number of insertion places for X in v [4], and

Raep = {7+ 0, dy - Ab,mi, 1F7). (10)

Also, we let
XAy

= - 11
X909/ X1F? (D

The resulting maps BiK are Hochschild closed

bBYE = 0 (12)
in the sense of [5]. We have in fact
ABI(X) = Y nrx,T (13)
r

where nr x, can be determined from (9,12).
Furthermore, one can choose a basis of primitives v [3] such that their Mellin
transforms M, (p) have the form

el 2/,,21—p/|v| 74
[k2 /) P/ d*,
M) = [, [T for 1> %) > 0. (14
where the integrand ¢, is a function of internal momenta k; and an external mo-
mentum ¢, subtracted at ¢ = p2.
The Dyson Schwinger equations then take the form

s=1

Gh(a, L) = 1i’1)i£% D>k > G, 0,)Qa, 9,) My (p) K%)_l] (15)

k lv|=Fk
where
(I)R(XZ) = GZJ.%(av L)v (16)
and

‘I)R(Q) = Q(aaL)a (17)
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is the invariant charge, all calculated with renormalized Feynman rules in the
MOM scheme.

2.2. Gauge theoretic aspects

Using Ward identities, we can reduce the set Rqrp = {ty-0t, mp, y- Az, %FQ}
to three elements upon identifying G¥79% = G¥7' A%, Using the Baker-Johnson—
Willey gauge [6] we can furthermore trivialize

GProv - qirAY -, (18)

Using their work again [7], we have that ma¢ can be ignored in RQED.
We are hence left with the determination of a single gauge-independent Green
function G1¥ 2, which in the MOM scheme takes the form

G, L) = 1= ()Lt (19)
k=1

and the renormalization group determines [8]

(@) = ()1~ ada)y (@), (20)

Here, 71 (a) = 2¢(r)/ar, where 1(a) is the MOM scheme S-function of QED, which
is indeed half of the anomalous dimension ~; of the photon field in that scheme.
One can show that v;(«) as a pertuybative series (7 (o) = E;‘;l y1,507) is
Gevrey—1 and that the series Z;’il 1,507 /7! has a finite radius of convergence,
with a bound involving the lowest order contribution of the [-function and the

one-instanton action [3].
Furthermore, v (o) fulfils [3]

mnla) = Pla) =m(a)(l - ada)n(e), (21)

an equation which has been studied in numerical detail recently [9], with more
of its analytic structure to be exhibited there. In this equation, P(«) is obtained
from the primitives of the Hopf algebra

Pla) = alllim pM,(p), (22)

and P(«) is known perturbatively as a fifth order polynomial [10] and its asymp-
totics have been conjectured long ago [11].
This finishes our summary of QED, as a typical renormalizable theory.

2.3. Non-Abelian gauge theory

The above approach to Green functions remains valid for a non-Abelian gauge
theory with the definition of a single invariant charge Q(«, L) being the crucial re-
quirement. This can be consistently done, [4], upon recognizing that the celebrated
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Slavnov—Taylor identities for the couplings fulfil

SRXTT) _ SRXAMY) | SRXAMA)  Spx0A)
SRXTrov)  SRXOADA) - SRXAA) - SRXO00)
for the set of amplitudes
Rqcp = {DADA vy -0, ¢0¢, AADA, AAAA, A - 0,1y - Ay}, (24)

needing renormalization in QCD.

This allows to define a Hochschild cohomology on the sum of graphs at a given
loop order, and hence to obtain multiplicative renormalization in this language
from the resulting coideals in the Hopf algebra [4, 12].1

Note that the structure of the sub-Hopf algebras underlying this approach
[5, 8] implies that the elements X?(a) close under the coproduct. A general clas-
sification of related sub-Hopf algebras has been recently obtained by Loic Foissy
[13]. He considers only the case that the lowest order Hochschild cocycle is present
in the combinatorial Dyson—Schwinger equations, but his study is rather complete
when augmented by the results of [2].

3. Gravity

We consider pure gravity understood as a theory based on a graviton propagator
and n-graviton couplings as vertices. A fuller discussion incorporating ghosts and
matter fields is referred to future work.

3.1. Summary of some results obtained for quantum gravity

We summarize here some results published in [1].
Corollary 1. Let |T'| = k. Then w(T") = =2(|T| + 1).

This is a significant change from the behavior of a renormalizable theory: in
the renormalizable case, each graph contributing to the same amplitude 7 has the
same powercounting degree regardless of the loop number. Here, we have the dual
situation: the loop number determines the powercounting degree, regardless of the
amplitude.

Theorem 2. The set dy, )y contains no primitive element beyond one loop.

The set d,,(r) is determined as a set of dotted graphs, with dots representing
w(T') derivatives with respect to masses or external momenta such that the corre-
sponding integrand ¢r is overall log-divergent. Whilst in a renormalizable theory,
we find for each amplitude in the finite set R primitives at each loop order in
dy(r), here we have an infinite set R, but only one primitive in it.

1Eds. note: See also W. van Suijlekom’s contribution in this book.
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Proposition 3. The relations

Xn+1 xXn
Xn = xn-1’ n > 37 (25)

define a sub-Hopf algebra with Hochschild closed one-cocycles BJlr’",

Here, X" is the sum of all graphs with n external graviton lines. One indeed
finds that the combinatorial Dyson—Schwinger equations for gravity provide a sub-
Hopf algebra upon requiring these relations, in straightforward generalization of
the situation in a non-Abelian gauge theory.

3.2. Comments

3.2.1. Gauss-Bonnet. The Gauss—Bonnet theorem ensures here, in the form

0 = / V3 (Ruwpo R*P7 — 4R, s R*P + R?) (26)
M

the vanishing of the one-loop renormalization constants. This does not imply the
vanishing of the two-loop renormalization constants as their one-loop subdiver-
gences are off-shell. But it implies that the two-loop counter term has only a
first order pole by the scattering type formula, in agreement with the vanishing
of Goft-shell (V) Pon-shent (I'/7). Here, v, T'/7 is the decomposition of T' into one-loop
graphs and @oy /off-shell denotes suitable Feynman rules.

3.2.2. Two-loop counterterm. Also, the universality of the two-loop counterterm
suggests that indeed

781 78

S = ey With 28 = SH(X7), (27)

holds for off-shell counterterms. In particular, if we compute in a space of constant
curvature and conformally reduced gravity, which maintains many striking features
of asymptotic safe gravity [14, 15], the above identities should hold for suitably
defined characters: indeed, in such circumstances we can renormalize using a gravi-
ton propagator, which is effectively massive with the mass /R/6 provided by the
constant curvature R, and hence can renormalize at zero external momentum. Us-
ing the KLT relations [16, 17], this reduces the above identities to a (cumbersome)
combinatorial exercise on one-loop graphs to be worked out in the future.

Continuing this line of thought one expects that a single quantity, the -
function of gravity, exhibits short-distance singularities. If this expectation bears
out, it certainly is in nice conceptually agreement with the expectation that in
theories where gravity has a vanishing S-function, gravity is indeed a finite theory
[18].
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3.2.3. Other instances of gravity powercounting. The appearance of Feynman
rules such that the powercounting of vertex amplitudes in Ry cancels the pow-
ercounting of propagator amplitudes in Rg, R = Ry U REg, is not restricted to
gravity. It indeed appears for example also in the field theoretic description of bulk
materials like glass, which were recently described at tree-level as a field theory
[19], and whose renormalization will have powercounting properties similar to the
present discussion.
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The Structure of Green Functions in
Quantum Field Theory with a General State

Christian Brouder

Abstract. In quantum field theory the Green function is usually calculated as
the expectation value of the time-ordered product of fields over the vacuum. In
some cases, especially in degenerate systems, expectation values over general
states are required. The corresponding Green functions are essentially more
complex than in the vacuum, because they cannot be written in terms of
standard Feynman diagrams. Here a method is proposed to determine the
structure of these Green functions and to derive nonperturbative equations
for them. The main idea is to transform the cumulants describing correlations
into interaction terms.

Mathematics Subject Classification (2000). Primary 81T99; Secondary 81V70;
81T10.

Keywords. Nonequilibrium quantum field theory, initial correlations, structure
of Green functions.

1. Introduction

High-energy physics uses quantum field theory mainly to describe scattering ex-
periments through the S-matrix. In solid-state or molecular physics we are rather
interested in the value of physical observables such as the charge and current densi-
ties inside the sample or the response to an external perturbation. At the quantum
field theory (QFT) level, these quantities are calculated as expectation values of
Heisenberg operators. For example, the current density for a system in a state |®)
is (®|J(z)|®), where |®) and J(z) are written in the Heisenberg picture.

