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PREFACE

The goal of this volume is to describe how our understanding of space-time

structure has evolved since Einstein’s path-breaking 1905 paper on special

relativity and how it might further evolve in the next century.

Preoccupation with notions of Space (the Heavens) and Time (the

Beginning, the Change and the End) can be traced back to at least 2500

years ago. Early thinkers from Lao Tsu in China and Gautama Buddha

in India to Aristotle in Greece discussed these issues at length. Over cen-

turies, the essence of Aristotle’s commentaries crystallized in the Western

consciousness, providing us with mental images that we commonly use.

We think of space as a three-dimensional continuum which envelops us.

We think of time as flowing serenely, all by itself, unaffected by forces in

the physical universe. Together, they provide a stage on which the drama of

interactions unfolds. The actors are everything else — stars and planets, ra-

diation and matter, you and me. In Newton’s hands, these ideas evolved and

acquired a mathematically precise form. In his masterpiece, the Principia,

Newton spelled out properties of space and the absolute nature of time. The

Principia proved to be an intellectual tour de force that advanced Science

in an unprecedented fashion. Because of its magnificent success, the notions

of space and time which lie at its foundations were soon taken to be obvious

and self-evident. They constituted the pillars on which physics rested for

over two centuries.

It was young Einstein who overturned those notions in his paper on

special relativity, published on 26th September 1905 in Annalen der Physik

(Leipzig). Lorentz and Poincaré had discovered many of the essential math-

ematical underpinnings of that theory. However, it was Einstein, and Ein-

stein alone, who discovered the key physical fact — the Newtonian notion

of absolute simultaneity is physically incorrect. Lorentz transformations

of time intervals and spatial lengths are not just convenient mathematical

ways of reconciling experimental findings. They are physical facts. Newton’s

assertion that the time interval between events is absolute and observer-

independent fails in the real world. The Galilean formula for transformation

of spatial distances between two events is physically incorrect. What seemed

obvious and self-evident for over two centuries is neither. Thus, the model

v
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of space-time that emerged from special relativity was very different from

that proposed in the Principia.

Space-time structure of special relativity has numerous radical ramifica-

tions — such as the twin “paradox” and the celebrated relation E = Mc
2

between mass and energy — that are now well known to all physicists.

However, as in the Principia, space-time continues to remain a backdrop,

an inert arena for dynamics, which cannot be acted upon. This view was

toppled in 1915, again by Einstein, through his discovery of general rela-

tivity. The development of non-Euclidean geometries had led to the idea,

expounded most eloquently by Bernhard Riemann in 1854, that the geom-

etry of physical space may not obey Euclid’s axioms — it may be curved

due to the presence of matter in the universe. Karl Schwarzschild even tried

to measure this curvature as early as 1900. But these ideas had remained

speculative. General relativity provided both a comprehensive conceptual

foundation and a precise mathematical framework for their realization.

In general relativity, gravitational force is not like any other force of

Nature; it is encoded in the very geometry of space-time. Curvature of

space-time provides a direct measure of its strength. Consequently, space-

time is not an inert entity. It acts on matter and can be acted upon. As John

Wheeler puts it: Matter tells space-time how to bend and space-time tells

matter how to move. There are no longer any spectators in the cosmic dance,

nor a backdrop on which things happen. The stage itself joins the troupe

of actors. This is a profound paradigm shift. Since all physical systems

reside in space and time, this shift shook the very foundations of natural

philosophy. It has taken decades for physicists to come to grips with the

numerous ramifications of this shift and philosophers to come to terms with

the new vision of reality that grew out of it.

Einstein was motivated by two seemingly simple observations. First, as

Galileo demonstrated through his famous experiments at the leaning tower

of Pisa, the effect of gravity is universal: all bodies fall the same way if

the only force acting on them is gravitational. This is a direct consequence

of the equality of the inertial and gravitational mass. Second, gravity is

always attractive. This is in striking contrast with, say, the electric force

where unlike charges attract while like charges repel. As a result, while one

can easily create regions in which the electric field vanishes, one cannot

build gravity shields. Thus, gravity is omnipresent and nondiscriminating;

it is everywhere and acts on everything the same way. These two facts

make gravity unlike any other fundamental force and suggest that gravity

is a manifestation of something deeper and universal. Since space-time is
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also omnipresent and the same for all physical systems, Einstein was led to

regard gravity not as a force but a manifestation of space-time geometry.

Space-time of general relativity is supple, depicted in the popular literature

as a rubber sheet, bent by massive bodies. The sun, for example, bends

space-time nontrivially. Planets like earth move in this curved geometry. In

a precise mathematical sense, they follow the simplest trajectories called

geodesics — generalizations of straight lines of the flat geometry of Euclid

to the curved geometry of Riemann. Therefore, the space-time trajectory

of earth is as “straight” as it could be. When projected into spatial sec-

tions defined by sun’s rest frame, it appears elliptical from the flat space

perspective of Euclid and Newton.

The magic of general relativity is that, through elegant mathematics,

it transforms these conceptually simple ideas into concrete equations and

uses them to make astonishing predictions about the nature of physical re-

ality. It predicts that clocks should tick faster on Mont Blanc than in Nice.

Galactic nuclei should act as giant gravitational lenses and provide spectac-

ular, multiple images of distant quasars. Two neutron stars orbiting around

each other must lose energy through ripples in the curvature of space-time

caused by their motion and spiral inward in an ever tightening embrace.

Over the last thirty years, precise measurements have been performed to

test if these and other even more exotic predictions are correct. Each time,

general relativity has triumphed. The accuracy of some of these observa-

tions exceeds that of the legendary tests of quantum electrodynamics. This

combination of conceptual depth, mathematical elegance and observational

success is unprecedented. This is why general relativity is widely regarded

as the most sublime of all scientific creations.

Perhaps the most dramatic ramifications of the dynamical nature of

geometry are gravitational waves, black holes and the big-bang.a

aHistory has a tinge of irony — Einstein had difficulty with all three! Like all his con-
temporaries, he believed in a static universe. Because he could not find a static solution
to his original field equations, in 1917 he introduced a cosmological constant term whose
repulsive effect could balance the gravitational attraction, leading to a large scale time
independence. His belief in the static universe was so strong that when Alexander Fried-
mann discovered in 1922 that the original field equations admit a cosmological solution
depicting an expanding universe, for a whole year, Einstein thought Friedmann had made
an error. It was only in 1931, after Hubble’s discovery that the universe is in fact dy-
namical and expanding that Einstein abandoned the extra term and fully embraced the
expanding universe. The story of gravitational waves is even more surprising. In 1936

Einstein and Nathan Rosen submitted a paper to Physical Review in which they argued
that Einstein’s 1917 weak field analysis was misleading and in fact gravitational waves do
not exist in full general relativity. It is now known that the paper was refereed by Percy
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Gravitational waves are ripples in the curvature of space-time. Just as an

oscillating electric dipole produces electromagnetic waves, using the weak-

field approximation of general relativity, Einstein showed already in 1917

that a time-changing mass quadrupole produces these ripples. In the 1960’s

Hermann Bondi, Rainer Sachs, Roger Penrose and others extended the the-

ory to full nonlinear general relativity. They firmly established that these

ripples are not “coordinate-gauge effects” but have direct physical signifi-

cance. They carry energy; as Bondi famously put it, one could boil water

with them. Through careful observations of a binary pulsar, now spanning

three decades, Russell Hulse and Joseph Taylor showed that its orbit is

changing precisely in the manner predicted by general relativity. Thus, the

reality of gravitational waves is now firmly established. Gravitational wave

observatories have been constructed to receive them directly on earth. It is

widely expected that they will open a new window on the universe.

General relativity ushered-in the era of modern cosmology. At very large

scales, the universe around us appears to be spatially homogeneous and

isotropic. This is the grandest realization of the Copernican principle: our

universe has no preferred place nor favored direction. Using Einstein’s equa-

tions in 1922, Alexander Friedmann showed that such a universe cannot be

static. It must expand or contract. In 1929, Edwin Hubble found that the

universe is indeed expanding. This in turn implies that it must have had

a beginning where the density of matter and curvature of space-time were

infinite. This is the big-bang. Careful observations, particularly over the last

decade, have shown that this event must have occurred some 14 billion years

ago. Since then, galaxies are moving apart, the average matter content is

becoming dilute. By combining our knowledge of general relativity with

laboratory physics, we can make a number of detailed predictions. For in-

stance, we can calculate the relative abundances of light chemical elements

whose nuclei were created in the first three minutes after the big-bang; we

can predict the existence and properties of a primal glow — the cosmic

Robertson, a renowned relativist, who pointed out the error in the argument. Einstein
withdrew the paper saying that he had not authorized the Editors “to show the paper
to specialists before it was printed” and “he saw no reason to address the — in any case
erroneous — comments of your anonymous expert”. Finally, he did not believe in the
existence of black holes. As late as 1939, he published a paper in the Annals of Mathe-

matics arguing that black holes could not be formed through the gravitational collapse
of a star. The calculation is correct but the conclusion is an artifact of a nonrealistic

assumption. Just a few months later, Robert Oppenheimer and Hartland Snyder — also
members of the Princeton Institute of Advanced Study — published their now classic
paper establishing that black holes do in fact result.
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microwave background — that was emitted when the universe was some

400,000 years old; and we can deduce that the first galaxies formed when

the universe was a billion years old. What an astonishing range of scales

and variety of phenomena! In addition, general relativity also changed the

philosophical paradigm to phrase questions about the Beginning. It is not

just matter but the space-time itself that is born at the big-bang. In a pre-

cise sense, the big-bang is a boundary, a frontier, where space-time ends.

General relativity declares that physics stops there; it does not permit us

to look beyond.

Through black holes, general relativity opened up the third unforeseen

vista. The first black hole solution to Einstein’s equation was discovered

already in 1916 by Schwarzschild while serving on the front lines during

the First World War. However, acceptance of its physical meaning came

very slowly. Black holes are regions in which the space-time curvature is

so strong that even light cannot escape. Therefore, according to general

relativity, they appear pitch black to outside observers. In the rubber sheet

analogy, the bending of space-time is so extreme inside a black hole that

space-time is torn-apart, forming a singularity. As at the big-bang, curva-

ture becomes infinite. Space-time develops a final boundary and physics of

general relativity simply stops.

And yet, black holes appear to be mundanely common in the universe.

General relativity, combined with our knowledge of stellar evolution, pre-

dicts that there should be plenty of black holes with 10 to 50 solar masses,

the end products of lives of large stars. Indeed, black holes are prominent

players in modern astronomy. They provide the powerful engines for the

most energetic phenomena in the universe such as the celebrated gamma

ray bursts in which an explosion spews out, in a few blinding seconds, as

much energy as from a 1000 suns in their entire life time. One such burst

is seen every day. Centers of elliptical galaxies appear to contain a huge

black hole of millions of solar masses. Our own galaxy, the Milky Way, has

a black hole of some 3 million solar masses at its center.

General relativity is the best theory of gravitation and space-time struc-

ture we have today. It can account for a truly impressive array of phenomena

ranging from the grand cosmic expansion to the functioning of the more

mundane global positioning system on earth. But it is incomplete because

it ignores quantum effects that govern the subatomic world. Moreover, the

two theories are dramatically different. The world of general relativity has

geometric precision, it is deterministic; the world of quantum physics is

dictated by fundamental uncertainties, it is probabilistic. We maintain a
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happy, schizophrenic attitude, using general relativity to describe the large

scale phenomena of astronomy and cosmology and quantum mechanics to

account for properties of atoms and elementary particles. This is a viable

strategy because the two worlds rarely meet. Nonetheless, from a concep-

tual standpoint, this is highly unsatisfactory. Everything in our experience

as physicists tells us that there should be a grander, more complete theory

from which general relativity and quantum physics arise as special, limit-

ing cases. This would be the quantum theory of gravity. It would take us

beyond Einstein.

Perhaps the deepest feature of general relativity is its encoding of grav-

ity into the very geometry of space-time. It is often the case that the deepest

features of a theory also bring out its limitations. General relativity is no

exception. As we saw, it implies that space-time itself must end and physics

must stop when curvature becomes infinite. However, when curvatures be-

come large, comparable to the Planck scale, one can no longer ignore quan-

tum physics. In particular, near the big-bang and black hole singularities

the world of the very large and of the very small meet and predictions of

classical general relativity cannot be trusted. One needs a quantum theory

of gravity. Although they seem arcane at first, singularities are our gates to

go beyond general relativity. Presumably, quantum space-time continues to

exist and real physics cannot stop there. To describe what really happens,

once again we must dramatically revise, our notions of space and time. We

need a new syntax.

This volume is divided into three parts. The first discusses the concep-

tual transition from Newtonian notions of space-time to those of special

and general relativity. The second part is devoted to the most striking fea-

tures of general relativity, especially the three ramifications outlined above.

These contributions cover well established theoretical results within general

relativity as well as applications and experimental status of the theory. The

third part presents various approaches to quantum gravity. Here the em-

phasis is on new conceptual elements underlying the emerging paradigms

and predictions they lead to. Is the dimension of space-time more than four?

What replaces the continuum at the Planck scale? Is there a specific type

of underlying discrete structure? Must one replace space-time with another

fundamental structure already at the classical level, without any reference

to the Planck scale? Can a consistent quantum gravity theory emerge by

itself or must it necessarily unify all forces of Nature? Must it simultane-

ously complete our understanding of the quantum measurement theory?

Different approaches adopt different — and often diametrically opposite
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— viewpoints to these fundamental questions and therefore the resulting

theories have strikingly different features. This variety is essential at the

present stage because we are still rather far from a fully satisfactory quan-

tum gravity theory. Furthermore, as yet there is no hard experimental data

to guide us. Therefore, as we celebrate the 100th anniversary of Einstein’s

Annus Mirabilis it is important that we maintain a long range perspective.

Indeed, we would do well to avoid the traps that the celebrated biologist

François Jacob warned all scientists about:

The danger for scientists is not to measure the limits of their sci-

ence, and thus their knowledge. This leads to mix what they believe

and what they know. Above all, it creates the certitude of being

right [prematurely].

The third part of this endeavors to maintain the necessary openness.

Abhay Ashtekar

September, 2005
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Part I

From Newton to Einstein

Paradigm Shifts

It is as if a wall which separated us from the truth has col-

lapsed. Wider expanses and greater depths are now exposed to

the searching eye of knowledge, regions of which we had not even a

pre-sentiment.

—Hermann Weyl, On the Discovery of General Relativity
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CHAPTER 1

DEVELOPMENT OF THE CONCEPTS OF SPACE, TIME

AND SPACE-TIME FROM NEWTON TO EINSTEIN

JOHN STACHEL

Dept. of Physics and Center for Einstein Studies, Boston University,
590 Commonwealth Avenue, Boston, MA 02215, USA

The concept of physical change brings together the concepts of space
and time. The evolution of the latter two concepts, and of relation be-
tween them, in physical theories from Newtonian mechanics to general
relativity is outlined, culminating in the development of the concept of
space-time and its dynamization. The chrono-geometrical and inertio-
gravitational space-time structures are defined, and the compatibility
relations between the two are discussed. The philosophical debate be-
tween absolute and relational concepts of space and then of space-time is
reviewed, as is the contrast between pre-general-relativistic theories with
fixed background space-time structures and background-free general rel-
ativistic theories. Some implications of this contrast for the problem of
quantum gravity are indicated.

1. Introduction: The Changing Nature of Change

This chapter discusses the development of the concepts of space and time as

employed in the formulation of various physical theories. These two concepts

in turn are intimately connected with the concept of change, so time, space,

and change must be discussed together. When considered apart from the

causes of change, they form the subject matter of kinematics.a

Traditionally, one distinguished between two types of change:b

(1) the change of position in space of some object in the course of time,

i.e., motion; and

aUnder what circumstances kinematics can and cannot be cleanly separated from dy-
namics will form an important topic for later discussion.
bNaturally, the two types can be combined to describe changes of the properties of an
object as it changes its position in space.

3
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(2) the change over time of some property of an object – quantitative or

qualitative – at the same position in space.

Change of some property leads to a concept of time that I call local, since

it applies to sequences of events at the same place; while motion leads to a

concept of time that I call global, since it requires the comparison of times

at different places in space.c When all physics was based on Newtonian me-

chanics, with its ultimately atomistic basis,d this distinction sufficed. The

mathematical description of both types of change employed total deriva-

tives (d/dt) with respect to the Newtonian absolute time. Even today, after

abandonment of this concept, such descriptions are still useful when dealing

with discrete objects (often called ‘particles’) and employing appropriate

concepts of local and global time (see the detailed discussion later of the

various concepts of time).

But the development, in the course of the 19th century, of the novel

concept of (physical) fields filling all of space and changing over time, first

in optics and then in electrodynamics, led to the need for a new type of

mathematical description of change,e using partial derivatives with respect

to a global temporal variable evaluated at some fixed point in space.f The

failure of all attempts to bring the field concept into harmony with Newto-

nian mechanics ultimately led to the critical examination of such concepts

as at the same place at different times and at the same time at different

places, and hence to the special theory of relativity.

2. The Bronstein Cube

Starting from the concepts of time and space associated with Galilei-

Newtonian physics, I shall then discuss the changes in these concepts neces-

sitated by the special theory of relativity, and finally, emphasize the even

cThe concepts of time and place each will be examined more critically in later sections.
dThe mechanics of continuous media is based on the idea that one can follow the trajec-
tory of each ‘particle’ of the medium, resulting in the so-called Lagrangian description
of its dynamics.
eAttempts were made to incorporate the concept of field within Newtonian mechanics
by regarding such fields as states of hypothetical mechanical media or ether. But all

attempts to treat the ether as a mechanical system ultimately proved fruitless, and it
came to be recognized that field is a new, non-mechanical concept. In spite of attempts
to unify physics on the basis of either the field or particle concept, contemporary physics
still has a dualistic basis.
f In point of fact, this first occurred in fluid dynamics, resulting in the so-called Eulerian

description of fluid dynamics. But in this case, one can always revert to a Lagrangian
description (see note 4).
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Fig. 1

more striking changes brought about by the advent of the general theory.

My approach is not primarily historical, but what I call (in tribute to Ernst

Mach) historical-critical. That is, while broadly following the historical or-

der of development of the subject, I do not hesitate to violate that order

by introducing more recent concepts and/or viewpoints whenever this fa-

cilitates the understanding of some current question.

A convenient way to orient oneself amidst the various physical theories

to be discussed is to use what I call the Bronstein cube (see Fig. 1).g At the

lower left-hand corner of the cube is the starting point of modern physics

(not including gravitation), Galilei-Newtonian Theory. By adding the New-

tonian gravitational constant G, the speed of light in vacuum c, and Planck’s

constant h in various combinations, one reaches each of the physical the-

ories listed on the other corners of the cube. Most of these transitions are

fairly clear, but some require further comment. The space-time structures

of Galilei-Newtonian Theory and Special Relativity are unique; but when

G is introduced (see Fig. 2), resulting in General Non-Relativity and Gen-

eral Relativity, these names denote classes of space-time structures — one

for each solution to Newton’s and Einstein’s gravitational field equations

gFor further discussion of the Bronstein cube, see Ref. 14.
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respectively. Furthermore, Newtonian gravitation theory is considered in its

modern, four-dimensional formulation, which takes into account the equiv-

alence principle (see Sec. 11); I have adopted the name for this formulation

of Newtonian theory introduced by Jürgen Ehlers – General Non-Relativity

— which contrasts nicely with General Relativity. But the name should not

be taken to imply that the theory has no relativity (i.e., no symmetry group

of the space-time): indeed, the chronogeometry of this class of space-times

is invariant under a wider group than that of Galilei-Newtonian space-time,

as discussed in Secs. 5 and 8.

The upper right-hand corner of the cube, Quantum Gravity, also calls

for further comment. It is not the name of an already-existing theory, but

rather of a hope: The goal of much current research in theoretical physics is

to find a theoretical framework wide enough to encompass (in some sense)

both classical general relativity and (special-relativistic) quantum field the-

ory. Unfortunately, in the current state of this subject, the edges of the cube

do not commute (see Figs. 3, 4). Starting from quantum field theory on the

road to quantum gravity and attempting to incorporate the Newtonian con-

stant G, most particle physicists believe that one will arrive at some version
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Fig. 3. General Relativists’ Viewpoint.
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Fig. 4. Particle Physicists’ Viewpoint.
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of string theory, M-theory or what have you –opinion about the ultimate

goal seems divided. Starting from general relativity and attempting to in-

corporate Planck’s constant h, most general relativists believe that one must

develop a diffeomorphism-invariant formulation of quantum theory – a goal

of the loop quantum gravity program that has not yet been fully achieved.

Only time, and successful incorporation of quantum-gravitational phenom-

ena when they are discovered, will tell which path (if either) ultimately

proves to be more fruitful.h

3. Demokritos versus Aristotle: ‘Space’ versus ‘Place’

Before turning to the modern period, it is instructive to recall that ancient

Greek natural philosophy was already the site of a conflict between two

concepts of space: the absolute concept of the Greek atomists, according

to which space, referred to as ‘the void,’ is a container, in which atoms of

matter move about. Demokritos of Abdera asserted:

By convention are sweet and bitter, hot and cold, by convention

is color; in truth are atoms and void (Fragment 589 in Ref. 6,

p. 422).

Aristotle criticized the atomists in these words:

The believers in its [the void’s] reality present it to us as if it were

some kind of receptacle or vessel, which may be regarded as full

when it contains the bulk of which it is capable, and empty when

it does not (Physics, book VI).

He espoused the relational concept, according to which space has no in-

dependent existence, but is just a name for the collection of all spatial

relations between material entities. A void cannot exist, motion is just the

displacement of one portion of matter by another; thus, Aristotle’s doctrine

is really a theory of place rather than of space.

Aristotelianism triumphed together with Christianity, and atomism

practically vanished from the western philosophical tradition for almost two

millennia. With its revival in early modern times and subsequent adoption

by Newton, the conflict between the absolute and relational concepts also

revived as the 17th–18th century battle between Newtonianism and Carte-

sianism (the philosophy of Réné Descartes). Voltaire wittily observed:

hElsewhere I have offered some arguments explaining why I favor the latter course, or
some even more radical departure from background-dependent physics. See Ref. 15.
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A Frenchman, who arrives in London, will find philosophy, like

everything else, very much changed there. He had left the world

a plenum, and he now finds it a vacuum (Lettres philosophiques.

Letter XIV, On Descartes and Sir Isaac Newton).i

This time it was the Newtonian absolute concept of space that triumphed

in spite of the cogent arguments of Leibniz and Huygens against it.

In fine, the better to resolve, if possible, every difficulty, he [Newton]

proves, and even by experiments, that it is impossible there should

be a plenum; and brings back the vacuum, which Aristotle and

Descartes had banished from the world (Voltaire, ibid., Letter XV,

On Attraction).

As Leonhard Euler emphasized, absolute space seemed to be demanded by

Newtonian dynamics.j

4. Absolute versus Relational Concepts of Space and Time

Einstein4 (p. xiv) summarizes the conflict in these words:

Two concepts of space may be contrasted as follows: (a) space

as positional quality of the world of material objects; (b) space

as container of all material objects. In case (a), space without a

material object is inconceivable. In case (b), a material object can

only be conceived as existing in space; space then appears as a

reality, which in a certain sense is superior to the material world.

A similar contrast can be made between two concepts of time, but now

in my words:

(a) time as an ordering quality of the world of material events;

(b) time as a container of all material events.

On the basis of the first concept, time without a material event is incon-

ceivable. On the basis of the second, a material event can only be conceived

as existing in time; time then appears as a reality that in a certain sense is

superior to the material world.

iCited from the English translation.20
jSee Ref. 5.
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Logically, it would seem possible to combine either point of view about

space with either point of view about time; but in fact most seventeenth-

century natural philosophers either adopted the absolute viewpoint about

both, like Newton; or the relational viewpoint, like Descartes, and following

him Leibniz and Huygens.

5. Universal Temporal Order

I shall return later to the question of absolute versus relational concepts

of time, but for the moment focus on a presupposition about temporal

order common to both views before the advent of the special theory of

relativity. Whether inherent in the nature of the events defining this order,

or drawn from the immersion of these events in an independent temporal

continuum, temporal order was presumed to be unique and universal. For

a continuous sequence of events occurring ‘at the same place,’k this order

is indeed unique for each sequence of events, as is the associated concept of

local time. The existence of a universal or absolutel time connecting events

at different places depends on the existence of a unique temporal order

common to all possible local times, i.e., all possible sequences of events at

the ‘same place’, at all places.m

For events occurring at ‘different places’, a convention is still needed

to define ‘simultaneity’ of events and allow introduction of a global time.

Simultaneity must be an equivalence relation, i.e., reflexive (any event is

simultaneous with itself), symmetric (if event a is simultaneous with event

b, then b is simultaneous with a), and transitive (if a is simultaneous with

b and b is simultaneous with c, then a is simultaneous with c). But an

equivalence relation between the elements of any set divides the set into

equivalence classes: Every element of the set belongs to one and only one

class, all members of which are equivalent under the relation. If an abso-

lute time exists, it provides a ‘natural’ equivalence relation between distant

events (two events are temporally equivalent iff they occur at the same

absolute time), and hence may be used to define simultaneity and a global

kFor the moment, taking for granted the meaning of this expression.
lNote that the word ‘absolute’ is used here in a different sense than earlier in this chapter,
where absolute and relational concepts of time and space were contrasted. It would be
better to use the term ‘universal’ here, but absolute is so generally used in this context
that I shall follow this usage in spite of the possibility of confusion. As will be seen below,
in this context the contrast is between absolute or universal (i.e., independent of frame
of reference) and relative (i.e., dependent on frame of reference).
mMathematically, this is the requirement that the local time along any sequence of events
be a perfect differential of the unique global time.
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time. In the context of Newtonian kinematics, this is obvious, and usually is

not even mentioned; but it is a convention nonetheless. We thereby transfer

the local temporal ordering of events at one place (which place is chosen

does not matter because of the existence of the absolute simultaneity rela-

tion) to a global temporal ordering of events at different places. Hence, in

Galilei-Newtonian physics, the concepts of local and global time, although

conceptually distinct, effectively coincide in the idea of a universal or abso-

lute time. Operationally, this means that (ideal) clocks, once synchronized

at one place in space, will always agree on their readings wherever they are

compared again, and whatever their intermediate histories. This assertion

has been tested, and found to be false — but only long after Newtonian

kinematics had been replaced for other reasons.

6. Relative Space

Now I turn to the long-promised examination of the concept of ‘at the

same place’. Just as his dynamical theory presupposes the existence of

a universal or absolute time, Newton believed that it also required the

existence of a universal or absolute space. If this were so, it would be clear

what ‘at the same place’ means: at the same place in absolute space. But

Newton himself was aware of an ‘operational’ problem with the concept of

absolute space: While it is rather easy to give an experimental prescription

for deciding whether or not a body is in absolute rotation (Newton’s bucket

thought experiment, or Foucault’s later actual pendulum) or (if we neglect

gravitation) if it is absolutely accelerated linearly, there is no prescription

enabling a decision on whether a body is at rest or in uniform (i.e., un-

accelerated) linear motion with respect to a hypothetical absolute space.

In other words, the laws of Newtonian mechanics do not allow the singling

out, by means of the result of any mechanical experiment, of a state of

absolute rest from the class of all uniform motions, which much late came

to be called inertial systems.

If one believes, as did adherents of the mechanical world-view, that all

physical phenomena could be explained as effects of mechanical interac-

tions, this inability implied the abandonment of the autocratic concept of

a single absolute space, and its replacement by a democracy of so-called

inertial frames of reference, as was realized by the end of the 19th cen-

tury.n An inertial frame can be defined as one in a state of un-accelerated

motion, that is, one in which Newton’s First Law is valid: An object acted

nIn particular, Ludwig Lange introduced both the concept and the name ‘inertial system’
in 1885. See the discussion of Lange in Ref. 18, pp. 17ff.
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upon by no (net) external forces moves in a straight line with constant

velocity with respect to an inertial frame of reference.o This equivalence

of all inertial frames has been called the relativity principle of Newtonian

mechanics. There is a three-fold infinity of inertial frames, each of which is

in a state of uniform motion with respect to all the others, and in each of

which Newton’s laws of mechanics are equally valid.

With the abandonment of absolute space, the concept ‘at the same place’

loses its absolute significance, and must be replaced by the concept ‘at the

same place relative to some inertial frame of reference.’ p

In summary, whether or not adherents of the mechanical worldview

were aware of it, Newtonian mechanics properly understood does require

a universal or absolute concept of time, but leads to abandonment of the

concept of absolute position in favor of a concept of relative position with

respect to some reference frame, usually chosen to be inertial.

The concepts of absolute time and relative space may be given oper-

ational significance in terms of the measurement of temporal and spatial

intervals with (ideal) measuring clocks and rods, respectively. For exam-

ple, the temporal interval (’time’) between two events, as measured by

two clocks is independent of the inertial frame of reference in which the

clocks are at rest (and therefore, they need not both be at rest in the same

frame). On the other hand, the spatial interval (distance) between two non-

simultaneous events, as measured by a rigid measuring rod for example, is

not absolute, but depends on the inertial frame of reference in which the

measuring rod is at rest. Since there is no preferred inertial frame of ref-

erence (no ‘absolute space’), none of these relative distances can claim the

title of ‘the (absolute) distance’.

For simultaneous events, of course, the distance between them is in-

dependent of the inertial frame in which the measuring rod is at rest: It

makes no difference whether the rod is at rest or in motion relative to the

two events. When one speaks of ‘the length’ of an extended object, what is

oThe phrase ‘with constant velocity’ implies that an appropriate definition of distant
simultaneity must be adopted when, as in the special theory of relativity, the concept
of absolute time is abandoned. When we come to consider gravitation, we shall have to
examine the phrase: ‘acted on by no (net) external forces’ more critically.
pOne might be tempted to generalize, and say: ‘with respect to any arbitrary frame of
reference’. But in both Galilei-Newtonian and special-relativistic theories, the inertial
frames maintain their privileged role: The laws of physics take their simplest form when

expressed relative to these frames – as long as gravitation is disregarded. As we shall
see, when gravitation is taken into account, the inertial frames lose their privileged role
even in Galilei-Newtonian theory.
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meant is the distance between two simultaneous events, one at each end of

the object, and in Newtonian physics this is an absolute concept.

The triumph of the wave theory of optics in the mid-19th century, and its

subsequent union with electrodynamics in Maxwell’s theory of electromag-

netism, led to the introduction of a hypothetical medium, the luminiferous

ether, as the seat of light waves and later of all electric and magnetic fields.

After extensive debates in the course of the century about the nature of the

interaction between the ether and ordinary matterq, the viewpoint espoused

by H. A. Lorentz prevailed: The ether fills all of space – even where ordi-

nary matter is present – and remains immobile, even when matter moves

through it. Ejected from mechanics, Newton’s absolute space seemed to

return in the form of this immobile ether, which provided a unique frame

of reference for optical and electrodynamic phenomena. In particular, the

speed of light (or any other electromagnetic wave) was supposed to have a

fixed value with respect to the ether, but according to Newtonian kinemat-

ics (the Galileian law of addition of velocities) its value with respect to any

other inertial frame of reference in motion relative to the ether should differ

– in particular with respect to the inertial frames defined at each instant

by the earth in its motion.

Yet all attempts to measure such a change in the velocity of light – or

any other predicted effect of motion through the ether on the behavior of

light or any other electrodynamic phenomenon – failed. Various efforts to

resolve this dilemma within the framework of classical kinematics raised

their own problems,r until Einstein2 cut the Gordian knot, pointing out

that:

The theory to be developed - like every other electrodynamics -

is based upon the kinematics of rigid bodies, since the assertions

of any such theory concern relations between rigid bodies (coor-

dinate systems), clocks, and electromagnetic processes. Insufficient

consideration of this circumstance is at the root of the difficulties

with which the electrodynamics of moving bodies currently has

to contend.

7. Relative Time

A re-analysis of the foundations of Galilei-Newtonian kinematics led

Einstein to pinpoint the concept of universal or absolute time as the source

qSee Ref. 16.
rSee ibid.
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of the incompatibility of the relativity principle of Newtonian mechanics

with Maxwell’s electrodynamics of moving bodies. Once this concept was

abandoned, he found that all reference to the ether could be eliminated,

and the relativity principle — the full equivalence of all inertial frames —

could be extended to all phenomena, electrodynamical and optical as well

as mechanical. Elimination of the ether of course eliminated the need to

find an explanation for the failure of all attempts to detect motion through

it. Taken together with the relativity principle, the absence of a physi-

cally privileged ether frame implies that the speed of light must be the

same in all inertial frames, a result that is clearly incompatible with the

old kinematics. Einstein developed a new kinematics, in which temporal

intervals — local or global — are no more universal or absolute than are

spatial intervals: Both (global) time and space are relative to an inertial

frame of reference. Since there is no universal or absolute time, clocks can

no longer be synchronized absolutely, i.e., in a way that is independent

of the method of synchronization; so the concept of distant simultaneity

must be analyzed very carefully. As noted earlier, an element of arbitrari-

ness (convention) enters into any definition of global time and hence of

(relative) simultaneity. But, in each inertial frame, the choice of one con-

vention is clearly superior since it results in the greatest simplicity in the

expression of the laws of nature. This convention, applied in each inertial

frame of reference, results in that frame having its own relative simultane-

ity. The convention can be defined operationally, for example, with the

help of a system of equivalent clocks at rest in that frame. These clocks

may be synchronized using any signal that has a speed in that frame that

one may justifiably regard as independent of the direction of the signal.

The speed of light in vacuum meets this criterion, and furthermore has

the same value in all inertial frames if this synchronization convention is

used in each. So, it provides a convenient, if not essential, signal for use in

synchronization. The global time interval between two events taking place

at different places now depends on (“is relative to”) the inertial frame of

reference, just as did the spatial interval between two (non-simultaneous)

events in Galilei-Newtonian kinematics. Since simultaneity is now relative,

the spatial interval between any two (space-like separated) events is also

relative.

There is now, in many ways, much more symmetry between the proper-

ties of time intervals and of space intervals. For example, just as the proper

length of an object is defined as the spatial interval between two simulta-

neous events, one at each end-point of the object, in an inertial frame of
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reference in which the object is at rest, the proper time read by a clock can

be defined as the time interval between two ticks of the clock in a frame of

reference in which the clock is at rest. A curious feature of the new con-

cept of time is now apparent. According to the old concept, for any two

non-simultaneous events, there is always a frame of reference in which both

occur at the same place, because it is always possible to travel between

the two events with sufficient speed. According to the new concept, the

speed of light is a limiting velocity, which it is impossible to even reach, let

alone exceed, by any material process. Hence, there are pairs of events that

do not occur at the same place in any inertial frame of reference, but for

which there is an inertial frame of reference with respect to which they oc-

cur simultaneously. Such pairs are said to be space-like separated. Similarly,

there are pairs of events that do not occur at the same time with respect

to any inertial frame of reference, but for which there is an inertial frame

of reference with respect to which they occur at the same place. Such pairs

are said to be time-like separated. Finally, there are pairs of events, neither

space-like nor time-like separated, but which can be connected by a light

signal. Such pairs are said to be null or light-like separated.

The local time is relative to the path in the special theory. For a con-

tinuous sequence of events taking place at some point that is not at rest

(i.e., is in accelerated motion) in anyone inertial frame, we can define the

proper time of the sequence as follows: Pick a finite sequence of events E1,

E2, . . . , E(n−l), En such that E1 is the first and En the last. Calculate the

proper time between the pairs of events E1 − E2, . . . , E(n−l) − En in the

sequence, and add them. Then take the limit of this sum while making

the sequence of intermediate events more and more dense. The result is

the local time interval of the sequence of events, usually called in relativity

the proper time interval. This relativistic local or proper time between two

events is quite distinct from the global or inertial-frame time. Most notably,

it depends upon the space-time path between the two events, i.e., its ele-

ments are not perfect differentials. We are quite used to the idea that the

(proper) distance travelled between any two points in space depends on the

(space-like) path taken between them (e.g., the distance travelled between

Boston and Beijing depends on whether you go by way of Paris or Cape

Town), and that the straighter the path the shorter the distance. A similar

situation now holds for time: The local (proper) time that elapses between

two events depends on the (time-like) path taken between them. But there
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is an important difference:s the straighter the path, the longer the proper

time elapsed.t This effect is the essence of the famed twin paradox.

We can summarize the contrast between the global and the local time as

follows. The global time is relative, i.e., depends on the frame of reference.

But no physical result can depend on this choice of global time used to

describe a physical process. The local time is absolute, in the sense that it

is independent of the frame of reference. But it is relative to a timelike path

between two events.

8. Fixed Kinematical Structure

One could expatiate on many other curious features of the special-

relativistic times (both local and global) as compared to the one New-

tonian absolute time. Dramatic as are the differences between the two

global concepts of time, however, they share an important common fea-

ture when compared with the general-relativistic concept. Both the Galilei-

Newtonian and special-relativistic concepts of time (and of space as well)

are based upon the existence of a fixed kinematic framework, the struc-

ture of which is independent of any dynamical processes taking place in

space-time.

Whether one regards this kinematical framework as existing prior to and

independently of these dynamical processes, or as defined by and depen-

dent on them, depends on whether one adopts an absolute or a relational

account of time and space.u But on either account, the kinematic structure

is fixed once and for all by a ten-parameter Lie group, which has a represen-

tation as a group of symmetry transformations of the points of space-time.

The dynamical laws governing any closed system are required to remain

invariant under all transformations of this group; i.e., there is another rep-

resentation of the group that acts on the basic dynamical variables of the

system. There is a close connection between these two representations: to

every space-time symmetry there corresponds a dynamical conservation law

of a closed system.

sNote that, in spite of the closer analogy between space and time in special relativity,
there is still a big difference between them!
tBut note that, as a four-dimensional extremum, a time-like geodesic represents a saddle
point among all possible paths between the two points. I am grateful to Roger Penrose
for pointing this out to me.
uIn special relativity, with its intimate commingling of space and time, it is hard to
imagine how one could combine a relational account of one with an absolute account of
the other.
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In the case of Galilei-Newtonian space-time, this group is the inhomoge-

neous Galilei group. In the special-relativistic case, it is the inhomogeneous

Lorentz (or Poincaré) group. Seven of the ten generators of the group take

the same form in both groups: four spatio-temporal translations, expressing

(respectively) the homogeneity of the relative space of each inertial frame

and the uniformity of the time – absolute or relative – of each inertial frame;

and three spatial rotations, expressing the isotropy of the relative space of

each inertial frame. They correspond, respectively to the conservation of

the linear momentum and energy, and of the angular momentum of the

dynamical system.

The two groups differ in the form of the three so-called “boosts,” which

relate the spatial and temporal coordinates of any event with respect to

two inertial frames in motion relative to each other. The Galilei-Newtonian

boosts depend on the absolute time, which does not change from frame

to frame; so they involve only a transformation of the spatial coordinates

of an event with respect to the two frames. The special-relativistic boosts

involve a transformation of the temporal as well as the spatial coordinates

of an event. The boosts correspond to the center-of-mass conservation law

for the dynamical system.

The well known spatial (Lorentz) contraction and time dilatation effects,

which result from the different breakup of a spatio-temporal process (for

that is what a ruler and a clock are) into spatial and temporal intervals

with respect to two inertial frame in relative motion, can be deduced from

the relativistic boost transformation formulae relating the global space and

time coordinates of the two frames.

9. Fetishism of Mathematics

Before discussing the next topic, the four-dimensional formulation of space-

time theories, I shall interject a word of caution about a possible pathology

in theoretical physics that I call ‘the fetishism of mathematics’. We in-

vent physical theories to enable us to better comprehend and cope with

the world, or rather with limited portions of the world. We employ math-

ematics as a vital tool in such attempts. Mathematical structures help

us to correctly encode numerous, often extremely complicated, relations

among physical concepts, relations of both a quantitative and a qualita-

tive nature. If these mathematical structures have been judiciously chosen,

they do more than encode the relations that led to their introduction: for-

mal manipulation of the structures leads to the discovery of new relations
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between physical concepts that can then be tested successfully, and even

to the development of new concepts, inherent int he theory but hitherto

unrecognized. However, there are almost always redundant elements in the

mathematical structure that have no obvious correspondents in the phys-

ical theory and perhaps indeed no relevance at all to the physical content

of the theory. What is more, all-too-often there comes a point at which

the mathematical structure leads to predictions that fail the test of exper-

iment; or experiments yield relevant results that the theory seems unable

to encompass. Then we may say that the mathematical structure and/or

the physical theory, has reached its limits of validity. But before such a

limit is reached, there is often a tendency to forget that the mathematical

structure was introduced originally as a tool to help us encode known and

discover new relations among physical concepts; that is, to forget about the

constant dialectic between attempts to encompass new relations within the

given structure and attempts to modify the structure itself in response to

new relations that cannot be so encompassed. Instead, the mathematical

structure is sometimes considered to be (or to represent) a more fundamen-

tal level of reality, the properties of which entail the concepts and relations

of the physical theory and indeed those of the phenomenal world. Drawing

on the language of Karl Marx, who speaks of ‘the fetishism of commodi-

ties,’v I designate as ‘the fetishism of mathematics’ the tendency to endow

the mathematical constructs of the human brain with an independent life

and power of their own. Perhaps the most flagrant current examples of this

fetishism are found in the realm of quantum mechanics (I need only men-

tion the fetishism of Hilbert spaces; there are people who regard Hilbert

spaces as real but tables and chairs as illusory!), but the fetishism of four-

dimensional formalisms in relativity does not fall too far behind. In my

exposition, I shall try not to fall into fetishistic language; but if I do, please

regard it as no more than a momentary lapse.

The pioneers in the development of space-time diagrams were aware of

the conceptual problems raised by this ‘spatialization of time.’w While the

representation of temporal intervals by spatial ones can be traced back to

Aristotle, it was Nicholas Oresme who first plotted time and velocity in a

two-dimensional diagram in the fourteenth century. He justified this step

in these words:

vSee Ref. 7.
wThe phrase is due to Emile Myerson. For a historical review of the development of the
concept of space-time, see Ref. 11; an enlarged English version, “Space-Time,” containing
full references for the historical citations in this chapter is available as a preprint.
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And although a time and a line are [mutually] incomparable in

quantity, still there is no ratio found as existing between time and

time, which is not found among lines, and vice versa. (A Treatise

on the Configuration of Qualities and Motions).

It was not until 1698 that Pierre Varignon combined spatial and temporal

intervals in a single diagram. He commented:

Space and time being heterogeneous magnitudes, it is not really

them that are compared together in the relation called velocity,

but only the homogeneous magnitudes that express them, which are

. . . either two lines or two numbers, or any two other homogeneous

magnitudes that one wishes (Mémoire of 6 July 1707).

Forty years later, Jean le Rond D’Alembert was even more explicit:

One cannot compare together two things of a different nature, such

as space and time; but one can compare the relation of two por-

tions of time with that of the parts of space traversed. . . . One may

imagine a curve, the abcissae of which represent the portions of

time elapsed since the beginning of the motion, the corresponding

ordinates designating the corresponding spaces traversed during

these temporal portions: the equation of this curve expresses, not

the relation between times and spaces, but if one may so put it,

the relation of relation that the portions of time have to their unit

to that which the portions of space traversed have to theirs (Traité

du dynamique, 1743).

The only twentieth-century mathematician I have found who emphasizes

the dimensional nature of physical quantities is J. A. Schouten, the eminent

differential geometer. In Ref. 8, he distinguished between geometrical and

physical quantities, pointing out (p. 126) that:

quantities in physics have a property that geometrical quantities

do not. Their components change not only with transformations of

coordinates but also with transformations of certain units.

Constantly bearing in mind this difference between mathematical and phys-

ical quantities can help avoid the fetishism of mathematics.
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10. Four-Dimensional Formulation

Poincaré and Minkowski pioneered in showing how to represent special-

relativistic transformations of space and time in a mathematically simple,

elegant and fruitful form by the introduction of a four-dimensional formal-

ism. With the use of this formalism, space and time coordinates can be

combined in a four-dimensional diagram, representing what is now called

Minkowski space-time or simply Minkowski space.x A point of Minkowski

space is often called an event, even though strictly speaking that term

should be reserved for some physical occurrence at this point of space-time.

The history of a ‘point of space’ is represented by a so-called world-line: a

one-dimensional curve in space-time representing the history of this point

over proper (local) time, corresponding to a continuous sequence of events.

The history of a three-dimensional region of space is represented in the

diagram by a world tube; if the tube is filled with matter, it will consist

of a congruence of (non-intersecting) world-lines that fills the entire tube

(region of space-time). Such a congruence is often called a timelike fibration

of the (region of) space-time.

An instant of (global) time is represented by a spacelike hypersurface; if

there is also a timelike fibration in the region, the hypersurface will intersect

each curve in the fibration once and only once. A (non-intersecting) family

of such hypersurfaces filling all of (a region of) space-time represents a

global time variable. Such a family is often called a spacelike foliation or

more informally, a slicing of space-time.

To summarize: In the four-dimensional formalism, a (relative) space is

represented by a particular timelike fibration, and a global time (absolute

in Galilei-Newtonian space-time or relative in Minkowski space-time) by

a particular spacelike foliation, of space-time. The proper time along any

timelike world-line is the local time associated with a continuous sequence

of events taking place along that world-line.

Of course, the introduction of time as a fourth dimension to facili-

tate the description of motion in space long predated relativity.y But in

Galilei-Newtonian kinematics, due to the existence of the absolute time,

four-dimensional space-time is foliated uniquely by a family of parallel

xTheir original formulations were actually not as elegant and geometrically intuitive
as they could have been. Concerned to make the analogy with Eulidean geometry as
close as possible, both introduced an imaginary time coordinate and assimilated boosts
to rotations in the resulting four-dimensional ‘Euclidean’ space, rather than to pseudo-
rotations in what we now call Minkowski space.
yFor some of this history, see Ref. 11.
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hyperplanes of equal absolute time. In this sense, the four-dimensional uni-

fication of space and time remained somewhat formal.

Yet it did permit a simple geometrical representation of the relativity of

space. An inertial frame of reference is represented by a timelike fibration

consisting of a space-filling congruence of parallel time-like straight lines. In

Galilei-Newtonian space-time, each line of such a fibration intersects each

hyperplane of absolute time once and only once.

In Minkowski space-time, each inertial frame is represented by a

different foliation of space-time into hyperplanes of equal global time (us-

ing the Poincaré-Einstein convention to define this global time) that are

‘pseudo-orthogonal’ (a concept soon to be explained) to the straight lines

of the fibration defining the inertial frame. Since global space and time

now are both relative, their special-relativistic unification is much less for-

mal.z A Lorentz boost, which expresses the relation between two inertial

frames (each represented by a different foliation and fibration), is repre-

sented by a so-called ‘pseudo-rotation’ taking one foliation and fibration into

the other.

If we examine the kinematic structure associated with four dimensional

space-time more closely, we find that there are two distinct but interrelated

structures, the chronogeometrical and the inertial. The chronogeometrical

structure models the spatial geometry and the measure of local time, as

these can be exemplified respectively, for example, by the behavior of a

system of rigid rods and clocks all at rest relative to each other. The in-

ertial structure models the behavior of physical bodies not acted on by

external forces, i.e., behavior characterized by Newton’s First Law (the law

of inertia). If we can neglect the spatial dimensions (and possible multipole

structure) of such a body, we refer to it as a (monopole, or) particle, and

speak of the behavior of a freely-falling particle. Each of these structures is

represented mathematically by a geometrical-object field: the chronogeome-

try is represented by a (pseudo-) metric (a symmetric second rank covariant

tensor field); while the inertial structure is represented by a flat symmet-

ric affine connection field. The two structures are not independent of each

other, but must obey certain compatibility conditions, namely the covariant

zThe presence in the special theory of an invariant fundamental speed c, usually referred
to as the speed of light, enables both time and space coordinates to be expressed in
commensurable units. The existence of such an invariant speed is a consequence of the

existence of a group of space-time transformations treating all inertial frames on an
equal footing (see, e.g. Ref. 9). From this point of view, Galilei-Newtonian kinematics
represents the degenerate limiting case, in which this speed becomes infinite.
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derivative of the metric tensor with respect to the affine connection must

vanish. Roughly speaking, this condition ensure that sets of freely falling

particles and light rays can be used to construct measuring rods and clocks;

or equivalently, that a set of freely falling measuring rods and clocks, chosen

so that they are at rest in some inertial frame of reference and suitably

synchronized, can be used to correctly measure distances and global times,

respectively, relative to that frame.

As mentioned above, in both Galilei-Newtonian and special-relativistic

theories, the kinematic structures are fixed and given a priori; these struc-

tures include the chronogeometrical and the inertial structures, and the

compatibility conditions between them. Stemming as it does from the law

of inertia common to both theories, the inertial structure is common to both

Galilei-Newtonian and special-relativistic kinematics: Mathematically, this

inertial structure is represented by a four-dimensional linear affine space;

which includes (among other things) the concepts of parallel straight lines,

parallel hyperplanes, and the equality of parallel vectors in space-time. A

fibration of space-time by a family of parallel, time-like straight lines rep-

resents a particular inertial frame.

The Galilei-Newtonian chrono-geometrical structure consists of two el-

ements: a preferred foliation of space-time by a family of parallel hyper-

planes transvected by each inertial fibration; each hyperplane represents

all possible events occurring at the same absolute time. Further, the ge-

ometry of each hyperplane is assumed to be Euclidean: it is spanned by a

triad of mutually orthogonal unit vectors at each point; parallel transport

of the triad at any point by the inertial connection produces the corre-

sponding parallel triad at every other point.aa The triad plus the Euclidean

three-metric at each point enables one to construct a degenerate (rank-

three) four-dimensional contravariant metrical structure, invariant under

rotations of the tetrad, representing the Euclidean geometry that holds in

every inertial frame. In more detail, this Euclidean metric is constructed

using the dual triad of co-vectors in that frame. The compatibility between

the inertial and the chronometric and geometric structures is expressed by

the vanishing of the covariant derivatives, with respect to the flat affine con-

nection field, of the triad vector fields and of the gradient of the absolute

time.

The special-relativistic (or Minkowskian) flat affine connection remains

the same; but the chronogeometry now is represented by a non-degenerate

aaSince the inertial connection is flat, parallel transport is independent of the path taken
between any two points.
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four-dimensional pseudo-metric of signature two. A metric is a quadratic

form used to compute the ‘length-squared’ of vectors, which is always a

positive quantity. If the tensor does not assign a positive ‘length-squared’

to all vectors, i.e., if some of them have zero or negative ‘length squared’, the

tensor is called a pseudo-metric. The Minkowski metric is such a pseudo-

metric of signature two. This means that, when diagonalized, it has three

plus terms and one minus term (or the opposite – at any rate three terms of

one sign and one of the other resulting in a signature of two for the pseudo-

metric tensor), which represent space and time respectively. If the ‘length

squared’ of a vector computed with this pseudo-metric is positive, the vector

is called space-like; if negative, the vector is called time-like; if zero, the

vector is called null or light-like. Signature two for the four-dimensional

Minkowski pseudo-metric implies that the null vectors at each point form

a three-dimensional cone with vertex at that point, called the null cone. A

time-like and a space-like vector are said to be pseudo-orthogonal if their

scalar product vanishes when computed with the pseudo-metric. A fibration

of parallel lines is time-like if it has time-like tangent vectors and such a

fibration represents an inertial frame. A hyperplane pseudo-orthogonal to

the fibration (that is, with all space-like vectors in the hyperplane pseudo-

orthogonal to the tangents to the fibration) represents the set of all events of

equal global (Poincaré-Einstein) time relative to that inertial frame; and the

slicing (foliation) consisting of all hyperplanes parallel to this one represents

the sequence of such global times relative to that inertial frame.

The compatibility conditions between pseudo-metric and flat affine

structure are now expressed by the vanishing of the covariant derivative of

the former with respect to the latter. In both the Newtonian and special-

relativistic cases, the compatibility conditions require that the ‘length-

squared’ of equal parallel vectors (space-like, time-like, or null) be the

same.

11. Enter Gravitation: General Non-Relativity

As indicated above, in general relativity, both elements of the kinematic

structure, the chronogeometrical and the inertial, lose their fixed, a priori

character and become dynamical structures. There are two basic reasons

for this:

(a) General relativity is a theory of gravitation and, even at the Newto-

nian level, gravitation transforms the fixed inertial structure into the

dynamic inertio-gravitational structure.



October 7, 2005 15:54 WSPC/Trim Size: 9in x 6in for Review Volume 01˙stachel

24 J. Stachel

(b) General relativity preserves the unique compatibility relation between

the special-relativistic chrono-geometric and inertial structures; so

that when the latter becomes dynamical, the former must follow

suit.

It follows that, in general relativity, there is no kinematics prior to and

independent of dynamics. That is, before a solution to the dynamical field

equations is specified, there is neither an inertio-gravitational field nor a

chrono-geometry of space-time. (Of course a similar comment will apply to

any generally covariant field equations. For details, see Ref. 17.)

Let us look more closely at each of the two assertions above. First of

all, an examination of the Newtonian theory of gravitation from the four-

dimensional point of view shows that gravitation always dynamizes the

inertial structure of space-time.bb As we have seen, the concept of inertial

structure is based on the behavior of freely falling bodies, i.e., the tra-

jectories of bodies (structureless particlescc) not acted upon by any (net)

external force. If one neglects gravitation, force-free motions can be read-

ily identified (in principle); but because of the equivalence principle, the

presence of gravitation effectively nullifies the distinction between forced

and force-free motions. How could we realize a force-free motion in prin-

ciple (that is, ignoring purely practical difficulties)? First of all, the effect

of non-gravitational forces (electrical, magnetic, etc.) on a particle can be

either neutralized or shielded from. But gravitation is universal: it cannot

be neutralized or shielded. This still would not constitute a fatal difficulty if

we could correct for the effect of gravitation on the motion of an otherwise

force-free body (as we often do for non-gravitational forces when we cannot

shield from them). But the effect of gravitation is universal in a second.

sense: As Galileo supposedly demonstrated using the leaning tower of Pisa,

it has the same effect on the motion of all bodies (this is often called the

weak principle of equivalence). This would still not constitute a fatal diffi-

culty if it were possible to single out the class of inertial frames of reference

in a way that is independent of the concept of force-free motion. This pos-

sibility is tacitly assumed when gravitation is described, in the tradition

of Newton, as a force pulling objects off their inertial paths. But inertial

frames cannot be defined independently of inertial motions, which are in

turn defined as force-free motions! So our attempt to distinguish between

bbSee, e.g., Ref. 13.
ccThat is, bodies, for which any internal structure beyond their monopole mass may be
neglected.
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inertial and gravitational effects ends up in a vicious circle. This is true of

Newtonian gravitation discussed here as it is true of gravitation in general

relativity, soon to be discussed.

The only alternative left is to admit that one cannot distinguish in any

absolute sense between the effects of inertia and gravitation on the motion

of a body. There is a single inertio-gravitational field, and ‘free falls’ are the

motions of bodies subject only to this field. (As noted above, in principle

one can eliminate, or correct for, the effects on a body’s motion of all non-

gravitational fields.) Gravitation is no longer treated as a force pulling a

body off a ‘free’ inertial paths in a flat space-time, but rather as a factor

entering into the determination of the ‘free’ inertio-gravitational paths in a

non-flat space-time.

As a consequence of this new outlook on gravitation, the class of

preferred frames of reference must be enlarged: It is now impossible in prin-

ciple to distinguish between an inertial frame of reference with a (possibly

time-dependent but) spatially homogeneous gravitational field in some fixed

direction, and a (possibly time-dependent but) linearly accelerated frame

of reference with no gravitational field. So, when Newtonian gravitation is

taken into account, all linearly accelerated frames of reference are equally

valid: linear acceleration is relative. Note that rotating frames of reference

can still be distinguished from non-rotating ones, as Newton’s bucket exper-

iment demonstrates; so rotational acceleration is still absolute. Within this

enlarged class of preferred frames, the Galilei-Newtonian chronogeometric

structure, consisting of the absolute time plus Euclidean geometry in each

relative space, can still be postulated in a way that is independent of all

dynamics including that of the inertio-gravitational field but still remain

compatible with the latter.

12. Dynamizing the Inertial Structure

As noted above, the Galilei-Newtonian inertial structure must be dynamized

in order to include Newtonian gravitation as demanded by the equivalence

principle. The resulting inertio-gravitational structure is still modeled math-

ematically by an affine connection. But now, this connection is no longer

fixed a priori as a flat connection, describing a linear affine space-time.

Rather it becomes a non-flat connection, subject to dynamical field equa-

tions specifying just how the presence of matter produces a curvature of

the resulting space-time. These equations describe the relation of the New-

tonian inertio-gravitational field to its material sources, i.e., they are the
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four-dimensional analogue of:

Div a = 4πGρ ,

where a is the Newtonian gravitational acceleration, G is the Newtonian

gravitational constant, and ρ is the mass density. In their four-dimensional

form, these equations look remarkably like Einstein’s equations: They relate

the Ricci tensor of the Newtonian field to the Newtonian stress-energy

tensor for matter.dd

What happens to the compatibility conditions between the kinematic

chronogeometrical structure, which is still fixed and non-dynamical, and

the now-dynamized inertio-gravitational structure? These conditions re-

main valid, but now do not fix uniquely the non-flat inertio-gravitational

structure. They allow just enough leeway in the choice of the latter to

impose the four-dimensional equivalent of the law relating the Newtonian

gravitational acceleration a to the Newtonian gravitational potential ϕ:ee

a = −Gradϕ .

Thus, even at the Galilei-Newtonian level, gravitation, when interpreted

as part of a four-dimensional inertio-gravitational structure, dynamizes

the affine structure making it non-flat. A breakup of the resulting affine

structure into inertial and gravitational parts is not absolute (i.e., frame-

independent), but depends on (is relative to) the state of motion –in par-

ticular, the state of acceleration of the frame of reference being considered.

The preferred group of transformations, under which the chrono-geometry

is invariant, is enlarged to include transformations between all linearly ac-

celerated frames. When going from one such frame of reference to another

that is accelerated with respect to the first, the Newtonian gravitational

potential ϕ must now be interpreted as a connection potential. It does not

remain invariant, as it did under transformations from one inertial frame

to another; but is subject to a more complicated law of transformation

that follows from the four-dimensional transformation law for the inertio-

gravitational structure.

What is the exact nature of this new inertio-gravitational structure?

It is not described by a tensor field, but by a more general geometrical

object called an affine connection.ff Before gravitation is introduced, the

ddSee Refs. 1 and 12.
eeCombining the two equations, one gets the four-dimensional analogue of Poisson’s
equation for the gravitational potential.
ffFor an introduction to these concepts, see, e.g., Ref. 13.
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linear affine space modeling the inertial structure has a property described

mathematically as flatness or lack of curvature, which corresponds to the

vanishing of a tensor formed from the affine connection field and its first

derivatives and called the Riemann tensor.gg In the presence of a Newtonian

gravitational field this tensor no longer vanishes, but (as discussed above)

is subject to a set of field equations, which translate Poisson’s equation for

the Newtonian gravitational potential into a form that describes just how

matter modifies the inertio-gravitational field.

The Riemann tensor of a connection can be interpreted physically with

the help of the equation of geodesic deviation. In a linear affine space-time

(affine-flat connection), the paths of freely-falling test particles are modeled

by time-like straight lines in the space-time. The spatial distance between

any pair of such particles at the same absolute time varies linearly with that

time. In other words, the two particles have no relative acceleration. In the

non-flat affine space-time of a Newtonian inertio-gravitational field, the

paths of freely-falling particles are time-like geodesics of the affine connec-

tion of that space-time – the straightest possible paths in such a space.hh

A neighboring pair of freely-falling particles (modeled by a pair of time-

like geodesics) now generally has a non-vanishing relative acceleration (also

called the tidal force between them), the magnitude of which in various di-

rections is proportional to corresponding components of the affine curvature

tensor of the space-time. Measurement of such relative accelerations (tidal

forces) thus constitutes a direct measurement of components of the affine

curvature tensor. This curvature tensor, as mentioned above, also enters in

a very simple way into the four-dimensional formulation of Newton’s field

law of gravitation.

13. General Relativity

Up to now we have been discussing the Newtonian theory of gravitation,

which is still based on the concept of absolute time. Now we must ap-

ggAlthough the names are often used interchangeably, I shall distinguish between the
Riemann tensor associated with a connection and the curvature tensor associated with a
(pseudo-)metrical tensor field. Even though the components of each are the same in the

case of general relativity, their geometrical interpretation is quite different. The curvature
tensor at a point can be interpreted in terms of the Gaussian or sectional curvatures of all
two-sections through that point, and it is hard to see what this interpretation has to do
with gravitation. The geometric interpretation of the Riemann tensor of the connection
and its relation to gravitation are discussed in the text.
hhHere ‘straight’ means that the curve is autoparallel, i.e., it never pulls away from the
direction of its tangent vector.



October 7, 2005 15:54 WSPC/Trim Size: 9in x 6in for Review Volume 01˙stachel

28 J. Stachel

ply the lessons learned about gravitation from this theory to the task of

formulating a relativistic theory of gravitation without an absolute time,

i.e., a theory based on the lessons learned from the special theory of rel-

ativity. The most important lesson of the four-dimensional formulation

of Newtonian theory is that gravitational phenomena are best incorpo-

rated into an inertio-gravitational structure, described mathematically by

a non-flat affine connection subject to certain dynamical (gravitational)

field equations involving the Riemann tensor of that connection. But an

important feature distinguishes special-relativistic theories from Galilei-

Newtonian theories: In special relativity, the compatibility relations be-

tween the chrono-geometrical and inertial structures restrict the latter com-

pletely – the chrono-geometrical structure uniquely determines the inertial

structure — while in General Non-Relativity this is not the case. Hence,

when attempting to incorporate gravitation by converting the inertial struc-

ture into an inertio-gravitational structure and dynamizing it, we are con-

fronted with a choice. Either:

(a) give up the unique compatibility relation between chrono-geometrical

and inertial structures, which is the road taken by the various special-

relativistic theories of gravitation;ii or

(b) preserve the unique relation, hence dynamizing the chrono-geometry

along with the inertio-gravitational field, which is the path chosen in

general relativity.jj

The pseudo-metric tensor field both represents the chrono-geometrical

structure and, via the compatibility conditions between metric and con-

nection, provides the “potentials” for the affine connection field that rep-

resents the inertio-gravitational structure. The latter is subject to a set of

field equations relating its Riemann tensor to a tensor describing all non-

gravitational sources of the gravitational interactions, the so-called stress-

energy tensor.kk Formally, these field equations for the affine curvature

iiThis includes all attempts to give a “special-relativistic” interpretation of the general-
relativistic field equations.
jjOf course, one might both dynamize the chronogeometry and give up the unique relation.
Various tensor-scalar theories of gravitation, for example, have attempted to do this.

But so far the minimal assumption, that it suffices to dynamize the chronogeometry
without changing its unique relation to the inertio-gravitational field, has survived all
experimental challenges by such theories.
kkIn most cases, construction of the stress-energy tensor involves the metric tensor field

(but not its derivatives — the so called “minimal coupling” assumption), so that it is
not simply a case of solving the gravitational equations for a given source. One must
solve the coupled set of equations for gravitational and source fields.
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tensor look almost exactly the same as the four-dimensional Newtonian

equations. Both involve a “trace” of the Riemann tensor called the Ricci

tensor. But in the case of general relativity, as emphasized above, the affine

structure, including its curvature tensor, is completely determined by the

metric tensor field.

14. Differentiable Manifolds, Fiber Bundles
ll

Up to now, I have not discussed the nature of the mathematical space, with

which the metric and affine fields of general relativity are associated. In the

case of Galilei-Newtonian and special-relativistic space-times, the unique

structure of these spaces is determined by the respective kinematical sym-

metry groups of these theories: The inhomogeneous Galilei group leads to

Galilei-Newtonian space-time, while the Poincaré group leads to Minkowski

space-time. Both are linear affine spaces with flat affine structure. In gen-

eral relativity, no kinematic space-time structure is given a priori, so there

is no preferred kinematic symmetry group singling out a subgroup of the

class of all allowed one-one point transformations, or automorphisms, of the

underlying four-dimensional. mathematical space.mm

It might seem that any four-dimensional topological space would do as a

mathematical starting point: its symmetry group consists of all the home-

omorphisms that is all bicontinuous automorphisms of the space. But to

do physics, we need tensors and other geometric-object fields on the space,

on which one may carry out various differential operations that require the

introduction of coordinates. But we want to carry out such operations in a

way that is independent of the particular choice of coordinate system. So

we need to impose a differentiable structure on the underlying topological

spaces, which are chosen to be four-dimensional differentiable manifolds;

such manifolds have the group of diffeomorphisms (that is, differentiable

homeomorphisms) as their symmetry group.40

This differentiable manifold constitutes the base space of a fiber bundle,

which consists of such a base manifold B, a total manifold E, and a pro-

jection operator π from E into B, which turns E into a fibered manifold.

(The inverse operation π
−1 acting on the points of B produces the fibering

of E.) Geometric object fields of a certain type, such as the metric tensor

and the affine connection used in general relativity, constitute the fibered

llFor a more detailed discussion of the topic of this section, see, e.g. Ref. 19 or 17.
mmBy ‘allowed’ I mean with the conditions of differentiability appropriate to the theory
under consideration. I shall not discuss this question any further here.
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manifold appropriate for each particular theory. A cross section σ of the

fibered manifold (i.e., a suitably smooth choice of one point on each fiber)

constitutes a particular field of the chosen type, and if selected according

to the appropriate rule, this cross section will be a solution to the field

equations of the theory of that type.

For fibered manifolds, it is natural to consider only fiber-preserving

diffeomorphisms, i.e., diffeomorphisms of E that take fibers into fibers.

By the coordinate-free definition of a geometric objectnn, to each diffeo-

morphism of the base manifold there corresponds a unique fiber-preserving

diffeomorphism of the fibered manifold. Given any cross section σ of E that

is a solution to the field equations, if we carry out any diffeomorphism of

B and the corresponding fiber-preserving diffeomorphism of E, the effect

on is to produce an essentially equivalent physical solution.

But diffeomorphisms of B and fiber-preserving diffeomorphisms of E

many be carried out independently. In the absence of any fixed kinematic

symmetry group, one is led to require the covariance of any set of field

equations: Given any cross section σ of the fibered manifold that satisfies

the field equations, any other cross section σ
′ generated from the first by a

fiber-preserving diffeomorphism, called the carried-along or dragged-along

cross-section, is also a solution. Note that this does not imply that σ and σ
′

describe the same physical solution. If the points of B are individuated in

some way that is independent of the cross-section chosen, they will indeed

be different solutions. But, in the absence of any independent individuation,

all the carried-along solutions will correspond to the same physical solution,

and I call such a theory generally covariant (see below). By this definition,

general relativity is a generally covariant theory.

15. The General-Relativistic Revolution

It must be emphasized just how revolutionary are the steps involved in the

development of the general theory of relativity: identification of the distinc-

tion between chronogeometrical and inertio-gravitational structures and the

compatibility conditions between them; dynamization of both structures;

and the associated requirement of general covariance. In many ways, these

steps involve a much greater break with traditional physics than the steps

leading from Galilei-Newtonian physics to the special theory of relativity.

I shall discuss four radical differences between the general-relativistic and

all pre-general-relativistic concepts of space and time.

nnSee Ref. 17.
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First of all, there is no longer such a thing as an ‘empty’ region of space-

time. Wherever there is space-time there is at the very least an inertio-

gravitational field. Returning for a moment to the controversy between

absolute and relational concepts of time and space, it seems difficult to

sustain the absolute position with regard to general relativity. As Einstein3

(p. 155) puts it:

[The metric tensor components] describe not only the field, but at

the same time also the topological and metrical structural proper-

ties of the manifold. . . . There is no such thing as empty space, i.e.,

a space without a field. Space-time does not claim existence on its

own, but only as a structural quality of the field.

Secondly, the space-time structures no longer form a fixed stage, on

which the drama of matter and fields is enacted; space and time have be-

come actors in the drama. Curious possibilities thereby arise, such is the

possibility of solutions to the field equations that represent space-times con-

taining closed time-like world lines. A time-like world line represents the

possible history of a particle. So in such a space-time, the history of some

particles (with open world lines) includes a doubly-infinite (past and future)

amount of proper time, while for others (with closed’ world lines) only a

finite amount of proper time elapses before the particles ‘loops back upon

themselves’, so to speak.

Thirdly, not only is the local structure (local, in the sense of a finite

but limited region) of space-time dynamized; the global structure (global

in the sense of the entire topology) is no longer given a priori. For each

solution to the gravitational field equations given locally (i.e., on a patch

of space-time), one must work out the global topology of the maximally

extended manifold(s) – criteria must be given for the selection of such an

extension (or extensions if one is not uniquely selected) – compatible with

the local space-time structure of that solution. Solutions are possible that

are spatially and/or temporally finite but unbounded. In the former case,

someone always marching straight ahead into the universe could end up

back where s/he started. In the latter case, the entire history of the universe

would repeat itself after a finite time had elapsed.

Fourthly, until the choice of a cross section of the fibered manifold on

which both the chronogeometrical and inertio-gravitational structures live,

the points of the base space have no individuating properties. Many text-

books on general relativity refer to these points as ‘events,’ thereby suggest-

ing that they are physically individuated apart from the choice of a metric,
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which merely defines the chronogeometrical relations between events given

priori. This is incorrect for at least two reasons. As noted earlier, without

the specification of a particular metric tensor field, we cannot specify the

global topology of the base space differentiable manifold. But, even locally,

there is no means of physically individuating a priori the points of a region

of a bare manifold. If particles or other, non-gravitational fields are present

in the region, then their properties may suffice to individuate the points of

the region. But even then, without a metric, it is generally impossible to

fully interpret the physical properties of such non-gravitational entities.

If we confine ourselves to otherwise empty regions, in which only the

chronogeometrical (and corresponding inertio-gravitational) field is present,

then the points of such a region cannot be physically individuated by any-

thing but the properties of this field.oo

16. The Second Relativization of Time

Among the properties of any physical event are its position in space-time:

the ‘here’ and ‘now’ of the event. One cannot give meaning to the con-

cepts ‘here’ and ‘now’ of an event in otherwise empty regions of space-time

without use of the chronogeometry (metric tensor). This leads to a second

relativization of the concept of time in general relativity that is even more

drastic than that required by the special theory of relativity.

To recall what has been said earlier: In Galilei-Newtonian kinematics,

the absolute time function as a global time, the same for all rigid reference

frames, regardless of their states of motion, even when gravitation is taken

into account; and it also serves as a local time, the time elapsed between

two events is the same for all time-like paths between them.

In special-relativistic kinematics, this unique concept of absolute time

splits into two different concepts, both of which are relativized. Time in

the global sense (the time used to compare events at different places) is

relative to the inertial frame chosen, i.e., to one member of a preferred

class of reference frames. Time in the local sense (the proper time that

elapses between events along a time-like path) is relative to the path and

differs for different paths between the same two events.

In both pre-relativistic and special-relativistic kinematics, the use of

different frames of reference leads to different descriptions of some process

undergone by a dynamical system: The expression for the initial state of

ooFor a more detailed discussion of this point, see Ref. 10.
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the system at some time, and for the changes in that state as it evolves

in accord with the dynamical laws governing the system, depend on (are

relative to) the choice of inertial frame. These different descriptions are all

concordant with one another, leading, for example, to the same prediction

for the outcome of any experiment performed on the system.pp Mathe-

matically, this is because different descriptions amount to no more than

different slicings (foliations) and fibrations of the background space-time,

in which a unique four-dimensional description of the dynamical process can

be given.

The Galilei-Newtonian absolute time and the special-relativistic global

(inertial-frame relative) time have this in common: They are defined kine-

matically in a way that is independent of any dynamical process.qq

In general relativity, no time – either global (frame-dependent) or local

(path-dependent) – can be defined in a way that is independent of the

dynamics of the inertio-gravitational field. In general relativity, that is,

time is relative in another sense of the word: It is relative to dynamics; in

particular, it is relative to the choice of a solution to the gravitational field

equations.

The proper (local) time is of course relative to a path in the manifold,

but also depends on the particular solution in a new way: Whether a path

in the base space manifold is time-like or not cannot be specified a pri-

ori. Similarly, introduction of a frame-relative global time depends upon a

slicing (foliation) of the space-time into three-dimensional space-like slices,

and whether such a slicing of the base manifold is even space-like cannot be

specified a priori. Indeed, while a space-like slicing is always possible locally,

a global space-like foliation may not even exist in a particular space-time.

Even if such global space-like slicings are possible for a particular solu-

tion, there is generally no preferred family of slicings (such as the spacelike

hyperplanes of Minkowski space) because in general the metric tensor of a

space-time has no symmetries. The symmetries of a particular metric tensor

field may entail preferred slicings. For example, there is a class of preferred

slicings of a static metric such that the spatial geometry of the slices does

not change from slice to slice. Hence, there is a preferred global frame rela-

tive to any static solution. As in the pre-general-relativistic case, different

choices of slicings (frames) may lead to different descriptions of the same

ppThis is the case in classical physics. Quantum mechanically, the different descriptions
must all lead to predictions of the same probability for a given process.
qqOf course, the measurement of such time intervals depends on certain dynamical pro-
cesses, but that is a different question.
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dynamical process as a temporal succession of states; but these descriptions

will be concordant with one another just because they are different slicings

of the same four-dimensional space-time process.

Of course, in general relativity, different dynamical processes can-

not take place in the same space-time.rr The gravitational and the non-

gravitational dynamical equations must be solved as a single, coupled sys-

tem. A space-time that is a solution to the gravitational equations is asso-

ciated with a dynamical system that is a solution to the non-gravitational

dynamical equations. Hence no separation between space-time kinematics

and the dynamics of the gravitational and other fields is possible.

17. What is the Question?

As a result of these changes, there is a basic difference between the type

of questions that one can ask in pre-general-relativistic physical theories

and in general-relativistic theories. A typical pre-general-relativistic ques-

tion takes the form: Here is a point in space and now is a moment in time

(or, if you prefer, here-and-now is a point in space-time): What is (are) the

value(s) of some physical quantity (quantities) ‘here’ and ‘now’?ss We an-

swer such questions theoretically by solving some set of dynamical equations

for the quantity (quantities) in question and evaluating the solution ‘here’

and ‘now’.

In general relativity, as we have seen, ‘here’ and ‘now’ cannot be defined

before we have a chronogeometry, which presupposes that we have already

solved the dynamical equations for the metric tensor field. So ‘here’ and

‘now’ cannot be part of the initial question. In general relativity, we must

start by specifying some solution to these field equations and any other

dynamical field equations that may be involved in the questions we want

to ask. Then either:

(1) we don’t ask any questions that depend on specification of a ‘here’ and

‘now’: e.g., we limit ourselves to questions that depend only on globally

defined quantities, such as the total mass or charge of a system; or

(2) we construct a ‘here’ and ‘now’ from the given solution to the field

equations; then they will be part of the answer, not part of the question.

rrBarring exceptional cases, in which different dynamical processes happen to have the
same stress-energy tensor.
ssOf course in practice, and in quantum field theory even in principle, such questions
will always involve finite regions of space-time; but this issue is easily handled by the
introduction of test functions with support in such regions.
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Such a construction could involve just the pure gravitational field, i.e., be

based upon just the metric tensor field; or, it could involve the other non-

gravitational field variables if they are present in the region of space-time

under consideration.

I shall not go into further detail here, but end by noting that this prob-

lem reappears in all attempts to construct a quantum theory that incorpo-

rates general relativity — a quantum gravity. A typical quantum question

concerns a process, and takes the form: If one physical quantity has been

found to have a certain value ‘here’ and ‘now’, what is the probability that

some (possibly the same) physical quantity will be found to have some other

value ‘there’ and ‘then’? Again, a quantum gravity question cannot take

this form because ‘here’ and ‘now’, and ‘there’ and ‘then’ somehow have to

be constructed as part of the answer, not part of the question.

Acknowledgement

I thank Dr. Mihaela Iftime for a careful reading of the manuscript and many

valuable suggestions for its improvement.

References
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Part II

Einstein’s Universe

Ramifications of General Relativity

When Henry Moore visited the University of Chicago ... I had the

occasion to ask him how one should view sculpture: from afar or

from nearby. Moore’s response was that the greatest sculpture can

be viewed —indeed should be viewed— from all distances since new

aspect of beauty will be revealed at every scale. In the same way,

the general theory of relativity reveals strangeness in the proportion

at any level in which one may explore its consequences.

—S. Chandrasekhar, (Truth and Beauty)
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CHAPTER 2

GRAVITATIONAL BILLIARDS, DUALITIES AND

HIDDEN SYMMETRIES

H. NICOLAI

Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,
Am Mühlenberg 1, D-14476 Golm, Germany

The purpose of this article is to highlight the fascinating, but only very
incompletely understood relation between Einstein’s theory and its gen-
eralizations on the one hand, and the theory of indefinite, and in par-
ticular hyperbolic, Kac Moody algebras on the other. The elucidation
of this link could lead to yet another revolution in our understanding of
Einstein’s theory and attempts to quantize it.

1. Introduction

As we look back 90 years to take stock of what has been achieved since Ein-

stein explained gravity in terms of spacetime geometry and its curvature,

the progress is impressive. Even more impressive is the wealth of struc-

ture contained in Einstein’s equations which has been revealed by these

developments. Major progress has been made concerning

• Exact solutions (Schwarzschild, Reissner-Nordström, Kerr, axisym-

metric stationary solutions,...)

• Cosmological applications (standard FRW model of cosmology, in-

flationary universe,...)

• Mathematical developments (singularity theorems, black hole

uniqueness theorems, studies of the initial value problem, global

stability results,...)

• Conceptual developments (global structure and properties of space-

times, horizons, black hole entropy, quantum theory in the context

of cosmology, holography,...)

• Canonical formulations (Dirac’s theory of constrained systems,

ADM formalism, Ashtekar’s variables,...)

39
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• Higher dimensions (Kaluza Klein theories, brane worlds,...)

• Unified theories ‘beyond’ Einstein (supergravity, superstrings, su-

permembranes and M(atrix) theory,...)

• Quantizing gravity (perturbative and canonical quantization, path

integral approaches, dynamical triangulations, spin networks and

spin foams,...)

