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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
2. The off-shell Master Ward Identity in classical field theory . . . . . . . . . . . . 179
3. Causal perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
4. Proper vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
5. The Quantum Action Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.1. Formulation of the Master Ward Identity in terms of
proper vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2. The anomalous Master Ward Identity - Quantum Action
Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6. Algebraic renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Plane Wave Geometry and Quantum Physics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Matthias Blau

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
2. A brief introduction to the geometry of plane wave metrics . . . . . . . . . . . 198

2.1. Plane waves in Rosen and Brinkmann coordinates: heuristics . . . 198
2.2. Curvature of plane waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
2.3. Geodesics, lightcone gauge and harmonic oscillators . . . . . . . . . . . . . 200
2.4. From Rosen to Brinkmann coordinates (and back) . . . . . . . . . . . . . . 202
2.5. The Heisenberg isometry algebra of a generic plane wave. . . . . . . . 203
2.6. Geodesics, isometries, and conserved charges . . . . . . . . . . . . . . . . . . . . 205
2.7. Synopsis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

3. The Lewis–Riesenfeld theory of the time-dependent
quantum oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.1. Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
3.2. Outline of the Lewis–Riesenfeld procedure . . . . . . . . . . . . . . . . . . . . . . 208
3.3. Deducing the procedure from the plane wave geometry . . . . . . . . . 210

4. A curious equivalence between two classes of Yang-Mills actions . . . . . . 211
4.1. Description of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
4.2. A classical mechanics toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.3. The explanation: from plane wave metrics to Yang-Mills actions 214

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215



ix

Canonical Quantum Gravity and Effective Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Martin Bojowald

1. Loop quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
2. Effective equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

2.1. Quantum back-reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
2.2. General procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

3. A solvable model for cosmology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
3.1. Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4. Effective quantum gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

From Discrete Space-Time to Minkowski Space:
Basic Mechanisms, Methods, and Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Felix Finster

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
2. Fermion systems in discrete space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
3. A variational principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
4. A mechanism of spontaneous symmetry breaking . . . . . . . . . . . . . . . . . . . . . 240
5. Emergence of a discrete causal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
6. A first connection to Minkowski space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7. A static and isotropic lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8. Analysis of regularization tails . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
9. A variational principle for the masses of the Dirac seas . . . . . . . . . . . . . . . 254
10. The continuum limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
11. Outlook and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Towards a q -Deformed Quantum Field Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Hartmut Wachter

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
2. q-Regularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
3. Basic ideas of the mathematical formalism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

3.1. What are quantum groups and quantum spaces? . . . . . . . . . . . . . . . . 265
3.2. How do we multiply on quantum spaces? . . . . . . . . . . . . . . . . . . . . . . . 267
3.3. What are q-deformed translations? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
3.4. How to differentiate and integrate on quantum spaces. . . . . . . . . . . 270
3.5. Fourier transformations on quantum spaces . . . . . . . . . . . . . . . . . . . . . 271

4. Applications to physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
4.1. Plane-wave solutions to the free-particle Schrödinger equation . . 275
4.2. The propagator of the free q -deformed particle . . . . . . . . . . . . . . . . . 277
4.3. Scattering of q -deformed particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281



x

Towards a q -Deformed Supersymmetric Field Theory. . . . . . . . . . . . . . . . . . . . . . . 238
Alexander Schmidt

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
2. Fundamental Algebraic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
3. q -Deformed Superalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
4. q -Deformed Superspaces and Operator Representations . . . . . . . . . . . . . . 293
Appendix A. q -Analogs of Pauli matrices and spin matrices. . . . . . . . . . . . . 298
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

L∞ -algebra Connections and Applications to
String- and Chern-Simons n -Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Hisham Sati, Urs Schreiber and Jim Stasheff

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
2. The setting and plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

2.1. L∞ -algebras and their String-like central extensions . . . . . . . . . . . . 306
2.1.1. L∞ -algebras. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
2.1.2. L∞ -algebras from cocycles: String-like extensions . . . . . . . 309
2.1.3. L∞ -algebra differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

2.2. L∞ -algebra Cartan-Ehresmann connections . . . . . . . . . . . . . . . . . . . 310
2.2.1. g -bundle descent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
2.2.2. Connections on n -bundles: the extension problem. . . . . . . 311

2.3. Higher string and Chern-Simons n -transport: the lifting problem312
3. Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
4. Differential graded-commutative algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

4.1. Differential forms on smooth spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
4.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

4.2. Homotopies and inner derivations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
4.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

4.3. Vertical flows and basic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
4.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

5. L∞ -algebras and their String-like extensions . . . . . . . . . . . . . . . . . . . . . . . . . 330
5.1. L∞ -algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

5.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
5.2. L∞ -algebra homotopy and concordance . . . . . . . . . . . . . . . . . . . . . . . . 338

5.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.3. L∞ -algebra cohomology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

5.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
5.4. L∞ -algebras from cocycles: String-like extensions . . . . . . . . . . . . . . 355

5.4.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
5.5. L∞ -algebra valued forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

5.5.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
5.6. L∞ -algebra characteristic forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

5.6.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366



xi

6. L∞ -algebra Cartan-Ehresmann connections . . . . . . . . . . . . . . . . . . . . . . . . . . 367
6.1. g -bundle descent data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368

6.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
6.2. Connections on g -bundles: the extension problem . . . . . . . . . . . . . . 373

6.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
6.3. Characteristic forms and characteristic classes . . . . . . . . . . . . . . . . . . 376

6.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
6.4. Universal and generalized g -connections . . . . . . . . . . . . . . . . . . . . . . . . 379

6.4.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
7. Higher string- and Chern-Simons n -bundles: the lifting problem . . . . . . 382

7.1. Weak cokernels of L∞ -morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
7.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

7.2. Lifts of g -descent objects through String-like extensions . . . . . . . . 388
7.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

7.3. Lifts of g -connections through String-like extensions. . . . . . . . . . . . 391
7.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

8. L∞ -algebra parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.1. L∞ -parallel transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

8.1.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
8.2. Transgression of L∞ -transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

8.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
8.3. Configuration spaces of L∞ -transport . . . . . . . . . . . . . . . . . . . . . . . . . . 404

8.3.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
9. Physical applications: string-, fivebrane- and p -brane structures . . . . . . 414
Appendix A. Explicit formulas for 2-morphisms of L∞ -algebras . . . . . . . . . 417
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425





Preface

This Edited Volume is based on the workshop on “Recent Developments in Quan-
tum Field Theory” held at the Max Planck Institute for Mathematics in the Sci-
ences in Leipzig (Germany) from July 20th to 22nd, 2007. This workshop was
the successor of two similar workshops held at the Heinrich-Fabri-Institute in
Blaubeuren in 2003 on “Mathematical and Physical Aspects of Quantum Field
Theories” and 2005 on “Mathematical and Physical Aspects of Quantum Grav-
ity1”.

The series of these workshops was intended to bring together mathemati-
cians and physicists to discuss basic questions within the non-empty intersection
of mathematics and physics. The general idea of this series of workshops is to
cover a broad range of different approaches (both mathematical and physical) to
specific subjects in mathematical physics. In particular, the series of workshops is
intended to also discuss the conceptual ideas on which the different approaches of
the considered issues are based.

The workshop this volume is based on was devoted to competitive methods
in quantum field theory. Recent years have seen a certain crisis in theoretical par-
ticle physics. On the one hand there is this phenomenologically overwhelmingly
successful Standard Model which is in excellent agreement with almost all of the
experimental data known to date. On the other hand this model also suffers from
conceptual weakness and mathematical rigorousness. In fact, almost all the ex-
perimentally confirmed statements derived from the Standard Model are based
on perturbation theory. The latter, however, uses renormalization theory which
actually still is not a mathematically rigorous theory. Despite recent progress, it is
clear that a deeper understanding of this issue has to be achieved in order to gain a
more profound understanding in elementary particle dynamics. Moreover, it seems
almost embarrassing that we have no idea what more than 90% of the energy in
the universe may look like. Even more demanding are the conceptual differences
between the basic ideas of a given quantum field theory and general relativity.
There is not yet a theory available which allows to combine the basic principles of
these two cornerstones of theoretical physics and which also reproduces (at least)
some of the experimentally verified predictions made by the Standard Model. A
quantum theory of gravity should cover or guide an extension or re-modeling of

1See the volume “Quantum Gravity – Mathematical Models and Experimental Bounds”,
B. Fauser, J. Tolksdorf, and E. Zeidler (eds.), Birkhäuser Verlag, 2007.
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the particle physics side. These problems are among the driving forces in recent
developments in quantum field theory.

One competitive candidate for a unifying theory of quantum fields and gravity
is string theory. The present volume features a particular scope on these activities.
It turned out that the flow of communication between string theory and other
approaches is not entirely free, despite of a great effort of the organizers to allow
this to happen. The workshop showed, in very lively discussions, that there is a
need for exchanging ideas and for clarifying concepts between other approaches
and string theory. This might be a well suited topic for a following workshop. The
first chapter, by Bert Schroer, dwells partly on some of the difficulties to achieve
a better understanding between the ideas of string theory and algebraic quantum
field theory. In addition to Bert Schroer’s view, the editors are glad to point out,
that in several chapters of this book, and especially in the long last chapter, string
motivated ideas do entangle and interact with quantum field theory and provide
thereby competitive approaches.

The present volume covers several approaches to generalizations of quantum
field theories. A common theme of quite a number of them is the belief that the
structure of space-time will change at very small distances. The basic idea is that
probing space-time with quantum objects will yield a fuzzy structure of space-
time and the concept of a point in a smooth manifold is difficult to maintain.
Whatever the fuzzy structure of space-time may look like on a (very) small scale,
any such description of fuzzy space-time would have to yield a smooth structure
on a sufficiently large scale. How to resolve the discrepancy? One may start from
the outset with a discrete set and expect space-time and the causal structure to
be emergent phenomena. One might use q -deformation to introduce a, however
rigid, discrete structure, or one might study locally deformed space-times using
deformation quantization, a presently very much pursued approach. A very rad-
ical approach is proposed by the topos approach to physical theories. It allows
to reestablish a (neo-)realist interpretation of quantum theories and hence goes
conceptually far beyond the usual generalizations of quantum (field) theories.

Other activities in quantum field theory are tied to issues that are more math-
ematical in nature. While path integrals are suitable tools in particle, solid state,
and statistical physics, they are notoriously ill defined. This volume contains a
thorough mathematical discussion on path integrals. This discussion demonstrates
under what circumstances these highly oscillatory integrals can yield rigorous re-
sults. These methods are also used in the AdS/CFT infrared problem and thus
have implications for quantum holography, a major topic for discussions during
the workshop.

A number of contributions to this volume discuss different aspects of per-
turbative quantum field theory. Approaches include causal perturbation theory,
allowing to formulate quantum field theories more rigorously on curved space-time
backgrounds and Hopf algebraic methods, which help to clarify the complicated
process of renormalization.
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The last and by far most extensive contribution to this volume presents a
detailed mathematical discussion of several of the above topics. This article is
motivated by string theory covering categorical issues.

The idea of the third workshop was to provide a forum to discuss different
approaches to quantum field theories. The present volume provides a good cross-
section of the discussions. The refereed articles are written with the intention to
bring together experts working in different fields in mathematics and physics who
are interested in the subject of quantum field theory. The volume provides the
reader with an overview about a variety of recent approaches to quantum field
theory. The articles are purposely written in a less technical style than usual to
encourage an open discussion across the different approaches to the subject of the
workshop.

Since this volume covers rather different perspectives, the editors thought it
might be helpful to start the volume by providing a brief summary of each of the
various articles. Such a summary will necessarily reflect the editors’ understanding
of the subject matter.

Holography, especially in the form of AdS/CFT correspondence, plays a vital
role in recent developments in quantum field theory. The connection between a
bulk and a boundary quantum field theory has fascinating consequences and may
provide us with a pathway to a realistic interacting quantum field theory. A further
important point is that it can be used to derive area laws much alike Bekenstein’s
area law for black holes.

In his discussion of holography Bert Schroer also highlights several critical
aspects of quantum field theory. Furthermore, his contribution to this volume
provides quite a bit of historical details and insights into the original motivation
of the introduction of such concepts as light-cone quantization, the ancestor of
holography.

Schroer’s reflections on some socially driven mechanisms in the development
of physics are surely subjective and controversial. His pointed contributions during
the workshop made it, however, clear that his criticism should not be misunder-
stood as a no-go paradigm against other approaches, as also the variety of chapters
in this book suggest.

A very radical way to avoid concepts like ‘space-time points’, which is used
in general relativity but is in conflict with the uncertainty principle, is give up
the assumption of a continuum. Also Bernhard Riemann, when he introduced his
differential geometric concepts, was careful enough to note that the assumption of
a continuum at very small scales is an untested idealization. Topos theory allows
the usage of ‘generalized points’ in algebraic geometry. Lawvere studied elemen-
tary topoi to show that the foundation of mathematics is not necessarily tied to
set theory. Moreover, Lawvere showed that the logic attached to topoi is strong
enough to provide a foundation of the whole building of mathematics. The corre-
sponding chapter by Andreas Döring summarizes and explains very clearly how
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topos theory might be useful to describe physical theories. He shows that topos
theory produces an internal logic and is capable to assign to all propositions of
the theory truth values. In that sense the topos approach overcomes foundational
problems of quantum theory, sub-summarized by the Kochen-Specker theorem.
Eventually, topos theory may also open a doorway to unify classical and quantum
physics. This in turn may yield deeper insights into a quantization of gravity.

Feynman path integrals are a widely used method in quantum mechanics and
quantum field theory. These integrals over a path space are relatives of Wiener in-
tegrals and provide a stochastic interpretation as also the “sum over histories”
interpretation. However, path integrals in quantum field theory are known to be
notoriously mathematically ill defined. In their contribution, Sergio Albeverio and
Sonia Mazzucchi present an introduction to a mathematical discussion of Feyn-
man path integrals as oscillatory integrals. Due to the oscillating integrand these
integrals may converge even for functions which are not Lebesgue integrable.

Using a stochastic interpretation, constructive quantum field theory deals
with path integrals of non-Gaussian, type. Hanno Gottschalk and Horst Thaler
apply this stochastic interpretation of path integrals to investigate the AdS/CFT
correspondence that is motivated by string theory. Especially the infra-red prob-
lem and the triviality results of φ4 theory are discussed in their contribution.
A comprehensive discussion of the encountered problems is presented and four
possible ways to escape triviality are discussed in the conclusions of their chapter.

Originally, mirror symmetry emerged from string theory as a duality of cer-
tain 2-dimensional field theories. Mirror symmetry has very remarkable mathe-
matical properties. In his contribution, Karl-Georg Schlesinger very clearly ex-
plains how mirror symmetry can be extended to the noncommutative torus. Such
a generalization of mirror symmetry to a noncommutative setting is motivated, for
example, by string theoretical considerations. The present work leads to decisive
statements and a conjecture about the algebraic structure of cohomological field
theories and deformations of the Fukaya category attached to commutative elliptic
functions. Higher n -categories and fc-multi-categories appear naturally in such a
development.

Using quantum field theoretical methods, Edward Witten made a number
of remarkable mathematical statements. Among them he presented an expression
for the volume of the moduli space of flat SU(2) bundles on a compact Riemann
surface of general genus. From this result follow the cohomology pairings of in-
tersections. Many heuristically obtained results, that is using formal path-integral
methods, where rigorously proved later on by mathematicians. In his contribu-
tion to the volume, Partha Guha presents a route to obtain similar results for flat
SU(3) bundles using the Verlinde formula. The results employ Euler-Zagier sums
and multiple zeta values in an intriguing and surprising way.
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θ−deformed space-times are another approach to quantize gravity. Such a
description of space-time, however, suffers from several shortcomings. For exam-
ple, it is not Lorentz invariant. Moreover, such a deformation produces ‘quantum
effects’ on any scale, invalidating the theory on the classical level.

An interesting description of θ−deformed space-times is provided by defor-
mation quantization. Such a description allows to introduce locally noncommu-
tative spaces which may fit more with the physical intuition. Stefan Waldmann
expertly reviews in his contribution the deformation quantization description of
θ−deformed space-times. He also presents some motivation for the concepts used
in this approach and discusses the range of validity of these concepts.

Renormalization is known to be the salt which makes quantum field theory
digestible, i.e. to produce finite results. The scheme of renormalization was estab-
lished by physicists in the years 1950-80. The basic ideas of renormalization have
been made more mathematically concise by the work of Kreimer, Connes-Kreimer
and others using Hopf algebras. However, this approach was established only on
toy model QFTs. Walter D. van Suijlekom pushes the Hopf algebraic method into
the realm of physically interesting models, like non-Abelian gauge theories. The
corresponding chapter of this volume contains a clear and relatively nontechnical
description how the Hopf algebra method can be applied to Ward identities and
Slavnov-Taylor-identities.

Perturbative quantum field theory is well-known to be quite successful when
applied to the Standard Model. However, there is some belief that perturbation
theory is not fundamental. Recent developments exhibited a Hopf algebraic struc-
ture which may help to understand renormalization of Abelian and non-Abelian
Yang-Mills quantum field theories. Gravity has a rather different gauge theoretical
structure and is not amenable to the usual techniques used in Yang-Mills gauge
theories. Dirk Kreimer explains similarities between perturbatively treated quan-
tum Yang-Mills theories and Einstein’s theory of gravity. These similarities might
eventually allow to quantize gravity using standard perturbative methods.

Quantum field theory, celebrated presently as the fundamental approach to
formulate and describe quantum systems, has weak points when applied to sys-
tems having a degenerate lowest energy sector. Such systems do occur in solid-
state physics, for examples when studying the colors of gemstones, and cannot be
treated by the usually applied standard methods of quantum field theory. Christian
Brouder develops a method to deal with such degenerated quantum field theories.
Firstly the degenerated state is described via its cumulants, then these cumulant
correlations are turned into interaction terms. This extends to the edge the combi-
natorial complexity but reestablishes valuable tools from standard nondegenerate
quantum field theory, such as the Gell-Mann Low formula. The soundness of the
method exhibits itself in a short and clear proof of Hall’s generalized Dyson equa-
tion.
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The article by Ferdinand Brennecke and Michael Dütsch presents a summary
of the present state of the art of renormalization techniques in causal perturbation
theory. The main tools are the master action Ward identity and the quantum
action principle, which finally allow to use local interactions in the renormalization
process. A nice recipe style guide to the method is given in the conclusions.

In string theory certain dualities are known to play a crucial role in connecting
strongly coupled theories with weakly coupled theories. While the strong coupled
case is difficult to treat, the weakly coupled dual theory may admit a perturbative
regime. One such setting is found in matrix string theory in a non-Abelian Yang-
Mills setting. In his contribution to the volume, Matthias Blau sets up a quantum
mechanical toy model to discuss the geometry behind such dualities. He shows
that plane wave metrics play a certain role in the solution of the time dependent
harmonic oscillator. His discussion may serve as a blue print for the much more
complex noncommutative non-Abelian Yang-Mills case.

Loop quantum gravity is one of the approaches to gain insight into a theory
of quantum gravity. Technical problems like the resolution of the Hamiltonian
constraint make it difficult to evaluate loop quantum gravity in realistic situations.
Martin Bojowald reviews in his article an approach that uses effective actions in
canonical gravity to study quantum cosmology. He explains how solutions can be
obtained for an anharmonic oscillator model using integrability. The analogous
treatment of canonical quantum gravity yields a bouncing cosmological solution
which allows to avoid the big bang singularity.

Many proposals have been made to establish a mathematical modeling of
non-smooth structures on the Planck scale. One such model is developed by Felix
Finster starting from a discrete set of points. All additional structures like causal-
ity, Lorentz symmetry and smoothness at large scales have to be established as
emergent phenomena. Finster explains in his article how such structures may occur
(in principle) in a continuum limit of a set described by a specific discrete varia-
tional principle. Several small systems of this type are analyzed and the structure
of the emergent phenomena is discussed.

A recurrent theme in physics is the question: “How can space-time be math-
ematically modeled at very short distances?” Lattices emerging from a “ q -defor-
mation” might provide one such candidate. Hartmut Wachter shows in his con-
tribution how a q -calculus approach to a non-relativistic particle can be worked
out.

The method of q -deformation was originally motivated as a regularization
scheme. Similarly, the idea of supersymmetry originated from the hope that super-
symmetric theories may have a better ultraviolet behavior. In his contribution,
Alexander Schmidt presents a discussion on how q -deformation can be extended
to a super-symmetric setting.
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The book closes with a rather long chapter by Hisham Sati, Urs Schreiber
and Jim Stasheff. String theory replaces point-like particles by extended objects,
strings and in general branes. Such objects can still be described via differential
geometry on a background manifold, however, higher degree fields, like 3-form
fields, emerge naturally. Higher categorical tools prove to be advantageous to
investigate these higher differential geometric structures. Major ingredients are
parallel n -transport, higher curvature forms etc. and therefore the algebra of in-
variant polynomials, which embeds into the Weil algebra, which in turn projects
to the Chevalley-Eilenberg algebra. These algebras are best studied as differen-
tially graded commutative algebras (DGCAs). On the Lie algebra level this struc-
ture is accompanied by L∞ -algebras which carry for example a (higher) Cartan-
Ehresmann connection. Natural questions from differential geometry, such as clas-
sifying spaces and obstructions to lifts etc. can now be addressed. The higher
category point of view generalizes, unifies and thereby explains many of the stan-
dard constructions.

The chapter is largely self contained and readable for non-experts despite
being densely written. It develops the relevant structures, gives explicit proofs,
and closes with an outlook how to apply these intriguing ideas to physics.
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administrative work so excellently. The editors would like to thank the German
Science Foundation (DFG) and the Max Planck Institute for Mathematics in the
Sciences in Leipzig (Germany) for their generous financial support. Furthermore,
they would like to thank Marc Herbstritt and Thomas Hempfling from Birkhäuser
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1. Historical background and present motivations for holography

No other theory in the history of physics has been able to cover such a wide
range of phenomena with impressive precision as QFT. However its amazing pre-
dictive power stands in a worrisome contrast to its weak ontological status. In
fact QFT is the only theory of immense epistemic strength which, even after more
than 80 years, remained on shaky mathematical and conceptual grounds. Unlike
any other area of physics, including QM, there are simply no interesting mathe-
matically controllable interacting models, which would show that the underlying
principles remain free of internal contradictions in the presence of interactions. The
faith in e.g. the Standard Model is based primarily on its perturbative descriptive
power; outside the perturbative domain there are more doubts than supporting
arguments.
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The suspicion that this state of affairs may be related to the conceptual and
mathematical weakness of the method of Lagrangian quantization rather then a
shortcoming indicating an inconsistency of the underlying principles in the pres-
ence of interactions can be traced back to its discoverer Pascual Jordan. It certainly
was behind all later attempts of e.g. Arthur Wightman and Rudolf Haag to find
a more autonomous setting away from the quantization parallelism with classical
theories which culminated in Wightman’s axiomatic setting in terms of vacuum
correlation functions and the Haag-Kastler theory of nets of operator algebras.

The distance of such conceptual improvements to the applied world of calcula-
tions has unfortunately persisted. Nowhere is the contrast between computational
triumph and conceptual misery more visible than in renormalized perturbation
theory, which has remained our only means to explore the Standard Model. Most
particle physicists have a working knowledge of perturbation theory and at least
some of them took notice of the fact that, although the renormalized perturbative
series can be shown to diverge and that in certain cases these divergent series are
Borel resumable. Here I will add some more comments without going into details.

The Borel re-sumability property unfortunately does not lead to an exis-
tence proof; the correct mathematical statement in this situation is that if the
existence can be established1 by nonperturbative method then the Borel-resumed
series would indeed acquire an asymptotic convergence status with respect to the
solution, and one would for the first time be allowed to celebrate the numerical
success as having a solid ontological basis 2. But the whole issue of model exis-
tence attained the status of an unpleasant fact, something, which is often kept
away from newcomers, so that as a result there is a certain danger to confuse the
existence of a model with the ability to write down a Lagrangian or a functional
integral and apply some computational recipe.

Fortunately important but unfashionable problems in particle physics never
disappear completely. Even if they have been left on the wayside as “un-stringy”,
“unsupersymmetrizable” or too far removed from the “Holy Grail of a TOE”
and therefore not really career-improving, there will be always be individuals who
return to them with new ideas.

Indeed there has been some recent progress about the aforementioned exis-
tence problem from a quite unexpected direction. Within the setting of d=1+1
factorizing models the use of modular operator theory has led to a control over
phase space degrees of freedom which in turn paved the way to an existence proof.
Those models are distinguished by their simple generators for the wedge-localized
algebra [4]; in fact these generators turned out to possess Fourier-transforms with
mass-shell creation/annihilation operators, which are only slightly more compli-
cated than free fields. An important additional idea on the way to an existence

1The existence for models with a finite wave-function renormalization constant has been estab-
lished in the early 60s and this situation has not changed up to recently. The old results only
include superrenormalizable models whereas the new criterion is not related to short-distance
restrictions but rather requires a certain phase space behavior (modular nuclearity).
2This is actually the present situation for the class of d=1+1 factorizing models [5].
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proof is the issue of the cardinality of degrees of freedom. In the form of the phase
space in QFT as opposed to QM this issue goes back to the 60s [1] and underwent
several refinements [2] (a sketch of the history can be found in [3]).

The remaining problem was to show that the simplicity of the wedge gen-
erators led to a “tame” phase space behavior, which guarantees the nontriviality
as well as the additional expected properties of the double cone localized algebras
obtained as intersections of wedge-localized algebras [5]. Although these models
have no particle creation through on-shell scattering, they exhibit the full infi-
nite vacuum polarization clouds upon sharpening the localization from wedges to
compact spacetime regions as e.g. double cones [6]. Their simplicity is only mani-
fest in the existence of simple wedge generators; for compact localization regions
their complicated infinite vacuum polarization clouds are not simpler than in other
QFT.

Similar simple-minded Ansätze for wedge algebras in higher dimensions can-
not work since interactions which lead to nontrivial elastic scattering without also
causing particle creation cannot exist; such a No-Go theorem for 4-dimensional
QFT was established already in [7]. Nevertheless it is quite interesting to note
that even if with such a simple-minded Ansatz for wedge generators in higher di-
mensions one does not get to compactly localized local observables, one can in some
cases go to certain subwedge intersections [8, 9] before the increase in localization
leads to trivial algebras.

Whereas in the Lagrangian approach one starts with local fields and their
correlations and moves afterwards to less local objects such as global charges,
incoming fields3 etc., the modular localization approach goes the opposite way
i.e. one starts from the wedge region (the best compromise between particles and
fields) which is most close to the particle mass-shell the S-matrix and then works
one’s way down. The pointlike local fields only appear at the very end and play the
role of coordinatizing generators of the double cone algebras for arbitrary small
sizes.

Nonlocal models are automatically “noncommutative” in the sense that the
maximal commutativity of massive theories allowed by the principles of QFT,
namely spacelike commutativity, is weakened by allowing various degrees of viola-
tions of spacelike commutativity. In this context the noncommutativity associated
with the deformation of the product to a star-product using the Weyl-Moyal for-
malism is only a very special (but very popular) case. The motivation for studying
noncommutative QFT for its own sake comes from string theory, and one should
not expect this motivation to be better than for string theory itself.

My motivation for having being interested in noncommutative theory dur-
ing the last decade comes from the observation that noncommutative fields can

3Incoming/outgoing free fields are only local with respect to themselves. The physically relevant
notion of locality is relative locality to the interacting fields. If incoming fields are relatively
local/almost local, the theory has no interactions.
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have simpler properties than commutative ones. More concretely: complicated two-
dimensional local theories may lead to wedge-localized algebras which are gen-
erated by noncommutative fields where the latter only fulfil the much weaker
wedge-locality (see above). Whereas in d=1+1 such constructions [4] may lead
via algebraic intersections to nontrivial, nonperturbative local fields, it is known
that in higher dimensions this simple kind of wedge generating field without vac-
uum polarization is not available. But interestingly enough one can improve the
wedge localization somewhat [10] before the further sharpening of localization via
algebraic intersections ends in trivial algebras.

These recent developments combine the useful part of the history of S-matrix
theory and formfactors with very new conceptual inroads into QFT (modular
localization, phase space properties of LQP). The idea to divide the difficult full
problem into a collection of simpler smaller ones is also at the root of the various
forms of the holography of the two subsequent sections.

The predecessor of lightfront holography was the so-called “lightcone quanti-
zation” which started in the early 70s; it was designed to focus on short-distances
and forget temporarily about the rest. The idea to work with fields which are
associated to the lightfront x− = 0 (not the light cone which is x2 = 0) as a
submanifold in Minkowski spacetime looked very promising but unfortunately the
connection with the original problem of analyzing the local theory in the bulk
was never addressed and as the misleading name “lightcone quantization” reveals,
the approach was considered as a different quantization rather then a different
method for looking at the same local QFT in Minkowski spacetime. It is not really
necessary to continue a separate criticism of “lightcone quantization” because its
shortcomings will be become obvious after the presentation of lightfront hologra-
phy (more generally holography onto null-surfaces).

Whereas the more elaborate and potentially more important lightfront holog-
raphy has not led to heated discussions, the controversial potential of the simpler
AdS/CFT holography had been enormous and to the degree that it contains in-
teresting messages which increase our scientific understanding it will be presented
in these notes.

Since all subjects have been treated in the existing literature, our presentation
should be viewed as a guide through the literature with occasionally additional
and (hopefully) helpful remarks.

2. Lightfront holography, holography on null-surfaces and the
origin of the area law

Free fields offer a nice introduction into the bulk-holography relation which, despite
its simplicity, remains conceptually non-trivial.

We seek generating fields ALF for the lightfront algebra A(LF ) by following
the formal prescription x− = 0 of the old “lightfront approach” [11]. Using the
abbreviation x± = x0 ± x3, p± = p0 + p3 � e∓θ, with θ the momentum space
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rapidity :

ALF (x+, x⊥) := A(x)|x−=0 �
∫ (

ei(p−(θ)x++ip⊥x⊥a∗(θ, p⊥)dθdp⊥ + h.c.
)

(1)〈
∂x+ALF (x+, x⊥)∂x′

+
ALF (x′

+, x
′
⊥)
〉
� 1(

x+ − x′
+ + iε

)2 · δ(x⊥ − x′
⊥)[

∂x+ALF (x+, x⊥), ∂x′
+
ALF (x′

+, x
′
⊥)
]
� δ′(x+ − x′

+)δ(x⊥ − x′
⊥).

The justification for this formal manipulation4 follows from the fact that the equiv-
alence class of a test function [f ], which has the same mass shell restriction f̃ |Hm

to the mass hyperboloid of mass m, is mapped to a unique test function fLF

which “lives” on the lightfront [12, 13]. It only takes the margin of a newspaper
to verify the identity A(f) = A([f ]) = ALF (fLF ). This identity does not mean
that the ALF generator can be used to describe the local substructure in the bulk.
The inversion involves an equivalence class and does not distinguish an individual
test-function in the bulk; in fact a finitely localized test function f(x+, x⊥) on LF
corresponds to a de-localized subspace in the bulk. Using an intuitive metaphoric
language one may say that a strict localization on LF corresponds to a fuzzy lo-
calization in the bulk and vice versa. Hence the pointwise use of the LF generators
enforces the LF localization and the only wedge-localized operators which can be
directly obtained as smeared ALF fields have a noncompact extension within a
wedge whose causal horizon is on LF. Nevertheless there is equality between the
two operator algebras associated to the bulk W and its (upper) horizon ∂W

A(W ) = A(H(W )) ⊂ A(LF ) = B(H). (2)

These operator algebras are the von Neumann closures of the Weyl algebras gen-
erated by the smeared fields A and ALF and it is only in the sense of this closure
(or by forming the double commutant) that the equality holds. Quantum field
theorists are used to deal with single operators. Therefore the knowledge about
the equality of algebras without being able to say which operators are localized
in subregion is somewhat unaccustomed. As will be explained later on, the finer
localization properties in the algebraic setting can be recovered by taking suitable
intersections of wedge algebras i.e. the structure of the family of all wedge algebras
determines whether the local algebras are nontrivial and in case they are permits to
compute the local net which contains all informations about the particular model.

This idea of taking the holographic projection of individual bulk fields can
be generalized to composites of free fields (as e.g. the stress-energy tensor). In
order to avoid lengthy discussions about how to interpret logarithmic chiral two-
point functions in terms of restricted test functions5 we restrict our attention to

4We took the derivatives for technical reasons (in order to write the formulas without test
functions).
5This is a well-understood problem of chiral fields of zero scale dimension which is not directly
related to holography.
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Wick-composites of ∂x+ALF (x+, x⊥)

[BLF (x+, x⊥) , CLF (x′
+, x

′
⊥)
]

=
m∑

l=0

δl(x⊥ − x′
⊥)

n(l)∑
k(l)=0

δk(l)(x+ − x′
+)D(k(l))

LF (x+, x⊥), (3)

where the dimensions of the composites D
(k(l))
LF together with the degrees of the

derivatives of the delta functions obey the standard rule of scale dimensional con-
servation. In the commutator the transverse and the longitudinal part both appear
with delta functions and their derivatives yet there is a very important structural
difference which shows up in the correlation functions. To understand this point
we look at the second line in (1). The longitudinal (=lightlike) delta-functions
carries the chiral vacuum polarization the transverse part consists only of prod-
ucts of delta functions as if it would come from a product of correlation functions
of nonrelativistic Schrödinger creation/annihilation operators ψ∗(x⊥), ψ(x⊥). In
other words the LF-fields which feature in this extended chiral theory are chimera
between QFT and QM ; they have one leg in QFT and n-2 legs in QM with the
“chimeric vacuum” being partially a (transverse) factorizing quantum mechani-
cal state of “nothingness” (the Buddhist nirvana) and partially the longitudinally
particle-antiparticle polarized LQP vacuum state of “virtually everything” (the
Abrahamic heaven).

Upon lightlike localization of LF to (in the present case) ∂W (or to a longi-
tudinal interval) the vacuum on A(∂W ) becomes a radiating KMS thermal state
with nonvanishing localization-entropy [13, 14]. In case of interacting fields there
is no change with respect to the absence of transverse vacuum polarization, but
unlike the free case the global algebra A(LF ) or the semi-global algebra A(∂W )
is generally bigger than the algebra one obtains from the globalization using com-
pactly localized subalgebras, i.e. ∪O⊂LFALF (O) ⊂ A(LF ), O ⊂ LF . We will
return to this point at a more opportune moment.

The aforementioned “chimeric” behavior of the vacuum is related in a pro-
found way to the conceptual distinctions between QM and QFT [16]. Whereas
transversely the vacuum is tensor-factorizing with respect to the Born localization
and therefore leads to the standard quantum mechanical concepts of entanglement
and the related information theoretical (cold) entropy, the entanglement from re-
stricting the vacuum to an algebra associated with an interval in lightray direction
is a thermal KMS state with a genuine thermodynamic entropy. Instead of the
standard quantum mechanical dichotomy between pure and entangled restricted
states there are simply no pure states at all. All states on sharply localized operator
algebras are highly mixed and the restriction of global particle states (including
the vacuum) to the W-horizon A(∂W ) results in KMS thermal states. This is the
result of the different nature of localized algebras in QFT from localized algebras
in QM [16].
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Therefore if one wants to use the terminology “entanglement” in QFT one
should be aware that one is dealing with a totally intrinsic very strong form of
entanglement: all physically distinguished global pure states (in particular finite
energy states in particular the vacuum) upon restriction to a localized algebra
become intrinsically entangled and unlike in QM there is no local operation which
disentangles.

Whereas the cold (information theoretic) entanglement is often linked to the
uncertainty relation of QM, the raison d’etre behind the “hot” entanglement is
the phenomenon of vacuum polarization resulting from localization in quantum
theories with a maximal velocity. The transverse tensor factorization restricts the
Reeh-Schlieder theorem (also known as the “state-operator relation”). For a lon-
gitudinal strip (st) on LF of a finite transverse extension the LF algebra tensor-
factorizes together with the Hilbert space H = Hst ⊗Hst⊥ and the Hst projected
form of the Reeh-Schlieder theorem for a subalgebra localized within the strip
continues to be valid.

This concept of transverse extended chiral fields can also be axiomatically
formulated for interacting fields independently of whether those objects result
from a bulk theory via holographic projection or whether one wants to study QFT
on (non-hyperbolic) null-surfaces. These “lightfront fields” share some important
properties with chiral fields. In both cases subalgebras localized on subregions
lead to a geometric modular theory, whereas in the bulk this property is restricted
to wedge algebras. Furthermore in both cases the symmetry groups are infinite
dimensional; in chiral theories the largest possible group is (after compactification)
Diff(Ṙ), whereas the transverse extended version admits besides these pure lighlike
symmetries also x⊥-x+ mixing (x⊥-dependent) symmetry transformations which
leave the commutation structure invariant.

There is one note of caution, unlike those conformal QFTs which arise as
chiral projections from 2-dimensional conformal QFT, the extended chiral mod-
els of QFT on the lightfront which result from holography do not come with a
stress-energy tensor and hence the diffeomorphism invariance beyond the Möbius
invariance (which one gets from modular invariance, no energy momentum tensor
needed) is not automatic. This leads to the interesting question if there are con-
cepts which permit to incorporate also the diffeomorphisms beyond the Möbius
transformations into a modular setting, a problem which will not be pursuit here.

We have formulated the algebraic structure of holographic projected fields
for bosonic fields, but it should be obvious to the reader that a generalization to
Fermi fields is straightforward. Lightfront holography is consistent with the fact
that except for d=1+1 there are no operators which “live” on a lightray since
the presence of the quantum mechanical transverse delta function prevents such a
possibility i.e. only after transverse averaging with test functions does one get to
(unbounded) operators.

It is an interesting question whether a direct “holographic projection” of in-
teracting pointlike bulk fields into lightfront fields analog to (1) can be formulated,
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thus avoiding the algebraic steps starting with wedge algebra. The important for-
mula which led to the lightfront generators is the mass shell representation of the
free field; if we would have performed the x− = 0 limit in the two point function
the result would diverge. This suggests that we should start from the so-called
Glaser-Lehmann-Zimmermann (GLZ) representation [17] which is an on-shell rep-
resentation in terms of an infinite series of integrals involving the incoming particle
creation/annihilation operators

A(x) =
∑ 1

n!

∫
dx1...

∫
dxn a(x;x1, ...xn) : Ain(x1)....A(xn) : (4)

A(x) =
∑ 1

n!

∫
Hm

dp1...

∫
Hm

dpn eix(
∑

pi)ã(p1, ...pn) : Ã(p1)....Ã(pn) :

A(x)LF = A(x)x−=0

in which the coefficient functions a(x;x1, ...xn) are retarded functions. The second
line shows that only the mass-shell restriction of these functions matter; the mo-
mentum space integration goes over the entire mass-shell and the two components
of the mass hyperboloid Hm are associated with the annihilation/creation part of
the Fourier transform of the incoming field. These mass-shell restrictions of the
retarded coefficient functions are related to multi-particle formfactors of the field
A. Clearly we can take x− = 0 in this on-shell representation without apparently
creating any problems in addition to the possibly bad convergence properties of
such series (with or without the lightfront restriction) which they had from the
start. The use of the on-shell representation (4) is essential, doing this directly
in the Wightman functions would lead to meaningless divergences, as we already
noticed in the free field case.

Such GLZ formulas amount to a representation of a local field in terms of
other local fields in which the relation between the two sets of fields is very nonlocal.
Hence this procedure is less intuitive than the algebraic method based on relative
commutants and intersections of algebras. The use of a GLZ series also goes in
some sense against the spirit of holography which is to simplify certain aspects6 in
order to facilitate the solution of certain properties of the theory (i.e. to preserve
the original aim of the ill-defined lightcone quantization), whereas to arrive at GLZ
representations one must already have solved the on-shell aspects of the model (i.e.
know all its formfactors) before applying holography.

Nevertheless, in those cases where one has explicit knowledge of formfactors,
as in the case of 2-dim. factorizing models mentioned in the previous section,
this knowledge can be used to calculate the scaling dimensions of their associated
holographic fields ALF . These fields lead to more general plektonic (braid group)
commutation relations which replace the bosonic relations of transverse extended
chiral observables (3). We refer to [15] in which the holographic scaling dimensions
for several fields in factorizing models will be calculated, including the Ising model
for which an exact determination of the scaling dimension of the order field is

6Those aspects for which holography does not simplify include particle and scattering aspects.
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possible. Although the holographic dimensions agree with those from the short
distance analysis (which have been previously calculated in [18]), the conceptual
status of holography is quite different from that of critical universality classes. The
former is an exact relation between a 2-dimensional factorizing model (change of
the spacetime ordering of a given bulk theory) whereas the latter is a passing
to a different QFT in the same universality class. The mentioned exact result in
the case of the Ising model strengthens the hope that GLZ representations and
the closely related expansions of local fields in terms of wedge algebra generating
on-shell operators [15] have a better convergence status than perturbative series.

By far the conceptually and mathematically cleanest way to pass from the
bulk to the lightfront is in terms of nets of operator algebras via modular theory.
This method requires to start from algebras in “standard position” i.e. a pair (A,Ω)
such that the operator algebra A acts cyclically on the state vector Ω i.e. AΩ = H
and has no annihilators i.e. AΩ = 0 � A = 0. According to the Reeh-Schlieder
theorem any localized algebra A(O) forms a standard pair (A(O),Ω) with respect
to the vacuum Ω and the best starting point for the lightfront holography is a
wedge algebra since the (upper) causal horizon ∂W of the wedge W is already half
the lightfront. The crux of the matter is the construction of the local substructure
on ∂W. The local resolution in longitudinal (lightray) direction is done as follows.

Let W be the x0 − x3 wedge in Minkowski spacetime which is left invariant
by the x0−x3 Lorentz-boosts. Consider a family of wedges Wa which are obtained
by sliding the W along the x+ = x0 + x3 lightray by a lightlike translation a > 0
into itself. The set of spacetime points on LF consisting of those points on ∂Wa

which are spacelike to the interior of Wb for b > a is denoted by ∂Wa,b; it consists
of points x+ ∈ (a, b) with an unlimited transverse part x⊥ ∈ R2. These regions
are two-sided transverse slabs on LF .

To get to intersections of finite size one may “tilt” these slabs by the ac-
tion of certain subgroups in G which change the transverse directions. Using the
2-parametric subgroup G2 of G which is the restriction to LF of the two “transla-
tions” in the Wigner little group (i.e. the subgroup fixing the lightray in LF ), it
is easy to see that this is achieved by forming intersections with G2- transformed
slabs ∂Wa,b

∂Wa,b ∩ g(∂Wa,b), g ∈ G2. (5)

By continuing with forming intersections and unions, one can get to finite convex
regions O of a quite general shape.

The local net on the lightfront is the collection of all local algebras A(O),
O ⊂ LF and as usual their weak closure is the global algebra ALF . For interacting
systems the global lightfront algebra is generally expected to be smaller than the
bulk, in particular one expects

ALF (∂W ) ⊂ A(∂W ) = A(W ) (6)

ALF (∂W ) = ∪O⊂∂WALF (O), A(W ) = ∪C⊂WA(C)
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where the semi-global algebras are formed with the localization concept of their
relative nets as indicated in the second line. The smaller left hand side accounts for
the fact that the formation of relative commutants as A(∂Wa,b) may not maintain
the standardness of the algebra because ∪a,bA(∂Wa,b)Ω � H. In that case the
globalization of the algebraic holography only captures a global (i.e. not localized)
subalgebra of the global bulk and one could ask whether the pointlike procedure
using the GLZ representation leads to generating fields which generate a bigger
algebra gives more. The answer is positive since also (bosonic) fields with anoma-
lous short distance dimensions will pass the projective holography and become
anyonic fields on the lightray7 On the other hand algebraic holography filters out
bosonic fields which define the chiral obervables. These chiral observables have a
DHR superselection theory. This leads to the obvious conjecture

Alg{proj hol} ⊆ Alg{DHR}. (7)

Here the left hand side denotes the algebra generated by applying projective holog-
raphy to the pointlike bulk fields and the right hand side is the smallest algebra
which contains all DHR superselection sectors of the LF observable (extended
chiral) algebra which resulted from algebraic holography.

It is worthwhile to emphasize that the connection between the operator al-
gebraic and the pointlike prescription is much easier on LF than in the bulk. In
the presence of conformal symmetries one has the results of Joerss [19]; looking at
his theorems in the chiral setting, an adaptation to the transverse extended chiral
theories on LF, should be straightforward. For consistency reasons such fields must
fulfil (3) I hope to come back to this issue in a different context.

One motivation for being interested in lightfront holography is that it is
expected to be helpful in dividing the complicated problem of classifying and con-
structing QFTs according to intrinsic principles into several less complicated steps.
In the case of d=1+1 factorizing models one does not need this holographic pro-
jection onto a chiral theory on the lightray for the mere existence proof. But e.g.
for the determination of the spectrum of the short distance scale dimension, it is
only holography and not the critical limit which permits to maintain the original
Hilbert space setting. It is precisely this property which makes it potentially inter-
esting for structural investigations and actual constructions of higher dimensional
QFT.

Now we are well-prepared to address the main point of this section: the area
law for localization entropy which follows from the absence of transverse vacuum
polarization. Since this point does not depend on most of the above technicalities,
it may be helpful to the reader to present the conceptual mathematical origin
of this unique8 tensor-factorization property. The relevant theorem goes back to

7The standard Boson-Fermion statistics refers to spacelike distances and the lightlike statistics
resulting from projective holography is determined by the anomalous short distance dimensions
of the bulk field and not by their statistics.
8Holography on null-surfaces is the only context in which a quantum mechanical structure enters
a field theoretic setting.
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Borchers [20] and can be stated as follows. Let Ai ⊂ B(H), i = 1, 2 be two operator
algebras with [A1, U(a)A2U(a)∗] = 0 ∀a and U(a) a translation with nonnegative
generator which fulfils the cluster factorization property (i.e. asymptotic factoriza-
tion in correlation functions for infinitely large cluster separations) with respect
to a unique U(a)-invariant state vector Ω9. It then follows that the two algebras
tensor factorize in the sense A1∨A2 = A1⊗A2 where the left hand side denotes
the joint operator algebra.

In the case at hand the tensor factorization follows as soon as the open re-
gions Oi ⊂ LF in A(Oi) i = 1, 2 have no transverse overlap. The lightlike cluster
factorization is weaker (only a power law) than its better known spacelike coun-
terpart, but as a result of the analytic properties following from the non-negative
generator of lightlike translations it enforces the asymptotic factorization to be
valid at all distances. The resulting transverse factorization implies the transverse
additivity of extensive quantities as energy and entropy and their behavior in ligh-
tray direction can then be calculated in terms of the associated auxiliary chiral
theory. A well-known property for spacelike separations.

This result [13, 14] of the transverse factorization may be summarized as
follows:

1. The system of LF subalgebras {A(O)}O⊂LF tensor-factorizes transversely
with the vacuum being free of transverse entanglement

A(O1∪O2) = A(O1)⊗A(O2), (O1)⊥ ∩ (O2)⊥ = ∅ (8)

〈Ω |A(O1)⊗A(O2)|Ω〉 = 〈Ω |A(O1) |Ω〉 〈Ω| A(O2)|Ω〉 .
2. Extensive properties as entropy and energy on LF are proportional to the

extension of the transverse area.
3. The area density of localization-entropy in the vacuum state for a system

with sharp localization on LF diverges logarithmically

sloc = lim
ε→0

c

6
|ln ε|+ ... (9)

where ε is the size of the interval of “fuzziness” of the boundary in the lightray
direction which one has to allow in order for the vacuum polarization cloud to
attenuate and the proportionality constant c is (at least in typical examples)
the central extension parameter of the Witt-Virasoro algebra.

The following comments about these results are helpful in order to appreciate
some of the physical consequences as well as extensions to more general null-
surfaces.

As the volume divergence of the energy/entropy in a heat bath thermal sys-
tem results from the thermodynamic limit of a sequence of boxed systems in a
Gibbs states, the logarithmic divergence in the vacuum polarization attenuation

9Locality in both directions shows that the lightlike translates 〈Ω |AU(a)B|Ω〉 are boundary
values of entire functions and the cluster property together with Liouville’s theorem gives the
factorization.
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distance ε plays an analogous role in the approximation of the semiinfinitely ex-
tended ∂W by sequences of algebras whose localization regions approach ∂W from
the inside. In both cases the limiting algebras are monads whereas the approxi-
mands are type I analogs of the “box quantization” algebras. In fact in the present
conformal context the relation between the standard heat bath thermodynamic
limit and the limit of vanishing attenuation length for the localization-caused vac-
uum polarization cloud really goes beyond an analogy and becomes an isomor-
phism.

This surprising result is based on two facts [13, 14]. On the one hand con-
formal theories come with a natural covariant “box” approximation of the ther-
modynamic limit since the continuous spectrum translational Hamiltonian can
be obtained as a scaled limit of a sequence of discrete spectrum conformal rota-
tional Hamiltonians associated to global type I systems. On the other hand it has
been known for some time that a heat bath chiral KMS state can always be re-
interpreted as the Unruh restriction applied to a vacuum system in an larger world
(a kind of inverse Unruh effect). Both facts together lead to the above formula for
the area density of entropy. In fact using the conformal invariance one can write
the area density formula in the more suggestive manner by identifying ε with the
conformal invariant cross-ratio of 4 points

ε2 =
(a2 − a1) (b1 − b2)
(b1 − a1) (b2 − a2)

where a1 < a2 < b2 < b1 so that (a1, b1) corresponds to the larger localization
interval and (a2, b2) is the approximand which goes with the interpolating type
I algebras. At this point one makes contact with some interesting work on what
condensed matter physicist call the “entanglement entropy”10.

One expects that the arguments for the absence of transverse vacuum fluctu-
ations carry over to other null-surfaces as e.g. the upper horizon ∂D of the double
cone D. In the interacting case it is not possible to obtain ∂D generators through
test function restrictions. For zero mass free fields there is, however, the possibility
to conformally transform the wedge into the double cone and in this way obtain
the holographic generators as the conformally transformed generators of A(∂W ).
In order to show that the resulting A(∂D) continue to play their role even when
the bulk generators cease to be conformal one would have to prove that certain
double-cone affiliated inclusions are modular inclusions. We hope to return to this
interesting problem.

10In [21] the formula for the logarithmically increasing entropy is associated with a field theoretic
cutoff and the role of the vacuum polarization cloud in conjunction with the KMS thermal
properties (which is not compatible with a quantum mechanical entanglement interpretation [16])
are not noticed. Since there is no implementation of the split property, the idea of an attenuation
of the vacuum polarization cloud has no conceptual place in a path integral formulation. QM and
QFT are not distinguished in the functional integral setting and even on a metaphorical level
there seems to be no possibility to implement the split property.
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We have presented the pointlike approach and the algebraic approach next
to each other, but apart from the free field we have not really connected them.
Although one must leave a detailed discussion of their relation to the future, there
are some obvious observations one can make. Since for chiral fields the notion of
short-distance dimension and rotational spin (the action of the L0 generator) are
closely connected and since the algebraic process of taking relative commutators
is bosonic, the lightfront algebras are necessarily bosonic. A field, as the chiral
order variable of the Ising model with dimension 1

16 , does not appear in the al-
gebraic holography, but, as mentioned above, it is the pointlike projection of the
massive order variable in the factorizing Ising model in the bulk. On the other
hand an integer dimensional field as the stress-energy tensor, is common to both
formulations. This suggests that the anomalous dimensional fields which are miss-
ing in the algebraic construction may be recovered via representation theory of
the transverse extended chiral observable algebra which arises as the image of the
algebraic holography.

Since the original purpose of holography similar to that of its ill-fated light-
cone quantization predecessor, is to achieve a simplified but still rigorous descrip-
tion (for the lightcone quantization the main motivation was a better description
of certain “short distance aspects” of QFT), the question arises if one can use
holography as a tool in a more ambitious program of classification and construc-
tion of QFTs. In this case one must be able to make sense of inverse holography
i.e. confront the question whether, knowing the local net on the lightfront one can
only obtain at least part of the local substructure of the bulk. It is immediately
clear that one can construct that part in the bulk, which arises from intersecting
the LF-affiliated wedge algebras. The full net is only reconstructible if the action of
those remaining Poincaré transformations outside the 7-parametric LF covariance
group is known.

The presence of the Möbius group acting on the lightlike direction on null-
surfaces in curved spacetime resulting from bifurcate Killing horizons [22] has been
established in [23], thus paving the way for the transfer of the thermal results to
QFT in CFT. This is an illustration of symmetry enhancement, which is one of
holographies “magics”.

The above interaction-free case with its chiral Abelian current algebra struc-
ture (1) admits a much larger unitarily implemented symmetry group, namely the
diffeomorphism group of the circle. However the unitary implementers (beyond the
Möbius group) do not leave the vacuum invariant (and hence are not Wigner sym-
metries). As a result of the commutation relations (3) these Diff(S1) symmetries
are expected to appear in the holographic projection of interacting theories. These
unitary symmetries act only geometrically on the holographic objects; their action
on the bulk (on which they are also well-defined) is fuzzy i.e. not describable in
geometric terms. This looks like an interesting extension of the new setting of local
covariance [24].

The area proportionality for localization entropy is a structural property of
LQP which creates an interesting and hopefully fruitful contrast with Bekenstein’s
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area law [25] for black hole horizons. Bekenstein’s thermal reading of the area
behavior of a certain quantity in classical Einstein-Hilbert like field theories has
been interpreted as being on the interface of QFT with QG. Now we see that the
main support, namely the claim that QFT alone cannot explain an area behavior,
is not correct. There remains the question whether Bekenstein’s numerical value,
which people tried to understand in terms of quantum mechanical level occupation,
is a credible candidate for quantum entropy. QFT gives a family of area laws with
different vacuum polarization attenuation parameters ε and it is easy to fix this
parameter in terms of the Planck length so that the two values coalesce. The
problem which I have with such an argument is that I have never seen a situation
where a classical value remained intact after passing to the quantum theory. This
does only happen for certain quasiclassical values in case the system is integrable.

3. From holography to correspondence: the AdS/CFT
correspondence and a controversy

The holography onto null-surfaces addresses the very subtle relation between bulk
quantum matter and the projection onto its causal/event horizon as explained in
the previous section. A simpler case of holography arises if the bulk and a lower
dimensional brane11 (timelike) boundary share the same maximally possible space-
time (vacuum) symmetry. The only case where this situation arises between two
global Lorentz manifolds of different spacetime dimension is the famous AdS/CFT
correspondence. In that case the causality leakage off a brane does not occur. In the
following we will use the same terminology for the universal coverings of AdS/CFT
as for the spacetimes themselves.

Already in the 60s the observation that the 15-parametric conformal sym-
metry which is shared between the conformal 3 + 1-dimensional compactified
Minkowski spacetime and the 5-dimensional Anti-de-Sitter space (the negative
constant curvature brother of the cosmologically important de Sitter spacetime)
brought a possible field theoretic relation between these theories into the fore-
ground; in fact Fronsdal [26] suspected that QFTs on both spacetimes share more
than the spacetime symmetry groups. But the modular localization theory which
could convert the shared group symmetry into a relation between two different
spacetime ordering devices (in the sense of Leibniz) for the same abstract quantum
matter substrate was not yet in place at that time. Over several decades the main
use of the AdS solution has been (similar to Gödel’s cosmological model) to show
that the Einstein-Hilbert field equations, besides the many desired solution (as
the Robertson-Walker cosmological models and the closely related de Sitter space-
time), also admit unphysical solutions (leading to timelike selfclosing worldlines,
time machines, wormholes etc.) and therefore should be further restricted.

11In general the brane has a lower dimensional symmetry than its associated bulk and usually
denotes a d − 1 dimensional subspace which contains a time-like direction. Different from null-
surfaces branes have a causal leakage.
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The AdS spacetime lost this role of only providing counterexamples and be-
gan to play an important role in particle physics when the string theorist placed it
into the center of a conjecture about a correspondence between a particular maxi-
mally supersymmetric massless conformally covariant Yang-Mills model in d=1+3
and a supersymmetric gravitational model. The first paper was by J. Maldacena
[27] who started from a particular compactification of 10-dimensional superstring
theory, with 5 uncompactified coordinates forming the AdS spacetime. Since the
mathematics as well as the conceptual structure of string theory is poorly under-
stood, the string side was identified with one of the supersymmetric gravity models
which in spite of its being non-renormalizable admitted a more manageable La-
grangian formulation and was expected to have a similar particle content. On the
side of CFT he placed a maximally supersymmetric gauge theory of which calcu-
lations which verify the vanishing of the low order beta function already existed12

(certainly a necessary prerequisite for conformal invariance). The arguments in-
volved perturbation theory and additional less controllable approximations. The
more than 4.700 follow up papers on this subject did essentially not change the
status of the conjecture. But at least some aspects of the general AdS/CFT cor-
respondence became clearer after Witten [28] exemplified the ideas in the field
theoretic context of a Φ4 coupling on AdS using a Euclidean functional integral
setting.

The structural properties of the AdS/CFT correspondence came out clearly
in Rehren’s [30] algebraic holography. The setting of local quantum physics (LQP)
is particularly suited for questions in which one theory is assumed as given and
one wants to construct its holographic projection or its corresponding model on
another spacetime. LQP can solve such problems of isomorphisms between models
without being forced to actually construct a model on either side (which functional
integration proposes to do but only in a metaphoric way). At first sight Rehren’s
setting rewritten in terms of functional integrals (with all the metaphoric caveats,
but done in the best tradition of the functional trade) looked quite different from
Witten’s functional representation. But thanks to a functional identity (explained
in the Dütsch-Rehren paper), which shows that fixing functional sources on a
boundary and forcing the field values to take on a boundary value via delta function
in the functional field space leads to the same result. In this way the apparent
disparity disappeared [31] and there is only one AdS/CFT correspondence within
QFT.

There are limits to the rigor and validity of functional integral tools in QFT.
Even in QM where they are rigorous an attempt to teach a course on QM based
on functional integrals would end without having been able to cover the standard
material. As an interesting mental exercise just image a scenario with Feynman
before Heisenberg. Since path integral representations are much closer to the old

12An historically interesting case in which the beta function vanishes in every order is the massive
Thirring model. In that case the zero mass limit is indeed conformally invariant, but there is
no interacting conformal theory for which a perturbation can be formulated directly, it would
generate unmanageable infrared divergencies.
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quasiclassical Bohr Sommerfeld formulation the transition would have been much
smoother, but it would have taken a longer time to get to the operational core
of quantum theory; on the other hand quasiclassical formulas and perturbative
corrections thereof would emerge with elegance and efficiency.

Using the measure theoretical functional setting it is well-known that su-
perrenormalizable polynomial couplings can be controlled this way [35]. Realis-
tic models with infinite wave function renormalization constants (all realistic La-
grangian models in more than two spacetime dimensions have a trans-canonical
short distance behavior) do not fall into this amenable category. But even in low
dimensions, where there exist models with finite wave function renormalization
constants and hence the short distance prerequisites are met, the functional set-
ting of the AdS/CFT correspondence has an infrared problem1314 of a nasty unre-
solved kind [37]. As the result of lack of an analog to the operator formulation in
QM the suggestive power, their close relation to classical geometric concepts and
their formal elegance functional integrals have maintained their dominant role in
particle physics although renormalized perturbation theory is better taken care of
in the setting of “causal perturbation”.15 An operator approach which is not only
capable to establish the mathematical existence of models but also permits their
explicit construction exists presently only in d = 1 + 1; it is the previously men-
tioned bootstrap-formfactor or wedge-localization approach for factorizing models.
Lagrangian factorizing models only constitute a small fraction.

For structural problems as holography, where one starts from a given the-
ory and wants to construct its intrinsically defined holographic image, the use
of metaphorical instruments as Euclidean functional integral representations is
suggestive but not really convincing in any mathematical sense. As in the case of
lightfront holography there are two mathematically controllable ways to AdS/CFT
holography; either using (Wightman) fields (projective holography) or using oper-
ator algebras (algebraic holography). The result of all these different methods can
be consistently related [31, 32].

The main gain in lightfront holography is a significant simplification of certain
properties as compared to the bulk. Even if some of the original problems of the
bulk come back in the process of holographic inversion they reappear in the more
amenable form of several smaller problems rather than one big one.

The motivation for field theorists being interested in the AdS/CFT correspon-
dence is similar, apart from the fact that the simplification obtainable through an
algebraic isomorphism is more limited (less radical) than that of a projection.

13Infrared problems of the kind as they appear in interacting conformal theories are strictly
speaking not susceptible to perturbation theoretical treatment and they also seem to pose serious
(maybe insoluble) problems in functional integral representations. In those cases where on knows
the exact form of the massless limit (Thirring model) this knowledge can be used to disentangle
the perturbative infrared divergences.
14Eds. annotation: see the chapter by Gottschalk-Thaler in this volume.
15Eds. annotation: see the chapter by Dütsch-Brennecke in this volume.
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Nevertheless it is not unreasonable to explore the possibility whether some hid-
den property as for example a widespread conjecture partial integrability16 could
become more visible after a spacetime “re-packaging” of the quantum matter sub-
strate from CFT to AdS.

Despite many interesting analogies between chiral theories and higher di-
mensional QFT [36] little is known about higher-dimensional conformal QFTs.
There are Lagrangian candidates as for example certain supersymmetric Yang-
Mills theories which fulfil (at least in lowest order) some perturbative prerequisite
of conformality which consists in a vanishing beta-function. As mentioned before
perturbation theory for conformal QFT, as a result of severe infrared problems,
cannot be formulated directly. The prime example for such a situation is the mas-
sive Thirring model for which there exists an elegant structural argument for
β(g) = 0 and the knowledge about the non-perturbative massless version can then
be used to find the correct perturbative infrared treatment.

As far as I could see (with apologies in case of having overlooked some im-
portant work) none of these two steps has been carried out for SUSY-YM, so even
the conformal side of the Maldacena conjecture has remained unsafe territory.

There is one advantage which null-surface holography has over AdS/CFT
type brane holography. The cardinality of degrees of freedom adjusts itself to
what is natural for null-surfaces (as a manifold in its own right); for the lightfront
holography this is the operator algebra generated from extended chiral fields (3).
On the other hand this “thinning out” in holographic projections is of course the
reason why inverse holography becomes more complicated and cannot be done
with the QFT on one null surface only.

In the holography of the AdS/CFT correspondence the bulk degrees of free-
dom pass to a conformal brane; in contradistinction to the holography on null-
surfaces there is no reduction of degrees of freedom resulting from projection.
Hence the AdS/CFT isomorphism starting from a “normal” (causally complete
as formally arising from Lagrangians) 5-dimensional AdS leads to a conformal
field theory with too many degrees of freedom. Since a “thinning out” by hand
does not seem to be possible, the “physically health” of such a conformal QFT is
somewhat dodgy, to put it mildly.

In case one starts with a free Klein-Gordon field on AdS one finds that the
generating conformal fields of the CFT are special generalized free fields i.e. a kind
of continuous superpositions of free fields. They were introduced in the late 50s by
W. Greenberg and their useful purpose was (similar to AdS in classical gravity)
to test the physical soundness of axioms of QFT in the sense that if a system of
axioms allowed such solutions, it needed to be further restricted [33] (in that case
the so-called causal completion or time-slice property excluded generalized free
fields). It seems that meanwhile the word “physical” has changes its meaning, it
is used for anything which originated from a physicist.

16Global integrability is only possible in d = 1 + 1, but I am not aware of any theorem which
rules out the possibility of integrable substructures.
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In the opposite direction the degrees of freedom of a “normal” CFT become
“diluted” on AdS in the inverse correspondence. There are not sufficient degrees of
freedom for arriving at nontrivial compactly localized operators, the cardinality of
degrees of freedom is only sufficient to furnish noncompact regions as AdS wedges
with nontrivial operators, the compactly localized double cone algebras remain
trivial (multiples of the identity). In the setting based on fields this means that
the restriction on testfunction spaces is so severe that pointlike fields AAdS(x) at
interior points x ∈ int(AdS) do not exist in the standard sense as operator-valued
distributions on Schwartz spaces. They exist on much smaller test function spaces,
which contain no functions with compact localizations.

Both sides of the correspondence have been treated in a mathematically rigor-
ous fashion for free AdS (Klein-Gordon equation) theories and free (wave equation)
CFT [34, 32] where the mismatch between degrees of freedom can be explicated
and the structural arguments based on the principles of general QFT show that
this mismatch between the transferred and the natural cardinality of the degree
of freedom is really there. In terms of the better known Lagrangian formalism
the statement would be that if one starts from a Lagrange theory at one side the
other side cannot be Lagrangian. Of course both sides remain QFT in the more
general sense of fulfilling the required symmetries, have positive energy and being
consistent with spacelike commutativity. In the mentioned free field illustration an
AdS Klein-Gordon field is evidently Lagrangian whereas the corresponding confor-
mal generalized free field has no Lagrangian and cannot even be characterized in
terms of a local hyperbolic field equation. According to the best educated guess,
4-dimensional maximally supersymmetric Yang-Mills theories (if they exist and
are conformal) would be natural conformal QFTs “as we know it” and therefore
cannot come from a natural QFT on AdS. Needless to say again that there are
severe technical problems to set up a perturbation theory for conformally invariant
interactions, the known perturbative systematics breaks down in the presence of
infrared problems17.

I belong to a generation for which not everything which is mathematically
possible must have a physical realization; in particular I do not adhere to the
new credo that every mathematically consistent idea is realized in some parallel
world (anthropic principle): no parallel universe for the physical realization of every
mathematical belch.

Generalized free fields18 and their interacting counterparts, which arise from
natural AdS free- or interacting- fields, remain in my view unphysical, but are

17A well-known problem is the massive Thirring model which leads to β = 0 in all orders. In this
case one already knew the conformal limit in closed form and was able to check the correctness
of the relation by consistency considerations.
18It is interesting to note that the Nambu-Goto Lagrangian (which describes a classical relativis-
tic string) yields upon quantization a pointlike localized generalized free field with the well-known
infinite tower mass spectrum and the appearance of a Hagedorn limit temperature. As such it is
pointlike localized and there is no intrinsic quantum concept which permits to associate it with
any stringlike localization.
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of considerable mathematical interest. They do not fit into the standard causal
localization setting and they do not allow thermal KMS states without a limiting
Hagedorn temperature (both facts are related). Nature did not indicate that it
likes to go beyond the usual localizability and thermal behavior. If string theory
demands such things it is not my concern, let Max Tegmark find another universe
where nature complies with string theory.

Holography is a technical tool and not a physical principle. It simplifies cer-
tain aspects of a QFT at the expense of others (i.e. it cannot achieve miracles).
The use of such ideas in intermediate steps may have some technical merits, but
I do not see any scientific reason to change my viewpoint about physical admis-
sibility. The question of whether by changing the spacetime encoding one could
simplify certain properties (for example detect integrable substructures) of compli-
cated theories is of course very interesting, but in order to pursue such a line it is
not necessary to physically identify the changed theory. Such attempts, where only
one side needs to be physical and the role of holography would consist in expos-
ing certain structural features which remained hidden in the original formulation,
sound highly interesting to me.

There is however one deeply worrisome aspect of this whole development.
Never before has there been more than 4.700 publication on such a rather narrow
subject; in fact even nowadays, one decade after this gold-digger’s rush about
the AdS/CFT correspondence started, there is still a sizable number of papers
every month by people looking for nuggets at the same place but without bringing
Maldacena’s gravity-gauge theory conjecture any closer to a resolution. Even with
making all the allowances in comparison with earlier fashions, this phenomenon
is too overwhelming in order to be overlooked. Independent of its significance for
particle physics and the way it will end, the understanding of what went on and its
covering by the media will be challenging to historians and philosophers of science
in the years to come.

I know that it is contra bonos mores to touch on a sociological aspect in a
physics paper, but my age permits me to say that at no time before was the scien-
tific production in particle theory that strongly coupled to the Zeitgeist as during
the last two decades; never before had global market forces such a decisive impact
on the scientific production. Therefore it is natural to look for an explanation why
thousands of articles are written on an interesting (but not clearly formulated)
conjecture with hundreds of other interesting problems left aside; where does the
magic attraction come from? Is it the Holy Grail of a TOE which sets into mo-
tion these big caravans? Did the critical power of past particle physics disappear
in favor of acclamation? Why are the few critical but unbiased attempts only
mentioned by the labels given to them and not by their scientific content?

Since commentaries about the crisis in an area of which one is part run the
risk of being misunderstood, let me make perfectly clear that particle physics was a
speculative subject and I uphold that it must remain this way. Therefore I have no
problem whatsoever with Maldacena’s paper; it is in the best tradition of particle
physics, which was always a delicate blend of a highly imaginative and innovative
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contribution from one author with profoundly critical analysis of others. I am
worried about the loss of this balance. My criticism is also not directed against
the thousands of authors who enter this area in good faith believing that they are
working at an epoch-forming paradigmatic problem because their peers gave them
this impression. Even if they entered for the more mundane reason of carving out
a career, I would not consider this as the cause of the present problem.

The real problem is with those who by their scientific qualifications and
status are the intellectual leaders and the role models. If they abdicate their role
as critical mediators by becoming the whips of the TOE monoculture of particle
physics, then checks and balances will be lost. Would there have been almost 5000
publication, on a rather narrow theme (compared with other topics) in the presence
of a more critical attitude from leading particle physicists? No way. Would particle
theory, once the pride of theoretical physics with a methodological impact on many
adjacent areas, have fallen into disrespect and be the object of mock within the
larger physics community? The list of questions of this kind with negative answers
can be continued.

It is worthwhile to look back at times when the delicate balance between the
innovative and speculative on the one hand and the critical on the other was still
there. Young researchers found guidance by associating themselves to “schools of
thought” which where associated with geographical places and names as Schwinger,
Landau, Bogoliubov, Wheeler, Wightman, Lehmann, Haag... who represented dif-
ferent coexisting schools of thought. Instead of scientific cross fertilization between
different schools, the new globalized caravan supports the formation of a gigantic
monoculture and the loss of the culture of checks and balances.

Not even string theorists can deny that this unfortunate development started
with string theory. Every problem string theory addresses takes on a strange
metaphoric aspect, an effect which is obviously wanted as the fondness for the
use of the letter M shows. The above mentioned AdS/CFT topic gives an illus-
tration, which, with a modest amount of mathematical physics shows, the clear
structural QFT theorem as compared to the strange conjecture which even thou-
sands of publications were not able to liberate from the metaphoric twilight.

But it is a remarkable fact that, whenever string theorist explain their ideas
by QFT analogs in the setting of functional integrals, as was done by Witten in
[28] for the ϕ4 coupling, and on the other hand algebraic quantum field theorists
present their rigorous structural method for the same model in the same setting
[31], the two results agree (see also [37]).

This is good news. But now comes the bad news. Despite the agreement the
Witten camp, i.e. everybody except a few individuals, claim that there exist two
different types of AdS/CFT correspondences namely theirs and another one which
at least some of them refer to as the “German AdS/CFT correspondence”. Why
is that? I think I know but I will not write it.

At this point it becomes clear that it is the abandonment of the critical role
of the leaders which is fuelling this unhealthy development. Could a statement:
“X-Y-Z theory is a gift of the 21st century which by chance fell into the 20 century”
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have come from Pauli, Schwinger, or Feynman? One would imagine that in those
days people had a better awareness that mystifications like this could disturb the
delicate critical counterbalance which the speculative nature of particle physics
requires. The long range negative effect on particle theory of such a statement is
proportional to the prominence and charisma of its author.

There have been several books which criticize string theory. Most critics em-
phasize that the theory has not predicted a single observable effect and that there
is no reason to expect that this will change in the future. Although I sympathize
with that criticism, especially if it comes from experimentalists and philosophers,
I think that a theorist should focus his critique on the conceptual and mathemat-
ical structure and not rely on help from Karl Popper or dwell on the non-existent
observational support. Surprisingly I could not find any scholarly article in this
direction. One of the reasons may be that after 4 decades of development of string
theory such a task requires rather detailed knowledge about its conceptual and
mathematical basis. As a result of this unsatisfactory situation I stopped my crit-
ical article [29] from going into print and decided to re-write it in such a way that
the particle physics part is strengthened at the expense of the sociological sections.

The aforementioned situation of ignoring results which shed a critical light
on string theory or the string theorists version of the AdS/CFT correspondence is
perhaps best understood in terms of the proverbial executing of the messenger who
brings bad news ; the unwanted message in the case at hand being the structural
impossibility to have Lagrangian QFTs with causal propagation on both sides of
the correspondence.

It seems that under the corrosive influence of more than 4 decades of string
theory, Feynman’s observation about its mode of arguing being based on finding
excuses instead of explanations, which two decades ago was meant to be provoca-
tive, has become the norm. The quantum gravity-gauge theory conjecture is a
good example of how a correct but undesired AdS/CFT correspondence is shifted
to the elusive level of string theory and quantum gravity so that the degrees of
freedom aspect becomes pushed underneath the rug of the elusive string theory,
where it only insignificantly enlarges the already very high number of metaphors.

There have been an increasing number of papers with titles as “QCD and
a Holographic Model of Hadrons”, “Early Time Dynamics in Heavy Ion Colli-
sions and AdS/CFT Correspondence”, “Confinement/Deconfinement Transition
in AdS/CFT”, “Isospin Diffusion in Thermal AdS/CFT with Flavour”, “Holo-
graphic Mesons in a Thermal Bath”, “Viscous Hydrodynamics and AdS/CFT”,
“Heavy Quark Diffusion from AdS/CFT” . . . Ads/CFT for everything? Is string
theory bolstered by AdS/CFT really on the way to become a TOE for all of
physics, a theory for anything which sacrifices conceptual cohesion to amok run-
ning calculations? Or are we witnessing a desperate attempt to overcome the more
than 4 decade lasting physical disutility? Perhaps it is only a consequence of the
“liberating” effect of following prominent leaders who have forgone their duty as
critical mediators and preserver of conceptual cohesion.
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4. Concluding remarks

In these notes we revisited one of the oldest and still unsolved conceptual problems
in QFT, the existence of interacting models. Besides some new concrete results
about the existence of factorizing models (which only exist in d = 1 + 1), it is the
new method itself, with its promise to explore new fundamental and fully intrinsic
properties of QFT, which merits attention. A particularly promising approach for
the classification and construction of QFTs consists in using holographic lightfront
projections (and in a later stage work one’s way back into the bulk). In this
situation the holographic degrees of freedom are thinned out as compared to the
bulk i.e. the extended chiral fields have lesser number of degrees of freedom.

The concept of degrees of freedom used here is a dynamical one. Knowing
only a global algebra19 as the wedge algebra i.e. A(W ) ⊂ B(H) as an inclusion into
the full algebra one uses fewer degrees freedom than one needs in order to describe
the full local substructure of A(W ) i.e. knowing A(W ) in the sense of a local net.
The degrees of freedom emerge always from relations between algebras whereas
the single algebra is a structureless monad [15]. Saying that the net A(LF ) has
less degrees of freedom than the net associated with the bulk is the same as saying
that the knowledge of the LF affiliated wedges does not suffice to reconstruct
the local bulk structure. In this sense the notion of degrees of freedom depends
on the knowledge one has about a system; refining the net structure of localized
subalgebras of a global algebra increases the degrees of freedom.

The lightfront holography is a genuine projection with a lesser cardinality of
degrees of freedom i.e. without knowing how other Poincaré transformations out-
side the 7-parametric invariance group of the lightfront act it is not uniquely invert-
ible. On its own, i.e. without added information, the lightfront holography cannot
distinguish between massive and massless theories; a transverse extended chiral
theory does not know whether the bulk was massive or massless. The knowledge
of how the opposite lightray translation U(a−) acts on A(LF ) restores unique-
ness; but this action is necessarily “fuzzy” i.e. non-geometric, purely algebraic.
Only upon returning to the spacetime ordering device in terms of the bulk it
becomes geometric.

The hallmark of null-surface holography is an area law for localization en-
tropy in which the proportionality constant is a product of a holographic matter
dependent constant times a logarithmic dependence on the attenuation length for
vacuum polarization.

By far the more popular holography has been the AdS/CFT correspondence.
Here its physical utility is less clear than the mathematical structure.

Is there really a relation between a special class of conformal gauge invariant
gauge theories with supersymmetric quantum gravity? Not a very probable con-
sequence of a change of an spacetime ordering device for a given matter substrate
which is what holography means. Integrable substructures within such conformal

19Knowing an operator algebra means knowing its position within the algebra B(H) of all oper-
ators. Knowing its net substructure means knowing the relative position of all its subalgebras.
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gauge theories which become more overt on the AdS-side? This appears a bit more
realistic, but present indications are still very flimsy.
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[31] M. Dütsch and K-H Rehren, Lett. Math. Phys. 62, 171-184 (2002)

[32] K-H Rehren, QFT Lectures on AdS-CFT, hep-th/0411086

[33] R. Haag and B. Schroer, J. Math. Phy. 3, (1962) 248
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Abstract. Topos theory, a branch of category theory, has been proposed as
mathematical basis for the formulation of physical theories. In this article, we
give a brief introduction to this approach, emphasizing the logical aspects.
Each topos serves as a ‘mathematical universe’ with an internal logic, which
is used to assign truth-values to all propositions about a physical system. We
show in detail how this works for (algebraic) quantum theory.
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“The problem is all inside your head”, she said to me
the answer is easy if you take it logically

Paul Simon (from ‘50 Ways To Leave Your Lover’)

1. Introduction

The use of topos theory in the foundations of physics and, in particular, the foun-
dations of quantum theory was suggested by Chris Isham more than 10 years
ago in [14]. Subsequently, these ideas were developed in an application to the
Kochen-Specker theorem (with Jeremy Butterfield, [15, 16, 18, 19], for conceptual
considerations see [17]). In these papers, the use of a multi-valued, contextual logic
for quantum theory was proposed. This logic is given by the internal logic of a cer-
tain topos of presheaves over a category of contexts. Here, contexts typically are
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abelian parts of a larger, non-abelian structure. There are several possible choices
for the context category. We will concentrate on algebraic quantum theory and use
the category V(R) of abelian von Neumann subalgebras of the non-abelian von
Neumann algebra of observables R of the quantum system, as first suggested in
[18].

The use of presheaves over such a category of contexts is motivated by
the very natural construction of the spectral presheaf Σ, which collects all the
Gel’fand spectra of the abelian subalgebras V ∈ V(R) into one larger structure.
The Gel’fand spectra can be seen as ‘local state spaces’, and the spectral presheaf
serves as a state space analogue for quantum theory. Interestingly, as Isham and
Butterfield showed, this presheaf is not like a space: it has no points (in a category-
theoretical sense), and this fact is exactly equivalent to the Kochen-Specker theo-
rem.

The topos approach was developed considerably in the series of papers [5,
6, 7, 8] by Chris Isham and the author. In these papers, it was shown how topos
theory can serve as a new mathematical framework for the formulation of physical
theories. The basic idea of the topos programme is that by representing the relevant
physical structures (states, physical quantities and propositions about physical
quantities) in suitable topoi, one can achieve a remarkable structural similarity
between classical and quantum physics. Moreover, the topos programme is general
enough to allow for major generalizations. Theories beyond classical and quantum
theory are conceivable. Arguably, this generality will be needed in a future theory
of quantum gravity, which is expected to go well beyond our conventional theories.

In this paper, we will concentrate on algebraic quantum theory. We briefly
motivate the mathematical constructions and give the main definitions.1 Through-
out, we concentrate on the logical aspects of the theory. We will show in detail
how, given a state, truth-values are assigned to all propositions about a quantum
system. This is independent of any measurement or observer. For that reason, we
say that the topos approach gives a ‘neo-realist’ formulation of quantum theory.

1.1. What is a topos?

It is impossible to give even the briefest introduction to topos theory here. At the
danger of being highly imprecise, we restrict ourselves to mentioning some aspects
of this well-developed mathematical theory and give a number of pointers to the
literature. The aim merely is to give a very rough idea of the structure and internal
logic of a topos. In the next subsection, we argue that this mathematical structure
may be useful in physics.

There are a number of excellent textbooks on topos theory, and the reader
should consult at least one of them. We found the following books useful: [25, 9,
27, 20, 21, 1, 24].

1We suppose that the reader is familiar with the definitions of a category, functor and natural
transformation.
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Topoi as mathematical universes. Every (elementary) topos E can be seen as a
mathematical universe. As a category, a topos E possesses a number of structures
that generalize constructions that are possible in the category Set of sets and
functions.2 Namely, in Set, we can construct new sets from given ones in several
ways: let S, T be two sets, then we can form the cartesian product S×T , the disjoint
union S � T and the exponential ST , the set of all functions from T to S. These
constructions turn out to be fundamental and can all be phrased in an abstract,
categorical manner, where they are called finite limits, colimits and exponentials,
respectively. By definition, a topos E has all of these. One consequence of the
existence of finite limits is that each topos has a terminal object, denoted by 1.
This is characterized by the property that for any object A in the topos E , there
exists exactly one arrow from A to 1. In Set, a one-element set 1 = {∗} is terminal.3

Of course, Set is a topos, too, and it is precisely the topos which usually
plays the role of our mathematical universe, since we construct our mathematical
objects starting from sets and functions between them. As a slogan, we have: a
topos E is a category similar to Set. A very nice and gentle introduction to these
aspects of topos theory is the book [25]. Other good sources are [9, 26].

In order to ‘do mathematics’, one must also have a logic, including a deductive
system. Each topos comes equipped with an internal logic, which is of intuitionistic
type. We very briefly sketch the main characteristics of intuitionistic logic and the
mathematical structures in a topos that realize this logic.

Intuitionistic logic. Intuitionistic logic is similar to Boolean logic, the main
difference being that the law of excluded middle need not hold. In intuitionistic
logic, there is no axiom

� a ∨ ¬a (∗)
like in Boolean logic. Here, ¬a is the negation of the formula (or proposition)
a. The algebraic structures representing intuitionistic logic are Heyting algebras.
A Heyting algebra is a pseudocomplemented, distributive lattice4 with zero ele-
ment 0 and unit element 1, representing ‘totally false’ resp. ‘totally true’. The
pseudocomplement is denoted by ¬, and one has, for all elements α of a Heyting
algebra H ,

α ∨ ¬α ≤ 1,
in contrast to α ∨ ¬α = 1 in a Boolean algebra. This means that the disjunc-
tion (“Or”) of a proposition α and its negation need not be (totally) true in a

2More precisely, small sets and functions between them. Small means that we do not have proper
classes. One must take care in these foundational issues to avoid problems like Russell’s paradox.
3Like many categorical constructions, the terminal object is fixed only up to isomorphism: any
two one-element sets are isomorphic, and any of them can serve as a terminal object. Nonetheless,
one speaks of the terminal object.
4Lattice is meant in the algebraic sense: a partially ordered set L such that any two elements
a, b ∈ L have a minimum (greatest lower bound) a ∧ b and a maximum (least upper bound)
a ∨ b in L. A lattice L is distributive if and only if a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) as well as
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) hold for all a, b, c ∈ L.
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Heyting algebra. Equivalently, one has

¬¬α ≥ α,

in contrast to ¬¬α = α in Boolean algebras.

Obviously, Boolean logic is a special case of intuitionistic logic. It is known
from Stone’s theorem [29] that each Boolean algebra is isomorphic to an algebra
of (clopen, i.e., closed and open) subsets of a suitable (topological) space.

Let X be a set, and let P (X) be the power set of X , that is, the set of subsets
of X . Given a subset S ∈ P (X), one can ask for each point x ∈ X whether it lies
in S or not. This can be expressed by the characteristic function χS : X → {0, 1},
which is defined as

χS(x) :=
{

1 if x ∈ S
0 if x /∈ S

for all x ∈ X . The two-element set {0, 1} plays the role of a set of truth-values for
propositions (of the form “x ∈ S”). Clearly, 1 corresponds to ‘true’, 0 corresponds
to ‘false’, and there are no other possibilities. This is an argument about sets, so
it takes place in and uses the logic of the topos Set of sets and functions. Set is
a Boolean topos, in which the familiar two-valued logic and the axiom (∗) hold.
(This does not contradict the fact that the internal logic of topoi is intuitionistic,
since Boolean logic is a special case of intuitionistic logic.)

In an arbitrary topos, there is a special object Ω, called thesubobject classifier,
that takes the role of the set {0, 1} � {false,true} of truth-values. Let B be an
object in the topos, and let A be a subobject of B. This means that there is
a monic A → B,5 generalizing the inclusion of a subset S into a larger set X .
Like in Set, we can also characterize A as a subobject of B by an arrow from
B to the subobject classifier Ω. (In Set, this arrow is the characteristic function
χS : X → {0, 1}.) Intuitively, this characteristic arrow from B to Ω tells us how
A ‘lies in’ B. The textbook definition is:

Definition 1. In a category C with finite limits, a subobject classifier is an ob-
ject Ω, together with a monic true : 1 → Ω, such that to every monic m : A → B
in C there is a unique arrow χ which, with the given monic, forms a pullback square

B Ω�
χ

A 1�

�

�

m

�

�

true

5A monic is the categorical version of an injective function. In the topos Set, monics exactly are
injective functions.
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In Set, the arrow true : 1 → {0, 1} is given by true(∗) = 1. In general, the
subobject classifier Ω need not be a set, since it is an object in the topos E , and the
objects of E need not be sets. Nonetheless, there is an abstract notion of elements
(or points) in category theory that we can use. The elements of Ω are the truth-
values available in the internal logic of our topos E , just like ‘false’ and ‘true’, the
elements of {false,true}, are the truth-values available in the topos Set.

To understand the abstract notion of elements, let us consider sets for a
moment. Let 1 = {∗} be a one-element set, the terminal object in Set. Let S be
a set and consider an arrow e from 1 to S. Clearly, e(∗) ∈ S is one element of S.
The set of all functions from 1 to S corresponds exactly to the elements of S. This
idea can be generalized to other categories: if there is a terminal object 1, then
we consider arrows from 1 to an object A in the category as elements of A. For
example, in the definition of theindextrue!as element in a truth object subobject
classifier the arrow true : 1 → Ω is an element of Ω. It may happen that an object
A has no elements, i.e., there are no arrows 1 → A. It is common to consider
arrows from subobjects U of A to A as generalized elements, but we will not need
this except briefly in subsection 5.1.

As mentioned, the elements of the subobject classifier, understood as the
arrows 1 → Ω, are the truth-values. Moreover, the set of these arrows forms a
Heyting algebra (see, for example, section 8.3 in [9]). This is how (the algebraic
representation of) intuitionistic logic manifests itself in a topos. Another, closely
related fact is that the subobjects of any object A in a topos form a Heyting al-
gebra.

1.2. Topos theory and physics

A large part of the work on topos theory in physics consists in showing how states,
physical quantities and propositions about physical quantities can be represented
within a suitable topos attached to the system [5, 6, 7, 8]. The choice of topos will
depend on the theory type (classical, quantum or, in future developments, even
something completely new). Let us consider classical physics for the moment to
motivate this.

Realism in classical physics. In classical physics, one has a space of states S,
and physical quantities A are represented by real-valued functions fA : S → R.6

A proposition about a physical quantity A is of the form “A ∈ Δ”, which means
“the physical quantity A has a value in the (Borel) set Δ”. This proposition is
represented by the inverse image f−1

A (Δ) ⊆ S. In general, propositions about
the physical system correspond to Borel subsets of the state space S. If we have
two propositions “A ∈ Δ1”, “B ∈ Δ2” and the corresponding subsets f−1

A (Δ1),
f−1

B (Δ2), then the intersection f−1
A (Δ1)∩ f−1

B (Δ2) corresponds to the proposition

6We assume that fA is at least measurable.
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“A ∈ Δ1 and B ∈ Δ2”, the union f−1
A (Δ1) ∪ f−1

B (Δ2) corresponds to “A ∈ Δ1 or
B ∈ Δ2”, and the complement S\f−1

A (Δ1) corresponds to the negation “A /∈ Δ1”.
Moreover, given a state s, i.e., an element of the state space S, each proposition is
either true or false: if s lies in the subset of S representing the proposition, then
the proposition is true, otherwise it is false. Every physical quantity A has a value
in the state s, namely fA(s) ∈ R. Thus classical physics is a realist theory in which
propositions have truth-values independent of measurements, observers etc. The
logic is Boolean, since classical physics is based on constructions with sets and
functions, i.e., it takes place in the topos Set. We take this as a rule: if we want
to describe a physical system S as a classical system, then the topos Set is used.
This means no departure from what is ordinarily done, but it emphasizes certain
structural and logical aspects of the theory.

Instrumentalism in quantum theory. In quantum theory, the mathematical
description is very different. Physical quantities A are represented by self-adjoint
operators Â on a Hilbert space H. While H can be called a space of states, the
states ψ ∈ H play a very different role from those in classical theory. In particular,
a state ψ does not assign values to all physical quantities, only to those for which
ψ happens to be an eigenstate. The spectral theorem shows that propositions
“A ∈ Δ” are represented by projection operators Ê[A ∈ Δ] on Hilbert space.
Unless ψ is an eigenstate of A, such a proposition is neither true nor false (except
for the trivial cases Ê[A ∈ Δ] = 0̂, which represents trivially false propositions,
and Ê[A ∈ Δ] = 1̂, which represents trivially true propositions). The mathematical
formalism of quantum theory is interpreted in an instrumentalist manner: given
a state ψ, the proposition “A ∈ Δ” is assigned a probability of being true, given
by the expectation value p(A ∈ Δ;ψ) := 〈ψ| Ê[A ∈ Δ] |ψ〉. This means that upon
measurement of the physical quantity A, one will find the measurement result to lie
in Δ with probability p(A ∈ Δ;ψ). This interpretation depends on measurements
and an external observer. Moreover, the measurement devices (and the observer)
are described in terms of classical physics, not quantum physics.

The motivation from quantum gravity. An instrumentalist interpretation can-
not describe closed quantum systems, at least there is nothing much to be said
about them from this perspective. A theory of quantum cosmology or quantum
gravity will presumably be a quantum theory of the whole universe. Since there
is no external observer who could perform measurements in such a theory, in-
strumentalism becomes meaningless. One of the main motivations for the topos
programme is to overcome or circumvent the usual instrumentalism of quantum
theory and to replace it with a more realist account of quantum systems. The idea
is to use the internal logic of a topos to assign truth-values to propositions about
the system.

In order to achieve this, we will sketch a new mathematical formulation of
quantum theory that is structurally similar to classical physics. The details can be
found in [5, 6, 7, 8] and references therein.
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Plan of the paper. The starting point is the definition of a formal language
L(S) attached to a physical system S. This is done in section 2 and emphasizes
the common structure of classical and quantum physics. In section 3, we introduce
the topos associated to a system S in the case of quantum theory, and in section
4 we briefly discuss the representation of L(S) in this topos. The representation
of states and the assignment of truth-values to propositions is treated in section
5, which is the longest and most detailed section. Section 6 concludes with some
remarks on related work and on possible generalizations.

2. A formal language for physics

There is a well-developed branch of topos theory that puts emphasis on the log-
ical aspects. As already mentioned, a topos can be seen as the embodiment of
(higher-order) intuitionistic logic. This point of view is expounded in detail in
Bell’s book [1], which is our standard reference on these matters. Other excellent
sources are [24] and part D of [21]. The basic concept consists in defining a formal
language and then finding a representation of it in a suitable topos. As usual in
mathematical logic, the formal language encodes the syntactic aspects of the the-
ory and the representation provides the semantics. Topoi are a natural ‘home’ for
the representation of formal languages encoding intuitionistic logic, more precisely,
intuitionistic, higher-order, typed predicate logic with equality. Typed means that
there are several primitive species or kinds of objects (instead of just sets as prim-
itives), from which sets are extracted as a subspecies; predicate logic means that
one has quantifiers, namely an existence quantifier ∃ (“it exists”) and a universal
quantifier ∀ (“for all”). Higher-order refers to the fact that quantification can take
place not only over variable individuals, but also over subsets and functions of
individuals as well as iterates of these constructions. Bell presents a particularly
elegant way to specify a formal language with these properties. He calls this type
of language a local language, see chapter 3 of [1].

Let S denote a physical system to which we attach a higher-order, typed
language L(S). We can only sketch the most important aspects here, details can
be found in section 4 of [5]. The language L(S) does not depend on the theory
type (classical, quantum, ...), while its representation of course does. The language
contains at least the following type symbols: 1,Ω,Σ and R. The symbol Σ serves
as a precursor of the state!object (see below), the symbol R is a precursor of
the quantity-value object, which is where physical quantities take their values.
Moreover, we require the existence of function symbols of the form A : Σ → R.
These are the linguistic precursors of physical quantities. For each type, there exist
variables of that type. There are a number of rules how to form terms and formulae
(terms of type Ω) from variables of the various types, including the definition of
logical connectives ∧ (“And”), ∨ (“Or”) and ¬ (“Not”). Moreover, there are axioms
giving rules of inference that define how to get new formulae from sets of given
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formulae. As an example, we mention the cut rule: if Γ is a set of formulae and α
and β are formulae, then we have

Γ : α α,Γ : β
Γ : β

(here, any free variable in α must be free in Γ or β). This is a purely formal rule
about how formulae can be manipulated in this calculus, to be read from top to
bottom. In a representation, where the formulae aquire an interpretation and a
‘meaning’, this expresses that if Γ implies α, and α and Γ together imply β, then
Γ also implies β. The axioms and rules of inference are chosen in a way such that
the logical operations satisfy the laws of intuitionistic logic.

The formal language L(S) captures a number of abstract properties of the
physical system S. For example, if S is the harmonic oscillator, then we expect to
be able to speak about the physical quantity energy in all theory types, classical or
quantum (or other). Thus, among the function symbols A : Σ → R, there will be
one symbol E : Σ → R which, in a representation, will become the mathematical
entity describing energy. (Which mathematical object that will be depend on the
theory type and thus on the representation.)

The representation of the language L(S) takes place in a suitable, physically
motivated topos E . The type symbol 1 is represented by the terminal object 1 in
E , the type symbol Ω is represented by the subobject classifier Ω. The choice of
an appropriate object Σ in the topos that represents the symbol Σ depends on
physical insight. The representing object Σ is called the state object, and it plays
the role of a generalized state space. What actually is generalized is the space, not
the states: Σ is an object in a topos E , which need not be a topos of sets, so Σ need
not be a set or space-like. However, as an object in a topos, Σ does have subobjects.
These subobjects will be interpreted as (the representatives of) propositions about
the physical quantities, just like in classical physics, where propositions correspond
to subsets of state space. The propositions are of the form “A ∈ Δ”, where Δ now
is a subobject of the object R that represents the symbol R. The object R is
called the quantity-value object, and this is where physical quantities take their
values. Somewhat surprisingly, even for ordinary quantum theory this is not the
real number object in the topos. Finally, the function symbols A : Σ → R are
represented by arrows between the objects Σ and R in the topos E .

In classical physics, the representation is the obvious one: the topos to be
used is the topos Set of sets and mappings, the symbol Σ is represented by a
symplectic manifold S, which is the state space, the symbol R is represented by
the real numbers and function symbols A : Σ → R are represented by real-valued
functions fA : S → R. Propositions about physical quantities correspond to subsets
of the state space.
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3. The context category V(R) and the topos of presheaves

SetV(R)op

We will now discuss the representation of L(S) in the case that S is to be described
as a quantum system. We assume that S is a non-trivial system that −in the usual
description− has a Hilbert spaceH of dimension 3 or greater, and that the physical
quantities belonging to S form a von Neumann algebraR(S) ⊆ B(H) that contains
the identity operator 1̂.7

From the Kochen-Specker theorem [23] we know that there is no state space
model of quantum theory if the algebra of observables is B(H) (for the general-
ization to von Neumann algebras see [4]). More concretely, there is no state space
S such that the physical quantities are real-valued functions on S. The reason is
that if there existed such a state space S, then each point (i.e., state) s ∈ S would
allow to assign values to all physical quantities at once, simply by evaluating the
functions representing the physical quantities at s. One can show that under very
mild and natural conditions, this leads to a mathematical contradiction.

For an abelian von Neumann algebra V , there is no such obstacle: the Gel’fand
spectrum ΣV of V can be interpreted as a state space, and the Gel’fand transforms
A of self-adjoint operators Â ∈ V , representing physical quantities, are real-valued
functions on ΣV . The Gel’fand spectrum ΣV of an abelian von Neumann alge-
bra V consists of the pure states λ on V (see e.g. [22]). Each λ ∈ ΣV also is a
multiplicative state; for all Â, B̂ ∈ V , we have

λ(ÂB̂) = λ(Â)λ(B̂),

which, for projections P̂ ∈ P(V ), implies

λ(P̂ ) = λ(P̂ 2) = λ(P̂ )λ(P̂ ) ∈ {0, 1}.

Finally, each λ ∈ ΣV is an algebra homomorphism from V to C. The Gel’fand
spectrum ΣV is equipped with the weak* topology and thus becomes a compact
Hausdorff space.

Let Â ∈ V and define

A : ΣV −→ C

λ �−→ A(λ) := λ(Â).

The function A is called the Gel’fand transform of Â. It is a continuous function
such that imA = sp Â. In particular, if Â is self-adjoint, then λ(Â) ∈ sp Â ⊂ R.

7There should arise no confusion between the von Neumann algebra R = R(S) and the symbol
R of our formal language, we hope.
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The mapping

V −→ C(ΣV )

Â �−→ A

is called the Gel’fand transformation on V . It is an isometric ∗-isomorphism be-
tween V and C(ΣV ).8

This leads to the idea of considering the set V(R) of non-trivial unital abelian
von Neumann subalgebras of R.9 These abelian subalgebras are also called con-
texts. V(R) is partially ordered by inclusion and thus becomes a category. There
is an arrow iV ′V : V ′ → V if and only if V ′ ⊆ V , and then iV ′V is just the in-
clusion (or the identity arrow if V ′ = V ). The category V(R) is called the context
category and serves as our index category. The process of going from one abelian
algebra V to a smaller algebra V ′ ⊂ V can be seen as a process of coarse-graining:
the algebra V ′ contains less physical quantities (self-adjoint operators), so we can
describe less physics in V ′ than in V . We collect all the ‘local state spaces’ ΣV

into one large object:

Definition 2. The spectral presheaf Σ is the presheaf10 over V(R) defined

a) on objects: for all V ∈ V(R), ΣV = ΣV is the Gel’fand spectrum of V ,
b) on arrows: for all iV ′V , Σ(iV ′V ) : ΣV → ΣV ′ is given by restriction, λ �→ λ|V ′ .

The spectral presheaf was first considered by Chris Isham and Jeremy But-
terfield in the series [15, 16, 18, 19] (see in particular the third of these papers).
The presheaves over V(R) form a topos SetV(R)op

. The arrows in this topos are
natural transformations between the presheaves. Isham and Butterfield developed
the idea that this is the appropriate topos for quantum theory. The object Σ in
SetV(R)op

serves as a state space analogue. In the light of the new developments
in [5]-[8], using formal languages, we identify Σ as the state object in SetV(R)op

,
i.e., the representative of the symbol Σ of our formal language L(S).

Isham and Butterfield showed that the Kochen-Specker theorem is exactly
equivalent to the fact that the spectral presheaf Σ has no elements, in the sense
that there are no arrows from the terminal object 1 in SetV(R)op

to Σ. It is not
hard to show that having an element of Σ would allow the assignment of real values
to all physical quantities at once.

8Of course, all this holds more generally for abelian C∗-algebras. We concentrate on von Neumann
algebras, since we need these in our application.
9The unit in each abelian subalgebra V ∈ V(R) is the identity operator 1̂, which is the same

unit as in R. We exclude the trivial algebra C1̂, which is a subalgebra of all other subalgebras.
10A presheaf over V(R) is a contravariant functor from V(R) to Set, and obviously, Σ is of this
kind. In our notation, presheaves will always be underlined.
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4. Representing L(S) in the presheaf topos SetV(R)op

The quantity-value object for quantum theory. We already have identified the
topos for the quantum-theoretical description of a system S and the state object
Σ in this topos. Let V ∈ V(R) be a context, then ↓V := {V ′ ∈ V(R) | V ′ ⊆ V }
denotes the set of all subalgebras of V , equipped with the partial order inherited
from V(R). It can be shown that the symbol R should be represented by the
following presheaf [7]:

Definition 3. The presheaf R↔ of order-preserving and -reversing functions on
V(R) is defined

a) on objects: for all V ∈ V(R), R↔
V := {(μ, ν) | μ :↓ V → R is order-

preserving, ν :↓V → R is order-reversing and μ ≤ ν}, where μ ≤ ν means
that for all V ′ ∈ ↓V , one has μ(V ′) ≤ ν(V ′);

b) on arrows: for all iV ′V , R↔(iV ′V ) : R↔
V → R↔

V ′ is given by restriction,
(μ, ν) �→ (μ|V ′ , ν|V ′).

Here, an order-preserving function μ :↓V → R is a function such that V ′′ ⊆ V ′

(where V ′, V ′′ ∈↓V ) implies μ(V ′′) ≤ μ(V ′). Order-reversing functions are defined
analogously.

The presheaf R↔ is not the real-number object R in the topos SetV(R)op

,
which is the constant presheaf defined by R(V ) := R for all V and R(iV ′V ) : R → R
as the identity. From the Kochen-Specker theorem, we would not expect that
physical quantities take their values in the real numbers. (This does not mean that
the results of measurements are not real numbers. We do not discuss measurement
here.) More importantly, the presheaf R↔ takes into account the coarse-graining
inherent in the base category V(R): at each stage V , a pair (μ, ν) consisting of an
order-preserving and an order-reversing function defines a whole range or interval
[μ(V ), ν(V )] of real numbers, not just a single real number. (It can happen that
μ(V ) = ν(V ).) If we go to a smaller subalgebra V ′ ⊂ V , which is a kind of coarse-
graining, then we have μ(V ′) ≤ μ(V ) and ν(V ′) ≥ ν(V ), so the corresponding
interval [μ(V ′), ν(V ′)] can only become larger.

The representation of function symbols A : Σ → R. In order to represent a
physical quantity A belonging to the system S as an arrow from Σ to the presheaf
R↔ of ‘values’, we have to use a two-step process.

1. We first need the spectral order on self-adjoint operators in a von Neumann
algebra R [28, 10]. This is defined for all Â, B̂ ∈ Rsa with spectral families ÊA

resp. ÊB as

Â ≤s B̂ :⇔ (∀λ ∈ R : ÊA
λ ≥ ÊB

λ ).

Equipped with the spectral order, the set of self-adjoint operators in a von Neu-
mann algebra becomes a boundedly complete lattice.
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Let Â ∈ R be the self-adjoint operator representing A. We use the spectral
order on each abelian subalgebra V ∈ V(R) and define

δo(Â)V :=
∧
{B̂ ∈ Vsa | B̂ ≥s Â},

δi(Â)V :=
∨
{Ĉ ∈ Vsa | Ĉ ≤s Â}.

We call these mappings outer and inner daseinisation, respectively.11 The outer
daseinisation δo(Â)V of Â to the context V is the approximation from above by
the smallest self-adjoint operator in V that is spectrally larger than Â. Likewise,
the inner daseinisation δi(Â)V is the approximation from below by the largest self-
adjoint operator in V that is spectrally smaller then Â. Since the spectral order is
coarser than the usual, linear order, we have, for all V ,

δi(Â)V ≤ Â ≤ δo(Â)V .

One can show that the spectra of δi(Â)V and δo(Â)V are subsets of the spectrum
of Â, which seems physically very sensible. If we used the approximation in the
linear order, this would not hold in general. The approximation of self-adjoint
operators in the spectral order was suggested by de Groote [11, 12]. If V ′ ⊂ V ,
then, by construction, δi(Â)V ′ ≤s δi(Â)V and δo(Â)V ′ ≥s δo(Â)V , which implies

δi(Â)V ′ ≤ δi(Â)V ,

δo(Â)V ′ ≥ δo(Â)V .

In this sense, the approximations to Â become coarser if the context becomes
smaller.

2. Now that we have constructed a pair (δi(Â)V , δo(Â)V ) of operators ap-
proximating Â from below and from above for each context V , we can define a
natural transformation δ̆(Â) from Σ to R↔ in the following way: let V ∈ V(R) be
a context, and let λ ∈ ΣV be a pure state of V . Then define, for all V ′ ∈↓V ,

μλ(V ′) := λ(δi(Â)V ′) = δi(Â)V ′(λ),

where δi(Â)V ′ is the Gel’fand transform of the self-adjoint operator δi(Â)V ′ . From
the theory of abelian C∗-algebras, it is known that λ(δi(Â)V ′) ∈ sp(δi(Â)V ′) (see
e.g. [22]). Let V ′, V ′′ ∈↓V such that V ′′ ⊂ V ′. We saw that δi(Â)V ′′ ≤ δi(Â)V ′ ,
which implies λ(δi(Â)V ′′) ≤ λ(δi(Â)V ′), so μλ :↓V → R is an order-preserving
function. Analogously, let

νλ(V ′) := λ(δo(Â)V ′) = δo(Â)V ′(λ)

11‘Daseinisation’ comes from the German word Dasein, which means existence. More specifically,
we borrow from Heidegger’s existential philosophy, where ‘Da-sein’ means ‘being-there’, being in
the world. I hope it is needless to say that the coinage daseinisation (meaning the act of bringing
into existence) is slightly tongue-in-cheek.
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for all V ′ ∈↓V . We obtain an order-reversing function νλ :↓V → R. Then, for all
V ∈ V(R), let

δ̆(Â)(V ) : ΣV −→ R↔
V

λ �−→ (μλ, νλ).

By construction, these mappings are the components of a natural transformation
δ̆(Â): Σ → R↔. For all V, V ′ ∈ V(R) such that V ′ ⊆ V , we have a commuting
diagram

R↔
V R↔

V ′�
R↔(iV ′V )

ΣV ΣV ′�Σ(iV ′V )

�

δ̆(Â)(V )

�

δ̆(Â)(V ′)

The arrow δ̆(Â) : Σ → R↔ in the presheaf topos SetV(R)op

is the representative
of the physical quantity A, which is abstractly described by the function symbol
A : Σ →R in our formal language. The physical content, namely the appropriate
choice of the self-adjoint operator Â from which we construct the arrow δ̆(Â), is
not part of the language, but part of the representation.12

The representation of propositions. As discussed in subsection 1.2, in clas-
sical physics the subset of state space S representing a proposition “A ∈ Δ” is
constructed by taking the inverse image f−1

A (Δ) of Δ under the function represent-
ing A. We will use the analogous construction in the topos formulation of quantum
theory: the set Δ is a subset (that is, subobject) of the quantity-value object R
in classical physics, so we start from a subobject (in SetV(R)op

) Θ of the presheaf
R↔. We get a subobject of the state object Σ by pullback along δ̆(Â), which we
denote by δ̆(Â)−1(Θ).13 For details see subsection 3.6 in [7] and also [13].

In both classical and quantum theory, propositions are represented by subob-
jects of the quantity-value object (state space S resp. spectral presheaf Σ). Such
subobjects are constructed by pullback from subobjects of the quantity-value ob-
ject (real numbers R resp. presheaf of order-preserving and -reversing functions
R↔). The interpretation and meaning of such propositions is determined by the
internal logic of the topos (Set resp. SetV(R)op

). In the classical case, where Set is
used, this is the ordinary Boolean logic that we are familiar with. In the quantum

12The current scheme is not completely topos-internal yet. It is an open question if every arrow
from Σ to R↔ comes from a self-adjoint operator. This is why we start from a self-adjoint operator

Â to construct δ̆(Â). We are working on a more internal characterization.
13This is a well-defined categorical construction, since the pullback of a monic is a monic, so we
get a subobject of Σ from a subobject of R↔.
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case, the internal logic of the presheaf topos SetV(R)op

has to be used. This in-
tuitionistic logic can be interpreted using Kripke-Joyal semantics, see e.g. chapter
VI in [27].

The Heyting algebra structure of subobjects. In the next section, we discuss
the representation of states in the topos SetV(R)op

and the assignment of truth-
values to propositions. Before doing so, it is worth noting that the subobjects of
Σ form a Heyting algebra (since the subobjects of any object in a topos do), so
we have mapped propositions “A ∈ Δ” (understood as discussed) to a distributive
lattice with a pseudocomplement. Together with the results from the next section,
we have a completely new form of quantum logic, based upon the internal logic
of the presheaf topos SetV(R)op

. Since this is a distributive logic and since the
internal logic of a topos has powerful rules of inference, this kind of quantum logic is
potentially much better interpretable than ordinary quantum logic of the Birkhoff-
von Neumann kind. The latter type of quantum logic and its generalizations are
based on nondistributive structures and lack a deductive system.

5. Truth objects and truth-values

In classical physics, a state is just a point of state space.14 Since, as we saw, the
spectral presheaf Σ has no elements (or, global elements15), we must represent
states differently in the presheaf topos SetV(R)op

.

5.1. Generalized elements as generalized states

One direct way, suggested in [13], is the following generalization: Σ has no global
elements 1 → Σ, but it does have subobjects U ↪→ Σ. In algebraic geometry and
more generally in category theory, such monics (and, more generally, arbitrary
arrows) are called generalized elements [25]. We could postulate that these sub-
objects, or some of them, are ‘generalized states’. Consider another subobject of
Σ that represents a proposition “A ∈ Δ” about the quantum system, given by its
characteristic arrow χS : Σ → Ω. Then we can compose these arrows

U ↪→ Σ → Ω

to obtain an arrow U → Ω. This is not a global element 1 → Ω of Ω, and by
construction, it cannot be, since Σ has no global elements, but it is a generalized
element of Ω. It might be possible to give a physical meaning to these arrows

14One might call this a pure state, though this is not customary in classical physics. Such a state
actually is a point measure on state space, in contrast to more general probability measures that
describe general states. We only consider pure states here and identify the point measure with
the corresponding point of state space.
15Elements 1 → P of a presheaf P are called global elements or global sections in category theory.
We follow this convention to avoid confusion with points or elements of sets.
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U → Ω if one can (a) give physical meaning to the subobject U ↪→ Σ, making
clear what a generalized state actually is, and (b) give a logical and physical
interpretation of an arrow U → Ω. While a global element 1 → Ω is interpreted as
a truth-value in the internal logic of a topos, the logical interpretation of an arrow
U → Ω is not so clear.