The first QFT calculation of Heisenberg operators was made by Dyson in
two difficult papers [1, 2] that were completely ignored. At about the same time,
Gell-Mann and Low discovered that, when the initial state of the system is non-
degenerate, the expectation value of a Heisenberg operators can be obtained by a
relatively simple formula [3]. The Gell-Mann and Low formula has been immensely
successful and is a key element of the many-body theory of condensed matter [4, 5].
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Its main advantage over the formalism developed by Dyson is that all the standard
tools of QFT can be used without change.

However, it was soon realized that the assumption of a nondegenerate initial
state is not always valid. As a matter of fact, the problem of what happens when the
initial state is not trivial is so natural that it was discussed in many fields of physics:
statistical physics [6], many-body physics [7], solid-state physics [8], atomic physics
[9], quantum field theory and nuclear physics [10, 11]. As a consequence, the theory
developed to solve this problem received several names such as nonequilibrium
quantum field theory (or quantum statistical mechanics) with initial correlations
(or with cumulants, or for open shells, or for degenerate systems). It is also called
the closed-time path or the (Schwinger-)Keldysh approach for an arbitrary initial
density matrix.

It should be stressed that the problem of the quantum field theory of a
degenerate system is not only of academic interest. For instance, many strongly-
correlated systems contain open-shell transition metal ions which are degenerate
by symmetry. This degeneracy makes the system very sensitive to external per-
turbation and, therefore, quite useful for the design of functional materials.

The elaboration of a QFT for degenerate systems took a long time. It started
with Symanzik [12] and Schwinger [13] and made slow progress because the com-
binatorial complexity is much higher than with standard QFT. To illustrate this
crucial point, it is important to consider an example. According to Wick’s the-
orem, the time-ordered product of free fields can be written in terms of normal
order products:

To(wr).. p(wa) = p(@r)...p(@a): + Y so(w)p(a;): Goln, z)
ikl
+ Z wp(ak)e(xr): Go(, xj) + Z Go(zi,zj)Go(xk, z1),
ijkl ijkl

where the quadruple of indices (i, j, k, 1) runs over (1,2,3,4), (1, 3,2,4) and (1,4, 2,
3). The expectation value of this expression over the vacuum gives the familiar
result Zijkl Go(zi, xj)Go(xk, ). However, when the initial state |¢) is not the
vacuum (as in solid-state physics), we obtain

WITp(@1). . p(@)l) = (@lp@)...o(@a):le) + D pa(ws, x;)Golwy, 1)
ijkl
+ Z p2(xk, 21)Go(xi, ;) + Z Go(zi,z5)Go(xk, x1),
ijkl ijkl

where pa(z,y) = (¥]:o(x)p(y):|). If we assume, for notational convenience, that
the expectation value of the normal product of an odd number of field operators
is zero, the fourth cumulant py(z1,...,z4) is defined by the equation

W@lp(@) . p(@a)|e) = pawr,.. . ma) + > palan, 1)pa(wi, z)).

ijkl
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If we put g = Gg + p2, the free four-point Green function becomes

WITo(x1) .. p@a)le) = palwr,.. xa) + D gwi, x5) gk, ).
ijkl

When ps = 0, the expression is the same as over the vacuum, except for the fact
that the free Feynman propagator Gy is replaced by g. When this substitution is
valid, standard QFT can be applied without major change and the structure of
the interacting Green functions is not modified. For fermionic systems described
by a quadratic Hamiltonian Hy, this happens when the ground state is nondegen-
erate, so that |¢) is a Slater determinant. When p4 # 0, the expression becomes
essentially different because the cumulant py appears as a sort of free Feynman
propagator with four legs. In general, the expectation value of a time-ordered
product of n free fields involves pi with k < n.

In other words, the perturbative expansion of the Green functions can no
longer be written as a sum of standard Feynman diagrams. Generalized Feynman
diagrams have to be used, involving free Feynman propagators with any number
of legs [6, 7, 14].

Because of this additional complexity, the structure of the Green functions
for degenerate systems is almost completely unknown. The only result available is
the equivalent of the Dyson equation for the one-body Green function G(z,y) [7]

G = 1-A)"YG+0)1-B)'(1+2a6),

where A, B, C and Y are sums of one-particle irreducible diagrams. When the
initial state is nondegenerate, A = B = C' = 0 and the Dyson equation G =
Go + GoXd is recovered.

In the present paper, a formal method is presented to determine the structure
of Green functions for degenerate systems. The main idea is to use external sources
that transform the additional propagators p, into interaction terms. This brings
the problem back into the standard QFT scheme, where many structural results
are available.

2. Expectation value of Heisenberg operators

Let us consider a physical observable A(t), for instance the charge density or the
local magnetic field. In the Heisenberg picture, this observable is represented by
the operator Ay (t) and the value of its observable when the system is in the state
|® ) is given by the expectation value (A(t)) = (Pp|Ap(t)|Pm).

Going over to the interaction picture, we write the Hamiltonian of the system
as the sum of a free and an interaction parts: H(t) = Ho + Hj(t), we define the
time evolution operator U(t, ') = T (exp(—i ftt, H((t)dt)) and we assume that the
state |® ) can be obtained as the adiabatic evolution of an eigenstate |®g) of Hyp.
The expectation value of A becomes

(A1) = (Do|U(=00, )A()U (¢, —00)[®o),
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where A(t) on the right hand side is the operator representing the observable in
the interaction picture.expectation valuelin interaction picture The identity 1 =
U(t,t"U(t',t) and the definition S = U(oo,—00) enable us to derive the basic
expression for the expectation value of an observable in the interaction picture:

(A(t)) = (@o|STT(A(1)S)|®o). (2.1)
When |®¢) is nondegenerate, this expression can be further simplified into the
Gell-Mann and Low formula
(Po|T(A(t)S)|Po)
(®o|S|®o)
If the system is in a mixed state, as is the case for a degenerate system by
Liiders’ principle, the expectation value becomes

(AR = D pa{@alSTT(A®)S)|P0),

(PA(t)|®)

where p,, is the probability to find the system in the eigenstate |®,). It will be
convenient to use more general mixed states Y wyn|Pm)(Py|, where wy,, is
a density matrix (i.e. a nonnegative Hermitian matrix with unit trace). Such a
mixed state corresponds to a linear form w defined by its value over an operator

O:
w(O) = Z Wmn<q)n|0|q)m>'

mn

Then, the expectation value of A(t) becomes

(A1) = w(S'T(A®)S)). (2.2)

3. QFT with a general state

In all practical cases, the operator representing the observable A(¢) in the interac-
tion picture is a polynomial in ¢ and its derivatives. Its expectation value (2.2) can
be expressed in terms of Green functions that are conveniently calculated by a for-
mal trick due to Symanzik [12] and Schwinger [13], and reinterpreted by Keldysh
[15].

The first step is to define an S-matrix in the presence of an external current
jas S(j) = T(e*ifHm(t)dt”fj(w)‘”(””)dx), where H'™ is the interaction Hamil-
tonian in the interaction picture. The interaction Hamiltonian is then written in
terms of a Hamiltonian density V(z), so that [H™(¢)dt = [V(z)dz and the
generating function of the interacting Green functions is defined by Z(ji,j—) =
w(ST(j-)S(j+))- The interacting Green functions can then be obtained as func-
tional derivatives of Z with respect to the external currents j; and j_. For example

2 . . 5 ] ‘
Elelorplu) = 2T and (olayoly) = o)

As in standard QFT, the connected Green functions are generated by log Z.
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In the functional method [16, 17], the generating function Z of the interacting
system is written as Z = e~*P Z,, where D is the interaction in terms of functional

derivatives
b= /V((Sj:(éx))v(éjjé(x))dx’

and where Zy(j4,j-) = w(Sg(j_)So(j+)), with Sp(j) = T(eifj(x)"’(x)d‘”). Note
that Zy(j4,7—) is the generating function of the free Green functions.
A straightforward calculation [17] leads to

Z%G,5.) = 6*1/2f.i(ﬂb’)Gf)(ﬂb”y).i(y)dﬂb’dyepl(J'Jr*j—)7
where j = (j+,j—) is the source vector,

Jo (0T (@m0 —(0lw)e()0)
Go(z,y) = ( <0|¢<><>|> <0|T(¢><x>¢<y>)|o>>’ 3.1)

is a free Green function (with 7' the anti-time ordering operator) and
PAE) - w(;eifj(w)@(w)dl’:) (3.2)

defines the generating function p’(j) of the cumulants of the initial state w.