All these subjects continue to flourish and are full of promise for further

and exciting developments (hinted at by the dots in the above list). No

doubt many of them will be discussed and elaborated in other contributions

to this volume. In this article, we will concentrate on yet another line of

research that evolved out of the study of Einstein’s equations and its locally

supersymmetric extensions, and which points to another deep, and still

mostly unexplored property of Einstein’s theory. It may well be that the

main discoveries in this direction still remain to be made, and that, once

they have been made, they will also have a profound impact on attempts

to quantize Einstein’s theory (or some bigger theory containing it). This is

the subject of

• Hidden symmetries and dualities

The first hint of these symmetries appeared in Ref. 1, where a trans-

formation between two static solutions of Einstein’s equations was given,

which in modern parlance is nothing but a T -duality transformation. A deci-

sive step was Ehlers’ discovery in 1957 of a solution generating symmetry,2

nowadays known as the ‘Ehlers SL(2, R) symmetry’ which acts on cer-

tain classes of solutions admitting one Killing vector. In 1970, R. Geroch

demonstrated the existence of an infinite dimensional extension of the

Ehlers group acting on solutions of Einstein’s equations with two commut-

ing Killing vectors (axisymmetric stationary solutions).3 In the years that

followed, the Geroch group was extensively studied by general relativists

with the aim of developing ‘solution generating techniques’ (see4,5 and ref-

erences therein for an entrée into the literature). The field received new

impetus with the discovery of ‘hidden symmetries’ in supergravities, most

notably the exceptional E7(7) symmetry of maximal N = 8 supergravity.6

These results showed that the Ehlers and Geroch groups were but spe-

cial examples of a more general phenomenon.7,8,9,10,11 With the shift of

emphasis from solution generating techniques to the Lie algebra and the

group theoretical structures underlying these symmetries, it became clear
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that the Geroch symmetry is a non-linear and non-local realization of an

affine Lie group (a loop group with a central extension), with Lie alge-

bra A
(1)

1
= ̂sl(2, R)

ce
. This completed earlier results by general relativists

who had previously realized ‘half’ of this affine symmetry in terms of ‘dual

potentials’.12 Likewise, generalizations of Einstein’s theory, and in partic-

ular its locally supersymmetric extensions were shown to possess similar

infinite dimensional symmetries upon reduction to two dimensions. These

results also provided a direct link to the integrability of these theories in

the reduction to two dimensions, i.e. the existence of Lax pairs for the

corresponding equations of motion.13,14,9

All these duality invariances of Einstein’s theory and its extensions ap-

ply only to certain truncations, but do not correspond to properties of the

full theory, or some extension thereof. Our main point here will be to re-

view and highlight the evidence for even larger symmetries which would

not require any truncations, and whose associated Lie algebras belong to a

special class of infinite dimensional Lie algebras, namely the so-called in-

definite Kac Moody Algebras.15,16,17 We will discuss two examples of such

Lie algebras, namely the rank three algebra AE3,
18 which is related to Ein-

stein’s theory in four dimensions, and secondly (but only very briefly), the

maximal rank 10 algebra E10, which is singled out from several points of

view, and which is related to maximal D = 11 supergravity.19 We can thus

phrase the central open question as follows:

Is it possible to extend the known duality symmetries of Einstein’s

equations to the full non-linear theory without any symmetry reductions?

A perhaps more provocative, way to pose the question is

Is Einstein’s theory integrable?

In this form, the question may indeed sound preposterous to anyone with

even only a passing familiarity with the complexities of Einstein’s equations,

which are not only the most beautiful, but also the most complicated partial

differential equations in all of known mathematical physics. What is meant

here, however, is not the usual notion of integrability in the sense that one

should be able to write down the most general solution in closed form.

Rather, it is the ‘mappability’ of the initial value problem for Einstein’s

theory, or some M theoretic extension thereof, onto a group theoretical

structure that itself is equally intricate, and so infinite in extent that we

may never be able to work it out completely, although we know that it

exists. Even a partial answer to the above question would constitute a great
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advance, and possibly clarify other unsolved problems of general relativity.

To name but one: the ‘conserved charges’ associated with these Lie algebras

would almost certainly be linked to the so far elusive ‘observables’ of pure

gravity (which might better be called ‘perennials’20) – which we believe

should exist, though no one has ever been able to write down a single one

explicitly.

Last but not least, duality symmetries have come to play a prominent

role in modern string theory in the guise of T, S and U dualities, where

they may provide a bridge to the non-perturbative sector of the theory

(see21,22,23 and references therein). Here, we will not dwell too much on

this side of the story, however, because the duality groups considered in

string theory so far are descendants of the finite dimensional Lie groups

occurring in D ≥ 4 supergravity, whereas here we will be mostly concerned

with the infinite dimensional symmetries that emerge upon reduction to

D ≤ 2 dimensions, and whose role and significance in the context of string

theory are not understood. Still, it seems clear that infinite dimensional

symmetries may play a key role in answering the question, what M Theory

– the conjectural and elusive non-perturbative and background independent

formulation of superstring theory – really is, because that question may well

be closely related (or even equivalent) to another one, namely

What is the symmetry underlying M Theory?

There has been much discussion lately about the maximally extended

hyperbolic Kac Moody algebra E10 as a candidate symmetry underlying M

Theory, i.e. D = 11 supergravity and the other maximally supersymmet-

ric theories related to IIA and IIB superstring theory, see 24,25,26,27,28,29,

and 30,31. A conceptually different proposal was made in 32, and further

elaborated in 33,34,35, according to which it is the ‘very extended’ indefinite

KM algebra E11 that should be viewed as the fundamental symmetry (E11

contains E10, but is no longer hyperbolic, but see 36 for a discussion of such

‘very extended algebras’). A ‘hybrid’ approach for uncovering the symme-

tries of M -theory combining 25 and 32 has been adopted in 37,38. Although

our focus here is mostly on pure gravity in four space-time dimensions and

its associated algebra AE3, we will very briefly mention these developments

in the last section.

Whatever the outcome of these ideas and developments will be, the very

existence of a previously unsuspected link between two of the most beautiful

concepts and theories of modern physics and mathematics, respectively —

Einstein’s theory of gravity on the one hand, and the theory of indefinite
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and hyperbolic Kac Moody algebras on the other — is most remarkable

and surely has some deep significance.

2. Known Duality Symmetries

We first review the two types of duality symmetries of Einstein’s theory that

have been known for a long time. The first concerns the linearized version

of Einstein’s equations and works in any space-time dimension. The second

is an example of a non-linear duality, which works only for the special

class of solutions admitting two commuting Killing vectors (axisymmetric

stationary and colliding plane wave solutions). This second duality is more

subtle, not only in that it is non-linear, but in that it is linked to the

appearance of an infinite dimensional symmetry.

2.1. Linearized duality

The duality invariance of the linearized Einstein equations generalizes the

well known duality invariance of electromagnetism in four spacetime di-

mensions. Recall that Maxwell’s equations in vacuo

∂
µ
Fµν = 0 , ∂[µFνρ] = 0 (1)

are invariant under U(1) rotations of the complex field strength

Fµν := Fµν + iF̃µν (2)

with the dual (‘magnetic’) field strength

F̃µν :=
1

2
εµνρσF

ρσ (3)

The action of this symmetry can be extended to the combined electro-

magnetic charge q = e + ig, where e is the electric, and g is the magnetic

charge. The partner of the one-form electric potential Aµ is a dual magnetic

one-form potential Ãµ, obeying

F̃µν := ∂µÃν − ∂νÃµ (4)

Observe that this dual potential can only be defined on-shell, when Fµν

obeys its equation of motion, which is equivalent to the Bianchi identity

for F̃µν . Consequently, the U(1) duality transformations constitute an on-

shell symmetry because they are valid only at the level of the equations of

motion. The two potentials Aµ and Ãµ are obviously non-local functions

of one another. Under their exchange, the equations of motion and the
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Bianchi identities are interchanged. Moreover, the equations of motion and

the Bianchi identities can be combined into a single equation

∂
µ
Fµν = 0 (5)

Analogous duality transformations to the electromagnetic ones exhib-

ited above exist for p-form gauge theories in arbitrary spacetime dimen-

sions D (these theories are always abelian for p > 1). More precisely, an

‘electric’ p-form potential Aµ1...µp
is dual to a ‘magnetic’ (D−p−2) poten-

tial Ãµ1...µD−p−2
. A prominent example is the 3-form potential of D = 11

supergravity,19 with a dual 6-form magnetic potential. Upon quantization,

the duality becomes a symmetry relating the weak and strong coupling

regimes by virtue of the Dirac quantization condition eg = 2πi~. This is

one of the reasons why such dualities have recently acquired such an im-

portance in string theory, and why they are thought to provide an inroad

into the non-perturbative structure of the theory.

Does there exist a similar symmetry for Einstein’s equations? Remark-

ably, for linearized Einstein’s equations in arbitrary space-time dimension D

the answer is yes. 39,40,41,32,25,42,43 However, this answer will already illus-

trate the difficulties one encounters when one tries to extend this symmetry

to the full theory. To exhibit it, let us expand the metric as gµν = ηµν +hµν ,

where ηµν is the Minkowski metrica, and the linearized fluctuations hµν are

assumed to be small so we can neglect higher order terms. The linearized

Riemann tensor is

R
L

µνρσ(h) = ∂µ∂ρhνσ − ∂ν∂ρhµσ − ∂µ∂σhνρ + ∂ν∂σhµρ (6)

The linearized Einstein equations therefore read

R
L

µν(h) = ∂
ρ
∂ρhµν − ∂µ∂

ρ
hρν − ∂ν∂

ρ
hρµ + ∂µ∂νh

ρ
ρ = 0 (7)

where indices are raised and lowered by means of the flat background metric

η
µν . To reformulate thes equations in analogy with the Maxwell equations

in such a way that R
L
µν

= 0 gets interchanged with a Bianchi identity, we

define

Cµν|ρ := ∂µhνρ − ∂νhµρ (8)

This ‘field strength’ is of first order in the derivatives like the Maxwell

field strength above, but it is not invariant under the linearized coordinate

aIt is noteworthy that the construction given below appears to work only for a flat
Minkowskian background.
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transformations

δhµν = ∂µξν + ∂νξµ =⇒ δCµν|ρ = ∂ρ(∂µξν − ∂νξµ) 6= 0 (9)

This is a first difficulty: unlike ordinary gauge theories, Einstein’s theory

needs two derivatives for gauge covariance.

The ‘Bianchi identity’ now reads

∂[µCνρ]|σ = 0 ; (10)

and is obviously different from the usual Bianchi identity on the Riemann

tensor R
L

[µν ρ]σ
= 0. The linearized Einstein equations are now recovered

from the equation of motion

∂
µ
Cµν|ρ = 0 (11)

if we impose the gauge condition

Cµν
ν = 0 (12)

(imposing this condition is possible precisely because Cµν|ρ is not gauge in-

variant). Noticing that (10) and (11) are completely analogous to Maxwell’s

equations, we now introduce the ‘dual field strength’

C̃µ1...µD−2|ν
= εµ1...µD−2

ρσ
Cρσ|ν (13)

It is then easy to see that vanishing divergence for one of the field strengths

implies vanishing curl for the other, and vice versa. Furthermore,

C̃[µ1...µD−2|ν] = 0 ⇐⇒ Cµν
ν = 0 (14)

On shell, where ∂[µ1
C̃µ2...µD−2]|ν = 0, we can therefore introduce a ‘dual

graviton field’ h̃µ1...µD−3|ν
, analogous to the dual ‘magnetic’ potential Ãµ,

with associated ‘field strength’

C̃µ1...µD−2 |ν
:= ∂[µ1

h̃µ2...µD−2]|ν (15)

Let us stress that this dual ‘field strength’ exists only on-shell, i.e. when

the linearized Einstein equations are satisfied. The tracelessness condition

(14) requires

h̃[µ1...µD−3|ν] = 0 (16)

This is a second new feature vis-à-vis Maxwell and p-form gauge theories:

for D ≥ 5, the dual graviton field transforms in a mixed Young tableau repre-

sentation. The associated gauge transformations are also more involved, as

the gauge parameters may likewise belong to non-trivial representations.42
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It does not appear possible to extend this duality invariance to the full

non-linear theory in any obvious way. A generalization does not appear to

exist even at first non-trivial order beyond the linear approximation, at least

not in a way that would be compatible order by order with the background

Lorentz invariance of the free theory. More succinctly, the No-Go Theorem

of 42 asserts that there exists no continuous deformation of the free theory

with these properties. On the other hand, experience has taught us that

there is no No-Go Theorem without a loophole! So we simply interpret

this result as evidence that one must search in a different direction, giving

up one or more of the seemingly ‘natural’ assumptions that went into its

proof. An example how one might possibly evade these assumptions is the

one-dimensional ‘geodesic’ σ-model over infinite dimensional cosets which

will be introduced in section 6, and which renounces manifest space-time

Lorentz invariance.

2.2. A nonlinear duality: the Geroch group

Unlike for the free spin-2 theory discussed in the foregoing section, there

does exist a version of Einstein’s theory possessing a non-linear and non-

local duality symmetry, but it suffers from a different limitation: it works

only when Einstein’s theory is dimensionally reduced to two space or space-

time dimensions, i.e. in the presence of two commuting Killing vectors. For

definiteness, we will take the two Killing vectors to be spacelike, and choose

coordinates such that they are (locally) given by ∂/∂y and ∂/∂z: this means

that the symmetry acts on solutions depending on two of the four spacetime

coordinates, namely (t, x). In a suitable gauge we can then write the line

element as5

ds
2 = ∆−1

λ
2(−dt

2 +dx
2)+(ρ2∆−1 +∆B̃

2)dy
2 +2∆B̃dy dz +∆dz

2
, (17)

where the metric coefficients depend only on (t, x). The metric coefficient B̃

is the third component of the Kaluza Klein vector field (Bµ, B2) ≡ (0, 0, B̃)

that would arise in the reduction of Einstein’s theory to three dimensions.

The metric ansatz (17) can be further simplified by switching to Weyl

canonical coordinates where ρ is identified with the time coordinate

ρ(t, x) = t =⇒ ρ̃ = x (18)

This particular choice is adapted to cosmological solutions, where t ≥ 0

with the singularity ‘occurring’ on the spacelike hypersurface at time t = 0.
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This is also the physical context in which we will consider the gravitational

billiards in the following section.b

Here we will not write out the complete Einstein equations for the metric

ansatz (17) (see, however,5,9,11) but simply note that upon dimensional

reduction, the fields (∆, B̃) with ∆ ≥ 0 coordinatize a homogeneous σ-

model manifold SL(2, R)/SO(2).44 The equation for B̃ reads

∂µ(t−1∆2
∂

µ
B̃) = 0 (19)

with the convention, in this subsection only, that µ, ν = 0, 1. Because in

two dimensions, every divergence-free vector field can be (locally) rewritten

as a curl, we can introduce the dual ‘Ehlers potential’ B(t, x) by means of

t∆−2
∂µB = εµν∂

ν
B̃ (20)

The Ehlers potential obeys the equation of motion

∂µ(t∆−2
∂

µ
B) = 0 (21)

The combined equations of motion for ∆ and B can be compactly assembled

into the so-called Ernst equation5

∆∂µ(t∂µ
E) = t∂µE∂

µ
E (22)

for the complex Ernst potential E := ∆ + iB. The pair (∆, B) again

parametrizes a coset space SL(2, R)/SO(2), but different from the previous

one.

To write out the non-linear action of the two SL(2, R) symmetries, one

of which is the Ehlers symmetry, we use a notation that is already adapted

to the Kac Moody theory in the following chapters. The relation to the more

familiar ‘physicist’s notation’ for the SL(2, R) generators is given below:

e ∼ J
+

, f ∼ J
−

, h ∼ J
3 (23)

In writing the variations of the fields, we will omit the infinitesimal param-

eter that accompanies each transformation. The Ehlers group is generated

by 9,45

e3(∆) = 0 , e3(B) = −1

h3(∆) = −2∆ , h3(B) = −2B

f3(∆) = 2∆B , f3(B) = B
2
− ∆2 (24)

bIf the Weyl coordinate ρ is taken to be spacelike, we would be dealing with a general-
ization of the so-called Einstein-Rosen waves.
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The other SL(2, R), often referred to as the Matzner Misner group, is gen-

erated by

e2(∆) = 0 , e2(B̃) = −1

h2(∆) = 2∆ , h2(B̃) = −2B̃

f2(∆) = −2∆B̃ , f2(B̃) = B̃
2
−

ρ
2

∆2
(25)

(the numbering of the generators has been introduced in accordance with

the numbering that will be used later in section 5). The Geroch group is

now obtained by intertwining the two SL(2, R) groups, that is by letting

the Ehlers group act on B̃, and the Matzner Misner group on B, and by

iterating this procedure on the resulting ‘dual potentials’. It is not difficult

to see that, in this process, one ‘never comes back’ to the original fields,

and an infinite tower of dual potentials is generated.3 The Geroch group is

then realized on this infinite tower; when projecting down this action onto

the original fields, one ends up with a non-linear and non-local realization

of this group.

The mathematical proof that the Lie algebra underlying the Geroch

group is indeed A
(1)

1
≡

̂sl(2, R)
ce

proceeds by verification of the bilinear

relations (no summation on j)45,46

[ei, fj ] = δijhj , [hi, ej ] = Aijej , [hi, fj ] = −Aijfj (26)

for i, j = 2, 3, with the (Cartan) matrix

Aij =

(

2 −2

−2 2

)

(27)

The subscript ‘ce’ on ̂sl(2, R)
ce

is explained by the existence of a central

extension of the loop algebra, with the central charge generator

c := h2 + h3 (28)

This charge acts on the conformal factor λ as a scaling operator, but leaves

all other fields inert 8,9,11. Finally, the trilinear Serre relations

[f2, [f2, [f2, f3]]] = [f3, [f3, [f3, f2]]] = 0 (29)

are satisfied on all fields (the corresponding relations for the e generators

are trivially fulfilled). Together, (26) and (29) are just the defining relations

(Chevalley Serre presentation 15,16,17) for the affine Lie algebra A
(1)

1
.

Evidently, the relation (20) between B̃ and the Ehlers potential B is a

nonlinear extension of the duality

∂µϕ = εµν∂
ν
ϕ̃ (30)
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valid for free scalar fields in two dimensions. The main difference is that,

whereas in the free field case, and more generally for p-form gauge theo-

ries in higher dimensions, a second dualization brings us back to the field

from which we started (modulo integration constants), iterating the du-

ality transformations (24) and (25) does not, as we pointed out already.

It is therefore the intrinsic non-linearity of Einstein’s theory that explains

the emergence of an infinite chain of dualizations, and consequently of an

infinite dimensional symmetry.

3. Gravitational Billiards and Kac-Moody Algebras

The duality transformations reviewed in the previous section are invariances

of mutilated versions of Einstein’s theory only. On the other hand, what we

are really after, are symmetries that would not require any such truncations.

The symmetries we are about to discuss next considerably extend the ones

discussed so far, but have not actually been shown to be symmetries of

Einstein’s theory, or some extension thereof. There are two reasons for this.

First, the full gravitational field equations are far more complicated than

the truncations discussed in the foregoing section — as evidenced by the

circumstance that no exact solutions appear to be known that would not

make use of some kind of symmetry reduction in one way or another (in

the appropriate coordinates). Consequently, any extension of the known

symmetries to the full theory, which by necessity would be very non-local,

will not be easy to identify. The second difficulty is that the Lie algebras

that are conjectured to arise in this symmetry extension belong to the

class of indefinite Kac Moody algebras. However, after more than 35 years

of research in the theory of Kac Moody algebras, we still do not know

much more about these algebras beyond their mere existence — despite the

fact that they can be characterized by means of a simple set of generators

and relations! c The main encouragement therefore derives from the fact

that there exists this link between these two seemingly unrelated areas,

which provides more than just a hint of an as yet undiscovered symmetry

of Einstein’s theory. A key role in deriving these results was played by

an analysis of Einstein’s equations near a spacelike singularity in terms of

gravitational billiards, to which we turn next.

cSee remarks after Table 1 to appreciate the challenge.
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3.1. BKL dynamics and gravitational billiards

A remarkable and most important development in theoretical cosmology

was the analysis of spacelike (cosmological) singularities in Einstein’s the-

ory by Belinskii, Khalatnikov and Lifshitz (abbreviated as ‘BKL’ in the

remainder), and their discovery of chaotic oscillations of the spacetime met-

ric near the initial singular hypersurface;47 see also 48,49,50,51,52. There is a

large body of work on BKL cosmology, see 53,54,55 for recent reviews and ex-

tensions of the original BKL results. In particular, there is now convincing

evidence for the correctness of the basic BKL picture both from numerical

analyses (see e.g. 56,57) as well as from more rigorous work 58,59,60,61. It

has also been known for a long time that the chaotic oscillations of the

metric near the singularity can be understood in terms of gravitational

billiards, although there exist several different realizations of this descrip-

tion, cf. 51,54,55 and references therein. The one which we will adopt here,

grew out of an attempt to extend the original BKL results to more general

matter coupled systems, in particular those arising in superstring and M

theory62,63,24,64,65. It is particularly well suited for describing the relation

between the BKL analysis and the theory of indefinite Kac Moody algebras,

which is our main focus here, and which we will explain in the following

section. See also 66,67 for an alternative approach.

We first summarize the basic picture, see 65 for a more detailed exposi-

tion. Our discussion will be mostly heuristic, and we shall make no attempt

at rigorous proofs here (in fact, the BKL hypothesis has been rigorously

proven only with very restrictive assumptions 59,57,60,61,68, but there is so

far no proof of it in the general case). Quite generally, one considers a big-

bang-like space-time with an initial singular spacelike hypersurface ‘located’

at time t = 0. It is then convenient to adopt a pseudo-Gaussian gauge for

the metric (we will leave the number of spatial dimensions d arbitrary for

the moment)

ds
2 = −N

2
dt

2 + gijdx
i
dx

j (31)

and to parametrize the spatial metric gij in terms of a frame field, or

dreibein, θ
a (a one form) d

gijdx
i
⊗ dx

j =

d
∑

a=1

θ
a
⊗ θ

a (32)

dThe summation convention is in force for the coordinate indices i, j, . . . , but suspended
for frame indices a, b, . . . .
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For this frame field we adopt the so-called Iwasawa decomposition

θ
a = e

−β
a

N

a
idx

i (33)

by splitting off the (logarithmic) scale factors β
a from the off-diagonal frame

(and metric) degrees of freedom N

a
i, which are represented by an upper

triangular matrix with 1’s on the diagonal. The spatial metric then becomes

gij =

d
∑

a=1

e
−2β

a

N

a
i N

a
j (34)

The main advantage of the Iwasawa decomposition is that it matches pre-

cisely with the triangular decomposition (48) below, which is valid for any

Kac Moody algebra. Furthermore, it turns out that, in the limit t → 0 all

the interesting action takes place in the scale factors β
a, whereas the N as

well as the matter degrees of freedom asymptotically ‘come to rest’ in this

limit. Similarly, the metric and other degrees of freedom at different spatial

points should decouple in this limit, as the spatial distance between them

exceeds their horizone. The basic hypothesis underlying the BKL analysis

is therefore that spatial gradients should become less and less important in

comparison with time derivatives as t → 0, such that the resulting theory

should be effectively describable in terms of a one dimensional reduction,

in which the complicated partial differential equations of Einstein’s the-

ory are effectively replaced by a continuous infinity of ordinary differential

equations.

To spell out this idea in more detail, let us insert the above metric ansatz

into the Einstein-Hilbert action, and drop all spatial derivatives (gradients),

so that this action is approximated by a continuous superposition of one-

dimensional systems. One then obtains (still in d spatial dimensions)

S[gij ] =
1

4

∫

d
d
x

∫

dx
0
Ñ

−1
[(

tr (g−1ġ)2 − (tr g−1ġ)2
)]

(35)

in a matrix notation where g(t) ∈ GL(d, R) stands for the matrix (gij)

representing the spatial components of the metric at each spatial point,

and Ñ ≡ N
√

g is a rescaled lapse function. Neglecting the off-diagonal

eOne might even view this decoupling as a direct consequence of the spacelike nature of
the singularity.
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degrees of freedom, this action is further simplified to

S[βa] =
1

4

∫

d
d
x

∫

dx
0
Ñ

−1





d
∑

a=1

(

β̇
a
)2

−

(

d
∑

a=1

β̇
a

)2




≡

1

4

∫

d
d
x

∫

dx
0
Ñ

−1
Gabβ̇

a
β̇

b (36)

where Gab is the restriction of the superspace metric (à la Wheeler-DeWitt)

to the space of scale factors. A remarkable, and well known property of this

metric is its indefinite signature (− + · · ·+), with the negative sign corre-

sponding to variations of the conformal factor. This indefiniteness will be

crucial here, because it directly relates to the indefiniteness of the gener-

alized Cartan-Killing metric on the associated Kac Moody algebra. In the

Hamiltonian description the velocities β̇
a are replaced by their associated

momenta πa; variation of the lapse Ñ yields the Hamiltonian constraint

H =
∑

a

π
2

a
−

1

d − 1

(

∑

a

πa

)2

≡ G
ab

πaπb ≈ 0 (37)

Here G
ab is the inverse of the superspace metric, i.e. G

ac
Gbc = δ

a
c
. The

constraint (37) is supposed to hold at each spatial point, but let us con-

centrate at one particular spatial point for the moment. It is easy to check

that (37) is solved by the well known conditions on the Kasner exponents.

In this approximation, one thus has a Kasner-like metric at each spatial

point, with the Kasner exponents depending on the spatial coordinate. In

terms of the β-space description, we thus have the following picture of the

dynamics of the scale factors at each spatial point. The solution to the

constraint (37) corresponds to the motion of a relativistic massless parti-

cle (often referred to as the ‘billiard ball’ in the remainder) moving in the

forward lightcone in β-space along a lightlike line w.r.t. the ‘superspace

metric’ Gab. The Hamiltonian constraint (37) is then re-interpreted as a

relativistic dispersion relation for the ‘billiard ball’.

Of course, the above approximation does not solve the Einstein equa-

tions, unless the Kasner exponents are taken to be constant (yielding the

well known Kasner solution). Therefore, in a second step one must now

take into account the spatial dependence and the effects of non-vanishing

spatial curvature, and, eventually, the effect of matter couplings. At first

sight this would seem to bring back the full complications of Einstein’s

equations. Surprisingly, this is not the case. Namely, one can show (at least

heuristically) that65
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(1) except for a finite number of them, the infinite number of degrees of

freedom encoded in the spatially inhomogeneous metric, and in other

fields, freeze in that they tend to finite limits as t → 0; and

(2) the dynamics of the remaining ‘active’ diagonal metric degrees of free-

dom can be asymptotically described in terms of a simple billiard dy-

namics taking place in the β-space of (logarithmic) scale factors.

This result can be expressed more mathematically as follows. In the

limit t → 0, the effect of the remaining degrees of freedom consists simply

in modifying the gravitational Hamiltonian (37) at a given spatial point by

the addition of an effective potential that may be pictured as arising from

‘integrating out’ all but the diagonal degrees of freedom. Accordingly, the

free Hamiltonian constraint (37) is now replaced by an effective Hamiltonian

constraint

H(βa
, πa, Q, P ) = G

ab
πaπb +

∑

A

cA(Q, P ) exp
(

− 2wA(β)
)

(38)

where β
a
, πa are the canonical variables corresponding to the diagonal met-

ric degrees of freedom, and Q, P denote the remaining canonical degrees of

freedom. The quantities wA appearing in the exponential are generically

linear forms in β,

wA(β) =
∑

a

(wA)aβ
a (39)

and are usually referred to as ‘wall forms’. It is crucial that the precise

form of the coefficient functions cA(Q, P ) — which is very complicated —

does not matter in the BKL limit, which is furthermore dominated by a fi-

nite number of leading contributions for which cA′(Q, P ) ≥ 0. The detailed

analysis65 reveals various different kinds of walls: gravitational walls due

to the effect of spatial curvature, symmetry (or centrifugal) walls resulting

from the elimination of off-diagonal metric components, electric and mag-

netic p-form walls, and dilaton walls. It is another non-trivial result that

all these walls are timelike in β-space, that is, they have spacelike normal

vectors.

The emergence of dominant walls is a consequence of the fact that, in the

limit t → 0, when β → ∞, most of the walls ‘disappear from sight’, as the

‘soft’ exponential walls become steeper and steeper, eventually rising to in-

finity. Perhaps a useful analogy here is to think of a mountainscape, defined

by the sum of the exponential potentials CAe
−2wA ; when the mountaintops

rise into the sky, only the nearest mountains remain visible to the observer
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in the valley. The Hamiltonian constraint (38) then takes the limiting form

H∞(βa
, πa) = G

ab
πaπb +

∑

A′

Θ∞

(

− 2wA′(β)
)

(40)

where the sum is only over the dominant walls (indexed by A
′), and Θ∞

denotes the infinite step function

Θ∞(x) :=

{

0 if x < 0

+∞ if x > 0
(41)

In conclusion, the original Hamiltonian simplifies dramatically in the BKL

limit t → 0. The dynamics of (40) is still that of a massless relativistic

particle in β-space, but one that is confined in a ‘box’. Hence, this particle

undergoes occasional collisions with the ‘sharp’ walls: when the argument

of the Θ∞ function is negative, i.e. between the walls, this particle follows

a free relativistic motion characterized by the appropriate Kasner coef-

ficients; when the particle hits a walls (where Θ∞ jumps by an infinite

amount), it gets reflected with a corresponding change in the Kasner ex-

ponents (these reflections are also referred to as Kasner bounces). Because

the walls are timelike, the Kasner exponents get rotated by an element of

the orthochronous Lorentz group in β-space at each collision.

In summary, we are indeed dealing with a relativistic billiard evolv-

ing in the forward lightcone in β-space. The billiard walls (‘cushions’) are

the hyperplanes in β-space determined by the zeros of the wall forms, i.e.

wA′(β) = 0. The chamber, in which the motion takes place, is therefore the

wedge-like region defined by the inequalities f .

wA′(β) ≥ 0 (42)

As for the long term (large β) behavior of the billiard, there are two

possibilities:64

(1) The chamber characterized by (42) is entirely contained in the forward

lightcone in β-space (usually with at least one edge on the lightcone).

In this case, the billiard ball will undergo infinitely many collisions

because, moving at the speed of light, it will always catch up with

one of the walls. The corresponding metric will then exhibit infinitely

fNote that this is a space-time picture in β-space: the walls recede as t tends to 0, and

β → ∞. The actual ‘billiard table’ can be defined as the projection of this wedge onto
the unit hyperboloid Gabβ

a
β

b = −1 in β-space.65 See also 53,54,55 for previous work
and alternative descriptions of the billiard.
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many Kasner bounces between 0 < t < ε for any ε > 0, hence chaotic

oscillations.g

(2) The chamber extends beyond the lightcone, because some walls inter-

sect outside the lightcone. In this case the billiard ball undergoes finitely

many oscillations until its motion is directed towards a region that lies

outside the lightcone; it then never catches up with any wall anymore

because no ‘cushion’ impedes its motion. The corresponding metrics

therefore exhibit a monotonic Kasner-like behavior for 0 < t < ε for

sufficiently small ε > 0.

The question of chaotic vs. regular behavior of the metric near the

singularity is thereby reduced to determining whether the billiard chamber

realizes case 1 or case 2, and this is now a matter of a simple algebraic

computation. In the case of monotonic Kasner-like behavior one can exploit

these results and prove rigorous theorems about the behavior of the solution

near the singularity.60,68

3.2. Emergence of Kac Moody symmetries

The billiard description holds not only for gravity itself, but generalizes

to various kinds of matter couplings extending the Einstein-Hilbert action.

However, these billiards have no special regularity properties in general.

In particular, the dihedral angles between the ‘walls’ bounding the billiard

might depend on continuous couplings, and need not be integer submulti-

ples of π. In some instances, however, the billiard can be identified with

the fundamental Weyl chamber of a symmetrizable Kac Moody algebra of

indefinite typeh, with Lorentzian signature metric.24,64,69 Such billiards are

also called ‘Kac Moody billiards’. Examples are pure gravity in any num-

ber of spacetime dimensions, for which the relevant KM algebra is AEd,

and superstring models24 for which one obtains the rank 10 algebras E10

and BE10, in line with earlier conjectures made in.70 Furthermore, it was

understood that chaos (finite volume of the billiard) is equivalent to hyper-

bolicity of the underlying Kac Moody algebra.64 Further examples of the

emergence of Lorentzian Kac Moody algebras can be found in.69

gAlthough we utilise this term in a somewhat cavalier manner here, readers can be
assured that this system is indeed chaotic in the rigorous sense. For instance, projection
onto the unit hyperboloid in β-space leads to a finite volume billiard on a hyperbolic
manifold of constant negative curvature, which is known to be strongly chaotic.
hFrom now on we abbreviate ‘Kac Moody’ by ‘KM’, and ‘Cartan subalgebra’ by ‘CSA’.
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The main feature of the gravitational billiards that can be associated

with KM algebras is that there exists a group theoretical interpretation of

the billiard motion: the asymptotic BKL dynamics is equivalent, at each

spatial point, to the asymptotic dynamics of a one-dimensional nonlinear

σ-model based on a certain infinite dimensional coset space G/K(G), where

the KM group G and its maximal compact subgroup K(G) depend on the

specific model. In particular, the β-space of logarithmic scale factors, in

which the billard motion takes place, can be identified with the Cartan sub-

algebra (CSA) of the underlying indefinite Kac-Moody algebra. The domi-

nant walls that determine the billiards asymptotically are associated with

the simple roots of the KM algebra. We emphasize that it is precisely the

presence of gravity, which comes with an indefinite (Lorentzian) metric

in the β-superspace, hence a Cartan-Killing metric of indefinite signature,

which forces us to consider infinite dimensional KM groups. By contrast,

the finite dimensional simple Lie algebras, which can also be considered as

KM algebras, but which were already classified long ago by Cartan, are

characterized by a positive definite Cartan-Killing metric.

The σ-model formulation to be introduced and elaborated in section 6

enables one to go beyond the BKL limit, and to see the beginnings of a

possible identification of the dynamics of the scale factors and of all the

remaining variables with that of a non-linear σ-model defined on the cosets

of the KM group divided by its maximal compact subgroup.25,27 In that

formulation, the various types of walls can thus be understood directly as

arising from the large field limit of the corresponding σ-models. So far, only

two examples have been considered in this context, namely pure gravity,

in which case the relevant KM algebra is AE3,
65 and the bosonic sector of

D = 11 supergravity, for which the relevant algebra is the maximal rank 10

hyperbolic KM algebra E10; we will return to the latter model in the final

section. Following Ref. 25, 27 one can introduce for both models a precise

identification between the purely t-dependent σ-model quantities obtained

from the geodesic action on the G/K(G) coset space on the one hand, and

the fields and their spatial gradients evaluated at a given, but arbitrarily

chosen spatial point on the other.

3.3. The main conjecture

To sum up, it has been established that

(1) in many physical theories of interest (and all the models arising in

supergravity and superstring theory), the billiard region in which the
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dynamics of the active degrees of freedom takes place can be identified

with the Weyl chamber of some Lorentzian KM algebra; and

(2) the concept of a nonlinear σ-model on a coset space G/K(G) can be

generalized to the case where G is a Lorentzian KM group, and K(G)

its ‘maximal compact subgroup’; furthermore, these (one-dimensional)

σ-models are asymptotically equivalent to the billiard dynamics de-

scribing the active degrees of freedom as t → 0.

So far, these correspondences between gravity or supergravity models

on the one hand, and certain KM coset space σ-models on the other, work

only for truncated versions of both models. Namely, on the gravity side

one has to restrict the dependence on the spatial coordinates, whereas the

KM models must be analyzed in terms of a ‘level expansion’, in which only

the lowest orders are retained, and the remaining vast expanse of the KM

Lie algebra remains to be understood and explored. There are, however,

indications that, at least as far as the higher order spatial gradients on

the (super)gravity side are concerned, the correspondence can be further

extended: the level expansions of AE3, and other hyperbolic KM algebras

contain all the requisite representations needed for the higher order spatial

gradients25 (as well as an exponentially increasing number of representa-

tions for which a physical interpretation remains to be found 71). This

observation gave rise to the key conjecture25 for the correspondence be-

tween D = 11 supergravity and the E10/K(E10) coset model, which we

here reformulate in a somewhat more general manner:

The time evolution of the geometric data at each spatial point, i.e. the

values of all the fields and their spatial gradients, can be mapped onto

some constrained null geodesic motion on the infinite dimensional

G/K(G) coset space.

If true, this conjecture would provide us with an entirely new way of

describing and analyzing a set of (non-linear) partial differential equations

in terms of an ordinary differential equation in infinitely many variables,

by ‘spreading’ the spatial dependence over an infinite dimensional Lie alge-

bra, and thereby mapping the cosmological evolution onto a single trajec-

tory in the corresponding coset space. In the remainder of this article we

will therefore spell out some of the technical details that lead up to this

conjecture.
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4. Basics of Kac Moody Theory

We here summarize some basic results from the theory of KM algebras,

referring the reader to15,16,17 for comprehensive treatments. Every KM al-

gebra g ≡ g(A) can be defined by means of an integer-valued Cartan matrix

A and a set of generators and relations. We shall assume that the Cartan

matrix is symmetrizable since this is the case encountered for cosmological

billiards. The Cartan matrix can then be written as (i, j = 1, . . . r, with r

denoting the rank of g(A))

Aij =
2〈αi|αj〉

〈αi|αi〉

(43)

where {αi} is a set of r simple roots, and where the angular brackets de-

note the invariant symmetric bilinear form of g(A).15 Recall that the roots

can be abstractly defined as linear forms on the Cartan subalgebra (CSA)

h ⊂ g(A). The generators, which are also referred to as Chevalley-Serre

generators, consist of triples {hi, ei, fi} with i = 1, . . . , r, and for each i

form an sl(2, R) subalgebra. The CSA h is then spanned by the elements

hi, so that

[hi, hj ] = 0 (44)

The remaining relations generalize the ones we already encountered in Eqs.

(26) and (29): Furthermore,

[ei, fj ] = δijhj (45)

and

[hi, ej ] = Aijej , [hi, fj ] = −Aijfj (46)

so that the value of the linear form αj , corresponding to the raising operator

ej , on the element hi of the preferred basis {hi} of h is αj(hi) = Aij . More

abstractly, and independently of the choice of any basis in the CSA, the

roots appear as eigenvalues of the adjoint action of any element h of the

CSA on the raising (ei) or lowering (fi) generators: [h, ei] = +αi(h)ei,

[h, fi] = −αi(h)fi. Last but not least we have the so-called Serre relations

ad (ei)
1−Aij

(

ej

)

= 0 , ad (fi)
1−Aij

(

fj

)

= 0 (47)

A key property of every KM algebra is the triangular decomposition

g(A) = n−
⊕ h ⊕ n+ (48)

where n+ and n−, respectively, are spanned by the multiple commutators

of the ei and fi which do not vanish on account of the Serre relations or the
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Jacobi identity. To be completely precise, n+ is the quotient of the free Lie

algebra generated by the ei’s by the ideal generated by the Serre relations

(idem for n− and fi). In more mundane terms, when the algebra is realized,

in a suitable basis, by infinite dimensional matrices, n+ and n− simply con-

sist of the ‘nilpotent’ matrices with nonzero entries only above or below the

diagonal. Exponentiating them formally, one obtains infinite dimensional

matrices again with nonzero entries above or below the diagonal.

A main result of the general theory is that, for positive definite A, one

just recovers from these relations Cartan’s list of finite dimensional Lie

algebras (see e.g.72 for an introduction). For non positive-definite A, on

the other hand, the associated KM algebras are infinite dimensional. If A

has only one zero eigenvalue, with all other eigenvalues strictly positive,

the associated algebra is called affine. The simplest example of such an

algebra is the the A
(1)

1
algebra underlying the Geroch group, which we al-

ready encountered and discussed in section 2.2, with Cartan matrix (27).

While the structure and properties of affine algebras are reasonably well

understood,15,17 this is not so for indefinite A, when at least one eigen-

value of A is negative. In this case, very little is known, and it remains an

outstanding problem to find a manageable representation for them.15,16 In

particular, there is not a single example of an indefinite KM algebra for

which the root multiplicities, i.e. the number of Lie algebra elements asso-

ciated with a given root, are known in closed form. The scarcity of results

is even more acute for the ‘Kac-Moody groups’ obtained by formal expo-

nentiation of the associated Lie algebras. As a special, and important case,

the class of Lorentzian KM algebras includes hyperbolic KM algebras whose

Cartan matrices are such that the deletion of any node from the Dynkin

diagram leaves either a finite or an affine subalgebra, or a disjoint union of

them.

The ‘maximal compact’ subalgebra k is defined as the invariant subal-

gebra of g(A) under the standard Chevalley involution, i.e.

θ(x) = x for all x ∈ k (49)

with

θ(hi) = −hi , θ(ei) = −fi , θ(fi) = −ei (50)

More explicitly, it is the subalgebra generated by multiple commutators

of (ei − fi). For finite dimensional g(A), the inner product induced on the

maximal compact subalgebra k is negative-definite, and the orthogonal com-

plement to k has a positive definite inner product. This is not true, however,
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for indefinite A. It is sometimes convenient to introduce the operation of

transposition acting on any Lie algebra element E as

E
T := −θ(E) (51)

The subalgebra k is thus generated by the ‘anti-symmetric’ elements satisfy-

ing E
T = −E; after exponentiation, the elements of the maximally compact

subgroup K formally appear as ‘orthogonal matrices’ obeying k
T = k

−1.

Often one uses a so-called Cartan-Weyl basis for g(A). Using Greek

indices µ, ν, . . . to label the root components corresponding to an arbi-

trary basis Hµ in the CSA, with the usual summation convention and a

Lorentzian metric Gµν for an indefinite g, we have hi := α
µ

i
Hµ, where α

µ

i

are the ‘contravariant components’, Gµνα
ν
i
≡ αi µ, of the simple roots αi

(i = 1, . . . r), which are linear forms on the CSA, with ‘covariant compo-

nents’ defined as αi µ ≡ αi(Hµ). To an arbitrary root α there corresponds a

set of Lie-algebra generators Eα,s, where s = 1, . . . , mult (α) labels the (in

general) multiple Lie-algebra elements associated with α. The root multi-

plicity mult (α) is always one for finite dimensional Lie algebras, and also

for the real (= positive norm) roots, but generically grows exponentiallly

with −α
2 for indefinite A. In this notation, the remaining Chevalley-Serre

generators are given by ei := Eαi
and fi := E−αi

. Then,

[Hµ, Eα,s] = αµEα,s (52)

and

[Eα,s, Eα′,t] =
∑

u

c
s,t,u

αα′ Eα+α′,u (53)

The elements of the Cartan-Weyl basis are normalized such that

〈Hµ|Hν〉 = Gµν , 〈Eα,s|Eβ,t〉 = δstδα+β,0 (54)

where we have assumed that the basis satisfies E
T
α,s = E−α,s. Let us finally

recall that the Weyl group of a KM algebra is the discrete group generated

by reflections in the hyperplanes orthogonal to the simple roots.

5. The Hyperbolic Kac Moody Algebra AE3

As we explained, the known symmetries of Einstein’s theory for special

types of solutions include the Ehlers and Matzner Misner SL(2, R) symme-

tries, which can be combined into the Geroch group ̂SL(2, R)
ce

. Further-

more, in the reduction to one time dimension, Einstein’s theory is invariant

under a rigid SL(3, R) symmetry acting on the spatial dreibein. Hence, any
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conjectured symmetry of Einstein’s theory should therefore contain these

symmetries as subgroups. Remarkably, there is a hyperbolic KM group with

precisely these properties, whose Lie algebra is furthermore the simplest hy-

perbolic KM algebra containing an affine subalgebra.46 This is the algebra

AE3, with Cartan matrix

Aij =





2 −1 0

−1 2 −2

0 −2 2



 (55)

The sl(2, R) subalgebra corresponding to the third diagonal entry of Aij is

associated with the Ehlers group. The affine subgroup corresponding to the

submatrix (27) is the Geroch group3 already discussed in section 2.2. The

SL(3, R) subgroup containing the the Matzner-Misner SL(2, R) group, is

generated by (e1, f1, h1) and (e2, f2, h2), corresponding to the submatrix
(

2 −1

−1 2

)

(56)

As we said, not much is known about AE3; in particular, there is no ‘list’

of its (infinitely many) generators, nor of its structure constants (which are

certainly too numerous to fit in any list, see below!). Nevertheless, in order

to gain some ‘feeling’ for this algebra, we will now work out the begin-

nings of its decomposition into irreducible representations of its SL(3, R)

subgroup. Of course, this decomposition refers to the adjoint action of the

sl(3, R) subalgebra embedded in AE3. More specifically, we will analyze the

lowest terms of the nilpotent subalgebra n+. To do so, we first define, for

any given root α, its sl(3, R) level ` to be the number of times the root

α3 appears in it, to wit, α = mα1 + nα2 + `α3. The algebra AE3 thereby

decomposes into an infinite irreducible representations of its sl(3, R) sub-

algebrai. As is well known,72 the irreducible representations of sl(3, R) can

be conveniently characterized by their Dynkin labels [p1, p2]. In terms of

the Young tableau description of sl(3, R) representations, the first Dynkin

label p1 counts the number of columns having two boxes, while p2 counts

the number of columns having only one box. For instance, [p1, p2] = [1, 0]

labels an antisymmetric two-index tensor, while [p1, p2] = [0, 2] denotes a

symmetric two-index tensor. The dimension of the representation [p1, p2] is

(p1 + 1)(p2 + 1)(p1 + p2 + 2)/2.

iA different decomposition would be one in terms of the affine subalgebra A
(1)

1
⊂ AE3;18

however, the representation theory of A
(1)

1
is far more complicated and much less devel-

oped than that of sl(3, R).
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The level ` = 0 sector, which includes the third Cartan generator h3,

is the gl(3, R) subalgebra with generators K
i
j (where i, j = 1, 2, 3) and

commutation relations

[Ki
j , K

k
l] = δ

k

j
K

i
l − δ

i

l
K

k
j (57)

corresponding to the GL(3, R) group acting on the spatial components of

the vierbein. The restriction of the AE3-invariant bilinear form to the level-

0 sector is

〈K
i
j |K

k
l〉 = δ

i

lδ
k

j − δ
i

jδ
k

l (58)

The identification with the Chevalley-Serre generators is

e1 = K
1
2 , f1 = K

2
1 , h1 = K

1
1 − K

2
2

e2 = K
2
3 , f2 = K

3
2 , h2 = K

2
2 − K

3
3

h3 = −K
1
1 − K

2
2 + K

3
3 (59)

showing how the over-extended CSA generator h3 enlarges the original

sl(3, R) generated by (e1, f1, h1) and (e2, f2, h2) to the Lie algebra gl(3, R).

The CSA generators are related to the ‘central charge’ generator c by

c = h2 + h3 = −K
1
1 (60)

which acts as a scaling on the conformal factor8,9,11 (here realized as the

1-1 component of the vierbein).

To determine the representations of sl(3, R) appearing at levels ` =

±1, we observe that, under the adjoint action of sl(3, R), i.e. of (e1, f1, h1)

and (e2, f2, h2), the extra Chevalley-Serre generator f3 is a highest weight

vector:

e1(f3) ≡ [e1, f3] = 0

e2(f3) ≡ [e2, f3] = 0 (61)

The Dynkin labels of the representation built on this highest weight vector

f3 are (p1, p2) = (0, 2), since

h1(f3) ≡ [h1, f3] = 0

h2(f3) ≡ [h2, f3] = 2f3 (62)

As mentioned above, the representation (p1, p2) = (0, 2) corresponds to

a symmetric (two-index) tensor. Hence, at the levels ±1 we have AE3

generators which can be represented as symmetric tensors E
ij = E

ji
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and Fij = Fji. One verifies that all algebra relations are satisfied with

(a(ij) ≡ (aij + aji)/2)

[Ki
j , E

kl] = δ
k

j
E

il + δ
l

j
E

ki

[Ki
j , Fkl] = −δ

i

k
Fjl − δ

i

l
Fkj

[Eij
, Fkl] = 2δ

(i

(k
K

j)
l) − δ

(i

k
δ

j)

l

(

K
1
1 + K

2
2 + K

3
3

)

〈Fij |E
kl
〉 = δ

(k

i
δ

l)

j
(63)

and the identifications

e3 = E
33

, f3 = F33 (64)

As one proceeds to higher levels, the classification of sl(3, R) represen-

tations becomes rapidly more involved due to the exponential increase in

the number of representations with level `. Generally, the representations

that can occur at level `+1 must be contained in the product of the level-`

representations with the level-one representation (0, 2). Working out these

products is elementary, but cumbersome. For instance, the level-two gener-

ator E
ab|jk

≡ ε
abi

Ei
jk, with labels (1, 2), is straightforwardly obtained by

commuting two level-one elements

[Eij
, E

kl] = ε
mk(i

Em
j)l + ε

ml(i
Em

j)k (65)

A more economical way to identify the relevant representations is to work

out the relation between Dynkin labels and the associated highest weights,

using the fact that the highest weights of the adjoint representation are

the roots. More precisely, the highest weight vectors being (as exemplified

above at level 1) of the ‘lowering type’, the corresponding highest weights

are negative roots, say Λ = −α. Working out the associated Dynkin labels

one obtains

p1 ≡ p = n − 2m , p2 ≡ q = 2` + m − 2n (66)

As indicated, we shall henceforth use the notation [p1, p2] ≡ [p, q] for the

Dynkin labels. This formula is restrictive because all the integers entering

it must be non-negative. Inverting this relation we get

m = 2

3
` −

2

3
p −

1

3
q

n = 4

3
` −

1

3
p −

2

3
q (67)

with n ≥ 2m ≥ 0. A further restriction derives from the fact that the

highest weight must be a root of AE3, viz. its square must be smaller or

equal to 2:

Λ2 = 2

3

(

p
2 + q

2 + pq − `
2
)

≤ 2 (68)
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Consequently, the representations occurring at level ` must belong to the

list of all the solutions of (67) which are such that the labels m, n, p, q are

non-negative integers and the highest weight Λ is a root, i.e. Λ2
≤ 2. These

simple diophantine equations/inequalities can be easily evaluated by hand

up to rather high levels.

Although the above procedure substantially reduces the number of pos-

sibilities, it does not tell us how often a given representation appears, i.e. its

outer multiplicity µ. For this purpose we have to make use of more detailed

information about AE3, namely the root multiplicities computed in.18,15

Matching the combined weight diagrams with the root multiplicities listed

in table H3 on page 215 of,15 one obtains the following representations in

the decomposition of AE3 w.r.t. its sl(3, R) subalgebra up to level ` ≤ 5,

where we also indicate the root coefficients (m1, m2, `), the norm and mul-

tiplicity of the root α, and the outer multiplicity of the representation [p, q]:

Table 1. Decomposition of AE3 under sl(3, R) for ` ≤ 5.

` [p, q] α α
2 mult α µ

1 [0,2] (0,0,1) 2 1 1

2 [1,2] (0,1,2) 2 1 1

3 [2,2] (0,2,3) 2 1 1

[1,1] (1,3,3) -4 3 1

4 [3,2] (0,3,4) 2 1 1

[2,1] (1,4,4) -6 5 2

[1,0] (2,5,4) -10 11 1

[0,2] (2,4,4) -8 7 1

[1,3] (1,3,4) -2 2 1

5 [4,2] (0,4,5) 2 1 1

[3,1] (1,5,5) -8 7 3

[2,0] (2,6,5) -14 22 3

[0,1] (3,6,5) -16 30 2

[0,4] (2,4,5) -6 5 2

[1,2] (2,5,5) -12 15 4

[2,3] (1,4,5) -4 3 2

The above table does not look too bad, but appearances are deceptive,

because the number of representations grows exponentially with the level!

For AE3, the list of representations with their outer multiplicities is mean-
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while available up to ` ≤ 56 71; the total number of representations up

to that level is 20 994 472 770 550 672 476 591 949 725 720 j, larger than 1031!

This number should suffice to convince readers of the ‘explosion’ that takes

place in these algebras as one increases the level. Similar decompositions

can be worked out for the indefinite Kac-Moody algebras E10 and E11
71,

and for E10 under its D9 and A8 ×A1 subalgebras.26,28. The real problem,

however, is not so much the large number of representations, but rather the

absence of any discernible structure in these tables, at least up until now.

6. Nonlinear σ-Models in One Dimension

Notwithstanding the fact that we know even less about the groups asso-

ciated with indefinite KM algebras, it is possible to formulate nonlinear

σ-models in one time dimension and thereby provide an effective and uni-

fied description of the asymptotic BKL dynamics for several physically im-

portant models. The basic object of interest is a one-parameter dependent

KM group element V = V(t), assumed to be an element of the coset space

G/K(G), where G is the group obtained by formal exponentiation of the

KM algebra g, and K(G) its maximal compact subgroup, obtained by for-

mal exponentiation of the associated maximal compact subalgebra k defined

above. For finite dimensional g(A) our definitions reduce to the usual ones,

whereas for indefinite KM algebras they are formal constructs to begin

with. In order to ensure that our definitions are meaningful operationally,

we must make sure at every step that any finite truncation of the model is

well defined and can be worked out explicitly in a finite number of steps.

In physical terms, V can be thought of as an extension of the vielbein

of general relativity, with G and K(G) as generalizations of the GL(d, R)

and local Lorentz symmetries of general relativity. For infinite dimensional

G, the object V thus is a kind of ‘∞-bein’, that can be associated with the

‘metric’

M := V

T
V (69)

which is invariant under the left action ( V → kV) of the ‘Lorentz group’

K(G). Exploiting this invariance, we can formally bring V into a triangular

gauge

V = A · N =⇒ M = N

T
A

2
N (70)

jT. Fischbacher, private communication.
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where the abelian part A belongs to the exponentiation of the CSA, and

the nilpotent part N to the exponentiation of n+. This formal Iwasawa

decomposition, which is the infinite dimensional analog of (33), can be

made fully explicit by decomposing A and N in terms of bases of h and n+

(using the Cartan Weyl basis)

A(t) = exp
(

β
µ(t) Hµ

)

,

N (t) = exp
(

∑

α∈∆+

mult(α)
∑

s=1

να,s(t) Eα,s

)

(71)

where ∆+ denotes the set of positive roots. The components β
µ, parametriz-

ing a generic element in the CSA h, will turn out to be in direct correspon-

dence with the metric scale factors β
a in (34). The main technical difference

with the kind of Iwasawa decompositions used in section 3.1 is that now

the matrix V(t) is infinite dimensional for indefinite g(A), in which case the

decomposition (71) is, in fact, the only sensible parametrization available!

Consequently, there are now infinitely many ν’s, whence N contains an

infinite tower of new degrees of freedom. Next we define

ṄN

−1 =
∑

α∈∆+

mult(α)
∑

s=1

jα,sEα,s ∈ n+ (72)

with

jα,s = ν̇α,s + “νν̇ + ννν̇ + · · ·

′′ (73)

(we put quotation marks to avoid having to write out the indices). To define

a Lagrangian we consider the quantity

V̇V

−1 = β̇
µ
Hµ +

∑

α∈∆+

mult(α)
∑

s=1

exp
(

α(β)
)

jα,sEα,s (74)

which has values in the Lie algebra g(A). Here we have set

α(β) ≡ αµβ
µ (75)

for the value of the root α ( ≡ linear form) on the CSA element β = β
µ
Hµ.

Next we define

P :=
1

2

(

V̇V

−1 + (V̇V−1)T

)

= β̇
µ
Hµ +

1

2

∑

α∈∆+

mult(α)
∑

s=1

jα,s exp
(

α(β)
)

(Eα,s + E−α,s) (76)
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where we arranged the basis so that E
T
α,s = E−α,s. The KM-invariant σ-

model Lagrangian is defined by means of the KM-invariant bilinear form

L =
1

2
n
−1

〈P |P 〉

= n
−1

(1

2
Gµν β̇

µ
β̇

ν +
1

4

∑

α∈∆+

mult(α)
∑

s=1

exp
(

2α(β)
)

jα,sjα,s

)

(77)

Here the Lorentzian metric Gµν is the restriction of the invariant bilinear

form to the CSA, cf. (54). The ‘lapse function’ n ensures that our formalism

is invariant under reparametrizations of the time variable. Remarkably, this

action defined by the above Lagrangian is essentially unique because there

are no higher order polynomial invariants for indefinite KM algebras.15

After these preparations we are now ready to specialize to the algebra

AE3. In this case this Lagrangian (77) contains the Kasner Lagrangian (35)

as a special truncation. More specifically, retaining only the level zero fields

(corresponding to the ‘sub-coset’ GL(3, R)/O(3))

V(t)
∣

∣

∣

`=0

= exp(ha
b(t)K

b
a) (78)

and defining from h
a

b a vielbein by matrix exponentiation e
a

b ≡ (exp h)a

b
,

and a corresponding contravariant metric g
ab = e

a
ce

b
c, it turns out that the

bilinear form (58) reproduces the Lagrangian (35) (for the special case of

three spatial dimensions). This means that we can identify the restriction

Gµν of the Cartan-Killing metric to the CSA with the superspace metric

Gab in the superspace of scale factors β in (35).

At level ` = 1, we have the fields φij associated with the level-one

generators E
ij . Observe that for D = 4, these are precisely the spatial

components of the dual graviton introduced in (15) — in other words,

we have rederived the result of section 2.2 by a purely group theoretical

argument! (This argument works likewise for D > 4.) This leads to a slightly

less restricted truncation of our KM-invariant σ-model

V(t)
∣

∣

∣

`=0,1

= exp(ha
b(t)K

b
a) exp(φabE

ab) (79)

In the gauge n = 1, the Lagrangian now has the form L ∼ (g−1
ġ)2 +

g
−1

g
−1

φ̇φ̇, where g denotes the covariant metric gij . As the φij ’s enter only

through their time derivatives, their conjugate momenta Πij are constants

of the motion in this |`| ≤ 1 truncation. Eliminating the φ’s in terms of the
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constant momenta Π yields

Vφ(g) ∝ +gijgklΠ
ikΠjl (80)

This potential can be identified with the leading (weight-2) gravitational

potential, if we identify the structure constants C
i
jk defined by dθ

i =

C
i
jkθ

j
∧ θ

k, with the momenta conjugate to φij as

Πij = ε
kl(i

C
j)

kl (81)

Consequently, the BKL dynamics at each spatial point is equivalent to the

|`| ≤ 1 truncation of the AE3-invariant dynamics defined by (77). The fields

φij(t) parametrizing the components of the AE3 coset element along the

` = 1 generators are canonically conjugate to the structure constants C
i
jk .

The proper physical interpretation of the higher level fields remains yet to

be found.

Varying (77) w.r.t. the lapse function n gives rise to the constraint that

the coset Lagrangian vanish. Defining the canonical momenta

πa :=
δL

δβ̇a
= n

−1
Gabβ̇

b (82)

and the (non-canonical) momentum-like variables

Πα,s :=
δL

δjα,s

=
1

2
n
−1 exp

(

2α(β)
)

jα,s (83)

and recalling the equivalence of the Cartan Killing and superspace metrics

noted above, we are led to the Hamiltonian constraint of the σ-model, which

is given by

H(βa
, πa, ...) =

1

2
G

ab
πaπb +

∑

α∈∆+

mult(α)
∑

s=1

exp
(

− 2α(β)
)

Πα,sΠα,s (84)

where β
a
, πa are now the diagonal CSA degrees of freedom, and the dots

stand for infinitely many off-diagonal (Iwasawa-type) canonical variables,

on which the Πα,s depend.

The evident similarity of (38) and (84) is quite striking, but at this point

we can only assert that the two expressions coincide asymptotically, when

they both reduce to a relativistic billiard. Namely, because the coefficients

of the exponentials in (84) are non-negative, we can apply exactly the same

reasoning as for the gravitational billiards in section 3.1. One then finds

that the off-diagonal components να,s and the momentum-like variables

Πα,s get frozen asymptotically (again, we may invoke the imagery of a

mountainscape, now defined by exponential potentials for all roots). In
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the present KM setup, all the walls enter on the same footing; there is

nothing left of the distinctions between different types of walls (symmetry,

gravitational, electric, and so on). The only important characteristic of a

wall is its height ht α ≡ n1 + n2 + · · · for a root decomposed along simple

roots as α = n1α1 + n2α2 + · · · . The asymptotic Hamiltonian hence is

dominated by the walls associated to the simple roots:

H∞(β, π) =
1

2
π

a
πa +

r
∑

i=1

Θ∞

(

− 2αi(β)
)

(85)

where the sum is over the simple roots only, and the motion of the β
a is

confined to the fundamental Weyl chamber αi(β) ≥ 0.

The billiard picture for pure gravity in four dimensions is now readily

understood in terms of the Weyl group of AE3,
64 which is just the modular

group PGL(2, Z),18 and the simple roots of AE3. For the sl(3, R) subalge-

bra, which has two simple roots, the Weyl group is the permutation group

on three objects. The two hyperplanes orthogonal to these simple roots can

be identified with the symmetry (centrifugal) walls. The third simple root

extending (56) to the full rank 3 algebra (55) can be identified the dominant

curvature (gravitational) wall.

To conclude: in the limit where one goes to infinity in the Cartan di-

rections, the dynamics of the Cartan degrees of freedom of the coset model

become equivalent to a billiard motion within the Weyl chamber, subject to

the zero-energy constraint H∞(β, π) = 0. Therefore, in those cases where

the gravitational billiards of section 3.1 are of KM-type, they are asymp-

totically equivalent to the KM σ-models over G/K(G).

7. Finale: E10 – The Ultimate Symmetry?

There can be little doubt that the algebra, which from many points is the

most intriguing and most beautiful, is the maximal rank hyperbolic KM

algebra E10, which is an infinite dimensional extension of the better known

finite dimensional exceptional Lie algebras E6, E7 and E8.
72 There are

two other rank-10 hyperbolic KM algebras DE10 and BE10 (respectively

related to type I supergravity, and Einstein Maxwell supergravity in ten

dimensions), but they appear to be less distinguished. The emergence of

E10 in the reduction of D = 11 supergravity to one dimension had first

been conjectured in.70 A crucial new feature of the scheme proposed here,

which is based on a hyperbolic σ-model defined by means of the geodesic

action (77) is that it retains a residual spatial dependence, which on the
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σ-model side is supposed ‘to be spread’ over the whole E10 Lie algebra.

Thereby all degrees of freedom of the original theory should still be there,

unlike for a bona fide reduction to one dimension.

Just like AE3 the KM algebra E10 algebra is recursively defined via its

Chevalley-Serre presentation in terms of generators and relations and its

Dynkin diagram which we give below.

α1 α2 α3 α4 α5 α6 α7 α8 α9

α0

i i i i i i i i i

i

The nine simple roots α1, . . . , α9 along the horizontal line generate an A9 ≡

sl(10, R) subalgebra. One of the reasons why E10 is distinguished is that

its root lattice is the unique even self-dual Lorentzian lattice II1,9 (such

lattices exist only in dimensions d = 2 + 8n.73)

For the corresponding σ-model a precise identification can be made be-

tween the purely t-dependent σ-model quantities obtained from the geodesic

action on the E10/K(E10) coset space on the one hand, and certain fields

of D = 11 supergravity and their spatial gradients evaluated at a given,

but arbitrarily chosen spatial point on the other.25,27 The simple and es-

sentially unique geodesic Lagrangian describing a null world line in the

infinite-dimensional coset manifold E10/K(E10) thus reproduces the dy-

namics of the bosonic sector of eleven-dimensional supergravity in the vicin-

ity of a space-like singularity. This result can be extended to massive IIA

supergravity,26 where also parts of the fermionic sector were treated for the

first time, and to IIB supergravity in.28 Related results had been previously

obtained in the framework of E11.
74,75,76

A main ingredient in the derivation of these results is the level de-

composition of E10 w.r.t. the A9, D9, and A8 × A1 subalgebras of E10,

respectively, which generalizes the sl(3, R) decomposition of AE3 made in

section 5. In all cases, one obtains precisely the field representation content

of the corresponding supergravity theories at the lowest levels, and for all

these decompositions, the bosonic supergravity equations of motion, when

restricted to zeroth and first order spatial gradients, match with the cor-

responding σ-model equations of motion at the lowest levels. In particular,

the self-duality of the five-form field strength in type IIB supergravity is



October 7, 2005 15:58 WSPC/Trim Size: 9in x 6in for Review Volume 02˙nicolai3

Gravitational Billiards, Dualities and Hidden Symmetries 71

implied by the dynamical matching between the E10/K(E10) σ-model and

the supergravity equations of motion, and does not require local supersym-

metry or some other extraneous argument for its explanation.

Combining the known results, we can summarize the correspondence

between the maximally supersymmetric theories and the maximal rank reg-

ular subalgebras of E10 as follows

A9 ⊂ E10 ⇐⇒ D = 11 supergravity

D9 ⊂ E10 ⇐⇒ massive IIA supergravity

A8 × A1 ⊂ E10 ⇐⇒ IIB supergravity

The decompositions of E10 w.r.t. its other rank 9 regular subalgebras

AD−2 × E11−D (for D = 3, . . . , 9) will similarly reproduce the represen-

tation content of maximal supergravities in D space-time dimensions as

the lowest level representations.

We conclude by repeating the main challenge that remains: one must

extend these correspondences to higher levels and spatial gradients, and

find a physical interpretation for the higher level representations, whose

number exhibits an exponential growth similar to the growth in the number

of excited string states (see, however, 29 for recent progress concerning the

link between higher order M Theory corrections and the E10 root lattice).

Because this will inevitably require (or entail) a detailed understanding of

indefinite and hyperbolic KM algebras, it might also help in solving the core

problem of the theory of Kac Moody algebras, a problem that has vexed

almost a generation of researchers.
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Present knowledge about the nature of spacetime singularities in the
context of classical general relativity is surveyed. The status of the BKL
picture of cosmological singularities and its relevance to the cosmic cen-
sorship hypothesis are discussed. It is shown how insights on cosmic
censorship also arise in connection with the idea of weak null singulari-
ties inside black holes. Other topics covered include matter singularities
and critical collapse. Remarks are made on possible future directions in
research on spacetime singularities.

1. Introduction

The issue of spacetime singularities arose very early in the history of general

relativity and it seems that Einstein himself had an ambiguous relationship

to singularities. A useful source of information on the confusion surrounding

the subject in the first half century of general relativity is Ref. 1. The present

article is a survey of the understanding we have of spacetime singularities

today.

Before concentrating on general relativity, it is useful to think more

generally about the concept of a singularity in a physical theory. In the

following the emphasis is on classical field theories although some of the

discussion may be of relevance to quantum theory as well. When a physical

system is modelled within a classical field theory, solutions of the field

equations are considered. If it happens that at some time physically relevant

quantities become infinite at some point of space then we say that there

is a singularity. Since the physical theory ceases to make sense when basic

quantities become infinite a singularity is a sign that the theory has been

76
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applied beyond its domain of validity. To get a better description a theory of

wider applicability should be used. Note that the occurrence of singularities

does not say that a theory is bad - it only sets limits on the domain of

physical phenomena where it can be applied.

In fact almost any field theory allows solutions with singularities if at-

tention is not restricted to those solutions which are likely to be physically

relevant. In this context a useful criterion is provided by the specification of

solutions by initial data. This means that we only consider solutions which

have the property that there is some time at which they contain no singular-

ities. Then any singularities which occur must be the result of a dynamical

evolution. With this motivation, singularities will be discussed in the follow-

ing in the context of the initial value problem. Only those singularities are

considered which develop from regular initial configurations. This has the

consequence that linear field theories, such as source-free Maxwell theory,

are free of singularities.

In the case of the Einstein equations, the basic equations of general

relativity, the notion of singularity becomes more complicated due to the

following fact. A solution of the Einstein equations consists not just of the

spacetime metric, which describes the gravitational field and the geometry

of spacetime, but also the spacetime manifold on which the metric is defined.

In the case of a field theory in Newtonian physics or special relativity we can

say that a solution becomes singular at certain points of spacetime, where

the basic physical quantities are not defined. Each of these points can be

called a singularity. On the other hand, a singularity in general relativity

cannot be a point of spacetime, since by definition the spacetime structure

would not be defined there.

In general relativity the wordline of a free particle is described by a curve

in spacetime which is a timelike or null geodesic, for a massive or massless

particle respectively. There is also a natural class of time parameters along

such a geodesic which, in the timelike case, coincide up to a choice of origin

and a rescaling with the proper time in the rest frame of the particle. If the

worldline of a particle only exists for a finite time then clearly something has

gone seriously wrong. Mathematically this is called geodesic incompleteness.

A spacetime which is a solution of the Einstein equations is said to be

singular if it is timelike or null geodesically incomplete. Informally we say

in this case that the spacetime ‘contains a singularity’ but the definition

does not include a description of what a ‘singularity’ or ‘singular point’ is.

There have been attempts to define ideal points which could be added to
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spacetime to define a mathematical boundary representing singularities but

these have had limited success.

When working practically with solutions of the Einstein equations it is

necessary to choose coordinates or other similar auxiliary objects in order to

have a concrete description. In general relativity we are free to use any co-

ordinate system and this leads to a problem when considering singularities.

Suppose that a metric written in coordinates is such that the components

of the metric become infinite as certain values of the coordinates are ap-

proached. This could be a sign that there is a spacetime singularity but it

could also simply mean that those coordinates break down at some points

of a perfectly regular solution. This might be confirmed by transforming

to new coordinates where the metric components have a regular extension

through the apparent singularities. A way of detecting singularities within

a coordinate system is to find that curvature invariants become infinite.

These are scalar quantities which measure the curvature of spacetime and

if they become infinite this is a sure sign that a region of spacetime cannot

be extended. It is still not completely clear what is happening since the

singular values of the coordinates might correspond to singular behaviour

in the sense of geodesic incompleteness or they might be infinitely far away.

A breakthrough in the understanding of spacetime singularities was the

singularity theorem of Penrose2 which identified general conditions under

which a spacetime must be geodesically incomplete. This was then general-

ized to other situations by Hawking and others. The singularity theorems

are proved by contradiction. Their strength is that the hypotheses required

are very general and their weakness is that they give very little informa-

tion about what actually happens dynamically. If the wordline of a particle

ceases to exist after finite proper time then it is reasonable to ask for an

explanation, why the particle ceased to exist. It is to be expected that some

extreme physical conditions play a role. For instance, the matter density

or the curvature, representing tidal forces acting on the particle, becomes

unboundely large. From this point of view one would like to know that cur-

vature invariants become unbounded along the incomplete timelike or null

geodesics. The singularity theorems give no information on this question

which is that of the nature of spacetime singularities. The purpose of the

following is to explain what is known about this difficult question.

The hypotheses of the singularity theorems do not include very stringent

assumptions about the matter content of spacetime. All that is needed

are certain inequalities on the energy-momentum tensor Tαβ , the energy

conditions3. Let V
α and W

α be arbitrary future pointing timelike vectors.
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The dominant energy condition is that TαβV
α
W

β
≥ 0. The strong energy

condition is, provided the cosmological constant is zero, equivalent to the

condition that RαβV
α
V

β
≥ 0 where Rαβ is the Ricci tensor. The weak

energy condition is that TαβV
α
V

β
≥ 0. The weak energy condition has

the simple physical interpretation that the energy density of matter is non-

negative in any frame of reference. The vector V
α is the four-velocity of an

observer at rest in that frame of reference. It is not reasonable to expect

that the nature of spacetime singularities can be determined on the basis of

energy conditions alone - more detailed assumptions on the matter content

are necessary.

It follows from the above discussion that spacetime singularities should

be associated with reaching the limits of the physical validity of general

relativity. Quantum effects can be expected to come in. If this is so then to

go further the theory should be replaced by some kind of theory of quantum

gravity. Up to now we have no definitive theory of this kind and so it is not

clear how to proceed. The strategy to be discussed in the following is to work

entirely within classical general relativity and see what can be discovered. It

is to be hoped that this will provide useful input for the future investigation

of singularities within a more general context. The existing attempts to

study the question of singularities within different approaches to quantum

gravity, including the popular idea that quantum gravity should eliminate

the singularities of classical general relativity, will not be discussed here. For

a discussion of one direction where progress is being made, see the articles

of A. Ashtekar and M. Bojowald in this volume.

A key question about singularities in general relativity is whether they

are a disaster for the theory. If a singularity can be formed and then influ-

ence the evolution of spacetime then this means a breakdown of predictabil-

ity for the theory. For we cannot (at least within the classical theory) predict

anything about the influence a singularity will have. A singularity which

can causally influence parts of spacetime is called a naked singularity. It is

important for the predictive power of general relativity that naked singu-

larities be ruled out. This has been formulated more precisely by Penrose

as the cosmic censorship hypothesis4,5. In fact there are two variants of

this, weak and strong cosmic censorhip. Despite the names neither of these

implies the other6. Proving the cosmic censorship hypothesis is one of the

central mathematical problems of general relativity. In fact the task of find-

ing the right formulation of the conjecture is already a delicate one. It is

necessary to make a genericity assumption and to restrict the matter fields

allowed. More details on this are given in later sections.



October 12, 2005 16:45 WSPC/Trim Size: 9in x 6in for Review Volume 03˙rendall

80 A. D. Rendall

One of the most important kinds of singularity in general relativity is

the initial cosmological singularity, the big bang. The structure of cosmo-

logical singularities is the subject of section 2. Another important kind of

singularity is that inside black holes. The recent evolution of ideas about

the internal structure of black holes is discussed in section 3. An important

complication in the study of singularities resulting from the properties of

gravity is that they may be obscured by singularities due to the descrip-

tion of matter. This is the theme of section 4. In section 5 singularities are

discussed which arise at the threshhold of black hole formation and which

are still quite mysterious. Section 6 takes a cautious look at the future of

research on spacetime singularities.

2. Cosmological Singularities

The simplest cosmological models are those which are homogeneous and

isotropic, the FLRW (Friedmann-Lemâitre-Robertson-Walker) models with

some suitable choice of matter model such as a perfect fluid. In this context

it is seen that the energy density blows up at some time in the past. An

early question was whether this singularity might be an artefact of the high

symmetry. The intuitive idea is that if matter collapses in such a way that

particles are aimed so as to all end up at the same place at the same time

there will be a singularity. On the other hand if this situation is perturbed so

that the particles miss each other the singularity might be removed. On the

basis of heuristic arguments, Lifshitz and Khalatnikov7 suggested that for

a generic perturbation of a FLRW model there would be no singularity. We

now know this to be incorrect. This work nevertheless led to a very valuable

development of ideas in the work of Belinskii, Khalatnikov and Lifshitz8,9

which is one of the main sources for our present picture of cosmological

singularities.

What was the problem with the original analysis? An ansatz was made

for the form of the metric near the singularity and it was investigated how

many free functions can be accomodated in a certain formal expansion. It

was found that there was one function less than there is in the general

solution of the Einstein equations. It was concluded that the most general

solution could not have a singularity. This shows us something about the

strengths and weaknesses of heuristic arguments. These are limited by the

range of possibilities that have occurred to those producing the heuristics.

Nevertheless they may, in expert hands, be the most efficient way of getting

nearer to the truth.
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It was the singularity theorems, particularly the Hawking singularity

theorem, which provided convincing evidence that cosmological singulari-

ties do occur for very large classes of initial data. In particular they showed

that the presence of a singularity (in the sense of geodesic incompleteness)

is a stable property under small perturbations of the FLRW model. Thus

a rigorous mathematical theorem led to progress in our understanding of

physics. The use of mathematical theorems is very appropriate because the

phenomena being discussed are very far from most of our experience of the

physical world and so relying on physical intuition alone is dangerous.

The singularity theorems give almost no information on the nature of

the singularities. In order to go further it makes sense to attempt to combine

rigorous mathematics, heuristic arguments and numerical calculations and

this has led to considerable progress.

The picture developed by Belinskii, Khalatnikov and Lifshitz (BKL) has

several important elements. These are:

• Near the singularity the evolution of the geometry at different spa-

tial points decouples so that the solutions of the partial differential

equations can be approximated by solutions of ordinary differential

equations.

• For most types of matter the effect of the matter fields on the

dynamics of the geometry becomes negligible near the singularity

• The ordinary differential equations which describe the asymptotics

are those which come from a class of spatially homogeneous solu-

tions which constitute the mixmaster model. General solutions of

these equations show complicated oscillatory behaviour near the

singularity.

The first point is very surprising but a variety of analytical and numerical

studies appear to support its validity. The extent to which the above points

have been confirmed will now be discussed.

The mixmaster model is described by ordinary differential equations and

so it is a huge simplification compared to the full problem. Nevertheless even

ordinary differential equations can be very difficult to analyse. The solutions

show complicated behaviour in the approach to the singularity and this is

often called chaotic. This description is somewhat problematic since many

of the usual concepts for defining chaos are not applicable. This point will

not be discussed further here. For many years the oscillations in solutions of

the mixmaster model were studied by heuristic and numerical techniques.

This led to a consistent picture but turning this picture into mathematical
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theorems was an elusive goal. Finally this was achieved in the work of

Ringström10 so that the fundamental properties of the mixmaster model

are now mathematically established.

With the mixmaster model under control, the next obvious step in con-

firming the BKL picture would be to show that it serves as a template

for the behaviour of general solutions near the singularity. The work of

BKL did this on a heuristic level. Attempts to recover their conclusions in

numerical calculations culminated in the work of Garfinkle11. Previously

numerical investigations of the question had been done under various sym-

metry assumptions. Solutions without symmetry were handled for the first

time in Ref. 11. On the analytical side things do not look so good. There is

not a single case with both inhomogeneity and mixmaster oscillations which

has been analysed rigorously and this represents an outstanding challenge.

One possible reason why it is so difficult will be described below.

One of the parts of the BKL picture contains the qualification ‘for most

types of matter’. There are exceptional types of matter where things are

different. A simple example is a massless linear scalar field. It was already

shown in Ref. 12 that in the presence of a scalar field the BKL analysis leads

to different conclusions. It is still true that the dynamics at different spatial

points decouples but the evolution is such that important physical quanti-

ties are ultimately monotone instead of being oscillatory as the singularity

is approached. In this case it has been possible to obtain a mathematical

confirmation of the BKL picture. In Ref. 13 it was shown that there are

solutions of the Einstein equations coupled to a scalar field which depend

on the maximal number of free functions and which have the asymptotic

behaviour near the singularity predicted by the BKL picture.

As a side remark, note that in many string theory models there is a scalar

field, the dilaton, which might kill mixmaster oscillations. Also, a BKL

analysis of the vacuum Einstein equations in higher dimensions shows that

the oscillations of generic solutions vanish when the spacetime dimension is

at least eleven14 and string theory leads to the consideration of models of

dimension greater than four. So could mixmaster oscillations be eliminated

in low energy string theory? An investigation in Ref. 15 shows that they

are not. The simplifying effect of the dilaton and the high dimension is

prevented by other form fields occurring in string theory. With certain

values of the coupling constants in field theories of the type coming up in

low energy string theory there is monotone behaviour near the singularity

and theorems can be proved16. However the work of Ref. 15 shows that



October 12, 2005 16:45 WSPC/Trim Size: 9in x 6in for Review Volume 03˙rendall

The Nature of Spacetime Singularities 83

these do not include the values of the coupling constants coming from the

string theories which are now standard.