We want to emphasize that mathematically, the above construction is per-
fectly well-defined. It remains to be worked out if a physical and logical meaning
can be attached to it.

5.2. The construction of truth objects

We now turn to the construction of so-called ‘truth objects’ from pure quantum
states ψ, see also [6]. (To be precise, a unit vector ψ in the Hilbert space H
represents a vector state ϕψ : R → C on a von Neumann algebra, given by
ϕψ(Â) := 〈ψ| Â |ψ〉 for all Â ∈ R. If R = B(H), then every ϕψ is a pure state.)
Of course, the Hilbert space H is the Hilbert space on which the von Neumann
algebra of observables R ⊆ B(H) is represented. This is the most direct way
in which Hilbert space actually enters the mathematical constructions inside the
topos SetV(R)op

. However, we will see how this direct appeal to Hilbert space
possibly can be circumvented.

Given a subobject of Σ that represents some proposition, a truth object will
allow us to construct a global element 1 → Σ of Σ, as we will show in subsection 5.4.
This means that from a proposition and a state, we do get an actual truth-value
for that proposition in the internal logic of the topos SetV(R)op

. The construction
of truth objects is a direct generalization of the classical case.

For the moment, let us consider sets. Let S be a subset of some larger set X ,
and let x ∈ X . Then

(x ∈ S) ⇔ (S ∈ U(x)),

where U(x) denotes the set of neighborhoods of x in X . The key observation is that
while the l.h.s. cannot be generalized to the topos setting, since we cannot talk
about points like x, the r.h.s. can. The task is to define neighborhoods in a suitable
manner. We observe that U(x) is a subset of the power set PX = P (X), which is
the same as an element of the power set of the power set PPX = P (P (X)).

This leads to the idea that for each context V ∈ V(R), we must choose an
appropriate set of subsets of the Gel’fand spectrum ΣV such that these sets of
subsets form an element in PPΣ. Additionally, the subsets we choose at each
stage V should be clopen, since the clopen subsets Pcl(ΣV ) form a lattice that is
isomorphic to the lattice P(V ) of projections in V . If P̂ ∈ V is a projection, then
the corresponding clopen subset of ΣV is

SP̂ := {λ ∈ ΣV | λ(P̂ ) = 1}.
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Conversely, given a clopen subset S ∈ Pcl(ΣV ), we denote the corresponding pro-
jection in P(V ) by P̂S . It is given as the inverse Gel’fand transform of the charac-
teristic function of S.

The main difficulty lies in the fact that the spectral presheaf Σ has no global
elements, which is equivalent to the Kochen-Specker theorem. A global element, if
it existed, would pick one point λV from each Gel’fand spectrum ΣV (V ∈ V(R))
such that, whenever V ′ ⊂ V , we would have λV ′ = λV |V ′ . If we had such global
elements, we could define neighborhoods for them by taking, for each V ∈ V(R),
neighborhoods of λV in ΣV .

Since no such global elements exist, we cannot expect to have neighborhoods
of points at each stage. Rather, we will get neighborhoods of sets at each stage V ,
and only for particular V , these sets will have just one element. In any case, the
sets will depend on the state ψ in a straightforward manner. We define:

Definition 4. Let ψ ∈ H be a unit vector, let P̂ψ the projection onto the corre-
sponding one-dimensional subspace (i.e., ray) of H, and let Pcl(ΣV ) be the clopen
subsets of the Gel’fand spectrum ΣV . If S ∈ Pcl(ΣV ), then P̂S ∈ P(V ) denotes the
corresponding projection. The truth object Tψ = (Tψ

V )V ∈V(R) is given by

∀V ∈ V(R) : Tψ
V := {S ∈ Pcl(ΣV ) | 〈ψ| P̂S |ψ〉 = 1}.

At each stage V , Tψ
V collects all subsets S of ΣV such that the expectation

value of the projection corresponding to this subset is 1. From this definition, it is
not clear at first sight that the set Tψ

V can be seen as a set of neighborhoods.

Lemma 5. We have the following equalities:

∀V ∈ V(R) : Tψ
V = {S ∈ Pcl(ΣV ) | 〈ψ| P̂S |ψ〉 = 1}

= {S ∈ Pcl(ΣV ) | P̂S ≥ P̂ψ}
= {S ∈ Pcl(ΣV ) | P̂S ≥ δo(P̂ψ)V }
= {S ∈ Pcl(ΣV ) | S ⊇ Sδo(P̂ψ)V

}.

Proof. If 〈ψ| P̂S |ψ〉 = 1, then ψ lies entirely in the subspace of Hilbert space that
P̂S projects onto. This is equivalent to P̂S ≥ P̂ψ. Since P̂S ∈ P(V ) and δo(P̂ψ)V is
the smallest projection in V that is larger than P̂ψ,16 we also have P̂S ≥ δo(P̂ψ)V .
In the last step, we simply go from the projections in V to the corresponding
clopen subsets of ΣV . �

This reformulation shows that Tψ
V actually consists of subsets of the Gel’fand

spectrum ΣV that can be seen as some kind of neighborhoods, not of a single
point of ΣV , but of a certain subset of ΣV , namely Sδo(P̂ψ)V

. In the simplest case,

16On projections, the spectral order ≤s and the linear order ≤ coincide.
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we have P̂ψ ∈ P(V ), so δo(P̂ψ)V = P̂ψ . Then Sδo(P̂ψ)V
= SP̂ψ

, and this subset
contains a single element, namely the pure state λ such that

λ(P̂ψ) = 1

and λ(Q̂) = 0 for all Q̂ ∈ P(V ) such that Q̂P̂ψ = 0. In this case, Tψ
V actually

consists of all the clopen neighborhoods of the point λ in ΣV .

In general, if P̂ψ does not lie in the projections P(V ), then there is no subset of
ΣV that corresponds directly to P̂ψ . We must first approximate P̂ψ by a projection
in V , and δo(P̂ψ)V is the smallest projection in V larger than P̂ψ. The projection
δo(P̂ψ)V corresponds to a subset Sδo(P̂ψ)V

⊆ ΣV that may contain more than one

element. However, Tψ
V can still be seen as a set of neighborhoods, but now of this

set Sδo(P̂ψ)V
rather than of a single point.

It is an interesting and non-trivial point that the (outer) daseinisation
δo(P̂ψ)V (V ∈ V(R)) shows up in this construction. We did not discuss this here,
but the subobjects of Σ constructed from the outer daseinisation of projections
play a central role in the representation of a certain propositional language PL(S)
that one can attach to a physical system S [5, 6]. Moreover, these subobjects are
‘optimal’ in the sense that, whenever V ′ ⊂ V , the restriction from Sδo(P̂ )V

to
Sδo(P̂ )V ′ is surjective, see Theorem 3.1 in [6]. This property can also lead the way
to a more internal characterization of truth-objects, without reference to a state
ψ and hence to Hilbert space.

5.3. Truth objects and Birkhoff-von Neumann quantum logic

In this short subsection, we want to consider truth objects from the point of view
of ordinary quantum logic, which goes back to the famous paper [3] by Birkhoff
and von Neumann. This is a small digression, since an important part of the topos
approach is to replace ordinary quantum logic by the internal logic of the topos
SetV(R)op

. It may still be useful to understand how our constructions relate to
Birkhoff-von Neumann quantum logic.

For now, let us assume that R = B(H), then we write P(H) := P(B(H)) for
the lattice of projections on Hilbert space. In their paper, Birkhoff and von Neu-
mann identify a proposition “A ∈ Δ” about a quantum system with a projection
operator Ê[A ∈ Δ] ∈ P(H) via the spectral theorem [22] and interpret the lattice
structure of P(H) as giving a quantum logic. This is very different from the topos
form of quantum logic, since P(H) is a non-distributive lattice, leading to all the
well-known interpretational difficulties.

The implication in ordinary quantum logic is given by the partial order on
P(H): a proposition “A ∈ Δ1” implies a proposition “B ∈ Δ2” (where we can
have B = A) if and only if Ê[A ∈ Δ1] ≤ Ê[B ∈ Δ2] holds for the corresponding
projections.
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The idea now is that, given a pure state ψ and the corresponding projection
P̂ψ onto a ray, we can collect all the projections larger than or equal to P̂ψ . We
denote this by

Tψ := {P̂ ∈ P(H) | P̂ ≥ P̂ψ}.

The propositions represented by these projections are exactly those propositions
about the quantum system that are (totally) true if the system is in the state ψ.
Totally true means ‘true with probability 1’ in an instrumentalist interpretation.
If, for example, a projection Ê[A ∈ Δ] is larger than P̂ψ and hence contained in Tψ,
then, upon measurement of the physical quantity A, we will find the measurement
result to lie in the set Δ with certainty (i.e., with probability 1).

Tψ is a maximal (proper) filter in P(H). Every pure state ψ gives rise to such
a maximal filter Tψ, and clearly, the mapping ψ �→ Tψ is injective. We can obtain
the truth object Tψ from the maximal filter Tψ simply by defining

∀V ∈ V(R) : Tψ
V := Tψ ∩ V.

In each context V , we collect all the projections larger than P̂ψ . On the level
of propositions, we have all the propositions about physical quantities A in the
context V that are totally true in the state ψ.

5.4. The assignment of truth-values to propositions

We return to the consideration of the internal logic of the topos SetV(R)op

and
show how to define a global element 1 → Ω of the subobject classifier from a clopen
subobject S of Σ and a truth object Tψ . The subobject S represents a proposition
about the quantum system, the truth object Tψ represents a state, and the global
element of Ω will be interpreted as the truth-value of the proposition in the given
state. Thus, we make use of the internal logic of the topos SetV(R)op

of presheaves
over the context category V(R) to assign truth-values to all propositions about a
quantum system.

It is well known that the subobject classifier Ω in a topos of presheaves is the
presheaf of sieves (see e.g. [27]). A sieve σ on an object A in some category C is a
collection of arrows with codomain A with the following property: if f : B → A is
in σ and g : C → B is another arrow in C, then f ◦ g : C → A is in σ, too. In other
words, a sieve on A is a downward closed set of arrows with codomain A. Since
the context category V(R) is a partially ordered set, things become very simple:
the only arrows with codomain V are the inclusions iV ′V . Since such an arrow is
specified uniquely by its domain V ′, we can think of the sieve σ on V as consisting
of certain subalgebras V ′ of V . If V ′ ∈ σ and V ′′ ⊂ V ′, then V ′′ ∈ σ.

The restriction mappings of the presheaf Ω are given by pullbacks of sieves.
The pullback of sieves over a partially ordered set takes a particularly simple form:
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Lemma 6. If σ is a sieve on V ∈ V(R) and V ′ ⊂ V , then the pullback σ · iV ′V is
given by σ∩ ↓V ′. (This holds analogously for sieves on any partially ordered set,
not just V(R)).

Proof. For the moment, we switch to the arrows notation. By definition, the pull-
back σ · iV ′V is given by

σ · iV ′V := {iV ′′V ′ | iV ′V ◦ iV ′′V ′ ∈ σ}.

We now identify arrows and subalgebras as usual and obtain (using the fact that
V ′′ ⊆ V ′ implies V ′′ ⊂ V )

{iV ′′V ′ | iV ′V ◦ iV ′′V ′ ∈ σ} � {V ′′ ⊆ V ′ | V ′′ ∈ σ} =↓V ′ ∩ σ.

Since ↓ V ′ is the maximal sieve on V ′, the pullback σ · iV ′V is given as the inter-
section of σ with the maximal sieve on V ′. �

The name �S� of the subobject S is the unique arrow 1 → PΣ = ΩΣ into
the power object of Σ (i.e., the subobjects of Σ) that ‘picks out’ S among all
subobjects. �S� is a global element of PΣ. Here, one uses the fact that power
objects behave like sets, in particular, they have global elements. Since we assume
that S is a clopen subobject, we also get an arrow 1 → PclΣ into the clopen power
object of Σ, see [6]. We denote this arrow by �S�, as well.

Since Tψ ∈ PPclΣ is a collection of clopen subobjects of Σ, it makes sense
to ask if S is among them; an expression like �S� ∈ Tψ is well-defined. We define,
for all V ∈ V(R), the valuation

v(�S� ∈ Tψ)V := {V ′ ⊆ V | S(V ′) ∈ Tψ
V ′}.

At each stage V , we collect all those subalgebras of V such that S(V ′) is contained
in Tψ

V ′ .

In order to construct a global element of the presheaf of sieves Ω, we must
first show that v(�S� ∈ Tψ)V is a sieve on V . In the proof we use the fact that
the subobjects obtained from daseinisation are optimal in a certain sense.

Proposition 7. v(�S� ∈ Tψ)V := {V ′ ⊆ V | S(V ′) ∈ Tψ
V ′} is a sieve on V .

Proof. As usual, we identify an inclusion morphism iV ′V with V ′ itself, so a sieve on
V consists of certain subalgebras of V . We have to show that if V ′ ∈ v(�S� ∈ Tψ)V

and V ′′ ⊂ V ′, then V ′′ ∈ v(�S� ∈ Tψ)V . Now, V ′ ∈ v(�S� ∈ Tψ)V means
that S(V ′) ∈ Tψ

V ′ , which is equivalent to S(V ′) ⊇ Sδo(P̂ψ)V ′ . Here, Sδo(P̂ψ)V ′
is the component at V ′ of the sub-object Sδo(P̂ψ) = (Sδo(P̂ψ)V

)V ∈V(R) of Σ ob-

tained from daseinisation of P̂ψ. According to Thm. 3.1 in [6], the sub-object
Sδo(P̂ψ) is optimal in the following sense: when restricting from V ′ to V ′′, we have
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Σ(iV ′′V ′)(Sδo(P̂ψ)V ′ ) = Sδo(P̂ψ)V ′′ , i.e., the restriction is surjective. By assumption,
S(V ′) ⊇ Sδo(P̂ψ)V ′ , which implies

S(V ′′) ⊇ Σ(iV ′′V ′)(S(V ′)) ⊇ Σ(iV ′′V ′)(Sδo(P̂ψ)V ′ ) = Sδo(P̂ψ)V ′′ .

This shows that V ′′ ∈ Tψ
V ′′ and hence V ′′ ∈ v(�S� ∈ Tψ)V . �

Finally, we have to show that the sieves v(�S� ∈ Tψ)V , V ∈ V(R), actually
form a global element of Ω, i.e., they all fit together under the restriction mappings
of the presheaf Ω:

Proposition 8. The sieves v(�S� ∈ Tψ)V , V ∈ V(R), (see Prop. 7) form a global
element of Ω.

Proof. From Lemma 6, is suffices to show that, whenever V ′ ⊂ V , we have v(�S� ∈
Tψ)V ′ = v(�S� ∈ Tψ)V ∩ ↓V ′. If V ′′ ∈ v(�S� ∈ Tψ)V ′ , then S(V ′′) ∈ Tψ

V ′′ , which
implies V ′′ ∈ v(�S� ∈ Tψ)V . Conversely, if V ′′ ∈↓V ′ and V ′′ ∈ v(�S� ∈ Tψ)V ,
then, again, S(V ′′) ∈ Tψ

V ′′ , which implies V ′′ ∈ v(�S� ∈ Tψ)V ′ . �

The global element v(�S� ∈ Tψ) = (v(�S� ∈ Tψ)V )V ∈V(R) of Ω is interpreted
as the truth-value of the proposition represented by S ∈ Pcl(Σ) if the quantum
system is in the state ψ (resp. Tψ). This assignment of truth-values is

• contextual, since the contexts V ∈ V(R) play a central role in the whole
construction

• global in the sense that every proposition is assigned a truth-value
• completely independent of any notion of measurement or observer, hence we

call our scheme a ‘neo-realist’ formulation of quantum theory
• topos-internal, the logical structure is not chosen arbitrarily, but fixed by the

topos SetV(R)op

. This topos is directly motivated from the Kochen-Specker
theorem

• non-Boolean, since there are (a) more truth-values than just ‘true’ and ‘false’
and (b) the global elements form a Heyting algebra, not a Boolean algebra.
There is a global element 1 of Ω, consisting of the maximal sieve ↓V at each
stage V , which is interpreted as ‘totally true’, and there is a global element
0 consisting of the empty sieve for all V , which is interpreted as ‘totally
false’. Apart from that, there are many other global elements that represent
truth-values between ‘totally true’ and ‘totally false’. These truth-values are
neither numbers nor probabilities, but are given by the logical structure of
the presheaf topos SetV(R)op

. Since the Heyting algebra of global elements of
Ω, i.e., of truth-values, is a partially ordered set only, there are truth-values
v1, v2 such that neither v1 < v2 nor v2 < v1, which is also different from two-
valued Boolean logic where simply 0 < 1 (i.e., ‘false’<‘true’). The presheaf
topos SetV(R)op

has a rich logical structure.
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6. Conclusion and outlook

The formulation of quantum theory within the presheaf topos SetV(R)op

gives a
theory that is remarkably similar to classical physics from a structural perspective.
In particular, there is a state object (the spectral presheaf Σ) and a quantity-value
object (the presheaf R↔ of order-preserving and -reversing functions). Physical
quantities are represented by arrows between Σ and R↔.

One of the future tasks will be the incorporation of dynamics. The process
of daseinisation behaves well with respect to the action of unitary operators, see
section 5.2 in [7], so it is conceivable that there is a ‘Heisenberg picture’ of dy-
namics. Commutators remain to be understood in the topos picture. On the other
hand, it is possible to let a truth-object Tψ change in time by applying Schrödinger
evolution to ψ. It remains to be shown how this can be understood topos-internally.

Mulvey and Banaschewski have recently shown how to define the Gel’fand
spectrum of an abelian C∗-algebra A in any Grothendieck topos, using constructive
methods (see [2] and references therein). Spitters and Heunen made the following
construction in [13]: one takes a non-abelian C∗-algebra A and considers the topos
of (covariant) functors over the category of abelian subalgebras of A. The algebra
A induces an internal abelian C∗-algebra A in this topos of functors. (Internally,
algebraic operations are only allowed between commuting operators.) Spitters and
Heunen observed that the Gel’fand spectrum of this internal algebra basically is
the spectral presheaf.17 It is very reassuring that the spectral presheaf not only
has a physical interpretation, but also such a nice and natural mathematical one.
Spitters and Heunen also discuss integration theory in the constructive context.
These tools will be very useful in order to regain actual numbers and expectation
values from the topos formalism.

Since the whole topos programme is based on the representation of formal
languages, major generalizations are possible. One can represent the same lan-
guage L(S) in different topoi, as we already did with Set for classical physics and
SetV(R)op

for algebraic quantum theory. For physical theories going beyond this,
other topoi will play a role. The biggest task is the incorporation of space-time
concepts, which will, at the very least, necessitate a change of the base category.
It is also conceivable that the ‘smooth topoi’ of synthetic differential geometry
(SDG) will play a role.
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[5] A. Döring, C. J. Isham, “A Topos Foundation for Theories of Physics: I. Formal
Languages for Physics”, quant-ph/0703060, to appear in J. Math. Phys. (March
2008)
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1. Introduction

The study of oscillatory integrals of the form

I
Φ
ε (f) = “

∫
RN

eiΦ
ε (x)f(x)dx

′′
(1)

is a classical topic, largely developed in connections with several applications in
mathematics, such as the theory of Fourier integral operators [51, 66], and in
physics (for instance in optics, see, e.g., [26]). In the expression on the right hand
side of (1) Φ denotes a real valued “phase function”, f a complex valued function
and ε ∈ R+ a real parameter. Well known examples of integrals of the form (1)
are the Fresnel integrals ∫

R

eix2
f(x)dx

applied in the theory of wave diffraction and the Airy integrals∫
R

eix3
f(x)dx
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applied in the theory of the rainbow. The fundamental feature of the integral (1)
is the oscillatory behavior of the term eiΦ

ε , which allows to define the integral
as an improper Riemann integral even if the function f is not summable, by
exploiting the cancelations due to the alternating of the sign of the integrand. This
property makes oscillatory integrals the suitable mathematical objects representing
the physical concept of coherent superposition, that is of interference. It is thus not
surprising that, besides optics, electromagnetism and hydrodynamics, one of the
most suggestive and powerful applications of oscillatory integrals can be found in
non relativistic quantum mechanics. Indeed in 1942 R. Feynman [38], inspired by
a paper by Dirac [35], proposed an alternative formulation of quantum mechanics
using heuristic infinite dimensional oscillatory integrals. According to Feynman the
solution of the Schrödinger equation, describing the time evolution of the state of
a quantum particle moving under the influence of a (real-valued) potential V{

i� ∂
∂tψ = − �2

2mΔψ + V ψ
ψ(0, x) = ψ0(x)

(2)

(m denotes the mass of the particle and � the reduced Planck constant), should be
given by a “sum over all possible histories”. In other words the wave function of
the system at time t evaluated at the point x ∈ Rd should be given by an integral
on the space of continuous paths γ ending at time t at the point x:

ψ(t, x) = “

∫
{γ|γ(t)=x}

e
i
�

St(γ)ψ0(γ(0))Dγ
′′
. (3)

St(γ) is the classical action of the system evaluated along the path γ

St(γ) = S0(γ)−
∫ t

0

V (s, γ(s))ds, S0(γ) =
m

2

∫ t

0

|γ̇(s)|2ds

and Dγ denotes a heuristic “flat” measure on the space of paths. The heuristic
expression (3) can be regarded as an infinite dimensional analogue of the integral
(1):

I
Φ
ε = “

∫
Γ

eiΦ
ε (γ)f(γ)dγ

′′
, (4)

that is an oscillatory integral on an (infinite dimensional) space of paths Γ with
ε = �. The Feynman path integral approach of quantum mechanics is particularly
suggestive as it creates a connection between the classical Lagrangian description
of the physical world and the quantum one, reintroducing in quantum mechanics
the concept of trajectory, which had been banned by the traditional formulation
of quantum theory. Formula (3) provides a quantization method allowing, at least
heuristically, to associate to each classical Lagrangian a quantum evolution. Feyn-
man himself extended the path integral approach to the description of the dynam-
ics of more general quantum systems, including the quantum fields, and producing
a heuristic calculus that, from a physical point of view, often works even in cases
where other methods fail.
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Another feature of oscillatory integrals which makes representation (3) par-
ticularly interesting is the existence of a well known theory allowing one to study
the asymptotic behavior of integrals (1) when ε is regarded as a small parame-
ter converging to 0. Originally introduced by Stokes and Kelvin and successively
developed by several mathematicians, in particular van der Corput (who, by the
way, was particularly interested in applications to number theory), the “stationary
phase method” provides a powerful tool to handle the asymptotics of (1) as ε ↓ 0.
According to it, the main contribution to the asymptotic behavior of the integral
should come from those points x ∈ RN belonging to the critical manifold:

{x ∈ RN , | Φ′(x) = 0},
that is the points which make stationary the phase function Φ. The asymptotic
analysis of oscillatory integrals is successfully applied to different areas of mathe-
matics such as the theory of (partial) differential equations, the singularity theory
and the number theory.

The extension of these techniques to the infinite dimensional case and in
particular to the Feynman formula (3) makes very intuitive the study of the semi-
classical limit of quantum mechanics, that is the study of the detailed behavior of
the wave function ψ in the case the Planck constant � is regarded as a small pa-
rameter. According to an (heuristic) application of the stationary phase method,
in the limit � ↓ 0 the main contribution to the integral (3) should come from
those paths γ which make stationary the action functional St. These, by Hamil-
ton’s least action principle, are exactly the classical orbits of the system. Moreover
the heuristic applications of the asymptotic expansion of Feynman path integrals
(and related Euclidean path integrals) in quantum field theory gives interesting
results connected to the study of solitons resp. instantons, resp. in the case of
certain gauge fields, of topological invariants (see, e.g., [73, 74, 59, 68] for physical
discussion and e.g. , [76], [41] and [3] for Euclidean path integrals).

Despite its fascinating features, formula (3) lacks of mathematical rigor, in-
deed the Lebesgue “flat” measure Dγ on the space on paths does not have a
mathematical meaning (it is quite simple to see that on an infinite dimensional
Hilbert space it is not possible to construct a Lebesgue-type measure, that is a
σ−additive regular measure which is invariant by translations and rotations and
such that the measure of bounded open sets is strictly positive and finite). Feyn-
man himself was aware of this problem as he writes “one must feel as Cavalieri
must have felt calculating the volume of a pyramid before the invention of the
calculus”. The challenge to give meaning to Feynman’s heuristic calculus and to
define rigorously oscillatory integrals (4) in infinite dimension, as well as to de-
velop an infinite dimensional version of the stationary phase method, was left to
mathematicians (see also, e.g. [3, 50, 58]).

The difficulties are twofold:
• First of all one has to define an integration theory on a space of paths, that is

on an infinite dimensional space. We recall that integration theory in spaces
of continuous functions was present at Feynman’s time thanks in particular
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to the work by Wiener on Brownian motion in the 20’s (particularly in 1923)
and much successive work by Cameron, Martin and others giving rise to the
theory of stochastic processes, see e.g.[3]. However there is no mention of
Wiener integrals in Feynman’s papers.

• In the definition of Feynman path integrals one should exploit the oscillatory
behavior of the integrand. In principle the convergence of the integral should
be given by the cancelations due to this oscillatory behavior.
In the next section we shall briefly describe a solution of this problem, while

in section 3 several interesting applications of Feynman path integrals to quantum
mechanics and quantum fields will be mentioned. Due to limitation of space and
time, we will mainly concentrate on lines of research directly connected to our own
ones and with recent developments. In particular some very interesting topics have
to be left out, e.g. extensions to Dirac systems see, e.g. [54, 55], hyperbolic systems
[78], oscillatory complex Gaussian integrals, see also e.g., the extensive references
in [3, 12, 58, 61].

2. The mathematical realization of Feynman path integrals

In this section we shall see how the definition and the main properties of classical
oscillatory integrals in finite dimension can be extended to the case where the
integration is performed on an infinite dimensional Hilbert space.

A systematic treatment of finite dimensional oscillatory integrals, as well as
their application to the theory of Fourier integral operators, can be found in the
work by Hörmander [51] (see also, e.g., [36] and [66]). According to Hörmander,
the integral (1) can be computed even when the function f is not summable by
exploiting the cancelations due to the oscillatory behavior of the integrand. The
oscillatory integral is defined as the limit of a sequence of regularized integrals.

Definition 1. Let f : Rn → C be a Borel function and Φ : Rn → R a phase
function. If for each test function φ ∈ S(Rn) such that φ(0) = 1 the integrals

Iδ(f, φ) :=
∫

Rn

(2πiε)−n/2eiΦ(x)
ε f(x)φ(δx)dx

exist for all δ > 0 and limδ→0 Iδ(f, φ) exists and is independent of φ, then the limit
is called the oscillatory integral of f with respect to Φ

ε and denoted by∫̃
Rn

eiΦ(x)
ε f(x)dx ≡ I

Φ
ε (f). (5)

In the special case where the phase function is a quadratic form, the oscilla-
tory integral is called Fresnel integral (following the name given to certain integrals
in optics, see [12]).

The existence of the integral I
Φ
ε (f) can be proved for large classes of functions

Φ, f [51, 52, 36, 66, 17], even though a complete direct characterization of the class
for which the integral is well defined is still an open problem. However, for suitable
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Φ, it is possible to find an interesting set of “integrable functions”, for which the
oscillatory integral IΦ(f) can be explicitly computed in terms of an absolutely
convergent integral thanks to a Parseval-type equality.

Given a (finite or infinite dimensional) real separable Hilbert space (H, 〈 , 〉),
whose elements are

denoted by x, y ∈ H, let us denote by F(H) the space of complex functions
on H which are Fourier transforms of complex bounded variation measures on H:

f ∈ F(H), f(x) =
∫
H
ei〈x,y〉dμf (y).

F(H) is a Banach algebra of functions, where the product is the pointwise one,
the unit element is the function identically one 1, i.e. 1(x) = 1 ∀x ∈ H and the
norm of a function f is given by the total variation of the corresponding measure
μf :

‖f‖F(H) = ‖μf‖ = sup
∑

i

|μ(Ei)|,

where the supremum is taken over all sequences {Ei} of pairwise disjoint Borel
subsets of H, such that ∪iEi = H. It is possible to prove [17] that if f ∈ F(Rn),

f = μ̂f , and for phase functions Φ such that FΦ ≡ ei Φ
ε

(2πiε)n/2 has a Fourier transform

F̂Φ which is integrable (in Lebesgue sense) with respect to μf , then the oscillatory
integral IΦ(f) exists and it is given by the following “Parseval formula”:

IΦ(f) =
∫

Rn

F̂Φ(α)dμf (α). (6)

Equation (6) holds for smooth phase functions Φ of at most even polynomial
growth at infinity.
Equation (6) allows, in the case Φ is an homogeneous polynomial and under regu-
larity assumptions on the function f , to compute (see [17]) the detailed asymptotic
expansion of the integral I

Φ
� (f) in fractional powers of the parameters � around

a degenerate (or non degenerate) critical point, with a strong control on the re-
mainders. The study of the asymptotics of oscillatory integrals in the case where
the critical manifold contains degenerate critical points is related with singularity
theory and catastrophe theory [27, 36, 26].

The generalization of these results to the infinite dimensional case involves
several technical difficulties. Indeed in the 60’s Cameron [28] proved that it is not
possible to realize the heuristic Feynman measure

dμF (γ) ≡ e
i
�

S0(γ)Dγ∫
e

i
�

S0(γ)Dγ

as a complex measure on the space of paths, as it would have infinite total vari-
ation (even locally). This means that for Feynman integrals it is not possible to
implement an integration theory in the traditional Lebesgue sense.
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The main idea to overcome this problem is dualization. In other words the
integral

“
∫

f(γ)
e

i
�

S0(γ)Dγ∫
e

i
�

S0(γ)Dγ

′′
= “

∫
f(γ)dμF (γ)′′ := IF (f)

has to be realized as a linear continuous functional on a suitable topological algebra
of “integrable functions”, generalizing the idea of (Radon) measure as linear func-
tional on the space of bounded continuous functions (on locally compact spaces).
Among the different approaches to the mathematical definition of the “Feynman
functional”, the most implemented are the theory of infinite dimensional oscilla-
tory integrals on Hilbert (resp. Banach spaces) [12] and the white noise calculus
[50]. In the following we shall extensively describe the first approach and give some
elements of the latter.

Let us denote by (H, 〈 , 〉) an infinite dimensional real separable Hilbert
space, Φ : H → R a phase function and f : H → C a complex valued function. An
infinite dimensional oscillatory integral on the Hilbert space H can be defined as
the limit of a sequence of finite dimensional approximations, as proposed in [37, 7].

Definition 2. A function f : H → C is said to be integrable with respect to the
phase function Φ : H → R if for any sequence Pn of projectors onto n-dimensional
subspaces of H, such that Pn ≤ Pn+1 and Pn → 1 strongly as n→∞ (1 being the
identity operator in H), the finite dimensional approximations∫̃

PnH
eiΦ(Pnx)

ε f(Pnx)d(Pnx),

are well defined (in the sense of definition 1) and the limit

lim
n→∞

∫̃
PnH

eiΦ(Pnx)
ε f(Pnx)d(Pnx) (7)

exists and is independent of the sequence {Pn}.
In this case the limit is called oscillatory integral of f with respect to the phase
function Φ and is denoted by

IΦ(f) ≡
∫̃
H
eiΦ(x)

ε f(x)dx.

As in the finite dimensional case, the basic question is the characterization
of the class of functions f and Φ for which the integral IΦ(f) is well defined.
According to [12, 37, 7], in the case where f belongs to the Banach algebra F(H)
of C−valued functions on H which are Fourier transform of bounded complex
measures on H and Φ is of the form Φ = Φ0 + V , where Φ0 is a quadratic form
and V ∈ F(H), then IΦ(f) can be explicitly computed in terms of a Parseval type
equality. In the following the small parameter ε will be replaced by � because of
its meaning in the applications to quantum mechanics.
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Theorem 1. Let L : H → H be a self adjoint trace class operator, such that I − L
is invertible. Let f, V ∈ F(H). Let us consider the phase function Φ : H → C,
given by

Φ(x) = Φ0(x) + V (x), x ∈ H (8)

with Φ0(x) = 〈x,(I−L)x〉
2 . Then the infinite dimensional oscillatory integral IΦ(f)

is well defined and it is given by∫̃
H
e

i
�
Φ(x)f(x)dx =

∫̃
H
e

i
2�

〈x,(I−L)x〉− i
�

V (x)f(x)dx

= (det(I − L))−1/2

∫
H
e−

i�

2 〈x,(I−L)−1x〉μ
fe− i

�
V (dx).

det(I−L) is the Fredholm determinant of the operator (I−L) (that is the product
of the eigenvalues of I − L). The right hand side is explicitly computable (e.g. by
an expansion in powers of e−

i
�

V ) as fe−
i
�

V ∈ F(H).

This result has been recently generalized [18] to phase functions of the form

Φ(x) = Φ0(x) + λP (x), x ∈ H, (9)

where Φ0 is of the type handled in theorem 1, λ ∈ R+ and P is a fourth order
polynomial. In this case the integral IΦ(f), f ∈ F(H), is still computable in terms
of a Parseval type equality:

IΦ(f) =
∫̃
H
e

i
�
Φ(x)f(x)dx =

∫
H
F̂Φ(x)dμf (x) (10)

with F̂Φ defined by

F̂Φ(x) = lim
n→∞(2πi�)−n/2

∫
PnH

ei〈Pnx,Pny〉e
i
�
Φ(Pny)dPny

= E[eiei π
4
√

�〈x, · 〉e
1
2 〈 · ,L · 〉e−iλ�P ( · )] (11)

where the expectation is taken with respect to N(0, IH), the centered standard
Gaussian measure associated with H. Analogously one has

IΦ(f) = E[f(ei π
4
√

� · )e 1
2 〈 · ,L · 〉e−iλ�P ( · )]. (12)

It is possible to prove that the right hand side of (12) is an analytic function for
Im(λ) < 0 and continuous for Im(λ) = 0. Moreover a corresponding result can be
proved for Φ = Φ0 + λP + V , with V ∈ F(H).

The infinite dimensional oscillatory integrals have some interesting proper-
ties, which are important as they mirror some heuristic features of formal Feynman
path integrals, in the case where the Hilbert space H is a space of paths γ. First of
all they have simple transformation properties under “translations and rotations”
in paths space, reflecting the fact that dx should represent a flat measure. They
satisfy a Fubini-type theorem, concerning iterated integration in paths space, al-
lowing, in the physical applications, to construct a one parameter group of unitary
operators associated to the time evolution described by the Schrödinger equation.
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They can be approximated by finite dimensional oscillatory integrals, allowing a
sequential (“time slicing”) approach very close to Feynman’s original derivation.
They are also related, via the Parseval type equality (12), to (Gaussian) proba-
bilistic integrals, allowing an “analytic continuation approach” (largely developed
by several authors [28, 29, 56, 57, 58, 69, 14, 8, 79]).

Moreover, the functional IΦ(f) satisfies a “duality property”, in other words
the application

f ∈ F(H) �→ IΦ(f)

is continuous in the norm of the Banach algebra F(H). The duality property is
central also in other approaches, e.g. [30] and [15]. It is also the main idea of the
white noise calculus approach [50], where the Feynman functional IΦ(f) is realized
as the pairing between the function f and an infinite dimensional distribution TΦ

(in the framework of the Hida calculus):

IΦ(f) = (S′)〈TΦ, f〉(S)

where the Gelfand triple is

(S) ⊂ L2(S′(Rs), N(0, IL2(Rs)) ⊂ (S′),

N(0, IL2(Rs)) being the Gaussian white noise measure, (S) = (S(Rs)) being essen-
tially an infinite dimensional analogue of S(Rs) ⊂ L2(Rs), and correspondingly
(S′) = (S′(Rs)) an infinite dimensional analogue of S′(Rs), the space of tempered
distributions.

It is worthwhile to underline that, within all the approaches, the phase func-
tion Φ which can be handled are essentially of the form (8), except for the pos-
sibility of including functions V of the form of a Laplace transform of bounded
measures, and some singular V , see, for example [12, 15, 50, 63]. The only approach
which is able to handle a (quartic) polynomial term as in (9) and the correspond-
ing method of stationary phase seems to be the infinite dimensional oscillatory
integrals approach described above.

3. Applications

3.1. Quantum mechanics

The first application of the infinite dimensional oscillatory integrals is the math-
ematical realization of the Feynman path integral representation for the solution
of the Schrödinger equation. Let us consider the Cameron-Martin space Ht, that
is the Hilbert space of absolutely continuous paths γ : [0, t] → Rd with γ(t) = 0
and square integrable weak derivative

∫ t

0 γ̇(s)2ds < ∞, endowed with the inner
product

〈γ1, γ2〉 =
∫ t

0

γ̇1(s) · γ̇2(s)ds.
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Let us consider Schrödinger equation (2) with a potential V which is the sum
of an harmonic oscillator term and a bounded perturbation which is the Fourier
transform of a complex bounded variation measure on Rd:

V (x) =
1
2
xΩ2x + v(x), x ∈ Rd, v ∈ F(Rd),

with Ω2 being a positive symmetric d× d matrix.
By taking as initial datum ψ0 ∈ L2(Rd) belonging to F(Rd), it is possible to

prove that the infinite dimensional oscillatory integral with respect to the quadratic
phase function Φ(γ) = 〈γ,γ〉

2� , γ ∈ Ht, of the functional f on the Cameron-Martin
space given by

γ �→ f(γ) = e−
i

2�

∫
t
0 (γ(s)+x)Ω2(γ(s)+x)dse−

i
�

v(γ(s)+x)ds)ψ0(γ(0) + x), γ ∈ Ht

can be computed by means of a Parseval type equality and is a representation of
the solution of the Schrödinger equation:

ψ(t, x) =
∫̃
Ht

ei 〈γ,γ〉
2� f(γ)dγ

=
∫̃
Ht

ei 〈γ,γ〉
2� e−

i
2�

∫ t
0 (γ(s)+x)Ω2(γ(s)+x)dse−

i
�

v(γ(s)+x)ds)ψ0(γ(0) + x)dγ

= “

∫
{γ|γ(t)=x}

e
i
�

St(γ)ψ0(γ(0))Dγ
′′
. (13)

The study of the asymptotics of the integral (13) in the limit � ↓ 0 is directly
related to the study of the “semiclassical expansions” of quantum mechanics. The
first rigorous results on the generalization of the method of the stationary phase
to the infinite dimensional case can be found in [13]. These results were further
developed in [72, 7]. By considering an infinite dimensional oscillatory integral of
this form

I(�) :=
∫̃

H
e

i
2�

〈x,x〉e−
i
�

V (x)f(x)dx

where V, f ∈ F(H) satisfy suitable regularity and growing conditions, one can
prove that
• the phase function Φ(x) = 〈x, x〉/2−V (x) has only non degenerate stationary

points
• the oscillatory integral I(�) is a C∞ function of the parameter �
• its asymptotic expansion in powers of � when � → 0 depends only on the

derivatives of V and f at the critical points.
It is important to underline that, under additional assumptions on V , it is

possible to prove that the asymptotic expansion is Borel summable so that it allows
the unambiguous determination of the function I(�) itself [72]. These results can be
applied to the study of the asymptotic behavior of the solution of the Schrödinger
equation in the limit where the Planck constant � is regarded as a small parameter
converging to 0. In fact, by assuming that the potential v is the Fourier transform
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of a complex bounded variation measure on Rd and that the initial datum has the
following form

ψ0(x) = e
i
�

s(x)χ(x), x ∈ Rd

with χ ∈ C∞
0 (Rd) and s ∈ C∞(Rd), it is possible to prove that the infinite di-

mensional oscillatory integral representation for the solution of the Schrödinger
equation∫̃

Ht

e
i

2�
〈γ,γ〉e−

i
2�

∫
t
0 (γ(s)+x)Ω2(γ(s)+x)dse−

i
�

∫
t
0 v(γ(s)+x)dse

i
�

s(γ(0)+x)χ(γ(0) + x)dγ

has an asymptotic expansion in powers of �, depending only on classical features of
the system. This technique yields an independent (Feynman path integral) rigorous
derivation of Maslov’s results on the WKB-type asymptotics of the solution of
Schrödinger equation, with, in addition, strong control on the remainders.

Another interesting application of the infinite dimensional stationary phase
method is the study of the trace of the Schrödinger group

Tr[e−
i
�

Ht]

and its asymptotic behavior when � → 0 [5, 6]. For potentials of the (usual) type
“harmonic oscillator plus Fourier transform of measure” it is possible to prove
a trace formula of Gutzwiller’s type, relating the asymptotic of the trace of the
Schrödinger group and the spectrum of the quantum mechanical energy operator
H with the classical periodic orbits of the system. Gutwiller’s trace formula, which
is a basis of the theory of quantum chaotic systems, is the quantum mechanical
analogue of Selberg’s trace formula, relating the spectrum of the Laplace-Beltrami
operator on manifolds with constant negative curvature with the periodic geodesics
on those manifolds.

Infinite dimensional oscillatory integrals can be also applied to the quan-
tum theory of open systems, in particular to the mathematical realization of the
“Feynman-Vernon influence functional”. Let us consider a quantum system A,
with state space L2(Rd), interacting with a quantum system B, with state space
L2(RN ), representing a reservoir. Let us assume that the total Hamiltonian of the
compound system is HAB = HA + HB + HI , where HA and HB are both Hamil-
tonians describing harmonic oscillators perturbed by bounded potentials vA, vB

belonging to F(Rr) and F(RN ) respectively. The interaction Hamiltonian is of
the form HI = xACxB, where xA ∈ Rd and xB ∈ RN represent the spatial coordi-
nates of the system A and B respectively, while C : RN → Rd is a matrix. Under
suitable assumptions on the initial state of the compound system it is possible
to prove that the reduced density operator kernel of the system A (obtained by
tracing out the environmental coordinates) is heuristically given by

ρA(t, x, y) = “

∫
γ(t)=x
γ′(t)=y

e
i
�
(SA(γ)−SA(γ′))F (γ, γ′)ρA(γ(0), γ′(0))DγDγ′ ′′

, (14)
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where F is the formal Feynman-Vernon influence functional

F (γ, γ′) (15)

= “
∫

Γ(t)=Q
Γ′(t)=Q

e
i
�
(SB(Γ)−SB(Γ′))e

i
�
(SI(Γ,γ)−SI(Γ′,γ′))ρB(Γ(0),Γ′(0))DΓDΓ′dQ′′ .

Under suitable assumptions on the initial state of the compound system it is pos-
sible to prove that the heuristic formula (14) can be realized in terms of an infinite
dimensional oscillatory integral on the Cameron-Martin space Ht [9]. This result
has been applied to the study of the Caldeira-Leggett model for the description of
the quantum Brownian motion.

An alternative description of a quantum system interacting with an exter-
nal environment is the stochastic Schrödinger equation, where the influence of
the reservoir is modeled by a noise term. Among the large number of stochastic
Schrödinger equations proposed by several authors, we consider for instance the
Belavkin equation, describing the time evolution of a quantum particle submitted
to the measurement of its position:⎧⎨⎩ dψ(t, x) = − i

�Hψ(t, x)dt− λ
2x

2ψ(t, x)dt +
√
λxψ(t, x)dW (t)

ψ(0, x) = ψ0(x) (t, x) ∈ [0, T ]× Rd,
(16)

(where λ > 0 is a coupling constant and W is a d-dimensional Brownian motion).
It is possible to prove that the solution of the stochastic Schrödinger equation
admits a Feynman path integral representation in terms of a well defined infinite
dimensional oscillatory integral [10], providing a rigorous mathematical realization
of the heuristic formula [67, 16] for the state of the system in the case the observed
trajectory is the path ω:

ψ(t, x, ω) = “
∫
{γ(t)=x}

e
i
�

St(γ)e−λ
∫ t
0 (γ(s)−ω(s))2dsψ(0, γ(0))Dγ ′′ (17)

One can see that, as an effect of the correction term e−λ
∫

t
0 (γ(s)−ω(s))2ds due to

the measurement, the paths giving the main contribution to the integral are those
closer to the observed trajectory ω.

The extensions of these results to the case where the potential V in the
Schrödinger equation (2) has polynomial growth, i.e. V (x) = 1

2xΩ2x + λx2N with
Ω : Rd → Rd, λ > 0 and x ∈ Rd, has been recently obtained in the case 2N = 4
[18], also when both Ω and λ are time-dependent [19]. The extension of the method
of the stationary phase to oscillatory integrals with polynomial phase function is
rather delicate and still under study. First results in this direction concerning the
trace of the heat semigroup Tr[e−

t
�

H ], t > 0, with H = −�2

2 Δ + λ|x|2N , can be
found in [20], where the case of a degenerate critical point of the phase function
is handled.
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3.2. Quantum fields

Heuristic Feynman path integrals have been applied to many problems in quantum
field theory. A particularly interesting application of Feynman path integrals can
be found in a paper by Witten [80], who conjectured that there should be a con-
nection between quantum gauge field theories on a 3-dimensional manifold based
on the Chern-Simons action (an object originally introduced for pure differential
geometric - topological considerations) and the Jones polynomial, a link invariant.
In the Feynman path integral formulation of Chern-Simons theory, the integration
is performed on a space of geometric objects, i.e. on a space of connections.

Let M be a smooth 3-dimensional oriented manifold without boundary, let G
be a compact connected Lie group (the “gauge group”) with a finite dimensional
representation R (in the following the group elements will be identified with their
representatives). Let us denote by g the Lie algebra of G, by Γ the space of g-
valued connection 1-forms and by A ∈ Γ its elements. Let SCS : Γ → R be the
Chern-Simons action, defined by

SCS(A) ≡ k

4π

∫
M

Tr
(
A ∧ dA +

2
3
A ∧A ∧A

)
, (18)

where k is a non-zero real constant and the trace is evaluated in the given rep-
resentation R. The application SCS is metric independent and invariant under
diffeomorphisms. The couple (A,S(A)) represents a classical topological gauge
field.

Let us consider the functions f : Γ → C of the form

f(A) ≡
n∏

i=1

Tr(Hol(A, li)),

where (l1, ..., ln), is an n-tuple of loops in M whose arcs are pairwise disjoint and
Hol(A, l) denotes the holonomy of A around l. According to Witten’s conjecture
the heuristic Feynman integrals

“

∫
Γ

eiSCS(A)f(A)DA
′′

(19)

should represent topological invariants.
In the case where M = S3 and G = SU(2), the heuristic integral (19) should

give the Jones polynomials, if G = SU(n) the Homfly polynomials and if G =
SO(n) the Kauffman polynomials (all objects of the theory of knots).
Gauge transformations can be given by differentiable functions χ : M → G which
act on a connection A by

A �→ χ−1Aχ + χ−1dχ.

The Chern-Simons functional SCS(A) changes to

SCS(χ−1Aχ + χ−1dχ) = SCS(A)− kWM (χ)
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with
WM (χ) ≡ 1

12π

∫
M

Tr(χ−1dχ ∧ χ−1dχ ∧ χ−1dχ).

It can be shown that the function eiS : Γ → C is gauge invariant if and only if the
quantization condition

kWM (χ) ⊆ 2πZ ∀χ (20)
is satisfied (see, e.g., [70]). For abelian G the quantity WM (χ) vanishes, but for a
general semisimple Lie group G this quantity does not vanish and the quantization
condition of the coupling constant (20) has to be required [70].

A partial mathematical realization of Witten’s theory was provided in the
case M = R3 by Fröhlich and King [39]. Rigorous “algebraic” results, without
however any direct relation to Witten’s heuristic path integral approach, can be
found in [71].

In the framework of the theory of infinite dimensional oscillatory integrals,
the rigorous mathematical realization of the integral (19)

“

∫
Γ

eiSCS(A)f(A)DA
′′

= IΦ(f)

can be implemented by exploiting suitable gauges, at least under some restriction
on (M,G).

If M is a general manifold with H1(M) = 0 and G is abelian, the integral
IΦ(f) has been constructed both as an infinite dimensional oscillatory integral [23]
and as a white noise functional [64]. In this case, the integral IΦ(f) represents the
Gauss linking number of knots. The case where H1(M) �= 0 has been studied by
Adams [1] by simplicial methods (related to those first pointed out in [23] on the
basis of [25].

For manifolds M = R3 or M = Σ×R, (Σ being a compact manifold) and G
non abelian, the construction of the Feynman functional can be implemented in
the framework of the white noise calculus, by exploiting a particular gauge trans-
formation (axial gauge) [24]. In this gauge the Chern-Simons action SCS loses the
cubic term and the phase function Φ in the integral becomes a quadratic form. The
construction of the observables, that is the integrals (19), is rather technical and
has been implemented in [47]. Analogous results have been obtained in the case
where M = S1 × S2 or M = S1 ×Σ, where Σ is an oriented surface, and G is not
abelian by exploiting the “Blau-Thompson’s quasi axial gauge”, also called “torus
gauge”[48, 49, 34]. These computations have been performed for “general colored
links”. First partial results on the asymptotics in k → ∞ by a rigorous infinite
dimensional stationary phase method applied to a regularized Chern-Simons func-
tional expressed in terms of Wiener integrals are in [22], where connections with
Vassiliev’s invariants are mentioned (these invariants appear in a heuristic asymp-
totic expansion of the Chern-Simons oscillatory integrals). Much remains obviously
to do, but it seems that lucky combination of geometrical-algebraic ideas and rigor-
ous infinite dimensional analysis related to oscillatory integrals (and probabilistic
integrals) might lead to further exiting developments.
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[23] S. Albeverio, J. Schäfer, Abelian Chern-Simons theory and linking numbers via os-
cillatory integrals, J. Math. Phys. 36, 2157–2169 (1995).

[24] S. Albeverio, A. Sengupta, A mathematical construction of the non-Abelian Chern-
Simons functional integral, Commun. Math. Phys. 186, 563–579 (1997).

[25] S. Albeverio, B. Zegarliński, Construction of convergent simplicial approximations
of quantum fields on Riemannian manifolds. Comm. Math. Phys. 132 , no. 1, 39–71
(1990).

[26] V. I. Arnold, Huygens and Barrow, Newton and Hooke. Pioneers in mathematical
analysis and catastrophe theory from evolvents to quasicrystals. Birkhäuser Verlag,
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[64] S. Leukert, J. Schäfer, A Rigorous Construction of Abelian Chern-Simons Path In-
tegral Using White Noise Analysis, Reviews in Math. Phys. 8, 445–456 (1996).

[65] P. Malliavin, S. Taniguchi, Analytic functions, Cauchy formula, and stationary phase
on a real abstract Wiener space. J. Funct. Anal. 143 (1997), no. 2, 470–528.
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c© 2009 Birkhäuser Verlag Basel/Switzerland

A Comment on the Infra-Red Problem
in the AdS/CFT Correspondence
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Abstract. In this note we report on some recent progress in proving the
AdS/CFT correspondence for quantum fields using rigorously defined Eu-
clidean path integrals. We also comment on the infra-red problem in the
AdS/CFT correspondence and argue that it is different from the usual IR
problem in constructive quantum field theory. To illustrate this, a triviality
proof based on hypercontractivity estimates is given for the case of an ultra-
violet regularized potential of type : φ4 :. We also give a brief discussion on
possible renormalization strategies and the specific problems that arise in this
context.
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1. Introduction

Often, the AdS/CFT correspondence between string theory or some other theory
including quantized gravity on bulk AdS and super-symmetric Yang-Mills theory
on its conformal boundary [12, 17] is formulated in terms of Euclidean path in-
tegrals. In the absence of mathematically rigorous approaches to path integrals
of string type (see however [1]) or even gravity, it seems to be reasonable to use
the well-established theory of constructive quantum field theory (QFT) [5] as a
testing lab for some aspects of the more complex original AdS/CFT conjecture.
That such simplified versions of the AdS/CFT correspondence are in fact possible
was already noted by Witten [17] (see also [8]) and further elaborated by [4]. In
[6] we give a mathematically rigorous version of the latter work (in [9] one finds
some related ideas), leaving however the infra-red (IR) problem open. In this note
we come back to the IR problem and we show how the difference between the IR
problem in the AdS/CFT correspondence as compared with the usual IR problem
in constructive QFT leads to somewhat unexpected results.
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The authors would like to underline that, in contrast to [6], the present article
is rather focused on ideas and thus leaves space for the interpretation of the validity
of the results. We will comment on that in several places.

The article is organized as follows: In the following section we introduce the
mathematical framework of AdS/CFT correspondence and define rigorous proba-
bilistic path integrals on AdS. In Section 3 we recall the main results from [4, 6],
i.e. that the generating functional that is obtained from imposing certain boundary
conditions at the conformal boundary (which is the way generating functionals are
defined in string theory) can in fact be written as a usual generating functional of
some other field theory. From the latter form it is then easy to extract structural
properties, e.g. reflection positivity of the functional, in the usual way. Somewhat
unexpectedly, it is not clear whether a functional integral can be associated to
the boundary theories. These statements hold for all sorts of interactions with a
IR-cut-off. In Section 4 the IR-problem in this version of the AdS/CFT corre-
spondence is discussed on a heuristic level. We also sketch the proof of triviality
of the generating functional of the conformally invariant theory on the conformal
boundary of AdS for the case of an UV-regularized : φ4 : interaction. We briefly
survey strategies that might be candidates to overcome the triviality obstacle at a
non-rigorous level and we comment on specific problems with such strategies. The
final section gives some preliminary conclusions and an outlook on open research
problems in understanding further the mathematical basis of AdS/CFT.

2. Functional integrals on AdS

Let us consider the d+2 dimensional ambient space Rd,2 = Rd+2 with inner product
of signature (−,+, . . . ,+,−), i.e. ζ2 = −ζ2

1 +ζ2
2 + · · ·+ζ2

d+1−ζ2
d+2 where ζ ∈ Rd,2.

Then the submanifold defined by {ζ ∈ Rd,2 : ζ2 = −1} is a d + 1 dimensional
Lorentz manifold with metric induced by the ambient metric. It is called the d+1
dimensional Anti de Sitter (AdS) space. Formal Wick rotation ζ1 → iζ1 converts
the ambient space into the space Rd+1,1 with signature (+, . . . ,+,−). Under Wick
rotation, the AdS space is converted to the Hyperbolic space Hd+1 : {ζ ∈ Rd+1 :
ζ2 = −1, ζd > 0}, which is a Riemannian submanifold of the ambient d + 2
dimensional Minkowski space. We call Hd+1 the Euclidean AdS space.

It has been established with full mathematical rigor that Euclidean random
fields that fulfil the axioms of invariance, ergodicity and reflection positivity give
rise, via an Osterwalder–Schrader reconstruction theorem, to local quantum field
theories on the universal covering of the relativistic AdS, cf. [3, 10] justifying
the above sketched formal Wick rotation. Hence a constructive approach with
reflection positive Euclidean functional integrals is viable.

It is convenient to work in the so called half-space model of Euclidean AdS
(henceforth the word Euclidean will be dropped). This coordinate system is ob-
tained via the change of variables ζi = xi/z, i = 1, . . . , d, ζd+1 = −(z2+x2−1)/2z,
ζd+2 = (z2 + x2 + 1)/2z which maps Rd+1

+ = {(z, x) ∈ Rd+1 : z > 0} to Hd+1.
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We will use the notation x for (z, x1, . . . , xd) ∈ Rd+1
+ . The metric on Rd+1

+ is given
by g = (dz2 + dx2

1 + · · · + dx2
d)/z2 which implies that the canonical volume form

is dgx = z−d−1dz ∧ dx1 ∧ · · · ∧ dxd. The conformal boundary of Hd+1 then is the
d-dimensional Euclidean space Rd with metric ds2 = dx2

1 + · · · + dx2
d which is

obtained via the limit z → 0 and a conformal transformation of the AdS metric.
Of course, the upshot of the AdS/CFT correspondence is that the action of the
Lorentz group on the AdS space Hd+1 gives rise to an action of the conformal group
transformations on the conformal boundary. One thus expects an AdS symmetric
QFT (or string/quantum gravity. . . theory) on the bulk Hd+1 to give, if properly
restricted to the conformal boundary, a conformally invariant theory on Rd.

We will now make this precise. On the hyperbolic space Hd+1 one has two
invariant Green’s functions (“bulk-to-bulk propagators”) for the operator −Δg +
m2, with Δg the Laplacian and m2 a real number suitably bounded from below,
that differ by scaling properties towards the conformal boundary

G±(z, x; z′, x′) = γ±(2u)−Δ±F (Δ±,Δ± + 1−d
2 ; 2Δ± + 1− d;−2u−1) (2.1)

Here F is the hypergeometric function, u = (z−z′)2+(x−x′)2

2zz′ , Δ± = d
2± 1

2

√
d2 + 4m2

=: d
2 ± ν, ν > 0 and γ± = Γ(Δ±)

2πd/2Γ(Δ±+1− d
2 )

[4, 6]. Taking pointwise scaling limits
for z → 0 in one or two of the arguments, the bulk-to-boundary and boundary-to-
boundary propagators are obtained

H±(z, x;x′) = lim
z′→0

z′−Δ±G±(z, x; z′, x′) = γ±

(
z

z2 + (x− x′)2

)Δ±

(2.2)

and

α±(x, x′) = lim
z→0

z−Δ±H±(z, x;x′) = γ±(x − x′)−2Δ± . (2.3)

If (2.2) or (2.3) do not define locally integrable functions, the expressions on the
right hand side are defined via analytic continuation in the weights Δ±. An im-
portant relation between G+, G−, H+ and α− is the covariance splitting formula
for G− given by

G−(x, x′) = G+(x, x′) +
∫

Rd

∫
Rd

H+(x, y)c2α−(y, y′)H+(x′, y′)dydy′, (2.4)

with c = 2ν.
We now pass on to the description of mathematically well-defined functional

integrals. Let D = D(Hd+1,R) be the infinitely differentiable, compactly sup-
ported functions on Hd+1 endowed with the topology of compact convergence.
The propagator G+ is the resolvent function to the Laplacian Δg with Dirichlet
boundary conditions at conformal infinity, from which it follows that G+ is stochas-
tically positive, 〈f, f〉−1 = G+(f̄ , f) =

∫
Hd+1×Hd+1 G+(x, x′)f̄(x)f(x′) dgxdgx

′ ≥ 0

∀f ∈ D, and reflection positive as long as m2 > − d2

4 . The latter value is de-
termined by the lower bound of the spectrum of Δg on Hd+1. In explicit, if
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θ : (z, x1, x2, . . . , xd) → (z,−x1, x2, . . . , xd) is the reflection in x1-direction, then
for any f ∈ D+ = {h ∈ D : h(x) = 0 if x1 ≤ 0} we have∫

Hd+1×Hd+1
G+(x, x′)f̄θ(x)f(x′) dgxdgx

′ ≥ 0,

cf. [5]. Here, fu(x) = f(u−1x) for u ∈ Iso(Hd+1).
Consequently, via application of Minlos theorem, there exists a unique prob-

ability measure μG+ on the measurable space (D′,B), where D′ is the topo-
logical dual space of D and B the associated Borel sigma algebra, such that∫
D′ e

〈φ,f〉dμG+(φ) = e
1
2 〈f,f〉−1 . By setting ϕ(f)(φ) = φ(f) we define the canon-

ical random field associated with μG+ , i.e. a random variable valued distribution.
In the following we omit the distinction between ϕ and φ and write φ for both.

Let BΛ, Λ ⊆ Hd+1 be the smallest sigma algebra generated by the functions
D′  φ → 〈φ, f〉, suppf ∈ Λ and M(Λ) be the functions that are BΛ-measurable.
We use the special abbreviations B+ = B{x∈Hd+1:x1>0} and M+ = M(B+). Then
μG+ is reflection positive, i.e.∫

D′
ΘF̄ (φ)F (φ) dμG+(φ) ≥ 0, ∀F ∈M+. (2.5)

The reflection ΘF (φ) is defined as F (φθ) with 〈φu, f〉 = 〈φ, fu−1〉 ∀φ ∈ D′, f ∈
D and u ∈ Iso(Hd+1). 〈 . , . 〉 is the duality between D′ and D induced by the
L2(Hd+1, dgx) inner product.

Let {VΛ} : D′ → R be a set of interaction potentials indexed by the net of
bounded, measurable subsets Λ in Hd+1. In particular these sets have finite volume
|Λ| =

∫
Λ
dgx. We require that the following conditions hold:

(i) Integrability: e−VΛ ∈ L1(D′, dμG+) ∀Λ;
(ii) Locality: VΛ ∈M(BΛ);
(iii) Invariance: VΛ(φu) = Vu−1Λ(φ) μG+–a.s..
(iv) Additivity: VΛ + VΛ′ = VΛ∪Λ′ for Λ ∩ Λ′ = ∅.
(v) Non-degeneracy: VΛ = 0 μG+–a.s. if |Λ| = 0.

Then, using (i), we obtain a family of interacting measures on (D′,B), indexed
by the net {Λ}, by setting dμG+,Λ = e−VΛdμG+/ZΛ with ZΛ =

∫
D′ e

−VΛ dμG+ .
Furthermore, using (ii)–(v) we get whenever θΛ = Λ∫

D′
ΘF̄F dμG+,Λ =

1
ZΛ

∫
D′

Θ
(
F̄ e−VΛ+

)(
Fe−VΛ+

)
dμG+ ≥ 0, ∀F ∈M+, (2.6)

where Λ+ = Λ ∩ {x ∈ Hd+1 : x1 > 0}. Hence reflection positivity is preserved
under the perturbation. Furthermore, from the invariance of μG+ under Iso(Hd+1)
we get that u∗μG+,Λ = μG+,uΛ. Here u ∈ Iso(Hd+1) induces an action on D′ via
φ → φu and u∗ is the pushforward under this action. Consequently, if the limit
(in distribution) μG+,Hd+1 = limΛ↗Hd+1 μG+,Λ exists and is unique, the limiting
measure is invariant under Iso(Hd+1) and reflection positive. Invariance follows
from the equivalence of the nets {Λ} and {uΛ} and the postulated uniqueness of
the limit over the net {Λ}.
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Let us next consider functional integrals associated with the Green’s function
G−. In the case when 2ν < d (⇔ m2 < 0) we get that α− is stochastically positive
since α−(f̄ , f) =

∫
Rd×Rd α−(x, x′)f̄(x)f(x′) dxdx′ = C−ν

∫
Rd |k|−2ν |f̂(k)|2 dk ≥ 0.

f̂ denotes the Fourier transform of f wrt. x, f̂(k) = (2π)−d/2
∫

Rd e
ik·xf(x) dx. Fur-

thermore, α− is reflection positive in x1-direction (in the usual sense, cf. [5]) if and
only if −ν > −1, which is also known as the unitarity bound. It is clear from the de-
composition (2.4) that G− is stochastically positive if G+ and α− are both stochas-
tically positive. The reflection positivity of G− does not follow from the reflection
positivity of G+ and α− due to the non-local effect of H+. We will however not need
it here. We thus conclude that for sup spec(Δg) < m2 < 0 a unique probability
measure μG− on (D′,B) with Laplace transform

∫
D′ e

〈φ,f〉dμG−(φ) = e
1
2 〈f,f〉−1,−

exists. Here 〈f, f〉−1,− = G−(f, f). The perturbation of μG− with an interaction
can now be discussed in analogy with the above case – where however the reflec-
tion positivity for the perturbed measure remains open, as reflection positivity of
the free measure does not necessarily hold.

3. Two generating functionals

On the string theory side of the AdS/CFTcorrespondence, generating functionals
for the boundary theory are calculated fixing boundary conditions at the confor-
mal boundary (so called Dirichlet boundary conditions). Little is known about the
mathematical properties of such kinds of generating functionals. E.g. their sto-
chastic and reflection positivity is far from obvious, leaving the linkage to path
integrals and relativistic physics open. It was noticed by Dütsch and Rehren [4]
that such kinds of generating functionals can however be re-written in terms of
ordinary generating functionals, from which the structural properties can be read
of in the usual way. These ideas in [6] have been made fully rigorous in the context
of constructive QFT. We will now briefly review these results.

The generating functional Z(f)/Z(0), f ∈ S(Rd,R), the space of Schwartz
functions, in the AdS/CFT correspondence from a string theoretic point of view
can be described as follows: Let φ be some scalar quantum field that is included
in the theory (e.g. the dilaton field) and let VΛ be the (IR and eventually UV-
regularized) effective potential for that field obtained via integrating out the re-
maining degrees of freedom (leaving open the question how such an “integral”
can be defined). To simplify the model and for the sake of concreteness we will
sometimes assume that VΛ is of polynomial type. Formally,

Z(f) =
∫

φ0=φ|
∂Hd+1=f

e−S0(φ)−VΛ(φ) dφ =
∫

δ(φ0 − f)e−S0(φ)−VΛ(φ) dφ (3.1)

where S0 = |∇φ|2 + m2φ2, φ0 = φ|∂Hd+1 are suitably rescaled boundary values
of the field φ and dφ is the heuristic flat measure on the space of all field con-
figurations. The first step in making this formal expression rigorous is to replace
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e−S0(φ) dφ with a well-defined probabilistic path integral. It turns out that dμG−(φ)
is the right candidate and hence for the moment restriction to m2 < 0 is necessary.

In a second step we have to make sense out of the boundary condition
φ0 = f or the functional delta distribution on the boundary values of the field,
respectively. Using the covariance splitting formula (2.4) we obtain the splitting
φ−(x) = φ+(x) +

∫
Rd H+(x, x′)φα−(x′) dx′, where φ± are the canonical random

fields associated with G± and φα− is the canonical random field associated to
the functional measure μα− , i.e. the Gaussian measure with generating functional
e

1
2 α−(f,f) living on the conformal boundary of Hd+1.

The following step is to construct a finite dimensional approximation ψα− of
the boundary field φα− by projecting it via a basis expansion to Rn. Thereafter,
one can implement the delta distribution as a delta distribution on Rn. Finally
one can remove the finite dimensional approximation via a limit n→∞. It turns
out that this limit exists and is unique up to a diverging multiplicative constant.
This constant however drops out in the quotient Z(f)/Z(0). With the projection
to the first n terms of the basis expansion denoted by pn and η a linear mapping
from this space to Rn we get

CA−

∫
Rn

∫
D′

δ(ψα− − ηpnf)e−VΛ(φ++cH+(η−1ψα− ))dμG+(φ+)e−
1
2 (ψα− ,A−ψα− )dψα−

= CA−e
− 1

2 (f,(pnα−pn)−1f)

∫
D′

e−VΛ(φ++cH+(pnf))dμG+(φ+) =: Zn(f), (3.2)

where A− := (ηpnα−pnη
−1)−1 and CA− = |detA−| 12

(2π)
d
2

. One can then show that

Z(f)/Z(0) := lim
n→∞Zn(f)/Zn(0) = e−

1
2 (f,α−1

− f)

∫
D′ e

−VΛ(φ++cH+f)dμG+(φ+)∫
D′ e−VΛ(φ+)dμG+(φ+)

(3.3)
converges under rather weak continuity requirements on VΛ that are fulfilled e.g. for
UV-regularized potentials in arbitrary dimension and for P (φ)2 potentials without
UV cut-offs in d+1 = 2. Obviously, the limit does not depend on the details of the
finite dimensional approximation. For the details we refer to [6]. We now realize
that the right hand side of (3.3) also makes sense for m2 ≥ 0 and we adopt (3.3)
as a definition of (3.1).

At this point one would like to associate a boundary field theory to the
generating functional C(f) = Z(f)/Z(0). In order to obtain a functional in-
tegral associated to C : S = S(Rd,R) → R we require that C is continuous
wrt. the Schwartz topology, normalized, C(0) = 1 and stochastically positive,∑n

j,l=1 z̄jzlC(fj + fl) ≥ 0 ∀ n ∈ N, fj ∈ S, zj ∈ C. Furthermore, in order to
have a well defined passage from Euclidean time to real time QFT one requires
reflection positivity

∑n
j,l=1 z̄jzlC(fj,θ + fl) ≥ 0 ∀ n ∈ N, fj ∈ S+, zj ∈ C. Here

S+ = {f ∈ S : suppf ⊆ {x ∈ Rd : x1 > 0}}. Finally, the theory obtained at the
boundary should be conformally invariant, provided the IR cut-off Λ is removed
from VΛ via taking the limit of the generating functionals wrt. the net {Λ}.
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It has been pointed out in [4, 11, 16] that an alternative representation of the
functional (3.3) answers a number of the questions raised above. Let φ(x) = φ(z, x)
be the canonical random field associated with the measure μG+ . The idea is to
smear φ(z, x) in the x-variable with a test function f ∈ D(Rd,R) and then scale
z → 0. In the light of (2.1), one has to multiply φ(z, f) = 〈φ, δz ⊗ f〉 with a factor
z−Δ+ in order to obtain a finite result in the limit. We set

Yz(f) =
∫
D′

e〈φ,z−Δ+δz⊗f〉e−VΛ(φ) dμG+(φ). (3.4)

Clearly, under the conditions on VΛ given in the preceding section and for Λ = θΛ,
Yz(f)/Yz(0) defines a continuous, normalized, stochastically positive and reflection
positive generating functional for all z > 0. Using the fact that G+(δz ⊗ f) is in
the Cameron-Martin space of the measure μG+ , one gets with fz = z−Δ+δz ⊗ f ,
cf. [6],

Yz(f)/Yz(0) = e
1
2 G+(fz,fz)

∫
D′

e−VΛ(φ+G+fz)dμG+(φ)/Yz(0). (3.5)

We now want to take the limit z → 0. Using (2.2) one can show under rather
weak continuity requirements on VΛ that the functional integral on the rhs of (3.5)
converges to

∫
D′ e

−VΛ(φ+H+f)dμG+(φ). The prefactor however diverges. The reason
is that the limit in (2.3) is only a pointwise limit for x �= x′ and not a limit in the
sense of tempered distributions. One can however show that [6]∫

Rd

∫
Rd

α+(x, y)f(x)f(y)dxdy =

lim
z→0

z−2Δ+

∫
Rd

∫
Rd

G+(z, x; z, y)f(x)f(y)dxdy−

1

(2π)
d
2

(
21−ν

√
πΓ(ν + 1

2 )

)2 [ν]∑
j=0

z−2(ν−j)(−1)jaj

∫
Rd

|f̂(k)|2|k|2jdk.

=: lim
z→0

z−2Δ+

∫
Rd

∫
Rd

G+(z, x; z, y)f(x)f(y)dxdy − (Corr(z)f, f). (3.6)

Here aj =
∫∞
0

(
∫ 1

0
cos(ωt)(1− t2)ν− 1

2 dt)2ω2(ν−j)−1dω. Thus, the right hand side of
(3.5) multiplied with e−

1
2 (Corr(z)f,f) converges and we obtain the limiting functional

C̃(f) = lim
z→0

e−
1
2 (Corr(z)f,f) (Yz(f)/Yz(0))

= lim
z→0

e
1
2 [G+(fz,fz)−(Corr(z)f,f)]

∫
D′

e−VΛ(φ+G+fz)dμG+(φ)/Yz(0)

= e
1
2 α+(f,f)

∫
D′ e

−VΛ(φ+H+f)dμG+(φ)∫
D′ e−VΛ(φ)dμG+(φ)

(3.7)

This, together with α−1
− = −c2α+, establishes the crucial identity [4, 6]

C(f) = C̃(cf), ∀f ∈ S(Rd,R). (3.8)
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Let us now investigate the structural properties of the generating functional C :
S → R. If there were not the correction factor (Corr(z)f, f), C would be stochas-
tically positive and reflection positive as the limit of functionals with that prop-
erty, since we can combine (3.7) and (3.8) for a representation of C. However,
due to the signs in (3.6) S  f → e−

1
2 (Corr(z)f,f) ∈ R is not stochastically posi-

tive and consequently the stochastic positivity of e−
1
2 (Corr(z)f,f) (Yz(f)/Yz(0)) is

at least unclear. Hence we do not have any reason to believe that the limiting
functional C is stochastically positive and can be associated with a probabilistic
functional integral. An exception is the case where VΛ ≡ 0 where we can dwell
on the fact that S  f → e

1
2 α+(f,f) ∈ R is manifestly stochastically positive since

α̂(k) = C−ν

(
|k|
2

)2ν

∈ R with C−ν > 0. It is therefore questionable if one can
use the AdS/CFT correspondence to generate conformally invariant models in
statistical mechanics.

We next investigate the question of reflection positivity. Since the correlation
length of the distributional kernels of Corr(z) is zero, we get that (Corr(z)(fj,θ +
fl), (fj,θ + fl)) = (Corr(z)fj,θ, fj,θ) + (Corr(z)fl, fl) = (Corr(z)fj , fj) +
(Corr(z)fl, fl) for fj ∈ S+. Consequently, ∀fj ∈ S+, z1, . . . , zn ∈ C and Λ such
that θΛ = Λ we get

n∑
j,l=1

C(fj,θ + fl)z̄jzl = lim
z→0

n∑
j,l=1

(Yz(cfj,θ + cfl)/Yz(0)) z̄′jz
′
l ≥ 0 (3.9)

with z′j = zje
− 1

2 (Corr(z)cfj ,cfj). For a proof that the reflection positivity of gener-
ating functionals implies the reflection positivity of Schwinger functions [5] also
in the absence of stochastic positivity, cf. [7]. As in [4, 6, 16], we thus come to
the conclusion that the crucial property for the existence of a relativistic theory is
preserved in the AdS/CFT correspondence.

Finally we address the invariance properties of the limiting generating func-
tional C. For being the generating functional of a CFT, we require invariance under
conformal transformations, i.e. C(f) = C(λ−1

u fu) ∀f ∈ S where u is an element of
the conformal group on Rd and

λu(x) =
∣∣∣∣det

(
∂u(x)
∂x

)∣∣∣∣−
Δ+

d

. (3.10)

Certainly, as long as an interaction with IR cut-off is included in the definition of
C = CΛ, conformal invariance can not hold. Using the identification of Iso(Hd+1)
and the conformal group on Rd, we get that H+ intertwines the respective repre-
sentations on function spaces, i.e. [6]

H+(u(z, x);x′) =
∣∣∣∣det

(
∂u−1(x′)

∂x′

)∣∣∣∣
Δ+

d

H+(z, x;u−1(x′)). (3.11)
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Combining this, the conformal invariance of α+ under the given representation of
the conformal group and (3.3) we obtain

CΛ(λ−1
u fu) = CuΛ(f) ∀f ∈ S. (3.12)

Hence, if the generating functionals {CΛ} have a unique limit C wrt. the net {Λ},
then C is reflection positive and conformally invariant and hence is the generating
functional of a boundary CFT.

4. The infra-red problem and triviality

In this section we investigate the net limit of {CΛ} which is needed to establish
the full AdS/CFT correspondence. This problem has been left open in [6] and we
will show that this kind of IR problem behaves somewhat wired.

The reason is the following: When we identified the generating functionals CΛ

and C̃Λ, we have seen from the latter functional that it originated from a usual QFT
generating functional with z−Δ+δz ⊗ f giving rise to a source term which needs
to be considered in the limit z → 0. As (3.6) shows, this source term corresponds
to an interaction of an “exterior field” with the quantum field φ which, already
for the free field, has zero expectation but infinite fluctuations in the limit z → 0.
Without any correction term, this would have led to a generating functional which
converges to zero for any f �= 0. We already then needed an ultra-local correction
term to deal with the prescribed infinite energy fluctuations.

If we now switch on the interaction, a shift term H+f in the bulk theory
is generated, cf. (3.7). If we for example restrict to polynomial interactions, this
shift leads to re-defined f -dependent couplings that diverge towards the conformal
boundary. This again leads to an infinite energy transfer and it is probable that
this infinite amount of energy plays havoc with the generating functional. Here we
will show that in some situations this indeed happens.

Let us first investigate the behavior of the shift H+f towards the conformal
boundary. Let f ∈ S be such that f(0) �= 0. Choosing spherical coordinates, we
denote by frad(r) the integral of f(x) over the angular coordinates. We get from
(2.2) via a change of coordinates

H+f(z, 0) = γ+z
−Δ++d

∫ ∞

0

(
1

1 + r2

)Δ+

frad(zr)rd−1dr (4.1)

and we see that the integral on the rhs converges to f(0)
∫∞
0

(
1

1+r2

)Δ+

rd−1dr =

f(0) × Γ(Δ+ − d/2)Γ(d/2)/2Γ(Δ+), hence H+f(z, x) ∼ z−Δ++d if f(x) �= 0 by
translation invariance.

Let us now work with the generating functional as defined by (3.7). The
prefactor on the rhs is independent of Λ, hence we have to investigate the behavior
of

C′Λ(f) =

∫
D′ e

−VΛ(φ+H+f)dμG+(φ)∫
D′ e−VΛ(φ)dμG+(φ)

. (4.2)
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We restrict ourselves to the simplest possible case - an ultra-violet regularized φ4

potential in arbitrary dimensions d + 1

VΛ(φ) = λ

∫
Λ

: φ4
κ : (x) dgx (4.3)

where φκ denotes the random field φ with UV-cut off κ. Due to this cut-off,
the locality axiom in Section 2 will in general be violated. This however does
not matter in the following discussion. We furthermore require that Gκ

+(x, x′) =
E[φκ(x)φκ(x′)] is a bounded function in x and x′. E stands for the expectation
wrt. μG+ . The Wick ordering in (4.3) is taken wrt. G+, for simplicity. The shifted
potential then is given by

VΛ(φ + H+f) = λ

∫
Λ

4∑
j=0

(
4
j

)
: φj

κ : (x)(H+f)4−j(x) dgx. (4.4)

Taking the expected value of the shifted potential wrt. μG+ , one obtains λ×
×
∫
Λ(H+f)4dgx which in the light of (4.1) clearly diverges as Λ ↗ Hd+1 whenever

f �= 0.
Let us now focus on a specific class of cut-offs of the form Λ(z0) = Λ(z0, l) =

[z0, A] × [−l, l]×d where we keep l > 0, A > 0 arbitrarily large but fixed. Let
V (z0, f)(φ) = VΛ(z0)(φ + H+f). Since dgx = z−d−1dzdx we obtain the scaling of
the expected shifted interaction energy

E(z0, f) = E[V (z0, f)] = λ

∫
[z0,A]

∫
[−l,l]×d

(H+f)4(z, x) dxz−d−1dz

∼ z
−d−4(Δ+−d)
0 as z0 → 0. (4.5)

Let us next investigate the fluctuations in the shifted energy as z0 → 0. Denoting
the standard deviation of V (z0, f) with σ(z0, f), we obtain using (4.4) and E[: φa

κ :
(x) : φb

κ : (y)] = a! δa,bG
κ
+(x, y)a, a, b ∈ N,

σ(z0, f) =

[
24

∫
Λ(z0)×2

Gκ
+(x, y)4dgxdgy

+ 96
∫
Λ(z0)×2

H+f(x)H+f(y)Gκ
+(x, y)3dgxdgy

+ 72
∫
Λ(z0)×2

(H+f)2(x)(H+f)2(y)Gκ
+(x, y)2dgxdgy

+ 16
∫

Λ(z0)×2
(H+f)3(x)(H+f)3(y)Gκ

+(x, y)dgxdgy

]1/2

(4.6)

∼ z
−d−3(Δ+−d)
0 or slower as z0 → 0,

where we took the factors Gκ
+ out of the integral and replaced them with a ma-

jorizing constant in order to obtain an upper bound on the scaling. Apparently, the
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quotient γ(z0, f) = 2σ(z0, f)/E(z0, f) ∼ z
Δ+−d
0 scales down to zero if m2 > 0. Us-

ing the Chebychev inequality μG+(|V (z0, f)− E(z0, f)| ≤ E(z0, f)/2) ≤ γ(z0, f)2

we see from this that V (z0, f) →∞ μG+ -a.s..
To determine the behavior of C′Λ(z0)

(f) for f �= 0 we however need an argu-
ment based on the hypercontractivity estimate ‖F‖p ≤ (p − 1)n/2‖F‖2 ∀F that
are in the Lp(D′,B, μG+)-closure of the span of Wick monomials : φ(f1) · · ·φ(fs) :
with s ≤ n. Applying this to V (z0, f) = VΛ(z0)(φ + H+f) with n = 4 one obtains

μG+

(
V (z0, f) ≤ E(z0, f)

2

)
≤ μG+

(
|V (z0, f)− E(z0, f)| ≥ E(z0, f)

2

)
≤ 2p

E(z0, f)p
‖V (z0, f)− E(z0, f)‖p

p

≤ 2p

E(z0, f)p
(p− 1)2p ‖V (z0, f)− E(z0, f)‖p

2

= γ(z0, f)p(p− 1)2p. (4.7)

The next step is to optimize this estimate wrt. p for z0 → 0. Equivalently, one
can ask for the minimum of the logarithm of the rhs wrt. to p. Taking the p-
derivative of this expression and setting it zero yields 0 = log γ(z0, f) + 2p(z0)

p(z0)−1 +
2 log(p(z0) − 1) with p(z0) the optimal p. Apparently, p(z0) → ∞ as z0 → 0 and
thus 2p(z0)/(p(z0)− 1) → 2, hence p(z0) scales as

p(z0) ∼ e−1 × γ(z0, f)−1/2 ∼ Ce−1 × z
−(Δ+−d)/2
0 . (4.8)

Combining (4.7) and (4.8) yields

μG+

(
V (z0, f) <

E(z0, f)
2

)
≤

γ(z0, f)e−1×γ(z0,f)−1/2
(
e−1 × γ(z0, f)−1/2 − 1

)2e−1×γ(z0,f)−1/2

∼ e−2e−1×γ(z0,f)−1/2

∼ e−2Ce−1×z
(d−Δ+)/2
0 (4.9)

We have thus seen that the portion of the probability space where V (z0, f) does
not get large as z0 → 0 has a rapidly falling probability. We need an estimate
that controls the negative values on this exceptional set. The ultra-violet cut-off
implies : φ4

κ : (x) ≥ −Bc2κ, B independent of κ, cκ = supx,y |Gκ(x, y)|, μG+ -a.s.,
which provides us with a pointwise lower bound for V (z0, f) that is depending on
z0 as

V (z0, f) ≥ −λBc2κ|Λ(z0)| = −[λBc2κ(2l)d]× (z−d
0 −A−d)/d μG+ − a.s. (4.10)

Combination of (4.9) and (4.10) gives for z0 sufficiently small

E
[
e−V (z0,f)

]
≤ e−

1
2 E(z0,f)+e[λBc2

κ(2l)d]×(z−d
0 −A−d)/d−2Ce−1×z

(d−Δ+)/2
0 → 0 (4.11)
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if Δ+ > 3d⇔ m2 > 6d2. Furthermore, by Jensen’s inequality and E[V (z0, 0)] = 0,

E[e−V (z0,0)] ≥ e−E[V (z0,0)] = 1, (4.12)

which implies that for m2 sufficiently large

C′Λ(z0)
(f) =

E[e−V (z0,f)]
E[e−V (z0,0)]

→ 0 as z0 → 0, (4.13)

We have thus obtained the following result:

Theorem 4.1. If the generating functional C(f) = limΛ CΛ(f) exists for the UV-
regularized :φ4 :-interaction and is unique (as required in order to obtain conformal
invariance from AdS-invariance) it is also trivial (C(f) = 0 if f �= 0) provided
m2 ≥ 6d2.

The above triviality result relies on three crucial assumptions.
(i) The potential is quartic, cf. (4.3);
(ii) There is a UV-cut-off;
(iii) The mass is sufficiently large.
In order to assess the relevance of the triviality result for the general case, let us
give some short comments on the role of each of these assumptions:

(i) At the cost of a more restrictive mass bound, assumption (i) can easily
be relaxed from quartic to polynomial interactions. For non-polynomial interac-
tions, however, the hypercontractivity estimate can not be used. This might be of
relevance, if we consider V as an effective potential, which in general will be non
polynomial.

(ii) The fact that there is a UV-cut-off enters our triviality argument via
(4.10). When removing the UV-cut-off at least in dimension d+1 = 2, we therefore
have to modify the triviality argument. It turns out that the bound obtained from
the hypercontractivity estimate [5, 6] for the UV-problem is not good enough
to reproduce the above argument. It seems to be necessary to combine UV and
IR-hypercontractivity bounds in a single estimate in order to obtain triviality
without cut-offs in d + 1 dimensions. We will come back to this point elsewhere.

(iii) The mass bound to us rather seems to be a technical consequence of
the methods used and not so much a true necessity for the onset of triviality.
Different methods, e.g. based on decoupling via Dirichlet- and Neumann boundary
conditions on a partition of Hd+1 [5] e.g. combined with large deviation methods
might very well lead to less restrictive mass bounds or eliminate them completely.

On a heuristic level, the problem that expectation and variance of the shifted
potential and the non shifted potential will have different scalings under the limit
Λ ↗ Hd+1 prevails for a large class of polynomial and non-polynomial interactions
with and without cut-offs. Thus, in our eyes, the three assumptions (i)–(iii) are not
essential but rather technical. The result above therefore should be taken rather as
an example of what can happen in the AdS/CFT correspondence than a definite
mathematical statement. Of course, at the present and very preliminary state of
the affair, everybody is free to think differently.
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5. Conclusions and outlook

In this section we give an essentially non-technical discussion on repair strategies
that would cure the obstacle of triviality.

(i) coupling constant renormalization: The simplest way to deal with the di-
vergences in the potential energy V (z0, f) would be to make λ a z0-dependent
quantity. In fact, a naive guess at the scaling behavior suggests that λ(z0) ∼
z

d+4(Δ+−d)
0 would compensate for the increase in the expected value of the inter-

action energy V (z0, f) such that with the modified coupling limz0→0 E[V (z0, f)] =
λC

∫
Rd f

4 dx converges to a constant with C = (γ+Γ(Δ+ − d/2)Γ(d/2)/2Γ(Δ+))4,
cf. (4.1) and the paragraph thereafter. Furthermore, one can expect that the sub-
leading terms (j = 1 . . . 4 in (4.4)) converge to zero and do not affect the generating
functional. It thus seems reasonable that with this renormalization the generating
functional gives in the limit z0 → 0

C(f) = e
1
2 α+(f,f)−λC

∫
Rd f4 dx (5.1)

which is reflection positive as a limit of reflection positive functionals (it is man-
ifestly not stochastically positive for all λ > 0 and hence gives a nice illustration
for the destruction of stochastic positivity due to the correction term in (3.6) and
(3.7). The problem with this functional however is that the additional term in the
interaction is an ultra local term and hence does not influence the corresponding
real time CFT – which is a free theory determined by the analytic continuation of
α+. Hence this sort of renormalization only trades in another kind of triviality for
the triviality observed in Section 4.

(ii) bulk counterterms: Such terms can simply be added to the (formal) La-
grangian. The problem to use this method in the AdS/CFT correspondence is
twofold: Firstly, the infra-red divergences that are occurring in V (z0, f) are f -
dependent. If we however want to cure them with f -dependent counterterms,
the renormalization description of CΛ(z0) becomes f -dependent. Bulk countert-
erms however only preserve the structural properties of stochastic and reflection
positivity, if the same renormalization prescription is chosen for all f . Hence, f -
dependent counterterms would lead to a limiting functional, for which it is not
known, whether it is reflection positive or not. The situation is worsened from the
observation that, unlike in other IR problems, in the AdS/CFT correspondence
the divergences in the nominator and denominator scale differently - as seen in our
triviality result. This means for bulk counterterms, that, if they are working out
fine for the nominator, they probably create new divergences in the denominator.
Different renormalizations for the potential in the nominator and in the denomina-
tor in the limit might lead to a non normalizable vacuum for the boundary theory,
which does not make sense.

(iii) boundary counterterms: The problems described above for bulk coun-
terterms also have to be taken into account for boundary counterterms. Further-
more, while bulk counterterms, at least if they are not f -dependent, do not spoil
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the conformal invariance of the boundary theory, boundary counterterms theo-
retically might do so. Hence one needs a separate argument to show that they
don’t. But there is still another problem with boundary counterterms. We have
seen that we can not take it for granted that a limiting functional measure ex-
ists for the boundary theory. But if the boundary theory is not described by a
functional integral μbd., it is not clear how to define boundary counterterms on a
mathematical basis: recall that a counterterm (at a finite value of the cut-off z0 is
defined by dμbd.,ren,z0(ϕ) = e−Lren(z0,ϕ)dμbd.(ϕ)/

∫
D(Rd) e

−Lren(z0,ϕ′)dμbd.(ϕ′) and
it is not obvious how this can be defined if μbd. is not a measure.

(iv) giving up generating functionals: The triviality result of Section 4 relied
on the scaling behavior of the expected value of V (z0, f) under the limit z0 → 0.
This expected value can be associated with the Witten graph

⊗
which gives rise

to the first order contribution to the four point function
∫

Hd+1

∏4
l=1 H+(x, fl) dgx

which is converging as long as suppfj ∩ suppfl = ∅ if j �= l, cf (2.2) and (4.1)
(see also [11] for concrete calculations). One may thus hope that the triviality
result of Section 4 is an artefact of using generating functionals which makes
it necessary to evaluate Schwinger functions at unphysical coinciding points. A
reasonable approach to the infra-red problem in AdS/CFT would thus be to use
(3.7) to define reflection positive Schwinger functions with cut off and then remove
the cut-off for the Schwinger functions at physical (non coinciding) points, only.
This might then work out without further renormalization along the lines of [5],
as divergences might only occur on the diagonal. If this is true, triviality does only
occur on the level of generating functionals – which are reminiscent of the Laplace
transform of a functional measure for the boundary theory that might not exist in
the present context.
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Some Steps Towards Noncommutative
Mirror Symmetry on the Torus

Karl-Georg Schlesinger

Abstract. Starting from motivating examples, we discuss some aspects of the
question how to extend mirror symmetry to the case of the noncommutative
torus. Following the - by now classical - approach of Dijkgraaf to mirror
symmetry on elliptic curves, we will see how elliptic deformations of special
functions (especially, the elliptic gamma function) arise. In the final section
we indicate a possible way how these results might relate to deformations of
Fukaya categories of elliptic curves.
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duality, Fukaya category, Gromov-Witten invariants.

1. Introduction

Mirror symmetry is a duality symmetry between certain two dimensional super-
conformal field theories which was discovered in the context of string theory in
the early 1990s. Applied to sigma models, this leads to a completely new sym-
metry between Calabi-Yau spaces (of, in general, even differing topology). It is
an open question if and how this duality might extend to the case of noncommu-
tative spaces. There is far reaching work using the language of noncommutative
algebraic geometry (see e.g. [11], [12], [19] and literature cited therein, to give a
non-exhaustive selection), dealing with this question. We will follow a much more
modest goal in these notes, restricting completely to the case of noncommutative
elliptic curves (i.e. a noncommutative torus equipped with some additional struc-
ture). We still think that an approach focused on only one class of examples is
justified since even in the commutative case the elliptic curve provides a highly
nontrivial example for homological mirror symmetry.
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The extension of mirror symmetry to noncommutative spaces is definitely
not an example of generalization for the sake of generalization. We restrict, here,
to two motivating examples (for additional motivation, see e.g. [12]).

In [20] the geometric Langlands correspondence is related to mirror symme-
try for sigma models with a Hitchin moduli space target, for the special case of
vanishing B-field. If a B-field is turned on in the sigma model, one gets a de-
formation to a noncommutative setting (twisted D-modules, quantum geometric
Langlands correspondence). More generally, coupling of a B-field to both sides of
the duality, the A- and the B-model, needs a noncommutative extension of mirror
symmetry (see [24]).

Another concrete example of this type is provided by the D5-brane gauge
theory in type IIB string theory. Here, the generalization to the noncommutative
case is not just an option but is necessary for the existence of a space-filling
coisotropic brane (which is decisive for the existence of a D-module structure on
A-branes in [20]). We refer to [34] for the details of this example.

These notes are organized as follows: First, we review some needed results for
the classical case of (commutative) elliptic curves. Next, we give our results for the
noncommutative case (for the details we refer, again, to [34]). Especially, we suggest
a formal extension of Gromov-Witten invariants to the case of noncommutative
elliptic curves. In the final section, we give some preliminary arguments how our
results might relate to certain exotic deformations of the Fukaya category of an
elliptic curve. This is work in progress.

2. Elliptic curves

Mirror symmetry for elliptic curves was extensively studied in the mid 1990s (see
especially [8], [9], [10], [16], [31]). It was a prime motivating source for the homo-
logical mirror symmetry conjecture of [17]. A proof of homological mirror symme-
try for elliptic curves was established in [29]. The Strominger-Yau-Zaslow conjec-
ture ([39]), proposing another mathematical formulation of mirror symmetry, was
proved for elliptic curves (and, more generally, for Abelian varieties) in [18].

An elliptic curve Et,τ is a smooth 2-torus equipped with a holomorphic and
a symplectic structure. The holomorphic structure - parameterized by τ - is given
by the representation of the elliptic curve as

C/ (Z⊕ Zτ)

with τ = τ1 + iτ2 ∈ C from the upper half plane H, i.e. τ2 > 0. The symplectic
structure - parameterized by t ∈ H - is given by the complexified Kähler class
[ω] ∈ H2 (Et,τ ,C) with

ω = −πt

τ2
dz ∧ dz

and for t = t1 + it2 the area of the elliptic curve is given by t2. Mirror symmetry
relates the elliptic curves Et,τ and Eτ,t.
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For the symplectic structure, we have the Gromov-Witten invariants Fg, de-
fined as the generating functions for counting d-fold connected covers of Et,τ in
genus g. One can combine the functions Fg into a two-variable partition function

Z (q, λ) = exp
∞∑

g=1

λ2g−2Fg (q)

with q = e2πit. This is the famous partition function of Hurwitz which he used
already in [14] to count connected covers of elliptic curves.

The partition function Z (q, λ) can be calculated in three different ways (see
Theorem 1 - Theorem 3 of [8]). The first case is a large N calculation in terms of
U (N) Yang-Mills theory on Et,τ . The second possibility is a calculation in terms
of a Dirac fermion on the elliptic curve. Starting from Dirac spinors b, c on the
elliptic curve with action

S =
∫

Et,τ

(
b∂c + λb∂2c

)
one shows that the operator product expansion defines a fermionic representation
of the W1+∞ algebra. The partition function can be calculated as a generalized
trace (as defined in [2]) of this algebra, leading to

Z (q, λ) = q−
1
24

∮
dz

2πiz

∏
p∈Z≥o+ 1

2

(
1 + zqpeλp2

)(
1 +

1
z
qpe−λp2

)
where p runs over the positive half integers. For the action and the partition
function above - and for the sequel of this paper - we have changed the nota-
tion to denote the parameter values of the mirror elliptic curve by t and τ . It
is this representation of Z (q, λ) which leads to the famous theorem of Dijkgraaf,
Kaneko, Zagier stating that the functions Fg (q) are quasi-modular forms (i.e.
Fg ∈ Q [E2, E4, E6] where E2, E4, E6 are the classical Eisenstein series of weight
2, 4, and 6, respectively) and have weight 6g − 6.

Finally, as in the case of Calabi-Yau 3-folds, by mirror symmetry Z (q, λ) can
be calculated as the partition function of a Kodaira-Spencer theory. In the case of
elliptic curves, this is given by the action of a simple real bosonic field with (∂ϕ)3

interaction term, i.e. by the action

S (ϕ) =
∫

Eτ,t

(
1
2
∂ϕ∂ϕ +

λ

6
(−i∂ϕ)3

)
(see [8], [9] for the details).

3. Noncommutative elliptic curves

In this section, we will consider the question how the fermionic representation of
Z (q, λ) generalizes to the case of the noncommutative torus. The first question we
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have to consider is how a holomorphic structure can be introduced on the noncom-
mutative torus since the smooth noncommutative torus – as in the commutative
case – is not sufficient to consider mirror symmetry. A number of different ap-
proaches to this topic exist in the literature. Since the partition function Z (q, λ)
involves the modular parameter q, ranging over the whole family of elliptic curves,
we will follow the approach of [35], [37] where noncommutative elliptic curves are
introduced by extending the range of q, i.e. we get a larger family including the
case of noncommutative elliptic curves. Concretely, in [35], [37] it is shown that
one can view the noncommutative torus as the degenerate limit |q| → 1 of classical
elliptic curves (observe that since t ∈ H and q = e2πit, |q| < 1 for classical elliptic
curves). The noncommutative smooth torus (see [6]) can be introduced as a de-
generate limit of a family of foliations where the foliations are defined by classical
elliptic curves. In the limit, the foliation space becomes non-Hausdorff as a classi-
cal topological space but the algebras of functions still have a well-behaved limit.
The limit of the algebras of functions is the noncommutative algebra defining the
noncommutative smooth torus. In much the same way, one can introduce noncom-
mutative elliptic curves as the degenerate limit of foliations defined by classical
elliptic curves by studying the category of coherent sheaves instead of the algebra
of functions. Again, the category of coherent sheaves has a well-behaved limit,
leading to the notion of a noncommutative elliptic curve. We will make use of
these results by using the fact that we can study the question of the generalization
of Z (q, λ) to noncommutative elliptic curves by considering the limit |q| → 1. We
would like to stress at this point that the category of coherent sheaves on noncom-
mutative elliptic curves as introduced in [37] differs from the approach followed in
[26] where holomorphic vector bundles on the smooth noncommutative torus are
used.

Obviously, we can not directly perform this limit. This is very much related
to the fact that there exist only very few results on q-analysis for |q| = 1. We will
make use of the fact that there exists an elliptic deformation of the q-deformed
gamma function and this elliptic gamma function (which has two deformation
parameters) allows to take a limit in which a single unimodular deformation pa-
rameter arises ([32], [33]). In this sense, the elliptic gamma function includes the
q-gamma function case with |q| = 1. We will therefore consider the problem of
taking the limit |q| → 1 for Z (q, λ) in the more general form of looking for an
elliptic analogue of Z (q, λ). For simplicity, we will completely restrict to the case
λ = 0. The general case can be treated in a completely analogous way (one has to
replace the classical Jacobi theta function with the generalized theta functions of
[16] for λ �= 0, see [34]).

Using the substitution q �→ q2, we have

Z (q, 0) = q−
1
12

∮
dz

2πiz

∏
j≥0

(
1 + zq2j+1

)(
1 +

1
z
q2j+1

)
= q−

1
12

∮
dz

2πiz
(
−zq; q2

)
∞

(
− q

z
; q2

)
∞
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where

(a; q)n =
n−1∏
j=0

(
1− aqj

)
is the q-shifted factorial and

(a; q)∞ =
∞∏

j=0

(
1− aqj

)
the limit n → ∞ which exists for |q| < 1. Remember that the classical Jacobi
theta function

ϑ (z, q) =
n=+∞∑
n=−∞

znqn2

can be expressed in the form of the Jacobi triple product as

ϑ (z, q) =
(
−zq; q2

)
∞
(
− q

z
; q2

)
∞

(
q2; q2

)
∞

i.e. Z (q, 0) is basically given by an integral over the first two factors of ϑ (z, q).
Rewriting (a; q)∞ in terms of the function Γq with

Γq (x) =
q−

x2
16(

−q 1
2 (x+1); q

)
∞

(see [36]), we have

(a; q)∞ =
q
−
(

2 log(a)
log(q) −1

4

)2

Γq

(
2 log(a)

log(q) − 1
)

and

Z (q, 0) = q−
1
12

∮
dz

2πiz
q
−( log(−z)

2 log(q) )
2

Γq2

(
log(−z)
log(q)

)
Γq2

(
− log(−z)

log(q)

) .
For q, p ∈ C with |q| , |p| < 1 let

Γ (z; q, p) =
∞∏

j,k=0

1− z−1qj+1pk+1

1− zqjpk

be the elliptic gamma function of [32], [33]. Then an elliptic generalization of
Z (q, 0) - which allows to take the limit to unimodular q – is given by

Z (q, p, 0) = q−
1
12 p−

1
12

∮
dz

2πiz
q
−( log(−z)

2(log(q)+log(p)))
2

p
−( log(−z)

2(log(q)+log(p)) )
2

Γ
(

log(−z)
log(q)+log(p) ; q

2, p2
)

Γ
(
− log(−z)

log(q)+log(p) ; q
2, p2

) .
It is an open question for future research if this partition function can be related
to a fermion system on the noncommutative torus in the limit of unimodular q.
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As in the classical case of commutative elliptic curves, we can use the elliptic
partition function to define Gromov-Witten invariants. Concretely, in the classical
case the definition of the partition function as

Z (q, λ) = exp

( ∞∑
g=1

λ2g−2Fg (q)

)
implies that we can calculate the Gromov-Witten invariants Fg as

Fg =
1

(2g − 2)!
∂2g−2 log(Z)

∂λ2g−2

∣∣∣∣
λ=0

.

We can now use this equation, applied to the elliptic partition function from above,
as a definition of elliptic Gromov-Witten invariants Fg (q, p). The limit to a single
unimodular parameter can be used as a definition of Gromov-Witten invariants
for noncommutative elliptic curves.

Again, it is an open question what these invariants measure on the noncom-
mutative torus. Definitely, they are not invariants of the smooth noncommutative
torus since their commutative limit is a symplectic invariant. If they are in any
sense nice invariants, they should go along with deformations of Floer homology
and the Fukaya category of classical elliptic curves. Since the elliptic gamma func-
tion is a much more complicated and considerably richer object than the classical
Jacobi theta function, we expect that the noncommutative Gromov-Witten invari-
ants should be related to deformations of the Fukaya category of an elliptic curve
to an algebraically even more complicated object. Without being able, at present,
to answer the open questions sketched here, we will give an argument in the next
section that exotic deformations of the Fukaya category of an elliptic curve should,
indeed, exist.

4. Exotic deformations of the Fukaya category

This section contains material on work in progress. The work of [4] and [35] sug-
gests that the Fukaya category of Et,τ is closely related to the category of projective
modules over a noncommutative torus (where the deformation of the algebra of
functions is induced from the choice of symplectic structure involved in the def-
inition of Et,τ ). Let us assume this to be true in the sequel. We will argue that
the moduli space of the Fukaya category (and consequently the moduli space of
its bounded derived version), which is an object of central interest in homolog-
ical mirror symmetry (see [17]), should possibly be larger than usually assumed
(i.e. larger than the so called extended moduli space of [17], [40] for the mirror
symmetric dual).

Consider the noncommutative torus T 2
Θ (see [6] for the definition). As men-

tioned above, we assume that the category Proj
(
T 2

Θ

)
of projective modules over

the algebra of functions on T 2
Θ is closely related to the Fukaya category of some

elliptic curve (see [26] for a detailed discussion of this relationship). We now make
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a special choice of object M of Proj
(
T 2

Θ

)
by assuming that M is a Heisenberg

module (see e.g. [27]). As shown in [28] one can attach a two dimensional noncom-
mutative gauge theory to M . While M has to be viewed as the noncommutative
counterpart of a vector bundle on T 2

Θ, i.e. it refers to the classical gauge theory, it
is also discussed in [28] how to quantize this theory. In conclusion, starting from
M and turning on the deformation parameter �, we arrive at a two dimensional
quantized gauge theory (see also [7] for related work). As in the commutative case
(see [5]), it was shown in [28] that this gauge theory is a cohomological field theory.
In the limit � → 0 this field theory reduces to the usual cohomological field theory
on an elliptic curve Et,τ which is studied in [5] and determines the Gromov-Witten
invariants of Et,τ . An algebraic model for this cohomological field theory is given
by the Fukaya category Fuk(Et,τ ) of Et,τ . It is therefore natural to assume that
the quantized cohomological field theory gained from M can algebraically be de-
scribed by some deformation FM of Fuk(Et,τ ). Now define the following 2-category
F̂
(
T 2

Θ

)
: For any Heisenberg module M take FM as an object. Since it should be

possible to reproduce M from FM in the limit � → 0, we assume that we can
treat all the other non-Heisenberg modules of Proj

(
T 2

Θ

)
as trivial categories in

some sense. We then define the 1-morphisms as functors and the 2-morphisms as
natural transformations in the obvious way. This argument suggests that the mod-
uli space of Fuk(Et,τ ) should be larger than usually assumed and should possibly
include deformations of Fuk(Et,τ ) into 2-categories (observe that by considering
the limit � → 0, for which FM → M , F̂

(
T 2

Θ

)
is a continuous deformation of

Proj
(
T 2

Θ

)
).

Remark 4.1. The argument above shows that F̂
(
T 2

Θ

)
should be at least a 2-category.

Since noncommutative deformations sometimes relate to higher categorical struc-
tures, one can a priori not exclude that FM might itself be a 2-category (or a
bicategory) and F̂

(
T 2

Θ

)
might therefore be an even higher category. We will give

an argument below that this should, indeed, be the case.

The view we have suggested here is that FM appears as a categorical gener-
alization of the module M while F̂

(
T 2

Θ

)
should be seen as a (higher) categorical

generalization of Proj
(
T 2

Θ

)
. It is natural to assume then that there might exist

even higher categorical deformations of these objects, i.e. we suggest to construct
a 2-category deformation F̂M of FM and from this – by replacing FM with F̂M in
the construction of F̂

(
T 2

Θ

)
– a deformation F̂ (2)

(
T 2

Θ

)
of F̂

(
T 2

Θ

)
which is at least

a 3-category. Proceeding iteratively in this way, we could arrive at an n-category
F̂ (n−1)

(
T 2

Θ

)
.

So, the construction above suggests that there might even exist n-category
deformations of Fuk(Et,τ ) beyond the 2-category deformation F̂

(
T 2

Θ

)
, further en-

larging the moduli space.
Let us now discuss the structural properties of the cohomological field theory

on T 2
Θ, studied in [28], in more detail. As is shown there, this field theory has a

BRST supercharge Q with respect to which it is a cohomological field theory. It
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follows from the general properties of the BRST-complex of a cohomological field
theory that the operator product expansion of the theory should determine the
structure of an A∞-algebra. This A∞-algebra should – as in the commutative case
– be the formal completion of an A∞-category (by introducing a formal value zero
for undefined products), which in the limit where T 2

Θ is send to the commutative el-
liptic curve Et,τ becomes the A∞-category determined by the usual cohomological
field theory of [5] on Et,τ .

In the next step, we have to consider the inherent Morita equivalence on
the cohomological field theory studied in [28] (for a general overview on Morita
equivalence for noncommutative tori and its consequences we refer the reader to
[30]). At the classical level, Morita equivalence means that the Heisenberg module
M is actually a bimodule for the algebras of functions on the Morita equivalent
noncommutative tori T 2

Θ and T 2
Θ̃
. But there is strong evidence that Morita equiv-

alence extends to a duality between the full quantized field theories defined from
M on T 2

Θ and T 2
Θ̃
, respectively (see [1], [3], [38]). This suggests that the abstract

A∞-category, related to the noncommutative cohomological field theory, should
have different – dual – realizations on T 2

Θ and T 2
Θ̃
.

Assume a precise notion of field theoretic realization of the A∞-category
would be available. From the above discussion, one has to conclude then that
what one should actually consider from the quantum field theory point of view is
all realizations of the A∞-category (this is very much in accordance with the results
gained in [13] in a different setting; in the noncommutative case this viewpoint
seems unavoidable, due to Morita equivalence). One might be tempted to introduce
the following 2-category as the correct algebraic framework, therefore: Objects
should be the realizations of the A∞-category and 1- and 2-morphisms should be
given by the obvious functors and natural transformations. But this is not what
one really wants from the physics perspective: The morphisms of the realization of
the A∞-category should correspond to the fields (ghost-fields, anti-ghost-fields) of
the cohomological field theory. Given two realizations, we do not only want to know
which fields are mapped onto each other (as would be the information given by a
functor) but also how they are mapped to each other, i.e. we would like to know the
precise transformation rule of the fields. As a consequence, the correct algebraic
structure should not be that of a 2-category but that of an fc-multicategory as
introduced in [21], [22]: The objects and the horizontal morphisms should be that
of the realization of the A∞-category while the vertical morphisms and the 2-cells
should give the above mentioned transformation rules. Since an A∞-category is
not a proper category, one can not expect to get a double category, here, but has
to assume the full structure of an fc-multicategory. In conclusion, we make the
following conjecture:

Conjecture 4.2. The algebraic structure, defined by the operator product expansion
of the cohomological field theory on T 2

Θ discussed in [28], should be given – correctly
taking into account Morita equivalence – by an fc-multicategory.
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Returning to the deformation F̂
(
T 2

Θ

)
of Fuk (Et,τ ), we therefore conjecture

that F̂
(
T 2

Θ

)
should be given as the 2-category of all the fc-multicategories attached

to the projective modules M in the way just described (actually, the dependence
should now be not on T 2

Θ but on the Morita equivalence class of T 2
Θ).

Remark 4.3. It follows immediately that F̂
(
T 2

Θ

)
should have much more structure

than that of a simple 2-category since every object is not just a category but an fc-
multicategory. We suspect that F̂

(
T 2

Θ

)
gives an example of a next higher categorical

analogue of an fc-multicategory, especially, it should be a generalization of a 3-
category.

There is also a more mathematical argument suggesting the same conclu-
sion: If mirror symmetry generalizes to the noncommutative setting, one would
expect that there is a dual description of F̂

(
T 2

Θ

)
as something like a category of

coherent sheaves on a noncommutative torus. In the commutative case, the ring
of classical theta functions gives a basis for global sections of line bundles. The
noncommutative elliptic curve should then relate to a deformed ring of theta func-
tions. This is indeed the case but the product of quantum theta functions is only
partially defined, i.e. quantum theta functions do no longer form a ring but a linear
category (see [23]). Vector bundles over a noncommutative elliptic curve (in the
classical case corresponding to projective modules over the algebra of functions)
should therefore correspond to categories with a module like structure. Conse-
quently, the category of vector bundles and anything like a derived category of
vector bundles (or derived category of coherent sheaves) should have the structure
of a bicategory. Since in the classical case higher Massey products, turning the
category of coherent sheaves into an A∞-category, have to be taken into account
to make homological mirror symmetry work (see [25]), we actually have to expect
an A∞-version of a bicategory (we can probably not expect the strictified version
of a bicategory, called a 2-category, to appear on the nose, here). Again, Morita
equivalence and the precise transformations induced by it on such A∞-bicategories
have to be taken into account for noncommutative elliptic curves and we finally
arrive at the conclusion that the noncommutative analogue of the category of co-
herent sheaves - and therefore, if mirror symmetry holds, also F̂

(
T 2

Θ

)
- should be

a generalization of a 3-category in the sense of a next higher categorical analogue
of an fc-multicategory.