The free Green function Gf, describes the dynamics generated by the free
Hamiltonian Hy. It can also be written in terms of advanced and retarded Green
functions [13].

The idea of describing a state by its cumulants was introduced in QFT by
Fujita [6] and Hall [7]. It was recently rediscovered in nuclear physics [10, 11] and
in quantum chemistry [18].

The next step is to modify the definition of the free Green function. The
cumulant function is Taylor expanded

'(5) = day ... deppn (@1, ..o 20)i(xy) . (2y).
p'(j 7 / p J( i (@)

n—=

The expansion starts at n = 2 because w(1) = 1 and the linear term can be
removed by shifting the field ¢. The bilinear term ps(z, y) is included into the free
Green function by defining

Golws) = G+ e () 7).

and the corresponding cumulant function becomes

o) = P6) - (1)) / dedy;(z)pa (2, 9)i ()

oo 1 ' ]
Z I /dx1 coodxppn(z1, . xn) g (1) - (X))
n=3
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Remark 3.1. There are several good reasons to use Gy and p instead of Gj, and p':
(1) This modification is exactly what is done in solid-state physics when the free
Green function includes a sum over occupied states [19]; (ii) At a fundamental level,
Gy and p have a more intrinsic meaning than G{, and p’ because they do not depend
on the state |0) chosen as the vacuum; (iii) An important theorem of quantum field
theory [20] states that, under quite general conditions, p,(z1,...,2,) is a smooth
function of its arguments when n > 2, so that Gy gathers all possible singular
terms (a related result was obtained by Tikhodeev [21]); (iv) A state for which
p(7) = 0 is called a quasi-free state [22], quasi-free states are very convenient in
practice because the rules of standard QFT can be used without basic changes.
Thus, the additional complications arise precisely when p (and not p’) is not zero.

4. Nonperturbative equations

To size up the combinatorial complexity due to the presence of a non-zero p, we
present the diagrammatic expansion of the one-body Green function G(z,y) for
the 3 theory to second order in perturbation theory. For this illustrative purpose,

it will be enough to say that the cumulant p,(z1,...,x,) is pictured as a white
vertex with n edges attached to it, the other vertex of the edge is associated with
one of the points x1,...,2,. For example, ps(z1,...,24) is represented by the

diagram In this diagram, the white dot does not stand for a spacetime point, it

xri 2
p4($1;$25$3;$4) == ><
r3 T4

just indicates that the points x; to x4 are arguments of a common cumulant. If we
restrict the calculation to the case when p,, = 0 if n is odd, we obtain the following
expansion In standard QF T, only the first and last diagrams of the right hand side

G(z,y) = £—EJ+><+P<+.§Q\+%+X+./§\
R, AL PR RS A

R DV G

are present. In the general case when all p,, # 0, the number of diagrams is still
much larger.
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4.1. Generalized Dyson equation

As mentioned in the introduction, the only known result concerning the structure
of Green functions with a general state was derived by Hall for the one-body Green
function G(z,y) [7]

G = (1-A)7"HGo+0O)(1-B) (1 +Xq).

In diagrammatic terms the quantities A, B, C' and ¥ are sums of one-particle
irreducible diagrams. If we take our example of the Green function of ¢3 theory
up to second order, we find

A = ._®:>+-—®+-—?<>+...
B = <:®_.+£Q—-+<:?—~—I—...

Cc = X+%+%+/&+£+M+/Z\+%+z+m

> = ?+®+T+o+...

In standard QFT, we have A = B = C = 0 and the diagrammatic represen-
tation of X contains much less terms. However, the difference with standard QFT
is not only limited to the number of diagrams. The definition (3.2) of the cumu-
lant function, and the fact that the free field ¢ is a solution of the Klein-Gordon
equation imply that p,, is a solution of the Klein-Gordon equation in each of its
variables. Thus, A(z,y), B(z,y) and C(x,y) are solutions of the Klein-Gordon
equation for z and y. As a consequence, applying the Klein-Gordon operator to
the Green function gives us (O+m?)G = (1—B)~1(1+XG). In other words, apply-
ing the Klein-Gordon operator kills a large number of terms of G. This is in stark
contrast with standard QF T, where (O+m?)G = 1+ XG and amputating a Green
function does not modify its structure. This important difference makes some tools
of standard QFT (e.g. amputated diagrams or Legendre transformation) invalid
in the presence of a general state.

All those difficulties explain the scarcity of results available in non-pertur-
bative QFT with a general state. Apart from Hall’s work [7], the only non-
perturbative results are Tikhodeev’s cancellation theorems [23, 24] and the equa-
tion of motion for the Green functions [25].

In the next section, we present a simple trick to derive the structure of Green
functions with a general state.
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4.2. Quadrupling the sources

We first determine the main formal difference between standard QFT and QFT
with a general state. In both cases, the generating function of the Green functions
can be written Z = e *P Z;, where D describes the interaction and Z the initial
state. In the presence of a general state, the interaction D is simple but Z; is made
non standard by the cumulant factor e”. The idea of the solution is to transfer
the cumulant function p from Zy to D, because powerful functional methods were
developed to deal with general interactions D. These methods were first proposed
by Dominicis and Englert [26] and greatly expanded by the Soviet school [27, 28,
29, 30, 31, 32, 33, 34, 35].

This transfer from the initial state to the interaction can be done easily by
introducing two additional external sources k4 and k_ and using the identity

Pl —i-) — PiTRy i) i [ (G4 (@) (@)= (@)= (@) de| .
ki=k_=0

The term involving p can now be transferred from Zy to D by defining the new
generating function

Z(jaks) = e PZo(ju, ky),

where the modified interaction is

D = /V(ﬁ)v(#‘ix))dxm(i%i%),

and the modified free generating function is

Zo(js ky) = e M2/ I@Go(@y)Iy)dedy

with J = (j4,j_, ky,k_). The modified free Green function Gy is now a 4x4 matrix
that can be written as a 2x2 matrix of 2x2 matrices

= . Gy -1l
Go = <—z’1 0 >

In contrast to the standard case, the free Green function Gy is invertible

. [0 i1
Gt = (4 @)

and it is again possible to use amputated diagrams and Legendre transformations.
The free generating function Zy is the exponential of a function that is bilinear in
the sources, and all the standard structural tools of QFT are available again. We
illustrate this by recovering Hall’s analogue of the Dyson equation.

4.3. An algebraic proof of Hall’s equation

The free generating function Zy has a standard form and the Dyson equation holds

again: G = Go + GoXG, where G is the 4x4 one-body Green function obtained
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from the generating function Z and ¥ is the corresponding self-energy. Each 4x4
matrix is written as a 2x2 matrix of 2x2 matrices. For example

~ G G
G = = = .
( G211 G2
We want to determine the structure of the 2x2 Green function G, which is equal

to G411 when ky =k_=0. B
The upper-left component of the Dyson equation for G is

C_:11 - GO + (Goill — iigl)én + (Goilg — iigg)égl. (41)

The lower-left component gives us Ga1 = —i(1+iX12) (1 + £11G11). If we in-
troduce this expression for Go; into equation (4.1), rearrange a bit and use the
operator identity 14+ O(1 — 0)~! = (1 — O)~!, we obtain

(1+i¥21)G11 = (Go— Za2)(1+ i¥12) (1 + ¥11G11).

Hall’s equation is recovered by identifying A = —i¥q;, B = —iX5 and C = —X9,
where the right hand side is taken at ky = k_ = 0. Note that Hall’s equation
is now obtained after a few lines of algebra instead of a subtle analysis of the
graphical structure of the diagrams.

With the same approach, all the nonperturbative methods used in solid-
state physics, such as the GW approximation [36] and the Bethe-Salpeter equation
[37, 38], can be transposed to the case of a general initial state. This will be
presented in a forthcoming publication.

5. Determination of the ground state

QFT with a general state was studied because the initial eigenstate of a quantum
system is sometimes degenerate. However, it remains to determine which density
matrix wy,, of the free Hamiltonian leads to the ground state of the interacting
system.

A solution to this problem was inspired by quantum chemistry methods [39].
A number of eigenstates |®,,) of Hy are chosen, for example the complete list of
degenerate eigenstates corresponding to a given energy. These eigenstates span the
so-called model space and the ground state of the interacting system is assumed to
belong to the adiabatic evolution of the model space. This model space generates,
for each density matrix, a linear form w as described in equation (2.2). The problem
boils down to the determination of the density matrix wy,, that minimizes the
energy of the interacting system.