A feature which makes oscillations so difficult to handle is that they are

in general accompanied by large spatial gradients. Consider some physical

quantity f(t, x) in the BKL picture in a case without oscillations. Then

it is typical that quantities like ∂if/f , where the derivatives are spatial

derivatives, remain bounded near the singularity. However it can happen

that this is only true for most spatial points and that there are exceptional

spatial points where it fails. In a situation of mixmaster type where there are

infinitely many oscillations as the singularity is approached the BKL picture

predicts that there will be more and more exceptional points without limit

as the singularity is approached. It has even been suggested by Belinskii that

this shows that the original BKL assumptions are not self-consistent17. In

any case, it seems that the question, in what sense the BKL picture provides

a description of cosmological singularities, is a subtle one.

Large spatial gradients can also occur in solutions where the evolution

is monotone near the singularity. It can happen that before the mono-

tone stage is reached there are finitely many oscillations and that these

produce a finite number of exceptional points. In the context of Gowdy

spacetimes this has been shown rather explicitly. The features with large

spatial gradients (spikes) were discovered in numerical work18 and later

captured analytically19. This allowed the behaviour of the curvature near

the singularity to be determined.

An important issue to be investigated concerning cosmological singu-

larities is that of cosmic censorship. In this context it is strong cosmic

censorship which is of relevance and a convenient mathematical formula-

tion in terms of the initial value problem has been given by Eardley and

Moncrief20. To any initial data set for the Einstein equations there exists a

corresponding maximal Cauchy development. (For background on the ini-

tial value problem for the Einstein equations see Ref. 21.) The condition

that a spacetime is uniquely determined by initial data is global hyperbolic-

ity. The maximal Cauchy development is in a well-defined sense the largest

globally hyperbolic spacetime with the chosen initial data. It may happen

that the maximal Cauchy development can be extended to a larger space-

time, which is then of course no longer globally hyperbolic. The boundary

of the initial spacetime in the extension is called the Cauchy horizon. The

extended spacetime can no longer be uniquely specified by initial data and

this corresponds physically to a breakdown of predictability. A famous ex-

ample where this happens is the Taub-NUT spacetime3. This is a highly
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symmetric solution of the Einstein vacuum equations. The extension which

is no longer globally hyperbolic contains closed timelike curves.

How can the existence of the Taub-NUT and similar spacetimes be

reconciled with strong cosmic censorship? A way to do this would be to

show that this behaviour only occurs for exceptional initial data and that for

generic data the maximal globally hyperbolic development is inextendible.

This has up to now only been achieved in the simplified context of classes of

spacetimes with symmetry. These classes of spacetimes are not generic and

so they do not directly say anything about cosmic censorship. However they

provide model problems where more can be learned about the conceptual

and technical issues which arise in trying to prove cosmic censorship. This

kind of restricted cosmic censorship has been shown for many spatially

homogeneous spacetimes in Ref. 22 and Ref. 23 and for plane symmetric

solutions of the Einstein equations coupled to a massless scalar field24. The

most general, and most remarkable, result of this kind up to now is the proof

by Ringström25 of strong cosmic censorship restricted to the class of Gowdy

spacetimes. He shows that all the solutions in this class of inhomogeneous

vacuum spacetimes with symmetry are geodesically complete in the future26

and that for generic initial data the Kretschmann scalar R
αβγδ

Rαβγδ tends

to infinity uniformly as the singularity is approached. Major difficulties in

doing this are the fact that there do exist spacetimes in this class where

the maximal Cauchy development is extendible and that spikes lead to

great technical complications. Roughly speaking, Ringström shows under a

genericity assumption that the most complicated thing that can happen in

the approach to the singularity is that there are finitely many spikes of the

kind constructed in Ref. 19.

Another kind of partial result is to show that an expanding cosmological

spacetime is future geodesically complete. This can be interpreted as saying

that any singularities must lie in the past. There is up to now just one exam-

ple of this for spacetimes not required to satisfy any symmetry assumptions.

This is the work of Andersson and Moncrief27 where they show that any

small but finite vacuum perturbation of the initial data for the Milne model

has a maximal Cauchy development which is future geodesically complete.

Already in the class of homogeneous and isotropic spacetimes there are

models with an initial singularity which recollapse and have a second singu-

larity in the future. Not much is known about general criteria for recollapse.

The closed universe recollapse conjecture28 says that any spacetime with a

certain type of topology (admitting a metric of positive scalar curvature)

and satisfying the dominant and strong energy conditions must recollapse.
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No counterexample is known but the conjecture has only been proved in

cases with high symmetry29,30.

3. Black Hole Singularities

One of the most famous singular solutions of the Einstein equations is

the Schwarzschild solution representing a spherical black hole. There is a

singularity inside the black hole where the Kretschmann scalar diverges

uniformly. It looks very much like a cosmological singularity. The singu-

larity is not visible to far away observers. The points of spacetime from

which no future-directed causal geodesic can escape to infinity constitute

by definition the black hole region and its boundary is the event horizon.

The situation in the Schwarzschild solution can be described informally by

saying that the singularity is covered by an event horizon. The idea of weak

cosmic censorship, a concept which will not be precisely defined here, is

that any singularity which arises in gravitational collapse is covered by an

event horizon. For more details see Ref. 6 and Ref. 31.

The central question which is to be answered is what properties of the

Schwarzschild solution are preserved under perturbations of the initial data.

Christodoulou has studied the spherical gravitational collapse of a scalar

field in great detail32. Among his results are the following. There are ini-

tial data leading to the formation of naked singularities but for generic

initial data this does not happen. The structure of the singularity has been

analysed and it shows strong similarities to the Schwarzschild case.

A key concept in the Penrose singularity theorem is that of a trapped

surface. It has been shown by Dafermos33 that some of the results of

Christodoulou can be extended to much more general spherically symmet-

ric spacetimes under the assumptions that there exists at least one trapped

surface and that the matter fields present are well-behaved in a certain

sense. They should not form singularities outside the black hole region.

This condition on the matter fields was verified for collisionless matter in

Ref. 34. The fact that it is satisfied for certain non-linear scalar fields led

to valuable insights in the discussion of the formation of naked singularities

in a class of models motivated by string theory35,36.

When the Schwarzschild solution is generalized to include charge or

rotation the picture changes dramatically. In the relevant solutions, the

Reissner-Nordström and Kerr solutions, the Schwarzschild singularity is

replaced by a Cauchy horizon. At one time it was hoped that this was an

artefact of high symmetry and that a further perturbation would turn it
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back into a curvature singularity. There was also a suggested mechanism

for this, namely that radiation coming from the outside would undergo an

unlimited blue shift as it approached the potential Cauchy horizon. Things

turned out to be more complicated, as discovered by Poisson and Israel37.

The new picture in Ref. 37 for a perturbed charged black hole was that

the Cauchy horizon, where the metric is smooth, would be replaced by a

null hypersurface where, although the metric remains continuous and non-

degenerate, the curvature blows up. They called this a weak null singularity.

The heuristic work of Ref. 37 was followed up by numerical work38 and

was finally turned into rigorous mathematics by Dafermos39. Perhaps the

greatest significance of this work on charged black holes is its role as a

model for rotating black holes. For the more difficult case of rotation much

less is known although there is some heuristic analysis40. At this point it

is appropriate to make a comment on heuristic work which follows on from

remarks in the last section. For several years it was believed, on the basis

of a heuristic analysis in Ref. 41, that a positive cosmological constant

would stabilize the Reissner-Nordström Cauchy horizon. This turned out,

however, to be another case where not all relevant mechanisms had been

thought of. In a later heuristic analysis42 it was pointed out that there is

another instability mechanism at work which reverses the conclusion.

The case of weak null singularities draws attention to an ambiguity in

the definition of strong cosmic censorship. The formulation uses the concept

of extension of a spacetime. To have a precise statement is must be specified

how smooth a geometry must be in order to count as an extension. This may

seem at first sight like hair splitting but in the case of weak null singularities

the answer to the question of strong cosmic censorship is quite different

depending on whether the extension is required to be merely continuous

or continuously differentiable. A related question is whether the extension

should be required to satisfy the Einstein equations in some sense.

A question which does not seem to have been investigated is that of the

consistency of weak null singularities with the BKL picture. It is typical to

study black holes in the context of isolated systems. In reality we expect

that black holes form in cosmological models which expand for ever. Do

such ’cosmological black holes’ show the same features in their interior as

asymptotically flat ones? If so then this would indicate the existence of

large classes of cosmological models whose singularities do not fit into the

BKL picture. (It was never claimed that this picture must apply to all

cosmological singularities.) A major difficulty in investigating this issue is

that the class of solutions of the Einstein equations of interest does not seem
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to be consistent with any symmetry assumptions. A related question is that

of the relationship between weak cosmic censorship, which is formulated in

asymptotically flat spacetimes, and strong cosmic censorship, which makes

sense in a cosmological context.

There are important results showing that no black holes form un-

der certain circumstances. In the fundamental work of Christodoulou and

Klainerman43 it was shown that small asymptotically flat data for the Ein-

stein vacuum equations lead to geodesically complete spacetimes. See also

Ref. 44.

4. Shells and Shocks

A serious obstacle to determining the structure of spacetime singularites

is that many common matter models develop singularities in flat space.

This is in particular the case for matter models which are phenomenolog-

ical rather than coming directly from fundamental physics. These matter

models, when coupled to the Einstein equations, must be expected to lead

to singularities which have little to do with gravitation which we may call

matter singularities. These singularities are just a nuisance when we want to

study spacetime singularities as fundamental properties of Einstein gravity.

There has been much study of the Einstein equations coupled to dust. It

is not clear that they teach us much. In flat space dust forms shell-crossing

singularities where a finite mass of dust particles end up at the same place

at the same time. The density blows up there. In curved space this leads to

naked singularities45. These occur away from the centre in spherical sym-

metry. Finite time breakdown of self-gravitating dust can also be observed

in cosmological spacetimes46. This shows the need for restricting the class

of matter considered if a correct formulation of cosmic censorship is to be

found. In a more realistic perfect fluid the pressure would be expected to

eliminate these singularities. On the other hand it is to be expected that

shocks form, as is well-known in flat space. The breakdown of smoothness

in self-gravitating fluids with pressure was proved in Ref. 47. At this point

we must once again confront the question of what is a valid extension. In

some cases solutions with fluid may be extended beyond the time when the

classical solution breaks down48. The extended solution is such that the

basic fluid variables are bounded but their first derivatives are not. The

uniqueness of these solutions in terms of their initial data is not known but

uniqueness results have recently been obtained in the flat space case49.

A matter model which is better behaved than a fluid is collisionless

matter described by the Vlasov equation. It forms no singularities in flat
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space and there are various cases known where self-gravitating collisionless

matter can be proved to form no singularities. For instance this is the case

for small spherically symmetric asymptotically flat initial data50. There is

no case known where collisionless matter does form a matter singularity.

Also in spherical symmetry it never forms a singularity away from the

centre so that the analogue of shell-crossing singularities is ruled out51. In

view of the investigations up to now collisionless matter seems to be as

well-behaved as vacuum with respect to the formation of singularities.

5. Critical Collapse

Evidence for a new kind of singularity in gravitational collapse was discov-

ered by Choptuik52. His original work concerned the spherically symmetric

collapse of a massless scalar field but it has been extended in many di-

rections since then. The basic idea is as follows. For small initial data the

corresponding solution disperses leaving behind flat space. For very large

data a black hole is formed. If a one-parameter family of data is taken

interpolating between these two extreme cases what happens to the evo-

lutions for intermediate values of the parameter? It is found that there is

a unique parameter value (the critical value) separating the two regimes

and that near the critical value the solutions show interesting, more or less

universal, behaviour. The study of these phenomena is now known under

the name of critical collapse.

Most of the work which has been done on critical collapse is numerical.

There is a heuristic picture involving dynamical systems which is useful in

predicting certain features of the results of numerical calculations. Up to

now there are no rigorous results on critical phenomena. It is interesting to

note that at least some of the features of critical collapse are not unique to

gravity and may be seen in many systems of partial differential equations53.

The results on critical collapse indicate the occurrence of a class of naked

singularities arising from non-generic initial data which are qualitatively

different from those discussed above. They represent an additional technical

hurdle in any attempt to prove cosmic censorship in general.

6. Conclusion

In recent years it has been possible to go beyond the classical results on

spacetime singularities contained in the singularity theorems of Penrose and

Hawking and close in on the question of the nature of these singularities in

various ways. In the case of cosmological singularities a key influence has
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been exerted by the picture of Belinskii, Khalatnikov and Lifshitz (BKL). In

the case of black hole singularities the old idea that they should be similar

to cosmological singularities has been replaced by the new paradigm of

weak null singularities due to Poisson and Israel. A new kind of singularity

has emerged in the work of Choptuik on critical collapse. It remains to be

seen whether the Einstein equations have further types of singularities in

store for us.

New things can happen if we go beyond the usual framework of the

singularity theorems. The cosmological acceleration which is now well-

established by astronomical observations corresponds on the theoretical

level to a violation of the strong energy condition and suggests that a re-

working of the singularity theorems in a more general context is necessary.

Exotic types of matter which have been introduced to model accelerated

cosmological expansion go even further and violate the dominant energy

condition. This can lead to a cosmological model running into a singularity

when still expanding54. This is known as a ’big rip’ singularity55 since phys-

ical systems are ripped apart in finite time as the singularity is approached.

The study of these matters is still in a state of flux.

Returning to the more conventional setting where the dominant energy

condition is satisfied, we can ask what the future holds for the study of

spacetime singularities in classical general relativity. A fundamental fact is

that our understanding is still very incomplete. Two developments promise

improvements. The first is that the steady increase in computing power

and improvement of numerical techniques means that numerical relativity

should have big contributions to make. The second is that advances in the

theory of hyperbolic partial differential equations are providing the tools

needed to make further progress with the mathematical theory of solutions

of the Einstein equations. As illustrated by the examples of past successes

surveyed in this paper the numerical and mathematical approaches can

complement each other very effectively.
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53. Bizoń, P. and Tabor, Z. 2001 On blowup for Yang-Mills fields. Phys. Rev.
D64, 121701.

54. Starobinsky, A. A. 2000 Future and origin of our universe: modern view.
Grav. Cosmol. 6, 157-163.

55. Caldwell. R. R., Kamionkowski, M. and Weinberg, N. N. 2003 Phantom en-
ergy and cosmic doomsday. Phys. Rev. Lett. 91, 071301.



October 7, 2005 16:0 WSPC/Trim Size: 9in x 6in for Review Volume 04˙chrusciel

CHAPTER 4

BLACK HOLES – AN INTRODUCTION

PIOTR T. CHRUŚCIEL
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This chapter is an introduction to the mathematical aspects of the theory
of black holes, solutions of vacuum Einstein equations, possibly with a
cosmological constant, in arbitrary dimensions.

1. Stationary Black Holes

Stationary solutions are of interest for a variety of reasons. As models for
compact objects at rest, or in steady rotation, they play a key role in as-
trophysics. They are easier to study than non-stationary systems because
stationary solutions are governed by elliptic rather than hyperbolic equa-
tions. Further, like in any field theory, one expects that large classes of
dynamical solutions approach a stationary state in the final stages of their
evolution. Last but not least, explicit stationary solutions are easier to come
by than dynamical ones.

1.1. Asymptotically flat examples

The simplest stationary solutions describing compact isolated objects are
the spherically symmetric ones. A theorem due to Birkhoff shows that in the
vacuum region any spherically symmetric metric, even without assuming
stationarity, belongs to the family of Schwarzschild metrics, parameterized
by a positive mass parameter m:

g = −V 2dt2 + V −2dr2 + r2dΩ2 , (1)

V 2 = 1 − 2m
r , t ∈ R , r ∈ (2m,∞) . (2)

93
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Here dΩ2 denotes the metric of the standard 2-sphere. Since the metric
(1) seems to be singular as r = 2m is approached, there arises the need
to understand the geometry of the metric (1) there. The simplest way to
do that, for metrics of the form (1) is to replace t by a new coordinate v
defined as

v = t+ f(r) , f ′ =
1
V 2

, (3)

leading to

v = t+ r + 2m ln(r − 2m) .

This brings g to the form

g = −(1 − 2m
r

)dv2 + 2dvdr + r2dΩ2 . (4)

We have det g = −r4 sin2 θ, with all coefficients of g smooth, which shows
that g is a well defined Lorentzian metric on the set

v ∈ R , r ∈ (0,∞) . (5)

More precisely, (4)-(5) is an analytic extension of the original space-timea

(1).
It is easily seen that the region {r ≤ 2m} for the metric (4) is a black

hole region, in the sense that

observers, or signals, can enter this region, but can never leave it. (6)

In order to see that, recall that observers in general relativity always move
on future directed timelike curves, that is, curves with timelike future di-
rected tangent vector. For signals the curves are causal future directed, these
are curves with timelike or null future directed tangent vector. Let, then,
γ(s) = (v(s), r(s), θ(s), ϕ(s)) be such a timelike curve, for the metric (4)
the timelikeness condition g(γ̇, γ̇) < 0 reads

−(1 − 2m
r

)v̇2 + 2v̇ṙ + r2(θ̇2 + sin2 θϕ̇2) < 0 .

This implies

v̇
(
− (1 − 2m

r
)v̇ + 2ṙ

)
< 0 .

aThe term space–time denotes a smooth, paracompact, connected, orientable and time–
orientable Lorentzian manifold.
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It follows that v̇ does not change sign on a timelike curve. The usual choice
of time orientation corresponds to v̇ > 0 on future directed curves, leading
to

−(1 − 2m
r

)v̇ + 2ṙ < 0 .

For r ≤ 2m the first term is non-negative, which enforces ṙ < 0 on all
future directed timelike curves in that region. Thus, r is a strictly decreas-
ing function along such curves, which implies that future directed timelike
curves can cross the event horizon {r = 2m} only if coming from the region
{r > 2m}. The same conclusion applies for causal curves, by approximation.

Note that we could have chosen a time orientation in which future di-
rected causal curves satisfy v̇ < 0. The resulting space-time is then called
a white hole space-time, with {r = 2m} being a white hole event horizon,
which can only be crossed by those future directed causal curves which
originate in the region {r < 2m}.

The transition from (1) to (4) is not the end of the story, as further
extensions are possible. For the metric (1) a maximal analytic extension has
been found independently by Kruskal, Szekeres, and Fronsdal, see Ref. 73
for details. This extension is visualisedb in Figure 1. The region I there
corresponds to the space-time (1), while the extension just constructed
corresponds to the regions I and II.

A discussion of causal geodesics in the Schwarzschild geometry can be
found in R. Price’s contribution to this volume.

Higher dimensional counterparts of metrics (1) have been found by
Tangherlini. In space-time dimension n + 1, the metrics take the form (1)
with

V 2 = 1 − 2m
rn−2

, (7)

and with dΩ2 — the unit round metric on Sn−1. The parameter m is the
Arnowitt-Deser-Misner mass in space-time dimension four, and is propor-
tional to that mass in higher dimensions. Assuming againm > 0, a maximal
analytic extension can be constructed using a method of Walker92 (which
applies to all spherically symmetric space-times),c leading to a space-time
with global structure identical to that of Figure 1 (except for the replace-
ment 2M → (2M)1/(n−2) there). Global coordinate systems for the stan-

bI am grateful to J.-P. Nicolas for allowing me to use his electronic figure.78
cA generalisation of the Walker extension technique to arbitrary Killing horizons can be
found in Ref. 85.
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Fig. 1. The Carter-Penrose diagram for the Kruskal-Szekeres space-time with mass M .
There are actually two asymptotically flat regions, with corresponding event horizons
defined with respect to the second region. Each point in this diagram represents a two-
dimensional sphere, and coordinates are chosen so that light-cones have slopes plus minus
one.

dard maximal analytic extensions can be found in Ref. 67. The isometric
embedding, into six-dimensional Euclidean space, of the t = 0 slice in a
(5 + 1)–dimensional Tangherlini solution is visualised in Figure 2.

One of the features of the metric (1) is its stationarity, with Killing
vector field X = ∂t. A Killing field, by definition, is a vector field the local
flow of which preserves the metric. A space–time is called stationary if there
exists a Killing vector field X which approaches ∂t in the asymptotically flat
region (where r goes to ∞, see below for precise definitions) and generates
a one parameter groups of isometries. A space–time is called static if it is
stationary and if the stationary Killing vectorX is hypersurface-orthogonal,
i.e. X� ∧ dX� = 0, where

X� = Xµdx
µ = gµνX

νdxµ .

A space–time is called axisymmetric if there exists a Killing vector field Y ,
which generates a one parameter group of isometries, and which behaves like
a rotation: this property is captured by requiring that all orbits 2π periodic,
and that the set {Y = 0}, called the axis of rotation, is non-empty. Killing
vector fields which are a non-trivial linear combination of a time translation
and of a rotation in the asymptotically flat region are called stationary-
rotating, or helical. Note that those definitions require completeness of orbits
of all Killing vector fields (this means that the equation ẋ = X has a global
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Fig. 2. Isometric embedding of the space-geometry of a (5 + 1)–dimensional
Schwarzschild black hole into six-dimensional Euclidean space, near the throat of the
Einstein-Rosen bridge r = (2m)1/3, with 2m = 2. The variable along the vertical axis
asymptotes to ≈ ±3.06 as r tends to infinity. The right picture is a zoom to the centre of
the throat. The corresponding embedding in (3 + 1)–dimensions is known as the Flamm
paraboloid .

solution for all initial values), see Refs. 22 and 51 for some results concerning
this question.

In the extended Schwarzschild space-time the set {r = 2m} is a null
hypersurface E , the Schwarzschild event horizon. The stationary Killing
vector X = ∂t extends to a Killing vector X̂ in the extended spacetime
which becomes tangent to and null on E , except at the ”bifurcation sphere”
right in the middle of Figure 1, where X̂ vanishes. The global properties of
the Kruskal–Szekeres extension of the exterior Schwarzschildd spacetime,
make this space-time a natural model for a non-rotating black hole.

There is a rotating generalisation of the Schwarzschild metric, also dis-
cussed in the chapter by R. Price in this volume, namely the two parameter
family of exterior Kerr metrics, which in Boyer-Lindquist coordinates take

dThe exterior Schwarzschild space-time (1) admits an infinite number of non-isometric
vacuum extensions, even in the class of maximal, analytic, simply connected ones. The

Kruskal-Szekeres extension is singled out by the properties that it is maximal, vacuum,
analytic, simply connected, with all maximally extended geodesics γ either complete, or
with the curvature scalar RαβγδRαβγδ diverging along γ in finite affine time.
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the form

g = −∆ − a2 sin2 θ

Σ
dt2 − 2a sin2 θ(r2 + a2 − ∆)

Σ
dtdϕ+

+
(r2 + a2)2 − ∆a2 sin2 θ

Σ
sin2 θdϕ2 +

Σ
∆
dr2 + Σdθ2 . (8)

Here

Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − 2mr = (r − r+)(r − r−) ,

and r+ < r <∞, where

r± = m± (m2 − a2)
1
2 .

The metric satisfies the vacuum Einstein equations for any real values of
the parameters a and m, but we will only discuss the range 0 ≤ a < m.
When a = 0, the Kerr metric reduces to the Schwarzschild metric. The
Kerr metric is again a vacuum solution, and it is stationary with X = ∂t

the asymptotic time translation, as well as axisymmetric with Y = ∂ϕ the
generator of rotations. Similarly to the Schwarzschild case, it turns out that
the metric can be smoothly extended across r = r+, with {r = r+} being
a smooth null hypersurface E in the extension. The simplest extension is
obtained when t is replaced by a new coordinate

v = t+
∫ r

r+

r2 + a2

∆
dr , (9)

with a further replacement of ϕ by

φ = ϕ+
∫ r

r+

a

∆
dr . (10)

It is convenient to use the symbol ĝ for the metric g in the new coordinate
system, obtaining

ĝ = −
(
1 − 2mr

Σ

)
dv2 + 2drdv + Σdθ2 − 2a sin2 θdφdr

+
(r2 + a2)2 − a2 sin2 θ∆

Σ
sin2 θdφ2 − 4amr sin2 θ

Σ
dφdv . (11)

In order to see that (11) provides a smooth Lorentzian metric for v ∈ R and
r ∈ (0,∞), note first that the coordinate transformation (9)-(10) has been
tailored to remove the 1/∆ singularity in (8), so that all coefficients are now
analytic functions on R×(0,∞)×S2. A direct calculation of the determinant
of ĝ is somewhat painful, a simpler way is to proceed as follows: first, the
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calculation of the determinant of the metric (8) reduces to that of a two-
by-two determinant in the (t, ϕ) variables, leading to det g = − sin2 θΣ2.
Next, it is very easy to check that the determinant of the Jacobi matrix
∂(v, r, θ, φ)/∂(t, r, θ, ϕ) is one. It follows that det ĝ = − sin2 θΣ2 for r > r+.
Analyticity implies that this equation holds globally, which (since Σ has no
zeros) establishes the Lorentzian signature of ĝ for all positive r.

Let us show that the region r < r+ is a black hole region, in the sense of
(6). We start by noting that ∇r is a causal vector for r− ≤ r ≤ r+, where
r− = m − √

m2 + a2. A direct calculation using (11) is again somewhat
lengthy, instead we use (8) in the region r > r+ to obtain there

ĝ(∇r,∇r) = g(∇r,∇r) = grr =
1
grr

=
∆
Σ

=
(r − r+)(r − r−)
r2 + a2 cos2 θ

. (12)

But the left-hand-side of this equation is an analytic function throughout
the extended manifold R×(0,∞)×S2, and uniqueness of analytic extensions
implies that ĝ(∇r,∇r) equals the expression at the extreme right of (12).
(The intermediate equalities are of course valid only for r > r+.) Thus ∇r
is spacelike if r < r− or r > r+, null on the “Killing horizons” {r = r±},
and timelike in the region {r− < r < r+}. We choose a time orientation so
that ∇r is future pointing there.

Consider, now, a future directed causal curve γ(s). Along γ we have

dr

ds
= γ̇i∇ir = gij γ̇

i∇jr = g(γ̇,∇r) < 0

in the region {r− < r < r+}, because the scalar product of two future
directed causal vectors is always negative. This implies that r is strictly
decreasing along future directed causal curves in the region {r− < r < r+},
so that such curves can only leave this region through the set {r = r−}. In
other words, no causal communication is possible from the region {r < r+}
to the “exterior world” {r > r+}.

The Schwarzschild metric has the property that the set g(X,X) = 0,
where X is the “static Killing vector” ∂t, coincides with the event horizon
r = 2m. This is not the case any more for the Kerr metric, where we have

g(∂t, ∂t) = ĝ(∂v, ∂v) = ĝvv = −
(
1 − 2mr

r2 + a2 cos2 θ

)
,

and the equation ĝ(∂v, ∂v) = 0 defines a set called the ergosphere:

r̊± = m±
√
m2 − a2 cos2 θ ,

see Figures 3 and 4. The ergosphere touches the horizons at the axes of
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Fig. 3. A coordinate representation81 of the outer ergosphere r = r̊+, the event horizon
r = r+, the Cauchy horizon r = r−, and the inner ergosphere r = r̊− with the singular
ring in Kerr space-time. Computer graphics by Kayll Lake.66

symmetry cos θ = ±1. Note that ∂r̊±/∂θ �= 0 at those axes, so the er-
gosphere has a cusp there. The region bounded by the outermost horizon
r = r+ and the outermost ergosphere r = r̊+ is called the ergoregion, with
X spacelike in its interior. We refer the reader to Refs. 15 and 79 for an
exhaustive analysis of the geometry of the Kerr space-time.

Fig. 4. Isometric embedding in Euclidean three space of the ergosphere (the outer hull),
and part of the event horizon, for a rapidly rotating Kerr solution. The hole arises due to
the fact that there is no global isometric embedding possible for the event horizon when
a/m >

√
3/2.81 Somewhat surprisingly, the embedding fails to represent accurately the

fact that the cusps at the rotation axis are pointing inwards, and not outwards. Computer
graphics by Kayll Lake.66

The hypersurfaces {r = r±} provide examples of null acausal bound-
aries. Causality theory shows that such hypersurfaces are threaded by a
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family of null geodesics, called generators. One checks that the stationary-
rotating Killing field X + ωY , where ω = a

2mr+
, is null on {r > r+}, and

hence tangent to the generators of the horizon. Thus, the generators are
rotating with respect to the frame defined by the stationary Killing vector
field X . This property is at the origin of the definition of ω as the angular
velocity of the event horizon.

Higher dimensional generalisations of the Kerr metric have been con-
structed by Myers and Perry.76

In the examples discussed so far the black hole event horizon is a con-
nected hypersurface in space-time. In fact,13, 25 there are no static vacuum
solutions with several black holes, consistently with the intuition that grav-
ity is an attractive force. However, static multi black holes become possible
in presence of electric fields. The list of known examples is exhausted by
the Majumdar-Papapetrou black holes, in which the metric g and the elec-
tromagnetic potential A take the form

g = −u−2dt2 + u2(dx2 + dy2 + dz2) , (13)

A = u−1dt , (14)

with some nowhere vanishing function u. Einstein–Maxwell equations read
then

∂u

∂t
= 0 ,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= 0 . (15)

Standard MP black holes are obtained if the coordinates xµ of (13)–(14)
cover the range R×(R3\{�ai}) for a finite set of points �ai ∈ R

3, i = 1, . . . , I,
and if the function u has the form

u = 1 +
I∑

i=1

mi

|�x− �ai| , (16)

for some positive constants mi. It has been shown by Hartle and Hawk-
ing54 that every standard MP space–time can be analytically extended to
an electro–vacuum space–time with a non–empty black hole region. Higher-
dimensional generalisations of the MP black holes, with very similar prop-
erties, have been found by Myers.75

1.2. Λ �= 0

So far we have assumed a vanishing cosmological constant Λ. However,
there is interest in solutions with Λ �= 0: Indeed, there is strong evidence
that we live in a universe with Λ > 0. On the other hand, space-times
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with a negative cosmological constant appear naturally in many models of
theoretical physics, e.g. in string theory.

In space-time dimension four, examples are given by the generalised
Kottler and the generalised Nariai solutions

ds2 = −
(
k − 2m

r
− Λ

3
r2

)
dt2 +

dr2

k − 2m
r − Λ

3 r
2

+ r2dΩ2
k , k = 0,±1 ,

(17)

ds2 = −
(
λ− Λr2

)
dt2 +

dr2

λ− Λr2
+ |Λ|−1dΩ2

k , k = ±1 , kΛ > 0 , λ ∈ R

(18)

where dΩ2
k denotes a metric of constant Gauss curvature k on a two-

dimensional compact manifold 2M . These are static solutions of the vacuum
Einstein equation with a cosmological constant Λ. The parameter m ∈ R is
related to the Gibbons-Hawking mass of the foliation t = const, r = const.

As an example of the analysis in this context, consider the metrics (17)
with k = 0 and Λ = −3:

ds2 = −
(
r2 − 2m

r

)
dt2 +

dr2

r2 − 2m
r

+ r2(dϕ2 + dψ2) , (19)

with ϕ and ψ parameterising S1. If m > 0 there is a coordinate singularity
at r = (2m)1/3; an extension can be constructed as in (3) by replacing the
coordinate t with

v = t+ f(r) , f ′ =
1

r2 − 2m
r

. (20)

This leads to a smooth Lorentzian metric for all r > 0,

ds2 = −
(
r2 − 2m

r

)
dv2 + 2dvdr + r2(dϕ2 + dψ2) . (21)

We have now an exterior region r > (2m)1/3, a black hole event horizon at
r = (2m)1/3, and a black hole region for r < (2m)1/3.

Similarly when λΛ > 0 the metrics (18) have an exterior region defined
by the condition r >

√
λ/Λ. A procedure similar to the above leads to an

extension across an event horizon r =
√
λ/Λ. Note that the asymptotic

behavior of metrics (18) is rather different from that of metrics (17).
The Kottler examples can be generalised to higher dimensions as fol-

lows:10 Let M = R × (r0,∞)×Nn−1, with N := Nn−1 compact, and with
metric of form:

gm = −V dt2 + V −1dr2 + r2gN , (22)
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where gN is any Einstein metric, RicgN = λgN , with gN scaled so that
λ = ±(n− 2) or 0. Then for V = V (r) given by

V = c+ r2 − (2m)/rn−2 , (23)

with c = ±1 or 0 respectively, gm is a static solution of the vacuum Ein-
stein equations, with Ricgm = −ngm. When appropriately extended, the
resulting space-times possess an event horizon at the largest positive root
r0 of V (r).

It turns out that the collection of static vacuum black holes with a
negative cosmological constant is much richer than the one with Λ = 0. This
is due to rather different asymptotic behavior of the solutions. An elegant
way of capturing this asymptotic behavior, due to Penrose,82 proceeds as
follows (for notational simplicity we assume that Λ < 0 has been scaled
as in (23)): Replacing in (22) the coordinate r by x = 1/r one obtains
gm = x−2g̃m, where

g̃m = −(1 + cx2 − 2mxn)dt2 +
dx2

1 + cx2 − 2mxn
+ gN . (24)

We are interested in the metric g̃m for r ≥ r0 with some large r0, this
corresponds to x small, 0 < x ≤ x0 := 1/r0. The surprising fact is that

g̃m extends by continuity to a smooth Lorentzian metric on the set
x ∈ [0, x0].

It is then natural to look for static vacuum metrics of the form x−2g̃,
with g̃ smoothly extending to the conformal boundary at infinity {x = 0}.
Such metrics will be called conformally compactifiable. In Refs. 2 and 3 the
following is shown: write g̃|x=0 as −α2dt2 + gN , where gN is a Riemannian
metric on N , with ∂tα = ∂tgN = 0. Then:

(1) Let g̊N be a Riemannian metric, with sectional curvatures equal to mi-
nus one, on the compact manifoldN . Then for all t-independent (α, gN )
close enough to (1, g̊N) there exists an associated static, vacuum, con-
formally compactifiable black hole metric.

(2) In space-time dimension n+1 = 4, for all compact N the set of (α, gN )
corresponding to conformally compactifiable static vacuum black holes
contains an infinite dimensional manifold.

All metrics presented so far in this section were static. A family of
rotating stationary solutions, generalising the Myers-Perry solutions to Λ �=
0, can be found in Ref. 53.
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Rather surprisingly, when Λ < 0 there exist static vacuum black holes
in space-time dimension three,e discovered by Bañados, Teitelboim and
Zanelli.5 The static, circularly symmetric, vacuum solutions take the form

ds2 = −
(r2
�2

−m
)
dt2 +

(r2
�2

−m
)−1

dr2 + r2dφ2 , (25)

where m is related to the total mass and �2 = −1/Λ. For m > 0, this can
be extended, as in (3) with V 2 = r2/�2−m, to a black hole space-time with
event horizon located at rH = �

√
m. There also exist rotating counterparts

of (25), discussed in the reference just given.

1.3. Black strings and branes

Consider any vacuum black hole solution (M , g), and let (N, h) be a Rie-
mannian manifold with a Ricci flat metric, Ric(h) = 0. Then the space-time
(M ×N, g⊕h) is again a vacuum space-time, containing a black hole region
in the sense used so far. (Similarly if Ric(g) = σg and Ric(h) = σh then
Ric(g ⊕ h) = σg ⊕ h.) Objects of this type are called black strings when
dimN = 1, and black branes in general. Due to lack of space they will not
be discussed here, see Refs. 70, 80 and references therein.

2. Model Independent Concepts

We now describe a general framework for the notions used in the previous
sections. The mathematical notion of black hole is meant to capture the
idea of a region of space-time which cannot be seen by “outside observers”.
Thus, at the outset, one assumes that there exists a family of physically
preferred observers in the space-time under consideration. When consider-
ing isolated physical systems, it is natural to define the “exterior observers”
as observers which are “very far” away from the system under considera-
tion. The standard way of making this mathematically precise is by using
conformal completions, already mentioned above: A pair (M̃ , g̃) is called a
conformal completion at infinity, or simply conformal completion, of (M , g)
if M̃ is a manifold with boundary such that:

(1) M is the interior of M̃ ,
(2) there exists a function Ω, with the property that the metric g̃, defined

as Ω2g on M , extends by continuity to the boundary of M̃ , with the
extended metric remaining of Lorentzian signature,

eThere are no such vacuum black holes with Λ > 0, or with Λ = 0 and degenerate
horizons.58
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(3) Ω is positive on M , differentiable on M̃ , vanishes on the boundary

I := M̃ \ M ,

with dΩ nowhere vanishing on I .

(In the example (24) we have Ω = x, and I = {x = 0}.) The boundary I

of M̃ is called Scri, a phonic shortcut for “script I”. The idea here is the
following: forcing Ω to vanish on I ensures that I lies infinitely far away
from any physical object — a mathematical way of capturing the notion
“very far away”. The condition that dΩ does not vanish is a convenient
technical condition which ensures that I is a smooth three-dimensional
hypersurface, instead of some, say, one- or two-dimensional object, or of a
set with singularities here and there. Thus, I is an idealised description of
a family of observers at infinity.f

To distinguish between various points of I one sets

I + = {points in I which are to the future of the physical space-time} ,
I − = {points in I which are to the past of the physical space-time} .
(Recall that a point p is to the future, respectively to the past, of q if there
exists a future directed, respectively past directed, causal curve from q to
p. Causal curves are curves γ such that their tangent vector γ̇ is causal
everywhere, g(γ̇, γ̇) ≤ 0.) One then defines the black hole region B as

B := {the set of points in M from which

no future directed causal curve in M̃ meets I +} . (26)

By definition, points in the black hole region cannot thus send information
to I +; equivalently, observers on I + cannot see points in B. The white
hole region W is defined by changing the time orientation in (26).

In order to obtain a meaningful definition of black hole, one needs to
assume further that I + satisfies a few regularity conditions. For example,
if we consider the standard conformal completion of Minkowski space-time,
then of course B will be empty. However, one can remove points from that
completion, obtaining sometimes a new completion with a non-empty black
hole region. (Think of a family of observers who stop to exist at time t = 0,
they will never be able to see any event with t > 0, leading to a black hole
region with respect to this family.) We shall return to this question shortly.

fWe note that the behavior of the metric in the asymptotic region for the black strings
and branes of Section 1.3 is not compatible with this framework.
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A key notion related to the concept of a black hole is that of future (E +)
and past (E −) event horizons,

E + := ∂B , E − := ∂W . (27)

Under mild assumptions, event horizons in stationary space-times with mat-
ter satisfying the null energy condition,

Tµν�
µ�ν ≥ 0 for all null vectors �µ, (28)

are smooth null hypersurfaces, analytic if the metric is analytic.28 This is,
however, not the case in the non-stationary case: roughly speaking, event
horizons are non-differentiable at end points of their generators. In Ref. 29
a horizon has been constructed which is non-differentiable on a dense set.
The best one can say in general is that event horizons are Lipschitz,83

semi-convex28 topological hypersurfaces.
In order to develop a reasonable theory one also needs a regularity

condition for the interior of space-time. This has to be a condition which
does not exclude singularities (otherwise the Schwarzschild and Kerr black
holes would be excluded), but which nevertheless guarantees a well-behaved
exterior region. One such condition, assumed in all the results described
below, is the existence in M of an asymptotically flat space-like hyper-
surface S with compact interior region. This means that S is the union
of a finite numberg of asymptotically flat ends Sext, each diffeomorphic
to R

n \ B(0, R), and of a compact region Sint. Further, either S has no
boundary, or the boundary of S lies on E + ∪ E −. To make things precise,
for any spacelike hypersurface let gij be the induced metric, and let Kij de-
note its extrinsic curvature. A space–like hypersurface Sext diffeomorphic
to R

n minus a ball will be called an α-asymptotically flat end, for some
α > 0, if the fields (gij ,Kij) satisfy the fall–off conditions

|gij−δij |+· · ·+rk|∂�1···�k
gij |+r|Kij |+· · ·+rk|∂�1···�k−1Kij | ≤ Cr−α , (29)

for some constants C, k ≥ 1. The fall-off rate is typically determined either
by requiring that the leading deviations from flatness are identical to those
in the Tangherlini solution (1) with V given by (7), or that the fall-off
rate be the same as in (7) (which leads to α = n − 2), or by requiring a
well-defined ADM mass (which leads to α > (n− 2)/2).

gThere is no loss of generality in assuming that there is only one such region, if S is
allowed to have a trapped or marginally trapped boundary. However, it is often more
convenient to work with hypersurfaces without boundary.
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In dimension 3 + 1 there exists a canonical way of constructing a con-
formal completion with good global properties for stationary space-times
which are asymptotically flat in the sense of (29) for some α > 0, and
which are vacuum sufficiently far out in the asymptotic region, as follows:
Equation (29) and the stationary Einstein equations can be used9 to prove
a complete asymptotic expansion of the metric in terms of powers of 1/r.h

The analysis in Refs. 37 and 40 shows then the existence of a smooth con-
formal completion at null infinity. This conformal completion is referred to
as the standard completion and will be assumed from now on. It coincides
with the completion constructed in the last section for the metrics (22).

As already pointed out, an analysis along the lines of Beig and Simon9

has only been performed so far in dimension 3 + 1, and it is not clear
what happens in general, because the proofs use an identity which is wrong
in other dimensions. On one hand there sometimes exist smooth confor-
mal completions — we have just constructed some in the previous section.
On the other hand, it is known that the hypothesis of smoothness of the
conformal completion is overly restrictive in odd space-time dimensions in
generali, though it could conceivably be justifiable for stationary solutions.
Whatever the case, we shall follow the I approach here, and we refer the
reader to Ref. 19 for a discussion of further drawbacks of this approach,
and for alternative proposals.

Returning to the event horizon E = E + ∪ E −, it is not very difficult to
show that every Killing vector field X is necessarily tangent to E : indeed,
since M is invariant under the flow of X , so is I +, and therefore also
I−(I +), and therefore also its boundary E + = ∂I−(I +). Similarly for
E −. Hence X is tangent to E . the Since both E ± are null hypersurfaces, it
follows that X is either null or spacelike on E . This leads to a preferred class
of event horizons, called Killing horizons. By definition, a Killing horizon
associated with a Killing vector K is a null hypersurface which coincides
with a connected component of the set

H(K) := {p ∈ M : g(K,K)(p) = 0 , K(p) �= 0} . (30)

hIn higher dimensions it is straightforward to prove an asymptotic expansion of station-
ary vacuum solutions in terms of lnj r/ri.
iIn even space-time dimension smoothness of I might fail because of logarithmic terms
in the expansion.31, 65 In odd space-time dimensions the situation is (seemingly) even
worse, because of half-integer powers of 1/r57
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A simple example is provided by the “boost Killing vector field” K =
z∂t + t∂z in Minkowski space-time: H(K) has four connected components

Hεδ := {t = εz , δt > 0} , ε, δ ∈ {±1} .
The closure H of H is the set {|t| = |z|}, which is not a manifold, because of
the crossing of the null hyperplanes {t = ±z} at t = z = 0. Horizons of this
type are referred to as bifurcate Killing horizons, with the set {K(p) = 0}
being called the bifurcation surface of H(K). The bifurcate horizon struc-
ture in the Kruskal-Szekeres-Schwarzschild space-time can be clearly seen
in Figure 1.

The Vishveshwara-Carter lemma16, 90 shows that if a Killing vectorK in
an (n+1)–dimensional space-time is hypersurface-orthogonal,K�∧dK� = 0,
then the set H(K) defined in (30) is a union of smooth null hypersur-
faces, with K being tangent to the null geodesics threading H, and so is
indeed a union of Killing horizons. It has been shown by Carter16 that
the same conclusion can be reached in asymptotically flat, vacuum, four-
dimensional space-times if the hypothesis of hypersurface-orthogonality
is replaced by that of existence of two linearly independent Killing vec-
tor fields. The proof proceeds via an analysis of the orbits of the isome-
try group in four-dimensional asymptotically flat manifolds, together with
Papapetrou’s orthogonal-transitivity theorem, and does not generalise to
higher dimensions without further hypotheses.

In stationary-axisymmetric space-times a Killing vectorK tangent to the
generators of a Killing horizon H can be normalised so that K = X + ωY ,
where X is the Killing vector field which asymptotes to a time translation
in the asymptotic region, and Y is the Killing vector field which generates
rotations in the asymptotic region. The constant ω is called the angular
velocity of the Killing horizon H.

On a Killing horizon H(K) one necessarily has

∇µ(KνKν) = −2κKµ. (31)

Assuming that the horizon is bifurcate (Ref. 61, p. 59), or that the so-
called dominant energy condition holds (this means that TµνX

µXν ≥ 0
for all timelike vector fields X) (Ref. 56, Theorem 7.1), it can be shown
that κ is constant (recall that Killing horizons are always connected in
our terminology), it is called the surface gravity of H. A Killing horizon is
called degenerate when κ = 0, and non–degenerate otherwise; by an abuse
of terminology one similarly talks of degenerate black holes, etc. In Kerr
space-times we have κ = 0 if and only if m = a. All horizons in the multi-
black hole Majumdar-Papapetrou solutions (13)-(16) are degenerate.
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A fundamental theorem of Boyer shows that degenerate horizons are
closed. This implies that a horizon H(K) such that K has zeros in H is
non-degenerate, and is of bifurcate type, as described above. Further, a
non-degenerate Killing horizon with complete geodesic generators always
contains zeros of K in its closure. However, it is not true that existence of
a non-degenerate horizon implies that of zeros of K: take the Killing vector
field z∂t + t∂z in Minkowski space-time from which the 2-plane {z = t = 0}
has been removed. The universal cover of that last space-time provides a
space-time in which one cannot restore the points which have been artifi-
cially removed, without violating the manifold property.

The domain of outer communications (d.o.c.) of a black hole space-time
is defined as

〈〈M 〉〉 := M \ {B ∪ W } . (32)

Thus, 〈〈M 〉〉 is the region lying outside of the white hole region and outside
of the black hole region; it is the region which can both be seen by the
outside observers and influenced by those.

The subset of 〈〈M 〉〉 where X is spacelike is called the ergoregion. In the
Schwarzschild space-time ω = 0 and the ergoregion is empty, but neither of
these is true in Kerr with a �= 0.

A very convenient method for visualising the global structure of space-
times is provided by the Carter-Penrose diagrams. An example of such a
diagram is presented in Figure 1.

A corollary of the topological censorship theorem of Friedman, Schleich
and Witt43, 46, 47 is that d.o.c.’s of regular black hole space-times satisfying
the dominant energy condition are simply connected.45, 50 This implies that
connected components of event horizons in stationary, asymptotically flat,
four-dimensional space-times have R×S2 topology.12, 35 The restrictions in
higher dimension are less stringent,14, 48 in particular in space-time dimen-
sion five an R × S2 × S1 topology is allowed. A vacuum solution with this
horizon topology has been indeed found by Emparan and Reall.42

Space-times with good causality properties can be sliced by families of
spacelike surfaces St, this provides an associated slicing Et = St ∩E of the
event horizon. It can be shown that the area of the Et’s is well defined,28 this
is not a completely trivial statement in view of the poor differentiability
properties of E . A key theorem of Hawking55 (compare Ref. 28) shows
that, in suitably regular asymptotically flat space-times, the area of Et’s is
a monotonous function of t. This property carries over to black-hole regions
associated to null-convex families of observers, as in Ref. 19.
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Vacuum or electrovacuum regions with a timelike Killing vector can be
endowed with an analytic chart in which the metric is analytic. This result
has often been misinterpreted as holding up-to-the horizon. However, rather
mild global conditions forbid timelike Killing vectors on event horizons. The
Curzon metric, studied by Scott and Szekeres88 provides an example of
failure of analyticity at degenerate horizons. One-sided analyticity at static
non-degenerate vacuum horizons has been proved recently.26 It is expected
that the result remains true for stationary Killing horizons, but the proof
does not generalise in any obvious way.

3. Classification of Asymptotically Flat Stationary Black
Holes (“No hair theorems”)

We confine attention to the “outside region” of black holes, the do-
main of outer communications (32). For reasons of space we only con-
sider vacuum solutions; there is a similar theory for electro-vacuum black
holes.17, 18, 23, 24, 95 There also exists a somewhat less developed theory for
black hole spacetimes in the presence of nonabelian gauge fields.91

Based on the facts below, it is expected that the d.o.c.’s of appropriately
regular, stationary, asymptotically flat four-dimensional vacuum black holes
are isometrically diffeomorphic to those of Kerr black holes.

(1) The rigidity theorem (Hawking44, 55): event horizons in regular, non–
degenerate, stationary, analytic, four-dimensional vacuum black holes
are either Killing horizons for X , or there exists a second Killing vector
in 〈〈M 〉〉. The proof does not seem to generalise to higher dimensions
without further assumptions.

(2) The Killing horizons theorem (Sudarsky-Wald89): non–degenerate sta-
tionary vacuum black holes such that the event horizon is the union of
Killing horizons of X are static. Both the proof in Ref. 89, and that
of existence of maximal hypersurfaces needed there,34 are valid in any
space dimensions n ≥ 3.

(3) The Schwarzschild black holes exhaust the family of static regular vac-
uum black holes (Israel,60 Bunting – Masood-ul-Alam,13 Chruściel25).
The proof in Ref. 25 carries over immediately to all space dimensions
n ≥ 3 (compare Refs. 52, 87), with the proviso of validity of the rigidity
part of the Riemannian positive energy theorem.j

jThe proofs of this last theorem, known at the time of writing of this work, require the
existence of a spin structure in space dimensions larger than eleven,41 though the result
is expected to hold without any restrictions.
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(4) The Kerr black holes satisfying

m2 > a2 (33)

exhaust the family of non–degenerate, stationary–axisymmetric, vac-
uum, connected, four-dimensional black holes. Herem is the total ADM
mass, while the product am is the total ADM angular momentum. The
framework for the proof has been set-up by Carter, and the statement
above is due to Robinson.86 The Emparan-Reall metrics42 show that
there is no uniqueness in higher dimensions, even if three commuting
Killing vectors are assumed; see, however, Ref. 74.

The above results are collectively known under the name of no hair
theorems, and they have not provided the final answer to the problem so far
even in four dimensions: First, there are no a priori reasons known for the
analyticity hypothesis in the rigidity theorem. Next, degenerate horizons
have been completely understood in the static case only.

In all results above it has been assumed that the metric approaches
the Minkowski one in the asymptotic region. Anderson1 has shown that,
under natural regularity hypothesis, the only alternative concerning the
asymptotic behavior for static (3 + 1)–dimensional vacuum black holes are
“small ends”, as defined in his work. Solutions with this last behavior have
been constructed by Korotkin and Nicolai,63 and it would be of interest
to prove that there are no others. In higher dimension other asymptotic
behaviors are possible, examples are given by the metrics (22) with V =
c− (2m)/rn−2, and gN as described there.

Yet another key open question is that of existence of non-connected
regular stationary-axisymmetric vacuum black holes. The following result
is due to Weinstein:93 Let ∂Sa, a = 1, . . . , N be the connected components
of ∂S . Let X� = gµνX

µdxν , where Xµ is the Killing vector field which
asymptotically approaches the unit normal to Sext. Similarly set Y � =
gµνY

µdxν , Y µ being the Killing vector field associated with rotations. On
each ∂Sa there exists a constant ωa such that the vectorX+ωaY is tangent
to the generators of the Killing horizon intersecting ∂Sa. The constant ωa

is called the angular velocity of the associated Killing horizon. Define

ma = − 1
8π

∫
∂Sa

∗dX� , (34)

La = − 1
4π

∫
∂Sa

∗dY � . (35)

Such integrals are called Komar integrals. One usually thinks of La as the
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angular momentum of each connected component of the black hole. Set

µa = ma − 2ωaLa . (36)

Weinstein shows that one necessarily has µa > 0. The problem at hand
can be reduced to a harmonic map equation, also known as the Ernst
equation, involving a singular map from R

3 with Euclidean metric δ to the
two-dimensional hyperbolic space. Let ra > 0, a = 1, . . . , N − 1, be the
distance in R

3 along the axis between neighboring black holes as measured
with respect to the (unphysical) metric δ. Weinstein proves that for non-
degenerate regular black holes the inequality (33) holds, and that the metric
on 〈〈M 〉〉 is determined up to isometry by the 3N − 1 parameters

(µ1, . . . , µN , L1, . . . , LN , r1, . . . , rN−1) (37)

just described, with ra, µa > 0. These results by Weinstein contain the no-
hair theorem of Carter and Robinson as a special case. Weinstein also shows
that for every N ≥ 2 and for every set of parameters (37) with µa, ra > 0,
there exists a solution of the problem at hand. It is known that for some sets
of parameters (37) the solutions will have “strut singularities” between some
pairs of neighboring black holes,69, 71, 77, 94 but the existence of the “struts”
for all sets of parameters as above is not known, and is one of the main open
problems in our understanding of stationary–axisymmetric electro–vacuum
black holes. The existence and uniqueness results of Weinstein remain valid
when strut singularities are allowed in the metric at the outset, though such
solutions do not fall into the category of regular black holes discussed so
far.

Some of the results above have been generalised to Λ �= 0.4, 11, 33, 49, 84

4. Dynamical Black Holes: Robinson-Trautman Metrics

The only known family of vacuum, singularity-free (in the sense described in
the previous section), dynamical black holes, with exhaustive understanding
of the global structure to the future of a Cauchy surface, is provided by the
Robinson-Trautman (RT) metrics.

By definition, the Robinson–Trautman space–times can be foliated by
a null, hypersurface orthogonal, shear free, expanding geodesic congruence.
It has been shown by Robinson and Trautman that in such a space–time
there always exists a coordinate system in which the metric takes the form

ds2 = −Φ du2 − 2du dr + r2e2λg̊ab dx
a dxb, xa ∈ 2M, λ = λ(u, xa),

(38)



October 7, 2005 16:0 WSPC/Trim Size: 9in x 6in for Review Volume 04˙chrusciel

Black Holes 113

g̊ab = g̊ab(xa), Φ =
R

2
+

r

12m
∆gR − 2m

r
, R = R(gab) ≡ R(e2λg̊ab),

m is a constant which is related to the total Bondi mass of the metric, R
is the Ricci scalar of the metric gab ≡ e2λg̊ab, and (2M, g̊ab) is a smooth
Riemannian manifold which we shall assume to be a two-dimensional sphere
(other topologies are considered in Ref. 21).

For metrics of the form (38), the Einstein vacuum equations reduce
to a single parabolic evolution equation for the two-dimensional metric
g = gabdx

adxb:

∂ug =
∆R
12m

g . (39)

This is equivalent to a non-linear fourth order parabolic equation for the
conformal factor λ. The Schwarzschild metric provides an example of a
time-independent solution.

The Cauchy data for an RT metric consist of λ0(xa) ≡ λ(u = u0, x
a).

Equivalently, one prescribes a metric gµν of the form (38) on the null hyper-
surface {u = u0, x

a ∈ 2M, r ∈ (0,∞)}. Note that this hypersurface extends
up to a curvature singularity at r = 0, where the scalar RαβγδR

αβγδ di-
verges as r−6. This is a ‘white hole singularity”, familiar from all known
black hole spaces-times.

It is proved in Ref. 20 that, for m > 0, every such initial λ0 leads
to a black hole space-time. More precisely, one has the following: For
any λ0 ∈ C∞(S2) there exists a Robinson–Trautman space-time (M , g)
with a “half-complete” I+, the global structure of which is shown in Fig-
ure 5. Moreover, there exist an infinite number of non-isometric vacuum
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Fig. 5. The global structure of RT space-times with m > 0 and spherical topology.
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Robinson–Trautman C5 extensionsk of (M , g) through H +, which are ob-
tained by gluing to (M , g) any other Robinson–Trautman spacetime with
the same mass parameter m, as shown in Figure 6. Each such extension
leads to a black-hole space-time, in which H + becomes a black hole event
horizon. (There also exist an infinite number of C117 vacuum RT extensions
of (M , g) through H + — one such extension can be obtained by gluing
a copy of (M , g) to itself. Somewhat surprisingly, no extensions of C123

differentiability class exist in general.)
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Fig. 6. Vacuum RT extensions beyond H+

5. Initial Data Sets Containing Trapped, or Marginally
Trapped, Surfaces

Let T be a compact, (n−1)–dimensional, spacelike submanifold in a (n+1)–
dimensional space-time (M , g). We assume that there is a continuous choice
� of a field of future directed null normals to T , which will be referred to
as the outer one. Let ei, i = 1, · · · , n − 1 be a local ON frame on T , one
sets

θ+ =
n−1∑
i=1

g(∇ei�, ei) .

Then T will be called future outer trapped if θ+ > 0, and marginally fu-
ture outer trapped if θ+ = 0. A marginally trapped surface lying within a
spacelike hypersurface is often referred to as an apparent horizon.

kBy this we mean that the metric can be C5 extended beyond H +; the extension can
actually be chosen to be of C5,α differentiability class, for any α < 1.
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It is a folklore theorem in general relativity that, under appropriate
global conditions, existence of a future outer trapped or marginally trapped
surface implies that of a non-empty black hole region. So one strategy in
constructing black hole space-times is to find initial data which will contain
trapped, or marginally trapped, surfaces6, 8, 38, 39, 68, 72

It is useful to recall how apparent horizons are detected using initial
data: let (S , g,K) be an initial data set, and let S ⊂ S be a compact
embedded two-dimensional two-sided submanifold in S . If ni is the field
of outer normals to S and H is the outer mean extrinsic curvaturel of S
within S then, in a convenient normalisation, the divergence θ+ of future
directed null geodesics normal to S is given by

θ+ = H +Kij(gij − ninj) . (40)

In the time-symmetric case θ+ reduces thus to H , and S is trapped if and
only if H < 0, marginally trapped if and only if H = 0. Thus, in this case
apparent horizons correspond to compact minimal surfaces within S .

It should be emphasised that the existence of disconnected apparent
horizons within an initial data set does not guarantee, as of the time of
writing this work, a multi-black-hole spacetime, because our understanding
of the long time behavior of solutions of Einstein equations is way too poor.
Some very partial results concerning such questions can be found in Ref. 32.

5.1. Brill-Lindquist initial data

Probably the simplest examples are the time-symmetric initial data of Brill
and Lindquist. Here the space-metric at time t = 0 takes the form

g = ψ4/(n−2)
(
(dx1)2 + . . .+ (dxn)2

)
, (41)

with

ψ = 1 +
I∑

i=1

mi

2|�x− �xi|n−2
.

The positions of the poles �xi ∈ R
n and the values of the mass parameters

mi ∈ R are arbitrary. If all the mi are positive and sufficiently small,
then for each i there exists a small minimal surface with the topology of a
sphere which encloses �xi..32 From Ref. 62, in dimension 3+1 the associated
maximal globally hyperbolic development possesses a I + which is complete

lWe use the definition that gives H = 2/r for round spheres of radius r in three-
dimensional Euclidean space.
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to the past. However I + cannot be smooth,64 and it is not known how large
it is to the future. One expects that the intersection of the event horizon
with the initial data surface will have more than one connected component
for sufficiently small values of mi/|�xk − �xj |, but this is not known.

5.2. The “many Schwarzschild” initial data

There is a well-known special case of (41), which is the space-part of the
Schwarzschild metric centred at �x0 with mass m :

g =
(

1 +
m

2|�x− �x0|n−2

)4/(n−2)

δ , (42)

where δ is the Euclidean metric. Abusing terminology in a standard way, we
call (42) simply the Schwarzschild metric. The sphere |�x−�x0| = m/2 is min-
imal, and the region |�x− �x0| < m/2 corresponds to the second asymptotic
region. This feature of the geometry, as connecting two asymptotic regions,
is sometimes referred to as the Einstein-Rosen bridge, see Figure 2.

Now fix the radii 0 ≤ 4R1 < R2 < ∞. Denoting by B(�a,R) the open
coordinate ball centred at �a with radius R, choose points

�xi ∈ Γ0(4R1, R2) :=

{
B(0, R2) \B(0, 4R1) , R1 > 0

B(0, R2) , R1 = 0 ,

and radii ri, i = 1, . . . , 2N , so that the closed balls B(�xi, 4ri) are all con-
tained in Γ0(4R1, R2) and are pairwise disjoint. Set

Ω := Γ0(R1, R2) \
(
∪iB(�xi, ri)

)
. (43)

We assume that the �xi and ri are chosen so that Ω is invariant with respect
to the reflection �x → −�x. Now consider a collection of nonnegative mass
parameters, arranged into a vector as

�M = (m,m0,m1, . . . ,m2N ),

where 0 < 2mi < ri, i ≥ 1, and in addition with 2m0 < R1 if R1 > 0 but
m0 = 0 if R1 = 0. We assume that the mass parameters associated to the
points �xi and −�xi are the same. The remaining entry m is explained below.

Given this data, it follows from the work in Refs.27, 36 that there exists
a δ > 0 such that if

2N∑
i=0

|mi| ≤ δ , (44)
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�x2 = −�x1

�x3

r1r4

R

�x4 = −�x3

�x1

Fig. 7. “Many Schwarzschild” initial data with four black holes. The initial data are
exactly Schwarzschild within the four innermost circles and outside the outermost one.
The free parameters are R, (�x1, r1, m1), and (�x3, r3, m3), with sufficiently small ma’s.
We impose m2 = m1, r2 = r1, m4 = m3 and r4 = r3.

then there exists a number

m =
2N∑
i=0

mi +O(δ2)

and a C∞ metric ĝ M which is a solution of the time-symmetric vacuum
constraint equation

R(ĝ M ) = 0 ,

such that:

(1) On the punctured balls B(�xi, 2ri)\{�xi}, i ≥ 1, ĝ M is the Schwarzschild
metric, centred at �xi, with mass mi;

(2) On R
n \B(0, 2R2), ĝ M agrees with the Schwarzschild metric centred at

0, with mass m;
(3) If R1 > 0, then ĝ M agrees on B(0, 2R1) \ {0} with the Schwarzschild

metric centred at 0, with mass m0.

By point (1) above each of the spheres |�x − �xi| = mi/2 is an apparent
horizon.

A key feature of those initial data is that we have complete control of the
space-time metric within the domains of dependence of B(�xi, 2ri)\{�xi} and
of R

n \B(0, 2R2), where the space-time metric is a Schwarzschild metric.
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Because of the high symmetry, one expects that “all black holes will
eventually merge”, so that the event horizon will be a connected hypersur-
face in space-time.

5.3. Black holes and gluing methods

A recent alternate technique for gluing initial data sets is given in Refs. 59.
In this approach, general initial data sets on compact manifolds or with
asymptotically Euclidean or hyperboloidal ends are glued together to pro-
duce solutions of the constraint equations on the connected sum manifolds.
Only very mild restrictions on the original initial data are needed. The neck
regions produced by this construction are again of Schwarzschild type. The
overall strategy of the construction is similar to that used in many previous
gluing constructions in geometry. Namely, one takes a family of approxi-
mate solutions to the constraint equations and then attempts to perturb
the members of this family to exact solutions. There is a parameter η which
measures the size of the neck, or gluing region; the main difficulty is caused
by the tension between the competing demands that the approximate solu-
tions become more nearly exact as η → 0 while the underlying geometry and
analysis become more singular. In this approach, the conformal method of
solving the constraints is used, and the solution involves a conformal factor
which is exponentially close to one (as a function of η) away from the neck
region. It has been shown30 that the deformation can actually be localised
near the neck in generic situations.

Consider, now, an asymptotically flat time-symmetric initial data set,
to which several other time-symmetric initial data sets have been glued by
this method. If the gluing regions are made small enough, the existence
of a non-trivial minimal surface, hence of an apparent horizon, follows by
standard results. This implies the existence of a black hole region in the
maximal globally hyperbolic development of the data.

It is shown in Ref. 32 that the intersection of the event horizon with the
initial data hypersurface will have more than one connected component for
several families of glued initial data sets.
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7. R. Beig and P.T. Chruściel, Stationary black holes, Encyclopedia of Mathe-
matical Physics (2005), in press, gr-qc/0502041.
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28. P.T. Chruściel, E. Delay, G. Galloway, and R. Howard, Regularity of hori-
zons and the area theorem, Annales Henri Poincaré 2 (2001), 109–178, gr-
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85. I. Rácz and R.M. Wald, Global extensions of spacetimes describing asymptotic
final states of black holes, Class. Quantum Grav. 13 (1996), 539–552, gr-
qc/9507055.

86. D.C. Robinson, Uniqueness of the Kerr black hole, Phys. Rev. Lett. 34 (1975),
905–906.

87. M. Rogatko, Uniqueness theorem of static degenerate and non-degenerate
charged black holes in higher dimensions, Phys. Rev. D67 (2003), 084025,
hep-th/0302091.

88. S.M. Scott and P. Szekeres, The Curzon singularity. II: Global picture, Gen.
Rel. Grav. 18 (1986), 571–583.

89. D. Sudarsky and R.M. Wald, Mass formulas for stationary Einstein Yang-
Mills black holes and a simple proof of two staticity theorems, Phys. Rev.
D47 (1993), 5209–5213, gr-qc/9305023.

90. C.V. Vishveshwara, Generalization of the “Schwarzschild Surface” to arbi-
trary static and stationary metrics, Jour. Math. Phys. 9 (1968), 1319–1322.

91. M.S. Volkov and D.V. Gal’tsov, Gravitating non-Abelian solitons and black
holes with Yang–Mills fields, Phys. Rep. 319 (1999), 1–83, hep-th/9810070.

92. M. Walker, Bloc diagrams and the extension of timelike two–surfaces, Jour.
Math. Phys. 11 (1970), 2280–2286.

93. G. Weinstein, The stationary axisymmetric two–body problem in general rel-
ativity, Commun. Pure Appl. Math. XLV (1990), 1183–1203.

94. G. Weinstein, On the force between rotating coaxial black holes, Trans. of the
Amer. Math. Soc. 343 (1994), 899–906.

95. G. Weinstein, N-black hole stationary and axially symmetric solutions of the
Einstein/Maxwell equations, Commun. Part. Diff. Eqs. 21 (1996), 1389–1430.



October 7, 2005 16:19 WSPC/Trim Size: 9in x 6in for Review Volume 05˙price2

CHAPTER 5

THE PHYSICAL BASIS OF BLACK HOLE ASTROPHYSICS

RICHARD H. PRICE

Department of Physics & Astronomy and CGWA
University of Texas at Brownsville, Brownsville, TX 78520, USA

rprice@phys.utb.edu

Once considered only mathematical odditites, black holes are now rec-
ognized as important astrophysical objects. This article focuses on the
physics of black holes that relates to their astrophysical roles.

1. Introduction

We seem to hear about black holes in statements like those in a political

season. There are claims that seem to be completely incompatible with

other claims. A few of these seeming contradictions follow.

I. Frozen or continuous collapse?

We hear that as a particle approaches a black hole its motion continually

slows, and in a finite time it does not reach the black hole. In this same sense,

a spherical star that has lost its pressure support slows its contraction, and

only asymptotically becomes a black hole.

On the other hand, we hear that there is nothing singular about the

surface of a black hole. A particle falls through the surface in a finite time

and no singular physics is involved in this passage. Similarly, a collapsing

star becomes a black hole in a finite time, and no singular forces are involved

in the black hole formation.

II. Observing the unobservable black hole

We frequently hear about observations of luminosity from black holes,

such as x-ray emission from stellar mass black holes. We hear that black

holes are, in a way that is incompletely understood, the energy source for

active galactic nuclei.

Yet we hear that nothing can escape from a black hole.

124
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III. Newtonian-like points, or spacetime regions

We hear about black holes in clusters and binaries moving as if they

themselves were particles,

Yet we hear that black holes are not objects, that they are regions of

spacetime.

IV. Black holes: simple or exceedingly unsimple

We hear about black hole oscillations, and hear that state-of-the art

supercomputer codes are being used to study the dynamics of the black

hole formed from binary inspiral of compact objects.

Yet we hear that black holes are exceedingly simple. They have only

three properties: mass, angular momentum and (though astrophysically

irrelevant) electrical charge.

Part of the resolution of the contradictions is the different contexts in

which statements are made. But part is due to the fact that relativity and

common usage of language are often in conflict. For example, the key to

most of the paradoxes of special relativity is the fact that physical time is

not absolute. In black hole spacetimes the meaning of time is even more

slippery, and it is the nature of relativistic time that leads to several of the

contradictions.

The purpose of this article is to explain enough of the underlying physics

of black holes so the reader can understand and appreciate the role played

by black holes in astrophysics, and will see the contradictions in the above

statements to be illusory.

This article does not deal with black holes as the very interesting math-

ematical solutions that they area; they are treated from that point of view

in the accompanying article by P. Chruściel. The slippery meaning of time

warns us, however, that it is impossible to have any real understanding

of black hole interactions without dealing with some of the mathematical

description of black holes, so we will deal with some.

Just as it does not focus on mathematical details, neither does this

article give much detail of astrophysical observations and models. But some

discussions of black hole astrophysical models, and the observations that

motivate them, is not only interesting, it also helps to clarify the physics,

and to remind the reader that these regions of exotic spacetime curvature

have a reality.

aNor does this article deal with such black hole quantum phenomena as Hawking radi-
ation, which is of no consequence for astrophysical-sized holes.
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2. Stationary Black Hole Spacetimes

For many purposes special relativity is best understood with the

Minkowskian 4-dimensional metric1,2. Coordinates x, y, z, t are laid out

in space and time in a way that can very precisely be dictated, and the

geometry of spacetime is described by the “distance” formula, or “met-

ric,” a spacetime equivalent of the Pythagorean formula for differential

displacements,

ds
2 = −c

2
dt

2 + dx
2 + dy

2 + dz
2
. (1)

It is crucial to understand that a coordinate transformation can lead to a

very different appearance for the metric. In the case of Minkowski space-

time (gravity-free spacetime) there are preferred types of coordinates, the

Minkowski coordinates, in which the metric takes the simple form in Eq. (1).

Tranformations can be carried out from one Minkowski system to another,

but can also be made to a nonpreferred system in which the metric takes

on a very different appearance. As an example of this we could take the

relatively simple transformation

t = T x = X(T/T )1/2
y = Y z = Z , (2)

where T is a positive constant with the dimensionality of time (and is

introduced to maintain dimensional consistency). In these new T,X, Y, Z

coordinates the metric becomes

ds
2 = −

[

1 −

X
2

4c2TT

]

c
2
dT

2 +
X

T

dTdX + 4
T

T

dX
2 + dY

2 + dZ
2
. (3)

This formula has a completely different character from that in Eq. (1). In

particular the formula suggests that the geometry it describes is dependent

on time T . There is another, more subtle ugliness in Eq. (3): the dTdX

cross term. This term means that motion in the +X direction is physically

different from motion in the −X direction.

We feel intuitively, of course, that the simple spacetime of special rela-

tivity does not change in time, that it is stationary (unchanging in time)

and isotropic (so that +x is the same as −x), but Eq. (3) shows that we

must be careful about how we state this. The correct way is: There exists

a coordinate system in which the metric is stationary and isotropic.

As long as we are being careful, it is good to be careful about the

difference between a “time” coordinate and a “space” coordinate. If we

consider a slice of spacetime with dT = 0, we get

ds
2 = 4

T

T

dX
2 + dY

2 + dZ
2
. (4)
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The condition for this constant T slice to be spatial, and hence for T to be

a time coordinate, is that the value of ds2 be positive for any displacement

{dX, dY, dZ}. But in Eq. (4) we see that this is the case only for T >

0. Thus T is a time coordinate only for T > 0. (One might object that

negative T is prohibited by the form of the transformation in Eq. (2).

But here we should view Eq. (3) as a metric given to us for analysis. The

connection to the Minkowski formula is the ultimate clarification of Eq. (3),

but such connections are not always available and, if available, are usually

not obvious.)

The example in Eq. (3) has prepared us to understand the Schwarzchild

geometry which has the formula

ds
2 = −

(

1 −

2GM

rc2

)

c
2
dt

2 +

(

1 −

2GM

rc2

)

−1

dr
2 + r

2
dθ

2 + r
2 sin2

θ dφ
2
.

(5)

Here G is the universal gravitational constant and M is a parameter with

the dimensions of mass. If the M parameter is set to zero, Eq. (5) takes

the form of the Minkowski metric expressed with spherical polar spatial

coordinates, a simple transformation from Eq. (1).

For M > 0, it turns out that Eq. (5) cannot be transformed to the

Minkowski metric, and therefore does not represent gravity-free spacetime.

It does, however, represent a very fundamental solution in Einstein’s theory.

That theory, general relativity, consists of partial differential equations that

must be satisfied by the metric functions, the functions, such as 1−2GM/rc
2

in Eq. (5), that appear in the metric. The partial differential equations, the

field equations of general relativity, connect these functions to the nongrav-

itational energy and momentum content of spacetime. The Schwarzschild

metric is a solution of Einstein’s equation discovered almost 90 years ago3,

for vacuum, i.e. , for spacetime in which there is no matter, no energy and

no fields, except for the gravitational field itself which is encoded in the ge-

ometry. In Einstein’s theory, furthermore, the Schwarzschild metric turns

out to be the unique spherically symmetric vacuum solution that is asymp-

totically flat. (It approaches the Minkowski metric as r → ∞.) It represents,

therefore, the spacetime outside a spherically symmetric gravitating body.

In that sense it plays the same role as Φ = 1/r in electromagnetic theory.

This solution appears to be stationary. That is, there exist coordinates (the

t, r, θ, φ coordinates) in which the metric is independent of the time coordi-

nate. This is intuitively satisfying; like electromagnetic waves, gravitational

waves are transverse, and like electromagnetic waves, gravitational waves

cannot be spherically symmetric. There would then seem to be nothing that
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can be dynamical in a spherically symmetric gravitational spacetime, and

the mathematics of the theory confirms this.

The familiar large-r features of the Schwazschild metric disappear at

small r. The scale for “small” is the “Schwarzchild radius” of the spacetime,

rg ≡ 2GM/c
2
. (6)

At r < rg , all connection with Newtonian physics breaks down. The con-

stant t slices, in this region, are not spacelike; the coefficient of dr2 is nega-

tive, so the slice is not a spatial slice, and t is not a time coordinate. In fact,

it is rather clear in Eq. (5) that in this r < rg inner region t is a spatial

coordinate and r is a time coordinate.

We now have an awkward situation. We have a coordinate system in

which the metric is independent of one of the coordinates t, but that is not

a time coordinate for r < rg . In that region the spacetime has a symmetry

(it is invariant with respect to translations in t) but it is not stationary.

We could, of course, search for a better coordinate system, and coordinate

systems can be found (such coordinate systems as the Kruskal, Novikov, and

Eddington-Finkelstein systems4) whose constant time slices are everywhere

spatial. Though these coordinates are well suited to expressing the geometry

both for r > rg and for r < rg , these coordinates are ill suited to express

the stationary nature of the solution. In such coordinates either the metric

has explicit time dependence (Novikov and Kruskal systems) or has a cross

term (Eddington-Finkelstein system). We have a choice then: we can have

a system that expresses the inherent simplicity of the spacetime, or we can

have a system that does not introduce unnecessary coordinate artifacts.

Another rather important stationary vacuum spacetime is given by the

two-parameter (M and a) Kerr metric

ds
2 = −

(

1 −

2GMr

Σ

)

c
2
dt

2
−

4GMar sin2
θ

Σ
dtdφ

+
Σ

∆
dr

2 + Σdθ2 +
sin2

θ

Σ

[

(

r
2 + a

2
)2

− a
2∆ sin2

θ

]

dφ
2 (7)

where

∆ ≡ r
2
− rgr + a

2 Σ ≡ r
2 + a

2 cos2 θ . (8)

Here again rg ≡ 2GM/c
2, whereM is the mass parameter for the spacetime.

It is useful to notice that the Schwarzschild metric is the special a = 0 case
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of the Kerr metric. When we set dt = 0 we get a three-dimensional geometry

that is spatial for ∆ > 0, but ∆ is negative for r− < r < r+, where

r± = 1

2
rg ±

√

(

1

2
rg

)2

− a2 . (9)

As was the case for the Schwarzschild geometry, here again the t coordinate

is convenient, but is not “time” in all regions of spacetime.

The parameter M in the Schwarzschild metric is mass. One justification

for this is that we can use the nonvacuum equations of general relativity

to construct solutions for spacetimes around stationary spherical massive

objects, such as perfect fluid stars. Outside the material of these objects

the spacetime is empty and the metric must be the Schwarzschild metric.

Joining that solution smoothly to the interior nonvacuum solution leads to

an expression for M that is (aside from some relativistic ambiguities) the

sum of all the mass and energy (including gravitational binding energy)

inside the object.

The fact that the a parameter in Eq. (7) multiplies the dtdφ cross term

correctly suggests that it is related to rotation. It is in fact a measure of

the angular momentum of the gravitational source, but the connection to

a source requires some care. There is no unique vacuum metric around a

rotating object and, in fact, no solution is known for a realistic nonvacuum

interior metric that joins smoothly to an exterior Kerr metric. We do know

this, however: if we compute the total angular momentum of a rotating

object, then the vacuum spacetime exterior to that object has a form that

at large r agrees with the large-r form of the Kerr metric if the total angular

momentum J and the Kerr parameter a are related by

a = J/Mc . (10)

3. Particles and Fields Near Black Holes

3.1. Particle worldlines

Though the use of curved spacetime to represent gravity seems unnecessar-

ily abstract, the connection is compelling. The bridge between the two ideas

is the equivalence principle, the fact that all particles experience the same

acceleration by gravity. This means that to specify the gravitational trajec-

tory, the worldline, of a particle you need only to specify its initial location

and velocity, not its mass, its strangeness, or any other particle propertyb.

bIt is being assumed here that “point” particles cannot have spin. Classically, particles
with angular momentum must have nonzero size.
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The physics of gravity is therefore not a study of particles, but of particle

paths through spacetime, and paths are determined by the geometry they

live in.

In gravity-free spacetime the worldline of a particle must be straight.

In metric theories of gravitation, like Einstein’s general relativity, the gen-

eralization is that the worldline must be as straight as possible for a free

particle (a particle moving under gravity, but free of any “real” forces). The

straighest possible path, called a geodesic, is mathematically the path that

has a locally unchanging unit tangent. (The derivative of the unit tangent

along the path is zero.)