Future work is intended to deal with the question if these exotic and very rich
deformations of the Fukaya category of an elliptic curve are in any way related to
the elliptic deformation of the Hurwitz partition function, as introduced above.

5. Conclusion and outlook

The relation of the Fukaya category on X to a category of modules on a noncom-
mutative deformation of X is argued in [15] to hold also for certain holomorphic
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symplectic manifolds X , especially for X = T 4. This means that also four di-
mensional noncommutative gauge theory might have a relation to deformations of
Fukaya categories. This would mean that for noncommutative field theories the al-
gebraic structure of two and four dimensional theories could be much more similar
than in the commutative case (where e.g. no generalization of the full vertex alge-
bra structure of two dimensional conformal field theory to higher dimensions has
been found, so far). Observe that in this case the noncommutative field theories –
since they are supposed to define deformations of cohomology theories – should be
well-defined, especially they should be renormalizable. This is very different e.g.
from deriving noncommutative field theories from open strings ending on D-branes
with B-field backgrounds where the noncommutative field theories appear only as
effective limits. We think that this indicates that the quantum field theories behind
deformations of Fukaya categories should provide an extremely interesting testing
ground for the subject of noncommutative quantum field theory.
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Abstract. We use Witten’s volume formula to calculate the cohomological
pairings of the moduli space of flat SU(3) connections. The cohomological
pairings of moduli space of flat SU(2) connections are known from the work of
Thaddeus-Witten-Donaldson, but for higher holonomy groups these pairings
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that the pairings can be expressed in terms of multiple zeta functions.
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1. Introduction

This article emerges from the recently obtained connection between quantum field
theory and algebraic geometry and it is devoted to the study of some cohomological
properties of the moduli space of flat SU(3) connections over a Riemann surface.
Roughly speaking, one can study the cohomological pairings in three different
ways: the first method was due to Thaddeus [33], the second one by Witten [39,
40], Donaldson [13] also proposed another method. The most up-to-date one was
proposed by Jeffrey and Kirwan [25, 26]. In an interesting paper Earl and Kirwan
[14] studied a generalization of the ring structure of the cohomology for the SU(2)
and SU(3) moduli spaces. They addressed the general case n > 3, by constructing
a complete set of generators for the ideal of relations, by suitably generalising the
Mumford relations.
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The moduli space M(n, d) of semistable rank n degree d holomorphic vector
bundles with fixed determinant on a compact Riemann surface Σ is a smooth
Kähler manifold when n and d are coprime [2, 3, 12, 31]. Jeffrey and Kirwan
[25, 26] gave full details of a mathematically rigorous proof of certain formulas
for intersection pairings in the cohomology of moduli space M(n, d) with complex
coefficients. These formulas have been found by Witten by formally applying his
version of non-Abelian localization to the infinite-dimensional space A of all U(n)-
connections on Σ and the group of gauge transformations. Jeffrey and Kirwan
used a non-Abelian localization technique to a certain finite-dimensional extended
moduli space from which a moduli space M(n, d) of semistable rank n degree d may
be obtained by ordinary symplectic reduction. In this way they obtained Witten’s
formulas. It has been known (see [24]) that a moduli space of flat connections
on principal G-bundles over Σ is a Marsden-Weinstein symplectic quotient of a
finite-dimensional symplectic manifold [17] by a G-action.

We use Verlinde’s formula [33, 36] of conformal field theory and complex ge-
ometry. Verlinde’s formula gives the dimension of the space of conformal blocks in
the WZW model on a Riemann surface. Verlinde’s [36] result on the diagonaliza-
tion of the fusion algebra gives a compact formula for the dimension of the space
of conformal blocks. This formula coincides with the dimension of H0(MG, L

⊗k),
where MG is the moduli space of flat G bundles over the Riemann surface Σg

of genus g and L is the generator of Pic(MG). The formula for the dimension
of these spaces, which is independent of the Riemann surface Σ, was proven by
Tsuchiya, Ueno and Yamada [34]. The Verlinde formula has given rise to a great
deal of excitement and new mathematics of infinite-dimensional variety (it is an
ind-scheme) [9, 15, 28]. An ind-scheme is a directed system of schemes, that is, an
ind-object of the category of schemes.

We can write the celebrated formula of Verlinde as

dimH0(MG, L
⊗k) =

∑
α

1
S2g−2

0,α

. (1.1)

Here, α runs over the representatives of G which are the highest weights of inte-
grable representations of the corresponding affine group Ĝ at level k and Sα,γ is
a matrix arising from the modular transformation of the character of the affine
group Ĝ at level k. If χα(τ) is the character of Ĝ at level k with highest weight α,
then S is defined by the formula

χα(−1/τ) =
∑

β

Sαβχβ(τ).

As an example we see that when G = SU(2), then

Sij = (
2

k + 2
)1/2 sin

π(i + 1)(j + 1)
k + 2

.
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Hence we obtain

dimH0(M, L⊗k) = (
k + 2

2
)g−1

k∑
j=0

(
1

sin π(j+1)
k+2

)2g−2. (1.2)

The volume of the moduli space is obtained from the Verlinde formula (1.1)
and is given by

VolF (M) = lim
k→∞

k−n dimH0(M, L⊗k). (1.3)

The Hirzebruch-Riemann-Roch formula is

dimH0(M, L⊗k) = 〈exp(kc1(L))·Td(M),M〉,
where Td(M) denotes the Todd class. For large k, this yields (for G = SU(2))

dimH0(M, L⊗k) ∼ k3g−3

(3g − 3)!
〈c1(L)3g−3,M〉.

Since c1(L) is represented by the symplectic form ω in de Rham cohomology,
〈c1(L)3g−3,M〉

(3g−3)! coincides with the volume of the moduli space Vol(M).

Incidentally, Witten gave a volume formula in [39] for the moduli space of
flat connections for general G. It is given by

Vol(M) =
�Z(G).(Vol(G))2g−2

(2π)dimM
∑
α

1
(dimα)2g−2

(1.4)

where α runs over all the irreducible representations of G. Here, �Z(G) is the
number of elements in the center of G.

In principle, Witten’s volume formula is applicable to any G. But unfortu-
nately some computational difficulties arise when G = SU(n) for n ≥ 3. In this
case one faces the problem to find the matrix Sαβ from the modular transformation
of the Weyl-Kac character formula [19, 23].

In this article we obtain the volume formula for G = SU(3) by computing
the matrix Sαβ :

S0λ =
8√

6(k + 3)
sin

πλ1

k + 3
sin

πλ2

k + 3
sin

π(λ1 + λ2)
k + 3

. (1.5)

The computation of the volume formula is a two step process. At first we obtain the
Verlinde formula for the moduli space of SU(3) of flat connections by substituting
the value of Sαβ in (1.1). We obtain

Proposition 1.1.

dimH0(M, L⊗k) =
(k + 3)2g−26g−1

26g−6

∑
λ1,λ2

(
1

sin πλ1
k+3 sin πλ2

k+3 sin π(λ1+λ2)
k+3

)2g−2.
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In the next step, using the above formula and Witten’s prescription for large
k limit, we obtain the volume of the moduli space of flat SU(3) connections; this
yields

Proposition 1.2.

Vol(M)SU(3)) = 3
6g−1

(2π)6g−6

∞∑
n1,n2

n
−(2g−2)
1 n

−(2g−2)
2 (n1 + n2)−(2g−2).

Here, a multiple zeta function appears in the volume of flat SU(3) connections
Vol(M)SU(3):

ζg(A, 2g − 2) =
∞∑

n1,n2

1
n2g−2

1 n2g−2
2 (n1 + n2)2g−2

. (1.6)

It is a member of a family of a much larger class of zeta functions, known as multiple
zeta functions. The Euler-Zagier multiple zeta functions are nested generalizations
of the Riemann zeta function [37, 38]. They are defined as

ζk(s1, . . . , sk) =
∑

0<n1<···<nk

n−s1
1 · · ·n−sk

k .

Here, s1, · · · , sk ∈ Z, s1 ≥ 2, sj ≥ 1 for 2 ≤ j ≤ k. For k = 1 this reduces to
Riemann’s zeta function. We call k the length or depth of s and |s| =

∑
sj the

weight of s.
Unlike as for the Riemann zeta function one could determine several algebraic

relations between the multiple zeta values (MZV). One type of such relations
appears when one multiplies two such series. In fact, one gets a linear combination
of MZV. A simple example is stated below:

ζ(s)ζ(s′) =
∑
n≥1

1
ns

∑
m≥1

1
ms′

=
∑
n>m

+
∑
n<m

+
∑
n=m

= ζ(s, s′) + ζ(s′, s) + ζ(s + s′).

This is a quadratic relation among zeta values. In general the quadratic relation
is given as

ζ(s)ζ(s′) =
∑

σ

σ.

This manipulation leads to the definition of a product called stuffle product [6].
This is a formal sum defined recursively by

aP ∗ bQ = a(P ∗ bQ) + b(aP ∗Q) + (a + b)(P ∗Q).

A simple example is

ζ(s)2 = 2ζ(s, s) + ζ(2s).
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Then for s = 2, ζ(2) = π2/6 and ζ(4) = π4/90, we obtain

ζ(2, 2) =
∑

m>n≥1

(mn)−2 =
π4

120
.

Another example is ζ(2)ζ(3) = ζ(2, 3) + ζ(3, 2) + ζ(5).

Remark. In the same way as the stuffle product arises in the reorganization of
multiple sums, multiple integrals lead to the definition of the shuffle product of
words over an alphabet (with two letters) X = {x0, x1}. The words are given as
X∗ = {xa1

0 xb1
1 · · ·xak

0 xbk
1 }. This product is defined by the same formula as the

stuffle product except that the last term in the sum is omitted. The algebraic
relations between multiple polylogarithms

Li(s1···sk)(z) =
∑

n1>n2>···nk≥1

zn1

ns1
1 · · ·nsk

k

|z| < 1 ∀sj ≥ 1

is generated by the shuffle relation. In fact, these multiple polylogarithms can be
expressed as iterated Chen integrals, and from this representation one obtains the
shuffle relations (for an example, see [7]).

In our case, Zagier [41, 42] gave a formula for calculating the values of this
particular multiple zeta function. This result is also derived using the stuffle prod-
uct. The key formula to compute our volume form is given by

∞∑
m,n

1
msns(m + n)s

=
4
3

∑
0≤r≤s; r even

(
2s− r − 1

s− 1

)
ζ(r)ζ(3s − r). (1.7)

Witten’s volume formula can be extended to the moduli space of vector bun-
dles with marked points z1, z2, . . . , zp ∈ Σg. We associate to each marked point
zi an irreducible representation Γ of GC. If λ is the highest weight of Γ, then
(λ, αmax) ≤ k where αmax is the highest root and ( , ) is the basic inner product
(see appendix, [23]): alternatively λ is in the fundamental domain of the action
of the affine Weyl group at level k + h on the Cartan subalgebra (Lie algebra of
the maximal torus). We sum over representations Γ for which, if λ is the highest
weight of Γλ, the representation of dimension (n + 1) and all the marked points
are labeled by Γnr . We associate a complex vector space to each labeled Riemann
surface.

The generalized Verlinde formula for a group G in the presence of marked
points [39] is

dimH0(MG, L
⊗k ⊗

⊗
i
Γni) =

k∑
j=0

1
S2g−2+p

0,j

p∏
i=1

Sni,j (1.8)

and the vector space H0(MG, L
⊗k ⊗⊗

iΓni) is independent of the details of the
positions of the marked points.
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Similarly, the volume of the generalized moduli space can be obtained from
this generalized Verlinde formula (1.8) by extracting the term at the large k limit
(1.3).

The volume formula for G = SU(2) with marked points is given as

VolF (Mt) = 2.
1

2g−1π2g−2+p

p∑
n=1

∏p
i=1 sin(πnti)
n2g−2+p

. (1.9)

Our strategy is to compute the volume using the Verlinde formula in the
large k limit rather than using Witten’s volume formula directly, and this will be
our recipe to find the volume of the moduli space.

Unlike the SU(2) case, we obtain the volume formula for the moduli space
of flat SU(3) connections in terms of multiple zeta functions or double Bernoulli
numbers [4, 5].

We obtain the volume formula of the moduli space of flat SU(3) connections
over one marked point Riemann surface.

Proposition 1.3.

VolF (Mt) =
3.6g−1

26g−6π6g−3

∑ sinπn1t1. sinπn2t2. sinπ(n1 + n2)(t1 + t2)
n2g−1

1 n2g−1
2 (n1 + n2)2g−1

t1 and t2 are restricted to

0 < ti < 1.

When we expand the sine terms, we obtain a comprehensive volume formula for
finding the intersection pairings of moduli space.

Witten’s idea is based on the symplectic volume of the moduli space of flat
connections. The moduli space M of flat connections of any semi-simple group G
is a symplectic variety with a symplectic form ω. The volume of the moduli space
of flat SU(n) connections is

VolS(M) =
1
r!

∫
M

ωr,

where r = (n2 − 1)(g − 1) = (g − 1) dimG is the dimension of the moduli space.
Witten showed in [39] that the Reidemeister torsion of a Riemann surface,

equipped with a flat connection, determines a natural volume form on the moduli
space of flat connections, which agrees with the symplectic volume. Given a chain
complex C• that computes H∗(Σ, ad(E)), we define the torsion τ(C•) as a vector
in

(detH0(Σ, ad(E)))−1 ⊗ detH1(Σ, ad(E))⊗ detH2(Σ, ad(E)))−1.

For an irreducible flat connection:

H0(Σ, ad(E)) = H2(Σ, ad(E)) = 0.
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So τ(C•) defines a vector in detH1(Σ, ad(E)). Witten [39] gave the actual road
map to compute the volume of M.

Motivation. The result of this paper first appeared in [20]. Apparently one would
ask why do we need another paper to study cohomological pairings, when Jeffrey
and Kirwan [25, 26] gave full details of a mathematically rigorous proof of Wit-
ten’s formulas for intersection numbers in the moduli spaces of flat connections.
Indeed, the knowledge of the volume formula in principle allows us to calculate
the full list of cohomology pairings for the moduli space of arbitrary rank. The
main difficulty comes from computation. Our article is an explicit example of the
computation of intersection pairings in the cohomology of the moduli space of flat
SU(3) connections. This involves the computation of multiple zeta functions and
hence it is fairly difficult to compute intersection pairings for higher rank vector
bundles. Our approach is based on the volume of the moduli spaces of parabolic
bundles prescribed by Witten. The Jeffrey-Kirwan formulation yields formulas for
all intersection numbers, whereas our approach yields formulas for the intersection
numbers of restricted cases. For example, we exclude some cases that could yield
the intersection numbers of some algebraic cycles in the moduli spaces.

2. Background about moduli space

Let us give a quick description of a moduli space [3]. Let Σg be a compact Rie-
mann surface of genus g. Let E be the G bundle over Σg — here G can be any
compact Lie group. For simplicity we shall work with the special case G = SU(n).
Let us consider the space of flat G connections over a Riemann surface Σg. We
consider the space Hom(π(Σg), G)/G, which parameterizes the conjugacy classes
of homomorphisms

π1(Σg) −→ G. (2.1)

Now, π1(Σg) has generators A1, A2, · · · , Ag, B1, B2, · · · , Bg that satisfy
g∏

i=1

[Ai, Bi] = 1. (2.2)

It follows that H1(Σg, G) is the quotient by G of the subset of G2g lying over 1 in
the map Gg ×Gg → G given by

∏
[Ai, Bi]. This shows clearly that H1(Σg, G) is

a compact Hausdorff space.

We fix our structure group G = SU(n). Let us consider a point x ∈ Σg.
Suppose we cut out a small disc D around the point x. We fix the holonomy of
the connection around the disc D to be exp(2πip/n), where p and n are coprime
to each other. Actually this holonomy exp(2πip/n) around the point x ensures the
irreducibility of the connection.

Consider a map

fg : SU(n)g × SU(n)g �−→ SU(n)
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defined by

(A1, B1, . . . , Ag, Bg) �−→
g∏
i

AiBiA
−1
i B−1

i .

In particular we select the subspace Wg = f−1
g (exp(2πip/n) of SU(n)2g.

A point, say x, in the space SU(n)g×SU(n)g is considered to be reducible if
there exists a matrix T in SU(n) such that (TAiT

−1, TBiT
−1 . . .) are all diagonal.

When n > 2, we should include also those points where there exist matrices that
can be simultaneously block diagonalized, for example, in the case of SU(3) this
would go into S(U(2)×U(1)). If x is a reducible point of SU(n)2g, then fg(x) = I,
so the connections take values in the Abelian subgroup of SU(n).

Now it follows that the diagonal conjugation action of SU(n)/Z(G) = PU(n)
(where Z(G) is the center of SU(n)) on SU(n)2g clearly preserves Wg and also
by Schur’s Lemma that the restriction of the action is free. Hence, the quotient
Wg/PU(n) is a smooth compact Hausdorff space, it is a manifold of dimension
2(g − 1) dimG at all irreducible points (i.e. when the image of π1(Σ) generates G
).

We can give an equivalent description of this moduli space in the holomorphic
way (see [2, 21, 22]). The space of connections A over E is an affine space modeled
on Ω1(Σg, adE), such that the tangent space of A at any point is canonically
identified with Ω1(Σg, adE). Let us consider a decomposition of

Ω1(Σg, adE)⊗C = Ω1,0(Σg, adEC)⊕ Ω0,1(Σg, adEC).

If we consider an isomorphism between Ω1(Σg, adE) and Ω0,1(Σg, adEC), we ob-
tain a complex structure on the modeled space of A and hence also on A. We
say that A is the space of ∂̄ operators on EC . In the holomorphic picture we
must restrict to a stable bundle [30] in order to obtain a smooth moduli space.
A holomorphic vector bundle E is semi-stable over a Riemann surface, if for all
sub-bundles F it satisfies

degF

rankF
≤ degE

rankE
.

Here, “degree” stands for the value of the first Chern class. The vector bundle E
is a stable bundle if this inequality is strict. When the degree and the rank are
coprime, then all the semi-stable bundles are stable. In this holomorphic picture
the moduli space is interpreted as the space of gauge equivalence classes of stable
vector bundles, i.e.M(Σ, G) = AS/GC , where Aut(EC) = GC acts onAS with the
constant scalars as the only isotropy group. The celebrated theorem of Narasimhan
and Seshadri [31] connects both the pictures and it states that stable bundles
arising from the representations of π1 give irreducible representations.
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Theorem 2.1 (Narasimhan-Seshadri). [31] A holomorphic vector bundle of rank
n is stable, if and only if it arises from an irreducible projective unitary repre-
sentation of the fundamental group. Moreover, isomorphic bundles correspond to
equivalent representations.

The more general moduli spaces of flat SU(n) connections over punctured
Riemann surfaces have been studied by Mehta and Seshadri [29]. In the presence
of a marked point on

∑
g we associate a conjugacy class of SU(n) to it:

Γ ∼

⎛⎜⎜⎝
e2πiγ1/n 0 · · · 0

0 e2πiγ2/n · · · 0
· · · · · · · · · · · ·
0 0 · · · e2πiγn/n

⎞⎟⎟⎠
for all 0 < γi < 1, where

∑n
i=1 γi = 0. The holonomy around this marked

point takes its value in this conjugacy class. In presence of the marked points
z1, z2, . . . , zp we associate a set of conjugacy classes Γi of SU(n). Consider a ho-
momorphism

π1(Σg − (z1 ∪ z2 ∪ .... ∪ zp)) −→ G

such that the loop around each zi takes values in Γi, and the moduli space is the
quotient by G of the fibre over 1 in the multiplication map

Γ1 × Γ2 × · · · × Γp −→ SU(n).

In other words, when we factor out the conjugacy, then we obtain the moduli space
of parabolic bundles with weight (γ1, . . . , γn). The dimension of the generalized
moduli space [3] is

2(g − 1) dimG +
p∑

j=1

dim Γj.

This moduli space of parabolic bundles over the punctured Riemann surface
can be given a holomorphic picture, too. Mehta and Seshadri [29] have given
the notion of stability in this case. This involves assigning weights given by the
eigenvalues of Γi at each marked point.

3. Volume of the moduli space of SU(2) flat connections

Let us quickly recapitulate the known case. We recall that Sαβ is obtained from
the modular transformation induced on the characters of level k. Let χα(τ) be
the character of the affine group Ĝ, then by the modular transformation τ → 1

τ
[11, 27], we obtain matrix Sαβ , where α is the highest weight.

χα(−1
τ
) =

∑
β

Sαβχβ(τ).
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The key to construct this character is from the Weyl-Kac formula (for example
[11, 27]). We define the character of the representation L(λ) to be the function

chλ(t) = trL(λ) exp(t)

where t ∈ t̂ and t̂ is the Cartan subalgebra of ŝln. The Weyl-Kac character formula
is given by

trL(λ) exp(t) =
∑

sign(w) exp(w(λ + ρ)|t)∑
sign(w) exp(w(ρ)|t)

where summations run over w in the Weyl group. The Weyl-Kac character formula
is essentially the same as the Weyl character formula, but it differs in two minor
ways, i.e. besides the usual root vectors, we also describe states by the number
operator and the c-number term. Then k is the eigenvalue of the number operator.

The affine Weyl group Waff is the semi-direct product of the ordinary Weyl
group and the translation Tλ given by the co-root λ∨ of the highest root λ.

Sij = (
2

k + 2
)

1
2
sinπ(i + 1)(j + 1)

k + 2
.

Using Verlinde’s formula, we obtain

dimH0(M, Lk) =
∑

j

(
1

S0,j
)2g−2

R.H.S =
∑

j

(
1

S0,j
)2g−2

= (
k + 2

2
)g−1

k∑
j=0

(
1

sin π(j+1)
k+2

)2g−2.

Since our goal is to obtain a formula for the volume of the moduli space M,
we need to extract a term proportional to kdimC M = k3g−3 for k −→∞. The two
regions, namely j % k and k − j % k, make equal contributions. In order to see
this we use asymptotic analysis.

3.1. Asymptotic analysis and computation of volume of moduli spaces

We want to show that this is asymptotic to

2k3g−3

2g−1π2g−2
.

∞∑
r=1

1
r2g−2

as k −→∞.

We assume that g ≥ 2 and write n = 2g−2 ≥ 2. We also replace k by l = k+2,
so the sum is:

Σl = (
l

2
)n/2

l−1∑
j=1

(
1

sin(πj/l)
)n.
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We divide this sum into the combination from j ≤ l/2, j ≥ l/2: these are essentially
the same, hence it suffices to treat the first one. For ε > 0, we write

l/2∑
j=1

(
1

sinπj/l
)n =

[εl]∑
j=1

(
1

sinπj/l
)n +

l/2∑
[εl]+1

(
1

sinπj/l
)n

= S + T, say .

We want to compare the sum S with S′ =
∑∞

j=1(
l

πj )n. The difference S−S′ arises
from two factors – approximating the sin function by its derivative and changing
the range of summation. For the first case we have, for small ε and j/l < ε,

πj/l ≥ sin(πj/l) ≥ πj/l− 1/6(πj/l)3.

This implies that, for some constant C,

(
l

πj
)n ≤ (

1
sin(πj/l)

)n ≤ (
kn

πj
)n(1 + C(

j

l
)2).

So

|
[εl]∑
j=1

(
1

sin(πj
l )

)n −
[εl]∑
j=1

(
l

πj
)n| ≤ C

εl∑
j=1

ln−2

jn−2
≤ C′ln−1,

for some C′ (since these are O(l) terms in the sum).
For the second factor:

∞∑
j=1

(
l

πj
)n −

[εl]∑
j=1

(
l

πj
)n =

∞∑
[εl]+1

(
l

πj
)n = O(ln−1)

by comparing with the integral
∫∞

εl x−ndx. Hence, we see that S − S′ is O(ln−1).
Finally consider the other term T :

T =
l/2∑

[εl]+1

(
1

sin(πj/l)
)n.

In this sum

sin(πj/l) ≥ δ(ε)

say so, for fixed ε, T = O(l) (the number of terms in the sum). Putting all of
this together, we see that

Σl = (
l

2
)n/2.(2

∞∑
j=1

(
l

πj
)n + O(ln−1),

which gives the required result.
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Hence, for large k we obtain

dimH0(M, Lk) ∼ 2(
k + 2

2
)g−1

k∑
j=0

(
k + 2

π(j + 1)
)2g−2

= 2
k3g−3

2g−1π2g−2

∞∑
n=1

1
n2g−2

.

This finally yields

dimH0(M, Lk) = 2
k3g−3

2g−1π2g−2
ζ(2g − 2). (3.1)

From the algebraic geometry point of view this dimension can be expressed
via the Hirzebruch-Riemann-Roch theorem [18]

dimH0(M, Lk) = 〈exp(kc1(L)).T d(M),M〉
and for large k,

dimH0(M, Lk) ∼ k3g−3

(3g − 3)!
〈c1(L)3g−3,M〉. (3.2)

Now c1(L) is represented by the symplectic form ω in de Rham cohomology. Hence

〈c1(L)3g−3,M〉
(3g − 3)!

coincides with Vol(M). Equating the expressions (3.1) and (3.2), we obtain

Vol(M) = 2
1

(2π2)g−1

∞∑
n=1

n−(2g−2)

= 2
ζ(2g − 2)
(2π2)g−1

This is known as Witten’s volume formula [39] of the moduli space of flat SU(2)
connections.

4. Volume of the moduli space of flat SU(3) connections

We first recall some definitions of affine ŜU(3) characters (for example [11, 27]).
The affine ŜU(3) characters are labeled by a highest weight Λ = λ1Λ1+λ2Λ2 where
the Λi’s are the fundamental weights and the set of components {λi} contains non-
negative integers. If the height of affine ŜU(3) is n = k + 3 with level k ≥ 0, the
highest weights corresponding to unitary representations satisfy λ1+λ2 ≤ k. Thus,
there are (k+1)(k+2)

2 = (n−1)(n−2)
2 independent affine characters. To see these more

explicitly, let us consider shifted weight λ = Λ+Λ1 +Λ2 = p1Λ1 +p2Λ2. Unitarity
of the representations implies that λ belongs to the fundamental domain W ,

W = {λ = p1Λ1 + p2Λ2, pi ≥ 1 and p1 + p2 ≤ n− 1},
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where the Λi’s are the fundamental weights and the set of components {pi} are
truncated by the level k. W is known as the Weyl alcove (see for example [8, 16,
27]).

Our starting point will be the Weyl-Kac character for ŜU(3). We obtain the
matrix Sαβ (see details in [27]) from the modular transformations τ −→ − 1

τ of χ.

The S matrix of ŜU(3) is given below.

S0λ =
8√

6(k + 3)
sin

πλ1

k + 3
sin

πλ2

k + 3
sin

π(λ1 + λ2)
k + 3

, (4.1)

which can be also derived from Weyl-Kac factorized form [11]:

φλ =
sin πλ1

k+3 sin πλ2
k+3 sin π(λ1+λ2)

k+3

sin2 π
k+3 sin 2π

k+3

after normalization.
Note that k + 3 is the shifting of level k, and the shifting will be exactly

equal to the Coxeter number of the group G. The Coxeter number of SU(n) is
n. Substituting the modular transformation S0λ in (4.1), we obtain the Verlinde
formula for the moduli space of flat SU(3) connections.

dimH0(M, Lk) =
(k + 3)2g−26g−1

27g−7

∑
λ1,λ2

(
1

sin πλ1
k+3 sin πλ2

k+3 sin π(λ1+λ2
k+3

)2g−2

.

(4.2)

Here the summation satisfies λ1 + λ2 ≤ k + 2.
To find the volume our goal is again to extract the term proportional to

kdimc M = k8g−8

for k −→∞.
Like in the SU(2) case, here the contribution for large k comes from 3 different

regions. Finally, we obtain

dimH0(M, Lk) ∼ 3
k8g−8

(2π)6g−62g−1
6g−1

∞∑
λ1=1,λ2=1

1
λ2g−2

1

1
λ2g−2

2

1
(λ1 + λ2)2g−2

dimH0(M, Lk) ∼ 3
k8g−8

(2π)6g−62g−1
6g−1ζg(2g − 2),

where the generalized zeta function

ζg(2g − 2) =
∑

n
−(2g−2)
1 n

−(2g−2)
2 (n1 + n2)−(2g−2) (4.3)

can be expressed in terms of double Bernoulli numbers [4, 5, 32] or multiple zeta
functions [41, 42].

Hence, using the Riemann-Roch formula, for large k −→∞ we obtain

dimH0(M, Lk) ∼ k8g−8

(8g − 8)!
〈c1(L)8g−8,M〉.
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Again, c1(L) is represented by the symplectic form ω and the term

〈c1(L)8g−8,M〉
(8g − 8)!

coincides with Vol(M). Hence we obtain

Vol(M)SU(3) = 3
6g−1

(2π)6g−62g−1
ζg(2g − 2).

Finally, using the formula [42] of the multiple zeta function
∞∑

m,n

1
msns(m + n)s

=
4
3

∑
0≤r≤s;reven

(
2s− r − 1

s− 1

)
ζ(r)ζ(3s − r)

we obtain following examples.

Example : For g = 2 we know the value of the zeta function from Zagier [41, 42]:
ζ2(2) = (2π)6/7! 36. So the volume is

Vol(M) = 3.
6

(2π)6.2
.
(2π)6

7! 36
. = 1/4.7!

This is the first generalization of Witten’s result [39] for the moduli space of SU(2)
flat connections to the moduli space of flat SU(3) connections.

5. Cohomological pairings of the moduli space

This is the central theme of the whole article. Our goal here is to find out the
cohomological pairings of the moduli space of flat SU(3) connections on the Rie-
mann surface. Our recipe to find the volume will be to use a generalized Verlinde
formula (for the marked point case) (1.8) in the large k-limit. This volume formula
contains all the information of certain cohomological pairings.

5.1. Review of Donaldson-Thaddeus-Witten’s work on SU(2) moduli space

Let M1 be the moduli space of flat SU(2) connections. For a rational number
0 < t < 1, we consider Mt to be the moduli space of flat connections on Σg − x,
such that monodromy around x is in the conjugacy classes of SU(2)

T =
(

exp(iπt) 0
0 exp(−iπt)

)
.

One can show that for t close to 1, Mt is a CP 1 bundle over the moduli space
M1.

CP1 −−−−→ Mt⏐⏐.
M1
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For Mt, we still have a natural symplectic structure ω, but the periods of ω
are no longer integers. Then ω is expressed by a + th in H2(Mt) generated by
a ∈ H2(M1) and h ∈ H2(Mt) takes value 1 on the fibre. Hence, for small t its
symplectic volume will be

VolS(Mt) = 〈 1
(3g − 2)!

(a + th)3g−2, [Mt]〉.

Using the relation h2 = b ∈ H4[M1], we can expand the above expression:

1
(3g − 2)!

( 3g−2
2 )∑

j=0

(
3g − 2
2j + 1 )t2j+1a3g−3−2jbj[M1]. (5.1)

On the other hand we use Witten’s prescription [39] to obtain the volume
of the moduli space of flat SU(2) connections over the Riemann surface with p-
marked points from the generalized Verlinde formula (1.8) in the large k limit.

VolF (Mt) = 2.
1

2g−1π2g−2+p

p∑
n=1

∏p
i=1 sin(πnti)
n2g−2+p

.

This volume for the one marked point case is

Vol(Mt) =
2

2g−1π2g−1

∞∑
n=1

sin(nπt)
n2g−1

. (5.2)

Equating the two expressions (5.1) and (5.2), one obtains the pairing in terms of
Bernoulli numbers.

〈ambn, [M]〉 = (−1)g m!
(g − 1−m)!

21−g(2g−1−m − 2)Bm−g+1

where m = 3g − 3− 2j and we have used

ζ(2k) =
(−1)k+1(2π)2k

2.(2k)!
B2k.

This exactly coincides with Thaddeus’ formula [33] which is verified by Donaldson
[13] using topological gluing techniques extracted from the Verlinde algebra.

After the demonstration of the known case, we shall give our result in the
remaining part of the article.

5.2. Cohomological pairings for SU(3) connections

Our goal is to obtain the cohomological pairings for the moduli space of flat SU(3)
connections.

To begin with, let Mt be the moduli space of flat SU(3) connections over
a Riemann surface Σg − x having one marked point x such that the holonomy
around x is characterized by two rational numbers t1, t2 satisfying 0 < t1 < 1
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and 0 < t2 < 1. The prescribed holonomy around x takes values in the conjugacy
classes of SU(3)

Θ ∼

⎛⎝ e2πit1/3 0 0
0 e2πit2/3 0
0 0 e−2πi(t1+t2)/3

⎞⎠ .

Then, for small values of t, Mt is the bundle over the ordinary smooth moduli
space and the flag manifold is the fibre on it. It can be represented by

F −−−−→ Mt⏐⏐.
M1

In other words, the fibre is a flag manifold

F =
SU(3)

U(1)× U(1)
=

SL(3, C)
B+

,

where B+ is the Borel subgroup of SL(3, C). We now give a brief description of
the flag manifold from the classic Bott and Tu [10].

5.2.1. Flag manifolds and cohomology. We define a flag in a complex vector space
V of dimension n as a sequence of subspaces

V1 ⊂ V2 ⊂ . . . . . . ⊂ Vn, dimC Vi = i.

Let Fl(V ) be the collection of all flags in V . Any flag can be carried into any other
flag in V by an element of the general linear group GL(n,C), and the stabilizer
of a flag is the Borel subgroup B+ of the upper triangular matrices. Then, the set
Fl(V ) is isomorphic to the coset space GL(n,C)/B+. The quotient of any smooth
manifold by the free action of a compact Lie group is again a smooth manifold.
Hence, Fl(V ) is a manifold and it is called the flag manifold of V .

Similarly, we can construct a flag structure on bundles. Let π : E −→M be
a C∞ complex vector bundle of rank n over a manifold M . The associated flag
bundle Fl(E) is obtained from E by replacing each fibre Ep by the flag manifold
Fl(Ep), the local trivialization

φα : E|Uα � Uα ×Cn

induces a natural trivialization

Fl(E)|Uα � Uα × Fl(Cn).

Since GL(n,C) acts on Fl(Cn) we may take the transition function of Fl(E) to
be those of E.

Let us discuss a few things about split manifolds. Given a map σ : Fl(E) −→
M we can define a split manifold as follows:

1. the pull back of E to F (E) splits into a direct sum of line bundles

σ−1E = L1 ⊕ . . . . . .⊕ Ln.
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2. σ∗ embeds H∗(M) in H∗(Fl(E)).
The split manifold Fl(E) is obtained by a sequence of n− 1 projectivization. We
shall now apply all these to obtain cohomology rings of flag manifolds.

Proposition 5.1. The associated flag bundle Fl(E) of a vector bundle is the split
manifold.

Proof: Given in Bott [10] (chapter 4). �
If E is a rank n complex vector bundle over M , then the cohomology ring of

its projectivization is

H∗(P (E)) = H∗(M)[c1, . . . , cn, d1, . . . , dn]/{C(S)C(Q) = π∗C(E)},
where c1, ....., cn are the Chern classes of the universal subbundle S and d1, ......, dn

are the classes of the universal quotient bundle Q. Also C(S) and C(Q) denote the
total Chern classes of S and Q. respectively. The flag manifold is obtained from a
sequence of (n− 1) projectivizations

H∗(Fl(E))

= H∗(M)[C(S1), ...., C(Sn−1), C(Q1, ....., Qn−1)]/C(S1)...C(Sn−1)C(Qn−1)

= C(E).

If

hi = C1(Si), i = 1...n− 1

hn = C(Qn−1),

then we have

H∗(Fl(E)) = H∗(M)[h1, .., hn]/(
n∏

i=1

(1 + hi)) = C(E)).

In order to obtain the cohomology ring of the flag manifold F [10], we have to
consider a trivial bundle over a point.

H∗(F ) = R[h1, ..., hn]/(
n∏

i=1

(1 + hi) = 1).

For the special case n = 3, we obtain

H∗(F ) = R[h1, h2, h3]/(
3∏

i=1

(1 + hi) = 1).

5.2.2. Computation of the intersection pairings. We are going to apply our pre-
vious scheme. Since Mt is a bundle over M1, we can pull back the cohomology
from the base manifold M1. In fact, it is not hard to see that the symplectic form
ω represents the class

a + t1h1 + t2h2 ∈ H2(Mt),
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where a ∈ H2(M1) and hi ∈ H2(Mt). So from this symplectic form the volume
will be the following

VolS(Mt) = 〈 1
(8g − 5)!

(a + t1h1 + t2h2)8g−5, [Mt]〉.

When we expand this expression, then we obtain the following results.

Proposition 5.2.

VolS(Mt) =
∑
k,l

1
(8g − 5− k − l)!k!l!

tk1t
l
2〈a8g−5−k−lhk

1h
l
2, [Mt]〉.

But to get the exact pairing, we have to use the knowledge of Witten’s volume
function for small t1, t2, and also we use the following identities viz.

h2
1 = b ∈ H4; h2

2 = c ∈ H4; −h1h2 = d ∈ H4

h2
1h2 = e ∈ H6; −h2

2h1 = f ∈ H6.

Note that h2
1h2 = −h1h

2
2 is a fundamental class of the Flag manifold, these are

top cohomology modules. The key lemma for obtaining the cohomology ring over
the moduli space M1 follows from the Leray-Hirsch theorem [10].

Theorem 5.3. (Leray-Hirsch) Let E be a fibre bundle over a manifold M with
fibre F . Assume M has finite good cover and suppose there are global cohomology
classes e1, e2, . . . , er on E which – when restricted to each fibre – freely generate
the cohomology of the fibre. Then H∗(E) is a free module over H∗(M) with basis
{e1, e2, . . . , er}, i.e.

H∗(E) ∼= H∗(M)⊗R[e1, e2, ....., er]
∼= H∗(M)⊗H∗(F).

Now we formulate an important statement.

Lemma 5.4. The fundamental classes of Mt are the product of the fundamental
classes of the moduli space without marked point M1 and the fundamental classes
of the flag manifold.

We use the same recipe, i.e., extracting the volume from the generalized
Verlinde formula (1.8), to find the volume of the moduli space.

If we feed the value of Sαβ of ŜU(3) obtained from the modular transfor-
mation of the Weyl-Kac character into the Verlinde formula (1.8) and repeat the
derivation as in the previous section, we obtain the torsion volume

VolF (Mt) =
3.6g−1

27g−7π6g−3

∑ sinπn1t1 sinπn2t2 sinπ(n1 + n2)(t1 + t2)
n2g−1

1 n2g−1
2 (n1 + n2)2g−1

.

This is the generalization of Witten’s volume formula for the moduli space of flat
SU(3) connections. It is the volume of the moduli space of flat SU(3) connections
over a Riemann surface of genus g with one marked point.
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After a tedious calculation which makes use of the Taylor expansion of
sinπn1t1, sinπn2t2 and sinπ(n1 + n2)(t1 + t2), the above expression for small
t1, t2 gives us a comprehensive formula:

Proposition 5.5.

Vol(Mt) =
3.6g−1

27g−7π6g−3

∑
n

∑
j

×

(−1)j1+j2+j3π2j1+2j2+j3t
2(j1+j3−j4)+1
1 t

2(j2+j4)+2
2

(2j1 + 1)!(2j2 + 1)!(2j3 − 2j4)!(2j4 + 1)!n2g−2j1−2
1 n2g−2j2−2

2 (n1 + n2)2g−2j3−2
.

This is the key formula for getting the cohomology pairings of the moduli
space of flat SU(3) connections, and is Witten’s volume formula for moduli space
of flat SU(3) connections. This formula is too bigm but can be handled for some
lower genus cases.

5.3. Concrete examples

It is clear that the two volumes of the moduli space, namely the symplectic volume
VolS(Mt) and the volume from Verlinde’s formula V ol(Mt) in claim (1.9) are
equal.

Using this simple prescription we obtain explicit examples of the cohomologi-
cal pairings of the moduli space of flat SU(3) connections. This pairing is expressed
in terms of a multiple zeta function [41, 42] or double Bernoulli numbers [4, 5].
Equating the powers of tk1t

l
2 we obtain explicit pairings.

1. We consider genus = 3. Thus we obtain

〈a10e1f1[M]〉 =
3.7!5!3!.22.8.9.10

28.(2π)6
ζSU(3).

From Zagier’s formula we now come to know that the value of this function
is (2π)6./7!.36. Hence

〈a10e1f1[M]〉 = (10.9.3.6.2).(24.5!)/4.36.26 = 5.9.15 = 675.

2. Once again consider genus = 3. We obtain

〈a10f2[M]〉 =
10.9.8.6.7!6!.22

(2π)6.28
2

ζ(2, A)

i.e.

〈a10f2[M]〉 = 10.9.8.5!.22/28 = 1350.

Thus, we gave two explicit examples of pairings. Indeed it is really hard to
compute any arbitrary higher genus pairings. We hope that our readers realize the
degree of complications for further computations of intersection pairings.
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(janvier 2001), 11 p.

[39] E. Witten. On Quantum gauge theories in two dimensions. Commn. Math. Phys.
141, 153–209. 1991.

[40] E. Witten. Two dimensional gauge theories revisited. J. Geom. Phys. 9, 303–368.
1992.

[41] D.B. Zagier. Private communication.

[42] D.B. Zagier. Values of Zeta functions and their Applications. First European Con-
gress of Mathematics, 1992, Vol.II, Edited by A. Joseph et. al. Birkhäuser Verlag,
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Noncommutative Field Theories from
a Deformation Point of View

Stefan Waldmann

Abstract. In this review we discuss the global geometry of noncommutative
field theories from a deformation point of view: The space-times under consid-
eration are deformations of classical space-time manifolds using star products.
Then matter fields are encoded in deformation quantizations of vector bun-
dles over the classical space-time. For gauge theories we establish a notion
of deformation quantization of a principal fibre bundle and show how the
deformation of associated vector bundles can be obtained.
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1. Introduction

Noncommutative geometry is commonly believed to be a reasonable candidate for
the marriage of classical gravity theory in form of Einstein’s general relativity on
one hand and quantum theory on the other hand. Both theories are experimentally
well-established within large regimes of energy and distance scales. However, from
a more fundamental point of view, the coexistence of these two theories becomes
inevitably inconsistent when one approaches the Planck scale where gravity itself
gives significant quantum effects.

Since general relativity is ultimately the theory of the geometry of space-
time it seems reasonable to use notions of ‘quantum geometry’ known under the
term noncommutative geometry in the sense of Connes [11] to achieve appropri-
ate formulations of what eventually should become quantum gravity. Of course,
this ultimate goal has not yet been reached but techniques of noncommutative
geometry have been used successfully to develop models of quantum field theories
on quantum space-times being of interest of their own. Moreover, a deeper un-
derstanding of ordinary quantum field theories can be obtained by studying their
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counterparts on ‘nearby’ noncommutative space-times. On the other hand, people
started to investigate experimental implications of a possible noncommutativity
of space-time in future particle experiments.

Such a wide scale of applications and interests justifies a more conceptual
discussion of noncommutative space-times and (quantum) field theories on them in
order to clarify fundamental questions and generic features expected to be common
to all examples.

In this review, we shall present such an approach from the point of view of
deformation theory: noncommutative space-times are not studied by themselves
but always with respect to a classical space-time, being suitably deformed into
the noncommutative one. Clearly, this point of view can not cover all possible
(and possibly interesting) noncommutative geometries but only a particular class.
Moreover, we focus on formal deformations for technical reasons. It is simply
the most easy approach where one can rely on the very powerful machinery of
algebraic deformation theory. But it also gives hints on approaches beyond formal
deformations: finding obstructions in the formal framework will indicate even more
severe obstructions in any non-perturbative approach.

In the following, we discuss mainly two questions: first, what is the appro-
priate description of matter fields on deformed space-times and, second, what are
the deformed analogues of principal bundles needed for the formulation of gauge
theories. The motivation for these two questions should be clear.

The review is organized as follows: in Section 2, we recall some basic def-
initions and properties concerning deformation quantizations and star products
needed for the set-up of noncommutative space-times. We discuss some funda-
mental examples as well as a new class of locally noncommutative space-times.
Section 3 is devoted to the study of matter fields: we use the Serre-Swan theorem
to relate matter fields to projective modules and discuss their deformation theory.
Particular interest is put on the mass terms and their positivity properties. In
Section 4 we establish the notion of deformation quantization of principal fibre
bundles and discuss the existence and uniqueness results. Finally, in Section 5 we
investigate the resulting commutant and formulate an appropriate notion of as-
sociated (vector) bundles. This way we make contact to the results of Section 3.
The review is based on joint works with Henrique Bursztyn on one hand as well
as with Martin Bordemann, Nikolai Neumaier and Stefan Wei on the other hand.

2. Noncommutative space-times

In order to implement uncertainty relations for measuring coordinates of events
in space-time it has been proposed already very early to replace the commuta-
tive algebra of (coordinate) functions by some noncommutative algebra. In [17] a
concrete model for a noncommutative Minkowski space-time was introduced with
commutation relations of the form

[x̂μ, x̂ν ] = iλθμν , (2.1)
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where λ plays the role of the deformation parameter and has the physical dimension
of an area. Usually, this area will be interpreted as the Planck area. Moreover, θ is
a real, antisymmetric tensor which in [17] and many following papers is assumed
to be constant : in [17] this amounts to require that θμν belongs to the center of
the new algebra of noncommutative coordinates. In fact, the approach in [17] was
more subtle: the constants θμν are subject to a tensor transforming non-trivially
under Lorentz transformations in such a way that the whole algebra is endowed
with a representation of the Lorentz (in fact Poincaré) group by ∗-automorphisms.
This was achieved by adding the whole Lorentz orbit of a constant tensor θμν with
rank 4. Unfortunately, in the vast majority of the follow-up papers this feature of
Lorentz invariance has been neglected. In the following we shall ignore symmetries,
too, as in the end we focus on generic space-times without symmetries anyway.
However, if there is a reasonably large symmetry group present, one can always
perform the construction parallel to [17] and add the orbit of the Poisson tensor
under the symmetry group.

Instead of constructing an abstract algebra where commutation relations like
(2.1) are fulfilled, it is convenient to use a ‘symbol calculus’ and encode (2.1)
already for the classical coordinate functions by changing the multiplication law
instead. For functions f and g on the classical Minkowski space-time one defines
the Weyl-Moyal star product by

f � g = μ ◦ e
iλ
2 θμν ∂

∂xμ ⊗ ∂
∂xν (f ⊗ g), (2.2)

where μ(f⊗g) = fg denotes the undeformed, pointwise product. Then (2.1) holds
for the classical coordinate functions with respect to the �-commutator.

Clearly, one has to be slightly more careful with expressions like (2.2): in
order to make sense out of the infinite differentiations the functions f and g first
should be C∞. But then the exponential series does not converge in general whence
a more sophisticated analysis is required. Though this can be done in a completely
satisfying way for this particular example, we shall not enter this discussion here
but consider (2.2) as a formal power series in the deformation parameter λ. Then �
becomes an associative [[λ]]-bilinear product for C∞( 4)[[λ]], i. e. a star product
in the sense of [3]. It should be noted that the interpretation of (2.2) as formal
series in λ is physically problematic: λ is the Planck area and hence a physically
measurable and non-zero quantity. Thus our point of view only postpones the
convergence problem and can be seen as a perturbative approach.

With this example in mind, one arrives at several conceptual questions: The
first is that Minkowski space-time is clearly not a very realistic background when
one wants to consider quantum effects of ‘hard’ gravity. Here already classically
nontrivial curvature and even nontrivial topology may arise. Thus one is forced
to consider more general and probably even generic Lorentz manifolds instead.
Fortunately, deformation quantization provides a well-established and successful
mathematical framework for this geometric situation.
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Recall that a star product on a manifold M is an associative [[λ]]-bilinear
multiplication � for f, g ∈ C∞(M)[[λ]] of the form

f � g =
∞∑

r=0

λrCr(f, g), (2.3)

where C0(f, g) = fg is the undeformed, pointwise multiplication and the Cr are
bidifferential operators. Usually, one requires 1�f = f = f �1 for all f . It is easy to
see that {f, g} = 1

i (C1(f, g)−C1(g, f)) defines a Poisson bracket on M . Conversely,
and this is the highly nontrivial part, any Poisson bracket {f, g} = θ(d f, d g),
where

θ ∈ Γ∞(Λ2TM), �θ, θ� = 0 (2.4)
is the corresponding Poisson tensor, can be quantized into a star product [14,29].
Beside these existence results one has a very good understanding of the classifica-
tion of such star products [20, 29, 31], see also [15, 19] for recent reviews and [40]
for an introduction.

With this geometric interpretation the Weyl-Moyal star product on Minkowski
space-time turns out to be a deformation quantization of the constant Poisson
structure

θ =
1
2
θμν ∂

∂xμ
∧ ∂

∂xν
. (2.5)

On a generic space-time M there is typically no transitive action of isometries
which would justify the notion of a ‘constant’ bivector field. Thus a star product
� on M is much more complicated than (2.2) in general: already the first order
term is a (nontrivial) Poisson structure and for the higher order terms one has to
invoke the (unfortunately rather inexplicit) existence theorems.

Thus answering the first question by using general star products raises the
second: what is the physical role of a Poisson structure on space-time? While on
Minkowski space-time with constant θ we can view the finite number of coefficients
θμν ∈ as parameters of the theory this is certainly no longer reasonable in
the more realistic geometric framework: there is an infinity of Poisson structures
on each manifold whence an interpretation as ‘parameter’ yields a meaningless
theory. Instead, θ has to be considered as a field itself, obeying its own dynamics
compatible with the constraint of the Jacobi identity �θ, θ� = 0. Unfortunately, up
to now a reasonable ‘field equation’ justified by first principles seems to be missing.

This raises a third conceptual question, namely why should there be any Pois-
son structure on M and what are possible experimental implications? In particu-
lar, the original idea of introducing a noncommutative structure was to implement
uncertainty relations forbidding the precise localization of events. The common
believe is that such quantum effects should only play a role when approaching
the Planck scale. Now it turns out that the quantum field theories put on such a
noncommutative Minkowski space-time (or their Euclidian counterparts) suffer all
from quite unphysical properties: Typically, the noncommutativity enters in long-
distance/low-energy features contradicting our daily life experience. Certainly, a
last word is not said but there might be a simple explanation why such effects
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should be expected: the global θ (constant or not) yields global effects on M . This
was the starting point of a more refined notion of noncommutative space-times
advocated in [1, 23] as locally noncommutative space-times. Roughly speaking,
without entering the technical details, it is not M which should become noncom-
mutative but TM . Here the tangent bundle is interpreted as the bundle of all
normal charts on M and for each normal chart with origin p ∈ M one constructs
its own star product �p. The crucial property is then that �p is the pointwise,
commutative product outside a (small) compact subset around p. This way, the
long-distance behavior (with respect to the reference point p) is classical while
close to p there is a possibly even very strong noncommutativity. In some sense,
this is an implementation of an idea of Julius Wess, proposing that the transition
from classical geometry to quantum geometry should be understood as a kind of
phase transition taking place at very small distances [42]. Of course, the concep-
tual question about the physical origin of the corresponding Poisson structure on
TM as well as the convergence problem still persists also in this approach.

Ignoring these questions about the nature of θ, we shall assume in the fol-
lowing that we are given a star product � on a manifold M which can be either
space-time itself or its tangent bundle in the locally noncommutative case. Then
we address the question how to formulate reasonable field theories on (M,�). Here
we shall focus on classical field theories which still need to be quantized later on.
On the other hand, we seek for a geometric formulation not relying on particular
assumptions about the underlying classical space-time.

3. Matter fields and deformed vector bundles

In this section we review some results from [6, 9, 35, 39].
In classical field theories both bosonic and fermionic matter fields are given

by sections of appropriate vector bundles. For convenience, we choose the vector
bundles to be complex as also the function algebra C∞(M) consists of complex-
valued functions. However, the real case can be treated completely analogously.
Thus let E −→ M be a complex vector bundle over M . Then the E-valued fields
are the (smooth) sections Γ∞(E) which form a module over C∞(M) by pointwise
multiplication. Thanks to the commutativity of C∞(M) we have the freedom to
choose this module structure to be a right module structure for later convenience.

It is a crucial feature of vector bundles that Γ∞(E) is actually a finitely
generated and projective module:

Theorem 3.1 (Serre-Swan). The sections Γ∞(E) of a vector bundle E −→M are
a finitely generated and projective C∞(M)-module. Conversely, any such module
arises this way up to isomorphism.

Recall that a right module EA over an algebra A is called finitely generated
and projective if there exists an idempotent e2 = e ∈Mn(A) such that EA

∼= eAn

as right A-modules. More geometrically speaking, for any vector bundle E −→M
there is another vector bundle F −→ M such that their Whitney sum E ⊕ F
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is isomorphic to a trivial vector bundle M × n −→ M . Note that the Serre-
Swan theorem has many incarnations, e.g. the original version was formulated
for compact Hausdorff spaces and continuous sections/functions. Note also that
for our situation no compactness assumption is necessary (though it drastically
simplifies the proof) as manifolds are assumed to be second countable.

Remark 3.2. The Serre-Swan theorem is the main motivation for noncommutative
geometry to consider finitely generated and projective modules over a not neces-
sarily commutative algebra A as ‘vector bundles’ over the (noncommutative) space
described by A in general.

For physical applications in field theory one usually has more structure on E
than just a bare vector bundle. In particular, for a Lagrangian formulation a ‘mass
term’ in the Lagrangian is needed. Geometrically such a mass term corresponds
to a Hermitian fibre metric h on E. One can view a Hermitian fibre metric as a
map

h : Γ∞(E)× Γ∞(E) −→ C∞(M), (3.1)

which is -linear in the second argument and satisfies h(φ, ψ) = h(ψ, φ), h(φ, ψf) =
h(φ, ψ)f as well as

h(φ, φ) ≥ 0 (3.2)
for φ, ψ ∈ Γ∞(E) and f ∈ C∞(M). The pointwise non-degeneracy of h is equiva-
lent to the property that

Γ∞(E)  φ �→ h(φ, ·) ∈ Γ∞(E∗) (3.3)

is an anti-linear module isomorphism. Note that the sections of the dual vec-
tor bundle E∗ −→ M coincide with the dual module, i.e. we have Γ∞(E∗) =
HomC∞(M)(Γ∞(E), C∞(M)).

In order to encode now the positivity (3.2) in a more algebraic way suitable
for deformation theory, we have to consider the following class of algebras: First,
we use a ring of the form C = R(i) with i2 = −1 for the scalars where R is an
ordered ring. This includes both and [[λ]], where positive elements in [[λ]]
are defined by

a =
∞∑

r=r0

λrar > 0 if ar0 > 0. (3.4)

In fact, this way R[[λ]] becomes an ordered ring whenever R is ordered. More
physically speaking, the ordering of [[λ]] refers to a kind of asymptotic positivity.
Then the algebras in question should be ∗-algebras over C: Indeed, C∞(M) is a
∗-algebra over where the ∗-involution is the pointwise complex conjugation.
For the deformed algebras (C∞(M)[[λ]], �) we require that the star product is
Hermitian, i.e.

f � g = g � f (3.5)
for all f, g ∈ C∞(M)[[λ]]. For a real Poisson structure θ this can be achieved by a
suitable choice of �.
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For such a ∗-algebra we can now speak of positive functionals and positive
elements [7] by mimicking the usual definitions from operator algebras, see e.g. [33]
for the case of (unbounded) operator algebras and [38] for a detailed comparison.

Definition 3.3. Let A be a ∗-algebra over C = R(i). A C-linear functional ω : A −→
C is called positive if ω(a∗a) ≥ 0 for all a ∈ A. An element a ∈ A is called positive
if ω(a) ≥ 0 for all positive functionals ω.

We denote the convex cone of positive elements in A by A+. It is an easy
exercise to show that for A = C∞(M) the positive functionals are the compactly
supported Borel measures and A+ consists of functions f with f(x) ≥ 0 for all
x ∈M .

Using this notion of positive elements and motivated by [30], the algebraic
formulation of a fibre metric is now as follows [6, 9]:

Definition 3.4. Let EA be a right A-module. Then an inner product 〈·, ·〉 on EA is
a map

〈·, ·〉 : EA × EA −→ A, (3.6)
which is C-linear in the second argument and satisfies 〈x, y〉 = 〈y, x〉∗, 〈x, y · a〉 =
〈x, y〉 a, and 〈x, y〉 = 0 for all y implies x = 0. The inner product is called strongly
non-degenerate if in addition

EA  x �→ 〈x, ·〉 ∈ E∗ = HomA(EA,A) (3.7)

is bijective. It is called completely positive if for all n ∈ and x1, . . . , xn ∈ EA

one has (〈xi, xj〉) ∈Mn(A)+.

Clearly, a Hermitian fibre metric on a complex vector bundle endows Γ∞(E)
with a completely positive, strongly non-degenerate inner product in the sense of
Definition 3.4.

With the above definition in mind we can now formulate the following defor-
mation problem [6]:

Definition 3.5. Let � be a Hermitian star product on M and E −→M a complex
vector bundle with fibre metric h.

1. A deformation quantization • of E is a right module structure • for Γ∞(E)[[λ]]
with respect to � of the form

φ • f =
∞∑

r=0

λrRr(φ, f) (3.8)

with bidifferential operators Rr and R0(φ, f) = φf .
2. For a given deformation quantization • of E a deformation quantization of h

is a completely positive inner product h for (Γ∞(E)[[λ]], •) of the form

h(φ, ψ) =
∞∑

r=0

λrhr(φ, ψ) (3.9)

with (sesquilinear) bidifferential operators hr and h0 = h.
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In addition, we call two deformations • and •̃ equivalent if there exists a
formal series of differential operators

T = id +
∞∑

r=1

λrTt : Γ∞(E)[[λ]] −→ Γ∞(E)[[λ]], (3.10)

such that
T (φ • f) = T (φ)•̃f. (3.11)

With other words, T is a module isomorphism starting with the identity in order λ0

such that T is not visible in the classical/commutative limit. Conversely, starting
with one deformation • and a T like in (3.10), one obtains another equivalent
deformation •̃ by defining •̃ via (3.11). Similarly, we define two deformations h

and h̃ to be isometric if there exists a self-equivalence U with

h(φ, ψ) = h̃(U(φ), U(ψ)). (3.12)

The relevance of the above notions for noncommutative field theories should now
be clear: for a classical matter field theory modeled on E −→M we obtain the cor-
responding noncommutative field theory by choosing a deformation • (if it exists!)
together with a deformation h (if it exists!) in order to write down noncommutative
Lagrangians involving expressions like L(φ) = h(φ, φ) + · · · .

Note that naive expressions like φ � φ do not make sense geometrically, even
on the classical level: sections of a vector bundle can not be ‘multiplied’ without
the extra structure of a fibre metric h unless the bundle is trivial and trivialized.
In this particular case we can of course use the canonical fibre metric coming from
the canonical inner product on n. We refer to [35, 39] for a further discussion.

We can now state the main results of this section, see [6,9] for detailed proofs:

Theorem 3.6. For any star product � on M and any vector bundle E −→ M
there exists a deformation quantization • with respect to � which is unique up to
equivalence.

Theorem 3.7. For any Hermitian star product � on M and any fibre metric h on
E −→ M and any deformation quantization • of E there exists a deformation
quantization h of h which is unique up to isometry.

The first theorem relies heavily on the Serre-Swan theorem and the fact that
algebraic K0-theory is stable under formal deformations [32]. In fact, projections
and hence projective modules can always be deformed in an essentially unique
way. The second statement follows for much more general deformed algebras than
only for star products, see [9].
Remark 3.8.

1. In case M is symplectic, one has even a rather explicit Fedosov-like construc-
tion for • and h in terms of connections, see [36].

2. It turns out that also Γ∞(End(E)) becomes deformed into an associative alge-
bra (Γ∞(End(E))[[λ]], �′) such that Γ∞(E)[[λ]] becomes a Morita equivalence
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bimodule between the two deformed algebras � and �′. Together with the de-
formation h of h one obtains even a strong Morita equivalence bimodule [9].

3. Note also that the results of the two theorems are more than just the ‘anal-
ogy’ used in the more general framework of noncommutative geometry: we
have here a precise link between the noncommutative geometries and their
classical/commutative limits via deformation. For general noncommutative
geometries it is not even clear what a classical/commutative limit is.

4. Deformed principal bundles

This section contains a review of results obtained in [5] as well as in [41].
In all fundamental theories of particle physics the field theories involve gauge

fields. Geometrically, their formulation is based on the use of a principal bundle
pr : P −→ M with structure group G, i.e. P is endowed with a (right) action
of G which is proper and free whence the quotient P

/
G = M is again a smooth

manifold. All the matter fields are then obtained as sections of associated vector
bundles by choosing an appropriate representation of G.

In the noncommutative framework there are several approaches to gauge the-
ories: for particular structure groups and representations notions of gauge theories
have been developed by Jurco, Schupp, Wess and coworkers [24–28]. Here the fo-
cus was mainly on local considerations and the associated bundles but not on the
principal bundle directly. Conversely, there is a purely algebraic and intrinsically
global formulation of Hopf-Galois extensions where not only the base manifold M
is allowed to be noncommutative but even the structure group is replaced by a
general Hopf algebra, see e.g. [12] and references therein for the relation of Hopf-
Galois theory to noncommutative gauge field theories. However, as we shall see
below, in this framework which a priori does not refer to any sort of deforma-
tion, in general only very particular Poisson structures on M can be used. Finally,
in [37] a local approach to principal Gl(n, ) or U(n) bundles was implicitly used
via deformed transition matrices.

We are now seeking for a definition of a deformation quantization of a princi-
pal bundle P for a generic structure Lie group G, arbitrary M and arbitrary star
product � on M without further assumptions on P . In particular, the formulation
should be intrinsically global.

The idea is to consider the classical algebra homomorphism

pr∗ : C∞(M) −→ C∞(P ) (4.1)

and try to find a reasonable deformation of pr∗. The first idea would be to find a
star product �P on P with a deformation pr∗ =

∑∞
r=0 λ

rpr∗
r of pr∗

0 = pr∗ into
an algebra homomorphism

pr∗(f � g) = pr∗(f) �P pr∗(g) (4.2)

with respect to the two star products � and �P . In some sense this would be the
first (but not the only) requirement for a Hopf-Galois extension. In fact, the first
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order of (4.2) implies that the classical projection map pr is a Poisson map with
respect to the Poisson structures induced by � on M and �P on P . The following
example shows that in general there are obstructions to achieve (4.2) already on
the classical level:

Example. Consider the Hopf fibration pr : S3 −→ S2 (which is a nontrivial prin-
cipal S1-bundle over S2) and equip S2 with the canonical symplectic Poisson
structure. Then there exists no Poisson structure on S3 such that pr becomes a
Poisson map. Indeed, if there would be such a Poisson structure then necessarily
all symplectic leaves would be two-dimensional as symplectic leaves are mapped
into symplectic leaves and S2 is already symplectic. Fixing one symplectic leaf in
S3 one checks that pr restricted to this leaf is still surjective and thus provides a
covering of S2. But S2 is simply connected whence the symplectic leaf is itself a
S2. This would yield a section of the nontrivial principal bundle pr : S3 −→ S2, a
contradiction.

Remark 4.1. Note that there are prominent examples of Hopf-Galois extensions
using quantum spheres, see e.g. [21] and references therein. The above example
shows that when taking the semi-classical limit of these q-deformations one obtains
Poisson structures on S2 which are certainly not symplectic. Note that this was a
crucial feature in the above example. A further investigation of these examples is
work in progress.

The above example shows that the first idea of deforming the projection
map into an algebra homomorphism leads to hard obstructions in general, even
though there are interesting classes of examples where the obstructions are absent.
However, as we are interested in an approach not making too much assumptions
in the beginning, we abandon this first idea. The next weaker requirement would
be to deform pr∗ not into an algebra homomorphism but only turning C∞(P ) into
a bimodule. This would have the advantage that there is no Poisson structure on
P needed. However, a more subtle analysis shows that again for the Hopf fibration
such a bimodule structure is impossible if one uses a star product on S2 coming
from the symplectic Poisson structure. Thus we are left with a module structure:
for later convenience we choose a right module structure and state the following
definition [5]:

Definition 4.2. Let pr : P � G −→ M be a principal G-bundle over M and � a
star product on M . A deformation quantization of P is a right �-module structure
• for C∞(P )[[λ]] of the form

F • f = Fpr∗f +
∞∑

r=1

λr�r(F, f), (4.3)

where �r : C∞(P )×C∞(M) −→ C∞(P ) is a bidifferential operator (along pr) for
all r ≥ 1, such that in addition one has the G-equivariance

g∗(F • f) = g∗F • f (4.4)



Noncommutative Field Theories from a Deformation Point of View 127

for all F ∈ C∞(P )[[λ]], f ∈ C∞(M)[[λ]] and g ∈ G.

Note that as G acts on P from the right, the pull-backs with the actions of
g ∈ G provide a left action on C∞(P ) in (4.4). Then this condition means that
the G-action commutes with the module multiplications.

Note that the module property F • (f � g) = (F • f) • g implies that the
constant function 1 acts as identity. Indeed, since 1 � 1 = 1 the action of 1 via •
is a projection. However, in zeroth order the map F �→ F • 1 is just the identity
and hence invertible. But the only invertible projection is the identity map itself.
Thus

F • 1 = F (4.5)
for all F ∈ C∞(P )[[λ]], so the module structure • is necessarily unital.

Finally, we call two deformation quantizations • and •̃ equivalent, if there
exists a G-equivariant equivalence transformation between them, i.e. a formal series
of differential operators T = id +

∑∞
r=1 λ

rTr on C∞(P )[[λ]] such that

T (F • f) = T (F )•̃f and g∗T = Tg∗ (4.6)

for all F ∈ C∞(P )[[λ]], f ∈ C∞(M)[[λ]] and g ∈ G.
We shall now discuss the existence and classification of such module struc-

tures. For warming up we consider the situation of a trivial principal fibre bundle:

Example. Let P = M ×G be the trivial (and trivialized) principal G-bundle over
M with the obvious projection. For any star product � on M we can now ex-
tend � to C∞(M × G)[[λ]] by simply acting only on the M -coordinates in the
Cartesian product. Here we use the fact that we can canonically extend multidif-
ferential operators on M to M ×G. Clearly, all algebraic properties are preserved
whence in this case we even get a star product �P = � ⊗ μ with the undeformed
multiplication μ for the G-coordinates. In particular, C∞(M ×G)[[λ]] becomes a
right module with respect to �. So locally there are no obstructions even for the
strongest requirement (4.2) and hence also for (4.3).

The problem of finding • is a global question whence we can not rely on local
considerations directly. The most naive way to construct a • is an order-by-order
construction: In general, one has to expect obstructions in each order which we
shall now compute explicitly. This is a completely standard approach from the
very first days of algebraic deformation theory [13, 18] and will in general only
yield the result that there are possible obstructions: in this case one needs more
refined arguments to ensure existence of deformations whence the order-by-order
argument in general is rather useless. In our situation, however, it turns out that
we are surprisingly lucky.

The following argument applies essentially to arbitrary algebras and module
deformations and should be considered to be folklore. Suppose we have already
found �0 = pr∗, �1, . . . , �k such that

F •(k) f = Fpr∗f +
k∑

r=1

λr�r(F, f) (4.7)
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is a module structure up to order λk and each �r fulfils the G-equivariance condi-
tion. Then in order to find �k+1 such that •(k+1) = •(k) + λk+1�k+1 is a module
structure up to order λk+1 we have to satisfy

�k+1(F, f)pr∗g − �k+1(F, fg) + �k+1(Fpr∗f, g)

=
k∑

r=1

(�r(F,Ck+1−r(f, g))− �r(�k+1−r(F, f), g)) = Rk(F, f, g), (4.8)

for all F ∈ C∞(P )[[λ]] and f, g ∈ C∞(M)[[λ]]. Here Cr denotes the r-th cochain
of the star product � as in (2.3). In order to interpret this equation we consider
the �r as maps

�r : C∞(M)  f �→ �r(·, f) ∈ Diffop(P ) (4.9)
and similarly

Rk : C∞(M)× C∞(M)  (f, g) �→ Rk(·, f, g) ∈ Diffop(P ). (4.10)

Viewing Diffop(P ) as C∞(M)-bimodule via pr∗ in the usual way, we can now re-
interpret (4.8) as equation between a Hochschild one-cochain �k+1 and a Hochschild
two-cochain Rk

δ�k+1 = Rk (4.11)
in the Hochschild (sub-)complex HC•

diff(C∞(M),Diffop(P )) consisting of differ-
ential cochains taking values in the bimodule Diffop(P ). Here δ is the usual
Hochschild differential. Using the assumption that the �0, . . . , �k have been chosen
such that •(k) is a module structure up to order λk it is a standard argument to
show

δRk = 0. (4.12)
Thus the necessary condition for (4.11) is always fulfilled by construction whence
(4.11) is a cohomological condition: The equation (4.11) has solutions if and only
if the class of Rk in the second Hochschild cohomology HH2

diff(C∞(M),Diffop(P ))
is trivial.

In fact, we have also to take care of the G-equivariance of �k+1. If all the
�0, . . . , �k satisfy the G-equivariance then it is easy to see that also Rk has the
G-equivariance property. Thus we have to consider yet another subcomplex of the
differential Hochschild complex, namely

HC•
diff(C∞(M),Diffop(P )G) ⊆ HC•

diff(C∞(M),Diffop(P )). (4.13)

Thus the obstruction for (4.11) to have a G-equivariant solution is the Hochschild
cohomology class

[Rk] ∈ HH2
diff(C∞(M),Diffop(P )G). (4.14)

A completely analogous order-by-order construction shows that also the ob-
structions for equivalence of two deformations • and •̃ can be formulated using
the differential Hochschild complex of C∞(M) with values in Diffop(P )G. Now the
obstruction lies in the first cohomology HH1

diff(C∞(M),Diffop(P )G).
The following (nontrivial) theorem solves the problem of existence and unique-

ness of deformation quantizations now in a trivial way [5]:
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Theorem 4.3. Let pr : P −→M be a surjective submersion.

1. We have

HHk
diff(C∞(M),Diffop(P )) =

{
Diffopver(P ) for k = 0
{0} for k ≥ 1.

(4.15)

2. If in addition pr : P � G −→M is a principal G-bundle then we have

HHk
diff(C∞(M),Diffop(P )G) =

{
Diffopver(P )G for k = 0
{0} for k ≥ 1.

(4.16)

The main idea is to proceed in three steps: first one shows that one can
localize the problem to a bundle chart. For the local situation one can use the
explicit homotopies from [4] to show that the cohomology is acyclic. This is the
most nontrivial part. By a suitable partition of unity one can glue things together
to end up with the global statement. For a detailed proof we refer to [5].

From this theorem and the previous considerations we obtain immediately
the following result [5]:

Corollary 4.4. For every principal G-bundle pr : P � G −→ M and any star
product � on M there exists a deformation quantization • which is unique up to
equivalence.

In particular, the deformation for the trivial bundle as in Example 4 is the
unique one up to equivalence.
Remark 4.5.

1. It should be noted that the use of Theorem 4.3 gives existence and unique-
ness but no explicit construction of deformation quantizations of principal
bundles. Here the cohomological method is not sufficient even though in [5]
rather explicit homotopies were constructed which allow to determine further
properties of •.

2. In the more particular case of a symplectic Poisson structure on M , Weiss
used in his thesis [41] a variant of Fedosov’s construction which gives a much
more geometric and explicit approach: there is a well-motivated geometric
input, namely a symplectic covariant derivative on M as usual for Fedosov’s
star products and a principal connection on P . Out of this the module mul-
tiplication • is constructed by a recursive procedure. The dependence of •
on the principal connection should be interpreted as a global version of the
Seiberg-Witten map [34], now of course in a much more general framework
for arbitrary principal bundles, see also [2, 24, 25].

3. For the general Poisson case a more geometric construction is still missing.
However, it seems to be very promising to combine global formality theorems
like the one in [16] or the approach in [10] with the construction [41]. These
possibilities will be investigated in future works.
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5. The commutant and associated bundles

Theorem 4.3 gives in addition to the existence and uniqueness of deformation
quantizations of P also a description of the differential commutant of the right
multiplications by functions on M via •: we are interested in those formal series
D =

∑∞
r=0 λ

rDr ∈ Diffop(P )[[λ]] of differential operators with the property

D(F • f) = D(F ) • f (5.1)

for all F ∈ C∞(P )[[λ]] and f ∈ C∞(M)[[λ]]. In particular, if D0 = id then (5.1)
gives a self-equivalence. Clearly, the differential commutant

K =
{
D ∈ Diffop(P )[[λ]]

∣∣ D satisfies (5.1)
}
⊆ Diffop(P )[[λ]] (5.2)

is a subalgebra of Diffop(P )[[λ]] over [[λ]].
Note that there are other operators on C∞(P )[[λ]] which commute with all

right multiplications, namely the highly non-local pull-backs g∗ with g ∈ G. This
was just part of the Definition 4.2 of a deformation quantization of a principal
bundle. However, in this section we shall concentrate on the differential operators
with (5.1) only.

Before describing the commutant it is illustrative to consider the classical
situation. Here the commutant is simply given by the vertical differential operators

Diffopver(P ) =
{
D ∈ Diffop(P )

∣∣ D(Fpr∗f) = D(F )pr∗f
}

(5.3)

by the very definition of vertical differential operators. Alternatively, the com-
mutant is the zeroth Hochschild cohomology. More interesting is now the next
statement which gives a quantization of the classical commutant, see [5].

Theorem 5.1. There exists a [[λ]]-linear bijection

�′ : Diffopver(P )[[λ]] −→ K ⊆ Diffop(P )[[λ]] (5.4)

of the form

�′ = id +
∞∑

r=1

λr�′r (5.5)

which is G-equivariant, i.e.
g∗�′ = �′g∗ (5.6)

for all g ∈ G. The choice of such a �′ induces an associative deformation �′ of
Diffopver(P )[[λ]] which is uniquely determined by � up to equivalence. Finally, �′

induces a left (Diffopver(P )[[λ]], �′)-module structure •′ on C∞(P )[[λ]] via

D •′ F = �′(D)F. (5.7)

The proof relies on an adapted symbol calculus for the differential opera-
tors Diffop(P ): using an appropriate G-invariant covariant derivative ∇P on P
which preserves the vertical distribution and a principal connection on P one can
induce a G-equivariant splitting of the differential operators Diffop(P ) into the
vertical differential operators and those differential operators which differentiate
at least once in horizontal directions. Note that this complementary subspace has
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no intrinsic meaning but depends on the choice of ∇P and the principal con-
nection. A recursive construction gives the corrections terms �′r(D) for a given
D ∈ Diffopver(P ), heavily using the fact that the first Hochschild cohomology
HH1

diff(C∞(M),Diffop(P )) vanishes. Since the commutant itself is an associative
algebra the remaining statements follow.

Corollary 5.2. For the above choice of �′ the resulting deformation �′ as well as
the module structure are G-invariant, i.e. we have

g∗(D �′ D̃) = g∗D �′ g∗D̃ and g∗(D •′ F ) = g∗D •′ g∗F (5.8)

for all D, D̃ ∈ Diffopver(P )[[λ]] and F ∈ C∞(P )[[λ]].

This follows immediately from the G-equivariance of • and the G-equivariance
of �′.

Remark 5.3. A simple induction shows that the commutant of (Diffopver(P )[[λ]], �′)
inside all differential operators Diffop(P )[[λ]] is again (C∞(M)[[λ]], �), where both
algebras act by •′ and •, respectively. This way C∞(P )[[λ]] becomes a (�′, �)-
bimodule such that the two algebras acting from left and right are mutual com-
mutants inside all differential operators. Though this resembles already much of
a Morita context, it is easy to see that C∞(P )[[λ]] is not a Morita equivalence
bimodule, e.g it is not finitely generated and projective. However, as we shall see
later, there is still a close relation to Morita theory to be expected.

Remark 5.4. Note that classically pr∗ : C∞(M) −→ Diffop(P ) is an algebra homo-
morphism, too. Thus the questions raised at the beginning of Section 4 can now
be rephrased as follows: for a bimodule deformation of C∞(P ) into a bimodule
over C∞(M)[[λ]] equipped with possibly two different star products for the left
and right action, one has to deform pr∗ into a map

pr∗ : C∞(M)[[λ]] −→ (Diffopver(P )[[λ]], �′) (5.9)

such that the image is a subalgebra. In this case, we can induce a new product �′M
also for C∞(M)[[λ]] making C∞(P )[[λ]] a bimodule for the two, possibly different,
star product algebras (C∞(M)[[λ]], �′M ) from the left and (C∞(M)[[λ]], �) from the
right. Note that this is the only way to achieve it since �′ is uniquely determined
by �. Thus it is clear that we have to expect obstructions in the general case
as there might be no subalgebra of (Diffopver(P )[[λ]], �′) which is in bijection to
C∞(M)[[λ]]. Even if this might be the case, the resulting product �′M might be
inequivalent to �. Note however, that we have now a very precise framework for
the question whether pr∗ can be deformed into a bimodule structure.

Remark 5.5. As a last remark we note that changing � to an equivalent �̃ via an
equivalence transformation Φ yields a corresponding right module structure •̃ by

F •̃f = F • Φ(f), (5.10)

which is still unique up to equivalence by Theorem 4.3. It follows that the commu-
tants are equal (for this particular choice of •̃) whence the induced deformations
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�′ and �̃′ coincide. An equivalent choice of •̃ would result in an equivalent �̃′. This
shows that we obtain a well-defined map

Def(C∞(M)) −→ Def(Diffopver(P )) (5.11)

for the sets of equivalence classes of associative deformations. In fact, the resulting
deformations �′ are even G-invariant, whence the above map takes values in the
smaller class of G-invariant deformations DefG(Diffopver(P )).

To make contact with the deformed vector bundles from Section 3 we consider
now the association process. Recall that on the classical level one starts with a
(continuous) representation π of G on a finite-dimensional vector space V . Then
the associated vector bundle is

E = P ×G V −→M, (5.12)

where the fibred product is defined via the equivalence relation (p·g, v) ∼ (p, π(g)v)
as usual. As the action of G on P is proper and free, E is a smooth manifold again
and, in fact, a vector bundle over M with typical fibre V . Rather tautologically,
any vector bundle is obtained like this by association from its own frame bundle.
For the sections of E one has the canonical identifications

Γ∞(E) ∼= C∞(P, V )G (5.13)

as right C∞(M)-modules, where the G-action of C∞(P, V ) is the obvious one.
After this preparation it is clear how to proceed in the deformed case. From

the G-equivariance of • we see that

Γ∞(E)[[λ]] ∼= C∞(P, V )G[[λ]] ⊆ C∞(P, V )[[λ]] (5.14)

is a �-submodule with respect to the restricted module multiplication •. It induces
a right �-module structure for Γ∞(E)[[λ]] which we still denote by •. This way we
recover the deformed vector bundle as in Section 3.

Moreover, we see that the End(V )-valued differential operators Diffop(P ) ⊗
End(V ) canonically act on C∞(P, V ) whence ((Diffopver(P )⊗ End(V ))[[λ]], �′) acts
via •′ on C∞(P, V )[[λ]] in such a way that the action commutes with the •-
multiplications from the right. By the G-invariance of �′ we see that the invariant
elements (Diffopver(P )⊗ End(V ))G [[λ]] form a �′-subalgebra which preserves (via
•′) the •-submodule C∞(P, V )G[[λ]]. Thus we obtain an algebra homomorphism(

(Diffopver(P )⊗ End(V ))G[[λ]], �′
)
−→ (Γ∞(End(E))[[λ]], �′) (5.15)

where �′ on the left hand side is the deformation from Remark 3.8, part 2.
We conclude this section with some remarks and open questions:

Remark 5.6.
1. The universal enveloping algebra valued gauge fields of [24,25] can now easily

be understood. For two vertical vector fields ξ, η ∈ Diffopver(P ) we have an
action on C∞(P )[[λ]] via •′-left multiplication. In zeroth order this is just
the usual Lie derivative L ξ. Now the module structure says that

ξ •′ (η •′ F )− η •′ (ξ •′ F ) = ([ξ, η]�′) •′ F (5.16)
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for all F ∈ C∞(P )[[λ]]. Here [ξ, η]�′ = ξ �′ η − η �′ ξ ∈ Diffopver(P )[[λ]] is
the �′-commutator. In general, this commutator is a formal series of vertical
differential operators but not necessarily a vector field any more. Note that
(5.16) holds already on the level of the principal bundle.

2. For noncommutative gauge field theories we still need a good notion of gauge
fields, i.e. connection one-forms, and their curvatures within our global ap-
proach. Though there are several suggestions from e.g. [27] a conceptually
clear picture seems still to be missing.

3. In a future project we plan to investigate the precise relationship between
(Diffopver(P )[[λ]], �′) and the Morita theory of star products [6–8]. Here (5.15)
already suggests that one can re-construct all algebras Morita equivalent to
(C∞(M)[[λ]], �) out of �′.
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[21] Hajac, P. M., Matthes, R., Szymański, W., Chern numbers for two families of non-
commutative Hopf fibrations. C. R. Math. Acad. Sci. Paris 336.11 (2003), 925–930.

[22] Halbout, G. (eds.), Deformation Quantization, vol. 1 in IRMA Lectures in Mathe-
matics and Theoretical Physics. Walter de Gruyter, Berlin, New York, 2002.

[23] Heller, J. G., Neumaier, N., Waldmann, S., A C∗-Algebraic Model for Locally Non-
commutative Spacetimes. Lett. Math. Phys. 80 (2007), 257–272.
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Abstract. We describe the Hopf algebra structure of Feynman graphs for
non-Abelian gauge theories and prove compatibility of the so-called Slavnov–
Taylor identities with the coproduct. When these identities are taken into
account, the coproduct closes on the Green’s functions, which thus generate
a Hopf subalgebra.
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1. Introduction

Quantum field theories have been widely accepted in the physics community,
mainly because of their well-tested predictions. One of the famous numbers pre-
dicted by quantum electrodynamics is the electromagnetic moment of the electron
which has been tested up to a previously unencountered precision.

Unfortunately, quantum field theories are perceived with some suspicion by
mathematicians. This is mainly due to the appearance of divergences when naively
computing probability amplitudes. These infinities have to be dealt with properly
by an apparently obscure process called renormalization.

Nevertheless, mathematical interest has been changing lately in favor of quan-
tum field theories, the general philosophy being that such a physically accurate
theory should have some underlying mathematically rigorous description. One of
these interests is in the process of renormalization, and has been studied in the con-
text of Hopf algebras [6, 3]. Of course, the process of renormalization was already
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quite rigorously defined by physicists in the early second half of the previous cen-
tury. However, the structure of a coproduct describing how to subtract divergence
really clarified the process.

One could argue though that since the elements in the Hopf algebra are indi-
vidual Feynman graphs, it is a bit unphysical. Rather, one would like to describe
the renormalization process on the level of the 1PI Green’s functions, since these
correspond to actual physical processes. Especially for (non-Abelian) gauge theo-
ries, the graph-by-graph approach of for instance the BPHZ-procedure is usually
replaced by more powerful methods based on BRST-symmetry and the Zinn-Justin
equation (and its far reaching generalization: the Batalin-Vilkovisky formalism).
They all involve the 1PI Green’s functions or even the full effective action that is
generated by them.

The drawback of these latter methods, is that they rely heavily on functional
integrals and are therefore completely formal. One of the advantages of BPHZ-
renormalization is that if one accepts the perturbative series of Green’s function in
terms of Feynman graphs as a starting point, the procedure is completely rigorous.
Of course, this allowed the procedure to be described by a mathematical structure
such as a Hopf algebra.

In this article, we prove some of the results on Green’s functions starting
with the Hopf algebra of Feynman graphs for non-Abelian gauge theories. We
derive the existence of Hopf subalgebras generated by the 1PI Green’s functions.
We do this by showing that the coproduct takes a closed form on these Green’s
functions, thereby relying heavily on a formula that we have previously derived
[14]. Already in [1] Hopf subalgebras were given for any connected graded Hopf
algebra as solutions to Dyson-Schwinger equations. It turned out that there was a
close relation with Hochschild cohomology. It was argued by Kreimer in [8, 7] that
– for the case of non-Abelian gauge theories – the existence of Hopf subalgebras
follows from the validity of the Slavnov–Taylor identities inside the Hopf algebra
of (QCD) Feynman graphs. We now fully prove this claim by applying a formula
for the coproduct on Green’s functions that we have derived before in [14]. In fact,
that formula allowed us to prove compatibility of the Slavnov–Taylor identities
with the Hopf algebra structure.

This paper is organized as follows. In Section 2, we start by giving some back-
ground from physics. Of course, this can only be a quick lifting of the curtain and
is meant as a motivation for the present work. In Section 3, we make precise our
setup by defining the Hopf algebra of Feynman graphs and introduce several com-
binatorial factors associated to such graphs. We put the process of renormalization
in the context of a Birkhoff decomposition.

Section 4 contains the derivation of the Hopf algebra structure at the level of
Green’s functions, rather then the individual Feynman graphs. We will encounter
the crucial role that is played by the so-called Slavnov–Taylor identities.
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2. Preliminaries on perturbative quantum field theory

We start by giving some background from physics and try to explain the origin of
Feynman graphs in the perturbative approach to quantum field theory.

We understand probability amplitudes for physical processes as formal expan-
sions in Feynman amplitudes, thereby avoiding the use of path integrals. We make
this more explicit by some examples taken from physics.

Example 1. The interaction of the photon with the electron in quantum electrody-
namics (QED) is described by the following expansion,

= + + + · · ·

Here all graphs appear that can be built from the vertex that connects a wiggly line
(the photon) to two straight lines (the electron).

Example 2. The quartic gluon self-interaction in quantum chromo dynamics is
given by

= + + + · · ·

This expansion involves the gluon vertex of valence 3 and 4 (wiggly lines), as well
as the quark-gluon interaction (involving two straight lines)

We shall call these expansions Green’s functions. Of course, this names orig-
inates from the theory of partial differential equations and the zeroth order terms
in the above expansions are in fact Green’s functions in the usual sense. We use the
notation G and G for the Green’s function, indicating the external structure
of the graphs in the above two expansions, respectively.

From these expansions, physicists can actually derive numbers, giving the
probability amplitudes mentioned above. The rules of this game are known as
the Feynman rules; we briefly list them for the case of quantum electrodynamics.
Feynman rules for non-Abelian gauge theories can be found in most standard
textbooks on quantum field theory (see for instance [2]).
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Assigning a momentum k to each edge of a graph, we have:

k
=

1
k2 + iε

(
−δμν +

kμkν

k2 + iε
(1− ξ)

)

k
=

1
γμkμ + m

k1

k2

k3

= −ieγμδ(k1 + k2 + k3).

Here, e is the electron charge, m the electron mass and γμ are 4× 4 Dirac gamma
matrices; they satisfy γμγν + γνγμ = −2δμν . Also, ε is an infrared regulator and
ξ ∈ R is the so-called gauge fixing parameter. In addition to the above assignments,
one integrates the above internal momenta k (for each internal edge) over R4.

Example 3. Consider the following electron self-energy graph

p p− k

k

According to the Feynman rules, the amplitude for this graph is

U(Γ) =
∫

d4k (eγμ)
1

γκ(pκ + kκ) + m
(eγν)

(
− δμν

k2 + iε
+

kμkν

(k2 + iε)2
(1− ξ)

)
(1)

with summation over repeated indices understood.

The alert reader may have noted that the above improper integral is actually
not well-defined. This is the typical situation – happening for most graphs – and
are the famous divergences in perturbative quantum field theory. This apparent
failure can be resolved, leading eventually to spectacularly accurate predictions in
physics.

The theory that proposes a solution to these divergences is called renormal-
ization. This process consists of two steps. Firstly, one introduces a regularization
parameter that controls the divergences. For instance, in dimensional regulariza-
tion one integrates in 4 + z dimensions instead of in 4, with z a complex number.
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Adopting certain rules1 for this integration in complex dimensions, one obtains for
instance for the above integral (1):

U(Γ)(z) ∼ Γ(z)Pol(p),

where the Γ on the left-hand-side is the graph and the Γ on the right-hand-side
is the gamma function from complex analysis. Moreover, Pol(p) is a polynomial
in the external momentum p. The previous divergence has been translated into a
pole of the gamma function at z = 0 and we have thus obtained a control on the
divergence.

The second step in the process of renormalization is subtraction. We let T be
the projection onto the pole part of Laurent series in z, i.e.,

T

[ ∞∑
n=−∞

anz
n

]
=
∑
n<0

anz
n.

More generally, we have a projection on the divergent part in the regularizing
parameter. This is the origin of the study of Rota-Baxter algebras in the setting
of quantum field theories [5]. We will however restrict ourselves to dimensional
regularization, which is a well suited regularization for gauge theories. For the
above graph Γ, we define the renormalized amplitude R(Γ) by simply subtracting
the divergent part, that is, R(Γ) = U(Γ) − T [U(Γ)]. Clearly, the result is finite
for z → 0. More generally, a graph Γ might have subgraphs γ ⊂ Γ which lead
to sub-divergences in U(Γ). The so-called BPHZ-procedure (after its inventors
Bogoliubov, Parasiuk, Hepp and Zimmermann) provides a way to deal with those
sub-divergences in a recursive manner. It gives for the renormalized amplitude:

R(Γ) = U(Γ) + C(Γ) +
∑
γ⊂Γ

C(γ)U(Γ/γ) (2a)

where C is the so-called counterterm defined recursively by

C(Γ) = −T

⎡⎣U(Γ) +
∑
γ⊂Γ

C(γ)U(Γ/γ)

⎤⎦ . (2b)

The two sums here are over all subgraphs in a certain class; we will make this more
precise in the next section.

2.1. Gauge theories

We now focus on a special class of quantum field theories – quantum gauge theories
– which are of particular interest for real physical processes. Without going into
details on what classical gauge field theories are, we focus on the consequences
on the quantum side of the presence of a classical gauge symmetry. Such a gauge
symmetry acts (locally) on the classical fields by gauge transformations and these

1Essentially, one only needs the rule that the formula familiar in integer dimension
∫

dDe−πλk2
=

λD/2 holds for complex dimension D as well. Indeed, using Schwinger parameters, or, equiva-

lently, the Laplace transform, one can write 1/k2 as the integral over s > 0 of e−sk2
.
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transformations form a group, the gauge group. This group is typically infinite
dimensional, since it consists of functions on space-time taking values in a Lie
group. For quantum electrodynamics this Lie group is Abelian and just U(1), for
quantum chromo dynamics – the theory of gluons and quarks – it is SU(3).

When (perturbatively) quantizing the gauge theory, one is confronted with
this extra infinity. A way to handle it is by fixing the gauge, in other words,
choosing an orbit under the action of the gauge group. All this can be made
quite precise in BRST-quantization. Although in this process the gauge symmetry
completely disappears, certain identities between Green’s functions appear. This is
a purely ‘quantum property’ and therefore interesting to study. In addition, being
identities between full Green’s functions, it is interesting with a view towards
nonperturbative quantum field theory.

For quantum electrodynamics, the identities are simple and linear in the
Green’s functions:

U
(
G

)
= U

(
G

)
. (3)

These are known as Ward identities since they were first derived by Ward in [15].
The apparent mismatch between the number of external lines on the left and right-
hand-side is resolved because the vertex graphs are considered at zero momentum
transfer. This means that the momentum on the photon line is evaluated at p = 0.

For non-Abelian gauge theories such as quantum chromo dynamics (QCD),
the identities are quadratic in the fields and read:

U
(
G

)
U
(
G

)
= U

(
G

)
U
(
G

)
;

U
(
G

)
U
(
G

)
= U

(
G

)
U
(
G

)
;

U
(
G

)
U
(
G

)
= U

(
G

)
U
(
G

)
.

(4)

The dotted and straight line here corresponds to the ghost and quark, respectively.
After their inventors, they are called the Slavnov–Taylor identities [11, 12].

The importance of these identities lie in the fact that they are compatible
with renormalization under the condition that gauge invariance is compatible with
the regularization procedure. In fact, it turns out that dimensional regularization
satisfies this requirement, see for instance Section 13.1 of [9]. As a consequence, the
Slavnov-Taylor identities hold after replacing U by R or C in the above formula.
For instance, in the case of quantum electrodynamics one obtains the identity
Z1 = Z2 actually derived by Ward, where Z1 = C(G ) and Z2 = C(G ). For
quantum chromo dynamics on the other hand, one derives the formulae

Z

Z
√
Z

=
Z

Z
√
Z

=
Z(

Z
)3/2

=

√
Z

Z
, (5)

where the notation is as above: Zr := C(Gr). The above formula can be readily
obtained from the above Slavnov–Taylor identities (4) afterreplacing U by C .
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They are the key to proving renormalizability of non-Abelian gauge theories, let
us try to sketch this argument.

First of all, the different interactions that are present in the theory can be
weighted by a coupling constant. For example, in QCD there are four different in-
teractions: gluon-quark, gluon-ghost, cubic and quartic gluon self-interaction. All
of these come with their own coupling constants and gauge invariance (or rather,
BRST-invariance) requires them to be identical. In the process of renormalization,
the coupling constants are actually not constant and depend on the energy scale.
This is the running of the coupling constant and is the origin of the renormal-
ization group describing how they change. For QCD, the four coupling constants
g
0,

, g
0,

, g
0,

, g0, are expressed in terms of the original coupling constant
g as

g
0,

=
Z

Z
√
Z

g, g
0,

=
Z

Z
√
Z

g,

g
0,

=
Z(

Z
)3/2

g, g0, =

√
Z

Z
g.

(6)

We see that the Slavnov–Taylor identities guarantee that the four coupling con-
stants remain equal after renormalization.

The above compatibility of renormalization with the Slavnov–Taylor identi-
ties is usually derived using the Zinn-Justin equation (or the more general BV-
formalism) relying heavily on path integral techniques. Our goal in the next sec-
tions is to derive this result taking the formal expansion of the Green’s functions
in Feynman graphs as a starting point. We will work in the setting of the Connes-
Kreimer Hopf algebra of renormalization.

3. The Hopf algebra of Feynman graphs

We suppose that we have defined a (renormalizable) quantum field theory and
specified the possible interactions between different types of particles. We indicate
the interactions by vertices and the propagation of particles by lines. This leads
us to define a set R = RV ∪RE of vertices and edges; for QED we have

RV = { }; RE = { , },
whereas for QCD we have,

RV = { , , , }; RE = { , , }.

We stress for what follows that it is not necessary to define the set explicitly.
A Feynman graph is a graph built from vertices in RV and edges in RE .

Naturally, we demand edges to be connected to vertices in a compatible way,
respecting the type of vertex and edge. As opposed to the usual definition in
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graph theory, Feynman graphs have no external vertices, they only have external
lines. We assume those lines to carry a labelling.

An automorphism of a Feynman graph is a graph automorphism leaving the
external lines fixed and respects the types of vertices and edges. This definition
is motivated by the fact that the external lines correspond physically to particles
prepared for some collision experiment – the interior of the graph – and those lines
are thus fixed. The order of the group of automorphisms Aut(Γ) of a graph Γ is
called its symmetry factor and denoted by Sym(Γ). Let us give two examples:

Sym
( )

= 2; Sym
( )

= 1.

For disconnected graphs, the symmetry factor is given recursively as follows. Let
Γ′ be a connected graph; we set

Sym(Γ Γ′) = (n(Γ,Γ′) + 1)Sym(Γ)Sym(Γ′), (7)

with n(Γ,Γ′) the number of connected components of Γ that are isomorphic to Γ′.
We define the residue res(Γ) of a graph Γ as the vertex or edge the graph

reduces to after collapsing all its internal vertices and edges to a point. For example,
we have:

res

( )
= and res

( )
= .

Henceforth, we will restrict to graphs with residue in R; these are the relevant
graphs to be considered for the purpose of renormalization.

For later use, we introduce another combinatorial quantity, which is the num-
ber of insertion places Γ | γ for the graph γ in Γ. It is defined as the number of
elements in the set of vertices and internal edges of Γ of the form res(γ) ∈ R. For
disconnected graphs γ = γ1 ∪ · · · ∪ γn, the number Γ | γ counts the number of
n− tuples of disjoint insertion places of the type res(γ1), · · · , res(γn).

We exemplify this quantity by

∣∣∣ = 2 whereas
∣∣∣ = 6.

Here, one allows multiple insertions of edge graphs (i.e. a graph with residue in
RE) on the same edge; the underlying philosophy is that insertion of an edge graph
creates a new edge.

For the definition of the Hopf algebra of Feynman graphs [3], we restrict
to one-particle irreducible (1PI) Feynman graphs. These are graphs that are not
trees and cannot be disconnected by cutting a single internal edge. For example,
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all graphs in this paper are one-particle irreducible, except the following which is
one-particle reducible:

.

Connes and Kreimer then defined the following Hopf algebra. We refer to the
appendix for a quick review on Hopf algebras.

Definition 4. The Hopf algebra H of Feynman graphs is the free commutative Q-
algebra generated by all 1PI Feynman graphs, with counit ε(Γ) = 0 unless Γ = ∅,
in which case ε(∅) = 1, coproduct,

Δ(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑
γ�Γ

γ ⊗ Γ/γ,

where the sum is over disjoint unions of subgraphs with residue in R. The antipode
is given recursively by,

S(Γ) = −Γ−
∑
γ�Γ

S(γ)Γ/γ. (8)

Two examples of this coproduct, taken from QED, are:

Δ( ) = ⊗ 1 + 1⊗ + 2 ⊗ ,

Δ( ) = ⊗ 1 + 1⊗ + 2 ⊗

+ 2 ⊗ + ⊗ .

The above Hopf algebra is an example of a connected graded Hopf algebra, i.e.
H = ⊕n∈NH

n, H0 = C and

HkH l ⊂ Hk+l; Δ(Hn) =
n∑

k=0

Hk ⊗Hn−k.

Indeed, the Hopf algebra of Feynman graphs is graded by the loop number L(Γ)
of a graph Γ; then H0 consists of rational multiples of the empty graph, which is
the unit in H , so that H0 = Q1.

Remark 5. One can enhance the Feynman graphs with an external structure. This
involves the external momenta on the external lines and can be formulated mathe-
matically by distributions, see for instance [3]. The case of quantum electrodynam-
ics has been worked out in detail in [13].
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3.1. Renormalization as a Birkhoff decomposition

We now demonstrate how to obtain Equation (2) for the renormalized amplitude
and the counterterm for a graph as a Birkhoff decomposition in the group of
characters of H . Let us first recall the definition of a Birkhoff decomposition.

We let l : C → G be a loop with values in an arbitrary complex Lie group G,
defined on a smooth simple curve C ⊂ P1(C). Let C± be the two complements of
C in P1(C), with ∞ ∈ C−. A Birkhoff decomposition of l is a factorization of the
form

l(z) = l−(z)−1l+(z); (z ∈ C),
where l± are (boundary values of) two holomorphic maps on C±, respectively, with
values in G. This decomposition gives a natural way to extract finite values from
a divergent expression. Indeed, although l(z) might not holomorphically extend to
C+, l+(z) is clearly finite as z → 0.

C

C+

C− ∞

0

We now look at the group G(K) = HomQ(H,K) of K-valued characters of a
connected graded commutative Hopf algebra H , where K is the field of convergent
Laurent series in z.2 The product, inverse and unit in the group G(K) are defined
by the respective equations:

φ ∗ ψ(X) = 〈φ ⊗ ψ,Δ(X)〉,
φ−1(X) = φ(S(X)),

e(X) = ε(X),

for φ, ψ ∈ G(K). We claim that a map φ ∈ G(K) is in one-to-one correspon-
dence with loops l on an infinitesimal circle around z = 0 and values in G(Q) =
HomQ(H,Q). Indeed, the correspondence is given by

φ(X)(z) = l(z)(X),

2In the language of algebraic geometry, there is an affine group scheme G represented by H in
the category of commutative algebras. In other words, G = HomQ(H, . ) and G(K) are the

K-points of the group scheme.
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and to give a Birkhoff decomposition for l is thus equivalent to giving a factoriza-
tion φ = φ−1

− ∗ φ+ in G(K). It turns out that for graded connected commutative
Hopf algebras such a factorization exists.

Theorem 6 (Connes–Kreimer [3]). Let H be a graded connected commutative Hopf
algebra. The Birkhoff decomposition of l : C → G (given by an algebra map φ :
H → K) exists and is given dually by

φ−(X) = ε(X)− T [m(φ− ⊗ φ)(1 ⊗ (1 − ε)Δ(X)]

and φ+ = φ− ∗ φ.

The graded connected property of H assures that the recursive definition
of φ− actually makes sense. In the case of the Hopf algebra of Feynman graphs
defined above, the factorization takes the following form:

φ−(Γ) = −T

⎡⎣φ(Γ) +
∑
γ�Γ

φ−(γ)φ(Γ/γ)

⎤⎦
φ+(Γ) = φ(Γ) + φ−(Γ) +

∑
γ�Γ

φ−(γ)φ(Γ/γ)

The key point is now that the Feynman rules actually define an algebra map
U : H → K by assigning to each graph Γ the regularized Feynman rules U(Γ),
which are Laurent series in z. When compared with Equations (2) one concludes
that the algebra maps U+ and U− in the Birkhoff factorization of U are precisely
the renormalized amplitude R and the counterterm C, respectively. Summarizing,
we can write the BPHZ-renormalization as the Birkhoff decomposition U = C−1∗R
of the map U : H → K dictated by the Feynman rules.

Although the above construction gives a very nice geometrical description of
the process of renormalization, it is a bit unphysical in that it relies on individual
graphs. Rather, as mentioned before, in physics the probability amplitudes are
computed from the full expansion of Green’s functions. Individual graphs do not
correspond to physical processes and therefore a natural question to pose is how
the Hopf algebra structure behaves at the level of the Green’s functions. We will
see in the next section that they generate Hopf subalgebras, i.e. the coproduct
closes on Green’s functions. In proving this, the Slavnov–Taylor identities turn
out to play an essential role.

4. The Hopf algebra of Green’s functions

For a vertex or edge r ∈ R we define the 1PI Green’s function by

Gr = 1±
∑

res(Γ)=r

Γ
Sym(Γ)

, (9)

where the sign is + if r is a vertex and − if it is an edge. The restriction of the
sum to graphs Γ at loop order L(Γ) = L is denoted by Gr

L.
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Proposition 7 ([14]). The coproduct takes the following form on the 1PI Green’s
functions:

Δ(Gr) =
∑

γ

∑
res(Γ)=r

Γ | γ
Sym(γ)Sym(Γ)

γ ⊗ Γ,

with the sum over γ over all disjoint unions of 1PI graphs.

The sketch of the proof is as follows. First, one writes the coproduct Δ as a
sum of maps Δγ where these maps only detects subgraphs isomorphic to γ. One
then proves the above formula for Δγ with γ a 1PI graph using simply the orbit-
stabilizer theorem for the automorphism group of graphs. Finally, writing Δγγ′ in
terms of Δγ and Δγ′ one proceeds by induction to derive the above expression.

One observes that the coproduct does not seem to close on Green’s functions
due to the appearance of the combinatorial factor Γ | γ. Let us try to elucidate
this and compute these factors explicitly.

Let mΓ,r be the number of vertices/internal edges of type r appearing in Γ,
for r ∈ R. Moreover, let nγ,r be the number of connected components of γ with
residue r. Since insertion of a vertex graph (i.e. with residue in RV ) on a vertex v
in Γ prevents a subsequent insertion at v of a vertex graph with the same residue,
whereas insertion of an edge graph (i.e. with residue in RE) creates two new edges
and hence two insertion places for a subsequent edge graph, we find the following
expression,

Γ | γ =
∏

v∈RV

nγ,v!
(
mΓ,v

nγ,v

) ∏
e∈RE

nγ,e!
(
mΓ,e + nγ,e − 1

nγ,e

)
.

Indeed, the binomial coefficients arise for each vertex v since we are choosing nγ,v

out of mΓ,v whereas for an edge e we choose nγ,e out of mΓ,e with repetition.
We claim that this counting enhances our formula to the following

Δ(Gr) =
∑

res(Γ)=r

∏
v∈RV

(Gv)mΓ,v
∏

e∈RE

(Ge)−mΓ,e ⊗ Γ
Sym(Γ)

. (10)

Before proving this, we explain the meaning of the inverse of Green’s functions
in our Hopf algebra. Since any Green’s function starts with the identity, we can
surely write its inverse formally as a geometric series. Recall that the Hopf algebra
is graded by loop number. Hence, the inverse of a Green’s function at a fixed
loop order is in fact well-defined; it is given by restricting the above formal series
expansion to this loop order. In the following, also rational powers of Green’s
functions will appear; they will be understood in like manner.

Proof of Eq. (10). Let us simplify a little and consider a scalar field theory with
just one type of vertex and edge, i.e. R = { , }. We consider the sum∑

γ

Γ | γ
Sym(γ)

γ =
∑
γv

nγ,v!
Sym(γv)

(
mΓ,v

nγ,v

)
γv

∑
γe

nγ,e!
Sym(γe)

(
mΓ,e + nγ,v − 1

nγ,v

)
γe,
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naturally split into a sum over vertex and edge graphs. We have also inserted the
above combinatorial expression for the number of insertion places. Next, we write
γv = γ′

vγ
′′
v and try factorize the sum over γv into a sum over γ′

v (connected) and
γ′′

v . Some care should be taken here regarding the combinatorial factors but let us
ignore them for the moment. In fact, if we fix the number of connected components
h0(γv) of γv in the sum to be nV we can write

∑
h0(γv)=nV

nV !
γv

Sym(γv)
=

∑
h0(γv)=nV

⎛⎜⎜⎜⎝ ∑
γ′

v,γ′′
v

γ′
vγ′′

v �γv

n(γ′′
v , γ

′
v) + 1

nV

⎞⎟⎟⎟⎠nV !
γv

Sym(γv)
,

with γ′
v a connected graph. Here, we have simply inserted 1,∑

γ′
v,γ′′

v

γ′
vγ′′

v �γv

n(γ′′
v , γ

′
v) + 1

nV
=
∑
γ′

v

n(γv, γ
′
v)

nV
= 1,

which follows directly from the definition of n(γv, γ
′
v) as the number of connected

components of γv isomorphic to γ′
v. Now, by definition Sym(γ′

vγ
′′
v ) = (n(γ′′

v , γ
′
v) +

1)Sym(γ′
v)Sym(γ′′

v ) for a connected graph γ′
v so that we obtain for the above sum∑

γ′
v

γ′
v

Sym(γ′
v)

∑
h0(γ′′

v )=nV −1

(nV − 1)!
γ′′

v

Sym(γ′′
v )

= · · · = (Gv − 1)nV ,

by applying the same argument nV times. Recall also the definition of the Green’s
function Gv from Eq. (9). A similar argument applies to the edge graphs, leading
to a contribution (1 − Ge)nE , with nE the number of connected components of
γe. When summing over nV and nE, taking also into account the combinatorial
factors, we obtain:
∞∑

nV =0

(
mΓ,v

nV

)
(Gv − 1)nV

∞∑
nE=0

(
mΓ,e + nE − 1

nE

)
(1−Ge)nE = (Gv)mΓ,v (Ge)−mΓ,e .

The extension to the general setting where the set R contains different types of
vertices and edges is straightforward. �

An additional counting of the number of edges and numbers of vertices in Γ
gives the following relations:

2mΓ,e + Ne(res(Γ)) =
∑

v∈RV

Ne(v)mΓ,v

where Ne(r) is the number of lines (of type e) attached to r ∈ R. For instance
Ne( ) equals 2 if e is an electron line and 1 if e is a photon line. One checks the
above equality by noting that the left-hand-side counts the number of internal half
lines plus the external lines which are connected to the vertices that appear at the
right-hand-side, taken into account their valence.
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With this formula, we can write Eq. (10) as

Δ(Gr) =
∏
e

(Ge)Ne(r)/2
∑

res(Γ)=r

∏
v

(
Gv∏

e (Ge)Ne(v)/2

)mΓ,v

⊗ Γ
Sym(Γ)

. (11)

This is still not completely satisfactory since it involves the number of vertices
in Γ which prevents us from separating the summation of Γ from the other terms.
We introduce the following notation for the fraction of Green’s functions above:

Xv =

(
Gv∏

e (Ge)Ne(v)/2

)1/(N(v)−2)

(12)

with N(v) the total number of edges attached to v. Before we state our main
theorem, let us motivate the definition of these elements in the case of QCD.

Example 8. In QCD, there are four vertices and the corresponding elements Xv

are given by,

X =
G

G
√
G

, X =
G

G
√
G

,

X =
G(

G
)3/2

, X =

√
G

G
.

The combinations of the Green’s functions are identical to those appearing in for-
mulas (5). Indeed, as we will see in a moment, setting them equal in H is com-
patible with the coproduct.

Although motivated by the study of the Slavnov–Taylor identities in non-
Abelian gauge theories, the following result holds in complete generality.

Theorem 9. The ideal I = 〈Xv −Xv′〉v′∈RV is a Hopf ideal, i.e.

Δ(I) ⊂ I ⊗H + H ⊗ I, ε(I) = 0, S(I) ⊂ I.

Proof. Let us write the above Eq. (11) in terms of the Xv’s:

Δ(Gr) =
∏
e

(Ge)
1
2Ne(r)

∑
res(Γ)=r

∏
v′

(Xv′)(N(v′)−2)mΓ,v′ ⊗ Γ
Sym(Γ)

.

In this expression, Xv′ appears with a certain power, say s, and we can replace
(Xv′)s by (Xv)s as long as we add the term (Xv′)s − (Xv)s. This latter term can
be factorized as Xv′ − Xv times a certain polynomial in Xv and Xv′ and thus
corresponds to an element in I. As a result, we can replace all Xv′ ’s by Xv for
some fixed v modulo addition of terms in I ⊗H .