This minimization leads to an effective Hamiltonian and the proper density
matrix is obtained by diagonalizing the effective Hamiltonian. This type of method
is typical of atomic and molecular physics [40]. However, the effective Hamiltonian
can now be determined by powerful non-perturbative Green function methods.
Therefore, the present approach leads to a sort of unification of quantum chemistry
and QFT: it contains standard QFT when the dimension of the model space is one,
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it contains standard quantum chemistry (more precisely many-body perturbation
theory) when the Green functions are expanded perturbatively.

Therefore, the present approach might help developing some new nonpertur-
bative methods in quantum chemistry. On the other hand, quantum chemistry
has accumulated an impressive body of results. The physics Nobel-prize winner
Kenneth Wilson stated that [41] “Ab initio quantum chemistry is an emerging
computational area that is fifty years ahead of lattice gauge theory.” Therefore,
the experience gained in quantum chemistry can be used to solve some of the
remaining problems of the present approach, such as the removal of the secular
terms [14] to all order.

6. Conclusion

The present paper sketched a new method to determine the Green functions of
quantum field theory with a general state. The main idea is to transform the
cumulant function describing the initial state into an interaction term. As a conse-
quence, the cumulants become dressed by the interaction, providing a much better
description of the correlation in the system.

An alternative method would be to work at the operator level, as was done
recently by Diitsch and Fredenhagen [42], and to take the expectation value at the
end of the calculation. This would have the obvious advantage of dealing with a
fully rigorous theory. However, we would loose the non-perturbative aspects of the
present approach.

Although this approach seems promising, much remains to be done before it
can be applied to realistic systems: (i) our description is purely formal; (ii) the
degenerate initial eigenstates lead to secular terms that must be removed [14];
(iii) renormalization must be included, although this will probably not be very
different from the standard case, because all the singularities of the free system
are restricted to Gg.

Interesting connections can be made with other problems. For example, the
cancellation theorem [23] seems to be interpretable as a consequence of the uni-
tarity of the S-matrix. It would extend Veltman’s largest time equation [43] to the
case of spacetime points with equal time. Another exciting track would be a con-
nection with noncommutative geometry. Keldysh [15] noticed that the doubling of
sources could be replaced by a doubling of spacetime points. In other words, ji ()
becomes j(x+), where x4 are two copies of the spacetime point z: time travels
from the past to the future for x; and in the other direction for x_. Sivasubra-
manian and coll. [44] have proposed to interpret this doubling of spacetime points
in terms of noncommutative geometry. It would be interesting to follow this track
for our quadrupling of spacetime points.

From the practical point of view, the main applications of our scheme will
be for the calculation of strongly-correlated systems, in particular for the optical
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response of some materials, such as gemstones, that remain beyond the reach of
the standard tools of contemporary solid-state physics.

After the completion of this work, we came across a little known article by
Sergey Fanchenko, where the cumulants are used to define an effective action [45].
His paper is also interesting because it gives a path integral formulation of quantum
field theory with a general state. His approach and the one of the present paper
provide complementary tools to attack nonperturbative problems of quantum field
theory with a general state.
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Framework of Causal Perturbation Theory
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Abstract. In perturbative quantum field theory the maintenance of classical
symmetries is quite often investigated by means of algebraic renormalization,
which is based on the Quantum Action Principle. We formulate and prove this
principle in a new framework, in causal perturbation theory with localized
interactions. Throughout this work a universal formulation of symmetries is
used: the Master Ward Identity.
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1. Introduction

The main problem in perturbative renormalization is to prove that symmetries of
the underlying classical theory can be maintained in the process of renormalization.
In traditional renormalization theory this is done by ’algebraic renormalization’
[26]. This method relies on the *Quantum Action Principle’ (QAP), which is due to
Lowenstein [23] and Lam [22]. This principle states that the most general violation
of an identity expressing a relevant symmetry ("Ward identity’) can be expressed
by the insertion of a local field with appropriately bounded mass dimension. Pro-
ceeding in a proper field formalism! by induction on the order of , this knowledge
about the structure of violations of Ward identities and often cohomological re-
sults are used to remove these violations by finite renormalizations. For example,
this method has been used to prove BRST-symmetry of Yang-Mills gauge theories
[2, 3, 31, 17, 1].

1By ’proper field formalism’ we mean the description of a perturbative QFT in terms of the
generating functional of the 1-particle irreducible diagrams.
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Traditionally, algebraic renormalization is formulated in terms of a renormal-
ization method in which the interaction is not localized (i.e. Sint = [ dz Ling(),
where Lint is a polynomial in the basic fields with constant coefficients), for ex-
ample the BPHZ momentum space subtraction procedure [32, 23, 22] or the pole
subtractions of dimensionally regularized integrals [5]. In [25] it is pointed out
(without proof) that the QAP is a general theorem in perturbative QFT for non-
localized interactions, i.e. it holds in any renormalization scheme.?

However, for the generalization of perturbative QFT to general globally hy-
perbolic curved space- tz'mes it is advantageous to work with localized interactions

(ie. Sing = [dz > n>1 ()™ Lint,n(x), where g is a test function with compact
support) and to use a renormalization method which proceeds in configuration
space and in which the locality and causality of perturbative QFT is clearly visible
[8, 18, 19]. It is causal perturbation theory (CPT) [4, 15, 14] which is distinguished
by these criteria.

Since it is the framework of algebraic QFT [16] in which the problems specific
for curved space-times (which mainly rely on the absence of translation invariance)
can best be treated, our main goal is the perturbative construction of the net of
local algebras of interacting fields ("perturbative algebraic QFT’). Using the for-
mulation of causality in CPT, it was possible to show that for this construction
it is sufficient to work with localized interactions [8, 12]. Hence, a main argu-
ment against localized interactions, namely that a space or time dependence of
the coupling constants has not been observed in experiments, does not concern
perturbative algebraic QFT. Because of the localization of the interactions, the
construction of the local algebras of interacting fields is not plagued by infrared
divergences, the latter appear only in the construction of physical states.

Due to these facts it is desirable to transfer the techniques of algebraic renor-
malization to CPT, that is to formulate the hi-expansion, a proper field formalism
and the QAP in the framework of CPT. For the hi-expansion the difficulty is that
CPT is a construction of the perturbation series by induction on the coupling con-
stant, a problem solved in [11, 12]. A formulation of the QAP in the framework
of CPT has partially been given in [11] and in [27]; but for symmetries relying
on a variation of the fields (as e.g. BRST-symmetry) an appropriate formulation
and a proof were missing up to the appearance of the paper [6]. In the latter,
also a proper field formalism and algebraic renormalization are developed in the
framework of CPT.

In this paper we concisely review main results of that work [6], putting the
focus on the QAP. To be closer to the conventional treatment of perturbative QFT
in Minkowski space and to simplify the formalism, we work with the Wightman 2-
point function instead of a Hadamard function.® Compared with [6], we formulate
some topics alternatively, in particular we introduce the proper field formalism

2Causal perturbation theory, with the adiabatic limit carried out, is included in that statement.
3In [6] smoothness in the mass m is required for m > 0 which excludes the Wightman 2-point
function.
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without using arguments relying on Wick’s theorem and the corresponding dia-
grammatic interpretation. In addition we prove a somewhat stronger version of
the QAP.

The validity of the QAP is very general. Therefore, we investigate a universal
formulation of Ward identities: the Master Ward Identity (MWI) [9, 13]. This
identity can be derived in the framework of classical field theory simply from the
fact that classical fields can be multiplied pointwise. Since this is impossible for
quantum fields (due to their distributional character), the MWI is a highly non-
trivial renormalization condition, which cannot be fulfilled in general, the well
known anomalies of perturbative QFT are the obstructions.

2. The off-shell Master Ward Identity in classical field theory

For algebraic renormalization it is of crucial importance that the considered Ward
identities hold true in classical field theory. Therefore, in this section, we derive the
off-shell MWTI in the classical framework. The formalism of classical field theory,
which we are going to introduce, will be used also in perturbative QFT, since the
latter will be obtained by deformation of the classical Poisson algebra (Sect. 3)
11, 12, 13, 14].