For particle paths, of course, we are interested primarily in timelike

curves for which infinitesimally separated points have ds2 < 0. This con-

dition of timelike separation tells us that a particle can follow the path

without ever going faster than the speed of light. For these curves a pa-

rameter that is both physically and geometrically appealing is the proper

time τ along the particle worldline, defined by dτ =
√

−ds2 . The physical

importance follows from the fact that τ is the time measured by clocks co-

moving with the particle. A massless particle, like a photon, must move at

the speeed of light. Its worldline, called a null worldline, is characterized by

ds = 0 for nearby points, so proper time is not meaningful. Instead, we can

notice that the 4-momentum ~p of a particle of mass m is given, in terms

of spacetime displacement d~x by ~p = m ~dx/dτ . We can choose to parame-

terize a particle worldline with a parameter λ such that the 4-momentum

of the massless particle is ~p = ~dx/dλ. Such a parameter, called an affine

parameter, can loosely be thought of as the m→ 0 limit of τ/m.

For the Schwarzschild spacetime of Eq. (5), any free orbit is equivalent

to an equatorial orbit, so we can fix θ = π/2 and can describe gravitational

motion by specifying t(τ), r(τ), φ(τ) along the worldline. It turns out that

the geodesic equations are equivalent to the following constants of motion:

r
2
dφ

dτ
= L

(

1 −

2GM

rc2

)

dt

dτ
= E (11)

(

1 −

2GM

rc2

) (

dt

dτ

)2

−

(

1 −

2GM

rc2

)

−1 (

dr

cdτ

)2

− r
2

(

dφ

cdτ

)2

= 1. (12)

The constants E and L here play the role of conserved particle energy

and particle angular momentum. (For discussion of L, E , and why they are

constant, see Sec. 25.5 of the text by Misner et al.4.)

Though these equations do determine the path through spacetime, it is

important to remember that τ is a quantity that is meaningful only on the
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worldline. It has no direct meaning to our time, that is to the time of the

observers. The more familiar “common sense” description of physics is to

specify r(t) and φ(t) in terms of a universal time t that applies everywhere.

In general there is nothing like universal time in a curved spacetime, but

the spacetimes of Eqs. (5) and (7) are independent of t, and thus t does

have a favored status.

3.2. Radial orbits

In this duality of time descriptions we begin to see a source of apparently

contradictory statements about the spacetimes in Eqs. (5) and (7). For

radial infall (L = 0) of a particle in the Schwarzschild spacetime the equa-

tions above give us dr/dt ∝ 1 − rg/r, so the particle reaches r = rg only

asymptotically at t→ ∞, as shown on the right in Fig. 1.

The equations of radial infall, on the other hand, tell us

dr

dτ
= −

√

E
2
− 1 + rg/r , (13)

and r = rg is an ordinary point of the differential equation. A plot of the

trajectory from this point of view is shown on the left in Fig. 1, with events,

A, B, C indicated. This plot shows that the worldline does not end at rg ,

but continues, as indicated by the later events events, D, E.

The “particle” that is radially falling in could be the surface of a star,

if we consider the pressure support of the star to be negligible so that the

surface is freely falling. The collapse of this star is frozen, as on the right

in Fig. 1. As described with global time t the collapse never quite reaches

r = rg . On the other hand, to an ill-fated observer sitting on the star, the

passage through r = rg is an event of no noticeable significance.

The problem clearly lies with the coordinate t, and the very form of

Eq. (5) is evidence of a problem. This coordinate, so useful as a global

coordinate for r > rg , is a singular coordinate at r = rg . The appearance of

bad geometry, and hence of misleading physics, at r = rg is an artifact of

the very convenient set of coordinates. In other, less convenient coordinates,

there is no singularity at r = rg .

Before we dismiss the t coordinate as a completely bad idea, we should

repeat that τ is not enough. We need to connect physical events with the

time at which they are observed and t is the appropriate coordinate for

that. (For one thing it is the clock time of distant astronomers in weak

gravitational fields and small velocities.) It is the coordinate with which we

can address the question “what do the astronomers see” as the particle, or
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Fig. 1. Radial infall in the Schwarzschild spacetime; the proper time versus global
coordinate time description.

stellar surface moves inward. In order for there to be something for them to

see, we have added (dashed) lines representing outgoing photons carrying

information to the curious observer.c As we approach r = rg along the

worldline, the value of dr/dt approaches zero for our outward photons.

This trend becomes even more pronounced for r < rg . Events subse-

quent to C, events such as D, simply cannot send information outward.

This is best understood in the fact that t becomes spacelike and r becomes

timelike in the r < rg region. In that region, the future turns out to be in the

decreasing r direction. Since all particles or signals, whether freely falling

or not, must move to the future, no information can move from r < rg

to r > rg . The distant oberservers, in fact any observers who remain in

the outer r > rg region of spacetime, are doomed to ignorance about what

goes on in the inner r < rg region. Any astronomer in the inner region,

of course, is even more tragically doomed. She must ineluctably move to

decreasing r until reaching r = 0 in a finite time, where she can confirm

that there are true (geometric, not coordinate-induced) singularities in the

spacetime there, singularities that exist in any coordinate system, and that

correspond to infinite gravitational tidal forces on freely falling particles.

Because an absolutely fundamental principle (motion to the future) pre-

vents events in the inner region from being seen by observers in the outer

region, the dividing surface, r = rg , is called an event horizon or simply hori-

zon. What is crucially important about the horizon is that the spacetime

cIt is important to understand that there is no meaning to a picture of these photon
worldlines on the left in Fig. 1. The τ coordinate has no meaning off the worldline of the
infalling particle.
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geometry is smooth at the horizon, and physics is completely nonsingu-

lar, but the horizon represents a boundary in spacetime between (interior)

events that cannot communicate to the asymptotically flat universe, and

those (exterior) events that can. This role accounts for the singularities that

appear in the metric when we try to give a description that is suitable only

for the exterior events.

There is an important property of the event horizon that will help us

understand them in more complicated contexts. The horizon could be traced

out by a set of photon worldlines. If a photon is emitted, in the outward

direction, exactly on the event horizon, it will stay on the event horizon. (A

photon emitted in any other direction will go inward.) In a much simpler

context, Minkowski spacetime, a simple expanding spherical shell of photons

has the same property. Worldlines can cross into it, but not out of it. What

is exotic about the Schwarschild horizon is that it is not expanding. As a

result of strong gravity, the shell of outgoing photons always has the same

area.

Since light (in the broadest sense) cannot escape from inside or on the

horizon, the horizon and its interior can emit nothing, and they are called

a black hole.

In Eq. (7) the Kerr metric is written in a system called Boyer-Lindquist

coordinates. A comparison of the coefficients of the dr2 term in Eq. (7),

and in (5) suggests that ∆ = 0, may be a horizon. Though the argument

is weak, the conclusion turns out to be correct. The two roots r± of ∆

given in Eq. (9) are in fact horizons across which worldlines can cross in

only one direction. It is the so-called outer horizon corresponding to the

root r+ ≡ rg/2 +
√

rg2/4− a2 that is astrophysically relevant, since it is

a boundary to an asymptotically flat outer region, the universe of weak

fields and astronomical observations. The inner horizon r− is a one-way

barrier to travel between inner regions of the Kerr spacetime. Such inner

regions can have physical reality only if the Kerr hole was cast into the

original spacetime of the universe. If the Kerr hole formed as the result of

the collapse of a rotating astrophysical object, then Eq. (7) only describes

the spacetime outside the material of that object. The interior regions of the

Kerr spacetime are replaced by the spacetime of the astrophysical material.

In addition to the outer horizon, the Kerr spacetime has another very

nonclassical feature, a surface called the ergosphere that is outside r+ (ex-

cept at the poles where it coincides with r+). Outside the ergosphere a

particle can have any angular motion, i.e. , can have a positive, negative

or zero value of dφ/dt. A rotational motion is encoded in Eq. (7) that can
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be thought of as a dragging of space along with the rotation of the hole.

This dragging becomes so strong inside the ergosphere that dφ/dt > 0 for

any worldline. (Equivalently: the future ineluctably has an increase in φ

just as the future, inside the horizon, ineluctably has a decrease in r). The

ergosphere, at

r = rg/2 +
√

r2
g
/4− a2 cos2 θ , (14)

has explicit angular dependence. It is not spherically symmetric, but neither

is the horizon; the θ-independence of the horizon is an artifact of a particular

convenient coordinate system.

3.3. Nonradial orbits

Much of the astrophysics of black holes involves the trajectories of par-

ticles and photons in the neighborhood of a hole. In principle, these tra-

jectories are not properties of black holes since they apply to the empty

spacetime outside any spherically symmetric object. In practice, the in-

teresting features are relevant almost exclusively to black holes. Interesting

non-Newtonian features of orbits are significant only for r comparable to rg .

The surfaces of most astrophysical bodies are at a radius much larger than

their rg , so the exterior spacetime starts at r � rg . The exception to this

is neutron stars which are almost as compact as black holes of equivalent

mass.

Fortunately, most of the interesting features of particle trajectories can

be found in the Schwarzschild spacetime, so everything we need is in prin-

ciple contained in the three rather simple equations in Eqs. (11) and (12).

For definiteness, we limit attention to massive particles and we combine the

equations of Eq. (12) in the form

E

2 =

(

dr

cdτ

)2

+ V (r) (15)

where

V (r) ≡ 1 −

rg

r
+

L

2

c2r2
−

rgL
2

c2r3
. (16)

This equation, along with Eq. (11), completely determines the orbital

shapes and dynamics. It is interesting that, aside from the re-identification

of constants, the Newtonian counterpart of this equation differs only in

that it is missing the last term, the r
−3 term. To see the effect of that

term we plot out the “effective potential” V (r) for several values of L in
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Fig. 2. Effective potential for motion in the Schwarzschild spacetime. Curves are labeled
with the values of L/rgc. The dashed line at V = 0.95 and the dotted line at V = 0.998
illustrate turning points.

Fig. 2. Since V (r) plays the role of a potential in Eq. (15), we can infer the

nature of particle orbits from Fig. 2. For r/rg � 1 the orbit is determined

by the usual effects of gravitational attraction (−rg/r), and centrifugal re-

plulsion (+L

2
/c

2
r
2). The extra non-Newtonian term at the end of Eq. (16)

represents the inescapably strong pull of gravity on a particle close to the

hole.

Consider, for example, a particle with E

2 = 0.95. The dashed line in

Fig. 2 shows that the particle will have turning points approximately at

r/rg = 3.4 and 15.0, which turn out to be not very different from the

Newtonian turning points. This particle would then be in a very eccentric

bound orbit which, when combined with the equation for dφ/dτ in Eq. (11),

can be shown not to be a closed orbit, but rather has the nature of a

precessing ellipse. The turning point at r/rg = 1.56 is a new, completely

non-Newtonian feature. It is, of course, not a feature of the eccentric orbit

between the turning points at r/rg = 3.4 and 15.0. Rather it applies to a

particle that is created very close to the hole, moving outward with E = 0.95

and L/rgc = 2. This particle will reach a maximum of r equal to 1.56 rg

where it turns, and begins its spiral into the hole.

The effect of the non-Newtonian peaks of the potential has an important

consequence for the shape of orbits. For a particle with L/rgc = 2, the peak

of the potential is at V = 1. If this particle happens to have E

2 = 0.998
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(shown as the dotted line in Fig. 2) it will spend a great deal of proper

time τ near the turning point at r/rg = 2.14, just to the right of the peak.

Since Eq. (11) tells us that dφ/dτ is finite at that turning point we conclude

that the particle will go through a large range of φ near r/rg = 2.14. In

principle, a particle can come in from a large distance (a far-away turning

point or infinity) and can orbit the hole at small radius an arbitrarily large

number of times before departing for large distances (if E

2 is below the

potential peak) or into the hole (for E

2 above the peak). This pattern is

sometimes called the “zoom-whirl” character of orbits near the hole, and

is of importance in understanding the waveform of gravitational radiation

that would be emitted from a compact object spiralling near a supermassive

black hole in a galactic nucleus.

There are several additional important features of relativistic orbits that

can be inferred from Fig. 2. One is the contrast with the difficulty of a

falling particle hitting a Newtonian point source. In Newtonian theory the

centrifugal barrier dominates at small r except in the unique case of radial

motion and L = 0. To hit the center, a particle must be aimed right at the

center. In the Schwarzschild geometry, the particle must only have sufficient

energy to surmount the energy barrier. In the case L/rgc <
√

3 , there is

no barrier, and the particle must fall into the hole.

In Newtonian gravity centrifugal and gravitational forces can balance

at any radius, so circular orbits exist at any radius. As Fig. 2 shows, this is

not true for orbits in the Schwarzschild spacetime. If L/rgc is less than
√

3 ,

no circular orbit is possible; relativistic gravitational attraction overwhelms

centrifugal force. The minimum orbit, commonly referred to as the “ISCO”

(innermost stable circular orbit) is at r = 3rg, the point of inflection of the

L/rgc =
√

3 potential.

Orbits in the Kerr spacetime differ from Schwarzschild orbits in a few

important ways. One difference is that for motion in the orbital plane the

details of the orbits depend on whether the particle is circulating in the

prograde direction (the same direction as the hole’s rotation) or retrograde

(opposite to hole’s rotation). It is of particular interest that for prograde

motion the radius of the ISCO is smaller than that for a Schwarzschild hole

of the same mass. In the so-called extremed Kerr case, with a = M the

prograde ISCO is at r = rg/2. This means that progrde particle motion

can explore the spacetime considerably closer to the horizon. This, and

dFor a > M the Kerr metric no longer describes a hole; see the accompanying article by
P. Chruściel.
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many other details of particle orbits around Kerr orbits are of interest in

connection with sources of gravitational waves. Compact objects orbiting

supermassive, rapidly rotating holes in the galactic nuclei can be powerful

sources of gravitational waves and wonderful probes of spacetime geometry.

A feature of Kerr orbits that is absent in the Schwarzschild case is that

θ(τ) is important; not all orbits are equivalent to equatorial orbits. Interest-

ingly there exists a third constant of motion that encodes the θ dynamics.

Unlike E and L, this third constant, called the Carter constant5, is not

based on a simple symmetry of the spacetime. Even with this additional

constant, the Kerr orbits are complicated enough that attention has usu-

ally been focused on equatorial orbits. Recently, the advent of gravitational

wave antennas has changed that, and there is great interest in Kerr orbits,

including non-equatorial orbits.

The story of photon orbits is slightly simpler than that for massive

particles. Only two modifications are needed in Eqs. (11) and (12). Proper

time τ must be replaced by affine parameter λ and the right hand side

of Eq. (12) must be set to zero, rather than to unity. The effect on the

orbital equations are, again, that τ is replaced by λ in Eq. (15), and that

1−rg/r, the first two terms on the right of Eq. (16) must be omitted. From

the resulting simple diagram analogous to Fig. 2, we find that there is a

circular orbit at only one radius, r = 3rg/2 and that this orbit is unstable.

Photons can have zoom-whirl orbits with an arbitary number of orbits near

r = 3rg/2.

3.4. Field dynamics

Electric and magnetic fields near black holes can play a part in the astro-

physics of black holes. The way in which these fields behave is determined

by the nature of the event horizon. For vacuum fields, fields whose sources

are not near the hole, the role of the horizon is “simply” to be a boundary

condition for the dynamics of those fields, and that boundary condition is

that field changes can propagate only into the horizon, and not out of the

horizon.

In this sense, the horizon is the same as spatial infinity. In fact,

in the partial differential equations describing the field dynamics in the

Schwarzschild background is remarkably simple

−

∂
2
ψ

∂t2
+
∂

2
ψ

∂r∗2
+

(

1 −
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r

) 1

r2

[

1

sin θ

∂
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(

sin θ
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)

+
1

sin θ2
∂

2
ψ

∂φ2

]

= 0 .

(17)
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Here ψ is r2 times the radial component of either the electric or magnetic

field. The coordinates t, r, θ, φ are those in Eq. (5), and r∗ is

r
∗
≡ r + rg ln (rg/r − 1) . (18)

This “tortoise” coordinate, introduced by Wheeler6, asymptotically ap-

proaches r for r � rg , but moves the horizon to r
∗ = −∞. Equation

(17) shows that far from the hole the ψ field satisfies the familiar three

dimensional wave equation, but near the horizon ψ acts as if it were a

one dimensional field propagating to the infinitely distant horizon. This

succintly represents the role of the horizon. It acts as if it is a radiative

infinity, but because it has finite area and curvature it has effects not found

at true spatial infinity.

There are equations very similar to Eq. (17) for massless fields of any

spin both for the Schwarzschild and for the Kerr spacetimes. One interesting

application of these equations is that we can search for single frequency

solutions with the physically appropriate boundary conditions of ingoing

propagation at the horizon and outgoing propagation at infinity. These

solutions are called quasinormal modes7 of the hole because they have some

of the flavor of the normal modes of a mechanical system. Since these modes

lose energy to radiation, they are strongly damped and their frequencies are

complex. As discussed in Sec. 5, such modes are likely to be important, and

possibly dominant, in the gravitational wave generation by black holes.

Much more difficult than the free field question is that of fields cou-

pled to sources falling through the horizon. Questions about this process

arise when highly conducting plasma falls through the horizon. Viewed in

the frame of the falling plasma, there can be no singularly large forces at

the horizon. (Locally the horizon is a perfectly ordinary place) so mag-

netic flux trapped in the plasma must be carried through the horizon. This

suggests that magnetic field lines will link the interior of the horizon with

distant astrophysical regions in which the magnetic field lines are anchored.

Viewed in the stationary frame of external observers, however, the plasma

never makes it through the horizon, and falling plasma and magnetic flux

accumulate outside the horizon, with magnetic field pressure increasing,

especially in the case of a rotating hole.

The astrophysical process has been understood only relatively recently8.

What is relevant to the astrophysics, of course, is the interaction of the hole

the fields and the distant plasma. We must, therefore, find a description that

is useful to the external observers. From their point of view it is true that



October 7, 2005 16:19 WSPC/Trim Size: 9in x 6in for Review Volume 05˙price2

The Physical Basis of Black Hole Astrophysics 139

the magnetic field lines do in fact accumulate just outside the horizon, and

the dynamics of the strong fields leads to complicated field line connections.

But all this is happening very close to the horizon, a distance away that

is small compared to length scales characterisitic of the hole and the large

scale magnetic field. The complex magnetic field dynamics, in fact, has

some of the character of a boundary layer phenomenon, and can be treated

in the same spirit. The results of the complex boundary phenomena can be

averaged over small time and space scales. The electromagnetic effects of

the horizon can then be represented by a material membrane slightly out-

side the horizon and imbued with electromagnetic properties that represent

the action of the horizon. In this membrane viewpoint9 the horizon has a

surface resistivity of 377 ohms per square, or ohm-cm per centimeter. (It

is no coincidence that this is the radiation resistance of empty space.) The

complex near-horizon magnetic reconnection is then replaced by a simple

smooth picture of ohmic dissipation due to currents driven in the conduct-

ing membrane.

4. Observational Black Holes

4.1. General considerations

We have emphasized that nothing can “get out” of a black hole. But this is

only true in the sense that no signal or information can propagate outward

from the dark side of the event horizon to the distant universe. Something

can get out: the gravitational pull of the hole can “get out” (or maybe sim-

ply “be out”) since it is not a signal, it is an (almost) unchanging property

of the hole. Similarly, the dragging of inertial frames is related to the (al-

most) unchanging angular momentum of a hole. (Why almost? Electrical

charge is absolutely conserved in Maxwellian theory. The nonlinear nature

of relativistic gravity, however, allows gravitational fields to carry off mass

and angular momentum.)

These (almost) unchanging characteristics of the hole may not represent

information flowing outward from the dark side, but they exert a profound

influence very close to the hole, and it this influence that gives rise to

observable phenomena, and hence to our ability to observe black holes. For

the most part (but not entirely!) the mystical spacetime properties of a

black hole are not what ultimately create distinct observable signatures of

a black hole. For the most part what is observationally interesting about a

black hole is that it’s so small. It represents a great deal of mass compacted

to a size comparable to rg . Thus astrophysical gas, particles, light etc., can
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get within a distance on the order of rg , and experience an extremely strong

gravitational pull. This could not happen with an ordinary astrophysical

gravitating object because the surface of the object itself would be much

larger than rg .

A point that is not to be missed in this is that for the most part the

qualitative features of black hole astrophysics can be understood with New-

tonian gravitational theory. Quantative features, and some qualitative fea-

tures of black holes, however, cannot be treated with Newtonian theory.

One example of what can be quantitatively important is the effect of space-

time on the radiation reaching a distant astronomer. In fact, three different

effects enter the picture. The first is the that each photon propagating out

of a deep gravitational well will lose energy in its fight against the gravita-

tional pull. In a stationary spacetime, like that of Eq. (5) or (7), it turns

out that the effect is given by the coefficient of the c2dt2 term in the for-

mula for the metric geometry. Thus photons emitted from some location

at radius rsource will arrive at the distant astronomer with only a fraction
√

1 − rg/rsource of its original energy. A somewhat related effect is the re-

lation of time at rsource and to that for the distant astonomer. If photons

are emitted at rsource with a time separation ∆t, they will be captured by

the distant astronomer with a time separation ∆t/
√

1 − rg/rsource . (This

can be seen to be related to the idea that the period of oscillation of the

photon, with its reduced energy, must be decreased.) Yet another effect is

the distortion of the pattern of emission, an effect that falls into the general

category of photon orbits. All these radiative influences involve the factor
√

1 − rg/rsource , and all tend to act to decrease the radiation received by

the astronomer. As a practical matter then, the astronomer is prevented

not only from seeing inside the black hole, but also is prevented from seeing

radiation from the region close to the hole.

These effects on radiation are gravitational equivalents of effects that

are familiar (doppler shift, time dilation, relativistic beaming) in special

relativity. The special nature of black holes can enter in more idiosyncratic

ways involving the unique nature of the event horizon. Such phenomena

include zoom-whirl orbits, quasinormal oscillations and the membrane-like

electromagnetic properties of the horizon.

If we were to make the broadest categorization of the ways in which

black holes can be observed, it would be: their influence on light, their

influence on astrophysical gas or plasmas, and their influence on nearby

compact astrophysical objects. In the first category is gravitational lensing,

discussed briefly above. In the second is the phenomenon of black hole
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accretion and the production of luminous signals. In the third category are

such phenomena as the observation of hidden members of binary pairs and

star motion near galactic centers.

We can deal quickly with the first category. A gravitating object (galaxy,

black hole,. . . ) that lies near the line of sight from a distant galaxy or

quasar can bend the light rays from that source and distort the location

and shape of that source. It might seem that black holes, with their ability

to deflect light through an arbitrarily large angle are a likely source of this

gravitational lensing. Black hole lensing, however, requires an improbable

alignment of distant source and black hole lens, though evidence of such an

alignment has been detected10.

4.2. Black hole mass ranges

In discussing astrophysical black holes it is important to identify two very

different possible astrophysical populations. One is stellar mass holes with

masses on the order of the solar mass M� ≈ 2×1033 grams. Such holes can

be formed as the endpoint of stellar evolution or as the result of accretion

onto neutron stars. The second population is supermassive holes, on the

order of 106
M� to 109

M�; these are believed to be at the center of many,

perhaps all, massive galaxies. There is also some evidence of an additional

“intermediate” mass range11 of 100s to 1000s of M�.

The physics of the black holes themselves has an extrememly simple

dependence on mass. For a Schwarzschild hole all scales are set by the mass,

and there is only one length scale, rg which itself is proportional to the mass.

(In the case of a Kerr hole there is also a dimensionless parameter a/rg that

describes the importance of rotational effects.) All gravitational effects can

be described in terms of the mass. Thus, for example, the near-horizon

gravitational acceleration GM/r
2

g
∼M

−1, and the near-horizon tidal force

is GM/r
3

g
∼ M

−2. The characteristic density of a hole, its mass divided

by (4π/3)r3
g

scales as M−2. Somewhat counter-intuitively, the smaller the

black hole mass is, the more exotic is its near-horizon environment. For

example, the characterisitic density turns out to be around nuclear densities

for stellar mass black holes, reminding us that stellar mass black holes are

not much more compact than neutron stars. For large supermassive black

holes, by contrast, the density is small compared to terrestrial materials.

This observation would suggest that stellar black holes have observa-

tional signatures that are more easily distinguished from those of less ex-

otic objects, while supermassive black holes cannot be easily identified. The
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opposite is true. Neutron stars are nearly as compact as stellar mass black

holes, and in interpreting the nature of an observation neutron stars often

can be ruled out only because astrophysical theory dictates a maximum

mass of a neutron star of only a few M�. To preclude neutron star expla-

nations, stellar mass black hole candidates must usually be larger than this

limit. By contrast, there is no other astrophysical object that we know of

that can imitate a supermassive black hole, a mass of (say) 108
M� confined

in a region of size ∼ 1013 cm. A massive galaxy, with about ten times the

mass of such a black hole, is larger in diameter by a factor around 1010.

4.3. Accretion, dynamos and luminosity

The fact that black holes are tiny on astrophysical scales means that gas

falling into a black hole will undergo enormous compressional heating, and

the hot plasma will radiate. An order of magnitude estimate can be made

based on the idea of conversion of gravitational energy to thermal energy,

and suggests that temperatures could reach more than 1012 K as the plasma

approaches the hole. Well before that temperature is reached, however, the

plasma will lose thermal energy via radiation, constraining the increase

in temperature and therefore suppressing compressional heating. Gravita-

tional energy can therefore be thought of as being converted not to the

random motions of thermal energy, but to radial kinetic energy, and waste-

fully carried into the hole. Calculations taking into account the interaction

of compressional heating and radiative cooling show that plasma inflowing

toward a black hole of a few solar masses will tend to reach temperatures

on the order of 109 K, and the dominant radiation will therefore be in the

form of X-rays. In this manner, in principle, we could detect black holes

as point-like sources of X-rays coming, of course, not from inside the black

hole, but from the region very near the hole. Radial infall is a good intro-

ductory lesson in how black holes can be luminous sources, but radial infall

is extremely inefficient; only a small fraction of the available gravitational

energy appears as outgoing luminosity. The hope for observability lies with

a more efficient method, and a more plausible astrophysical scenario.

As we saw in the discussion of particle orbits, to fall into the hole a

particle must have angular momentum per unit mass-energy on the order

of crg . Typical astrophysical velocities are of order of 10−3
c and typical

astrophysical sizes are at least of the order of the earth’s orbital radius

1013 cm ( compared to rg ∼ 105 cm for a solar mass black hole). Unless

the gas starts out implausibly devoid of angular momentum, in order to
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approach the black hole it must find a way to shed a great deal of angular

momentum. For the purposes of producing an observable luminous signal,

this is very good.

Rather than fall radially, the gas will spiral into an orbiting structure

called an accretion disk12. Figure 3. shows an artist’s conception of a black

hole accretion disk being formed from the mass being pulled off an ordinary

star that is the binary companion of the black hole.

As a good approximation, the gravitational forces are so strong com-

pared to fluid forces that each bit of fluid moves on a nearly circular orbit

at a relativistically-corrected Keplerian angular velocity. The bit of fluid

gradually spirals in to the inner edge of the accretion disk at a location

determined (according to present thinking) by magnetic instabilities in the

disk. The voyage of the gas from large radii to this inner edge is a gradual

process that efficiently converts gravitational binding energy to outgoing

radiation.

Fig. 3. Artist’s conception of an accretion disk. (Melissa Weiss CXC, NASA).

The mechanism for this conversion is based on the disk’s differential

rotation. The almost-circular orbit nature of the fluid motion means that

angular rotation is faster at smaller radius. Viscosity in the fluid will slow

the rotation rate of the inner gas, thereby transporting angular momentum

outward, allowing the gas gradually to spiral inward. The process involves
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viscous heating of the gas which requires radiation for cooling. The de-

tails of the disk’s structure, temperature profile, luminous signature, and

so forth, all depend on the microphysics of the viscosity, and there is no

secure model for this. The viscosity may be based on the highly conduct-

ing plasma being threaded by tangled magnetic fields. In any case, some

features of the models are relatively insensitive to the details; one of these

is the nature of the characteristic radiation. Again it follows from a sim-

ple order-of-magnitude calculation that the temperature must be on the

order of 109 K, and the radiation will be predominately in the form of

X-rays.

When we move from stellar mass holes to supermassive holes, we move

from physical models that miss details, to physical models themselves that

are still uncertain. But we also move to astrophysical black holes whose

existence is essentially certain (or at least establishment dogma). Some

galaxies have active galactic nuclei (AGNs), tiny central regions that emit

luminosity comparable to galactic luminosity, but are incredibly small on

an astrophysical scale13. From a number of arguments, it is known that

the engine – the source of energy – in these AGNs consists of a mass so

compact that it must involve a supermassive black hole. The mechanism for

producing the radiation must certainly be different from that of a black hole

accretion disk, since AGNs are characterized by radio jets, narrow regions

of strong radio emission emerging from a central source. Theorists believe

that the mechanism for these complicated sources probably involves a large

scale magnetic field anchored in a rapidly rotating supermassive hole. It is

believed that this large scale magnetic field is created by the accretion of

plasma carrying magnetic flux. The magnetic field then links the horizon

to distant regions of the surrounding plasma. With the horizon playing the

role of a rapidly rotating conducting membrane, the hole and magnetic

field act like a kind of dynamo. The EMFs on rotating field lines create

strong currents that flow to the distant plasma linked by the field lines.

The production of these currents, in effect, converts the rotational energy

of the black hole into radio and other forms of radiation.

There had been a distinct difference between the charactersitics and

models of stellar mass holes and of supermassive holes, but a few years

ago this difference faded. A class of objects called “microquasars”14 was

discovered that seemed to be stellar mass X-ray black holes that also have

the radio jets of AGNs. The tentative understanding of these microquasars

is that they are accretion disk objects that can build up large scale magnetic

fields and behave like AGNs scaled down by a linear factor of 108 or so.



October 7, 2005 16:19 WSPC/Trim Size: 9in x 6in for Review Volume 05˙price2

The Physical Basis of Black Hole Astrophysics 145

Figure 3 is meant to illustrate a possible structure for microquasar XTE

J1550-564.

4.4. Exotic orbits, galactic centers, and gravitational waves

A direct method has been used to “prove” the existenece of a black hole

in our own galaxy: The motions of stars in the central core of the galaxy

are observed to be so rapid that there is no reasonable alternative model

for the central region. An exciting way of detecting the presence of black

holes lies only a few years in the future with the detection of gravita-

tional waves15 from black hole systems. Gravitational waves are physically

meaningul (as opposed to coordinate induced) perturbations of the space-

time metric. Their effect is a propagating transverse stretching and con-

traction of space.

For a discussion of gravitational waves and the prospects for their de-

tection, see the accompanying article by P. Saulson. For our purposes here

we will rely on the fact that to zeroth order the properties of gravitational

waves may be inferred by analogy to electromagnetism. To generate strong

electromagnetic waves one wants to have a violent time dependence of an

electrical charge distribution. This can be done on a small scale (even atomic

scale) thanks to charge separation. Nothing like charge separation works for

gravity; there’s only one sign of gravitating mass. To have a rapidly chang-

ing mass distribution one needs to move astrophysical objects, and they can

be moved only with gravitational fields. The strongest accelerations can be

reached with the strongest gravitational pulls (and the shortest Keplerian

times). This points to black holes, as can be seen in an order of magnitude

expression for the luminosity (energy per time) emitted by a gravitational

wave source is

G.W. luminosity ∼

G

c5

M
2
v
4

T 2
. (19)

Here M is the characteristic mass that is moving; v is its velocity, and T is

the time scale (e.g. an orbital period) on which it is moving. For a given

mass, evidently one wants the most rapid motion, and this can best be done

with the highly relativistic motions near a black hole. One very interesting

source would be a particle mass mp in an orbit of radius a around a much

more massive object of mass M . If the Keplerian expressions for v and T

are used we conclude that the luminosity is of order G4
m

2

pM
3
/c

5
a
5. Clearly

we want a to be as small as possible, which means that we must have mass

M maximally compressed, i.e. , it should be a black hole, so that a can be
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of order of the gravitational radius of GM/c
2, and the luminosity can be

of order (c5/G)(mp/M)2.

These “particle” orbits around supermassive black holes will be a nearly

certainly detectible source for the space-based gravitational wave detector

LISA scheduled to be launched in around a decade. But searching for them

and fully understanding them will require the solution to a detailed the-

oretical problem. The particle orbits of Sec. 3 ignore radiation reaction

associated with the generation of the outgoing gravitational waves. This

is actually a perturbative effect that is justifiably ignored in a discussion,

as in Sec. 3, of a small number of orbits, but is important if the particle

motion is going to be tracked through many orbits of the inspiral of the

particle, itself driven by gravitational radition reaction. Computations of

this radiation reaction are usually carried out using an adiabatic approxi-

mation; the inspiral is adjusted from one nearly circular orbit to the next

by subtracting the orbital energy lost to radiation. This method is effective

except for the nonequatorial obits in the Kerr geometry. In that case radi-

ation of energy and angular momentum does not tell us how to evolve the

angle θ at which the orbits tilt away from the equatorial plane. Theorists

are just begining to be able to handle this question with reasonably efficient

computations16.

That bothersome factor of (mp/M)2 in the gravitational luminosity

means a reduction of 10−12 or worse. To achieve a truly stupendous rate of

gravitational wave generation the “particle” must be replaced by a second

black hole with a mass roughly comparable to the first, so that the source

has a luminosity on the order of c5/G ≈ 1059 ergs/sec. Our best guess is

that the actual rate is only a few percent of this, but that power is still much

more than the luminosity of a galaxy (1043 ergs/sec) or the most powerful

astrophysical events detected (gamma ray bursts with 1054 ergs/sec).

This spectacular rate of energy loss must come from somewhere, and

the somewhere is the orbital energy of the two holes. The holes therefore

must spiral toward each other and eventually merge. In dealing with this

situation we must take a very different viewpoint on black holes.

5. Dynamical Black Holes

Up to this point we have treated black holes as “backgrounds” for physics.

Such physics as accretion and particle motion happened in a black hole

spacetime background. When we start to talk about two black holes

whirling around each other, that viewpoint is not adequate. The black
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holes themselves become participants. Nothing makes this clearer than a

consideration of the endpoint of the process of binary black hole inspiral,

the whirling of the two black holes around each other. Intuition dictates

(correctly) that the endpoint is a merger of the black holes. Here, black

holes, both the two original holes and the final hole, are very much in the

foreground of the physics, not the background.

Section 2 has introduced black holes through examples of the

Schwarzschild and Kerr spacetimes, which are stationary, unchanging in

time (at least outside the event horizon). These stationary black holes are

not sufficient if the black holes are to be participants; we now must consider

a more general event horizon, a surface, dynamical or not, through which

particles and light from the exterior universe can pass only inward. Astro-

physical horizons, in fact, never really stationary. Since they are formed

from astrophysical events, the horizons were not always present; they must

have a dynamical history.

For a more thorough and careful general discussion of event horizons, see

Sec. 2 of the accompanying article by P. Chruściel. Specific model solutions

for dynamical horizons are given in Sec. 4 of that article. Here we will give

only enough of a description to give an idea of the role of dynamical horizons

in astrophyics. The best way to do this is to go back to the picture of the

stationary horizon in the Schwarzschild spacetime as traced out by a set

of radially outgoing photons that make no progress moving to larger radii.

A black hole horizon may be thought of as a set of “outgoing” photons

that never reach asymptotically flat regions of spacetime, and that never

collapse inward. In the case of the Schwarzschild horizon the photons, in

a sense, stay at the same place. The photons defining a dynamical horizon

do not.

The cartoon on the left in Fig. 4 gives a very simple example: the head-

on collision of two neutron stars. Time is taken to increase upward, so that

each horizontal slice represents all of space at a single time. At time A

in the cartoon of the neutron star collision, the neutron stars are moving

slowly toward each other, but no horizon exists. On that time slice there

are no points in space from which escape is impossible. At time B, however,

the point midway between the two neutron stars becomes one from which

escape is impossible. The region of no escape grows, engulfing both neutron

stars, and continues to grow until, at time slice C it is approximately in

the stationary form that it will only approach asymptotically at infinite

time. It is this asymptotic spacetime that is described by the Schwarzschild

geometry.



October 7, 2005 16:19 WSPC/Trim Size: 9in x 6in for Review Volume 05˙price2

148 R. H. Price

tim
e

A

B

C

horizon

α

Fig. 4. Cartoons of horizon dynamics. On the left, two neutron stars undergo a head
on collsion forming a black hole. On the right two “orbiting horizons” merge to form a
final, larger horizon.

On the right in Fig. 4 is a cartoon, in the same spirit, of the binary

motion and merger of two black holes. Here at early times there is already

horizon structure; the disjoint horizons of each of the individual holes. A

point on that slice is either in one black hole or in the other, or outside both.

At time slice α, the two horizons, and the two no-escape regions, merge,

forming a larger no-escape region, that is, forming a larger, spinning black

hole.

We know that the mass and angular momentum of the final black hole

will be somewhat less than the mass and energy of the original binary

pair. The excess goes into outgoing gravitational waves. The greatest power

generated in the inspiral-merger process comes near the very end, in the

last orbit and the merger. A nonnegligible fraction of the mass energy of

the system will be radiated in a very short time, but – for now – that is

all we can say. The highly dynamical asymmetric character of the process

means that only numerical computations can track the process, and the

computational task has proved to be an enormous challenge. For the last

decade this challenge has been the central focus of the developing field of

“numerical relativity,” but the ability to compute radiation from the last

few orbits and merger of the binary black hole is still several years off. For
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a discussion of the importance and difficulty of these computation see the

accompanying article on numerical relativity by P. Laguna.

This is not to say that we know nothing quantitative about dyanamical

black holes. Since the early 70’s we have learned a great deal about black

hole dynamics by considering perturbations of the the stationary black hole

spacetimes17. This approach leads to linearized equations for the perturba-

tions that differ from Eq. (17) only in minor details. For these perturbations

also, there are strongly damped quasinormal oscillations. As an example, for

the dominant (least damped quadrupole) quasinormal oscillation of a non-

rotating hole, the real and imaginary parts of the frequency are 0.74737 c/rg

and 0.17793 c/rg respectively.

At first, “small perturbations” would seem to have nothing to do with

the strong deviations in the late stages of black hole mergers pictured in

Fig. 4. This is not the case for two reasons. First, as with many pertur-

bation computations it turns out that the results are more robust than

their derivation would suggest, and they apply even when the perturba-

tions are moderately large. Second, and more important, in the late stages

of merger, somewhere between times B and C in the head-on collision of

neutron stars, and somewhat after α in the binary black hole inspiral, The

violent large-deviation dynamics is all hidden inside the final horizon. What

generates outgoing radiation is the oscillation of the spacetime outside that

final horizon. Numerical evolution studies of the final merger show, in fact,

that the very complicated process has a rather simple signature: the bulk

of the radiation is in the form of the least damped quasinormal frequency.

In general, the two pieces of information contained in the real and imag-

inary part allow us to infer the two parameters, mass and angular mo-

mentum, of the hole. When (not if) gravitational waves are detected, this

connection of black hole properties and observable characteristics of gravi-

tational waves may be a key to understanding the sources of the waves.

6. Conclusion

We started by pointing to contradictory statements about black holes. We

can now show that the contradicitions are illusory.

I. Frozen or continuous collapse?

This noncontradiction highlights the most fundamental potential con-

fusion about holes: the varieties of “time” with which black hole processes

can be described. With a time coordinate that makes manifest the station-

ary nature of stationary black hole spacetimes, a star will never collapse to
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form a hole. In terms of the proper time that describes the physics local to

the collapsing surface, passage through the event horizon is continuous and

smooth.

II. Observing the unobservable black hole

No information can propagate outward through the event horizon, but

the compactness of a black hole means that the gravitational influence of

the hole on its near environment gives rise to exotic phenomena (bending

of light rays, generation of X-rays, gravitational waves. . . ).

III. Newtonian-like points, or spacetime regions

It is a matter of distance from the hole. In a study of the properties of

spacetime very near a black hole, the focus is on the defining properties, the

nonsingular one-way nature of the event horizon. At distances several times

rg , however, the main influence of the hole is its 1/r2 pull. It therefore acts

on its environment like a Newtonian gravitational source and simple argu-

ments about relative frames and momentum conservation at large distances

show that the hole must move like a Newtonian object.

IV. Black holes: simple or exceedingly unsimple

The stationary Schwarzschild and Kerr spacetimes are very clean and

simple. Dynamical black holes are sufficiently complicated that an under-

standing of them can come only through numerical relativity, and that

understanding is still some time in the future.

The history of the black hole has very much paralelled the place of

Einstein’s theory in science. The Schwarzschild geometry dates to the very

start of general relativity. There was limited interest in general relativity,

and limited understanding of black holes among most astronomers until the

early 60s. New astronomical discoveries, starting with quasars, opened the

possibility that Einstein’s theory had an astrophysical role beyond cosmol-

ogy. Now, almost a half century later, the transition is complete. It is now

all but taken for granted that supermassive black holes lie at the centers of

many, perhaps all, galaxies, and that certain point-like X-ray sources are

evidence of stellar mass holes.
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Einstein’s equations describe gravity using an elegant but complicated
set of equations. Finding astrophysically relevant solutions to these equa-
tions requires the most sophisticated numerical algorithms and power-
ful supercomputers available. The search for astrophysical solutions has
made numerical relativity one of the most active areas of research in
gravitational physics. Of particular interest in numerical relativity has
been simulating the inspiral and coalescence of compact binaries involv-
ing black holes and neutrons stars. The outcome from these simulations
will bring general relativity into harmony with the observations of grav-
itational radiation that are expected to take place in the immediate
future. This article highlights current progress in numerical relativity. It
also attempts to envision the future of this field and its integration with
gravitational wave astronomy.

1. Multi-Faceted Numerical Relativity

A new era in astronomy will begin once gravitational wave interferometers

such as LIGO, GEO, VIRGO, TAMA and, in the future, LISA detect first

light. These detectors will give us a revolutionary view of the Universe, com-

plementary to the electromagnetic perspective. In this new astronomy, the

messengers are gravitational waves, ripples in the fabric of spacetime. These

waves will have encoded detailed knowledge of the coherent, bulk motions

of matter and the vibrations in the curvature of spacetime produced by

a vast class of astrophysical sources; compact object binaries, supernovae,

152



October 7, 2005 16:25 WSPC/Trim Size: 9in x 6in for Review Volume 06˙laguna2

Probing Space-Time Through Numerical Simulations 153

spinning neutron stars, gamma ray bursts and stochastic backgrounds are

just a few examples of these sources. The detection of gravitational waves is

a formidable undertaking, requiring innovative engineering, powerful data

analysis tools and careful theoretical modelling. Among the sources of grav-

itational radiation, binary systems consisting of black holes and/or neutron

stars are expected to be dominant. The ultimate goal of source modelling

is to develop generic numerical codes capable of modelling the inspiral,

merger, and ringdown of a compact object binary. Over the last couple of

decades, advances in numerical algorithms and computer hardware have

bring us closer to this goal.

General relativity and singularities come hand in hand. The mathemati-

cal study of singularities has been mostly done analytically. An analytic ap-

proach has obvious limitations; they are either restricted to over simplified

situations or are only able to produce broad general conclusions. Numer-

ical simulations are becoming an important tool in the exploration of the

properties of singularities. In particular, the numerical work by Berger and

collaborators14 on investigations of naked singularities, chaos of the Mix-

master singularity and singularities in spatially inhomogeneous cosmologies

has already demonstrated the great potential that a numerical approach has

in producing detailed understanding of singularities in physically realistic

situations.

The question of whether or not there is a minimum finite black hole mass

in the gravitational collapse of smooth, asymptotically flat initial data lead

to what is perhaps currently the most exciting and elegant result in numer-

ical relativity. Choptuik used powerful adaptive mesh refinement methods

to prove that the mass is infinitesimal.23 In addition, Choptuik’s work dis-

covered completely unexpected effects. One of them is the scaling relation

M ≈ C |p − p∗|
γ (1)

with M the black hole mass and p a parameter characterizing the family

of initial data. Another unexpected effect found by Choptuik is that the

solution has a logarithmic scale-periodicity when p → p∗. Finally, Chop-

tuik found that the phenomena is universal, namely the “critical exponent”

γ ≈ 0.37 and the “critical echoing period” ∆ ≈ 3.44 are the same for all

one-parameter families of initial data. For a review of Choptuik’s critical

phenomena, its extensions and applications see Gundlach.33

Numerical relativity is now an area with many directions of research.

The computational modelling of compact object binaries is, however, what

is attracting most of the attention. This article focuses on this effort. It
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provides a basic overview and is intended for non-experts in numerical rel-

ativity. The following reviews are recommended for those interested in a

more technical view:

Numerical Relativity and Compact Binaries by Thomas W. Baum-

garte and Stuart L. Shapiro12 This is comprehensive review with specific

focus on traditional numerical relativity, namely those aspects of numerical

relativity that have been designed for or applicable to the two body problem

in numerical relativity. In my opinion this review is an excellent starting

point for students and researchers interested in numerical relativity.

Initial Data for Numerical Relativity by Greg B. Cook.25 This review

gives an excellent introduction to the construction of Cauchy initial data

for space-times containing binary systems of black holes and/or neutron

stars. The emphasis is on those methods to obtain initial data representing

binary systems in quasi-equilibrium orbits. The review also addresses the

issue of the astrophysically content of initial data sets.

Hyperbolic Methods for Einstein Equations by Oscar A. Reula.49

Reula’s review is a most for those interested in the mathematical properties

of evolution equations arising in 3+1 formulations of the Einstein equations.

The review also examines the techniques to obtaining symmetric hyperbolic

systems.

Characteristic Evolution and Matching by Jeff Winicour.69 Charac-

teristic formulations, although not widely used in numerical evolutions,

have attractive properties for wave extraction. This review discusses the

developments of characteristic codes and, in particular, the application of

characteristic evolutions to Cauchy-characteristic matching.

Conformal Field Equations by Jörg Frauendiener.28 This is a general

review on the notion of conformal infinity. Of direct relevance to numer-

ical relativity is the discussion on Friedrich’s29 conformal field equations

and how this formulation of the field equations could provide a natural

framework to study isolated systems and gravitational radiation.

2. Geometrodynamics and Numerical Evolutions

The most popular approach in numerical relativity is to view spacetime as

the time history of the geometry of a space-like hypersurface or Geometro-
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dynamics, as first referred by J.A. Wheeler.44 Under the geometrodynamics

point of view, the Einstein equations, Gµν = 8 π Tµν for the spacetime met-

ric gµν , can be reformulated or rewritten in a space+time or 3+1 structure

by suitable projections on and orthogonal to the space-like hypersurfaces.

The Arnowitt-Deser-Misner6 (ADM) equations are perhaps the simplest

3+1 formulation (see Appendix A). In the ADM formulation, the 10 Ein-

stein equations for the spacetime metric gµν become 12 first order in time

evolution equations for the metric hij and metric velocity Kij or more

formally the extrinsic curvature of the space-like hypersurfaces.a The re-

maining 4 equations are constraints (Hamiltonian and momentum) that

the pair (hij , Kij) must satisfy.

Obtaining long-term stable numerical evolutions of spacetimes contain-

ing black holes and neutron stars with codes based on the ADM equations

has been extremely difficult. It is not completely clear the reasons behind

the numerical problems with the ADM system. Most likely these problems

have to do with the weakly hyperbolic properties of the system.46 These

impediments have motivated researchers to develop other 3+1 formulations

of the Einstein equations.

The interest in numerical relativity on investigating 3+1 formulations

has reinvigorated the field. Numerical relativity is no longer dominated by

tour de force efforts. The field is receiving a balanced injection of formal

mathematical ideas and creative engineering. This excitement has produced

a zoo of formulations of the Einstein equations, formulations designed with

the sole purpose of finding the silver bullet against numerical instabili-

ties. The emphasis has been on manifestly hyperbolic formulations (see

Reula’s review49). These formulations are supported by mathematical the-

orems that provide valuable information, for instance, on the dependence of

evolved data on initial conditions. Hyperbolicity alone is not enough. There

are other crucial factors. For example, lower order non-liner terms could be

responsible for triggering or facilitating the development of instabilities.37

Only through numerical experimentation one is going to able to tell which

formulation or formulations are more advantageous.

I will focus the discussion on three formulations. These are currently

the most successful formulations used in 3D simulations involving non-

trivial configurations of compact objects. The first of these formulations

aThe following index notation has been adopted: 4D indices will be denoted with Greek
letters and 3D indices with Latin letters. Latin indices are to be understood as pull-backs
to the hypersurfaces in the foliation. Units are such that G = c = 1.
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was originally introduced by Shibata and Nakamura,54 and later reintro-

duced by Baumgarte and Shapiro.10 This formulation is commonly known

as the BSSN formulation. In general terms, the essence of the BSSN formu-

lation is to work not with the pair (hij , Kij) used by the ADM formulation

but instead with (Φ, ĥij , K, Âij ,
̂Γi). The relation between ADM and BSSN

variables are:

Φ = ln h
1/12 (2)

ĥij = e
−4Φ

hij (3)

K = K
i

i (4)

Âij = e
−4Φ

Aij (5)

̂Γi = −∂j ĝ
ij

, (6)

where Aij = Kij − hij K/3. Working explicitly with the scalars Φ and K

is only one of the crucial steps in the BSSN equations. The other is the

introduction of the connection variable ˜Γi. It is this variable that is mostly

responsible for improving the hyperbolic properties of the BSSN system

over those of the ADM system.34

The BSSN formulation has been quite successful. Codes based on these

equations have produced simulations of binary neutron stars,55,43,42 wob-

bling black holes,60 boosted black holes,59 distorted black holes,3 black

holes head on collisions,5,27,58 black hole plunges5 and binary black hole

evolutions with angular momentum up to timescales of a single orbit.21

The second popular 3+1 formulation of the Einstein equation is the hy-

perbolic formulation developed by Kidder, Scheel and Teukolsky (KST).39

Strictly speaking the KST system is a parameterized family of hyperbolic

formulations. This formulation has had remarkable success in evolving sin-

gle black holes. It is expected that in the near future this success will be

translated to evolutions of binary black holes. The starting point in deriving

the KST system is the introduction of a new auxiliary variable dkij ≡ ∂khij ,

to eliminate second derivatives of the spatial metric. With this variable, the

Einstein equations can be rewritten as:

∂tu = A
i
∂iu + ρ (7)

where u is a vector constructed from the evolution variables, the matrices

A
i(u) determine the hyperbolic properties of the system and ρ(u) denotes

the lower order terms, namely terms that do not contain derivatives of

u. With a suitable choice of parameters, the KST system can be make

symmetric hyperbolic.
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Before continuing with the third formulation, it is important to point

out that most of the 3+1 codes perform what are called free evolutions.

That is, the Hamiltonian and momentum constraints enter only in the con-

struction of initial data. Once the evolution starts, the constraints are only

used for quality control purposes. Non-trivial free evolutions tend to be un-

stable. The community has adopted the name of constraint violating modes

for the instabilities that plague these free evolutions. The only other type of

instabilities that are not constraint violating would be gauge mode instabil-

ities. Gauge mode instabilities are not generic. They require careful tuning

since after all they represent a perfectly valid solution to the Einstein equa-

tions. The current view in the numerical relativity community is that if one

is able to actively preserve the constraints during evolutions, constraint vi-

olating modes will be avoided. This observation has motivated the design of

methodologies to project the evolved data back into the constrain surface.

So far, these methods have not been completely successful.36,35,20,66

The third type of formulation is not new but has just recently re-

ceived serious attention. The re-emergence of this formulation has been

triggered by the great success by Pretorius47 evolving binary black holes.

This formulation is based on a generalization of the harmonic coordinates

�x
µ
≡ g

αβ
∇α∇βx

µ = 0. When the harmonic coordinate condition is im-

posed, the principal part of the Einstein equations takes the form g
αβ

gµν,αβ .

It was with this form of the Einstein equations that proofs of existence and

uniqueness of solutions were obtained. In numerical relativity, harmonic

decompositions of the Einstein equations have been largely ignored. Ex-

ceptions are the work by Garfinkle,30 Szilagyi and Winicour61 and the Z4-

system.17 The generalized harmonic coordinates are given by �x
µ = H

µ,

with Hµ arbitrary source functions. These source functions Hµ are elevated

to the rank of independent variables. That is, substitution of �x
µ = H

µ

into the Einstein equations Rµν = 4 π(2 Tµν − gµν T ) yields

g
αβ

gµν,αβ + g
αβ

,µ gνα,β + g
αβ

,ν gµα,β + 2 H(µ,ν)

−2 HαΓα
µν + 2 Γα

βµΓβ
αµ = −8 π(2 Tµν − gµν T ) . (8)

Promoting the source functions Hµ to independent variables implies that

the quantities C
µ
≡ �x

µ
− H

µ become constraints. At the analytic level,

C
µ = 0; during numerical evolutions, however, this is not the case because

of truncation errors. There is indication that these constraints are much

less difficult to preserve than the Hamiltonian and momentum constraints

in 3+1 formulations.
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With the generalized harmonic formulation one looses the explicit ge-

ometrodynamics point of view; that is, one no longer deals with geometrical

quantities directly associated with the foliation (i.e. spatial metric, extrin-

sic curvature, lapse, shift). Instead, one works directly with the spacetime

metric components. Is this something to worry about? The answer is likely

no. After all, most of the 3+1 hyperbolic formulations introduce auxiliary

variables devoid of any geometrical interpretation. Also, there are other

non-3+1 formulations such as the characteristic formulation that have also

enjoyed relative success. Unfortunately, because of the difficulties that the

characteristic formulation has on handling caustics, characteristic codes

these days are mostly used in connection with gravitational wave extraction,

namely Cauchy-Characteristic matching.

There are signs that the next revolution in codes will be the generalized

harmonic codes. Preliminary work by Pretorius48 indicates that these codes

have great potential. He has able to carry out eccentric binary black hole

orbits without encountering instabilities or the need of introducing a large

number of fine tuned parameters. It is too early to say if the generalized

harmonic codes are indeed the silver bullet against instabilities. What is

clear is that they are quickly positioning as the leading contestant.

3. Black Hole Excision: Space-time Surgery

What makes black hole evolutions unique is the presence of black hole singu-

larities. These are not simple singularities, as the gravitational interaction

1/r
2-singularities in N -body simulations, singularities that are amenable

to smoothing. In modelling black holes, the singularities are not known a

priori. They are intimately related to the solution one seeks. It would seem

that there is no way around it! Not quite, the Cosmic Censorship conjec-

tures states that these singularities will be inside a horizon, hidden from

external observers. If we are able to track the existence of a horizon, one

can in principle exclude the singularity from the physically relevant part of

the computational domain.

There are two generic approaches to handle black hole singularities in

numerical evolutions. The oldest approach was to avoid the black hole sin-

gularities. This is possible because of the freedom to foliate the space-time

arbitrarily. An example of a slicing condition that avoids crushing into the

singularities is the maximal slicing, defined by the condition that the trace

of the extrinsic curvature vanishes.57 Slicing conditions that avoid singu-

larities suffer, however, from what is known as grid stretching; that is, the
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growth of the proper distance (i.e. metric functions) between grid points

in the neighborhood of the black hole. This growth is entirely a coordinate

effect; nonetheless, it increases seriously the demand for computational re-

sources needed to resolve the steep gradients that eventually develop in the

metric functions.15 The increase of proper distance is a direct consequence

of using the lapse function to simultaneously slow-down the evolution near

the black hole while keeping a normal pace far away from the holes. In some

instances, it is possible to construct a shift vector that minimizes the grid

stretching.21

An alternative approach to singularity avoidance is black hole excision.

The method involves removing the singularity from the computational do-

main without modifying the causal structure of the space-time. The ge-

ometrical interpretation of this procedure is quite simple.64 Once inside

the event horizon, the light-cones are tilted inwards into the singularity,

so in principle it is possible to remove a region, inside the event horizon,

containing the singularity without the necessity of imposing any boundary

conditions in the boundary of the removed region. The data at the bound-

ary of this region are complete characterized from information inside of

the computational domain. This approach is similar to dealing with out-

flow supersonic boundaries in computational fluid dynamics. In the case of

black holes, one takes advantage that information within the event horizon

cannot propagate upstream and leak out of the horizon. It is then crucial

that the discretization of the PDEs respects the causal structure of the

space-time in such a way that events inside the horizon are causally discon-

nected from its exterior. The first implementations of the principles behind

the discretization involved in black hole excision were carried out by Sei-

del and Suen52 (“causal differencing”) and Alcubierre and Schutz53 (causal

reconnection). Black hole excision these days has become to some extent a

routine exercise.4,56

A potentially serious problem in black hole excision are gauge modes.

The only modes that are constrained to remain within the horizon are

those carrying physical information. Gauge modes are free to emerge from

the horizon. In some cases one takes advantage of this freedom (e.g. su-

perluminal shift vectors) to construct a suitable foliation. It seems then

crucial that a formulation of Einstein equations in terms of characteristic

fields (i.e. hyperbolic form) is needed in order to facilitate the identifica-

tion of physical and non-physical characteristics and their corresponding

propagation speeds. This observation was what triggered in part the devel-

opment of hyperbolic formulations of Einstein equations. It is not clear the
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importance of the explicit knowledge of the field characteristics. Black hole

excision has been performed with BSSN codes without explicit reference to

the characteristic fields.

The essential point in black hole excision is to locate the event horizon.

This task requires, however, the complete future development of the space-

time. To circumvent this obvious difficulty, an apparent horizon (outer most

trapped surface) is used instead. If an apparent horizon is found, an event

horizon exists and surrounds the former.67 For excision to work, one only

needs to know that the removed region is entirely contained within the hori-

zon, thus the precise location of the event horizon is not required, finding

apparent horizons suffices. Historically, because excision requires tracking

the apparent horizon, the approach was incorrectly called Apparent Hori-

zon Boundary Condition.52 The name is incorrect in the sense that black

hole excision does not require a boundary condition. The same equations

that are applied in the interior of the domain are used at the boundary.

4. Initial Data: The Astrophysical Connection

We are still at the stage in which the primary focus of simulations of neutron

stars and/or black hole binaries is to achieve evolutions timescales for which

more refined calculations would be able to deliver astrophysically interesting

results. This is a natural situation, not exclusive to numerical relativity.

Progress is made in incremental steps. At the early stages, simplifications

are needed at the expense of sacrificing the accuracy of the models.

Even if codes are able to handle long enough evolutions, the astrophysi-

cal content of a numerical simulation is completely determined by boundary

conditions and initial data. In general relativity, constructing initial data is

a non-trivial exercise. Data must satisfy the Hamiltonian and momentum

constraints:

R + K
2
− KijK

ij = 0 (9)

∇j(K
ij
− h

ij
K) = 0 . (10)

The challenge in constructing initial data is separating the four components

in (hij , Kij) that are fixed by (9) and (10) from those that are freely speci-

fiable. The pioneer work to develop such framework is due to Lichnerowicz,

York and collaborators.40,70 York in particular was fundamental in formu-

lating the Initial Data Problem with a structure amenable to numerical

relativity (see Appendix B for details).

Early work on multiple black hole initial data was mostly concerned

with finding any solution, without paying close attention to whether these
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solutions were astrophysically relevant or not. A series of simplifying as-

sumptions were introduced to facilitate the task. Specifically, if one assumes

initial data with maximal embedding and a conformally flat 3-geometry,

York’s version of the constraint equations take the simple form

8∆̂φ = −ÂijÂ
ij

φ
−7 (11)

̂

∇jÂ
ij = 0 , (12)

where φ is the conformal factor and Â
ij the trace-free, conformal extrinsic

curvature. Notice that in this form, one can solve first independently the

momentum constraint (12) for Âij and then use this solution to solve the

non-linear constraint (11) for the conformal factor φ.

Bowen and York showed18,71 that a solution to equation (12) for N

black holes, each with linear momentum P
A
i

and angular momentum S
A
i

,

is given by

Âij =
3

2

N
∑

A=1

{

1

r
2

A

[

P
A

i n
A

j + P
A

j n
A

i − (ηij − n
A

i n
A

j )P A

k n
k

A

]

+
1

r
3

A

[

εilkS
l

A
n

k

A
n

A

j
+ εjlkS

l

A
n

k

A
n

A

i

]

}

, (13)

where n
A

i
is the unit normal at the throat of the A-th black hole, rA the

distance to the center of the A-th hole, and ηij is the flat-metric.

The Bowen-York solution (13) has been extremely useful. For instance,

Brandt and Brügmann used the Bowen-York solution to introduce the so

called puncture approach.19 The puncture method solves (9) based on a

decomposition of the conformal factor φ of the form

φ = u +
1

p
(14)

(15)

such that

1

p
=

N
∑

A=1

MA

rA

, (16)

with MA the “bare” masses of the black holes. The advantage of using the

decomposition (14) is that Eq. (9) reduces to

∆̂u = −

1

8
ÂijÂ

ij(1/p + u)−7
. (17)

It is not difficult to show that the r.h.s. of this equation is regular every-

where, thus also the solution u. There is no need to excise the black holes.
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The singularity has been explicitly handled! Because of its simplicity, the

puncture approach has become extremely popular.

The main focus these days is in constructing astrophysically realistic

initial data representing black hole and/or neutron star binaries. Without

these data, the predictive power of gravitational wave source simulations,

with relevance to data analysis efforts, is seriously compromised. Initial data

sets consisting of binaries in quasi-circular orbits are of particular interest.

They are needed as a starting point of any evolution simulation aimed at

computing realistic gravitational waveforms. For binary black holes, the

pioneering work to locate what could be identified as quasi-circular orbits

was done by Cook.24 The method, called the effective potential method, is

based on the potential

Eb = E − 2 M , (18)

with Eb the binding energy of the system, E the total energy and M the

irreducible mass of each individual black hole, typically given by the area of

the apparent horizons. Given a sequence of initial data sets with constant

black hole mass M and constant total angular momentum J , quasi-circular

orbits are then found from the condition

∂Eb

∂l

∣

∣

∣

M,J

= 0 , (19)

with l the proper separation of the horizons. The angular velocity Ω is found

from

Ω =
∂Eb

∂J

∣

∣

∣

M,l

. (20)

Given this approach to identifying quasi-circular orbits, the innermost sta-

ble circular orbit (ISCO) is found by looking at the end point of a sequence

of quasi-circular orbits.

An alternative approach was introduced by Gourgoulhon, Grandclément

and Bonazzola (GGB).31,32 In this work, quasi-circular orbits are identified

by applying the condition that the space-time possesses an approximate

helical Killing vector. The construction of these data sets requires, however,

a modification to the standard York conformal approach, a method allowing

certain control on how the initial data evolve in time. In other words, one

needs to be able to set up a “thin slab” of the space-time. Such a method

is called the thin-sandwich approach (see Cook’s review24 for details). The

basis of the thin sandwich method is to include as part of the initial data

the lapse function and shift vector. By adding the lapse and the shift to

the problem, one can make use of the freedom intrinsic to these objects
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to satisfy the approximately helical killing vector condition ∂thij ≈ 0. The

procedure amounts to constructing a lapse function and shift vector which

effectively determine a frame co-rotating with the binary. In order for this

co-rotating frame to match an approximate stationary spacetime, GGB

suggest that quasi-circular orbits are those for which the total ADM and

Komar masses agree. With this construct, GGB were able to identify an

ISCO. It is interesting to point out that the approximate helical Killing

vector sequences yield an ISCO identification in better agreement with post-

Newtonian results 26 when compared with the effective potential sequences.

The reasons for discrepancies are not well understood.

The future effort on constructing initial data sets of binary compact ob-

jects will likely be concentrated on relaxing the simplifying assumptions, in

particular the conformal flatness condition. A formal definition of the degree

of astrophysical realism in a data set is difficult a task, in particular given

the absence of numerical codes capable of starting evolutions at the point

when post-Newtonian approximations breakdown. Constructing initial data

becomes an educated guess exercise. Recently there have been interesting

attempts to produce more realistic initial data. For example, Tichy and

collaborators65 constructed initial data based on post-Newtonian expan-

sions. More recently, Yunes and collaborators72 introduced an approximate

metric for a binary black hole spacetime that could be used as the freely

specifiable data to construct initial data. This approximate metric consists

of a post-Newtonian metric for a binary system asymptotically matched to

a perturbed Schwarzschild metric for each hole.

It is not clear how sensitive the late evolution of a binary system would

be to the initial data. It could very well be that nature is forgiven against

small mistakes. That a certain amount of spurious radiation is tolerated,

radiation that could be flushed away quick enough. Of course all of this

is dependent on the questions we are trying to answer. As the quality of

the observational data improves, the demand for higher accuracy in the

simulations will also increase.

5. Gauge Conditions

Once initial data, evolution equations, black hole excision and robust nu-

merical algorithms are in place, suitable coordinates must be chosen before

any numerical evolution could take place. In the context of 3+1 formu-

lations, a choice of coordinates amounts to a recipe for fixing the lapse

function α and the shift vector β
i. The choice of α and β

i determines the
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foliation. Even though, the geometry of a spacetime does not depend on

the foliation, in numerical relativity, it is of fundamental importance to

prescribe lapse functions and shift vectors that generate foliations covering

as much as possible the future development of the initial data. In particu-

lar, for the evolution of black holes, the construction of a foliation must be

such that singularities and the artificial growth of metric functions due to

gauge effects are avoided.

Gauge conditions can be classified into three general types.38 If α and β
i

are determined from four conditions Fµ(xν
, α, β

i) = 0, the gauge is called

fixed. An example of this type of gauge is the so-called geodesic slicing

(α = 1, β
i = 0), where coordinate observers are free-falling. Because of

this free-falling property, geodesic slicing should be avoided in the presence

of singularities. Another example of fixed gauges is the synchronous gauge

(α = α(t), β
i = 0).

The second type of gauges are called algebraic. The four conditions in

this case depend in general in the spatial metric hij , extrinsic curvature Kij

and their derivatives, namely Fµ(xν
, α, β

i
, hij , Kij , ∂νhij . . . ) = 0. An

example of this type of gauges is the popular slicing condition α = 1 + ln h

often called “1+log” slicing.

Finally, we have differential gauges, namely those gauge conditions in-

volving PDEs for α and β
i. They are the most popular and effective gauge

conditions. Within the differential gauges, one has those consisting of el-

liptic equations and those involving evolution equations, both hyperbolic

or parabolic. Examples of differential elliptic gauges are respectively the

maximal slicing and the minimal distortion shift:

∆α = α Kij K
ij (21)

(∆Lβ)i = 2 A
ij
∇jα +

4

3
α∇

i
K . (22)

Although the computational cost of solving elliptic equations during an

evolution step has been reduced in recent years, there is still hesitation

using these differential elliptic gauges. An alternative has been to turn

these elliptic equations into parabolic equations. For instance, the maximal

slicing conditions (21) can be rewritten as:

∂λα = ∆α − α Kij K
ij

, (23)

with λ playing the role of a temporal parameter. As ∂λα → 0, this gauge

conditions approached the maximal slicing conditions. Conditions (23) is

also known as the “K-driver” condition.9 A similar approach involving the
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minimal distortion shift (22) is called the “Γ-driver” condition.2 Modifica-

tions to the Γ and K driver conditions have played a key role in simulations

of both neutron star55,43 and black hole21 binaries in which the numerical

evolutions is performed in a co-rotating frame with the binary.

Finally, there is a class of differential gauges that are becoming increas-

ingly popular. These are generalizations of the harmonic gauge �x
µ = 0

mentioned in Sec. 2 in connection with formulations of the Einstein equa-

tions. In the context of 3+1 formulations, the harmonic gauge takes the

form

(∂t − β
j
∂j) α = −α

2
K (24)

(∂t − β
j
∂j) β

i = −α
2 (∇i ln α + h

jk Γi

jk) . (25)

A commonly used modification to (24) is obtained by setting β
i = 0:

∂tα = −α
2
f(α) K . (26)

Depending on the choice of f(α), this condition reduces to geodesic, har-

monic or 1+log slicings.

In spite of the success of the gauge conditions here mentioned, devel-

opment of new gauge conditions is very likely to continue as we consider

space-times of increasing complexity. An interesting possibility could the

use of hybrid gauge conditions, namely smooth superpositions of different

gauge conditions.

6. Extracting Observables: Connecting with Data Analysis

Numerical relativity is in a transition stage, a transition from proof of

concept simulations aimed at testing stability properties of formulations,

excision methodology, gauge conditions, etc. to a phase in which one is able

to extract or compute information about observables. More and more the

attention has been shifted to improving the computation of gravitational

waveforms as well as intrinsic properties of the compact objects such as

mass and angular momentum.

Regarding wave extraction, until recently, the simplest and most popular

method has been via the Zerilli-Moncrief formalism.45,1 This method relies,

however, on the assumption that, in the region where the wave extraction

takes place, the space-time can be approximated as perturbations of a sin-

gle, non-rotating black hole. Therefore, the extraction requires an estimate

of the background black hole mass. An alternative is to use the Teukolsky

formalism.63 This approach has been used as basis for the Lazarus ap-

proach to wave extraction. In general terms the Lazarus approach consists
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of attaching at the end of a non-linear numerical simulation a single black

hole close-limit approximation. This method made it possible to extend the

short lived of numerical simulations. The need for using this approach is

decreasing as the non-linear codes are capable to produce long term and

stable simulations. Another wave extraction approach that is becoming in-

creasingly popular is based on the Newman-Penrose formalism. Because

it requires taking second derivatives, one must be careful when using this

approach to avoid spurious numerical noise.27,58 Just recently, Beetle and

Burko13 introduced a background-independent scalar curvature invariant

that has the potential to become a very useful tool for wave extraction.

An approach with great potential is the Cauchy-characteristic

extraction.69 By matching an evolution based on outgoing characteristics

to a Cauchy one, one can in principle compute gravitational waves at future

null infinity. Unfortunately, this approach has been difficult to implement.

The problems are not of conceptual nature but technical. It requires a highly

non-trivial infrastructure in the interface between the Cauchy and charac-

teristic domains. Currently, the most successful implementations have in-

volved non-linear waves16 and with a linearized Einstein harmonic system.62

Waveforms are certainly a very important byproduct in a simulation.

However, equally relevant is to be able to extract physical information by

other means. The isolated and dynamical-horizon framework developed by

Ashtekar and collaborators7 provides tools to extract information such as

the mass and angular momentum of coalescing compact binaries. There is

increase usage of this framework in numerical relativity. For instance, in the

case of simulations of rotating neutron-star collapse to a Kerr black hole, the

isolated and dynamical horizon framework has yield accurate and robust

estimates of the mass and angular momentum of the resulting black hole.8

Similarly, the framework was also applied with great success at the black

hole produced in the merger from dynamical evolutions of quasi-circular

binary black hole data.5

Finally, it is important to mention that the extraction and quality

of physical information from numerical simulations depends strongly on

proper treatment of outer boundary conditions. The Lazarus approach is an

attempt to push away the location of the outer boundary and minimize the

effects of reflections from the outer boundaries. The Cauchy-perturbative

matching is another example of moving the location of the outer bound-

ary as far as possible from the sources of radiations.50 Independently of

the type of boundary conditions used, it is important that those boundary

conditions ensure constraint propagation.51



October 7, 2005 16:25 WSPC/Trim Size: 9in x 6in for Review Volume 06˙laguna2

Probing Space-Time Through Numerical Simulations 167

7. Imagining the Future

“It is tough to make predictions, especially about the future.”b Nonetheless,

given the current pace and direction of research in numerical relativity,

extrapolating into the future and imagining what the field will look like in

five or even ten years is not a futile exercise. For instance, we knew that

when the day that adaptive or fixed mesh refinement technology arrived, it

would open the door to consider simulations of orbiting compact objects at

separations significantly beyond the innermost stable circular orbit. This

has just recently become a reality.48

In my opinion, in the next few years, we will witness the develop-

ment of codes capable of producing the last few orbits, merger and ring-

down of compact object binaries. There will not be a unique formal-

ism, numerical method or gauge condition. As results are produced, re-

searchers will be able to borrow and adapt methodologies to their favorite

approaches.

We will also be able to answer the question about what degree of as-

trophysically accuracy will be needed in initial data. Put in other words,

can we construct initial data in which the “errors” due to our ignorance

are quickly radiated away without a significant effect on the outcome of

the simulation? This is related to the issue of estimating the level of errors,

including numerical, that can be tolerated without seriously compromising

the utility of numerical relativity results for data analysis.

Another area that is very likely to experience intense activity is the

creation of open source problem solving environments. The Cactus22 and

Lorane41 infrastructures are prime examples. Although there are a signif-

icant number of groups in numerical relativity currently using Cactus or

at least its flesh, there has been some degree of resistance to fully embrace

it. Reasons cited are the limitations in flexibility and degree of complexity.

The next generation of problem solving environments will likely accommo-

date a broader range of users. It will be mature enough, so researcher will

be able to do science with the infrastructure as it stands. At the same time,

it will provide a suitable platform for researchers to carry out exploratory

and innovative approaches to numerical relativity.

There is energy, and it is not dark energy, that is accelerating the “Uni-

verse of Numerical Relativity.”

bQuote attributed to Niels Bohr and also to Yogi Berra
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Appendix A. The ADM Formulation

This Appendix is intended as a brief introduction to the standard approach

in numerical relativity of rewriting the Einstein equations in a space+time

(3+1) form. Among all the 3+1 formulations developed, I will only discuss

here the Arnowitt-Deser-Misner (ADM)6 formulation. A word of caution is

needed at this point. It is not recommendable to develop numerical codes

based on the ADM formulation. These codes are notable because of their

susceptibility to instabilities. However, from a pedagogical point of view, the

ADM formulation, because of its simplicity, provides a good introduction to

the subject of 3+1 formulations of the Einstein equations. For details and

discussion of other formulations, I recommend the review by Baumgarte

and Shapiro12 and at the more mathematical level the review by Reula49.

Readers interested on the big picture should skip this section.

A 3+1 decomposition of the Einstein equations begins with the con-

struction of a foliation. The foliation consists of 3D level, space-like hyper-

surfaces of a scalar function. Given this foliation, the space-time metric can

be rewritten as gµν = hµν − nµnν , where hµν is the intrinsic metric of the

space-like hypersurfaces in the foliation and n
µ their time-like unit normal.

The metric hµν only describes the internal geometry of the hypersurfaces.

The embedding of these hypersurfaces in the 4D space-time is characterized

by the extrinsic curvature Kµν , defined as Kµν = −∇(µnν), where ∇µ is the

covariant derivative induced by the 3-metric hµν . The intrinsic metric and

the extrinsic curvature pair (hµν , Kµν) represents the dynamical quantities

in Einstein’s theory.

If one introduces a 3+1 basis of vectors, one can equivalently write the

4-metric as the line element:

ds
2 = −α

2
dt

2 + hij(dx
i + β

i
dt)(dx

j + β
j
dt) . (A.1)

In this line element, the scalar α, called the lapse function, represents the

freedom of choosing arbitrarily time coordinates. The vector β
i, called the

shift vector, contains the freedom of relabeling coordinate points in the

space-like hypersurfaces. The lapse function and the shift vector are kine-

matical variables.
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The evolution equations for the pair (hij , Kij) are obtained from the

definition of the extrinsic curvature and the (space, space) components of

Einstein’s equations. For vacuum spacetimes, these equations read

∂ohij = −2αKij , (A.2)

∂oKij = −∇i∇jα + α(Rij + KKij − 2KikK
k

j), (A.3)

where Rij is the 3-Ricci tensor, R is its trace, K is the trace of Kij , and

∂o ≡ ∂t − £β . Notice that because hµν n
µ = 0 and Kµν n

µ = 0, we have

restricted our attention to the pair (hij , Kij).

The evolution equations (A.2) and (A.3) are commonly known as the

ADM or ġ and K̇ equations. However, it is important to point out that Eqs.

(A.2) and (A.3) as they stand are not found in the original ADM work.6

The first derivation of the ġ and K̇ equations was done by York.70

The remaining (time, time) and (time, space) components of Einstein’s

equations yield the

Hamiltonian Constraint: R + K
2
− KijK

ij = 0 , (A.4)

Momentum Constraint: ∇j(K
ij
− g

ij
K) = 0 . (A.5)

Notice that the Hamiltonian and momentum constraint equations do not

involve second time derivatives of the 3-metric nor the lapse function and

shift vector. These equations represent conditions on the choices of initial

data for the pair (hij , Kij). At the continuum level, the equations (A.2)

and (A.3) ensure that these constraints are preserved during the evolution.

The 3+1 approach naturally splits the task of solving Einstein’s equa-

tions into:

• The Initial Data Problem: Construction of the initial values of

(hij , Kij) that satisfies the Hamiltonian (A.4) and momentum

(A.5) constraints.

• The Evolution Problem: Evolution of the pair (hij , Kij) using equa-

tions (A.2) and (A.3), respectively.

Appendix B. York’s Conformal Approach

For pedagogical reasons, I will only review the York’s conformal method,70

also known as the conformal transverse traceless (CTT) decomposition.

Generally speaking, the main challenge in constructing initial data is iden-

tifying which four pieces within the twelve components of the initial data,

(hij , Kij), are to be solved from the four constraint equations (A.4) and

(A.5). The remaining eight pieces are freely specifiable. In some particular
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instances,68,11 it is clear which metric or extrinsic curvature components are

fixed by the constraints; however, for a general situation, such as finding

initial data for collision of black holes, this choice is unclear.

The starting point of York’s CTT method is a conformal transformation

of the 3-metric of the initial hypersurface

hij = φ
4
ĥij , (B.1)

where conformal quantities are denoted with hats. Next, the extrinsic cur-

vature is decomposed into its trace and trace-free parts:

Kij = Aij +
1

3
hijK , (B.2)

This decomposition is followed by a conformal transformation of the trace-

free part of the extrinsic curvature:

Aij = φ
−2

Âij . (B.3)

The above conformal transformation is chosen, so the divergence of A
ij ,

which enters in the momentum constraint, has the following simple trans-

formation property:

∇jA
ij = φ

−10
̂

∇jÂ
ij

, (B.4)

where ̂

∇i is the covariant derivative associated with the conformal 3-metric

ĥij . Finally, Âij is split into its transverse and longitudinal parts,

Â
ij = Â

ij

? + (l̂ W )ij
, (B.5)

where by construction

̂

∇jÂ
ij

?
= 0, (B.6)

and

(l̂ W )ij
≡

̂

∇

i
W

j + ̂

∇

j
W

i
−

2

3
ĝ

ij
̂

∇kW
k
. (B.7)

Notice that the vector W
i is the generator of the longitudinal part of the ex-

trinsic curvature Âij . With the transformations and decompositions above,

the Hamiltonian and momentum constraints take the form

8 ∆̂φ = R̂ φ − ÂijÂ
ij

φ
−7 +

2

3
K

2
φ

5 (B.8)

(∆̂lW )i =
2

3
φ

6
̂

∇

i
K , (B.9)

respectively, where (∆̂lW )i
≡

̂

∇j(l̂ W )ij and ∆̂ ≡
̂

∇

i
̂

∇i. Constructing

initial data sets consists then of first freely specifying the conformal metric



October 7, 2005 16:25 WSPC/Trim Size: 9in x 6in for Review Volume 06˙laguna2

Probing Space-Time Through Numerical Simulations 171

ĥij , trace of the extrinsic curvature K and the transverse-traceless part of

the extrinsic curvature Â
∗

ij
. Once these data have been specified, one solves

Eqs. (B.8) and (B.9) for the conformal factor φ and the vector W
i. Notice

that these equations are coupled via the terms involving Âij in (B.8) and

φ in (B.9).
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Last couple of decades have been the golden age for cosmology. High
quality data confirmed the broad paradigm of standard cosmology but
have thrusted upon us a preposterous composition for the universe which
defies any simple explanation, thereby posing probably the greatest chal-
lenge theoretical physics has ever faced. Several aspects of these devel-
opments are critically reviewed, concentrating on conceptual issues and
open questions.