The second step uses the following equality between vertices and edges:∑
v′∈RV

(N(v′)− 2)mΓ,v′ = 2L + N(r) − 2 (13)
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in terms of the loop number L and residue r of Γ. The equality follows by an easy
induction on the number of internal lines of Γ (cf. [14]). Finally, one can separate
the sum over Γ at a fixed loop order to obtain

Δ(Gr) =
∏
e

(Ge)
1
2Ne(r)

∞∑
L=0

(Xv)2L+N(r)−2 ⊗Gr
L, (14)

understood modulo terms in I⊗H . From this one derives that Δ(Xv−Xv′) lies in
I ⊗H + H ⊗ I as follows. Let us first find a more convenient choice of generators
of I. By induction, one can show that

Xv −Xv′ =
(
X(N(v′)−2))(N(v)−2)

v −X(N(v′)−2)(N(v)−2)
v

)
Pol(Xv, X

′
v),

where Pol is a (formally) invertible series in Xv and Xv′ . In fact, it starts with a
nonzero term of order zero. By multiplying out both denominators in the Xv and
Xv′ , we arrive at the following set of (equivalent) generators of I

(Gv)N(v′)−2
∏
e

(Ge)(N(v′)−2)Ne(v)/2 −
(
Gv′)N(v)−2 ∏

e

(Ge)(N(v)−2)Ne(v
′)/2

with v, v′ ∈ RV . A little computation shows that the first leg of the tensor product
in the coproduct on these two terms coincide, using Eq. (14). As a consequence, one
can combine these terms to obtain an element in H⊗I modulo the aforementioned
terms in I ⊗H needed to arrive at (14). �

As a consequence, we can work on the quotient Hopf algebra H̃ = H/I.
Suppose we work in the case of a non-Abelian gauge theory such as QCD, with
the condition that the regularization procedure is compatible with gauge invariance
such as dimensional regularization (see also [10]). In such a case, the map U : H →
K defined by the (regularized) Feynman rules vanishes on the ideal I because of
the Slavnov–Taylor identities. Hence, it factors through an algebra map from H̃

to the field K. Since H̃ is still a commutative connected Hopf algebra, there is a
Birkhoff decomposition U = C−1 ∗ R as before with C and R algebra maps from
H̃ to K. This is the crucial point, because it implies that both C and R vanish
automatically on I. In other words, both the counterterms and the renormalized
amplitudes satisfy the Slavnov–Taylor identities. In particular, the C(Xv)’s are
the terms appearing in Eq. (5) which coincide because C(I) = 0. Note also that
in H̃ expression (14) holds so that the coproduct closes on Green’s functions, i.e.
they generate Hopf subalgebras.

As a corollary to this, we can derive a generalization of Dyson’s formula
originally derived for QED [4]. It provides a relation between the renormalized
Green’s function written in terms of the coupling constant g and the unrenormal-
ized Green’s function written in terms of the bare coupling constant defined by
g0 = C(Xv)g for some v ∈ RV .
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Corollary 10 (Dyson’s formula). The following analogue of Dyson’s formula for
QED holds in general,

R(Gr)(g) =
∏
e

(Ze)Ne(r)/2
U(Gr)(g0),

where Ze = C(Ge).

Proof. This follows from an application of R = C ∗ U to Gr using Eq. (14) while
counting the number of times the coupling constant g appears when applying the
Feynman rules to a graph with residue r and loop number L. In fact, this number
is
∑

v(N(v)− 2)mΓ,v which is also 2L + N(r) − 2 as noted before. �

Appendix A. Hopf algebras

For convenience, let us briefly recall the definition of a (commutative) Hopf algebra.
It is the dual object to a group and, in fact, there is a one-to-one correspondence
between groups and commutative Hopf algebras.

Let G be a group with product, inverse and identity element. We consider
the algebra of representative functions H = F(G). This class of functions is such
that F(G × G) � F(G) ⊗ F(G). For instance, if G is a (complex) matrix group,
then F(G) could be the algebra generated by the coordinate functions xij so that
xij(g) = gij ∈ C are just the (i, j)’th entries of the matrix g.

Let us see what happens with the product, inverse and identity of the group
on the level of the algebra H = F(G). The multiplication of the group can be seen
as a map G×G→ G, given by (g, h) → gh. Since dualization reverses arrows, this
becomes a map Δ : H → H ⊗H called the coproduct and given for f ∈ H by

Δ(f)(g, h) = f(gh).

The property of associativity on G becomes coassociativity on H :

(Δ⊗ id) ◦Δ = (id⊗Δ) ◦Δ, (A1)

stating simplify that f
(
(gh)k

)
= f

(
g(hk)

)
.

The unit e ∈ G gives rise to a counit, as a map ε : H → C, given by
ε(f) = f(e) and the property eg = ge = g becomes on the algebra level

(id⊗ ε) ◦Δ = id = (ε⊗ id) ◦Δ, (A2)

which reads explicitly f(ge) = f(eg) = f(g).
The inverse map g �→ g−1, becomes the antipode S : H → H , defined by

S(f)(g) = f(g−1). The property gg−1 = g−1g = e, becomes on the algebra level:

m(S ⊗ id) ◦Δ = m(id⊗ S) ◦Δ = 1Hε, (A3)

where m : H ⊗H → H denotes pointwise multiplication of functions in H .
From this example, we can now abstract the conditions that define a general

Hopf algebra.
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Definition 11. A Hopf algebra H is an algebra H, together with two algebra maps
Δ : H ⊗ H → H (coproduct), ε : H → C (counit), and a bijective C-linear map
S : H → H (antipode), such that equations (A1)–(A3) are satisfied.

If the Hopf algebra H is commutative, we can conversely construct a (com-
plex) group from it as follows. Consider the collection G of multiplicative linear
maps from H to C. We will show that G is a group. Indeed, we have the convo-
lution product between two such maps φ, ψ defined as the dual of the coproduct:
(φ ∗ ψ)(X) = (φ ⊗ ψ)(Δ(X)) for X ∈ H . One can easily check that coassociativ-
ity of the coproduct (Eq. (A1)) implies associativity of the convolution product:
(φ ∗ ψ) ∗ χ = φ ∗ (ψ ∗ χ). Naturally, the counit defines the unit e by e(X) = ε(X).
Clearly e ∗φ = φ = φ ∗ e follows at once from Eq. (A2). Finally, the inverse is con-
structed from the antipode by setting φ−1(X) = φ(S(X)) for which the relations
φ−1 ∗ φ = φ ∗ φ−1 = e follow directly from Equation (A3).

With the above explicit correspondence between groups and commutative
Hopf algebras, one can translate practically all concepts in group theory to Hopf
algebras. For instance, a subgroup G′ ⊂ G corresponds to a Hopf ideal I ⊂ F(G)
in that F(G′) � F(G)/I and vice versa. The conditions for being a subgroup can
then be translated to give the following three conditions defining a Hopf ideal I in
a commutative Hopf algebra H

Δ(I) ⊂ I ⊗H + H ⊗ I, ε(I) = 0, S(I) ⊂ I.
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1. Introduction

Renormalizable perturbative quantum field theories are embarrassingly success-
ful in describing observed physics. Whilst their mathematical structure is still
a challenge albeit an entertaining one, they are testimony to some of the finest
achievements in our understanding of nature. The physical laws as far as they
are insensitive to the surrounding geometry seems completely described by such
theories. Alas, if we incorporate gravity, and want to quantize it, we seem at a
loss.

In this talk, we report on some recent work [1] which might give hope. Our
main purpose is to review the basic idea and to put it into context.

As in [1], we will proceed by a comparison of the structure of a renormalizable
theory, quantum electrodynamics in four dimensions, and gravity.

It is the role of the Hochschild cohomology [2] in those two different situations,
which leads to surprising new insights. We will discuss them at an elementary level
for the situation of pure gravity. We also allow, in the spirit of the workshop for
the freedom to muse about conceptual consequences at the end.

Talk given at the “Max Planck Institute for Mathematics in the Natural Sciences”, Leipzig. Work
supported in parts by grant NSF-DMS/0603781. Author supported by CNRS.
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2. The structure of Dyson–Schwinger Equations in QED4

2.1. The Green functions

Quantum electrodynamics in four dimensions of space-time (QED4) is described
in its short-distance behavior by four Green functions

Gψ̄γ·∂ψ, Gmψ̄ψ , Gψ̄γ·Aψ, G
1
4 F 2

, (1)

corresponding to the four monomials in its Lagrangian

L = ψ̄γ · ∂ψ − ψ̄mψ − ψ̄γ · Aψ − 1
4
F 2. (2)

Here, Gi = Gi(α,L), with α the fine structure constant and L = ln q2/μ2, so
that we work in a MOM (momentum) scheme, subtract at q2 = μ2, project the
vertex function to its scalar formfactor Gψ̄γ·∂ψ with UV divergences evaluated at
zero photon momentum. Similarly the other Green functions are normalized as to
be the multiplicative quantum corrections to the tree level monomials above, in
momentum space.

In perturbation theory, the degree of divergence of a graph Γ with f external
fermion lines and m external photon lines in D dimensions is

ωD(Γ) =
3
2
f + m−D − (D − 4)(|Γ| − 1) ⇒ ω4(Γ) =

3
2
f + m− 4. (3)

This is independent of the loop number for QED4, D = 4, and is a sole func-
tion of the number and type of external legs. ωD(Γ) determines the number of
derivatives with respect to masses or external momenta needed to render a graph
logarithmically divergent, and hence identifies the top-level residues, which drive
the iteration of Feynman integrals according to the quantum equations of motion
[3].

We define these four Green functions as an evaluation by renormalized Feyn-
man rules of a series of one-particle irreducible (1PI) Feynman graphs Γ ∈ FGi.
These series are determined as a fixpoint of the following system in Hochschild
cohomology.

X ψ̄γ·∂ψ = 1−
∞∑

k=1

αkBψ̄γ·∂ψ,k
+ (X ψ̄γ·∂ψQ2k(α)), (4)

X ψ̄γ·Aψ = 1 +
∞∑

k=1

αkBψ̄γ·Aψ,k
+ (X ψ̄γ·AψQ2k(α)), (5)

X ψ̄mψ = 1−
∞∑

k=1

αkBψ̄mψ,k
+ (X ψ̄mψQ2k(α)), (6)

X
1
4 F 2

= 1−
∞∑

k=1

αkB
1
4 F 2,k
+ (X

1
4 F 2

Q2k(α)). (7)
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Here,

Bi,k
+ =

∑
|γ|=k,Δ′(γ)=0,γ∈FGi

Bγ
+, ∀i ∈ RQED, (8)

is a sum over all Hopf algebra primitive graphs with given loop number k and
contributing to superficially divergent amplitude i, and

Bγ
+(X) =

∑
Γ∈<Γ>

bij(γ,X,Γ)
|X |∨

1
maxf(Γ)

1
(γ|X)

Γ, (9)

where maxf(Γ) is the number of maximal forests of Γ, |X |γ is the number of distinct
graphs obtainable by permuting edges of X , bij(γ,X,Γ) is the number of bijections
of external edges of X with an insertion place in γ such that the result is Γ, and
finally (γ|X) is the number of insertion places for X in γ [4], and

RQED = {ψ̄γ · ∂ψ, ψ̄γ ·Aψ,mψ̄ψ,
1
4
F 2}. (10)

Also, we let

Q =
X ψ̄γ·Aψ

X ψ̄γ·∂ψ
√
X

1
4 F 2

. (11)

The resulting maps Bi,K
+ are Hochschild closed

bBi,K
+ = 0 (12)

in the sense of [5]. We have in fact

Δ(Bγ
+(X)) =

∑
Γ

nΓ,X,γΓ (13)

where nΓ,X,γ can be determined from (9,12).
Furthermore, one can choose a basis of primitives γ [3] such that their Mellin

transforms Mγ(ρ) have the form

Mγ(ρ) =
∫

ιγ(ki; q)|q2=μ2

|γ|∏
s=1

[k2
s/μ

2]−ρ/|γ|d4ki

(2π)4
for 1 > '(ρ) > 0, (14)

where the integrand ιγ is a function of internal momenta ki and an external mo-
mentum q, subtracted at q2 = μ2.

The Dyson Schwinger equations then take the form

Gi
R(α,L) = 1± lim

ρ→0

⎡⎣∑
k

αk
∑
|γ|=k

Gi
r(α, ∂ρ)Q(α, ∂ρ)Mγ(ρ)

[(
q2

μ2

)−ρ

− 1

]⎤⎦(15)

where

ΦR(X i) = Gi
R(α,L), (16)

and

ΦR(Q) = Q(α,L), (17)
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is the invariant charge, all calculated with renormalized Feynman rules in the
MOM scheme.

2.2. Gauge theoretic aspects

Using Ward identities, we can reduce the setRQED = {ψ̄γ ·∂ψ,mψ̄ψ, ψ̄γ ·Aψ, 1
4F

2}
to three elements upon identifying Gψ̄γ·∂ψ = Gψ̄γ·Aψ. Using the Baker–Johnson–
Willey gauge [6] we can furthermore trivialize

Gψ̄γ·∂ψ = Gψ̄γ·Aψ = 1. (18)

Using their work again [7], we have that mψ̄ψ can be ignored in RQED.
We are hence left with the determination of a single gauge-independent Green

function G
1
4 F 2

, which in the MOM scheme takes the form

G
1
4 F 2

(α,L) = 1−
∞∑

k=1

γk(α)Lk, (19)

and the renormalization group determines [8]

γk(α) =
1
k
γ1(α)(1 − α∂α)γk−1(α). (20)

Here, γ1(α) = 2ψ(α)/α, where ψ(α) is the MOM scheme β-function of QED, which
is indeed half of the anomalous dimension γ1 of the photon field in that scheme.

One can show that γ1(α) as a perturbative series (γ1(α) =
∑∞

j=1 γ1,jα
j) is

Gevrey–1 and that the series
∑∞

j=1 γ1,jα
j/j! has a finite radius of convergence,

with a bound involving the lowest order contribution of the β-function and the
one-instanton action [3].

Furthermore, γ1(α) fulfils [3]

γ1(α) = P (α)− γ1(α)(1 − α∂α)γ1(α), (21)

an equation which has been studied in numerical detail recently [9], with more
of its analytic structure to be exhibited there. In this equation, P (α) is obtained
from the primitives of the Hopf algebra

P (α) =
∑

γ

α|γ| lim
ρ→0

ρMγ(ρ), (22)

and P (α) is known perturbatively as a fifth order polynomial [10] and its asymp-
totics have been conjectured long ago [11].

This finishes our summary of QED4 as a typical renormalizable theory.

2.3. Non-Abelian gauge theory

The above approach to Green functions remains valid for a non-Abelian gauge
theory with the definition of a single invariant charge Q(α,L) being the crucial re-
quirement. This can be consistently done, [4], upon recognizing that the celebrated
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Slavnov–Taylor identities for the couplings fulfil

Sφ
R(X ψ̄γ·Aψ)

Sφ
R(X ψ̄γ·∂ψ)

=
Sφ

R(XAA∂A)

Sφ
R(X∂A∂A)

=
Sφ

R(XAAAA)

Sφ
R(XAA∂A)

=
Sφ

R(X φ̄A·∂φ)

Sφ
R(X φ̄�φ)

(23)

for the set of amplitudes

RQCD = {DADA, ψ̄γ · ∂ψ, φ̄�φ,AADA,AAAA, φ̄A · ∂φ, ψ̄γ · Aψ}, (24)

needing renormalization in QCD.
This allows to define a Hochschild cohomology on the sum of graphs at a given

loop order, and hence to obtain multiplicative renormalization in this language
from the resulting coideals in the Hopf algebra [4, 12].1

Note that the structure of the sub-Hopf algebras underlying this approach
[5, 8] implies that the elements X i(α) close under the coproduct. A general clas-
sification of related sub-Hopf algebras has been recently obtained by Loic Foissy
[13]. He considers only the case that the lowest order Hochschild cocycle is present
in the combinatorial Dyson–Schwinger equations, but his study is rather complete
when augmented by the results of [2].

3. Gravity

We consider pure gravity understood as a theory based on a graviton propagator
and n-graviton couplings as vertices. A fuller discussion incorporating ghosts and
matter fields is referred to future work.

3.1. Summary of some results obtained for quantum gravity

We summarize here some results published in [1].

Corollary 1. Let |Γ| = k. Then ω(Γ) = −2(|Γ|+ 1).

This is a significant change from the behavior of a renormalizable theory: in
the renormalizable case, each graph contributing to the same amplitude i has the
same powercounting degree regardless of the loop number. Here, we have the dual
situation: the loop number determines the powercounting degree, regardless of the
amplitude.

Theorem 2. The set dω(Γ) contains no primitive element beyond one loop.

The set dω(Γ) is determined as a set of dotted graphs, with dots representing
ω(Γ) derivatives with respect to masses or external momenta such that the corre-
sponding integrand ιΓ is overall log-divergent. Whilst in a renormalizable theory,
we find for each amplitude in the finite set R primitives at each loop order in
dω(Γ), here we have an infinite set R, but only one primitive in it.

1Eds. note: See also W. van Suijlekom’s contribution in this book.
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Proposition 3. The relations

Xn+1

Xn
=

Xn

Xn−1
, n ≥ 3, (25)

define a sub-Hopf algebra with Hochschild closed one-cocycles B1,n
+ .

Here, Xn is the sum of all graphs with n external graviton lines. One indeed
finds that the combinatorial Dyson–Schwinger equations for gravity provide a sub-
Hopf algebra upon requiring these relations, in straightforward generalization of
the situation in a non-Abelian gauge theory.

3.2. Comments

3.2.1. Gauss-Bonnet. The Gauss–Bonnet theorem ensures here, in the form

0 =
∫

M

√
g
(
RμνρσR

μνρσ − 4RαβR
αβ + R2

)
, (26)

the vanishing of the one-loop renormalization constants. This does not imply the
vanishing of the two-loop renormalization constants as their one-loop subdiver-
gences are off-shell. But it implies that the two-loop counter term has only a
first order pole by the scattering type formula, in agreement with the vanishing
of φoff-shell(γ)φon-shell(Γ/γ). Here, γ, Γ/γ is the decomposition of Γ into one-loop
graphs and φon/off-shell denotes suitable Feynman rules.

3.2.2. Two-loop counterterm. Also, the universality of the two-loop counterterm
suggests that indeed

Zgrn+1

Zgrn
=

Zgrn

Zgrn−1
, with Zgrn = Sφ

R(Xn), (27)

holds for off-shell counterterms. In particular, if we compute in a space of constant
curvature and conformally reduced gravity, which maintains many striking features
of asymptotic safe gravity [14, 15], the above identities should hold for suitably
defined characters: indeed, in such circumstances we can renormalize using a gravi-
ton propagator, which is effectively massive with the mass

√
R/6 provided by the

constant curvature R, and hence can renormalize at zero external momentum. Us-
ing the KLT relations [16, 17], this reduces the above identities to a (cumbersome)
combinatorial exercise on one-loop graphs to be worked out in the future.

Continuing this line of thought one expects that a single quantity, the β-
function of gravity, exhibits short-distance singularities. If this expectation bears
out, it certainly is in nice conceptually agreement with the expectation that in
theories where gravity has a vanishing β-function, gravity is indeed a finite theory
[18].



Not so Non-Renormalizable Gravity 161

3.2.3. Other instances of gravity powercounting. The appearance of Feynman
rules such that the powercounting of vertex amplitudes in RV cancels the pow-
ercounting of propagator amplitudes in RE, R = RV ∪ RE, is not restricted to
gravity. It indeed appears for example also in the field theoretic description of bulk
materials like glass, which were recently described at tree-level as a field theory
[19], and whose renormalization will have powercounting properties similar to the
present discussion.
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The Structure of Green Functions in
Quantum Field Theory with a General State

Christian Brouder

Abstract. In quantum field theory the Green function is usually calculated as
the expectation value of the time-ordered product of fields over the vacuum. In
some cases, especially in degenerate systems, expectation values over general
states are required. The corresponding Green functions are essentially more
complex than in the vacuum, because they cannot be written in terms of
standard Feynman diagrams. Here a method is proposed to determine the
structure of these Green functions and to derive nonperturbative equations
for them. The main idea is to transform the cumulants describing correlations
into interaction terms.
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1. Introduction

High-energy physics uses quantum field theory mainly to describe scattering ex-
periments through the S-matrix. In solid-state or molecular physics we are rather
interested in the value of physical observables such as the charge and current densi-
ties inside the sample or the response to an external perturbation. At the quantum
field theory (QFT) level, these quantities are calculated as expectation values of
Heisenberg operators. For example, the current density for a system in a state |Φ〉
is 〈Φ|J(x)|Φ〉, where |Φ〉 and J(x) are written in the Heisenberg picture.

The first QFT calculation of Heisenberg operators was made by Dyson in
two difficult papers [1, 2] that were completely ignored. At about the same time,
Gell-Mann and Low discovered that, when the initial state of the system is non-
degenerate, the expectation value of a Heisenberg operators can be obtained by a
relatively simple formula [3]. The Gell-Mann and Low formula has been immensely
successful and is a key element of the many-body theory of condensed matter [4, 5].
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Its main advantage over the formalism developed by Dyson is that all the standard
tools of QFT can be used without change.

However, it was soon realized that the assumption of a nondegenerate initial
state is not always valid. As a matter of fact, the problem of what happens when the
initial state is not trivial is so natural that it was discussed in many fields of physics:
statistical physics [6], many-body physics [7], solid-state physics [8], atomic physics
[9], quantum field theory and nuclear physics [10, 11]. As a consequence, the theory
developed to solve this problem received several names such as nonequilibrium
quantum field theory (or quantum statistical mechanics) with initial correlations
(or with cumulants, or for open shells, or for degenerate systems). It is also called
the closed-time path or the (Schwinger-)Keldysh approach for an arbitrary initial
density matrix.

It should be stressed that the problem of the quantum field theory of a
degenerate system is not only of academic interest. For instance, many strongly-
correlated systems contain open-shell transition metal ions which are degenerate
by symmetry. This degeneracy makes the system very sensitive to external per-
turbation and, therefore, quite useful for the design of functional materials.

The elaboration of a QFT for degenerate systems took a long time. It started
with Symanzik [12] and Schwinger [13] and made slow progress because the com-
binatorial complexity is much higher than with standard QFT. To illustrate this
crucial point, it is important to consider an example. According to Wick’s the-
orem, the time-ordered product of free fields can be written in terms of normal
order products:

Tϕ(x1) . . . ϕ(x4) = :ϕ(x1) . . . ϕ(x4): +
∑
ijkl

:ϕ(xi)ϕ(xj):G0(xk, xl)

+
∑
ijkl

:ϕ(xk)ϕ(xl):G0(xi, xj) +
∑
ijkl

G0(xi, xj)G0(xk, xl),

where the quadruple of indices (i, j, k, l) runs over (1, 2, 3, 4), (1, 3, 2, 4) and (1, 4, 2,
3). The expectation value of this expression over the vacuum gives the familiar
result

∑
ijkl G0(xi, xj)G0(xk, xl). However, when the initial state |ψ〉 is not the

vacuum (as in solid-state physics), we obtain

〈ψ|Tϕ(x1) . . . ϕ(x4)|ψ〉 = 〈ψ|:ϕ(x1) . . . ϕ(x4):|ψ〉+
∑
ijkl

ρ2(xi, xj)G0(xk, xl)

+
∑
ijkl

ρ2(xk, xl)G0(xi, xj) +
∑
ijkl

G0(xi, xj)G0(xk, xl),

where ρ2(x, y) = 〈ψ|:ϕ(x)ϕ(y):|ψ〉. If we assume, for notational convenience, that
the expectation value of the normal product of an odd number of field operators
is zero, the fourth cumulant ρ4(x1, . . . , x4) is defined by the equation

〈ψ|:ϕ(x1) . . . ϕ(x4):|ψ〉 = ρ4(x1, . . . , x4) +
∑
ijkl

ρ2(xk, xl)ρ2(xi, xj).
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If we put g = G0 + ρ2, the free four-point Green function becomes

〈ψ|Tϕ(x1) . . . ϕ(x4)|ψ〉 = ρ4(x1, . . . , x4) +
∑
ijkl

g(xi, xj)g(xk, xl).

When ρ4 = 0, the expression is the same as over the vacuum, except for the fact
that the free Feynman propagator G0 is replaced by g. When this substitution is
valid, standard QFT can be applied without major change and the structure of
the interacting Green functions is not modified. For fermionic systems described
by a quadratic Hamiltonian H0, this happens when the ground state is nondegen-
erate, so that |ψ〉 is a Slater determinant. When ρ4 �= 0, the expression becomes
essentially different because the cumulant ρ4 appears as a sort of free Feynman
propagator with four legs. In general, the expectation value of a time-ordered
product of n free fields involves ρk with k ≤ n.

In other words, the perturbative expansion of the Green functions can no
longer be written as a sum of standard Feynman diagrams. Generalized Feynman
diagrams have to be used, involving free Feynman propagators with any number
of legs [6, 7, 14].

Because of this additional complexity, the structure of the Green functions
for degenerate systems is almost completely unknown. The only result available is
the equivalent of the Dyson equation for the one-body Green function G(x, y) [7]

G = (1−A)−1(G0 + C)(1 −B)−1(1 + ΣG),

where A, B, C and Σ are sums of one-particle irreducible diagrams. When the
initial state is nondegenerate, A = B = C = 0 and the Dyson equation G =
G0 + G0ΣG is recovered.

In the present paper, a formal method is presented to determine the structure
of Green functions for degenerate systems. The main idea is to use external sources
that transform the additional propagators ρn into interaction terms. This brings
the problem back into the standard QFT scheme, where many structural results
are available.

2. Expectation value of Heisenberg operators

Let us consider a physical observable A(t), for instance the charge density or the
local magnetic field. In the Heisenberg picture, this observable is represented by
the operator AH(t) and the value of its observable when the system is in the state
|ΦH〉 is given by the expectation value 〈A(t)〉 = 〈ΦH |AH(t)|ΦH〉.

Going over to the interaction picture, we write the Hamiltonian of the system
as the sum of a free and an interaction parts: H(t) = H0 + HI(t), we define the
time evolution operator U(t, t′) = T

(
exp(−i

∫ t

t′ HI(t)dt)
)

and we assume that the
state |ΦH〉 can be obtained as the adiabatic evolution of an eigenstate |Φ0〉 of H0.
The expectation value of A becomes

〈A(t)〉 = 〈Φ0|U(−∞, t)A(t)U(t,−∞)|Φ0〉,
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where A(t) on the right hand side is the operator representing the observable in
the interaction picture.expectation value!in interaction picture The identity 1 =
U(t, t′)U(t′, t) and the definition S = U(∞,−∞) enable us to derive the basic
expression for the expectation value of an observable in the interaction picture:

〈A(t)〉 = 〈Φ0|S†T (A(t)S)|Φ0〉. (2.1)

When |Φ0〉 is nondegenerate, this expression can be further simplified into the
Gell-Mann and Low formula

〈Φ|A(t)|Φ〉 =
〈Φ0|T (A(t)S)|Φ0〉

〈Φ0|S|Φ0〉
.

If the system is in a mixed state, as is the case for a degenerate system by
Lüders’ principle, the expectation value becomes

〈A(t)〉 =
∑

n

pn〈Φn|S†T (A(t)S)|Φn〉,

where pn is the probability to find the system in the eigenstate |Φn〉. It will be
convenient to use more general mixed states

∑
mn ωmn|Φm〉〈Φn|, where ωmn is

a density matrix (i.e. a nonnegative Hermitian matrix with unit trace). Such a
mixed state corresponds to a linear form ω defined by its value over an operator
O:

ω(O) =
∑
mn

ωmn〈Φn|O|Φm〉.

Then, the expectation value of A(t) becomes

〈A(t)〉 = ω
(
S†T (A(t)S)

)
. (2.2)

3. QFT with a general state

In all practical cases, the operator representing the observable A(t) in the interac-
tion picture is a polynomial in ϕ and its derivatives. Its expectation value (2.2) can
be expressed in terms of Green functions that are conveniently calculated by a for-
mal trick due to Symanzik [12] and Schwinger [13], and reinterpreted by Keldysh
[15].

The first step is to define an S-matrix in the presence of an external current
j as S(j) = T

(
e−i

∫
Hint(t)dt+i

∫
j(x)ϕ(x)dx

)
, where H int is the interaction Hamil-

tonian in the interaction picture. The interaction Hamiltonian is then written in
terms of a Hamiltonian density V (x), so that

∫
H int(t)dt =

∫
V (x)dx and the

generating function of the interacting Green functions is defined by Z(j+, j−) =
ω
(
S†(j−)S(j+)

)
. The interacting Green functions can then be obtained as func-

tional derivatives of Z with respect to the external currents j+ and j−. For example

〈T (ϕ(x)ϕ(y))〉 = − δ2Z(j+, j−)
δj+(x)δj+(y)

, and 〈ϕ(x)ϕ(y)〉 =
δ2Z(j+, j−)
δj−(x)δj+(y)

.

As in standard QFT, the connected Green functions are generated by logZ.
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In the functional method [16, 17], the generating function Z of the interacting
system is written as Z = e−iDZ0, where D is the interaction in terms of functional
derivatives

D =
∫

V
( −iδ
δj+(x)

)
− V

( iδ

δj−(x)

)
dx,

and where Z0(j+, j−) = ω
(
S†

0(j−)S0(j+)
)
, with S0(j) = T

(
ei

∫
j(x)ϕ(x)dx

)
. Note

that Z0(j+, j−) is the generating function of the free Green functions.
A straightforward calculation [17] leads to

Z0(j+, j−) = e−1/2
∫

j(x)G′
0(x,y)j(y)dxdyeρ′(j+−j−),

where j = (j+, j−) is the source vector,

G′
0(x, y) =

(
〈0|T

(
φ(x)φ(y)

)
|0〉 −〈0|φ(y)φ(x)|0〉

−〈0|φ(x)φ(y)|0〉 〈0|T̄
(
φ(x)φ(y)

)
|0〉

)
, (3.1)

is a free Green function (with T̄ the anti-time ordering operator) and

eρ′(j) = ω
(
:ei

∫
j(x)ϕ(x)dx:

)
(3.2)

defines the generating function ρ′(j) of the cumulants of the initial state ω.
The free Green function G′

0 describes the dynamics generated by the free
Hamiltonian H0. It can also be written in terms of advanced and retarded Green
functions [13].

The idea of describing a state by its cumulants was introduced in QFT by
Fujita [6] and Hall [7]. It was recently rediscovered in nuclear physics [10, 11] and
in quantum chemistry [18].

The next step is to modify the definition of the free Green function. The
cumulant function is Taylor expanded

ρ′(j) =
∞∑

n=2

1
n!

∫
dx1 . . .dxnρn(x1, . . . , xn)j(x1) . . . j(xn).

The expansion starts at n = 2 because ω(1) = 1 and the linear term can be
removed by shifting the field ϕ. The bilinear term ρ2(x, y) is included into the free
Green function by defining

G0(x, y) = G′
0(x, y) + ρ2(x, y)

(
1 −1
−1 1

)
,

and the corresponding cumulant function becomes

ρ(j) = ρ′(j)− (1/2)
∫

dxdyj(x)ρ2(x, y)j(y)

=
∞∑

n=3

1
n!

∫
dx1 . . .dxnρn(x1, . . . , xn)j(x1) . . . j(xn).



168 Christian Brouder

Remark 3.1. There are several good reasons to use G0 and ρ instead of G′
0 and ρ′:

(i) This modification is exactly what is done in solid-state physics when the free
Green function includes a sum over occupied states [19]; (ii) At a fundamental level,
G0 and ρ have a more intrinsic meaning than G′

0 and ρ′ because they do not depend
on the state |0〉 chosen as the vacuum; (iii) An important theorem of quantum field
theory [20] states that, under quite general conditions, ρn(x1, . . . , xn) is a smooth
function of its arguments when n > 2, so that G0 gathers all possible singular
terms (a related result was obtained by Tikhodeev [21]); (iv) A state for which
ρ(j) = 0 is called a quasi-free state [22], quasi-free states are very convenient in
practice because the rules of standard QFT can be used without basic changes.
Thus, the additional complications arise precisely when ρ (and not ρ′) is not zero.

4. Nonperturbative equations

To size up the combinatorial complexity due to the presence of a non-zero ρ, we
present the diagrammatic expansion of the one-body Green function G(x, y) for
the ϕ3 theory to second order in perturbation theory. For this illustrative purpose,
it will be enough to say that the cumulant ρn(x1, . . . , xn) is pictured as a white
vertex with n edges attached to it, the other vertex of the edge is associated with
one of the points x1, . . . , xn. For example, ρ4(x1, . . . , x4) is represented by the
diagram In this diagram, the white dot does not stand for a spacetime point, it

just indicates that the points x1 to x4 are arguments of a common cumulant. If we
restrict the calculation to the case when ρn = 0 if n is odd, we obtain the following
expansion In standard QFT, only the first and last diagrams of the right hand side

G(x, y) = x y + + + + + +

+ + + + + + +

+ + + + + + + . . .

are present. In the general case when all ρn �= 0, the number of diagrams is still
much larger.
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4.1. Generalized Dyson equation

As mentioned in the introduction, the only known result concerning the structure
of Green functions with a general state was derived by Hall for the one-body Green
function G(x, y) [7]

G = (1−A)−1(G0 + C)(1 −B)−1(1 + ΣG).

In diagrammatic terms the quantities A, B, C and Σ are sums of one-particle
irreducible diagrams. If we take our example of the Green function of ϕ3 theory
up to second order, we find

In standard QFT, we have A = B = C = 0 and the diagrammatic represen-
tation of Σ contains much less terms. However, the difference with standard QFT
is not only limited to the number of diagrams. The definition (3.2) of the cumu-
lant function, and the fact that the free field ϕ is a solution of the Klein-Gordon
equation imply that ρn is a solution of the Klein-Gordon equation in each of its
variables. Thus, A(x, y), B(x, y) and C(x, y) are solutions of the Klein-Gordon
equation for x and y. As a consequence, applying the Klein-Gordon operator to
the Green function gives us (�+m2)G = (1−B)−1(1+ΣG). In other words, apply-
ing the Klein-Gordon operator kills a large number of terms of G. This is in stark
contrast with standard QFT, where (�+m2)G = 1+ΣG and amputating a Green
function does not modify its structure. This important difference makes some tools
of standard QFT (e.g. amputated diagrams or Legendre transformation) invalid
in the presence of a general state.

All those difficulties explain the scarcity of results available in non-pertur-
bative QFT with a general state. Apart from Hall’s work [7], the only non-
perturbative results are Tikhodeev’s cancellation theorems [23, 24] and the equa-
tion of motion for the Green functions [25].

In the next section, we present a simple trick to derive the structure of Green
functions with a general state.
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4.2. Quadrupling the sources

We first determine the main formal difference between standard QFT and QFT
with a general state. In both cases, the generating function of the Green functions
can be written Z = e−iDZ0, where D describes the interaction and Z0 the initial
state. In the presence of a general state, the interaction D is simple but Z0 is made
non standard by the cumulant factor eρ. The idea of the solution is to transfer
the cumulant function ρ from Z0 to D, because powerful functional methods were
developed to deal with general interactions D. These methods were first proposed
by Dominicis and Englert [26] and greatly expanded by the Soviet school [27, 28,
29, 30, 31, 32, 33, 34, 35].

This transfer from the initial state to the interaction can be done easily by
introducing two additional external sources k+ and k− and using the identity

eρ(j+−j−) = eρ(−i δ
δk+

−i δ
δk− )ei

∫
(j+(x)k+(x)−j−(x)k−(x))dx

∣∣
k+=k−=0

.

The term involving ρ can now be transferred from Z0 to D by defining the new
generating function

Z̄(j±, k±) = e−iD̄Z̄0(j±, k±),

where the modified interaction is

D̄ =
∫

V
( −iδ
δj+(x)

)
− V

( iδ

δj−(x)

)
dx− iρ(−i δ

δk+
− i

δ

δk−
),

and the modified free generating function is

Z̄0(j±, k±) = e−1/2
∫

J(x)Ḡ0(x,y)J(y)dxdy,

with J = (j+, j−, k+, k−). The modified free Green function Ḡ0 is now a 4x4 matrix
that can be written as a 2x2 matrix of 2x2 matrices

Ḡ0 =
(

G0 −i1
−i1 0

)
.

In contrast to the standard case, the free Green function Ḡ0 is invertible

Ḡ−1
0 =

(
0 i1
i1 G0

)
,

and it is again possible to use amputated diagrams and Legendre transformations.
The free generating function Z̄0 is the exponential of a function that is bilinear in
the sources, and all the standard structural tools of QFT are available again. We
illustrate this by recovering Hall’s analogue of the Dyson equation.

4.3. An algebraic proof of Hall’s equation

The free generating function Z̄0 has a standard form and the Dyson equation holds
again: Ḡ = Ḡ0 + Ḡ0Σ̄Ḡ, where Ḡ is the 4x4 one-body Green function obtained
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from the generating function Z̄ and Σ̄ is the corresponding self-energy. Each 4x4
matrix is written as a 2x2 matrix of 2x2 matrices. For example

Ḡ =
(

Ḡ11 Ḡ12

Ḡ21 Ḡ22

)
.

We want to determine the structure of the 2x2 Green function G, which is equal
to Ḡ11 when k+ = k− = 0.

The upper-left component of the Dyson equation for Ḡ is

Ḡ11 = G0 + (G0Σ̄11 − iΣ̄21)Ḡ11 + (G0Σ̄12 − iΣ̄22)Ḡ21. (4.1)

The lower-left component gives us Ḡ21 = −i(1 + iΣ̄12)−1(1 + Σ̄11Ḡ11). If we in-
troduce this expression for Ḡ21 into equation (4.1), rearrange a bit and use the
operator identity 1 + O(1−O)−1 = (1−O)−1, we obtain

(1 + iΣ̄21)Ḡ11 = (G0 − Σ̄22)(1 + iΣ̄12)−1(1 + Σ̄11Ḡ11).

Hall’s equation is recovered by identifying A = −iΣ̄21, B = −iΣ̄12 and C = −Σ̄22,
where the right hand side is taken at k+ = k− = 0. Note that Hall’s equation
is now obtained after a few lines of algebra instead of a subtle analysis of the
graphical structure of the diagrams.

With the same approach, all the nonperturbative methods used in solid-
state physics, such as the GW approximation [36] and the Bethe-Salpeter equation
[37, 38], can be transposed to the case of a general initial state. This will be
presented in a forthcoming publication.

5. Determination of the ground state

QFT with a general state was studied because the initial eigenstate of a quantum
system is sometimes degenerate. However, it remains to determine which density
matrix ωmn of the free Hamiltonian leads to the ground state of the interacting
system.

A solution to this problem was inspired by quantum chemistry methods [39].
A number of eigenstates |Φn〉 of H0 are chosen, for example the complete list of
degenerate eigenstates corresponding to a given energy. These eigenstates span the
so-called model space and the ground state of the interacting system is assumed to
belong to the adiabatic evolution of the model space. This model space generates,
for each density matrix, a linear form ω as described in equation (2.2). The problem
boils down to the determination of the density matrix ωmn that minimizes the
energy of the interacting system.

This minimization leads to an effective Hamiltonian and the proper density
matrix is obtained by diagonalizing the effective Hamiltonian. This type of method
is typical of atomic and molecular physics [40]. However, the effective Hamiltonian
can now be determined by powerful non-perturbative Green function methods.
Therefore, the present approach leads to a sort of unification of quantum chemistry
and QFT: it contains standard QFT when the dimension of the model space is one,
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it contains standard quantum chemistry (more precisely many-body perturbation
theory) when the Green functions are expanded perturbatively.

Therefore, the present approach might help developing some new nonpertur-
bative methods in quantum chemistry. On the other hand, quantum chemistry
has accumulated an impressive body of results. The physics Nobel-prize winner
Kenneth Wilson stated that [41] “Ab initio quantum chemistry is an emerging
computational area that is fifty years ahead of lattice gauge theory.” Therefore,
the experience gained in quantum chemistry can be used to solve some of the
remaining problems of the present approach, such as the removal of the secular
terms [14] to all order.

6. Conclusion

The present paper sketched a new method to determine the Green functions of
quantum field theory with a general state. The main idea is to transform the
cumulant function describing the initial state into an interaction term. As a conse-
quence, the cumulants become dressed by the interaction, providing a much better
description of the correlation in the system.

An alternative method would be to work at the operator level, as was done
recently by Dütsch and Fredenhagen [42], and to take the expectation value at the
end of the calculation. This would have the obvious advantage of dealing with a
fully rigorous theory. However, we would loose the non-perturbative aspects of the
present approach.

Although this approach seems promising, much remains to be done before it
can be applied to realistic systems: (i) our description is purely formal; (ii) the
degenerate initial eigenstates lead to secular terms that must be removed [14];
(iii) renormalization must be included, although this will probably not be very
different from the standard case, because all the singularities of the free system
are restricted to G0.

Interesting connections can be made with other problems. For example, the
cancellation theorem [23] seems to be interpretable as a consequence of the uni-
tarity of the S-matrix. It would extend Veltman’s largest time equation [43] to the
case of spacetime points with equal time. Another exciting track would be a con-
nection with noncommutative geometry. Keldysh [15] noticed that the doubling of
sources could be replaced by a doubling of spacetime points. In other words, j±(x)
becomes j(x±), where x± are two copies of the spacetime point x: time travels
from the past to the future for x+ and in the other direction for x−. Sivasubra-
manian and coll. [44] have proposed to interpret this doubling of spacetime points
in terms of noncommutative geometry. It would be interesting to follow this track
for our quadrupling of spacetime points.

From the practical point of view, the main applications of our scheme will
be for the calculation of strongly-correlated systems, in particular for the optical
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response of some materials, such as gemstones, that remain beyond the reach of
the standard tools of contemporary solid-state physics.

After the completion of this work, we came across a little known article by
Sergey Fanchenko, where the cumulants are used to define an effective action [45].
His paper is also interesting because it gives a path integral formulation of quantum
field theory with a general state. His approach and the one of the present paper
provide complementary tools to attack nonperturbative problems of quantum field
theory with a general state.
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[42] M. Dütsch and K. Fredenhagen. Causal perturbation theory in terms of retarded
products, and a proof of the Action Ward Identity. Rev. Math. Phys. 16 (2004),
1291–348.

[43] M. Veltman. Unitarity and causality in a renormalizable field theory with unstable
particles. Physica 29 (1963), 186–207.

[44] S. Sivasubramanian, Y. N. Srivastava, G. Vitiello and A. Widom. Quantum dissipa-
tion induced noncommutative geometry. Phys. Lett. A 311 (2003), 97–105.

[45] S. S. Fanchenko. Generalized diagram technique of nonequilibrium processes. Theor.
Math. Phys. 55 (1983), 406–9.

Christian Brouder
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Abstract. In perturbative quantum field theory the maintenance of classical
symmetries is quite often investigated by means of algebraic renormalization,
which is based on the Quantum Action Principle. We formulate and prove this
principle in a new framework, in causal perturbation theory with localized
interactions. Throughout this work a universal formulation of symmetries is
used: the Master Ward Identity.
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1. Introduction

The main problem in perturbative renormalization is to prove that symmetries of
the underlying classical theory can be maintained in the process of renormalization.
In traditional renormalization theory this is done by ’algebraic renormalization’
[26]. This method relies on the ’Quantum Action Principle’ (QAP), which is due to
Lowenstein [23] and Lam [22]. This principle states that the most general violation
of an identity expressing a relevant symmetry (’Ward identity’) can be expressed
by the insertion of a local field with appropriately bounded mass dimension. Pro-
ceeding in a proper field formalism1 by induction on the order of �, this knowledge
about the structure of violations of Ward identities and often cohomological re-
sults are used to remove these violations by finite renormalizations. For example,
this method has been used to prove BRST-symmetry of Yang-Mills gauge theories
[2, 3, 31, 17, 1].

1By ’proper field formalism’ we mean the description of a perturbative QFT in terms of the
generating functional of the 1-particle irreducible diagrams.
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Traditionally, algebraic renormalization is formulated in terms of a renormal-
ization method in which the interaction is not localized (i.e. Sint =

∫
dxLint(x) ,

where Lint is a polynomial in the basic fields with constant coefficients), for ex-
ample the BPHZ momentum space subtraction procedure [32, 23, 22] or the pole
subtractions of dimensionally regularized integrals [5]. In [25] it is pointed out
(without proof) that the QAP is a general theorem in perturbative QFT for non-
localized interactions, i.e. it holds in any renormalization scheme.2

However, for the generalization of perturbative QFT to general globally hy-
perbolic curved space-times, it is advantageous to work with localized interactions
(i.e. Sint =

∫
dx

∑
n≥1(g(x))n Lint,n(x) , where g is a test function with compact

support) and to use a renormalization method which proceeds in configuration
space and in which the locality and causality of perturbative QFT is clearly visible
[8, 18, 19]. It is causal perturbation theory (CPT) [4, 15, 14] which is distinguished
by these criteria.

Since it is the framework of algebraic QFT [16] in which the problems specific
for curved space-times (which mainly rely on the absence of translation invariance)
can best be treated, our main goal is the perturbative construction of the net of
local algebras of interacting fields (’perturbative algebraic QFT’). Using the for-
mulation of causality in CPT, it was possible to show that for this construction
it is sufficient to work with localized interactions [8, 12]. Hence, a main argu-
ment against localized interactions, namely that a space or time dependence of
the coupling constants has not been observed in experiments, does not concern
perturbative algebraic QFT. Because of the localization of the interactions, the
construction of the local algebras of interacting fields is not plagued by infrared
divergences, the latter appear only in the construction of physical states.

Due to these facts it is desirable to transfer the techniques of algebraic renor-
malization to CPT, that is to formulate the �-expansion, a proper field formalism
and the QAP in the framework of CPT. For the �-expansion the difficulty is that
CPT is a construction of the perturbation series by induction on the coupling con-
stant, a problem solved in [11, 12]. A formulation of the QAP in the framework
of CPT has partially been given in [11] and in [27]; but for symmetries relying
on a variation of the fields (as e.g. BRST-symmetry) an appropriate formulation
and a proof were missing up to the appearance of the paper [6]. In the latter,
also a proper field formalism and algebraic renormalization are developed in the
framework of CPT.

In this paper we concisely review main results of that work [6], putting the
focus on the QAP. To be closer to the conventional treatment of perturbative QFT
in Minkowski space and to simplify the formalism, we work with the Wightman 2-
point function instead of a Hadamard function.3 Compared with [6], we formulate
some topics alternatively, in particular we introduce the proper field formalism

2Causal perturbation theory, with the adiabatic limit carried out, is included in that statement.
3In [6] smoothness in the mass m is required for m ≥ 0 which excludes the Wightman 2-point
function.
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without using arguments relying on Wick’s theorem and the corresponding dia-
grammatic interpretation. In addition we prove a somewhat stronger version of
the QAP.

The validity of the QAP is very general. Therefore, we investigate a universal
formulation of Ward identities: the Master Ward Identity (MWI) [9, 13]. This
identity can be derived in the framework of classical field theory simply from the
fact that classical fields can be multiplied pointwise. Since this is impossible for
quantum fields (due to their distributional character), the MWI is a highly non-
trivial renormalization condition, which cannot be fulfilled in general, the well
known anomalies of perturbative QFT are the obstructions.

2. The off-shell Master Ward Identity in classical field theory

For algebraic renormalization it is of crucial importance that the considered Ward
identities hold true in classical field theory. Therefore, in this section, we derive the
off-shell MWI in the classical framework. The formalism of classical field theory,
which we are going to introduce, will be used also in perturbative QFT, since the
latter will be obtained by deformation of the classical Poisson algebra (Sect. 3)
[11, 12, 13, 14].

For simplicity we study the model of a real scalar field ϕ on d dimensional
Minkowski space M, d > 2. The field ϕ and partial derivatives ∂aϕ (a ∈ Nd

0) are
evaluation functionals on the configuration space C ≡ C∞(M,R) : (∂aϕ)(x)(h) =
∂ah(x). Let F be the space of all functionals

F (ϕ) : C −→ C , F (ϕ)(h) = F (h) , (2.1)

which are localized polynomials in ϕ:

F (ϕ) =
N∑

n=0

∫
dx1 . . . dxn ϕ(x1) · · ·ϕ(xn)fn(x1, . . . , xn) , (2.2)

where N < ∞ and the fn’s are C-valued distributions with compact support,
which are symmetric under permutations of the arguments and whose wave front
sets satisfy the condition

WF(fn) ∩
(
Mn × (V

n

+ ∪ V
n

−)
)

= ∅ (2.3)

and f0 ∈ C. (V ± denotes the closure of the forward/backward light-cone.) En-
dowed with the classical product (F1 ·F2)(h) := F1(h) ·F2(h), the space F becomes
a commutative algebra. By the support of a functional F ∈ F we mean the support
of δF

δϕ .
The space of local functionals Floc ⊂ F is defined as

Floc
def=

{∫
dx

N∑
i=1

Ai(x)hi(x) ≡
N∑

i=1

Ai(hi) |Ai ∈ P , hi ∈ D(M)
}

, (2.4)
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where P is the linear space of all polynomials of the field ϕ and its partial deriva-
tives:

P :=
∨{

∂aϕ | a ∈ Nd
0

}
. (2.5)

We consider action functionals of the form Stot = S0 + λS where S0
def=∫

dx1
2 (∂μϕ∂

μϕ − m2ϕ2) is the free action, λ a real parameter and S ∈ F some
compactly supported interaction, which may be non-local. The retarded Green
function Δret

Stot
corresponding to the action Stot, is defined by∫

dy Δret
Stot

(x, y)
δ2Stot

δϕ(y)δϕ(z)
= δ(x− z) =

∫
dy

δ2Stot

δϕ(x)δϕ(y)
Δret

Stot
(y, z) (2.6)

and Δret
Stot

(x, y) = 0 for x sufficiently early. In the following we consider only
actions Stot for which the retarded Green function exists and is unique in the
sense of formal power series in λ.

To introduce the perturbative expansion around the free theory and to define
the Peierls bracket, we define retarded wave operators which map solutions of the
free theory to solutions of the interacting theory [13]. However, we define them as
maps on the space C of all field configurations (’off-shell formalism’) and not only
on the space of free solutions:

Definition 2.1. A retarded wave operator is a family of maps (rS0+S,S0)S∈F from
C into itself with the properties

(i) rS0+S,S0(f)(x) = f(x) for x sufficiently early
(ii) δ(S0+S)

δϕ ◦ rS0+S,S0 = δS0
δϕ .

The following Lemma is proved in [6].

Lemma 2.2. The retarded wave operator (rS0+S,S0)S∈F exists and is unique and
invertible in the sense of formal power series in the interaction S.

Motivated by the interaction picture known from QFT, we introduce retarded
fields: the classical retarded field to the interaction S and corresponding to the
functional F ∈ F is defined by

F cl
S

def= F ◦ rS0+S,S0 : C −→ C. (2.7)

The crucial factorization property,

(F ·G)clS = F cl
S ·Gcl

S , (2.8)

cannot be maintained in the process of quantization, because quantum fields are
distributions. This is why many proofs of symmetries in classical field theory do
not apply to QFT (cf. Sect. 5).

The perturbative expansion around the free theory is defined by expanding
the retarded fields with respect to the interaction. The coefficients are given by
the classical retarded product Rcl [13]:

Rcl : TF ⊗ F → F , Rcl(S⊗n, F ) def=
dn

dλn

∣∣∣
λ=0

F ◦ rS0+λS,S0 , (2.9)



Quantum Action Principle in Causal Perturbation Theory 181

where TV def= C ⊕
⊕∞

n=1 V⊗n denotes the tensor algebra corresponding to some
vector space V . For non-diagonal entries, Rcl(⊗n

j=1Sj , F ) is determined by linearity
and symmetry under permutations of S1, ..., Sn. Interacting fields can then be
written as

F cl
S �

∞∑
n=0

1
n!
Rcl(S⊗n, F ) ≡ Rcl(eS

⊗, F ) . (2.10)

The r.h.s. of � is interpreted as a formal power series (i.e. we do not care about
convergence of the series).

By means of the retarded wave operator one can define an off-shell version
[6] of the Peierls bracket associated to the action S [24], {·, ·}S : F ⊗ F → F ,
and one verifies that this is indeed a Poisson bracket, i.e. that {·, ·}S is linear,
antisymmetric and satisfies the Leibniz rule and the Jacobi identity [13, 6].

Following [6], we are now going to derive the classical off-shell MWI from the
factorization (2.8) and the definition of the retarded wave operators. Let J be the
ideal generated by the free field equation,

J def=
{ N∑

n=1

∫
dx1 . . . dxn ϕ(x1) · · ·ϕ(xn−1)

δS0

δϕ(xn)
fn(x1, . . . , xn)

}
⊂ F ,

with N < ∞ and the fn’s being defined as in (2.2). Obviously, every A ∈ J can
be written as

A
def=

∫
dxQ(x)

δS0

δϕ(x)
, (2.11)

where Q may be non-local. Given A ∈ J we introduce a corresponding derivation
[13]

δA
def=

∫
dxQ(x)

δ

δϕ(x)
. (2.12)

Notice F (ϕ+Q)−F (ϕ) = δAF+O(Q2) (for F ∈ F) that is, δAF can be interpreted
as the variation of F under the infinitesimal field transformation ϕ(x) �→ ϕ(x) +
Q(x). From the definition of the retarded wave operators Def. 2.1 we obtain

(A + δAS) ◦ rS0+S,S0 =
∫
dxQ(x) ◦ rS0+S,S0

δ(S0 + S)
δϕ(x)

◦ rS0+S,S0

=
∫
dxQ(x) ◦ rS0+S,S0

δS0

δϕ(x)
. (2.13)

In terms of the perturbative expansion this relation reads

Rcl(eS
⊗, A + δAS) =

∫
dxRcl

(
eS
⊗, Q(x)

) δS0

δϕ(x)
∈ J . (2.14)

This is the MWI written in the off-shell formalism. When restricted to the solutions
of the free field equation, the right-hand side vanishes and we obtain the on-shell
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version of the MWI, as it was derived in [13]. For the simplest case Q = 1 the
MWI reduces to the off-shell version of the (interacting) field equation

Rcl

(
eS
⊗,

δ(S0 + S)
δϕ(x)

)
=

δS0

δϕ(x)
. (2.15)

3. Causal perturbation theory

Following [14], we quantize perturbative classical fields by deforming the under-
lying free theory as a function of �: we replace F by F [[�]] (i.e. all functionals
are formal power series in �) and deform the classical product into the �-product,
� : F × F → F (for simplicity we write F for F [[�]]):

(F � G)(ϕ) def=
∞∑

n=0

�n

n!

∫
dx1 . . . dxndy1 . . . dyn

δnF

δϕ(x1) · · · δϕ(xn)

·
n∏

i=1

Δ+
m(xi − yi)

δnG

δϕ(y1) · · · δϕ(yn)
. (3.1)

The �-product is still associative but non-commutative.
In contrast to the classical retarded field F cl

S (2.7), one assumes in pertur-
bative QFT that the interaction S and the field F are local functionals. For an
interacting quantum field FS one makes the Ansatz of a formal power series in
the interaction S:

FS =
∞∑

n=0

1
n!
Rn,1

(
S⊗n, F

)
≡ R(eS

⊗, F ) . (3.2)

The ’retarded product’ Rn,1 is a linear map, from F⊗n
loc ⊗Floc into F which is sym-

metric in the first n variables. We interpret R(A1(x1), ...;An(xn)) , A1, ..., An ∈ P ,
as F -valued distributions onD(Mn), which are defined by:

∫
dxh(x)R(..., A(x), ...)

:= R(...⊗A(h)⊗ ...) ∀h ∈ D(M).
Since the retarded products depend only on the functionals (and not on how

the latter are written as smeared fields (2.4)), they must satisfy the Action Ward
Identity (AWI) [14, 29, 30]:

∂x
μRn−1,1(. . . Ak(x) . . .) = Rn−1,1(. . . , ∂μAk(x), . . .) . (3.3)

Interacting fields are defined by the following axioms [14], which are moti-
vated by their validity in classical field theory. The basic axioms are the initial
condition R0,1(1, F ) = F and

Causality: FG+H = FG if supp ( δF
δϕ ) ∩ (supp ( δH

δϕ ) + V̄+) = ∅ y;

GLZ Relation: FG � HG −HG � FG = d
dλ

∣∣∣
λ=0

(FG+λH −HG+λF ) .

Using only these requirements, the retarded products Rn,1 can be constructed by
induction on n (cf. [28]). However, in each inductive step one is free to add a
local functional, which corresponds to the usual renormalization ambiguity. This
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ambiguity is reduced by imposing renormalization conditions as further axioms,
see below.

Mostly, perturbative QFT is formulated in terms of the time ordered product
(’T -product’) T : TFloc → F , which is a linear and totally symmetric map.
Compared with the R-product, the T -product has the advantage of being totally
symmetric and the disadvantage that its classical limit does not exist [11]. R- and
T -products are related by Bogoliubov’s formula:

R
(
eS
⊗ , F

)
=

�
i
S(S)−1 �

d

dτ

∣∣∣
τ=0

S(S + τF ) , (3.4)

where

S(S) ≡ T
(
e

iS/�
⊗

)
≡

∞∑
n=0

in

n!�n
Tn(S⊗n) . (3.5)

The basic axioms for retarded products translate into the following basic axioms for
T -products: the initial conditions T0(1) = 1, T1(F ) = F and causal factorization:

Tn(A1(x1), ..., An(xn)) =

Tk(A1(x1), ..., Ak(xk)) � Tn−k(Ak+1(xk+1), ..., An(xn)) (3.6)

if {x1, ..., xk} ∩ ({xk+1, ..., xn}+ V̄−) = ∅. There is no axiom corresponding to the
GLZ Relation. The latter can be interpreted as ’integrability condition’ for the
’vector potential’ R

(
eS
⊗ , F

)
, that is it ensures the existence of the ’potential’ S(S)

fulfilling (3.4); for details see [7] and Proposition 2 in [10].
For this paper the following renormalization conditions are relevant (besides

the MWI).
Translation Invariance: The group (Rd,+) of space and time translations has

an obvious automorphic action β on F , which is determined by βaϕ(x) =
ϕ(x + a) , a ∈ Rd. We require

βa S(S) = S(βaS) , ∀a ∈ Rd . (3.7)

Field Independence: δT
δϕ(x) = 0 . This axiom implies the causal Wick expansion

of [15] as follows [14]: since T (⊗n
j=1Fj) ∈ F is polynomial in ϕ, it has a finite

Taylor expansion in ϕ. By using Field Independence, this expansion can be
written as

Tn(A1(x1), · · · , An(xn)) =
∑

l1,...,ln

1
l1! · · · ln!

·Tn

(
· · · ,

∑
ai1...aili

∂liAi

∂(∂ai1ϕ) · · · ∂(∂ailiϕ)
(xi), · · ·

)∣∣∣
ϕ=0

n∏
i=1

li∏
ji=1

∂aijiϕ(xi) (3.8)

with multi-indices aiji ∈ Nd
0.

Scaling: This requirement uses the mass dimension of a monomial in P , which
is defined by the conditions

dim(∂aϕ) =
d− 2

2
+ |a| and dim(A1A2) = dim(A1) + dim(A2) (3.9)
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for all monomials A1, A2 ∈ P . The mass dimension of a polynomial in P
is the maximum of the mass dimensions of the contributing monomials. We
denote by Phom the set of all field polynomials which are homogeneous in the
mass dimension.

The axiom Scaling Degree requires that ’renormalization may not make
the interacting fields more singular’ (in the UV-region). Usually this is for-
mulated in terms of Steinmann’s scaling degree [28]:

sd(f) def= inf{δ ∈ R | lim
ρ↓0

ρδf(ρx) = 0}, f ∈ D′(Rk) or f ∈ D′(Rk \ {0}). (3.10)

Namely, one requires

sd
(
T (A1, ..., An)|ϕ=0(x1 − xn, ...)

)
≤

n∑
j=1

dim(Aj) , ∀Aj ∈ Phom , (3.11)

where Translation Invariance is assumed. Notice that this condition restricts
all coefficients in the causal Wick expansion (3.8).

In the inductive construction of the sequence (Rn−1,1)n∈N or (Tn)n∈N, respectively,
the problem of renormalization appears as the extension of the coefficients in the
causal Wick expansion (which are C[[�]]-valued distributions) from D(Rd(n−1) \
{0}) to D(Rd(n−1)). This extension has to be done in the sense of formal power
series in �, that is individually in each order in �. With that it holds

lim
�→0

R = Rcl . (3.12)

In [14] it is shown that there exists a T -product which fulfils all axioms. The
non-uniqueness of solutions is characterized by the ’Main Theorem’; for a complete
version see [14].

4. Proper vertices

A main motivation for introducing proper vertices is to select that part of a T -
product for which renormalization is non-trivial (cf. [21]). This is the contribu-
tion of all 1-particle-irreducible (1PI) subdiagrams. This selection can be done as
follows: first one eliminates all disconnected diagrams. Then, one interprets each
connected diagram as tree diagram with non-local vertices (’proper vertices’) given
by the 1PI-subdiagrams. The proper vertices can be interpreted as the ’quantum
part’ of the Feynman diagrams. Since renormalization is unique and trivial for
tree diagrams, Ward identities can equivalently be formulated in terms of proper
vertices (Sect. 5.1).

Essentially we follow this procedure, however, we avoid to argue in terms of
diagrams, i.e. to use Wick’s Theorem. It has been shown in [6] that with our defi-
nition (4.6) of the vertex functional Γ the ’proper interaction’ Γ(eS

⊗) corresponds
to the sum of all 1PI-diagrams of T (eiS/�

⊗ ).



Quantum Action Principle in Causal Perturbation Theory 185

The connected part T c of a time-ordered T can be defined recursively by [11]

T c
n(⊗n

j=1Fj)
def= Tn(⊗n

j=1Fj)−
∑
|P |≥2

∏
J∈P

T c
|J|(⊗j∈JFj) . (4.1)

It follows that T and T c are related by the linked cluster theorem:

T (eiF
⊗ ) = exp•(T

c(eiF
⊗ )) , (4.2)

where exp• denotes the exponential function with respect to the classical product.
For F ∈ Floc the connected tree part T c

tree,n(F⊗n) can be defined as follows
[11]: since T c

n = O(�n−1) , the limit

�−(n−1) T c
tree,n

def= lim
�→0

�−(n−1) T c
n (4.3)

exists. This definition reflects the well known statements that T c
tree is the ’classical

part’ of T c and that connected loop diagrams are of higher orders in �.
Since proper vertices are non-local, we need the connected tree part

T c
tree(⊗n

j=1Fj) for non-local entries Fj ∈ F . This can be defined recursively [6]:

T c
tree(⊗n+1

j=1Fj) =
n∑

k=1

∫
dx1...dxk dy1...dyk

δkFn+1

δϕ(x1)...δϕ(xk)

·
k∏

j=1

ΔF
m(xj − yj)

1
k!

∑
I1�...�Ik={1,...,n}

δ

δϕ(y1)
T c

tree(⊗j∈I1Fj) · ...

· δ

δϕ(yk)
T c

tree(⊗j∈Ik
Fj) , (4.4)

where Ij �= ∅ ∀j , ( means the disjoint union and ΔF
m is the Feynman propagator

for mass m. (Note that in the sum over I1, ..., Ik the order of I1, ..., Ik is distin-
guished and, hence, there is a factor 1

k! .) For local entries the two definitions (4.3)
and (4.4) of T c

tree agree, as explained in [6].
The ’vertex functional’ Γ is defined by the following proposition [6]:

Proposition 4.1. There exists a totally symmetric and linear map

Γ : TFloc → F (4.5)

which is uniquely determined by

T c(eiS/�
⊗ ) = T c

tree

(
e

iΓ(eS
⊗)/�

⊗
)
. (4.6)

To zeroth and first order in S we obtain

Γ(1) = 0 , Γ(S) = S . (4.7)

Since T c, T c
tree and Γ are linear and totally symmetric, the defining relation (4.6)

implies

T c(eiS/�
⊗ ⊗ F ) = T c

tree

(
e

iΓ(eS
⊗)/�

⊗ ⊗ Γ(eS
⊗ ⊗ F )

)
. (4.8)
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To prove the proposition, one constructs Γ(⊗n
j=1Fj) by induction on n, using

(4.6) and the requirements total symmetry and linearity:

Γ(⊗n
j=1Fj) = (i/�)n−1 T c(⊗n

j=1Fj)−
∑
|P |≥2

(i/�)|P |−1 T c
tree

(⊗
J∈P

Γ(⊗j∈JFj)
)
,

(4.9)
where P is a partition of {1, ..., n} in |P | subsets J .

From this recursion relation and from T c
n − T c

tree,n = O(�n) we inductively
conclude

Γ(eS
⊗) = S +O(�) , Γ(eS

⊗ ⊗ F ) = F +O(�) if F, S ∼ �0 . (4.10)

Motivated by this relation and (4.6) we call Γ(eS⊗) the ’proper interaction’ corre-
sponding to the classical interaction S.

The validity of renormalization conditions for T implies corresponding prop-
erties of Γ, as worked out in [6].

Analogously to the conventions for R- and T -products we sometimes write∫
dx g(x) Γ(A(x) ⊗ F2...) for Γ(A(g)⊗ F2...) (A ∈ P , g ∈ D(M)). Since Γ depends

only on the functionals, it fulfils the AWI: ∂μ
xΓ(A(x)⊗F2...) = Γ(∂μA(x)⊗F2...).

5. The Quantum Action Principle

5.1. Formulation of the Master Ward Identity in terms of proper vertices

The classical MWI was derived for arbitrary interaction S ∈ F and arbitrary
A ∈ J . For local functionals S ∈ Floc and

A =
∫
dxh(x)Q(x)

δS0

δϕ(x)
∈ J ∩ Floc , h ∈ D(M) , Q ∈ P , (5.1)

it can be transferred formally into perturbative QFT (by the replacement Rcl →
R), where it serves as an additional, highly non-trivial renormalization condition:

R
(
eS
⊗, A + δAS

)
=
∫
dy h(y)R(eS

⊗, Q(y))
δS0

δϕ(y)
. (5.2)

Since the MWI holds true in classical field theory (i.e. for connected tree diagrams,
see below) it is possible to express this renormalization condition in terms of the
’quantum part’ (described by the loop diagrams) - that is in terms of proper
vertices. We do this in several steps:
Proof of the MWI for T c

tree (connected tree diagrams). Since this is an alternative
formulation of the classical MWI, we still include non-local functionals S ∈ F ,
A =

∫
dxQ(x) δS0

δϕ(x) ∈ J , as in Sect. 2. The classical field equation (2.15) can be
expressed in terms of T c

tree:

T c
tree

(
e

iS/�
⊗ ⊗ δ(S0 + S)

δϕ(x)

)
=

δS0

δϕ(x)
. (5.3)
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The only difference between Rcl and T c
tree is that the retarded propagator Δret(y)(�=

Δret(−y)) is replaced by the Feynman propagator ΔF (y)(= ΔF (−y)), the com-
binatorics of the diagrams remains the same. Hence, the factorization of classical
fields (2.8),

Rcl

(
eS
⊗, F ·G

)
= Rcl

(
eS
⊗, F

)
·Rcl

(
eS
⊗, G

)
(5.4)

holds true also for T c
tree:

T c
tree

(
e

iS/�
⊗ ⊗ FG

)
= T c

tree

(
e

iS/�
⊗ ⊗ F

)
· T c

tree

(
e

iS/�
⊗ ⊗G

)
. (5.5)

We now multiply the field equation for T c
tree with T c

tree(e
iS/�
⊗ ⊗Q(x)) and integrate

over x. This yields the MWI for T c
tree:

T c
tree

(
e

iS/�
⊗ ⊗ (A + δAS)

)
=
∫
dxT c

tree

(
e

iS/�
⊗ ⊗Q(x)

)
· δS0

δϕ(x)
. (5.6)

Translation of the (quantum) MWI from R into T c. Using Bogoliubov’s formula
(3.4) and the identity

(F � G) · δS0

δϕ
= F �

(
G · δS0

δϕ

)
∀F,G ∈ F (5.7)

(which relies on (� + m2)Δ+
m = 0), the MWI in terms of R-products (5.2) can be

translated into T -products:

T
(
e

iS/�
⊗ ⊗ (A + δAS)

)
=
∫
dy h(y)T (eiS/�

⊗ ⊗Q(y))
δS0

δϕ(y)
, h ∈ D(M) , Q ∈ P .

(5.8)
To translate it further into T c we note that the linked cluster formula (4.2) implies

T c
(
eiF
⊗ ⊗G

)
= T

(
eiF
⊗
)−1 · T

(
eiF
⊗ ⊗G

)
, (5.9)

where the inverse is meant with respect to the classical product. It exists because
T
(
eiF
⊗
)

is a formal power series of the form T
(
eiF
⊗
)

= 1 + O(F ). With that we
conclude that the MWI can equivalently be written in terms of T c by replacing T
by T c on both sides of (5.8).
Translation of the MWI from T c into Γ. Applying (4.6) on both sides of the MWI
in terms of T c we obtain∫

dy h(y)T c
tree

(
e

iΓ(eS
⊗)/�

⊗ ⊗ Γ
(
eS
⊗ ⊗Q(y)

δ(S0 + S)
δϕ(y)

))
=
∫
dy h(y)T c

tree

(
e

iΓ(eS
⊗)/�

⊗ ⊗ Γ
(
eS
⊗ ⊗Q(y)

)) δS0

δϕ(y)

=
∫
dy h(y)T c

tree

(
e

iΓ(eS
⊗)/�

⊗ ⊗ Γ(eS
⊗ ⊗Q(y))

δ(S0 + Γ(eS⊗))
δϕ(y)

)
,

where we have used the classical MWI in terms of T c
tree (5.6). It follows

Γ(eS
⊗ ⊗Q(y))

δ(S0 + Γ(eS
⊗))

δϕ(y)
= Γ

(
eS
⊗ ⊗Q(y)

δ(S0 + S)
δϕ(y)

)
. (5.10)
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The various formulations of the MWI, in terms of R-products (5.2), T -products
(5.8), T c-products and in terms of proper vertices (5.10), they all are equivalent.

Remark 5.1. The off-shell field equation

T
(
e

iS/�
⊗ ⊗ δ(S0 + S)

δϕ(y)

)
=

δS0

δϕ(y)
· T

(
e

iS/�
⊗

)
, ∀S , (5.11)

is a further renormalization condition, which can equivalently be expressed by

Γ(eS
⊗ ⊗ ϕ(y)) = ϕ(y) , ∀S , (5.12)

as shown in [6]. For a T -product satisfying this condition and for Q = Dϕ (where
D is a polynomial in partial derivatives) the QAP simplifies to

Dϕ(y)
δ(S0 + Γ(eS⊗))

δϕ(y)
= Γ

(
eS
⊗ ⊗Dϕ(y)

δ(S0 + S)
δϕ(y)

)
. (5.13)

5.2. The anomalous Master Ward Identity - Quantum Action Principle

The QAP is a statement about the structure of all possible violations of Ward
identities. In our framework the main statement of the QAP is that any term
violating the MWI can be expressed as Γ(eS⊗⊗Δ), where Δ is local (in a stronger
sense than only Δ ∈ Floc) and Δ = O(�) and the mass dimension of Δ is bounded
in a suitable way.

Theorem 5.2 (Quantum Action Principle). (a) Let Γ be the vertex functional be-
longing to a time ordered product satisfying the basic axioms and Translation In-
variance (3.7). Then there exists a unique sequence of linear maps (Δn)n∈N,

Δn : P⊗(n+1) → D′(M,Floc) , ⊗n
j=1Lj ⊗Q �→ Δn(⊗n

j=1Lj(xj);Q(y)) (5.14)

(D′(M,Floc) is the space of Floc-valued distributions on D(M)), which are sym-
metric in the first n factors,

Δn(⊗n
j=1Lπj(xπj);Q(y)) = Δn(⊗n

j=1Lj(xj);Q(y)) (5.15)

for all permutations π, and which are implicitly defined by the ’anomalous MWI’

Γ(eS
⊗⊗Q(y))

δ(S0 + Γ(eS
⊗))

δϕ(y)
= Γ

(
eS
⊗⊗

(
Q(y)

δ(S0 + S)
δϕ(y)

+Δ(L;Q)(g; y)
))

, (5.16)

where S = L(g) (L ∈ P , g ∈ D(M)) and

Δ(L;Q)(g; y) :=
∞∑

n=0

1
n!

∫
dx1...dxn

n∏
j=1

g(xj)Δn(⊗n
j=1L(xj);Q(y)) . (5.17)

As a consequence of (5.16) the maps Δn have the following properties:

(i) Δ0 = 0 ;
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(ii) locality: there exist linear maps Pn
a : P⊗(n+1) → P (where a runs through a

finite subset of (Nd
0)

n), which are symmetric in the first n factors, such that
Δn can be written as

Δn(⊗n
j=1Lj(xj);Q(y)) =

∑
a∈(Nd

0)n

∂aδ(x1−y, ..., xn−y)Pn
a (⊗n

j=1Lj;Q)(y) . (5.18)

(iii) Δn(⊗n
j=1Lj(xj);Q(y)) = O(�) ∀n > 0 if Lj ∼ �0, Q ∼ �0 .

(b) If the time ordered product satisfies the renormalization conditions Field
Independence and Scaling Degree (3.11), then each term on the r.h.s. of (5.18)
fulfils

|a|+ dim(Pn
a (⊗n

j=1Lj ;Q)) ≤
n∑

j=1

dim(Lj) + dim(Q) +
d + 2

2
− dn . (5.19)

For a renormalizable interaction (that is dim(L) ≤ d) this implies

|a|+ dim(Pn
a (L⊗n;Q)) ≤ dim(Q) +

d + 2
2

. (5.20)

Note that (5.16) differs from the MWI (5.10) only by the local term
Δ(L;Q)(g; y), which clearly depends on the chosen normalization of the time or-
dered product. Therefore, Δ(L;Q)(g; y) = 0 is a sufficient condition for the validity
of the MWI for Q and S = L(g); it is also necessary due to the uniqueness of the
maps Δn.

Proof. (a) Proceeding as in Sect. 5.1, the defining relation (5.16) can equivalently
be written in terms of T -products:

T
(
e

iS/�
⊗ ⊗

(
Q(y)

δ(S0 + S)
δϕ(y)

+ Δ(L;Q)(g; y)
))

= T
(
e

iS/�
⊗ ⊗Q(y)

) δS0

δϕ(y)
. (5.21)

To n-th order in g this equation reads

Δn(L⊗n;Q(y))(g⊗n) = T
(
(iS/�)⊗n ⊗Q(y)

)
· δS0

δϕ(y)
− T

(
(iS/�)⊗n ⊗Q(y)

δS0

δϕ(y)

)
−nT

(
(iS/�)⊗n−1 ⊗Q(y)

δS

δϕ(y)

)
−

n−1∑
l=0

(
n

l

)
T
(
(iS/�)⊗n−l ⊗Δl(L⊗l;Q(y))(g⊗l)

)
.

(5.22)
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Taking linearity and symmetry (5.15) into account we extend this relation to non-
diagonal entries and write it in terms of the distributional kernels

Δn(⊗n
j=1Lj(xj);Q(y)) =

( i

�

)n

T
(
⊗n

j=1Lj(xj)⊗Q(y)
)
· δS0

δϕ(y)

−
( i

�

)n

T
(
⊗n

j=1Lj(xj)⊗Q(y) · δS0

δϕ(y)

)
−

n∑
l=1

( i

�

)n−1

T
(
⊗j( �=l)Lj(xj)⊗Q(y)

∑
a

(∂aδ)(xl − y)
∂Ll

∂(∂aϕ)
(xl)

)
−

∑
I⊂{1,...,n} , Ic �=∅

( i

�

)|Ic|
T
(
⊗i∈IcLi(xi)⊗Δ|I|(⊗j∈ILj(xj);Q(y))

)
(5.23)

This relation gives a unique inductive construction of the sequence (Δn)n∈N (if the
distribution on the r.h.s. of (5.23) takes values in Floc) and it gives also the initial
value Δ0 = 0. Obviously, the so obtained maps Δn : P⊗(n+1) → D′(M,Floc) are
linear and symmetric (5.15).

The main task is to prove that Δn(⊗n
j=1Lj;Q) (which is defined inductively

by (5.23)) satisfies locality (5.18); the latter implies that Δn(⊗n
j=1Lj;Q) takes

values in Floc. For this purpose we first prove

supp Δn(⊗n
j=1Lj;Q) ⊂ Dn+1

def= {(x1, . . . , xn+1) ∈ Mn+1 |x1 = · · · = xn+1} ,
(5.24)

that is we show that the r.h.s. of (5.23) vanishes for (x1, ..., xn, y) �∈ Dn+1. For
such a configuration there exists a K ⊂ {1, ..., n} with Kc := {1, ..., n} \ K �= ∅
and either ({xk | k ∈ Kc}+ V̄+)∩({xj | j ∈ K}∪{y}) = ∅ or ({xk | k ∈ Kc}+ V̄−)∩
({xj | j ∈ K} ∪ {y}) = ∅. We treat the first case, the second case is completely
analogous. Using causal factorization of the T -products (3.6) and locality (5.24)
of the inductively known Δ|I|, |I| < n, we write the r.h.s. of (5.23) as

( i

�

)n(
T
(
⊗j∈KcLj(xj)

)
� T

(
⊗i∈KLi(xi)⊗Q(y)

)) δS0

δϕ(y)

−T
(
⊗j∈KcLj(xj)

)
�
[( i

�

)n

T
(
⊗i∈KLi(xi)⊗Q(y)

δS0

δϕ(y)

)
+
( i

�

)n−1 ∑
l∈K

T
(
⊗i∈K, i�=lLi(xi)⊗Q(y)

∑
a

(∂aδ)(xl − y)
∂Ll

∂(∂aϕ)
(xl)

)
+
( i

�

)|Kc|+|K\I| ∑
I⊂K

T
(
⊗i∈K\ILi(xi)⊗Δ|I|(⊗s∈ILs(xs);Q(y))

)]
. (5.25)

Using (5.7) this can be written in the form T (⊗j∈KcLj(xj)) � (...). The second
factor vanishes due to the validity of (5.23) in order |K|. This proves (5.24).
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Δn(⊗n
j=1Lj ;Q) is, according to its inductive definition (5.23), a distribution

on D(Mn+1) which takes values in F . Hence, it is of the form

Δn(⊗n
j=1Lj(xj);Q(y)) =

∑
k

∫
dz1...dzk

fn
k (⊗n

j=1Lj ⊗Q)(x1, ..., xn, y, z1, ..., zk)ϕ(z1)...ϕ(zk) , (5.26)

where fn
k (⊗n

j=1Lj ⊗ Q)(x1, ..., xn, y, z1, ..., zk) ∈ D′(Mn+k+1) has the following
properties:
- it depends linearly on (⊗n

j=1Lj ⊗Q);
- it is invariant under permutations of the pairs (L1, x1), ..., (Ln, xn).
- The distribution∫
dx1...dxndy f

n
k (⊗n

j=1Lj ⊗ Q)(x1, ..., xn, y, z1, ..., zk)h(x1, ..., xn, y) ∈ D′(Mk) is
symmetric under permutations of z1, ..., zk and satisfies the wave front set condition
(2.3), for all h ∈ D(Mn+1).
- From (5.23) we see that Translation Invariance of the T -product (3.7) implies
the same property for Δn:

βa Δn(⊗n
j=1Lj(xj);Q(y)) = Δn(⊗n

j=1Lj(xj + a);Q(y + a)) . (5.27)

Therefore, the distributions fn
k (⊗n

j=1Lj ⊗Q) depend only on the relative coordi-
nates.

Due to (5.24) the support of fn
k (⊗n

j=1Lj⊗Q) is contained in Dn+1×Mk; but,
to obtain the assertion (5.18), we have to show supp fn

k (⊗n
j=1Lj ⊗Q) ⊂ Dn+k+1.

For this purpose we take into account that

δ T (⊗l
j=1Aj(xj))
δϕ(z)

= 0 if z �= xj ∀j = 1, ..., l . (5.28)

This relation can be shown as follows: for the restriction of the time ordered
product to D(Ml \Dl) this property is obtained inductively by causal factorization
(3.6). That (5.28) is maintained in the extension of the T -product to D(Ml) can
be derived from

[T (⊗l
j=1Aj(xj)) , ϕ(z)]� = 0 if (xj − z)2 < 0 ∀j = 1, ..., l , (5.29)

which is a consequence of the causal factorization of T (ϕ(z) ⊗ ⊗l
j=1Aj(xj)) (cf.

Sect. 3 of [15]).
Applying (5.28) to the T -products on the r.h.s. of (5.23) and using (5.24),

we conclude

supp
δΔn(⊗n

j=1Lj;Q)
δϕ

⊂ Dn+2 . (5.30)

It follows that the distributions fn
k (⊗n

j=1Lj ⊗ Q) (5.26) have support on the to-
tal diagonal Dn+k+1. Taking additionally Translation Invariance into account, we
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conclude that these distributions are of the form

fn
k (⊗n

j=1Lj ⊗Q)(x1, ..., xn, y, z1, ..., zk) =
∑
a,b

Ca,b(⊗n
j=1Lj ⊗Q)

∂aδ(x1 − y, ..., xn − y) ∂bδ(z1 − y, ..., zk − y) , (5.31)

where the coefficients Ca,b(⊗n
j=1Lj⊗Q) ∈ C depend linearly on (⊗n

j=1Lj⊗Q) and
are symmetric in the first n factors. Inserting (5.31) into (5.26) we obtain (5.18),
the corresponding maps Pn

a having the asserted properties.
The important property (iii) is obtained by taking the classical limit � → 0

of the anomalous MWI (5.16): using (4.10) it results lim�→0 Δ(L;Q)(g; y) = 0.
(b) The statement (5.19) is a modified version of Proposition 10(ii) in [6]. It

follows from the formulas ([6]-5.32-33) and ([6]-5.46-47) of that paper. Namely, by
using the causal Wick expansion of Δn (which follows from the Field Independence
of the T -product) and (5.24) it is derived in ([6]-5.32-33) that Δn is of the form

Δn(⊗n
j=1Lj(xj);Q(y)) =

∑
l,a,b

Cl
a,b (∂bδ)(x1 − y, ..., xn − y)

·
n∏

i=1

li∏
ji=1

(
∂aijiϕ(xi)

)
·

l∏
j=1

∂ajϕ(y)

=
∑
l,a,b

∑
d≤b

C̃l
a,b,d (∂dδ)(x1 − y, ..., xn − y)

·
n∏

i=1

(
∂bi−di

li∏
ji=1

(
∂aijiϕ(y)

))
·

l∏
j=1

∂ajϕ(y) , (5.32)

where l ≡ (l1, ..., ln; l), a ≡ (a11, ..., a1l1 , ..., an1, ..., anln ; a1...al) and Cl
a,b , C̃

l
a,b,d

are numerical coefficients which depend also on (L1, ..., Ln, Q). Since the T -product
satisfies the axiom Scaling Degree the range of b is bounded by ([6]-5.46). The
l.h.s. of (5.19) is given by

|d|+ |b− d|+
n∑

i=1

li∑
ji=1

(
|aiji |+

d− 2
2

)
+

l∑
j=1

(
|aj|+

d− 2
2

)
, (5.33)

which agrees with the l.h.s. of ([6]-5.47). Hence, it is bounded by the r.h.s. of
([6]-5.47). �

Remark 5.3. Since the T -product T (F⊗n) depends only on the (local) functional
F and not on how F is written as F =

∑
k

∫
dx gk(x)Pk(x) (gk ∈ D(M), Pk ∈ P),

we conclude from (5.23) that we may express the violating term Δ(L;Q)(g; y) as
follows: given A =

∫
dxh(x)Q(x) δS0/δϕ(x) (h ∈ D(M), Q ∈ P), there exists a

linear and symmetric map ΔA : TFloc → Floc which is uniquely determined by

ΔA(eL(g)
⊗ ) def=

∫
dy h(y)Δ(L;Q)(g; y) . (5.34)
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A glance at (5.23) shows that ΔA depends linearly on A. The corresponding
smeared out version of the QAP is given in [6].

We are now going to reformulate our version of the QAP (Theorem 5.2) in the
form given in the literature. Motivated by (4.10), we interpret Γtot(S0, S) def= S0 +
Γ(eS

⊗) as the proper total action associated with the classical action Stot = S0 +S.
For P ∈ C∞(M,P) the ’insertion’ of P (x) into Γtot(S0, S) is denoted and defined
by4

P (x) · Γtot(S0, S) def=
δ

δρ(x)

∣∣∣
ρ≡0

Γtot

(
S0, S +

∫
dxρ(x)P (x)

)
= Γ

(
eS
⊗ ⊗ P (x)

)
,

(5.35)
where ρ ∈ D(M) is an ’external field’. Setting S′ def= S +

∫
dxρ(x)Q(x) and intro-

ducing the local field

Δ(x) def= Q(x)
δ(S0 + S)
δϕ(x)

+ Δ(L;Q)(g;x) ∈ C∞(M,P) , (5.36)

the anomalous MWI (5.16) can be rewritten as

δΓtot(S0, S
′)

δρ(x)
δΓtot(S0, S

′)
δϕ(x)

∣∣∣
ρ≡0

= Δ(x) · Γtot(S0, S) . (5.37)

The �-expansion of the right-hand side starts with

Δ(x) · Γtot(S0, S) = Q(x)
δ(S0 + S)
δϕ(x)

+O(�) ≡ δ(S0 + S′)
δρ(x)

δ(S0 + S′)
δϕ(x)

∣∣∣
ρ=0

+O(�),

(5.38)
where (4.10) is used. To discuss the mass dimension of the local insertion Δ (5.36),
we assume that there is an open region ∅ �= U ⊂ M such that the test function
g which switches the interaction is constant in U : g|U = constant. For x ∈ U the
insertion Δ(x) is a field polynomial with constant coefficients. By dim(Δ) we mean
the mass dimension of this polynomial. For a renormalizable interaction Theorem
5.2(b) implies

dim(Δ) ≤ dim(Q) +
d + 2

2
= dim(Q)− dim(ϕ) + d . (5.39)

This version (5.37)-(5.39) of the QAP, which we have proved in the framework
of CPT, formally agrees with the literature, namely with the ’QAP for nonlinear
variations of the fields’ (formulas (3.82)-(3.83) in [26]). This is the most important
and most difficult case of the QAP.

As explained in (2.15), the MWI reduces for Q = 1 to the off-shell field
equation. Setting Q = 1 in (5.37)-(5.39) and using Γ(eS

⊗ ⊗ 1) = 1, we obtain
δΓtot(S0, S)/δϕ(x) = Δ(x)·Γtot(S0, S) , where Δ(x)·Γtot(S0, S) = δ(S0+S)/δϕ(x)
+O(�) and dim(Δ) ≤ d − dim(ϕ), which formally agrees with formulas (3.80)–
(3.81) in [26]. The latter are called there the ’QAP for the equations of motion’,
as expected from (2.15).

4The dot does not mean the classical product here!



194 Ferdinand Brennecke and Michael Dütsch

Remark 5.4. An ’insertion’ (5.35) being a rather technical notion, the violating
term Γ

(
eS
⊗ ⊗ Δ(L;Q)(g; y)

)
in the anomalous MWI (5.16) can be much better

interpreted by writing (5.16) in terms of R-products:

R
(
eS
⊗⊗Q(y)

δ(S0 + S)
δϕ(y)

)
+R(eS

⊗⊗Δ(L;Q)(g; y)) = R(eS
⊗⊗Q(y))

δS0

δϕ(y)
. (5.40)

In this form, the violating term R(eS⊗ ⊗ Δ(L;Q)(g; y)) is the interacting field to
the interaction S and belonging to the local field Δ(L;Q)(g; y).

6. Algebraic renormalization

In this section we sketch, for the non-expert reader, the crucial role of the QAP in
algebraic renormalization. For shortness, we strongly simplify.

In algebraic renormalization one investigates, whether violations of Ward
identities can be removed by finite renormalizations of the T -products. The results
about the structure of the violating term given by the QAP are used as follows.
• Algebraic renormalization starts with the anomalous MWI (5.16), that is the

result that the MWI can be violated only by an insertion term, i.e. a term of
the form Γ

(
eS
⊗ ⊗Δ

)
for some Δ ∈ Floc, cf. (5.40).

• Algebraic renormalization proceeds by induction on the order of �. To start
the induction one uses that Δ ≡ Δ(L;Q)(g; y) is of order O(�).

• Because the finite renormalization terms, which one may add to a T -product,
must be local (in the strong sense of (5.18)) and compatible with the axiom
Scaling Degree, it is of crucial importance that Δ(L;Q)(g; y) satisfies locality
(5.18) and the bound (5.19) on its mass dimension.

For many Ward identities it is possible to derive a consistency equation for
Δ(L;Q)(g; y). Frequently this equation can be interpreted as the statement that
Δ(L;Q)(g; y) is a cocycle in the cohomology generated by the corresponding sym-
metry transformation δ acting on some space K ⊂ Floc. For example, δ is a
nilpotent derivation (as the BRST-transformation5) or a family of derivations
(δa)a=1,...,N fulfilling a Lie algebra relation [δa, δb] = fabc δc.

If the cocycle Δ(L;Q)(g; y) is a coboundary, it is usually possible to remove
this violating term by a finite renormalization. Hence, in this case, the solvability
of the considered Ward identity amounts to the question whether this cohomology
is trivial. For a renormalizable interaction the bound (5.19) on the mass dimension
makes it possible to reduce the space K to a finite dimensional space, this simplifies
the cohomological question enormously.

Many examples for this pattern are given in [26]. In the framework of CPT
the QAP and its application in algebraic renormalization have been used to prove
the Ward identities of the O(N) scalar field model [6] (as a simple example to

5The cohomological structure of BRST-symmetry is much richer as mentioned here, see [17].
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illustrate how algebraic renormalization works in CPT) and, much more relevant,
BRST-symmetry of Yang-Mills fields in curved space-times [20].
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ETH Zürich
CH–8093 Zürich
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Abstract. I explain how the Lewis–Riesenfeld exact treatment of the time-
dependent quantum harmonic oscillator can be understood in terms of the
geodesics and isometries of a plane wave metric, and I show how a curious
equivalence between two classes of Yang-Mills actions can be traced back to
the transformation relating plane waves in Rosen and Brinkmann coordinates.
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1. Introduction

The characteristic interplay of geometry and gauge theory in string theory has led
to many new and exciting developments in recent years, in particular to progress
in the understanding of certain strongly coupled quantum field theories. However,
since string theorists were (regrettably) absent from the list of speakers at this
conference dedicated to recent developments in quantum field theory, I decided
to talk about a subject on the interface of geometry and quantum physics that is
only loosely inspired by, and not strictly dependent upon, string theory.1

Thus, as an embryonic example of the interplay between geometry and quan-
tum physics in string theory (an example that requires neither knowledge nor
appreciation of string theory, but also does not do justice to the depth and rich-
ness of these ideas in the string theory context), I will explain the relation between

This work has been supported by the Swiss National Science Foundation and by the EU under
contract MRTN-CT-2004-005104.
1In retrospect this was a wise choice, because of the hostile attitude towards string theory at
this, in all other respects very charming and enjoyable, meeting, expressed in particular by some
of the members of the senior pontificating classes.
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some geometric properties of plane wave space-time metrics on the one hand and
some corresponding statements about quantum (gauge) theories on the other.

In section 2, I briefly review some of the basic and entertaining features of
the geometry of plane wave metrics. In particular, I emphasize the ubiquitous and
multifaceted role of the time-dependent harmonic oscillator in this context, which
appears in the geodesic equations, in the description of the Heisenberg isometry
algebra of plane wave metrics, and in the coordinate transformation between the
two standard (Rosen and Brinkmann) coordinate systems for these metrics.

The first application I will discuss is then naturally to the quantum theory
of time-dependent harmonic oscillators (section 3). In general one can quantize
these systems exactly using the powerful Lewis–Riesenfeld method of invariants.
Embedding the problem of a time-dependent harmonic oscillator into the plane
wave setting equips it with a rich geometric structure, and links the dynamics of
the harmonic oscillator to the conserved charges associated with the isometries. I
will show that this provides a natural geometric explanation of the entire Lewis–
Riesenfeld procedure.

As a second application, I will discuss a curious equivalence between two a
priori apparently quite different classes of Yang-Mills theories (section 4). Once
again, it is the plane wave perspective which provides an explanation for this.
Namely, I will show that this equivalence can be traced back to the coordinate
transformation relating plane waves in Rosen and Brinkmann coordinates, and
I add a few comments on what is the string theory context for these particular
Yang-Mills actions.

Section 2 is extracted (and adapted to present purposes) from my unpublished
lecture notes on plane waves and Penrose limits [1]. The material in section 3 is
based on [2], and section 4 is based on currently unpublished material that will
appear in [3].

2. A brief introduction to the geometry of plane wave metrics

2.1. Plane waves in Rosen and Brinkmann coordinates: heuristics

Usually gravitational plane wave solutions of general relativity are discussed in
the context of the linearized theory. There one makes the Ansatz that the metric
takes the form

gμν = ημν + hμν (1)

where hμν is treated as a small perturbation of the Minkowski background met-
ric ημν . To linear order in hμν , the Einstein equations (necessarily) reduce to a
wave equation. One finds that gravitational waves are transversally polarized. For
example, a wave traveling in the (t, z)-direction distorts the metric only in the
transverse directions, and a typical solution of the linearized Einstein equations is

ds2 = −dt2 + dz2 + (δij + hij(z − t))dyidyj . (2)
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Note that in terms of lightcone coordinates U = z − t, V = (z + t)/2 this can be
written as

ds2 = 2dUdV + (δij + hij(U))dyidyj . (3)
We will now simply define a plane wave metric in general relativity to be a metric
of the above form, dropping the assumption that hij be “small”,

ds2 = 2dUdV + gij(U)dyidyj . (4)

We will say that this is a plane wave metric in Rosen coordinates. This is not the
coordinate system in which plane waves are usually discussed, among other reasons
because typically in Rosen coordinates the metric exhibits spurious coordinate
singularities.

Another way of introducing (or motivating the definition of) these plane wave
metrics is to start with the D = d + 2 dimensional Minkowski metric written in
lightcone coordinates,

ds2 = ημνdx
μdxν = 2dudv + δabdx

adxb , (5)

with a = 1, . . . , d. To this metric one adds a term corresponding to a perturbation
traveling at the speed of light in the v-direction,

ds2 = 2dudv + A(u, xa)(du)2 + δabdx
adxb , (6)

and requires that the effect of this term is to exert a linear (harmonic) force on
test particles, leading to

ds2 = 2dudv + Aab(u)xaxb(du)2 + δabdx
adxb . (7)

This is the metric of a plane wave in Brinkmann coordinates. We will see below
that the two classes of metrics described by (4) and (7) are indeed equivalent.
Every metric of the form (4) can be brought to the form (7), and conversely every
metric of the type (7) can be written, in more than one way, as in (4).

These exact gravitational plane wave solutions have been discussed in the
context of four-dimensional general relativity for a long time (see e.g. [4] and
[5]), even though they are not (and were never meant to be) phenomenologically
realistic models of gravitational plane waves. The reason for this is that in the
far-field gravitational waves are so weak that the linearized Einstein equations
and their solutions are adequate to describe the physics, whereas the near-field
strong gravitational effects responsible for the production of gravitational waves,
for which the linearized equations are indeed insufficient, correspond to much more
complicated solutions of the Einstein equations (describing e.g. two very massive
stars orbiting around their common center of mass).

Rather, as the in some sense simplest non-trivial genuinely Lorentzian met-
rics, and as exact solutions of the full non-linear Einstein equations (see section
2.2), these plane wave metrics have always been extremelyuseful as a theoretical
play-ground. It has also long been recognized that gravitational wave metrics pro-
vide potentially exact and exactly solvable string theory backgrounds, and this led
to a certain amount of activity in this field in the early 1990s (see e.g. [6] for a
review). More recently, the observations in [7, 8, 9] have led to a renewed surge in
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interest in the subject in the string theory community, in particular in connection
with the remarkable BMN correspondence (Berenstein-Maldacena-Nastase) [10].

In the following, however, we will just be interested in certain aspects of
the geometry of plane waves per se, and the role they play in elucidating certain
properties of much simpler physical systems. The most basic aspects of the geom-
etry of a space-time metric are revealed by studying its curvature, geodesics, and
isometries. This is actually all we need, and we will now address these issues in
turn.

2.2. Curvature of plane waves

While not strictly needed for the applications in sections 3 and 4, this brief discus-
sion of the curvature of plane waves provides some useful insight into the geometry
and physics of plane waves and the nature of Brinkmann coordinates.

Since the plane wave metric in Brinkmann coordinates (7) is so simple, it
is straightforward to see that the only non-vanishing components of its Riemann
curvature tensor are

Ruaub = −Aab . (8)

In particular, therefore, there is only one non-trivial component of the Ricci tensor,

Ruu = −δabAab , (9)

and the Ricci scalar is zero.
Thus the metric is flat iff Aab = 0. Moreover, we see that in Brinkmann

coordinates the vacuum Einstein equations reduce to a simple algebraic condition
on Aab (regardless of its u-dependence), namely that it be traceless. The number
of degrees of freedom of this traceless matrix Aab(u) correspond precisely to those
of a transverse traceless symmetric tensor (a.k.a. a graviton). In four dimensions,
the general vacuum plane wave solution thus has the form

ds2 = 2dudv + [A(u)(x2 − y2) + 2B(u)xy]du2 + dx2 + dy2 (10)

for arbitrary functions A(u) and B(u). This reflects the two polarization states or
degrees of freedom of a four-dimensional graviton. This family of exact solutions to
the full non-linear Einstein equations would deserve to have text-book status but
does not, to the best of my knowledge, appear in any of the standard introductory
texts on general relativity.

2.3. Geodesics, lightcone gauge and harmonic oscillators

We now take a look at geodesics of a plane wave metric in Brinkmann coordinates,
i.e. the solutions xμ(τ) to the geodesic equations

ẍμ(τ) + Γμ
νλ(x(τ))ẋν (τ)ẋλ(τ) = 0 , (11)

where an overdot denotes a derivative with respect to the affine parameter τ .
Rather than determining the geodesic equations by first calculating all the non-
zero Christoffel symbols, we make use of the fact that the geodesic equations can
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be obtained more efficiently, and in a way that allows us to directly make use of
the symmetries of the problem, as the Euler-Lagrange equations of the Lagrangian

L = 1
2gμν ẋ

μẋν

= u̇v̇ + 1
2Aab(u)xaxbu̇2 + 1

2 �̇x
2 , (12)

supplemented by the constraint 2L = ε, where ε = 0 (ε = −1) for massless
(massive) particles. Since nothing depends on v, the lightcone momentum

pv =
∂L
∂v̇

= u̇ (13)

is conserved. For pv = 0, the particle obviously does not feel the curvature term
Aab, and the geodesics are straight lines. When pv �= 0, one has u = pvτ + u0, and
by an affine transformation of τ one can always choose the lightcone gauge

u = τ . (14)

Then the geodesic equations for the transverse coordinates are the Euler-Lagrange
equations

ẍa(τ) = Aab(τ)xb(τ) . (15)
These are the equation of motion of a non-relativistic harmonic oscillator with
(possibly time-dependent) frequency matrix ω2

ab(τ) = −Aab(τ). The constraint
2L = ε, or

2v̇(τ) + Aab(τ)xa(τ)xb(τ) + δabẋ
a(τ)ẋb(τ) = ε, (16)

is then a first integral of the equation of motion for the remaining coordinate v(τ),
and is readily integrated to give v(τ) in terms of the solutions to the harmonic
oscillator equation for xa(τ).

By definition the lightcone Hamiltonian is (minus!) the momentum pu con-
jugate to u (in the lightcone gauge u = τ),

Hlc = −pu . (17)

Using
pu = guμẋ

μ = v̇ + Aab(τ)xaxb (18)
and the constraint, one finds that the lightcone Hamiltonian is just (for ε �= 0 up
to an irrelevant constant) the Hamiltonian of the above harmonic oscillator,

Hlc = 1
2 (δabẋ

aẋb −Aab(τ)xaxb)− 1
2ε ≡ Hho − 1

2ε . (19)

Note also that, in the lightcone gauge, the complete relativistic particle Lagrangian

L = v̇ + 1
2Aab(τ)xaxb + 1

2 �̇x
2 = Lho + v̇ (20)

differs from the harmonic oscillator Lagrangian only by a total time-derivative.
In summary, we note that in the lightcone gauge the equations of motion of

a relativistic particle in the plane wave metric reduce to those of a non-relativistic
harmonic oscillator. This harmonic oscillator equation plays a central role in the
following and will reappear several times below in different contexts, e.g. when
discussing the transformation from Rosen to Brinkmann coordinates, or when
analyzing the isometries of a plane wave metric.
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2.4. From Rosen to Brinkmann coordinates (and back)

I will now describe the relation between the plane wave metric in Brinkmann
coordinates,

ds2 = 2dudv + Aab(u)xaxbdu2 + d�x2 , (21)

and in Rosen coordinates,

ds2 = 2dUdV + gij(U)dyidyj . (22)

It is clear that, in order to transform the non-flat transverse metric in Rosen
coordinates to the flat transverse metric in Brinkmann coordinates, one should
change variables as

xa = Ea
iy

i , (23)

where Ea
i is a vielbein for gij in the sense that

gij = Ea
iE

b
jδab . (24)

Plugging this into the metric, one sees that this has the desired effect provided
that E satisfies the symmetry condition

ĖaiE
i
b = ĖbiE

i
a (25)

(such an E can always be found), and provided that one accompanies this by a
shift in V . The upshot of this is that the change of variables

U = u

V = v + 1
2 ĖaiE

i
bx

axb

yi = Ei
ax

a , (26)

transforms the Rosen coordinate metric (22) into the Brinkmann form (21), with
Aab given by [2]

Aab = ËaiE
i
b . (27)

This can also be written as the harmonic oscillator equation (again!)

Ëai = AabEbi (28)

we had already encountered in the context of the geodesic equation.
In practice, once one knows that Rosen and Brinkmann coordinates are in-

deed just two distinct ways of describing the same class of metrics, one does not
need to perform explicitly the coordinate transformation mapping one to the other.
All one is interested in is the relation between gij(U) and Aab(u), which is just
the relation (8)

Aab = −Ei
aE

j
bRUiUj = −Ruaub (29)

between the curvature tensor in Rosen and Brinkmann coordinates.
There is a lot of nice geometry lurking behind the transformation from

Rosen to Brinkmann coordinates. For example, the symmetry condition (25) says
that Ei

a is a parallel transported co-frame along the null geodesic congruence
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(U = τ, V, yi = const.) [11, 12], and the coordinate transformation itself can be in-
terpreted as passing from Rosen coordinates to inertial Fermi coordinates adapted
to the null geodesic (U = τ, V = 0, yi = 0) [13].

For a different perspective, and a prescription for how to go back from
Brinkmann to Rosen coordinates, note that the index i on Eai in (28) can be
thought of as labelling d out of the 2d linearly independent solutions of the oscil-
lator equation. The symmetry condition (25) can equivalently be written as

ĖaiE
i
b = ĖbiE

i
a ⇔ ĖaiE

a
k = ĖakE

a
i , (30)

and can now be interpreted as the condition that the Wronskian of the i’th and
k’th solution

W (Ei, Ek) := ĖakE
a
i − ĖaiE

a
k (31)

is zero. Thus, given the metric in Brinkmann coordinates, one can construct the
metric in Rosen coordinates by solving the oscillator (geodesic) equation, choosing
a maximally commuting set of solutions to construct Eai, and then determining
gij algebraically from the Eai from (24).

2.5. The Heisenberg isometry algebra of a generic plane wave

We now study the isometries of a generic plane wave metric. In Brinkmann coor-
dinates, because of the explicit dependence of the metric on u and the transverse
coordinates, only one isometry is manifest, namely that generated by the parallel
(covariantly constant) and hence in particular Killing null vector Z = ∂v. In Rosen
coordinates, the metric depends neither on V nor on the transverse coordinates
yk, and one sees that in addition to Z = ∂V there are at least d more Killing vec-
tors, namely the ∂yk . Together these form an Abelian translation algebra acting
transitively on the null hypersurfaces of constant U .

However, this is not the whole story. Indeed, one particularly interesting and
peculiar feature of plane wave space-times is the fact that they generically possess a
solvable (rather than semi-simple) isometry algebra, namely a Heisenberg algebra,
only part of which we have already seen above.

All Killing vectors X can be found in a systematic way by solving the Killing
equations

LXgμν = ∇μXν +∇νXμ = 0 . (32)

I will not do this here but simply present the results of this analysis in Brinkmann
coordinates (see [2] for details). The upshot is that a generic (2 + d)-dimensional
plane wave metric has a (2d + 1)-dimensional isometry algebra generated by the
Killing vector Z = ∂v and the 2d Killing vectors

X(f(K)) ≡ X(K) = f(K)a∂a − ḟ(K)ax
a∂v . (33)

Here the f(K)a, K = 1, . . . , 2d are the 2d linearly independent solutions of the
harmonic oscillator equation (yet again!)

f̈a(u) = Aab(u)fb(u) . (34)
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These Killing vectors satisfy the algebra

[X(J), X(K)] = −W (f(J), f(K))Z (35)
[X(J), Z] = 0 , (36)

where the Wronskian W (f(J), f(K)) is, exactly as in (31), given by

W (f(J), f(K)) =
∑

a

(f(J)aḟ(K)a − f(K)aḟ(J)a) . (37)

It is of course constant (independent of u) as a consequence of the harmonic
oscillator equation. This is already the Heisenberg algebra. To make this more
explicit, one can make a convenient choice of basis for the solutions f(J) by splitting
the f(J) into two sets of solutions

{f(J)} → {q(a), p(a)} (38)

characterized by the initial conditions

q(a)b(u0) = δab q̇(a)b(u0) = 0
p(a)b(u0) = 0 ṗ(a)b(u0) = δab . (39)

Since the Wronskian of these functions is independent of u, it can be determined
by evaluating it at u = u0. Then one can immediately read off that

W (q(a), q(b)) = W (p(a), p(b)) = 0
W (q(a), p(b)) = δab . (40)

Therefore the corresponding Killing vectors

Q(a) = X(q(a)) , P(a) = X(p(a)) (41)

and Z satisfy the canonically normalized Heisenberg algebra

[Q(a), Z] = [P(a), Z] = 0
[Q(a), Q(b)] = [P(a), P(b)] = 0
[Q(a), P(b)] = −δabZ . (42)

As we had noted before, in Rosen coordinates, the (d+1) translational isome-
tries in the V and yk directions, generated by the Killing vectors Z = ∂V and
Q(k) = ∂yk , are manifest. One can check that the “missing” d Killing vectors P(k)

are given by

P(k) = −yk∂V +
∫ u

du′ gkm(u′)∂ym . (43)

It is straightforward to verify that together they also generate the Heisenberg
algebra (42).

These considerations also provide yet another perspective on the transfor-
mation from Brinkmann to Rosen coordinates, and the vanishing Wronskian con-
dition discussed at the end of section 2.4. Indeed, passing from Brinkmann to
Rosen coordinates can be interpreted as passing to coordinates in which half of
the translational Heisenberg algebra symmetries are manifest. This is achieved by
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choosing the (transverse) coordinate lines to be the integral curves of these Killing
vectors. This is of course only possible if these Killing vectors commute, i.e. the
Wronskian of the corresponding solutions of the harmonic oscillator equation is
zero, and results in a metric which is independent of the transverse coordinates,
namely the plane wave metric in Rosen coordinates.

2.6. Geodesics, isometries, and conserved charges

We can now combine the results of the previous sections to determine the conserved
charges carried by particles moving geodesically in the plane wave geometry. In
general, given any Killing vector X , there is a corresponding conserved charge
C(X),

C(X) = gμνX
μẋμ . (44)

That C(X) is indeed constant along the trajectory of the geodesic xμ(τ) can easily
be verified by using the geodesic and Killing equations.

The conserved charge corresponding to the Killing vector Z = ∂v, the central
element of the Heisenberg algebra, is, none too surprisingly, nothing other than
the conserved lightcone momentum pv (13) of section 2.3,

C(Z) = gvμẋ
μ = u̇ = pv . (45)

In addition to Z, for any solution f of the harmonic oscillator equation we have a
Killing vector X(f) (33),

X(f) = fa∂a − ḟax
a∂v . (46)

The associated conserved charge is

C(X(f)) = fap
a − ḟax

a . (47)

(here we have used the, now more appropriate, phase space notation pa = ẋa).
This is rather trivially conserved (constant), since both fa and xa are solutions of
the same ubiquitous harmonic oscillator equation and C(X(f)) is nothing other
than their constant Wronskian,

C(X(f)) = W (f, x) . (48)

Thus these somewhat tautological conserved charges are not helpful in integrating
the geodesic or harmonic oscillator equations. Nevertheless, the very fact that they
exist, and that they satisfy a (Poisson bracket) Heisenberg algebra, will turn out
to be conceptually important in section 3. We will denote the conserved charges
corresponding to the Killing vectors Q(a) and P(a) (41) by

C(Q(a)) ≡ Q(a) C(P(a)) ≡ P(a) . (49)

The Poisson brackets among the charges C(X(f)) can be determined from the
canonical Poisson brackets {xa, pb} = δab to be

{X(f1), X(f2)} = {f1ap
a − ḟ1ax

a, f2ap
a − ḟ2ax

a} = W (f1, f2) (50)
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(note the usual sign flip with respect to the Lie bracket (35) of the corresponding
vector fields). In particular, as a consequence of (40) the charges Q(a) and P(a)

have the canonical Poisson brackets

{Q(a),P(b)} = δab . (51)

Generically, a plane wave metric has just this Heisenberg algebra of isome-
tries which acts transitively on the null hyperplanes u = const., with a simply
transitive Abelian subalgebra. However, for special choices of Aab(u), there may
of course be more Killing vectors. These could arise from internal symmetries of
Aab, giving more Killing vectors (and corresponding conserved angular momenta)
in the transverse directions, as for an isotropic harmonic oscillator.