For simplicity we study the model of a real scalar field ¢ on d dimensional
Minkowski space M, d > 2. The field ¢ and partial derivatives 9%¢ (a € Ng) are
evaluation functionals on the configuration space C = C*(M,R): (0%p)(x)(h) =
0%h(x). Let F be the space of all functionals

F(o) : C—C, F(p)(h)=F(), (2.1)

which are localized polynomials in ¢:

N
Flp) =Y /dml ez (@) p(@n) (T ) | (2.2)
n=0

where N < oo and the f,,’s are C-valued distributions with compact support,
which are symmetric under permutations of the arguments and whose wave front
sets satisfy the condition

WE(fo)n(M" x (Vi UV) =0 (2.3)

and fo € C. (V4 denotes the closure of the forward/backward light-cone.) En-
dowed with the classical product (Fy - Fs)(h) := Fy(h)- Fa(h), the space F becomes
a commutative algebra. By the support of a functional F' € F we mean the support
of 2E.
S
The space of local functionals Fioc C F is defined as

N N
D WICREES SRR S0} Y
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where P is the linear space of all polynomials of the field ¢ and its partial deriva-
tives:
’P::\/{aaga|a€Ng} . (2.5)

We consider action functionals of the form Siot = Sy + S where Sy =

[dz3(9,00" 0 — m?p?) is the free action, A a real parameter and S € F some
compactly supported interaction, which may be non-local. The retarded Green
function Ag?tzt corresponding to the action Sy, is defined by

Janag L R / dy Sy ) (2.6)
S 50 (y)op(2) Sp(w)dp(y) St '
and Ag?tzt (z,y) = 0 for z sufficiently early. In the following we consider only

actions Sio; for which the retarded Green function exists and is unique in the
sense of formal power series in A.

To introduce the perturbative expansion around the free theory and to define
the Peierls bracket, we define retarded wave operators which map solutions of the
free theory to solutions of the interacting theory [13]. However, we define them as
maps on the space C of all field configurations (’off-shell formalism’) and not only
on the space of free solutions:

Definition 2.1. A retarded wave operator is a family of maps (rs,+s,s,)ser from
C into itself with the properties
(1) Tso+5.5,(f)(x) = f(x) for x sufficiently early

=\ 0(So+S) __ 48
(i) =557 orse+s.5, = Sat-

The following Lemma is proved in [6].

Lemma 2.2. The retarded wave operator (rs,+s.5,)ser exists and is unique and
invertible in the sense of formal power series in the interaction S.

Motivated by the interaction picture known from QFT, we introduce retarded
fields: the classical retarded field to the interaction S and corresponding to the
functional F' € F is defined by

Fgl déf Fo TSo+S,80 - ¢ — C. (27)
The crucial factorization property,
(F-G)§ =F§ -Gy, (2.8)

cannot be maintained in the process of quantization, because quantum fields are
distributions. This is why many proofs of symmetries in classical field theory do
not apply to QFT (cf. Sect. 5).

The perturbative expansion around the free theory is defined by expanding
the retarded fields with respect to the interaction. The coefficients are given by
the classical retarded product R [13]:

aor d"

RC] : Tf@f*)f, RCI(S(X)”,F) = W \—0

FOTSU+>\3750 ) (29)
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where TV £ C @ @~ , VO™ denotes the tensor algebra corresponding to some
vector space V. For non-diagonal entries, Rc1(®?:15j, F) is determined by linearity
and symmetry under permutations of Si,...,S,. Interacting fields can then be

written as
o0

The r.h.s. of ~ is interpreted as a formal power series (i.e. we do not care about
convergence of the series).

By means of the retarded wave operator one can define an off-shell version
[6] of the Peierls bracket associated to the action S [24], {-,-}s : F @ F — F,
and one verifies that this is indeed a Poisson bracket, i.e. that {-,-}g is linear,
antisymmetric and satisfies the Leibniz rule and the Jacobi identity [13, 6].

A(S®", F) = Ra(ed, F) . (2.10)

3|»—~

Following [6], we are now going to derive the classical off-shell MWI from the
factorization (2.8) and the definition of the retarded wave operators. Let J be the
ideal generated by the free field equation,

def 65
Z/dml dmn xl) (iCn 1)onn)fn(xlv"'7xn)} Cfa

with N < oo and the f,,’s being defined as in (2.2). Obviously, every A € J can
be written as

4% [aqsThs (211)

where ) may be non-local. Given A € J we introduce a corresponding derivation
[13]

= /dm Q(x)ﬁs(x). (2.12)

Notice F(¢+Q)—F(p) = 4aF+0(Q?) (for F € F) that is, 4 F can be interpreted
as the variation of F' under the infinitesimal field transformation ¢(x) — () +
Q(z). From the definition of the retarded wave operators Def. 2.1 we obtain

(A+0a5)orsyts,s, = /dm Q(z) o 7“50+s,306(55;7éf) 0 7'5+5,50
= /dm Q(z) o r50+s,30(;;—f30) . (2.13)
In terms of the perturbative expansion this relation reads
Ra(el, A+64S) = /d:r, Ra (e, Q(x)) 5(;?0) cJ. (2.14)

This is the MWI written in the off-shell formalism. When restricted to the solutions
of the free field equation, the right-hand side vanishes and we obtain the on-shell
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version of the MWI, as it was derived in [13]. For the simplest case Q = 1 the
MWTI reduces to the off-shell version of the (interacting) field equation
0(So + 5) 0S50
Ra (€2, .
¢ dp(x) )= dp()

(2.15)

3. Causal perturbation theory

Following [14], we quantize perturbative classical fields by deforming the under-
lying free theory as a function of 7i: we replace F by F([[A]] (i.e. all functionals
are formal power series in i) and deform the classical product into the *-product,
* : F x F — F (for simplicity we write F for F[[h]]):

def onF
FxG)( dxq...dx,d .dyy,
( nE % / 1. R e P wow o

I A% @ —v) ne
=1

3p(yr) -+ op(yn)
The %-product is still associative but non-commutative.

In contrast to the classical retarded field FS' (2.7), one assumes in pertur-
bative QFT that the interaction S and the field F' are local functionals. For an
interacting quantum field Fs one makes the Ansatz of a formal power series in
the interaction S:

(3.1)

1(S®", F) = R(e3, F) . (3.2)

3|»—

The 'retarded product’ le is a linear map, from .7-'%? ® Floc into F which is sym-
metric in the first n variables. We interpret R(A;(z1),...; An(zn)), 41, ..., Ap € P,
as F-valued distributions on D(M™), which are defined by: [ dx h(x) R(..., A(z), ...)
=R(..® A(h)® ...) Vh € DM).

Since the retarded products depend only on the functionals (and not on how
the latter are written as smeared fields (2.4)), they must satisfy the Action Ward
Identity (AWI) [14, 29, 30]:

8,5R7L—1,1(' .. Ak(x) .. ) = Rn—l,l(- .. ,a,uAk-(l‘), .. ) . (33)
Interacting fields are defined by the following axioms [14], which are moti-
vated by their validity in classical field theory. The basic axioms are the initial
condition Ry 1(1,F) = F and
Causality: Fgiy = Fg if supp (‘g—i) N (supp (‘;—g) +Vi)=0y;
GLZ Relation: Fg « Hg — He x Fg = d%‘ (Foant — Hoinr) -
A=0
Using only these requirements, the retarded products R, i can be constructed by

induction on n (cf. [28]). However, in each inductive step one is free to add a
local functional, which corresponds to the usual renormalization ambiguity. This
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ambiguity is reduced by imposing renormalization conditions as further axioms,
see below.