1. Prologue: Universe as a Physical System

Attempts to understand the behaviour of our universe by applying the laws

of physics lead to difficulties which have no parallel in the application of

laws of physics to systems of more moderate scale — like atoms, solids or

even galaxies. We have only one universe available for study, which itself is

evolving in time; hence, different epochs in the past history of the universe

are unique and have occurred only once. Standard rules of science, like

repeatability, statistical stability and predictability cannot be applied to

the study of the entire universe in a naive manner.

The obvious procedure will be to start with the current state of the

universe and use the laws of physics to study its past and future. Progress

in this attempt is limited because our understanding of physical processes

at energy scales above 100 GeV or so lacks direct experimental support.

What is more, cosmological observations suggest that nearly 95 per cent

of the matter in the universe is of types which have not been seen in the

laboratory; there is also indirect, but definitive, evidence to suggest that

nearly 70 per cent of the matter present in the universe exerts negative

pressure.
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These difficulties — which are unique when we attempt to apply the laws

of physics to an evolving universe — require the cosmologists to proceed in

a multi faceted manner. The standard paradigm is based on the idea that

the universe was reasonably homogeneous, isotropic and fairly featureless

— except for small fluctuations in the energy density — at sufficiently early

times. It is then possible to integrate the equations describing the universe

forward in time. The results will depend on only a small number (about

half a dozen) of parameters describing the composition of the universe, its

current expansion rate and the initial spectrum of density perturbations.

Varying these parameters allows us to construct a library of evolutionary

models for the universe which could then be compared with observations

in order to restrict the parameter space. We shall now describe some of the

details in this approach.

2. The Cosmological Paradigm

Observations show that the universe is fairly homogeneous and isotropic

at scales larger than about 150h
−1 Mpc, where 1 Mpc ≈ 3 × 1024 cm is a

convenient unit for extragalactic astronomy and h ≈ 0.7 characterizes1 the

current rate of expansion of the universe in dimensionless form. (The mean

distance between galaxies is about 1 Mpc while the size of the visible uni-

verse is about 3000h
−1 Mpc.) The conventional — and highly successful —

approach to cosmology separates the study of large scale (l & 150h
−1 Mpc)

dynamics of the universe from the issue of structure formation at smaller

scales. The former is modeled by a homogeneous and isotropic distribution

of energy density; the latter issue is addressed in terms of gravitational in-

stability which will amplify the small perturbations in the energy density,

leading to the formation of structures like galaxies.

In such an approach, the expansion of the background universe is de-

scribed by a single function of time a(t) which is governed by the equations

(with c = 1):

ȧ
2 + k

a2
=

8πGρ

3
; d(ρa

3) = −pda
3 (1)

The first one relates expansion rate to the energy density ρ and k = 0,±1

is a parameter which characterizes the spatial curvature of the universe.

The second equation, when coupled with the equation of state p = p(ρ)

which relates the pressure p to the energy density, determines the evolution

of energy density ρ = ρ(a) in terms of the expansion factor of the universe.
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In particular if p = wρ with (at least, approximately) constant w then,

ρ ∝ a
−3(1+w) and (if we further assume k = 0, which is strongly favoured

by observations) the first equation in Eq.(1) gives a ∝ t
2/[3(1+w)]. We will

also often use the redshift z(t), defined as (1 + z) = a0/a(t) where the

subscript zero denotes quantities evaluated at the present moment.

It is convenient to measure the energy densities of different components

in terms of a critical energy density (ρc) required to make k = 0 at the

present epoch. (Of course, since k is a constant, it will remain zero at all

epochs if it is zero at any given moment of time.) From Eq.(1), it is clear

that ρc = 3H
2

0
/8πG where H0 ≡ (ȧ/a)0 — called the Hubble constant — is

the rate of expansion of the universe at present. The variables Ωi ≡ ρi/ρc

will give the fractional contribution of different components of the universe

(i denoting baryons, dark matter, radiation, etc.) to the critical density.

Observations then lead to the following results:

(1) Our universe has 0.98 . Ωtot . 1.08. The value of Ωtot can be de-

termined from the angular anisotropy spectrum of the cosmic microwave

background radiation (CMBR; see Section 5) and these observations (com-

bined with the reasonable assumption that h > 0.5) show2,3 that we live in

a universe with critical density, so that k = 0.

(2) Observations of primordial deuterium produced in big bang nucle-

osynthesis (which took place when the universe was about few minutes

in age) as well as the CMBR observations show4 that the total amount of

baryons in the universe contributes about ΩB = (0.024±0.0012)h−2. Given

the independent observations1 which fix h = 0.72± 0.07, we conclude that

ΩB
∼= 0.04 − 0.06. These observations take into account all baryons which

exist in the universe today irrespective of whether they are luminous or

not. Combined with previous item we conclude that most of the universe is

non-baryonic.

(3) Host of observations related to large scale structure and dynam-

ics (rotation curves of galaxies, estimate of cluster masses, gravitational

lensing, galaxy surveys ..) all suggest5 that the universe is populated by a

non-luminous component of matter (dark matter; DM hereafter) made of

weakly interacting massive particles which does cluster at galactic scales.

This component contributes about ΩDM
∼= 0.20 − 0.35 and has the sim-

ple equation of state pDM ≈ 0. (In the relativistic theory, the pressure

p ∝ mv
2 is negligible compared to energy density ρ ∝ mc

2 for non rela-

tivistic particles.). The second equation in Eq.(1), then gives ρDM ∝ a
−3

as the universe expands which arises from the evolution of number density

of particles: ρ = nmc
2
∝ n ∝ a

−3
.
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(4) Combining the last observation with the first we conclude that there

must be (at least) one more component to the energy density of the uni-

verse contributing about 70% of critical density. Early analysis of several

observations6 indicated that this component is unclustered and has nega-

tive pressure. This is confirmed dramatically by the supernova observations

(see Ref. 7; for a critical look at the data, see Ref. 8). The observations sug-

gest that the missing component has w = p/ρ . −0.78 and contributes

ΩDE
∼= 0.60− 0.75. The simplest choice for such dark energy with negative

pressure is the cosmological constant which is a term that can be added to

Einstein’s equations. This term acts like a fluid with an equation of state

pDE = −ρDE; the second equation in Eq.(1), then gives ρDE = constant

as universe expands.

(5) The universe also contains radiation contributing an energy density

ΩRh
2 = 2.56× 10−5 today most of which is due to photons in the CMBR.

The equation of state is pR = (1/3)ρR; the second equation in Eq.(1), then

gives ρR ∝ a
−4. Combining it with the result ρR ∝ T

4 for thermal radiation,

it follows that T ∝ a
−1. Radiation is dynamically irrelevant today but since

(ρR/ρDM ) ∝ a
−1 it would have been the dominant component when the

universe was smaller by a factor larger than ΩDM/ΩR ' 4 × 104ΩDMh
2.

(6) Together we conclude that our universe has (approximately) ΩDE '

0.7, ΩDM ' 0.26, ΩB ' 0.04, ΩR ' 5 × 10−5. All known observations are

consistent with such an — admittedly weird — composition for the universe.

Using ρNR ∝ a
−3

, ρR ∝ a
−4 and ρDE=constant we can write Eq.(1) in

a convenient dimensionless form as

1

2

(

dq

dτ

)2

+ V (q) = E (2)

where τ = H0t, a = a0q(τ), ΩNR = ΩB + ΩDM and

V (q) = −

1

2

[

ΩR

q2
+

ΩNR

q
+ ΩDEq

2

]

; E =
1

2
(1 − Ωtot) . (3)

This equation has the structure of the first integral for motion of a particle

with energy E in a potential V (q). For models with Ω = ΩNR + ΩDE = 1,

we can take E = 0 so that (dq/dτ) =
√

V (q). Based on the observed

composition of the universe, we can identify three distinct phases in the

evolution of the universe when the temperature is less than about 100

GeV. At high redshifts (small q) the universe is radiation dominated and

q̇ is independent of the other cosmological parameters. Then Eq.(2) can

be easily integrated to give a(t) ∝ t
1/2 and the temperature of the uni-

verse decreases as T ∝ t
−1/2. As the universe expands, a time will come
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when (t = teq, a = aeq and z = zeq, say) the matter energy density will

be comparable to radiation energy density. For the parameters described

above, (1 + zeq) = ΩNR/ΩR ' 4 × 104ΩDMh
2. At lower redshifts, matter

will dominate over radiation and we will have a ∝ t
2/3 until fairly late

when the dark energy density will dominate over non relativistic matter.

This occurs at a redshift of zDE where (1 + zDE) = (ΩDE/ΩNR)1/3. For

ΩDE ≈ 0.7, ΩNR ≈ 0.3, this occurs at zDE ≈ 0.33. In this phase, the ve-

locity q̇ changes from being a decreasing function to an increasing function

leading to an accelerating universe (see Fig.2). In addition to these, we

believe that the universe probably went through a rapidly expanding, in-

flationary, phase very early when T ≈ 1014 GeV; we will say more about

this in Section 4. (For a textbook description of these and related issues,

see e.g. Ref. 9.)

3. Growth of Structures in the Universe

Having discussed the dynamics of the smooth universe, let us turn our

attention to the formation of structures. In the conventional paradigm for

the formation of structures in the universe, some mechanism is invoked to

generate small perturbations in the energy density in the very early phase of

the universe. These perturbations then grow due to gravitational instability

and eventually form the structures which we see today. Such a scenario is

constrained most severely by CMBR observations at z ≈ 103. Since the

perturbations in CMBR are observed to be small (10−5
− 10−4 depending

on the angular scale), it follows that the energy density perturbations were

small compared to unity at the redshift of z ≈ 103.

The central quantity one uses to describe the growth of structures is the

density contrast defined as δ(t,x) = [ρ(t,x) − ρbg(t)]/ρbg(t) which charac-

terizes the fractional change in the energy density compared to the back-

ground. Since one is often interested in the statistical description of struc-

tures in the universe, it is conventional to assume that δ (and other related

quantities) are elements of a statistical ensemble. Many popular models of

structure formation suggest that the initial density perturbations in the

early universe can be represented as a Gaussian random variable with zero

mean and a given initial power spectrum. The latter quantity is defined

through the relation P (t, k) =< |δk(t)|2 > where δk is the Fourier trans-

form of δ(t,x) and < ... > indicates averaging over the ensemble. The

two-point correlation function ξ(t, x) of the density distribution is defined

as the Fourier transform of P (t,k) over k.
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When the δ � 1, its evolution can be studied by linear perturbation

theory and each of the spatial Fourier modes δk(t) will grow independently.

Then the power spectra P (k, t) =< |δk(t)|2 > at two different times in

the linear regime are related by P (k, tf ) = F

2(k, tf , ti, bg)P (k, ti) where

F (called transfer function) depends only on the parameters of the back-

ground universe (denoted generically as “bg”) but not on the initial power

spectrum. The form of F is essentially decided by two factors: (i) The rel-

ative magnitudes of the proper wavelength of perturbation λprop(t) ∝ a(t)

and the Hubble radius dH (t) ≡ H
−1(t) = (ȧ/a)−1 and (ii) whether the

universe is radiation dominated or matter dominated. At sufficiently early

epochs, the universe will be radiation dominated and the proper wave-

length λprop(t) ∝ a ∝ t
1/2 will be larger than dH(t) ∝ t. The density

contrast of such modes, which are bigger than the Hubble radius, will

grow9 as a
2 until λprop = dH(t). (See the footnote on page 184.) When

this occurs, the perturbation at a given wavelength is said to enter the

Hubble radius. If λprop < dH and the universe is radiation dominated, the

matter perturbation does not grow significantly and increases at best only

logarithmically.9,10 Later on, when the universe becomes matter dominated

for t > teq, the perturbations again begin to grow. (Some of these details

depend on the gauge chosen for describing the physics but, of course, the

final observable results are gauge independent; we shall not worry about

this feature in this article.)

It follows from this description that modes with wavelengths greater

than deq ≡ dH(teq) — which enter the Hubble radius only in the matter

dominated epoch — continue to grow at all times; modes with wavelengths

smaller than deq suffer lack of growth (in comparison with longer wave-

length modes) during the period tenter < t < teq. This fact distorts the

shape of the primordial spectrum by suppressing the growth of small wave-

length modes (with k > keq = 2π/deq that enter the Hubble radius in the

radiation dominated phase) in comparison with longer ones, with the tran-

sition occurring at the wave number keq corresponding to the length scale

deq = dH(zeq) = (2π/keq) ≈ 13(ΩDMh
2)−1Mpc. Very roughly, the shape of

F

2(k) can be characterized by the behaviour F

2(k) ∝ k
−4 for k > keq and

F

2
≈ 1 for k < keq. The spectrum at wavelengths λ � deq is undistorted

by the evolution since F

2 is essentially unity at these scales.

We will see in the next section that inflationary models generate an ini-

tial power spectrum of the form P (k) ∝ k. The evolution described above

will distort it to the form P (k) ∝ k
−3 for k > keq and leave it undis-

torted with P ∝ k for k < keq. The power per logarithmic band in the
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wavenumber, ∆2
∝ k

3
P (k), is approximately constant for k > keq (actu-

ally increasing as ln k because of the logarithmic growth in the radiation

dominated phase) and decreases as ∆2
∝ k

4
∝ λ

−4 at large wavelengths.

It follows that ∆2 is a monotonically decreasing function of the wavelength

with more power at small length scales.

When δk ≈ 1, linear perturbation theory breaks down at the spatial

scale corresponding to λ = 2π/k. Since there is more power at small scales,

smaller scales go non-linear first and structure forms hierarchically. (Ob-

servations suggest that, in today’s universe scales smaller than about 8h
−1

Mpc are non-linear; see Fig.1) As the universe expands, the over-dense re-

gion will expand more slowly compared to the background, will reach a

maximum radius, contract and virialize to form a bound nonlinear halo of

dark matter. The baryons in the halo will cool and undergo collapse in a

fairly complex manner because of gas dynamical processes. It seems unlikely

that the baryonic collapse and galaxy formation can be understood by ana-

lytic approximations; one needs to do high resolution computer simulations

to make any progress.11

The non linear evolution of the dark matter halos is somewhat different

and worth mentioning because it contains the fascinating physics of sta-

tistical mechanics of self gravitating systems.12 The standard instability of

gravitating systems in a static background is moderated by the presence

of a background expansion and it is possible to understand various fea-

tures of nonlinear evolution of dark matter halos using different analytic

approximations.13 Among these, the existence of certain nonlinear scaling

relations — which allows one to compute nonlinear power spectrum from

linear power spectrum by a nonlocal scaling relation — seems to be most

intriguing14. If ξ̄(x, t) is the mean correlation function of dark matter parti-

cles and ξ̄L(x, t) is the same quantity computed in the linear approximation,

then, it turns out that ξ̄(x, t) can be expressed as a universal function of

ξ̄L(x, t) in the form ξ̄(x, t) = U [ξ̄L(l, t)] where x = l[1 + U [ξ̄L(l, t)]]−1/3.

Incredibly enough, the form of U can be determined by theory15 and thus

allows one to understand several aspects of nonlinear clustering analyt-

ically. This topic has interesting connections with renormalisation group

theory, fluid turbulence etc. and deserves the attention of wider community

of physicists.



October 6, 2005 15:58 WSPC/Trim Size: 9in x 6in for Review Volume 07˙paddy2

182 T. Padmanabhan

4. Inflation and Generation of Initial Perturbations

We saw that the two length scales which determine the evolution of pertur-

bations are the Hubble radius dH(t) ≡ (ȧ/a)−1 and λ(t) ≡ λ0a(t). Using

their definitions and Eq.(1), it is easy to show that if ρ > 0, p > 0, then

λ(t) > dH(t) for sufficiently small t.

This result leads to a major difficulty in conventional cosmology. Nor-

mal physical processes can act coherently only over length scales smaller

than the Hubble radius. Thus any physical process leading to density per-

turbations at some early epoch, t = ti, could only have operated at scales

smaller than dH (ti). But most of the relevant astrophysical scales (corre-

sponding to clusters, groups, galaxies, etc.) were much bigger than dH(t)

at sufficiently early epochs. Therefore, it is difficult to understand how any

physical process operating in the early universe could have led to the seed

perturbations in the early universe.

One way of tacking this difficulty is to arrange matters such that we

have λ(t) < dH(t) at sufficiently small t. Since we cannot do this in any

model which has both ρ > 0, p > 0 we need to invoke some exotic physics to

get around this difficulty. The standard procedure is to make a(t) increase

rapidly with t (for example, exponentially or as a ∝ t
n with n � 1, which

requires p < 0) for a brief period of time. Such a rapid growth is called

“inflation” and in conventional models of inflation,16 the energy density

during the inflationary phase is provided by a scalar field with a poten-

tial V (φ). If the potential energy dominates over the kinetic energy, such

a scalar field can act like an ideal fluid with the equation of state p = −ρ

and lead to a(t) ∝ e
Ht during inflation. Fig. (4) shows the behaviour of the

Hubble radius and the wavelength λ(t) of a generic perturbation (line AB)

for a universe which underwent exponential inflation. In such a universe,

it is possible for quantum fluctuations of the scalar field at A (when the

perturbation scale leaves the Hubble radius) to manifest as classical per-

turbations at B (when the perturbation enters the Hubble radius). We will

now briefly discuss these processes.

Consider a scalar field φ(t,x) which is nearly homogeneous in the sense

that we can write φ(t,x) = φ(t) + δφ(t,x) with δφ � φ. Let us first ignore

the fluctuations and consider how one can use the mean value to drive a

rapid expansion of the universe. The Einstein’s equation (for k = 0) with

the field φ(t) as the source can be written in the form

ȧ
2

a2
= H

2(t) =
1

3M
2

Pl

[

1

2
φ̇

2 + V (φ)

]

(4)
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where V (φ) is the potential for the scalar field and MPl ≡ (8πG)−1/2
≈

2.4 × 1018 GeV in units with ~ = c = 1. Further, the equation of motion

for the scalar field in an expanding universe reduces to

φ̈ + 3Hφ̇ = −

dV

dφ
(5)

The solutions of Eqs. (4), (5) giving a(t) and φ(t) will depend critically on

the form of V (φ) as well as the initial conditions. Among these solutions,

there exists a subset in which a(t) is a rapidly growing function of t, either

exponentially or as a power law a(t) ∝ t
n with an arbitrarily large value

of n. It is fairly easy to verify that the solutions to Eqs. (4), (5) can be

expressed in the form

V (t) = 3H
2
M

2

Pl

[

1 +
Ḣ

3H2

]

; φ(t) =

∫

dt[−2ḢM
2

Pl]
1/2 (6)

Equation (6) completely solves the (reverse) problem of finding a poten-

tial V (φ) which will lead to a given a(t). For example, power law ex-

pansion of the universe [a ∝ t
n] can be generated by using a potential

V ∝ exp[−
√

(2/n)(φ/MPl)].

A more generic way of achieving this is through potentials which allow

what is known as slow roll-over. Such potentials have a gently decreasing

form for V (φ) for a range of values for φ allowing φ(t) to evolve very slowly.

Assuming a sufficiently slow evolution of φ(t) we can ignore: (i) the φ̈ term

in equation Eq. (5) and (ii) the kinetic energy term φ̇
2 in comparison with

the potential energy V (φ) in Eq. (4). In this limit, Eq. (4),Eq. (5) become

H
2
'

V (φ)

3M
2

Pl

; 3Hφ̇ ' −V
′(φ) (7)

The validity of slow roll over approximation thus requires the following two

parameters to be sufficiently small:

ε(φ) =
M

2

Pl

2

(

V
′

V

)2

; η(φ) = M
2

Pl

V
′′

V
(8)

The end point for inflation can be taken to be the epoch at which ε becomes

comparable to unity. If the slow roll-over approximation is valid until a

time t = tend, the amount of inflation can be characterized by the ratio

a(tend)/a(t). If N(t) ≡ ln[a(tend/a(t)], then Eq. (7) gives

N ≡ ln
a(tend)

a(t)
=

∫ tend

t

H dt '
1

M
2

Pl

∫ φ

φend

V

V ′
dφ (9)
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This provides a general procedure for quantifying the rapid growth of a(t)

arising from a given potential.

Let us next consider the spectrum of density perturbations which are

generated from the quantum fluctuations of the scalar field.17 This requires

the study of quantum field theory in a time dependent background which is

non-trivial. There are several conceptual issues (closely related to the issue

of general covariance of quantum field theory and the particle concept18) in

obtaining a c-number density perturbation from inherently quantum fluctu-

ations. We shall not discuss these issues and will adopt a heuristic approach,

as follows:

In the deSitter spacetime with a(t) ∝ exp(Ht), there is a horizon in the

spacetime and associated temperature T = (H/2π) — just as in the case of

black holes.19 Hence the scalar field will have an intrinsic rms fluctuation

δφ ≈ T = (H/2π) in the deSitter spacetime at the scale of the Hubble

radius. This will cause a time shift δt ≈ δφ/φ̇ in the evolution of the field

between patches of the universe of size about H
−1. This, in turn, will lead to

an rms fluctuation ∆ = (k3
P )1/2 of amplitude δa/a = (ȧ/a)δt ≈ H

2
/(2πφ̇)

at the Hubble scale. Since the wavelength of the perturbation is equal to

Hubble radius at A (see Fig. (4)), we conclude that the rms amplitude of

the perturbation when it leaves the Hubble radius is: ∆A ≈ H
2
/(2πφ̇).

Between A and B (in Fig. (4)) the wavelength of the perturbation is bigger

than the Hubble radius and one can showa that ∆(at A) ≈ ∆(at B) giving

∆(at B) ≈ H
2
/(2πφ̇). Since this is independent of k, it follows that all

perturbations enter the Hubble radius with constant power per decade.

That is ∆2(k, a) ∝ k
3
P (k, a) is independent of k when evaluated at a =

aenter(k) for the relevant mode.

From this, it follows that P (k, a) ∝ k at constant a. To see this, note

that if P ∝ k
n, then the power per logarithmic band of wave numbers

is ∆2
∝ k

3
P (k) ∝ k

(n+3). Further, when the wavelength of the mode is

larger than the Hubble radius, during the radiation dominated phase, the

perturbation grows (see footnote) as δ ∝ a
2 making ∆2

∝ a
4
k

(n+3). The

epoch aenter at which a mode enters the Hubble radius is determined by the

aFor a single component universe with p = wρ ∝ a
−3(1+w), we have from Eq. (1),

the result ä = −(4πG/3)(1 + 3w)ρa. Perturbing this relation to a → a + δa and using
a = (t/t0)2/(3+3w) we find that δa satisfies the equation t

2
δ̈a = mδa with m = (2/9)(1+

3w)(2 + 3w)(1 + w)−2. This has power law solutions δa ∝ t
p with p(p − 1) = m. The

growing mode corresponds to the density contrast δ ∝ (δa/a) which is easily shown to
vary as δ ∝ (ρa

2)−1. In the inflationary, phase, ρ=const., δ ∝ a
−2; in the radiation

dominated phase, ρ ∝ a
−4

, δ ∝ a
2. The result follows from these scalings.
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relation 2πaenter/k = dH . Using dH ∝ t ∝ a
2 in the radiation dominated

phase, we get aenter ∝ k
−1 so that

∆2(k, aenter) ∝ a
4

enter
k

(n+3)
∝ k

(n−1) (10)

So if the power ∆2
∝ k

3
P per octave in k is independent of scale k, at

the time of entering the Hubble radius, then n = 1. In fact, a prediction

that the initial fluctuation spectrum will have a power spectrum P = Ak
n

with n = 1 was made by Harrison and Zeldovich,20 years before inflationary

paradigm, based on general arguments of scale invariance. Inflation is one

possible mechanism for generating such scale invariant perturbations.

As an example, consider the case of V (φ) = λφ
4, for which Eq.(9) gives

N = H
2
/2λφ

2 and the amplitude of the perturbations at Hubble scale is:

∆ '

H
2

φ̇
'

3H
3

V ′
' λ

1/2
N

3/2 (11)

If we want inflation to last for reasonable amount of time (N & 60, say)

and ∆ ≈ 10−5 (as determined from CMBR temperature anisotropies; see

Section 5), then we require λ . 10−15. This has been a serious problem in

virtually any reasonable model of inflation: The parameters in the potential

need to be extremely fine tuned to match observations.

It is not possible to obtain n strictly equal to unity in realistic models,

since scale invariance is always broken at some level. In a wide class of

inflationary models this deviation is given by (1 − n) ≈ 6ε − 2η (where ε

and η are defined by Eq. (8)); this deviation (1−n) is obviously small when

the slow roll over approximation (ε � 1, η � 1) holds.

The same mechanism that produces density perturbations (which are

scalar) will also produce gravitational wave (tensor) perturbations of some

magnitude δgrav. Since both the scalar and tensor perturbations arise from

the same mechanism, one can relate the amplitudes of these two and show

that (δgrav/δ)2 ≈ 12.4ε; clearly, the tensor perturbations are small com-

pared to the scalar perturbations. Further, for generic inflationary poten-

tials, |η| ≈ |ε| so that (1− n) ≈ 4ε giving (δgrav/δ)2 ≈ O(3)(1− n). This is

a relation between three quantities all of which are (in principle) directly

observable and hence it can provide a test of the underlying model if and

when we detect the stochastic gravitational wave background.

Finally, we mention the possibility that inflationary regime might act as

a magnifying glass and bring the transplanckian regime of physics within the

scope of direct observations.21. To see how this could be possible, note that a

scale λ0 today would have been λf ≡ λ0(af/a0) = λ0(T0/Tf ) = 3λ0×10−27
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at the end of inflation and λi = λf exp(−N) ' λfe
−70 at the beginning of

inflation, for typical numbers used in the inflationary scenario. This gives

λi ≈ 3LP (λ0/1 Mpc) showing that most of the astrophysically relevant

scales were smaller than Planck length, LP ≡ (G~/c
3)1/2

' 10−33 cm, dur-

ing the inflation! Phenomenological models which make specific predictions

regarding transplanckian physics (like dispersion relations,22 for example)

can then be tested using the signature they leave on the pattern of density

perturbations which are generated.

5. Temperature Anisotropies of the CMBR

When the universe cools through T ≈ 1 eV, the electrons combine with

nuclei forming neutral atoms. This ‘re’combination takes place at a redshift

of about z ≈ 103 over a redshift interval ∆z = 80. Once neutral atoms form,

the photons decouple from matter and propagate freely from z = 103 to

z = 0. This CMB radiation, therefore, contains fossilized signature of the

conditions of the universe at z = 103 and has been an invaluable source of

information.

If physical process has led to inhomogeneities in the z = 103 spatial

surface, then these inhomogeneities will appear as temperature anisotropies

(∆T/T ) ≡ S(θ, φ) of the CMBR in the sky today where (θ, φ) denotes two

angles in the sky. It is convenient to expand this quantity in spherical

harmonics as S(θ, φ) =
∑

almYlm(θ, φ). If n and m are two directions in

the sky with an angle α between them, the two-point correlation function

of the temperature fluctuations in the sky can be expressed in the form

C(α) ≡ 〈S(n)S(m)〉 =
∑

l

(2l + 1)

4π
ClPl(cosα); Cl = 〈|alm|

2
〉 (12)

Roughly speaking, l ∝ θ
−1 and we can think of the (θ, l) pair as analogue

of (x,k) variables in 3-D.

The primary anisotropies of the CMBR can be thought of as arising from

three different sources (even though such a separation is gauge dependent).

(i) The first is the gravitational potential fluctuations at the last scatter-

ing surface (LSS) which will contribute an anisotropy (∆T/T )2
φ
∝ k

3
Pφ(k)

where Pφ(k) ∝ P (k)/k
4 is the power spectrum of gravitational potential φ.

(The gravitational potential satisfies ∇

2
φ ∝ δ which becomes k

2
φk ∝ δk in

Fourier space; so Pφ ≡ 〈|φk|
2
〉 ∝ k

−4
〈|δk|

2
〉 ∝ P (k)/k

4.) This anisotropy

arises because photons climbing out of deeper gravitational wells lose

more energy on the average. (ii) The second source is the Doppler shift
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of the frequency of the photons when they are last scattered by moving

electrons on the LSS. This is proportional to (∆T/T )2
D

∝ k
3
Pv where

Pv(k) ∝ P/k
2 is the power spectrum of the velocity field. (The velocity

field is given by v ' gt ∝ t∇φ so that, in Fourier space, vk ∼ kφk and

Pv = |vk |
2
∝ k

2
Pφ ∝ k

−2
P .) (iii) Finally, we also need to take into account

the intrinsic fluctuations of the radiation field on the LSS. In the case of

adiabatic fluctuations, these will be proportional to the density fluctuations

of matter on the LSS and hence will vary as (∆T/T )2
int

∝ k
3
P (k). Of these,

the velocity field and the density field (leading to the Doppler anisotropy

and intrinsic anisotropy described in (ii) and (iii) above) will oscillate at

scales smaller than the Hubble radius at the time of decoupling since pres-

sure support due to baryons will be effective at small scales. At large scales,

for a scale invariant spectrum with P (k) ∝ k, we get:

(

∆T

T

)2

φ

∝ const;

(

∆T

T

)2

D

∝ k
2
∝ θ

−2;

(

∆T

T

)2

int

∝ k
4
∝ θ

−4 (13)

where θ ∝ λ ∝ k
−1 is the angular scale over which the anisotropy is mea-

sured. The fluctuations due to gravitational potential dominate at large

scales while the sum of intrinsic and Doppler anisotropies will dominate at

small scales. Since the latter two are oscillatory, we will expect an oscilla-

tory behaviour in the temperature anisotropies at small angular scales. The

typical value for the peaks of the oscillation are at about 0.3 to 0.5 degrees

depending on the details of the model.

The above analysis is valid if recombination was instantaneous; but in

reality the thickness of the recombination epoch is about ∆z ' 80. Further,

the coupling between the photons and baryons is not completely ‘tight’. It

can be shown that9 these features will heavily damp the anisotropies at

angular scales smaller than about 0.1 degree.

The fact that different processes contribute to the structure of angular

anisotropies makes CMBR a valuable tool for extracting cosmological infor-

mation. To begin with, the anisotropy at very large scales directly probes

modes which are bigger than the Hubble radius at the time of decoupling

and allows us to directly determine the primordial spectrum. The CMBR

observations are consistent with the inflationary model for the generation

of perturbations leading to P = Ak
n and gives A ' (28.3h

−1
Mpc)4 and

n = 0.97 ± 0.023. (The first results23 were from COBE and later results,

especially from WMAP, have reconfirmed2 them with far greater accuracy).

As we move to smaller scales we are probing the behaviour of bary-

onic gas coupled to the photons. The pressure support of the gas leads
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Fig. 1. Different observations of cosmological significance and the length scales and
redshift ranges probed by them. The broken (thin) lines in the figure are contours
of ∆(k = 2π/x, a) = (5, 1.69, 1, 10−2

, 10−5) from bottom to top. Figure courtesy:
T. Roy Choudhury.

to modulated acoustic oscillations with a characteristic wavelength at the

z = 103 surface. Regions of high and low baryonic density contrast will

lead to anisotropies in the temperature with the same characteristic wave-

length (which acts as a standard ruler) leading to a series of peaks in the

temperature anisotropy that have been detected. The angles subtended by

these acoustic peaks will depend on the geometry of the universe and pro-

vides a reliable procedure for estimating the cosmological parameters. De-

tailed computations9 show that: (i) The multipole index l corresponding to

the first acoustic peak has a strong, easily observable, dependence on Ωtot

and scales as lp ≈ 220Ω
−1/2

tot
if there is no dark energy and Ωtot = ΩNR.

(ii) But if both non-relativistic matter and dark energy is present, with

ΩNR + ΩDE = 1 and 0.1 . ΩNR . 1, then the peak has only a very weak

dependence on ΩNR and lp ≈ 220Ω0.1

NR
. Thus the observed location of the

peak (which is around l ∼ 220) can be used to infer that Ωtot ' 1. More
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precisely, the current observations show that 0.98 . Ωtot . 1.08; combining

with h > 0.5, this result implies the existence of dark energy.

The heights of acoustic peaks also contain important information. In

particular, the height of the first acoustic peak relative to the second one

depends sensitively on ΩB and the current results are consistent with that

obtained from big bang nucleosynthesis.4

Fig.1 summarises the different observations of cosmological significance

and the range of length scales and redshift ranges probed by them. The

broken (thin) lines in the figure are contours of ∆(k = 2π/x, a) =

(5, 1.69, 1, 10−2
, 10−5) from bottom to top. Clearly, the regions where

∆(k, a) > 1 corresponds to those in which nonlinear effects of structure

formation is important. Most of the astrophysical observations — large

scale surveys of galaxies, clusters and quasars, observations of intergalactic

medium (Ly-α forest), star formation rate (SFR), supernova (SN Ia) data

etc. — are confined to 0 < z . 7 while CMBR allows probing the universe

around z = 103. Combining these allows one to use the long “lever arm”

of 3 decades in redshift and thus constrain the parameters describing the

universe effectively.

6. The Dark Energy

It is rather frustrating that we have no direct laboratory evidence for nearly

96% of matter in the universe. (Actually, since we do not quite understand

the process of baryogenesis, we do not understand ΩB either; all we can

theoretically understand now is a universe filled entirely with radiation!).

Assuming that particle physics models will eventually (i) explain ΩB and

ΩDM (probably arising from the lightest supersymmetric partner) as well

as (ii) provide a viable model for inflation predicting correct value for A,

one is left with the problem of understanding ΩDE . While the issues (i)

and (ii) are by no means trivial or satisfactorily addressed, the issue of

dark energy is lot more perplexing, thereby justifying the attention it has

received recently.

The key observational feature of dark energy is that — treated as a

fluid with a stress tensor T
a

b
= dia(ρ,−p,−p,−p) — it has an equation

of state p = wρ with w . −0.8 at the present epoch. The spatial part

g of the geodesic acceleration (which measures the relative acceleration

of two geodesics in the spacetime) satisfies an exact equation in general

relativity given by ∇ · g = −4πG(ρ + 3p). As long as (ρ + 3p) > 0, gravity

remains attractive while (ρ + 3p) < 0 can lead to repulsive gravitational
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effects. In other words, dark energy with sufficiently negative pressure will

accelerate the expansion of the universe, once it starts dominating over the

normal matter. This is precisely what is established from the study of high

redshift supernova, which can be used to determine the expansion rate of

the universe in the past.7 Figure 2 presents the supernova data as a phase

portrait8 of the universe. It is clear that the universe was decelerating at

high redshifts and started accelerating when it was about two-third of the

present size.

Fig. 2. The “velocity” ȧ of the universe is plotted against the “position” a in the form
of a phase portrait. The different curves are for models parameterized by the value of
ΩDM (= Ωm) keeping Ωtot = 1. The top-most curve has Ωm = 1 and the bottom-
most curve has Ωm = 0 and ΩDE = 1. The in-between curves show universes which
were decelerating in the past and began to accelerate when the dark energy started
dominating. The supernova data clearly favours such a model.

The simplest model for a fluid with negative pressure is the cosmological

constant24 with w = −1, ρ = −p = constant. If the dark energy is indeed

a cosmological constant, then it introduces a fundamental length scale in
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the theory LΛ ≡ H
−1

Λ
, related to the constant dark energy density ρDE by

H
2

Λ
≡ (8πGρDE/3). In classical general relativity, based on the constants

G, c and LΛ, it is not possible to construct any dimensionless combination

from these constants. But when one introduces the Planck constant, ~, it

is possible to form the dimensionless combination H
2

Λ
(G~/c

3) ≡ (L2

P
/L

2

Λ
).

Observations demand (L2

P
/L

2

Λ
) . 10−120 requiring enormous fine tuning.

What is more, the energy density of normal matter and radiation would

have been higher in the past while the energy density contributed by the

cosmological constant does not change. Hence we need to adjust the energy

densities of normal matter and cosmological constant in the early epoch

very carefully so that ρΛ & ρNR around the current epoch. Because of these

conceptual problems associated with the cosmological constant, people have

explored a large variety of alternative possibilities. Though none of them

does any better than the cosmological constant, we will briefly describe

them in view of the popularity these models enjoy.

The most popular alternative to cosmological constant uses a scalar field

φ with a suitably chosen potential V (φ) so as to make the vacuum energy

vary with time. The hope is that, one can find a model in which the current

value can be explained naturally without any fine tuning. We will discuss

two possibilities based on the lagrangians:

Lquin =
1

2
∂aφ∂

a
φ − V (φ); Ltach = −V (φ)[1 − ∂aφ∂

a
φ]1/2 (14)

Both these lagrangians involve one arbitrary function V (φ). The first

one, Lquin, which is a natural generalization of the lagrangian for a non-

relativistic particle, L = (1/2)q̇2
− V (q), is usually called quintessence.25

When it acts as a source in Friedman universe, it is characterized by a time

dependent w(t) = (1 − (2V/φ̇
2))(1 + (2V/φ̇

2))−1.

The structure of the second lagrangian in Eq. (14) can be understood by

an analogy with a relativistic particle with position q(t) and mass m which

is described by the lagrangian L = −m

√

1 − q̇2. We can now construct a

field theory by upgrading q(t) to a field φ and treating the mass parameter

m as a function of φ [say, V (φ)] thereby obtaining the second lagrangian

in Eq. (14). This provides a rich gamut of possibilities in the context of

cosmology.26,27 This form of scalar field arises in string theories28 and is

called a tachyonic scalar field. (The structure of this lagrangian is similar

to those analyzed previously in a class of models29 called K-essence.) The

stress tensor for the tachyonic scalar field can be written as the sum of a

pressure less dust component and a cosmological constant. This suggests

a possibility26 of providing a unified description of both dark matter and
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dark energy using the same scalar field. (It is possible to construct more

complicated scalar field lagrangians with even w < −1 describing what is

called phantom matter; there are also alternatives to scalar field models,

based on brane world scenarios. We shall not discuss either of these.)

Since the quintessence or the tachyonic field has an undetermined func-

tion V (φ), it is possible to choose this function in order to produce a given

H(a). To see this explicitly, let us assume that the universe has two forms of

energy density with ρ(a) = ρknown(a) + ρφ(a) where ρknown(a) arises from

any known forms of source (matter, radiation, ...) and ρφ(a) is due to a

scalar field. Let us first consider quintessence. Here, the potential is given

implicitly by the form30,26

V (a) =
1

16πG
H(1 − Q)

[

6H + 2aH
′
−

aHQ
′

1 − Q

]

(15)

φ(a) =

[

1

8πG

]1/2 ∫

da

a

[

aQ
′
− (1 − Q)

d ln H
2

d ln a

]1/2

(16)

where Q(a) ≡ [8πGρknown(a)/3H
2(a)] and prime denotes differentiation

with respect to a. Given any H(a), Q(a), these equations determine V (a)

and φ(a) and thus the potential V (φ). Every quintessence model studied in

the literature can be obtained from these equations.

Similar results exists for the tachyonic scalar field as well.26 For example,

given any H(a), one can construct a tachyonic potential V (φ) which is

consistent with it. The equations determining V (φ) are now given by:

φ(a) =

∫

da

aH

(

aQ
′

3(1 − Q)
−

2

3

aH
′

H

)1/2

(17)

V =
3H

2

8πG
(1 − Q)

(

1 +
2

3

aH
′

H
−

aQ
′

3(1− Q)

)1/2

(18)

Again, Eqs. (17) and (18) completely solve the problem. Given any H(a),

these equations determine V (a) and φ(a) and thus the potential V (φ). A

wide variety of phenomenological models with time dependent cosmological

constant have been considered in the literature all of which can be mapped

to a scalar field model with a suitable V (φ).

While the scalar field models enjoy considerable popularity (one reason

being they are easy to construct!) they have not helped us to understand

the nature of the dark energy at a deeper level because of several shortcom-

ings: (1) They completely lack predictive power. As explicitly demonstrated
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Fig. 3. Constraints on the possible variation of the dark energy density with redshift.
The darker shaded region is excluded by SN observations while the lighter shaded region
is excluded by WMAP observations. It is obvious that WMAP puts stronger constraints
on the possible variations of dark energy density. The cosmological constant corresponds
to the horizontal line at unity. The region between the dotted lines has w > −1 at all
epochs.

above, virtually every form of a(t) can be modeled by a suitable “designer”

V (φ). (2) These models are degenerate in another sense. Even when w(a)

is known/specified, it is not possible to proceed further and determine the

nature of the scalar field lagrangian. The explicit examples given above

show that there are at least two different forms of scalar field lagrangians

(corresponding to the quintessence or the tachyonic field) which could lead

to the same w(a). (See Ref. 8 for an explicit example of such a construc-

tion.) (3) All the scalar field potentials require fine tuning of the parameters

in order to be viable. This is obvious in the quintessence models in which

adding a constant to the potential is the same as invoking a cosmological

constant. So to make the quintessence models work, we first need to assume

the cosmological constant is zero! (4) By and large, the potentials used in

the literature have no natural field theoretical justification. All of them are

non-renormalisable in the conventional sense and have to be interpreted as

a low energy effective potential in an ad-hoc manner.
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One key difference between cosmological constant and scalar field mod-

els is that the latter lead to a w(a) which varies with time. If observations

have demanded this, or even if observations have ruled out w = −1 at the

present epoch, then one would have been forced to take alternative models

seriously. However, all available observations are consistent with cosmolog-

ical constant (w = −1) and — in fact — the possible variation of w is

strongly constrained31 as shown in Figure 3.

Given this situation, we shall take a closer look at the cosmological

constant as the source of dark energy in the universe.

7. ...For the Snark was a Boojum, You See

If we assume that the dark energy in the universe is due to a cosmological

constant then we are introducing a second length scale, LΛ = H
−1

Λ
, into the

theory (in addition to the Planck length LP ) such that (LP /LΛ) ≈ 10−60.

Such a universe will be asymptotically deSitter with a(t) ∝ exp(t/LΛ)

at late times. Figure 4 summarizes several peculiar features of such a

universe.32,33

Using the the Hubble radius dH ≡ (ȧ/a)−1, we can distinguish be-

tween three different phases of such a universe. The first phase is when the

universe went through a inflationary expansion with dH = constant; the

second phase is the radiation/matter dominated phase in which most of

the standard cosmology operates and dH ∝ t increases monotonically; the

third phase is that of re-inflation (or accelerated expansion) governed by

the cosmological constant in which dH is again a constant. The first and last

phases are (approximately) time translation invariant; that is, t → t+ con-

stant is an (approximate) invariance for the universe in these two phases.

The universe satisfies the perfect cosmological principle and is in steady

state during these phases! In fact, one can easily imagine a scenario in

which the two deSitter phases (first and last) are of very long duration. If

ΩΛ ≈ 0.7, ΩDM ≈ 0.3 the final deSitter phase does last forever; as regards

the inflationary phase, one can view it as lasting for an arbitrarily long

(though finite) duration.

Given the two length scales LP and LΛ, one can construct two energy

densities ρP = 1/L
4

P
and ρΛ = 1/L

4

Λ
in natural units (c = ~ = 1). The

first is, of course, the Planck energy density while the second one also

has a natural interpretation. The universe which is asymptotically deSitter

has a horizon and associated thermodynamics19 with a temperature T =

HΛ/2π and the corresponding thermal energy density ρthermal ∝ T
4
∝
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Fig. 4. The geometrical structure of a universe with two length scales LP and LΛ

corresponding to the Planck length and the cosmological constant. See text for detailed
description of the figure.

1/L
4

Λ
= ρΛ. Thus LP determines the highest possible energy density in

the universe while LΛ determines the lowest possible energy density in this

universe. As the energy density of normal matter drops below this value, the

thermal ambience of the deSitter phase will remain constant and provide

the irreducible ‘vacuum noise’. Note that the dark energy density is the

the geometric mean ρDE =
√

ρΛρP between the two energy densities. If

we define a dark energy length scale LDE such that ρDE = 1/L
4

DE
then

LDE =
√

LP LΛ is the geometric mean of the two length scales in the

universe. The figure 4 also shows the LDE by broken horizontal lines.

While the two deSitter phases can last forever in principle, there is a

natural cut off length scale in both of them which makes the region of

physical relevance to be finite.32 In the the case of re-inflation in the late

universe, this happens (at point F) when the temperature of the CMBR

radiation drops below the deSitter temperature. The universe will be es-

sentially dominated by the vacuum thermal noise of the deSitter phase for
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a > aF . One can easily determine the dynamic range of DF to be

aF

aD

≈ 2πT0LΛ

(

ΩΛ

ΩDM

)1/3

≈ 3 × 1030 (19)

A natural bound on the duration of inflation arises for a different reason.

Consider a perturbation at some given wavelength scale which is stretched

with the expansion of the universe as λ ∝ a(t). (See the line marked AB

in Fig.4.) If there was no re-inflation, all the perturbations will ‘re-enter’

the Hubble radius at some time (the point B in Fig.4). But if the universe

undergoes re-inflation, then the Hubble radius ‘flattens out’ at late times

and some of the perturbations will never reenter the Hubble radius ! This

criterion selects the portion of the inflationary phase (marked by CE) which

can be easily calculated to be:

aE

aC

=

(

T0LΛ

TreheatH
−1

in

) (

ΩΛ

ΩDM

)1/3

=
(aF /aD)

2πTreheatH
−1

in

∼= 1025 (20)

where we have assumed a GUTs scale inflation with EGUT = 1014 GeV
∼= Treheat and ρin = E

4

GUT
giving 2πH

−1

in
Treheat = (3π/2)1/2(EP /EGUT) ≈

105. For a Planck scale inflation with 2πH
−1

in
Treheat = O(1), the phases CE

and DF are approximately equal. The region in the quadrilateral CEDF is

the most relevant part of standard cosmology, though the evolution of the

universe can extend to arbitrarily large stretches in both directions in time.

This figure is definitely telling us something regarding the time translation

invariance of the universe (‘the perfect cosmological principle’) and — more

importantly — about the breaking of this symmetry, and it deserves more

attention than it has received.

Let us now turn to several other features related to the cosmological con-

stant. A non-representative sample of attempts to understand/explain the

cosmological constant include those based on QFT in curved space time,34

those based on renormalisation group arguments,35 quantum cosmological

considerations,36 various cancellation mechanisms37 and many others. A

study of these (failures!) reveals the following:

(a) If observed dark energy is due to cosmological constant, we need to

explain the small value of the dimensionless number Λ(G~/c
3) ≈ 10−120.

The presence of G~ clearly indicates that we are dealing with quantum

mechanical problem, coupled to gravity. Any purely classical solution (like a

classically decaying cosmological constant) will require (hidden or explicit)

fine-tuning. At the same time, this is clearly an infra-red issue, in the sense

that the phenomenon occurs at extremely low energies!.
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(b) In addition to the zero-point energy of vacuum fluctuations (which

must gravitate38) the phase transitions in the early universe (at least the

well established electro-weak transition) change the ground state energy

by a large factor. It is necessary to arrange matters so that gravity does

not respond to such changes. Any approach to cosmological constant which

does not take this factor into account is fundamentally flawed.

(c) An immediate consequence is that, the gravitational degrees of free-

dom which couple to cosmological constant must have a special status and

behave in a manner different from other degrees of freedom. (The non linear

coupling of matter with gravity has several subtleties; see eg. Ref. 39.) If,

for example, we have a theory in which the source of gravity is (ρ+p) rather

than (ρ + 3p), then cosmological constant will not couple to gravity at all.

Unfortunately it is not possible to develop a covariant theory of gravity us-

ing (ρ+p) as the source. But we can achieve the same objective in different

manner. Any metric gab can be expressed in the form gab = f
2(x)qab such

that det q = 1 so that det g = f
4. From the action functional for gravity

A =
1

2κ

∫

√

−g d
4
x(R − 2Λ) =

1

2κ

∫

√

−g d
4
xR −

Λ

κ

∫

d
4
xf

4(x) (21)

it is obvious that the cosmological constant couples only to the conformal

factor f . So if we consider a theory of gravity in which f
4 =

√

−g is kept

constant and only qab is varied, then such a model will be oblivious of

direct coupling to cosmological constant and will not respond to changes in

bulk vacuum energy. If the action (without the Λ term) is varied, keeping

det g = −1, say, then one is lead to a unimodular theory of gravity with the

equations of motion Rab − (1/4)gabR = κ(Tab − (1/4)gabT ) with zero trace

on both sides. Using the Bianchi identity, it is now easy to show that this

is equivalent to a theory with an arbitrary cosmological constant. That is,

cosmological constant arises as an (undetermined) integration constant in

this model.40 Unfortunately, we still need an extra physical principle to fix

its value.

(d) The conventional discussion of the relation between cosmological

constant and the zero point energy is too simplistic since the zero point

energy has no observable consequence. The observed non trivial features

of the vacuum state arise from the fluctuations (or modifications) of this

vacuum energy. (This was, in fact, known fairly early in the history of

cosmological constant problem; see, e.g., Ref.41). If the vacuum probed by

the gravity can readjust to take away the bulk energy density ρP ' L
−4

P
,

quantum fluctuations can generate the observed value ρDE. One of the

simplest models42 which achieves this uses the fact that, in the semiclassical
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limit, the wave function describing the universe of proper four-volume V

will vary as Ψ ∝ exp(−iA0) ∝ exp[−i(ΛeffV/L
2

P
)]. If we treat (Λ/L

2

P
,V)

as conjugate variables then uncertainty principle suggests ∆Λ ≈ L
2

P
/∆V .

If the four volume is built out of Planck scale substructures, giving V =

NL
4

P
, then the Poisson fluctuations will lead to ∆V ≈

√

VL
2

P
giving ∆Λ =

L
2

P
/∆V ≈ 1/

√

V ≈ H
2

0
. (This idea can be made more quantitative42,43.)

In fact, it is inevitable that in a universe with two length scale LΛ, LP ,

the vacuum fluctuations will contribute an energy density of the correct

order of magnitude ρDE =
√

ρΛρP . The hierarchy of energy scales in such

a universe has32,44 the pattern

ρvac =
1

L4

P

+
1

L4

P

(

LP

LΛ

)2

+
1

L4

P

(

LP

LΛ

)4

+ · · · (22)

The first term is the bulk energy density which needs to be renormalized

away (by a process which we do not understand at present); the third

term is just the thermal energy density of the deSitter vacuum state; what

is interesting is that quantum fluctuations in the matter fields inevitably

generate the second term. A rigorous calculation44 of the dispersion in the

energy shows that the fluctuations in the energy density ∆ρ, inside a region

bounded by a cosmological horizon, is given by

∆ρvac ∝ L
−2

P
L
−2

Λ
∝

H
2

Λ

G
(23)

The numerical coefficient will depend on the precise nature of infrared cutoff

radius (like whether it is LΛ or LΛ/2π etc.). But one cannot get away from

a fluctuation of magnitude ∆ρvac ' H
2

Λ
/G that will exist in the energy den-

sity inside a sphere of radius H
−1

Λ
if Planck length is the UV cut off. Since

observations suggest that there is indeed a ρvac of similar magnitude in the

universe, it seems natural to identify the two, after subtracting out the mean

value for reasons which we do not understand. This approach explains why

there is a surviving cosmological constant which satisfies ρDE =
√

ρΛρP

but not why the leading term in Eq. (22) should be removed.

8. Deeper Issues in Cosmology

It is clear from the above discussion that ‘parametrised cosmology’, which

attempts to describe the evolution of the universe in terms of a small num-

ber of parameters, has made considerable progress in recent years. Having

done this, it is tempting to ask more ambitious questions, some of which

we will briefly discuss in this section.
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There are two obvious questions a cosmologist faces every time (s)he

gives a popular talk, for which (s)he has no answer! The first one is: Why

do the parameters of the universe have the values they have? Today, we

have no clue why the real universe follows one template out of a class

of models all of which are permitted by the known laws of physics (just

as we have no idea why there are three families of leptons with specified

mass ratios etc.) Of the different cosmological parameters, ΩDM , ΩB , ΩR

as well as the parameters of the initial power spectrum A, n should arise

from viable particle physics models which actually says something about

phenomenology. (Unfortunately, these research areas are not currently very

fashionable.) On the other hand, it is not clear how we can understand

ΩDE without a reasonably detailed model for quantum gravity. In fact, the

acid test for any viable quantum gravity model is whether it has something

nontrivial to say about ΩDE ; all the current candidates have nothing to

offer on this issue and thus fail the test.

The second question is: How (and why!) was the universe created and

what happened before the big bang ? The cosmologist giving the public lec-

ture usually mumbles something about requiring a quantum gravity model

to circumvent the classical singularity — but we really have no idea!. String

theory offers no insight; the implications of loop quantum gravity for quan-

tum cosmology have attracted fair mount of attention recently45 but it is

fair to say we still do not know how (and why) the universe came into being.

What is not often realised is that certain aspects of this problem tran-

scends the question of technical tractability of quantum gravity and can be

presented in more general terms. Suppose, for example, one has produced

some kind of theory for quantum gravity. Such a theory is likely to come

with a single length scale LP . Even when one has the back drop of such a

theory, it is not clear how one hopes to address questions like: (a) Why is

our universe much bigger than LP which is the only scale in the problem

i.e., why is the mean curvature of the universe much smaller than L
−2

P
? (b)

How does the universe, treated as a dynamical system, evolve spontaneously

from a quantum regime to classical regime? (c) How does one obtain the

notion of a cosmological arrow of time, starting from timeless or at least

time symmetric description?

One viable idea regarding these issues seems to be based on vacuum

instability which describes the universe as an unstable system with an un-

bounded Hamiltonian. Then it is possible for the expectation value of spa-

tial curvature to vary monotonically as, say, < R >∝ L
−2

P
(t/tP )−α with

some index α, as the universe expands in an unstable mode. Since the con-
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formal factor of the metric has the ‘wrong’ sign for the kinetic energy term,

this mode will become semiclassical first. Even then it is not clear how the

arrow of time related to the expanding phase of the universe arises; one

needs to invoke decoherence like arguments to explain the classical limit46

and the situation is not very satisfactory. (For an alternative idea, regarding

the origin of the universe as a quantum fluctuation, see ref. 47).

While the understanding of such ‘deeper’ issues might require the de-

tails of the viable model for quantum gravity, one should not ignore the

alternative possibility that we are just not clever enough. It may turn out

that certain obvious (low energy) features of the universe, that we take

for granted, contain clues to the full theory of quantum gravity (just as

the equality of inertial and gravitational masses, known for centuries, was

turned on its head by Einstein’s insight) if only we manage to find the

right questions to ask. To illustrate this point, consider an atomic physicist

who solves the Schrodinger equation for the electrons in the helium atom.

(S)he will discover that, of all the permissible solutions, only half (which

are antisymmetric under the exchange of electrons) are realized in nature

though the Hamiltonian of the helium atom offers no insight for this fea-

ture. This is a low energy phenomenon the explanation of which lies deep

inside relativistic field theory.

In this spirit, there are at least two peculiar features of our universe

which are noteworthy:

(i) The first one, which is already mentioned, is the fact that our universe

seemed to have evolved spontaneously from a quantum regime to classical

regime bringing with it the notion of a cosmological arrow of time.46 This

is not a generic feature of dynamical systems (and is connected with the

fact that the Hamiltonian for the system is unbounded from below).

(ii) The second issue corresponds to the low energy vacuum state of

matter fields in the universe and the notion of the particle — which is

an excitation around this vacuum state. Observations show that, in the

classical limit, we do have the notion of an inertial frame, vacuum state

and a notion of the particle such that the particle at rest in this frame

will see, say, the CMBR as isotropic. This is nontrivial, since the notion

of classical particle arises after several limits are taken: Given the formal

quantum state Ψ[g, matter] of gravity and matter, one would first proceed

to a limit of quantum fields in curved background, in which the gravity

is treated as a c-number48. Further taking the c → ∞ limit (to obtain

quantum mechanics) and ~ → 0 limit (to obtain the classical limit) one

will reach the notion of a particle in classical theory. Miraculously enough,
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the full quantum state of the universe seems to finally select (in the low

energy classical limit) a local inertial frame, such that the particle at rest in

this frame will see the universe as isotropic — rather than the universe as

accelerating or rotating, say. This is a nontrivial constraint on Ψ[g, matter],

especially since the vacuum state and particle concept are ill defined in

the curved background18. One can show that this feature imposes special

conditions on the wave function of the universe49 in simple minisuperspace

models but its wider implications in quantum gravity are unexplored.
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We review the experimental evidence for Einstein’s special and general
relativity. A variety of high precision null experiments verify the weak
equivalence principle and local Lorentz invariance, while gravitational
redshift and other clock experiments support local position invariance.
Together these results confirm the Einstein Equivalence Principle which
underlies the concept that gravitation is synonymous with spacetime
geometry, and must be described by a metric theory. Solar system ex-
periments that test the weak-field, post-Newtonian limit of metric the-
ories strongly favor general relativity. The Binary Pulsar provides tests
of gravitational-wave damping and of strong-field general relativity. Re-
cently discovered binary pulsar systems may provide additional tests.
Future and ongoing experiments, such as the Gravity Probe B Gyroscope
Experiment, satellite tests of the Equivalence principle, and tests of grav-
ity at short distance to look for extra spatial dimensions could constrain
extensions of general relativity. Laser interferometric gravitational-wave
observatories on Earth and in space may provide new tests of gravita-
tional theory via detailed measurements of the properties of gravitational
waves.

1. Introduction

When I was a first-term graduate student some 36 years ago, it was said

that the field of general relativity is “a theorist’s paradise and an exper-

imentalist’s purgatory”. To be sure, there were some experiments: Irwin

Shapiro, then at MIT, had just measured the relativistic retardation of

radar waves passing the Sun (an effect that now bears his name), Robert

Dicke of Princeton was claiming that the Sun was flattened in an amount

that would mess up general relativity’s success with Mercury’s perihelion

205
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advance, and Joseph Weber of the University of Maryland was just about

to announce (40 years prematurely, as we now know) the detection of grav-

itational waves. Nevertheless the field was dominated by theory and by

theorists. The field circa 1970 seemed to reflect Einstein’s own attitudes:

although he was not ignorant of experiment, and indeed had a keen insight

into the workings of the physical world, he felt that the bottom line was

the theory. As he once famously said, if experiment were to contradict the

theory, he would have “felt sorry for the dear Lord”.

Since that time the field has been completely transformed, and today at

the centenary of Einstein’s annus mirabilis, experiment is a central, and in

some ways dominant component of gravitational physics. I know no better

way to illustrate this than to cite the first regular article of the 15 June

2004 issue of Physical Review D: the author list of this “general relativity”

paper fills an entire page, and the institution list fills most of another. This

was one of the papers reporting results from the first science run of the

LIGO laser interferometer gravitational-wave observatories, but it brings to

mind papers in high-energy physics, not general relativity! The breadth of

current experiments, ranging from tests of classic general relativistic effects

such as the light bending and the Shapiro delay, to searches for short-range

violations of the inverse-square law, to the operation of a space experiment

to measure the relativistic precession of gyroscopes, to the construction

and operation of gravitational-wave detectors, attest to the ongoing vigor

of experimental gravitation.

Because of its elegance and simplicity, and because of its empirical suc-

cess, general relativity has become the foundation for our understanding of

the gravitational interaction. Yet modern developments in particle theory

suggest that it is probably not the entire story, and that modification of

the basic theory may be required at some level. String theory generally pre-

dicts a proliferation of scalar fields that could result in alterations of general

relativity reminiscent of the Brans-Dicke theory of the 1960s. In the pres-

ence of extra dimensions, the gravity that we feel on our four-dimensional

“brane” of a higher dimensional world could be somewhat different from

a pure four-dimensional general relativity. Some of these ideas have moti-

vated the possibility that fundamental constants may actually be dynamical

variables, and hence may vary in time or in space. However, any theoreti-

cal speculation along these lines must abide by the best current empirical

bounds. Decades of high-precision tests of general relativity have produced

some very tight constraints. In this article I will review the experimental

situation, and assess how well, after 100 years, Einstein got it right.
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We begin in Sec. 2 with the “Einstein equivalence principle”, which un-

derlies the idea that gravity and curved spacetime are synonymous, and de-

scribe its empirical support. Section 3 describes solar system tests of gravity

in terms of experimental bounds on a set of “parametrized post-Newtonian”

(PPN) parameters. In Section 4 we discuss tests of general relativity us-

ing binary pulsar systems. Section 5 describes tests of gravitational theory

that could be carried out using future observations of gravitational radi-

ation. Concluding remarks are made in Section 6. For further discussion

of topics in this chapter, and for references to the literature, the reader is

referred to Theory and Experiment in Gravitational Physics1 and to the

“living” review articles2,3,4.

2. The Einstein Equivalence Principle

The Einstein equivalence principle (EEP) is a powerful and far-reaching

principle, which states that

• test bodies fall with the same acceleration independently of their

internal structure or composition (Weak Equivalence Principle, or

WEP),

• the outcome of any local non-gravitational experiment is indepen-

dent of the velocity of the freely-falling reference frame in which it

is performed (Local Lorentz Invariance, or LLI), and

• the outcome of any local non-gravitational experiment is indepen-

dent of where and when in the universe it is performed (Local

Position Invariance, or LPI).

The Einstein equivalence principle is the heart of gravitational theory,

for it is possible to argue convincingly that if EEP is valid, then gravita-

tion must be described by “metric theories of gravity”, which state that

(i) spacetime is endowed with a symmetric metric, (ii) the trajectories of

freely falling bodies are geodesics of that metric, and (iii) in local freely

falling reference frames, the non-gravitational laws of physics are those

written in the language of special relativity.

General relativity is a metric theory of gravity, but so are many oth-

ers, including the Brans-Dicke theory. In this sense, superstring theory

is not metric, because of residual coupling of external, gravitation-like

fields, to matter. Such external fields could be characterized as fields that

do not vanish in the vacuum state (in contrast, say, to electromagnetic

fields). Theories in which varying non-gravitational constants are associ-
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ated with dynamical fields that couple to matter directly are also not metric

theories.

2.1. Tests of the weak equivalence principle

To test the weak equivalence principle, one compares the acceleration of

two laboratory-sized bodies of different composition in an external gravita-

tional field. A measurement or limit on the fractional difference in acceler-

ation between two bodies yields a quantity η ≡ 2|a1 − a2|/|a1 + a2|, called

the “Eötvös ratio”, named in honor of Baron von Eötvös, the Hungarian

physicist whose experiments carried out with torsion balances at the end

of the 19th century were the first high-precision tests of WEP5. Later clas-

sic experiments by Dicke and Braginsky6,7 improved the bounds by several

orders of magnitude. Additional experiments were carried out during the

1980s as part of a search for a putative “fifth force”, that was motivated in

part by a reanalysis of Eötvös’ original data (the range of bounds achieved

during that period is shown schematically in the region labeled “fifth force”

in Figure 1).

In a torsion balance, two bodies of different composition are suspended

at the ends of a rod that is supported by a fine wire or fibre. One then looks

for a difference in the horizontal accelerations of the two bodies as revealed

by a slight rotation of the rod. The source of the horizontal gravitational

force could be the Sun, a large mass in or near the laboratory, or, as Eötvös

recognized, the Earth itself.

The best limit on η currently comes from the “Eöt-Wash” experiments

carried out at the University of Washington, which used a sophisticated

torsion balance tray to compare the accelerations of bodies of different com-

position toward the Earth, the Sun and the galaxy8. Another strong bound

comes from Lunar laser ranging (LLR), which checks the equality of free

fall of the Earth and Moon toward the Sun9. The results from laboratory

and LLR experiments are:

ηEöt−Wash < 4 × 10−13
, ηLLR < 5 × 10−13

. (1)

In fact, by using laboratory materials whose composition mimics that of

the Earth and Moon, the Eöt-Wash experiments8 permit one to infer an

unambiguous bound from Lunar laser ranging on the universality of accel-

eration of gravitational binding energy at the level of 1.3 × 10−3 (test of

the Nordtvedt effect – see Sec. 3.2 and Table 1.)

In the future, the Apache Point Observatory for Lunar Laser-ranging

Operation (APOLLO) project, a joint effort by researchers from the
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Fig. 1. Selected tests of the Weak Equivalence Principle, showing bounds on the frac-
tional difference in acceleration of different materials or bodies. “Free-fall” and Eöt-Wash
experiments, along with numerous others between 1986 and 1990, were originally per-
formed to search for a fifth force. The dark line and the shading below it show evolving
bounds on WEP for the Earth and the Moon from Lunar laser ranging (LLR).

Universities of Washington, Seattle, and California, San Diego, plans to

use enhanced laser and telescope technology, together with a good, high-

altitude site in New Mexico, to improve the Lunar laser-ranging bound by

as much as an order of magnitude10.

High-precision WEP experiments, can test superstring inspired models

of scalar-tensor gravity, or theories with varying fundamental constants in

which weak violations of WEP can occur via non-metric couplings. The

project MICROSCOPE, designed to test WEP to a part in 1015 has been

approved by the French space agency CNES for a possible 2008 launch. A
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proposed NASA-ESA Satellite Test of the Equivalence Principle (STEP)

seeks to reach the level of η < 10−18. These experiments will compare

the acceleration of different materials moving in free-fall orbits around the

Earth inside a drag-compensated spacecraft. Doing these experiments in

space means that the bodies are in perpetual fall, whereas Earth-based free-

fall experiments (such as the 1987 test done at the University of Colorado11

indicated in Figure 1), are over in seconds, which leads to significant mea-

surement errors.

Many of the high-precision, low-noise methods that were developed for

tests of WEP have been adapted to laboratory tests of the inverse square

law of Newtonian gravitation at millimeter scales and below. The goal of

these experiments is to search for additional couplings to massive parti-

cles or for the presence of large extra dimensions. The challenge of these

experiments is to distinguish gravitation-like interactions from electromag-

netic and quantum mechanical (Casimir) effects. No deviations from the

inverse square law have been found to date at distances between 10 µm and

10 mm12,13,14,15,16.

2.2. Tests of local Lorentz invariance

Although special relativity itself never benefited from the kind of “crucial”

experiments, such as the perihelion advance of Mercury and the deflec-

tion of light, that contributed so much to the initial acceptance of general

relativity and to the fame of Einstein, the steady accumulation of exper-

imental support, together with the successful merger of special relativity

with quantum mechanics, led to its being accepted by mainstream physi-

cists by the late 1920s, ultimately to become part of the standard toolkit

of every working physicist. This accumulation included

• the classic Michelson-Morley experiment and its

descendents17,18,19,20,

• the Ives-Stillwell, Rossi-Hall and other tests of time-dilation21,22,23,

• tests of the independence of the speed of light of the velocity of the

source, using both binary X-ray stellar sources and high-energy

pions24,25,

• tests of the isotropy of the speed of light26,27,28

In addition to these direct experiments, there was the Dirac equa-

tion of quantum mechanics and its prediction of anti-particles and spin;

later would come the stunningly successful relativistic theory of quantum

electrodynamics.
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On this 100th anniversary of the introduction of special relativity, one

might ask “what is there to test?”. Special relativity has been so thoroughly

integrated into the fabric of modern physics that its validity is rarely chal-

lenged, except by cranks and crackpots. It is ironic then, that during the

past several years, a vigorous theoretical and experimental effort has been

launched, on an international scale, to find violations of special relativ-

ity. The motivation for this effort is not a desire to repudiate Einstein,

but to look for evidence of new physics “beyond” Einstein, such as appar-

ent violations of Lorentz invariance that might result from certain models

of quantum gravity. Quantum gravity asserts that there is a fundamental

length scale given by the Planck length, Lp = (~G/c
3)1/2 = 1.6×10−33 cm,

but since length is not an invariant quantity (Lorentz-FitzGerald contrac-

tion), then there could be a violation of Lorentz invariance at some level

in quantum gravity. In brane world scenarios, while physics may be locally

Lorentz invariant in the higher dimensional world, the confinement of the

interactions of normal physics to our four-dimensional “brane” could induce

apparent Lorentz violating effects. And in models such as string theory, the

presence of additional scalar, vector and tensor long-range fields that cou-

ple to matter of the standard model could induce effective violations of

Lorentz symmetry. These and other ideas have motivated a serious recon-

sideration of how to test Lorentz invariance with better precision and in

new ways.

A simple way of interpreting some of these experiments is to suppose

that a non-metric coupling to the electromagnetic interactions results in a

change in the speed of electromagnetic radiation c relative to the limiting

speed of material test particles c0, in other words, c 6= c0. In units where

c0 = 1, this would result in an action for charged particles and electromag-

netic fields given, in a preferred reference frame (presumably that of the

cosmic background radiation), by

I = −

∑

a

m0a

∫

(1 − v
2

a
)1/2

dt +
∑

a

ea

∫

(−Φ + A · va)dt

+
1

8π

∫

(E2
− c

2
B

2)d3
xdt , (2)

where Φ = −A0, E = −∇Φ− Ȧ, and B = ∇×A. This is sometimes called

the “c
2” framework29,30; it is a special case of the “THεµ” framework of

Lightman and Lee31 for analysing non-metric theories of gravity, and of

the “standard model extension” (SME) of Kostalecky and coworkers32,33,34.

Such a Lorentz-non-invariant electromagnetic interaction would cause shifts
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Fig. 2. Selected tests of local Lorentz invariance, showing bounds on the parameter
δ = c

−2
− 1, where c is the speed of propagation of electromagnetic waves in a preferred

reference frame, in units in which the limiting speed of test particles is unity.

in the energy levels of atoms and nuclei that depend on the orientation

of the quantization axis of the state relative to our velocity in the rest-

frame of the universe, and on the quantum numbers of the state, resulting

in orientation dependence of the fundamental frequencies of such atomic

clocks. The magnitude of these “clock anisotropies” would be proportional

to δ ≡ |c
−2

− 1|.

The earliest clock anisotropy experiments were those of Hughes and

Drever, although their original motivation was somewhat different35,36.

Dramatic improvements were made in the 1980s using laser-cooled trapped

atoms and ions37,38,39. This technique made it possible to reduce the broad-

ing of resonance lines caused by collisions, leading to improved bounds on δ

shown in Figure 2 (experiments labelled NIST, U. Washington and Harvard,

respectively).
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The SME and other frameworks40 have been used to analyse many new

experimental tests of local Lorentz invariance, including comparisons of

resonant cavities with atomic clocks, and tests of dispersion and birefrin-

gence in the propagation of high energy photons from astrophysical sources.

Other testable effects of Lorentz invariance violation include threshold ef-

fects in particle reactions, gravitational Cerenkov radiation, and neutrino

oscillations. Mattingly4 gives a thorough and up-to-date review of both the

theoretical frameworks and the experimental results, and describes possi-

bilities for future tests of local Lorentz invariance.

2.3. Tests of local position invariance

Local position invariance, requires, among other things, that the internal

binding energies of atoms be independent of location in space and time,

when measured against some standard atom. This means that a compari-

son of the rates of two different kinds of clocks should be independent of

location or epoch, and that the frequency shift of a signal sent between two

identical clocks at different locations is simply a consequence of the appar-

ent Doppler shift between a pair of inertial frames momentarily comoving

with the clocks at the moments of emission and reception respectively. The

relevant parameter in the frequency shift expression ∆f/f = (1+α)∆U/c
2,

is α ≡ ∂ ln EB/∂(U/c
2), where EB is the atomic or nuclear binding energy,

and U is the external gravitational potential. If LPI is valid, the binding

energy should be independent of the external potential, and hence α = 0.

The best bounds come from a 1976 rocket redshift experiment using Hydro-

gen masers, and a 1993 clock intercomparison experiment (a “null” redshift

experiment)41,42,43. The results are:

αMaser < 2 × 10−4
, αNull < 10−4

. (3)

Recent “clock comparison” tests of LPI were designed to look for possi-

ble variations of the fine structure constant on a cosmological timescale.

An experiment done at the National Institute of Standards and Technology

(NIST) in Boulder compared laser-cooled mercury ions with neutral cesium

atoms over a two-year period, while an experiment done at the Observatory

of Paris compared laser-cooled cesium and rubidium atomic fountains over

five years; the results showed that the fine structure constant α is constant

in time to a part in 1015 per year44,45. Plans are being developed to per-

form such clock comparisons in space, possibly on the International Space

Station.
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A better bound on dα/dt comes from analysis of fission yields of the

Oklo natural reactor, which occurred in Africa 2 billion years ago, namely

(α̇/α)Oklo < 6× 10−17 per year46. These and other bounds on variations of

constants, including reports (later disputed) of positive evidence for varia-

tions from quasar spectra, are discussed by Martins and others in Ref.47.

3. Solar-System Tests

3.1. The parametrized post-Newtonian framework

It was once customary to discuss experimental tests of general relativity

in terms of the “three classical tests”, the gravitational redshift, which

is really a test of the EEP, not of general relativity itself (see Sec. 2.3);

the perihelion advance of Mercury, the first success of the theory; and the

deflection of light, whose measurement in 1919 made Einstein a celebrity.

However, the proliferation of additional tests as well as of well-motivated

alternative metric theories of gravity, made it desirable to develop a more

general theoretical framework for analysing both experiments and theories.

This “parametrized post-Newtonian (PPN) framework” dates back to

Eddington in 1922, but was fully developed by Nordtvedt and Will in the

period 1968 - 72. When we confine attention to metric theories of gravity,

and further focus on the slow-motion, weak-field limit appropriate to the so-

lar system and similar systems, it turns out that, in a broad class of metric

theories, only the numerical values of a set of parameters vary from theory

to theory. The framework contains ten PPN parameters: γ, related to the

amount of spatial curvature generated by mass; β, related to the degree of

non-linearity in the gravitational field; ξ, α1, α2, and α3, which determine

whether the theory violates local position invariance or local Lorentz in-

variance in gravitational experiments (violations of the Strong Equivalence

Principle); and ζ1, ζ2, ζ3 and ζ4, which describe whether the theory has ap-

propriate momentum conservation laws. For a complete exposition of the

PPN framework see Ref. 1.

A number of well-known relativistic effects can be expressed in terms of

these PPN parameters:

Deflection of light:

∆θ =

(

1 + γ

2

)

4GM

dc2

=

(

1 + γ

2

)

× 1.7505
R�

d
arcsec , (4)



October 7, 2005 16:3 WSPC/Trim Size: 9in x 6in for Review Volume 08˙will2

Was Einstein Right? 215

where d is the distance of closest approach of a ray of light to a body of

mass M , and where the second line is the deflection by the Sun, with radius

R�.

Shapiro time delay:

∆t =

(

1 + γ

2

)

4GM

c3
ln

[

(r1 + x1 · n)(r2 − x2 · n)

d2

]

, (5)

where ∆t is the excess travel time of a round-trip electromagnetic tracking

signal, x1 and x2 are the locations relative to the body of mass M of the

emitter and receiver of the round-trip radar tracking signal (r1 and r2 are

the respective distances) and n is the direction of the outgoing tracking

signal.

Perihelion advance:

dω

dt
=

(

2 + 2γ − β

3

)

GM

Pa(1 − e2)c2

=

(

2 + 2γ − β

3

)

× 42.98 arcsec/100 yr , (6)

where P , a, and e are the period, semi-major axis and eccentricity of the

planet’s orbit; the second line is the value for Mercury.

Nordtvedt effect:

mG − mI

mI

=

(

4β − γ − 3 −

10

3
ξ − α1 −

2

3
α2 −

2

3
ζ1 −

1

3
ζ2

)

|Eg |

mIc
2

, (7)

where mG and mI are the gravitational and inertial masses of a body such

as the Earth or Moon, and Eg is its gravitational binding energy. A non-zero

Nordtvedt effect would cause the Earth and Moon to fall with a different

acceleration toward the Sun.

Precession of a gyroscope:

ΩFD = −

1

2

(

1 + γ +
α1

4

)

G

r3c2
(J − 3nn · J) ,

=
1

2

(

1 + γ +
α1

4

)

× 0.041 arcsec yr−1
,

ΩGeo = −

1

2
(1 + 2γ)v ×

Gmn

r2c2
.

=
1

3
(1 + 2γ) × 6.6 arcsec yr−1

, (8)

where ΩFD and ΩGeo are the precession angular velocities caused by the

dragging of inertial frames (Lense-Thirring effect) and by the geodetic ef-

fect, a combination of Thomas precession and precession induced by spatial
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curvature; J is the angular momentum of the Earth, and v, n and r are

the velocity, direction, and distance of the gyroscope. The second line in

each case is the corresponding value for a gyroscope in polar Earth orbit at

about 650 km altitude (Gravity Probe B, Sec. 3.3).

In general relativity, γ = 1, β = 1, and the remaining parameters all

vanish.

3.2. Bounds on the PPN parameters

Four decades of experiments, ranging from the standard light-deflection

and perihelion-shift tests, to Lunar laser ranging, planetary and satellite

tracking tests of the Shapiro time delay, and geophysical and astronom-

ical observations, have placed bounds on the PPN parameters that are

consistent with general relativity. The current bounds are summarized in

Table 1.

To illustrate the dramatic progress of experimental gravity since the

dawn of Einstein’s theory, Figure 3 shows a history of results for (1 + γ)/2,

from the 1919 solar eclipse measurements of Eddington and his colleagues

(which made Einstein a public celebrity), to modern-day measurements us-

ing very-long-baseline radio interferometry (VLBI), advanced radar track-

ing of spacecraft, and orbiting astrometric satellites such as Hipparcos. The

most recent results include a measurement of the Shapiro delay using the

Cassini spacecraft48, and a measurement of the bending of light via analysis

Table 1. Current limits on the PPN parameters.