Of more interest is the fact that for particular Aab(u) there may be Killing
vectors with a ∂u-component. The existence of such a Killing vector renders the
plane wave homogeneous (away form the fixed points of this extra Killing vector).
These homogeneous plane waves have been completely classified in [2]. The sim-
plest examples, and the only ones that we will consider here, are plane waves with
a u-independent profile Aab,

ds2 = 2dudv + Aabx
axbdu2 + d�x2 , (52)

which obviously, since now nothing depends on u, have the extra Killing vector
X = ∂u.

The existence of the additional Killing vector X = ∂u extends the Heisenberg
algebra to the harmonic oscillator algebra, with X playing the role of the number
operator or harmonic oscillator Hamiltonian. Indeed, X and Z = ∂v obviously
commute, and the commutator of X with one of the Killing vectors X(f) is

[X,X(f)] = X(ḟ) . (53)

Note that this is consistent, i.e. the right-hand-side is again a Killing vector, be-
cause when Aab is constant and f satisfies the harmonic oscillator equation then
so does its u-derivative ḟ . In terms of the basis (41) we have

[X,Q(a)] = P(a)

[X,P(a)] = AabQ(b) , (54)

which is the harmonic oscillator algebra.
Another way of understanding the relation between X = ∂u and the harmonic

oscillator Hamiltonian is to look at the conserved charge associated with X = ∂u,

C(∂u) = guμẋ
μ = pu , (55)

which we had already identified (up to a constant for non-null geodesics) as minus
the harmonic oscillator Hamiltonian in section 2.3. This is of course indeed a
conserved charge iff the Hamiltonian is time-independent, i.e. iff Aab is constant.
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2.7. Synopsis

In the above I have reviewed, in somewhat more detail than strictly necessary for
the following, some of the interesting and entertaining aspects of the geometry of
plane wave metrics. The only things that we will actually directly make use of
below are, in section 3,
• the Heisenberg isometry algebra (section 2.5)
• and the existence of the corresponding conserved charges (section 2.6),

and, in section 4,
• the lightcone gauge geodesic Lagrangian (section 2.3)
• and the transformation from Rosen to Brinkmann coordinates (section 2.4).

3. The Lewis–Riesenfeld theory of the time-dependent quantum
oscillator

3.1. Description of the problem

We will now discuss the quantum theory of a time-dependent harmonic oscillator
(for simplicity in d = 1 dimension, but the discussion generalizes in an obvious
way to d > 1), with Hamiltonian

Hho(t) = 1
2 (p2 + ω(t)2x2) . (56)

The aim is to find the solutions of the time-dependent Schrödinger equation (in
units with � = 1)

i∂t|ψ(t)〉 = Ĥho(t)|ψ(t)〉 . (57)
Standard textbook treatments of this problem employ the following strategy:
• When the Hamiltonian is time-independent, then the standard procedure is

of course to reduce this problem to that of finding the stationary eigenstates
|ψn〉 of Ĥho,

Ĥho|ψn〉 = En|ψn〉 , (58)
with En = ω(n+ 1

2 ) etc., in terms of which the general solution to the time-
dependent Schrödinger equation can then be written as

|ψ(t)〉 =
∑

n

cne−iEnt|ψn〉 , (59)

where the cn are constants.
• When the Hamiltonian is time-dependent, on the other hand, then in principle

the solution is given by the time-ordered exponential of Ĥho(t),

|ψ(t)〉 =
(
T e−i

∫ t

t0
dt′ Ĥho(t′)

)
|ψ(t0)〉 , (60)

but in practice this cannot be evaluated to get an exact solution. One thus
needs to then invoke some kind of adiabatic approximation to perturbatively
determine the solution (and then calculate transition and decay rates etc.).
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What Lewis and Riesenfeld observed [14] is that, even in the time-dependent case,
there is a procedure analogous to the one used in the time-independent case which
allows one to explicitly find the exact solutions of the time-dependent Schödinger
equation.

3.2. Outline of the Lewis–Riesenfeld procedure

The idea of [14] is to base the construction of the solutions of the Schrödinger equa-
tion not on the stationary eigenstates of the Hamiltonian (which does not make
sense when the Hamiltonian depends explicitly on time) but on the eigenstates of
another operator Î which is an invariant of the system. This means that

Î(t, x̂, p̂) ≡ Î(t) (61)

is a (typically explicitly time-dependent) operator satisfying

i d
dt Î(t) ≡ i∂tÎ(t) + [Î(t), Ĥho(t)] = 0 (62)

(when Ĥho is time-independent, then one can of course just take Î = Ĥho). The
Lewis–Riesenfeld procedure now consists of two parts:

1. The first is to show how one can construct all the solutions of the time-
dependent Schrödinger equation for Ĥho(t) from the spectrum and eigenstates
of the invariant Î(t).

2. The second is an algorithm which provides an invariant for any time-depen-
dent harmonic oscillator, and which moreover has the feature that Î(t) itself
has the form of a time-independent harmonic oscillator (so that it is straight-
forward to determine the spectrum and eigenstates of Î(t)).

Issue (1) can be established by straightforward and relatively standard quantum
mechanical manipulations. I will briefly recall these below but have nothing new
to add to that part of the discussion. Issue (2), on the other hand, is usually es-
tablished by a direct but rather brute-force calculation which does not appear to
provide any conceptual insight into why invariants with the desired properties ex-
ist. I will show in section 3.3 that this conceptual insight is obtained by embedding
the time-dependent harmonic oscillator into the plane wave setting.

To address (1), let us assume that an invariant Î(t) satisfying (62) exists and
that it is hermitian. We choose a complete set of eigenstates, labeled by the real
eigenvalues λ of Î(t),

Î(t)|λ〉 = λ|λ〉 . (63)
It follows from (62) that the eigenvalues λ are time-independent, and that

〈λ′|i∂t − Ĥho(t)|λ〉 = 0 (64)

for all λ �= λ′. We would like this equation to be true also for the diagonal elements,
in which case we would have already found the solutions of the time-dependent
Schrödinger equation for Ĥho(t). To accomplish this, we slightly modify the eigen-
functions by multiplying them by a time-dependent phase,

|λ〉 → e iαλ(t)|λ〉 . (65)
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It can be seen immediately that this phase factor does not change the off-diagonal
matrix elements of i∂t − Ĥho(t) (since the eigenstates are orthogonal). Requiring
the validity of (64) also for λ = λ′ then leads to a first-order differential equation
for αλ(t),

d
dtαλ(t) = 〈λ|i∂t − Ĥho(t)|λ〉. (66)

Solving this equation, the general solution to the time-dependent Schrödinger
equation for Ĥho(t) is, similarly to (59),

|ψ(t)〉 =
∑

λ

cλe iαλ(t)|λ〉 , (67)

where the cλ are constants.
This is an extremely neat way of solving exactly the quantum theory of the

time-dependent harmonic oscillator. Its usefulness, however, depends on the ability
to construct a suitable invariant Î(t) which is such that (a) one can explicitly find
its spectrum and eigenstates and (b) it is sufficiently closely related to Ĥho(t)
so that one can evaluate the diagonal matrix elements of Ĥho(t) in the basis of
eigenstates |λ〉 of the invariant Î(t) (in order to determine the phases αλ(t)).

In a nutshell, this is achieved in [14] as follows (see also [2] for a detailed
account with further comments on the procedure). Let σ(t) be any solution to the
non-linear differential equation

σ̈(t) + ω(t)2σ(t) = σ(t)−3 , (68)

where ω(t) is the harmonic oscillator frequency. Then it can be checked by a
straightforward but unenlightening calculation that

Î(t) = 1
2 (x̂2σ(t)−2 + (σ(t)p̂− σ̇(t)x̂)2) (69)

is an invariant in the sense of (62). As a first sanity check on this construction,
note that for ω time-independent one can also choose σ = ω−1/2 to be constant,
upon which the invariant becomes

Î = 1
2 (ωx̂2 + ω−1p̂2) = ω−1Ĥho , (70)

which is of course the privileged invariant of a time-independent system. In general,
in terms of the hermitian conjugate operators

â = 1√
2
(x̂σ−1 + i(σp̂− σ̇x̂)) â† = 1√

2
(x̂σ−1 − i(σp̂− σ̇x̂)) (71)

which satisfy the canonical commutation relations [â, â†] = 1, Î(t) has the standard
oscillator representation

Î(t) = â†â + 1
2 (72)

of a time-independent harmonic oscillator, and the original Hamiltonian is a qua-
dratic function of â and â†,

Ĥho(t) = c(t)(â)2 + c(t)∗(â†)2 + d(t)(â†â + 1
2 ) , (73)
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where e.g. d(t) = 1
2 (ω(t)2σ(t)2 + σ̇(t)2 + σ(t)−2). This makes it straightforward

to evaluate e.g. the diagonal matrix elements of Ĥho(t) in the standard basis of
eigenstates of Î(t).

Finally, the general solution to (68) can be written in terms of any two linearly
independent solutions f1, f2 to the classical harmonic oscillator equation for Hho(t)
(this is (68) with zero on the rhs instead of the non-linear term). Normalizing their
Wronskian to 1, the general solution σ(t) is [14]

σ = ±
[
c21f

2
1 + c22f

2
2 ± 2(c21c

2
2 − 1)1/2f1f2

]1/2

, (74)

where ci are constants subject to the condition that the solution is real, and the
signs can be chosen independently.

3.3. Deducing the procedure from the plane wave geometry

While the procedure outlined above provides a concrete (and in practice also very
useful) algorithm to solve exactly the quantum theory of a time-dependent har-
monic oscillator (and certain other time-dependent systems [14]), it remains some-
what unsatisfactory from a conceptual point of view. In particular, it is not clear
from the construction

• why invariants with the desired properties exist in the first place;
• why solutions to the classical equations play a role in the construction of

these quantum invariants;
• why one should solve the non-linear equation (68) if, in any case, in the end it

all boils down to solutions of the ordinary linear classical harmonic oscillator
equation appearing in (74).

Here is where insight is gained by realizing the harmonic oscillator equation as
the geodesic equation in a plane wave metric. Recall that in section 2.5 we had
found a Heisenberg isometry algebra which, in particular, includes the “hidden”
symmetries generated by the Killing vector fields (33,46)

X(f) = fa∂a − ḟax
a∂v , (75)

where f is a solution of the classical harmonic oscillator equation, and the corre-
sponding “hidden” conserved charges (47)

C(X(f)) = fap
a − ḟax

a . (76)

In particular, we had obtained the conserved charges Q(a) and P(a) (49). These
are linear in the phase space variables xa and pa, and thus we can unambiguously
associate to them quantum operators

Q(a) → Q̂(a) P(a) → P̂(a) (77)

which, by construction, are invariants in the sense of (62),

d
dtQ̂(a) = d

dt P̂(a) = 0 , (78)
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and which satisfy the canonical commutation relations (cf. (51))

[Q̂(a), P̂(b)] = iδab . (79)

Note that to “see” these invariants, one has to extend the harmonic oscillator
configuration space not just by the time-direction t = u, but one also has to add
yet another dimension, the null direction v.

The rest is now straightforward. Since Q̂(a) and P̂(b) are invariants, also any
quadratic operator in these variables (with constant coefficients) is an invariant.
In the one-dimensional case (d = 1), we can e.g. consider invariants of the form

Î(t) = 1
2M P̂2 + MΩ2

2 Q̂2 , (80)

which we can write in terms of invariant creation and annihilation operators Â
and Â† (constructed in the usual way from Q̂ and P̂) as

Î(t) = Ω(Â†Â+ 1
2 ) . (81)

Let us now compare this in detail with the results of section 3.2. First of all, to
match with the (arbitrary choice of) normalization of the invariant (72), we choose
Ω = 1. Next we can identify what σ(t)2 is by identifying it with the coefficient of p̂2

in the expansion of (80) in terms of p̂ and x̂. The upshot is that σ(t) has precisely
the form given in (74), with c21 = 1 and c22 = 1/M . Finally, one sees that the
invariant oscillators Â and Â† are related to the oscillators â and â† by a unitary
transformation which is precisely the unitary transformation that implements the
phase transformation (65) on the eigenstates of the invariant.

We have thus come full circle. Starting with the conserved charges associated
with the Heisenberg algebra Killing vectors, we have constructed quadratic quan-
tum invariants and have reproduced all the details of the Lewis–Riesenfeld algo-
rithm, including the phase factors αλ(t). Constructing the Fock space in the usual
way, one then obtains all the solutions (67) to the time-dependent Schrödinger
equation.

4. A curious equivalence between two classes of Yang-Mills actions

4.1. Description of the problem

A prototypical non-Abelian Yang-Mills + scalar action in n = p+1 dimensions, ob-
tained e.g. by the dimensional reduction of pure Yang-Mills theory (with standard
Lagrangian L ∼ trFMNFMN ) in D space-time dimensions down to n dimensions,
has the form

SY M =
∫

dnσTr
(
− 1

4g
−2
Y MηαγηβδFαβFγδ − 1

2η
αβDαφ

aDβφ
a + 1

4g
2
Y M [φa, φb]2

)
.

(82)
Here the φa, a = 1, . . . , D−n, are hermitian scalar fields arising from the internal
components of the gauge field and thus taking values in the adjoint representation
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of the gauge group, the covariant derivative is

Dαφ
a = ∂αφ

a − i[Aα, φ
a] , (83)

Aα is the gauge field, Fαβ its curvature, g2
Y M denotes the Yang-Mills coupling

constant, Tr a Lie algebra trace, and in writing the above action I have suppressed
all Lie algebra labels.

This basic action can of course be modified in various ways, e.g. by adding
further fields (we will not do this), or by modifying the couplings of the scalar
fields. We will consider two such modifications. The first one simply consists of
adding (possibly time-dependent) mass terms for the scalars. Denoting the scalars
in this model by Xa, the action reads

SBC =
∫

dnσTr
(
− 1

4g
−2
Y MηαγηβδFαβFγδ − 1

2η
αβδabDαX

aDβX
b

+ 1
4g

2
Y Mδacδbd[Xa, Xb][Xc, Xd] + 1

2Aab(t)XaXb
)

,

(84)

with Aab(t) minus the mass-squared matrix.
The second class of actions arises from (82) by replacing the flat metric δab

on the scalar field space (suppressed in (82) but written out explicitly in (84)) by
a time-dependent matrix gij(t) of “coupling constants”, but without adding any
mass terms. Denoting the scalars in this model by Y i, the action reads

SRC =
∫

dnσ Tr
(
− 1

4g
−2
Y MηαγηβδFαβFγδ − 1

2η
αβgij(t)DαY

iDβY
j

+ 1
4g

2
Y Mgik(t)gjl(t)[Y i, Y j ][Y k, Y l]

)
.

(85)

The reason for the subscripts BC and RC on the actions will, if not already obvious
at this stage, become apparent below. In any case, the claim is now that these two,
apparently rather different, classes of Yang-Mills actions are simply related by a
certain linear field redefinition Y i = Ei

aX
a of the scalar fields,

SRC [Aα, Y
i = Ei

aX
a] = SBC [Aα, X

a] . (86)

We could straightaway prove this by a brute-force calculation, but this would
be rather unenlightening. Instead, we will first consider a much simpler classical
mechanics toy model of this equivalence (section 4.2), and we will then be able to
establish (86) with hardly any calculation at all (section 4.3). At the end, I will
briefly indicate why one is led to consider actions of the type (84,85) in the first
place, and why from that point of view one can a priori anticipate the validity of
an identity like (86).

4.2. A classical mechanics toy model

As a warm-up exercise, consider the standard harmonic oscillator Lagrangian (now
mysteriously labeled bc)

Lbc(x) = 1
2 (ẋ2 − ω2x2) , (87)

and the (exotic) Lagrangian

Lrc(y) = 1
2 sin2 ωt ẏ2 (88)
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with a time-dependent kinetic term. Now consider the transformation

y = (sinωt)−1x . (89)

Then one finds
Lrc(y) = 1

2 (ẋ2 + ω2x2 cot2 ωt− 2ωxẋ cotωt)

= 1
2 (ẋ2 − ω2x2)− d

dt (
1
2ωx

2 cotωt)

= Lbc(x) + d
dt (. . .)

(90)

Thus, up to a total time-derivative the linear transformation (89) transforms the
exotic (and seemingly somewhat singular) Lagrangian (88) to the completely regu-
lar “massive” Lagrangian (87), and the corresponding actions are essentially iden-
tical. This should be thought of as the counterpart of the statement that the Rosen
coordinate plane wave metric

ds2 = 2dUdV + sin2 ωU(dy)2 (91)

can, in Brinkmann coordinates, be written as

2dUdV + sin2 ωU(dy)2 = 2dudv − ω2x2(du)2 + (dx)2 . (92)

We can now generalize this in the following way. Consider the Lagrangian Lbc

corresponding to the lightcone Hamiltonian (19) of a (massless, say) particle in a
plane wave in Brinkmann coordinates (in the lightcone gauge u = t),

Lbc(x) = 1
2 (δabẋ

aẋb + Aab(t)xaxb) , (93)

and the corresponding Lagrangian in Rosen coordinates,

Lrc(y) = 1
2gij(t)ẏiẏj . (94)

The claim is that these two Lagrangians are equal up to a total time-derivative.
To see this, recall first of all the coordinate transformation (26)

yi = Ei
ax

a

V = v + 1
2 ĖaiE

i
bx

axb , (95)

where Ei
a satisfies (24) and (25). Substituting yi = Ei

ax
a in Lrc, one can now

verify that one indeed obtains Lbc up to a total time-derivative. The way to see
this without any calculation is to start from the complete geodesic Lagrangian in
Rosen coordinates in the lightcone gauge U = t,

L = 1
2gμν ẏ

μẏν = V̇ + 1
2gij(t)ẏiẏj = V̇ + Lrc(y) . (96)

This Lagrangian is still invariant under coordinate transformations of the remain-
ing coordinates, and is hence equal, on the nose, to its Brinkmann coordinate
counterpart (20),

Lbc(x) + v̇ = Lrc(y) + V̇ . (97)
This implies that the two Lagrangians Lbc(x) and Lrc(y) differ only by a total time-
derivative, namely the derivative of the shift of V in the coordinate transformation
(95).
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4.3. The explanation: from plane wave metrics to Yang-Mills actions

We can now come back to the two types of Yang-Mills actions SBC (84) and SRC

(85), which are obviously in some sense non-Abelian counterparts of the classical
mechanics Brinkmann and Rosen coordinate actions Sbc =

∫
Lbc and Src =

∫
Lrc

discussed above. The claim is that these two actions are related (perhaps up to a
total derivative term) by the linear transformation

Y i = Ei
aX

a (98)

of the scalar fields (matrix-valued coordinates) Y i and Xa, where Ei
a is the vielbein

that enters in the relation between Rosen and Brinkmann coordinates.
Even though in general non-Abelian coordinate transformations are a tricky

issue, this particular transformation is easy to deal with since it is linear as well as
diagonal in matrix (Lie algebra) space. Consider e.g. the quartic potential terms
in (84) and (85). With the substitution (98), one obviously has

gikgjl[Y i, Y j ][Y k, Y l] = gikgjlE
i
aE

j
bE

k
cE

l
d[X

a, Xb][Xc, Xd]

= δacδbd[Xa, Xb][Xc, Xd] ,
(99)

so that the two quartic terms are indeed directly related by (98). Now consider the
gauge covariant kinetic term for the scalars in (85). Since Ei

a = Ei
a(t) depends

only on (lightcone) time t, the spatial covariant derivatives transform as

α �= t : DαY
i = Ei

a(t)DαX
a , (100)

so that the spatial derivative parts of the scalar kinetic terms are mapped into
each other. It thus remains to discuss the term Tr gij(t)DtY

iDtY
j involving the

covariant time-derivatives. For the ordinary partial derivatives, the argument is
identical to that in section 4.2, and thus one finds

1
2 Tr gij(t)Ẏ iẎ j = 1

2 Tr(δabẊ
aẊb + Aab(t)XaXb) + d

dt (. . .) . (101)

The only remaining subtlety are terms involving the t-derivative Ėi
a of Ei

a, arising
from cross-terms like

Tr gij(t)[At, Y
i]∂tY

j = Tr gij(t)Ei
a[At, X

a]∂t(E
j
bX

b) . (102)

However, these terms do not contribute at all since

gij(t)Ei
aĖ

j
b Tr[At, X

a]Xb = gij(t)Ei
aĖ

j
b TrAt[Xa, Xb] = 0 (103)

by the cyclic symmetry of the trace and the symmetry condition (25). It is pleasing
to see that this symmetry condition, which already ensured several cancelations
in the standard transformation from Rosen to Brinkmann coordinates (and thus
also in establishing e.g. (101)), cooperatively also serves to eliminate some terms
of genuinely non-Abelian origin.

Putting everything together, we have now established the claimed equivalence
(86) between the two apparently quite different classes of Yang-Mills theories,
namely standard Yang-Mills theories with (possibly time-dependent) mass-terms
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on the one hand, and Yang-Mills theories with non-standard time-dependent scalar
couplings on the other.

I still owe you an explanation of where all of this comes from or what it
is good for. The appropriate context for this is provided by a non-perturbative
description of type IIA string theory in certain backgrounds known as matrix
string theory [15]. In this context, the standard action (82), with p = 1 and D =
10, suitably supersymmetrized, and with gauge group U(N), describes IIA string
theory in a Minkowski background. The Yang-Mills coupling constant gY M is
inversely related to the string coupling constant gs. At weak string (strong gauge)
coupling, the quartic term forces the non-Abelian coordinates φa, with a = 1, . . . , 8,
to commute, so that they can be considered as ordinary coordinates. One can
show that (oversimplifying things a bit, since this should really be thought of as a
second quantized description) in this limit one reproduces the usual weak coupling
lightcone quantization of the string.

However, the description of string theory based on the action (82) is equally
well defined at strong string (weak gauge) coupling, where the full non-Abelian
dynamics of the gauge theory becomes important. This is one indication that at
strong coupling the target space geometry of a string may be described by a very
specific kind of (matrix) non-commutative geometry.

The generalized actions (84,85) arise in the matrix string description of strings
propagating in plane wave backgrounds, and the general covariance of this descrip-
tion leads one to a priori expect a relation of the kind (86). These kinds of models,
generalizations of the Matrix Big Bang model of [16], become particularly inter-
esting for singular plane waves with a singularity at strong string coupling (so that
a perturbative string description is obviously inadequate), and one can investigate
what the non-Abelian dynamics (non-commutative geometry) says about what
happens at such a space-time singularity. Some of these issues will be explored in
[3], from which also the entire discussion of this section 4 is taken.
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cal quantum gravity theories, such as loop quantum gravity, are not directly
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1. Loop quantum gravity

Quantization proceeds by turning a chosen basic set of variables, which faithfully
parameterize all phase space points and are chosen such that they form a closed set
under taking Poisson brackets, and representing the resulting algebra on a Hilbert
space. In a local field theory, one usually has a classical formulation of fields on
a manifold, whose Poisson relations involve delta functions. The basic variables
one chooses to base a quantum theory on, however, must form a well-defined
algebra free of divergences. Only then does one have a well-defined algebra whose
representations on a Hilbert space can be used as candidates for a quantization
This can be achieved by not using local field values but rather integrated, so-called
smeared, versions where spatial integrations over arbitrary 3-dimensional regions
remove the delta functions. (Such integrations are also used in the definition of
creation and annihilation operators via Fourier transformation, which then can be
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used to construct the Fock representation of local quantum field theory from the
cyclic vacuum state.)

Gravity, like any other field theory, requires such smearings of its canonical
fields before they are quantized. The difficulty here is that an integration measure
or other structures are required to make the integrations well-defined, but in grav-
ity the metric itself is dynamical and to be smeared before quantization. If one
tries to use the metric for its own smearing, non-linear objects without any chance
of forming a closed algebra under Poisson brackets result. The other option is to
use a separate, non-physical background metric with the sole purpose of defining
the integration used in the smearing of the physical metric. But then the quanti-
zation is likely to depend on this chosen background, and it is usually difficult to
obtain background independent statements. Moreover, strong field effects as they
are presented by space-time singularities of the gravitational field are difficult to
control in a setting based on a fixed background.

It is thus advantageous to start the quantization, if possible, without intro-
ducing such a metric background in the first place. Loop quantum gravity [1, 2, 3]
is the prime example for such an approach. It is based on the basic observation that
connection variables [4, 5] are available for gravity and allow natural smearings
to holonomies. Similarly, the momentum of the connection is a densitized vector
field (the metric-independent dual of a 2-form) which can equally naturally be
integrated to fluxes:

he(A) = P exp
∫

e

Ai
aτiė

a dt , FS(E) =
∫

S

d2y naE
a
i τi (1.1)

with tangent vectors ėa to curves in space, co-normals na to surfaces, and Pauli
matrices τi. For these variables, the Poisson bracket relations result in an algebra
which has a unique cyclic and (spatial) diffeomorphism covariant representation
[6, 7]. (Cyclicity of the representation is crucial for the uniqueness as demonstrated
in [8].)

Curves and surfaces are to be taken as submanifolds of space, not space-time,
because the formulation is canonical. Thus, also diffeomorphisms used for covari-
ance of the representation are only spatial, while a further constraint will have to
be imposed to recover space-time covariance. At this stage, an auxiliary structure
becomes relevant which one can also view as a kind of background – the space-
time foliation on which any canonical quantization is based. The classical canonical
theory is independent of the foliation once the constraints of general relativity are
imposed. After quantization, independence of this structure is not guaranteed au-
tomatically and has to be verified explicitly for the suggested quantum theory: The
quantized constraints as operators have to form a first class algebra under commu-
tation such that the number of gauge symmetries is preserved by the quantization.
One thus has to test the anomaly issue for the quantum constraints, an important
problem also for loop quantum gravity. Only an anomaly-free quantization – or a
consistent deformation of the classical theory by quantum corrections – could be
regarded background independent also from the space-time point of view.
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The connection formulation is of first order, where at first the spatial metric
qab is replaced by a co-triad ei

a such that qab = ei
ae

i
b. The momentum conjugate to

the connection is directly related to the co-triad: it is the densitized triad Ea
i =∣∣∣det(ej

b)
∣∣∣ ea

i . By itself it already defines a unique connection, the spin connection,
by requiring that it is covariantly constant under this derivative. Explicitly, the
spin connection is given in terms of the triad components by

Γi
a = −εijkeb

j(∂[ae
k
b] + 1

2e
c
ke

l
a∂[ce

l
b]) . (1.2)

As a functional of ei
a, it has vanishing Poisson brackets with Ea

i and cannot serve
as the canonical connection. But from the spin connection we can define another
connection, the Ashtekar connection Ai

a = Γi
a +γKi

a [4] which, due to the presence
of extrinsic curvature Kab in Ki

a := eb
iKab, is canonically conjugate to Ea

i . (Addi-
tional torsion components not present in (1.2) would occur when fermionic matter
is coupled to gravity.) This connection is no longer uniquely defined; it rather con-
tains a 1-parameter ambiguity labeled by the Barbero–Immirzi parameter γ > 0
[5, 9]. Classical dynamics does not depend on its value since it can be changed by a
simple canonical transformation. Nevertheless, this parameter will have meaning
in quantum gravity, where no unitary transformation is available to change the
value. (This is related to a compactification which arises in the transition from the
classical to the quantum configuration space.)

Loop quantum gravity is based on a canonical quantization of the phase space
spanned by Ai

a and Ea
i using holonomies and fluxes as the separating and smeared

set of functions. Even though holonomies are not linear in the basic fields, their
algebra with fluxes under Poisson brackets is in fact linear and sufficiently simple
to lead to direct representations. The representation space is most conveniently
expressed as consisting of states in the connection representation, i.e. as functionals
on the space of connections. After quantization, the quantum configuration space
is an extension of the classical configuration space by distributional connections.
This quantum configuration space turns out to be compact as a consequence of
the loop quantization: Holonomies are used to represent the connection and, for
a given edge, take values in a compact group, SU(2). The quantum configuration
space remains compact even when all curves in space are allowed as necessary to
capture all field theoretical degrees of freedom [10].

Spatial geometry is given through flux operators quantizing the densitized
triad through invariant vector fields on SU(2). Since those operators have discrete
spectra, spatial geometry reconstructed from flux operators is discrete [11, 12,
13]. In this non-perturbative quantization, states describe the excitations of all of
spatial quantum geometry. As the classical spatial geometry is determined solely
in terms of Ea

i , so is quantum geometry determined by expectation values of flux
operators in a given state as a solution. By construction, there is no background
metric which could contribute to the geometrical structure. Thus, what one can
consider to be the “vacuum” of this theory has no fluxes excited, and no non-
degenerate mean geometry at all. Every nearly smooth geometry must be a highly
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excited state, even Minkowski space or other backgrounds on which usual vacua
of quantum field theories are based.

To make contact with quantum field theory on a curved spacetime, or even
with (cosmological) observations, a “low energy description” is required. This
should determine the behavior of excitations near local Minkowski or Friedmann–
Robertson–Walker space, and can be used to verify the semiclassical limit dynam-
ically. A low energy effective action as known from particle physics would be ideal
for this purpose, but usual techniques of its derivation fail: A canonical quantiza-
tion is used which cannot easily be formulated in terms of path integrations, and
the lack of a useful vacuum implies that it is not even clear what state one could
use to expand the theory around. Fortunately, a generalization is available which
reproduces the 1-particle irreducible low energy effective action in regimes where
the usual techniques apply, but which can also deal with canonical quantizations
and with a different state structure [14, 15, 16].

2. Effective equations

The canonical formulation of effective descriptions starts with a straightforward
extension of Ehrenfest’s theorem. To highlight several of its physical and alge-
braic features, we first illustrate its application to the anharmonic oscillator with
Hamiltonian

Ĥ =
1

2m
p̂2 + V (q̂) =

1
2m

p̂2 +
1
2
mω2q̂2 +

1
3
λq̂3

i.e. with anharmonic potential V (q) = 1
2mω2q2 + 1

3λq
3. In a semiclassical state,

“classical” variables are given by expectation values of the basic operators q̂ and p̂.
One can thus expect such expectation values to play a role in effective equations.
However, due to the notorious difficulty of finding explicit dynamical semiclassi-
cal states for arbitrary interacting systems, it is useful to formulate equations of
motion in general, without using any semiclassicality assumptions. Suitable condi-
tions for semiclassical or coherent states to be used in an analysis of the resulting
equations will be discussed self-consistently at a later stage.

Expectation values in any state satisfy equations of motion whose form is
well-known from the Ehrenfest theorem:

d
dt
〈q̂〉 =

1
i�
〈[q̂, Ĥ ]〉 =

1
m
〈p̂〉 (2.1)

d
dt
〈p̂〉 =

1
i�
〈[p̂, Ĥ ]〉 = −mω2〈q̂〉 − λ〈q̂2〉 = −mω2〈q̂〉 − λ〈q̂〉2 − λ(Δq)2

= −V ′(〈q̂〉)− λ(Δq)2 . (2.2)

In general, as explicitly seen for this anharmonic system, quantum equations of
motion couple expectation values to fluctuations such as (Δq)2 = 〈(q̂ − 〈q̂〉)2〉,
or higher moments of the state for higher monomials in the anharmonicity. The
additional term in the equation of motion for 〈p̂〉 requires a quantum correction
to the classical dynamics. The effect of such terms is being captured in effective
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equations, which are to be computed from a more detailed analysis of the quantum
evolution. Here, specific properties of semiclassical states will be derived and enter
the final result.

2.1. Quantum back-reaction

Fluctuations as they appear in contributions to the equations of motion of expecta-
tion values are themselves dynamical: states in general spread and thus fluctuations
depend on time. Their equations of motion can be derived as those of expectation
values above, e.g.

d
dt

(Δq)2 =
d
dt

(〈q̂2〉 − 〈q̂〉2) =
1
i�
〈[q̂2, Ĥ ]〉 − 2〈q̂〉 d

dt
〈q̂〉

=
1
m
〈q̂p̂ + p̂q̂〉 − 2

m
〈q̂〉〈p̂〉 =

2
m
Cqp .

This equation of motion, in turn, requires the covariance Cqp = 1
2 〈q̂p̂+ p̂q̂〉−〈q̂〉〈p̂〉

to be known as a function of time, which evolves according to
d
dt

Cqp =
1
m
Cqp + mω2(Δq)2 + 6λ〈q̂〉(Δq)2 + 3λG0,3 .

Here, in addition to a non-linear term coupling the expectation value 〈q̂〉 to the
fluctuation of q we encounter the moment

G0,3 := 〈(q̂ − 〈q̂〉)3〉 = 〈q̂3〉 − 3〈q̂〉(Δq)2 − 〈q̂〉3

of third order, which is related to deformations of the state away from a Gaussian,
or its skewness. Iteration of this procedure shows that all infinitely many moments,
or quantum variables

Ga,n :=
〈(

(q̂ − 〈q̂〉)n−a(p̂− 〈p̂〉)a
)
symm

〉
(2.3)

of a state, defined using totally symmetric ordering, are coupled to each other and
to expectation values.

This whole system of infinitely many ordinary differential equations is equiv-
alent to the partial Schrödinger equation. Effective equations, by contrast, involve
only finitely many local degrees of freedom. They thus require further knowledge to
be gleaned from a partial solution of the equations of motion. If (Δq)(〈q̂〉, 〈p̂〉) can
be determined by some means, for instance, inserting it into d

dt〈p̂〉 = −V ′(〈q̂〉) −
λ(Δq)2 results in effective equations for q = 〈q̂〉 and p = 〈p̂〉 in closed form. Since
expectation values and fluctuations are independent of each other in general states,
a truncation of the infinite system to a finite dimensional effective one can only
be achieved for a specific class of states satisfying, for instance, certain semiclas-
sicality conditions. The availability and form of any type of such conditions can
be determined self-consistently from the fact that a truncation of the full system
of equations or a partial solution to find, e.g., Δq(q, p) independently of specific
solutions for q(t) and p(t) must be possible.

For perturbative potentials around the harmonic oscillator, an adiabatic and
semiclassical approximation decouples the equations and allows one to compute
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(Δq)(q, p) order by order. Semiclassicality implies that moments of higher order
are suppressed by powers of �, while adiabaticity is used for the quantum variables
mirroring the fact that one is perturbing around the ground state of the harmonic
oscillator which has quantum variables constant in time. Implicitly, corrections
in effective equations take into account that quantum variables in the interacting
ground state of the anharmonic system are no longer precisely constant but change
only weakly in a perturbative setting.

Using the result to first order in � and second in the adiabatic approximation,
and formulating the corresponding first order equations for q and p as a second
order equation for q yields [14]⎛⎜⎝m +

�U ′′′(q)2

32m2ω5
(
1 + U ′′(q)

mω2

) 5
2

⎞⎟⎠q̈ + mω2q + U ′(q) +
�U ′′′(q)

4mω
(
1 + U ′′(q)

mω2

) 1
2

+
�
(
4mω2U ′′′(q)U ′′′′(q)

(
1 + U ′′(q)

mω2

)
− 5U ′′′(q)3

)
128m3ω7

(
1 + U ′′(q)

mω2

) 7
2

q̇2 = 0

with general anharmonic potential U(q). This is indeed in agreement with the
1-particle irreducible low energy effective action [17]

Γeff [q] =
∫

dt

⎛⎝⎛⎝m +
�(U ′′′)2

32m2
(
ω2 + U ′′

m

) 5
2

⎞⎠ q̇2

2

−1
2
mω2q2 − U − �ω

2

(
1 +

U ′′

mω2

) 1
2
)

.

2.2. General procedure

These basic principles of the quantum back-reaction of a spreading and deforming
state are more widely applicable than the 1-particle irreducible effective action.
In particular, the derivation was purely canonical, and so analogous ones can
be performed for canonical quantizations such as loop quantum gravity. There is,
however, one requirement for its feasibility: there must be a relation to a free system
where quantum variables decouple. In such a system one needs to solve only finitely
many coupled equations, without any approximations or quantum corrections from
quantum coupling terms. This is realized only in very special cases, but often
one can use perturbations around those systems and derive effective equations as
approximations even in the presence of couplings.

Decoupling is realized if the Hamiltonian is quadratic in canonical variables,
since [·, Ĥ ] is then linear in basic operators and equations of motion for their ex-
pectation values depend only on the expectation values themselves. The prime
example is the harmonic oscillator as used in the derivation above, but decou-
pling can happen more generally. It occurs for any linear system defined by basic
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variables Ji which (i) form a linear commutator algebra and (ii) have a linear
combination which equals the Hamiltonian Ĥ. This will be used later in quantum
cosmology.

Given a linear system, one can explicitly solve its equations of motion for
quantum variables, determining the moments of its dynamical coherent states.
For perturbations around such a system one obtains coupled equations and has to
analyze their form to find suitable conditions and approximations in which they
can be truncated. While one often makes use of a semiclassical approximation to
justify ignoring most of the quantum variables, other steps such as the adiabaticity
assumption used for the low energy effective action may not always be valid. This
assumption is based on more specific properties of the solvable system, namely
the fact that the ground state of the harmonic oscillator has constant quantum
variables. They can thus remain adiabatic even under perturbations of the system.
But not all linear systems have a ground (or other) state with constant quantum
variables and there may be no other way to realize adiabaticity. Then, the Ga,n may
not be solvable explicitly as functions of Ji which one could then insert into the
equations of motion for expectation values. Still, the semiclassical approximation
allows a decoupling of almost all quantum variables; one will, to a given order, only
have to keep a finite number of them as independent quantum degrees of freedom
in addition to the classical-type expectation values. In this way, one obtains higher
dimensional effective systems which are dynamical systems formulated in terms of
more than just the classical variables. In addition to quantum correction terms
such as those in an effective potential, such systems have additional variables and
equations for true quantum degrees of freedom.

This emphasis on observables, i.e. expectation values, fluctuations and other
moments, rather than states provides a more algebraic viewpoint which has ad-
ditional advantages beyond the fact that one obtains a good approximation to
quantum behavior. By directly solving equations of motion for moments, rather
than first solving for a state and then integrating out to obtain moments, one
can bypass a calculational step which is often analytically difficult or numerically
time consuming. Especially in semiclassical regimes states are often highly oscilla-
tory, which would require numerical integrations in expectation values with very
fine resolutions. This can be avoided by directly using numerical solutions to the
coupled equations for expectation values and some moments. Also analytically,
after one successfully truncated the infinite set of equations by semiclassical or
other approximations, one has only one step of solving coupled ordinary differen-
tial equations instead of solving a partial differential equation for the state and
then still having to integrate it to find observables of real interest.

The procedure has an underlying geometrical picture [18, 19, 20]: The dynam-
ics is formulated on the quantum phase space which is given by the (projective)
Hilbert space. Points in the phase space are thus states, and so are tangent vec-
tors since the Hilbert space is linear. The symplectic form as a 2-form is then an
antisymmetric bilinear form which one can define as Ω(·, ·) = 2�Im〈·|·〉 in terms
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of the imaginary part of the inner product. (The real part defines a metric, which
together with the symplectic form and the usual complex structure of quantum me-
chanics makes the quantum phase space Kähler. This extra structure is, however,
not necessary for discussing dynamics.)

The Hamiltonian operator, like any operator, defines a function, the quantum
Hamiltonian HQ(·) = 〈·|Ĥ |·〉, on the quantum phase space. It is the Hamiltonian
which on the phase space generates the flow defined by the Schrödinger equation
for states. For an efficient evaluation, one can expand the quantum Hamiltonian
as a formal series in quantum variables, which we do in dimensionless variables
G̃a,n = �−n/2(mω)n/2−aGa,n. In a formal Taylor expansion, this yields

HQ = 〈H(q̂, p̂)〉 = 〈H(q + (q̂ − q), p + (p̂− p))〉 =
1

2m
p2 +

1
2
mω2q2 (2.4)

+U(q) +
�ω
2

(G̃0,2 + G̃2,2) +
∑
n>2

1
n!

(
�

mω

)n/2

U (n)(q)G̃0,n

showing explicitly the coupling terms between expectation values and quantum
variables for a potential of higher than quadratic order. (For a quadratic Hamil-
tonian the quantum Hamiltonian does depend on quantum variables, but only in
its zero-point energy which does not provide any coupling terms.) Using the sym-
plectic structure and the Poisson relations it implies for quantum variables one
can see that this quantum Hamiltonian produces the same equations of motion as
derived before from expectation values of commutators.

We end this general discussion with a list of several additional advantages to
this canonical treatment of effective equations:

• Given a solvable model, in which quantum variables decouple from expecta-
tion values, properties of dynamical coherent states, i.e. all moments, can be
computed order by order in a semiclassical expansion around the free theory.
In quantum field theory language, one computes the interacting vacuum per-
turbatively. This is possible even if no explicit form for such states is known,
which represents the typical case faced for interacting systems. Here, coher-
ent states are computed by first solving equations of motion for fluctuations,
as we saw them in earlier examples, and then saturating the uncertainty
relations

GAAGBB − (GAB)2 ≥ 1
4
(i〈[Â, B̂]〉)2 (2.5)

which hold for any self-adjoint Â, B̂ (with a straightforward change of nota-
tion in the quantum variables compared to (2.3)).

• Other advantages appear for constrained systems such as gravity: In anal-
ogy to the quantum Hamiltonian, for constrained systems a major role is
played by the effective constraint 〈·|Ĉ|·〉 defined through expectation values
of constraint operators. (This case is more involved, however, since one needs
more constraints even if there is only one classical constraint. Just as there
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are now infinitely many quantum variables, we require infinitely many effec-
tive constraints through higher powers, e.g., 〈·|Ĉn|·〉 to remove all unwanted
quantum variables.) The advantage of the effective treatment now is that
one can rather straightforwardly address the physical inner product, which is
simply implemented by reality conditions for the moments. No integral rep-
resentation with an explicit measure factor is required, which can be found
systematically only in a small number of examples. Reality conditions for ex-
pectation values and quantum variables can, on the other hand, be directly
imposed, immediately achieving the correct adjointness conditions for basic
operators which the physical inner product is intended to ensure. Also here,
foregoing specific representations of states helps enormously in analyzing the
quantum system in an economic way.

• One other issue of importance for constrained systems can be analyzed with
significantly more ease: that of anomalies. We can compute effective con-
straints as expectation values without worrying about potential anomalies in
the constraint operators. Problems will only show up as inconsistencies if we
try to solve the effective constraints of an anomalous quantization. Instead
of determining a complete, anomaly-free quantization which is often difficult,
one can first compute effective constraints and then make sure that they
are anomaly-free. This may not tell one the complete anomaly-free quantum
theory, or even demonstrate its existence. But one can already test whether
obstructions to an anomaly-free quantization exist, and if not derive possible
physical consequences of quantum effects.

3. A solvable model for cosmology

Gravitational or cosmological systems are not closely related to a harmonic os-
cillator and thus we need to look for other linear systems if our aim is to make
effective equations available for cosmology. Fortunately, such systems exist: The
Friedmann equation (the Hamiltonian constraint for isotropic gravity) for a spa-
tially flat model sourced by a free, massless scalar φ with momentum pφ is

c2
√
p =

4πG
3

p−3/2p2
φ

written here in variables c = ȧ and p with p3/2 = a3, which are closer to Ashtekar
variables. Solving this for pφ yields |pφ| ∝ |cp| =: H , which can be interpreted as
the Hamiltonian generating the flow in the variable φ (rather than a coordinate
time whose flow is generated by the Hamiltonian constraint). We thus choose φ as
our internal time variable, describing evolution not with respect to a coordinate
time but relationally between matter and geometry. This does not only easily
eliminate the problem of time in this system – in the absence of a potential, φ is
monotonic and thus provides a global internal time – it also gives us the desired
solvable system: the φ-Hamiltonian is quadratic in canonical variables (c, p) and
we have the same decoupling of classical and quantum variables as realized for
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the harmonic oscillator. (In fact, a simple canonical transformation shows that the
Hamiltonian cp is an upside-down harmonic oscillator.)

The easy availability of a global internal time and the structure of the con-
straint equation were exploited in [21, 22] to determine the physical Hilbert space
of this system by techniques known from the Klein–Gordon particle, and to analyze
some solutions given by Gaussian initial states numerically. The solvable nature of
this system was realized in [23], which explained several features of the numerical
solutions which were unexpected from general experience of quantum systems.

Quantum equations of motion for the solvable system with Hamiltonian1

H = cp are

ċ = c , ṗ = p , Ġ0,2 = 2G0,2 , Ġ1,2 = 0 , Ġ2,2 = −2G2,2

and so on for higher moments, which are easily solved by c(t) = c1e
t, p(t) = c2e

−t,
G0,2(t) = c3e

−2t, G1,2(t) = c4 and G2,2(t) = c5e
2t. The solution for p directly

shows the classical singularity since p = 0 is reached for φ → ∞ which, as one
can check by gauging the system, corresponds to a finite proper time interval. One
clearly sees here that the classical singularity is realized in the same way when the
system is quantized in the Schrödinger representation, as done in Wheeler–DeWitt
quantum cosmology. In fact, due to the solvability there are no quantum correction
terms whatsoever, and the quantum equations of motion for expectation values are
exactly the same as the classical equations of motion.

For semiclassical issues, one can analyze the solutions for fluctuations. They
are subject to the uncertainty relation

G0,2G2,2 − (G1,2)2 ≥ 1
4

�2 (3.1)

which for the constants of integration in our general solutions implies c3c5 ≥ �2/4+
c24. If a state is initially chosen to be semiclassical, this property is preserved during
evolution: we have constant relative spreads (Δp)/p =

√
G2,2/p and (Δc)/c =√

G0,2/c. This also illustrates why the classical singularity cannot be resolved:
There are simply no significant quantum effects in this system, no matter how
close we get to the classical singularity.

This is different in a loop formulation. Here, in loop quantum cosmology
[25, 26], we do not have an operator for a connection component like c, but only
for holonomies as basic operators. While the precise form of a loop quantized
Hamiltonian constraint can be complicated, the main effect is that now a periodic
function such as sin c replaces c in the Friedmann equation. This provides a type
of quantum geometry effect through the addition of higher powers of extrinsic
curvature. We now expect deviations from classical behavior when c becomes large,
just when we approach the classical big bang singularity.

But it also means that the loop Hamiltonian H = p sin c now is non-quadratic
in canonical variables and thus, in this form, not solvable. The corresponding

1Note that we are dropping the absolute value to have a truly quadratic Hamiltonian. This can
be shown to be a safe procedure when properties of semiclassical states are of interest [24].



Canonical Quantum Gravity and Effective Theory 227

quantum back-reaction would be too complicated for solving the equations di-
rectly. While a perturbative treatment around the free Wheeler–DeWitt model
with Hamiltonian cp would be possible for small c, this would not give us reliable
information about what happens to the classical singularity. Fortunately, the sys-
tem is, indeed, solvable if we only choose a specific factor ordering and formulate it
in new basic variables whose algebra under Poisson brackets is not of the canonical
form.

To some degree, the use of new variables is anyway required because we have
to refer to “holonomies”2 eic instead of c itself, so that we have basic Poisson
brackets {p, eic} = −ieic. But also in these variables the system is not solvable.
We rather introduce Ĵ = p̂êic, already defined as an operator because its factor
ordering is important for solvability properties, and obtain the linear Hamiltonian
Ĥ = − 1

2 i(Ĵ − Ĵ†) which defines its factor ordering in the form used below. (Due
to the use of êic this is a finite shift operator: the dynamical equation of loop
quantum gravity is a difference equation for states [27]. Here, however, we will
not use this difference equation directly but rather describe its solutions by more
powerful means directly providing effective equations.)

A linear Hamiltonian in canonical variables would directly imply solvability,
but we use non-canonical ones (p̂, Ĵ). As one can easily check, these operators obey
a (trivially) centrally extended sl(2,R) algebra

[p̂, Ĵ ] = �Ĵ , [p̂, Ĵ†] = −�Ĵ† , [Ĵ , Ĵ†] = −2�p̂− �2 . (3.2)

Since the Hamiltonian is a linear combination of two of the basic operators, the
dynamical system is linear and thus indeed solvable. We also mention here already
that the new variables force us to work with non-symmetric basic operators. Thus,
we will have to impose reality conditions after finding solutions, which corresponds
to implementing the correct physical inner product to normalize wave functions in
which expectation values and moments are computed.

The equations of motion, derived as before, are

ṗ = − 1
2 (J + J̄) , J̇ = − 1

2 (p + �) = ˙̄J (3.3)

for expectation values (which variables without hat now refer to) with general
solution

p(φ) = 1
2 (c1e−φ + c2e

φ)− 1
2� (3.4)

J(φ) = 1
2 (c1e−φ − c2e

φ) + iH . (3.5)

2The use of these exponentials derives from the use of holonomies as basic variables in the
full theory. This would lead one to consider all exponentials eiμc with real μ rather than only
functions on a circle of fixed periodicity [26]. The configuration space of isotropic connections is
thus not periodically identified to a circle, but instead compactified to the Bohr compactification
of the real line on which almost periodic functions, i.e. countable linear combinations

∑
I fIeiμI c

for μI ∈ R, form the C∗-algebra of all continuous functions. Dynamically, however, it turns out
to be sufficient to consider only integer powers of a periodic eic due to superselection.
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In contrast to the Wheeler–DeWitt model, we indeed see a resolution of the clas-
sical singularity: There is a “bounce” in the sense that |p| → ∞ for φ → ±∞.
However, without further analysis one could not be sure that the state does not
enter the quantum regime too deeply, where other quantum geometry corrections
not included in the solvable model would set in (e.g. those of [28], based on [43] in
the full theory).

The model itself could thus break down, invalidating the naive conclusion
about the bounce. In particular, the solutions show that, for c1c2 < 0, p can
become zero where the model could no longer be trusted. (Nevertheless, the un-
derlying difference equation is non-singular since it extends the wave function
uniquely through the classical singularity [29, 30]. But this behavior of the wave
function itself does not easily provide an effective or geometrical picture of how
the classical singularity is resolved.) The precise form in which a deep quantum
regime could be entered depends, by its very nature, on details of the quantum
model, in particular the factor ordering of the constraint. There may be choices
for which the expectation value of p̂ never becomes zero, but this does not rule out
that a deep quantum regime can be entered, where the model would break down.
In any case one has to provide a detailed analysis if one tries to justify the bounce
under general conditions.

The situation is simpler when one assumes that a state starts out semiclassi-
cally at large volume, and then follows its evolution to smaller scales and possibly
back to larger ones after a bounce. As in the Wheeler–DeWitt model, the state
would not change its semiclassicality properties strongly while it is still at rather
large volume. Semiclassicality properties can, however, change in the bounce tran-
sition between two branches.

For a correct analysis of the corresponding solutions we now have to impose
the reality conditions. Classically we have JJ̄ = p2 for J = p exp(ic). When
quantized, exp(ic) must become an unitary operator on the physical Hilbert space,
which implies reality conditions for our basic operators. Although we use Ĵ instead
of êic and cannot directly implement unitarity, there is a similar condition related
to unitarity for the basic operators: Ĵ Ĵ† = p̂2. This is not linear, and so taking
an expectation values of this relation provides a condition involving expectation
values as well as fluctuations,

|J |2 − (p + 1
2�)2 = 1

4�2 −GJJ̄ + Gpp . (3.6)

(We are now denoting the second order quantum variables by subscripts of the
operators used. This is more convenient than the notation Ga,n because we have
to distinguish between Ĵ and Ĵ† in addition to p̂.)

Inserting solutions, this implies c1c2 = H2 +O(�) for the expectation values
where we assumed an initial semiclassical state where fluctuations contribute only
terms of the order �. Since this relation only depends on constants of motion
(including the O(�)-terms since one can see easily that GJJ̄−Gpp is preserved), it is
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valid at all times and even at the bounce. Moreover, for semiclassical states the H2-
term dominates since it represents the large matter contribution of the universe,
implying that c1c2 is positive and p = 0 is never reached by solutions which are
semiclassical at one time. This is directly seen from the bouncing solutions

p(φ) = H cosh(φ− δ)− � , J(φ) = −H(sinh(φ− δ)− i) (3.7)

(with e2δ = c2/c1) which follow from (3.4) and (3.5) taking into account the reality
conditions.

Equations of motion for fluctuations are

Ġpp = −GpJ −GpJ̄

ĠJJ = −2GpJ , ĠJ̄J̄ = −2GpJ̄

ĠpJ = −1
2
GJJ − 1

2
GJJ̄ −Gpp , ĠpJ̄ = −1

2
GJ̄J̄ − 1

2
GJJ̄ −Gpp

ĠJJ̄ = −GpJ −GpJ̄

whose solutions determine properties of dynamical coherent states of this system
[24]. For H * �, volume fluctuations are of the form

(Δp)2 = Gpp ≈ �H cosh(2(φ− δ2)) .

As one can see, the minimum of fluctuations is determined by a parameter δ2
independent of δ1 [24]. The ratio of the two parameters describes the squeezing
of the state, and is thus a quantum property which cannot be seen in the expec-
tation values alone. Fluctuations thus do not need to be symmetric around the
bounce: they could have been much larger, or smaller, before the big bang than
afterwards; see Fig. 1. For known fluctuations, the uncertainty relation (3.1) pro-
vides an upper bound on correlations and thus on squeezing. In our model, this
implies a bound on the asymmetry of fluctuations once their size can be bounded.
However, realistic observations one could make after the big bang cannot provide
sharp enough bounds on the squeezing and thus on pre-big bang fluctuations. The
infinitely many higher moments are even less restricted, and so it is impossible to
know the precise state of the universe before the big bang. Thus, even though the
state equations are deterministic, information on the state before the big bang is
practically lost during cosmic evolution [31].

3.1. Interactions

The free bounce model may replace the harmonic oscillator as the “free” gravita-
tional theory even in a loop quantization. Realistic ingredients such as a matter
potential, anisotropy or inhomogeneities can be included perturbatively to derive
effective equations for those models. For a non-zero potential, for instance, we
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p(  ) φ
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Figure 1. Two different solutions of expectation values and
fluctuations of the solvable cosmological model, illustrating the
bounce and the possible difference in fluctuations before and af-
ter the bounce. The solid lines represent the mean and spread of
an unsqueezed state, while the state corresponding to the dashed
lines is squeezed.

obtain effective equations [32]

ṗ = −J + J̄

2
+

J + J̄

(J − J̄)2
p3V (φ)

+3
p3(J + J̄)
(J − J̄)4

(GJJ + GJ̄ J̄ − 2GJJ̄)V (φ)

−6
p2(J + J̄)
(J − J̄)3

(GpJ −GpJ̄ )V (φ) + 3
p(J + J̄)
(J − J̄)2

Gpp V (φ)

− 2p3

(J − J̄)3
(GJJ −GJ̄ J̄)V (φ) +

3p2

(J − J̄)2
(GpJ + GpJ̄ )V (φ)

for p, accompanied by similar equations for J̇ as well as the moments Ġa,2 which
here appear as independent variables. This is an example for a higher dimensional
effective system of nine real variables (the expectation values p, ReJ , ImJ and
fluctuations and covariances Gpp, GJJ̄ , ReGpJ , ImGpJ , ReGJJ and ImGJJ ). Un-
like the case of perturbations around the harmonic oscillator, quantum variables
do not behave adiabatically and assuming so would force one to violate uncer-
tainty relations; see [32] for details. Thus, we cannot solve for the Ga,2 in terms of



Canonical Quantum Gravity and Effective Theory 231

expectation values directly, and rather have to keep them as independent variables
in a higher dimensional effective system.

4. Effective quantum gravity

Many field theoretical issues present in this approach to effective equations remain
to be worked out, which would be required for an application to quantum gravity
beyond cosmological models. In this context, it is encouraging that variables sim-
ilar to the Ga,n were used in early (non-canonical) developments of effective field
theories in the context of symmetry breaking [33, 34]. Some difficulties may be
overcome by using a mode decomposition of fields, made possible by the choice of
a background geometry which enters the effective description as part of the semi-
classical states used. This strategy is applied to inflationary structure formation
in [35].

For loop quantum gravity, moreover, one may be in a manageable situation
because the discreteness of graphs implies essentially a finite number of degrees
of freedom in any finite volume, in contrast to infinitely many ones in ordinary
quantum field theory. One can thus use moments between all independent graph-
associated degrees of freedom, and then perform a continuum approximation for
the resulting effective expressions. Only after performing this limit would the infin-
itely many degrees of freedom of the classical theory arise. This procedure, without
explicitly computing all quantum correction terms, is outlined in [36].

This allows one to apply existing techniques available for the derivation of
effective systems to a derivation of cosmological perturbation equations [37, 38, 39,
40, 41]. As a result one obtains quantum corrections arising from the loop quanti-
zation, which can then be directly analyzed in cosmological phenomenology, or for
fundamental questions such as the issue of local Lorentz invariance at low energies.
Moreover, from a combination of the perturbation equations one can recover the
Newton potential to classical order and also here derive quantum corrections.

As already mentioned, one can also study some part of the anomaly issue of
constrained systems at the effective level. Effective constraints can first be com-
puted from operators which have not yet been checked for possible anomalies. For
the effective constraints anomalies can then be analyzed much more straightfor-
wardly by computing their Poisson algebra. Even before complete effective con-
straints have been computed, which is so far not available in inhomogeneous sys-
tems, one may include only one type of quantum corrections into an incomplete
effective constraint. In addition to quantum back-reaction effects, whose computa-
tion is typically most involved, there are several effects arising from the discrete-
ness of quantum geometry. The latter include higher order terms due to the use of
holonomies in the basic representation, and corrections to inverse densitized triad
components [42, 43]. Any of these terms can be introduced as part of an effective
constraint, and their effect on anomalies studied in separation.
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There have recently been several results in particular for inverse triad cor-
rections: Such non-trivial quantum corrections are possible even for anomaly-free
constraints. This is rather surprising as it has often been expected that quantum
corrections due to the underlying discreteness necessarily break covariance. As the
calculations show, this may happen for some form of the corrections, and pos-
sible quantization ambiguities which may exist at the kinematical level are thus
restricted. But anomaly-freedom does not require such quantum corrections to
be completely absent and allows non-trivial quantum effects in a covariant quan-
tum space-time. Specific cases which have been dealt with in this way include
the linearized cosmological mode equations of [39, 40, 44] and the fully non-linear
spherically symmetric vacuum sector [45].

A different issue is the performance of the continuum limit for a sector of
the quantum theory defined by introducing a background via a specific class of
states (such as those of semiclassical geometries peaked at the given background).
Although one would not usually need to perform such a limit, given that the
full theory is already a continuum quantum theory, it is of interest for making
contact with local quantum field theory on a background. At this point, one expects
that renormalization would have to be performed, whose role in discrete quantum
gravity could thus be studied.
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From Discrete Space-Time to Minkowski Space:
Basic Mechanisms, Methods and Perspectives

Felix Finster

Abstract. This survey article reviews recent results on fermion systems in
discrete space-time and corresponding systems in Minkowski space. After a
basic introduction to the discrete setting, we explain a mechanism of sponta-
neous symmetry breaking which leads to the emergence of a discrete causal
structure. As methods to study the transition between discrete space-time
and Minkowski space, we describe a lattice model for a static and isotropic
space-time, outline the analysis of regularization tails of vacuum Dirac sea
configurations, and introduce a Lorentz invariant action for the masses of the
Dirac seas. We mention the method of the continuum limit, which allows to
analyze interacting systems. Open problems are discussed.
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1. Introduction

It is generally believed that the concept of a space-time continuum (like Minkowski
space or a Lorentzian manifold) should be modified for distances as small as the
Planck length. The principle of the fermionic projector [4] proposes a new model
of space-time, which should be valid down to the Planck scale. This model is in-
troduced as a system of quantum mechanical wave functions defined on a finite
number of space-time points and is referred to as a fermion system in discrete
space-time. The interaction is described via a variational principle where we min-
imize an action defined for the ensemble of wave functions. A-priori, there are no
relations between the space-time points; in particular, there is no nearest-neighbor
relation and no notion of causality. The idea is that these additional structures
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should be generated spontaneously. More precisely, in order to minimize the ac-
tion, the wave functions form specific configurations; this can be visualized as a
“self-organization” of the particles. As a consequence of this self-organization, the
wave functions induce non-trivial relations between the space-time points. We thus
obtain additional structures in space-time, and it is conjectured that, in a suitable
limit where the number of particles and space-time points tends to infinity, these
structures should give rise to the local and causal structure of Minkowski space.
In this limit, the configuration of the wave functions should go over to a Dirac sea
structure.

This conjecture has not yet been proved, but recent results give a detailed
picture of the connection between discrete space-time and Minkowski space. Also,
mathematical methods were developed to shed light on particular aspects of the
problem. In this survey article we report on the present status, explain basic
mechanisms and outline the analytical methods used so far. The presentation is
self-contained and non-technical. The paper concludes with a discussion of open
problems.

2. Fermion systems in discrete space-time

We begin with the basic definitions in the discrete setting (for more details see [5]).
Let (H,<.|.>) be a finite-dimensional complex inner product space. Thus <.|.> is
linear in its second and anti-linear in its first argument, and it is symmetric,

<Ψ | Φ> = <Φ |Ψ> for all Ψ,Φ ∈ H ,

and non-degenerate,

<Ψ | Φ> = 0 for all Φ ∈ H =⇒ Ψ = 0 .

In contrast to a scalar product, <.|.> need not be positive.
A projector A in H is defined just as in Hilbert spaces as a linear operator

which is idempotent and self-adjoint,

A2 = A and <AΨ |Φ> = <Ψ | AΦ> for all Ψ,Φ ∈ H .

Let M be a finite set. To every point x ∈ M we associate a projector Ex. We
assume that these projectors are orthogonal and complete in the sense that

Ex Ey = δxy Ex and
∑
x∈M

Ex = 11 . (1)

Furthermore, we assume that the images Ex(H) ⊂ H of these projectors are non-
degenerate subspaces of H , which all have the same signature (n, n). We refer
to n as the spin dimension. The points x ∈ M are called discrete space-time
points, and the corresponding projectors Ex are the space-time projectors. The
structure (H,<.|.>, (Ex)x∈M ) is called discrete space-time.

We next introduce the so-called fermionic projector P as a projector in H
whose image P (H) ⊂ H is negative definite. The vectors in the image of P have
the interpretation as the quantum states of the particles of our system. Thus the
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rank of P gives the number of particles f := dimP (H). The name “fermionic
projector” is motivated from the correspondence to Minkowski space, where our
particles should go over to Dirac particles, being fermions (see Section 6 below).
We call the obtained structure (H,<.|.>, (Ex)x∈M , P ) a fermion system in discrete
space-time. Note that our definitions involve only three integer parameters: the spin
dimension n, the number of space-time points m, and the number of particles f .

The above definitions can be understood as a mathematical reduction to
some of the structures present in relativistic quantum mechanics, in such a way
that the Pauli Exclusion Principle, a local gauge principle and the equivalence
principle are respected (for details see [4, Chapter 3]). More precisely, describing
the many-particle system by a projector P , every vector Ψ ∈ H either lies in the
image of P or it does not. In this way, the fermionic projector encodes for every
state the occupation numbers 1 and 0, respectively, but it is impossible to describe
higher occupation numbers. More technically, choosing a basis Ψ1, . . .Ψf of P (H),
we can form the anti-symmetric many-particle wave function

Ψ = Ψ1 ∧ · · · ∧Ψf .

Due to the anti-symmetrization, this definition of Ψ is (up to a phase) indepen-
dent of the choice of the basis Ψ1, . . . ,Ψf . In this way, we can associate to ev-
ery fermionic projector a fermionic many-particle wave function, which clearly
respects the Pauli exclusion principle. To reveal the local gauge principle, we con-
sider unitary operators U (i.e. operators which for all Ψ,Φ ∈ H satisfy the relation
<UΨ|UΦ> = <Ψ|Φ>) which do not change the space-time projectors,

Ex = UExU
−1 for all x ∈M . (2)

We transform the fermionic projector according to

P → UPU−1 . (3)

Such transformations lead to physically equivalent fermion systems. The condi-
tions (2) mean that U maps every subspace Ex(H) onto itself. In other words,
U acts “locally” on the subspaces associated to the individual space-time points.
The transformations (2, 3) can be identified with local gauge transformations in
physics (for details see [4, §3.1]). The equivalence principle is built into our frame-
work in a very general form by the fact that our definitions do not distinguish an
ordering between the space-time points. Thus our definitions are symmetric under
permutations of the space-time points, generalizing the diffeomorphism invariance
in general relativity.

Obviously, important physical principles are missing in our framework. In
particular, our definitions involve no locality and no causality, and not even rela-
tions like the nearest-neighbor relations on a lattice. The idea is that these ad-
ditional structures, which are of course essential for the formulation of physics,
should emerge as a consequence of a spontaneous symmetry breaking and a self-
organization of the particles as described by a variational principle. Before explain-
ing in more detail how this is supposed to work (Section 6), we first introduce the
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variational principle (Section 3), explain the mechanism of spontaneous symme-
try breaking (Section 4), and discuss the emergence of a discrete causal structure
(Section 5).

3. A variational principle

In order to introduce an interaction of the particles, we now set up a variational
principle. For any u ∈ H , we refer to the projection Exu ∈ Ex(H) as the localiza-
tion of u at x. We also use the short notation u(x) = Exu and sometimes call u(x)
the wave function corresponding to the vector u. Furthermore, we introduce the
short notation

P (x, y) = Ex P Ey , x, y ∈M . (4)
This operator product maps Ey(H) ⊂ H to Ex(H), and it is often useful to regard
it as a mapping only between these subspaces,

P (x, y) : Ey(H) → Ex(H) .

Using the properties of the space-time projectors (1), we find

(Pu)(x) = Ex Pu =
∑
y∈M

Ex P Ey u =
∑
y∈M

(Ex P Ey) (Ey u) ,

and thus
(Pu)(x) =

∑
y∈M

P (x, y) u(y) . (5)

This relation resembles the representation of an operator with an integral kernel,
and thus we refer to P (x, y) as the discrete kernel of the fermionic projector. Next
we introduce the closed chain Axy as the product

Axy := P (x, y) P (y, x) = Ex P Ey P Ex ; (6)

it maps Ex(H) to itself. Let λ1, . . . , λ2n be the roots of the characteristic poly-
nomial of Axy, counted with multiplicities. We define the spectral weight |Axy|
by

|Axy| =
2n∑

j=1

|λj | .

Similarly, one can take the spectral weight of powers of Axy, and by summing over
the space-time points we get positive numbers depending only on the form of the
fermionic projector relative to the space-time projectors. Our variational principle
is to

minimize
∑

x,y∈M

|A2
xy| (7)

by considering variations of the fermionic projector which satisfy for a given real
parameter κ the constraint ∑

x,y∈M

|Axy|2 = κ . (8)
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In the variation we also keep the number of particles f as well as discrete space-
time fixed. Clearly, we need to choose κ such that there is at least one fermionic
projector which satisfies (8). It is easy to verify that (7) and (8) are invariant under
the transformations (2, 3), and thus our variational principle is gauge invariant.

The above variational principle was first introduced in [4]. In [5] it is analyzed
mathematically, and it is shown in particular that minimizers exist:

Theorem 3.1. The minimum of the variational principle (7, 8) is attained.

Using the method of Lagrange multipliers, for every minimizer P there is a
real parameter μ such that P is a stationary point of the action

Sμ[P ] =
∑

x,y∈M

Lμ[Axy] (9)

with the Lagrangian
Lμ[A] = |A2| − μ |A|2 . (10)

A useful method for constructing stationary points for a given value of the La-
grange multiplier μ is to minimize the action Sμ without the constraint (8). This
so-called auxiliary variational principle behaves differently depending on the value
of μ. If μ < 1

2n , the action is bounded from below, and it is proved in [5] that mini-
mizers exist. In the case μ > 1

2n , on the other hand, the action is not bounded from
below, and thus there are clearly no minimizers. In the remaining so-called critical
case μ = 1

2n , partial existence results are given in [5], but the general existence
problem is still open. The critical case is important for the physical applications.
For simplicity, we omit the subscript μ = 1

2n and also refer to the auxiliary vari-
ational principle in the critical case as the critical variational principle. Writing
the critical Lagrangian as

L[A] =
1
4n

2n∑
i,j=1

(|λi| − |λj |)2 , (11)

we get a good intuitive understanding of the critical variational principle: it tries
to achieve that for every x, y ∈ M , all the roots of the characteristic polynomial
of the closed chain Axy have the same absolute value.

We next derive the corresponding Euler-Lagrange equations (for details see [4,
§3.5 and §5.2]). Suppose that P is a critical point of the action (9). We consider
a variation P (τ) of projectors with P (0) = P . Denoting the gradient of the La-
grangian by M,

Mμ[A]αβ :=
∂Lμ[A]

∂Aβ
α

, with α, β ∈ {1, . . . , 2n} , (12)

we can write the variation of the Lagrangian as a trace on Ex(H),

δLμ[Axy] =
d

dτ
Lμ[Axy(τ)]

∣∣∣
τ=0

= Tr (ExMμ[Axy] δAxy) .
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Using the Leibniz rule

δAxy = δP (x, y) P (y, x) + P (x, y) δP (y, x)

together with the fact that the trace is cyclic, after summing over the space-time
points we find ∑

x,y∈M

δLμ[Axy] =
∑

x,y∈M

4 Tr (Ex Qμ(x, y) δP (y, x)) ,

where we set

Qμ(x, y) =
1
4

(Mμ[Axy] P (x, y) + P (x, y)Mμ[Ayx]) . (13)

Thus the first variation of the action can be written as

δSμ[P ] = 4 Tr (Qμ δP ) , (14)

where Qμ is the operator in H with kernel (13). This equation can be simplified
using that the operators P (τ) are all projectors of fixed rank. Namely, there is a
family of unitary operators U(τ) with U(τ) = 11 and

P (τ) = U(τ)P U(τ)−1 .

Hence δP = i[B,P ], where we set B = −iU ′(0). Using this relation in (14) and
again using that the trace is cyclic, we find δSμ[P ] = 4iTr ([P,Qμ] B). Since B is
an arbitrary self-adjoint operator, we conclude that

[P,Qμ] = 0 . (15)

This commutator equation with Qμ given by (13) are the Euler-Lagrange equations
corresponding to our variational principle.

4. A mechanism of spontaneous symmetry breaking

In the definition of fermion systems in discrete space-time, we did not distinguish
an ordering of the space-time points; all our definitions are symmetric under per-
mutations of the points of M . However, this does not necessarily mean that a given
fermion system will have this permutation symmetry. The simplest counterexam-
ple is to take a fermionic projector consisting of one particle which is localized at
the first space-time point, i.e. in bra/ket-notation

P = −|u><u| with <u |u> = −1 and
E1u = u , Exu = 0 for all x = 2, . . . ,m .

Then the fermionic projector distinguishes the first space-time point and thus
breaks the permutation symmetry. In [6] it is shown under general assumptions on
the number of particles and space-time points that, no matter how we choose the
fermionic wave functions, it is impossible to arrange that the fermionic projector
respects the permutation symmetry. In other words, the fermionic projector neces-
sarily breaks the permutation symmetry of discrete space-time. We first specify the
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result and explain it afterwards. The group of all permutations of the space-time
points is the symmetric group, denoted by Sm.

Definition 4.1. A subgroup O ⊂ Sm is called outer symmetry group of the fermion
system in discrete space-time if for every σ ∈ O there is a unitary transformation U
such that

UPU−1 = P and UExU
−1 = Eσ(x) for all x ∈M . (16)

Theorem 4.2. (spontaneous breaking of the permutation symmetry) Suppose that
(H,<.|.>, (Ex)x∈M , P ) is a fermion system in discrete space-time of spin dimen-
sion n. Assume that the number of space-time points m is sufficiently large,

m >

{
3 if n = 1

max
(
2n + 1, 4 [log2 n] + 6

)
if n > 1

(17)

(where [x] is the Gauß bracket), and that the number of particles f lies in the range

n < f < m− 1 . (18)

Then the fermion system cannot have the outer symmetry group O = Sm.

For clarity we note that this theorem does not refer to the variational principle
of Section 3. To explain the result, we now give an alternative proof in the simplest
situation where the theorem applies: the case n = 1, f = 2 and m = 4. For systems
of two particles, the following construction from [2] is very useful for visualizing the
fermion system. The image of P is a two-dimensional, negative definite subspace
of H . Choosing an orthonormal basis (u1, u2) (i.e. <ui|uj> = −δij), the fermionic
projector can be written in bra/ket-notation as

P = −|u1><u1| − |u2><u2| . (19)

For any space-time point x ∈M we introduce the so-called local correlation matrix
Fx by

(Fx)i
j = −<ui |Exuj> . (20)

The matrix Fx is Hermitian on the standard Euclidean C2. Thus we can decompose
it in the form

Fx =
1
2

(ρx11 + �vx�σ) , (21)

where �σ = (σ1, σ2, σ3) are the Pauli matrices. We refer to the �vx as the Pauli vec-
tors. The local correlation matrices are obviously invariant under unitary transfor-
mations in H . But they do depend on the arbitrariness in choosing the orthonor-
mal basis (u1, u2) of P (H). More precisely, the choice of the orthonormal basis
involves a U(2)-freedom and, according to the transformation of Pauli spinors in
non-relativistic quantum mechanics, this gives rise to orientation preserving rota-
tions of all Pauli vectors. Hence the local correlation matrices are unique up to the
transformations

�vx −→ R�vx with R ∈ SO(3) . (22)
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Figure 1. Tetrahedron configurations of the Pauli vectors

Let us collect a few properties of the local correlation matrices. Summing over x
and using the completeness relation (1), we find that

∑
x∈M Fx = 11 or, equiva-

lently, ∑
x∈M

ρx = 2 and
∑
x∈M

�vx = �0 . (23)

Furthermore, as the inner product in (20) has signature (1, 1), the matrix Fx can
have at most one positive and at most one negative eigenvalue. Expressed in terms
of the decomposition (21), this means that

|�vx| ≥ ρx for all x ∈M . (24)

Now assume that a fermion system with m = 4 space-time points is permu-
tation symmetric. Then the scalars ρx must all be equal. Using the left equation
in (23), we conclude that ρx = 1/2. Furthermore, the Pauli vectors must all have
the same length. In view of (24), this means that

|�vx| = v ≥ 1
2

for all x ∈M .

Moreover, the angles between any two vectors �vx, �vy with x �= y must coincide. The
only configuration with these properties is that the vectors �vx form the vertices of
a tetrahedron, see Figure 1. Labeling the vertices by the corresponding space-time
points distinguishes an orientation of the tetrahedron; in particular, the two tetra-
hedra in Figure 1 cannot be mapped onto each other by an orientation-preserving
rotation (22). This also implies that with the transformation (22) we cannot realize
odd permutations of the space-time points. Hence the fermion system cannot be
permutation symmetric, a contradiction.

Theorem 4.2 makes the effect of spontaneous symmetry breaking rigorous
and shows that the fermionic projector induces non-trivial relations between the
space-time points. But unfortunately, the theorem gives no information on what
the resulting smaller outer symmetry group is, nor how the induced relations
on the space-time points look like. For answering these questions, the setting of
Theorem 4.2 is too general, because the particular form of our variational principle
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Figure 2. Pauli vectors of the minimizers for five, eight and nine
space-time points

becomes important. The basic question is which symmetries the minimizers have.
In [2] the minimizers of the critical action are constructed numerically for two
particles and up to nine space-time points. For four space-time points, the Pauli
vectors of the minimizers indeed form a tetrahedron. In Figure 2, the Pauli vectors
of minimizers are shown in a few examples. Qualitatively, one sees that for many
space-time points, the vectors �vx all have approximately the same length 2/m and
can thus be identified with points on a two-dimensional sphere of radius 2/m.
The critical variational principle aims at distributing these points uniformly on
the sphere. The resulting structure is similar to a lattice on the sphere. Thus we
can say that for the critical action in the case f = 2 and in the limit m → ∞,
there is numerical evidence that the spontaneous symmetry breaking leads to the
emergence of the structure of a two-dimensional lattice.

The above two-particle systems exemplify the spontaneous generation of ad-
ditional structures in discrete space-time. However, one should keep in mind that
for the transition to Minkowski space one needs to consider systems which involve
many particles and are thus much more complicated. Before explaining how this
transition is supposed to work, we need to consider how causality arises in the
discrete framework.

5. Emergence of a discrete causal structure

In an indefinite inner product space, the eigenvalues of a self-adjoint operator A
need not be real, but alternatively they can form complex conjugate pairs (see [10]
or [5, Section 3]). This simple fact can be used to introduce a notion of causality.

Definition 5.1. (discrete causal structure) Two discrete space-time points x, y ∈M
are called timelike separated if the roots λj of the characteristic polynomial of Axy
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are all real. They are said to be spacelike separated if all the λj form complex
conjugate pairs and all have the same absolute value.

As we shall see in Section 6 below, for Dirac spinors in Minkowski space this
definition is consistent with the usual notion of causality. Moreover, the definition
can be understood within discrete space-time in that it reflects the structure of the
critical action. Namely, suppose that two space-time points x and y are spacelike
separated. Then the critical Lagrangian (11) vanishes. A short calculation shows
that the first variation M[Axy], (12), also vanishes, and thus Axy does not enter
the Euler-Lagrange equations. This can be seen in analogy to the usual notion of
causality that points with spacelike separation cannot influence each other.

In [2, Section 5.2] an explicit example is given where the spontaneous sym-
metry breaking gives rise to a non-trivial discrete causal structure. We now outline
this example, omitting a few technical details. We consider minimizers of the vari-
ational principle with constraint (7, 8) in the case n = 1, f = 2 and m = 3. We
found numerically that in the range of κ under consideration here, the minimizers
are permutation symmetric. Thus in view of (23, 24), the local correlation matrices
are of the form (21) with

|�vx| =: v ≥ 2
3

= ρx ,

and the three Pauli vectors form an equilateral triangle. In [2, Lemma 4.4] it is
shown that any such choice of local correlation matrices can indeed be realized by
a fermionic projector. Furthermore, it is shown that all fermionic projectors corre-
sponding to the same value of v are gauge equivalent. Thus we have, up to gauge
transformations, a one-parameter family of fermionic projectors, parameterized
by v ≥ 2/3.

We again represent the fermionic projector as in (19). Then the closed chain
can be written as

Axy =
2∑

i,j=1

|Ex ui><ui|Ey uj><uj |Ex .

Using the identity det(BC − λ) = det(CB − λ), cyclically commuting the factors
does not change the spectrum, and thus Axy is isospectral to the matrix

2∑
i=1

<uj|Ex ui><ui|Ey uk> = (FxFy)jk .

This makes it possible to express the roots λ± of the characteristic polynomial
of Axy in terms of the local correlation matrices. A direct computation gives (see [2,
Proposition 4.1])

λ± =
1
4

(
ρxρy + �vx�vy ±

√
|ρx�vy + ρy�vx|2 − |�vx × �vy|2

)
.

If x = y, the cross product vanishes, and thus the λ± are real. Hence each space-
time point has timelike separation from itself (we remark that this is valid in



From Discrete Space-Time to Minkowski Space 245

Figure 3. Plots of λ+ and λ− in the complex plane for varying v.

general, see [2, Proposition 2.7] and [5, Lemma 4.2]). In the case x �= y, the
eigenvalues λ+ and λ− are shown in Figure 3 for different values of v. If v = 2/3,
the eigenvalue λ− vanishes, whereas λ+ = 1/9. If v = 4

√
3

9 , the values of λ−
and λ+ coincide. If v is further increased, the λ± become complex and form a
complex conjugate pair. Hence different space-time points have timelike separation
if v ≤ 4

√
3

9 , whereas they have spacelike separation if v > 4
√

3
9 . In the latter

case the discrete causal structure is non-trivial, because some pairs of points have
spacelike and other pairs timelike separation. Finally, a direct computation of the
constraint (8) gives a relation between v and κ. One finds that v > 4

√
3

9 if and
only if κ > 68

81 . We conclude that in the case κ > 68
81 , the spontaneous symmetry

breaking leads to the emergence of non-trivial discrete causal structure.
We point out that the discrete causal structure of Definition 5.1 differs from

the definition of a causal set (see [1]) in that it does not distinguish between future
and past directed separations. In the above example with three space-time points,
the resulting discrete causal structure is also a causal set, albeit in a rather trivial
way where each point has timelike separation only from itself.

6. A first connection to Minkowski space

In this section we describe how to get a simple connection between discrete space-
time and Minkowski space. In the last Sections 7–9 we will proceed by explaining
the first steps towards making this intuitive picture precise. The simplest method
for getting a correspondence to relativistic quantum mechanics in Minkowski space
is to replace the discrete space-time points M by the space-time continuum R4 and
the sums over M by space-time integrals. For a vector Ψ ∈ H , the corresponding
localization ExΨ should be a 4-component Dirac wave function, and the scalar
product <Ψ(x) |Φ(x)> on Ex(H) should correspond to the usual Lorentz invariant
scalar product on Dirac spinors ΨΦ with Ψ = Ψ†γ0 the adjoint spinor. Since this
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last scalar product is indefinite of signature (2, 2), we are led to choosing n = 2.
In view of (5), the discrete kernel should go over to the integral kernel of an
operator P on the Dirac wave functions,

(PΨ)(x) =
∫

M

P (x, y)Ψ(y) d4y .

The image of P should be spanned by the occupied fermionic states. We take
Dirac’s concept literally that in the vacuum all negative-energy states are occupied
by fermions forming the so-called Dirac sea. Thus we are led to describe the vacuum
by the integral over the lower mass shell

P (x, y) =
∫

d4k

(2π)4
(k/ + m) δ(k2 −m2) Θ(−k0) e−ik(x−y)

(here Θ is the Heaviside function). Likewise, if we consider several generations of
particles, we take a sum of such Fourier integrals,

P (x, y) =
g∑

β=1

ρβ

∫
d4k

(2π)4
(k/ + mβ) δ(k2 −m2

β) Θ(−k0) e−ik(x−y) , (25)

where g denotes the number of generations, and the ρβ > 0 are weight factors
for the individual Dirac seas (for a discussion of the weight factors see [7, Ap-
pendix A]). Computing the Fourier integrals, one sees that P (x, y) is a smooth
function, except on the light cone {(y − x)2 = 0}, where it has poles and singular
contributions (for more details see (41) below).

Let us find the connection between Definition 5.1 and the usual notion of
causality in Minkowski space. Even without computing the Fourier integral (25),
it is clear from the Lorentz symmetry that for every x and y for which the Fourier
integral exists, P (x, y) can be written as

P (x, y) = α (y − x)jγ
j + β 11 (26)

with two complex coefficients α and β. Taking the complex conjugate of (25), we
see that

P (y, x) = α (y − x)jγ
j + β 11 .

As a consequence,

Axy = P (x, y)P (y, x) = a (y − x)jγ
j + b 11 (27)

with real parameters a and b given by

a = αβ + βα , b = |α|2 (y − x)2 + |β|2 , (28)

where (y − x)2 = (y − x)j(y − x)j , and for the signature of the Minkowski metric
we use the convention (+−−−). Applying the formula (Axy − b11)2 = a2 (y−x)2,
one can easily compute the roots of the characteristic polynomial of Axy,

λ1 = λ2 = b +
√
a2 (y − x)2 , λ3 = λ4 = b−

√
a2 (y − x)2 . (29)

If the vector (y−x) is timelike, we see from the inequality (y−x)2 > 0 that the λj

are all real. Conversely, if the vector (y − x) is spacelike, the term (y − x)2 < 0
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is negative. As a consequence, the λj form complex conjugate pairs and all have
the same absolute value. This shows that for Dirac spinors in Minkowski space,
Definition 5.1 is consistent with the usual notion of causality.

We next consider the Euler-Lagrange equations corresponding to the critical
Lagrangian (11). If (y − x) is spacelike, the λj all have the same absolute value,
and thus the Lagrangian vanishes. If on the other hand (y − x) is timelike, the λj

as given by (29) are all real, and a simple computation using (28) yields that
λ1λ2 ≥ 0, so that all the λj have the same sign (we remark that this is true in
more generality, see [7, Lemma 2.1]). Hence the Lagrangian (11) simplifies to

L[Axy] =

⎧⎨⎩ Tr(A2
xy)− 1

4
Tr(Axy)2 if (y − x) is timelike

0 if (y − x) is spacelike .
(30)

Now we can compute the gradient (12) to obtain (for details see [7, Section 2.2])

M[Axy] =

⎧⎨⎩ 2Axy −
1
2

Tr(Axy) 11 if (y − x) is timelike

0 if (y − x) is spacelike .
(31)

Using (27), we can also write this for timelike (y − x) as

M[Axy] = 2a(x, y) (y − x)jγj . (32)

Furthermore, using (28) we obtain that

M[Axy] = M[Ayx] . (33)

Combining the relations (33, 32, 26), we find that the two summands in (13)
coincide, and thus

Q(x, y) =
1
2
M[Axy] P (x, y) (34)

(we remark that the last identity holds in full generality, see [4, Lemma 5.2.1]).
We point out that this calculation does not determine M on the light cone,

and due to the singularities of P (x, y), the Lagrangian is indeed ill-defined if (y−
x)2 = 0. However, as an important special feature of the critical Lagrangian, we
can make sense of the Euler-Lagrange equations (15), if we only assume that M
is well-defined as a distribution. We now explain this argument, which will be
crucial for the considerations in Sections 8 and 9. More precisely, we assume that
the gradient of the critical Lagrangian is a Lorentz invariant distribution, which
away from the light cone coincides with (31), has a vector structure (32) and is
symmetric (33). Then this distribution, which we denote for clarity by M̃, can be
written as

M̃(ξ) = 2 ξ/ a(ξ2) Θ(ξ2) ε(ξ0) , (35)

where we set ξ ≡ y−x and ξ/ ≡ ξjγj , and ε is the step function (defined by ε(x) = 1
if x ≥ 0 and ε(x) = −1 otherwise). We now consider the Fourier transform of the
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p0

�p

q
M̂(p) P̂ (q − p)

Figure 4. The convolution M̂ ∗ P̂ .

distribution M̃(ξ), denoted by M̂(k). The factor ξ/ corresponds to the differential
operator i∂/k in momentum space, and thus

M̂(k) = 2i ∂/k

∫
d4ξ a(ξ2) Θ(ξ2) ε(ξ0) e−ikξ . (36)

This Fourier integral vanishes if k2 < 0. Namely, due to Lorentz symmetry, in this
case we may assume that k is purely spatial, k = (0, �k). But then the integrand of
the time integral in (36) is odd because of the step function, and thus the whole
integral vanishes. As in [4], we denote the mass cone as well as the upper and lower
mass cone by

C = {k | k2 > 0} , C∨ = {k ∈ C | k0 > 0} , C∧ = {k ∈ C | k0 < 0} , (37)

respectively. Then the above argument shows that the distribution M̂ is supported
in the closed mass cone, suppM̂ ⊂ C. Next we rewrite the pointwise product
in (34) as a convolution in momentum space,

Q̂(q) =
1
2

(M̂ ∗ P̂ )(q) =
1
2

∫
d4p

(2π)4
M̂(p) P̂ (q − p) . (38)

If q is in the lower mass cone C∧, the integrand of the convolution has compact
support (see Figure 4), and the integral is finite (if however q �∈ C∧, the convolution
integral extends over an unbounded region and is indeed ill-defined). We conclude
that Q̂(q) is well-defined inside the lower mass cone. Since the fermionic projec-
tor (25) is also supported in the lower mass cone, this is precisely what we need
in order to make sense of the operator products P̂ (k)M̂(k) and M̃(k) P̂ (k) which
appear in the commutator (15). In this way we have given the Euler-Lagrange
equations a mathematical meaning.

In the above consideration we only considered the critical Lagrangian. To
avoid misunderstandings, we now briefly mention the physical significance of the
variational principle with constraint (7, 8) and explain the connection to the above
arguments. In order to describe a realistic physical system involving different types
of fermions including left-handed neutrinos, for the fermionic projector of the vac-
uum one takes a direct sum of fermionic projectors of the form (25) (for details
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see [4, §5.1]). On the direct summands involving the neutrinos, the closed chain Axy

vanishes identically, and also the Euler-Lagrange equations are trivially satisfied.
On all the other direct summands, we want the operator M to be of the form (35),
so that the above considerations apply again. In order to arrange this, the value
of the Lagrange multiplier μ must be larger than the critical value 1

2n . Thus we
are in the case μ > 1

2n where the auxiliary variational principle has no minimizers.
This is why we need to consider the variational principle with constraint (7, 8).
Hence the fermionic projector of fundamental physics should be a minimizer of the
variational principle with constraint (7, 8) corresponding to a value μ > 1

2n of the
Lagrange multiplier (such minimizers with μ > 1

2n indeed exist, see [2, Proposi-
tion 5.2] for a simple example). The physical significance of the critical variational
principle lies in the fact that restricting attention to one direct summand of the
form (25) (or more generally to a subsystem which does not involve chiral par-
ticles), the Euler-Lagrange equations corresponding to (7, 8) coincide with those
for the critical Lagrangian as discussed above. For more details we refer to [4,
Chapter 5].

7. A static and isotropic lattice model

Our concept is that for many particles and many space-time points, the mech-
anism explained in Sections 4 and 5 should lead to the spontaneous emergence
of the structure of Minkowski space or a Lorentzian manifold. The transition be-
tween discrete space-time and the space-time continuum could be made precise by
proving conjectures of the following type.

Conjecture 7.1. In spin dimension (2, 2), there is a series of fermion systems in
discrete space-time (H(l), <.|.>, (E(l)

x )x∈M(l) , P (l)) with the following properties:

(1) The fermionic projectors P (l) are minimizers of the auxiliary variational prin-
ciple (9) in the critical case μ = 1

4 .
(2) The number of space-time points m(l) and the number of particles f (l) scale

in l as follows,
m(l) ∼ l4 , f (l) ∼ l3 .

(3) There are positive constants c(l), embeddings ι(l) : M (l) ↪→ R4 and isomor-
phisms α(l) : H(l) → L2(Φ(l)(M (l)), <.|.>) (where <.|.> is the standard
inner product on Dirac spinors <Φ|Ψ> = Φ†γ0Ψ), such that for any test
wave functions Ψ,Φ ∈ C∞

0 (R4)4,

c(l)
∑

x,y∈M(l)

Φ(ιx)†α(l)E(l)
x P (l)E(l)

y (α(l))−1Ψ(ιy)

l→∞−→
∫

d4x

∫
d4y Φ(x)†P (x, y)Ψ(y) ,

where P (x, y) is the distribution (25).
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(4) As l →∞, the operators M[A(l)
xy] converge likewise to the distribution M̃(ξ),

(35).

Similarly, one can formulate corresponding conjectures for systems involving sev-
eral Dirac seas, where the variational principle (7) with constraint (8) should be
used if chiral particles are involved. Moreover, it would be desirable to specify that
minimizers of the above form are in some sense generic. Ultimately, one would
like to prove that under suitable generic conditions, every sequence of minimizing
fermion systems has a subsequence which converges in the above weak sense to an
interacting physical system defined on a Lorentzian manifold.

Proving such conjectures is certainly difficult. In preparation, it seems a good
idea to analyze particular aspects of the problem. One important task is to under-
stand why discrete versions of Dirac sea configurations (25) minimize the critical
action. A possible approach is to analyze discrete fermion systems numerically. In
order to compare the results in a reasonable way to the continuum, one clearly
needs systems involving many space-time points and many particles. Unfortu-
nately, large discrete systems are difficult to analyze numerically. Therefore, it
seems a good idea to begin the numerical analysis with simplified systems, which
capture essential properties of the original system but are easier to handle. In [9]
such a simplified system is proposed, where we employ a spherically symmetric and
static Ansatz for the fermionic projector. We now briefly outline the derivation of
this model and discuss a few results.

For the derivation we begin in Minkowski space with a static and isotropic
system, which means that the fermionic projector P (x, y) depends only on the
difference ξ = y − x and is spherically symmetric. We take the Fourier transform,

P (ξ) =
∫

d4p

(2π)4
P̂ (p) eipξ , (39)

and take for P̂ an Ansatz involving a vector-scalar structure, i.e.

P̂ (p) = vj(p) γj + φ(p) 11 (40)

with real functions vj and φ. Using the spherical symmetry, we can choose polar
coordinates and carry out the angular integrals in (39). This leaves us with a two-
dimensional Fourier integral from the momentum variables (ω = p0, k = |�p|) to the
position variables (t = ξ0, r = |�ξ|). In order to discretize the system, we restrict
the position variables to a finite lattice L,

(t, r) ∈ L :=
{
0, 2π, . . . , 2π(Nt − 1)

}
×
{
0, 2π, . . . , 2π(Nr − 1)

}
.

Here the integer parameters Nt and Nr describe the size of the lattice, and by
scaling we arranged that the lattice spacing is equal to 2π. Then the momentum
variables are on the corresponding dual lattice L̂,

(ω, k) ∈ L̂ :=
{
− (Nt − 1), . . . ,−1, 0

}
×
{
1, . . . , Nr

}
.
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Figure 5. Action for a lattice system with two occupied states

Defining the closed chain by A(t, r) = P (t, r)P (t, r)∗, we can again introduce the
critical Lagrangian (10) with μ = 1

4 . For the action, we modify (9) to

S[P ] =
∑

(t,r)∈L

ρt(t) ρr(r) L(t, r) ,

where the weight factors ρt and ρr take into account that we only consider positive t
and that a point (t, r) corresponds to many states on a sphere of radius r. When
varying the action we need to take into account two constraints, called the trace
condition and the normalization condition, which take into account that the total
number of particles is fixed and that the fermionic projector should be idempotent.

In [9, Proposition 6.1] the existence of minimizers is proved, and we also
present first numerical results for a small lattice system. More precisely, we consider
an 8 × 6-lattice and occupy one state with k = 1 and one with k = 2. The
absolute minimum is attained when occupying the lattice points (ω1 = −1, k = 1)
and (ω2 = −2, k = 2). Introducing a parameter τ by the requirement that the
spatial component of the vector v in (40) should satisfy the relation |�v| = φ sinh τ ,
the trace and normalization conditions fix our system up to the free parameters τ1
and τ2 at the two occupied space-time points. In Figure 5 the action is shown as
a function of these two free parameters. The minimum at the origin corresponds
to the trivial configuration where the two vectors vi are both parallel to the ω-
axis. However, this is only a local minimum, whereas the absolute minimum of
the action is attained at the two non-trivial points (τ1 ≈ 1.5, τ2 ≈ 1) and (τ1 ≈
−1.5, τ2 ≈ −1).

Obviously, a system of two occupied states on an 8 × 6-lattice is much too
small for modeling a Dirac sea structure. But at least, our example shows that
our variational principle generates a non-trivial structure on the lattice where the
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occupied points distinguish specific lattice points, and the corresponding vectors v
are not all parallel.

8. Analysis of regularization tails

Another important task in making the connection to Minkowski space rigorous is
to justify the distribution M̃ in (35). To explain the difficulty, let us assume that we
have a family of fermion systems (H(l), <.|.>, (E(l)

x )x∈M(l) , P (l)) having the prop-
erties (1)-(3) of Conjecture 7.1. We can then regard the operators α(l)P (l)(α(l))−1

as regularizations of the continuum fermionic projector (25). It is easier to consider
more generally a family of regularizations (P ε)ε>0 in Minkowski space with

P ε(x, y) ε↘0−→ P (x, y) in the distributional sense.

The parameter ε should be the length scale of the regularization. In order to
justify (35) as well as the convolution integral (38), our regularization should have
the following properties:

Definition 8.1. The fermionic projector satisfies the assumption of a distributional
MP -product if the following conditions are satisfied:

(i) There is a distribution M̃(ξ) of the form (35) such that limε↘0M[Aε
xy] =

M̃(ξ) in the distributional sense.
(ii) For every k for which limε↘0 Q̂

ε(k) exists, the convolution integral (38) is
well-defined and limε↘0 Q̂

ε(k) = Q̂(k).

This notion was introduced in [4, §5.6] and used as an ad-hoc assumption on
the regularization. Justifying this assumption is not just a technicality, but seems
essential for getting a detailed understanding of how the connection between dis-
crete space-time and Minkowski space is supposed to work. Namely, if one takes
a simple ultraviolet regularization (for example a cutoff in momentum space),
then, due to the distributional singularity of P (x, y) on the light cone, the prod-
uct Aε

xy = P ε(x, y)P ε(y, x) will in the limit ε↘ 0 develop singularities on the light
cone, which are ill-defined even in the distributional sense. Thus, in order to satisfy
the conditions of Definition 8.1, we need to construct special regularizations, such
that the divergences on the light cone cancel. In [7] it is shown that this can in-
deed be accomplished. The method is to consider a class of spherically symmetric
regularizations involving many free parameters, and to adjust these parameters
such that all the divergences on the light cone and near the origin compensate
each other. It seems miraculous that it is possible to cancel all the divergencies;
this can be regarded as a confirmation for our approach. If one believes that the
regularized fermionic projector describes nature, we get concrete hints on how the
vacuum should look like on the Planck scale. More specifically, the admissible reg-
ularizations give rise to a multi-layer structure near the light cone involving several
length scales.
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In this survey article we cannot enter into the constructions of [7]. Instead,
we describe a particular property of Dirac sea configurations which is crucial for
making the constructions work. Near the light cone, the distribution P (x, y) has
an expansion of the following form

P (x, y) = +iC0 ξ/
PP
ξ4

+ C1
PP
ξ2

+ iC2 ξ/
PP
ξ2

+ C3 log(ξ2) + · · ·

+ε(ξ0)
(
D0 ξ/δ

′(ξ2) + iD1 δ(ξ2) + D2 ξ/δ(ξ2) + iD3 Θ(ξ2) + · · ·
)

(41)

with real constants Cj and Dj (PP denotes the principal part; for more details
see [7, Section 3]). Let us consider the expression M[Axy], (31), for timelike ξ.
Computing the closed chain by Axy = P (x, y)P (x, y)∗, from (41) we obtain away
from the light cone the expansion

Axy =
C2

0

ξ6
+

C2
1 + 2C0C2

ξ4
+ 2C0D3

ξ/ ε(ξ0)
ξ4

+ · · · (ξ2 > 0). (42)

It is remarkable that there is no contribution proportional to ξ//ξ6. This is because
the term ∼ C0C1 is imaginary, and because the contributions corresponding to D0,
D1 and D2 are supported on the light cone. Taking the trace-free part, we find

M[Axy] = 4C0D3
ξ/ ε(ξ0)
ξ4

+ · · · (ξ2 > 0). (43)

The important point is that, due to the specific form of the Dirac sea configuration,
the leading pole of M[Axy] on the light cone is of lower order than expected from
a naive scaling. This fact is extremely useful in the constructions of [7]. Namely,
if we consider regularizations of the distribution (41), the terms corresponding
to C0, C1 and C2 will be “smeared out” and will thus no longer be supported
on the light cone. In particular, the contribution ∼ C0D1 no longer vanishes, and
this vector contribution can be used to modify (43). In simple terms, this effect
means that the contributions by the regularization are amplified, making it possible
to modify M[Aε

xy] drastically by small regularization terms. In [7] we work with
regularization tails, which are very small but spread out on a large scale εγ with γ <
1. Taking many tails with different scales gives rise to the above-mentioned multi-
layer structure. Another important effect is that the regularization yields bilinear
contributions to M[Aε

xy] of the form ∼ iC0D0γ
tγr (with γr = �ξ�γ/|�ξ|), which are

even more singular on the light cone than the vector contributions. The bilinear
contributions tend to make the roots λj complex (as can be understood already
from the fact that (iγtγr)2 = −11). This can be used to make a neighborhood of
the light cone space-like; more precisely,

M[Aε
xy] ≡ 0 if |ξ0| < |�ξ|+ εγ |�ξ|− 1

α with γ < 1 and α > 1. (44)

The analysis in [7] also specifies the singularities of the distribution M̃ on the
light cone (recall that by (31), M̃ is determined only away from the light cone).
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We find that M̃ is unique up to the contributions

M̃(x, y) - c0 ξ/ δ
′(ξ2) ε(ξ0) + c1 ξ/ δ(ξ2) ε(ξ0) (45)

with two free parameters c0, c1 ∈ R. Moreover, the regularization tails give us
additional freedom to modify M[Aε

xy] near the origin ξ = 0. This makes it possible
to go beyond the distributional MP -product by arranging extra contributions
supported at the origin. Expressed in momentum space, we may modify Q̂(q) by
a polynomial in Q; namely (see [7, Theorem 2.4])

Q̂(q) := lim
ε↘0

Q̂ε(q) =
1
2

(M̂ ∗ P̂ )(q) + c2 + c3 q/ + c4 q
2 (q ∈ C∧) (46)

with additional free parameters c2, c3, c4 ∈ R.

9. A variational principle for the masses of the Dirac seas

With the analysis of the regularization tails in the previous section we have given
the Euler-Lagrange equations for a vacuum Dirac sea configuration a rigorous
mathematical meaning. All the formulas are well-defined in Minkowski space with-
out any regularization. The freedom to choose the regularization of the fermionic
projector is reflected by the free real parameters c0, . . . , c4 in (45) and (46). This
result is the basis for a more detailed analysis of the Euler-Lagrange equations for
vacuum Dirac sea configurations as carried out recently in [8]. We now outline the
methods and results of this paper.

We first recall the notion of state stability as introduced in [4, §5.6]. We want
to analyze whether the vacuum Dirac sea configuration is a stable local minimum
of the critical variational principle within the class of static and homogeneous
fermionic projectors in Minkowski space. Thus we consider variations where we
take an occupied state of one of the Dirac seas and bring the corresponding particle
to any other unoccupied state q ∈ Q∧. Taking into account the vector-scalar
structure in the Ansatz (25) and the negative definite signature of the fermionic
states, we are led to the variations (for details see [4, §5.6])

δP = −c(k/ + m) e−ik(x−y) + c(l/ + m) e−iq(x−y) (47)

with m ∈ {m1, . . . ,mg} � 
√
q2, k2 = l2 = m2 and k0, l0 < 0. We demand that

such variations should not decrease the action,

S[P + δP ] ≥ S[P ] for all variations (47).

For the proper normalization of the fermionic states, we need to consider the
system in finite 3-volume. Since the normalization constant c in (47) tends to zero
in the infinite volume limit, we may treat δS as a first order perturbation. Hence
computing the variation of the action by (14), we obtain the condition stated in
the next definition. Note that, according to (45), (46) and (38), we already know
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that Q̂ is well-defined inside the lower mass cone and has a vector scalar structure,
i.e.

Q̂(k) = a
k/

|k| + b , k ∈ C∧ , (48)

where we set |k| =
√
k2, and a = a(k2), b = b(k2) are two real-valued, Lorentz

invariant functions.

Definition 9.1. The fermionic projector of the vacuum is called state stable if the
functions a and b in the representation (48) of Q̂(k) have the following properties:
(1) a is non-negative.
(2) The function a + b is minimal on the mass shells,

(a + b)(m2
α) = inf

q∈C∧
(a + b)(q2) for all α ∈ {1, . . . , g}. (49)

It is very helpful for the understanding and the analysis of state stability
that the condition (49) can be related to the Euler-Lagrange equations of a cor-
responding variational principle. This variational principle was introduced in [8]
for unregularized Dirac sea configurations of the form (25) and can be regarded
as a Lorentz invariant analog of the critical variational principle. To define this
variational principle, we expand the trace-free part of the closed chain inside the
light cone similar to (41, 42) as follows,

A0(ξ) := Axy −
1
4

Tr(Axy) = ξ/ ε(ξ0)
(

m3

ξ4
+

m5

ξ2
+O(log ξ2)

)
,

where the coefficients m3 and m5 are functions of the parameters ρβ and mβ in (25).
Using the simplified form (30) of the critical Lagrangian, we thus obtain for ξ in
the interior of the light cone the expansion

L = Tr(A0(ξ)2) =
m3

ξ6
+

2m3m5

ξ4
+O(ξ−2 log ξ2) (ξ2 > 0).

The naive adaptation of the critical action (9) would be to integrate L over the
set {ξ2 > 0} (for details see [8, Section 2]). However, this integral diverges because
the hyperbolas {ξ2 = const}, where L is constant, have infinite measure. To avoid
this problem, we introduce the variable z = ξ2 and consider instead the one-
dimensional integral

∫∞
0
L(z) z dz, which has the same dimension of length as the

integral
∫
L d4ξ. Since this new integral is still divergent near z = 0, we subtract

suitable counter terms and set

S = lim
ε↘0

(∫ ∞

ε

L(z) z dz − m2
3

ε
+ 2 m3 m5 log ε

)
. (50)

In order to build in the free parameters c0, c1 in (45) and c2, c3 in (46), we introduce
the extended action by adding extra terms,

Sext = S + F (m3,m5) + c3

g∑
β=1

ρβ m4
β + c4

g∑
β=1

ρβ m5
β , (51)
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Figure 6. A state stable Dirac sea structure with three generations

where F is an arbitrary real function (note that the parameter c2 in (46) is ir-
relevant for state stability because it merely changes the function b in (48) by a
constant). In our Lorentz invariant variational principle we minimize (51), varying
the parameters ρβ and mβ under the constraint

g∑
β=1

mβ ρ3
β = const .

This constraint is needed to rule out trivial minimizers; it can be understood as
replacing the condition in discrete space-time that the number of particles is fixed.

In [8] it is shown that, allowing for an additional “test Dirac sea” of mass
mg+1 and weight ρg+1 (with ρg+1 = 0 but δρg+1 �= 0), the corresponding Euler-
Lagrange equations coincide with (49). The difficult point in the derivation is
to take the Fourier transform of the Lorentz invariant action and to reformulate
the ε-regularization in (50) in momentum space. In [8] we proceed by constructing
numerical solutions of the Euler-Lagrange equations which in addition satisfy the
condition (1) in Definition 9.1. We thus obtain state stable Dirac sea configurations.
Figure 6 shows an example with three generations and corresponding values of the
parameters m1 = 1, m2 = 5, m3 = 20 and ρ1 = 1, ρ2 = 10−4, ρ3 = 9.696× 10−6.

10. The continuum limit

The continuum limit provides a method for analyzing the Euler-Lagrange equa-
tions (15) for interacting systems in Minkowski space. For details and results we
refer to [4, Chapters 6-8]; here we merely put the procedure of the continuum limit
in the context of the methods outlined in Sections 6–9. As explained in Section 8,
the regularization yields bilinear contributions to Aε

xy, which make a neighbor-
hood of the light cone spacelike (44). Hence near the light cone, the roots λj of
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the characteristic polynomial form complex conjugate pairs and all have the same
absolute value,

|λi| = |λj | for all i, j, (52)
so that the critical Lagrangian (11) vanishes identically. If we introduce an interac-
tion (for example an additional Dirac wave function or a classical gauge field), the
corresponding perturbation of the fermionic projector will violate (52). We thus
obtain corresponding contributions to M[Aε

xy] in a strip of size ∼ ε around the
light cone. These contributions diverge if the regularization is removed. For small ε,
they are much larger than the contributions by the regularization tails as discussed
in Section 8; this can be understood from the fact that they are much closer to
the light cone. The formalism of the continuum limit is obtained by an expansion
of these divergent contributions in powers of the regularization length ε. The de-
pendence of the expansion coefficients on the regularization is analyzed using the
method of variable regularization; we find that this dependence can be described
by a small number of free parameters, which take into account the unknown struc-
ture of space-time on the Planck scale. The dependence on the gauge fields can be
analyzed explicitly using the method of integration along characteristics or, more
systematically, by performing a light-cone expansion of the fermionic projector. In
this way, one can relate the Euler-Lagrange equations to an effective interaction
in the framework of second quantized Dirac fields and classical bosonic fields.

11. Outlook and open problems

In this paper we gave a detailed picture of the transition from discrete space-time
to the usual space-time continuum. Certain aspects have already been worked
out rigorously. But clearly many questions are still open. Generally speaking, the
main task for making the connection between discrete space-time and Minkowski
space rigorous is to clarify the symmetries and the discrete causal structure of
the minimizers for discrete systems involving many particles and many space-time
points. More specifically, we see the following directions for future work:

1. Numerics for large lattice models: The most direct method to clarify the con-
nection between discrete and continuous models is to the static and isotropic
lattice model [9] for systems which are so large that they can be compared
in a reasonable way to the continuum. Important questions are whether the
minimizers correspond to Dirac sea configurations and what the resulting
discrete causal structure is. The next step will be to analyze the connection
to the regularization effects described in [7]. In particular, does the lattice
model give rise to a multi-layer structure near the light cone? What are the
resulting values of the constants c0, . . . , c4 in (45, 46)?

2. Numerics for fermion systems in discrete space-time: For more than two
particles, almost nothing is known about the minimizers of our variational
principles. A systematic numerical study could answer the question whether
for many particles and many space-time points, the minimizers have outer
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symmetries which can be associated to an underlying lattice structure. A
numerical analysis of fermion systems in discrete space-time could also justify
the spherically symmetric and static Ansatz in [9].

3. Analysis and estimates for discrete systems: In the critical case, the general
existence problem for minimizers is still open. Furthermore, using methods
of [6], one can study fermion systems with prescribed outer symmetry analyt-
ically. One question of interest is whether for minimizers the discrete causal
structure is compatible with the structure of a corresponding causal set. It
would be extremely useful to have a method for analyzing the minimizers
asymptotically for a large number of space-time points and many particles.
As a first step, a good approximation technique (maybe using methods from
quantum statistics?) would be very helpful.

4. Analysis of the Lorentz invariant variational principle: In [8] the variational
principle for the masses of the vacuum Dirac seas is introduced and analyzed.
However, the existence theory has not yet been developed. Furthermore, the
structure of the minimizers still needs to be worked out systematically.

5. Analysis of the continuum limit: It is a major task to analyze the continuum
limit in more detail. The next steps are the derivation of the field equations
and the analysis of the spontaneous symmetry breaking of the chiral gauge
group. Furthermore, except for [3, Appendix B], no calculations for gravita-
tional fields have been made so far. The analysis of the continuum limit should
also give constraints for the weight factors ρβ in (25) (see [8, Appendix A]).

6. Field quantization: As explained in [4, §3.6], the field quantization effects
should be a consequence of a “discreteness” of the interaction described by
our variational principle. This effect could be studied and made precise for
small discrete systems.