Mostly, perturbative QFT is formulated in terms of the time ordered product
(T-product’) T : TFo. — F, which is a linear and totally symmetric map.
Compared with the R-product, the T-product has the advantage of being totally
symmetric and the disadvantage that its classical limit does not exist [11]. R- and
T-products are related by Bogoliubov’s formula:

h d
s _ -1, @
R(e®, F) =3 S(S)™ I T:OS(S+TF) , (3.4)
where -
7 in n
S(8) =T(eg'") = Y~ Tu(S%") . (3.5)
n=0

The basic axioms for retarded products translate into the following basic axioms for
T-products: the initial conditions Tp(1) = 1, T1(F) = F and causal factorization:

Tn(Al (1‘1), ceey An(xn)) =
Te(Ay (1), ooy A (@) * Tr— (At (Thg1 )5 ooy A (20)) (3.6)

if {z1, ..., 2k} N ({ZTkt1, -, T} + V_) = 0. There is no axiom corresponding to the
GLZ Relation. The latter can be interpreted as ’integrability condition’ for the
'vector potential’ R(e% , F), that is it ensures the existence of the 'potential’ S(.S)
fulfilling (3.4); for details see [7] and Proposition 2 in [10].
For this paper the following renormalization conditions are relevant (besides
the MWT).
Translation Invariance: The group (R¢, +) of space and time translations has
an obvious automorphic action § on F, which is determined by S,p(x) =
o(z +a), a € RL We require

BaS(S) =S(B.S), VacR?. (3.7)
Field Independence: % = 0. This axiom implies the causal Wick expansion

of [15] as follows [14]: since T'(®7_, F;) € F is polynomial in ¢, it has a finite
Taylor expansion in ¢. By using Field Independence, this expansion can be
written as

Tn(Ar(z1), - 5 An(zn)) = Z 11'711'
P "

seeeslbn

alLAZ LI aij.
Tn( N Z a(aaﬂ(p)”.a(aa”i(p)(xi)’.-~)‘¢:OHHa J“P(xi) (38)

ailma,,li =1 ]L:1

with multi-indices a;;, € Ng.
Scaling: This requirement uses the mass dimension of a monomial in P, which
is defined by the conditions
d—2

dim(9%p) = — +]a|] and dim(A;As) =dim(A4;) + dim(Asg) (3.9)
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for all monomials A;, Ay € P. The mass dimension of a polynomial in P
is the maximum of the mass dimensions of the contributing monomials. We
denote by Ppom the set of all field polynomials which are homogeneous in the
mass dimension.

The axiom Scaling Degree requires that ‘renormalization may not make
the interacting fields more singular’ (in the UV-region). Usually this is for-
mulated in terms of Steinmann’s scaling degree [28]:

sd(f) inf{s e R | lg?gp‘;f(px) =0}, feD®RY or feD®R\{0}). (3.10)

Namely, one requires
n
sd(T(Al, s Ao (1 — T, )) <> dim(4;), VA4 € Phom,  (3.11)
j=1

where Translation Invariance is assumed. Notice that this condition restricts
all coefficients in the causal Wick expansion (3.8).

In the inductive construction of the sequence (Ry,—1,1)nen O (Ty)nen, respectively,
the problem of renormalization appears as the extension of the coefficients in the
causal Wick expansion (which are C[[fi]]-valued distributions) from D(R¥»—=1) \
{0}) to D(R¥™=1). This extension has to be done in the sense of formal power
series in h, that is individually in each order in 4. With that it holds

lim R = Ry . 12
lim R = R (3.12)

In [14] it is shown that there exists a T-product which fulfils all axioms. The
non-uniqueness of solutions is characterized by the ’Main Theorem’; for a complete
version see [14].

4. Proper vertices

A main motivation for introducing proper vertices is to select that part of a T-
product for which renormalization is non-trivial (cf. [21]). This is the contribu-
tion of all 1-particle-irreducible (1PI) subdiagrams. This selection can be done as
follows: first one eliminates all disconnected diagrams. Then, one interprets each
connected diagram as tree diagram with non-local vertices ("proper vertices’) given
by the 1PI-subdiagrams. The proper vertices can be interpreted as the ’quantum
part’ of the Feynman diagrams. Since renormalization is unique and trivial for
tree diagrams, Ward identities can equivalently be formulated in terms of proper
vertices (Sect. 5.1).

Essentially we follow this procedure, however, we avoid to argue in terms of
diagrams, i.e. to use Wick’s Theorem. It has been shown in [6] that with our defi-
nition (4.6) of the vertex functional I' the "proper interaction’ I'(e2) corresponds

to the sum of all 1PI-diagrams of T(eg/h).
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The connected part T of a time-ordered T' can be defined recursively by [11]

def
TH@)_ Fy) S Tu(@)_ Fy) — > [ T9/(®5esF) - (4.1)
|P|>2J€EP
It follows that T" and T° are related by the linked cluster theorem:
T(eg) = expy(T°(ely)) , (4.2)

where exp, denotes the exponential function with respect to the classical product.
For F' € Fioc the connected tree part T, (F®") can be defined as follows
[11]: since T¢ = O(R™~1) | the limit

def

pmn=be < lim 7~ (n=1) e (4.3)

tree,n

exists. This definition reflects the well known statements that T}, is the ’classical
part’ of T and that connected loop diagrams are of higher orders in A.

Since proper vertices are non-local, we need the connected tree part

three( — j) for non-local entries F; € F. This can be defined recursively [6]:
Sk Fpiq

Tiee (@521 F) /d g dyydygpy —— L

tree(®] T1...4Tk AY1.-..AYk do(x1)...0p(zk)

k

1 5
H ) Z = Tiee(@jen Fj) - -
=t Z LU..Ul={1,...n} dp(y1)
0
'mthree((@jelij) s (44)

where I; # () V5, Ll means the disjoint union and AL is the Feynman propagator
for mass m. (Note that in the sum over I, ..., I the order of Iy, ..., I} is distin-
guished and, hence, there is a factor #;.) For local entries the two deﬁmtlons (4.3)

and (4.4) of T¢.,. agree, as explalned in [6].

The ’vertex functional’ I' is defined by the following proposition [6]:
Proposition 4.1. There exists a totally symmetric and linear map
T: TFo — F (4.5)
which is uniquely determined by
TS = T (e ") (46)
To zeroth and first order in S we obtain
r1)y=0, IS)=-5.

Since T, T, and I" are linear and totally symmetric, the defining relation (4.6)
implies

T @ F) = Tieo (e TR/ o el ® F). (4.8)
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To prove the proposition, one constructs I‘( ) by induction on n, using
(4.6) and the requirements total symmetry and hnearlty

(@) Fy) = (/)" T@ F) = S0 (/1) T (R T(@5es Fy))
|P|>2 Jep
(4.9)
where P is a partition of {1,...,n} in |P| subsets J.
From this recursion relation and from Ty — T, ,,
conclude

T(eg)=S+0(h), T(s@F)=F+0h) if FS~n. (4.10)

= O(h") we inductively

Motivated by this relation and (4.6) we call I'(eZ) the "proper interaction’ corre-
sponding to the classical interaction S.

The validity of renormalization conditions for 7" implies corresponding prop-
erties of I', as worked out in [6].

Analogously to the conventions for R- and T-products we sometimes write
Jdz g(z)T(A(z) @ F»...) for T(A(g) ® F»...) (A€ P, g € D(M)). Since I' depends
only on the functionals, it fulfils the AWI: 0T (A(z) ® Fs...) = T'(0"A(z) ® Fs...).

5. The Quantum Action Principle

5.1. Formulation of the Master Ward Identity in terms of proper vertices

The classical MWI was derived for arbitrary interaction S € F and arbitrary
A € J. For local functionals S € Foc and

050
A= /dx h(z) Q(x)
dep(x)
it can be transferred formally into perturbative QFT (by the replacement R. —
R), where it serves as an additional, highly non-trivial renormalization condition:

550
do(y)

Since the MWT holds true in classical field theory (i.e. for connected tree diagrams,
see below) it is possible to express this renormalization condition in terms of the
‘quantum part’ (described by the loop diagrams) - that is in terms of proper
vertices. We do this in several steps:

Proof of the MWI for 7., (connected tree diagrams). Since this is an alternative
formulation of the classical MWI, we still include non-local functionals S € F,
A= [dzQ(z 6‘;*?2) € J, as in Sect. 2. The classical field equation (2.15) can be
expressed in terms of T,

eETNFloc, heDM), QeP, (5.1)

R(eS. A+ 54) = [dyhn)R(eE, Q) (5.2)

tree

(7 M50 =

tree

(5.3)
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The only difference between R and T, is that the retarded propagator A™*(y)(#
At (—y)) is replaced by the Feynman propagator Af (y)(= AF(—y)), the com-
binatorics of the diagrams remains the same. Hence, the factorization of classical
fields (2.8),

Ra(ed,F-G) = Ra(e3, F) - Ra(es. G) (5.4)
holds true also for Ti,:
three( B ® FG) tree( W ® F) three( W ® G) (55)

We now multiply the field equatlon for T with T (es S Q(a )) and integrate
over z. This yields the MWI for T,

tree

c iS/ h zS/h . 6So
Ttree( (A + 6145 /dl‘ tree ® Q( )) 5(,0(%) : (56)
Translation of the (quantum) MWI from R into 7°. Using Bogoliubov’s formula

(3.4) and the identity

350 350
590 dp
(which relies on (O + m?)A;, = 0), the MWI in terms of R-products (5.2) can be
translated into T-products:

(F*G)- =F«*(G ) VEGeF (5.7)

i 0.5,
T(eE" @ (A+6a5) = [ayh() T 0 Q)3 . he D). QeP.
(5.8)
To translate it further into T¢ we note that the linked cluster formula (4.2) implies
T(ef @ G) =T (X)) T(eF @ G) (5.9)

where the inverse is meant with respect to the classical product. It exists because
T (eif’) is a formal power series of the form T'(eil') = 1 4+ O(F). With that we
conclude that the MWI can equivalently be written in terms of T'° by replacing T’
by T° on both sides of (5.8).