Parameter Effect Limit Remarks

γ − 1 (i) time delay 2.3 × 10−5 Cassini tracking
(ii) light deflection 3 × 10−4 VLBI

β − 1 (i) perihelion shift 3 × 10−3
J2 = 10−7 from
helioseismology

(ii) Nordtvedt effect 5 × 10−4
η = 4β − γ − 3 assumed

ξ Earth tides 10−3 gravimeter data
α1 orbital polarization 10−4 Lunar laser ranging

PSR J2317+1439
α2 solar spin 4 × 10−7 alignment of Sun

precession and ecliptic

α3 pulsar acceleration 2 × 10−20 pulsar Ṗ statistics
η
1 Nordtvedt effect 10−3 Lunar laser ranging

ζ1 – 2 × 10−2 combined PPN bounds

ζ2 binary motion 4 × 10−5
P̈p for PSR 1913+16

ζ3 Newton’s 3rd law 10−8 Lunar acceleration
ζ4 – – not independent

1Here η = 4β − γ − 3 − 10ξ/3 − α1 − 2α2/3 − 2ζ1/3 − ζ2/3
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of VLBI data on 541 quasars and compact radio galaxies distributed over

the entire sky49.

The perihelion advance of Mercury, the first of Einstein’s successes, is

now known to agree with observation to a few parts in 103. Although there

was controversy during the 1960s about this test because of Dicke’s claims

of an excess solar oblateness, which would result in an unacceptably large

Newtonian contribution to the perihelion advance, it is now known from

helioseismology that the oblateness is of the order of a few parts in 107,

as expected from standard solar models, and too small to affect Mercury’s

orbit, within the experimental error.

Scalar-tensor theories of gravity are characterized by a coupling function

ω(φ) whose size is inversely related to the “strength” of the scalar field

relative to the metric. In the solar system, the parameter |γ−1|, for example

is equal to 1/(2 + ω(φ0)), where φ0 is the value of the scalar field today

outside the solar system. Solar-system experiments (primarily the Cassini

results48) constrain ω(φ0) > 40000.

Proposals are being developed for advanced space missions which will

have tests of PPN parameters as key components, including GAIA, a high-

precision astrometric telescope (successor to Hipparcos), which could mea-

sure light-deflection and γ to the 10−6 level50, and the Laser Astrometric

Test of Relativity (LATOR), a mission involving laser ranging to a pair of

satellites on the far side of the Sun, which could measure γ to a part in 108,

and could possibly detect second-order effects in light propagation51.

3.3. Gravity Probe-B

The NASA Relativity Mission called Gravity Probe-B recently completed

its mission to measure the Lense-Thirring and geodetic precessions of gyro-

scopes in Earth orbit52. Launched on April 20, 2004 for a 16-month mission,

it consisted of four spherical fused quartz rotors coated with a thin layer

of superconducting niobium, spinning at 70 - 100 Hz, in a spacecraft con-

taining a telescope continuously pointed toward a distant guide star (IM

Pegasi). Superconducting current loops encircling each rotor measured the

change in direction of the rotors by detecting the change in magnetic flux

through the loop generated by the London magnetic moment of the spin-

ning superconducting film. The spacecraft orbited the Earth in a polar orbit

at 650 km altitude. The proper motion of the guide star relative to distant

quasars was measured before, during and after the mission using VLBI.

The primary science goal of GPB was a one-percent measurement of the 41
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Fig. 3. Measurements of the coefficient (1 + γ)/2 from observations of the deflection
of light and of the Shapiro delay in propagation of radio signals near the Sun. The
general relativity prediction is unity. “Optical” denotes measurements of stellar deflection
made during solar eclipes, “Radio” denotes interferometric measurements of radio-wave
deflection, and “VLBI” denotes Very Long Baseline Radio Interferometry. “Hipparcos”
denotes the European optical astrometry satellite. Arrows denote values well off the
chart from one of the 1919 eclipse expeditions and from others through 1947. Shapiro
delay measurements using the Cassini spacecraft on its way to Saturn yielded tests at
the 0.001 percent level, and light deflection measurements using VLBI have reached 0.02
percent.
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milliarcsecond per year frame dragging or Lense-Thirring effect caused by

the rotation of the Earth; its secondary goal was to measure to six parts in

105 the larger 6.6 arcsecond per year geodetic precession caused by space

curvature [Eq. (8)].

A complementary test of the Lense-Thirring precession, albeit with

about 10 times lower accuracy than the GPB goal, was reported by Ciu-

folini and Pavlis53. This experiment measured the precession of the orbital

planes of two Earth-orbiting laser-ranged satellites called LAGEOS, using

up-to-date models of the gravitational field of the Earth in an attempt to

subtract the dominant Newtonian precession with sufficient accuracy to

yield a measurement of the relativistic effect.

4. The Binary Pulsar

The binary pulsar PSR 1913+16, discovered in 1974 by Joseph Taylor and

Russell Hulse, provided important new tests of general relativity, specifi-

cally of gravitational radiation and of strong-field gravity. Through precise

timing of the pulsar “clock”, the important orbital parameters of the system

could be measured with exquisite precision. These included non-relativistic

“Keplerian” parameters, such as the eccentricity e, and the orbital period

(at a chosen epoch) Pb, as well as a set of relativistic “post-Keplerian” pa-

rameters. The first PK parameter, 〈ω̇〉, is the mean rate of advance of peri-

astron, the analogue of Mercury’s perihelion shift. The second, denoted γ
′ is

the effect of special relativistic time-dilation and the gravitational redshift

on the observed phase or arrival time of pulses, resulting from the pulsar’s

orbital motion and the gravitational potential of its companion. The third,

Ṗb, is the rate of decrease of the orbital period; this is taken to be the result

of gravitational radiation damping (apart from a small correction due to

galactic differential rotation). Two other parameters, s and r, are related

to the Shapiro time delay of the pulsar signal if the orbital inclination is

such that the signal passes in the vicinity of the companion; s is a direct

measure of the orbital inclination sin i. According to GR, the first three

post-Keplerian effects depend only on e and Pb, which are known, and on

the two stellar masses which are unknown. By combining the observations

of PSR 1913+16 with the GR predictions, one obtains both a measurement

of the two masses, and a test of GR, since the system is overdetermined.

The results are54

m1 = 1.4414± 0.0002M� , m2 = 1.3867± 0.0002M� ,

Ṗ
GR

b /Ṗ
OBS

b = 1.0013± 0.0021 . (9)
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Table 2. Parameters of the binary pulsar PSR 1913+16.

Parameter Symbol Value1 in Value1 in
PSR1913+16 J0737-3039

Keplerian Parameters
Eccentricity e 0.6171338(4) 0.087779(5)
Orbital Period Pb (day) 0.322997448930(4) 0.1022525563(1)
Post-Keplerian Parameters
Periastron 〈ω̇〉 (oyr−1) 4.226595(5) 16.90(1)

advance
Redshift/time γ

′ (ms) 4.2919(8) 0.38(5)
dilation

Orbital period Ṗb (10−12) −2.4184(9)
derivative

Shapiro delay s 0.9995(−32, +4)
(sin i)

1Numbers in parentheses denote errors in last digit.

The results also test the strong-field aspects of GR in the following way:

the neutron stars that comprise the system have very strong internal grav-

ity, contributing as much as several tenths of the rest mass of the bodies

(compared to the orbital energy, which is only 10−6 of the mass of the

system). Yet in general relativity, the internal structure is “effaced” as a

consequence of the Strong Equivalence Principle (SEP), a stronger version

of EEP that includes gravitationally bound bodies and local gravitational

experiments. As a result, the orbital motion and gravitational radiation

emission depend only on the masses m1 and m2, and not on their internal

structure. By contrast, in alternative metric theories, SEP is not valid in

general, and internal-structure effects can lead to significantly different be-

havior, such as the emission of dipole gravitational radiation. Unfortunately,

in the case of scalar-tensor theories of gravity, because the neutron stars are

so similar in PSR 1913+16 (and in other double-neutron star binary pulsar

systems), dipole radiation is suppressed by symmetry; the best bound on

the coupling parameter ω(φ0) from PSR 1913+16 is in the hundreds.

However, the recent discovery of the relativistic neutron star/white

dwarf binary pulsar J1141-6545, with a 0.19 day orbital period, may ul-

timately lead to a very strong bound on dipole radiation, and thence on

scalar-tensor gravity55,56. The remarkable “double pulsar” J0737-3039 is a

binary system with two detected pulsars, in a 0.10 day orbit seen almost

edge on, with eccentricity e = 0.09, and a periastron advance of 17o per

year. A variety of novel tests of relativity, neutron star structure, and pulsar

magnetospheric physics will be possible in this system57,58. For a review of

binary pulsar tests, see3.
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5. Gravitational-Wave Tests of Gravitation Theory

The detection of gravitational radiation by either laser interferometers or

resonant cryogenic bars will, it is widely stated, usher in a new era of

gravitational-wave astronomy59,60. Furthermore, it will yield new and in-

teresting tests of general relativity (GR) in its radiative regime61.

5.1. Polarization of gravitational waves

A laser-interferometric or resonant bar gravitational-wave detector mea-

sures the local components of a symmetric 3×3 tensor which is composed of

the “electric” components of the Riemann tensor, R0i0j . These six indepen-

dent components can be expressed in terms of polarizations (modes with

specific transformation properties under null rotations). Three are trans-

verse to the direction of propagation, with two representing quadrupolar

deformations and one representing an axisymmetric “breathing” deforma-

tion. Three modes are longitudinal, with one an axially symmetric stretch-

ing mode in the propagation direction, and one quadrupolar mode in each

of the two orthogonal planes containing the propagation direction. Gen-

eral relativity predicts only the first two transverse quadrupolar modes,

independently of the source, while scalar-tensor gravitational waves can in

addition contain the transverse breathing mode. More general metric the-

ories predict up to the full complement of six modes. A suitable array of

gravitational antennas could delineate or limit the number of modes present

in a given wave. If distinct evidence were found of any mode other than the

two transverse quadrupolar modes of GR, the result would be disastrous

for GR. On the other hand, the absence of a breathing mode would not nec-

essarily rule out scalar-tensor gravity, because the strength of that mode

depends on the nature of the source.

5.2. Speed of gravitational waves

According to GR, in the limit in which the wavelength of gravitational waves

is small compared to the radius of curvature of the background spacetime,

the waves propagate along null geodesics of the background spacetime, i.e.

they have the same speed, c, as light. In other theories, the speed could dif-

fer from c because of coupling of gravitation to “background” gravitational

fields. For example, in some theories with a flat background metric η, grav-

itational waves follow null geodesics of η, while light follows null geodesics

of g
1. In brane-world scenarios, the apparent speed of gravitational waves
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could differ from that of light if the former can propagate off the brane into

the higher dimensional “bulk”. Another way in which the speed of grav-

itational waves could differ from c is if gravitation were propagated by a

massive field (a massive graviton), in which case vg would be given by, in

a local inertial frame,

vg

c
=

(

1 −

m
2

gc
4

E2

)1/2

≈ 1 −

1

2

c
2

f2λ2
g

, (10)

where mg, E and f are the graviton rest mass, energy and frequency, re-

spectively, and λg = h/mgc is the graviton Compton wavelength (λg � c/f

assumed). An example of a theory with this property is the two-tensor mas-

sive graviton theory of Visser62.

The most obvious way to test for a massive graviton is to compare the

arrival times of a gravitational wave and an electromagnetic wave from the

same event, e.g. a supernova. For a source at a distance D, the resulting

bound on the difference |1 − vg/c| or on λg is

|1 −

vg

c
| < 5 × 10−17

(

200 Mpc

D

)(

∆t

1 s

)

, (11)

λg > 3 × 1012 km

(

D

200 Mpc

100 Hz

f

)1/2(

1

f∆t

)1/2

, (12)

where ∆t ≡ ∆ta − (1 + Z)∆te is the “time difference”, where ∆ta and ∆te

are the differences in arrival time and emission time, respectively, of the two

signals, and Z is the redshift of the source. In many cases, ∆te is unknown,

so that the best one can do is employ an upper bound on ∆te based on

observation or modelling.

However, there is a situation in which a bound on the graviton mass can

be set using gravitational radiation alone63. That is the case of the inspi-

ralling compact binary, the final stage of evolution of systems like the binary

pulsar, in which the loss of energy to gravitational waves has brought the

binary to an inexorable spiral toward a final merger. Because the frequency

of the gravitational radiation sweeps from low frequency at the initial mo-

ment of observation to higher frequency at the final moment, the speed

of the gravitational waves emitted will vary, from lower speeds initially to

higher speeds (closer to c) at the end. This will cause a distortion of the

observed phasing of the waves and result in a shorter than expected overall

time ∆ta of passage of a given number of cycles. Furthermore, through the

technique of matched filtering, the parameters of the compact binary can
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be measured accurately64, and thereby the effective emission time ∆te can

be determined accurately.

Table 3. Potentially achievable bounds on λg from gravita-
tional-wave observations of inspiralling compact binaries.

m1(M
�

) m2(M
�

) Distance (Mpc) Bound on λg (km)

Ground-based (LIGO/VIRGO)
1.4 1.4 300 4.6 × 1012

10 10 1500 6.0 × 1012

Space-based (LISA)
107 107 3000 6.9 × 1016

105 105 3000 2.3 × 1016

A full noise analysis using proposed noise curves for the advanced

LIGO ground-based detectors, and for the proposed space-based LISA an-

tenna yields potentially achievable bounds that are summarized in Ta-

ble 3. These potential bounds can be compared with the solid bound

λg > 2.8 × 1012 km, derived from solar system dynamics, which limit

the presence of a Yukawa modification of Newtonian gravity of the form

V (r) = (GM/r) exp(−r/λg)
65, and with the model-dependent bound

λg > 6 × 1019 km from consideration of galactic and cluster dynamics62.

5.3. Tests of scalar-tensor gravity

Scalar-tensor theories generically predict dipole gravitational radiation, in

addition to the standard quadrupole radiation, which results in modifica-

tions in gravitational-radiation back-reaction, and hence in the evolution

of the phasing of gravitational waves from inspiralling sources. The effects

are strongest for systems involving a neutron star and a black hole. Double

neutron star systems are less promising because the small range of masses

near 1.4 M� with which they seem to occur results in suppression of dipole

radiation by symmetry. Double black-hole systems turn out to be obser-

vationally identical in the two theories, because black holes by themselves

cannot support scalar “hair” of the kind present in these theories. Dipole

radiation will be present in black-hole neutron-star systems, however, and

could be detected or bounded via matched filtering66.

Interesting bounds could be obtained using observations of low-

frequency gravitational waves by a space-based LISA-type detector. For

example, observations of a 1.4M� NS inspiralling to a 103
M� BH with

a signal-to-noise ratio of 10 could yield a bound on ω between 2.1 × 104
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and 2.1 × 105, depending on whether spins play a significant role in the

inspiral67,68,69.

6. Conclusions

Einstein’s relativistic triumph of 1905 and its follow-up in 1915 altered

the course of science. They were triumphs of the imagination and of the-

ory; experiment played a secondary role. In the past four decades, we have

witnessed a second triumph for Einstein, in the systematic, high-precision

experimental verification of his theories. Relativity has passed every test

with flying colors. But the work is not done. Tests of strong-field gravity

in the vicinity of black holes and neutron stars need to be carried out.

Gammay-ray, X-ray and gravitational-wave astronomy will play a critical

role in probing this largely unexplored aspect of general relativity.

General relativity is now the “standard model” of gravity. But as in par-

ticle physics, there may be a world beyond the standard model. Quantum

gravity, strings and branes may lead to testable effects beyond standard

general relativity. Experimentalists will continue a vigorous search for such

effects using laboratory experiments, particle accelerators, space instrumen-

tation and cosmological observations. At the centenary of relativity it could

well be said that experimentalists have joined the theorists in relativistic

paradise.

This work was supported in part by the US National Science Founda-

tion, Grant No. PHY 03-53180.
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The quest for successful reception of gravitational waves is a long story,
with the ending still to be written. In this article, I trace the story
from thought experiment, through increasingly sophisticated design and
prototyping stages, to the point where observations of unprecedented
sensitivity are now getting under way. In the process, one can see the sort
of effort that is required to transform beautiful and simple relativistic
ideas into sensitive experiments that actually work.

1. Introduction

For this special issue on the 100th anniversary of the theory of relativity,

I would like to sketch an inspiring and informative story of one path of

its development, in a direction that still places relativity at the frontier of

scientific exploration in 2005: the reception of gravitational waves. Rooted

firmly in the prehistory of relativity (the Michelson-Morley experiment), it

aims at validating key provisions of general relativity, and turning thence

to exploring the universe in a brand new way. In telling this story, I hope

to also illustrate a process that is explored too rarely, how a physical idea

makes the transition from pure thought, through the stage of a thought

experiment, and then through the various stages of accommodation to the

realities of measurement in a world that has a lot going on beside the

experiment one hopes to carry out.

In telling this story, it will not be possible to follow all of the histor-

ical byways, nor to pursue all of the physics lessons that one could draw

from it. I will be somewhat ruthless about focusing on a single story line.

For a more balanced treatment of the history (and much insight as well),

228
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the reader is invited to read both Marcia Bartusiak’s Einstein’s Unfinished

Symphony1 (aimed at general readers but telling the story fully and richly)

and Gravity’s Shadow by Harry Collins2 (focusing on issues in the sociology

of science, but using that focus to explore both the physics and the history

of the subject.) For more depth on basic physics and technical issues, the

author’s Fundamentals of Interferometric Gravitational Wave Detectors3

can be consulted.

The story line in this article will start with Einstein’s original thoughts,

and then turn to various thought experiments that explored the physical

reality of gravitational waves. It is in that guise alone that I will treat the

work of Joseph Weber; it is impossible in this brief article to do full justice

to the wide range of his contributions to the field. Instead, I will concentrate

narrowly on the development of interferometric detectors that are just now,

in 2005, about to revolutionize the field. Even with that limitation, I will

have to keep the focus narrowed mostly to the work of just one line of

pioneers, those who most directly contributed to the development of just

one of today’s forefront detectors: the Laser Interferometer Gravitational

Wave Observatory, or LIGO.4

2. Origin of the Idea of Gravitational Waves and

Gravitational Wave Detectors

Einstein did not conceive of gravitational waves in 1905. But his work on

relativity in that year did lay the foundation for gravitational waves to be

described in 1916.5 The most direct connection is this: one of the foun-

dations of relativity is the idea that no signal can be transmitted faster

than the speed of light. While Einstein did not immediately explore the

connection with gravity, his thoughts soon turned to the problem of the

un-relativistic behavior embodied in Newton’s Law of Gravitation. The ac-

tion at a distance that so troubled Newton himself is at the core of the

conflict with relativity. If Newton’s Law were literally true, a mass’s grav-

itational field throughout all space would point directly at the mass, no

matter what the state of motion of the mass. One could use this property

to establish instantaneous gravitational communication across the universe;

moving a mass rapidly back and forth would cause the gravitational field

at large distances to point instantaneously to the different positions of the

mass. A sufficiently sensitive gravimeter could read out a message.

General relativity solves this problem. By 1916, Einstein was able to

show (although with a mistake that wasn’t corrected until 1918) that his



October 7, 2005 16:4 WSPC/Trim Size: 9in x 6in for Review Volume 09˙saulson2

230 P. R. Saulson

field equations, when specialized to the weak field case, could be cast in the

form of a wave equation, with wave speed equal to c.

It wasn’t at all obvious at first what the waves were. It took a long time

for difficulties with gauge dependence of the wave solutions to be resolved.

Along the way, Einstein and many of his contemporaries went through

waves of doubt about the physical reality of gravitational waves. The oral

history of physics contains stories of Einstein preparing a paper proving

that gravitational waves were gauge objects only, only to pull the paper at

the last moment.6 What is clearly documented, by an odd kind of negative

evidence, is Einstein’s complete lack of conviction that gravitational waves

would ever be detected. Einstein’s technical and popular writings refer often

to various experimental test of relativity; most famous are the three classic

tests (precession of orbits, bending of light paths, and gravitational red-

shift). But I have been unable to find any mention anywhere in his writings

of possible experiments to detect gravitational waves.

The layers of Einstein’s doubts were only slowly peeled back, one by

one. The proof that gravitational waves had an independent physical real-

ity (i.e. that they were not just gauge artifacts) was made by showing that

energy could be extracted from them. The thought experiment in question

is usually attributed to Bondi.7 The argument started by recognizing that

a gravitational wave could cause relative motion between two spatially sep-

arated masses. (More on this below.) The physical reality of this motion,

and thus of the gravitational wave that drove it, was made manifest by

considering that the relative motion of the masses could produce sliding

friction if there was a “rigid friction disk carried by one of them”, against

which the second mass was allowed to slide. Since energy would be turned

locally into heat by the friction, it was clear that energy was delivered to

the masses from the gravitational wave. Thus, gravitational waves carry

energy, and must be physically real themselves.

Another proof of the reality of gravitational waves was provided by

Joseph Weber, as part of his visionary program to make gravitational wave

detection a reality.8 (The authors of the proof described above were all

theorists.) Weber’s great insight was to write an explicit expression for the

differential (or tidal) force due to a gravitational wave; then, it could be

displayed as a driving force by being put on the right hand side of the

equation of motion of, say, a simple harmonic oscillator. Writing a general

relativistic gravitational effect as a force goes rather against the philosophy

of relativity, but was a necessary step to allow simple manipulation of the
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gravitational wave’s effects on an equal footing with elastic and frictional

forces.

Weber’s paper demonstration that gravitational waves were real was

only the beginning of his contributions to the field. He went on to build

and operate a number of gravitational wave detectors, resonant bars of

aluminum which were implementations of his simple models. That is to

say, he “reduced to practice” the idea of gravitational wave detection. The

importance of this step cannot be emphasized too much. Notwithstanding

the controversy that greeted Weber’s claims to have actually seen gravita-

tional waves, and the eventual rejection of those claims,9 the whole field of

gravitational wave detection owes its existence to Weber’s work.

The line of thinking that led to LIGO and its cousins was prompted

in part by Weber’s work (and by his claimed detections), but physically

it draws on simpler, more relativistic thinking. Rainer Weiss was teaching

a relativity course at MIT in the late 1960’s, and grappled with how best

to find the measurable quantities among the many coordinate-dependent

numbers in a calculation. A paper by Pirani10 pointed Weiss to one key

idea: the distance between freely-falling masses can be determined by mea-

suring the round-trip travel time of light between them. The special role

that freely-falling masses play in responding only to gravitational effects,

and thus revealing the character of the space-time in which they are em-

bedded, makes this an especially appealing kind of thought experiment.

Weiss, like Weber a few years before him, was ready to make the next leap,

that of finding a way to reduce his thought experiment to practice. In ad-

dition to the simplicity of the physics (no non-gravitational forces in the

thought-experiment version), Weiss’s alternative vision of how to detect

gravitational waves was to offer important practical advantages as well.

(A note about the risk of historical over-simplification: Weber and a

student, Robert Forward, also invented the same kind of gravitational wave

detector as Weiss did, at about the same time. For a number of years,

parallel development of the technology was carried out by Weiss at MIT

and Forward at Hughes Research Lab.11 There had also been an earlier

mention of the same idea by Gertsenshtein and Pusovoit, although they

weren’t able to follow it up with laboratory development.12)

3. Free-Mass Gravitational Wave Detectors

Let’s follow the line of thinking that led to Weiss’s (and Weber and For-

ward’s) invention of interferometric gravitational wave detection. Imagine
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a plane in space in which a square grid has been marked out by a set of

infinitesimal test masses. This is a prescription for embodying a section of a

transverse traceless coordinate system, marking out coordinates by masses

that are freely-falling (i.e. that feel no non-gravitational forces).

Fig. 1. An array of free test masses. The open squares show the positions of the masses
before the arrival of the gravitational wave. The filled squares show the positions of the
masses during the passage of a gravitational wave of the plus polarization.

Now imagine that a gravitational wave is incident on the set of masses,

along a direction normal to the plane. Take this direction to be the z axis,

and the masses to be arranged along the x and y axes. Then, if the wave

has the polarization called h+, it will cause equal and opposite shifts in the

formerly equal x and y separations between neighboring masses in the grid.

That is, for one polarity of the wave, the separations of the masses along

the x direction will decrease, while simultaneously the separations along

the y direction will increase. When the wave oscillates to opposite polarity,

the opposite effect occurs.

If, instead, a wave of polarization h× is incident on the set of test masses,

then there will be (to first order in the wave amplitude) no changes in the

distances between any mass and its nearest neighbors along the x and

y directions. However, h× is responsible for a similar pattern of distance

changes between a mass and its neighbors along the diagonals of the grid.
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There are several other aspects of the gravitational wave’s deformation

of the test system that are worth pondering. Firstly, the effect on any pair

of neighbors in a given direction is identical to that on any other pair. The

same fractional change occurs between other pairs oriented along the same

direction, no matter how large their separation. This means that a larger

absolute change in separation occurs, the larger is the original separation

between two test masses. This property, that we can call “tidal” because of

its similarity to the effect of ordinary gravitational tides, is exploited in in

the design of interferometric detectors of gravitational waves.

Another aspect of this pattern that is worthy of note is that the distor-

tion is uniform throughout the coordinate grid. This means that any one

of the test masses can be considered to be at rest, with the others moving

in relation to it. In other words, a gravitational wave does not cause any

absolute acceleration, only relative accelerations between masses. This, too,

is fully consistent with other aspects of gravitation as described by the gen-

eral theory of relativity: a single freely-falling mass can not tell whether it

is subject to a gravitational force. Only a measurement of relative displace-

ments between freely-falling test masses (the so-called “geodesic deviation”)

can reveal the presence of a gravitational field.

4. A Gedanken Experiment to Detect a Gravitational Wave

To demonstrate the physical reality of gravitational waves, concentrate on

three of the test masses, one chosen arbitrarily from the plane, along with

its nearest neighbors in the +x and +y directions. Imagine that we have

equipped the mass at the vertex of this “L” with a lamp that can be made

to emit very brief pulses of light. Imagine also that the two masses at the

ends of the “L” are fitted with mirrors aimed so that they will return the

flashes of light back toward the vertex mass.

First, we will sketch how the apparatus can be properly set up, in the

absence of a gravitational wave. Let the lamp emit a train of pulses, and

observe when the reflected flashes of light are returned to the vertex mass

by the mirrors on the two end masses. Adjust the distances from the vertex

mass to the two end masses until the two reflected flashes arrive simulta-

neously.

Once the apparatus is nulled, let the lamp keep flashing, and wait for

a burst of gravitational waves to arrive. When a wave of ̂h+ polarization

passes through the apparatus along the z axis, it will disturb the balance

between the lengths of the two arms of the “L”. Imagine that the gravita-
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Fig. 2. A schematic diagram of an apparatus that can detect gravitational waves. It
has the form of a Michelson interferometer.

tional wave has a waveform given by

h
µν = h(t)̂h+.

To see how this space-time perturbation changes the arrival times of the

two returned flashes, let us carefully calculate the time it takes for light to

travel along each of the two arms.

First, consider light in the arm along the x axis. The interval between

two neighboring space-time events linked by the light beam is given by

ds
2 = 0 = gµνdx

µ
dx

ν

= (ηµν + hµν) dx
µ
dx

ν

= −c
2
dt

2 + (1 + h11(t)) dx
2
.

(1)

This says that the effect of the gravitational wave is to modulate the square

of the distance between two neighboring points of fixed coordinate sepa-

ration dx (as marked, in this gauge, by freely-falling test particles) by a

fractional amount h11.
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We can evaluate the light travel time from the beam splitter to the end

of the x arm by integrating the square root of Eq. 1
∫ τout

0

dt =
1

c

∫ L

0

√

1 + h11dx ≈

1

c

∫ L

0

(

1 +
1

2
h11 (t)

)

dx, (2)

where, because we will only encounter situations in which h � 1, we’ve

used the binomial expansion of the square root, and dropped the utterly

negligible terms with more than one power of h. We can write a similar

equation for the return trip
∫ τrt

τout

dt = −

1

c

∫

0

L

(

1 +
1

2
h11(t)

)

dx. (3)

The total round trip time is thus

τrt =
2L

c
+

1

2c

∫ L

0

h11(t)dx −

1

2c

∫

0

L

h11(t)dx. (4)

The integrals are to be evaluated by expressing the arguments as a function

just of the position of a particular wavefront (the one that left the beam-

splitter at t = 0) as it propagates through the apparatus. That is, we should

make the substitution t = x/c for the outbound leg, and t = (2L − x)/c

for the return leg. Corrections to these relations due to the effect of the

gravitational wave itself are negligible.

A similar expression can be written for the light that travels through

the y arm. The only differences are that it will depend on h22 instead of

h11 and will involve a different substitution for t.

If 2πfgwτrt � 1, then we can treat the metric perturbation as approxi-

mately constant during the time any given flash is present in the apparatus.

There will be equal and opposite perturbations to the light travel time in

the two arms. The total travel time difference will therefore be

∆τ(t) = h(t)
2L

c
= h(t)τrt0, (5)

where we have defined τrt0 ≡ 2L/c.

If we imagine replacing the flashing lamp with a laser that emits a

coherent beam of light, we can express the travel time difference as a phase

shift by comparing the travel time difference to the (reduced) period of

oscillation of the light, or

∆φ(t) = h(t)τrt0

2πc

λ
. (6)

Another way to say this is that the phase shift between the light that

traveled in the two arms is equal to a fraction h of the total phase a light
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beam accumulates as it traverses the apparatus. This immediately says

that the longer the optical path in the apparatus, the larger will be the

phase shift due to the gravitational wave (until L reaches one quarter of

the gravitational wavelength.)

Thus, this gedanken experiment has demonstrated that gravitational

waves do indeed have physical reality, since they can (at least in princi-

ple) be measured. The measuring device that we invented turns out to be

a Michelson interferometer. Furthermore, it suggests a straightforward in-

terpretation of the dimensionless metric perturbation h. The gravitational

wave amplitude gives the fractional change in the difference in light travel

times along two perpendicular paths whose endpoints are marked by freely-

falling test masses.

5. First Steps from Thought Experiment to Real

Experiment

The essence of the argument given above is found in Weiss’s first publication

on the subject (actually only an internal MIT research progress report.)13

But Weiss went much further than a thought experiment. The core of his

1972 paper was a serious account of how to construct an experiment, made

with existing technology out of real materials, that could implement a good

approximation to the thought experiment described above. He went on to

list the noise sources that would limit the sensitivity of a gravitational wave

detector built according to his design, a list that is remarkably complete

even when read in 2005. The punch line of the whole argument is that it was

easy to picture a gravitational wave detector that could perform substan-

tially better than those with which Weber was claiming to see gravitational

waves. Thus, either his discoveries could be followed up in greater detail

(if they proved genuine), or much deeper searches could be carried out, if

Weber’s events weren’t genuine (as eventually proved to be the case.)

It is important to have the basic scale of the measurement in mind,

in order to appreciate the challenge that experimenters were facing. The

first generation of Weber bars had a sensitivity to gravitational waves with

strain amplitudes of order 10−16. By the time one recognizes, with the ben-

efit of hindsight, that Weber’s results were erroneous and that one would

have to look for much weaker signals before having a good chance of find-

ing any, the sensitivity goal needs to be more like 10−21, or perhaps even

smaller. (The community consensus that this was roughly the required

sensitivity was evident by the time of the Battelle/Seattle conference of
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1978.14) This is a tremendous challenge to measurement; the extreme mea-

sures needed to meet the challenge are reflected in what Weiss proposed

to build.

Let’s look at the basic features of Weiss’s proposal. Falling masses aren’t

easy to use in a terrestrial laboratory, so he substituted masses held so that

their motion in the horizontal direction was that of a harmonic oscillator

with low resonant frequency. (Weiss called for “horizontal seismometer sus-

pensions”, realized in current detectors as pendulums with very fine metal

or silica fibers.) At frequencies above the resonance, the masses will respond

as if they were free, while nevertheless staying in place on long time scales.

For sensing the differential changes in test mass separation, Weiss called for

a Michelson interferometer, as suggested in the thought experiment above.

The nearly free test masses play the optical role of the mirrors of the in-

terferometer, so that the phase difference between the arms fulfills Weiss’s

implementation of Pirani’s prescription. The light source illuminating the

interferometer was to be a powerful stable laser, which would enable very

fine length comparisons to be made.

The dimensions of the interferometer are a crucial design parameter. The

signal (i.e. the phase shift of the light in an arm) will grow as the separation

of the masses grows, until the round trip light travel time reaches one half

of the period of the gravitational wave. The simplest thing (and in many

ways the best) would be to make a simple Michelson interferometer with

one round trip for the light between beam splitter and end mirror. For a

gravitational wave with a period of 1 ms, the arm length would be 75 km.

At 10 ms, the length swells to 750 km. A nice idea, but hard to build on the

Earth, and to afford to build. (For one thing, the space between the mirrors

should be evacuated, so that there aren’t spurious apparent length changes

coming from variations in the index of refraction of air. The curvature of

the Earth is also complicating factor for construction of straight paths of

this length.)

The more practical thing to do is to place the test masses closer together

than the ideal, but then to make up an optical path as long as the ideal by

reflecting the light between them multiple times. Weiss proposed a practical

optical folding scheme, based on Herriott delay lines. It worked, although

most present detectors use a cleverer (although trickier) scheme proposed

by Ron Drever. (See below.)

The length is a crucial design parameter because it is related to the

signal to noise ratio. The signal is largest when the length is the longest

(up to a quarter of a gravitational wavelength.) How does the noise go?
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That depends on which noise source we are talking about. Measurement of

phase shifts themselves depends on fluctuations in light power. If governed

only by the statistical fluctuations in photon arrival rate (“shot noise”) then

one does best using the largest amount of light power. The signal to noise

ratio is maximized by maximizing the optical path length and the light

power, but doesn’t depend on whether or not the optical path is folded to

fit into a smaller physical length.

A different tradeoff occurs for most of the other noise sources that affect

an interferometer. They are mainly effects that cause the test masses to

move. For this kind of noise (generically called displacement noise), the

more times the light bounces off a mirror, the greater the degradation of the

signal to noise ratio. For this reason, the best interferometric gravitational

wave detector is the longest one it is possible to build. This is the reason

that each LIGO site is 4 km long.

Weiss produced a rather long list of displacement noise terms. The pres-

ence of each in significant amounts calls for the longest arms that are possi-

ble, but beyond that each is mitigated by a separate strategy. The length of

the list gives one hint of why the successful implementation of gravitational

wave detection is a challenge.

Here is Weiss’s list:

• mechanical thermal noise, or Brownian motion, of the test masses

and each of their internal modes of vibration

• radiation pressure noise from the light in the interferometer

• seismic noise

• “radiometer effect” noise, from residual gas in the vacuum being

heated where light is absorbed on mirror surfaces

• cosmic ray impacts

• gravitational-gradient noise, or noise arising from the Newtonian

gravitational force of moving massive bodies, from earth motion

due to seismic noise, or from density fluctuations in the air around

the interferometer

• forces from time-varying electric fields (such as the “patch effect”)

interacting with the test masses

• forces from time-varying magnetic fields interacting with any mag-

nets on the test masses (for control) or with magnetic impurities.

This list defined much of the design work that followed Weiss’s 1972

paper. His list was remarkably prescient, so much so that the few items not

on it represent interesting stories in their own right. Below, we will compare



October 7, 2005 16:4 WSPC/Trim Size: 9in x 6in for Review Volume 09˙saulson2

Receiving Gravitational Waves 239

the important noise sources at various future stages of design, and in the

nearly completed interferometers of 2005, to Weiss’s list.

It is important to mention one other feature of Weiss’s proposed design.

Weiss understood that, in choosing an interferometer as the measuring de-

vice, he had paid for high sensitivity with small dynamic range. That is,

an interferometer gives an output proportional to the input motions only

over a small range of motion; the output is actually a periodic function of

the input. Furthermore, minimization of the shot noise and the other less

fundamental (but still important) optical noise sources requires that the

interferometer stay very close to a chosen operating point. Finally, even to

keep the approximately-free masses properly aligned with one another so

that the light forms an interferometer, it is necessary to be able to control

the angles of the mirrors. As a result, it is necessary to equip the interfer-

ometer with an elaborate control system. Much of the careful engineering

of a successful interferometer goes into a control system that can meet all

of the requirements listed here, without in itself injecting noise that would

dominate the experiment’s noise budget. (This makes the experiment de-

sign bear a strong resemblance to the “null instrument” character of, for

example, the Eötvös experiment designed by Weiss’s postdoctoral mentor

Robert Dicke.15)

The arc of the story line is starting to become apparent here. At the level

of basic physics, freely-falling masses are the natural way to make manifest

the fundamental structure of space-time, and in particular to reveal the

passage of a gravitational wave. At the level of a thought experiment, too,

it is natural to measure the separation of freely-falling masses by bouncing

light off of their mirrored surfaces. Once one tries to see how to make a pre-

cise measurement, though, suddenly the simplicity vanishes. Freely-falling

masses are replaced by masses held in low-frequency harmonic oscillators.

Those in turn need to rest on elaborate mechanical filters to reject seis-

mic noise. And all of the optical components must have their positions and

angles continuously controlled at low frequencies in order for the interfer-

ometer to function at all.

It is almost a wonder that systems like this can approximate in any

way the ideal of a set of freely-falling masses. And yet they do, at least at

high frequencies, where the suspension’s forces are negligible and the effect

of control forces on the masses is small or accounted for. But the contrast

between the pure and simple world of theory and the complex world of a

high-sensitivity experiment is striking.
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6. Further Advances

Weiss’s plan laid out a basic scheme for sensitive detectors of gravitational

waves, but by itself the plan would not have sufficed to make what has

come to be known as LIGO. Key additional features were contributed by a

host of other physicists and engineers.

One very important contributor was Ron Drever. He had been drawn

into gravitational wave detection by Weber’s work. When his (and others’)

repetitions of Weber’s experiment failed to yield any evidence for the signals

that Weber claimed to see, Drever turned his attention to ways in which

much more sensitive gravitational wave detectors could be built.

Drever had learned of the idea to make interferometric detectors, and

began exploring this technology himself. But he soon became convinced that

the beam-folding technology proposed by Weiss, the Herriott delay line, had

numerous practical difficulties. One was that the mirrors had to be quite

large in order to keep the various reflections spatially separated, of order

1 m in diameter for a version with kilometer-scale arm lengths. Another

problem (first recognized by the Max Planck group working in Garching,

Germany16) was that light could scatter from the intended path into other

spots in the pattern, due to imperfections in the mirror surfaces. Time

variations in this scattering, caused by fluctuations in the laser wavelength

or by low-frequency motion of the mirrors, became a serious source of noise

(not on Weiss’s list.)

Drever proposed a solution that has been adopted by most of the large

interferometers operating today. Instead of spatially-separated reflections

from the mirrors, superimpose them all in one place. This sounds like non-

sense until one realizes that a pair of mirrors can be operated as a Fabry-

Perot cavity, in which the light reflected from the cavity (near resonance)

changes phase as the length of the cavity changes, as though it had made

a large number of discrete round trips.

Drever, in a set of lecture notes where he first explained this idea, is

explicit about both the advantages and the drawbacks of this beam-folding

scheme.17

The diameter of the cavity mirrors can be considerably smaller than

that of delay-line mirrors.... This reduces the diameter of the vac-

uum pipe required, and also may make it easier to keep mechanical

resonances in the mirrors and their mountings high compared with

the frequency of the gravity waves, thus minimizing thermal noise.

The Fabry-Perot system has however, some obvious disadvantages
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too — particularly the requirement for the very precise control of

the wavelength of the laser and of the lengths of the cavities. In-

deed with long cavities of the high finesse desirable here exceptional

short-term wavelength stability is required from the laser.

The heart of the difficulty is that, unlike a delay line, a Fabry-Perot

cavity stores light because it is in itself an interferometer — the trapping of

the light for many round trips comes about only by careful adjustment of the

phases of the superposed beams. This can only occur when the wavelength

of the light and the length of the cavity are in resonance, that is matched so

that an integer number of waves fits into the cavity. Very near the resonance

condition, the phase of the output light varies with mirror separation in the

same way as the light that has traveled through a delay line. To achieve

this condition, the light and the arm have to be locked together by a servo

system. Drever’s lecture goes on to describe the style of servo required,

one that he and his group developed in conjunction with John Hall’s group

at the Joint Institute for Laboratory Astrophysics in Boulder, Colorado.18

This servo design has its roots in an analogous microwave device developed

by Robert Pound.19

While the essence of the difficulty was thus solved, in practice the use

of Fabry-Perot cavities has additional complications. One is due to the fact

that when a cavity is not very close to resonance, the phase of the output

light has almost no dependence at all on the separation of the mirrors,

thus making it very hard to generate the sort of signal necessary to acquire

the lock on resonance in the first place. An additional level of complica-

tion comes when the arm cavities are assembled into a complete Michelson

interferometer, since the interferometers within the interferometer need to

be separately controlled without degrading the function of the main in-

strument. Solving these sorts of problems robustly proved to be challenging

work. That it now has been done successfully in LIGO is a great engineering

triumph.

Drever goes on to show another important improvement in sensitivity

that can be achieved with Fabry-Perot technology. It starts from recogniz-

ing an opportunity in operating the interferometer so that, in the absence

of a gravitational wave, no light exits the interferometer toward the output

photodetector; instead, all of the light returns toward the laser. Weiss had

proposed this operating point as a way of minimizing excess noise in the

interferometer readout. Drever’s insight was that, given the ultra-low levels

of absorption then becoming available in mirror coatings, the power in that
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“waste” light was nearly as great as that of the fresh light arriving from the

laser. Drever proposed an additional mirror to redirect the output light into

the interferometer, in superposition with the new light. In effect, the whole

interferometer becomes a single Fabry-Perot resonant cavity. This system,

called power recycling, has an advantage in available effective light power

that is dramatic; as implemented in LIGO, it is as if one has a laser 30 times

more powerful than the one actually used. Thus, there is a large reduction

in the shot noise (which shrinks as the light power grows) that is the fun-

damental limit to interferometer readout precision. This advantage is paid

for by an additional layer of complexity of interferometer control, beyond

that of just using Fabry-Perot cavities for the arms of the interferometer.

Nevertheless, the challenge has been met, and the benefits achieved.

7. First Steps Toward Kilometer-Scale Interferometers

Laboratory-scale implementations of these ideas were pursued in several

places: at MIT, Glasgow, Caltech, and Garching. The best of these efforts

achieved a great deal of success in operating interferometers which per-

formed about as well as their noise budgets would allow.20 But none of

them was able to catch up with the continuing progress in development

of Weber-style detectors, now cooled with cryogens. Nor were these in-

terferometers intended to do so. Instead, they were considered prototypes

of devices that could truly implement Weiss’s vision, interferometers with

kilometer-scale arms. Indeed, the groups mentioned above came together as

two of today’s leading projects: the Glasgow and Garching groups formed

the core of the GEO collaboration, while the MIT and Caltech groups even-

tually coalesced as the LIGO project. The Italian and French groups that

formed the Virgo project, and the Japanese groups that built TAMA, also

formed at about the same time. There is also an active effort in Australia.

Now, the arc of our story moves farther still from the beautiful idealiza-

tion of pure theory or the thought experiment. Large interferometers are

inherently big-science projects. Construction of a high precision scientific

instrument kilometers on a side calls for careful engineering as more limi-

tations of the practical world join the picture. (A new concept, cost, enters

the picture for the first time, but it is beyond the scope of this article to

discuss it.)

Each of the large projects mentioned above went through similar plan-

ning processes, at roughly the same time. For pedagogical purposes, I choose

to focus on a single line of development, that of the U.S. LIGO Project.
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In almost the same sense as the early table-top interferometers were pro-

totypes of larger instruments, so too did the proposals for kilometer-scale

interferometers have a prototype. This was the report called “A Study of a

Long Baseline Gravitational Wave Antenna System”, submitted to the U.S.

National Science Foundation in October 1983.21 (It has since its presenta-

tion been called the “Blue Book” because of the color of the cheap paper

cover in which it was bound.) It was prepared as the product of a planning

exercise funded by the National Science Foundation starting in 1981. The

most novel feature is that, in addition to sections describing the physics

of gravitational wave detection, it also contains extensive sections written

by industrial consultants from Stone & Webster Engineering Corporation

and from Arthur D. Little, Inc. These latter contributors were essential,

because this document contains, for the first time anywhere, an extensive

discussion of the engineering details specific to the problems of the con-

struction and siting of a large interferometer. The report was presented by

the MIT and Caltech groups at a meeting of the NSF’s Advisory Council

for Physics late in 1983. While not a formal proposal, it served as a sort of

“white paper”, suggesting the directions that subsequent proposals might

(and in large measure did) take.

The industrial study was undertaken with the aim of identifying what

design trade-offs would allow for a large system to be built at minimum cost,

and to establish a rough estimate of that cost (along with cost scaling laws)

so that the NSF could consider whether it might be feasible to proceed with

a full-scale project. Before such an engineering exercise could be meaningful,

though, it was necessary to define what was meant by “full-scale”. The Blue

Book approaches this question by first modeling the total noise budget as a

function of frequency, then evaluating the model as a function of arm lengths

ranging from 50 meters (not much longer than the Caltech prototype) to

50 km. The design space embodied in this model was then explored in a

process guided by three principles:

• “The antenna should not be so small that the fundamental limits

of performance can not be attained with realistic estimates of tech-

nical capability.” This was taken to mean that the length ought

to be long enough that one could achieve shot noise limited per-

formance for laser power of 100 W, without being limited instead

by displacement noise sources, over a band of interesting frequen-

cies. The length resulting from this criterion strongly depended on

whether one took that band to begin around 1 kHz (in which case
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L = 500 m was adequate), 100 Hz (where L = 5 km was only ap-

proaching the required length), or lower still (in which case even

L = 50 km would not suffice.) Evidently, this strictly physics-based

criterion was too elastic to be definitive.

• “The scale of the system should be large enough so that further

improvement of the performance by a significant factor requires

cost increments by a substantial factor.” In other words, the system

should be long enough so that the cost is not dominated by the

length-independent costs of the remote installation.

• “Within reason no choice in external parameters of the present an-

tenna design should preclude future internal design changes which,

with advances in technology, will substantially improve perfor-

mance.” This was a justification for investing in a large-diameter

beam tube, and for making sure that the vacuum system could

achieve pressures as low as 10−8 torr.

In an iterative process, rough application of these principles was used

to set the scope of options explored by the industrial consultants. Then at

the end of the process, the principles were used again to select a preferred

design. Arm lengths as long as 10 km were explored, and tube diameters as

large as 48 inches. An extensive site survey was also carried out by the con-

sultants. It was aimed at establishing that sites existed that were suitable

for a trenched installation (which put stringent requirements on flatness

of the ground) of a 5 km interferometer. The survey covered Federal land

across the United States, and a study of maps of all land in the Northeast-

ern United States, along with North Carolina, Colorado, and Nebraska.

Thirteen “suitable” sites were identified. Evaluation criteria also included

land use (specifically that the site not be crossed by roads, railroads, or oil

and gas pipelines), earthquake risk, drainage, and accessibility.

The site survey also attempted to identify possibilities of locating an

interferometer in a subsurface mine, which would give a more stable thermal

environment and perhaps also reduced seismic noise (if it were located deep

enough, and if it were inactive.) No mines were found in the United States

with two straight orthogonal tunnels even 2 km in length.

The conclusion of the exercise was a “proposed design” with the follow-

ing features:

• Two interferometer installations separated by “continental”

distances.

• Interferometer arm length of L = 5 km.
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• Beam tubes of 48 inch diameter made of aluminum (chosen for an

expected cost savings over stainless steel) pumped by a combina-

tion of Roots-blowers for roughing and ion-pumps for achieving and

maintaining the high vacuum. A delay line interferometer would re-

quire a diameter of almost the proposed size. The large diameter

would also allow the installation of multiple Fabry-Perot interfer-

ometers side by side.

• The proposed installation method was to enclose the tube in a 7’ by

12’ cover constructed of a “multi-plate pipe-arch”, in turn installed

4 feet below grade in a trench that was subsequently back-filled

with soil.

Note that there were no specific recommendations for the design of the

interferometers themselves, beyond the “straw man” used for estimating

the noise budget.

The Blue Book was presented by the MIT and Caltech groups to the

National Science Foundation’s Advisory Committee for Physics, and got a

respectful reception. As a result, the MIT and Caltech research groups were

encouraged to combine their forces to develop a complete specific design.

Subsequently, both groups received funding with the eventual goal of a joint

proposal for construction of a large interferometer system.

The years between the Blue Book’s submission in 1983 and the ap-

proval of the construction of LIGO in 1991 were eventful ones. The Caltech

and MIT groups worked together, adopting common management in 1987.

Progress on laboratory prototypes was heartening. A 40-meter interferom-

eter at Caltech achieved shot-noise limited sensitivity above 1 kHz, at a

level of h(f) ≈ 2 × 10−19
/
√

Hz. This level of noise demonstrated that, at

least at those high frequencies, there were no substantial displacement noise

sources unaccounted for in the noise budget.

The 1989 proposal to build LIGO specified these key features:

• LIGO would consist of two widely separated sites under common

management. This would allow searches for transient events to

make use of coincidence techniques.

• The instruments would be Michelson interferometers with the

Fabry-Perot system for beam folding in the arms and for power

recycling.

• The two LIGO facilities would have arm lengths of 4 kilometers.

• One of the LIGO sites would contain two interferometers, one of full

length and one only 2 kilometers long. This would provide several
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benefits. One was that detection could be based on triple coin-

cidence, not double, with obvious benefits in reduced false-alarm

rates. The other advantage was that genuine gravitational wave sig-

nals should show the proper scaling with interferometer arm length,

a signature not likely to be mimicked by most noise sources.

• Design parameters were chosen which would make LIGO by far

the most sensitive gravitational wave detector ever operated, suffi-

cient to get into the range where detection of astronomical signals

becomes plausible (although not guaranteed.)

8. LIGO Moves Forward

Even with the approval of construction, much engineering and design work

remained to be done. This is the kind of work that, although filled with

creative solutions to physics challenges, is usually not well documented, at

least in the regular refereed literature. To gain insight, one needs to turn

to internal technical documents.

The LIGO Science Requirements Document (SRD)22 is a useful sum-

mary of the official goals of the team building LIGO. Among other things,

it tabulates the nominal values of the key parameters of the interferometer

and its mirrors (arm length, laser wavelength, laser power, mirror reflectivi-

ties, mirror dimensions, quality factors of mirror and suspension modes, and

performance expected from the seismic isolation system.) Then, by mod-

eling the key noise mechanisms, the LIGO team predicted what limiting

sensitivity (or “noise floor”) could be expected from such an interferome-

ter. Three power laws bound the performance. At the lowest frequencies (up

to about 40 Hz) seismic noise sets the limit; the decrease with frequency is

so steep that it came to be called the “seismic wall”. At intermediate fre-

quencies (roughly from 40 Hz to 150 Hz), the off-resonance thermal noise

associated with the pendulum mode of the test masses set the limit on

performance. Finally, above 150 Hz, the shot noise in the readout of the

arm length difference in the interferometer set the limit to performance.

A graph of this predicted noise floor came to be plotted on every graph

showing performance of the interferometers, throughout the commissioning

process.

A team of over one hundred engineers and physicists worked at Caltech

and MIT (and eventually at the two sites at Hanford, Washington and

Livingston, Louisiana) to design, build, install, and commission the three

LIGO interferometers. The many-faceted challenges that they faced defy
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a simple linear exposition. But perhaps a few principal themes of their

work can illustrate how this phase fits into the arc of the story that we are

telling. After the theory, the thought experiments, the conceptual designs

of the interferometers and the LIGO observatory system overall, this was

the period in which the final choices of materials, dimensions, construction

methods, and assembly plans had to be made, after which parts were built

or bought, and the whole interferometer assembled. The stakes were high:

real money was being spent, and choices needed to be right (or to be fixed

if they weren’t.)

One interesting document from this phase of work is the Detector Sub-

system Requirements, written in 1996.23 In the early part of this work, the

division of the interferometer into subsystems is outlined. (See the explana-

tory diagram, Figure 3.) Each major subsystem was assigned an official

TLA (three letter acronym.) The subsystems were:

• PSL, the pre-stabilized laser,

• IOO, input optics components,

• COC, core optics components (the main interferometer mirrors),

• COS, core optics support components,

• LSC, length sensing and control system,

• ASC, angular sensing and control system,

• SUS, mirror suspension system, and

• SEI, seismic isolation system.

Also in LIGO were the physical environment monitoring system (PEM, not

shown in the diagram) and the control and data system (CDS, shown but

not with its proper TLA.)

This diagram was constructed to show the interfaces (mechanical, opti-

cal, and electrical) of the various subsystems as they related to one another

to form a whole LIGO interferometer. The fact that such a diagram was

needed testifies to both the complexity of the whole system, and to the con-

sequent need to parcel out design work to different teams, who nevertheless

needed to ensure that all of the parts would work together.

The main function of the Detector Subsystems Requirements document

was to deal with the various sources of “technical noise”, noise processes

that were considered amenable to careful engineering. Beyond a simple list-

ing of known noise processes, the document assigned budgeted amounts of

noise that were allowed from each process. The goal was to ensure that none

of the technical noise sources would make a significant contribution to the

final noise spectrum of the interferometers. Only seismic, pendulum ther-



October 7, 2005 16:4 WSPC/Trim Size: 9in x 6in for Review Volume 09˙saulson2

248 P. R. Saulson

ASC

LSC

PSL

Control and Monitoring SystemAll Subsystems

Mechanical interfaces Optical interfaces Electrical interfaces

IOO COC COS

SUS

SEI

Fig. 3. The subsystems of LIGO, and the interfaces between them.

mal, and shot noises were to be allowed to define the ultimate performance.

“The subsystem designs are constrained to limit the effect of each technical

noise source to a level lower than the allowed overall noise by a linear fac-

tor of at least 10.” From this noise budgeting exercise, the requirements on

the main parameters of the interferometer were seen to “flow down” into

requirements on the various subsystems.

Another figure from the Detector Subsystem Requirements document

shows the noise spectra from more noise sources than the three used to

construct the “noise floor” of the Science Requirements Document. (See

Figure 4.) In addition to seismic noise, pendulum thermal noise, and shot

noise, the figure gives the expected contributions from

• thermal noise in the suspension top plate, pendulum wire “violin”

modes, the vertical “bounce” mode of the pendulum suspension,

the pitch and yaw motions of the mirrors, and in the internal vi-

brations of the mirrors,

• radiation pressure noise,

• Newtonian gravitational gradient noise from the environment (cal-

culated for the Hanford seismic noise spectrum), and

• phase noise due to residual hydrogen gas in the vacuum system.

As of the date of this document, seismic noise transmitted through the

vibration isolation stacks was expected to exceed the noise budget up to
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about 60 Hz; now it is known that the isolation systems perform better than

that. Also, narrow peaks in the thermal noise spectra associated with wire

“violin” resonances and the internal resonance of the mirrors show up above

the shot noise limit at high frequencies, but this was entirely expected. The

rest of the noise budget shows a complete success in restricting technical

noise to low enough levels, at least at this stage of the design process.
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Fig. 4. Noise budget for LIGO, from the Detector Subsystems Requirements document.

9. Construction, Installation, and Commissioning

Construction of LIGO got under way in 1994. Here are a few key dates:24

• 1994: Construction begins at Hanford, WA site.

• 1995: Construction begins at Livingston, LA site.

• 1998: Completion of buildings and of concrete foundations for 4 km

arms.

• 1999: Completion of vacuum systems.

• 2000: Installation of interferometer parts close enough to complete

that integrated testing could begin.

These milestones can serve as a reminder that LIGO was not only a physics

experiment, but a large civil construction project, and a vacuum system
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construction project of notable magnitude as well. Realization of a gravi-

tational wave detector involved a lot of cranes, bulldozers, cement trucks,

and welding rigs.

The first operation of a LIGO interferometer occurred in October 2000.

At that moment, it did not matter that the interferometer noise was or-

ders of magnitude above the SRD noise floor. It was a triumph just to see

that the tricky control problem of nested Fabry-Perot cavities had been

successfully solved.

Soon, though, the next hard task began, “commissioning”, that is mak-

ing the interferometers work closer and closer to their design performance.

The style of work was a mix of staged implementation of design features,

debugging of problem circuits or out-of-spec optics, improvisation of fixes

to unforeseen issues, and general problem-solving. Interferometer alignment

proved to be more difficult than expected. Seismic noise due to logging near

the Livingston site was strong enough to prevent interferometer operation

during workdays, necessitating the addition of an advanced servo-based vi-

bration isolation system. Absorption of light by the mirrors was less than

expected in some of the mirrors and more than anticipated in others, so the

figures of some mirrors needed to be adjusted by illuminating them with

high power CO2 lasers. The general spirit was to measure, model, impro-

vise and then engineer solutions to both these large problems and others

too numerous to mention here. The success that has been achieved testifies

to both a technically strong team of physicists and engineers, and to good

management that husbanded resources so that there was something left

with which to solve the problems. Steady support of the funding agency,

the National Science Foundation, was also crucial.

During the commissioning phase, there have been several pauses to op-

erate the three LIGO interferometers as actual gravitational wave detectors,

thus producing data that could be searched for signals. The first Science

Run (S1) began on 23 August and ended on 9 September 2002. Since then,

there have been three more Science Runs. Most have been carried out in co-

incidence with operation of the GEO600 interferometer in Germany; some

have also been coordinated with the TAMA 300 m interferometer in Japan

and with the ALLEGRO bar at Louisiana State University.

An account of the state of the LIGO and GEO instruments during the

S1 run can be found in 24. The article gives a detailed account of the state

of the various subsystems of the interferometers. The noise was roughly

two orders of magnitude above the SRD noise floor at high frequencies,

and a larger factor above at frequencies below a few hundred Hz. (See
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Figure 5.) All of the major noise sources were understood: at high fre-

quency the limit was shot noise and electronic noise, high because at that

time only a small fraction of the laser power could be used. Near 100 Hz was

a band dominated by noise from the circuits that sent currents to the mag-

netic actuators on the mirrors; that circuit has since been re-engineered.

At low frequency, excess noise came from optical lever servos used to con-

trol the interferometer alignment. This noise, too, has since been lowered

dramatically.
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Fig. 5. Strain noise spectrum of the Livingston 4 km interferometer during the S1 run.
Also shown are the leading noise terms, and the SRD noise floor.

One other way in which the LIGO interferometers fell short of expecta-

tions during S1 was in their “duty cycle”, that is the fraction of time that

they stayed at their operating points for successfully collecting data. The

2 km and 4 km interferometers at Hanford achieved duty cycles of 73%

and 57%, respectively, while the Livingston 4 km interferometer achieved

a duty cycle of only 41%, because of the noise from logging. (GEO600 had

dramatically better success, a duty cycle of 98%.) The lesson is that it is

not just the sensitivity that requires hard work in order to achieve; the reli-

ability needed for a functioning observatory also requires substantial effort.

Since S1, the duty cycle of the LIGO interferometers has been improved

substantially.

The data from the S1 run was analyzed for signals of four different

classes: sinusoidal signals (such as would be expected from not-quite-round
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pulsars),25 quasi-sinusoids sweeping up in frequency and amplitude (which

are expected from inspiraling neutron star binary systems),26 brief tran-

sients of a variety of waveforms (perhaps generated by supernovae),27 and

steady background noise (such as might be generated in the early universe,

or by the superposition of many discrete sources.)28

The analysis was carried out by a group not yet mentioned in this article,

the LIGO Scientific Collaboration, or LSC. It was formed in 1997 to carry

out the scientific program of LIGO. It now has a membership of over 500

scientists and engineers; a strong core of its membership is employed at

Caltech, MIT, or one of the two LIGO sites, but it also includes several

hundred scientists from over thirty U.S. educational/research institutions

and about 100 members from the nine institutions in Europe that make up

the GEO collaboration. The LSC also carries out research and development

on advanced interferometers. (See below.)

By the time of the fourth Science Run (S4, 22 February to 23 March

2005), the interferometers were running within about a factor of two of the

noise floor of the Science Requirements Document. (See Figure 6.)29 Further

commissioning work subsequent to the S4 run has brought the noise level

even closer to the SRD noise floor, including to within a few tens of percent

in the shot noise limited region.30
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Equally interesting from the point of view of this article’s story arc is

the noise budget that underlies and explains this latest measured noise.

While it includes the “big three” (shot noise, pendulum thermal noise, and

seismic noise), it needs to account for a long list of other technical noise

contributions, including many not in the Detector Subsystems Requirements

document. The technical noise terms most significant at this moment are

noise coming from the sensors used to control mirror alignment. Next in

importance is noise that comes from the control of the position of the in-

terferometer’s beam-splitter and the power recycling mirror. Various other

sources of noise are less significant, but still make a measurable contribu-

tion at present. Once these “extra” noise terms are included, the measured

spectrum is very well explained.

There are several lessons to draw from this progress. One is the triumph

of engineering behind the accomplishment of performance so close to the

SRD noise floor, as well as a triumph of physical understanding in the

ability to model the noise budget so completely. Another, though, is the

difficulty of realizing what seemed like such simple thought experiment in

Pirani’s paper. We are almost there, but looking back one can see how much

hard work it took to get where we are.

10. Are We There Yet?

The title of this article is “Receiving Gravitational Waves”. As I write, the

LIGO Scientific Collaboration is finishing the papers describing the analysis

of data from the S2 and S3 runs, and is already well into the analysis of

data from our most recent run, S4. The LSC is also making plans for a long

science run (of order one year in duration) that will constitute the fulfillment

of LIGO’s role as an observatory searching for gravitational waves.

But when will we (and our colleagues working on other detectors) ac-

tually receive gravitational waves? That is hard to predict. Although our

published papers to date are only upper limits, it would not be out of

the question for there to be a detection waiting for us in the data already

recorded. Our long science run has a reasonable chance at a successful “re-

ception”, although according to most astronomical models we would have

to be a bit lucky for that to occur.

Over the next several years, a world-wide network of interferometers

(and several Weber-style bars of almost comparable sensitivity) will search

for gravitational waves. GEO600 continues to approach its design sensitiv-

ity, and will continue to coordinate its running with LIGO. TAMA also has
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plans to continue improving and to continue coordinated running. Soon,

too, Virgo’s 3 km interferometer will come on line. It is expected have a

sensitivity comparable to LIGO’s. This set of detectors will constitute a

powerful global network in the search for gravitational waves.

In case we aren’t lucky enough to find signals at this level of sensitivity,

there is a plan that ought to ensure success. The initial conception of LIGO

(and the vision approved by the NSF) called for evolution in the installed in-

terferometers. Almost since the start of the construction of LIGO, research

has been moving forward on ways to build a better interferometer. One of

the earliest and main roles of the LIGO Scientific Collaboration has been

to coordinate this research and to pull it together into a coherent design.

The outcome of that work was the proposal to build Advanced LIGO.31

Expected to improve sensitivity by at least a factor of ten at high frequen-

cies and to extend the observing band down as low as 10 Hz, Advanced

LIGO will use the same buildings and vacuum system as initial LIGO, but

will replace all of the interferometer components. At that new standard of

performance, standard astronomical wisdom predicts that a multitude of

signals will be within our grasp. (There are also plans for advanced inter-

ferometers under serious consideration in Japan and in Europe.)

Fig. 7. A model of the noise spectrum of the “reference design” for Advanced LIGO,
compared with the SRD noise floor of initial LIGO. There are several features worthy of
note. Seismic noise will not be important above 10 Hz. At most frequencies shown, the
spectrum is dominated by fundamental interferometer sensing noise (shot noise at high
frequencies, radiation pressure noise at low frequencies. Thermal noise from the mirror’s
internal modes of vibration is important in the vicinity of 100 Hz.
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In November 2004, the National Science Board approved Advanced

LIGO. It is hoped that funding will be approved by the U.S. Congress

within a few years, so that Advanced LIGO can begin searching the skies

early in the next decade.
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CHAPTER 10

RELATIVITY IN THE GLOBAL POSITIONING SYSTEM

NEIL ASHBY

Department of Physics, University of Colorado
Boulder, CO 80309-0390, USA
Neil.Ashby@mobek.colorado.edu

The Global Positioning System (GPS) uses accurate, stable atomic
clocks in satellites and on the ground to provide world-wide position
and time determination. These clocks have gravitational and motional
frequency shifts which are so large that, without carefully accounting
for numerous relativistic effects, the system would not work. This article
discusses the conceptual basis, founded on special and general relativity,
for navigation using GPS. Relativistic principles and effects of practical
importance include the constancy of the speed of light, the equivalence
principle, the Sagnac effect, time dilation, gravitational frequency shifts,
and relativity of synchronization. Experimental tests of relativity ob-
tained with a GPS receiver aboard the TOPEX/POSEIDON satellite
will be discussed. Recently frequency jumps arising from satellite orbit
adjustments have been identified as relativistic effects.

1. Introduction

The “Space Segment” of the GPS consists of 24 satellites carrying atomic

clocks. (Spare satellites and spare clocks in satellites exist.) There are four

satellites in each of six orbital planes inclined at 55◦ with respect to earth’s

equatorial plane, distributed so that from any point on the earth, four

or more satellites are almost always above the local horizon. The clocks

provide accurate references for timing signals that are transmitted from

each satellite. The signals can be thought of as sequences of events in space-

time, characterized by positions and times of transmission. Associated with

these events are messages specifying the transmission events’ space-time

coordinates; below I will discuss the system of reference in which these

coordinates are given. Additional information contained in the messages

257
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includes an almanac for the entire satellite constellation, information about

satellite vehicle health, and information from which Universal Coordinated

Time as maintained by the U. S. Naval Observatory–UTC(USNO)–can be

determined.

The GPS “Control Segment” includes a number of ground-based mon-

itoring stations, which continually gather information from the satellites.

These data are sent to a Master Control Station in Colorado Springs, CO,

which analyzes the constellation and predicts the satellite ephemerides and

clock behavior for the next few hours. This information is then uploaded

into the satellites for retransmission to users. The “User Segment” consists

of all users who, by receiving signals transmitted from the satellites, are able

to determine their position, velocity, and the time on their local clocks.

The GPS is a navigation and timing system that is operated by the

United States Department of Defense (DOD), and therefore is partly classi-

fied. Several organizations monitor GPS signals independently and provide

services from which satellite ephemerides and clock behavior can be ob-

tained. Position accuracies in the neighborhood of 5-10 cm are not unusual.

Carrier phase measurements of the transmitted signals are commonly done

to better than a millimeter.

GPS signals are received on earth at two carrier frequencies, L1 (154×

10.23 MHz) and L2 (120×10.23 MHz). The L1 carrier is modulated by two

types of pseudorandom noise codes, one at 1.023 MHz that repeats every

millisecond–called the Coarse/Acquisition or C/A code–and an encrypted

one at 10.23 MHz called the P-code. P-code receivers have access to both L1

and L2 frequencies and can correct for ionospheric delays, whereas civilian

users only have access to the C/A code. An additional frequency for civilian

users is being planned. There are thus two levels of positioning service

available in real time, the Precise Positioning Service utilizing P-code, and

the Standard Positioning Service using only C/A code. The DOD has the

capability of dithering the transmitted signal frequencies and other signal

characteristics, so that C/A code users would be limited in positioning

accuracy to about ±100 meters. This is termed Selective Availability, or

SA. SA was turned off by order of President Clinton in May, 2000.

Technology developments in the late 1960s and early 1970s that di-

rectly benefited the GPS included the Transit system, developed by the

Johns Hopkins Applied Physics Laboratory, the Naval Research Labora-

tory’s Timation satellites, and the U. S. Air Force Project 621B.20 The

Transit system relied on the Doppler shift of continuously transmitted tones

from satellites in polar orbits to determine user position; development of
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Fig. 1. Allan deviations of Cesium clocks and quartz oscillators, plotted as a function
of averaging time τ .

prediction algorithms for satellite ephemerides was an important contribu-

tion of the Transit program to the GPS. Space-qualified atomic clocks with

exceptional stability were deployed by the Timation program; the Timation

satellites provided precise time and time transfer between various points on

earth’s surface, and broadcast synchronized signals at various frequencies

for phase ambiguity resolution and navigation. The 621B program demon-

strated that broadcasting ranging signals based on pseudo-random noise

had many advantages, including improved detection sensitivity of very weak

signals, and resistance to jamming. These programs were merged in 1973

with the creation of the GPS Joint Program Office, with subsequent man-

agement and participation by all branches of the Military Services in GPS

development.

Early in the development of the GPS many individuals recognized that

relativistic effects, although tiny, were going to be important in the GPS,

but it was unclear what should be done to account for them. Numerous

conceptual and numerical errors, and claims that relativity was not incor-

porated properly into the GPS were made, resulting in a somewhat con-

tentious and controversial situation. Conferences were held in 1979 and 1985

to review such issues. Although an Air Force Study in 1986 found nothing

wrong, such claims continued resulting in an additional meeting in 1995. A
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flawed technical report1 was issued as late as 1996 by an apparently authori-

tative source–the Aerospace Corporation, where the civilian counterpart of

the JPO is located. One source of confusion was the Sagnac effect that

makes it impossible to self-consistently synchronize clocks on the surface

of the rotating earth by performing operations with electromagnetic sig-

nals or slowly moving portable clocks, like those that could successfully be

used to synchronize clocks in an inertial frame. Thus a problem that had

to be solved was effective synchronization of clocks fixed or slowly mov-

ing on earth’s surface. Another source of confusion was whether the sun’s

gravitational potential would have a significant effect on clocks in GPS

satellites.

The GPS is made possible by extremely accurate, stable atomic clocks.

Figure 1 gives a plot of the Allan deviation σy(τ) for a high-performance

Cesium clock, as a function of sample time τ . If an ensemble of clocks is

initially synchronized, then when compared to each other after a time τ , the

Allan deviation provides a measure of the rms fractional frequency deviation

among the clocks due to intrinsic noise processes in the clocks. Frequency

offsets and frequency drifts are additional systematic effects which must be

accounted for separately. Also on Figure 1 is an Allan deviation plot for a

Quartz oscillator such as is typically found in a GPS receiver. Quartz oscil-

lators usually have better short-term stability performance characteristics

than Cesium clocks, but after 100 seconds or so, Cesium has far better

performance. In actual clocks there is a wide range of variation around the

nominal values plotted in Figure 1. The most stable GPS clocks use Rubid-

ium atoms and reach maximum stability levels of a few parts in 1015 after

about ten days. What this means is that after initializing such a clock, and

leaving it alone for ten days, it should be correct to within about 5 parts

in 1015, or 0.4 nanoseconds. Relativistic effects are huge compared to this.

The purpose of this article is to explain how relativistic effects are ac-

counted for in the GPS. Although clock velocities are small and gravi-

tational fields are weak near the earth, they give rise to significant rela-

tivistic effects. These effects include first- and second-order Doppler fre-

quency shifts of clocks due to their relative motion, gravitational frequency

shifts, and the Sagnac effect due to earth’s rotation. If such effects are not

accounted for properly, unacceptably large errors in GPS navigation and

time transfer will result. In the GPS one can find many examples of the

application of fundamental relativity principles. Also, experimental tests of

relativity can be performed with GPS, although generally speaking these

are not at a level of precision any better than previously existing tests.
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The principles of position determination and time transfer in the GPS

can be very simply stated. Let there be four synchronized atomic clocks

that transmit sharply defined pulses from the positions rj at times tj , with

j = 1, 2, 3, 4 an index labeling the different transmission events. Suppose

that these four signals are received at position r, at one and the same

instant t. Then, from the principle of the constancy of the speed of light,

c
2(t − tj)

2 = |r − rj |
2
, j = 1, 2, 3, 4. (1)

where the defined value of c is exactly 299792458 m/s. These four equations

can be solved for the unknown space-time coordinates of the reception

event, {r, t}. Hence, the principle of the constancy of c finds application as

the fundamental concept on which the GPS is based. Timing errors of one

ns will lead to positioning errors of the order of 30 cm. Also, obviously, it is

necessary to specify carefully the reference frame in which the transmitter

clocks are synchronized, so that Eqs. (1) are valid.

The timing pulses in question can be thought of as places in the trans-

mitted wave trains where there is a particular phase reversal of the circu-

larly polarized electromagnetic signals. At such places the electromagnetic

field tensor passes through zero and therefore provides relatively moving

observers with sequences of events that they can agree on, at least in

principle.

Eqs. (1) have an important reciprocity feature: if an event occurs at

{r, t} near earth’s surface that sends out electromagnetic pulses, and these

are detected by four or more satellites at positions and times {rj , tj}, then

the position and time of the event can be determined; this is the (classified)

nuclear event detection half of the GPS.

2. Reference Frames and the Sagnac Effect

Almost all users of GPS are at fixed locations on the rotating earth, or

else are moving very slowly over earth’s surface. This led to an early design

decision to broadcast the satellite ephemerides in a model earth-centered,

earth-fixed, reference frame (ECEF frame), in which the model earth rotates

about a fixed axis with a defined rotation rate, ωE = 7.2921151467× 10−5

rad s−1. This reference frame is designated by the symbol WGS-84(G873).2

For discussions of relativity, the particular choice of ECEF frame is immate-

rial. Also, the fact the earth truly rotates about a slightly different axis with

a variable rotation rate has little consequence for relativity and I shall not

go into this here. I shall simply regard the ECEF frame of GPS as closely

related to, or determined by, the International Terrestrial Reference Frame
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established by the Bureau International des Poids et Mesures (BIPM) in

Paris.

It should be emphasized that the transmitted navigation messages pro-

vide the user only with a function from which the satellite position can be

calculated in the ECEF as a function of the transmission time. Usually,

the satellite transmission times tj are unequal, so the coordinate system

in which the satellite positions are specified changes orientation from one

transmission event to another. Therefore, to implement Eqs. (1), the re-

ceiver must generally perform a different rotation for each measurement

made, into some common inertial frame, so that Eqs. (1) apply. After solv-

ing the propagation delay equations, a final rotation must usually be per-

formed into the ECEF to determine the receiver’s position. This can become

exceedingly complicated and confusing. A technical note3 discusses these

issues in considerable detail.

Although the ECEF frame is of primary interest for navigation, many

physical processes (such as electromagnetic wave propagation) are simpler

to describe in an inertial reference frame. Certainly, inertial reference frames

are needed to express Eqs. (1). In the ECEF frame used in the GPS, the unit

of time is the SI second as realized by the clock ensemble of the U. S. Naval

Observatory and the unit of length is the SI meter. This is important in the

GPS because it means that local observations using GPS are insensitive to

effects on the scales of length and time measurements due to other solar

system bodies that are time-dependent.

Let us therefore consider the simplest instance of a transformation from

an inertial frame, in which the space-time is Minkowskian, to a rotating

frame of reference. Thus, ignoring gravitational potentials for the moment,

the metric in an inertial frame in cylindrical coordinates is

−ds
2 = −(c dt)2 + dr

2 + r
2
dφ

2 + dz
2
, (2)

and the transformation to a coordinate system {t
′
, r

′
, φ

′
, z

′
} rotating at the

uniform angular rate ωE is

t = t
′
, r = r

′
, φ = φ

′ + ωEt
′
, z = z

′
. (3)

This results in the following well-known metric (Langevin metric) in the

rotating frame:

−ds
2 = −

(

1 −

ω
2

E
r
′2

c2

)

(cdt
′)2 + 2ωEr

′2
dφ

′
dt

′ + (dσ
′)2 , (4)

where the abbreviated expression (dσ
′)2 = (dr

′)2 +(r′dφ
′)2 +(dz

′)2 for the

square of the coordinate distance has been introduced.
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The time transformation t = t
′ in Eqs. (3) is deceivingly simple. It

means that in the rotating frame the time variable t
′ is really determined

in the underlying inertial frame. It is an example of coordinate time. A

similar concept is used in the GPS.

Now consider a process in which observers in the rotating frame attempt

to use Einstein synchronization (that is, the principle of the constancy of

the speed of light) to establish a network of synchronized clocks. Light

travels along a null world line so we may set ds
2 = 0 in Eq. (4). Also, it is

sufficient for this discussion to keep only terms of first order in the small

parameter ωEr
′
/c. Then solving for (cdt

′),

cdt
′ = dσ

′ +
ωEr

′2
dφ

′

c
. (5)

The quantity r
′2

dφ
′
/2 is just the infinitesimal area dA

′

z
in the rotating

coordinate system swept out by a vector from the rotation axis to the light

pulse, and projected onto a plane parallel to the equatorial plane. Thus,

the total time required for light to traverse some path is
∫

path

dt
′ =

∫

path

dσ
′

c
+

2ωE

c2

∫

path

dA
′

z
. [ light ] (6)

Observers fixed on the earth, who were unaware of earth rotation, would

use just
∫

dσ
′
/c to synchronize their clock network. Observers at rest in

the underlying inertial frame would say that this leads to significant path-

dependent inconsistencies, which are proportional to the projected area

encompassed by the path. Consider, for example, a synchronization process

that follows earth’s equator once around eastwards. For earth, 2ωE/c
2 =

1.6227 × 10−21 s/m2 and the equatorial radius is a1 = 6, 378, 137 m, so

the area is πa
2

1
= 1.27802× 1014 m2 . Then, the last term in Eq. (6) is of

magnitude 2πωEa
2

1
/c

2 = 207.4 ns.

From the underlying inertial frame, this can be regarded as the addi-

tional travel time required by light to catch up to the moving reference

point. Simple-minded use of Einstein synchronization in the rotating frame

gives only
∫

dσ
′
/c, and thus leads to a significant error. Traversing the

equator once eastward, the last clock in the synchronization path would lag

the first clock by 207.4 ns. Traversing the equator once westward, the last

clock in the synchronization path would lead the first clock by 207.4 ns.

In an inertial frame a portable clock can be used to disseminate time.

The clock must be moved so slowly that changes in the moving clock’s rate

due to time dilation, relative to a reference clock at rest on earth’s surface,

are extremely small. On the other hand, observers in a rotating frame who
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attempt this find that the proper time elapsed on the portable clock is

affected by earth’s rotation. Factoring Eq. (4), the proper time increment

dτ on the moving clock is given by

(dτ)2 = (ds/c)2 = dt
′2

[

1 −

(

ωEr
′

c

)2

−

2ωEr
′2

dφ
′

c2dt′
−

(

dσ
′

cdt′

)2
]

. (7)

For a slowly moving clock (dσ
′
/cdt

′)2 << 1, so the last term in brackets in

Eq. (7) can be neglected. Also, keeping only first order terms in the small

quantity ωEr
′
/c, and solving for dt

′, leads to
∫

path

dt
′ =

∫

path

dτ +
2ωe

c2

∫

path

dA
′

z . [ portable clock ] (8)

This should be compared with Eq. (6). Path-dependent discrepancies in

the rotating frame are thus inescapable whether one uses light or portable

clocks to disseminate time, while synchronization in the underlying inertial

frame using either process is self-consistent.

Eqs. (6) and (8) can be reinterpreted as a means of realizing coordinate

time t
′ = t in the rotating frame, if after performing a synchronization

process appropriate corrections of the form +2ωE

∫

path
dA

′

z
/c

2 are applied.

This was recognized in the early 1980s by the Consultative Committee

for the Definition of the Second and the International Radio Consultative

Committee who formally adopted procedures incorporating such corrections

for the comparison of time standards located far apart on earth’s surface.