Apart from being a challenge for mathematics, these problems have the physical
perspective of clarifying the microscopic structure of our universe and explaining
the emergence of space and time.
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physical theories on discrete spacetime structures that do not suffer from the
absence of well-known spacetime symmetries. In this manner q-deformation
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1. Introduction

I would like to start with some historical notes. From the great mathematician
Bernhard Riemann we know that the answer to the question for the right geometry
of spacetime is essential to physics. The founders of modern quantum theory, i.e.
people like Bohr, Born, Dirac, or Heisenberg were of the opinion that the deeper
reason for the infinities in quantum field theory lies in an inadequate description of
the geometry of spacetime at very small distances. They believed that spacetime
itself had to be incorporated into a quantization scheme. On these grounds it
is not very astonishing that the idea of quantizing spacetime is nearly as old as
modern quantum theory itself [1,2]. Up to the present day many researchers took
up this idea over and over again [3–8] (for a survey see, for example, Ref. [9]) but
their approaches often suffer from conceptual difficulties such as the breakdown of
Lorentz symmetry or the prediction of new, rather unusual phenomena.
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Feynman, Schwinger, and Tomonaga suggested a different method to over-
come the difficulties with infinities in quantum field theory. Their approach is
known as renormalization theory [10–12]. With the great experimental success of
renormalization theory after the Second World War most efforts towards quantiz-
ing spacetime came to an end. Although theoreticians at first felt rather uncom-
fortable with renormalization theory they began to accept it since it gave them a
tool at hand by which they could make numerical predictions that were in aston-
ishing agreement with experiment. Nowadays the ideas of renormalization theory
are well understood and much progress in quantum field theory was due to the
assumption that any sensible physical theory should be renormalizable.

Nevertheless, theoreticians are convinced that renormalizable theories are
only a low-energy approximation to a more fundamental, possibly non-renormaliza-
ble theory. This belief is nourished by the following observation. Renormalizability
allows us to neglect certain quantum processes yielding divergent diagrams in a
perturbative treatment. The reason for this lies in the fact that such quantum
processes should be highly suppressed at accessible energies. They only have an
influence on the masses and charges that are actually measured. However, when
quantum corrections to the gravitational field become important these assumptions
seem no longer acceptable. This claim is underpinned by the continued failure to
find a renormalizable theory of gravitation.

As renormalizability seems to be not a fundamental physical requirement, the
old idea of quantizing spacetime enjoys a revival. In this respect, quantum groups
and quantum spaces that arise from q-deformation provide a suitable framework
for formulating physical theories on quantized spaces [13–23]. They imply dis-
cretizations of well-known spacetime structures [24–29], which, in turn, lead to a
very powerful regularization mechanism, as is demonstrated in Sec. 2 of this article.

The attractiveness of q-deformed quantum groups and quantum spaces stems
from the fact that they describe discrete spaces that do not suffer from the ab-
sence of the well-known spacetime symmetries. However, there is a high price we
have to pay for this feature, since the usage of quantum groups and quantum
spaces requires a complete revision of the mathematics important physical ideas
are formulated by. In Sec. 3 we show how the elements of analysis like partial
derivatives, integrals, and so on change under q-deformation. On the other hand
the mathematics of q-deformed quantum groups and quantum spaces is sophisti-
cated enough to ensure that well-established physical laws pertain. The treatment
of the free non-relativistic q-deformed particle underlines this statement as will be
seen in section 4.

2. q-Regularization

In this section we would like to illustrate the regularization mechanism induced
by q-deformation. First of all, let us recall that quantizing spacetime can single
out a lattice which, in turn, implies the existence of a smallest length given by the
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lattice spacing. On such a discrete spacetime plane-waves of wave-length smaller
than twice the lattice spacing could not propagate. Since wave-length and mo-
mentum of a plane-wave are inversely proportional to each other it then follows
that momentum space would be bounded. As a consequence all integrals over loop
momenta should take on finite values.

As we will see below, q-deformation realizes these general ideas in a more
subtle way. To this end, let us consider the following q-analogs of trigonometrical
functions [30]:

cosq(x) ≡
∞∑

k =0

(−1)kx2k

[2k]q!
, sinq(x) ≡ q1/2

∞∑
k =0

(−1)kx2k+1

[2k + 1]q!
. (2.1)

The symmetrical q-numbers and their factorials are respectively given by [31]

[n]q ≡
qn − q−n

q − q−1
, q > 1, (2.2)

and
[n]q! ≡ [n]q [n− 1]q . . . [1]q, [0]q! ≡ 1. (2.3)

From Fig. 1 we see that the q-trigonometrical functions are more or less pe-
riodic, but their maxima and minima increase in height exponentially.
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Figure 1. Fig. 1: Plot of the q-trigonometrical function
cosq(x/(q − q−1)), section at q = 1.1

The q-regularization mechanism is based on the following very remarkable
property of q-trigonometrical functions [32, 33]: There are real constants a and b
such that

lim
n→∞ cosq(aq2n) = lim

n→∞ sinq(bq2n+1) = 0. (2.4)
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If the q-trigonometrical functions are given by the expressions in (2.1) these con-
stants take on the values

a =
q−1/2

q − q−1
, b =

q1/2

q − q−1
. (2.5)

The deeper reason for this behavior of q-trigonometrical functions lies in the
fact that their sequence of roots approach the values aq2n or bq2n+1 if n tends
to infinity. Table 1 contains the absolute values of cosq(aq2n) one obtains when n
runs through all integers from 1 to 20. A short glance at the table tells us that
they are decreasing very rapidly with increasing n (notice that the smallest values
appear in the top line and the biggest ones in the bottom line).

Tab. 1: The absolute values of cosq(aq2n) for n = 1, . . . , 20, q = 1.1

1.0954837827, 0.3806453606, 1.3002562658, 0.7466139278,
0.2073439674, 0.0332735098, 0.0033145196, 0.0002126316,
8.97256×10-6, 2.52305×10-7, 4.76707×10-9, 6.08464×10-11,

5.26538×10-13, 3.09651×10-15, 1.23955×10-17, 3.38126×10-20,
6.28977×10-23, 7.98276×10-26, 6.91482×10-29, 4.08903×10-32.

In complete analogy to the undeformed case the q-trigonometrical functions
in (2.1) represent the real and imaginary part of q-deformed plane-waves. Transi-
tion amplitudes in a q-deformed quantum field theory are then given by Fourier
transforms that are formulated by means of q-trigonometrical functions and so-
called Jackson integrals. The latter are given by [34]∫ ∞

0

dqx f(x) ≡
∞∑

k =−∞
(q − 1)(c qk)f(c qk), (2.6)

where c stands for an undetermined real constant. In this manner, the following
expressions are viewed as q-analogs of one-dimensional Fourier transforms:∫ ∞

0

dq2x f(x) · cosq(x p) ≡
∞∑

k =−∞
(q2 − 1) (aq2k) f(aq2k) · cosq(aq2kp), (2.7)

∫ ∞

0

dq2x f(x) · sinq(x p) ≡
∞∑

k =−∞
(q2 − 1) (bq2k+1) f(bq2k+1) · sinq(bq2k+1p).

(2.8)

Notice that in (2.7) and (2.8) we set c equal to a and b, respectively [cf. Eq. (2.5)].
Essential for us is the following observation. If we require that the value of the

momentum variable p takes on even powers of q, the sums on the right-hand side
of (2.7) and (2.8) even converge for functions f(x) that have no classical Fourier
transform. To illustrate this point let us turn our attention to the expression∫ ∞

a

dq2xx10 · cosq(x) =
∞∑

k = 0

(q2 − 1) (a11q22k) · cosq(aq2k). (2.9)
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It is part of the calculation of a q-deformed Fourier transform of the function
f(x) = x10. Table 2 contains the numerical values of all partial sums of the Jackson
integral in (2.9) that contain no more than twenty summands. Once again, we see
that their sequence converges so fast that we are allowed to truncate the sum in
(2.9) after twenty summations. It should finally be mentioned that this observation
is a consequence of the property in (2.4).

Tab. 2: Partial sums with no more than twenty summands , q = 1.1

8.57483×107, 2.96844×108, -5.03939×109, 1.76356×1010,
-2.89647×1010, 2.63758×1010, -1.44196×1010, 4.94746×109,
-1.10037×109, 1.58134×108, -1.78318×107, -1.21080×106,
-2.27518×106, -2.22886×106, -2.23023×106, -2.23021×106,
-2.23021×106, -2.23021×106, -2.23021×106, -2.23021×106.

The considerations so far should now enable us to understand the regular-
ization mechanism in a q-deformed field theory. It can be described as follows:
The Jackson integral is determined by the values its integrand takes on for the
points c q2n or c q2n+1, where n ∈ Z. These points establish a so-called q-lattice
with offset c. A suitable choice for c guarantees that the values of the q-deformed
trigonometrical functions rapidly diminish on the q-lattice points with increasing
distance from the origin. This feature carries over to the integrands of q-deformed
Fourier integrals and so insures their convergency.

3. Basic ideas of the mathematical formalism

This section is devoted to mathematical ideas which are indispensable for under-
standing q-deformed versions of physical theories. The presentation gives a brief
outline of the subject, only. In this respect, it shall serve as a kind of ’appetizer’.
For details, we refer the reader to Refs. [35–42].

3.1. What are quantum groups and quantum spaces?

Let us first recall that spacetime symmetries are normally described by Lie groups.
Roughly speaking, quantum groups are nothing other than natural generalizations
of such groups. To understand this assertion in more detail let us also recall that
a group G is a set on which an associative product is defined such that a unit
element e exists and such that every element u has an inverse u−1. Instead of
working with the group elements itself, it is possible to restrict attention to linear
functions on the group. The latter constitute an algebra which is often denoted
by F(G). One finds that the group multiplication induces on F(G) an algebraic
structure making F(G) into a so-called Hopf algebra. To each group we can con-
struct a Hopf algebra but the converse does not hold in general, since the variety
of Hopf algebras is larger than that of groups. Quantum groups, for example, are
Hopf algebras, but they show a non-commutative algebraic structure that prevents
us from identifying them with an algebra of linear functions on an ordinary group.
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Figure 2. Relation between a group g and its function algebra F(g)

Nevertheless, quantum groups show features that are reminiscent of function al-
gebras on a group. In this sense, it should become clear that quantum groups can
be viewed as generalizations of groups.

Perhaps, the reader may have realized that the notion of a quantum group
arises from a process of dualization in which the group structure is replaced by
a Hopf structure. There is a similar relationship between ordinary spaces and
quantum spaces. To this end let us recall that a physical space such as a coordinate
space is often described as a vector space V some group G acts upon. In other
words, physical spaces are representations of their symmetry groups and are often
referred to as modules. Interestingly, the vector space F(V ) being dual to a given
module V contains the same information as the module itself. In mathematical
terms, this observation amounts to the assertion that F(V ) becomes a so-called
co-representation or co-module of F(G) (see Fig. 2).

Quantum spaces are generalizations of ordinary spaces insofar as they are de-
fined as co-modules of quantum groups. In this respect, they are non-commutative
spaces whose symmetry is governed by quantum groups. To sum up, dualizing the
notion of a group and that of its representations we arrive at generalizations of
ordinary physical spaces and their symmetries.

The simplest example of a quantum space is given by the famous Manin
plane, which is spanned by the coordinates X1 and X2 subject to

X1X2 = qX2X1, q > 1. (3.1)

The Manin plane is a co-representation of the quantum group SLq(2). The latter is
a Hopf algebra generated by four non-commuting elements which we can arrange
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in matrix form:

M i
j =

(
a b
c d

)
. (3.2)

If we do so, the coactions of SLq(2) on quantum plane coordinates become

β(X i) = M i
j ⊗Xj . (3.3)

The requirement of covariance, i.e.

β(X1)β(X2) = qβ(X2)β(X1), (3.4)

implies the relations

ab = qba, ac = qca, bc = cb, bd = qdb,

cd = qdc, ad− da = (q − q−1)bc. (3.5)

3.2. How do we multiply on quantum spaces?

From the example in the last subsection we saw that quantum spaces are spanned
by non-commuting elements. The essential feature of our approach is that we real-
ize the non-commutative structure of our quantum space algebras on commutative
coordinate spaces. To achieve this, we make use of the fact that there are vector
space isomorphisms that map normal ordered monomials of the non-commuting
quantum space generators to the corresponding monomials of ordinary coordinates,
i.e.

W−1 : Vq −→ V,

W−1((X1)i1 . . . (Xn)in) ≡ (x1)i1 . . . (xn)in . (3.6)

Notice that we denote quantum space generators by capital letters. It should also
be clear that the vector space isomorphism W is completely determined by (3.6),
since each quantum space element can be written as a formal power series of
normal ordered monomials.

Interestingly, one can extend the above vector space isomorphism to an al-
gebra isomorphism by introducing a non-commutative product in V , the so-called
star product [43–45]. This product is defined via the relation

W(f � g) = W(f) · W(g), (3.7)

being tantamount to
f � g ≡ W−1 (W (f) · W (g)) , (3.8)

where f and g are formal power series in the commutative coordinate algebra V .
In the case of the Manin plane, for example, the star product can be calculated

from the operator expression

f(xi) � g(xj) = [ q−n̂x2 n̂y1 f(xi) g(yj)]y→x

= f(xi) g(xj) + O(h), with h = ln q, (3.9)

where we introduced the operators

n̂xi ≡ xi ∂

∂xi
, i = 1, 2. (3.10)
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The second equality in (3.9) tells us that the star product modifies the commutative
product by terms depending on h = ln q. Evidently, this modifications vanish in
the classical limit q → 1.

3.3. What are q-deformed translations?

Translations in spacetime play a very important role in physics as the fundamental
physical laws have to be invariant under translations. From a mathematical point
of view, translations are described by a mapping (We use alternatively X ∼= X⊗1
and Y ∼= 1⊗X)

Δ : Vq → Vq ⊗ Vq, (3.11)
with

Δ(X i) ≡ [X i](1) ⊗ [X i](2) = X i ⊗ 1 + 1⊗X i = X i + Y i. (3.12)

The expressions Δ(X i), i = 1, . . . , n, are the components of a vector obtained
from two other vectors with components X i and Y i via vector addition. For this
reason the vector components Δ(X i) should obey the same algebraic properties
as the quantum space coordinates X i. Concretely, we require

Δ(X iZj) = Δ(X i)Δ(Zj), Δ(β(X i)) = β(Δ(X i)), (3.13)

i.e. the mapping in (3.11) has to be a co-module algebra homomorphism.
The first relation in (3.13) implies that the components Δ(X i) again fulfil the

commutation relations between quantum space coordinates. The second relation in
(3.13) tells us that the components Δ(X i) behave under symmetry transformations
in very much the same way as quantum space coordinates X i.

However, to satisfy the requirements in (3.13) we have to introduce a non-
commutative tensor product by

(1⊗X i) · (Xj ⊗ 1) = kR̂ij
kl X

k ⊗X l, k ∈ R, (3.14)

or, alternatively, by

(1⊗X i) · (Xj ⊗ 1) = k−1(R̂−1)ij
kl X

k ⊗X l, (3.15)

where R̂ denotes the so-called R-matrix of the quantum space under consideration.
It should be clear that for ordinary spaces the R-matrix and its inverse degenerate
to the twist matrix δi

kδ
j
l .

In principle, we have everything together to calculate translations of mono-
mials of quantum space generators. This can be achieved in the following manner:

Δ((X1)i1 . . . (Xn)in) = ((Δ(X1))i1 . . . (Δ(Xn))in)

= (X1 ⊗ 1 + 1⊗X1)i1 . . . (Xn ⊗ 1 + 1⊗Xn)in

= [(X1)i1 . . . (Xn)in ](1) ⊗ [(X1)i1 . . . (Xn)in ](2). (3.16)

The first step is the homomorphism property of Δ and the second step makes
use of (3.12). For the last step we have to apply (3.14) and end up with a kind
of binomial theorem. Instead of (3.14) we could also work with (3.15). Doing so
would lead us to a second q-analog of the binomial theorem.
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In the case of Manin plane these considerations yield, for example,

Δ((X1)n1(X2)n2) =
n1∑

k1=0

n2∑
k2=0

q−(n1− k1)k2

[
n1

k1

]
q−2

[
n2

k2

]
q−2

× (X1)k1(X2)k2 ⊗ (X1)n1− k1(X2)n2− k2 , (3.17)

where the q-deformed binomial coefficients are defined in analogy to their unde-
formed counterparts:[

α

m

]
qb

≡
[[α]]qb [[α− 1]]qb . . . [[α−m + 1]]qb

[[m]]qb !
, b ∈ C,m ∈ N. (3.18)

If we want to deal with inverse translations we need a further mapping given
by

S : Vq → Vq, S(X i) ≡ −X i. (3.19)
This mapping is an anti-algebra homomorphism. The values of S on monomials
are determined in such a way that it holds

m◦ (1⊗S)◦Δ((X1)i1 . . . (Xn)in) = m◦ (S⊗1)◦Δ((X1)i1 . . . (Xn)in) = 0. (3.20)

Without going into the details, it should be mentioned that the operations in
(3.11), (3.14), (3.15), and (3.19) again have realizations on commutative coordinate
spaces. For these realizations we introduce the following notation:

Δ → f(xi ⊕A yj), S → f(.A xi),

(1⊗ a) · (b⊗ 1) → f(xi)
x|y
/A g(yj). (3.21)

Notice that we have two different versions of each of the above operations according
to the two possible choices for the non-commutative tensor product [cf. Eqs. (3.14)
and (3.15)]. To distinguish them we introduced the label A ∈ {L, L̄}.

It should also be mentioned that q-translations fulfil some interesting calcula-
tional rules. In terms of the operations on the commutative spaces they take a form
that is strongly reminiscent of the group axioms satisfied by ordinary translations.
We wish to illustrate this statement by the identities

f((xi ⊕A yj)⊕ (.A yk)) = f(xi ⊕A (yj ⊕ (.A yk)))

= f(xi ⊕A 0) = f(xi). (3.22)

The first equality in (3.22) means associativity of q-deformed translations and the
second equality concerns the existence of inverse elements.

Finally, we would like to point out for the mathematically oriented reader
that q-deformed translations are connected with braided Hopf algebras [46, 47].
In this respect, the equalities in (3.22) follow from the axioms of a braided Hopf
algebra.
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3.4. How to differentiate and integrate on quantum spaces

Partial derivatives on quantum spaces should generate infinitesimal q-translations.
In this sense, we can introduce q-deformed partial derivatives by

∂i  f(xj) ≡ lim
yk→0

f(yk ⊕L̄ xj)− f(xj)
yi

,

∂̂i  ̄ f(xj) ≡ lim
yk→0

f(yk ⊕L xj)− f(xj)
yi

, (3.23)

f(xj) !̄ ∂i ≡ lim
yk→0

f(xj)− f(xj ⊕L̄ yk)
yi

,

f(xj) ! ∂̂i ≡ lim
yk→0

f(xj)− f(xj ⊕L yk)
yi

. (3.24)

The symbols  ,  ̄, !, and !̄ denote left and right actions. Objects with lower and
upper indices transform into each other via a quantum metric (for the details, see
Ref. [48]).

There are operator representations for the action of partial derivatives. They
can be read off from the operator expressions for q-deformed translations, since
we have

f(xi ⊕L yj) = 1⊗ f(yj) + xk ⊗ ∂̂k  ̄ f(yj) + O(x2),

f(xi ⊕L̄ yj) = 1⊗ f(yj) + xk ⊗ ∂k  f(yj) + O(x2), (3.25)

f(yi ⊕L xj) = f(yi)⊗ 1− f(yi) ! ∂̂k ⊗ xk + O(x2),

f(yi ⊕L̄ xj) = f(yi)⊗ 1− f(yi) !̄ ∂k ⊗ xk + O(x2), (3.26)

where repeated indices are to be summed over.
As representations of partial derivatives on the Manin plane we obtain, for

example,

∂1  f(x1, x2) = D1
q2f(x1, q2x2),

∂2  f(x1, x2) = D2
q2f(qx1, x2). (3.27)

In the above formulae we introduced the so-called Jackson derivatives [49], which
are given by

Di
qaf(xi) ≡ f(qaxi)− f(xi)

(qa − 1)xi
. (3.28)

Being difference operators the Jackson derivatives represent discretized versions of
ordinary derivatives.

Next, we come to integrals on quantum spaces. They can be seen as operations
being inverse to partial derivatives. More concretely, an integral gives a solution
to the equation

∂i  F = f, (3.29)
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where f is a given function. The following reasonings about calculating integrals
apply to all types of partial derivatives introduced in (3.23) and (3.24).

To find solutions to Eq. (3.29) it is helpful to realize that the operator ex-
pressions for partial derivatives on quantum spaces split into a classical part ∂i

cl

and corrections ∂i
cor vanishing in the undeformed limit q → 1, i.e.

∂i  F =
(
∂i
cl + ∂i

cor

)
 F. (3.30)

The classical part is always invertible, so we have

F = (∂i)−1  f =
1

∂i
cl + ∂i

cor

 f

=
1

∂i
cl

(
1 + (∂i

cl)−1∂i
cor

)  f =
1

1 + (∂i
cl)−1∂i

cor

· 1
∂i
cl

 f

=
∞∑

k=0

(−1)k [(∂i
cl)

−1∂i
cor

]k
(∂i

cl)
−1  f. (3.31)

Once again, we wish to demonstrate our considerations by a simple example.
Comparing the expressions in (3.27) with the right-hand side of Eq. (3.30) we find
that

(∂1)cl  f = D1
q2f(q2x2), (∂1)cor  f = 0,

(∂2)cl  f = D2
q2f(qx1), (∂2)cor  f = 0, (3.32)

which, in turn, leads to

(∂1)−1  f = (∂1)−1
cl  f = (D1

q2)−1f(q−2x2),

(∂2)−1  f = (∂2)−1
cl  f = (D2

q2)−1f(q−1x1), (3.33)

where (Di
qa)−1 denotes the Jackson integral operator[cf. Eq. (2.6)].

Partial derivatives and integrals on quantum spaces lead us into the realm
of multi-dimensional q-analysis. This subject was completely worked out in Ref.
[41], where we derived various calculational rules such as Leibniz rules for partial
derivatives, rules for integration by parts or q-analogs of the fundamental theorem
of calculus.

3.5. Fourier transformations on quantum spaces

Fourier transformations play a very important role in quantum physics. Thus, it
arises the question what are Fourier transformations on quantum spaces. To an-
swer this question we first introduce q-analogs of plane-waves. In complete analogy
to the undeformed case they are defined to be eigenfunctions of q-deformed partial
derivatives [38,50,51]. Notice that q-deformed partial derivatives can act in differ-
ent ways on a function and for this reason there are different versions of q-deformed
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plane-waves, i.e.

∂i x
 exp(xk|∂j)R̄,L = exp(xk|∂j)R̄,L

∂
� ∂i,

∂̂i
x
 ̄ exp(xk|∂̂j)R,L̄ = exp(xk|∂̂j)R,L̄

∂
� ∂̂i, (3.34)

exp(∂j |xk)R̄,L

x
!̄ ∂i = ∂i

∂
� exp(∂j |xk)R̄,L,

exp(∂̂j |xk)R,L̄

x
! ∂̂i = ∂̂i

∂
� exp(∂̂j |xk)R,L̄. (3.35)

However, q-deformed plane-waves are not completely determined by the re-
lations in (3.34) and (3.35). Thus, we additionally require that our q-deformed
plane-waves are normalized according to

exp(xi|∂j)R̄,L|xi=0 = exp(xi|∂j)R̄,L|∂j=0 = 1,

exp(xi|∂̂j)R,L̄|xi=0 = exp(xi|∂̂j)R,L̄|∂j=0 = 1. (3.36)

These normalization conditions together with (3.34) and (3.35) allow us to calcu-
late expressions for q-deformed plane-waves. In the case of the Manin plane, for
example, one finds

exp(xi|∂̂j)R,L̄ =
∞∑

n1,n2= 0

(x1)n1(x2)n2 ⊗ (∂̂2)n2(∂̂1)n1

[[n1]]q−2 ! [[n2]]q−2 !
. (3.37)

Interestingly, q-deformed plane-waves fulfil addition laws which can be writ-
ten in the form

exp(xi ⊕L yj|∂̂k)R,L̄ = exp(xi| exp(yj |∂̂k)R,L̄

∂
� ∂̂l)R,L̄,

exp(xi ⊕L̄ yj|∂k)R̄,L = exp(xi| exp(yj |∂k)R̄,L

∂
� ∂l)R̄,L, (3.38)

exp(xk|∂̂j ⊕L ∂̂′i)R,L̄ = exp(xl
x
� exp(xk|∂̂j)R,L̄|∂̂′i)R,L̄,

exp(xk|∂j ⊕L̄ ∂′i)R̄,L = exp(xl
x
� exp(xk|∂j)R̄,L|∂′i)R̄,L. (3.39)

Furthermore, our framework enables us to introduce ’inverse’ q-deformed plane-
waves:

exp(.L̄ xi|∂j)R̄,L = exp(xi|.L̄ ∂j)R̄,L,

exp(.L xi|∂̂j)R,L̄ = exp(xi|.L ∂̂j)R,L̄, (3.40)

exp(.L xi|∂j)R̄,L = exp(xi|.L ∂j)R̄,L,

exp(.L̄ xi|∂̂j)R,L̄ = exp(xi|.L̄ ∂̂j)R,L̄. (3.41)

In principle, q-deformed plane-waves can be manipulated in a similar fashion
as their undeformed counterparts. Without going into the details, the following



Towards a q-Deformed Quantum Field Theory 273

calculation shall serve as an example:

exp(xi|
x
� exp(.L̄ xj |∂k)R̄,L

∂
� ∂l)R̄,L = exp(xi ⊕L̄ (.L̄ xj)|∂k)R̄,L

= exp(xi|∂l)R̄,L|xi=0 = 1. (3.42)

It should be obvious that the above result justifies to identify the expressions in
(3.40) and (3.41) with inverse q-deformed plane-waves.

Now, we have everything together to introduce Fourier transformations on
quantum spaces. Due to the different versions of q-deformed plane-waves, there
are the following possibilities for defining Fourier transformations on quantum
spaces [52, 53]:

FL(f)(pk) ≡
∫ +∞

−∞
dn
1x f(xi)

x
� exp(xj |i−1pk)R̄,L,

FL̄(f)(pk) ≡
∫ +∞

−∞
dn
2x f(xi)

x
� exp(xj |i−1pk)R,L̄, (3.43)

FR̄(f)(pk) ≡
∫ +∞

−∞
dn
1x exp(i−1pk|xj)R̄,L

x
� f(xi),

FR(f)(pk) ≡
∫ +∞

−∞
dn
2x exp(i−1pk|xj)R,L̄

x
� f(xi). (3.44)

Let us make some comments on these definitions. First of all, we applied
the substitution ∂k = i−1pk to our q-deformed plane-waves. The integrals over the
whole space are obtained by applying one-dimensional integrals in succession. The
volume elements of the integrals carry an index which is a consequence of the fact
that we have two q-deformed differential calculi.

There is a second set of q-deformed Fourier transformations. They are given
by

F∗
L(f)(xk) ≡ 1

vol1

∫ +∞

−∞
dn
1p exp(i−1pl|.L xk)R̄,L

x|p
/ L̄ f(pj),

F ∗̄
L(f)(xk) ≡ 1

vol2

∫ +∞

−∞
dn
2p exp(i−1pl|.L̄ xk)R,L̄

x|p
/L f(p̂j), (3.45)

F∗
R(f)(xk) ≡ 1

vol2

∫ +∞

−∞
dn
2p f(pj)

p|x
/R̄ exp(.R xk|i−1pl)R,L̄,

F ∗̄
R(f)(xk) ≡ 1

vol1

∫ +∞

−∞
dn
1p f(pj)

p|x
/R exp(.R̄ xk|i−1pl)R̄,L. (3.46)

Notice that we introduced some sort of normalization constants (volα)−1, α ∈
{1, 2}. They are determined in such a way that the Fourier transforms in (3.45)
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and (3.46) are inverse to those in (3.43) and (3.44). To be more specific, we have

(F ∗̄
R ◦ FL)(f)(xk) = f(κxk), (FL ◦ F ∗̄

R)(f)(xk) = κ−nf(κ−1xk),

(F∗
R ◦ FL̄)(f)(xk) = f(κ−1xk), (FL̄ ◦ F∗

R)(f)(xk) = κnf(κxk), (3.47)

(F ∗̄
L ◦ FR)(f)(xk) = f(κ−1xk), (FR ◦ F ∗̄

L)(f)(xk) = κnf(κxk),

(F∗
L ◦ FR̄)(f)(xk) = f(κxk), (FR̄ ◦ F∗

L)(f)(xk) = κ−nf(κ−1xk), (3.48)

where κ denotes a certain constant.
From the undeformed case we know that taking the Fourier transform of unity

yields a delta function. In this manner, q-analogs of the delta function should be
given by

δn
1 (pk) ≡ FL(1)(pk) =

∫ +∞

−∞
dn
1x exp(xj |i−1pk)R̄,L,

δn
2 (pk) ≡ FL̄(1)(pk) =

∫ +∞

−∞
dn
2x exp(xj |i−1pk)R,L̄. (3.49)

In analogy to their undeformed counterparts q-deformed delta functions fulfil
as characteristic properties∫ +∞

−∞
dn

αy f(yi)
y
� δn

β (yj ⊕C (.C xk)) = volα,β f(κ−1
C xk), (3.50)

and ∫ +∞

−∞
dn

αy δ
n
β ((.C xk)⊕C yj)

y
� f(yi) = volα,β f(κ−1

C xk), (3.51)

where

volα,β ≡
∫ +∞

−∞
dn

αx δ
n
β (xk), α, β ∈ {1, 2}, (3.52)

and
κL = κR̄ = κ, κL̄ = κR = κ−1. (3.53)

Moreover, one can show that the Fourier transform of a q-deformed delta function
yields a q-deformed plane-wave and vice versa.

Finally, let us mention that q-deformed Fourier transformations interchange
the star-product with q-deformed differentiation. The following identities shall
serve as example:

FL(f
x
! ∂j)(pk) = FL(f)(pk)

p
� (i−1pj),

FL(f
x
� xj)(pk) = FL(f)(pk)

p
!̄ (i∂j). (3.54)

4. Applications to physics

In the last section we gave a short introduction into analysis on q-deformed quan-
tum spaces. It is now our aim to show how the new formalism applies to the
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non-relativistic one-particle problem. Once again, we restrict attention to some
fundamental aspects, only. A rather complete treatment of the subject can be
found in Refs. [54–56].

The three-dimensional q-deformed Euclidean space provides a suitable frame-
work for dealing with non-relativistic physics in a q-deformed setting. It is spanned
by three coordinates XA, A ∈ {+, 3,−}, subject to the relations

X3X+ = q2X+X3, X−X3 = q2X3X−,

X−X+ = X+X− + λX3X3, (4.1)

where λ = q − q−1.

This algebra can be extended by a central time element t. In doing so, we
obtain a spacetime structure in which time behaves like a commutative and con-
tinuous variable, while space coordinates establish a q-deformed quantum space.
Since time is completely decoupled from space, the time evolution operator is
the usual one. For the same reason, the Schrödinger and Heisenberg equations of
motion remain unchanged compared to the undeformed case.

4.1. Plane-wave solutions to the free-particle Schrödinger equation

We first seek a suitable Hamiltonian operator describing a free non-relativistic
particle on three-dimensional q-deformed Euclidean space. An obvious choice is
given by

H0 ≡ gABPBPA(2m)−1, (4.2)
where gAB denotes the quantum metric of the three-dimensional q-deformed Eu-
clidean space and m stands for a mass parameter. The momentum operators are
represented by partial derivatives, i.e. PA = i∂A.

The Schrödinger equation for the free q-deformed particle reads

i∂t
t
 φ(xA, t) = H0

x
 φ(xA, t). (4.3)

As solutions to this equation one finds

(uR̄,L)p,m(xA, t) =

=
∞∑

n = 0

n0−1∑
k = 0

(i−1)n0(−λ+)n0−kq−2k+2n3(n0−k)

n0! [[n+]]q4 ! [[n3]]q2 ! [[n−]]q4 !

[
n0

k

]
q4

× tn0(x+)n+(x3)n3(x−)n−

⊗ (i−1p−)n−+ n0−k(i−1p3)n3+2k(i−1p+)n++ n0−k(2m)−n0 , (4.4)

where λ+ = q + q−1. The above result can also be written as product of a q-
deformed plane-wave and some sort of time-dependent phase factor, i.e.

(uR̄,L)p,m(xA, t) = exp(xA|i−1pB)R̄,L

p
� exp(−itp2(2m)−1)R̄,L, (4.5)
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with

exp(−itp2(2m)−1)R̄,L ≡
∞∑

n =0

(−it)n

n!

n∑
k=0

q−2k(−λ+)n−k

[
n

k

]
q4

× (p−)n−k(p3)2k(p+)n−k(2m)−n. (4.6)

Our solutions to the Schrödinger equation of the free q-deformed particle
can be regarded as q-analogs of momentum eigenfunctions of definite energy. This
observation follows from the identities

PA
x
 (uR̄,L)p,m(xA, t) = i∂A

x
 (uR̄,L)p,m(xA, t)

= (uR̄,L)p,m(xA, t)
p
� pA, (4.7)

H0
x
 (uR̄,L)p,m(xA, t) = (2m)−1P 2 x

 (uR̄,L)p,m(xA, t)

= (uR̄,L)p,m(xA, t)
p
� p2(2m)−1. (4.8)

The above relations tell us that the wave function (uR̄,L)p,m corresponds to a
particle with momentum components pA, A ∈ {+, 3,−}, and energy

E = p2(2m)−1 = gABpB

p
� pA(2m)−1. (4.9)

In complete analogy to the undeformed case, the time-evolution of our q-
deformed momentum eigenfunctions is given by

(uR̄,L)p,m(xA, t) = exp(−itH0)
H0|x
 exp(xA|i−1pB)R̄,L, (4.10)

i.e. we simply have to apply the usual time-evolution operator to a q-deformed
plane-wave of three-dimensional q-deformed Euclidean space. It is not very difficult
to check that (4.10) indeed gives a solution to the Schrödinger equation of the free
q-deformed particle. To this end, one inserts the expression in (4.10) into Eq. (4.3)
and then applies the time derivative to the time evolution operator.

Our q-analogs of momentum eigenfunctions are normalized to q-deformed
delta functions. In this manner, they establish an orthonormal set of functions.
Concretely, we have∫ +∞

−∞
d3
1x (uR̄,L)�Lp̃,m(xA,−q−ζt)

p̃|x
/ L̄ (uR̄,L)p,m(xB , t) =

= (vol1)−1 δ3
1((.L p̃C)⊕L pD), (4.11)

with

vol1 ≡
∫ +∞

−∞
d3
1x

∫ +∞

−∞
d3
1p exp(xA|i−1pB)R̄,L. (4.12)

It should be mentioned that the tensor multiplication /L̄ on the left-hand side of
Eq. (4.11) is due to the fact that q-deformed momentum eigenfunctions live in the
tensor product of a position space with a momentum space.
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Our q-deformed momentum eigenfunctions also fulfil a completeness relation.
It reads ∫ +∞

−∞
d3
1p (uR̄,L)p,m(xA, t)

p|y
/L̄ (uR̄,L)�Lp,m(yB ,−q−ζt) =

= (vol1)−1 δ3
1(x

A ⊕L (.L yB)). (4.13)

Notice that the time variable of the momentum eigenfunction with negative mo-
mentum is affected by a scaling. This scaling ensures that the completeness rela-
tion for q-deformed momentum eigenfunctions is time-independent. For the same
reason the orthonormality relation in Eq. (4.11) does not vary with time.

Now, we are in a position to write down expressions for q-deformed wave
packets. As usual, they arise from superposition of q-deformed momentum eigen-
functions. In this manner, we have

(φ∗
1)m(xi) = (vol1)1/2

∫ +∞

−∞
d3
1p (uR̄,L)p,m(xi)

p
� (c∗1)κ−1p. (4.14)

The reader should not be confused about the different labels like the asterisk, since
their meaning is not important in this context. The volume integral in Eq. (4.14) is
a q-deformed one and for the sake of simplicity we took the convention xi ≡ (xA, t).

Conversely, the completeness relations for q-deformed momentum eigenfunc-
tions together with the properties of q-deformed delta functions allow us to regain
the expansion coefficients (c∗1)p from the wave packet (φ∗

1)m. This can be achieved
by means of the formula

(c∗1)p =
1

(vol1)1/2

∫ +∞

−∞
d3
1x (uR̄,L)�Lp,m(xA,−q−ζt)

p|x
/ L̄ (φ∗

1)m(xi). (4.15)

The q-deformed wave-packets are again solutions to the free-particle Schrö-
dinger equation in (4.3), i.e.

i∂t
t
 (φ∗

1)m(xi) = H0
x
 (φ∗

1)m(xi). (4.16)

This observation is a direct consequence of the fact that a q-deformed wave-packet
is a superposition of q-deformed momentum eigenfunctions. For the same reason
Eq. (4.10) implies that

(φ∗
1)m(xA, t) = exp(−itH0)

H0|x
 (φ∗

1)m(xA, t = 0). (4.17)

4.2. The propagator of the free q-deformed particle

Once the wave function of a quantum system is known at a certain time the
time-evolution operator enables us to find the wave function at any later time.
However, there is another way to solve the time-evolution problem. It requires to
know the so-called propagator. It is now our aim to discuss the propagator of the
free non-relativistic q-deformed particle.

To this end, we insert the expression for the expansion coefficients given
by Eq. (4.15) into the expansion in Eq. (4.14). In doing so, we obtain an integral
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operator that acts on an initial wave function to yield the final wave function:

(φ∗
1)m(xi) =

∫ +∞

−∞
d3
1y (K∗

1 )m(xi; yj)
y
� (φ∗

1)m(κyA, ty). (4.18)

The kernel of this integral operator is the wanted propagator and takes the form

(K∗
1 )m(xi; yj) =

= κ3

∫ +∞

−∞
d3
1p (uR̄,L)p,m(xA, tx)

p|x
/ L̄ (uR̄,L)�Lp,m(yB,−q−ζty). (4.19)

We have to impose the causality requirement on the propagator, since the
wave function at time t should not be influenced by wave functions at times t′ > t.
This leads us to the retarded q-deformed Green’s function

(K∗
1 )m+(xi; yj) ≡ θ(tx − ty) (K∗

1 )m(xA, tx; yB, ty), (4.20)

where θ(t) stands for the Heaviside function

θ(t) =

{
1 if t ≥ 0,
0 otherwise.

(4.21)

In analogy to the undeformed case the propagator in Eq. (4.19) satisfies the
boundary condition

lim
tx→ty

(K∗
1 )m(yi;xj) = κ3(vol1)−1 δ3

1(xA ⊕L (.L yB)). (4.22)

Due to this condition the retarded q-deformed Green’s function is a solution to
a Schrödinger equation with a q-deformed delta function as inhomogeneous part,
i.e.

i∂t
tx
 (K∗

1 )m+(xi; yj)−H0
y
 (K∗

1 )m+(xi; yj) =

= iκ3(vol1)−1 δ(tx − ty) δ3
1(xA ⊕L (.L yB)). (4.23)

Notice that the last result follows from reasonings being very similar to those for
the undeformed case.

Using Eq. (4.23) it is not very difficult to show that the q-deformed Green’s
function in Eq. (4.20) generates solutions to the inhomogeneous Schrödinger equa-
tion given by

i∂t
tx
 (ψ∗

1)�(xi)−H0
x
 (ψ∗

1)�(xi) = �(xi). (4.24)
These solutions can be written in the form

(ψ∗
1)�(xi) = −i

∫ +∞

−∞
dty

∫ +∞

−∞
d3
1y (K∗

1 )m+(xi; yj)
y
� �(κyA, ty), (4.25)

as one readily checks by insertion.

The considerations so far reveal a remarkable analogy to the undeformed
case. It seems that there is a q-analog to each identity playing an important role
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in physics. This assertion is confirmed by the observation that the retarded q-
deformed Green’s function again fulfils a composition property:

(K∗
1 )m+(xi; yj) =

∫ +∞

−∞
d3
1z (K∗

1 )m+(xi; zA, tz)
z
� (K∗

1 )m+(κzB, tz; yj). (4.26)

4.3. Scattering of q-deformed particles

In scattering theory one typically considers the situation that the Hamilton opera-
tor H can be divided into the Hamiltonian H0 of a free-particle and an interaction
V , i.e.

H = H0 + V. (4.27)
It is now our aim to seek solutions to the Schrödinger equation

i∂t
t
 (ψ∗

1)m+(xi) = H
x
 (ψ∗

1)m+(xi). (4.28)

Moreover, we require that the solutions describe q-deformed particles being free
in the remote past. For this reason, we impose the following condition on (ψ∗

1)m+ :

lim
tx→−∞((ψ∗

1)m(xA, tx)− (φ∗
1)m(xA, tx)) = 0, (4.29)

where (φ∗
1)m denotes a solution to the free-particle Schrödinger equation in (4.3).

The point now is that Eq. (4.28) is identical to Eq. (4.24) if we make the
identification

�(xA, tx) = V (xA, tx)
x
� (ψ∗

1)m+(xB, tx). (4.30)
Plugging this into the right-hand side of Eq. (4.25) we obtain a q-analog of the
Lippmann-Schwinger equation:

(ψ∗
1)m+(xi) = (φ∗

1)m(xi)

− i
∫ +∞

−∞
dty

∫ +∞

−∞
d3
1y (K∗

1 )m+(xi; yj)
y
� V (κyA, ty)

y
� (ψ∗

1)m+(κyB, ty). (4.31)

Notice that each solution to this integral equation shows the correct boundary con-
dition, since the q-deformed Green’s function on the right-hand side of Eq. (4.31)
vanishes as tx → −∞.

To solve the q-deformed Lippmann-Schwinger equation it is sometimes con-
venient to introduce a new Green’s function (G∗

1)m+ . It is defined via the identity

(ψ∗
1)m+(xi) = lim

ty→−∞

∫ +∞

−∞
d3
1y (G∗

1)m+(xi; yA, ty)
y
� (φ∗

1)m(κyB, ty). (4.32)

From this equation one can prove that (G∗
1)m+ satisfies the differential equation

i∂t

ty

 (G∗
1)m+(xi; yj)−H

y
 (G∗

1)m+(xi; yj) =

= iκ3(vol1)−1 δ(tx − ty) δ3
1(xA ⊕L (.L yB)), (4.33)

One can also derive an integral equation for (G∗
1)m+ . To this end, we replace

(ψ∗
1)m+ in the q-deformed Lippmann-Schwinger equation by the right-hand side
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of Eq. (4.32). Proceeding in this manner should enable us to read off the following
equation:

(G∗
1)m+(xi; yj) = (K∗

1 )m+(xi; yj)

− i
∫ +∞

−∞
dtz

∫ +∞

−∞
d3
1z (K∗

1 )m+(xi; zk)
z
� V (κzA, tz)

z
� (G∗

1)m+(κzB, tz; yj). (4.34)

Finally, it should be noted that the Green’s function (G∗
1)m+ obeys the composition

rule

(G∗
1)m+(xA, tx; yB, ty) =

=
∫ +∞

−∞
d3
1z (G∗

1)m+(xA, tx; zC , tz)
z
� (G∗

1)m+(κzD, tz ; yB, ty), (4.35)

where tx > tz > ty.
Let us return to the q-deformed Lippmann-Schwinger equation as it is given

in (4.31). We can solve it iteratively if the interaction V is rather small. This way,
we obtain a q-analog of the famous Born series:

(ψ∗
1)m+(xi) = (φ∗

1)m(xi)

+ i−1

∫ +∞

−∞
dt1

∫ +∞

−∞
d3
1y1 (K∗

1 )m+(xi; yj
1)

y1
� V (κyA

1 , t1)
y1
� (φ∗

1)m(κyB
1 , t1)

+ i−2

∫ +∞

−∞
dt1

∫ +∞

−∞
d3
1y1

∫ +∞

−∞
dt2

∫ +∞

−∞
d3
1y2 (K∗

1 )m+(xi; yj
1)

y1� V (κyA
1 , t1)

y1� (K∗
1 )m+(κyB

1 , t1; yk
2 )

y2� V (κyC
2 , t2)

y2
� (φ∗

1)m(κyD
2 , t2) + . . . (4.36)

It should be obvious that the last result corresponds to the expansion

(G∗
1)m+(xi, zj) = (K∗

1 )m+(xi; zj)

+ i−1

∫ +∞

−∞
dt1

∫ +∞

−∞
d3
1y1 (K∗

1 )m+(xi; yk
1 )

y1
� V (κyA

1 , t1)

y1
� (K∗

1 )m+(κyB
1 , t1; zj)

+ i−2

∫ +∞

−∞
dt1

∫ +∞

−∞
d3
1y1

∫ +∞

−∞
dt2

∫ +∞

−∞
d3
1y2 (K∗

1 )m+(xi; yk
1 )

y1� V (κyA
1 , t1)

y1� (K∗
1 )m+(κyB

1 , t1; yl
2)

y2� V (κyC
2 , t2)

y2
� (K∗

1 )m+(κyD
2 , t2; zj) + . . . (4.37)

The expressions in (4.36) and (4.37) show a striking similarity to their undeformed
counterparts. For this reason they are interpreted along the same line of reasonings
as in the undeformed case.
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Last but not least, it should be mentioned that the matrix elements of the
Green’s function (G∗

1)m+ are related to q-deformed scattering amplitudes. A cor-
rect treatment of this subject, however, is a little bit more involved. Thus, we are
not discussing that issue here.

5. Conclusion

Let us once more summarize the main objectives of this paper. We first demon-
strated that q-deformation implies a regularization mechanism. This mechanism
has its origin in a discrete description of spacetime, but avoids difficulties of other
approaches for discretizing spacetime, since it does not suffer from the absence of
spacetime symmetries.

However, rewriting physical theories in a q-deformed setting requires to muse
on mathematical ideas with the aim to become aware of their essence. More con-
cretely, one has to think about a q-deformed version of multi-dimensional analysis.
Their constituents are mainly determined by the requirement of being compatible
with q-deformed spacetime symmetries.

The mathematical framework we obtain in this manner is so powerful that
it enables a consistent and complete revision of well-established theories. This
can be done along the same line of reasonings as in the undeformed case. In this
manner, our approach has the advantage that it helps to generalize and extend
physical theories in a way that the relationship to their undeformed limit is rather
clear. So to speak, the undeformed theories can be seen as approximations or
simplifications of a more detailed description provided by q-deformation. The non-
relativistic Schrödinger theory of the free q-deformed particle serves as an example
to underline this assertion.
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[27] H. Grosse, C. Klimčik and P. Prešnajder, Int. J. Theor. Phys. 35 (1996) 231, [hep-
th/9505175].

[28] S. Majid, Int. J. Mod. Phys. A 5 (1990) 4689.

[29] R. Oeckl, Commun. Math. Phys. 217 (2001) 451.

[30] T.H. Koornwinder, R.F. Swarttouw, Trans. AMS 333, 445 (1992).

[31] V. Kac and P. Cheung, Quantum Calculus, Springer-Verlag, Berlin (2000).

[32] J. Wess, q-deformed Heisenberg Algebras, in H. Gausterer, H. Grosse and L. Pit-
tner, eds., Proceedings of the 38. Internationale Universitätswochen für Kern- und
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1. Introduction

The idea that one should change the continuous nature of space-time at extremely
small length-scales, like the Planck scale, to a discrete structure has a long and
prominent history in physics [1, 2]. Let me give two nice quotes to confirm the
statement about the long and prominent history of the idea to change geometry.
Bernhard Riemann already thought about this possibility in his inaugural lecture
from 1854:

Now it seems that the empirical notions on which the metric determina-
tions of Space are based, the concept of a solid body and light ray, lose
their validity in the infinitely small; it is therefore quite definitely con-
ceivable that the metric relations of Space in the infinitely small do not
conform the hypothesis of geometry; and in fact, one ought to assume
this as soon as it permits a simpler way of explaining phenomena

Albert Einstein made the observation [3]
...that the introduction of a space-time continuum may be considered
as contrary to nature in view of the molecular structure of everything
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which happens on a small scale. It is maintained that perhaps the suc-
cess of the Heisenberg method points to a purely algebraical method
of description of nature, that is to the elimination of continuous func-
tions from physics. Then, however, we must also give up, by principle,
the space-time continuum. It is not unimaginable that human ingenuity
will some day find methods which will make it possible to proceed along
such a path.

One way to achieve this is the use of noncommutative geometry. In this
article we want to concentrate only on a special aspect of noncommutative geom-
etry, namely the q-deformation of spaces. One hope associated with it is to find
a new method to regularize quantum field theories [4–8]. It was also shown, that
q-deformation can lead to discrete versions of space-time via the discretizations of
the spectra of space-time observables [9, 10].

The aim of this article is to show that one can build supersymmetric objects
and structures in a quantum group covariant manner on q-deformed algebras or
spaces. The work presented extends some well-known structures used in supersym-
metry, i.e. superalgebras as well as their representation on superspaces including
supercovariant derivatives, to q-deformed spaces. Most of this work was done in
Refs. [11–14].

Let us describe the article’s content more detailed. In Sec. 2 of the present
article we review some well-known fundamental algebraic concepts. We also define
the notion of a q-commutator and review the fermionic quantum plane. With
q-commutators at hand we are able to introduce quantum symmetry algebras
in a way that mirrors the classical, i.e. undeformed limit. (In the remainder of
this article the terms ’classical’ and ’undeformed’ are always synonymous. In this
respect, one should notice that our quantum symmetry algebras arise from classical
space-time symmetries via q-deformation.)

After this reviews the next sections introduce some new results. Section 3
presents the main part of the article: the construction of q-deformed superalge-
bras for some special types of quantum groups like the q-Poincaré algebra. We
demonstrate how to merge the concept of supersymmetric algebras with that of
quantum symmetry algebras. As example we treat the case of the q-deformed
Lorentz algebra and extend it to the q-deformed Super-Poincaré algebra.

In the last section we restrict attention to the three-dimensional q-deformed
Super-Euclidean algebra and outline how to construct its operator representations
on a corresponding quantum superspace. In addition to this, we give expressions
for q-deformed analogs of supersymmetric covariant derivatives and mention some
of the arising peculiarities.

The work presented in the article can be seen as a first step to the extension of
supersymmetric field theories to q-deformed spaces. It is based on the foundations
of q-deformed algebras laid in [15]. Thus, the article should be readable with a
basic knowledge of Hopf-algebras and quantum algebras.
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Let us close with some remarks concerning our notation. Throughout the
article it is understood that λ ≡ q−q−1 and λ+ ≡ q+q−1. The symbol εαβ denotes
the two-dimensional q-deformed spinor metric with nonzero entries ε12 = −q−1/2

and ε21 = q1/2. It holds εαβ = −εαβ.

Similarly, gAB is the metric of three-dimensional q-deformed Euclidean space
with gAB = gAB. Its nonzero entries are g+− = −q, g33 = 1, and g−+ = −q−1.

2. Fundamental Algebraic Concepts

In this section we want to review some of the fundamental notions we need for
our further explanations. In Sec. 3.1 of Ref. [16] the general idea behind matrix
quantum groups was shortly explained [18,19]. The following considerations, how-
ever, are based on so-called quantum enveloping algebras as they were proposed
by Drinfeld and Jimbo [20–22]. It should be mentioned that both approaches are
equivalent in a similar manner as one can deal either with Lie groups or Lie alge-
bras.

The most relevant mathematical structure all of our reasonings are based
on is that of a q-deformed symmetry algebra. Let us take as example the sym-
metry algebra for three-dimensional q-deformed Euclidean space [23, 25–27]. For
the sake of completeness and to introduce our conventions we write down all rel-
evant formulas, though this is a well-known example. It is given by the quan-
tum algebra Uq(su(2)) [23–27], which can be viewed as q-analog of the algebra of
three-dimensional angular momentum. The algebra is generated by the elements
L+, L−, L3, and τ3 subject to the relations

L±τ3 = q±4τ3L±, L3τ3 = τ3L3,

L−L+ − L+L− = (τ3)−1/2L3,

L±L3 − L3L± = q±1L±(τ3)−1/2. (2.1)

If we recognize that τ3 tends to 1 for q → 1, we regain the common algebra of
three-dimensional angular momentum in the classical limit.

Finally, let us mention that the quantum algebra Uq(su(2)) is a Hopf algebra.
On its generators the corresponding Hopf structure is given by

Δ(L±) = L± ⊗ (τ3)−1/2 + 1⊗ L±,

Δ(L3) = L3 ⊗ (τ3)−1/2 + (τ3)1/2 ⊗ L3,

+ λ(τ3)1/2
(
q−1L− ⊗ L+ + qL+ ⊗ L−), (2.2)

S(L±) =− L±(τ3)1/2,

S(L3) = (τ3)1/2(q2L+L− − q−2L−L+), (2.3)

ε(LA) = 0, A ∈ {+, 3,−}. (2.4)
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On these grounds, the Hopf structure also allows us to generalize the notion of
classical commutators. These leads us to so-called q-commutators (see, for example,
Ref. [13]).

With the help of q-commutators we can write the algebra in a form which
resembles the classical limit in a nice way. The q-commutator is given by the
adjoint action of a Hopf algebra onto itself. Recalling the definition of the adjoint
action the q-commutators become

[LA, V ]q ≡ LA  V = LA
(1)V S(LA

(2)),

[V, LA]q ≡ V ! LA = S−1(LA
(2))V LA

(1), (2.5)

where we wrote the coproduct in Sweedler notation. From their very definition it
follows that q-commutators obey the q-deformed Jacobi identities

[LA, [LB, V ]q]q = [[LA
(1), L

B]q, [L
A
(2), V ]q]q,

[[LA, LB]q, V ]q = [LA
(1), [L

B, [S(LA
(2)), V ]q]q]q. (2.6)

Now, we are able to introduce the notion of a quantum Lie algebra as it was
given in Refs. [28–30]. A quantum Lie algebra can be regarded as a subspace of a
q-deformed enveloping algebra Uq(g) being invariant under the adjoint action of
Uq(g). The point now is that the LA are the components of a tensor operator and
this is the reason why their adjoint action on each other equals a linear combination
of the LA [31]. In this sense, the LA span a quantum Lie algebra with

[LA, LB]q(= LA  LB = LA ! LB) = (CA)B
CLC , (2.7)

where the CA are the so-called quantum structure constants and summation over
repeated indices is understood.

For the quantum Lie algebra of Uq(su(2)), for example, we get as q-commuta-
tors

[LA, LA]q = 0, A ∈ {+,−} ,
[L3, L3]q = −λL3,

[L±, L3]q = ∓q±1L±,

[L±, L∓]q = ∓L3. (2.8)

More compactly, this can be written as

[LA, LB]q = q2εAB
C LC , (2.9)

where εAB
C denotes a q-deformed analog to the antisymmetric ε-tensor [23]. Notice

that the last result is very similar to that in the undeformed case. For details and
a treatment concerning q-deformed four-dimensional Euclidean space as well as
q-deformed Minkowski space we refer to Ref. [13].

As a second step we want to review the notion of a quantum space using the
example of the Manin plane. A quantum space is defined as module algebra of a
quantum algebra. For the definition of a module algebra see, for example, Ref. [27].
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A physical relevant example for such a module algebra is the quantum plane [32].
Its algebra is generated by the elements x1 and x2 subject to the condition

x1x2 = qx2x1. (2.10)

This relation determines what is called the two-dimensional bosonic quantum
plane.

In addition to this, there is an antisymmetric variant of the two-dimensional
quantum plane, the so-called fermionic quantum plane. It is generated by the
spinor coordinates θ1 and θ2 that satisfy the relations

(θ1)2 = (θ2)2 = 0, θ1θ2 = −q−1θ2θ1, (2.11)

showing the correct classical limit for q → 1. Alternatively, these relations can be
written with the R̂-matrix of Uq(su(2)) [15]:

θαθβ = −q−1R̂αβ
γδ θ

γθδ, (2.12)

where

R̂αβ
γδ =

⎛⎜⎜⎝
q 0 0 0
0 λ 1 0
0 1 0 0
0 0 0 q

⎞⎟⎟⎠ . (2.13)

For later purposes we introduce conjugate spinor coordinates θ̄α̇. They again
obey the commutation relations in (2.12). There is a braiding between the uncon-
jugate and the conjugate quantum plane given by

θ̄ α̇θβ = −q−1R̂α̇β
γδ̇ θ

γ θ̄δ̇. (2.14)

We can merge the quantum plane and its symmetry algebra resulting in a
crossed product. For this, we have to fix relations between the spinor coordinates
and the Uq(su(2))-generators. These are

L+θ1 = θ1L+ − q1/2λ
−1/2
+ θ2(τ3)−1/2,

L+θ2 = θ2L+, (2.15)

L3θ1 = qθ1L3 − q−1/2λλ
−1/2
+ θ2L− − qλ−1

+ θ1(τ3)−1/2,

L3θ2 = q−1θ2L3 + q1/2λλ
−1/2
+ θ1L+ + q−1λ−1

+ θ2(τ3)−1/2, (2.16)

L−θ1 = θ1L−,

L−θ2 = θ2L− + q−1/2λ
−1/2
+ θ1(τ3)−1/2. (2.17)

We have to take into account the scaling operators Λs which have to be added
as additional generators to the algebra generated by the LA’s. They have triv-
ial commutation relations with the LA’s, with spinor coordinates they commute
according to

Λsθ
α = −q1/2θαΛs, Λsθ̄

α = −q1/2θ̄αΛs. (2.18)
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The spinor coordinates carry a Hopf structure, too. Their coproduct reads as

Δ(θ1) = θ1 ⊗ 1 + Λs(τ3)−1/4 ⊗ θ1,

Δ(θ2) = θ2 ⊗ 1 + Λs(τ3)1/4 ⊗ θ2 + q1/2λλ
1/2
+ Λs(τ3)1/4L+ ⊗ θ1, (2.19)

Δ(θ̄1) = θ̄1 ⊗ 1 + Λ−1
s (τ3)1/4 ⊗ θ̄1 + q−1/2λλ

1/2
+ Λ−1

s (τ3)1/4L− ⊗ θ̄2,

Δ(θ
2
) = θ

2 ⊗ 1 + Λ−1
s (τ3)−1/4 ⊗ θ

2
. (2.20)

With the help of these coproducts we are in a position to generate the braiding
relations in (2.14), since we have

θαθ̄β̇ = (θα
(1) � θ

β̇
)θα

(2) = θ
β̇

(2)(θ
α � θ

β̇

(1)),

θ̄α̇θβ = (θ̄α̇
(1) � θβ)θ̄α̇

(2) = θβ
(2)(θ̄

α̇ � θβ
(1)). (2.21)

The symbol � and � denote the right- and left adjoint action, respectively. The
left- and right-adjoint actions are defined as given in (2.5).

3. q-Deformed Superalgebras

In this section we show that it is even possible to extend the symmetry algebras of
q-deformed quantum spaces to q-deformed analogs of superalgebras. If not stated
otherwise, in this section we restrict attention to q-deformed Minkowski space and
its symmetry algebras, since they are most interesting from a physical point of
view. We build the superalgebra in several steps. At first we extend the q-Lorentz
algebra adding the momentum generators in a consistent way. Doing so we get the
well-known q-Poincaré algebra. In a second step we add supergenerators Qα, Q̄α̇ to
get a q-deformed Super-Poincaré algebra. The resulting algebra will be an example
of what we call a q-deformed superalgebra. In the classical limit it turns over into
the well-known Super-Poincaré algebra.

Now let us first introduce the subalgebra generated by the components of
four-momentum. The momentum algebra of q-deformed Minkowski space is
spanned by the momentum components Pμ, μ ∈ {0,+,−, 3} subject to

PμP 0 = P 0Pμ, μ ∈ {0,+,−, 3},
P 3P± − q±2P±P 3 = −qλP 0P±,

P−P+ − P+P− = λ(P 3P 3 − P 0P 3). (3.1)

Let us recall that the Pμ, μ ∈ {0,+,−, 3}, behave as a four-vector operator
under q-deformed Lorentz transformations. This property is a consequence of the
commutation relations between generators of the q-deformed Lorentz algebra and
the corresponding momentum components. They take the form (see also Ref. [13])

[V μν , P ρ]q = −q−1(PA)μν
ν′ρ′ ηρ′ρP ν′

, (3.2)
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where PA is a q-analog of an antisymmetrizer for q-Minkowski space. The V μν are
the generators of the q-Lorentz algebra written as tensor generators. A detailed
treatment of this algebra can be found in [13].

As a matter of principle the procedure to construct a deformed superalgebra
is quite simple. The non-supersymmetric part of the algebra is already known. It
is just the quantum symmetry algebra for the space under consideration combined
with the corresponding momentum algebra.

What remains is to include spinorial generators in a consistent way. We re-
strict ourselves to the case of N = 1 supersymmetry. In complete analogy to the
undeformed case we introduce the new generators

Q1, Q2, Q̄1, Q̄2. (3.3)

How the spinorial generators commute with the Lorentz algebra generators V μν

is described in Ref. [13]. The result written down in terms of q-commutators is

[V μν , Qα]q = q−1λ−1
+ (σμν)β

αQβ ,

[V μν , Q̄α̇]q = q−1λ−1
+ (σ̄μν)β̇

α̇Q̄β̇ . (3.4)

For the definition of the Pauli matrices see appendix A. Note that the above
relations are equivalent to the commutation relations in (2.15)-(2.17).

Next we have to fix some sets of relations. These are the relations the super-
charges fulfil among themselves, the relations between the supercharges and the
generators of the symmetry algebra, and finally the relations between momenta
and supercharges. This has to be done in a way that the complete algebra gener-
ated from V μν , Pμ, Qα, and Q̄α̇ is consistent with all relations among them, i.e.,
every relation remains unchanged after acting with any generator on it.

Since the two types of supercharges Qα and Q̄α̇ transform as spinors, we
require for them to span quantum planes. In this manner, the supercharges have
to fulfil

QαQα = Q̄α̇Q̄α̇ = 0, α, α̇ = 1, 2, (3.5)

Q1Q2 = −q−1Q2Q1, Q̄1Q̄2 = −q−1Q̄2Q̄1. (3.6)

Introducing the q-anticommutator

{θα, θ̃β}k ≡ θαθ̃β + kR̂αβ
α′β′ θ̃α′

θβ′
, (3.7)

the relations in (3.6) become

{Qα, Qβ}q = {Q̄α, Q̄β}q = 0. (3.8)

What remains is to determine the sets of relations QαQ̄β̇, PμQα and PμQ̄β̇

for μ ∈ {0,+, 3,−} as well as α, β̇ ∈ {1, 2}. For these relations we first make
general Ansätze. Then we multiply each relation from the right with a generator,
commute the generator to the left, and determine the unknown coefficients from
the requirement that the relation remains unchanged.
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Proceeding this way, we get for the QQ̄-relations of the q-deformed Super-
Poincaré algebra

Q̄1Q1 + Q1Q̄1 = c q−1P−,

Q̄1Q2 + q−1Q2Q̄1 = −q−1λQ1Q̄2 + c q−1/2λ
−1/2
+ (P 3 + q−2P 0),

Q̄2Q1 + q−1Q1Q̄2 = −c q−3/2λ
−1/2
+ (P 0 − P 3),

Q̄2Q2 + Q2Q̄2 = c q−1P+. (3.9)

For the PQ- and PQ̄-relations we likewise have

P+Q1 = q−2Q1P+, P+Q2 = Q2P+,

P 0Q1 = q−1Q1P 0, P 0Q2 = q−1Q2P 0,

P 3Q1 = q−1Q1P 3,

P 3Q2 = q−1Q2P 3 + q−3/2λλ
1/2
+ Q1P+,

P−Q1 = Q1P−,

P−Q2 = q−2Q2P− + q−3/2λλ
1/2
+ Q1P 3, (3.10)

and

P 0Q̄1 = qQ̄1P 0, P 0Q̄2 = qQ̄2P 0,

P−Q̄1 = Q̄1P−, P−Q̄2 = q2Q̄1P−,

P 3Q̄1 = qQ̄1P 3 − q3/2λλ
1/2
+ Q̄2P−,

P 3Q̄2 = qQ̄2P 3,

P+Q̄1 = q2Q̄1P+ − q3/2λλ
1/2
+ Q̄2P 3,

P+Q̄2 = Q̄2P+. (3.11)

Notice that the relations in (3.9) are determined up to a constant c, only. One can
check that all of the above relations in (3.6), (3.9), (3.10), and (3.11) are compatible
with the relations concerning the generators V μν of the q-Lorentz algebra.

At last, we list the complete q-deformed supersymmetric Poincaré algebra.
To this end, we apply our q-commutators introduced earlier since they enable us
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in a very nice way to show the close relationship with the classical limit [14]:

[V μν , V ρσ]q = −q−1λ+(PA)μν
ν′ρ′′ (PA)ρσ

ρ′σ′ηρ′′ρ′
V ν′σ′

,

[V μν , P ρ]q = −q−1(PA)μν
ν′ρ′ηρ′ρP ν′

,

[V μν , Qα]q = q−1λ−1
+ (σμν)β

αQβ ,

[V μν , Q̄α̇]q = q−1λ−1
+ (σ̄μν)β̇

α̇Q̄β̇ ,

(PA)μν
μ′ν′ Pμ′

P ν′
= 0,

[Pμ, Qα]q = 0, [Pμ, Q̄α̇]q̄ = 0,

{Qα, Qβ}q = 0, {Q̄α̇, Q̄β̇}q = 0,

{Q̄α̇, Qβ}q−1 = c (σ̄−1
μ )α̇βPμ. (3.12)

Note that (PA)μν
μ′ν′ denotes a q-analog of an antisymmetrizer of q-deformed

Minkowski space. We used q-deformed Pauli matrices too. They are defined in
the appendix A.

4. q-Deformed Superspaces and Operator Representations

In this concluding section we show that it is possible to build q-deformed su-
perspaces and operator representations along the same line of reasonings as in
the undeformed case. As an example we treat the three-dimensional q-deformed
Euclidean superspace. Its bosonic sector is spanned by three coordinates named
X+, X3, and X−. These coordinates are subject to the relations

X3X± = q±2X±X3,

X−X+ −X+X− = λX3X3, (4.1)

and have the coproducts

Δ(X−) = X− ⊗ 1 + Λ−1/2(τ3)−
1
2 ⊗X−,

Δ(X3) = X3 ⊗ 1 + Λ−1/2 ⊗X3 + λλ+Λ−1/2L+ ⊗X−,

Δ(X+) = X+ ⊗ 1 + Λ−1/2(τ3)
1
2 ⊗X+ + qλλ+Λ−1/2(τ3)

1
2L+ ⊗X3

+ q2λ2λ+Λ−1/2(τ3)
1
2 (L+)2 ⊗X−. (4.2)

Notice that the above expressions for the coproduct include the scaling operator
Λ.

To build a superspace, we have to merge the bosonic space with the two
quantum planes spanned by the Weyl spinors θα as well as θ̄α̇. This has to be
done in a covariant way, i.e., the action of angular momentum generators on the
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relations should be zero. Using reasonable Ansätze, we end up with

X+θ̄1 = qθ̄1X+ − q1/2λλ
1/2
+ θ̄2X3,

X+θ̄2 = q−1θ̄2X+,

X3θ̄1 = θ̄1X3 − q1/2λλ
1/2
+ θ̄2X−,

X3θ̄2 = θ̄2X3,

X−θ̄1 = q−1θ̄1X−, X−θ̄2 = qθ̄2X−. (4.3)

These relations can also be generated from the coproducts in (4.2) as well as from
the coproducts in (2.20) via

XAθ̄α̇ = (XA
(1) � θ

α̇
)XA

(2) = θ
α̇

(2)(X
A � θ

α̇

(1)). (4.4)

Applying these identities requires to take account of the fact that Λ acts trivially
on spinor coordinates:

Λ � θ
α̇

= θ
α̇
, (4.5)

as well as Λs on bosonic coordinates

Λs � XA = XA. (4.6)

In Ref. [35] a second construction for the XA was presented, which gives
rise to a second set of new, consistent commutation relations between the XA

and the unconjugate spinor coordinates θα. Alternatively, this second set follows
from conjugating the relations in (4.3) if we take into account the conjugation
assignment [15]

θα = −εαβ θ̄
β̇ , θ̄α̇ = εαβθ

β ,

XA = gABXB. (4.7)

Finally, it should be noted that the coproducts in (2.20) and (4.2) respect the
commutation relations in (4.3), i.e. they are consistent with the homomorphism
property

Δ(XAθ̄α̇) = Δ(XA)Δ(θ̄α̇). (4.8)

The coproducts in (4.2) can be extended to q-analogs of supercoproducts. To
achieve this we have to add fermionic parts Δf (XA) to the bosonic coproducts
Δ(XA). These fermionic parts are completely determined by making some reason-
able claims. First, the new supercoproducts Δs(XA) = Δ(XA) + Δf (XA) should
behave under symmetry transformations in the same way as the vector compo-
nents XA. In formulas this means Δs(LA � XB) = Δ(LA) � Δs(XB). Further,
the supercoproducts should respect the XX-relations in (4.1). Finally, we demand
that the relations in (4.3) are consistent with supercoproducts and the coproducts
in (2.20).

To fulfil these requirements we are enforced to introduce a new scaling oper-
ator Λk, which helps to adapt the fermionic parts of our supercoproducts to their
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bosonic parts. Then the fermionic parts corresponding to the coproducts in (4.2)
are given by

Δf (X+) =θ̄2Λ−1
s Λ−1

k (τ3)−1/4 ⊗ θ2Λk,

Δf (X3) =q1/2λ
−1/2
+ θ̄1Λ−1

s Λ−1
k (τ3)−1/4 ⊗ θ2Λk

+ q−1/2λ
−1/2
+ θ̄2Λ−1

s Λ−1
k (τ3)1/4 ⊗ θ1Λk

+ q−1λθ̄2Λ−1
s Λ−1

k (τ3)1/4L− ⊗ θ2Λk,

Δf (X−) = θ̄1Λ−1
s Λ−1

k (τ3)1/4 ⊗ θ1Λk

+ q−1/2λ
1/2
+ θ̄1Λ−1

s Λ−1
k (τ3)1/4L− ⊗ θ2Λk. (4.9)

The complete supercoproducts Δs(XA) = Δ(XA) + Δf (XA) indeed fulfil

Δs(XμXν) = Δs(Xμ)Δs(Xν), Δs(Xμθ̄α̇) = Δs(Xμ)Δs(θ̄α̇), (4.10)

if the following holds:

ΛkX
μ = q−2XμΛk,

Λkθ
α = q−1θαΛk, Λkθ̄

α̇ = q−1θ̄α̇Λk. (4.11)

Now we want to describe operator representations for three-dimensional q-
deformed superspace. They should represent the q-deformed superalgebra for three-
dimensional Euclidean space. We regain it from (3.1) and (3.8)-(3.11) if we set P 0

equal to zero. This reflects the fact, that the q-deformed three-dimensional algebra
is a real subalgebra for the Super-Poincaré algebra.

To construct a superspace with operator representations, we are forced to
represent the super charges Qα, Q̄α̇ as well as to give consistent, covariant relations
between the bosonic derivatives ∂A

X and the fermionic objects fα, with fα standing
for θα, θ̄α, ∂α

θ or ∂̂α̇
θ , respectively.

However, in the quantum space case there occur some differences to the clas-
sical limit concerning operator representations. First, it is not possible to construct
one unique superspace. Instead, one finds two distinct operator representations.
In each representation either the unconjugate or the conjugate supercharges are
represented in a nontrivial way, but not both. Second, if we try to incorporate
super covariant derivatives in a consistent way, we have to extend the algebra by
new scaling operators Λn and Λm. At last, each operator representation leads to
its own set of covariant commutation relations between the generators ∂A

X , θα, θ̄α,
∂α

θ , ∂̂α̇
θ . Thus, we must carefully specify the set of relations we have to use for a

certain operation. The differential calculus we use is

∂α
θ θ

β = −(R̂−1)αβ
γδθ

γ∂δ
θ , ∂α

θ θ̄
β̇ = εαβ̇ − (R̂−1)αβ̇

γ̇δ θ̄
γ̇∂δ

θ ,

∂̂α̇
θ θ

β = εα̇β − R̂α̇β
γδ̇θ

γ ∂̂ δ̇
θ , ∂̂α̇

θ θ̄
β̇ = −R̂α̇β̇

γ̇δ̇ θ̄
γ̇ ∂̂ δ̇

θ . (4.12)
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Now we turn to the explicit form of the operator representation with conju-
gate supercharges being represented trivially:

Q1 = q−1∂1
θΛ−1

m + q3/2θ1∂3
XΛm − q3λ+θ

2∂−
XΛm,

Q2 = q−1∂2
θΛ−1

m − q7/2θ2∂3
XΛm + q2λ+θ

1∂+
XΛm, (4.13)

Q̄1 = q−1∂̂1
θΛn, Q̄2 = q−1∂̂2

θΛn. (4.14)

Using the q-deformed Pauli matrices (for their explicit form see App. A) we are
able to rewrite the above result as

Qα = q−1∂α
θ Λ−1

m − q2(σA)α
βθ

β∂A
XΛm,

Q̄α̇ = q−1∂̂α̇
θ Λn. (4.15)

The relations of the q-deformed superalgebra given in Eq. (3.12) are satis-
fied by the expressions in (4.15) together with PA = ∂A

XΛnΛm if we assume as
commutation relations

∂+
Xθ1 = θ1∂+

X − q−1/2λλ
1/2
+ θ2∂3

X ,

∂+
Xθ2 = q−2θ2∂+

X ,

∂3
Xθ1 = q−1θ1∂3

X − q−1/2λλ
1/2
+ θ2∂−

X ,

∂3
Xθ2 = q−1θ2∂3

X ,

∂−
Xθ1 = q−2θ1∂−

X , ∂−
Xθ2 = θ2∂−

X , (4.16)

and

∂+
X θ̄1 = q2θ̄1∂+

X − q3/2λλ
1/2
+ θ̄2∂3

X ,

∂+
X θ̄2 = θ̄2∂+

X ,

∂3
X θ̄1 = qθ̄1∂3

X − q3/2λλ
1/2
+ θ̄2∂−

X ,

∂3
X θ̄2 = qθ̄2∂3

X ,

∂−
X θ̄1 = θ̄1∂−

X , ∂−
X θ̄2 = q2θ̄2∂−

X , (4.17)

as well as

∂+
X∂1

θ = q−2∂1
θ∂

+
X , ∂+

X∂2
θ = ∂2

θ∂
+
X ,

∂3
X∂1

θ = q−1∂1
θ∂

3
X ,

∂3
X∂2

θ = q−1∂2
θ∂

3
X + q−3/2λλ+∂

1
θ∂

+
X ,

∂−
X∂1

θ = ∂1
θ∂

−
X ,

∂−
X∂2

θ = q−2∂2
θ∂

−
X + q−3/2λλ+∂

2
θ∂

−
X . (4.18)



Towards a q-Deformed Supersymmetric Field Theory 297

and

∂+
X ∂̂1

θ = ∂̂1
θ∂

+
X − q−1/2λλ+∂̂

2
θ∂

3
X ,

∂+
X ∂̂2

θ = q−2∂̂2
θ∂

+
X ,

∂3
X ∂̂1

θ = q∂̂1
θ∂

3
X − q−1/2λλ+∂̂

2
θ∂

−
X ,

∂3
X ∂̂2

θ = q−2∂̂2
θ∂

3
X ,

∂−
X ∂̂1

θ = q−2∂̂1
θ∂

−
X , ∂−

X ∂̂2
θ = ∂̂2

θ∂
−
X . (4.19)

As already mentioned in the introduction, there are q-analogs of super-
covariant derivatives. The super-covariant derivatives, corresponding to the repre-
sentations in (4.15), take the form

D̄α̇ = −i∂̂α̇
θ Λ−1

m − iq−1(σA)α
β̇ θ̄

β̇∂A
XΛm,

Dα = iq2∂α
θ Λ−1

n . (4.20)

They again fulfil the relations of the superalgebra in (3.12) if we replace the su-
percharges Qα and Q̄α̇ with Dα and D̄α̇, respectively. However, there are some
subtleties we have to take into account. First, we now have to use commutation
relations that follow from those in (4.16)-(4.19) by applying the conjugation prop-
erties

θα = −εαβ̇ θ̄
β̇ , θ̄α̇ = εαβθ

β ,

∂α
θ = −εαβ̇∂̄

β̇
θ , ∂̄α̇

θ = εαβ∂
β
θ ,

∂A
X = gAB∂B

X . (4.21)

Notice, that ∂̂α̇ = −q∂̄α̇. Further, we have to replace the momenta PA in (3.9)
with ∂A

XΛ−1
n Λm.

In addition to this, let us say a few words about the scaling operators Λm

and Λn. They obey the conditions

Λmθα = q θαΛm, Λmθ̄α̇ = q−1 θ̄α̇Λm, ΛmXA = XAΛm, (4.22)

and

Λnθ
α = q θαΛn, Λnθ̄

α̇ = q θ̄α̇Λn, ΛnX
A = q2 XAΛn. (4.23)

Comparing the last line with (4.11), we see that we can make the identification
Λn = Λ−1

k , which enables us to reduce the number of necessary scaling operators
to two, namely Λk and Λm. The corresponding derivatives are scaled with inverse
factors compared to coordinates.

Super-covariant derivatives commute with supercharges as follows:

DαQβ = −q−1(R̂−1)αβ
γδQ

γDδ, DαQ̄β̇ = −q3(R̂−1)αβ̇
γ̇δQ̄

γ̇Dδ,

D̄α̇Qβ = −qR̂α̇β
γδ̇Q

γD̄δ̇, D̄α̇Q̄β̇ = −q−1(R̂−1)α̇β̇
γ̇δ̇Q̄

γ̇D̄δ̇. (4.24)
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Moreover, we have to specify the commutation relations between supercharges
and fermionic coordinates as well as the commutation relations between covariant
derivatives and fermionic coordinates. The former are

Qαθβ = −q−1(R̂−1)αβ
γδθ

γQδ,

Qαθ̄β̇ = εαβ̇Λ−1
m − q(R̂−1)αβ̇

γ̇δ θ̄
γ̇Qδ,

Q̄α̇θβ = εα̇βΛn − qR̂α̇β
γδ̇θ

γQ̄δ̇,

Q̄α̇θ̄β̇ = −qR̂αβ
γδ θ̄

γ̇Q̄δ̇, (4.25)

and, likewise, for the latter

Dαθβ = −q−1(R̂−1)αβ
γδθ

γDδ,

Dαθ̄β̇ = iq−1εαβ̇Λ−1
n − q−1(R̂−1)αβ̇

γ̇δ θ̄
γ̇Dδ,

D̄α̇θβ = iq−1εα̇βΛ−1
m − q−1R̂α̇β

γδ̇θ
γD̄δ̇,

D̄α̇θ̄β̇ = −qR̂α̇β̇
γ̇δ̇ θ̄

γ̇D̄δ̇. (4.26)

The relations in (4.16)-(4.19) guarantee that the operator representations
of supercharges fulfil (4.25). However, the operator representations for super-
covariant derivatives are only consistent with (4.26) if we use relations that result
from (4.16)-(4.19) via the conjugation (4.7). In both cases, the actions of the scal-
ing operators are given by (4.22) and (4.23). Finally, it should be mentioned that
we can write the relations in (4.25) and (4.26) with the help of q-anticommutators
[cf. Eq. (3.7)] as

{Qα, Dβ}q = {Q̄α̇, Dβ}q−3 = {D̄α̇, Qβ}q = {Q̄β̇ , D̄α̇}q = 0. (4.27)

{θα, Qβ}q = {Q̄α̇, θ̄β̇}q = 0,

{θ̄β̇ , Qα}q−1 = εαβ̇Λ−1
m , {Q̄α̇, θβ}q = εα̇βΛn. (4.28)

{θα, Dβ}q = {D̄α̇, θ̄β̇}q = 0,

{θ̄α̇, Dβ}q = iq−1εα̇βΛ−1
m , {D̄β̇ , θα}q = iq−1εαβ̇Λ−1

n . (4.29)

Appendix A. q-Analogs of Pauli matrices and spin matrices

In this appendix we collect some essential ideas from Ref. [36] concerning q-
deformed spinor calculus. We used q-deformed Pauli matrices in Sects. 3 and 4
and showed that they enable us to write identities from q-deformed supersymme-
try in a way that reveals a remarkable analogy with the classical case.
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Let us recall that the Pauli matrices tell us how to combine two spinors xα, x̄β̇

to form a four-vector Xμ:

Xμ =
2∑

α=1, β̇=1

xα(σμ)αβ̇ x̄
β̇ , Xμ =

2∑
α̇=1, β=1

x̄α̇(σ̄μ)α̇βx
β . (A.1)

In order to express tensor products of two spinor components by vector components
we use so-called inverse Pauli matrices:

Xαβ̇ ≡ xαx̄β̇ =
4∑

μ=1

Xμ(σ−1
μ )αβ̇ ,

X α̇β ≡ x̄α̇xβ =
4∑

μ=1

Xμ(σ̄−1
μ )α̇β . (A.2)

Explicitly, the q-deformed Pauli matrices are given by

a) (three-dimensional Euclidean space)

(σ+)αβ̇ = q1/2λ
1/2
+

(
0 0
0 1

)
, (σ−)αβ̇ = q1/2λ

1/2
+

(
1 0
0 0

)
,

(σ3)αβ̇ =
(

0 q
1 0

)
, (A.3)

b) (four-dimensional Euclidean space)

(σ1)αβ̇ =
(

1 0
0 0

)
, (σ2)αβ̇ =

(
0 0
1 0

)
,

(σ3)αβ̇ =
(

0 1
0 0

)
, (σ4)αβ̇ =

(
0 0
0 1

)
, (A.4)

c) (Minkowski space)

(σ+)αβ̇ =
(

0 0
0 q

)
, (σ3)αβ̇ = qλ

−1/2
+

(
0 q1/2

q−1/2 0

)
,

(σ−)αβ̇ =
(

q 0
0 0

)
, (σ0)αβ̇ = λ

−1/2
+

(
0 −q−1/2

q1/2 0

)
. (A.5)

In Sec. 4 we use the index convention

(σA)α
β = gA′A(σA′

)α′βε
α′α. (A.6)

In the case of three-dimensional q-deformed Euclidean space and q-deformed
Minkowski space we have

(σ̄μ)γ̇δ = q−1(R̂−1)αβ̇
γ̇δ(σμ)αβ̇ , (A.7)

where (R̂−1)αβ̇
γ̇δ denotes the inverse of the R̂-matrix for Uq(su(2)) [cf. Eq. (2.13)].

For four-dimensional q-deformed Euclidean space, however, σμ does not differ from
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σ̄μ. Finally, the entries of the inverse Pauli matrices are determined by the orthog-
onality relations

(σμ)αβ̇(σ−1
ν )αβ̇ = δμ

ν , (σ̄μ)α̇β(σ̄−1
ν )α̇β = δμ

ν . (A.8)

In analogy to the undeformed case the q-deformed two-dimensional spin ma-
trices are defined by

(σμν)α
β ≡ (PA)μν

κλ(σκ)αα̇ εα̇α̇′
(σ̄λ)α̇′β′ εβ′β,

(σ̄μν)α̇
β̇ ≡ (PA)μν

κλ(σ̄κ)α̇α εαα′
(σλ)α′β̇′ ε

β̇′β̇, (A.9)

(σ−1
μν )α

β ≡ (PA)κλ
μν εαα′(σ−1

κ )α′β̇′
εβ̇′β̇(σ̄−1

λ )β̇β ,

(σ̄−1
μν )α̇

β̇ ≡ (PA)κλ
μν εα̇α̇′(σ̄−1

κ )α̇′β′
εβ′β(σ−1

λ )ββ̇ . (A.10)

Note that PA stands for q-analogs of antisymmetrizers.
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Recherche Mathématiques, Montreal (1988).

[33] S. Majid, Free braided differential calculus, braided binomial theorem and the
braided exponential map, 1993 J. Mat. Phys. 34 4843.



302 Alexander Schmidt

[34] S. Majid, Introduction to Braided Geometry and q-Minkowski Space, Preprint, 1994
[hep-th/9410241]

[35] C. Bauer and H. Wachter, Operator representations on quantum spaces, 2003 Eur.
Phys. J. C 31 261 [math-ph/0201023]

[36] A. Schmidt and H. Wachter, Spinor calculus for q-deformed quantum spaces I,
preprint, [hep-th/0705.1640].

Alexander Schmidt
Arnold-Sommerfeld-Center
Theresienstr. 37
D–80333 München
e-mail: schmidt@theorie.physik.uni-muenchen.de



Quantum Field Theory
B. Fauser, J. Tolksdorf and E. Zeidler, Eds., 303–424
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L∞-Algebra Connections and Applications
to String- and Chern-Simons n-Transport

Hisham Sati, Urs Schreiber and Jim Stasheff

Abstract. We give a generalization of the notion of a Cartan-Ehresmann con-
nection from Lie algebras to L∞-algebras and use it to study the obstruction
theory of lifts through higher String-like extensions of Lie algebras. We find
(generalized) Chern-Simons and BF-theory functionals this way and describe
aspects of their parallel transport and quantization.

It is known that over a D-brane the Kalb-Ramond background field of
the string restricts to a 2-bundle with connection (a gerbe) which can be
seen as the obstruction to lifting the PU(H)-bundle on the D-brane to a
U(H)-bundle. We discuss how this phenomenon generalizes from the ordi-
nary central extension U(1) → U(H) → PU(H) to higher categorical central
extensions, like the String-extension BU(1) → String(G) → G. Here the
obstruction to the lift is a 3-bundle with connection (a 2-gerbe): the Chern-
Simons 3-bundle classified by the first Pontrjagin class. For G = Spin(n)
this obstructs the existence of a String-structure. We discuss how to describe
this obstruction problem in terms of Lie n-algebras and their correspond-
ing categorified Cartan-Ehresmann connections. Generalizations even beyond
String-extensions are then straightforward. For G = Spin(n) the next step is
“Fivebrane structures” whose existence is obstructed by certain generalized
Chern-Simons 7-bundles classified by the second Pontrjagin class.

Mathematics Subject Classification (2000). Primary 83E30; Secondary 55P20;
81T30; 55R45.

Keywords. Cartan-Ehresman connection, L∞-algebra, Chern-Simons theory,
BF-theory, 2-bundles, Eilenberg-MacLane spaces, differential greded algebras,
branes, strings.

1. Introduction

The study of extended n-dimensional relativistic objects which arise in string the-
ory has shown that these couple to background fields which can naturally be
thought of as n-fold categorified generalizations of fiber bundles with connection.
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These structures, or various incarnations of certain special cases of them, are prob-
ably most commonly known as (bundle-)(n−1)-gerbes with connection. These are
known to be equivalently described by Deligne cohomology, by abelian gerbes
with connection (“and curving”) and by Cheeger-Simons differential characters.
Following [6, 9] we address them as n-bundles with connection.

fundamental
object

background
field

n-particle n-bundle

(n− 1)-brane (n− 1)-gerbe
Table 1. The two schools of counting higher dimensional struc-
tures. Here n is in N = {0, 1, 2, · · · }.

In string theory, the first departure from bundles with connections to higher
bundles with connection occurred with the fundamental (super)string coupling
to the Neveu-Schwarz (NS) B-field. Locally, the B-field is just an R-valued two-
form. However, the study of the path integral, which amounts to ‘exponentiation’,
reveals that the B-field can be thought of as an abelian gerbe with connection
whose curving corresponds to the H-field H3 or as a Cheeger-Simons differential
character, whose holonomy [34] can be described [20] in the language of bundle
gerbes [62].

The next step up occurs with the M-theory (super)membrane which couples
to the C-field [11]. In supergravity, this is viewed locally as an R-valued differential
three-form. However, the study of the path integral has shown that this field is
quantized in a rather nontrivial way [79]. This makes the C-field not precisely a 2-
gerbe or degree 3 Cheeger-Simons differential character but rather a shifted version
[28] that can also be modeled using the Hopkins-Singer description of differential
characters [46]. Some aspects of the description in terms of Deligne cohomology is
given in [26].

From a purely formal point of view, the need of higher connections for the
description of higher dimensional branes is not a surprise: n-fold categorified bun-
dles with connection should be precisely those objects that allow us to define a
consistent assignment of “phases” to n-dimensional paths in their base space. We
address such an assignment as parallel n-transport. This is in fact essentially the
definition of Cheeger-Simons differential characters [25] as these are consistent
assignments of phases to chains. However, abelian bundle gerbes, Deligne coho-
mology and Cheeger-Simons differential characters all have one major restriction:
they only know about assignments of elements in U(1).

While the group of phases that enter the path integral is usually abelian,
more general n-transport is important nevertheless. For instance, the latter plays
a role at intermediate stages. This is well understood for n = 2: over a D-brane
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the abelian bundle gerbe corresponding to the NS field has the special property
that it measures the obstruction to lifting a PU(H)-bundle to a U(H)-bundle, i.e.
lifting a bundle with structure group the infinite projective unitary group on a
Hilbert space H to the corresponding unitary group [15], [16]. Hence, while itself
an abelian 2-structure, it is crucially related to a nonabelian 1-structure.

That this phenomenon deserves special attention becomes clear when we
move up the dimensional ladder: The Green-Schwarz anomaly cancelation [40] in
the heterotic string leads to a 3-structure with the special property that, over
the target space, it measures the obstruction to lifting an E8 × Spin(n)-bundle
to a certain nonabelian principal 2-bundle, called a String 2-bundle. Such a 3-
structure is also known as a Chern-Simons 2-gerbe [21]. By itself this is abelian,
but its structure is constrained by certain nonabelian data. Namely this string 2-
bundle with connection, from which the Chern-Simons 3-bundle arises, is itself an
instance of a structure that yields parallel 2-transport. It can be described neither
by abelian bundle gerbes, nor by Cheeger-Simons differential characters, nor by
Deligne cohomology.

In anticipation of such situations, previous works have considered nonabelian
gerbes and nonabelian bundle gerbes with connection. However, it turns out that
care is needed in order to find the right setup. For instance, the kinds of non-
abelian gerbes with connection studied in [17], [3], although very interesting, are
not sufficiently general to capture String 2-bundles. Moreover, it is not easy to
see how to obtain the parallel 2-transport assignment from these structures. For
the application to string physics, it would be much more suitable to have a non-
abelian generalization of the notion of a Cheeger-Simons differential character, and
thus a structure which, by definition, knows how to assign generalized phases to
n-dimensional paths.

The obvious generalization that is needed is that of a parallel transport n-
functor. Such a notion was described in [9], [72]: a structure defined by the very
fact that it labels n-paths by algebraic objects that allow composition in n different
directions, such that this composition is compatible with the gluing of n-paths. One
can show that such transport n-functors encompass abelian and nonabelian gerbes
with connection as special cases [72]. However, these n-functors are more general.
For instance, String 2-bundles with connection are given by parallel transport 2-
functors. Ironically, the strength of the latter – namely their knowledge about
general phase assignments to higher dimensional paths – is to some degree also a
drawback: for many computations, a description entirely in terms of differential
form data would be more tractable. However, the passage from parallel n-transport
to the corresponding differential structure is more or less straightforward: a parallel
transport n-functor is essentially a morphism of Lie n-groupoids. As such, it can
be sent, by a procedure generalizing the passage from Lie groups to Lie algebras,
to a morphism of Lie n-algebroids.

The aim of this paper is to describe two topics: First, to set up a formalism
for higher bundles with connections entirely in terms of L∞-algebras, which may
be thought of as a categorification of the theory of Cartan-Ehresmann connections.
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This is supposed to be the differential version of the theory of parallel transport
n-functors, but an exhaustive discussion of the differentiation procedure is not
given here. Instead we discuss a couple of examples and then show how the lifting
problem has a nice description in this language. To do so, we present a family of
L∞-algebras that govern the gauge structure of p-branes, as above, and discuss the
lifting problem for them. By doing so, we characterize Chern-Simons 3-forms as
local connection data on 3-bundles with connection which arise as the obstruction
to lifts of ordinary bundles to the corresponding String 2-bundles, governed by the
String Lie 2-algebra.

The formalism immediately allows the generalization of this situation to
higher degrees. Indeed we indicate how certain 7-dimensional generalizations of
Chern-Simons 3-bundles obstruct the lift of ordinary bundles to certain 6-bundles
governed by the Fivebrane Lie 6-algebra. The latter correspond to what we define
as the fivebrane structure, for which the degree seven NS field H7 plays the role
that the degree three dual NS field H3 plays for the n = 2 case.

The paper is organized in such a way that section 2 serves more or less as a
self-contained description of the basic ideas and construction, with the rest of the
document having all the details and all the proofs.

In this paper we make use of the homotopy algebras usually referred to as
L∞-algebras. These algebras also go by other names such as sh-Lie algebras [57].
In our context we may also call such algebras Lie ∞-algebras which we think of
as the abstract concept of an ∞-vector space with an antisymmetric bracket ∞-
functor on it, which satisfies a Jacobi identity up to coherent equivalence, whereas
“L∞-algebra” is concretely a codifferential coalgebra of sorts. In this paper we will
nevertheless follow the standard notation of L∞-algebra.

2. The setting and plan

We set up a useful framework for describing higher order bundles with connection
entirely in terms of Lie n-algebras, which can be thought of as arising from a
categorification of the concept of an Ehresmann connection on a principal bundle.
Then we apply this to the study of Chern-Simons n-bundles with connection as
obstructions to lifts of principal G-bundles through higher String-like extensions
of their structure Lie algebra.

2.1. L∞-algebras and their String-like central extensions

A Lie group has all the right properties to locally describe the phase change of a
charged particle as it traces out a worldline. A Lie n-group is a higher structure
with precisely all the right properties to describe locally the phase change of a
charged (n− 1)-brane as it traces out an n-dimensional worldvolume.

2.1.1. L∞-algebras. Just as ordinary Lie groups have Lie algebras, Lie n-groups
have Lie n-algebras. If the Lie n-algebra is what is called semistrict, these are [5]
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precisely L∞-algebras [57] which have come to play a significant role in cohomo-
logical physics. A (“semistrict” and finite dimensional) Lie n-algebra is any of the
following three equivalent structures:

• an L∞-algebra structure on a graded vector space g concentrated in the first
n degrees (0, ..., n− 1);

• a quasi-free differentially graded-commutative algebra (“qDGCA”: free as a
graded-commutative) algebra on the dual of that vector space: this is the
Chevalley-Eilenberg algebra CE(g) of g;

• an n-category internal to the category of graded vector spaces and equipped
with a skew-symmetric linear bracket functor which satisfies a Jacobi identity
up to higher coherent equivalence.

For every L∞-algebra g, we have the following three qDGCAs:

• the Chevalley-Eilenberg algebra CE(g)
• the Weil algebra W(g)
• the algebra of invariant polynomials or basic forms inv(g).

These sit in a sequence

CE(g) W(g)���� inv(g)� ��� , (2.1)

where all morphisms are morphisms of dg-algebras. This sequence plays the role
of the sequence of differential forms on the “universal g-bundle”.

Figure 1. (see next page) The universal G-bundle in its various
incarnations. That the ordinary universal G bundle is the realiza-
tion of the nerve of the groupoid which we denote here by INN(G)
is an old result by Segal (see [65] for a review and a discussion
of the situation for 2-bundles). This groupoid INN(G) is in fact
a 2-group. The corresponding Lie 2-algebra (2-term L∞-algebra)
we denote by inn(g). Regarding this as a codifferential coalgebra
and then dualizing that to a differential algebra yields the Weil
algebra of the Lie algebra g. This plays the role of differential
forms on the universal G-bundle, as already known to Cartan.
The entire table is expected to admit an ∞-ization. Here we con-
centrate on discussing ∞-bundles with connection in terms just
of L∞-algebras and their dual dg-algebras. An integration of this
back to the world of ∞-groupoids should proceed along the lines
of [35, 43], but is not considered here.
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2.1.2. L∞-algebras from cocycles: String-like extensions. A simple but important
source of examples for higher Lie n-algebras comes from the abelian Lie algebra
u(1) which may be shifted into higher categorical degrees. We write bn−1u(1) for
the Lie n-algebra which is entirely trivial except in its nth degree, where it looks
like u(1). Just as u(1) corresponds to the Lie group U(1) , so bn−1u(1) corresponds
to the iterated classifying space Bn−1U(1), realizable as the topological group
given by the Eilenberg-MacLane space K(Z, n). Thus an important source for
interesting Lie n-algebras comes from extensions

0 → bn−1u(1) → ĝ → g → 0 (2.2)

of an ordinary Lie algebra g by such a shifted abelian Lie n-algebra bn−1u(1). We
find that, for each (n + 1)-cocycle μ in the Lie algebra cohomology of g, we do
obtain such a central extension, which we describe by

0 → bn−1u(1) → gμ → g → 0 . (2.3)

Since, for the case when μ = 〈·, [·, ·]〉 is the canonical 3-cocycle on a semisimple
Lie algebra g, this gμ is known ([7] and [43]) to be the Lie 2-algebra of the String
2-group, we call these central extensions String-like central extensions. (We also
refer to these as Lie n-algebras “of Baez-Crans type” [5].) Moreover, whenever
the cocycle μ is related by transgression to an invariant polynomial P on the Lie
algebra, we find that gμ fits into a short homotopy exact sequence of Lie (n + 1)-
algebras

0 → gμ → csP (μ) → chP (μ) → 0 . (2.4)

Here csP (g) is a Lie (n + 1)-algebra governed by the Chern-Simons term corre-
sponding to the transgression element interpolating between μ and P . In a similar
fashion chP (g) knows about the characteristic (Chern) class associated with P .

In summary, from elements of the cohomology of CE(g) together with related
elements in W(g) we obtain the String-like extensions of Lie algebras to Lie 2n-
algebras and the associated Chern- and Chern-Simons Lie (2n− 1)-algebras:

Lie algebra cocycle μ Baez-Crans Lie n-algebra gμ

invariant polynomial P Chern Lie n-algebra chP (g)
transgression element cs Chern-Simons Lie n-algebra csP (g)

2.1.3. L∞-algebra differential forms. For g an ordinary Lie algebra and Y some
manifold, one finds that dg-algebra morphisms CE(g) → Ω•(Y ) from the Chevally-
Eilenberg algebra of g to the DGCA of differential forms on Y are in bijection with
g-valued 1-forms A ∈ Ω1(Y, g) whose ordinary curvature 2-form

FA = dA + [A ∧A] (2.5)

vanishes. Without the flatness, the correspondence is with algebra morphisms not
respecting the differentials. But dg-algebra morphisms A : W(g) → Ω•(Y ) are
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in bijection with arbitrary g-valued 1-forms. These are flat precisely if A factors
through CE(g). This situation is depicted in the following diagram:

CE(g)

(A,FA=0)

��

W(g)����

(A,FA)

��
Ω•(Y ) = Ω•(Y )

. (2.6)

This has an obvious generalization for g an arbitrary L∞-algebra. For g any L∞-
algebra, we write

Ω•(Y, g) = Homdg−Alg(W(g),Ω•(Y )) (2.7)

for the collection of g-valued differential forms and

Ω•
flat(Y, g) = Homdg−Alg(CE(g),Ω•(X)) (2.8)

for the collection of flat g-valued differential forms.

2.2. L∞-algebra Cartan-Ehresmann connections

2.2.1. g-bundle descent data. A descent object for an ordinary principal G-bundle
on X is a surjective submersion π : Y → X together with a functor g : Y ×X Y →
BG from the groupoid whose morphisms are pairs of points in the same fiber of Y ,
to the groupoid BG which is the one-object groupoid corresponding to the group
G. Notice that the groupoid BG is not itself the classifying space BG of G, but
the geometric realization of its nerve, |BG|, is: |BG| = BG.

We may take Y to be the disjoint union of some open subsets {Ui} of X
that form a good open cover of X . Then g is the familiar concept of a transition
function describing a bundle that has been locally trivialized over the Ui. But one
can also use more general surjective submersions. For instance, for P → X any
principal G-bundle, it is sometimes useful to take Y = P . In this case one obtains
a canonical choice for the cocycle

g : Y ×X Y = P ×X P → BG (2.9)

since P being principal means that

P ×X P �diffeo P ×G . (2.10)

This reflects the fact that every principal bundle canonically trivializes when pulled
back to its own total space. The choice Y = P differs from that of a good cover
crucially in the following aspect: if the group G is connected, then also the fibers
of Y = P are connected. Cocycles over surjective submersions with connected
fibers have special properties, which we will utilize: When the fibers of Y are
connected, we may think of the assignment of group elements to pairs of points in
one fiber as arising from the parallel transport with respect to a flat vertical 1-form
Avert ∈ Ω1

vert(Y, g), flat along the fibers. As we shall see, this can be thought of
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as the vertical part of a Cartan-Ehresmann connection 1-form. This provides a
morphism

Ω•
vert(Y ) CE(g)

Avert�� (2.11)

of differential graded algebras from the Chevalley-Eilenberg algebra of g to the
vertical differential forms on Y .

Unless otherwise specified, morphism will always mean homomorphism of
differential graded algebra. Avert has an obvious generalization: for g any Lie n-
algebra, we say that a g-bundle descent object for a g-n-bundle on X is a surjective

submersion π : Y → X together with a morphism Ω•
vert(Y ) CE(g)

Avert�� . Now
Avert ∈ Ω•

vert(Y, g) encodes a collection of vertical p-forms on Y , each taking values
in the degree p-part of g and all together satisfying a certain flatness condition,
controlled by the nature of the differential on CE(g).

2.2.2. Connections on n-bundles: the extension problem. Given a descent object

Ω•
vert(Y ) CE(g)

Avert�� as above, a flat connection on it is an extension of
the morphism Avert to a morphism Aflat that factors through differential forms on
Y

Ω•
vert(Y ) CE(g)

Avert��

Aflat

��
Ω•(Y )

i∗

����
. (2.12)

In general, such an extension does not exist. A general connection on a g-descent
object Avert is a morphism

Ω•(Y ) W(g)
(A,FA)�� (2.13)

from the Weil algebra of g to the differential forms on Y together with a morphism

Ω•(Y ) inv(g)
{Ki}�� (2.14)
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from the invariant polynomials on g, as in 2.1.1, to the differential forms on X ,
such that the following two squares commute:

Ω•
vert(Y ) CE(g)

Avert��

Ω•(Y )

i∗

����

W (g)

����

(A,FA)��

Ω•(X)
��

π∗

��

inv(g)
��

��

{Ki}
��

. (2.15)

Whenever we have such two commuting squares, we say

• Avert ∈ Ω•
vert(Y, g) is a g-bundle descent object (playing the role of a transi-

tion function);
• A ∈ Ω•(Y, g) is a (Cartan-Ehresmann) connection with values in the L∞-

algebra g on the total space of the surjective submersion;
• FA ∈ Ω•+1(Y, g) are the corresponding curvature forms;
• and the set {Ki ∈ Ω•(X)} are the corresponding characteristic forms, whose

classes {[Ki]} in de Rham cohomology

Ω•(X) inv(g)
{Ki}��

H•
deRham(X) H•(inv(g))

{[Ki]}��

(2.16)

are the corresponding characteristic classes of the given descent object Avert.

Hence we realize the curvature of a g-connection as the obstruction to ex-
tending a g-descent object to a flat g-connection.

2.3. Higher string and Chern-Simons n-transport: the lifting problem

Given a g-descent object

CE(g)

Avert�����
��

��
��

Ω•
vert(Y )

, (2.17)
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Ω•
vert(Y ) CE(g)

Avert�� descent
data

first
Cartan-Ehresmann

condition

Ω•(Y )

i∗

����

W (g)

����

(A,FA)�� connection
data

second
Cartan-Ehresmann

condition

Ω•(X)
��

π∗

��

inv(g)
��

��

{Ki}�� characteristic
forms

H•
dR(X) H•(inv(g)){[Ki]}

�� Chern-Weil
homomorphism

Figure 2. A g-connection descent object and its interpretation.
For g-any L∞-algebra and X a smooth space, a g-connection on
X is an equivalence class of pairs (Y, (A,FA)) consisting of a sur-
jective submersion π : Y → X and dg-algebra morphisms forming
the above commuting diagram. The equivalence relation is con-
cordance of such diagrams. The situation for ordinary Cartan-
Ehresmann (1-)connections is described in 6.2.1.

and given an extension of g by a String-like L∞-algebra

CE(bn−1u(1)) CE(gμ)i���� CE(g)� ��� , (2.18)

we ask if it is possible to lift the descent object through this extension, i.e. to find
a dotted arrow in

CE(bn−1u(1)) CE(gμ)����

��

CE(g)� ���

Avert		��
��
��
��

Ω•
vert(Y )

. (2.19)

In general this is not possible. We seek a straightforward way to compute the
obstruction to the existence of the lift. The strategy is to form the weak (homotopy)
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kernel of
CE(bn−1u(1)) CE(gμ)i���� (2.20)

which we denote by CE(bn−1u(1) ↪→ gμ) and realize as a mapping cone of qDGCAs.
This is governed by the diagram

CE(bn−1u(1) ↪→ gμ)



���
���

���
�

f−1

��

CE(bnu(1))� �
j��

A′
vert

��
��
��
��
�

		��
��
��
��
�CE(bn−1u(1)) CE(gμ)i����

��

CE(g)� ���

Avert

��
Ω•

vert(Y )

, (2.21)

which we now describe.
We have canonically a morphism f from CE(g) to CE(bn−1u(1) ↪→ gμ) which

happens to have a weak inverse f−1. While the lift to a gμ-cocycle may not always
exist, the lift to a (bn−1u(1) ↪→ gμ)-cocycle does always exist, Avert ◦ f−1. The
failure of this lift to be a true lift to gμ is measured by the component of Avert◦f−1

on bn−1u(1)[1] � bnu(1). Formally this is the composite A′
vert := Avert◦f−1◦j. The

nontriviality of the bnu(1)-descent object A′
vert is the obstruction to constructing

the desired lift.

We thus find the following results, for any g-cocycle μ which is in transgression
with the invariant polynomial P on g,
• The characteristic classes (in de Rham cohomology) of gμ-bundles are those

of the corresponding g-bundles modulo those coming from the invariant poly-
nomial P .

• The lift of a g-valued connection to a gμ-valued connection is obstructed by a
bnu(1)-valued (n+ 1)-connection whose (n+ 1)-form curvature is P (FA), i.e.
the image under the Chern-Weil homomorphism of the invariant polynomial
corresponding to μ.

• Accordingly, the (n + 1)-form connection of the obstructing bnu(1) (n + 1)-
bundle is a Chern-Simons form for this characteristic class.
We call the obstructing bnu(1) (n + 1)-descent object the corresponding

Chern-Simons (n + 1)-bundle. For the case when μ = 〈·, [·, ·]〉 is the canonical 3-
cocycle on a semisimple Lie algebra g, this structure (corresponding to a 2-gerbe)
has a 3-connection given by the ordinary Chern-Simons 3-form and has a curvature
4-form given by (the image in de Rham cohomology of) the first Pontrjagin class
of the underlying g-bundle.

3. Statement of the main results

We define, for any L∞-algebra g and any smooth space X , a notion of
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• g-descent objects over X ;
and an extension of these to
• g-connection descent objects over X .

These descent objects are to be thought of as the data obtained from locally
trivializing an n-bundle (with connection) whose structure n-group has the Lie n-
algebra g. Being differential versions of n-functorial descent data of such n-bundles,
they consist of morphisms of quasi free differential graded-commutative algebras
(qDGCAs).

We define for each L∞-algebra g a dg-algebra inv(g) of invariant polynomials
on g. We show that every g-connection descent object gives rise to a collection of
de Rham classes on X : its characteristic classes. These are images of the elements
of inv(g). Two descent objects are taken to be equivalent if they are concordant in
a natural sense.

Our first main result is

Theorem 3.1 (Characteristic classes). Characteristic classes are indeed character-
istic of g-descent objects (but do not necessarily fully characterize them) in the
following sense:
• Concordant g-connection descent objects have the same characteristic classes.
• If the g-connection descent objects differ just by a gauge transformation, they

even have the same characteristic forms.

This is our proposition 6.9 and corollary 6.10.
Remark. We expect that this result can be strengthened. Currently our charac-
teristic classes are just in de Rham cohomology. One would expect that these are
images of classes in integral cohomology. While we do not attempt here to discuss
integral characteristic classes in general, we discuss some aspects of this for the
case of abelian Lie n-algebras g = bn−1u(1) in 6.1.1 by relating g-descent objects
to Deligne cohomology.

The reader should also note that in our main examples to be discussed in
section 7 we start with an L∞-connection which happens to be an ordinary Cartan-
Ehresmann connection on an ordinary bundle and is hence known to have integral
classes. It follows from our results then that also the corresponding Chern-Simons
3-connections in particular have an integral class.

We define String-like extensions gμ of L∞-algebras coming from any L∞-
algebra cocycle μ: a closed element in the Chevalley-Eilenberg dg-algebra CE(g)
corresponding to g: μ ∈ CE(g). These generalize the String Lie 2-algebra which
governs the dynamics of (heterotic) superstrings.

Our second main results is

Theorem 3.2 (String-like extensions and their properties). For every degree (n+1)-
cocycle μ on an L∞-algebra g we obtain the String-like extension gμ which sits in
an exact sequence

0 → bn−1u(1) → gμ → g → 0 .
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When μ is in transgression with an invariant polynomial P we furthermore obtain
a weakly exact sequence

0 → gμ → csP (g) → chP (μ) → 0

of L∞-algebras, where csP (g) � inn(gμ) is trivializable (equivalent to the trivial
L∞-algebra). There is an algebra of invariant polynomials on g associated with
csP (g) and we show that it is the algebra of invariant polynomials of g modulo the
ideal generaled by P .

This is proposition 5.29, proposition 5.30 and proposition 5.33.
Our third main result is

Theorem 3.3 (Obstructions to lifts through String-like extensions). For μ ∈ CE(g)
any degree n+1 g-cocycle that transgresses to an invariant polynomial P ∈ inv(g),
the obstruction to lifting a g-descent object to a gμ-descent object is a (bnu(1))-
descent object whose single characteristic class is the class corresponding to P of
the original g-descent object.