Translation of the MWI from 7 into I". Applying (4.6) on both sides of the MWI
in terms of T¢ we obtain

I R R )

ir(el 55
~ [aynty me( 2T (el 0 Q)

do(y)

NG 5(So + T'(e
/dy h(y tree o g (eg ® Q(y))—( Oa:ro(y()%)))
(5.6). It follows

5(So + S))
dply) /-

where we have used the classical MWI in terms of T

§(So +T'(e3))

r(ed © Q) =5

r( S ® Q(y) (5.10)
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The various formulations of the MWI, in terms of R-products (5.2), T-products
(5.8), T°-products and in terms of proper vertices (5.10), they all are equivalent.

Remark 5.1. The off-shell field equation

is/h _ 0(So +5) 4S50 iS/h
Tle ® = -Tle , VS, 5.11
( N 3(y) ) 3(y) ( ? ) 5-10)
is a further renormalization condition, which can equivalently be expressed by
T(eg ®o(y) = wly), VS, (5.12)

as shown in [6]. For a T-product satisfying this condition and for @) = D¢ (where
D is a polynomial in partial derivatives) the QAP simplifies to

5(So+T(ed)) 5(So + S))
So(y) dply) /-

5.2. The anomalous Master Ward Identity - Quantum Action Principle

Dep(y) = F(@% ® Dy(y) (5.13)

The QAP is a statement about the structure of all possible violations of Ward
identities. In our framework the main statement of the QAP is that any term
violating the MWI can be expressed as I‘(e% ® A), where A is local (in a stronger
sense than only A € Foc) and A = O(h) and the mass dimension of A is bounded
in a suitable way.

Theorem 5.2 (Quantum Action Principle). (a) Let T’ be the vertex functional be-
longing to a time ordered product satisfying the basic axioms and Translation In-
variance (3.7). Then there exists a unique sequence of linear maps (A™),en,

A" PEOTD DM, Floe) . ®T_1L; ® Q — A™(®T_ Li(x;);Qy)) (5.14)

(D' (M, Fioc) is the space of Fioc-valued distributions on D(M)), which are sym-
metric in the first n factors,

A™M (@1 L (27); Q(y)) = A™(@f=1 Lj(w5); Q(y)) (5.15)
for all permutations 7, and which are implicitly defined by the ‘anomalous MWI’

6(S’O+F(e%)) _ (oS 0(So + S)
soly) F( ®®(Q(y) So(y)

where S = L(g) (L€ P, g€ DM)) and

I(e$2Q()) AL:Q)g:v)) » (5:16)

A(L:Q)(g5y Zni / Aoy, [ 9la) A™@ L Q) - (517)

As a consequence of (5.16) the maps A™ have the following properties:
(i) A°=0;
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(ii) locality: there exist linear maps PP : P2V — P (where a runs through a
finite subset of (N3)™), which are symmetric in the first n factors, such that
A" can be written as

A @7, Li(x;): Q) = Y 0°0(x1—ys o 2n—y) PRI, L;i Q)(y) - (5.18)
a€(Nd)"

(it)) A™(@%_1L;(x;);Q(y)) =O(h) Vn>0if Ly ~h°, Q~h" .

(b) If the time ordered product satisfies the renormalization conditions Field
Independence and Scaling Degree (3.11), then each term on the r.h.s. of (5.18)

fulfils

n d 2
la] + dim(P(®)_, L;; Q) < Y _ dim(L;) + dim(Q) + % —dn.  (5.19)
j=1

For a renormalizable interaction (that is dim(L) < d) this implies

d+2

jal + dim(P2 (197 Q) < dim(Q) + “

(5.20)
Note that (5.16) differs from the MWTI (5.10) only by the local term

A(L; Q)(g;y), which clearly depends on the chosen normalization of the time or-

dered product. Therefore, A(L; Q)(g; y) = 0 is a sufficient condition for the validity

of the MWI for @ and S = L(g); it is also necessary due to the uniqueness of the

maps A”.

Proof. (a) Proceeding as in Sect. 5.1, the defining relation (5.16) can equivalently
be written in terms of T-products:

550
do(y)

5(So + 9)
dp(y)

T(eg/h ® (Qy) + AL Q) (s y))) = T(e’g/h ® Q(y)) (5.21)

To n-th order in g this equation reads

A" Qu) =T (8/m°" 0 Q) - 5~ T (/" e Q) )

. n—1 oS . n . n— .
(S 0 Q) ) ) ((sment s A Q)

(5.22)
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Taking linearity and symmetry (5.15) into account we extend this relation to non-
diagonal entries and write it in terms of the distributional kernels

~ 8S
dp(y)

i

AM@1 Li(a) QW) = (3) T(#3-aLs(e)) @ Q)
-(7) (st Q- 555)
oL,

(%)nil T(®j(¢”Lj(xj) 2Q(y) %:(3“5)(301 ~ ) 9(0%) (xl))

n
=

- (%)ucw(@iemi(aﬁ)®Am(®jeILj(xj);Q(y))) (5.23)
IC{l,...n},Ic#£0

1

This relation gives a unique inductive construction of the sequence (A™),en (if the
distribution on the r.h.s. of (5.23) takes values in Fio.) and it gives also the initial
value A% = 0. Obviously, the so obtained maps A" : P&+ _ D/(M, F,.) are
linear and symmetric (5.15).

The main task is to prove that A"(®}_; L;; Q) (which is defined inductively

by (5.23)) satisfies locality (5.18); the latter implies that A"(®}_,L;;Q) takes
values in Fjoc. For this purpose we first prove

supp A™(®7_,L;; Q) C Dty (@1, 1) €M @y = =0}

(5.24)
that is we show that the r.h.s. of (5.23) vanishes for (z1,...,2pn,y) € Dp41. For
such a configuration there exists a K C {1,...,n} with K¢ := {1,...,n} \ K # 0
and either ({zy |k € K} + Vi) N({zj|j € K}U{y}) =0or {x) |k € K}+V_)N
({z;|j € K} U{y}) = 0. We treat the first case, the second case is completely
analogous. Using causal factorization of the T-products (3.6) and locality (5.24)
of the inductively known Al |T| < n, we write the r.h.s. of (5.23) as

() (#(Eser ) w7 (rertatz 0 20)) 5255
(et () 2 (et 020 )
+(%)”*1 Z T(®ieK, iz Li(z:) ® Q(y) Z(a“é)(azl —v) 859620) (xl))
lEK ¢
(%) e Z T(®¢€K\1Li(xi) ® A (@4erLs(x5); Q(y)))} : (5:25)

ICK

Using (5.7) this can be written in the form T(®jekeL;(x;)) * (...). The second
factor vanishes due to the validity of (5.23) in order |K|. This proves (5.24).
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A"(@?zle; Q) is, according to its inductive definition (5.23), a distribution
on D(M"*1) which takes values in JF. Hence, it is of the form

A" (@7_1Lj(z;); Qy)) = Z/dzl...dzk
k
fl?(®?:1Lj ® Q)1 ooy Ty Yy 214 oy 28) ©(21) - 0(28) (5.26)

where fI(@7_1L;j @ Q)(21,...; Tn, Y, 21,0, 26) € D'(M"TFH1) has the following
properties:

- it depends linearly on (®7_;L; ® Q);

- it is invariant under permutations of the pairs (L1, 1), ..., (Lpn, Zn).

- The distribution

Jdxy..dendy QT Ly @ Q) (1, s Ty Ys 215 ooy 28) B(T1, oy Ty y) € D' (MF) is
symmetric under permutations of z1, ..., z; and satisfies the wave front set condition
(2.3), for all h € D(M"+1).

- From (5.23) we see that Translation Invariance of the T-product (3.7) implies
the same property for A™:

Ba A™M(@F=1Lj(25); Qy)) = A™(®f=1 Lj(z; + a); Q(y + a)) - (5.27)

Therefore, the distributions f7( =1Ly ® Q) depend only on the relative coordi-
nates.