For the GPS it means that synchronization of the entire system of ground-

based and orbiting atomic clocks is performed in the local inertial frame,

or ECI coordinate system.4

GPS can be used to compare times on two earth-fixed clocks when a

single satellite is in view from both locations. This is the “common-view”

method of comparison of Primary standards, whose locations on earth’s

surface are usually known very accurately in advance from ground-based

surveys. Signals from a single GPS satellite in common view of receivers at

the two locations provide enough information to determine the time differ-

ence between the two local clocks. The Sagnac effect is very important in

making such comparisons, as it can amount to hundreds of nanoseconds.

In 1984 GPS satellites 3, 4, 6, and 8 were used in simultaneous common

view between three pairs of earth timing centers, to accomplish closure

in performing an around-the-world Sagnac experiment. The centers were

the National Bureau of Standards (NBS) in Boulder, CO, Physikalisch-

Technische Bundesanstalt (PTB) in Braunschweig, West Germany, and
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Tokyo Astronomical Observatory (TAO). The size of the Sagnac correc-

tion varied from 240 to 350 ns. Enough data were collected to perform 90

independent circumnavigations. The actual mean value of the residual ob-

tained after adding the three pairs of time differences was 5 ns, which was

less than 2 percent of the magnitude of the calculated total Sagnac effect.5

3. GPS Coordinate Time and TAI

In the GPS, the time variable t
′ = t becomes a coordinate time in the ro-

tating frame of the earth, which is realized by applying appropriate correc-

tions while performing synchronization processes. Synchronization is thus

performed in the underlying inertial frame in which self-consistency can be

achieved.

With this understanding, I next describe the gravitational fields near

the earth due to the earth’s mass itself. Assume that earth’s mass distribu-

tion is static; that there exists a locally inertial, non-rotating, freely falling

coordinate system with origin at the earth’s center of mass, and write an

approximate solution of Einstein’s field equations in isotropic coordinates:

−ds
2 = −(1 +

2V

c2
)(cdt)2 + (1 −

2V

c2
)(dr

2 + r
2
dθ

2 + r
2 sin2

θdφ
2). (9)

where {r, θ, φ} are spherical polar coordinates and where V is the Newto-

nian gravitational potential of the earth, given approximately by:

V = −

GME

r

[

1 − J2

(

a1

r

)2

P2(cos θ)

]

. (10)

In Eq. (10), GME = 3.986004418 × 1014 m3s−2 is the product of earth’s

mass times the Newtonian gravitational constant, J2 = 1.0826300×10−3 is

earth’s quadrupole moment coefficient, and a1 = 6.3781370× 106 is earth’s

equatorial radius.a The angle θ is the polar angle measured downward from

the axis of rotational symmetry; P2 is the Legendre polynomial of degree 2.

In using Eq. (9), it is an adequate approximation to retain only terms of first

order in the small quantity V/c
2. Higher multipole moment contributions

to Eq. (10) have a very small effect for relativity in GPS. One additional

expression for the invariant interval is needed: the transformation of Eq. (9)

to a rotating, ECEF coordinate system by means of transformations equiv-

alent to Eqs. (3). The transformations for spherical polar coordinates are

like Eqs. (3), except that θ = θ
′ replaces z = z

′. Upon performing the

aWGS-84(G873) values of these constants are used in this article.
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transformations, and retaining only terms of order 1/c
2, the scalar interval

becomes:

−ds
2 = − [1 + 2V

c2 −

(

ωEr
′
sin θ

′

c

)2

] (c dt
′)2 + 2ωEr

′2 sin2
θ
′
dφ

′
dt

′

+
(

1 −

2V

c2

)

(dr
′2 + r

′2
dθ

′2 + r
′2 sin2

θ
′
dφ

′2). (11)

To the order of the calculation, this result is a simple superposition of

the metric, Eq. (9), with the corrections due to rotation expressed in

Eq. (4).

The Earth’s geoid. In Eqs. (9) and (11), the rate of coordinate time is

determined by atomic clocks at rest at infinity. The rate of GPS coordinate

time, however, is closely related to International Atomic Time (TAI), which

is a time scale computed by the BIPM on the basis of inputs from hundreds

of primary time standards, hydrogen masers, and other clocks from all over

the world. In producing this time scale, corrections are applied to reduce

the elapsed proper times on the contributing clocks to earth’s geoid, a

surface of constant effective gravitational equipotential at mean sea level in

the ECEF.

Universal Coordinated Time (UTC) is another time scale, which differs

from TAI by a whole number of leap seconds. These leap seconds are in-

serted every so often into UTC so that UTC continues to correspond to

time determined by earth’s rotation. Time standards organizations that

contribute to TAI and UTC generally maintain their own time scales. For

example, the time scale of the U. S. Naval Observatory, based on an en-

semble of Hydrogen masers and Cs clocks, is denoted UTC(USNO). GPS

time is steered so that, apart from the leap second differences, it stays

within 100 ns UTC(USNO). Usually, this steering is so successful that the

difference between GPS time and UTC(USNO) is less than about 40 ns.

GPS equipment cannot tolerate leap seconds, as such sudden jumps in time

would cause receivers to lose their lock on transmitted signals, and other

undesirable transients would occur.

To account for the fact that reference clocks for the GPS are not at

infinity, I shall consider the rates of atomic reference clocks at rest on the

earth’s geoid. These clocks move because of the earth’s spin; also, they

are at varying distances from the earth’s center of mass since the earth is

slightly oblate. In order to proceed one needs a model expression for the

shape of this surface, and a value for the effective gravitational potential

on this surface in the rotating frame.
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For this calculation, I use Eq. (11) in the ECEF. For a clock at rest in

the rotating frame, Eq. (11) reduces to:

−ds
2 = −(1 +

2V

c2
−

ω
2

E
r
′2 sin2

θ
′

c2
)(c dt

′)2 = −(1 +
2Φ

c2
)(c dt

′)2 , (12)

with the potential V given by Eq. (10). Here Φ is the effective gravitational

potential in the rotating frame. For a clock at rest on earth’s geoid, the

constancy of Φ determines the radius r
′ of the model geoid as a function of

polar angle θ
′. The numerical value of Φ0 can be determined at the equator

where θ
′ = π/2 and r

′ = a1. This gives

Φ0

c2
= −

GME

a1c
2

−

GMEJ2

2a1c
2

−

ω
2

E
a
2

1

2c2

= −6.95348× 10−10
− 3.764× 10−13

− 1.203× 10−12

= −6.96927× 10−10
. (13)

There are thus three distinct contributions to this effective potential: a

simple 1/r contribution due to the earth’s mass; a more complicated con-

tribution from the quadrupole potential, and a centripetal term due to the

earth’s rotation. These contributions have been divided by c
2 in the above

equation since the time increment on an atomic clock at rest on the geoid

can be easily expressed thereby. In recent resolutions of the International

Astronomical Union6, a “Terrestrial Time” scale (TT) has been defined by

adopting the value Φ0/c
2 = 6.969290134× 10−10. Eq. (13) agrees with this

definition to within the accuracy needed for the GPS.

From Eq. (11), for clocks on the geoid,

dτ = ds/c = dt
′

(

1 +
Φ0

c2

)

. (14)

Clocks at rest on the rotating geoid run slow compared to clocks at rest at

infinity by about seven parts in 1010. These effects sum to more than 10,000

times larger than the fractional frequency stability of a high-performance

cesium clock. The shape of the geoid in this model can be obtained by

setting Φ = Φ0 and solving Eq. (12) for r
′ in terms of θ

′. The first few

terms in a power series in the variable x
′ = sin θ

′ can be expressed as:

r
′ = 6356742.025+21353.642 x

′2+39.832 x
′4+0.798 x

′6+0.003 x
′8 m . (15)

This treatment of the gravitational field of the oblate earth is limited by

the simple model of the gravitational field. Actually, what I have done is

estimate the shape of the so-called “reference ellipsoid,” from which the

actual geoid is conventionally measured.
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Better models can be found in the literature of geophysics.7,8,9 The

next term in the multipole expansion of the earth’s gravity field is about a

thousand times smaller than the contribution from J2; although the actual

shape of the geoid can differ from Eq. (15) by as much as 100 meters, the

effects of such terms on timing in the GPS are small. Incorporating up to

20 higher zonal harmonics in the calculation affects the value of Φ0 only in

the sixth significant figure.

Observers at rest on the geoid define the unit of time in terms of the

proper rate of atomic clocks. In Eq. (14), Φ0 is a constant. On the left

side of Eq. (14), dτ is the increment of proper time elapsed on a standard

clock at rest, in terms of the elapsed coordinate time dt. Thus, the very

useful result has emerged, that ideal clocks at rest on the geoid of the

rotating earth all beat at the same rate. This is reasonable since the earth’s

surface is a gravitational equipotential surface in the rotating frame. (It is

true for the actual geoid whereas I have constructed a model.) Considering

clocks at two different latitudes, the one further north will be closer to the

earth’s center because of the flattening–it will therefore be more red shifted.

However, it is also closer to the axis of rotation, and going more slowly, so

it suffers less second-order Doppler shift. The earth’s oblateness gives rise

to an important quadrupole correction. This combination of effects cancels

exactly on the reference surface.

Since all clocks at rest on the geoid beat at the same rate, it is advanta-

geous to exploit this fact to redefine the rate of coordinate time. In Eq. (9)

the rate of coordinate time is defined by standard clocks at rest at infinity.

I want instead to define the rate of coordinate time by standard clocks at

rest on the surface of the earth. Therefore, I shall define a new coordinate

time t
′′ by means of a constant rate change:

t
′′ = (1 + Φ0/c

2)t′ = (1 + Φ0/c
2)t. (16)

The correction is about seven parts in 1010 (see Eq. (13)).

When this time scale change is made, the metric of Eq. (11) in the

earth-fixed rotating frame becomes:

−ds
2 = −

(

1 + 2(Φ−Φ0)

c2

)

(cdt
′′)2 + 2ωEr

′2 sin2
θ
′
dφ

′
dt

′′

+
(

1 −

2V

c2

)

(dr
′2 + r

′2
dθ

′2 + r
′2 sin2

θ
′
dφ

′2) , (17)

where only terms of order c
−2 have been retained. Whether I use dt

′ or dt
′′

in the Sagnac cross term makes no difference since the Sagnac term is very

small anyway. The same time scale change in the non-rotating ECI metric,
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Eq. (9), gives:

−ds
2 = −

(

1 +
2(V − Φ0)

c2

)

(cdt
′′)2 +(1−

2V

c2
)(dr

2 +r
2
dθ

2 +r
2 sin2

θdφ
2).

(18)

Eqs. (17) and (18) imply that the proper time elapsed on clocks at rest on

the geoid (where Φ = Φ0) is identical with the coordinate time t
′′. This is

the correct way to express the fact that ideal clocks at rest on the geoid

provide all of our standard reference clocks.

4. The Realization of Coordinate Time

I can now address the real problem of clock synchronization within the

GPS. In the remainder of this article I shall drop the primes on t
′′ and just

use the symbol t, with the understanding that the unit of time is referenced

to UTC(USNO) on the rotating geoid, but with synchronization established

in an underlying, locally inertial, reference frame. The metric Eq. (18) will

henceforth be written:

−ds
2 = −

(

1 +
2(V − Φ0)

c2

)

(cdt)2 + (1−
2V

c2
)(dr

2 + r
2
dθ

2 + r
2 sin2

θdφ
2).

(19)

It is obvious that Eq. (19) contains within it the well-known effects of

time dilation (the apparent slowing of moving clocks) and frequency shifts

due to gravitation. Consequently path-dependent effects on orbiting GPS

clocks must be accounted for.

On the other hand, according to General Relativity, the coordinate time

variable t of Eq. (19) is valid in a coordinate patch large enough to cover the

earth and the GPS satellite constellation. Eq. (19) is an approximate solu-

tion of the field equations near the earth, which include the gravitational

fields due to earth’s mass distribution. In this local coordinate patch, the

coordinate time is single-valued. (It is not unique because there is still gauge

freedom, but Eq. (19) represents a fairly simple and reasonable choice of

gauge.) Therefore, it is natural to propose that the coordinate time vari-

able t of Eqs. (19) and (17) be used as a basis for synchronization in the

neighborhood of the earth.

To see how this works for a slowly moving atomic clock, solve Eq. (19)

for dt as follows. First factor out (cdt)2 from all terms on the right:

−ds
2 = −

[

1 +
2(V − Φ0)

c2
−

(

1 −

2V

c2

)

dr
2 + r

2
dθ

2 + r
2 sin2

θdφ
2)

(cdt)2

]

(cdt)2.

(20)
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Simplify by writing the velocity in the ECI coordinate system as

v
2 =

dr
2 + r

2
dθ

2 + r
2 sin2

θdφ
2

dt2
. (21)

Only terms of order c
−2 need be kept, so the potential term modifying the

velocity term can be dropped. Then, upon taking a square root, the proper

time increment on the moving clock is approximately

dτ = ds/c =

[

1 +
(V − Φ0)

c2
−

v
2

2c2

]

dt. (22)

Finally, solving for the increment of coordinate time and integrating along

the path of the atomic clock,
∫

path

dt =

∫

path

dτ

[

1 −

(V − Φ0)

c2
+

v
2

2c2

]

. (23)

The proper time on the clock is thus corrected to give coordinate time.

Suppose for a moment there were no gravitational fields. Then picture an

underlying non-rotating reference frame, a local inertial frame, unattached

to the spin of the earth, but with its origin at the center of the earth. In

this non-rotating frame, introduce a fictitious set of standard clocks, avail-

able anywhere, all synchronized by the Einstein synchronization procedure,

and running at agreed upon rates such that synchronization is maintained.

These clocks read the coordinate time t. Next, introduce the rotating earth

with a set of standard clocks distributed around upon it, possibly roving

around. Apply to each of the standard clocks a set of corrections based

on the known positions and motions of the clocks, given by Eq. (23). This

generates a “coordinate clock time” in the earth-fixed, rotating system.

This time is such that at each instant the coordinate clock agrees with a

fictitious atomic clock at rest in the local inertial frame, whose position

coincides with the earth-based standard clock at that instant. Thus, co-

ordinate time is equivalent to time that would be measured by standard

clocks at rest in the local inertial frame.10

When the gravitational field due to the earth is considered, the picture

is only a little more complicated. There still exists a coordinate time that

can be found by computing a correction for gravitational red shift, given

by the first correction term in Eq. (23).

5. Relativistic Effects on Satellite Clocks

For atomic clocks in satellites, it is most convenient to consider the motions

as they would be observed in the local ECI frame. Then the Sagnac effect
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becomes irrelevant. (The Sagnac effect on moving ground-based receivers

must still be considered.) Gravitational frequency shifts and second-order

Doppler shifts must be taken into account together. The term Φ0 in Eq. (23)

includes the scale correction needed in order to use clocks at rest on the

earth’s surface as references. The quadrupole contributes to Φ0 in the term

−GMEJ2/2a1 in Eq. (23); there it contributes a fractional rate correction

of −3.76 × 10−13. This effect is large. Also, V is the earth’s gravitational

potential at the satellite. Fortunately, earth’s quadrupole potential falls off

very rapidly with distance and up until very recently its effect on satellite

vehicle (SV) clock frequency has been neglected. This will be discussed in a

later section; for the present I only note that the effect of earth’s quadrupole

potential on SV clocks is only about one part in 1014.

Satellite orbits. Let us assume that the satellites move along Keplerian

orbits. This is a good approximation for GPS satellites, but poor if the

satellites are at low altitude. This assumption yields relations with which to

simplify Eq. (23). Since the quadrupole (and higher multipole) parts of the

earth’s potential are neglected, in Eq. (23) the potential is V = −GME/r.

Then the expressions can be evaluated using what is known about the

Newtonian orbital mechanics of the satellites. Denote the satellite’s orbit

semimajor axis by a and eccentricity by e. Then the solution of the orbital

equations is as follows:11 the distance r from the center of the earth to the

satellite in ECI coordinates is

r = a(1 − e
2)/(1 + e cos f) = a(1 − e cosE) . (24)

The semimajor axis of GPS satellites is a = 27, 561.75 m, chosen so that

a given satellite will appear in exactly the same place against the celestial

sphere twice per day. The angle f , called the true anomaly, is measured

from perigee along the orbit to the satellite’s position. The true anomaly

can be calculated in terms of the eccentric anomaly E, according to the

relationships:

cos f =
cosE − e

1 − e cosE
, sin f =

√

1 − e2
sin E

1− e cosE
. (25)

To find the eccentric anomaly E, one must solve the transcendental equation

E − e sinE =

√

GME

a3
(t − tp), (26)

where tp is the coordinate time of perigee passage.

In Newtonian mechanics, the gravitational field is conservative and total

energy is conserved. Using the above equations for the Keplerian orbit, one



October 7, 2005 16:6 WSPC/Trim Size: 9in x 6in for Review Volume 10˙ashby2

272 N. Ashby

can show that the total energy per unit mass of the satellite is:

1

2
v
2
−

GME

r
= −

GME

2a
. (27)

If I use Eq. (27) for v
2 in Eq. (23), then I get the following expression for

the elapsed coordinate time on the satellite clock:

∆t =

∫

path

dτ
[

1 +
3GME

2ac2
+

Φ0

c2
−

2GME

c2
(
1

a
−

1

r
)
]

. (28)

The first two constant rate correction terms in Eq. (28) have the values:

3GME

2ac2
+

Φ0

c2
= +2.5046×10−10

−6.9693×10−10 = −4.4647×10−10
. (29)

The negative sign in this result means that the standard clock in or-

bit is beating too fast, primarily because its frequency is gravitationally

blueshifted. In order for the satellite clock to appear to an observer on the

geoid to beat at the chosen frequency of 10.23 MHz, the satellite clocks are

adjusted lower in frequency so that the proper frequency is:
[

1 − 4.4647× 10−10
]

× 10.23 MHz = 10.229 999 995 43 MHz. (30)

This adjustment is either accomplished on the ground before the clock is

placed in orbit or applied in the navigation message after the clocks are

placed in orbit and measured.

Figure 2 shows the net fractional frequency offset of an atomic clock in

a circular orbit, which is essentially the left side of Eq. (29) plotted as a

function of orbit radius a, with a change of sign. Five sources of relativistic

effects contribute in Figure 2. Several interesting orbit radii are marked.

For a low earth orbiter such as the Space Shuttle, the velocity is so great

that slowing due to time dilation is the dominant effect, while for a GPS

satellite clock, the gravitational blue shift is greater. The effects cancel at

a ≈ 9545 km. The Global Navigation Satellite System GALILEO, which is

currently being designed under the auspices of the European Space Agency,

will have orbital radii of approximately 30,000 km.

There is an interesting story about this frequency offset. At the time

of launch of the NTS-2 satellite (23 June 1977), which contained the first

cesium atomic clock to be placed in orbit, it was recognized that orbiting

clocks would require relativistic corrections, but there was uncertainty as

to its magnitude as well as its sign. There were some who doubted that

relativistic effects were truths that would need to be incorporated!12 A fre-

quency synthesizer was built into the satellite clock system so that after

launch, if in fact the rate of the clock in its final orbit was that predicted
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Fig. 2. Net fractional frequency shift of clock in a circular orbit.

by general relativity, then the synthesizer could be turned on, bringing the

clock to the coordinate rate necessary for operation. After the cesium clock

was turned on in NTS-2, it was operated for about 20 days to measure

its clock rate before turning on the synthesizer.13 The frequency measured

during that interval was +442.5 parts in 1012 compared to clocks on the

ground, while general relativity predicted +446.5 parts in 1012. The differ-

ence was well within the accuracy capabilities of the orbiting clock. This

then gave about a 1% verification of the combined second-order Doppler

and gravitational frequency shift effects for a clock at 4.2 earth radii.

Additional small frequency offsets can arise from clock drift, environ-

mental changes, and other unavoidable effects such as the inability to launch

the satellite into an orbit with precisely the desired semimajor axis. The

navigation message provides satellite clock frequency corrections for users

so that in effect, the clock frequencies remain as close as possible to the fre-

quency of the U. S. Naval Observatory’s reference clock ensemble. Because

of such procedures, it would now be difficult to test the frequency offset

predicted by relativity.

When GPS satellites were first deployed, the specified factory frequency

offset was slightly in error because the important contribution from earth’s
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centripetal potential (see Eq. (13)) had been inadvertently omitted at one

stage of the evaluation. Although GPS managers were made aware of this

error in the early 1980s, eight years passed before system specifications

were changed to reflect the correct calculation.14 As understanding of the

numerous sources of error in the GPS slowly improved, it eventually made

sense to incorporate the correct relativistic calculation.

The eccentricity correction. The last term in Eq. (28) may be inte-

grated exactly by using the following expression for the rate of change of

eccentric anomaly with time, which follows by differentiating Eq. (26):

dE

dt
=

√

GME/a3

1 − e cosE
. (31)

Also, since a relativistic correction is being computed, ds/c ' dt, so:
∫ [

2GME

c2

(

1

r
−

1

a

)]

ds

c
'

2GME

c2

∫ (

1

r
−

1

a

)

dt

=
2GME

ac2

∫

dt

(

e cosE

1 − e cosE

)

=
2
√

GMEa

c2
e (sin E − sin E0)

= +
2
√

GMEa

c2
e sinE + constant. (32)

The constant of integration in Eq. (32) can be dropped since this term

is lumped with other clock offset effects in the Master Control Station’s

estimate of the clock’s behavior. The net correction for clock offset due to

relativistic effects that vary in time is:

∆tr = +4.4428× 10−10
sec

√

meter
e
√

a sin E. (33)

This correction must be made by the receiver; it is a correction to the

coordinate time as transmitted by the satellite. For a satellite of eccentricity

e = 0.01, the maximum size of this term is about 23 ns. The correction is

needed because of a combination of effects on the satellite clock due to

gravitational frequency shift and second-order Doppler shift, which vary

due to orbit eccentricity.

It is not at all necessary, in a navigation satellite system, that the ec-

centricity correction be applied by the receiver. It appears that the clocks

in the GLONASS satellite system do have this correction applied before

broadcast. In fact historically, this was dictated in the GPS by the small

amount of computing power available in the early GPS satellite vehicles.
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It may now be too late to reverse this decision because of the investment

that many dozens of receiver manufacturers have in their products. How-

ever, it does mean that receivers are supposed to incorporate the relativity

correction; therefore, if appropriate data can be obtained in raw form from

a receiver one can measure this effect. Such measurements are discussed

next.

6. TOPEX/POSEIDON Relativity Experiment

At present, the frequencies of atomic clocks in replacement satellites are

carefully measured after launch and then adjusted to the frequency that

is required for operation. The largest remaining effect is the eccentricity

effect, Eq. (33). It is intended that GPS receivers correct for this effect, so

a receiver that can output data on transmission and reception events can

be used to test whether the relativistic prediction agrees with experiment.

The TOPEX satellite carries a six-channel receiver with a very good quartz

oscillator to provide the time reference, and is in an orbit of radius 7,714

km and period 6745 seconds. The receiver motion is highly dynamic, as it

passes under the GPS constellation eleven times per day. A stringent test

of the relativistic prediction can therefore be performed.

The local quartz clock, which is a free-running oscillator subject to var-

ious noise and drift processes, can be in error by a large amount. So the

first task is to determine the local clock time in terms of GPS time. For

this purpose the six available channels in the receiver provide considerable

redundancy. The trajectories of the TOPEX and GPS satellites were deter-

mined independently of the on-board clocks, by means of Doppler tracking

from ≈ 102 stations maintained by the Jet Propulsion Laboratory (JPL).

Generally, at each time point during the experiment, observations were ob-

tained from six (sometimes five) satellites. There is sufficient redundancy

in the measurements to obtain good estimates of the TOPEX clock time

and the rms error in this time due to measurement noise.

The rms deviation from the mean of the TOPEX clock time measure-

ments is plotted in Figure 3 as a function of time. The average rms error

is 29 cm, corresponding to about one ns of propagation delay. Much of this

variation can be attributed to multipath effects–multiple reflections of the

signals from objects in the neighborhood of the receiver’s antenna.

With the local TOPEX clock time determined in terms of GPS time,

the eccentricity effect from some GPS satellite clock of interest can be

determined by using five of the receiver channels to determine the TOPEX
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Fig. 3. Rms deviation from mean of TOPEX clock bias determinations.

position and the sixth channel to measure the eccentricity effect on the sixth

satellite clock. Strictly speaking, in finding the eccentricity effect this way

for a particular satellite, one should not include data from that satellite

in the determination of the clock bias. One can show, however, that the

penalty for this is simply to increase the rms error by a factor of 6/5,

to 35 cm. Figure 4 shows the measured eccentricity effect for SV #13,

which has the largest eccentricity of the satellites that were tracked, e =

.01486. The solid curve in Figure 4 is the theoretically predicted effect, from

Eq. (33). While the agreement is fairly good, one can see some evidence

of systematic bias during particular passes, where the rms error (plotted

as vertical lines on the measured dots) is significantly smaller than the

discrepancies between theory and experiment. For this particular satellite,

the rms deviation between theory and experiment is 22 cm, which is about

2.2 % of the maximum magnitude of the effect, 10.2 meters.

Similar plots were obtained for 25 GPS satellites that were tracked dur-

ing this experiment. For the entire constellation, the agreement between

theory and experiment is within about 2.5%.
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Fig. 4. Comparison of predicted and measured eccentricity effect for SV #13.

7. Doppler Effect

Since orbiting clocks have had their rate adjusted so that they beat co-

ordinate time, and since responsibility for correcting for the periodic rela-

tivistic effect due to eccentricity has been delegated to receivers, one must

take extreme care in discussing the Doppler effect for signals transmit-

ted from satellites. Even though second-order Doppler effects have been

accounted for, for earth-fixed users there will still be a first-order (lon-

gitudinal) Doppler shift, which has to be dealt with by receivers. As is

well known, in a static gravitational field coordinate frequency is conserved

during propagation of an electromagnetic signal along a null geodesic. If

one takes into account only the monopole and quadrupole contributions to

earth’s gravitational field, then the field is static and one can exploit this

fact to discuss the Doppler effect.

Consider the transmission of signals from rate-adjusted transmitters or-

biting on GPS satellites. Let the gravitational potential and velocity of the

satellite be V (rj) ≡ Vj , and vj , respectively. Let the frequency of the satel-

lite transmission, before the rate adjustment is done, be f0 = 10.23 MHz.

After taking into account the rate adjustment discussed previously, it is

straightforward to show that for a receiver of velocity vR and gravitational
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potential VR (in ECI coordinates), the received frequency is

fR = f0

[

1 +
−VR + v

2

R
/2 + Φ0 + 2GME/a + 2Vj

c2

]

(1 −N · vR/c)

(1 −N · vj/c)
, (34)

where N is a unit vector in the propagation direction in the local inertial

frame. For a receiver fixed on the earth’s rotating geoid, this reduces to

fR = f0

[

1 +
2GME

c2

(

1

a
−

1

r

)]

(1 −N · vR/c)

(1 −N · vj/c)
. (35)

The correction term in square brackets gives rise to the eccentricity effect.

The longitudinal Doppler shift factors are not affected by these adjustments;

they will be of order 10−5 while the eccentricity effect is of order e×10−10.

8. Crosslink Ranging

In the “Autonav” mode of GPS operation, receivers on the satellites listen

to signals from the other satellites and determine their own position and

coordinate time by direct exchange of signals. The standard atomic clock

in the transmitting satellite suffers a rate adjustment, and then needs an

eccentricity correction to get the coordinate time. Then a signal is sent to

another satellite which requires calculating a coordinate time of propagation

possibly incorporating a relativistic time delay. There is then a further

transformation of rate and another “e sinE” correction to get the atomic

time on the receiving satellite’s clock. So that the rate adjustment does not

introduce confusion into this analysis, I shall assume the rate adjustments

are already accounted for and use the subscript ‘S’ to denote coordinate

time measurements using rate-adjusted satellite clocks.

Then, let a signal be transmitted from satellite #i, at position ri and

having velocity vi in ECI coordinates, at satellite clock time T
(i)

S
, to satellite

#j, at position rj and having velocity vj . The coordinate time at which

this occurs, apart from a constant offset, from Eq. (32) will be

T
(i) = T

(i)

S
+

2
√

GMai

c2
ei sin Ei. (36)

The coordinate time elapsed during propagation of the signal to the receiver

in satellite #j is in first approximation l/c, where l is the distance between

transmitter at the instant of transmission, and receiver at the instant of

reception: ∆T = T
(j)

− T
(i) = l/c. The Shapiro time delay corrections

to this will be discussed in the next section. Finally, the coordinate time
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of arrival of the signal is related to the time on the receiving satellite’s

adjusted clock by the inverse of Eq. (36):

T
(j)

S
= T

(j)
−

2
√

GMaj

c2
ej sin Ej . (37)

Collecting these results,

T
(j)

S
= T

(i)

S
+

l

c
−

2
√

GMaj

c2
ej sin Ej +

2
√

GMai

c2
ei sin Ei. (38)

In Eq. (38) the distance l is the actual propagation distance, in ECI co-

ordinates, of the signal. This result contains all the relativistic corrections

that need to be considered for direct time transfer by transmission of a

time-tagged pulse from one satellite to another.

9. Frequency Shifts Induced by Orbit Changes

Improvements in GPS motivate attention to other small relativistic effects

that have previously been too small to be explicitly considered. For SV

clocks, these include frequency changes due to orbit adjustments, and ef-

fects due to earth’s oblateness. For example, between July 25 and October

10, 2000, SV43 occupied a transfer orbit while it was moved from slot 5 to

slot 3 in orbit plane F. The fractional frequency shift associated with this

orbit adjustment was measured carefully15 and found to be −1.85× 10−13.

During such orbit adjustments, typically the satellite is raised or lowered in

altitude by 20 km or so. Also, earth’s oblateness causes a periodic fractional

frequency shift with period of almost 6 hours and amplitude 0.695×10−14.

This means that quadrupole effects on SV clock frequencies may be im-

portant in the consideration of frequency breaks induced by orbit changes,

especially since some of the recently launched Rubidium clocks show sta-

bilities of order 8 × 10−15. Thus, some approximate expressions for the

frequency effects due to earth’s oblateness, on SV clock frequencies, are

needed. These effects will be discussed with the help of Lagrange’s plane-

tary perturbation equations.

Five distinct relativistic effects, discussed in Sect. 5 above, are incor-

porated into the System Specification Document, ICD-GPS-200.14 These

are: the effect of earth’s mass on gravitational frequency shifts of atomic

reference clocks fixed on the earth’s surface relative to clocks at infinity; the

effect of earth’s oblate mass distribution on gravitational frequency shifts of

atomic clocks fixed on earth’s surface; second-order Doppler shifts of clocks

fixed on earth’s surface due to earth rotation; gravitational frequency shifts
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of clocks in GPS satellites due to earth’s mass; and second-order Doppler

shifts of clocks in GPS satellites due to their motion through an earth-

centered inertial (ECI) Frame. The combination of second-order Doppler

and gravitational frequency shifts given in Eq. (22) for a clock in a GPS

satellite leads directly to the following expression for the fractional fre-

quency shift of a satellite clock relative to a reference clock fixed on earth’s

geoid:

∆f

f
= −

1

2

v
2

c2
−

GME

rc2
−

Φ0

c2
, (39)

where v is the satellite speed in a local ECI reference frame, and Φ0 is the

effective gravitational potential on the earth’s rotating geoid.

If the GPS satellite orbit can be approximated by a Keplerian orbit of

semi-major axis a, then Eq. (27) gives

∆f

f
= −

3GME

2ac2
−

Φ0

c2
+

2GME

c2

[

1

r
−

1

a

]

. (40)

The first two terms in Eq. (40) give rise to the “factory frequency offset”,

which is supposed to be applied to GPS clocks before launch in order to

make them beat at a rate equal to that of reference clocks on earth’s surface.

The last term in Eq. (40) is very small when the orbit eccentricity e is small;

when integrated over time these terms give rise to the so-called “e sinE”

effect or “eccentricity effect.” In most of the following discussion we shall

assume that eccentricity is very small.

Clearly, from Eq. (40), if the semi-major axis should change by an

amount δa due to an orbit adjustment, the satellite clock will experience a

fractional frequency change

δf

f
= +

3GMEδa

2c2a2
. (41)

The factor 3/2 in this expression arises from the combined effect of second-

order Doppler and gravitational frequency shifts. If the semi-major axis

increases, the satellite will be higher in earth’s gravitational potential and

will be gravitationally blue-shifted more, while at the same time the satel-

lite velocity will be reduced, reducing the size of the second-order Doppler

shift (which is generally a red shift). The net effect would make a positive

contribution to the fractional frequency shift.

Earth’s quadrupole moment. If good estimates of the semi-major

axis before and after an orbit adjustment were available, Eq. (41) would
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provide a means of calculating or predicting the frequency change. Pertur-

bations of GPS orbits due to earth’s quadrupole mass distribution are sig-

nificant compared to the change in semi-major axis associated with the orbit

change discussed above. For the semi-major axis, if the eccentricity is very

small the dominant contribution has a period twice the orbital period and

has amplitude 3J2a
2

1
sin2

i0/(2a0) ≈ 1658 m. Here a0 = 2.656175× 107 m,

is the SV orbit semi-major axis. This raises the question whether it is suffi-

ciently accurate to describe GPS orbits as Keplerian while estimating such

semi-major axis changes. In this section, we estimate the effect of earth’s

quadrupole moment on the orbital elements of a nominally circular orbit

and thence on the change in frequency induced by an orbit change. Pre-

viously, such an effect on the SV clocks has been neglected, and indeed,

due in part to a remarkable coincidence, it does turn out to be small. The

analysis provides a method of finding the semi-major axis before and after

the orbit change.

The oscillation in the semi-major axis would significantly affect calcu-

lations of the semi-major axis at any particular time. This suggests that

Eq. (27) needs to be reexamined in light of the periodic perturbations on

the semi-major axis. Therefore, in this section we develop an approximate

description of a satellite orbit, of small eccentricity, taking into account

earth’s quadrupole moment to first order. Terms of order J2 × e will be

neglected.

Conservation of energy. The gravitational potential of a satellite at

position (x, y, z) in equatorial ECI coordinates in the model under consid-

eration here is

V (x, y, z) = −

GME

r

(

1 −

J2a
2

1

r2

[

3z
2

2r2
−

1

2

])

. (42)

Since the force is conservative in this model (solar radiation pressure, thrust,

etc. are not considered), the kinetic plus potential energy is conserved. Let

ε be the energy per unit mass of an orbiting mass point. Then

ε = constant =
v
2

2
+ V (x, y, z) =

v
2

2
−

GME

r
+ V

′(x, y, z) , (43)

where V
′(x, y, z) is the perturbing potential due to the earth’s quadrupole

potential. It is shown in textbooks11 that, with the help of Lagrange’s

planetary perturbation theory, the conservation of energy condition can be

put in the form

ε = −

GME

2a
+ V

′(x, y, z) , (44)
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where a is the perturbed (osculating) semi-major axis. In other words, for

the perturbed orbit,

v
2

2
−

GME

r
= −

GME

2a
. (45)

On the other hand, the net fractional frequency shift relative to a clock at

rest at infinity is determined by the second-order Doppler shift (a red shift)

and a gravitational red shift. The total relativistic fractional frequency shift

is

∆f

f
= −

v
2

2
−

GME

r
+ V

′(x, y, z) . (46)

The conservation of energy condition can be used to express the second-

order Doppler shift in terms of the potential. Here we are interested in

fractional frequency changes caused by changing the orbit, so it will make

no difference if the calculations use a clock at rest at infinity as a reference

rather than a clock at rest on earth’s surface. From perturbation theory we

need expressions for the square of the velocity, for the radius r, and for the

perturbing potential. We refer to the literature16,11 for the perturbed oscu-

lating elements. These are exactly known, to all orders in the eccentricity,

and to first order in J2. We shall keep only the leading terms in eccentricity

e, and quote the resulting perturbations for the kinetic and potential energy

terms.

v
2

2
=

GME

2ā
(1 + 2e0 cosE) +

3GMEJ2a
2

1

2ā3

(

1 −

3

2
sin2

i0

)

+
GMEJ2a

2

1

2ā3
sin2

i0 cos 2(ω0 + f) . (47)

where ā is the mean perturbed osculating semi-major axis. Perturbations

to the semi-major axis and eccentricity give rise to the following expression

for the monopole contribution to the gravitational potential:

−

GME

r
= −

GME

ā
(1 + e0 cosE) −

3GMEJ2a
2

1

2ā3

(

1 −

3

2
sin2

i0

)

+
GMEJ2a

2

1
sin2

i0

4ā3
cos 2(ω0 + f) . (48)

Thus, the quadrupole potential causes a change in the radius resulting in

an important change in the contributions from the monopole portion of the

potential.

Since the perturbing potential contains the small factor J2, to leading

order we may substitute unperturbed values for r and z into V
′(x, y, z),
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which yields the expression

V
′(x, y, z) = −

GMEJ2a
2

1

2ā3

(

1 −

3

2
sin2

i0

)

−

3GMEJ2a
2

1
sin2

i0

4ā3
cos 2(ω0+f) .

(49)

Each of the results quoted above have contributions proportional to

(1− 3 sin2
i0/2). Due to a fortuitous choice of inclination, i0 = 55◦, all such

contributions are negligibly small. Because this term is negligible, numerical

calculations of the total energy per unit mass provide a means of evaluating

the mean perturbed semi-major axis ā.

Conservation of energy . It is now very easy to check conservation of

energy. Adding kinetic energy per unit mass to two contributions to the

potential energy then gives

ε =
v
2

2
−

GME

r
+ V

′ = −

GME

2ā
. (50)

This verifies that the perturbation theory gives a constant energy, of the

same form as that for a pure Keplerian orbit. Numerical calculations of the

total energy per unit mass then yield the mean perturbed semi-major axis

ā.

Calculation of fractional frequency shift . The fractional frequency shift

calculation is very similar to the calculation of the energy, except that the

second-order Doppler term contributes with a negative sign. The result is

∆f

f
= −

v
2

2c2
−

GME

c2r
+

V
′

c2

= −

GME

āc2

(

3

2
+ 2 cosE0

)

−

GMEJ2a
2

1
sin2

i0

ā3c2
cos 2(ω0 + f) . (51)

The first term, when combined with the reference potential at earth’s geoid,

gives rise to the “factory frequency offset.” The second term gives rise to

the eccentricity effect. The last term has amplitude

GMEJ2a
2

1
sin2

i0

a3

0
c2

= 6.95× 10−15
, (52)

which may be large enough to consider when calculating frequency shifts

produced by orbit changes. Therefore, this contribution may have to be

considered in the future in the determination of the semi-major axis, but

for now we neglect it.

The result suggests the following method of computing the fractional

frequency shift: averaging the shift over one orbit, the periodic term will

average down to a negligible value. So if one has a good estimate for the
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nominal semi-major axis parameter, the term −3GME/2a0c
2 gives the av-

erage fractional frequency shift. On the other hand, the average energy per

unit mass is given by ε = −GME/2a0. Therefore, the precise ephemerides,

specified in an ECI frame, can be used to compute the average value for ε,

then the average fractional frequency shift will be

∆f

f
= 3ε/c

2
. (53)

When this approach is applied to the orbit change of July, 2000, the

fractional frequency change is calculated to be

∆f

f
= −1.77× 10−13

. (54)

This agrees with the measured value to within about 3.3%. Applications to

other orbit change events have worked so well that they are now included in

the estimates of frequency changes, before the orbit adjustments occur. This

results in improved GPS performance since otherwise it would take days

to measure the frequency changes; during such measurements the satellites

would be unusable.

Quadrupole time correction. The last periodic term in Eq. (51) is of

a form similar to that which gives rise to the eccentricity correction, which

is applied by GPS receivers. Considering only the last periodic term, the

additional time elapsed on the orbiting clock will be given by

δtJ2
=

∫

path

dt

[

−

GMEJ2a
2

1
sin2

i0

ā3c2
cos(2ω0 + 2nt)

]

, (55)

where to a sufficient approximation we have replaced the quantity f in the

integrand by nt =
√

GME/ā3t; n is the approximate mean motion of GPS

satellites. Integrating and dropping the constant of integration (assuming as

usual that such constant time offsets are lumped with other contributions)

gives the periodic relativistic effect on the elapsed time of the SV clock due

to earth’s quadrupole moment:

δtJ2
= −

√

GME

ā3

J2a
2

1
sin2

i0

2c2
sin(2ω0 + 2nt) . (56)

The correction that should be applied by the receiver is the negative of this

expression. The phase of the correction is zero when the satellite passes

through earth’s equatorial plane going northwards. If not accounted for,

this effect on the SV clock time would give rise to a peak-to-peak periodic

navigational error in position of approximately 2c × δtJ2
= 1.43 cm.
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Summary. In the present calculation, the effect of earth’s quadrupole

moment on the Keplerian orbit was accounted for. It was not necessary

to compute the orbit eccentricity. This approximate treatment of the orbit

makes no attempt to consider perturbations that are non-gravitational in

nature – e.g., solar radiation pressure. As a general conclusion, the frac-

tional frequency shift can be estimated to very good accuracy from the

expression for the “factory frequency offset,”

δf

f
= +

3GMEδa

2c2a2
. (57)

10. Secondary Relativistic Effects

There are several additional significant relativistic effects that must be con-

sidered at the level of accuracy of a few cm (which corresponds to 100

picoseconds of delay). Many investigators are modeling systematic effects

down to the millimeter level so these effects, which currently are not suffi-

ciently large to affect navigation, may have to be considered in the future.

Signal Propagation Delay. The Shapiro signal propagation delay

may be easily derived in the standard way from the metric, Eq. (18), which

incorporates the choice of coordinate time rate expressed by the presence

of the term in Φ0/c
2. Setting ds

2 = 0 and solving for the increment of co-

ordinate time along the path increment dσ =
√

dr2 + r2dθ2 + r2 sin2
θdφ2

gives

dt =
1

c

[

1 −

2V

c2
+

Φ0

c2

]

dσ . (58)

The time delay is sufficiently small that quadrupole contributions can be

neglected. Integrating along the straight line path a distance l between the

transmitter and receiver gives for the time delay

∆tdelay =
Φ0

c2

l

c
+

2GME

c3
ln

[

r1 + r2 + l

r1 + r2 − l

]

, (59)

where r1 and r2 are the distances of transmitter and receiver from earth’s

center. The second term is the usual expression for the Shapiro time delay.

It is modified for GPS by a term of opposite sign (Φ0 is negative), due

to the choice of coordinate time rate. This tends to cancel the logarithm

term. The net effect for a satellite to earth link is less than 2 cm and for

most purposes can be neglected. One must keep in mind, however, that in

the main term, l/c, l is a coordinate distance and further small relativistic

corrections are required to convert it to a proper distance.
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Effect on Geodetic Distance. At the level of a few millimeters, spatial

curvature effects should be considered. For example, using Eq. (18), the

proper distance between a point at radius r1 and another point at radius

r2 directly above the first is approximately

∫

r2

r1

dr

[

1 +
GME

c2r

]

= r2 − r1 +
GME

c2
ln

(

r2

r1

)

. (60)

The difference between proper distance and coordinate distance, and be-

tween the earth’s surface and the radius of GPS satellites, is approximately

4.43 ln(4.2) mm ≈ 6.3 mm. Effects of this order of magnitude would en-

ter, for example, in the comparison of laser ranging to GPS satellites, with

numerical calculations of satellite orbits based on relativistic equations of

motion using coordinate times and coordinate distances.

Phase Wrap-Up. Transmitted signals from GPS satellites are right

circularly polarized and thus have negative helicity. For a receiver at a fixed

location, the electric field vector rotates counterclockwise, when observed

facing into the arriving signal. Let the angular frequency of the signal be

ω in an inertial frame, and suppose the receiver spins rapidly with angular

frequency Ω which is parallel to the propagation direction of the signal. The

antenna and signal electric field vector rotate in opposite directions and thus

the received frequency will be ω + Ω. In GPS literature this is described

in terms of an accumulation of phase called “phase wrap-up.” This effect

has been known for a long time17,18,19,21, and has been experimentally

measured with GPS receivers spinning at rotational rates as low as 8 cps.

It is similar to an additional Doppler effect; it does not affect navigation if

four signals are received simultaneously by the receiver as in Eqs. (1).

Effect of Other Solar System Bodies. One set of effects that has

been “rediscovered” many times are the red shifts due to other solar sys-

tem bodies. The Principle of Equivalence implies that sufficiently near the

earth, there can be no linear terms in the effective gravitational potential

due to other solar system bodies, because the earth and its satellites are

in free fall in the fields of all these other bodies. The net effect locally can

only come from tidal potentials, the third terms in the Taylor expansions

of such potentials about the origin of the local freely falling frame of ref-

erence. Such tidal potentials from the sun, at a distance r from earth, are

of order GM�r
2
/R

3 where R is the earth-sun distance.22 The gravitational

frequency shift of GPS satellite clocks from such potentials is a few parts

in 1016 and is currently neglected in the GPS.
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11. Applications

The number of applications of GPS has been astonishing. Accurate position-

ing and timing, other than for military navigation, include synchronization

of power line nodes for fault detection, communications, VLBI, navigation

in deep space, tests of fundamental physics, measurements on pulsars, tests

of gravity theories, vehicle tracking, search and rescue, surveying, mapping,

and navigation of commercial aircraft, to name a few. These are too nu-

merous to go into in much detail here, but some applications are worth

mentioning. Civilian applications have overtaken military applications to

the extent that SA was turned off in May of 2000.

The Nobel-prizewinning work of Joseph Taylor and his collaborators23

on the measurement of the rate of increase of the binary pulsar period de-

pended on GPS receivers at the Arecibo observatory, for transferring UTC

from the U.S. Naval Observatory and NIST to the local clock. Time stan-

dards around the world are compared using GPS in common-view; with

this technique SA would cancel out, as well as do many sources of system-

atic errors such as ionospheric and tropospheric delays. Precise position

information can assist in careful husbandry of natural resources, and ani-

mal and vehicle fleet tracking can result in improved efficiency. Precision

agriculture makes use of GPS receivers in real-time application of pesti-

cides or fertilizers, minimizing waste. Sunken vessels or underwater ruins

with historically significant artifacts can be located using the GPS and

archeologists can return again and again with precision to the same lo-

cation. Monster ore trucks or earth-moving machines can be fitted with

receivers and controlled remotely with minimal risk of collision or inter-

ference with other equipment. Disposable GPS receivers dropped through

tropical storms transmit higher resolution measurements of temperature,

humidity, pressure, and wind speed than can be obtained by any other

method; these have led to improved understanding of how tropical storms

intensify. Slight movements of bridges or buildings, in response to various

loads, can be monitored in real time. Relative movements of remote parts

of earth’s crust can be accurately measured in a short time, contributing to

better understanding of tectonic processes within the earth and, possibly,

to future predictions of earthquakes. With the press of a button, a lost hiker

can send a distress signal that includes the hikers’ location.

These and many other creative applications of precise positioning and

timing are leading to a rapid expansion of GPS products and services. Over

50 manufacturers produce more than 350 different GPS products for com-
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mercial, private, and military use. The number of receivers manufactured

each year is in excess of two million, and different applications are continu-

ally being invented. Marketing studies predict that sales of GPS equipment

and services will grow to over $34 billion by 2006. Revenue for the European

GALILEO system is projected to be 10 billion Euros per year.

12. Conclusions

The GPS is a remarkable laboratory for applications of the concepts of spe-

cial and general relativity. GPS is also valuable as an outstanding source

of pedagogical examples. It is deserving of more scrutiny from relativity

experts. It is particularly important to confirm that the basis for synchro-

nization is on a firm conceptual foundation.
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Part III

Beyond Einstein

Unifying General Relativity with Quantum Physics

...a really new field of experience will always lead to crystalliza-

tion of a new system of scientific concepts and laws...when faced

with essentially new intellectual challenges, we continually follow

the example of Columbus who possessed the courage to leave the

known world in almost the insane hope of finding land again beyond

the sea.

—W. Heisenberg (Changes in the Foundation of Exact Science)
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CHAPTER 11

SPACETIME IN SEMICLASSICAL GRAVITY

L. H. FORD

Institute of Cosmology
Department of Physics and Astronomy

Tufts University, Medford, MA 02155, USA
ford@cosmos.phy.tufts.edu

This article will summarize selected aspects of the semiclassical theory of
gravity, which involves a classical gravitational field coupled to quantum
matter fields. Among the issues which will be discussed are the role of
quantum effects in black hole physics and in cosmology, the effects of
quantum violations of the classical energy conditions, and inequalities
which constrain the extent of such violations. We will also examine the
first steps beyond semiclassical gravity, when the effects of spacetime
geometry fluctuations start to appear.

1. Introduction

This article will deal with the semiclassical approximation, in which the

gravitational field is classical, but is coupled to quantum matter fields. The

semiclassical theory consists of two aspects: (1) Quantum field theory in

curved spacetime and (2) The semiclassical Einstein equation. Quantum

field theory in curved spacetime describes the effects of gravity upon the

quantum fields. Here a number of nontrivial effects arise, including particle

creation, negative energy densities, and black hole evaporation. The semi-

classical Einstein equation describes how quantum fields act as the source

of gravity. This equation is usually taken to be the classical Einstein equa-

tion, with the source as the quantum expectation value of the matter field

stress tensor operator, that is

Gµν = 8π〈Tµν〉 . (1)

This expectation value is only defined after suitable regularization and

renormalization.

293
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In this article, we will use units (Planck units) in which Newton’s con-

stant, the speed of light, and ~ are set to one: G = c = ~ = 1. This makes

all physical quantities dimensionless. Thus masses, lengths, and times are

expressed as dimensionless multiples of the Planck mass, mP =
√

~c/G =

2.2 × 10−5g, the Planck length, `P =
√

~G/c3 = 1.6 × 10−33cm, and the

Planck time, tP =
√

~G/c5 = 5.4 × 10−44s, respectively.

2. Renormalization of 〈Tµν〉

Here we will outline of the procedure for extracting a meaningful, finite part

from the formally divergent expectation value of the stress tensor. More de-

tailed accounts can be found in the books by Birrell and Davies1 and by

Fulling2 . The first step is to introduce a formal regularization scheme,

which renders the expectation value finite, but dependent upon an arbi-

trary regulator parameter. One possible choice is to separate the spacetime

points at which the fields in Tµν are evaluated, and then to average over

the direction of separation. This leaves 〈Tµν〉 depending upon an invari-

ant measure of the distance between the two points. This is conventionally

chosen to be one-half of the square of the geodesic distance, denoted by σ.

The asymptotic form for the regularized expression in the limit of small

σ can be shown to be

〈Tµν〉 ∼ A
gµν

σ2
+ B

Gµν

σ
+

(

C1H
(1)

µν + C2H
(2)

µν

)

ln σ. (2)

Here A, B, C1, and C2 are constants, Gµν is the Einstein tensor, and the

H
(1)

µν and H
(2)

µν tensors are covariantly conserved tensors which are quadratic

in the Riemann tensor. Specifically, they are the functional derivatives with

respect to the metric tensor of the square of the scalar curvature and of the

Ricci tensor, respectively:

H
(1)

µν
≡

1
√

−g

δ

δgµν

[√

−gR
2
]

= 2∇ν∇µR − 2gµν∇ρ∇
ρ
R −

1

2
gµνR

2 + 2RRµν , (3)

and

H
(2)

µν
≡

1
√

−g

δ

δgµν

[√

−gRαβR
αβ

]

= 2∇α∇νR
α

µ
−∇ρ∇

ρ
Rµν

−

1

2
gµν∇ρ∇

ρ
R −

1

2
gµνRαβR

αβ + 2R
ρ

µRρν . (4)
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The divergent parts of 〈Tµν〉 may be absorbed by renormalization of

counterterms in the gravitational action. Write this action as

SG =
1

16πG0

∫

d
4
x
√

−g

(

R − 2Λ0 + α0R
2 + β0RαβR

αβ

)

. (5)

We now include a matter action, SM , and vary the total action, S = SG +

SM , with respect to the metric. If we replace the classical stress tensor in

the resulting equation by the quantum expectation value, 〈Tµν〉, we obtain

the semiclassical Einstein equation including the quadratic counterterms:

Gµν + Λ0gµν + α0H
(1)

µν
+ β0H

(2)

µν
= 8πG0〈Tµν〉. (6)

We may remove the divergent parts of 〈Tµν〉 in redefinitions of the coupling

constants G0, Λ0, α0, and β0. The renormalized values of these constants

are then the physical parameters in the gravitational theory. After renor-

malization, G0 is replaced by G, the renormalized Newton’s constant, which

is the value actually measured by the Cavendish experiment. Similarly, Λ0

becomes the renormalized cosmological constant Λ, which must be deter-

mined by observation. This is analogous to any other renormalization in

field theory, such as the renormalization of the mass and charge of the

electron in quantum electrodynamics.

In any case, the renormalized value of 〈Tµν〉 is obtained by subtract-

ing the terms which are divergent in the coincidence limit. However, we

are free to perform additional finite renormalizations of the same form.

Thus, 〈Tµν〉ren is defined only up to the addition of multiples of the four

covariantly conserved, geometrical tensors gµν , Gµν , H
(1)

µν , and H
(2)

µν . Apart

from this ambiguity, Wald3 has shown under very general assumptions that

〈Tµν〉ren is unique. Hence, at the end of the calculation, the answer is inde-

pendent of the details of the regularization and renormalization procedures

employed.

3. The Stability Problem in the Semiclassical Theory

The classical Einstein equation is a second order, nonlinear, differential

equation for the spacetime metric tensor, because the Einstein tensor in-

volves up to second derivatives of the metric. As a second order system of

hyperbolic equations, it possesses a well-posed initial value formulation: if

one specifies the metric and its first derivatives on a spacelike hypersurface,

there exists a unique solution of the equations4. This is the usual situation

in physics, where the fundamental equations can be cast as a second order
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system. (For example, Maxwell’s equations are equivalent to a set of second

order wave equations for the vector and scalar potentials.)

There is a problem with the semiclassical Einstein equation in that it is

potentially a fourth-order system of equations. This arises from terms in-

volving second derivatives of the curvature tensor, and hence fourth deriva-

tives of the metric. This leads to the unpleasant feature that a unique

solution would require specification of the metric and its first three deriva-

tives on a spacelike hypersurface. Even worse, it can lead to instability. The

situation is analogous to that in classical electrodynamics when radiation

reaction in included in the equation of motion of a charged particle5. The

Abraham-Lorentz equation, which includes the radiation reaction force for

a nonrelativistic particle, is third-order in time and possesses runaway solu-

tions. In electrodynamics, the problem is partially solved by replacing the

third-order Abraham-Lorentz equation by an integrodifferential equation

which is free of runaway solutions, but exhibits acausal behavior on short

time scales. However, this acausality is on a time scale small compared to

the Compton time of the particle. As such, it lies outside of the domain of

validity of classical electrodynamics.

Several authors6,7,8 have discussed the instability problem in semiclassi-

cal gravity theory. Some of the proposed resolutions of this problem involve

reformulating the theory to eliminate unstable solutions (analogous to the

integrodifferential equation in electrodynamics), or regarding the semiclas-

sical theory as valid only for spacetimes which pass a stability criterion.

These are sensible approaches to the issue. Basically, one wishes to have

a theory which can approximately describe the backreaction of quantum

fields on scales well above the Planck scale. It is important to keep in mind

that the semiclassical theory is an approximation which must ultimately

fail in situations where the quantum nature of gravity itself plays a crucial

role.

4. The Hawking Effect

One of the great successes of quantum field theory in curved spacetime

and of semiclassical gravity is the elegant connection between black hole

physics and thermodynamics forged by the Hawking effect. Classical black

hole physics suffers from Bekenstein’s paradox9: one could throw hot objects

into a black hole and apparently decrease the net entropy of the universe.

This paradox can be resolved by assigning an entropy to a black hole which

is proportional to the area of the event horizon. Hawking10 carried this
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reasoning one step further by showing that black holes are hot objects in

a literal sense and emit thermal radiation. The outgoing radiation consists

of particles quantum mechanically created in a region outside of the event

horizon, and carries away energy and entropy from the black hole. The

resulting decrease in mass of the hole arises from a steady flux of negative

energy into the horizon, and is consistently described by the semiclassical

Einstein equation, Eq. (1), so long as the black hole’s mass is well above

the Planck mass.

Although the Hawking effect provides an elegant unification of ther-

modynamics, gravity and quantum field theory, there are still unanswered

questions. One is the “information puzzle”, the issue of whether informa-

tion which goes into the black hole during its semiclassical phase can be

recovered. Hawking11 originally proposed that this information is irrevo-

cably lost and that black hole evaporation is not described by a unitary

evolution. This view has been disputed by several other physicists12, who

have argued that a complete quantum mechanical description of the evapo-

ration process should be unitary. More recently, Hawking13 has agreed with

this view. However, even if the evolution is unitary, the details by which

information is recovered are still unclear. One possibility is that the outgo-

ing radiation is not exactly thermal, but contains some subtle correlations

which carry the information about the details of the matter which fell into

the black hole. If this suggestion is correct, it is not clear just how these

correlations arise.

A second mystery raised by the Hawking effect is the “tranplanckian

problem”. This problem arises because the modes which will eventually

become populated with the outgoing thermal radiation start out with ex-

tremely high frequencies before the black hole formed. These modes enter

the collapsing body and then exit just before the horizon forms, undergoing

an enormous redshift. However, as they enter and pass through the body,

their frequencies are vastly higher than the Planck scale. If one postulates

that full quantum gravity will impose an effective cutoff at the Planck scale,

then there seems to be a conflict; a cutoff at any reasonable frequency would

eliminate the modes needed for the Hawking radiation. For a black hole of

mass M to evaporate, one needs to start with modes whose frequency is of

order

ω ≈

eM
2

M
. (7)

For a stellar mass size black hole, this corresponds to ω ≈ 1010
75

g, which
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is vastly larger than the mass of the observable universe. One possible

resolution14,15,16 of this problem is to postulate a modified dispersion re-

lation which allows for “mode creation”, whereby the modes would appear

shortly before they are needed to carry the thermal radiation. However, this

solution will require new microphysics, including breaking of local Lorentz

invariance.

5. Quantum Effects in the Early Universe

It is likely that there is a period in the history of the universe during which

quantum effects are important, but one is sufficiently far from the Planck

regime that a full theory of quantum gravity is not needed. In this case, the

semiclassical theory is applicable. Among the quantum effects expected in

an expanding universe is quantum particle creation17. Inflationary models

with inflation occurring at scales below the Planck scale are plausible mod-

els for the early universe in which semiclassical gravity should hold. Indeed,

such models predict that the density perturbations which later grew into

galaxies had their origins as quantum fluctuations during the inflationary

epoch18,19,20,21,22. This leads to the remarkable prediction that the large

scale structure of the present day universe had its origin in quantum fluc-

tuations of a scalar inflaton field. More precisely, quantum fluctuations of

a nearly massless scalar field in deSitter spacetime translate into an ap-

proximately scale invariant spectrum of density perturbations. This picture

seems to be consistent with recent observations of the cosmic microwave

background radiation23.

6. The Dark Energy Problem

There is now strong evidence that the expansion of the present day uni-

verse is accelerating. This evidence came first from observations of type Ia

supernovae24,25. This acceleration could be due to a nonzero value for the

cosmological constant, but other possibilities are consistent with the obser-

vational data. These possibilities go under the general term “dark energy”,

and require a negative pressure whose magnitude is approximately equal

to the energy density. It has sometimes been suggested that the dark en-

ergy could be viewed as due to quantum zero point energy. However, there

are some serious difficulties with this viewpoint. If we adopt the conven-

tion renormalization approach discussed in Sect. 2, then the renormalized

value of the cosmological constant Λ is completely arbitrary. At this level,

quantum field theory in curved spacetime can no more calculate Λ then
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quantum electrodynamics can calculate the mass of the electron. We could

take a more radical approach and seek some physical principle which ef-

fectively fixes the value of the regulator parameter to a definite, nonzero

value. However, for the first term on the right hand side of Eq. (2) to be

the dark energy, we would have to take σ ≈ (0.01cm)2. It is very hard to

imagine what new physics would introduce a cutoff on a scale of the order

of 0.01cm.

There is still a possibility that the dark energy could be due to some

more complicated mechanism which involves quantum effects. One appeal-

ing idea is that there might be a mechanism for the cosmological constant

to decay from a large value in the early universe to a smaller, but nonzero

value today. Numerous authors 26,27,28,29,30,31,32,33,34 have discussed mod-

els for the decay of the cosmological constant, or models which otherwise

attribute a quantum origin to the dark energy35,36. However, at the present

time there is no widely accepted model which successfully links dark energy

with quantum processes.

7. Negative Energy Density for Quantum Fields

One crucial feature of quantum matter fields as a source of gravity is that

they do not always satisfy conditions obeyed by known forms of classi-

cal matter, such as positivity of the local energy density. Negative energy

densities and fluxes arise even in flat spacetime. A simple example is the

Casimir effect37, where the vacuum state of the quantized electromagnetic

field between a pair of perfectly conducting plates separated by a distance

L is a state of constant negative energy density

ρ = 〈Ttt〉 = −

π
2

720L4
. (8)

Even if the plates are not perfectly conducting, it is still possible to arrange

for the energy density at the center to be negative38.

Negative energy density can also arise as the result of quantum coher-

ence effects. In fact, it may be shown under rather general assumptions

that quantum field theories admit states for which the energy density will

be negative somewhere39,40. In simple cases, such as a free scalar field in

Minkowski spacetime, one can find states in which the energy density can

become arbitrarily negative at a given point.

We can illustrate the basic phenomenon of negative energy arising from

quantum coherence with a very simple example. Let the quantum state of
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the system be a superposition of the vacuum and a two particle state:

|Ψ〉 =
1

√

1 + ε2
(|0〉 + ε|2〉). (9)

Here we take the relative amplitude ε to be a real number. Let the energy

density operator be normal-ordered:

ρ =: Ttt : , (10)

so that 〈0|ρ|0〉 = 0. Then the expectation value of the energy density in the

above state is

〈ρ〉 =
1

1 + ε2

[

2εRe(〈0|ρ|2〉) + ε
2
〈2|ρ|2〉

]

. (11)

We may always choose ε to be sufficiently small that the first term on the

right hand side dominates the second term. However, the former term may

be either positive or negative. At any given point, we could choose the sign

of ε so as to make 〈ρ〉 < 0 at that point. This example is a limiting case of

a more general class of quantum states which may exhibit negative energy

densities, the squeezed states.

Note that the integral of ρ over all space is the Hamiltonian, which does

have non-negative expectation values:

〈H〉 =

∫

d
3
x〈ρ〉 ≥ 0. (12)

In the above vacuum + two particle example, the matrix element 〈0|ρ|2〉,

which gives rise to the negative energy density, has an integral over all

space which vanishes, so only 〈2|ρ|2〉 contributes to the Hamiltonian.

8. Some Possible Consequences of Quantum Violation of

Classical Energy Conditions

The existence of negative energy density can give rise to a number of effects

in which the predictions of semiclassical gravity differ significantly from

those of classical gravity theory.

8.1. Singularity avoidance

In the 1960’s, several elegant theorems were proven by Penrose, Hawking,

and others41 which demonstrate the inevitability of singularity formation

in gravitational collapse described by classical relativity. These singularity

theorems imply that the curvature singularities found in the exact solutions
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for black holes or for cosmological models are generic and signal a break-

down of classical relativity theory. However, this does not tell us whether

a full quantum theory of gravity is needed to give a physically consistent,

that is, singularity free, picture of the end state of gravitational collapse or

the origin of the universe.

A crucial feature of the proofs of the singularity theorems is the as-

sumption of a classical energy condition. There are several such conditions

that can be used, but a typical example is the weak energy condition. This

states that the stress tensor Tµν must satisfy Tµν u
µ

u
ν
≥ 0 for all timelike

vectors u
µ. Thus all observers must see the local energy density being non-

negative. It is not hard to understand why there could not be a singularity

theorem without an energy condition: the Einstein tensor Gµν is a function

of the metric and its first two derivatives. Thus, every twice-differentiable

metric is a solution of the Einstein equation, Gµν = 8πTµν for some choice

of Tµν . We can also understand the role which the weak energy and re-

lated conditions play. Positive energy density will generate an attractive

gravitational field and cause light rays to focus. Once gravitational collapse

has proceeded beyond a certain point, the formation of a singularity is in-

evitable as long as gravity remains attractive. The way to circumvent this

conclusion is with exotic matter, such as negative energy density, which

can cause repulsive gravitational effects.

Given that quantum fields can violate the classical energy conditions,

there is a possibility that the semiclassical theory can produce realistic,

nonsingular black hole and cosmological solutions. This is a topic which

has been investigated by several authors43,44,45. However, it is difficult to

avoid having the curvature reach Planck dimensions before saturating. In

this case, the applicability of the semiclassical theory is questionable. It is

possible to avoid this difficulty with a carefully selected quantum states43, a

nonminimal scalar field which violates the energy conditions at the classical

level44, or by going to models where gravity itself is quantized45.

8.2. Creation of naked singularities

There is an opposite effect which might be caused by negative energy: the

creation of a naked singularity. The singularities formed in gravitational

collapse in classical relativity tend to be hidden from the outside universe

by event horizons. Penrose42 has made a “cosmic censorship conjecture” to

the effect that this must always be the case. This implies that the break-

down of predictability caused by the singularity is limited to the region
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inside the horizon. It is not yet known whether this conjecture is true, even

in the context of classical relativity with classical matter, obeying classi-

cal energy conditions. However, unrestricted negative energy would allow

a counterexample to this conjecture. The Reissner-Nordström solution of

Einstein’s equation describes a black hole of mass M and electric charge

Q. However, these black hole solutions have an upper limit on the electric

charge in relation to the mass of Q ≤ M (in our units). There are solutions

for which Q > M , but these describe a naked singularity. Simple classical

mechanisms for trying to convert a charged black hole into a naked singular-

ity fail. If we try to increase the charge of a black hole, the work needed to

overcome the electrostatic repulsion causes the black hole’s mass to increase

at least as much as the charge and keep Q ≤ M . However, unrestricted neg-

ative energy would offer a way to violate cosmic censorship and create a

naked singularity. We could shine a beam of negative energy involving an

uncharged quantum field into the black hole, decrease M without changing

Q, and thereby cause a naked singularity to appear46,47.

8.3. Violation of the second law of thermodynamics?

If it is possible to create unrestricted beams of negative energy, then the

second law would seem to be in jeopardy. One could shine the beam of

negative energy on a hot object and decrease its entropy without a com-

pensating entropy increase elsewhere. The purest form of this experiment

would involve shining the negative energy on a black hole. If the negative

energy is carried by photons with wavelengths short compared to the size

of the black hole, it will be completely absorbed. That is, there will be no

backscattered radiation which might carry away entropy. Then the black

hole’s mass, and hence its entropy, will decrease in violation of the second

law48.

8.4. Traversable wormholes and warp drive spacetimes

As noted above, virtually any conceivable spacetime is a solution of Ein-

stein’s equation with some choice for the source. If the source violates the

classical energy conditions, some bizarre possibilities arise. An example are

the traversable wormholes of Morris, Thorne and Yurtsever49. These would

function as tunnels which could connect otherwise widely separated regions

of the universe by a short pathway. An essential requirement for a wormhole

is exotic matter which violates the weak energy condition. The reason for

this is that light rays must first enter one mouth of the wormhole, begin to
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converge and later diverge so as to exit the other mouth of the wormhole

without coming to a focal point. In other words,the spacetime inside the

wormhole must act like a diverging lens, which can only be achieved by

exotic matter.

The existence of traversable wormholes would be strange enough, but

they have an even more disturbing feature: they can be manipulated to

create a time machine50. If the mouths of a wormhole move relative to one

another, it is possible for the resulting spacetime to possess “closed timelike

paths”. On such a path, an observer could return to the same point in space

and in time, and by speeding up slightly, arrive at the starting point before

leaving. Needless to say, this would turn physics as we currently understand

it on its head and open the door to disturbing causal paradoxes.

An equally bizarre possibility was raised by Alcubierre51, who con-

structed a spacetime that functions as science fiction style “warp drive”.

It consist of a bubble of flat spacetime surrounded by expanding and con-

tracting regions imbedded in an asymptotically flat spacetime. The effect

of the expansion and contraction is to cause the bubble to move faster than

the speed of light, as measured by a distant observer, even though locally

everything moves inside the lightcone. Again, negative energy is essential

for the existence of this spacetime.

9. Quantum Inequalities

It is clear that unrestrained violation of the classical energy conditions

would create major problems for physics. However, it is also clear that

quantum field theory does allow for some violations of these conditions.

This leads us to ask if there are constraints on negative energy density in

quantum field theory. The answer is yes; there are inequalities which restrict

the magnitude and duration of the negative energy seen by any observer,

known as quantum inequalities 48,52,53,54,55,56,57,58,59. In four spacetime di-

mensions, a typical inequality for a massless field takes the form53,54,58

∫

ρ(t) g(t) dt ≥ −

c

t
4

0

. (13)

Here ρ(t) is the energy density measured in the frame of an inertial observer,

g(t) is a sampling function with characteristic width t0, and c is a numerical

constant which is typically less than one. The value of c depends upon

the form of g(t) (e.g. Gaussian versus Lorentzian). The sampling function

and its width can be chosen arbitrarily, subject to some differentiability

conditions on g(t). The essential message of an inequality such Eq. (13)
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is that there is an inverse relation between the duration and magnitude of

negative energy density. In particular, if an observer sees a pulse of negative

energy density with a magnitude of order ρm lasting a time of order τ , then

we must have ρm < 1/τ
4.

Furthermore, that negative energy cannot arise in isolation, but must

be accompanied by compensating positive energy. This fact, plus the quan-

tum inequalities, place very severe restrictions on the physical effects which

negative energy can create. Here is a brief summary of the implications of

quantum inequalities for some of the possible effects listed above.

9.1. Violations of the second law and of cosmic censorship

If we were to shine a pulse of negative energy onto a black hole so as to

decrease its entropy and violate the second law, the entropy decrease would

have to last long enough to be macroscopically observable. At a minimum,

it should be sustained for a time longer than the size of the event horizon. If

the negative energy is constrained by an inequality of the form of Eq. (13),

then it can be shown48 that the resulting entropy decrease is of the order of

Boltzmann’s constant or less. This represents an entropy change associated

with about one bit of information, hardly a macroscopic violation of the

second law.

The attempt to create a naked singularity by shining a pulse of negative

energy on an extreme, Q = M , charged black hole is similarly constrained.

Again, any naked singularity which is formed should last for a time long

compared to M . However, it can be argued46,47 that the resulting change

in the spacetime geometry may be smaller than the natural quantum fluc-

tuations on this time scale. Thus it seems that negative energy which obeys

the quantum inequality restrictions cannot produce a clear, unambiguous

violation of cosmic censorship.

9.2. Constraints on traversable wormholes and warp drive

The simplest quantum inequalities, such as Eq. (13) have been proven only

in flat spacetime, and hence do not immediately apply to curved spacetime.

There is, however, a limiting case in which they can also be used in curved

spacetime. This is when the sampling time t0 , as measured in a local inertial

frame, is small compared to the local radii of curvature of the spacetime

in the same frame. This means that the spacetime is effectively flat on the

time scale of the sampling, and the flat space inequality should also apply

to curved spacetime. In the special cases where explicit curved spacetime
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inequalities have been derived, they are consistent with this limit. That is,

they reduce to the corresponding flat space inequality in the short sampling

time limit.

Even in the small t0 limit, it is possible to put very strong restrictions on

the geometry of traversable wormholes and warp drives60. The constraints

on wormhole geometries vary from one model to another. In some cases,

the throat of the wormhole is limited to be close to Planck dimensions, pre-

sumably outside of the domain of validity of semiclassical gravity. In other

cases, the restrictions are slightly less severe, but still require some length

scales to be much smaller than others, such as a band of negative energy

no more than 10−13cm thick to support a wormhole with a 1m throat. This

does not quite rule out all possible wormholes based upon semiclassical

gravity, but makes it hard to imagine actually constructing one. Similar,

very strong restrictions are placed on warp drive spacetimes61,62, such as

the Alcubierre model.

10. Beyond Semiclassical Gravity: Fluctuations

The first extension of semiclassical gravity arises when we consider fluctua-

tions of the gravitational field. These can be due to two causes: the quantum

nature of gravity itself (active fluctuations) and quantum fluctuations of the

stress tensor (passive fluctuations). The extension of the semiclassical the-

ory to include fluctuations is sometimes called stochastic gravity63,64,65,66.

One of the criteria for the validity of the semiclassical theory based upon

Eq. (1) must be that fluctuations are small67. This theory can break down

even well above the Planck scale if the stress tensor fluctuations are suffi-

ciently large. A simple example is a quantum state which is a superposition

of two states, each of which describe a distinct classical matter distribu-

tion (e.g. a 1000kg mass on one or the other side of a room). Equation (1)

predicts a gravitational field which is an average of the fields due to the

two distributions separately, (the effect of two 500kg masses on opposite

sides of the room). However, an actual measurement of the gravitational

field should yield that of a single 1000kg mass, but in different locations in

different trials.

A treatment of small fluctuations of the gravitational field offers a win-

dow into possible extensions beyond strict semiclassical gravity. First we

should be clear about the operational meaning of fluctuations of gravity.

A classical gravitational field or spacetime geometry can be viewed as en-

coding all possible motions of test particles in that geometry. Consequently,
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fluctuations of spacetime imply Brownian motion of the test particles, which

can be characterized by mean squared deviations from classical geodesics.

Test particles can include photons, and one of the striking consequences

of gravity fluctuations can be fluctuations of the lightcone. Recall that the

lightcone plays a crucial role in classical relativity theory. Events which

are timelike or null separated from one another can be causally related,

but those at spacelike separations cannot. Similarly, an event horizon is

a null surface which separates causally disjoint regions of spacetime. This

rigid separation cannot be maintained when the spacetime fluctuates. A

simple way to have spacetime fluctuations is with a bath of gravitons in

a nonclassical state, such as a squeezed vacuum state69,70. Here the mean

spacetime geometry is almost flat, apart from effects of the averaged stress

tensor of the gravitons, but exhibits large fluctuations around this mean.

These will include lightcone fluctuations, which will manifest themselves

in varying arrival times of pulses from a source. Consider a source and a

detector, which are both at rest relative to the average background and

separated by a proper distance D, as measured in the average metric. Then

the mean flight time of pulses will be D, but some individual pulses will

take a longer time, and others a shorter time. A pulse which arrives in a

time less than D travels outside of the lightcone of the mean spacetime, as

illustrated in Fig. 1.

As noted earlier, faster than light travel can often be used to travel

backwards in time. However, there is a crucial step needed to link the two:

Lorentz invariance. One must exploit the fact that one can interchange the

time order of spacelike separated events by changing Lorentz frames. In the

present example, Lorentz symmetry is broken by the existence of a preferred

rest frame, that of the graviton bath. Thus one cannot conclude that there

is any problem with causality created by these lightcone fluctuations.

Because an event horizon is a special case of a lightcone, there should

be horizon fluctuations in any model with spacetime geometry fluctuations.

In the case of a black hole horizon, this raises the possibility of information

leaking out of the black hole, or of the horizon fluctuations drastically alter-

ing the semiclassical derivation of black hole evaporation. One estimate71

of the magnitude of the effects of quantum horizon fluctuations concluded

that they are too small to alter the Hawking radiation for black holes much

larger than the Planck mass. However, other authors72,73 have argued for

a much larger effect. It has also been suggested74 that horizon fluctuations

might provide the new physics needed to gracefully solve the tranplanckian

problem. This is clearly an area where more work is needed.
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Fig. 1. The effects of lightcone fluctuations are illustrated. The dashed lines represent
the average lightcone. However, pulses which are emitted at the origin can arrive at the
worldline of a detector (vertical dotted line) a mean distance D away at different times.
A pulse detected at point a travels slower than the mean speed of light, but one detected
at point b has traveled faster than the mean speed of light, and hence outside of the
mean lightcone.

The passive fluctuations of gravity driven by quantum stress tensor

fluctuations are just one manifestation of stress tensor fluctuations. They

are also responsible for fluctuation forces on macroscopic bodies, such as

Casimir force fluctuations75,76,77,78 and radiation pressure fluctuations79.

This provides the possibility of an electromagnetic analog model for passive

quantum gravity. The same techniques are needed to define integrals of the

stress tensor correlation function in both contexts. In both cases, one needs

to use a regularization method, such as dimensional regularization80 or

an integration by parts. Some of the physical effect which have recently

been studied using the latter technique are angular blurring and luminosity

fluctuations81 of the image of a distant source seen through a fluctuating

spacetime.

11. Summary

The semiclassical theory, with quantum matter fields and a classical grav-

itational field, provides a crucial link between the purely classical theory
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and a more complete quantum theory of gravity. Any viable candidate for

a full quantum theory of gravity must reproduce the predictions of semi-

classical gravity in an appropriate limit. In addition, semiclassical gravity

contains a rich array of physical effects which are not found at the classical

level, including black hole evaporation, cosmological particle creation, and

negative energy density effects. The simplest extensions of the semiclassical

theory to include spacetime fluctuations provide another array of effects,

including lightcone and horizon fluctuations, which will have to be better

understood in the context of a more complete theory.
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This paper explores the holographic description of space-time in string
theory. Super-Poincare invariant versions of the theory are described by
moduli spaces of S-matrices. The parameters describing the S-matrix
have geometrical interpretations in extreme regions of the moduli space,
but the S-matrix interpolates smoothly between compact spaces of rad-
ically different topology. Asymptotically Anti-de Sitter universes are de-
fined by quantum field theories living on the conformal boundary of AdS
space. The geometry of compact factors in the space-time is encoded in
internal degrees of freedom of the field theory. The cosmological constant
is a discrete input parameter determining the high energy behavior of
the system. Later sections discuss the description of stable or unstable
de Sitter space-times, and the associated question of the breaking of Su-
persymmetry, as well as a conjectural holographic theory of quantum
space-time geometry.
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1. Introduction

The historical origin of String Theory1a was an attempt to construct a

Poincare invariant scattering matrix for particles in Minkowski space, with-

out relying on local field theory. Today we know that the construction really

describes a theory of quantum gravity in asymptotically flat space-timeb.

The theory contains a number of stable particles, always including the gravi-

ton, and the scattering matrix computes the amplitude for a given finite

collection of these particles to propagate from the infinite past and turn into

a, perhaps different, finite set of particles in the infinite future. Perturbative

string theory provides us with an algorithm for computing these amplitudes

to all orders in a power series expansion in a dimensionless string coupling,

gS . Repeated attempts to introduce more localized amplitudes in string

theory, all ended in failure.