This is reflected by the fact that the cohomology of the basic forms on the
Chevalley-Eilenberg algebra of the corresponding Chern-Simons L∞-algebra csP (g)
is that of the algebra of basic forms on inv(g) modulo the ideal generated by P .

This is our proposition 5.33 and proposition 7.12.
While we do not discuss it here, our L∞-connections may be integrated to

full nonabelian differential cocycles along the lines of [70].
We discuss the following applications.

• For g an ordinary semisimple Lie algebra and μ its canonical 3-cocycle, the
obstruction to lifting a g-bundle to a String 2-bundle is a Chern-Simons 3-
bundle with characteristic class the Pontrjagin class of the original bundle.
This is a special case of our proposition 7.12 which is spelled out in detail in
in 7.3.1.

The vanishing of this obstruction is known as a String structure [52, 56,
63]. In categorical language, this issue was first discussed in [76].

By passing from our Lie ∞-algebraic description to smooth spaces along
the lines of section 4.1 and then forming fundamental n-groupoids of these
spaces, one can see that our construction of obstructing n-bundles to lifts
through String-like extensions reproduces the construction [18, 19] of Čech
cocycles representing characteristic classes. This, however, will not be dis-
cussed here.

• This result generalizes to all String-like extensions. Using the 7-cocycle on
so(n) we obtain lifts through extensions by a Lie 6-algebra, which we call the
Fivebrane Lie 6-algebra. Accordingly, fivebrane structures on string struc-
tures are obstructed by the second Pontrjagin class.

This pattern continues and one would expect our obstruction theory for
lifts through String-like extensions with respect to the 11-cocycle on so(n) to
correspond to Ninebrane structure.
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The issue of p-brane structures for higher p was discussed before in [60].
In contrast to the discussion there, we here see p-brane structures only for
p = 4n+1, corresponding to the list of invariant polynomials and cocycles for
so(n). While our entire obstruction theory applies to all cocycles on all Lie
∞-algebras, it is only for those on so(n) and maybe e8 for which the physical
interpretation in the sense of p-brane structures is understood.

• We discuss how the action functional of the topological field theory known as
BF-theory arises from an invariant polynomial on a strict Lie 2-algebra, in a
generalization of the integrated Pontrjagin 4-form of the topological term in
Yang-Mills theory. See proposition 5.26 and the example in 5.6.1.

This is similar to but different from the Lie 2-algebraic interpretation
of BF theory indicated in [38, 39], where the “cosmological” bilinear in the
connection 2-form is not considered and a constraint on the admissible strict
Lie 2-algebras is imposed.

• We indicate in 8.1 the notion of parallel transport induced by a g-connection,
relate it to the n-functorial parallel transport of [9, 72, 73, 74] and point out
how this leads to σ-model actions in terms of dg-algebra morphisms. See
section 8.

• We indicate in 8.3.1 how by forming configuration spaces by sending DGCAs
to smooth spaces and then using the internal hom of smooth space, we obtain
for every g-connection descent object configuration spaces of maps equipped
with an action functional induced by the transgressed g-connection. We show
that the algebra of differential forms on these configuration spaces naturally
supports the structure of the corresponding BRST-BV complex, with the
iterated ghost-of-ghost structure inherited from the higher degree symmetries
induced by g.

This construction is similar in spirit to the one given in [1], reviewed in
[66], but also, at least superficially, a bit different.

• We indicate also in 8.3.1 how this construction of configuration spaces induces
the notion of transgression of n-bundles on X to (n−k)-bundles on spaces of
maps from k-dimensional spaces into X . An analogous integrated description
of transgression in terms of inner homs is in [73]. We show in 8.3.1 in partic-
ular that this transgression process relates the concept of String-structures
in terms of 4-classes down on X with the corresponding 3-classes on LX , as
discussed for instance in [56]. Our construction immediately generalizes to
fivebrane and higher classes.

All of our discussion here pertains to principal L∞-connections. One can
also discuss associated g-connections induced by (∞-)representations of g (for in-
stance as in [58]) and then study the collections of “sections” or “modules” of such
associated g-connections.

The extended quantum field theory of a (n − 1)-brane charged under an n-
connection (“a charged n-particle”, definition 8.5) should (see for instance [32,
33, 76, 45]) assign to each d-dimensional part Σ of the brane’s parameter space
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(“worldvolume”) the collection (an (n−d−1)-category, really) of sections/modules
of the transgression of the n-bundle to the configuration space of maps from Σ.

For instance, the space of sections of a Chern-Simons 3-connection trans-
gressed to maps from the circle should yield the representation category of the
Kac-Moody extension of the corresponding loop group.

Our last proposition 8.6 points in this direction. But a more detailed discus-
sion will not be given here.

4. Differential graded-commutative algebra

Differential N-graded commutative algebras (DGCAs) play a prominent role in our
discussion. One way to understand what is special about DGCAs is to realize that
every DGCA can be regarded, essentially, as the algebra of differential forms on
some generalized smooth space.

We explain what this means precisely in section 4.1. The underlying phenom-
enon is essentially the familiar governing principle of Sullivan models in rational
homotopy theory [44, 77], but instead of working with simplicial spaces, we here
consider presheaf categories. This will not become relevant, though, until the dis-
cussion of configuration spaces, parallel transport and action functionals in section
8.

4.1. Differential forms on smooth spaces

We can think of every differential graded commutative algebra essentially as being
the algebra of differential forms on some space, possibly a generalized space.

Definition 4.1. Let S be the category whose objects are the open subsets of R∪R2∪
R3 ∪ · · · and whose morphisms are smooth maps between these. We write

S∞ := SetSop
(4.1)

for the category of set-valued presheaves on S.

So an object X in S∞ is an assignment of sets U �→ X(U) to each open
subset U , together with an assignment

( U
φ �� V ) �→ ( X(U) ��

φ∗
X

X(V ) ) (4.2)

of maps of sets to maps of smooth subsets which respects composition. A morphism

f : X → Y (4.3)

of smooth spaces is an assignment U �→ ( X(U)
fU �� Y (U) ) of maps of sets to

open subsets, such that for all smooth maps of subsets U
φ �� V we have that
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the square

X(V )
fV ��

φ∗
X

��

Y (V )

φ∗
Y

��
X(U)

fU �� Y (U)

(4.4)

commutes. We think of the objects of S∞ as smooth spaces. The set X(U) that
such a smooth space X assigns to an open subset U is to be thought of as the
set of smooth maps from U into X . As opposed to manifolds which are locally
isomorphic to an object in S, smooth spaces can hence be thought of as being
objects which are just required to have the property that they may be probed by
objects of S. Every open subset V becomes a smooth space by setting

V : U �→ HomS∞(U, V ) . (4.5)

This are the representable presheaves. Similarly, every ordinary manifold X be-
comes a smooth space by setting

X : U �→ Hommanifolds(U,X) . (4.6)

The special property of smooth spaces which we need here is that they form a
(cartesian) closed category:
• for any two smooth spaces X and Y there is a cartesian product X × Y ,

which is again a smooth space, given by the assignment

X × Y : U �→ X(U)× Y (U) ; (4.7)

where the cartesian product on the right is that of sets;
• the collection hom(X,Y ) of morphisms from one smooth space X to another

smooth space Y is again a smooth space, given by the assignment

homS∞(X,Y ) : U �→ HomS∞(X × U, Y ) . (4.8)

A very special smooth space is the smooth space of differential forms.

Definition 4.2. We write Ω• for the smooth space which assigns to each open subset
the set of differential forms on it

Ω• : U �→ Ω•(U) . (4.9)

Using this object we define the DGCA of differential forms on any smooth space
X to be the set

Ω•(X) := HomS∞(X,Ω•) (4.10)
equipped with the obvious DGCA structure induced by the local DGCA structure
of each Ω•(U).

Therefore the object Ω• is in a way both a smooth space as well as a differ-
ential graded commutative algebra: it is a DGCA-valued presheaf. Such objects
are known as schizophrenic [48] or better ambimorphic [81] objects: they relate
two different worlds by duality. In fact, the process of mapping into these objects
provides an adjunction between the dual categories:
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Definition 4.3. There are contravariant functors from smooth spaces to DGCAs
given by

Ω• : S∞ → DGCAs

X �→ Ω•(X) (4.11)

and

Hom(−,Ω•(−)) : DGCAs → S∞

A �→ XA (4.12)

These form an adjunction of categories. The unit

DGCAs

Id

��

Hom(−,Ω•(−))
�� S∞

Ω•
�� DGCAs

u


(4.13)

of this adjunction is a natural transformation whose component map embeds each
DGCA A into the algebra of differential forms on the smooth space it defines

A
� � �� Ω•(XA) (4.14)

by sending every a ∈ A to the map of presheaves

(f ∈ HomDGCAs(A,Ω•(U))) �→ (f(a) ∈ Ω•(U)) . (4.15)

This way of obtaining forms on XA from elements of A will be crucial for our
construction of differential forms on spaces of maps, hom(X,Y ), used in section
8.3.

Using this adjunction, we can “pull back” the internal hom of S∞ to DGCAs.
Since the result is not literally the internal hom in DGCAs (which does not exist
since DGCAs are not profinite as opposed to codifferential coalgebras [35]) we call
it “maps” instead of “hom”.

Definition 4.4 (Forms on spaces of maps). Given any two DGCAs A and B, we
define the DGCA of “maps” from B to A

maps(B,A) := Ω•(homS∞(XA, XB)) . (4.16)

This is a functor

maps : DGCAsop ×DGCAs → DGCAs . (4.17)

Notice the fact (for instance corollary 35.10 in [53] and theorem 2.8 in [61])

that for any two smooth spaces X and Y , algebra homomorphisms C∞(X)
φ∗
←

C∞(Y ) and hence DGCA morphisms Ω•(X)
φ∗
← Ω•(Y ) are in bijection with smooth

maps φ : X → Y .
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It follows that an element of hom(XA, XB) is, over test domains U and V a
natural map of sets

HomDGCAs(A,Ω•(V ))×HomDGCAs(Ω•(U),Ω•(V )) → HomDGCAs(B,Ω•(V )) .
(4.18)

One way to obtain such maps is from pullback along algebra homomorphisms

B → A⊗ Ω•(U) .

This will be an important source of DGCAs of maps for the case that A is the
Chevalley-Eilenberg algebra of an L∞-algebra, as described in section 4.1.1.

4.1.1. Examples.
Diffeological spaces. Particularly useful are smooth spaces X which, while not
quite manifolds, have the property that there is a set Xs such that

X : U �→ X(U) ⊂ HomSet(U,Xs) (4.19)

for all U ∈ S. These are the Chen-smooth or diffeological spaces used in [9, 73, 74].
In particular, all spaces of maps homS∞(X,Y ) for X and Y manifolds are of this
form. This includes in particular loop spaces.
Forms on spaces of maps. When we discuss parallel transport and its transgres-
sion to configuration spaces in section 8.3, we need the following construction of
differential forms on spaces of maps.

Definition 4.5 (Currents). For A any DGCA, we say that a current on A is a
smooth linear map

c : A→ R . (4.20)

For A = Ω•(X) this reduces to the ordinary notion of currents.

Proposition 4.6. Let A be a quasi free DGCAs in positive degree (meaning that
the underlying graded commutative algebras are freely generated from some graded
vector space in positive degree). For each element b ∈ B and current c on A, we
get an element in Ω•(HomDGCAs(B,A⊗ Ω•(−))) by mapping, for each U ∈ S

HomDGCAs(B,A⊗ Ω•(U)) → Ω•(U)
f∗ �→ c(f∗(b)) . (4.21)

If b is in degree n and c in degree m ≤ n, then this differential form is in
degree n−m.
The superpoint. Most of the DGCAs we shall consider here are non-negatively
graded or even positively graded. These can be thought of as Chevalley-Eilenberg
algebras of Lie n-algebroids and Lie n-algebras, respectively, as discussed in more
detail in section 5. However, DGCAs of arbitrary degree do play an important role,
too. Notice that a DGCA of non-positive degree is in particular a cochain complex
of non-positive degree. But that is the same as a chain complex of non-negative
degree.

The following is a very simple but important example of a DGCA in non-
positive degree.
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Definition 4.7 (Superpoint). The “algebra of functions on the superpoint” is the
DGCA

C(pt) := (R⊕ R[−1], dpt) (4.22)

where the product on R ⊕ R[−1] is the tensor product over R, and where the dif-
ferential dpt : R[−1] → R is the canonical isomorphism.

The smooth space associated to this algebra according to definition 4.3 is
just the ordinary point, because for any test domain U the set

HomDGCAs(C(pt),Ω•(U)) (4.23)

contains only the morphism which sends 1 ∈ R to the constant unit function on
U , and which sends R[−1] to 0. However, as is well known from the theory of
supermanifolds, the algebra C(pt) is important in that morphisms from any other
DGCA A into it compute the (shifted) tangent space corresponding to A. From
our point of view here this manifests itself in particular by the fact that for X any
manifold, we have a canonical injection

Ω•(TX) ↪→ Ω•(maps(C∞(X), C(pt))) (4.24)

of the differential forms on the tangent bundle of X into the differential forms on
the smooth space of algebra homomorphisms of C∞(X) to C(pt):

for every test domain U an element in HomDGCAs(C∞(X), C(pt ⊗ Ω•(U)))
comes from a pair consisting of a smooth map f : U → X and a vector field
v ∈ Γ(TX). Together this constitutes a smooth map f̂ : U → TX and hence
for every form ω ∈ Ω•(TX) we obtain a form on maps(C∞(X), C(pt)) by the
assignment

((f, v) ∈ HomDGCAs(C∞(X), C(pt⊗ Ω•(U)))) �→ (f̂∗ω ∈ Ω•(U)) (4.25)

over each test domain U .
In section 5.1.1 we discuss how in the analogous fashion we obtain the Weil

algebra W(g) of any L∞-algebra g from its Chevalley-Eilenberg algebra CE(g) by
mapping that to C(pt). This says that the Weil algebra is like the space of functions
on the shifted tangent bundle of the “space” that the Chevalley-Eilenberg algebra
is the space of functions on. See also figure 3.

4.2. Homotopies and inner derivations

When we forget the algebra structure of DGCAs, they are simply cochain com-
plexes. As such they naturally live in a 2-category Ch• whose objects are cochain
complexes (V •, dV ), whose morphisms

(V •, dV ) (W •, dW )
f∗

�� (4.26)

are degree preserving linear maps V • W •f∗
�� that do respect the differentials,

[d, f∗] := dV ◦ f∗ − f∗ ◦ dW = 0 , (4.27)
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and whose 2-morphisms

(V •, dV ) (W •, dW )

f∗

��

g∗

��
ρ



(4.28)

are cochain homotopies, namely linear degree -1 maps ρ : W • → V • with the
property that

g∗ = f∗ + [d, ρ] = f∗ + dV ◦ ρ + ρ ◦ dW . (4.29)
Later in section 5.2 we will also look at morphisms that do preserve the algebra
structure, and homotopies of these. Notice that we can compose a 2-morphism
from left and right with 1-morphisms, to obtain another 2-morphism

(U•, dU ) (V •, dV )h∗
�� (W •, dW )

f∗

��

g∗

��
(X•, dX)

j∗��ρ



(4.30)
whose component map now is

h∗ ◦ ρ ◦ j∗ : X• j∗ �� W • ρ �� V • h∗
�� U• . (4.31)

This will be important for the interpretation of the diagrams we discuss, of the
type (4.40) and (4.46) below.

Of special importance are linear endomorphisms V • V •ρ�� of DGCAs
which are algebra derivations. Among them, the inner derivations in turn play a
special role:

Definition 4.8 (Inner derivations). On any DGCA (V •, dV ), a degree 0 endomor-
phism

(V •, dV ) (V •, dV )L�� (4.32)

is called an inner derivation if
• it is an algebra derivation of degree 0;
• it is connected to the 0-derivation, i.e. there is a 2-morphims

(V •, dV ) (V •, dV )

0

��

L=[dV ,ρ]

��
ρ



, (4.33)
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where ρ comes from an algebra derivation of degree -1.

Remark. Inner derivations generalize the notion of a Lie derivative on differential
forms, and hence they encode the notion of vector fields in the context of DGCAs.

4.2.1. Examples.

Lie derivatives on ordinary differential forms. The formula sometimes known as
“Cartan’s magic formula”, which says that on a smooth space Y the Lie derivative
Lvω of a differential form ω ∈ Ω•(Y ) along a vector field v ∈ Γ(TY ) is given by

Lvω = [d, ιv]ω , (4.34)

where ιv : Ω•(Y ) → Ω•(Y ), says that Lie derivatives on differential forms are
inner derivations, in our sense. When Y is equipped with a smooth projection
π : Y → X , it is of importance to distinguish the vector fields vertical with respect
to π. The abstract formulation of this, applicable to arbitrary DGCAs, is given in
(4.3) below.

4.3. Vertical flows and basic forms

We will prominently be dealing with surjections

A B
i∗���� (4.35)

of differential graded commutative algebras that play the role of the dual of an
injection

F
� � i �� P (4.36)

of a fiber into a bundle. We need a way to identify in the context of DGCAs which
inner derivations of P are vertical with respect to i. Then we can find the algebra
corresponding to the basis of P as those elements of B which are annihilated by
all vertical derivations.

Definition 4.9 (Vertical derivations). Given any surjection of differential graded
algebras

F P
i∗���� (4.37)

we say that the vertical inner derivations

P P

0

��

[dP ,ρ]

��
ρ



(4.38)

(this diagram is in the category of cochain complexes, compare the beginning of
section 5.2) on P with respect to i∗ are those inner derivations
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• for which there exists an inner derivation of F

F F

0

��

[dP ,ρ′]

�� ρ′



(4.39)

such that

F F

[d,ρ′]

��

0

		

P

����

P

����

[d,ρ]

��

0

		

ρ′



ρ



; (4.40)

• and where ρ′ is a contraction, ρ′ = ιx, i.e. a derivation which sends inde-
composables to degree 0.

Definition 4.10 (Basic elements). Given any surjection of differential graded alge-
bras

F P
i∗���� (4.41)

we say that the algebra

Pbasic =
⋂

ρ vertical

ker(ρ) ∩ ker(ρ ◦ dp) (4.42)

of basic elements of P (with respect to the surjection i∗) is the subalgebra of P of
all those elements a ∈ P which are annihilated by all i∗-vertical derivations ρ, in
that

ρ(a) = 0 (4.43)
ρ(dP a) = 0 . (4.44)

We have a canonical inclusion

P Pbasic
� �

p∗
�� . (4.45)
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Diagrammatically the above condition says that

F F

[d,ρ′]

��

0

��

P

i∗

����

P

i∗

����

[d,ρ]

��

0

��

Pbasic

��

p∗

��

Pbasic

��

p∗

��

0��

ρ′



ρ



. (4.46)

4.3.1. Examples.

Basic forms on a bundle. As a special case of the above general definition, we
reobtain the standard notion of basic differential forms on a smooth surjective
submersion π : Y → X with connected fibers.

Definition 4.11. Let π : Y → X be a smooth map. The vertical de Rham complex
, Ω•

vert(Y ), with respect to Y is the de Rham complex of Y modulo those forms
that vanish when restricted in all arguments to vector fields in the kernel of π∗ :
Γ(TY ) → Γ(TX), namely to vertical vector fields.

The induced differential on Ω•
vert(Y ) sends ωvert = i∗ω to

dvert : i∗ω �→ i∗dω . (4.47)

Proposition 4.12. This is well defined. The quotient Ω•
vert(Y ) with the differential

induced from Ω•(Y ) is indeed a dg-algebra, and the projection

Ω•
vert(Y ) Ω•(Y )i∗�� (4.48)

is a homomorphism of dg-algebras (in that it does respect the differential).

Proof. Notice that if ω ∈ Ω•(Y ) vanishes when evaluated on vertical vector
fields then obviously so does α ∧ ω, for any α ∈ Ω•(Y ). Moreover, due to the
formula

dω(v1, · · · , vn+1) =
∑

σ∈Sh(1,n+1)

±vσ1ω(vσ2 , · · · , vσn+1)

+
∑

σ∈Sh(2,n+1)

±ω([vσ1 , vσ2 ], vσ3 , · · · , vσn+1) (4.49)
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and the fact that for v, w vertical so is [v, w] and hence dω is also vertical. This
gives that vertical differential forms on Y form a dg-subalgebra of the algebra of
all forms on Y . Therefore if i∗ω = i∗ω′ then

di∗ω′ = i∗dω′ = i∗d(ω + (ω′ − ω)) = i∗dω + 0 = di∗ω . (4.50)

Hence the differential is well defined and i∗ is then, by construction, a morphism
of dg-algebras.

�

Recall the following standard definition of basic differential forms.

Definition 4.13 (Basic forms). Given a surjective submersion π : Y → X, the
basic forms on Y are those with the property that they and their differentials are
annihilated by all vertical vector fields

ω ∈ Ω•(Y )basic ⇔ ∀v ∈ ker(π) : ιvω = ιvdω = 0 . (4.51)

It is a standard result that

Proposition 4.14. If π : Y → X is locally trivial and has connected fibers, then the
basic forms are precisely those coming from pullback along π

Ω•(Y )basic � Ω•(X) . (4.52)

Remark. The reader should compare this situation with the definition of invariant
polynomials in section 5.3.

The next proposition asserts that these statements about ordinary basic dif-
ferential forms are indeed a special case of the general definition of basic elements
with respect to a surjection of DGCAs, definition 4.10.

Proposition 4.15. Given a surjective submersion π : Y → X with connected fibers,
then

• the inner derivations of Ω•(Y ) which are vertical with respect to

Ω•
vert(Y ) Ω•(Y )i∗���� according to the general definition 4.9, come precisely

from contractions ιv with vertical vector fields v ∈ ker(π∗) ⊂ Γ(TY );
• the basic differential forms on Y according to definition 4.13 coincide with

the basic elements of Ω•(Y ) relative to the above surjection

Ω•
vert(Y ) Ω•(Y )i∗���� (4.53)

according to the general definition 4.10.

Proof. We first show that if Ω•(Y ) Ω•(Y )
ρ�� is a vertical algebra deriva-

tion, then ρ has to annihilate all forms in the image of π∗. Let α ∈ Ω•(Y ) be any
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1-form and ω = π∗β for β ∈ Ω1(X). Then the wedge product α ∧ ω is annihilated
by the projection to Ω•

vert(Y ) and we find

ρ(ω) ∧ α 0���

ρ(ω) ∧ α
+ρ(α) ∧ ω

�

i∗

��

α ∧ ω
�

i∗

��

�ρ��

. (4.54)

We see that ρ(ω) ∧ α has to vanish for all α. Therefore ρ(ω) has to vanish for all
ω pulled back along π∗. Hence ρ must be contraction with a vertical vector field.
It then follows from the condition (4.40) that a basic form is one annihilated by
all such ρ and all such ρ ◦ d. �

Possibly the most familiar kinds of surjective submersions are
• Fiber bundles.

Indeed, the standard Cartan-Ehresmann theory of connections of princi-
pal bundles is obtained in our context by fixing a Lie group G and a principal
G-bundle p : P → X and then using Y = P itself as the surjective submer-
sion. The definition of a connection on P in terms of a g-valued 1-form on P
can be understood as the descent data for a connection on P obtained with
respect to canonical trivialization of the pullback of P to Y = P . Using for
the surjective submersion Y a principal G-bundle P → X is also most conve-
nient for studying all kinds of higher n-bundles obstructing lifts of the given
G-bundle. This is why we will often make use of this choice in the following.

• Covers by open subsets.
The disjoint union of all sets in a cover of X by open subsets of X

forms a surjective submersion π : Y → X . In large parts of the literature
on descent (locally trivialized bundles), these are the only kinds of surjective
submersions that are considered. We will find here, that in order to charac-
terize principal n-bundles entirely in terms of L∞-algebraic data, open covers
are too restrictive and the full generality of surjective submersions is needed.
The reason is that, for π : Y → X a cover by open subsets, there are no
nontrivial vertical vector fields

ker(π) = 0, (4.55)

hence
Ω•

vert(Y ) = 0 . (4.56)

With the definition of g-descent objects in section 6.1 this implies that all
g-descent objects over a cover by open subsets are trivial.
There are two important subclasses of surjective submersions π : Y → X :



L∞-Algebra Connections and Applications 329

• those for which Y is (smoothly) contractible;
• those for which the fibers of Y are connected.

We say Y is (smoothly) contractible if the identity map Id : Y → Y is
(smoothly) homotopic to a map Y → Y which is constant on each connected
component. Hence Y is a disjoint union of spaces that are each (smoothly) con-
tractible to a point. In this case the Poincaré lemma says that the dg-algebra
Ω•(Y ) of differential forms on Y is contractible; each closed form is exact:

Ω•(Y ) Ω•(Y )

0

		

[d,τ ]

��
τ



. (4.57)

Here τ is the familiar homotopy operator that appears in the proof of the Poincaré
lemma. In practice, we often make use of the best of both worlds: surjective submer-
sions that are (smoothly) contractible to a discrete set but still have a sufficiently
rich collection of vertical vector fields. The way to obtain these is by refinement:
starting with any surjective submersion π : Y → X which has good vertical vec-
tor fields but might not be contractible, we can cover Y itself with open balls,
whose disjoint union, Y ′, then forms a surjective submersion Y ′ → Y over Y . The
composite π′

Y ′

π
���

��
��

��
�

�� Y

��		
		
		
		

X

(4.58)

is then a contractible surjective submersion of X . We will see that all our descent
objects can be pulled back along refinements of surjective submersions this way, so
that it is possible, without restriction of generality, to always work on contractible
surjective submersions. Notice that for these the structure of

Ω•
vert(Y ) Ω•(Y )���� Ω•(X)� ��� (4.59)

is rather similar to that of

CE(g) W(g)���� inv(g)� ��� , (4.60)

since W(g) is also contractible, according to proposition 5.7.
Vertical derivations on universal g-bundles. The other important example of ver-
tical flows, those on DGCAs modeling universal g-bundle for g an L∞-algebra, is
discussed at the beginning of section 5.3.
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5. L∞-algebras and their String-like extensions

L∞-algebras are a generalization of Lie algebras, where the Jacobi identity is
demanded to hold only up to higher coherent equivalence, as the category theorist
would say, or “strongly homotopic”, as the homotopy theorist would say.

5.1. L∞-algebras

Definition 5.1. Given a graded vector space V, the tensor space
T •(V ) :=

⊕
n=0 V

⊗n with V 0 being the ground field. We will denote by T a(V )
the tensor algebra with the concatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xp

⊗
xp+1 ⊗ · · · ⊗ xn �→ x1 ⊗ x2 ⊗ · · · ⊗ xn (5.1)

and by T c(V ) the tensor coalgebra with the deconcatenation product on T •(V ):

x1 ⊗ x2 ⊗ · · · ⊗ xn �→
∑

p+q=n

x1 ⊗ x2 ⊗ · · · ⊗ xp

⊗
xp+1 ⊗ · · · ⊗ xn. (5.2)

The graded symmetric algebra ∧•(V ) is the quotient of the tensor algebra T a(V )
by the graded action of the symmetric groups Sn on the components V ⊗n. The
graded symmetric coalgebra ∨•(V ) is the sub-coalgebra of the tensor coalgebra
T c(V ) fixed by the graded action of the symmetric groups Sn on the components
V ⊗n.

Remark. ∨•(V ) is spanned by graded symmetric tensors

x1 ∨ x2 ∨ · · · ∨ xp (5.3)

for xi ∈ V and p ≥ 0, where we use ∨ rather than ∧ to emphasize the coalgebra
aspect, e.g.

x ∨ y = x⊗ y ± y ⊗ x. (5.4)
In characteristic zero, the graded symmetric algebra can be identified with a

sub-algebra of T a(V ) but that is unnatural and we will try to avoid doing so. The
coproduct on ∨•(V ) is given by

Δ(x1∨x2 · · ·∨xn) =
∑

p+q=n

∑
σ∈Sh(p,q)

ε(σ)(xσ(1)∨xσ(2) · · ·xσ(p))⊗(xσ(p+1)∨· · ·xσ(n)) .

(5.5)
The notation here means the following:
• Sh(p, q) is the subset of all those bijections (the “unshuffles”) of {1, 2, · · · , p+
q} that have the property that σ(i) < σ(i + 1) whenever i �= p;

• ε(σ), which is shorthand for ε(σ, x1 ∨ x2, · · ·xp+q), the Koszul sign, defined
by

x1 ∨ · · · ∨ xn = ε(σ)xσ(1) ∨ · · ·xσ(n) . (5.6)

Definition 5.2 (L∞-algebra). An L∞-algebra g = (g, D) is a N+-graded vector
space g equipped with a degree -1 coderivation

D : ∨•g → ∨•g (5.7)
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on the graded co-commutative coalgebra generated by g, such that D2 = 0. This
induces a differential

dCE(g) : Sym•(g) → Sym•+1(g) (5.8)

on graded-symmetric multilinear functions on g. When g is finite dimensional this
yields a degree +1 differential

dCE(g) : ∧•g∗ → ∧•g∗ (5.9)

on the graded-commutative algebra generated from g∗. This is the Chevalley-Eilen-
berg dg-algebra corresponding to the L∞-algebra g. If g∗ is concentrated in degree
1, . . . , n, we also say that g is a Lie n-algebra.

Remark. That the original definition of L∞-algebras in terms of multibrackets
yields a codifferential coalgebra as above was shown in [57]. That every such cod-
ifferential comes from a collection of multibrackets this way is due to [58].
Example. For (g[−1], [·, ·]) an ordinary Lie algebra (meaning that we regard the
vector space g to be in degree 1), the corresponding Chevalley-Eilenberg qDGCA
is

CE(g) = (∧•g∗, dCE(g)) (5.10)

with

dCE(g) : g∗
[·,·]∗ �� g∗ ∧ g∗ . (5.11)

If we let {ta} be a basis of g and {Ca
bc} the corresponding structure constants of

the Lie bracket [·, ·], and if we denote by {ta} the corresponding basis of g∗, then
we get

dCE(g)t
a = −1

2
Ca

bct
b ∧ tc . (5.12)

Notice that built in we have a shift of degree for convenience, which makes ordinary
Lie 1-algebras be in degree 1 already. In much of the literature a Lie n-algebra
would be based on a vector space concentrated in degrees 0 to n− 1. An ordinary
Lie algebra is a Lie 1-algebra. Here the coderivation differential D = [·, ·] is just
the Lie bracket, extended as a coderivation to ∨•g, with g regarded as being in
degree 1.

In the rest of the paper we assume, just for simplicity and since it is sufficient
for our applications, all g to be finite-dimensional. Then, by the above, these L∞-
algebras are equivalently conceived of in terms of their dual Chevalley-Eilenberg
algebras, CE(g), as indeed every quasi-free differential graded commutative algebra
(“qDGCA”, meaning that it is free as a graded commutative algebra) corresponds
to an L∞-algebra. We will find it convenient to work entirely in terms of qDGCAs,
which we will usually denote as CE(g).

While not very interesting in themselves, truly free differential algebras are
a useful tool for handling quasi-free differential algebras.
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Definition 5.3. We say a qDGCA is free (even as a differential algebra) if it is of
the form

F(V ) := (∧•(V ∗ ⊕ V ∗[1]), dF(V )) (5.13)

with
dF(V )|V ∗ = σ : V ∗ → V ∗[1] (5.14)

the canonical isomorphism and

dF(V )|V ∗[1] = 0 . (5.15)

Remark. Such algebras are indeed free in that they satisfy the universal property:
given any linear map V → W , it uniquely extends to a morphism of qDGCAs
F (V ) → (

∧•(W ∗), d) for any choice of differential d.
Example. The free qDGCA on a 1-dimensional vector space in degree 0 is the
graded commutative algebra freely generated by two generators, t of degree 0 and
dt of degree 1, with the differential acting as d : t �→ dt and d : dt �→ 0. In rational
homotopy theory, this models the interval I = [0, 1]. The fact that the qDGCA is
free corresponds to the fact that the interval is homotopy equivalent to the point.

We will be interested in qDGCAs that arise as mapping cones of morphisms
of L∞-algebras.

Definition 5.4 (“Mapping cone” of qDGCAs). Let

CE(h) CE(g)t∗�� (5.16)

be a morphism of qDGCAs. The mapping cone of t∗, which we write CE(h t→ g),
is the qDGCA whose underlying graded algebra is

∧•(g∗ ⊕ h∗[1]) (5.17)

and whose differential dt∗ is such that it acts as

dt∗ =
(

dg 0
t∗ dh

)
. (5.18)

Here and in the following, we write morphisms of qDGCAs with a star to
emphasize that they are dual to morphisms of the corresponding L∞-algebras. We
postpone a more detailed definition and discussion to section 7.1; see definition
7.3 and proposition 7.4. Strictly speaking, the more usual notion of mapping cones
of chain complexes applies to t : h → g, but then is extended as a derivation
differential to the entire qDGCA.

Definition 5.5 (Weil algebra of an L∞-algebra). The mapping cone of the identity
on CE(g) is the Weil algebra

W(g) := CE(g Id→ g) (5.19)

of g.
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Proposition 5.6. For g an ordinary Lie algebra this does coincide with the ordinary
Weil algebra of g.

Proof. See the example in section 5.1.1. �

The Weil algebra has two important properties.

Proposition 5.7. The Weil algebra W(g) of any L∞-algebra g

• is isomorphic to a free differential algebra

W(g) � F(g) , (5.20)

and hence is contractible;
• has a canonical surjection

CE(g) W(g)i∗���� . (5.21)

Proof. Define a morphism

f : F(g) → W(g) (5.22)

by setting

f : a �→ a (5.23)
f : (dF(V )a = σa) �→ (dW(g)a = dCE(g)a + σa) (5.24)

for all a ∈ g∗ and extend as an algebra homomorphism. This clearly respects the
differentials: for all a ∈ V ∗ we find

a � dF (g) ���

f

��

σa�

f
��

a �
dW(g)

�� dCE(g)a + σa

and

σa � dF (g) ���

f

��

0�
f

��
dW(g)a

�
dW(g)

�� 0

. (5.25)

One checks that the strict inverse exists and is given by

f−1|g∗ : a �→ a (5.26)

f−1|g∗[1] : σa �→ dF (g)a− dCE(g)a . (5.27)

Here σ : g∗ → g∗[1] is the canonical isomorphism that shifts the degree. The

surjection CE(g) W(g)i∗���� simply projects out all elements in the shifted copy
of g:

i∗|∧•g∗ = id (5.28)
i∗|g∗[1] = 0 . (5.29)

This is an algebra homomorphism that respects the differential. �

As a corollary we obtain

Corollary 5.8. For g any L∞-algebra, the cohomology of W(g) is trivial.
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Proposition 5.9. The step from a Chevalley-Eilenberg algebra to the corresponding
Weil algebra is functorial: for any morphism

CE(h) CE(g)
f∗

�� (5.30)

we obtain a morphism

W(h) W(g)
f̂∗

�� (5.31)

and this respects composition.

Proof. The morphism f̂∗ acts as for all generators a ∈ g∗ as

f̂∗ : a �→ f∗(a) (5.32)

and
f̂∗ : σa �→ σf∗(a) . (5.33)

We check that this does respect the differentials

a�

f̂∗

��

� dW(g) �� dCE(g)a + σa
�

f̂∗

��
f∗(a)

dW(h) �� dCE(h)f
∗(a) + σf∗(a)

σa�

f̂∗

��

� dW(g)�� −σ(dCE(g)a)�

f̂∗

��
σf∗(a)

dW(h) �� −σ(dCE(h)a)

, (5.34)

�

Remark. As we will shortly see, W(g) plays the role of the algebra of differential

forms on the universal g-bundle. The surjection CE(g) W (g)i∗���� plays the role
of the restriction to the differential forms on the fiber of the universal g-bundle.

5.1.1. Examples. In section 5.4 we construct large families of examples of L∞-
algebras, based on the first two of the following examples:

1. Ordinary Weil algebras as Lie 2-algebras. What is ordinarily called the Weil
algebra W(g) of a Lie algebra (g[−1], [·, ·]) can, since it is again a DGCA, also
be interpreted as the Chevalley-Eilenberg algebra of a Lie 2-algebra. This Lie 2-
algebra we call inn(g). It corresponds to the Lie 2-group INN(G) discussed in
[65]:

W(g) = CE(inn(g)) . (5.35)

We have
W(g) = (∧•(g∗ ⊕ g∗[1]), dW(g)) . (5.36)

Denoting by σ : g∗ → g∗[1] the canonical isomorphism, extended as a derivation
to all of W(g), we have

dW(g) : g∗
[·,·]∗+σ �� g∗ ∧ g∗ ⊕ g∗[1] (5.37)
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and

dW(g) : g∗[1]
−σ◦dCE(g)◦σ−1

�� g∗ ⊗ g∗[1] . (5.38)

With {ta} a basis for g∗ as above, and {σta} the corresponding basis of g∗[1] we
find

dW(g) : ta �→ −1
2
Ca

bct
b ∧ tc + σta (5.39)

and
dW(g) : σta �→ −Ca

bct
bσtc . (5.40)

The Lie 2-algebra inn(g) is, in turn, nothing but the strict Lie 2-algebra as in the
third example below, which comes from the infinitesimal crossed module (g Id→
g

ad→ der(g)).

2. Shifted u(1). By the above, the qDGCA corresponding to the Lie algebra u(1)
is simply

CE(u(1)) = (∧•R[1], dCE(u(1)) = 0) . (5.41)
We write

CE(bn−1u(1)) = (∧•R[n], dCE(bn−1u(1)) = 0) (5.42)

for the Chevalley-Eilenberg algebras corresponding to the Lie n-algebras bn−1u(1).

3. Infinitesimal crossed modules and strict Lie 2-algebras. An infinitesimal crossed
module is a diagram

( h
t �� g α �� der(h) ) (5.43)

of Lie algebras where t and α satisfy two compatibility conditions. These conditions
are equivalent to the nilpotency of the differential on

CE(h t→ g) := (∧•(g∗ ⊕ h∗[1]), dt) (5.44)

defined by

dt|g∗ = [·, ·]∗g + t∗ (5.45)

dt|h∗[1] = α∗ , (5.46)

where we consider the vector spaces underlying both g and h to be in degree 1.
Here in the last line we regard α as a linear map α : g⊗ h → h. The Lie 2-algebras
(h t→ g) thus defined are called strict Lie 2-algebras: these are precisely those
Lie 2-algebras whose Chevalley-Eilenberg differential contains at most co-binary
components. As described later in section 7.1, in the case that t is normal this is
a special case of the mapping cone construction.

4. Inner derivation L∞-algebras. In straightforward generalization of the first ex-
ample we find: for g any L∞-algebra, its Weil algebra W(g) is again a DGCA,
hence the Chevalley-Eilenberg algebra of some other L∞-algebra. This we address
as the L∞-algebra of inner derivations and write

CE(inn(g)) := W(g) . (5.47)
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This identification is actually useful for identifying the Lie ∞-groups that corre-
spond to an integrated picture underlying our differential discussion. In [65] the
Lie 3-group corresponding to inn(g) for g the strict Lie 2-algebra of any strict Lie
2-group is discussed. This 3-group is in particular the right codomain for incorpo-
rating the the non-fake flat nonabelian gerbes with connection considered in [17]
into the integrated version of the picture discussed here. This is indicated in [74]
and should be discussed elsewhere.

tangent
category

inner
automorphism
(n + 1)-group

inner
derivation Lie
(n + 1)-algebra

Weil
algebra

shifted
tangent
bundle

CE(Lie(TBG)) CE(Lie(INN(G))) CE(inn(g)) W(g) C∞(T [1]g)

Figure 3. A remarkable coincidence of concepts relates the no-
tion of tangency to the notion of universal bundles. The leftmost
equality is discussed in [65]. The second one from the right is the
identification 5.47. The rightmost equality is equation (5.59).

Proposition 5.10. For g any finite dimensional L∞-algebra, the differential forms
on the smooth space of morphisms from the Chevalley-Eilenberg algebra CE(g)
to the algebra of “functions on the superpoint”, definition 4.7, i.e. the elements in
maps(CE(g), C(pt)), which come from currents as in definition 4.5, form the Weil
algebra W(g) of g:

W(g) ⊂ maps(CE(g), C(pt)) . (5.48)

Proof. For any test domain U , an element in HomDGCAs(CE(g), C(pt) ⊗
Ω•(U)) is specified by a degree 0 algebra homomorphism

λ : CE(g) → Ω•(U) (5.49)

and a degree +1 map

ω : CE(g) → Ω•(U) (5.50)

by

a �→ λ(a) + c ∧ ω(a) (5.51)
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for all a ∈ g∗ and for c denoting the canonical degree -1 generator of C(pt); such
that the equality in the bottom right corner of the diagram

a � dCE(g) ���

��

dCE(g)a�

��
λ(a) + c ∧ ω(a) � dpt+dU �� λ(dCE(g)a)+c∧ω(dCE(g)a)

=d(λ(a))+ω(a)−c∧d(ω(a))

(5.52)

holds. Under the two canonical currents on C(pt) of degree 0 and degree 1, respec-
tively, this gives rise for each a ∈ g∗ of degree |a| to an |a|-form and an (|a| + 1)
form on maps(CE(g), C(pt)) whose values on a given plot are λ(a) and ω(a),
respectively.

By the above diagram, the differential of these forms satisfies

dλ(a) = λ(dCE(g)a)− ω(a) (5.53)

and
dω(a) = −ω(dCE(g)a) . (5.54)

But this is precisely the structure of W(g). �

To see the last step, it may be helpful to consider this for a simple case in terms
of a basis:

let g be an ordinary Lie algebra, {ta} a basis of g∗ and {Ca
bc} the corre-

sponding structure constants. Then, using the fact that, since we are dealing with
algebra homomorphisms, we have

λ(ta ∧ tb) = λ(ta) ∧ λ(tb) (5.55)

and
ω(ta ∧ tb) = c ∧ (ω(ta) ∧ λ(tb)− λ(ta) ∧ ω(tb)) (5.56)

we find
dλ(ta) = −1

2
Ca

bcλ(tb) ∧ λ(tc)− ω(ta) (5.57)

and
dω(ta) = −Ca

bcλ(tb) ∧ ω(tc) . (5.58)
This is clearly just the structure of W(g).
Remark. As usual, we may think of the superpoint as an “infinitesimal interval”.
The above says that the algebra of inner derivations of an L∞-algebra consists of
the maps from the infinitesimal interval to the supermanifold on which CE(g) is
the “algebra of functions”. On the one hand this tells us that

W(g) = C∞(T [1]g) (5.59)

in supermanifold language. On the other hand, this construction is clearly anal-
ogous to the corresponding discussion for Lie n-groups given in [65]: there the
3-group INN(G) of inner automorphisms of a strict 2-group G was obtained by
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mapping the “fat point” groupoid pt = { • �� ◦ } into G. As indicated there,
this is a special case of a construction of “tangent categories” which mimics the re-
lation between inn(g) and the shifted tangent bundle T [1]g in the integrated world
of Lie ∞-groups. This relation between these concepts is summarized in figure 3
(see page 336).

5.2. L∞-algebra homotopy and concordance

Like cochain complexes, differential graded algebras can be thought of as being
objects in a higher categorical structure, which manifests itself in the fact that
there are not only morphisms between DGCAs, but also higher morphisms be-
tween these morphisms. It turns out that we need to consider a couple of slightly
differing notions of morphisms and higher morphisms for these. While differing,
these concepts are closely related among each other, as we shall discuss.

In section 4.2 we had already considered 2-morphisms of DGCAs obtained
after forgetting their algebra structure and just remembering their differential
structure. The 2-morphisms we present now crucially do know about the algebra
structure.

name nature

infinitesimal transformation

chain homotopy

CE(g) CE(h)

g∗

��

f∗

		
η



finite
homotopy

concordance

extension over interval

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

��
Id⊗s∗

�� CE(h)η∗��

g∗

��

f∗

��

Table 2. The two different notions of higher morphisms of
qDGCAs.

Infinitesimal homotopies between dg-algebra homomorphisms. When we restrict
attention to cochain maps between qDGCAs which respect not only the differen-
tials but also the free graded commutative algebra structure, i.e. to qDGCA ho-
momorphisms, it becomes of interest to express the cochain homotopies in terms
of their action on generators of the algebra. We now define transformations (2-
morphisms) between morphisms of qDGCAs by first defining them for the case
when the domain is a Weil algebra, and then extending the definition to arbitrary
qDGCAs.
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Definition 5.11 (Transformation of morphisms of L∞-algebras). We define trans-
formations between qDGCA morphisms in two steps

• A 2-morphism

CE(g) F(h)

g∗

��

f∗

��
η



(5.60)

is defined by a degree -1 map η : h∗ ⊕ h∗[1] → CE(g) which is extended
to a linear degree -1 map η : ∧•(h∗ ⊕ h∗[1]) → CE(g) by defining it on all
monomials of generators by the formula

η : x1 ∧ · · · ∧ xn �→ 1
n!

∑
σ

ε(σ)
n∑

k=1

(−1)
k−1∑
i=1

|xσ(i)|
g∗(xσ(1) ∧ · · · ∧ xσ(k−1)) ∧

∧η(xσ(k)) ∧ f∗(xσ(k+1) ∧ · · · ∧ xσ(n)) (5.61)

for all x1, · · · , xn ∈ h∗⊕ h∗[1], such that this is a chain homotopy from f∗ to
g∗:

g∗ = f∗ + [d, η] . (5.62)

• A general 2-morphism

CE(g) CE(h)

g∗

��

f∗

		
η



(5.63)

is a 2-morphism

CE(h)g∗

��
CE(g) W(h)

i∗
����










i∗�������
���

��
�

F(h)���

CE(h)f∗

��


� ��
��
��
��
��
��

��
��
��
��
��
�� (5.64)
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of the above kind that vanishes on the shifted generators, i.e. such that

CE(h)g∗

��
CE(g) W(h)

i∗
����










i∗�������
��
���

�
h∗[1]� ���

CE(h)f∗

��


� ��
��
��
��
��
��

��
��
��
��
��
�� (5.65)

vanishes.

Proposition 5.12. Formula 5.61 is consistent in that g∗|h∗⊕h∗[1] =
(f∗ + [d, η])|h∗⊕h∗[1] implies that g∗ = f∗ + [d, η] on all elements of F (h).

Remark. Definition 5.11, which may look ad hoc at this point, has a practical and
a deep conceptual motivation.

• Practical motivation. While it is clear that 2-morphisms of qDGCAs should
be chain homotopies, it is not straightforward, in general, to characterize
these by their action on generators. Except when the domain qDGCA is free,
in which case our formula (5.11) makes sense. The prescription (5.64) then
provides a systematic algorithm for extending this to arbitrary qDGCAs.

In particular, using the isomorphism W(g) � F(g) from proposition 5.7,
the above yields the usual explicit description of the homotopy operator τ :
W(g) → W(g) with IdW(g) = [dW(g), τ ]. Among other things, this computes
for us the transgression elements (“Chern-Simons elements”) for L∞-algebras
in section 5.3.

• Conceptual motivation. As we will see in sections 5.3 and 5.5, the qDGCA
W(g) plays an important twofold role: it is both the algebra of differential
forms on the total space of the universal g-bundle – while CE(g) is that of
forms on the fiber –, as well as the domain for g-valued differential forms,
where the shifted component, that in g∗[1], is the home of the corresponding
curvature.

In the light of this, the above restriction (5.65) can be understood as
saying either that

– vertical transformations induce transformations on the fibers;
or

– gauge transformations of g-valued forms are transformations under
which the curvatures transform covariantly.

Finite transformations between qDGCA morphisms: concordances. We now con-
sider the finite transformations of morphisms of DGCAs. What we called 2-mor-
phisms or transformations for qDGCAs above would in other contexts possibly be
called a homotopy. Also the following concept is a kind of homotopy, and appears
as such in [75] which goes back to [14]. Here we wish to clearly distinguish these
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different kinds of homotopies and address the following concept as concordance –
a finite notion of 2-morphism between dg-algebra morphisms.
Remark. In the following the algebra of forms Ω•(I) on the interval

I := [0, 1]

plays an important role. Essentially everything would also go through by instead
using F (R), the DGCA on a single degree 0 generator, which is the algebra of
polynomial forms on the interval. This is the model used in [75].

Definition 5.13 (Concordance). We say that two qDGCA morphisms

CE(g) CE(h)
g∗

�� (5.66)

and

CE(g) CE(h)h∗
�� (5.67)

are concordant, if there exists a dg-algebra homomorphism

CE(g)⊗ Ω•(I) CE(h)
η∗

�� (5.68)

from the source CE(h) to the target CE(g) tensored with forms on the interval,
which restricts to the two given homomorphisms when pulled back along the two
boundary inclusions

{•}
s ��
t

�� I , (5.69)

so that the diagram of dg-algebra morphisms

CE(g) CE(g)⊗ Ω•(I)
Id⊗t∗

��
Id⊗s∗

�� CE(h)
η∗

��

g∗

��

f∗

��
(5.70)

commutes. See also table 2.

Notice that the above diagram is shorthand for two separate commuting
diagrams, one involving g∗ and s∗, the other involving f∗ and t∗.

We can make precise the statement that definition 5.11 is the infinitesimal
version of definition 5.13, as follows.

Proposition 5.14. Concordances

CE(g)⊗ Ω•(I) CE(h)
η∗

�� (5.71)

are in bijection with 1-parameter families

α : [0, 1] → Homdg−Alg(CE(h),CE(g)) (5.72)
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of morphisms whose derivatives with respect to the parameter is a chain homotopy,
i.e. a 2-morphism

∀t ∈ [0, 1] : CE(g) CE(h)

d
dt α(t)=[d,ρ]

��

0

		
ρ



(5.73)

in the 2-category of cochain complexes. For any such α, the morphisms f∗ and
g∗ between which it defines a concordance are defined by the value of α on the
boundary of the interval.

Proof. Writing t : [0, 1] → R for the canonical coordinate function on the
interval I = [0, 1] we can decompose the dg-algebra homomorphism η∗ as

η∗ : ω �→ (t �→ α(ω)(t) + dt ∧ ρ(ω)(t)) . (5.74)

α is itself a degree 0 dg-algebra homomorphism, while ρ is degree -1 map. Then
the fact that η∗ respects the differentials implies that for all ω ∈ CE(h) we have

ω � dh ���

η∗

��

dhω�

η∗

��

(t �→ (α(ω)(t) + dt ∧ ρ(ω)(t))) � dg+dt��
(t �→ (α(dhω)(t) + dt ∧ ρ(dhω)(t))
= (t �→ (dg(α(ω))(t)
+dt ∧ ( d

dtα(ω)− dgρ(ω))(t))
(5.75)

The equality in the bottom right corner says that

α ◦ dh − dg ◦ α = 0 (5.76)

and

∀ω ∈ CE(g) :
d

dt
α(ω) = ρ(dhω) + dg(ρ(ω)) . (5.77)

But this means that α is a chain homomorphism whose derivative is given by a
chain homotopy. �

5.2.1. Examples.
Transformations between DGCA morphisms. We demonstrate two examples for
the application of the notion of transformations of DGCA morphisms from defini-
tion 5.11 which are relevant for us.
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Computation of transgression forms. As an example for the transformation in def-
inition 5.11, we show how the usual Chern-Simons transgression form is computed
using formula (5.61). The reader may wish to first skip to our discussion of Lie ∞-
algebra cohomology in section 5.3 for more background. So let g be an ordinary Lie
algebra with invariant bilinear form P , which we regard as a dW(g)-closed element
P ∈ ∧2g∗[1] ⊂ W(g). We would like to compute τP , where τ is the contracting
homotopy of W(g), such that

[d, τ ] = IdW(g) , (5.78)

which according to proposition 5.7 is given on generators by

τ : a �→ 0 (5.79)
τ : dW(g)a �→ a (5.80)

for all a ∈ g∗. Let {ta} be a chosen basis of g∗ and let {Pab} be the components
of P in that basis, then

P = Pab(σta) ∧ (σtb) . (5.81)

In order to apply formula (5.61) we need to first rewrite this in terms of monomials
in {ta} and {dW(g)t

a}. Hence, using σta = dW(g)t
a + 1

2C
a

bct
b ∧ tc, we get

τP = τ
(
Pab(dW(g)t

a) ∧ (dW(g)t
a)− Pab(dW(g)t

a) ∧Cb
cdt

c ∧ td

+
1
4
PabC

a
cdC

b
ef t

c ∧ td ∧ tc ∧ td
)
. (5.82)

Now equation (5.61) can be applied to each term. Noticing the combinatorial
prefactor 1

n! , which depends on the number of factors in the above terms, and
noticing the sum over all permutations, we find

τ
(
Pab(dW(g)t

a) ∧ (dW(g)t
a)
)

= Pab(dW(g)t
a) ∧ tb

τ
(
−Pab(dW(g)t

a) ∧ Cb
cdt

c ∧ td
)

=
1
3!
· 2 PabC

b
cdt

b ∧ tc ∧ td

=
1
3
Cabct

a ∧ tb ∧ tc (5.83)

where we write Cabc := PadC
d

bc as usual. Finally τ
(

1
4PabC

a
cdC

b
ef t

c ∧ td ∧ tc ∧ td
)

= 0 . In total this yields

τP = Pab(dW(g)t
a) ∧ tb +

1
3
Cabct

a ∧ tb ∧ tc . (5.84)

By again using dW(g)t
a = − 1

2C
a

bct
b ∧ tc + σta together with the invariance of P

(hence the dW(g)-closedness of P which implies that the constants Cabc are skew
symmetric in all three indices), one checks that this does indeed satisfy

dW(g)τP = P . (5.85)

In section 5.5 we will see that after choosing a g-valued connection on the space Y
the generators ta here will get sent to components of a g-valued 1-form A, while
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the dW(g)t
a will get sent to the components of dA. Under this map the element

τP ∈ W(g) maps to the familiar Chern-Simons 3-form

CSP (A) := P (A ∧ dA) +
1
3
P (A ∧ [A ∧A]) (5.86)

whose differential is the characteristic form of A with respect to P :

dCSP (A) = P (FA ∧ FA) . (5.87)

Characteristic forms, for arbitrary Lie ∞-algebra valued forms, are discussed fur-
ther in section 5.6.

2-Morphisms of Lie 2-algebras.

Proposition 5.15. For the special case that g is any Lie 2-algebra (any L∞-algebra
concentrated in the first two degrees) the 2-morphisms defined by definition 5.11
reproduce the 2-morphisms of Lie 2-algebras as stated in [5] and used in [7].

Proof. The proof is given in the appendix. �

This implies in particular that with the 1- and 2-morphisms as defined above,
Lie 2-algebras do form a 2-category. There is a rather straightforward generaliza-
tion of definition 5.11 to higher morphisms, which one would expect yields cor-
respondingly n-categories of Lie n-algebras. But this we shall not try to discuss
here.

5.3. L∞-algebra cohomology

The study of ordinary Lie algebra cohomology and of invariant polynomials on the
Lie algebra has a simple formulation in terms of the qDGCAs CE(g) and W(g).
Furthermore, this has a straightforward generalization to arbitrary L∞-algebras
which we now state.

For CE(g) W(g)i∗���� the canonical morphism from proposition 5.7,
notice that

CE(g) � W(g)/ker(i∗) (5.88)

and that
ker(i∗) = 〈g∗[1]〉W(g) , (5.89)

the ideal in W(g) generated by g∗[1]. Algebra derivations

ιX : W(g) → W(g) (5.90)

for X ∈ g are like (contractions with) vector fields on the space on which W(g) is
like differential forms. In the case of an ordinary Lie algebra g, the corresponding
inner derivations [dW(g), ιX ] for X ∈ g are of degree -1 and are known as the Lie
derivative LX . They generate flows exp([dW(g), ιX ]) : W(g) → W(g) along these
vector fields.
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Definition 5.16 (Vertical derivations). We say an algebra derivation τ : W(g) →
W(g) is vertical if it vanishes on the shifted copy g∗[1] of g∗ inside W(g),

τ |g∗[1] = 0 . (5.91)

Proposition 5.17. The vertical derivations are precisely those that come from con-
tractions

ιX : g∗ �→ R (5.92)
for all X ∈ g, extended to 0 on g∗[1] and extended as algebra derivations to all of
∧•(g∗ ⊕ g∗[1]).

The reader should compare this and the following definitions to the theory of
vertical Lie derivatives and basic differential forms with respect to any surjective
submersion π : Y → X . This is discussed in section 4.3.1.

Definition 5.18 (Basic forms and invariant polynomials). The algebra W(g)basic of
basic forms in W(g) is the intersection of the kernels of all vertical derivations and
Lie derivatives. i.e. all the contractions ιX and Lie derivatives LX for X ∈ g. Since
LX = [dW(g), ιX ], it follows that in the kernel of ιX , the Lie derivative vanishes
only if ιXdW(g) vanishes.

As will be discussed in a moment, basic forms in W(g) play the role of in-
variant polynomials on the L∞-algebra g. Therefore we often write inv(g) for
W(g)basic:

inv(g) := W(g)basic . (5.93)

Using the obvious inclusion W(g) inv(g)� �
p∗

�� we obtain the sequence

CE(g) W(g)i∗���� inv(g)� �
p∗

�� (5.94)

of dg-algebras that plays a major role in our analysis: it can be interpreted as
coming from the universal bundle for the Lie ∞-algebra g. As shown in figure 4,
we can regard vertical derivations on W(g) as derivations along the fibers of the
corresponding dual sequence.

Definition 5.19 (Cocycles, invariant polynomials and transgression elements). Let
g be an L∞-algebra. Then
• An L∞-algebra cocycle on g is a dCE(g)-closed element of CE(g).

μ ∈ CE(g) , dCE(g)μ = 0 . (5.95)

• An L∞-algebra invariant polynomial on g is an element P ∈ inv(g) :=
W(g)basic.

• An L∞-algebra g-transgression element for a given cocycle μ and an invariant
polynomial P is an element cs ∈ W(g) such that

dW(g)cs = p∗P (5.96)

i∗cs = μ . (5.97)
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CE(g) CE(g)

[d,ιX ]

��

0

�� (co)adjoint action
of g on itself

W(g)

����

W(g)

����

[d,ιX ]

��

0

�� vertical derivation
on W(g)

inv(g)
��

��

inv(g)
��

��

0

��

0

�� leaves basic forms
invariant

ιX



0


ιX


.

Figure 4. Interpretation of vertical derivations on W(g). The
algebra CE(g) plays the role of the algebra of differential forms
on the Lie ∞-group that integrates the Lie ∞-algebra g. The
coadjoint action of g on these forms corresponds to Lie derivatives
along the fibers of the universal bundle. These vertical derivatives
leave the forms on the base of this universal bundle invariant. The
diagram displayed is in the 2-category Ch• of cochain complexes,
as described in the beginning of section 5.2.

If a transgression element for μ and P exists, we say that μ transgresses to
P and that P suspends to μ. If μ = 0 we say that P suspends to 0. The situation
is illustrated diagrammatically in figure 5 and figure 6.

Definition 5.20 (Suspension to 0). An element P ∈ inv(g) is said to suspend to 0
if under the inclusion

ker(i∗) W(g)� �
p∗

�� (5.98)

it becomes a coboundary:
p∗P = dker(i∗)α (5.99)

for some α ∈ ker(i∗).

Remark. We will see that it is the intersection of inv(g) with the cohomology of
ker(i∗) that is a candidate, in general, for an algebraic model of the classifying
space of the object that integrates the L∞-algebra g. But at the moment we do
not entirely clarify this relation to the integrated theory, unfortunately.

Proposition 5.21. For the case that g is an ordinary Lie algebra, the above defi-
nition reproduces the ordinary definitions of Lie algebra cocycles, invariant poly-
nomials, and transgression elements. Moreover, all elements in inv(g) are closed.



L∞-Algebra Connections and Applications 347

cocycle transgression element inv. polynomial

G
� � i �� EG

p �� �� BG

0

0 p∗P
�

d

��

P
�

p∗
��

μ
�

d

��

cs�
i∗

�� �
d

��

Figure 5. Lie algebra cocycles, invariant polynomials and trans-
gression forms in terms of cohomology of the universal G-bundle.
Let G be a simply connected compact Lie group with Lie al-
gebra g. Then invariant polynomials P on g correspond to ele-
ments in the cohomology H•(BG) of the classifying space of G.
When pulled back to the total space of the universal G-bundle
EG→ BG, these classes become trivial, due to the contractabil-
ity of EG: p∗P = d(cs). Lie algebra cocycles, on the other hand,
correspond to elements in the cohomology H•(G) of G itself. A co-
cycle μ ∈ H•(G) is in transgression with an invariant polynomial
P ∈ H•(BG) if μ = i∗cs.

Proof. That the definitions of Lie algebra cocycles and transgression ele-
ments coincides is clear. It remains to be checked that inv(g) really contains the
invariant polynomials. In the ordinary definition a g-invariant polynomial is a
dW(g)-closed element in ∧•(g∗[1]). Hence one only needs to check that all elements
in ∧•(g∗[1]) with the property that their image under dW(g) is again in ∧•(g∗[1])
are in fact already closed. This can be seen for instance in components, using the
description of W(g) given in section 5.1.1. �

Remark. For ordinary Lie algebras g corresponding to a simply connected compact
Lie group G, the situation is often discussed in terms of the cohomology of the
universal G-bundle. This is recalled in figure 5 and in section 5.3.1. The general
definition above is a precise analog of that familiar situation: W(g) plays the role
of the algebra of (left invariant) differential forms on the universal g-bundle and
CE(g) plays the role of the algebra of (left invariant) differential forms on its fiber.
Then inv(g) plays the role of differential forms on the base, BG = EG/G. In fact,
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cocycle transgression element inv. polynomial

CE(g) W(g)i∗���� inv(g)� �
p∗

��

0

0 p∗P
�

dW(g)

��



τ

��

P
�

p∗
��

μ
�

dCE(g)

��

cs�i∗�� �
dW(g)

��

Figure 6. The homotopy operator τ is a contraction homotopy
for W(g). Acting with it on a closed invariant polynomial P ∈
inv(g) ⊂ ∧•g[1] ⊂ W(g) produces an element cs ∈ W (g) whose
“restriction to the fiber” μ := i∗cs is necessarily closed and hence
a cocycle. We say that cs induces the transgression from μ to P ,
or that P suspends to μ.

for G a compact and simply connected Lie group and g its Lie algebra, we have

H•(inv(g)) � H•(BG,R) . (5.100)

In summary, the situation we thus obtain is that depicted in figure 1. Compare
this to the following fact.

Proposition 5.22. For p : P → X a principal G-bundle, let vert(P ) ⊂ Γ(TP ) be
the vertical vector fields on P . The horizontal differential forms on P which are
invariant under vert(P ) are precisely those that are pulled back along p from X.

These are called the basic differential forms in [41].
Remark. We will see that, contrary to the situation for ordinary Lie algebras,
in general invariant polynomials of L∞ algebras are not dW(g)-closed (the dW(g)-
differential of them is just horizontal). We will also see that those indecomposable
invariant polynomials in inv(g), i.e. those that become exact in ker(i∗), are not
characteristic for the corresponding g-bundles. This probably means that the real
cohomology of the classifying space of the Lie ∞-group integrating g is spanned by
invariant polynomials modulo those suspending to 0. But here we do not attempt
to discuss this further.

Proposition 5.23. For every invariant polynomial P ∈ ∧•g[1] ⊂ W(g) on an L∞-
algebra g such that dW(g)p

∗P = 0, there exists an L∞-algebra cocycle μ ∈ CS(g)
that transgresses to P .
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Proof. This is a consequence of proposition 5.7 and proposition 5.8. Let
P ∈ W (g) be an invariant polynomial. By proposition 5.7, p∗P is in the kernel

of the restriction homomorphism CE(g) W(g)i∗���� : i∗P = 0. By proposition
5.8, p∗P is the image under dW(g) of an element cs := τ(p∗P ) and by the algebra
homomorphism property of i∗ we know that its restriction, μ := i∗cs, to the fiber
is closed, because

dCE(g)i
∗cs = i∗dW(g)cs = i∗p∗P = 0 . (5.101)

Therefore μ is an L∞-algebra cocycle for g that transgresses to the invariant poly-
nomial P . �

Remark. Notice that this statement is useful only for indecomposable invariant
polynomials. All others trivially suspend to the 0 cocycle.

Proposition 5.24. An invariant polynomial which suspends to a Lie ∞-algebra
cocycle that is a coboundary also suspends to 0.

Proof. Let P be an invariant polynomial, cs the corresponding transgres-
sion element and μ = i∗cs the corresponding cocycle, which is assumed to be a
coboundary in that μ = dCE(g)b for some b ∈ CE(g). Then by the definition of
dW(g) it follows that μ = i∗(dW(g)b).

Now notice that
cs′ := cs− dW(g)b (5.102)

is another transgression element for P , since

dW(g)cs′ = p∗P . (5.103)

But now
i∗(cs′) = i∗(cs− dW(g)b) = 0 . (5.104)

Hence P suspends to 0. �

5.3.1. Examples.
The cohomologies of G and of BG in terms of qDGCAs. To put our general
considerations for L∞-algebras into perspective, it is useful to keep the following
classical results for ordinary Lie algebras in mind.

A classical result of E. Cartan [22] [23] (see also [49]) says that for a connected
finite dimensional Lie group G, the cohomology H•(G) of the group is isomorphic
to that of the Chevalley-Eilenberg algebra CE(g) of its Lie algebra g:

H•(G) � H•(CE(g)) , (5.105)

namely to the algebra of Lie algebra cocycles on g. If we denote by QG the space
of indecomposable such cocycles, and form the qDGCA ∧•QG = H•(∧•QG) with
trivial differential, the above says that we have an isomorphism in cohomology

H•(G) � H•(∧•QG) = ∧•QG (5.106)
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which is realized by the canonical inclusion

i : ∧•QG
� � �� CE(g) (5.107)

of all cocycles into the Chevalley-Eilenberg algebra.
Subsequently, we have the classical result of Borel [13]: For a connected finite

dimensional Lie group G, the cohomology of its classifying space BG is a finitely
generated polynomial algebra on even dimensional generators:

H•(BG) � ∧•PG . (5.108)

Here PG is the space of indecomposable invariant polynomials on g, hence

H•(BG) � H•(inv(g)) . (5.109)

In fact, PG and QG are isomorphic after a shift:

PG � QG[1] (5.110)

and this isomorphism is induced by transgression between indecomposable co-
cycles μ ∈ CE(g) and indecomposable invariant polynomials P ∈ inv(g) via a
transgression element cs = τP ∈ W(g).
Cohomology and invariant polynomials of bn−1u(1).

Proposition 5.25. For every integer n ≥ 1, the Lie n-algebra bn−1u(1) (the (n−1)-
folded shifted version of ordinary u(1)) from section 5.1.1) we have the following:

• there is, up to a scalar multiple, a single indecomposable Lie∞-algebra cocycle
which is of degree n and linear,

μbn−1u(1) ∈ R[n] ⊂ CE(bn−1u(1)) , (5.111)

• there is, up to a scalar multiple, a single indecomposable Lie ∞-algebra in-
variant polynomial, which is of degree (n + 1)

Pbn−1u(1) ∈ R[n + 1] ⊂ inv(bn−1u(1)) = CE(bnu(1)) . (5.112)

• The cocycle μbn−1u(1) is in transgression with Pbn−1u(1).

These statements are an obvious consequence of the definitions involved, but
they are important. The fact that bn−1u(1) has a single invariant polynomial of
degree (n + 1) will immediately imply, in section 6, that bn−1u(1)-bundles have
a single characteristic class of degree (n + 1): known (at least for n = 2, as the
Dixmier-Douady class). Such a bn−1u(1)-bundle classes appear in 7 as the obstruc-
tion classes for lifts of n-bundles through String-like extensions of their structure
Lie n-algebra.
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Cohomology and invariant polynomials of strict Lie 2-algebras. Let g(2) = (h t→
g

α→ der(h)) be a strict Lie 2-algebra as described in section 5.1. Notice that there
is a canonical projection homomorphism

CE(g) CE(h t→ g)
j∗���� (5.113)

which, of course, extends to the Weil algebras

W(g) W(h t→ g)
j∗���� . (5.114)

Here j∗ is simply the identity on g∗ and on g∗[1] and vanishes on h∗[1] and h∗[2].

Proposition 5.26. Every invariant polynomial P ∈ inv(g) of the ordinary Lie alge-
bra g lifts to an invariant polynomial on the Lie 2-algebra (h t→ g):

W(h t→ g)

i∗

����
W(g) inv(g)� ���

� �

��













. (5.115)

However, a closed invariant polynomial will not necessarily lift to a closed one.

Proof. Recall that dt := d
CE(h

t→g)
acts on g∗ as

dt|g∗ = [·, ·]∗g + t∗ . (5.116)

By definition 5.4 and definition 5.5 it follows that d
W(h

t→g)
acts on g∗[1] as

d
W(h

t→g)
|g∗[1] = −σ ◦ [·, ·]∗g − σ ◦ t∗ (5.117)

and on h∗[1] as

d
W(h

t→g)
|h∗[1] = −σ ◦ α∗ . (5.118)

Then notice that

(σ ◦ t∗) : g∗[1] → h∗[2] . (5.119)

But this means that d
W(h

t→g)
differs from dW(g) on ∧•(g∗[1]) only by elements that

are annihilated by vertical ιX . This proves the claim. �

It may be easier to appreciate this proof by looking at what it does in terms
of a chosen basis.
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Same discussion in terms of a basis. Let {ta} be a basis of g∗ and {bi} be a
basis of h∗[1]. Let {Ca

bc}, {αi
aj}, and {tai}, respectively, be the components of

[·, ·]g, α and t in that basis. Then corresponding to CE(g), W(g), CE(h t→ g), and
W(h t→ g), respectively, we have the differentials

dCE(g) : ta �→ −1
2
Ca

bct
b ∧ tc, (5.120)

dW(g) : ta �→ −1
2
Ca

bct
b ∧ tc + σta, (5.121)

d
CE(h

t→g)
: ta �→ −1

2
Ca

bct
b ∧ tc + taib

i, (5.122)

and
d
W(h

t→g)
: ta �→ −1

2
Ca

bct
b ∧ tc + taib

i + σta. (5.123)

Hence we get

dW(g) : σta �→ −σ(−1
2
Ca

bct
b ∧ tc) = Ca

bc(σtb) ∧ tc (5.124)

as well as

d
W(h

t→g)
: σta �→ −σ(−1

2
Ca

bct
b ∧ tc + taib

i) = Ca
bc(σtb) ∧ tc + taiσb

i . (5.125)

Then if
P = Pa1···an(σta1) ∧ · · · ∧ (σtan) (5.126)

is dW(g)-closed, i.e. an invariant polynomial on g, it follows that

d
W(h

t→g)
P = nPa1,a2,···an(ta1

iσb
i) ∧ (σta2 ) ∧ · · · ∧ (σtan) . (5.127)

(all terms appearing are in the image of the shifting isomorphism σ), hence P is
also an invariant polynomial on (h t→ g).
Remark. Notice that the invariant polynomials P lifted from g to (h t→ g) this
way are no longer closed, in general. This is a new phenomenon we encounter for
higher L∞-algebras. While, according to proposition 5.21, for g an ordinary Lie
algebra all elements in inv(g) are closed, this is no longer the case here: the lifted
elements P above vanish only after we hit with them with both d

W(h
t→g)

and a
vertical τ . �

We will see a physical application of this fact in 5.6.

Proposition 5.27. Let P be any invariant polynomial on the ordinary Lie algebra g

in transgression with the cocycle μ on g. Regarded both as elements of W(h t→ g)
and CE(h t→ g) respectively. Notice that d

CE(h
t→g)

μ is in general non-vanishing

but is of course now an exact cocycle on (h t→ g).
We have : the (h t→ g)-cocycle d

CE(h
t→g)

μ transgresses to d
inv(h

t→g)
P .
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0

0 p∗d
inv(h

t→g)
P

�

τ
W(h t→g)

��

�

d
W(h t→g)

��

d
inv(h

t→g)
P�

p∗
W(h t→g)��

d
CE(h

t→g)
μ

�

d
CE(h t→g)

��

τp∗d
inv(h

t→g)
P

�

d
W(h t→g)

��

�i∗�� P
�

d
inv(h t→g)

��

.

Figure 7. Cocycles and invariant polynomials on strict Lie 2-

algebras (h t→ g), induced from cocycles and invariant polynomi-
als on g. An invariant polynomial P on g in transgression with a
cocycle μ on g lifts to a generally non-closed invariant polynomial
on (h t→ g). The diagram says that its closure, d

inv(h
t→g)

P , sus-

pends to the d
CE(h

t→g)
-closure of the cocycle μ. Since this (h t→ g)-

cocycle d
(h

t→g)
μ is hence a coboundary, it follows from proposition

5.24 that d
inv(h

t→g)
P suspends also to 0. Nevertheless the situa-

tion is of interest, in that it governs the topological field theory
known as BF theory. This is discussed in section 5.6.1.

The situation is illustrated by the diagram in figure 7.

Concrete Example: su(5) → sp(5). It is known that the cohomology of the
Chevalley-Eilenberg algebras for su(5) and sp(5) are generated, respectively, by
four and five indecomposable cocycles,

H•(CE(su(5))) = ∧•[a, b, c, d] (5.128)

and

H•(CE(sp(5))) = ∧•[v, w, x, y, z] , (5.129)

which have degree as indicated in the following table:
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generator degree
a 3
b 5

H•CE(su(5)) c 7
d 9

v 3
w 7

H•(CE(sp(5))) x 11
y 15
z 19

.

As discussed for instance in [41], the inclusion of groups

SU(5) ↪→ Sp(5) (5.130)

is reflected in the morphism of DGCAs

CE(su(5)) CE(sp(5))t∗���� (5.131)

which acts, in cohomology, on v and w as

a v���

c w���
(5.132)

and which sends x, y and z to wedge products of generators.
We would like to apply the above reasoning to this situation. Now, su(5) is

not normal in sp(5) hence (su(5) ↪→ sp(5)) does not give a Lie 2-algebra. But
we can regard the cohomology complexes H•(CE(su(5))) and H•(CE(sp(5))) as
Chevalley-Eilenberg algebras of abelian L∞-algebras in their own right. Their in-
clusion is normal, in the sense to be made precise below in definition 7.1. By useful
abuse of notation, we write now CE(su(5) ↪→ sp(5)) for this inclusion at the level
of cohomology.

Recalling from 5.45 that this means that in CE(su(5) ↪→ sp(5)) we have

dCE(su(5)↪→sp(5))v := σa (5.133)

and
dCE(su(5)↪→sp(5)))w := σc (5.134)

we see that the generators σa and σb drop out of the cohomology of the Chevalley-
Eilenberg algebra

CE(su(5) ↪→ sp(5)) = (
∧•(sp(5)∗ ⊕ su(5)∗[1]), dt) (5.135)

of the strict Lie 2-algebra coming from the infinitesimal crossed module (t :
su(5) ↪→ sp(5)).

A simple spectral sequence argument shows that products are not killed in
H•(CE(su(5) ↪→ sp(5))), but they may no longer be decomposable. Hence

H•(CE(su(5) ↪→ sp(5))) (5.136)
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is generated by classes in degrees 6 and 10 by σb and σd, and in degrees 21 and
25, which are represented by products in 5.135 involving σa and σc, with the only
non zero product being

6 ∧ 25 = 10 ∧ 21 , (5.137)

where 31 is the dimension of the manifold Sp(5)/SU(5). Thus the strict Lie 2-
algebra (t : su(5) ↪→ sp(5)) plays the role of the quotient Lie 1-algebra sp(5)/su(5).
We will discuss the general mechanism behind this phenomenon in 7.1: the Lie 2-
algebra (su(5) ↪→ sp(5)) is the weak cokernel, i.e. the homotopy cokernel of the
inclusion su(5) ↪→ sp(5).

The Weil algebra of (su(5) ↪→ sp(5)) is

W(su(5) ↪→ sp(5)) = (∧•(sp(5)∗⊕su(5)∗[1]⊕sp(5)∗[1]⊕su(5)∗[2]), dW(su(5)↪→sp(5))) .
(5.138)

Recall the formula 5.40 for the action of dW(su(5)↪→sp(5)) on generators in sp(5)∗[1]⊕
su(5)∗[2]. By that formula, σv and σw are invariant polynomials on sp(5) which
lift to non-closed invariant polynomials on su(5) ↪→ sp(5)):

dW(su(5)↪→sp(5))) : σv �→ −σ(dCE(su(5)↪→sp(5))v) = −σσa (5.139)

by equation (5.133); and

dW(su(5)↪→sp(5))) : σw �→ −σ(dCE(su(5)↪→sp(5))w) = −σσc (5.140)

by equation (5.134). Hence σv and σw are not closed in CE(su(5) ↪→ sp(5)),
but they are still invariant polynomials according to definition 5.18, since their
differential sits entirely in the shifted copy (sp(5)∗ ⊕ su(5)∗[1])[1].

On the other hand, notice that we do also have closed invariant polynomials
on (su(5) ↪→ sp(5)), for instance σσb and σσd.

5.4. L∞-algebras from cocycles: String-like extensions

We now consider the main object of interest here: families of L∞-algebras that are
induced from L∞-cocycles and invariant polynomials. First we need the following

Definition 5.28 (String-like extensions of L∞-algebras). Let g be an L∞-algebra.

• For each degree (n + 1)-cocycle μ on g, let gμ be the L∞-algebra defined by

CE(gμ) = (∧•(g∗ ⊕ R[n]), dCE(gμ)) (5.141)

with differential given by

dCE(gμ)|g∗ := dCE(g), (5.142)

and
dCE(gμ))|R[n] : b �→ −μ , (5.143)

where {b} denotes the canonical basis of R[n]. This we call the String-like
extension of g with respect to μ, because, as described below in 5.4.1, it
generalizes the construction of the String Lie 2-algebra.
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• For each degree n invariant polynomial P on g, let chP (g) be the L∞-algebra
defined by

CE(chP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 1]), dCE(chP (g))) (5.144)

with the differential given by

dCE(chP (g))|g∗⊕g∗[1] := dW(g) (5.145)

and
dCE(chP (g)))|R[2n−1] : c �→ P , (5.146)

where {c} denotes the canonical basis of R[2n− 1]. This we call the Chern
L∞-algebra corresponding to the invariant polynomial P , because, as de-
scribed below in 5.5.1, connections with values in it pick out the Chern-form
corresponding to P .

• For each degree 2n−1 transgression element cs, let csP (g) be the L∞-algebra
defined by

CE(csP (g)) = (∧•(g∗ ⊕ g∗[1]⊕ R[2n− 2]⊕ R[2n− 1]), dCE(chP (g))) (5.147)

with
dCE(csP (g))|∧•(g∗⊕g∗[1]) = dW(g) (5.148)
dCE(csP (g))|R[2n−2] : b �→ −cs + c (5.149)

dCE(chp(g))|R[2n−1] : c �→ P , (5.150)
where {b} and {c} denote the canonical bases of R[2n − 2] and R[2n − 1],
respectively. This we call the Chern-Simons L∞-algebra with respect to the
transgression element cs, because, as described below in 5.5.1, connections
with values in these come from (generalized) Chern-Simons forms.

The nilpotency of these differentials follows directly from the very definition
of L∞-algebra cocycles and invariant polynomials.

Proposition 5.29 (The String-like extensions). For each L∞-cocycle μ ∈ ∧n(g∗) of
degree n, the corresponding String-like extension sits in an exact sequence

0 CE(bn−1u(1))�� CE(gμ)���� CE(g)� ��� 0�� (5.151)

Proof. The morphisms are the canonical inclusion and projection. �

Proposition 5.30. For cs ∈ W(g) any transgression element interpolating between
the cocycle μ ∈ CE(g) and the invariant polynomial P ∈ ∧•(g[1]) ⊂ W(g), we
obtain a homotopy-exact sequence

CE(gμ) CE(csP (g))����

�

CE(chP (g))� ���

W(gμ)

. (5.152)
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Here the isomorphism

f : W(gμ) � �� CE(csP (g)) (5.153)

is the identity on g∗ ⊕ g∗[1]⊕ R[n]

f |g∗⊕g∗[1]⊕R[n] = Id (5.154)

and acts as
f |R[n+1] : b �→ c + μ− cs (5.155)

for b the canonical basis of R[n] and c that of R[n + 1]. We check that this does
respect the differentials

b
� dW(gμ) ��

�

f

��

−μ + c�

f

��
b
� dCE(csP (g)) �� −cs + c

c � dW(gμ) ���

f

��

σμ�

f

��
c + μ− cs �dCE(csP (g)) �� σμ

. (5.156)

Recall from definition 7.3 that σ is the canonical isomorphism σ : g∗ → g∗[1]
extended by 0 to g∗[1] and then as a derivation to all of ∧•(g∗⊕g∗[1]). In the above
the morphism between the Weil algebra of gμ and the Chevalley-Eilenberg algebra
of csP (g) is indeed an isomorphism (not just an equivalence). This isomorphism
exhibits one of the main points to be made here: it makes manifest that the
invariant polynomial P that is related by transgression to the cocycle μ which
induces gμ becomes exact with respect to gμ. This is the statement of proposition
5.32 below.
L∞-algebra cohomology and invariant polynomials of String-like extensions. The
L∞-algebra gμ obtained from an L∞-algebra g with an L∞-algebra cocycle μ ∈
H•(CE(g)) can be thought of as being obtained from g by “killing” a cocycle μ.
This is familiar from Sullivan models in rational homotopy theory.

Proposition 5.31. Let g be an ordinary semisimple Lie algebra and μ a cocycle on
it. Then

H•(CE(gμ)) = H•(CE(g))/〈μ〉 . (5.157)

Accordingly, one finds that in cohomology the invariant polynomials on gμ

are those of g except that the polynomial in transgression with μ now suspends to
0.

Proposition 5.32. Let g be an L∞-algebra and μ ∈ CE(g) in transgression with the
invariant polynomial P ∈ inv(g). Then with respect to the String-like extension gμ

the polynomial P suspends to 0.
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Proof. Since μ is a coboundary in CE(gμ), this is a corollary of proposition
5.24. �

Remark. We will see in section 6 that those invariant polynomials which sus-
pend to 0 do actually not contribute to the characteristic classes. As we will also
see there, this can be understood in terms of the invariant polynomials not with
respect to the projection CE(g) W(g)���� but with respect to the projection

CE(g) CE(csP (gμ)) ,���� recalling from 5.30 that W(g) is isomorphic to csP (g).

Proposition 5.33. For g any L∞-algebra with cocycle μ of degree 2n + 1 in trans-
gression with the invariant polynomial P , denote by csP (g)basic the DGCA of basic
forms with respect to the canonical projection

CE(g) CE(csP (gμ)) ,���� (5.158)

according to the general definition 4.10.
Then the cohomology of csP (g)basic is that of inv(g) modulo P :

H•(csP (g)basic) � H•(inv(g))/〈P 〉 . (5.159)

Proof. One finds that the vertical derivations on CE(csP (g)) = ∧•(g∗ ⊕
g∗[1]⊕ R[n]⊕ R[n + 1]) are those that vanish on everything except the unshifted
copy of g∗. Therefore the basic forms are those in ∧•(g∗[1]⊕R[n]⊕R[n+ 1]) such
that also their dcsP (g)-differential is in that space. Hence all invariant g-polynomials
are among them. But one of them now becomes exact, namely P . �

Remark. The first example below, definition 5.34, introduces the String Lie 2-
algebra of an ordinary semisimple Lie algebra g, which gave all our String-like
extensions its name. It is known, corollary 2 in [8], that the real cohomology of the
classifying space of the 2-group integrating it is that of G = exp(g), modulo the
ideal generated by the class corresponding to P . Hence CE(csP (g)) is an algebraic
model for this space.

5.4.1. Examples.
Ordinary central extensions. Ordinary central extensions coming from a 2-cocycle
μ ∈ H2(CE(g)) of an ordinary Lie algebra g are a special case of the “String-like”
extensions we are considering:

By definition 5.28 the L∞-algebra gμ is the Lie 1-algebra whose Chevalley-
Eilenberg algebra is

CE(gμ) = (∧•(g∗ ⊕ R[1]), dCE(gμ)) (5.160)

where
dCE(gμ)|g∗ = dCE(g) (5.161)

and
dCE(gμ)|R[1] : b �→ μ (5.162)
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CE(gμ) = CE(gμ)

W(gμ) �

����

CE(csP (g))

����

inv(g) = inv(gμ) � � ��
� �

��

csP (g)basic

� �

��

H•(csP (g)basic) � H•(inv(g))/〈P 〉

Figure 8. The DGCA sequence playing the role of differential
forms on the universal (higher) String n-bundle for a String-like
extension gμ, definition 5.28, of an L∞-algebra g by a cocycle
μ of odd degree in transgression with an invariant polynomial
P . Compare with figure 1. In H•(inv(gμ)) = H•(W(gμ)basic) the
class of P is still contained, but suspends to 0, according to propo-
sition 5.32. In H•(csP (g)basic) the class of P vanishes, according
to proposition 5.33. The isomorphism W(gμ) � CE(csP (g)) is
from proposition 5.30. For g an ordinary semisimple Lie algebra
and gμ the ordinary String extension coming from the canonical
3-cocycle, this corresponds to the fact that the classifying space
of the String 2-group [7, 43] has the cohomology of the classifying
space of the underlying group, modulo the first Pontrajagin class
[8].

for b the canonical basis of R[1]. (Recall that in our conventions g is in degree 1).
This is indeed the Chevalley-Eilenberg algebra corresponding to the Lie

bracket
[(x, c), (x′, c′)] = ([x, x′], μ(x, x′)) (5.163)

(for all x, x′ ∈ g, c, c′ ∈ R) on the centrally extended Lie algebra.

The String Lie 2-algebra.

Definition 5.34. Let g be a semisiple Lie algebra and μ = 〈·, [·, ·]〉 the canonical
3-cocycle on it. Then

string(g) (5.164)

is defined to be the strict Lie 2-algebra coming from the crossed module

(Ω̂g → Pg) , (5.165)

where Pg is the Lie algebra of based paths in g and Ω̂g the Lie algebra of based
loops in g, with central extension induced by μ. Details are in [7].
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Proposition 5.35 ([7]). The Lie 2-algebra gμ obtained from g and μ as in definition
5.28 is equivalent to the strict string Lie 2-algebra

gμ � string(g) . (5.166)

This means there are morphisms gμ → string(g) and string(g) → gμ whose
composite is the identity only up to homotopy

gμ ��

Id

� string(g) �� gμ

=

string(g) ��

Id

� 
gμ �� string(g)

η

(5.167)

We call gμ the skeletal and string(g) the strict version of the String Lie
2-algebra.
The Fivebrane Lie 6-algebra.

Definition 5.36. Let g = so(n) and μ the canonical 7-cocycle on it. Then

fivebrane(g) (5.168)

is defined to be the strict Lie 7-algebra which is equivalent to gμ

gμ � fivebrane(g) . (5.169)

A Lie n-algebra is strict if it corresponds to a differential graded Lie algebra
on a vector space in degree 1 to n. (Recall our grading conventions from 5.1.) The
strict Lie n-algebras corresponding to certain weak Lie n-algebras can be found
by first integrating to strict Lie n-groups and then differentiating the result again.
This shall not concern us here, but discussion of this point can be found in [71]
and [70].
The BF-theory Lie 3-algebra.

Definition 5.37. For g any ordinary Lie algebra with bilinear invariant symmetric
form 〈·, ·〉 ∈ inv(g) in transgression with the 3-cocycle μ, and for h

t→ g a strict
Lie 2-algebra based on g, denote by

μ̂ := d
CE(h

t→g)
μ (5.170)

the corresponding exact 4-cocycle on (h t→ g) discussed in 5.3.1. Then we call the
String-like extended Lie 3-algebra

bf(h t→ g) := (h t→ g)μ̂ (5.171)

the corresponding BF-theory Lie 3-algebra.

The terminology here will become clear once we describe in 7.3.1 and 8.1.1
how the BF-theory action functional discussed in 5.6.1 arises as the parallel 4-
transport given by the b3u(1)-4-bundle which arises as the obstruction to lifting
(h t→ g)-2-descent objects to bf(h t→ g)-3-descent objects.
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5.5. L∞-algebra valued forms

Consider an ordinary Lie algebra g valued connection form A regarded as a linear
map g∗ → Ω1(Y ). Since CE(g) is free as a graded commutative algebra, this linear
map extends uniquely to a morphism of graded commutative algebras, though
not in general of differential graded commutative algebra. In fact, the deviation
is measured by the curvature FA of the connection. However, the differential in
W(g) is precisely such that the connection does extend to a morphism of differential
graded-commutative algebras

W(g) → Ω•(Y ) . (5.172)

This implies that a good notion of a g-valued differential form on a smooth space Y ,
for g any L∞-algebra, is a morphism of differential graded-commutative algebras
from the Weil algebra of g to the algebra of differential forms on Y .

Definition 5.38 (g-valued forms). For Y a smooth space and g an L∞-algebra, we
call

Ω•(Y, g) := Homdgc−Alg(W(g),Ω•(Y )) (5.173)

the space of g-valued differential forms on X.

Definition 5.39 (Curvature). We write g-valued differential forms as

( Ω•(Y ) W(g)
(A,FA)�� ) ∈ Ω•(Y, g) , (5.174)

where FA denotes the restriction to the shifted copy g∗[1] given by

curv : ( Ω•(Y ) W(g)
(A,FA)�� ) �→ ( Ω•(Y ) W(g)

(A,FA)�� g∗[1]� ���

FA

��
) . (5.175)

FA we call the curvature of A.

Proposition 5.40. The g-valued differential form Ω•(Y ) W(g)
(A,FA)�� fac-

tors through CE(g) precisely when its curvature FA vanishes.

CE(g)

(A,FA=0)

��

W(g)����

(A,FA)

��
Ω•(Y ) = Ω•(Y )

. (5.176)

In this case we say that A is flat. Hence the space of flat g-valued forms is

Ω•
flat(Y, g) � Homdgc−Alg(CE(g),Ω•(Y )) . (5.177)
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Bianchi identity. Recall from 5.1 that the Weil algebra W(g) of an L∞-algebra g
is the same as the Chevalley-Eilenberg algebra CE(inn(g)) of the L∞-algebra of
inner derivation of g. It follows that g-valued differential forms on Y are the same
as flat inn(g)-valued differential forms on Y :

Ω•(Y, g) = Ω•
flat(inn(g)) . (5.178)

By the above definition of curvature, this says that the curvature FA of a g-
valued connection (A,FA) is itself a flat inn(g)-valued connection. This is the
generalization of the ordinary Bianchi identity to L∞-algebra valued forms.

Definition 5.41. Two g-valued forms A,A′ ∈ Ω•(Y, g) are called (gauge) equivalent
precisely if they are related by a vertical concordance, i.e. by a concordance, such
that the corresponding derivation ρ from proposition 5.14 is vertical, in the sense
of definition 4.9.

5.5.1. Examples.
1. Ordinary Lie-algebra valued 1-forms. We have already mentioned ordinary Lie
algebra valued 1-forms in this general context in 2.1.3.
2. Forms with values in shifted bn−1u(1). A bn−1u(1)-valued form is nothing but
an ordinary n-form A ∈ Ωn(Y ):

Ω•(bn−1u(1), Y ) � Ωn(Y ) . (5.179)

A flat bn−1u(1)-valued form is precisely a closed n-form.

CE(bn−1u(1))

(A)

dA=0

��

���� W(bn−1u(1))

(A,FA)

A=dA

��
Ω•(Y ) = �� Ω•(Y )

3. Crossed module valued forms. Let g(2) = (h t→ g) be a strict Lie 2-algebra
coming from a crossed module. Then a g(2)-valued form is an ordinary g-valued
1-form A and an ordinary h-valued 2-form B. The corresponding curvature is
an ordinary g-valued 2-form β = FA + t(B) and an ordinary h-valued 3-form
H = dAB. This is denoted by the right vertical arrow in the following diagram.

CE(h t→ g)

(A,B)

FA+t(B)=0

��

W(h t→ g)����

(A,B,β,H)

β=FA+t(B)
H=dAB

��
Ω•(Y ) = Ω•(Y )

. (5.180)
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Precisely if the curvature components β and H vanish, does this morphism on the
right factor through CE(h t→ g), which is indicated by the left vertical arrow of
the above diagram.
4. String Lie n-algebra valued forms. For g an ordinary Lie algebra and μ a degree
(2n + 1)-cocycle on g the situation is captured by the following diagram

String-like Chern-Simons Chern

1 2n 2n + 1 2n + 1

CE(g) CE(gμ)��� � ���� CE(csP (g)) �� � �CE(chP (g))

Ω•(Y ) =
��

(A)

FA=0

Ω•(Y ) =
��

(A,B)

FA=0
dB+CSk(A)=0

Ω•(Y ) =
��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=k((FA)n+1)

(5.181)

Here CSP (A) denotes the Chern-Simons form such that dCSP (A) = P (FA),
given by the specific contracting homotopy.

The standard example is that corresponding to the ordinary String-extension.

CE(g) CE(string(g))��� � ����

�

W(stringk(g))

CE(g) CE(gμ)��� � ���� CE(csk(g))

�

�� �� CE(chP (g))

Ω•(Y ) =
��

(A)

FA=0

Ω•(Y ) =
��

(A,B)
FA=0

dB+CSP (A)=0

Ω•(Y ) =
��

(A,B,C)

C=dB+CSP (A)

Ω•(Y )
��

(A,C)

dC=〈FA∧FA〉

(5.182)

In the above, g is semisimple with invariant bilinear form P = 〈·, ·〉 related by
transgression to the 3-cocycle μ = 〈·, [·, ·]〉. Then the Chern-Simons 3-form for any
g-valued 1-form A is

CS〈·,·〉(A) = 〈A ∧ dA〉 +
1
3
〈A ∧ [A ∧A]〉 . (5.183)

5. Fields of 11-dimensional supergravity. While we shall not discuss it in detail
here, it is clear that the entire discussion we gave has a straightforward generaliza-
tion to super L∞-algebras, obtained simply by working entirely within the category
of super vector spaces (the category of Z2-graded vector spaces equipped with the
unique non-trivial symmetric braiding on it, which introduces a sign whenever two
odd-graded vector spaces are interchanged).
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A glance at the definitions shows that, up to mere differences in terminology,
the theory of “FDA”s (“free differential algebras”) considered in [4, 24] is nothing
but that of what we call qDGCAs here: quasi-free differential graded commutative
algebras.

Using that and the interpretation of qDGCAs in terms of L∞-algebras, one
can translate everything said in [4, 24] into our language here to obtain the fol-
lowing statement:

The field content of 11-dimensional supergravity is nothing but a g-valued
form, for

g = sugra(10, 1) (5.184)

the Lie 3-algebra which is the String-like extension

0 → b2u(1) → sugra(10, 1) → siso(10, 1) → 0 (5.185)

of the super-Poincaré Lie algebra in 10+1 dimensions, coming from a certain 4-
cocycle on that.

CE(sugra(10, 1))

(flat connection,
parallel gravitino,

vanishing supertorsion)

��

W(sugra(10, 1))����

(graviton g,
gravitino Ψ,
3-form C3)

��
Ω•(Y ) = Ω•(Y )

(5.186)

While we shall not further pursue this here, this implies the following two
interesting issues.

• It is known in string theory [28] that the supergravity 3-form in fact consists of
three parts: two Chern-Simons parts for an e8 and for a so(10, 1)-connection,
as well as a further fermionic part, coming precisely from the 4-cocycle that
governs sugra(10, 1). As we discuss in 7 and 8, the two Chern-Simons com-
ponents can be understood in terms of certain Lie 3-algebra connections
coming from the Chern-Simons Lie 3-algebra csP (g) from definition 5.28. It
hence seems that there should be a Lie n-algebra which nicely unifies csP (e8),
csP (so(10, 1)8) and sugra(10, 1). This remains to be discussed.

• The discussion in section 6 shows how to obtain from g-valued forms globally
defined connections on possibly nontrivial g-n-bundles. Applied to
sugra(10, 1) this should yield a global description of the supergravity field
content, which extends the local field content considered in [4, 24] in the way
a connection in a possibly nontrivial Yang-Mills bundle generalizes a Lie al-
gebra valued 1-form. This should for instance allow to discuss supergravity
instanton solutions.
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5.6. L∞-algebra characteristic forms

Definition 5.42. For g any L∞ algebra and

Ω•(Y ) W(g)
(A,FA)�� (5.187)

any g-valued differential form, we call the composite

Ω•(Y ) W(g)
(A,FA)�� inv(g)� ���

{P (FA)}

��
(5.188)

the collection of invariant forms of the g-valued form A. We call the de Rham
classes [P (FA)] of the characteristic forms arising as the image of closed invariant
polynomials

Ω•(Y ) W(g)
(A,FA)�� inv(g)� ���

{Pi(FA)}

��

H•
dR(Y ) H•(inv(g))

{[P (FA)]}��

(5.189)

the collection of characteristic classes of the g-valued form A.

Recall from section 5.3 that for ordinary Lie algebras all invariant polynomials
are closed, while for general L∞-algebras it is only true that their dW(g)-differential
is horizontal. Notice that Y will play the role of a cover of some space X soon, and
that characteristic forms really live down on X . We will see shortly a constraint
imposed which makes the characteristic forms descend down from the Y here to
such an X .

Proposition 5.43. Under gauge transformations as in definition 5.41, characteristic
classes are invariant.

Proof. This follows from proposition 5.14: By that proposition, the derivative
of the concordance form Â along the interval I = [0, 1] is a chain homotopy

d

dt
Â(P ) = [d, ιX ]P = dτ(P ) + ιX(dW(g)P ) . (5.190)

By definition of gauge-transformations, ιX is vertical. By definition of basic forms,
P is both in the kernel of ιX as well as in the kernel of ιX ◦ d. Hence the right
hand vanishes. �
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5.6.1. Examples.
Characteristic forms of bn−1u(1)-valued forms.

Proposition 5.44. A bn−1u(1)-valued form Ω•(Y ) W(bn−1u(1))A�� is
precisely an n-form on Y :

Ω•(Y, bn−1u(1)) � Ωn(Y ) . (5.191)

If two such bn−1u(1)-valued forms are gauge equivalent according to definition 5.41,
then their curvatures coincide

( Ω•(Y ) W(bn−1u(1))A�� ) ∼ ( Ω•(Y ) W(bn−1u(1))A′
�� ) ⇒ dA = dA′ .

(5.192)

BF-theory. We demonstrate that the expression known in the literature as the ac-
tion functional for BF-theory with cosmological term is the integral of an invariant
polynomial for g-valued differential forms where g is a Lie 2-algebra. Namely, let
g(2) = (h t→ g) be any strict Lie 2-algebra as in section 5.1. Let

P = 〈·, ·〉 (5.193)

be an invariant bilinear form on g, hence a degree 2 invariant polynomial on g.
According to proposition 5.26, P therefore also is an invariant polynomial on g(2).

Now for (A,B) a g(2)-valued differential form on X , as in the example in
section 5.5,

Ω•(Y ) W(g(2))
((A,B),(β,H))�� , (5.194)

one finds

Ω•(Y ) W(g(2))
((A,B),(β,H))�� inv(g(2))� ���

P �→〈β,β〉

 ! (5.195)

so that the corresponding characteristic form is the 4-form

P (β,H) = 〈β ∧ β〉 = 〈(FA + t(B)) ∧ (FA + t(B))〉 . (5.196)

Collecting terms as

P (β,H) = 〈FA ∧ FA〉︸ ︷︷ ︸
Pontryagin term

+2 〈t(B) ∧ FA〉︸ ︷︷ ︸
BF-term

+ 〈t(B) ∧ t(B)〉︸ ︷︷ ︸
“cosmological constant”

(5.197)

we recognize the Lagrangian for topological Yang-Mills theory and BF theory with
cosmological term.

For X a compact 4-manifold, the corresponding action functional

S : Ω•(X, g(2)) → R (5.198)

sends g(2)-valued 2-forms to the integral of this 4-form

(A,B) �→
∫

X

(〈FA ∧ FA〉+ 2〈t(B) ∧ FA〉+ 〈t(B) ∧ t(B)〉) . (5.199)
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The first term here is usually not considered an intrinsic part of BF-theory, but
its presence does not affect the critical points of S.

The critical points of S, i.e. the g(2)-valued differential forms on X that satisfy
the equations of motion defined by the action S, are given by the equation

β := FA + t(B) = 0 . (5.200)

Notice that this implies
dAt(B) = 0 (5.201)

but does not constrain the full 3-curvature

H = dAB (5.202)

to vanish. In other words, the critical points of S are precisely the fake flat g(2)-
valued forms which precisely integrate to strict parallel transport 2-functors [38,
73, 9].

While the 4-form 〈β ∧ β〉 looks similar to the Pontrjagin 4-form 〈FA ∧ FA〉
for an ordinary connection 1-form A, one striking difference is that 〈β ∧ β〉 is, in
general, not closed. Instead, according to equation (5.127), we have

d〈β ∧ β〉 = 2〈β ∧ t(H)〉 . (5.203)

Remark. Under the equivalence [7] of the skeletal String Lie 2-algebra to its
strict version, recalled in proposition 5.35, the characteristic forms for strict Lie
2-algebras apply also to one of our central objects of interest here, the String 2-
connections. But a little care needs to be exercised here, because the strict version
of the String Lie 2-algebra is no longer finite dimensional.
Remark. Our interpretation above of BF-theory as a gauge theory for Lie 2-
algebras is not unrelated to, but different from the one considered in [38, 39].
There only the Lie 2-algebra coming from the infinitesimal crossed module (|g| 0→
g

ad→ der(g)) (for g any ordinary Lie algebra and |g| its underlying vector space,
regarded as an abelian Lie algebra) is considered, and the action is restricted to
the term

∫
〈FA∧B〉. We can regard the above discussion as a generalization of this

approach to arbitrary Lie 2-algebras. Standard BF-theory (with “cosmological”
term) is reproduced with the above Lagrangian by using the Lie 2-algebra inn(g)
corresponding to the infinitesimal crossed module (g Id→ g

ad→ der(g)) discussed in
section 5.1.1.

6. L∞-algebra Cartan-Ehresmann connections

We will now combine all of the above ingredients to produce a definition of g-
valued connections. As we shall explain, the construction we give may be thought
of as a generalization of the notion of a Cartan-Ehresmann connection, which is
given by a Lie algebra-valued 1-form on the total space of a bundle over base space
satisfying two conditions:
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• first Cartan-Ehresmann condition: on the fibers the connection form restricts
to a flat canonical form

• second Cartan-Ehresmann condition: under vertical flows the connections
transforms nicely, in such a way that its characteristic forms descend down
to base space.
We will essentially interpret these two conditions as a pullback of the universal

g-bundle, in its DGC-algebraic incarnation as given in equation (5.94).
The definition we give can also be seen as the Lie algebraic image of a similar

construction involving locally trivializable transport n-functors [9, 74], but this
shall not be further discussed here.

6.1. g-bundle descent data

Definition 6.1 (g-bundle descent data). Given a Lie n-algebra g, a g-bundle descent
object on X is a pair (Y,Avert) consisting of a choice of surjective submersion
π : Y → X with connected fibers (this condition will be dropped when we extend
to g-connection descent objects in (6.2) together with a morphism of dg-algebras

Ω•
vert(Y ) CE(g)

Avert�� . (6.1)

Two such descent objects are taken to be equivalent

( Ω•
vert(Y ) CE(g)

Avert�� ) ∼ ( Ω•
vert(Y

′) CE(g)
A′

vert�� ) (6.2)

precisely if their pullbacks π∗
1Avert and π∗

2A
′
vert to the common refinement

Y ×X Y ′ π1 ��

π2

��

Y

π

��
Y ′ π′

�� X

(6.3)

are concordant in the sense of definition 5.13.

Thus two such descent objects Avert, A′
vert on the same Y are equivalent if

there is η∗vert such that

Ω•
vert(Y ) Ω•

vert(Y × I)s∗��
t∗�� CE(g)

η∗
vert��

Avert

!"

A′
vert

��
. (6.4)

Recall from the discussion in section 2.2.1 that the surjective submersions
here play the role of open covers of X .
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6.1.1. Examples.

Ordinary G-bundles. The following example is meant to illustrate how the notion
of descent data with respect to a Lie algebra g as defined here can be related
to the ordinary notion of descent data with respect to a Lie group G. Consider
the case where g is an ordinary Lie (1-)algebra. A g-cocycle then is a surjective
submersion π : Y → X together with a g-valued flat vertical 1-form Avert on Y .
Assume the fiber of π : Y → X to be simply connected. Then for any two points
(y, y′) ∈ Y ×X Y in the same fiber we obtain an element g(y, y′) ∈ G, where G is

the simply connected Lie group integrating g, by choosing any path y
γ �� y′

in the fiber connecting y with y′ and forming the parallel transport determined by
Avert along this path

g(y, y′) := P exp(
∫

γ

Avert) . (6.5)

By the flatness of Avert and the assumption that the fibers of Y are simply con-
nected

• g : Y ×X Y → G is well defined (does not depend on the choice of paths),
and

• satisfies the cocycle condition for G-bundles

g :

y′

"#�
��

��
��

y ��

#$��������
y′′

�→
•

g(y′,y′′)

"#�
��

��
��

•
g(y,y′′)

��

g(y,y′)
$%������� •

. (6.6)

Any such cocycle g defines a G-principal bundle. Conversely, every G-principal
bundle P → X gives rise to a structure like this by choosing Y := P and letting
Avert be the canonical invariant g-valued vertical 1-form on Y = P . Then suppose
(Y,Avert) and (Y,A′

vert) are two such cocycles defined on the same Y , and let
(Ŷ := Y × I, Âvert) be a concordance between them. Then, for every path

y × {0} γ �� y × {1} (6.7)

connecting the two copies of a point y ∈ Y over the endpoints of the interval, we
again obtain a group element

h(y) := P exp(
∫

γ

Âvert) . (6.8)

By the flatness of Â, this is

• well defined in that it is independent of the choice of path;
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• has the property that for all (y, y′) ∈ Y ×X Y we have

h :

y × {0}

��

�� y × {1}

��
y′ × {0} �� y′ × {1}

�→

•

g(y,y′)

��

h(y) �� •

g′(y,y′)

��• h(y′) �� •

. (6.9)

Therefore h is a gauge transformation between g and g′, as it should be.

Note that there is no holonomy since the fibers are assumed to be simply
connected in this example.
Abelian gerbes, Deligne cohomology and (bn−1u(1))-descent objects. For the case
that the L∞-algebra in question is shifted u(1), i.e. g = bn−1u(1), classes of g-
descent objects on X should coincide with classes of “line n-bundles”, i.e. with
classes of abelian (n− 1)-gerbes on X , hence with elements in Hn(X,Z). In order
to understand this, we relate classes of bn−1u(1))-descent objects to Deligne coho-
mology. We recall Deligne cohomology for a fixed surjective submersion π : Y → X .
For comparison with some parts of the literature, the reader should choose Y to
be the disjoint union of sets of a good cover of X . More discussion of this point is
in section 4.3.1.

The following definition should be thought of this way: a collection of p-forms
on fiberwise intersections of a surjective submersion Y → X are given. The 0-form
part defines an n-bundle (an (n− 1)-gerbe) itself, while the higher forms encode a
connection on that n-bundle.

Definition 6.2 (Deligne cohomology). Deligne cohomology can be understood as the
cohomology on differential forms on the simplicial space Y • given by a surjective
submersion π : Y → X, where the complex of forms is taken to start as

0 �� C∞(Y [n],R/Z)
d �� Ω1(Y [n],R)

d �� Ω2(Y [n],R)
d �� · · · , (6.10)

where the first differential, often denoted dlog in the literature, is evaluated by
acting with the ordinary differential on any R-valued representative of a U(1) �
R/Z-valued function.

More in detail, given a surjective submersion π : Y → X, we obtain the
augmented simplicial space

Y • =

(
· · ·Y [3]

π1 ��
π2 ��
π3

�� Y [2]
π1 ��
π2

�� Y
π �� Y [0]

)
(6.11)
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of fiberwise cartesian powers of Y , Y [n] := Y ×X Y ×X · · · ×X Y︸ ︷︷ ︸
n factors

, with Y [0] := X.

The double complex of differential forms

Ω•(Y •) =
⊕
n∈N

Ωn(Y •) =
⊕
n∈N

⊕
r,s∈N

r+s=n

Ωr(Y [s]) (6.12)

on Y • has the differential d ± δ coming from the de Rham differential d and the
alternating pullback operation

δ : Ωr(Y [s]) → Ωr(Y [s+1])
δ : ω �→ π∗

1ω − π∗
2ω + π∗

3ω + · · · − (−1)s+1 . (6.13)

Here we take 0-forms to be valued in R/Z. The map Ω0(Y ) d �� Ω1(Y ) takes any
R-valued representative f of an R/Z-valued form and sends that to the ordinary

df . This operation is often denoted Ω0(Y )
dlog �� Ω1(Y ) . Writing Ω•

k(Y •) for the

space of forms that vanish on Y [l] for l < k we define (everything with respect to
Y ):
• A Deligne n-cocycle is a closed element in Ωn(Y •);
• a flat Deligne n-cocycle is a closed element in Ωn

1 (Y •);
• a Deligne coboundary is an element in (d± δ)Ω•

1(Y •) (i.e. no component in
Y [0] = X);

• a shift of connection is an element in (d ± δ)Ω•(Y •) (i.e. with possibly a
contribution in Y [0] = X).

The 0-form part of a Deligne cocycle is like the transition function of a U(1)-
bundle. Restricting to this part yields a group homomorphism

[·] : Hn(Ω•(Y •)) �� �� Hn(X,Z) (6.14)

to the integral cohomology on X . (Notice that the degree on the right is indeed as
given, using the total degree on the double complex Ω•(Y •) as given.)