Due to (5.24) the support of fi'(®7_;L; ®Q) is contained in Dy, 41 X MF; but,
to obtain the assertion (5.18), we have to show supp fi'(®}_;L; ® Q) C Dpypi1-
For this purpose we take into account that

ST(®E_, Aj(xy))
dp(2)

This relation can be shown as follows: for the restriction of the time ordered
product to D(M!\ ;) this property is obtained inductively by causal factorization
(3.6). That (5.28) is maintained in the extension of the T-product to D(M!) can
be derived from

=0 if z#z Vi=1,..,1. (5.28)

[T(®§=1Aj(xj)), 0(2)]s =0 if (v;—2)?<0 Vji=1,..,1, (5.29)

which is a consequence of the causal factorization of T(p(z) @ @4, A;(x;)) (cf.
Sect. 3 of [15]).

Applying (5.28) to the T-products on the r.h.s. of (5.23) and using (5.24),
we conclude

SA™M(®@7_;Lj;Q)
op

It follows that the distributions f'(®%_,L; ® Q) (5.26) have support on the to-

tal diagonal D, yx41. Taking additionally Translation Invariance into account, we

supp CDpya - (5.30)
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conclude that these distributions are of the form

I;L(®;L:1Lj & Q)(xlv vy Ty Yy 215 eey Zk) = ZCa,b(@);‘L:le o2y Q)

D0z — Yy ooy Ty —Y) 0°0(21 — Yy ooy 26 — ¥) (5.31)

where the coefficients C 4 (®7_; L; ® Q) € C depend linearly on (®}_; L; ® Q) and
are symmetric in the first n factors Inserting (5.31) into (5.26) we obtain (5.18),
the corresponding maps P," having the asserted properties.

The important property (iii) is obtained by taking the classical limit & — 0
of the anomalous MWI (5.16): using (4.10) it results lims o A(L; Q)(g;y) = 0.

(b) The statement (5.19) is a modified version of Proposition 10(ii) in [6]. It
follows from the formulas ([6]-5.32-33) and ([6]-5.46-47) of that paper. Namely, by
using the causal Wick expansion of A™ (which follows from the Field Independence
of the T-product) and (5.24) it is derived in ([6]-5.32-33) that A" is of the form

An(®] 1L xj Z b ab xl —y,---wn—y)
lLa,b
T (o6000) 1Tt
i=1j;=1
_ZZ b (070) xl—y,...,xn—y)
La,bd<b
n i l
TI(@ = T (2 ew)) ) - TT 0" - (5.32)
i=1 ji=1 Jj=1

where 1 = (I1,...,0n;0), a = (a11,.., 81115 -+, A1y ooy Ay, 3 A1...a;) and C’ab, Czli’b’d
are numerical coefficients which depend also on (L1, ..., L, @). Since the T-product
satisfies the axiom Scaling Degree the range of b is bounded by ([6]-5.46). The
Lh.s. of (5.19) is given by

a4 l—d+Y Z (lass.] + ) EI:(W + %) , (5.33)

=1 7;=1 Jj=

which agrees with the Lh.s. of ([6]-5.47). Hence, it is bounded by the r.h.s. of
([6]-5.47). 0

Remark 5.3. Since the T-product T'(F®™) depends only on the (local) functional
F and not on how F is written as F' = Y, [ dz gi(z) Pp(z) (9x € D(M), Py € P),
we conclude from (5.23) that we may express the violating term A(L; Q)(g;y) as
follows: given A = [ dzh(z) Q(x)8Sy/dp(x) (h € D(M), Q € P), there exists a
linear and symmetric map A4 : TFoc — Floc Which is uniquely determined by

Aa(ek®) / dy h(y) A(L: Q)(g:9) (5.34)
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A glance at (5.23) shows that A4 depends linearly on A. The corresponding
smeared out version of the QAP is given in [6].

We are now going to reformulate our version of the QAP (Theorem 5.2) in the
form given in the literature. Motivated by (4.10), we interpret T'yot(So, S) = So +
F(e%) as the proper total action associated with the classical action Siot = So+ 5.
For P € C*(M,P) the ’insertion’ of P(z) into I'to(So, S) is denoted and defined
by*

o 0
P(x) - Tyt (S0, S) = 52 ‘pEOFtOt (So, S+ /dxp(x)P(:U)) = F(e% ® P(x)) ,
(5.35)
where p € D(M) is an ’external field”. Setting S’ = S + [drp(2)Q(z) and intro-
ducing the local field

3(So +5)
dp(z)
the anomalous MWI (5.16) can be rewritten as
0T ot (S0, 5”) 0T 40t (S0, S7)
Sp)  Op() oo
The h-expansion of the right-hand side starts with

A(z) - Tyor(So, 8) = Q(x)% o) = 5(55(;:;;)5/) 5(?0@?,) -

+A(L; Q) (g; ) € C*(M,P) (5.36)

= A(z) - Tioe(S0, ) - (5.37)

+ O(h),

(5.38)
where (4.10) is used. To discuss the mass dimension of the local insertion A (5.36),
we assume that there is an open region () # U C M such that the test function
g which switches the interaction is constant in U: gl = constant. For x € U the
insertion A(z) is a field polynomial with constant coefficients. By dim(A) we mean
the mass dimension of this polynomial. For a renormalizable interaction Theorem
5.2(b) implies
. . d+2 . .
dim(A) < dim(Q) + = dim(Q) — dim(p) +d . (5.39)
This version (5.37)-(5.39) of the QAP, which we have proved in the framework
of CPT, formally agrees with the literature, namely with the "QAP for nonlinear
variations of the fields’ (formulas (3.82)-(3.83) in [26]). This is the most important
and most difficult case of the QAP.

As explained in (2.15), the MWI reduces for @ = 1 to the off-shell field
equation. Setting @ = 1 in (5.37)-(5.39) and using I'(e3 ® 1) = 1, we obtain
0T tot (S0, S) /0p(x) = A(x) Tt (So, S) , where A(z) Tt (So, S) = 5(So+S5)/dp(x)
+0O(h) and dim(A) < d — dim(p), which formally agrees with formulas (3.80)—
(3.81) in [26]. The latter are called there the 'QAP for the equations of motion’,
as expected from (2.15).

4The dot does not mean the classical product here!
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Remark 5.4. An ’insertion’ (5.35) being a rather technical notion, the violating
term F(e% ® A(L;Q)(g;y)) in the anomalous MWI (5.16) can be much better
interpreted by writing (5.16) in terms of R-products:
5(So + 95) 050
R(eg 525t
2@ QW) e(y)

In this form, the violating term R(e% ® A(L; Q)(g;y)) is the interacting field to
the interaction S and belonging to the local field A(L; Q)(g;y)-

)+ RS AL Q)giy) = Re§ ©Qy) 5 - (5.40)

6. Algebraic renormalization

In this section we sketch, for the non-expert reader, the crucial role of the QAP in
algebraic renormalization. For shortness, we strongly simplify.

In algebraic renormalization one investigates, whether violations of Ward
identities can be removed by finite renormalizations of the T-products. The results
about the structure of the violating term given by the QAP are used as follows.

o Algebraic renormalization starts with the anomalous MWI (5.16), that is the
result that the MWI can be violated only by an insertion term, i.e. a term of

the form F(e% ® A) for some A € Fio, cf. (5.40).

e Algebraic renormalization proceeds by induction on the order of . To start
the induction one uses that A = A(L; Q)(g;y) is of order O(h).

e Because the finite renormalization terms, which one may add to a T-product,
must be local (in the strong sense of (5.18)) and compatible with the axiom
Scaling Degree, it is of crucial importance that A(L; Q)(g;y) satisfies locality
(5.18) and the bound (5.19) on its mass dimension.

For many Ward identities it is possible to derive a consistency equation for

A(L; Q)(g;y). Frequently this equation can be interpreted as the statement that
A(L;Q)(g;y) is a cocycle in the cohomology generated by the corresponding sym-
metry transformation & acting on some space K C Fo.. For example, J is a
nilpotent derivation (as the BRST-transformation®) or a family of derivations
(0g)a=1,...,n fulfilling a Lie algebra relation [0q, 0] = fabe Oc-

If the cocycle A(L; Q)(g;y) is a coboundary, it is usually possible to remove
this violating term by a finite renormalization. Hence, in this case, the solvability
of the considered Ward identity amounts to the question whether this cohomology
is trivial. For a renormalizable interaction the bound (5.19) on the mass dimension
makes it possible to reduce the space K to a finite dimensional space, this simplifies
the cohomological question enormously.

Many examples for this pattern are given in [26]. In the framework of CPT
the QAP and its application in algebraic renormalization have been used to prove
the Ward identities of the O(IV) scalar field model [6] (as a simple example