Addition of a Deligne coboundary is a gauge transformation. Using the fact
[62] that the “fundamental complex”

Ωr(X) δ �� Ωr(Y ) δ �� Ωr(Y [2]) · · · (6.15)

is exact for all r ≥ 1, one sees that Deligne cocycles with the same class in Hn(X,Z)
differ by elements in (d ± δ)Ω•(Y •). Notice that they do not, in general, differ
by an element in Ω•

1(Y •): two Deligne cochains which differ by an element in
(d±δ)Ω•

1(Y
•) describe equivalent line n-bundles with equivalent connections, while

those that differ by something in (d± δ)Ω•
0(Y

•) describe equivalent line n-bundles
with possibly inequivalent connections on them.

Let
v : Ω•(Y •) → Ω•

vert(Y ) (6.16)
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be the map which sends each Deligne n-cochain a with respect to Y to the vertical
part of its (n− 1)-form on Y [1]

ν : a �→ a|Ωn−1
vert (Y [1]) . (6.17)

(Recall the definition 4.11 of Ω•
vert(Y ).) Then we have

Proposition 6.3. If two Deligne n-cocycles a and b over Y have the same class in
Hn(X,Z), then the classes of ν(a) and ν(b) coincide.

Proof. As mentioned above, a and b have the same class in Hn(X,Z) if and
only if they differ by an element in (d± δ)(Ω•(Y •)). This means that on Y [1] they
differ by an element of the form

dα + δβ = dα + π∗β . (6.18)

Since π∗β is horizontal, this is exact in Ω•
vert(Y [1]). �

Proposition 6.4. If the (n − 1)-form parts B,B′ ∈ Ωn−1(Y ) of two Deligne n-
cocycles differ by a d± δ-exact part, then the two Deligne cocycles have the same
class in Hn(X,Z).

Proof. If the surjective submersion is not yet contractible, we pull every-
thing back to a contractible refinement, as described in section 4.3.1. So assume
without restriction of generality that all Y [n] are contractible. This implies that
H•

deRham(Y [n]) = H0(Y [n]), which is a vector space spanned by the connected
components of Y [n]. Now assume

B −B′ = dβ + δα (6.19)

on Y . We can immediately see that this implies that the real classes in Hn(X,R)
coincide: the Deligne cocycle property says

d(B −B′) = δ(H −H ′) (6.20)

hence, by the exactness of the de Rham complex we have now,

δ(H −H ′) = δ(dα) (6.21)

and by the exactness of δ we get [H ] = [H ′].
To see that also the integral classes coincide we use induction over k in Y [k].

For instance on Y [2] we have

δ(B −B′) = d(A−A′) (6.22)

and hence
δdβ = d(A−A′) . (6.23)

Now using again the exactness of the de Rham differential d this implies

A−A′ = δβ + dγ . (6.24)

This way we work our way up to Y [n], where it then follows that the 0-form cocy-
cles are coboundant, hence that they have the same class in Hn(X,Z). �
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Proposition 6.5. bn−1u(1)-descent objects with respect to a given surjective sub-
mersion Y are in bijection with closed vertical n-forms on Y :{

Ω•
vert(Y ) CE(bn−1u(1))

Avert��
}

↔ {Avert ∈ Ωn
vert(Y ) , dAvert = 0} .

(6.25)
Two such bn−1u(1) descent objects on Y are equivalent precisely if these forms
represent the same cohomology class

(Avert ∼ A′
vert) ⇔ [Avert] = [A′

vert] ∈ Hn(Ω•
vert(Y )) . (6.26)

Proof. The first statement is a direct consequence of the definition of bn−1u(1)
in section 5.1. The second statement follows from proposition 5.14 using the rea-
soning as in proposition 5.43. �

Hence two Deligne cocycles with the same class in Hn(X,Z) indeed specify
the same class of bn−1u(1)-descent data.

6.2. Connections on g-bundles: the extension problem

It turns out that a useful way to conceive of the curvature on a non-flat g n-bundle
is, essentially, as the (n + 1)-bundle with connection obstructing the existence of
a flat connection on the original g-bundle. This superficially trivial statement is
crucial for our way of coming to grips with non-flat higher bundles with connection.

Definition 6.6 (Descent object for g-connection). Given g-bundle descent object

Ω•
vert(Y ) CE(g)

Avert�� (6.27)

as above, a g-connection on it is a completion of this morphism to a diagram

Ω•
vert(Y ) CE(g)

Avert��

Ω•(Y )

i∗

����

W (g)

����

(A,FA)��

Ω•(X)
��

π∗

��

inv(g)
��

��

{Ki}
��

. (6.28)

As before, two g-connection descent objects are taken to be equivalent, if their
pullbacks to a common refinement are concordant.
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The top square can always be completed: any representative A ∈ Ω•(Y ) of
Avert ∈ Ω•

vert(Y ) will do. The curvature FA is then uniquely fixed by the dg-algebra
homomorphism property. The existence of the top square then says that we have
a 1-form on a total space which restricts to a canonical flat 1-form on the fibers.
The commutativity of the lower square means that for all invariant polynomials
P of g, the form P (FA) on Y is a form pulled back from X and is the differential
of a form cs that vanishes on vertical vector fields

P (FA) = π∗K . (6.29)

The completion of the bottom square is hence an extra condition: it demands that
A has been chosen such that its curvature FA has the property that the form
P (FA) ∈ Ω•(Y ) for all invariant polynomials P are lifted from base space, up to
that exact part.
• The commutativity of the top square generalizes the first Cartan-Ehresmann

condition: the connection form on the total space restricts to a nice form on
the fibers.

• The commutativity of the lower square generalizes the second Cartan-Ehres-
mann condition: the connection form on the total space has to behave in such
a way that the invariant polynomials applied to its curvature descend down
to the base space.
The pullback

f∗(Y, (A,FA)) = (Y ′, (f∗A, f∗FA)) (6.30)
of a g-connection descent object (Y, (A,FA)) on a surjective submersion Y along
a morphism

Y ′

π′
���

��
��

��
�

f �� Y

π
��		
		
		
		

X

(6.31)

is the g-connection descent object depicted in figure 9.
Notice that the characteristic forms remain unaffected by such a pullback.

This way, any two g-connection descent objects may be pulled back to a common
surjective submersion. A concordance between two g-connection descent objects
on the same surjective submersion is depicted in figure 10.

Suppose (A,FA) and (A′, FA′) are descent data for g-bundles with connection
over the same Y (possibly after having pulled them back to a common refinement).
Then a concordance between them is a diagram as in figure 10.

Definition 6.7 (Equivalence of g-connections). We say that two g-connection de-
scent objects are equivalent as g-connection descent objects if they are connected
by a vertical concordance namely one for which the derivation part of η∗ (according
to proposition 5.14) vanishes on the shifted copy g∗[1] ↪→ W(g).

We have a closer look at concordance and equivalence of g-connection descent
objects in section 6.3.
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Ω•
vert(Y

′) Ω•
vert(Y )

f∗
�� CE(g)

Avert��

f∗Avert

%&

Ω•(Y ′)

i′∗

����

Ω•(Y )
f∗

��

i∗

����

W (g)

����

(A,FA)��

(f∗A,Ff∗A

%&

Ω•(X)
��

π′∗

��

Ω•(X)Id��
��

π∗

��

inv(g)
��

��

{Ki}
��

{Ki}

%&

.

Figure 9. Pullback of a g-connection descent object (Y, (A,FA))
along a morphism f : Y ′ → Y of surjective submersions, to
f∗(Y, (A,FA)) = (Y ′, (f∗A,Ff∗A)).

6.2.1. Examples.

Ordinary Cartan-Ehresmann connection. Let P → X be a principal G-bundle and
consider the descent object obtained by setting Y = P and letting Avert be the
canonical invariant vertical flat 1-form on fibers P . Then finding the morphism

Ω•(Y ) W(g)
(A,FA)�� (6.32)

such that the top square commutes amounts to finding a 1-form on the total space
of the bundle which restricts to the canonical 1-form on the fibers. This is the
first of the two conditions on a Cartan-Ehresmann connection. Then requiring the
lower square to commute implies requiring that the 2n-forms Pi(FA), formed from
the curvature 2-form FA and the degree n-invariant polynomials Pi of g, have to
descend to 2n-forms Ki on the base X . But that is precisely the case when Pi(FA)
is invariant under flows along vertical vector fields. Hence it is true when A satisfies
the second condition of a Cartan-Ehresmann connection, the one that says that
the connection form transforms nicely under vertical flows.

Further examples appear in section 7.3.1.
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Ω•
vert(Y ) Ω•

vert(Y )⊗ Ω•(I)s∗��
t∗�� CE(g)

η∗
vert��

Avert

&'

A′
vert

 !

Ω•(Y )

����

Ω•(Y )⊗ Ω•(I)

����

s∗��
t∗�� W(g)

η∗
��

����

(A,FA)

!"

(A′,FA′ )

 !

Ω•(X)
��

��

Ω•(X)⊗ Ω•(I)
��

��

s∗��
t∗�� inv(g)��

��

��

{Ki}

&'

{K′
i}

 !

Figure 10. Concordance between g-connection descent objects
(Y, (A,FA)) and (Y, (A′, FA′)) defined on the same surjective sub-
mersion π : Y → X . Concordance between descent objects not on
the same surjective submersion is reduced to this case by pulling
both back to a common refinement, as in figure 9.

6.3. Characteristic forms and characteristic classes

Definition 6.8. For any g-connection descent object (Y, (A,FA)) we say that in

Ω•
vert(Y ) CE(g)

Avert��

Ω•(Y )

i∗
����

W (g)

����

(A,FA)��

Ω•(X)
��

π∗

��

inv(g)
��

��

{Ki}��

H•
dR(X) H•(inv(g)){[Ki]}

��

(6.33)

the {Ki} are the characteristic forms, while their de Rham classes [Ki] ∈
H•

deRham(X) are the characteristic classes of (Y, (A,FA)).

Proposition 6.9. If two g-connection descent objects (Y, (A,FA)) and (Y ′, (A′, FA′))
are related by a concordance as in figure 9 and figure 10 then they have the same
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characteristic classes:

(Y, (A,FA)) ∼ (Y ′, (A′, FA′)) ⇒ {[Ki]} = {[K ′
i]} . (6.34)

Proof. We have seen that pullback does not change the characteristic forms.
It follows from proposition 5.43 that the characteristic classes are invariant under
concordance. �

Corollary 6.10. If two g-connection descent objects are equivalent according to
definition 6.7, then they even have the same characteristic forms.

Proof. For concordances between equivalent g-connection descent objects the
derivation part of η∗ is vertical and therefore vanishes on inv(g) = W(g)basic. �

Remark (Shifts of g-connections). We observe that, by the very definition of W(g),
any shift in the connection A,

A �→ A′ = A + D ∈ Ω•(Y, g)

can be understood as a transformation

Ω•(Y ) W(g)

(A,FA)

��

(A+D,FA+D)

��
ρ



with the property that ρ vanishes on the non-shifted copy g∗ ↪→ W(g) and is
nontrivial only on the shifted copy g∗[1] ↪→ W(g): in that case for a ∈ g∗ any
element in the unshifted copy, we have

(A + D)(a) = A(a) + [d, ρ](a) = A(a) + ρ(dW(g)a)
= A(a) + ρ(dCE(g)a + σa) = A(a) + ρ(σa).

and hence D(a) = ρ(σ), which uniquely fixes ρ in terms of D and vice versa.
Therefore concordances which are not purely vertical describe homotopies

between g-connection descent objects in which the connection is allowed to vary.
Remark (Gauge transformations versus shifts of the connections). We therefore
obtain the following picture.
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• Vertical concordances relate gauge equivalent g-connections (compare defini-
tion 5.41 of gauge transformations of g-valued forms)

(A
,F

A
)
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d

(A
′ ,
F

A
′ )
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��

��
(6.35)

• Non-vertical concordances relate g-connection descent objects whose underly-
ing g-descent object – the underlying g-n-bundles – are equivalent, but which
possibly differ in the choice of connection on these g-bundles:
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(6.36)

Remark. This in particular shows that for a given g-descent object

Ω•
vert(Y ) CE(g)

Avert��

the corresponding characteristic classes obtained by choosing a connection (A,FA)
does not depend on continuous variations of that choice of connection.

In the case of ordinary Lie (1-)algebras g it is well known that any two
connections on the same bundle may be continuously connected by a path of
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connections: the space of 1-connections is an affine space modeled on Ω1(X, g). If
we had an analogous statement for g-connections for higher L∞-algebras, we could
strengthen the above statement.

6.3.1. Examples.

Ordinary characteristic classes of g-bundles. Let g be an ordinary Lie algebra and
(Y, (A,FA)) be a g-descent object corresponding to an ordinary Cartan-Ehresmann
connection as in section 6.2.1. Using proposition 5.21 we know that inv(g) contains
all the ordinary invariant polynomials P on g. Hence the characteristic classes
[P (FA)] are precisely the standard characteristic classes (in de Rham cohomology)
of the G-bundle with connection.

Characteristic classes of bn−1u(1)-bundles. For g = bn−1u(1) we have, according
to proposition 5.25, inv(bn−1u(1)) = CE(bnu(1)) and hence a single degree n + 1
characteristic class: the curvature itself.

This case we had already discussed in the context of Deligne cohomology in
section 6.1.1. In particular, notice that in definition 6.2 we had already encountered
the distinction between homotopies of L∞-algebra that are or are not pure gauge
transformations, in that they do or do not shift the connection: what is called
a Deligne coboundary in definition 6.2 corresponds to an equivalence of bn−1u-
connection descent objects as in (6.35), while what is called a shift of connection
there corresponds to a concordance that involves a shift as in (6.36).

6.4. Universal and generalized g-connections

We can generalize the discussion of g-bundles with connection on spaces X , by

• allowing all occurrences of the algebra of differential forms to be replaced
with more general differential graded algebras; this amounts to admitting
generalized smooth spaces as in section 4.1;

• by allowing all Chevalley-Eilenberg and Weil algebras of L∞-algebras to be
replaced by DGCAs which may be nontrivial in degree 0. This amounts to
allowing not just structure ∞-groups but also structure ∞-groupoids.

Definition 6.11 (Generalized g-connection descent objects). Given any L∞-algebra
g, and given any DGCA A, we say a g-connection descent object for A is

• a surjection F P
i∗���� such that A � Pbasic;
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• a choice of horizontal morphisms in the diagram

F CE(g)
Avert��

P

i∗

����

W (g)

����

(A,FA)��

A
��

��

inv(g)
��

��

{Ki}
��

; (6.37)

The notion of equivalence of these descent objects is as before.
Horizontal forms. Given any algebra surjection

F

P

i∗

��

we know from definition 4.9 what the “vertical directions” on P are. After we have
chosen a g-connection on P , we obtain also notion of horizontal elements in P :

Definition 6.12 (Horizontal elements). Given a g-connection (A,FA) on P , the
algebra of horizontal elements

horA(P ) ⊂ P

of P with respect to this connection are those elements not in the ideal generated
by the image of A.

Notice that horA(P ) is in general just a graded-commutative algebra, not a
differential algebra. Accordingly the inclusion horA(P ) ⊂ P is meant just as an
inclusion of algebras.

6.4.1. Examples.
The universal g-connection. The tautological example is actually of interest: for
any L∞-algebra g, there is a canonical g-connection descent object on inv(g). This
comes from choosing

( F P
i∗���� ) := ( CE(g) W(g)i∗���� ) (6.38)
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CE(g) CE(g)Id��

W(g)

i∗

����

W (g)

����

Id��

inv(g)
��

��

inv(g)
��

��

Id
��

(6.39)

Figure 11. The universal g-connection descent object.

and then taking the horizontal morphisms to be all identities, as shown in figure
11.

We can then finally give an intrinsic interpretation of the decomposition of
the generators of the Weil algebra W(g) of any L∞-algebra into elements in g∗ and
elements in the shifted copy g∗[1], which is crucial for various of our constructions
(for instance for the vanishing condition in (5.65)).

Proposition 6.13. The horizontal elements of W(g) with respect to the universal g-
connection (A,FA) on W(g) are precisely those generated entirely from the shifted
copy g∗[1]:

horA(W(g)) = ∧•(g∗[1]) ⊂ W(g) .

Line n-bundles on classifying spaces.

Proposition 6.14. Let g be any L∞-algebra and P ∈ inv(g) any closed invariant
polynomial on g of degree n + 1. Let cs := τP be the transgression element and
μ := i∗cs the cocycle that P transgresses to according to proposition 5.23. Then we
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canonically obtain a bn−1u(1)-connection descent object in inv(g):

CE(g) CE(bn−1u(1))
μ��

W(g)

i∗

����

W (bn−1u(1))

����

(cs,P )��

inv(g)
��

��

inv(bnu(1)) = CE(bn−1u(1))
��

��

P
��

(6.40)

Remark. For instance for g an ordinary semisimple Lie algebra and μ its canonical
3-cocylce, we obtain a descent object for a Lie 3-bundle which plays the role of
what is known as the canonical 2-gerbe on the classifying space BG of the simply
connected group G integrating g [21]. From the above and using section 5.5.1 we
read off that its connection 3-form is the canonical Chern-Simons 3-form. We will
see this again in 8.3.1, where we show that the 3-particle (the 2-brane) coupled to
the above g-connection descent object indeed reproduces Chern-Simons theory.

7. Higher string- and Chern-Simons n-bundles: the lifting problem

We discuss the general concept of weak cokernels of morphisms of L∞-algebras.
Then we apply this to the special problem of lifts of differential g-cocycles through
String-like extensions.

7.1. Weak cokernels of L∞-morphisms

After introducing the notion of a mapping cone of qDGCAs, the main point here
is proposition 7.8, which establishes the existence of the weak inverse f−1 that was
mentioned in section 2.3. It will turn out to be that very weak inverse which picks
up the information about the existence or non-existence of the lifts discussed in
section 7.3. We can define the weak cokernel for normal L∞-subalgebras :

Definition 7.1 (Normal L∞-subalgebra). We say a Lie ∞-algebra h is a normal
sub L∞-algebra of the L∞-algebra g if there is a morphism

CE(h) CE(g)t∗���� (7.1)

which the property that

• on g∗ it restricts to a surjective linear map h∗ g∗
t∗1���� ;

• if a ∈ ker(t∗) then dCE(g)a ∈ ∧•(ker(t∗1)).
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Proposition 7.2. For h and g ordinary Lie algebras, the above notion of normal
sub L∞-algebra coincides with the standard notion of normal sub Lie algebras.

Proof. If a ∈ ker(t∗) then for any x, y ∈ g the condition says that
(dCE(g)a)(x ∨ y) = −a(D[x ∨ y]) = −a([x, y]) vanishes when x or y are in the
image of t. But a([x, y]) vanishes when [x, y] is in the image of t. Hence the con-
dition says that if at least one of x and y is in the image of t, then their bracket is. �

Definition 7.3 (Mapping cone of qDGCAs; Crossed module of normal sub L∞-al-

gebras). Let t : h ↪→ g be an inclusion of a normal sub L∞-algebra h into g. The
mapping cone of t∗ is the qDGCA whose underlying graded algebra is

∧•(g∗ ⊕ h∗[1]) (7.2)

and whose differential dt is such that it acts on generators schematically as

dt =
(

dg 0
t∗ dh

)
. (7.3)

In more detail, dt∗ is defined as follows. We write σt∗ for the degree +1
derivation on ∧•(g∗ ⊕ h∗[1]) which acts on g∗ as t∗ followed by a shift in degree
and which acts on h∗[1] as 0. Then, for any a ∈ g∗, we have

dta := dCE(g)a + σt∗(a) . (7.4)

and
dtσt

∗(a) := −σt∗(dCE(g)a) = −dtdCE(g)a . (7.5)

Notice that the last equation

• defines dt on all of h∗[1] since t∗ is surjective;
• is well defined in that it agrees for a and a′ if t∗(a) = t∗(a′), since t is normal.

Proposition 7.4. The differential dt defined this way indeed satisfies (dt)2 = 0.

Proof. For a ∈ g∗ we have

dtdta = dt(dCE(g)a + σt∗(a)) = σt∗(dCE(g)a)− σt∗(dCE(g)a) = 0 . (7.6)

Hence (dt)2 vanishes on ∧•(g∗). Since

dtdtσt
∗(a) = −dtdtdCE(g)a (7.7)

and since dCE(g)a ∈ ∧•(g∗) this implies (dt)2 = 0. �

We write CE(h
t
↪→ g) := (∧•(g∗ ⊕ h∗[1]), dt) for the resulting qDGCA and

(h
t
↪→ g) for the corresponding L∞-algebra.

The next proposition asserts that CE(h
t
↪→ g) is indeed a (weak) kernel of t∗.
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Proposition 7.5. There is a canonical morphism CE(g) CE(h
t
↪→ g)�� with

the property that

CE(h) CE(g)t∗�� CE(h
t
↪→ g)��

0

'( ()
τ

. (7.8)

Proof. On components, this morphism is the identity on g∗ and 0 on h∗[1].
One checks that this respects the differentials. The homotopy to the 0-morphism
sends

τ : σt∗(a) �→ t∗(a) . (7.9)

Using definition 5.11 one checks that then indeed

[d, τ ] : a �→ τ(dCE(g)a + σt∗a) = a (7.10)

and

[d, τ ] : σt∗a �→ dCE(g)a + τ(−σt∗(dCE(g)a)) = 0 . (7.11)

Here the last step makes crucial use of the condition (5.65) which demands that

τ(d
W(h

t
↪→g)

σt∗a− d
CE(h

t
↪→g)

σt∗a) = 0 (7.12)

and the formula (5.61) which induces precisely the right combinatorial factors. �

Notice that not only is CE(h
t
↪→ g) in the kernel of t∗, it is indeed the universal

object with this property, hence is the kernel of t∗ (of course up to equivalence).

Proposition 7.6. Let CE(h) CE(g)t∗���� CE(f)� �u∗
�� be a sequence of qDGCAs

with t∗ normal, as above, and with the property that u∗ restricts, on the underlying
vector spaces of generators, to the kernel of the linear map underlying t∗. Then
there is a unique morphism f : CE(f) → CE(h

t
↪→ g) such that

CE(h) CE(g)t∗�� CE(h
t
↪→ g)��

CE(f)

u∗

��

f

)*�
�

�
�

�

. (7.13)

Proof. The morphism f has to be in components the same as CE(g) ←
CE(f). By the assumption that this is in the kernel of t∗, the differentials are re-
spected. �
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Remark. There should be a generalization of the entire discussion where u∗ is not
restricted to be the kernel of t∗ on generators. However, for our application here,
this simple situation is all we need.

Proposition 7.7. For a String-like extension gμ from definition 5.28, the morphism

CE(bn−1u(1)) CE(gμ)t∗���� (7.14)

is normal in the sense of definition 7.1.

Proposition 7.8. In the case that the sequence

CE(h) CE(g)t∗���� CE(f)� �u∗
�� (7.15)

above is a String-like extension

CE(bn−1u(1)) CE(gμ)t∗���� CE(g)� �u∗
�� (7.16)

from proposition 5.29 or the corresponding Weil-algebra version

W(bn−1u(1))

=

W(gμ)

=

t∗���� W(g)

=

� �u∗
��

CE(inn(bn−1u(1))) CE(inn(gμ))t∗���� CE(inn(g))� �u∗
��

(7.17)

the morphisms f : CE(f) → CE(h
t
↪→ g) and f̂ : W(f) → W(h

t
↪→ g) have weak

inverses f−1 : CE(h
t
↪→ g) → CE(f) and f̂−1 : W(h

t
↪→ g) → W(f) , respectively.

Proof. We first construct a morphism f−1 and then show that it is weakly
inverse to f . The statement for f̂ then follows from the functoriality of forming
the Weil algebra, proposition 5.9. Start by choosing a splitting of the vector space
V underlying g∗ as

V = ker(t∗)⊕ V1 . (7.18)
This is the non-canonical choice we need to make. Then take the component map
of f−1 to be the identity on ker(t∗) and 0 on V1. Moreover, for a ∈ V1 set

f−1 : σt∗(a) �→ −(dCE(g)a)|∧•ker(t∗) , (7.19)

where the restriction is again with respect to the chosen splitting of V . We check
that this assignment, extended as an algebra homomorphism, does respect the
differentials.

For a ∈ ker(t∗) we have

a � dt ���

f−1

��

dCE(g)a�

f−1

��
a � dCE(f)�� dCE(g)a

(7.20)
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using the fact that t∗ is normal. For a ∈ V1 we have

a � dt ���

f−1

��

dCE(g)a + σt∗(a)
�

f−1

��
0 � dCE(f)�� (dCE(g)a)|∧•ker(t∗) − (dCE(g)a)|∧•ker(t∗)

. (7.21)

and

σt∗(a) � dt ��
�

f−1

��

−σt∗(dCE(g)a)�

f−1

��
−(dCE(g)a)|∧•ker(t∗)

� dCE(f)�� −dCE(f)((dCE(g)a)|ker(t∗))
. (7.22)

This last condition happens to be satisfied for the examples stated in the proposi-
tion. The details for that are discussed in 7.1.1 below. By the above, f−1 is indeed
a morphism of qDGCAs.

Next we check that f−1 is a weak inverse of f . Clearly

CE(f) CE(h
t
↪→ g)�� CE(f)�� (7.23)

is the identity on CE(f). What remains is to construct a homotopy

CE(h
t
↪→ g) CE(f)�� CE(h

t
↪→ g)��

Id

'(
τ

. (7.24)

One checks that this is accomplished by taking τ to act on σV1 as τ : σV1
�→ V1

and extended suitably. �

7.1.1. Examples.

Weak cokernel for the String-like extension. Let our sequence

CE(h) CE(g)t∗���� CE(f)� �u∗
�� (7.25)

be a String-like extension

CE(bn−1u(1)) CE(gμ)t∗���� CE(g)� �u∗
�� (7.26)

from proposition 5.29. Then the mapping cone Chevalley-Eilenberg algebra

CE(bn−1u(1) ↪→ gμ) (7.27)

is
∧•(g∗ ⊕ R[n]⊕ R[n + 1]) (7.28)
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with differential given by

dt|g∗ = dCE(g) (7.29)
dt|R[n] = −μ + σ (7.30)

dt|R[n+1] = 0 . (7.31)

(As always, σ is the canonical degree shifting isomorphism on generators extended
as a derivation.) The morphism

CE(g) CE(bn−1u(1) ↪→ gμ)
f−1

�
�� (7.32)

acts as

f−1|g∗ = Id (7.33)

f−1|R[n] = 0 (7.34)

f−1|R[n+1] = μ . (7.35)

To check the condition in equation (7.22) explicitly in this case, let b ∈ R[n] and
write b := t∗b for simplicity (since t∗ is the identity on R[n]). Then

σb
� dt ��

f−1

��

0

f−1

��
μ �dCE(g) �� 0

(7.36)

does commute.
Weak cokernel for the String-like extension in terms of the Weil algebra. We will
also need the analogous discussion not for the Chevalley-Eilenberg algebras, but
for the corresponding Weil algebras. To that end consider now the sequence

W(bn−1u(1)) W(gμ)t∗���� W(g)� �u∗
�� . (7.37)

This is handled most conveniently by inserting the isomorphism

W(gμ) � CE(csP (g)) (7.38)

from proposition 5.30 as well as the identification

W(g) = CE(inn(g)) (7.39)

such that we get

CE(inn(bn−1u(1))) CE(csP (g))t∗���� CE(inn(g))� �u∗
�� . (7.40)

Then we find that the mapping cone algebra CE(bn−1u(1) ↪→ csP (g)) is

∧•(g∗ ⊕ g∗[1]⊕ (R[n]⊕ R[n + 1])⊕ (R[n + 1]⊕ R[n + 2])) . (7.41)

Write b and c for the canonical basis elements of R[n]⊕R[n+1], then the differential
is characterized by
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dt|g∗⊕g∗ = dW(g) (7.42)
dt : b �→ c− cs + σb (7.43)
dt : c �→ P + σc (7.44)
dt : σb �→ −σc (7.45)
dt : σc �→ 0 . (7.46)

Notice above the relative sign between σb and σc. This implies that the canonical
injection

CE(bn−1u(1) ↪→ csP (g)) W(bnu(1))i�� (7.47)

also carries a sign: if we denote the degree n+1 and n+2 generators of W(bnu(1))
by h and dh, then

i : h �→ σb (7.48)
i : dh �→ −σc . (7.49)

This sign has no profound structural role, but we need to carefully keep track of
it, for instance in order for our examples in 7.3.1 to come out right. The morphism

CE(bn−1u(1) ↪→ csP (g)) W(g)
f−1

�
�� (7.50)

acts as

f−1|g∗⊕g∗[1] = Id (7.51)

f−1 : σb �→ cs (7.52)
f−1 : σc �→ −P . (7.53)

Again, notice the signs, as they follow from the general prescription in proposition
7.8. We again check explicitly equation (7.22):

σb
� dt ��

�

f−1

��

−σc�

f−1

��
cs � dW(g) �� P

. (7.54)

7.2. Lifts of g-descent objects through String-like extensions

We need the above general theory for the special case where we have the mapping
cone CE(bn−1u(1) ↪→ gμ) as the weak kernel of the left morphism in a String-like
extension

CE(bn−1u(1)) CE(gμ)���� CE(g)� ��� (7.55)

coming from an (n + 1) cocycle μ on an ordinary Lie algebra g. In this case
CE(bn−1u(1) ↪→ gμ) looks like

CE(bn−1u(1) ↪→ gμ) = (∧•(g∗ ⊕ R[n]⊕ R[n + 1]), dt) . (7.56)
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By chasing this through the above definitions, we find

Proposition 7.9. The morphism

f−1 : CE(bn−1u(1) ↪→ gμ) → CE(g) (7.57)

acts as the identity on g∗

f−1|g∗ = Id , (7.58)
vanishes on R[n]

f−1|R[n] : b �→ 0, (7.59)
and satisfies

f−1|R[n+1] : σt∗b �→ μ . (7.60)

Therefore we find the (n + 1)-cocycle

Ω•
vert(Y ) CE(bnu(1))

Âvert�� (7.61)

obstructing the lift of a g-cocycle

Ω•
vert(Y ) CE(g)

Avert�� , (7.62)

according to 2.3 given by

CE(bn−1u(1) ↪→ gμ)



���
���

���
�

f−1

��

CE(bnu(1))� �
j��

Âvert
��
��
��
��
�

		��
��
��
��
�CE(bn−1u(1)) CE(gμ)i∗����

��

CE(g)� ���

Avert

��
Ω•

vert(Y )

, (7.63)

to be the (n + 1)-form
μ(Avert) ∈ Ωn+1

vert (Y ) . (7.64)

Proposition 7.10. Let Avert ∈ Ω1
vert(Y, g) be the cocycle of a G-bundle P → X

for g semisimple and let μ = 〈·, [·, ·]〉 be the canonical 3-cocycle. Then gμ is the
standard String Lie 3-algebra and the obstruction to lifting P to a String 2-bundle,
i.e. lifting to a gμ-cocycle, is the Chern-Simons 3-bundle with cocycle given by the
vertical 3-form

〈Avert ∧ [Avert ∧Avert]〉 ∈ Ω3
vert(Y ) . (7.65)

In the following we will express these obstruction in a more familiar way in
terms of their characteristic classes. In order to do that, we first need to generalize
the discussion to differential g-cocycle. But that is now straightforward.

7.2.1. Examples. The continuation of the discussion of 5.3.1 to coset spaces gives
a classical illustration of the lifting construction considered here.
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Cohomology of coset spaces. The above relation between the cohomology of groups
and that of their Chevalley-Eilenberg qDGCAs generalizes to coset spaces. This
also illustrates the constructions which are discussed later in 7. Consider the case
of an ordinary extension of (compact connected) Lie groups:

1 → H → G→ G/H → 1 (7.66)

or even the same sequence in which G/H is only a homogeneous space and not
itself a group. For a closed connected subgroup t : H ↪→ G, there is the induced
map Bt : BH → BG and a commutative diagram

W(g) dt∗ �� W(h)

∧•PG
dt∗ ����

��

∧•PH

��

��
. (7.67)

By analyzing the fibration sequence

G/H → EG/H � BH → BG, (7.68)

Halperin and Thomas [42] show there is a morphism

∧•(PG ⊕QH) → Ω•(G/K) (7.69)

inducing an isomorphism in cohomology. It is not hard to see that their morphism
factors through

∧•(g∗ ⊕ h∗[1]). (7.70)

In general, the homogeneous space G/H itself is not a group, but in case of an
extension H → G → K, we also have BK and the sequences K → BH → BG
and BH → BG → BK. Up to homotopy equivalence, the fiber of the bundle
BH → BG is K and that of BG→ BK is BH. In particular, consider an extension
of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gμ)i���� CE(g)� ��� . (7.71)

Regard g now as the quotient gμ/b
n−1u(1) and recognize that corresponding to

BH we have bnu(1). Thus we have a quasi-isomorphism

CE(bn−1u(1) ↪→ gμ) � CE(g) (7.72)

and hence a morphism

CE(bnu(1)) → CE(g). (7.73)
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Given a g-bundle cocycle

CE(g)

Avert�����
��

��
��

Ω•
vert(Y )

(7.74)

and given an extension of g by a String-like Lie ∞-algebra

CE(bn−1u(1)) CE(gμ)i���� CE(g)� ��� (7.75)

we ask if it is possible to lift the cocycle through this extension, i.e. to find a dotted
arrow in

CE(bn−1u(1)) CE(gμ)����

��

CE(g)� ���

Avert		��
��
��
��

Ω•
vert(Y )

. (7.76)

In general this is not possible. Indeed, consider the map A′
vert given by CE(bnu(1))

→ CE(g) composed with Avert. The nontriviality of the bnu(1)-cocycle A′
vert is the

obstruction to constructing the desired lift.

7.3. Lifts of g-connections through String-like extensions

In order to find the obstructing characteristic classes, we would like to extend
the above lift 7.76 of g-descent objects to a lift of g-connection descent objects
extending them, according to 6.2. Hence we would like first to extend Avert to
(A,FA)

CE(bn−1u(1)) ��
��

CE(gμ) ��
��

CE(g)
��

Ω•
vert(Y )

��
Avert����

����

��

W(bn−1u(1)) ��
��

W(gμ) ��
��

W(g)
��

Ω•(Y )
��

(A,FA)����

����

��

inv(bn−1u(1)) �� inv(gμ) �� inv(g)

Ω•(X)
��

{Ki}����

����

(7.77)



392 Hisham Sati, Urs Schreiber and Jim Stasheff

and then lift the resulting g-connection descent object (A,FA) to a gμ-connection
object (Â, FÂ)

CE(bn−1u(1)) ��
��

CE(gμ) ��
��

CE(g)
��

Ω•
vert(Y )

��
Avert����

����

��

*+
Âvert�

�

�
�

W(bn−1u(1)) ��
��

W(gμ) ��
��

W(g)
��

Ω•(Y )
��

(A,FA)����

����

��

*+
(Âvert,FÂvert

)� �

� �

inv(bn−1u(1)) �� inv(gμ) �� inv(g)

Ω•(X)
��

{Ki}����

����

*+
{K̂i}�

�

� �

. (7.78)

The situation is essentially an obstruction problem as before, only that instead of
single morphisms, we are now lifting an entire sequence of morphisms. As before,
we measure the obstruction to the existence of the lift by precomposing everything
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with the a map from a weak cokernel:
C
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The result is a bnu(1)-connection object. We will call (the class of) this the
generalized Chern-Simons (n + 1)-bundle obstructing the lift.
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Figure 12. The generalized Chern-Simons bnu(1)-bundle that
obstructs the lift of a given g-bundle to a gμ-bundle, or rather
the descent object representing it.
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In order to construct the lift it is convenient, for similar reasons as in the proof
of proposition 5.32, to work with CE(csP (g)) instead of the isomorphic W(gμ),
using the isomorphism from proposition 5.30. Furthermore, using the identity

W(g) = CE(inn(g)) (7.79)

mentioned in 5.1, we can hence consider instead of

W(bn−1) W(gμ)���� W(g)� ��� (7.80)

the sequence

CE(inn(bn−1)) CE(csP (g))���� CE(inn(g))� ��� . (7.81)

Fortunately, this still satisfies the assumptions of proposition 7.6. So in complete
analogy, we find the extension of proposition 7.9 from g-bundle cocycles to differ-
ential g-cocycles:

Proposition 7.11. The morphism

f−1 : CE(inn(bn−1u(1)) ↪→ CE(csP (g)) → CE(inn(g)) (7.82)

constructed as in proposition 7.9 acts as the identity on g∗ ⊕ g∗[1]

f−1|g∗⊕g∗[1] = Id (7.83)

and satisfies
f−1|R[n+2] : c �→ P . (7.84)

This means that, as an extension of proposition 7.10, we find the differential
bnu(1) (n + 1)-cocycle

Ω•(Y ) W(bnu(1))Â�� (7.85)

obstructing the lift of a differential g-cocycle

Ω•(Y ) W(g)
(A,FA)�� , (7.86)

according to the above discussion

CE(inn(bn−1u(1)) ↪→ inn(gμ))

!"���
���

���
���

�
f−1

��

W(bnu(1))� �
j��

(Â,FÂ)
��
��
��
��
��

����
��
��
��
��

W(bn−1u(1)) W(gμ)i∗����

-.

W(g)� ���

(A,FA)

��
Ω•(Y )

,

(7.87)
to be the connection (n + 1)-form

Â = CS(A) ∈ Ωn+1(Y ) (7.88)
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with the corresponding curvature (n + 2)-form

FÂ = P (FA) ∈ Ωn+2(Y ) . (7.89)

Then we finally find, in particular,

Proposition 7.12. For μ a cocycle on the ordinary Lie algebra g in transgres-
sion with the invariant polynomial P , the obstruction to lifting a g-bundle cocycle
through the String-like extension determined by μ is the characteristic class given
by P .

Remark. Notice that, so far, all our statements about characteristic classes are
in de Rham cohomology. Possibly our construction actually holds for integral
cohomology classes, but if so, we have not extracted that yet. A more detailed
consideration of this will be the subject of [68].

7.3.1. Examples.

Chern-Simons 3-bundles obstructing lifts ofG-bundles to String(G)-bundles. Con-
sider, on a base space X for some semisimple Lie group G, with Lie algebra g a
principal G-bundle π : P → X . Identify our surjective submersion with the total
space of this bundle

Y := P . (7.90)

Let P be equipped with a connection, (P,∇), realized in terms of an Ehresmann
connection 1-form

A ∈ Ω1(Y, g) (7.91)

with curvature

FA ∈ Ω2(Y, g) (7.92)

i.e. a dg-algebra morphism

Ω•(Y ) W(g)
(A,FA)�� (7.93)

satisfying the two Ehresmann conditions. By the discussion in 6.2.1 this yields a
g-connection descent object (Y, (A,FA)) in our sense.

We would like to compute the obstruction to lifting this G-bundle to a String
2-bundle, i.e. to lift the g-connection descent object to a gμ-connection descent
object, for

0 → bu(1) → gμ → g → 0 (7.94)

the ordinary String extension from definition 5.34. By the above discussion in 7.3,
the obstruction is the (class of the) b2u(1)-connection descent object
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(Y, (H(3), G(4))) whose connection and curvature are given by the composite

W(b2u(1))

(H(3),G(4))

./

(W(bu(1)) → CE(csP (g)))
&'

��������������

W(g)
!"

��������

������

Ω•(Y )
��
(A,FA)���

���

, (7.95)

where, as discussed above, we are making use of the isomorphism W(gμ) �
CE(csP (g)) from proposition 5.30. The crucial aspect of this composite is the
isomorphism

W(g) (W(bu(1)) → CEP (g))
f−1

�
�� (7.96)

from proposition 7.8. This is where the obstruction data is picked up. The im-
portant formula governing this is equation (7.19), which describes how the shifted
elements coming from W(bu(1)) in the mapping cone (W(bu(1)) → CEP (g)) are
mapped to W(g).

Recall that W(b2u(1)) = F(R[3]) is generated from elements (h, dh) of degree
3 and 4, respectively, that W(bu(1)) = F(R[2]) is generated from elements (c, dc)
of degree 2 and 3, respectively, and that CE(csP (g)) is generated from g∗ ⊕ g∗[1]
together with elements b and c of degree 2 and 3, respectively, with

dCE(csP (g))b = c− cs (7.97)

and

dCE(csP (g))c = P , (7.98)

where cs ∈ ∧3(g∗ ⊕ g∗[1]) is the transgression element interpolating between the
cocycle μ = 〈·, [·, ·]〉 ∈ ∧3(g∗) and the invariant polynomial P = 〈·, ·〉 ∈ ∧2(g∗[1]).
Hence the map f−1 acts as

f−1 : σb �→ −(dCE(csP (g))b)|∧•(g∗⊕g∗[1]) = +cs (7.99)

and

f−1 : σc �→ −(dCE(csP (g))c)|∧•(g∗⊕g∗[1]) = −P . (7.100)
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Therefore the above composite (H(3), G(4)) maps the generators (h, dh) of
W(b2u(1)) as

h�

(H(3),G(4))

./

σb
&'

�����������������

cs &'
����������

������

CSP (FA)
��
(A,FA)���

�����

(7.101)

and

dh�

(H(3),G(4))

./

-σc
&'

����������������

P
&'

����������

�������

P (FA)
��
(A,FA)���

 ����

. (7.102)

Notice the signs here, as discussed around equation (7.47). We then have that the
connection 3-form of the Chern-Simons 3-bundle given by our obstructing b2u(1)-
connection descent object is the Chern-Simons form

H(3) = −CS(A,FA) = −〈A ∧ dA〉 − 1
3
〈A ∧ [A ∧A]〉 ∈ Ω3(Y ) (7.103)

of the original Ehresmann connection 1-form A, and its 4-form curvature is there-
fore the corresponding 4-form

G(4) = −P (FA) = 〈FA ∧ FA〉 ∈ Ω4(Y ) . (7.104)

This descends down to X , where it constitutes the characteristic form which clas-
sifies the obstruction. Indeed, noticing that inv(b2u(1)) = ∧•(R[4]), we see that
(this works the same for all line n-bundles, i.e., for all bn−1u(1)-connection descent
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objects) the characteristic forms of the obstructing Chern-Simons 3-bundle

inv(b2u(1))

{G(4)}

./

inv(bu(1) → gμ)
!"

������������

inv(g)
��

�!!!!!

!!!!!

Ω•(X)
��

{Ki}���

���

(7.105)

consist only and precisely of this curvature 4-form: the second Chern-form of the
original G-bundle P .

8. L∞-algebra parallel transport

One of the main points about a connection is that it allows to do parallel transport.
Connections on ordinary bundles give rise to a notion of parallel transport along
curves, known as holonomy if these curves are closed.

Higher connections on n-bundles should yield a way to obtain a notion of
parallel transport over n-dimensional spaces. In physics, this assignment plays the
role of the gauge coupling term in the non-kinetic part of the action functional:
the action functional of the charged particle is essentially its parallel transport
with respect to an ordinary (1-)connection, while the action functional of the
string contains the parallel transport of a 2-connection (the Kalb-Ramond field).
Similarly the action functional of the membrane contains the parallel transport of
a 3-connection (the supergravity “C-field”).

There should therefore be a way to assign to any one of our g-connection
descent objects for g any Lie n-algebra

• a prescription for parallel transport over n-dimensional spaces;
• a configuration space for the n-particle coupled to that transport;
• a way to transgress the transport to an action functional on that configuration

space;
• a way to obtain the corresponding quantum theory.

Each point deserves a separate discussion, but in the remainder we shall
quickly give an impression for how each of these points is addressed in our context.

8.1. L∞-parallel transport

In this section we indicate briefly how our notion of g-connections give rise to a
notion of parallel transport over n-dimensional spaces. The abelian case (meaning
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here that g is an L∞ algebra such that CE(g) has trivial differential) is com-
paratively easy to discuss. It is in fact the only case considered in most of the
literature. Nonabelian parallel n-transport in the integrated picture for n up to
2 is discussed in [9, 72, 73, 74]. There is a close relation between all differential
concepts we develop here and the corresponding integrated concepts, but here we
will not attempt to give a comprehensive discussion of the translation.

Given an (n − 1)-brane (“n-particle”) whose n-dimensional worldvolume is
modeled on the smooth parameter space Σ (for instance Σ = T 2 for the closed
string) and which propagates on a target space X in that its configurations are
given by maps

φ : Σ → X (8.1)

hence by dg-algebra morphisms

Ω•(Σ) Ω•(X)
φ∗

�� (8.2)

we can couple it to a g-descent connection object (Y, (A,FA)) over X pulled back
to Σ if Y is such that for every map

φ : Σ → X (8.3)

the pulled back surjective submersion has a global section

φ∗Y

π

��
Σ

Id ��

φ̂
/0��������
Σ

. (8.4)

Definition 8.1 (Parallel transport). Given a g-descent object (Y, (A,FA)) on a
target space X and a parameter space Σ such that for all maps φ : Σ → X the
pullback φ∗Y has a global section, we obtain a map

tra(A) : HomDGCA(Ω•(X),Ω•(Σ)) → HomDGCA(W(g),Ω•(Σ)) (8.5)

by precomposition with

Ω•(Y ) W(g)
(A,FA)�� . (8.6)

This is essentially the parallel transport of the g-connection object
(Y, (A,FA)). A full discussion is beyond the scope of this article, but for the special
case that our L∞-algebra is (n − 1)-fold shifted u(1), g = bn−1u(1), the elements
in

HomDGCA(W(g),Ω•(Σ)) = Ω•(Σ, bn−1u(1)) � Ωn(Σ) (8.7)
are in bijection with n-forms on Σ. Therefore they can be integrated over Σ. Then
the functional ∫

Σ

traA : HomDGCA(Ω•(Y ),Ω•(Σ)) → R (8.8)

is the full parallel transport of A.
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Proposition 8.2. The map tra(A) is indeed well defined, in that it depends at most
on the homotopy class of the choice of global section φ̂ of φ.

Proof. Let φ̂1 and φ̂2 be two global sections of φ∗Y . Let φ̂ : Σ × I → φ∗Y
be a homotopy between them, i.e. such that φ̂|0 = φ̂1 and φ̂|1 = φ̂2. Then the
difference in the parallel transport using φ̂1 and φ̂2 is the integral of the pullback
of the curvature form of the g-descent object over Σ × I. But that vanishes, due
to the commutativity of

Ω•(φ∗Y )

φ̂∗�
��
��
��

01��
��
��
�

W(g)
(A,FA)��

Ω•(Σ× I) Ω•(Σ)� ���
��

��

φ∗
�� inv(bn−1u(1)) = bnu(1)

0

12

��

��

K��

(8.9)

The composite of the morphisms on the top boundary of this diagram send the
single degree (n + 1)-generator of inv(bn−1u(1)) = CE(bnu(1)) to the curvature
form of the g-connection descent object pulled back to Σ. It is equal to the com-
posite of the horizontal morphisms along the bottom boundary by the definition
of g-descent objects. These vanish, as there is no nontrivial (n + 1)-form on the
n-dimensional Σ. �

8.1.1. Examples.

Chern-Simons and higher Chern-Simons action functionals.

Proposition 8.3. For G simply connected, the parallel transport coming from the
Chern-Simons 3-bundle discussed in 7.3.1 for g = Lie(G) reproduces the familiar
Chern-Simons action functional [31]∫

Σ

(
〈A ∧ dA〉+

1
3
〈A ∧ [A ∧A]〉

)
(8.10)

over 3-dimensional Σ.

Proof. Recall from section 7.3.1 that we can build the connection descent ob-
ject for the Chern-Simons connection on the surjective submersion Y coming from
the total space P of the underlying G-bundle P → X . Then φ∗Y = φ∗P is simply
the pullback of that G-bundle to Σ. For G simply connected, BG is 3-connected
and hence any G-bundle on Σ is trivializable. Therefore the required lift φ̂ exists
and we can construct the above diagram. By equation (7.103) one sees that the
integral which gives the parallel transport is indeed precisely the Chern-Simons
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action functional. �

Higher Chern-Simons n-bundles, coming from obstructions to fivebrane lifts
or still higher lifts, similarly induce higher dimensional generalizations of the
Chern-Simons action functional.

BF-theoretic functionals. From proposition 5.27 it follows that we can similarly
obtain the action functional of BF theory, discussed in 5.6, as the parallel transport
of the 4-connection descent object which arises as the obstruction to lifting a 2-
connection descent object for a strict Lie 2-algebra (h t→ g) through the String-like
extension

b2u(1) → (h t→ g)d
CE(h t→g)

μ → (h t→ g) (8.11)

for μ the 3-cocycle on μ which transgresses to the invariant polynomial P on g
which appears in the BF-action functional.

8.2. Transgression of L∞-transport

An important operation on parallel transport is its transgression to mapping
spaces. This is familiar from simple examples, where for instance n-forms on some
space transgress to (n−1)-forms on the corresponding loop space. We should think
of the n-form here as a bn−1u(1)-connection which transgresses to an bn−2u(1) con-
nection on loop space.

This modification of the structure L∞-algebra under transgression is crucial.
In [73] it is shown that for parallel transport n-functors (n = 2 there), the operation
of transgression is a very natural one, corresponding to acting on the transport
functor with an inner hom operation. As shown there, this operation automatically
induces the familiar pull-back followed by a fiber integration on the corresponding
differential form data, and also automatically takes care of the modification of the
structure Lie n-group.

The analogous construction in the differential world of L∞ algebras we state
now, without here going into details about its close relation to [73].
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Definition 8.4 (Transgression of g-connections). For any g-connection descent ob-
ject

F CE(g)
Avert��

P

i∗

����

W (g)

����

(A,FA)��

Pbasic

��

π∗

��

inv(g)
��

��

{Ki}
��

(8.12)

and any smooth space par, we can form the image of the above diagram under the
functor

maps(−,Ω•(par)) : DGCAs → DGCAs (8.13)
from definition 4.4 to obtain the generalized g-connection descent object (according
to definition 6.11)

maps(F,Ω•(par) maps(CE(g),Ω•(par)
tgpar(Avert)��

maps(P,Ω•(par)

tgpari
∗

����

maps(W (g),Ω•(par)

����

tgpar(A,FA)
��

maps(Pbasic,Ω•(par)
��

tgpar(π
∗)

��

maps(inv(g),Ω•(par)
��

��

tgpar({Ki})��

. (8.14)

This new maps(CE(g),Ω•(par))-connection descent object we call the transgression
of the original one to par.

The operation of transgression is closely related to that of integration.
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8.2.1. Examples.
Transgression of bn−1u(1)-connections. Let g be an L∞-algebra of the form shifted
u(1), g = bn−1u(1). By proposition 5.25 the Weil algebra W(bn−1u(1)) is the free
DGCA on a single degree n-generator b with differential c := db. Recall from 5.5.1
that a DGCA morphism W(bn−1u(1)) → Ω•(Y ) is just an n-form on Y . For every
point y ∈ par and for every multivector v ∈ ∧nTypar we get a 0-form on the
smooth space

maps(W(bn−1u(1)),Ω•(par)) (8.15)

of all n-forms on par, which we denote

A(v) ∈ Ω(maps(W(bn−1u(1)),Ω•(par))) . (8.16)

This is the 0-form on this space of maps obtained from the element b ∈ W(bn−1u(1))
and the current δy (the ordinary delta-distribution on 0-forms) according to propo-
sition 4.6. Its value on any n-form ω is the value of that form evaluated on v.

Since this, and its generalizations which we discuss in 8.3.1, is crucial for
making contact with standard constructions in physics, it may be worthwhile to
repeat that statement more explicitly in terms of components: Assume that par =
Rk and for any point y let v be the unit in ∧T nRn � R. Then A(v) is the 0-form
on the space of forms which sends any form ω = ωμ1μ2...μndx

μ1 ∧ · · · ∧ dxμn to its
component

A(v) : ω �→ ω(y)12···n . (8.17)

This implies that when a bn−1u(1)-connection is transgressed to the space of maps
from an n-dimensional parameter space par, it becomes a map that pulls back
functions on the space of n-forms on par to the space of functions on maps from
parameter space into target space. But such pullbacks correspond to functions
(0-forms) on the space of maps par → tar with values in the space of n-forms on
tra.

8.3. Configuration spaces of L∞-transport

With the notion of g-connections and their parallel transport and transgression
in hand, we can say what it means to couple an n-particle/(n − 1)-brane to a
g-connection.

Definition 8.5 (The charged n-particle/(n−1)-brane). We say a charged n-particle/
(n− 1)-brane is a tuple (par, (A,FA)) consisting of
• parameter space par: a smooth space
• a background field (A,FA): a g-connection descent object involving

– target space tar: the smooth space
– space!target that the g-connection (A,FA) lives over;
– space of phases phas: the smooth space such that Ω•(phas) � CE(g)

From such a tuple we form
• configuration space
• configuration space conf = homS∞(par, tar);
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• the action functional exp(S) := tgpar: the transgression of the background
field to configuration space.

The configuration space thus defined automatically comes equipped with a
notion of vertical derivations as described in 4.3.

maps(F,Ω•(par)) maps(F,Ω•(par))

[d,ρ′]

12

0

&'

maps(P,Ω•(par))

����

maps(P,Ω•(par))

����

[d,ρ]

12

0

&'

ρ′



ρ



. (8.18)

These form

• the gauge symmetries ggauge: an L∞-algebra.

These act on the horizontal elements of configuration space, which form

• the anti-fields and anti-ghosts

in the language of BRST-BV-quantization [78].
We will not go into further details of this here, except for spelling out, as the

archetypical example, some details of the computation of the configuration space
of ordinary gauge theory.

8.3.1. Examples.

Configuration space of ordinary gauge theory. We compute here the configuration
space of ordinary gauge theory on a manifold par with respect to an ordinary
Lie algebra g. A configuration of such a theory is a g-valued differential form on
par, hence, according to 5.5, an element in HomDGCAs(W(g),Ω•(par)). So we are
interested in understanding the smooth space

maps(W(g),Ω•(par)) =: Ω•(par, g) (8.19)

according to definition 4.4, and the differential graded-commutative algebra

maps(W(g),Ω•(par)) =: Ω•(Ω•(par, g)) (8.20)

of differential forms on it.
To make contact with the physics literature, we describe everything in com-

ponents. So let par = Rn and let {xμ} be the canonical set of coordinate functions
on par. Choose a basis {ta} of g and let {ta} be the corresponding dual basis of
g∗. Denote by

δyι ∂
∂xμ

(8.21)
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the delta-current on Ω•(par), according to definition 4.5, which sends a 1-form ω
to

ωμ(y) := ω(
∂

∂xμ
)(y) . (8.22)

Summary of the structure of forms on configuration space of ordinary gauge the-
ory. Recall that the Weil algebra W(g) is generated from the {ta} in degree 1 and
the σta in degree 2, with the differential defined by

dta = −1
2
Ca

bct
b ∧ tc + σta (8.23)

d(σta) = −Ca
bct

b ∧ (σtc) . (8.24)

We will find that maps(W(g),Ω•(par)) does look pretty much entirely like
this, only that all generators are now forms on par. See table 3.

fields
{
Aa

μ(y), (FA)μν(y) ∈ Ω0(Ω(par, g)) |
y ∈ par, μ, ν ∈ {1, · · · , dim(par), a ∈ {1, . . . ,dim(g)}}

}
ghosts

{
ca(y) ∈ Ω1(Ω(par, g)) |
y ∈ par, a ∈ {1, . . . ,dim(g)}}

}
antifields

{
ι(δAa

μ(y)) ∈ Hom(Ω1(Ω(par, g)),R) |
y ∈ par, μ ∈ {1, · · · , dim(par), a ∈ {1, . . . ,dim(g)}}

}
anti-ghosts

{
ι(βa(y)) ∈ Hom(Ω2(Ω(par, g)),R) |
y ∈ par, dim(par), a ∈ {1, . . . ,dim(g)}}

}
Table 3. The BRST-BV field content of gauge theory ob-
tained from our almost internal hom of dg-algebras, definition
4.4. The dgc-algebra maps(W(g),Ω•(par)) is the algebra of differ-
ential forms on a smooth space of maps from par to the smooth
space underlying W(g). In the above table β is a certain 2-form
that one finds in this algebra of forms on the space of g-valued
forms.

Remark. Before looking at the details of the computation, recall from 4.1 that an
n-form ω in maps(W(g),Ω•(par)) is an assignment

U

φ

��

HomDGCAs(W(g),Ω•(par× U))
ωU �� Ω•(U)

V HomDGCAs(W(g),Ω•(par× V ))
ωV ��

φ∗

��

Ω•(V )

φ∗

��
(8.25)



L∞-Algebra Connections and Applications 407

of forms on U to g-valued forms on par × U for all plot domains U (subsets of
R∪R2 ∪ · · · for us), natural in U . We concentrate on those n-forms ω which arise
in the way of proposition 4.6.
0-Forms. The 0-forms on the space of g-value forms are constructed as in propo-
sition 4.6 from an element ta ∈ g∗ and a current δyι ∂

∂xμ
using

taδyι ∂
∂xμ

(8.26)

and from an element σta ∈ g∗[1] and a current

δyι ∂
∂xμ

ι ∂
∂xν

. (8.27)

This way we obtain the families of functions (0-forms) on the space of g-valued
forms:

Aa
μ(y) : (Ω•(par× U) ← W(g) : A) �→ (u �→ ι ∂

∂xμ
A(ta)(y, u)) (8.28)

and

F a
μν(y) : (Ω•(par× U) ← W(g) : FA) �→ (u �→ ι ∂

∂xμ
ι ∂

∂xν
FA(σta)(y, u)) (8.29)

which pick out the corresponding components of the g-valued 1-form and of its
curvature 2-form, respectively. These are the fields of ordinary gauge theory.
1-Forms. A 1-form on the space of g-valued forms is obtained from either starting
with a degree 1 element and contracting with a degree 0 delta-current

taδy (8.30)

or starting with a degree 2 element and contracting with a degree 1 delta current:

(σta)δy
∂

∂xμ
. (8.31)

To get started, consider first the case where U = I is the interval. Then a DGCA
morphism

(A,FA) : W(g) → Ω•(par)⊗ Ω•(I) (8.32)
can be split into its components proportional to dt ∈ Ω•(I) and those not contain-
ing dt. We can hence write the general g-valued 1-form on par× I as

(A,FA) : ta �→ Aa(y, t) + ga(y, t) ∧ dt (8.33)

and the corresponding curvature 2-form as

(A,FA) : σta �→ (dpar + dt)(Aa(y, t) + ga(y, t) ∧ dt)

+
1
2
Ca

bc(Aa(y, t) + ga(y, t) ∧ dt) ∧ (Ab(y, t) + gb(y, t) ∧ dt)

= F a
A(y, t) + (∂tA

a(y, t) + dparg
a(y, t) + [g,A]a) ∧ dt . (8.34)

By contracting this again with the current δy
∂

∂xμ we obtain the 1-forms

t �→ ga(y, t)dt (8.35)

and
t �→ (∂tA

a
μ(y, t) + ∂μg

a(y, t) + [g,Aμ]a)dt (8.36)
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on the interval. We will identify the first one with the component of the 1-forms
on the space of g-valued forms on par called the ghosts and the second one with
the 1-forms which are killed by the objects called the anti-fields.

To see more of this structure, consider now U = I2, the unit square. Then a
DGCA morphism

(A,FA) : W(g) → Ω•(par)⊗ Ω•(I2) (8.37)

can be split into its components proportional to dt1, dt2 ∈ Ω•(I2). We hence can
write the general g-valued 1-form on Y × I as

(A,FA) : ta �→ Aa(y, t) + ga
i (y, t) ∧ dti , (8.38)

and the corresponding curvature 2-form as

(A,FA) : σta �→ (dY + dI2)(Aa(y, t) + ga
i (y, t) ∧ dti)

+
1
2
Ca

bc(Aa(y, t) + ga
i (y, t) ∧ dti) ∧ (Ab(y, t) + gb

i (y, t) ∧ dti)

= F a
A(y, t) + (∂tiAa(y, t) + dY ga

i (y, t) + [gi, A]a) ∧ dti

+(∂ig
a
j + [gi, gj ]a)dti ∧ dtj . (8.39)

By contracting this again with the current δy
∂

∂xμ we obtain the 1-forms

t �→ ga
i (y, t)dti (8.40)

and

t �→ (∂tA
a
μ(y, t) + ∂μg

a
i (y, t) + [gi, Aμ]a)dti (8.41)

on the unit square. These are again the local values of our

ca(y) ∈ Ω1(Ω•(par, g)) (8.42)

and

δAa
μ(Y ) ∈ Ω1(Ω•(par, g)) . (8.43)

The second 1-form vanishes in directions in which the variation of the g-valued
1-form A is a pure gauge transformation induced by the function ga which is
measured by the first 1-form. Notice that it is the sum of the exterior derivative
of the 0-form Aa

μ(y) with another term.

δAa
μ(y) = d(Aa

μ(y)) + δgA
a
μ(y) . (8.44)

The first term on the right measures the change of the connection, the second
subtracts the contribution to this change due to gauge transformations. So the
1-form δAa

μ(y) on the space of g-valued forms vanishes along all directions along
which the form A is modified purely by a gauge transformation. The δAa

μ(y) are
the 1-forms the pairings dual to which will be the antifields.
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2-Forms. We have already seen the 2-form appear on the standard square. We call
this 2-form

βa ∈ Ω2(Ω•(par, g)) , (8.45)

corresponding on the unit square to the assignment

βa : (Ω•(par× I2) ← W(g) : A) �→ (∂ig
a
j + [gi, gj]a)dti ∧ dtj . (8.46)

There is also a 2-form coming from (σta)δy. Then one immediately sees that our
forms on the space of g-valued forms satisfy the relations

dca(y) = −1
2
Ca

bcc
b(y) ∧ cc(y) + βa(y) (8.47)

dβa(y) = −Ca
bcc

b(y) ∧ βc(y) . (8.48)

The 2-form β on the space of g-valued forms is what is being contracted by the
horizontal pairings called the antighosts. We see, in total, that Ω•(Ω•(par, g)) is
the Weil algebra of a DGCA, which is obtained from the above formulas by setting
β = 0 and δA = 0. This DGCA is the algebra of the gauge groupoid, that where
the only morphisms present are gauge transformations.

The computation we have just performed are over U = I2. However, it should
be clear how this extends to the general case.

Chern-Simons theory. One can distinguish two ways to set up Chern-Simons the-
ory. In one approach one regards principal G-bundles on abstract 3-manifolds, in
the other approach one fixes a given principal G-bundle P → X on some base
space X , and pulls it back to 3-manifolds equipped with a map into X . Physically,
the former case is thought of as Chern-Simons theory proper, while the latter case
arises as the gauge coupling part of the membrane propagating on X . One tends
to want to regard the first case as a special case of the second, obtained by letting
X = BG be the classifying space for G-bundles and P the universal G-bundle on
that.

In our context this is realized by proposition 6.14, which gives the canonical
Chern-Simons 3-bundle on BG in terms of a b2u(1)-connection descent object on
W(g). Picking some 3-dimensional parameter space manifold par, we can transgress
this b2u(1)-connection to the configuration space maps(W(g),Ω•(par)), which we
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learned is the configuration space of ordinary gauge theory.

CE(g) CE(bn−1u(1))
μ��

W(g)

i∗

����

W (bn−1u(1))

����

(cs,P )��

inv(g)
��

��

inv(bnu(1))
��

��

P
��

�→

maps(CE(g),Ω•(par) maps(CE(bn−1u(1)),Ω•(par))
tgparμ��

maps(W(g),Ω•(par))

i∗

����

maps(W (bn−1u(1)),Ω•(par))

����

tgpar(cs,P )
��

maps(inv(g),Ω•(par))
��

��

maps(CE(bn−1u(1)),Ω•(par))
��

��

tgparP��

.

Proposition 8.3 says that the transgressed connection is the Chern-Simons action
functional.

Further details of this should be discussed elsewhere.
Transgression of p-brane structures to loop space. It is well known that obstruc-
tions to String structures on a space X – for us: Chern-Simons 3-bundles as in 7
– can be conceived

• either in terms of a 3-bundle on X classified by a four class on X obstructing
the lift of a 1-bundle on X to a 2-bundle;

• or in terms of a 2-bundle on LX classified by a 3-class on LX obstructing
the lift of a 1-bundle on LX to another 1-bundle, principal for a Kac-Moody
central extension of the loop group.

In the second case, one is dealing with the transgression of the first case to
loop space.



L∞-Algebra Connections and Applications 411

The relation between the two points of views is carefully described in [56].
Essentially, the result is that rationally both obstructions are equivalent.

Remark. Unfortunately, there is no universal agreement on the convention of the
direction of the operation called transgression. Both possible conventions are used
in the literature relevant for our purpose here. For instance [18] say transgression
for what [2] calls the inverse of transgression (which, in turn, should be called
suspension).

We will demonstrate in the context of L∞-algebra connections how Lie al-
gebra (n + 1)-cocycles related to p-brane structures on X transgress to loop Lie
algebra n-cocycles on loop space. One can understand this also as an alternative
proof of the strictification theorem of the String Lie 2-algebra (proposition 5.35),
but this will not be further discussed here.

So let g be an ordinary Lie algebra, μ an (n + 1)-cocycle on it in transgres-
sion with an invariant polynomial P , where the transgression is mediated by the
transgression element cs as described in section 5.3.

According to proposition 6.14 the corresponding universal obstruction struc-
ture is the bnu(1)-connection

CE(g) CE(bnu(1))
μ��

W(g)

����

W(bnu(1))
(cs,P )��

����

inv(g)
� �

��

inv(bnu(1)) = CE(bn+1u(1))
{P}��

� �

�� (8.49)

to be thought of as the universal higher Chern-Simons (n + 1)-bundle with con-
nection on the classifying space of the simply connected Lie group integrating
g.

We transgress this to loops by applying the functor maps(−,Ω•(S1)) from
definition 4.4 to it, which can be thought of as computing for all DGC algebras
the DGC algebra of differential forms on the space of maps from the circle into
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the space that the original DGCA was the algebra of differential forms of:

maps(CE(g),Ω•(S1)) maps(CE(bnu(1)),Ω•(S1))
tgS1μ��

maps(W(g),Ω•(S1))

����

maps(W(bnu(1)),Ω•(S1))
tgS1(cs,P )��

����

maps(inv(g),Ω•(S1))
� �

��

maps(CE(bn+1u(1)),Ω•(S1))
{tgS1P}��

� �

�� . (8.50)

We want to think of the result as a bn−1u(1)-bundle. This we can achieve by pulling
back along the inclusion

CE(bn−1u(1)) ↪→ maps(CE(bnu(1)),Ω•(S1)) (8.51)

which comes from the integration current
∫

S1 on Ω•(S1) according to proposition
4.6.

(This restriction to the integration current can be understood from looking
at the basic forms of the loop bundle descent object, which induces integration
without integration essentially in the sense of [51]. But this we shall not further go
into here.)

We now show that the transgressed cocycles tgS1μ are the familiar cocycles
on loop algebras, as appearing for instance in Lemma 1 of [2]. For simplicity of
exposition, we shall consider explicitly just the case where μ = 〈·, [·, ·]〉 is the
canonical 3-cocycle on a Lie algebra with bilinear invariant form 〈·, ·〉.

Proposition 8.6. The transgressed cocycle in this case is the 2-cocycle of the Kac-
Moody central extension of the loop Lie algebra Ωg

tgS1μ : (f, g) �→
∫

S1
〈f(σ), g′(σ)〉dσ + (a coboundary) (8.52)

for all f, g ∈ Ωg .

Proof. We compute maps(CE(g),Ω•(S1)) as before from proposition 4.6
along the same lines as in the above examples: for {ta} a basis of g and U any test
domain, a DGCA homomorphism

φ : CE(g) → Ω•(S1)⊗ Ω•(U) (8.53)
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sends

ta
� φ ��

�

dCE(g)

��

ca + Aaθ�

dS1+dU

��

− 1
2C

a
bct

b ∧ tc
� φ �� θ∧( ∂

∂σ ca)+dUca+dU Aa∧θ

=− 1
2 Ca

bccb∧cc−Ca
bccb∧Ab∧θ

. (8.54)

Here θ ∈ Ω1(S1) is the canonical 1-form on S1 and ∂
∂σ the canonical vector field;

moreover ca ∈ Ω0(S1)⊗ Ω1(U) and Aaθ ∈ Ω1(S1)⊗ Ω0(U).
By contracting with δ-currents on S1 we get 1-forms ca(σ), ∂

∂σ c
a(σ) and

0-forms Aa(σ) for all σ ∈ S1 on maps(CE(g),Ω•(S1)) satisfying

dmaps(··· )ca(σ) +
1
2
Ca

bcc
b(σ) ∧ cc(σ) = 0 (8.55)

and

dmaps(··· )Aa(σ)− Ca
bcA

b(σ) ∧ cc(σ) =
∂

∂σ
ca(σ) . (8.56)

Notice the last term appearing here, which is the crucial one responsible for the
appearance of derivatives in the loop cocycles, as we will see now.

So Aa(σ) (a “field”) is the function on (necessarily flat) g-valued 1-forms on
S1 which sends each such 1-form for its ta-component along θ at σ, while ca(σ) (a
“ghost”) is the 1-form which sends each tangent vector field to the space of flat
g-valued forms to the gauge transformation in ta direction which it induces on the
given 1-form at σ ∈ S1.

Notice that the transgression of our 3-cocycle

μ = μabct
a ∧ tb ∧ tc = Cabct

a ∧ tb ∧ tc ∈ H3(CE(g)) (8.57)

is

tgS1μ =
∫

S1
CabcA

a(σ)cb(σ) ∧ cc(σ) dσ ∈ Ω2(Ω1
flat(S

1, g) . (8.58)

We can rewrite this using the identity

dmaps(··· )

(∫
S1

PabA
a(σ)cb(σ)dσ

)
=

∫
S1

Pab (∂σc
a(σ)) ∧ cb(σ)

+
1
2

∫
S1

CabcA
a(σ)cb(σ) ∧ cc(σ),(8.59)

which follows from 8.55 and 8.56, as

tgS1μ =
∫

S1
Pab (∂σc

a(σ)) ∧ cb(σ) + dmaps(··· )(· · · ) . (8.60)

Then notice that
• equation (8.55) is the Chevalley-Eilenberg algebra of the loop algebra Ωg;
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• the term
∫

S1 Pab(∂σc
a(σ))∧cb(σ) is the familiar 2-cocycle on the loop algebra

obtained from transgression of the 3-cocycle μ = μabct
a ∧ tb ∧ tc = Cabct

a ∧
tb ∧ tc .

�

9. Physical applications: string-, fivebrane- and p-brane structures

We can now discuss physical applications of the formalism that we have developed.
What we describe is a useful way to handle obstructing n-bundles of various kinds
that appear in string theory. In particular, we can describe generalizations of string
structure in string theory. In the context of p-branes, such generalizations have
been suggested based on p-loop spaces [30] [10] [64] and, more generally, on the
space of maps Map(M,X) from the brane worldvolume M to spacetime X [60].
The statements in this section will be established in detail in [68].

From the point of view of supergravity, all branes, called p-branes in that
setting, are a priori treated in a unified way. In tracing back to string theory, how-
ever, there is a distinction in the form-fields between the Ramond-Ramond (RR)
and the Neveu-Schwarz (NS) forms. The former live in generalized cohomology
and the latter play two roles: they act as twist fields for the RR fields and they are
also connected to the geometry and topology of spacetime. The H-field H3 plays
the role of a twist in K-theory for the RR fields [50] [15] [59]. The twist for the
degree seven dual field H7 is observed in [67] at the rational level.

The ability to define fields and their corresponding partition functions puts
constraints on the topology of the underlying spacetime. The most commonly un-
derstood example is that of fermions where the ability to define them requires
spacetime to be spin, and the ability to describe theories with chiral fermions
requires certain restrictions coming from the index theorem. In the context of het-
erotic string theory, the Green-Schwarz anomaly cancelation leads to the condition
that the difference between the Pontrjagin classes of the tangent bundle and that of
the gauge bundle be zero. This is called the string structure, which can be thought
of as a spin structure on the loop space of spacetime [52] [27]. In M-theory, the
ability to define the partition function leads to an anomaly given by the integral
seventh-integral Stiefel-Whitney class of spacetime [29] whose cancelation requires
spacetime to be orientable with respect to generalized cohomology theories beyond
K-theory [55] .

In all cases, the corresponding structure is related to the homotopy groups
of the orthogonal group: the spin structure amounts to killing the first homotopy
group, the string structure and – to some extent– the W7 condition to killing the
third homotopy group. Note that when we say that the n-th homotopy group is
killed, we really mean that all homotopy groups up to and including the n-th
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one are killed. For instance, a String structure requires killing everything up to
and including the third, hence everything through the sixth, since there are no
homotopy groups in degrees four, five or six.

The Green-Schwarz anomaly cancelation condition for the heterotic string
can be translated to the language of n-bundles as follows. We have two bundles,
the spin bundle with structure group G = Spin(10), and the gauge bundle with
structure group G′ being either SO(32)/Z2 or E8×E8. Considering the latter, we
have one copy of E8 on each ten-dimensional boundary component, which can be
viewed as an end-of-the-world nine-brane, or M9-brane [47]. The structure of the
four-form on the boundary which we write as

G4|∂ = dH3 (9.1)

implies that the 3-bundle (2-gerbe) becomes the trivializable lifting 2-gerbe of a
String(Spin(10) × E8) bundle over the M9-brane. As the four-form contains the
difference of the Pontrjagin classes of the bundles with structure groups G and
G′, the corresponding three-form will be a difference of Chern-Simons forms. The
bundle aspect of this has been studied in [12] and will be revisited in the current
context in [68].

The NS fields play a special role in relation to the homotopy groups of the
orthogonal group. The degree three class [H3] plays the role of a twist for a spin
structure. Likewise, the degree seven class plays a role of a twist for a higher
structure related to BO〈9〉, the 8-connected cover of BO, which we might call a
Fivebrane-structure on spacetime. We can talk about such a structure once the
spacetime already has a string structure. The obstructions are given in table 4,
where A is the connection on the G′ bundle and ω is a connection on the G bundle.

n
2

= 4 · 0 + 2
6

= 4 · 1 + 2
fundamental object

(n− 1)-brane
n-particle

string 5-brane

target space
structure

string structure
ch2(A)− p1(ω) = 0

fivebrane structure
ch4(A)− 1

48p2(ω) = 0

Table 4. Higher dimensional extended objects and the corre-
sponding topological structures.

In the above we alluded to how the brane structures are related to obstruc-
tions to having spacetimes with connected covers of the orthogonal groups as
structures. The obstructing classes here may be regarded as classifying the corre-
sponding obstructing n-bundles, after we apply the general formalism that we out-
lined earlier. The main example of this general mechanism that will be of interest
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to us here is the case where g is an ordinary semisimple Lie algebra. In particular,
we consider g = spin(n). For g = spin(d) and μ a (2n + 1)-cocycle on spin(d), we
call spin(d)μ the (skeletal version of the) (2n− 1)-brane Lie (2n)− algebra. Thus,
the case of String structure and Fivebrane structure occurring in the fundamental
string and NS fivebrane correspond to the cases n = 1 and n = 3 respectively. Now
applying our formalism for g = spin(d), and μ3, μ7 the canonical 3- and 7-cocycle,
respectively, we have:
• the obstruction to lifting a g-bundle descent object to a String 2-bundle (a

gμ3 -bundle descent object) is the first Pontryagin class of the original g-bundle
cocycle;

• the obstruction to lifting a String 2-bundle descent object to a Fivebrane 6-
bundle cocycle (a gμ7 -bundle descent object) is the second Pontryagin class
of the original g-bundle cocycle.
The cocyles and invariant polynomials corresponding to the two structures

are given in the following table

p-brane cocycle invariant
polynomial

p = 1 = 4 · 0 + 1 μ3 = 〈·, [·, ·]〉 P1 = 〈·, ·〉 first Pontrjagin
p = 5 = 4 · 1 + 1 μ7 = 〈·, [·, ·], [·, ·], [·, ·]〉 P2 = 〈·, ·, ·, ·〉 second Pontrjagin

Table 5. Lie algebra cohomology governing NS p-branes.

In case of the fundamental string, the obstruction to lifting the PU(H) bun-
dles to U(H) bundles is measured by a gerbe or a line 2-bundle. In the language of
E8 bundles this corresponds to lifting the loop group LE8 bundles to the central
extension L̂E8 bundles [59]. The obstruction for the case of the String structure
is a 2-gerbe and that of a Fivebrane structure is a 6-gerbe. The structures are
summarized in the following table

obstruction → G-bundle ⇒ Ĝ-bundle
1-gerbes / line 2-bundles
2-gerbes / line 3-bundles
6-gerbes / line 7-bundles

→
PU(H)-bundles
Spin(n)-bundles

String(n)-2-bundles
⇒

U(H)-bundles
String(n)-2-bundles

FiveBrane(n)-6-bundles

Table 6. Obstructing line n-bundles appearing in string theory,
where
→ equals the phrase “obstruct the lift of”, and
⇒ equals the phrase “to”.

A description can also be given in terms of (higher) loop spaces, generalizing
the known case where a String structure on a space X can be viewed as a Spin
structure on the loop space LX . A fuller discussion of the ideas of this section is
given in [68] and [69].
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Appendix A. Explicit formulas for 2-morphisms of L∞-algebras

To the best of our knowledge, the only place in the literature where 2-morphisms
between 1-morphisms of L∞-algebras have been spelled out in detail is [5], which
gives a definition of 2-morphisms for Lie 2-algebras, i.e. for L∞-algebras concen-
trated in the lowest two degrees. Our definition 5.11 provides an algorithm for
computing 2-morphisms between morphisms of arbitrary (finite dimensional) L∞-
algebras. We had already demonstrated in 5.2 one application of that algorithm,
showing explicitly how it allows to compute transgression elements (Chern-Simons
forms).

For completeness, we demonstrate that the formulas given in [5] for the special
case of Lie 2-algebras also follow as a special case from our general definition
5.11. This is of relevance to our discussion of the String Lie 2-algebra, since the
equivalence of its strict version with its weak skeletal version, mentioned in our
proposition 5.35, has been established in [7] using these very formulas. First we
quickly recall the relevant definitions from [5, 7]: A “2-term” L∞-algebra is an
L∞-algebra concentrated in the lowest two degrees. A morphism

ϕ : g → h (A.1)

of 2-term L∞-algebras g and h is a pair of maps

φ0 : g1 → h1 (A.2)
φ1 : g2 → h2 (A.3)

together with a skew-symmetric map

φ2 : g1 ⊗ g1 → h2 (A.4)

satisfying

φ0(d(h)) = d(φ1(h)) (A.5)

as well as

d(φ2(x, y)) = φ0(l2(x, y))− l2(φ0(x), φ0(y)) (A.6)
φ2(x, dh) = φ1(l2(x, h))− l2(φ0(x), φ1(h)) (A.7)

and finally

l3(φ0(x), φ0(y), φ0(z))− φ1(l3(x, y, z)) = φ2(x, l2(y, z)) + φ2(y, l2(z, x))
+φ2(z, l2(x, y)) + l2(φ0(x), φ2(y, z)) + l2(φ0(y), φ2(z, x)) + l2(φ0(z), φ2(x, y)) .

for all x, y, z ∈ g1 and h ∈ g2. This follows directly from the requirement that
morphisms of L∞-algebras be homomorphisms of the corresponding codifferential
coalgebras, according to definition 5.2. The not quite so obvious aspect are the
analogous formulas for 2-morphisms:
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Definition A.1 (Baez-Crans). A 2-morphism

g

φ

23

ψ

34 h
τ



(A.8)

of 1-morphisms of 2-term L∞-algebras is a linear map

τ : g1 → h2 (A.9)

such that
ψ0 − φ0 = tW ◦ τ (A.10)
ψ1 − φ1 = τ ◦ tv (A.11)

and

φ2(x, y)− ψ2(x, y) = l2(φ0(x), τ(y)) + l2(τ(x), ψ0(y))− τ(l2(x, y)) (A.12)

Notice that [d, τ ] := dh ◦ τ + τ ◦ dg and that it restricts to dh ◦ τ on g1 and
to τ ◦ dg on g2.

Proposition A.2. For finite dimensional L∞-algebras, definition A.1 is equivalent
to the restriction of our definition 5.11 to 2-term L∞-algebras.

Proof. Let g = g1 ⊕ g2 and h = h1 ⊕ h2 be any two 2-term L∞-algebras.
Then take

ψ, φ : g → h (A.13)
to be any two L∞ morphisms with

CE(g) CE(h)
ψ∗,φ∗

�� (A.14)

the corresponding DGCA morphisms. We would like to describe the collection of
all 2-morphisms

CE(g) CE(h)

φ∗

		

ψ∗

��
τ



(A.15)

according to definition 5.11. We do this in terms of a basis. With {ta} a basis for
h1 and {bi} a basis for h2, and accordingly {t′a} and {b′i} a basis of g1 and g2,
respectively, this comes from a map

τ∗ : h∗1 ⊕ h∗2 ⊕ h∗1[1]⊕ h∗2[1] → ∧•g∗ (A.16)

of degree -1 which acts on these basis elements as

τ∗ : bi �→ τ i
at

′a (A.17)
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and
τ∗ : aa �→ 0 (A.18)

for some coefficients {τ i
a}. Now the crucial requirement (5.65) of definition 5.11

is that (5.64) vanishes when restricted

CE(h)φ∗

��
CE(g) W(h)

����










�������
��
���

�
h∗[1]� ���

CE(h)ψ∗

��


� ��
��
��
��
��
��

��
��
��
��
��
��

(A.19)

to generators in the shifted copy of the Weil algebra. This implies the following. For
τ∗ to vanish on all σta we find that its value on dW(h)t

a = − 1
2C

a
bct

a∧tb−taib
i+σta

is fixed to be
τ∗ : dW(g)t

a �→ −taiτ
i
bt

′b (A.20)
and on dW(h)b

i = −αi
ajt

a ∧ bj + ci to be

τ∗(dbi) = τ∗(−αi
ajt

a ∧ bj) . (A.21)

The last expression needs to be carefully evaluated using formula (5.61). Doing so
we get

[d, τ∗] : ta �→ −taiτ
i
bt

′b (A.22)
and

[d, τ∗] : bi �→ −1
2
τ i

aC
′a

bct
′bt′c − τ i

at
′a

jb
′j + αi

aj
1
2
(φ + ψ)a

bτ
j
ct

′bt′c . (A.23)

Then the expression
φ∗ − ψ∗ = [d, τ∗] (A.24)

is equivalent to the following ones

(ψa
b − φa

b)t′b = taiτ
i
bt

′b (A.25)

(ψi
j − φi

j)b′j = τ i
at

′a
jb

′j (A.26)
1
2
(φi

ab − ψi
ab)t′at′b = −1

2
τ i

aC
′a

bct
′bt′c + αi

aj
1
2
(φ + ψ)a

bτ
j
ct

′bt′c .(A.27)

The first two equations express the fact that τ is a chain homotopy with respect
to t and t′. The last equation is equivalent to

φ2(x, y)− ψ2(x, y) = −τ([x, y]) + [q(x) +
1
2
t(τ(x)), τ(y)]

−[q′(y)− 1
2
t(τ(y)), τ(x)]

= −τ([x, y]) + [q(x), τ(y)] + [τ(x), q′(y)] (A.28)

This is indeed the Baez-Crans condition on a 2-morphism. �
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I.H.É.S., tome 47 (1977), p. 269–331

[78] C. Teitelboim and M. Henneaux, Quantization of gauge systems Princeton Uni-
versity Press, 1992.

[79] E. Witten, On Flux quantization in M-Theory and the effective action, J. Geom.
Phys. 22 (1997) 1–13, [arXiv:hep-th/9609122].

[80] A. Yekutieli, Central Extensions of Gerbes, [arXiv:0801.0083v1].

[81] T. Trimble, private communication

Hisham Sati
Department of Mathematics
Yale University
10 Hillhouse Avenue
New Haven, CT 06511
e-mail: hisham.sati@yale.edu

Jim Stasheff
Department of Mathematics
University of Pennsylvania
209 South 33rd Street
Philadelphia, PA 19104-6395
e-mail: jds@math.upenn.edu

Urs Schreiber
Fachbereich Mathematik
Universität Hamburg
Bundesstraße 55
DE–20146 Hamburg
e-mail: schreiber@math.uni-hamburg.de



Index

G-bundle

universal, 307

L∞-algebra

Chern-Simons, 356
L∞-algebra, 303

2-term, 417

and differential forms, 309

Cartan-Ehresmann connection, 310

cohomology, 344

concordance, 338

definition, 306, 330
from cocycles, 309, 355

homotopy, 338

normal subalgebra, 382

other names for, 306

parallel transport, 399

σ-model actions

from n-functorial parallel transport, 317
n-bundle

with connection, 304

1-particle-irreducible diagrams, 184

2-morphism, 339

motivation

conceptual, 340
practical, 340

of Lie 2-algebras, 344

Abrahamic heaven, 6

action
classical, 50, 193

extended, 255

functional, 405

proper total, 193

AdS space

(anti de Sitter space), 68

Euclidean, 68
half-space model of, 68

AdS/CFT

generating functional

alternative representation, 73

limiting functional, 73

AdS/CFT correspondence, 67

“German”, 20
and string theory, 71

for models in statistical mechanics, 74

Airy integrals, 49

algebra

Chevalley-Eilenberg dg-, 331

of differential forms as DGCA, 318

single, as a structureless monad, 22

Weil, 336

Weil, as Lie 2-algebra, 334

Weil, of an L∞-algebra, 332
algebraic renormalization

for non-expert readers, 194

recursiveness via the orders in �, 194

amplitude

renormalized, 141

anharmonic oscillator

effective equations for, 220

annihilation operator
mass-shell, 2

anomalies

in loop quantum gravity, 232

anthropic principle, 18

anti de Sitter, see also AdS

approximation

adiabatic, 222
semiclassical, 222

area density formula, 11

area law

for entropy localization, 10

for localization entropy, 22

of Bekenstein, 13

origin of, 4

Ashtekar connection, 219
axioms of QFT

test of soundness of, 17

background field, 404

Barbero-Immirzi parameter, 219

Belavkin equation, 59
β-function

of gravity, 160

of QED, 158

BF-term, 366

BF-theory, 317, 360, 366

functional, 402

interpreted as a Lie 2-algebra
gauge theory, 367

with cosmological term, 366
Bianchi identity, 362

big bang

bounce, 228

bouncing solution, 229

singularity

classical, 226

Birkhoff decomposition, 146
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as renormalization, 146

for graded connected commutative Hopf
algebras, 147

Bogoliubov formula, 183

Boolean algebra

topological interpretation of, 28

Boolean topos, 28

Borel subgroup

of SU(3, C), 110

Born series

q-deformed, 280

boundary CFT

generating functional of, 75

boundary field

finite dimensional approximation of, 72

BPHZ-procedure, 141

BPHZ-renormalization

as Birkhoff decomposition, 147

brane

(n − 1)-, 404

higher dimensional, 304

BRST-field content, 406

Buddhist nirvana, 6

bundle

basic forms on a, 326

Caldeira-Legget model

for quantum Brownian motion, 59

Cartan’s magic formula, 324

Cartan-Ehresmann

condition, 368

condition, generalized, 374

connection, 310, 312, 367

ordinary, 375

category

context, 33

state object, 32

terminal object, 27

causal factorization, 183

causal perturbation theory, 178, 182

causal structure

discrete, definition of, 243

emergence of, 243

causality

in Minkowski space, 246

leakage, 14

central extension, 358

parameter, 11

CFT, see also conformal field theory

characteristic class, 315, 365, 376

as obstruction for String-like extension,
396

invariance of, 365

characteristic function, 28

charged n-particle, 404

charges

conserved, 205

Chen’s iterated integral, 99

Chern class

first, 102

Chern-Simons

L∞-algebra, 356

n-transport, 312

2-gerbe, 305

3-bundle, 389

action functional, higher, 401

element, 340

generalized (n + 1)-bundle, 393

theory, 382, 409

vertical 3-form, as lifting obstruction, 389

Chevalley-Eilenberg algebra

of the loop algebra, 413

Chevalley-Eilenberg dg-algebra, 331

chiral field

transverse extended, 7

classical interaction, 186

classical physics

as a realist theory, 30

classical quantum transition as
phase transition, 121

coarse-graining, 35

cocycle, 345

cohomological field theory

conjecture about, 90

cohomology, 350

Deligne, 370

in terms of qDGCAs, 349

of L∞-algebras, 344

of coset spaces, 390

commutant

as zeroth Hochschild cohomology, 130

commutation relations

for noncommutative coordinate
functions, 118

plectonic (braid group), 8

concordance, 340

configuration space

of L∞-transport, 404

conformal boundary

for hyperbolic space, 69

conformal field theory

boundary conditions in, 68

conformal boundary, 68

conformal group action
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induced from AdS Lorentz transforma-
tions, 69

conjecture

on the algebraic structure of cohomologi-
cal field theory, 90

connection

Ashtekar, 219

Cartan-Ehresmann, 367

equivalence of g-, 374

extension problem for, 373

globally defined, 364

shift of, 371

spin, 219

variables, 218

conserved charges

“hidden”, 210

consistency equation

as a cocycle condition, 194

constraint

effective, 224

context category, 33, 34

of abelian von Neumann subalgebras, 25

continuum limit

in loop quantum gravity, 232

of the fermionic projector, 256

contractible

smoothly, 329

convolution

in momentum space, 248

coordinates

Brinkmann, 198, 202

Fermi, 203

Rosen, 198, 202

correlations

implemented by cumulants, 172

cosmological constant, 366

cosmological model

solvable, 225

counterterm, 141

boundary, 79

bulk, 79

coupling constant

dependent on the energy scale, 143

running, 143

covariance splitting formula, 69

Coxeter number

of SU(n), 107

creation operator

mass-shell, 2

critical manifold, 51

cross-ratio

conformal invariant, 12

current, 321

curvature, 361

3-, 367

4-form, 399

components β and H, 363

extrinsic, 219

of plane waves, 200

cut rule, 31

daseinisation

and Heidegger’s existential philosophy, 36

definition of, 36

inner and outer, 36

de Rham complex

vertical, 326

decoupling

for quadratic Hamiltonian, 222

deformation

equivalence of, 124

deformation quantization

definition of, 123

equivalence of, 127

existence of, 129

of a Hermitian fibre metric, 123

of a principal G-bundle, 126

degree of divergence, 156

degrees of freedom

cardinality of, 3

Deligne cohomology, 370

n-cocycle, 371

coboundary, 371

density matrix, 166

minimizing the energy, 171

derivation

inner, 323

encoding vector fields, 324

of L∞-algebras, 335

vertical, 324

derivative

Lie, 344

descent data

g-bundle, 368

descent object, 312

for g-connection, 373

in bijection with closed vertical n-forms,
373

DGCA

(differential graded
commutative algebra), 318

freeness of, 332

in non-positive degree, 321

mapping cone of, 332



428 Index

quasi free (≡ qDGCA), 321

diffeomorphism group

of the circle, 13

diffeomorphism invariance

generalized, 237

differential algebra

free, as qDGCA, 364

differential form

as DGCA, 319

basic, 348

on a smooth space, 319

differential forms, 318

differential graded commutative
algebra (DGCA), 318

differential operator

vertical, 130

Dirac sea, 246

with three generations, 256

discrete space-time, 235

fermion system, 237

divergence

cancellation of, 252

degree of, 156

Dixmier-Douady class, 350

Donaldson-Thaddeus-Witten

on SU(2) moduli space, 108

Dyson equation, 165

as generalized by Hall, 165

generalized, 169

Dyson-Schwinger equations

in QED4, 156

effective action

1-particle irreducible, 222

Ehrenfest theorem, 220

eigenstates

stationary, 207

Eilenberg-MacLane space, 309

Einstein, Albert

citation on the space-time continuum, 285

element

abstract notion of, 29

generalized, 29

global

of the presheaf of sieves, 43

horizontal, 380

of a category, 29

elliptic curves, 84

noncommutative, 83, 85

elliptic gamma function, 87

emergence

of causal structure, 243

of space-time, 258

energy

proportional to transverse area, 11

entanglement

entropy, 12

hot/cold, 7

intrinsic, 7

entropy

proportional to transverse area, 11

quantum, from Bekenstein’s
interpretation, 14

entropy localization

logarithmic divergence of, 11

Euclidean time, 72

Euler-Zagier multiple zeta functions, 98

existence proof

for QFT in 1 + 1 dimensions, 2

extension

central, 358

String-like, 309

properties of, 315

String-like, 315, 355, 356

obstructions to lifts, 316

weak cokernel in terms of the
Weil algebra, 387

string-like

weak cokernel, 386

extensive quantity

transverse additivity of, 11

factorization property, 180

fc-multicategory, 90

fermion system

in discrete space-time, 237

fermionic projector, 236

discrete kernel, 238

regularization of, 252

state stable, 255

Feynman

on string theory, 21

Feynman diagram

1-particle irreducible, 184

generalized, 165

quantum part of a, 184

Feynman graph, 156

automorphism of, 144

definition of, 143

graded by loop number, 145

Hopf algebra for, 143

number of insertion points, 144

one-particle irreducible (1PI), 144

origin of, 139
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residue of, 144

Feynman path integral

approach to quantum mechanics, 50

convergence of using cancelation, 52

for the Schrödinger equation, 56

mathematical realization of, 52

not integrable in a Lebesgue sense, 53

Feynman rules

example amplitude, 140

for quantum electrodynamics (QED), 139

inducing an algebra map, 147

Feynman’s heuristic calculus

difficulties of, 51

Feynman-Vernon influence functional, 59

fiber bundle

as example of surjective submersions, 328

field

anti-, 405

field equation

off-shell, 182, 188

field independence, 183

filter, maximal, 42

Floer homology, 88

flow

vertical, 324

form

L∞-algebra valued, 361

g-valued, 361

flat, 361

basic, 327, 345

basic differential, 348

characteristic, 312, 376

curvature, 312

differential, 318

exmaples of, 362

invariant, 365

Neveu-Schwarz (NS), 414

Ramond-Ramond (RR), 414

formal language, 31

formfactor, multi-particle, 8

Fredholm determinant, 55

Fresnel integral, 49

Fukaya category

as a generalization, 89

deformation of, 88

functional integrals

on AdS, 68

functor

“maps”, 320

from smooth space to DGCA, 320

gamma function

elliptic, 86, 87

gauge

lightcone, 200

gauge coupling term, 399

gauge field

enveloping algebra valued, 132

gauge fixing, 142

gauge symmetry, 405

gauge theory, 141

fields of, 407

in the noncommutative framework, 125

gauge transformation, 370

as covariant transformation of curvature,
340

Gauss linking number, 61

Gauss-Bonnet theorem, 160

Gaussian white noise measure, 56

Gel’fand spectrum, 33

as ‘local state space’, 26

Gel’fand transform, 34

Gell-Mann Low formula, 166

general relativity

linearized theory, 198

generating function

for free Green functions, 167

for Green function, 166

generator

coordinatizing, 3

Geodesics, 205

geodesics, 200

geometric Langlands correspondence, 84

gerbes

Abelian, 370

ghost

anti-, 405

Glaser-Lehmann-Zimmermann (GLZ)
representation, 8

convergence status of, 9

gravity, 218

powercounting, 161

pure, 159

Green’s function, 139

diagrammatic expansion of, 168

for QED, 156

generating function of, 166

Hopf algebra of, 147

inverse of, 148

retarded, 180

Green-Schwarz

anomaly cancelation, 415

Gromov-Witten invariants

elliptic, definition of, 88
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noncommutative extension of, 84

group

and its function algebra, 266

Gutzwiller trace formula, 58

Haag, Rudolf, 2

Haag-Kastler theory, 2

Hagedorn temperature, 19

Hall’s equation

algebraic proof of, 170

Hamiltonian

effective, 171

harmonic oscillator, 206

time-dependent, 197

exact solution, 209

quadratic invariants, 211

Heisenberg algebra, 203

canonically normalized, 204

Heisenberg isometry algebra, 203

Hermitian fibre metric

as inner product, 123

Heyting algebra, 27

of subobjects, 38

Hirzebruch-Riemann-Roch formula, 97

Hochschild cohomology, 156

cochain, 128

holographic projection

of bulk fields, 5

of interacting pointlike bulk fields, 7

holography

algebraic, after Rehren, 15

algebraic, using operator algebras, 16

as a tool, 13

conceptual status of, 9

lightcone, 4

lightfront

gain of, 16

not a physical principle, 19

on null-surfaces, 4

projective, using Wightmann fields, 16

spirit of, 8

symmetry enhancement by, 13

holonomy, 399

Holy Grail

of a theory of everything, 2

HOMFLY polynomial, 60

homotopy

and inner derivations, 322

infinitesimal, 338

operator, 348

homotopy algebra

refered to as L∞-algebra, 306

homotopy group

related to string structure, 414

Hopf algebra, 152

antipode, 152

character, 146

coassociativity, 152

coproduct, 152

counit, 152

definition of a, 152

of Feynman graphs, 143

of Green’s functions, 147

Hopf fibration, 126

Hopf-Galois extension, 125

Hurwitz partition function, 85

hyperbolic space, 68

infra-red problem, 75

inner derivation, 323

encoding vector fields, 324

of L∞-algebras, 335

inner product

physical, 225

strongly non-degenerate, 123

insertion

in terms of R-products, 194

intellectual leader

role model of a, 20

interacting models

existence of, 22

interaction

classical, 186

gluon self-, 139

localized, 178

modified, 170

non localized, 178

of an exterior field, 75

photon with electron, 139

proper, 186

intersection pairing

computation of, 111

invariant charge, 158

invariant polynomial, 345

indecomposable, 350

lifted, closedness failure, 352

of bn−1u(1), 350

of String-like extensions, 357

suspened to 0, 358

IR problem, 67

Isham, Chris, 25

isometry algebra

Heisenberg, 203

solvable, 203
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iterated integral, 99

Jackson derivative, 270
Jackson integral, 264

as operator, 271
Jacobi

theta function, 87

triple product, 87
Jacobi identity

q-deformed, 288
Jones polynomial, 60
Jordan, Pascual, 2

Kac-Weyl character formula, 104
Kalb-Ramond field, 399
Kauffman polynomial, 60

Keldysh formalism, 164
Killing vector, 205

Kochen-Specker theorem, 26
equivalent to element free presheaf, 34

Koszul sign, 330

Kripke-Joyal semantics, 38

Lagrangian

counter terms, 255
lightcone gauge, 201

language

formal, 31
representation of, in a topos, 32

lattice
distributive, 27

lattice model

numerics, 257
static and isotropic, 249

law of the excluded middle

not present in intuitionistic logic, 27
legs

external, 156
lengthscale

varying, 252

Leray-Hirsch theorem, 112
Lewis-Riesenfeld procedure, 208

Lewis-Riesenfeld theory, 207
Lie 2-algebra, 417

strict, 335

Lie 3-algebra, 360
Lie 7-algebra, 360

Lie algebra, 331
Lie derivative, 132, 324, 344
lifting

obstruction to, 314
lifting problem, 382

lightfront algebra

for interacting systems, 9

lightfront holography

for structural investigations, 10

line n-bundles

with equivalent connection, 371

linked cluster theorem, 185

Lippmann-Schwinger equation

q-deformed, 279

local correlation matrix, 241

logic

connectives “and”, “or”, “not”, 31

contextual, 25

cut rule, 31

intuitionistic, 27

quantifiers “it exists” and “for all”, 31

representation of propositions, 37

rule of inferences (entailment), 31

loop quantum gravity, 217

continuum limit, 232

low energy description, 220

quantization of, 218

representation space of, 219

Lorentz manifold

generic, 119

with ambient metric, 68

M-theory, 304

Maldacena conjecture, 15

maps

versus hom, 320

mass cone, 248

master Ward identity

anomalous, 188

for a violating term, 192

for connected tree diagrams, 187

in off-shell formalism, 181

in terms of proper vertices, 186

off-shell in classical field theory, 179

violateable only by insertion terms, 194

matrix string theory, 215

matter filed

as section of a vector bundle, 121

mental exercise

image a scenario with Feynman before
Heisenberg, 16

method of variable regularization, 257

metric

Hermitian fibre metric, 122

linearized, 198

non-physical background, 218

plane wave

as theoretical playground, 199
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geometry of, 198
smeared out, 218

microscopic structure
of universe, 258

Minkowski space

emergent from discrete structure, 245
Minkowski space-time

noncommutative, 118
mirror symmetry, 83

relating elliptic curves, 84
model space, 171
modular parameter q, 86
module

infinitesimal crossed, 335
Möbius group, 13
morphism

2-, 339
name of an, 43

multiple zeta functions, 98
multiple zeta values

relations among them, 98

name, of a map, 43
Narasimhan-Seshadri theorem, 103

Neveu-Schwarz (NS) B-field, 304
noncommutative geometry, 172

as approach to quantum gravity, 117
noncommutative quantum field theory

motivated by string theory, 3
noncommutativity

implementing uncertainty relations, 120
norm

of a function, 53

number operator, 206

object
ambimorphic, 319
descent, 368
power, 43

quantity-value object, 32
shizophrenic, 319
state, 32

operator

time evolution, 165
operator algebra

standard pair, 9
oscillator algebra

harmonic, 206
oscillatory integral, 49

as quantization method, 50
defined as limit, 52
finite dimensional approximation of, 54

for stochastic Schrödinger equation, 59

in nonrelativistic quantum mechanics, 50

in quantum mechanics, 56

properties of, 55

Osterwalder-Schrader reconstruction
theorem, 68

pairing

cohomological

for SU(3), 109

intersection

computation of, 111

parallel n-transport, 304

parallel transport, 399

L∞-algebra, 399

2-functor, 305

Chern-Simons n-, 312

of a 2-connection, 399

parameter space, 404

Parseval formula, 53

particle

q-deformed, scattering of a, 279

free non-relativistic, 275

partition function

evaluated, 85

Hurwitz, 85

path

n-dimenional, 304

Pauli matrices

q-deformed, 293

Pauli principle, 237

Peierls bracket

off-shell version, 181

periodic orbits

classical, 58

perturbation theory

causal, 178, 182

phase space, 404

Planck area, 119

Planck length, 235

plane wave

curvature, 200

exact solution, 199

gravitational, 199

invariant operator, 208

isometries of metric, 203

metric, 198

and Yang-Mills action, 214

Heisenberg algebra of isometries of, 206

in Brinkmann coordinates, 213

in Rosen coordinates, 213

solution, 198

Wronskian, 203
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Poisson bracket, 120

Poisson structure

physical role of, 120

polylogarithms

relations among, 99

Pontriagin term, 366

positive elements

convex cone of, 123

positivity

reflection, 69, 72

of Schwinger functions, 74

stochastic, 69

power object, 43

presheaf

of order pre- and reversing functions, 35

representable, 319

set-valued, 318

principal bundle

deformed, 125

product

shuffle, 99

stuffle, 98

time-ordered, 183, 185

Weyl-Moyal, 119

projector

to a space-time point, 236

propagator

as a resolvent function, 69

boundary-to-boundary, 69

bulk-to-boundary, 69

bulk-to-bulk, 69

proper interaction, 186

propositions

representation of, 37

q-commutators, 288

quantity-value object, 32

for quantum theory, 35

quantization

Lagrangian method of, 2

lightcone, 4

of the coupling constant, 61

using oscillatory integrals, 50

quantum action principle, 177, 186, 188

quantum anomalies, 225

quantum back-reaction, 221

quantum corrections, 220

multiplicative, 156

quantum field theory

interface to quantum gravity, 14

noncommutative, 3

nonequilibrium, 164

regularization using q-deformation, 286

with a general state, 166

with degenerate vacuum, 164

quantum gravity

effective, 231

topos theoretic implications for modeling
of, 30

quantum Hamiltonian, 224

quantum harmonic oscillator

time-dependent, 197, 207

quantum logic

obtained form an internal language, 38

of Birkhoff-von Neumann kind, 38

quantum phase space, 223

quantum plane

bosonic, 289

fermionic, 289

Manin, 288

quantum space, 288

quantum statistical mechanics, 164

quantum theory

‘neo-realist’ formulation, 26

formulation of

within the presheaf topos SetV(r)op
, 45

instrumentalism in, 30

quantity-value object for, 35

quantum theta function

as a linear category, 91

random field

canonical associated with μG+ , 70

rapidity, 5

realism

in classical physics, 29

Reeh-Schlieder theorem, 7

refinement, 329

reflection positivity, 69

regularization

method of variable, 257

regularization parameter, 140

Rehren

algebraic holography, 15

Reidemeister torsion, 100

relativistic particle

equations of motion of, 201

renormalization, 140

algebraic

recursiveness via the orders in �, 194

as Birkhoff decomposition, 146

conditions, 183

finite, 194

of coupling constants, 79
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on the level of 1PI Green’s functions, 138

recursive BPHZ approach, 141

subtraction of counter terms, 141

Ricci tensor

for plane waves, 200

Riemann tensor

for plane waves, 200

Riemann zeta function, 98

Riemann, Bernhard, 261

citation about geometry of space-time, 285

rule of inference, 31

running coupling constant, 143

S-matrix

definition, 166

scaling, 183

scaling degree, 184, 194

scaling operator, 289

scattering

elastic, without particle creation, 3

Schrödinger equation

q-deformed inhomogeneous, 278

for a free q-deformed particle, 275

stochastic, 59

time-dependent, 207

Schwinger functions

reflection positivity of, 74

scientific production

coupled to “Zeitgeist”, 19

secular terms, 172

Seiberg-Witten map

global version, 129

Serre-Swan theorem, 121

as motivation for noncommutative
geometry, 122

shuffle product, 99

Slavnov-Taylor identities, 142, 158

smooth geometry

as excited state in loop quantum
gravity, 219

smooth space

probed by objects of S, 319

sources

additional external, 170

space

diffeological, 321

having no points, 26

parameter, 404

simplicial, 370

space-like commutativity

violation of, 3

space-time

continuum, 257

discrete, 235, 257

emergence of, 258

locally noncommutative, 121

noncommutative, 118

points in discrete, 236

quantization of, using a lattice, 262

space-time foliation

as auxiliary structure, 218

spacelike separated, 244

spectral order

on self-adjoint operators, 35

spectral presheave

definition, 34

spectral weight, 238

spin connection, 219

spin dimension, 236

spin structure

on loop space, 414

spinor metric

q-deformed, 287

spontaneous symmetry breaking, 240

star product, 182, 267

bidifferential operators for, 120

formal, 119

Hermitian, 122

on a generic manifold, 120

state

described by cumulants, 167

generalized

from generalized elements, 38

KMS thermal, radiating, 6

KMS thermal, related to entropy, 6

mixed, 166

object, 32, 34

quantum mechanical

factorizing, 6

space, in connection representation, 219

stability, 255

transfered into interaction, 170

stationary phase method, 51

stochastic processes

theory of, 52

string

fundamental, 416

string 2-bundle, 305

string Lie 2-algebra, 359

skeletal, 360

strict, 360

string structure, 414, 415

string theory, 197, 304

application of L∞-algebras, 414
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obstructing n-bundle, 414

structure constants

quantum, 288

stuffle product, 98

subobject classifier

definition, 28

Sullivan model, 357

sum over histories, 50

super Poincaré algebra

q-deformed, 292

supergravity

C-filed, 399

11-dimensional, fields of, 363

3-form, 364

from String-like extensions, 364

global description of, 364

instaton solutions, 364

superpoint, 322

superspace

Euclidean, q-deformed, 293

suspension to 0, 346

symbol calculus, 119

symmetry algebra

q-deformed, 287

symmetry breaking

spontaneous, 240

symmetry factor, 144

systems

in discrete space time

numerics, 257

tensor algebra, 330

tensor coalgebra, 330

tensor factorization

of operator algebras, 11

terminal object, 27

Thaddeus formula, 109

theory of everything, 19

theta function

Jacobi, 87

quantum, as linear category, 91

thruth-values

for propositions in Set, 28

time

Euclidean, 72

global internal, 226

time evolution operator, 165

related to Fubini theorem, 55

time-like separated, 243

time-ordered

exponential, 207

product, 183

topos

appropriate for quantum theory, 34

as a mathematical universe, 27

Boolean, 28

choice of

in relation to modeling theories, 29

of presheaves, 33

smooth, 45

what is a, 26

topos programme

idea of, 26

topos theory

and physics, 29

as a new mathematical framework
for physical theories, 26

in the foundation of physics, 25

torus

noncommutative, 83

trace formula

Gutzwiller, 58

Selberg, 58

transgression

of g-connections, 402

transgression element, 340, 345

transgression form

computation of, 343

translation invariance, 183

trigonometric function

q-analog of, 263

triviality, 75

for Φ4 theory, 78

obstacle of, 79

truth object, 38

construction of, 39

definition, 40

without reference to a Hilbert space, 41

truth-values, 38

assignment of, 42, 44

in the internal logic of a topos, 29

properties of their assignment, 44

type symbol, 32

u(1), shifted, 335

unification

of quantum field theory and
quantum chemistry, 171

unitary group

infinite projective, 305

universe

microscopic structure of, 258

Unruh effect

inverse, 12
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vacuum
chimeric, 6
in loop quantum gravity, 219

vacuum polarization
chiral, 6

valuation map, 43
variation principle

as source of interaction, 238
critical, 239
for the fermionic projector, 238
for the masses of the Dirac seas, 254
Lorentz invariant, 256

vector bundle
stable, 102

Verlinde formula, 96
for SU(3), 97
generalized allowing marked points, 99

volume
of the SU(3) moduli space, 98

volume divergence
of the energy and entropy, 11

Ward identity, 142, 158, 177
wave front set, 179
wave function

many-particle, 237
wave operator

retarded, 180
wave, traveling, 198
Weil algebra, 336

and String-like extension, 387
as Lie 2-algebra, 334
in supermanifold language, 337
of an L∞-algebra, 332

Wess, Julius, 121
Wess-Zumino-Witten model

on a Riemann surface, 96
Weyl alcove, 107

Weyl-Moyal product, 119
Wick rotation, 68
Wick theorem, 164
Wightman axioms, 2
Wightman, Arthur, 2
Witt-Virasoro algebra, 11
Witten’s volume formula

for SU(3) moduli space, 113

Yang-Mills theory, 211
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