Similar, but more complicated expansions exist for the scattering matrix

with a variety of other choices of asymptotic space-time. These include

asymptotically flat space-time in the presence of certain infinite, static p-

dimensional extended objects called p-branes. If the codimension of the

p-brane is ≥ 3, these expansions are also finite. In several cases, low energy

limits of these scattering matrices, can be related to other kinds of space-

time asymptotics, in particular Anti-de Sitter (AdS) spaces. We will discuss

this case extensively below.

In many cases there are strong arguments that these perturbative ex-

pansions are asymptotic expansions of a well defined unitary, causal and

Poincare invariant scattering operatorc.

The key feature of all of these expansions is that the answers depend only

on the coordinates of the conformal boundary of space-time. The existence

of the bulk space-time can only be inferred indirectly, and only in certain

aThe string duality revolution taught us that string theory is only a theory of strings
in certain asymptotic limits. For a while, I advocated the use of the term M-theory as
a name for the underlying model of which all known theories were limits. Now I believe
that we have found many consistent models of quantum gravity, and that the full set
is unlikely to arise as limits of a single model. The name String theory is an historical
artifact, which we should probably continue to use until we really understand what’s
going on.
bIn four asymptotically flat dimensions the scattering matrix is not well defined, because
any process emits an infinite number of soft gravitons with probability one. We expect
to be able to resolve this problem along lines that are fairly well, but not completely,
understood2 .
cIn the asymptotically AdS case, the scattering matrix is replaced by the correlation
functions of a conformal field theory (CFT) living on the conformal boundary of space-
time.
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limiting situations where a semi-classical approximation is valid. This is the

first aspect of what we will call The Holographic Principle: gauge invariant

observables in theories of quantum gravity based on string theory depend

only on the boundary coordinates. Bulk physics is to be reconstructed only

by some sort of “inverse holographic map”, which we expect to be only

approximately defined, and only applicable in certain situations.

In fact, simple intuitions about quantum gravity lead us to expect just

such an answer. Consider a finite causal diamond DPQ in a Lorentzian

space-time; the intersection of I

−

P
, the interior of the forward light cone

of some point P , with the interior of the backward light cone of a point

Q ∈ I

−

P
. Ordinary intuition from quantum field theory, with a spatial ul-

traviolet (UV) cut off of order LP suggests that there are a finite number

of degrees of freedom associated with this region. The covariant entropy

bound, conjectured by Bousso3 on the basis of the seminal work of Fischler

and Susskind4, suggests something much more stringent: a finite entropy.

The present author and Fischler5 suggested that, since a local observer

could have no preferred Hamiltonian operator, this actually requires a fi-

nite number of statesd .

If this is the case, the physics of a finite causal diamond is intrinsically

ambiguous. Precise measurements in quantum systems require us to corre-

late the quantum observables with pointer observables of a nearly classical

system. One of the necessary conditions for a system to be exactly classical

is that it have an infinite number of states. If all measurements inside a

causal diamond must be made by machinery which has a finite number of

quantum states, they will have an intrinsic uncertainty associated with an

irreducible quantum fluctuation of the measuring apparatus. Consequently,

the mathematical theory of such a region (its time evolution operator) can-

not be defined with absolute precision.

A more physical way to state the same problem is that a large classical

measuring apparatus will have a large gravitational back reaction on the

system it is trying to measure. In the extreme, the measuring apparatus

and the system will collapse into a huge black hole. Indeed, it has been

suggested6 that black hole production is the inevitable consequence of or-

dinary scattering at very high energy. Thus, although a scattering matrix

may exist if black hole production and evaporation is a unitary process, no

dFinite entropy for e.g. a thermal density matrix for a system with an infinite number
of states, depends on the grading of the states by eigenvalues of the Hamiltonian, as well
as a bound on the asymptotic degeneracy of the spectrum.
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observable associated with a fixed finite causal diamond can be unambigu-

ously defined, because the entire diamond can end up inside the horizon of

a black hole created in scattering.

While these intuitive arguments may not be convincing on their own,

they combine with our documented inability to define localized observables

in string theory to form a very strong argument for the validity of the

Holographic Principle.

What then is the meaning of local space-time geometry in string theory?

We will approach this question (which as yet has no complete answer) in

stages. For space-times of the form (in the low energy classical approxima-

tion) M (1,d−1)
×K with K a compact manifold, the quantum string theory

is defined by an S-matrix for particles in the asymptotically Minkowski fac-

tor space. The geometry of K appears in two ways. First, given enough

supersymmetry (SUSY) there are continuous moduli spaces of S-matrices,

which are related in a manner similar (but not identical ) to moduli spaces

of vacuum states in SUSic field theory. Some of the moduli can be identified,

when all dimensions of K are large compared to the length scale defined

by the string tensione, with geometric moduli of K. As we vary the moduli

into the stringy region the moduli space can change its structure. When the

number of supercharges is 16 or more, such changes cannot occur. However,

even in this case, the geometric picture can change radically and we can end

up, deep in the Planck regime, with a different string theory compactified

on a wildly different space.

The other geometric feature of K which is well defined in the quantum

theory, is a set of conserved charges identified with wrapping numbers of

extended objects called p-branes, around non-trivial topological cycles of

K. Even when K undergoes drastic “Planckian cosmetic surgery” into a

different manifold, these charges still label stable states which appear in

the S-matrix. Features of K’s geometry, which have an unambiguous holo-

graphic image in terms of S-matrix data, are exact features of the quantum

theory, while the rest is meaningful only in certain extreme limits of the

moduli space.

We next turn to space-times of the form AdSd × K. Here a similar

picture emerges, but the holographic data is encoded in the correlation

functions of a local field theory, which lives on the conformal boundary

of AdSd: R × S
d−2. There are no longer continuous moduli spaces of so-

eWhich is always larger than the Planck scale, when string perturbation theory is
applicable.
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lutions. This relation, the famous AdS/CFT correspondence, will enable

us to explore the meaning of the cosmological constant in string theory,

and the utility of the concept of effective potential. It will also teach us

that black holes dominate the high energy spectrum of a model of quantum

gravity.

We briefly discuss the two current approaches to asymptotically de Sitter

space-times, and their implications for the way in which string theory may

make contact with data about the real world.

Finally, we outline a possible holographic approach to local geometry,

which takes into account the irreducible ambiguity of physics in a local

region, and attempts to relate it to the gauge symmetry of diffeomorphism

invariance.

A note to the reader: the charge to the writer of this article was to

give a non-technical explanation of the current picture of space-time in

string theory. String theory is full of technicalities, and I have tried to avoid

most of them. However, in order to keep the article of reasonable length I

have had to assume familiarity with the terminology of complex differential

geometry. The reader dismayed by terms like “Ricci flat Kahler manifold”

should consult the excellent physicist’s introduction to this subject in 7, and

the many references cited there. I will also occasionally use the string theory

jargon, target space, which refers to the field space of a quantum field theory,

usually the quantum field theory describing the world volume dynamics of

some extended object. Finally I will use the term moduli space of theories

to refer to a multiparameter collection of S-matrices for Super-Poincare

invariant models of quantum gravity. These are quite analogous to (though

not the same as) spaces of vacuum states (continuous superselection sectors)

in quantum field theory.

2. Branes, Charges and BPS States

Much of our information about the non-perturbative structure of string

theories came from the discovery that the theories actually contain p di-

mensional extended objects called p-branes, for many values of p. Some con-

figurations of these objects are exactly stable and have properties whose de-

pendence on parameters like the string coupling, can be computed exactly.

This enables us to explore regimes inaccessible to any one perturbation

expansion.

A p brane can couple to a rank p + 1 antisymmetric tensor gauge po-

tential via the formula
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Sint = µp

∫

d σ
a1

∧ . . . ∧ d σ
ap+1Aa1...ap+1

(x(σ)) = µp

∫

Wp

Ap+1.

The potential Ap+1 is a p + 1 form defined in all of space-time, but the

integral is only over the brane world volume. This coupling is invariant

under the gauge transformation

Ap+1 → Ap+1 + dωp,

where ωp is a p form, if the brane world volume is closed or the gauge

transformation vanishes on its boundary. The gauge invariant field strength

Fp+2 = dAp+1. If we add a Maxwell term −

1

4

∫

Fp+2∧∗Fp+2
f to the action,

Fp+2 satisfies

d ∗ Fp+2 = µpJp+1,

where Jp+1 is the de Rham current concentrated on the brane world volume.

The p form charge Za1...ap
obtained by integrating the time component of

the current over a space like surface is conserved. Notice that only the

spatial components of the brane charge are non-zero. Non-vanishing brane

charge indicates the existence of an infinite brane whose asymptotic world

volume picks out an asymptotic Lorentz frame where the brane is at rest.

We can also introduce magnetic sources as the world volumes of d−p−4

branes where the Bianchi identity dFp+2 = 0 breaks down. Nepomechie

and Teitelboim8 showed that the electric and magnetic charges satisfied a

generalization of the Dirac quantization condition.

The relation between p brane charges and SUSY is a consequence of the

fact that the product of two spinor representations is a direct sum of anti-

symmetric tensor representations. Let us elaborate in eleven dimensions,

the maximal dimension in which interacting low energy supersymmetric

effective field theories can exist. The spinor super-charge, Qa, has 32 real

components. The most general right hand side for the supercharge anticom-

mutation relation is

[Qa, Qb]+ = (γ0[γµ
Pµ + γ

µν
Zµν + γ

µ1...µ5Zµ1...µ5
])ab.

This suggests the existence of 2-branes and 5-branes in any supersymmetric

quantum theory in eleven dimensions. It is indeed true that the unique

interacting supersymmetric low energy field theory in eleven dimensions,

11D SUGRA, has solutions corresponding to these branes. They are called

the M2 and M5 branes.

f
∗ represents the Hodge duality operator.
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In supersymmetric 4 dimensional field theories, Bogolmonyi and Prasad

and Sommerfield9(BPS), found soliton solutions whose energy could be

computed exactly, including all quantum corrections, by doing a classical

calculation. The M2 andM5 brane tensions have exactly this property. The

basic idea underlying such BPS states is easy to understand. One attempts

to represent the SUSY algebra on states with fixed values of the momentum

and the brane charges. It has the form (in the brane rest frame)

[Qa, Qb]+ = (P0 + Z)ab,

where Z is a diagonal matrix with two eigenvalues of opposite sign. Its

eigenvalues are quantized by the DNT condition. This is a Clifford algebra

with 32 generators unless P0 = ||Z||, in which case it has only 16. Thus, BPS

branes, whose tension is related to their charge by this relation, must have a

tension given by this relation in any quantum theory in which the symmetry

algebra is validg. The classical calculation shows that the M branes satisfy

the BPS property. The Qa are Hermitian operators in a positive metric

Hilbert space. The anti-commutation relations then imply that BPS states

have the smallest tension for a given charge, so they are absolutely stable.

A subtle question is whether e.g. the M2 brane of charge 2 is a bound

state of two charge 1 branes. This is a threshold bound state problem, and

such problems are notoriously difficult in ordinary quantum mechanics. It

turns out that the answer is different in 11 asymptotically flat dimensions

(where there are no bound states of either M2 or M5 branes) and on

manifolds with various numbers of compactified dimensions.

If we compactify one dimension on a circle of radius R, SUSY remains

unbroken, and the algebra changes only by having the momentum in the

tenth spatial dimension appear as a quantized charge coupled to a U(1)

gauge field in an effective description in 10 space-time dimensions. The

ten dimensional low energy field theory is uniquely determined by SUSY.

The radius appears as the constant mode of a ten dimensional scalar field

called the dilaton, and the symmetries do not allow any potential for this

field. Thus, we are led to believe in a moduli space of ten dimensional

asymptotically flat theories of gravity, with type IIA SUSY, the dimensional

reduction of the eleven dimensional algebra, and a single dimensionless

parameter. The ten dimensional Planck length is 2πR(l
(10)

P
)8 = (l

(11)

P
)9.

gOf course, in 11 AF dimensions, there is a unique supersymmetric quantum theory
if there is any at all. However, we will introduce parameters by compactification. The
dimension of the BPS representation cannot change as we vary these parameters.
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However, M2 branes wrapped around the circle appear as ten dimen-

sional strings. The tension of these strings is computable using the BPS

formula and goes to zero linearly with the radius of the circle. Parametri-

cally it is of order R(l
(11)

P
)−3. We can compute the coupling between these

strings and the ten dimensional gravitational field, and it goes to zero like

(R/l
(11)

P
)3/2. That is, we expect a theory of weakly coupled supersymmetric

strings to arise in the limit of small R. Needless to say, this expectation is

spectacularly confirmed. What is more, the resulting theory enables us to

construct a systematic weak coupling expansion of the S-matrix for gravi-

tons, which is finite and predictive to all orders. Finally, the perturbative

type IIA string theory reproduces all of the BPS p-branes expected from

the 11 dimensional point of view. This includes the unwrapped M2 and M5

branes, the M5 brane wrapped around the circle, the 0 branes which carry

Kaluza-Klein charge, and their magnetically dual 6 branes. The formulas

for the tensions of all of these branes can be computed either in the 11D

SUGRA approximation or the weak coupling string theory approximation,

and the results agree. Furthermore, in string theory we can show that the

higher order perturbative corrections to these calculations all vanish. In

perturbative string theory, most of these branes are realized as Dirichlet

or D - branes: perturbation theory around configurations with some collec-

tion of infinite flat D-branes is calculated in terms of diagrams where open

strings are allowed to propagate on the D-brane world volume. The rules for

coupling open and closed strings are unique and follow organically from the

definition of string Feynman diagrams in terms of conformal field theory in

two dimensions10. If the codimension of the union of brane world volumes

is ≥ 3 the perturbation theory is straightforward, while for co-dimension

< 3 there are infrared divergences, which can sometimes, but not always

be understood.

I cannot go into all the details here11 but only want to emphasize three

points. One is that the geometrical description of the tenth spatial dimen-

sion is nowhere apparent in the weak coupling limit, but that the modulus

(radius) of this geometry and the generator of the asymptotic symmetry

group which comes from it’s isometry, do parametrize 10 dimensional scat-

tering amplitudes. The second is that we see no evidence for a quantization

of length. We can take the radius of the tenth spatial dimension to be as

small as we wish. It is hard to see how such a result could be consistent with

a loop quantum gravity treatment. Finally I note that, quite contrary to

what we expect from KK compactification at the effective field theory level,

compactification seems to have increased the number of degrees of freedom
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of the theory. This is consistent with a hint from black hole physics. The

black hole entropy formula in d asymptotically flat dimensions, which we

will argue gives us the true high energy density of states, gives (in Planck

units), S(E) ∼ E
d−2

d−3 . The density of high energy states grows more rapidly

if the number of AF dimensions is smaller.

3. 11 − 2 = 10

Something more remarkable happens if we compactify one more dimension

on a circle, or more generally, we compactify two dimensions on a torus of

area A and complex structure parameter τ . This gives us a three parameter

moduli space of supersymmetric theories. For finite A in eleven dimensional

Planck units, we get a nine dimensional theory. As A→ 0 we get a sequence

of low energy states by considering multiply wrapped M2 branes on the

torus. Detailed analysis shows that in this case we do get threshold bound

states, so every state in the theory carries an additional quantum number

n, the M2 brane wrapping number. The BPS formula for multiple charges,

shows that if we have a particle in 9 dimensions carrying n units of charge,

then its energy is

E =
√

p2 + n2(AT )2,

where T is the mass per unit area of the M2 brane, which is ∝ M
3

11
. This

looks like the formula for massless particles in 9 space dimensions, with

one of them compactified on a circle of radius R−1

9
= AT . Further analysis

confirms this suspicion and shows that the relevant theory is the Type IIB

string theoryh

The phenomenon of two shrinking dimensions morphing into one large

dimension can be understood on another level in Matrix Theory12. This is

a non-perturbative formulation of the theory in an approximation known as

discrete light cone quantization (DLCQ). M-theory on a two torus is written

in terms of a supersymmetric Yang Mills theory living on an auxiliary two

torus whose geometry is dual (in the sense of Fourier transforms) to the

original. The coordinates of objects in the two compact dimensions are 2+1

dimensional gauge potentials Ai (we are in A0 = 0 gauge). The transition

from small to large two torus is a weak to strong coupling transition for the

gauge theory. The small area limit is one in which the scalar field φ dual

hThe strings are M2 branes wrapped on non-contractible 1-cycles of the torus. In the
large complex structure limit Imτ → ∞, the tension of strings wrapped around the
shortest 1-cycle goes to zero and we again get a perturbative expansion.
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to the gauge field strength via F0i = εij∂jφ is approximately classical. φ

is a periodic variable, and it’s period is the circumference of the Type IIB

circle. Thus, in this picture, the two coordinates of the small torus become

strongly fluctuating quantum variables, and physics is better described in

terms of an almost classical dual variable whose target space is the 9th

spatial dimension in the space-time of the IIB theory.

When we compactify more dimensions, a variety of similar miracles

occur, but we obtain no new limiting theories11. The entire moduli space

of M-theory compactified on T
k with k ≤ 7i is connected, and the k = 7

case has the largest number of degrees of freedom.

The properties of this moduli space are very similar to those of su-

persymmetric quantum field theories. The values of the moduli are super-

selection sectors: the scattering matrix for one value of the moduli does not

include states with another value. On the other hand, effective supergrav-

ity arguments17 indicate that an experimenter at one value of the moduli

can create regions of space of arbitrarily large size and arbitrarily long life-

time, in whose interior the moduli take on any value a finite distance away

in moduli space. Another property that may be shared with field theory

moduli spaces is that high energy behavior is independent of the value of

the moduli (as long as we do not take extreme limits which change the

number of compactified dimensions). This argument depends on the con-

jecture 6 that in d asymptotically flat dimensions, scattering at high center

of mass energy and impact parameters satisfying b < E
1

d−3 , is dominated

by black hole production. The black hole decays thermally, with a temper-

ature that goes to zero asymptotically. For fixed d the spectrum of black

holes, and of the massless states which are produced in their thermal decay,

is independent of the moduli, once everything is expressed in terms of the

d dimensional Planck length.

4. 11 − 4 = 10

We now discuss models possessing only 16 real supercharges. It turns out

that these fall into a number of disconnected moduli spaces. The simplest

class correspond to a simple generalization of toroidal compactification.

In eleven AF dimensions, M-theory is invariant under the combination of

iEven in k = 7, the scattering matrix has infrared divergences which must be treated

by including states with finite amounts of incoming and outgoing classical gravitational
radiation. For k > 7 the IR divergences are much worse. It is not clear whether these
models exist, or what their observables are.
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an orientation reversing transformation on space-time with an orientation

reversing transformation on M2 brane world volumes. Instead of simply

identifying points under a discrete translation group, we combine it with

such an orientation reversal, insisting that the combined operation have

no fixed pointsj. This leads to the moduli space of CHL14 strings and its

generalizations15. Only half of the supercharges survive the projection onto

objects invariant under the discrete translation-reflection group.

Another way to find models with only 16 supercharges is to compactify

on manifolds, which have a number of covariantly constant spinors equal

to half the flat space maximum. These manifolds have the form K3 × T
k,

k ≤ 3. The K3 surfaces are the 2 (complex) dimensional Ricci-flat Kahler

manifolds. They are a single topological manifold, with a 19 parameter

moduli space of Ricci flat metrics. The second Betti number of K3 is 22.

The intersection form on H2(K3) has signature (3, 19). It is the direct sum

of three copies of a (1, 1) signature lattice and two copies of the Cartan

matrix of E8.

If we shrink the volume of K3 to zero, we get a new low tension, string

by wrapping four directions of the M5 brane on K3. This is the heterotic

string16. For smallK3 volume, the heterotic string model is compactified on

a large three torus, whose geometry arises in much the same way as that of

the IIB circle. Momentum and heterotic string winding number around the

three toroidal directions are dual to membrane wrapping numbers around

two cycles of K3, associated with the (1, 1)3 lattice. Membrane wrapping

numbers around the E2

8
cycles are realized as charges of a U(1)16 gauge

group in the 7 asymptotically flat dimensions. The U(1) gauge fields them-

selves are three form gauge fields of the eleven dimensional theory, which

have the form
∑

aI ⊗ ωI , where ωI are the harmonic two forms on K3,

dual to the cycles with E2

8
intersection matrix. These charges are quantized

in the way that would be realized in the Higgs phase of an E8 × E8 gauge

group, with Higgs field in the adjoint.

Mathematicians have long known that the singularities of K3 are found

at places in the moduli space where the volume of some set of two cycles

shrinks to zero. The shrinking cycles are associated with the Cartan matrix

of some ADE Dynkin diagram. M-theory allows us to understand these

singularities as the result of new massless particles (M2 branes wrapped on

the shrinking cycle), which appear in the spectrum at these special points in

jA simple case with fixed points is the Horava-Witten description of the strongly coupled
heterotic string13.
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moduli space. Indeed, the Wilsonian approach to the renormalization group

has led us to expect that all infrared singularities in scattering amplitudes

(as a function of superselection parameters ) can be explained in terms

of particles which become massless at some points in the moduli space.

A non-singular treatment can be obtained by properly including emission

and absorption of these light states in the low energy S-matrix. What is

remarkable is that in M-theory, this same mechanism appears to resolve

what we think of geometrically as short distance singularities, where 2-

cycles shrink to zero size. The connection between short distances and low

energy comes through the BPS formula for the wrapped M2 brane mass.

Readers should especially note the holographic nature of all of these

arguments. When features of bulk geometry become small compared to the

Planck scalek, even in a way that is geometrically singular, we can no longer

thing of them as geometry. But geometrical properties like winding numbers

survive as quantum numbers in the scattering matrix of the asymptotically

flat dimensions. The holographic map of the geometry remains smooth even

in limits where geometrical notions lose their validity. The same quantum

numbers can take on radically different geometrical meanings in different

limits of moduli space, where the notion of the geometry of a compact

manifold makes sense.

The smallest seven dimensional supermultiplet contains vector mesons,

so the new massless particles that appear at K3 singularities are Yang

Mills bosons, charged under the U(1)16 gauge group, which is present for

all values of the moduli. The connection of non-abelian gauge symmetry

to singularities of K3 geometry is the basic mechanism by which Yang

Mills fields appear in asymptotically flat versions of string/M-theory. Non-

abelian Kaluza-Klein groups appear only in models with asymptotically

AdS dimensions.

The diverse moduli spaces of 32 and 16 supercharge quantum gravity

appear to be disconnected. There is no low energy gravity Lagrangian which

allows one to create e.g. arbitrarily large, long lived bubbles of the K3

compactification model in the space-times of the T4 or K2 × T
2 models

(K2 is the Klein bottle). Similarly, these models have very different spectra

of massless states, so if high energy amplitudes are dominated by black hole

production they will not be independent of which moduli space we are on.

In quantum field theory, we can have disconnected moduli spaces which

are connected by a finite potential energy density barrier. We can create

kOften this happens already at the string tension scale in weakly coupled string theory.
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arbitrarily large bubbles of one moduli space inside the vacuum at a point

in the other. In theories of gravity this does not work17 . The tension in the

bubble wall scales like the surface area. When we try to create too large a

bubble, this tension creates a black hole larger than the bubble.

The case of 8 supercharges has also been studied, although the picture

there is not as complete. There are several dual descriptions of the moduli

space, the simplest of which is compactification of eleven dimensions to 4

on a circle cross a Calabi-Yau three-fold: a Ricci flat Kahler manifold of

complex dimension 3. For small circles this gives weakly coupled Type IIA

string theory on the CY 3. Several new features arise, the most interesting

of which are stringy and quantum deformations of the classical geometrical

moduli space. The Calabi-Yau moduli space consists of variations of both

the complex structure and the Kahler metric. In weakly coupled string

theory, one shows that the Kahler moduli space is deformed and becomes

identified with the complex structure moduli space of a so-called Mirror

Calabi-Yau manifold. Type IIA string theory on the original Calabi-Yau is

identical to Type IIB string theory on the mirror.

Even more interesting is the quantum deformation of the moduli space,

which allows smooth transitions which change the Betti numbers of the

compact manifold. Again the mechanism goes through a geometrically sin-

gular manifold with shrunken cycles, and the singularity is resolved by

including the massless BPS branes wrapped on these cycles18 in the low

energy description. This is the first case where SUSY allows for supermul-

tiplets which contain neither gravitons nor gauge bosons, and the massless

states include such matter multiplets. The full story of this moduli space

has not been worked out. We do not know how many connected compo-

nents it has, nor whether moduli spaces with less SUSY can be recovered

by taking limits of moduli spaces with 8 supercharges. We do see that ge-

ometrical concepts survive in the holographic description of the compact

manifold, but in a more severely distorted form.

There do exist moduli spaces of four dimensional compactifications with

only four supercharges19 but they are few and far between. In various clas-

sical limits we appear to find moduli spaces, but the massless moduli fields

now live in chiral multiplets of N = 1, d = 4 SUSY. Typically, there is

not enough symmetry to guarantee that the superpotential for these fields

vanishes. If we try to solve the low energy field equations with a non-zero

superpotential it is unusual to find asymptotically flat solutions, even if

we insist on preserving SUSY. The potential in N = 1 SUGRA has the
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form:

V = e

K

M2
P [Kij̄

DiWDj̄W̄ −

3

M
2

P

|W |

2].

The would be moduli space is a Kahler manifold with Kahler potential K.

The superpotential, W is a section of a holomorphic line bundle over this

manifold, and Di = ∂i −
∂iK

M2
P

is the covariant derivative on this bundle.

Generically, there will be solutions of DiW = 0, which is the condition to

preserve SUSY, and also guarantees that we are at a stationary point of

the potential. However, W will vanish at these points only in exceptional

cases. This analysis leads us to expect supersymmetric theories with AdS

asymptotics and and non-supersymmetric theories with any value of the

cosmological constant, but zero seems unlikely. Indeed, attempts to break

supersymmetry in supergravity and perturbative string theory sometimes

preserve vanishing c.c. to one or more orders of perturbation theory, but no

one has found an example with broken SUSY and exactly vanishing c.c. .

This has led me to conjecture that there are no Poincare invariant theories

of quantum gravity, which are not Super-Poincare invariant.

We will have more to say about the validity of this conjecture below.

Next however, we will see what we can learn about theories of quantum

gravity with AdS asymptotics.

5. The AdS/CFT Correspondence

The AdS/CFT correspondence came out of the analysis of black hole en-

tropy in string theory. Susskind20 was the first to suggest that the exponen-

tial degeneracies of states found in perturbative string theory were related

to black hole entropyl. Sen pointed out that the arguments could be made

more precise by considering extremal black holes which satisfied the BPS

condition22. The idea was that BPS degeneracies can be counted in a weak

coupling approximation, in which the gravitational effects that make the

states into black holes are neglected. The BPS property ensures that the

masses and degeneracies are independent of coupling. Sen studied black

holes with zero classical horizon area. By computing instead the area of a

“stretched horizon” a few string lengths from the classical horizon, he found

lThis suggestion seemed a bit obscure since the powers of energy in the exponential
did not match, but it was validated by the correspondence principle of Horowitz and
Polchinski21.
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an entropy formula, which agreed parametrically (as a function of various

charges) with the degeneracies of the states computed in weakly coupled

string theory. Strominger and Vafa23 found the first example of an extremal

black hole with non-zero classical horizon area where the comparison could

be made. The near horizon geometry of these black holes was AdS3 ×K,

with K a compact manifold. They found that the entropy formula agreed

with that derived from weakly coupled string theory. In the string theory

calculation the entropy is calculated from a 1 + 1 dimensional conformal

field theory describing the world volume of Dirichlet strings (D-1 branes).

Even the coefficient in the entropy works. This can be traced to a special

property of 1 + 1 CFT’s : the entropy is the same everywhere along a line

of fixed points. Strominger and Vafa were able to compute in a soluble

CFT, at regions in moduli space where the black hole horizon is tiny and

gravitational effects unimportant, but get the precise extremal black hole

entropy because of the BPS property and the invariance of the entropy

along fixed lines.

The Strominger Vafa paper set off a flurry of activity. Entropy calcu-

lations were generalized to near extremal black branes, and calculations

of gray body factors for scattering off a black hole at low energy were

performed24. The agreement, particularly in the latter calculation, where

an inclusive cross section is reproduced over a whole energy range, was

spectacular. Furthermore, the successes could no longer be explained by

invoking the BPS property. Maldacena25, pondering the reason for these

successes, realized that they could all be explained by a remarkable con-

jecture. In the perturbative string theory calculations, the black brane was

described by a world volume CFT on a set of D-branes. This theory had the

isometry group of AdSd ×K (with K some compact manifold) as a quan-

tum symmetry group - it was a conformal field theory (CFT). This was the

near horizon geometry of the black brane and Maldacena conjectured that

the CFT was the correct quantum theory of the AdSd ×K space-time.

Maldacena’s AdS/CFT conjecture was clarified some months later in

work of Gubser, Klebanov and Polyakov42 and of Witten27. These authors

considered classical solutions of the supergravity field equations onAdS×K,

with boundary conditions on its conformal boundary. They calculated the

action as a functional of the boundary conditions S[φ(b)]. They showed in

a few examples that this could be viewed as the generating functional of

connected Green functions in a CFT living on the boundary of AdS space.

The coordinates of the compact manifold were realized as fields in the CFT,

much as in Matrix Theory. Thus, classical supergravity was shown to be an
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algorithm for computing the leading order, long (bulk) wavelength approxi-

mation to a boundary CFT. Note that again, the theory of quantum gravity

is holographic: gauge invariant observables depend only on the boundary

coordinates of the conformal boundary of an infinite space-time.

To illustrate how the AdS/CFT correspondence works, we consider a

scalar field propagating in the Euclidean section of AdS space. This has the

metric

ds
2 = dτ

2(1 +
r
2

R2
) +

dr
2

(1 + r2

R2 )
+ r

2
dΩ2

.

At large r the Klein-Gordan equation for the scalar is approximately

R
−2(∂2

z
+ (d− 1)∂z − (mR)2)φ = 0,

where r

R
≡ e

z. This has solutions e∆±z
φ±(τ,Ω), with

∆± =
1

2
[1 − d±

√

(d− 1)2 + 4m2R2].

For most values of mm, one of these solutions is normalizable, when consid-

ered as a wave function for a scalar particle in AdS space, while the other,

∆+, is not normalizable. The prescription of 4227 is to compute the effec-

tive action of the solution as a functional of the non-normalizable boundary

condition φ+ . For free fields it is a quadratic functional. This functional is

divergent, but the divergence is removed by a multiplicative renormaliza-

tion. In stereographic coordinates on the boundary the renormalized two

point function is just |x|
−2∆+ . Indeed, the AdS isometry group acts as the

conformal group of the boundary, so this form is fixed by symmetries and

the AdS transformation properties of the scalar. This has the form of a two

point function in a boundary CFT. The AdS/CFT conjecture is simply

that the effective action of the bulk theory is the generating functional of

correlation functions of a CFT.

There are two important aspects of this conjecture that are often over-

looked by non-specialists. The first is that the set of representations of the

AdS group that is used in bulk field theory in AdS, is precisely the set of

highest weight unitary representations that is used in boundary CFT. This

is an essential consistency condition for the validity of the conjecture. The

second is that the existence of the stress tensor in boundary CFT implies

that the bulk field theory contains a graviton. Stress tensor two point cor-

relators are computed by solving the linearized gravitational field equations

mThe exceptions have been studied in Ref. 28.
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in analogy to the above. A non-gravitational field theory may define a set

of conformally invariant boundary correlators by the above procedure (one

must check that the divergences can all be removed by a single multiplica-

tive renormalization of the boundary condition) but they will not be those

of a CFT because there will be no local stress tensor. Finally, I want to

emphasize that the boundary IR divergences are interpreted as the stan-

dard UV divergences of CFT. This is an important aspect of the UV/IR

connection.

The supporting evidence for the AdS/CFT correspondence is by now

overwhelming29. It has taught us many lessons about both gravity and

CFT. Here I want to review some of the most important lessons about

gravity and space-time.

Perhaps the most important of all is the fact that the cosmological

constant (c.c.) is not a low energy effective output of the theory, but a high

energy input. The entropy of a CFTd−1 compactified on Sd−2 with radius

R is c(RE)
d−2

d−1 , in the limit ER � 1. c is a measure of the total number of

degrees of freedom in the theory. In N = 4 Super Yang Mills theory with

SU(N) gauge group, c ∝ N
2. Comparison with the Bekenstein-Hawking

formula for AdS black holes gives c ∝ (RMP )
d−2

d−1 , where MP is the d

dimensional Planck scale. The fact that the asymptotic structure of space-

time controls the UV behavior of the theory (the UV/IR correspondence)

is intuitively obvious if the UV spectrum is dominated by black holes, a

conjecture I have called Asymptotic Darkness. Black holes of high energy,

have large Schwarzchild radii and their properties depend on space-time

asymptotics. Note in particular that the fact that AdS-Schwarzchild black

holes have positive specific heat is crucial to the AdS/CFT correspondence.

Black holes of radius larger than the AdS radius are identified with the

stable canonical ensemble of the CFT. We see immediately that we cannot

have a similar field theory description of asymptotically flat space.

The idea that the characteristic bulk quantum field theory connec-

tion between short space-time distances and high energy breaks down at

the Planck length, is encapsulated in the conjecture that high energy,

small impact parameter, scattering is dominated by black hole produc-

tion. This means that there is no way to probe distances smaller than the

Planck length in asymptotically flat dimensionsn. This conjecture is sup-

ported by AdS/CFT . In that context, the statement that high energy

processes enclosed in a fixed spatial region create black holes, translates

nContrast this with our ability to shrink cycles in compact manifolds to zero size.
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into the CFT statement that general high energy initial conditions lead

to thermalization.

5.1. Potentials and domain walls

AdS/CFT enables us to get our hands on some of the notions of effective

bulk field theory which will be important in our discussion of the appli-

cability of string theory to the real world. In particular in gives us a new

view of the effective potential. The classical SUGRA Lagrangians relevant

for the AdS/CFT correspondence have, after dimensional reduction on the

compact manifold K, a large number of scalar fields. The Lagrangian con-

tains a potential for these scalars, propagating in AdS space. The AdS

solution corresponds to constant scalars, sitting at a stationary point of

the potential. In the interesting cases, it is a maximum. Indeed, the for-

mula for the correspondence between bulk mass and boundary dimension

shows that whenever the boundary operator is relevant, in the sense of the

renormalization group, then the bulk field is a tachyon. Breitenlohner and

Freedman30 (BF), long before the invention of AdS/CFT, showed that such

tachyons were perfectly acceptable in AdS space. The curvature couplings

make the unstable solution at the top of the potential stable, for precisely

that range of tachyon masses which give real boundary dimension. The po-

tential can have other stationary points, some of them minima, with more

negative values of the potential energy density.

In quantum field theory, when we have a potential with multiple station-

ary points, we can find a domain wall solution which interpolates between

the two as a function of a single spatial coordinate. In general, if we couple

the theory to gravity we find that the domain wall is no longer globally

static. The only exception which does not involve fine tuning of parame-

ters, is the case of BPS domain walls connecting supersymmetric stationary

points. The bulk Lagrangians describing SUGRA in AdS/CFT have such

BPS solutions, and it is interesting to ask what their meaning is in the

boundary theory.

Remarkably the answer is that they give us supergravity approximations

to renormalization group flows in the boundary field theory31. On the side

where the domain wall solutions approach the AdS vacuum with smallest

absolute value of the c.c. their fall off is like that of a non-normalizable

rather than a normalizable mode. That is, these solutions correspond to a

change of the Lagrangian of the boundary QFT, rather than an excitation

of the original system. The change is precisely the addition of the relevant

operator corresponding to the tachyonic direction. On the other side of the
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domain wall, the solution approaches the CFT dual to the AdS station-

ary point through one of its irrelevant directions. The domain wall is thus

interpreted as holographic renormalization group (HRG) flow. The spatial

direction z along which the domain wall varies, is mapped into the scale of

the boundary field theory.

The holographic renormalization group interpretation of these solutions,

removes a paradox, which would have disturbed us if we had tried to make

a more conventional interpretation of the wall as interpolating between two

vacua of the same theory. Two vacua of the same theory always have the

same high energy behavior. But the CFT on the right hand side of the

domain wall has a more negative cosmological constant, and therefore a

smaller density of states at high energy, than that on the left hand side. In

the HRG interpretation, the loss of degrees of freedom is the usual decrease

of entropy we expect when we go into the infrared along a RG trajectory.

Indeed, it has been shown that the holographic version of Zamolodchikov’s

C theorem 32 holds for these flows, whenever the bulk SUGRA theory sat-

isfies the dominant energy condition31.

In this context then, stationary points at negative values of the effec-

tive potential do correspond to theories of quantum gravity in AdS space

(under certain conditions), but not to different states of the same theory.

Rather they are different quantum field theories, connected by RG flow.

This interpretation makes sense when the less negative stationary point is

a maximum, and both stationary points have curvature satisfying the BF

bound.

Note that in general, the functions which appear in RG equations are

renormalization scheme dependent. They do not have any invariant mean-

ing apart from the number of fixed points and the spectrum of dimensions at

each fixed point. In the holographic RG, fixed points are stationary points

of the bulk supergravity potential. Furthermore, the only domain wall solu-

tions that have been given an RG interpretation in AdS/CFT, correspond

to flows from a BF allowed saddle point to a stable AdS minimum or other

BF allowed saddle. Other minima of the potential, particularly those with

positive energy density, have not been given a reasonable interpretation in

the boundary field theory.

5.2. SUSY and large radius AdS space

The relation between black hole and CFT entropy tells us that any CFT

with large entropy would, if it were dual to quantum gravity in an AdS
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space, have an AdS radius much larger than the Planck length. We might

be tempted to conclude that it was well described by a low energy La-

grangian involving gravity coupled to some other fields. In general we would

be wrong.

The dimension (d−1 , for AdSd) of the stress tensor in the CFT sets the

scale of bulk masses in terms of the AdS radius. Any operator of dimension

(d−1)K corresponds to a bulk field of massmR =
√

K2
−K(d−1). Generic

CFT’s which are order 1 perturbations of free field theory have a degeneracy

of operators at this dimension, which grows like the exponential of a power

of K. Thus, the AdS dual must have an exponentially large number of

massive fields with masses that are of order the inverse AdS radius. No

bulk field theory for a space-time of the form AdS×M , with M a compact

manifold with radius of order ≤ R, has such a degeneracy.

Supersymmetric theories, which have a weak coupling string expansion

provide an explanation for this behavior. In the canonical example of the

duality between IIB string theory on AdS5 × S
5 and N = 4 SYM theory

with gauge group SU(N), N
1
4 is the AdS radius in Planck units, while

(g2
N)

1
4 is the AdS radius in units of the string tension. The limit g2

N �

N → ∞ is the limit of weak string coupling. If g2
N is of order 1 then

the AdS radius is of order string scale and we do expect an exponential

degeneracy of stringy states. In this regime the dimensions of most operators

are indeed order one perturbations of their free field values. We expect

that when g
2
N is large, most of the operators get large dimension so that

the corresponding masses correspond to energies of order string scale. The

strongest evidence for this comes from the BMN limit of the theory33. There

is a class of operators, called chiral operators, whose dimension is calculable

and independent of g2
N , but these are precisely the operators dual to the

KK excitations on S5, and they do not have an exponential degeneracy.

Thus, CFT’s with the properties that correspond to space-time theories

with a conventional bulk field theory description are few and far between. So

far, all known examples are exactly supersymmetric, though there are non-

supersymmetric, renormalizable field theories, which one can construct as

relevant perturbations of a SUSic CFT with large radius dual. However, in

all these cases, exact SUSY is restored as the AdS radius is taken to infinity.

We have already commented above on the crucial role that SUSY plays in

the stability of string theories in asymptotically flat space-time. The paucity

of CFT’s with a huge gap in their dimension spectrum, below which the

spectrum grows only like a power law, is another argument pointing in the

same direction. If we found a collection of non-supersymmetric CFT’s with
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a tuneable (perhaps discrete) parameter which could move the exponential

growth in the spectrum of operators off to infinite dimension, then we might

be able to take a limit34, which gave non-supersymmetric theories of gravity

in asymptotically flat space-time. Our inability to do so thus far suggests

that exact SUSY must be restored in the asymptotically flat limit.

6. The Real World: SUSY Breaking and dS Space

For much of the 15 years following the superstring revolution in 1984, the

aim of the phenomenologically oriented part of the string theory commu-

nity was to find a Poincare invariant, non-supersymmetric, S-matrix for a

gravitational theory in 4 space-time dimensions. The idea was that we first

wanted to solve particle physics, and leave the tougher problems of cosmol-

ogy for later. The perturbative heterotic string had vacua with a particle

spectrum (if we ignored the moduli) very close to that of the standard

model (on the scale set by the string tension). Supersymmetric versions of

the theory had a (generically large) number of massless moduli, but general

effective field theory arguments assured us that once SUSY was broken, we

would get a potential on moduli space. Efforts turned towards finding that

potential, and freezing the moduli. As in any effective field theory argu-

ment, the problem of the cosmological constant seemed unsolvable, but it

was a problem everyone had lived with for a long time. It is likely that most

string theorists believed that some miraculous new principle would imply

that the c.c. was zero.

Dine and Seiberg35 argued that one could not find a stable minimum

for the modulus that controls the string coupling, in the weak coupling

approximation, unless some other small parameter were found to control

the calculation. There were various early attempts to do this36.

It was realized early on that simply finding a potential on moduli space

was not enough. There were likely to be many minima, though at that

time no one had done the proper estimates of just how many. In 199539

I suggested that we turn the problem of getting a reasonable value for

the c.c. into a vacuum selection principle. That is, if it were difficult to

find a vacuum with broken SUSY and vanishing c.c. (still an observational

possibility at that time) perhaps our vacuum was singled out as the unique

one with that property.

Then, observations of distant supernovae became the final straw in a pile

of cosmological observations, which had been indicating a positive value of

the c.c. since the mid 1980s. Although the data certainly do not prove
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that there is a positive c.c., it is certainly the simplest explanation of what

is seen. Positive c.c. is a theoretical conundrum for the present form of

string theory. Asymptotic dS spaces do not admit the kinds of boundary

observables that string theory can calculate.

There have been two kinds of reaction to this in the string theory com-

munity. The first was to try to create a generalization of string theory to

cope with dS space37. I still believe that is the correct path, although some

pessimistic conclusions have appeared in the literature38, and I will return

to this below. The second was driven by the discovery of an apparent so-

lution to the Dine-Seiberg problem. We have noted that that string theory

contains many p-form gauge fields. On a compact manifold, the integral of

a field strength Fp over a p-cycle is quantized, because of the DNT quanti-

zation condition. Thus, we can look for solutions of the low energy SUGRA

field equations parametrized by integer values of all of these fluxes. This

was proposed in 40. Bousso and Polchinski41 pointed out that for Calabi-

Yau 3-folds with large b3(∼ 100), this could lead to an enormous number

of solutions, of order N b3 with N a large integer. They pointed out that

this could be used to implement an anthropic explanation of the value of

the cosmological constant, along lines first suggested in 45(see also 46). The

basic idea was that each generic choice of fluxes would stabilize the moduli

and correspond to a new minimum of the effective potential, with a different

energy density. Among this huge choice of minima, there are likely to be

many (because the number of allowed flux configurations is exponentially

larger than 10123) that satisfy Weinberg’s criterion for galaxy formation44.

Galaxies, and life of our type, could only exist in those.

Giddings, Kachru and Polchinski42 showed that in IIB supergravity

compactifications on CY 3-folds, in the presence of D-branes and orien-

tifolds, all complex structure moduli and the dilaton were stabilized at

the classical level. Kachru, Kallosh, Linde and Trivedi43 argued that the

remaining moduli could be stabilized by non-perturbative effects in low

energy field theory/D-brane physics, and that the inverse string coupling

and CY-3 size were large at the stable minima - so that the calculations

were self consistent in effective field theory. They also showed how to find

meta-stable de Sitter minima, using the same techniques. A large number

of refinements of these calculations have appeared.

These considerations can be criticized at both a fundamental and a

phenomenological level. String theory concepts, such as D-branes and orien-

tifolds are known to make sense only when the non-compact co-dimension

of the branes is larger than 1. Here they are being used for space-filling
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branes. To put it another way, we have no positive evidence of the utility

of the field theory notion of effective potential, as a tool for finding valid

stringy models of quantum gravity. Indeed, what evidence exists47 suggests

that this is not a useful tool for this purpose.

The global space-time picture one is forced to consider if one believes in

the “landscape of string theory” most likely has a Hot Big Bang in its past,

and almost certainly has the fractal Penrose diagram of eternal inflation48

as its future. We do not know how to talk about well defined observables

in either of these contexts, so it is a bit premature to conclude that any of

the meta-stable dS minima that are found by the procedures of KKLT and

their followers, have anything to do with what we know as string theory. On

a practical level, our lack of knowledge of what the basic setup is, makes it

impossible to set up, even in principle, the computation of the next order

correction to the large radius, and weak coupling approximations, which

are invoked by landscape enthusiasts. We don’t know what it is that these

are approximations to.

If we accept the existence of the landscape, we are faced with a phe-

nomenological dilemma. Many of the parameters in the standard model of

particle physics and cosmology are much more finely tuned than would be

required by anthropic considerations alone. A landscape model would have

to predict that most of the parameters did not fluctuate much around their

central values, and that these central values coincided with what we find

in nature in order to give reasonable agreement with experiment. Only two

or three parameters, notably the c.c. and the VEV of the standard model

Higgs field, can be well fixed by anthropic considerationso. There is as yet

no indication that the stringy landscape really makes such predictions.

A more conservative interpretation of the existence of the stringy land-

scape is simply that string theory gives us a lot of possible low energy

theories of the world, and we should simply fit the data to determine which

one we are experiencing. It is not clear whether there is any predictive

power left in such a strategy. This is made even more problematic by the

suggestionp that even given all the resources in the universe, we might not

be able to build a computer capable of exploring the vast set of meta-stable

states in the theory.

This subject is still unfinished and there is undoubtedly a lot left to be

said about it, so I will have to leave the reader stranded in the midst of the

oAnd even this is only true if all other parameters are fixed by the theory to their real
world values.
pDue to E. Witten.



October 7, 2005 16:7 WSPC/Trim Size: 9in x 6in for Review Volume 12˙banks

334 T. Banks

landscape, while I go on to explore another possible route to understanding

the (possibly) asymptotically de Sitter universe that we live in.

7. A Theory of Stable de Sitter Space

Quantum field theory in curved space-time indicates that de Sitter space

has a finite temperature and entropy. Some time ago, Fischler and I37 con-

jectured that this meant that the quantum theory of dS space had a Hilbert

space with a finite number of states, determined by the c.c.q. This fit with

the understanding of the c.c. in AdS/CFT . In both cases the c.c. is a dis-

crete UV input parameter, determining the spectrum of the largest black

holes in the theory, rather than a low energy effective parameter, subject

to renormalization.

If dS space has a finite number of states, and its ground state is really the

thermal ensemble described below, then it is a fortiori stable. It cannot have

an interpretation in terms of the sort of asymptotic observables we are used

to in string theory. I view the theory of stable dS space as a generalization

of string theory, which approaches something like an asymptotically flat

string theory (but with at most a compact moduli space) in the limit that

the c.c. is taken to zero. It will become evident that this limit is crucial to

the correct interpretation of physics in dS space. The theory is defined, if

it is defined, as an equivalence class of Hamiltonians, which have the same

asymptotic expansion (for appropriate observables) around the Λ = 0 limit.

I will quickly summarize the properties that a theory of such a stable

dS space must satisfy in order to reproduce the robust predictions of field

theory in curved space-time, consistent with the hypothesis of a finite di-

mensional Hilbert space. I will not have space to explain the arguments for

these properties, which were expounded in 58. The theory is constructed in

terms of the observables in the causal patch of a given time-like observer

(conveniently chosen to be geodesic). The causal patch metric is

ds
2 = −dt

2(1 −

r
2

R2
) +

dr
2

(1 −

r2

R2 )
+ r

2
dΩ2

.

The only part of the dS group that preserves this causal patch (we work

in 4 dimensions) is R × SU(2), with R the static time translation. The

spectrum of H , the generator of static time translations is bounded. There

qStrictly speaking, the dS entropy is the entropy of a thermal density matrix, but most
of the eigenstates of the Hamiltonian lie below the dS temperature, so the entropy is
approximately the logarithm of the number of states.
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is also an approximate (super) Poincare group, which emerges in the limit

of vanishing c.c.

In fact, all localized states in the causal patch are unstable, and decay to

the vacuum. The vacuum is an ensemble of states with average level spacing
e
−π(RMP )2

2πR
, spread out between 0 and the dS temperature. The Hamiltonian

for this set of states is a random matrix with this spectral bound , subject

to a few constraints. The most important of these is the emergence of

an approximate super-Poincare group in the R → ∞ limit. The Poincare

Hamiltonian P0, in the rest frame of the static observer, satisfies

[H,P0] ∼
P0

R
.

This can help to explain the meta-stability (under H evolution) of low

lying P0 eigenstates, a property of both field theory in dS space, and the

real world . The P0 eigenvalues are supposed to correspond to the energies

of localized objects in the static patch.

In this model, the vacuum density matrix is ρ = e
−2πRH , while field

theory in curved space-time leads us to expect ρ ≈ e
−2πRP0 , at least for

small P0 eigenvalues. This implies a relation between the P0 eigenvalue and

the entropy deficit (relative to the vacuum) of the corresponding eigenspace.

The relation is satisfied by black holes much smaller than the dS radius,

with the black hole mass parameter M identified as the P0 eigenvalue.

A simple model of this behavior can be constructed in terms of fermion

creation and annihilation operators, following the rules described in the next

section5854.

In 37 I conjectured a non-classical relation between the value of the

gravitino mass and the c.c. of a stable dS space. The relation takes the

scaling form m3/2 ∼ Λ1/4, and is called the hypothesis of cosmological

SUSY breaking (CSB). The basic idea was that SUSY would be restored

in the limit of vanishing c.c. Classical SUGRA suggests a different relation,

m3/2MP ∼ Λ1/2. Actually, low energy effective field theory does not predict

any relation between these two parameters. It contains a free parameter,

the value of the superpotential at the minimum of the potential, which al-

lows us to tune the c.c. to any value, no matter what the gravitino mass

is. However, if we view the low energy Lagrangian parameters as subject

to renormalization, then this is “unnatural fine tuning” unless the quoted

relation is satisfied. By contrast, if the c.c. is a high energy input, then this

fine tuning is simply required in order to make the low energy effective the-

ory compatible with its high energy definition. The gravitino mass should
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then be viewed as an output parameter, and its functional form for small

c.c. is to be computed. Partial evidence for the CSB scaling law has been

provided in 55, but there is as yet no clean argument.

The picture that emerges from these considerations is highly con-

strained. The limiting Λ → 0 theory is a super-Poincare invariant theory

of gravity in four dimensions, with a compact moduli space. We have no

evidence that any such theories exist, though we can easily construct low

energy model Lagrangians with these properties. Phenomenological consid-

erations related to these ideas may be found in 56.

A finite quantum theory of dS space poses certain conceptual problems

related to quantum measurements57. Usually we view the mathematical

predictions of quantum theory as the results that would appear for ideal-

ized measurements by infinite machines with precisely classical behavior.

There are no such devices in a stable dS space. Indeed, our understanding

of how to build pointer observables is based on quantum field theory. The

tunneling amplitudes between different values of volume averaged observ-

ables in field theory are of order e−cS, where c is a number of order 1 and

S is the logarithm of the number of states in the volume. The entropy of

field theoretic states in a causal diamond of dS space is bounded by some-

thing of order (RMP )3/2. Thus, the accuracy of measurements is limited

to one part in e
(RMP )

3/2

, and the time over which a measuring apparatus

is immune to quantum fluctuations is e(RMP )
3/2

M
−1

P
. These limitations

are of no practical importance, but they are conceptually significant, and

tell us that there will be ambiguities in mathematical constructions of the

quantum theory of dS space.

The field theoretic states in a given horizon volume can be approxi-

mately described by a scattering operator, which relates incoming particle

states on the past cosmological horizon to outgoing states on the future

horizon. There are a variety of constraints, which make the definition of

this operator ambiguous. Incoming and outgoing states must be measured

at points sufficiently far from the horizon that the blue shifted dS temper-

ature is low compared to the (Poincare) energies of the particles. Like all

measurements referring to finite points in space time, these can have only

an approximate meaning. The sub-energies in all scattering processes must

be kept well below the mass of horizon sized black holes (e.g. we may try

to take a limit where R→ ∞ with energies fixed). I would conjecture that

a limiting scattering matrix exists and that it has an asymptotic expansion

for R → ∞ which is universal and unambiguous. I suspect the order of

magnitude of the ambiguities is e−c(RMP )
3/2

. The expansion coefficients of
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these scattering matrix elements would be the gauge invariant observables

of asymptotically dS space.

8. Towards a Holographic Theory of Space-Time

The existing versions of string theory are, as we have seen, all formulated

in terms of boundary correlation functions. This makes it difficult to see

how local physics comes out of the formulation. At present the only clue is

that in certain limits, the boundary correlators can be computed by solving

bulk field equations.

The difficulties involved in a local formulation become clearer if we

accept the covariant entropy bound as a fundamental axiom. A causal di-

amond in a Lorentzian space-time is the intersection of the causal past,

PP of a point P , with the causal future of a point Q ∈ PP . The maximal

area d − 2 surface on the boundary of a causal diamond, is a holographic

screen3 for the information which passes through the boundary. For small

enough causal diamonds, the area of the holographic screen is always finite.

According to the covariant entropy bound, this area in Planck units is the

maximal entropy that can be associated with the diamond.

Fischler and I49 , proposed that this was the entropy of the maximally

uncertain density matrix for this system, which equals the natural logarithm

of the number of states in its Hilbert space. There is no other natural density

matrix, which exists in all situations to which the entropy bound is supposed

to apply.

If a causal diamond has only a finite number of physical states, then

there cannot be a unique mathematical model which describes physics in

the causal diamond. An isolated quantum system can make measurements

on itself only if there are physical subsystems which behave like classical

measuring devices. Subsystems can be exactly classical only if they have an

infinite number of states. Thus, the model of a finite causal diamond must

have an ambiguity, because its predictions can only be tested with finite

precision. I believe that this ambiguity is the quantum analog of general

covariance. The point of general covariance is that we cannot describe the

space-time properties of a system without referring to some classical coor-

dinate system. There are no local diffeomorphism invariant observables. In

a quantum system, this problem is exacerbated by the fact that the objects

defining a particular coordinate system are quantum systems. In order to

make them approximately classical, we must make them large, but then

they have a large gravitational interaction with the system we would like
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to study. The covariant entropy bound expresses this conundrum in purely

quantum language.

The idea of 49 was to treat this ambiguity as the analog of coordinate

invariance. A given description of a space-time in terms of the quantum

mechanics of a collection of overlapping causal diamonds, is thought of as a

particular physical gauge fixing of a generally covariant quantum theory of

gravity. The description of small (low entropy) causal diamonds has a lot

of gauge ambiguity, but large causal diamonds which can support enough

degrees of freedom to make almost classical measurements have ”almost

gauge invariant” observables. We get mathematically gauge invariant ob-

servables only in the limit of infinite entropy causal diamonds. These are

the boundary correlation functions familiar from string theory.

The first step in defining such a system is to decide on a fundamental

set of observables. These are taken to be quantum pixels of the holographic

screen of a causal diamond. In classical, d dimensional, Lorentzian geometry,

we can identify, at each point of the holographic screen of a causal diamond,

the future directed null vector Nµ normal to the screen, as well as the

orientation of the screen, which is a transverse hyperplane to Nµ. The two

can be packaged together into what Cartan called a pure spinor, via the

Cartan-Penrose (CP) equation

ψ̄γ
µ
ψγµψ = 0

where ψ is in the minimal dimensional Dirac spinor representation of

SO(1, d − 1). The Dirac bilinears describe a null direction and a trans-

verse d− 2 plane. The equation is invariant under ψ → λψ, where λ is real

or complex, depending on d. Thus, this equation encodes only conformal

data of the space-time.

A pure spinor has half the number of components of a general Dirac

spinor. Denote these components by Sa(Ω), where Ω are coordinates on

the holographic screen. These are a section of the spinor bundle over the

screen, where the Riemannian structure on the screen is inherited from

its embedding in space-time. It is clear that if we specify these sections

for “every” causal diamond in a Lorentzian space-time, we have completely

fixed its conformal structurer. Classically, we could fix the metric completely

by specifying a compatible set of area forms, one for each screen.

rBut there will be complicated consistency conditions relating the spinor sections on
different holographic screens.
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The Bekenstein-Hawking relation suggests however that metrical con-

cepts originate in quantum mechanics. Thus, we quantize the pixel vari-

ables, by the unique SO(d − 2) invariant formula that gives a single pixel

a finite number of states:

[Sa(n), Sb(n)]+ = δab.

In writing Sa(n) we have anticipated the fact that the whole causal diamond

must have a finite number of states. We view the surface of its holographic

screen as broken up into pixels, labelled by a finite set of integers n. Each

pixel has area equal to the logarithm of the dimension of the minimal rep-

resentation of the above Clifford algebras. For 11 dimensional space-time,

this dimension is 256. We see an immediate connection to 11D SUGRA.

The SO(d − 2) content of this representation is exactly that of the super-

graviton multiplet. Thus, in particle physics language, what we are saying

is that specifying a holographic screen at each point is specifying the direc-

tion of the momentum of the massless particles, which can penetrate this

pixel, as well as the possible spin states of those particles. The particle lan-

guage really becomes justified only in the limit of infinite causal diamonds,

in asymptotically flat space50. In that limit, a new quantum number, the

longitudinal momentum of the massless particle, also arises, in a manner

reminiscent of Matrix Theory12.

Physically, the operators of individual pixels are independent quan-

tum degrees of freedom and so the operators associated with different

pixels should commute with each other. However, the full set of (anti)-

commutation relations is invariant under a Zk
2

subgroup of the classical pro-

jective invariance of the CP equation: Sa(n) → (−1)FnSa(n). This should

be treated as a gauge symmetry, and we can do a Klein transformation to

new variables that satisfyt

[Sa(n), Sb(m)]+ = δabδmn.

An elegant way to describe the pixelation of the holographic screen

is to replace the algebra of functions on the screen by a finite dimensional

associative algebra. If we want to implement space time rotation symmetries

sOur equation is written for the case where the minimal spinor representation of SO(d−2)
is real.
tFor asymptotically flat space it is convenient to choose another gauge for the Z2 sym-
metry. In that limit the label n encodes multiparticle states, as well as the momenta

of individual particles. It is convenient to choose pixel operators for different parti-
cles to commute, in order to agree with the standard multiparticle quantum mechanics
conventions.
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it is probably necessary to use a non-commutative algebra, which puts us

in the realm of fuzzy geometry. The spinor bundle over a non-commutative

algebra is a projective module for the algebra51. The quantum operator

algebra consists of a linear map from the spinor bundle to the algebra of

operators in the Hilbert space of the causal diamond, and the Sa(n) are the

values of the map on a basis for the spinor bundle. The algebra of operators

that we used to describe dS space in 54 is an example of this construction.

The Hilbert space of an observeru in this formalism, corresponds to a

sequence of causal diamond Hilbert spaces, with each space related to the

previous one by HN = HN−1 ⊗ S, where S is the representation space of

the single pixel Clifford algebra. The space-time picture of this sequence

depends on the asymptotic boundary conditions in space-time. For exam-

ple, in a Big Bang universe we would choose causal diamonds, which all

begin on the Big Bang surface. Larger causal diamonds would correspond

to later points on the observer’s trajectory. In a space-time, like asymp-

totically flat or AdS space, with TCP invariance, we would choose a time

reflection surface and give a sequence of causal diamonds symmetric around

this surface. The observer Hilbert space is equipped with a sequence of time

evolution operators UN (K) in each HN describing the evolution of the sys-

tem from the past to the future boundaries of each of the causal diamonds

HK contained in HN . There are consistency conditions guaranteeing that

the observer’s time evolution operator for a given Hilbert space HK in HN

is consistent with its description of the same Hilbert space in HL for all

K ≤ L ≤ N . Note that in this formalism, one is able to describe an ex-

panding universe, without violating unitarity. Note also that although time

steps are discrete, the magnitude of the discrete steps is measured by a fixed

increase in entropy. Thus, in a locally weakly curved region of space-time,

the time step goes to zero for large times.

A full quantum space-time is described by an infinite set of observersv.

A pair of nearest neighbor observers is defined by a pair of Hilbert space

sequences as above, combined with an identification for each n of a common

tensor factor On(1, 2) in Hn(1) and Hn(2). There is a very complicated

consistency condition requiring that the time evolution operators in the

individual observer Hilbert spaces, agree in their operation on On. More

uObserver = large quantum system with many semiclassical observables. Of course,
in small causal diamonds there are no such observers, but we retain the terminology
nonetheless.
vThe case of asymptotically dS space times would be dealt with by introducing an infinite
lattice of observers, each of which attains a maximal entropy. The overlap of any two
maximal entropy Hilbert spaces is required to be the whole space.
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generally we introduce a spatial lattice, with coordinates x and a collec-

tion of observer Hilbert spaces H(n,x). These are generated by operators

Sa(n,x). The overlap Hilbert space is defined by a map between subalge-

bras of the operator algebras at (n,x) and (n,y). For nearest neighbors the

overlap subalgebra is missing exactly one pixel’s worth of operators. The

reader is urged to think of the overlap map as the quantum analog of the

Lorentz parallel transport between the two lattice points.

The lattice has no a priori notion of distance on it, but it does impose a

spatial topology, which does not change with time. This can be consistent

with our observations of topology change for compactification manifoldsw if

we think of (n,x) as describing the non-compact dimensions of space-time.

Compactified dimensions would be an approximate notion, in which addi-

tional indices I combined with a to form a spinor of a higher dimensional

space-time. The fundamental theory would have no notion of the topology

of the compactification manifold, which would be an emergent phenomenon

in certain limiting situations.

In general there is no reason to assume that the initial state in a causal

diamond Hilbert space is pure. However, it seems reasonable to impose the

Primordial Purity Postulate: the initial states in causal diamonds whose tip

lies on the asymptotic past, or on the Big Bang, may be taken to be pure.

A related postulate one might want to impose is the Tallness Postulatex:

There is at least one observer whose causal past contains an entire Cauchy

surface for the space-time. In the present context this means that there

is a class of observers at points x
∗

i
such that asymptotically as n → ∞

, H(n,x) ⊂ H(n,x∗

i
). These are called the future asymptotic observers,

and one might impose Primordial Purity only for the future asymptotic

observer Hilbert spaces. Primordial Purity guarantees that all correlations

we observe in the universe, had to develop dynamically. Many models of

eternal inflation do not satisfy the Tallness principle.

The formalism described here seems to be an attractive way to discuss

more or less local physics in a way that is compatible with the holographic

principle. The difficulty lies in the complicated compatibility conditions

wStrictly speaking, what has been demonstrated is that in asymptotically flat string
theory, we can make a smooth change of the topology of the compactification manifold
by changing the moduli. It is tempting to think that the change of moduli can also
occur dynamically in a cosmological space-time, but this remains to be demonstrated.
The formalism we are describing could take such processes into account by the device
indicated in the text.
xThe Tallness Postulate was invented by D. Kabat and L. Susskind, quite independently
of the formalism discussed here. I learned of it in private conversations with L. Susskind.
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between the dynamics in different causal diamonds. It is hard to say at

the moment whether this framework is compatible with string theory as

we know it, or with the classical Einstein theory of gravitation. It seems

almost certain that, if the dynamics allows us to construct a set of semi-

classical pixel observables in the large area limit, then we should be able

to reconstruct a Lorentzian geometry because we are specifying the geom-

etry of the holographic screens of a densely spaced set of causal diamonds.

Furthermore, since the covariant entropy bound is built in to our formal-

ism, it is likely that the Einstein tensor of that space-time satisfies some

form of the null energy condition. It is obvious that we need more than

such plausibility arguments to verify the validity of the causal diamond

formalism.

There are three partial successes in making connections between this

formalism and ordinary gravitational physics. In 52 the authors constructed

an explicit quantum model, satisfying all of the compatibility conditions.

The model defined an emergent geometry on the lattice space-time, which

was that of the flat, homogeneous isotropic universe with equation of state

p = ρ. The Big Bang was completely non-singular in this model. It is

merely an initial configuration in which causal diamonds are built from a

single pixel. The scaling laws which matched to the p = ρ cosmology were

asymptotic relations for large entropy. This model validated the heuristic

claims of 53, which postulated the p = ρ FRW universe as a maximally

entropic initial condition for the universe.

In 5458 I described a model constructed by B. Fiol and myself, which

reproduced the spectrum of black holes in dS space, starting from a set of

fermionic pixel operators appropriate to the cosmological horizon.

Finally, in 50 I show how a large causal diamond limit of this formalism

can reproduce the spectrum of asymptotic supergraviton scattering states

in 11 dimensions. This paper does not touch on the question of compatibility

conditions, and thus, it was impossible to get a constraint on the dynamics

and compute the scattering matrix.

9. Conclusions

We have seen that the geometry of space-time in string theory is extremely

mutable, and that this can be attributed to the Holographic Principle. The

topology and even the dimension of compact factor manifolds can change

continuously along moduli spaces of Super-Poincare invariant S-matrices.

Certain quantum numbers, characterizing stable BPS particles and branes
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are robust indicators of the geometry, but their geometrical interpretation

changes radically in different extreme regions of moduli space.

Asymptotically AdS space-times are described by correlators of a bound-

ary quantum field theory. This description teaches us important lessons,

apart from reiterating the holographic nature of quantum gravity. Most

importantly it confirms the conjecture that black holes dominate the high

energy spectrum of models of quantum gravity and that generic high en-

ergy processes are dominated by black hole production. A corollary of this

insight is that the cosmological constant is a discrete high energy input

parameter, which measures the asymptotic density of states, rather than

a parameter in low energy effective theory. Low energy effective bulk field

theory must be fine tuned in order to agree with the high energy input c.c.

We also learned that AdS spaces did not have continuous moduli spaces

of vacuum states (the boundary theory is compactified on a sphere and so

does not possess superselection sectors even when it is exactly supersym-

metric). We learned that the bulk effective potential had a rather different

meaning in this context than it does in non-gravitational field theories. It

is related to a SUGRA approximation to the renormalization group of the

boundary field theory. So far, only pairs of stationary points (the higher

bulk energy density one always having at least one tachyonic direction) are

identified with models of quantum gravity. The bulk field theory interpre-

tation of a domain wall separating two vacua of the same theory is wrong.

Instead the domain wall represents RG flow between two different models.

Finally, we found that the only known examples where the AdS curvature

is small enough that the SUGRA approximation is valid are asymptoti-

cally supersymmetric. The limit of infinite AdS radius always implies exact

restoration of supersymmetry in these examples. This is consistent with

our inability, so far, to find non-supersymmetric, Poincare invariant, string

models.

String theorists have not yet learned to cope with space-times that have

a positive cosmological constant. There are two approaches to this prob-

lem. By far the most popular is called The String Landscape. Landscape

theorists have argued for the existence of a new type of string theory based

on an effective potential with an exponentially large number (e.g. 10500) of

positive energy minima. These are supposed to represent meta-stable states

of the new string theory, which eventually decay into a 10 or 11 dimensional

non-accelerating FRW space-time. Our universe is one of the meta-stable

states. The large number of minima enables one to invoke the anthropic ex-

planation of the cosmological constant. The past asymptotics of this hypo-
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thetical space-time probably involves a Big Bang, while its future is almost

certainly the fractal Penrose diagram of eternal inflation. It is alleged that

the fundamental string theory observables of this system will be related to

measurements done in the non-accelerating region, and that these will allow

one to define the measurements done in our own universe in a rigorous, if

approximate, way (much as scattering experiments define the properties of

a meta-stable resonance). This proposal faces many phenomenological and

fundamental challenges, as well as issues of computability associated with

the huge number of meta-stable states. Work is in progress to address some

of these issues.

The second approach to space-times with positive c.c. is based on the

assertion that the quantum theory of dS space has a finite number, N , of

states, related to the value of the cosmological constant in Planck units.

As in the case of AdS space, the c.c. is a discrete high energy input. The

finiteness of the state space poses problems of quantum measurement the-

ory: such a theory can describe neither arbitrarily accurate measurements,

nor measurements which remain robust over arbitrarily long time intervals.

However, for the value of the c.c. indicated by observations, the limit on

accuracy is about one part in e10
90

, and this number (in any units you care

to choose) is also the size of the time over which measurements will be

destroyed by quantum fluctuations. The phenomenology of this proposal is

based on the idea of Cosmological SUSY Breaking. It seems to lead to a

rather predictive framework for both particle physics and cosmology. Some

progress has also been made in constructing a fundamental Hamiltonian

description of this system. Progress on all fronts is incremental but slow.

Finally, I described a general holographic quantum theory of space-time.

According to the covariant entropy bound, a causal diamond is described

by a finite number of states, related to the area of its holographic screen.

In the quantum theory this translates into a finite Clifford algebra of oper-

ators Sa(n). The classical Cartan-Penrose equation tells us how to describe

the conformal structure of the holographic screen of a causal diamond in

terms of a section of the spinor bundle over the screen (viewed as a d − 2

dimensional manifold). The Sa(n) are a quantization of this spinor section.

The topology of the screen is pixelated by replacing its function algebra

by a finite dimensional associative (and generally non-commutative) alge-

bra and the spinor bundle is a finite projective module over this algebra.

The Sa(n) are quantum operators corresponding to a basis of this module.

The dimension of the irreducible representation of the Clifford algebra for

fixed n determines the area of a pixel, via the Bekenstein-Hawking rela-
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tion. Simple examples suggest that in asymptotically flat space-times, the

Sa algebra for fixed n will generate the space of massless single particle

states with fixed momentum, and that the spectrum of these states will be

supersymmetric.

A full quantum space-time is described by a lattice of overlapping causal

diamonds. The evolution operators in different causal diamonds are con-

strained by the requirement that they agree on overlaps. The topology of

the non-compact part of spacey is fixed by this lattice.

This formalism is still highly conjectural but various connections with

string theory and other aspects of gravitational physics are beginning to

appear.

String theory thus presents us with a collection of consistent mathemati-

cal models of quantum gravity. Extant models show us that local space-time

concepts are distorted in interesting and confusing ways, and suggest the

Holographic Principle as a unifying framework for understanding quantum

gravity. We still have a long way to go in order to fully explore the nature

of space-time in this collection of theories, and to find the version of it that

fits the world we observe.
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The goal of this article is to present a broad perspective on loop quan-
tum gravity, a non-perturbative, background independent approach to
the problem of unification of general relativity and quantum physics,
based on a specific theory of quantum Riemannian geometry. The chap-
ter is addressed to non-experts. Therefore, the emphasis is on underlying
ideas, conceptual issues and the overall status of the program rather than
mathematical details and associated technical subtleties. This review
complements that by Martin Bojowald which focusses on applications of
quantum geometry to cosmology.

1. Setting the Stage

General relativity and quantum theory are among the greatest intellectual

achievements of the 20th century. Each of them has profoundly altered the

conceptual fabric that underlies our understanding of the physical world.

Furthermore, each has been successful in describing the physical phenom-

ena in its own domain to an astonishing degree of accuracy. And yet, they

offer us strikingly different pictures of physical reality. Indeed, at first one

is surprised that physics could keep progressing blissfully in the face of so

deep a conflict. The reason of course is the ‘accidental’ fact that the val-

ues of fundamental constants in our universe conspire to make the Planck

length truly minute and Planck energy absolutely enormous compared to

laboratory scales. Thanks to this coincidence, we can happily maintain

a schizophrenic attitude and use the precise, geometric picture of reality

350
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offered by general relativity while dealing with cosmological and astrophys-

ical phenomena, and the quantum-mechanical world of chance and intrinsic

uncertainties while dealing with atomic and subatomic particles. Clearly,

this strategy is quite appropriate as a practical stand. But it is highly un-

satisfactory from a conceptual viewpoint. Everything in our past experience

in physics tells us that the two pictures we currently use must be approxi-

mations, special cases that arise as appropriate limits of a single, universal

theory. That theory must therefore represent a synthesis of general relativ-

ity and quantum mechanics. This would be the quantum theory of gravity.

The burden on this theory is huge: Not only should it correctly describe all

the known physical phenomena, but it should also adequately handle the

Planck regime. This is the theory that we invoke when faced with phenom-

ena, such as the big bang and the final state of black holes, where the worlds

of general relativity and quantum mechanics must unavoidably meet.

The challenge of constructing a quantum gravity theory has been with us

for many decades now. The long series of investigations in the ensuing years

has unveiled a number of concrete problems. These come in two varieties.

First, there are the issues that are ‘internal’ to individual programs: For ex-

ample, the incorporation of physical —rather than half flat— gravitational

fields in the twistor program discussed by Roger Penrose; mechanisms for

breaking of supersymmetry and dimensional reduction in string theory re-

viewed by Tom Banks; and issues of space-time covariance in the canonical

approach discussed in this chapter. The second category consists of physical

and conceptual questions that underlie the whole subject. To set the stage

from which one can gauge overall progress, I will now focus on the second

type of issues by recalling three long standing issues that any satisfactory

quantum theory of gravity should address.

• Black holes: In the early seventies, using imaginative thought exper-

iments, Bekenstein argued that black holes must carry an entropy propor-

tional to their area 7,19,28.a About the same time, Bardeen, Carter and

Hawking (BCH) showed that black holes in equilibrium obey two basic

laws, which have the same form as the zeroth and the first laws of ther-

modynamics, provided one equates the black hole surface gravity κ with

some multiple of the temperature T in thermodynamics and the horizon

area ahor to a corresponding multiple of the entropy S.7,19,28 However, at

aSince this article is addressed to non-experts, except in the discussion of very recent

developments, I will generally refer to books and review articles which summarize the
state of the art at various stages of development of quantum gravity. References to
original papers can be found in these reviews.
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first this similarity was thought to be only a formal analogy because the

BCH analysis was based entirely on classical general relativity and simple

dimensional considerations show that the proportionality factors must in-

volve Planck’s constant ~. Two years later, using quantum field theory on

a black hole background space-time, Hawking showed that black holes in

fact radiate quantum mechanically as though they are black bodies at tem-

perature T = ~κ/2π.7,14 Using the analogy with the first law, one can then

conclude that the black hole entropy should be given by SBH = ahor/4G~.

This conclusion is striking and deep because it brings together the three

pillars of fundamental physics — general relativity, quantum theory and

statistical mechanics. However, the argument itself is a rather hodge-podge

mixture of classical and semi-classical ideas, reminiscent of the Bohr the-

ory of atom. A natural question then is: what is the analog of the more

fundamental, Pauli-Schrödinger theory of the Hydrogen atom? More pre-

cisely, what is the statistical mechanical origin of black hole entropy? What

is the nature of a quantum black hole and what is the interplay between

the quantum degrees of freedom responsible for entropy and the exterior

curved geometry? Can one derive the Hawking effect from first principles

of quantum gravity? Is there an imprint of the classical singularity on the

final quantum description, e.g., through ‘information loss’ during black hole

formation and evaporation?

• The big-bang: It is widely believed that the prediction of a singu-

larity, such as the big-bang of classical general relativity, is primarily a

signal that the physical theory has been pushed beyond the domain of its

validity. A key question to any quantum gravity theory, then, is: What

replaces the big-bang? Are the classical geometry and the continuum pic-

ture only approximations, analogous to the ‘mean (magnetization) field’ of

ferro-magnets? If so, what are the microscopic constituents? What is the

space-time analog of the Heisenberg model of a ferro-magnet? How close to

the singularity can we trust the continuum space-time of classical general

relativity? When formulated in terms of these fundamental constituents, is

the evolution of the quantum state of the universe free of singularities? If

so, what is on the ‘other side’ of the big-bang? An infinite quantum foam or

another, large classical space-time? Is the evolution ‘across’ the singularity

fully determined by quantum Einstein’s equations? Or, as in the pre-big-

bang scenario of string theory, for example, is a new principle essential to

ensure deterministic dynamics?

• Planck scale physics and the low energy world: In general relativity,

there is no background metric, no inert stage on which dynamics unfolds.
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Geometry itself is dynamical. Therefore, as indicated above, one expects

that a fully satisfactory quantum gravity theory would also be free of a

background space-time geometry. However, of necessity, a background in-

dependent description must use physical concepts and mathematical tools

that are quite different from those of the familiar, low energy physics which

takes place on a flat, background space-time. A major challenge then is to

show that this low energy description does arise from the pristine, Planck-

ian world in an appropriate sense, bridging the vast gap of some 16 orders

of magnitude in the energy scale. In this ‘top-down’ approach, does the

fundamental theory admit a ‘sufficient number’ of semi-classical states? Do

these semi-classical sectors provide enough of a background geometry to

anchor low energy physics? Can one recover the familiar description? If the

answers to these questions are in the affirmative, can one pin point why the

standard ‘bottom-up’ perturbative approach fails in the gravitational case?

That is, what is the essential feature which makes the fundamental descrip-

tion mathematically coherent but is absent in the standard perturbative

quantum gravity?

There are of course many other challenges as well. Here are a few exam-

ples. A primary goal of physics is to predict the future from the past. But

if there is no space-time in the background, what does time-evolution even

mean? How does one extend the measurement theory and the associated

interpretation of the quantum framework when space-time geometry is it-

self a part of the quantum system? On a more technical level, how does one

construct gauge (i.e. diffeomorphism) invariant quantum observables and

introduce practical methods of computing their properties? Are there man-

ageable ways of computing S-matrices? Of exploring the role of topology

and the phenomenon of topology change? Should the structure of quantum

mechanics itself be modified, e.g., through a gravity induced non-linearity?

The list continues.

Every approach sets its own priorities as to which of these are more

central than the others and several of these questions are discussed in arti-

cles by Banks, Dowker, Gambini and Pullin and Penrose. In loop quantum

gravity described in this chapter, one adopts the view that one should first

tackle squarely the three issues discussed in some detail above and then

explore other questions. Indeed, these three issues are rooted in deep con-

ceptual challenges at the interface of general relativity and quantum theory

and all three have been with us longer than any of the current leading

approaches.
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This chapter organized as follows. Section 2 summarizes the main fea-

tures of loop quantum gravity. This framework has led to a rich set of

results on the first two sets of physical issues discussed above.b Section 3

discusses applications to black holes and complements Bojowald’s review of

applications to cosmology. Section 4 presents a summary and an outlook.

2. A Bird’s Eye View of Loop Quantum Gravity

I will now briefly summarize the salient features and current status of the

framework underlying loop quantum gravity. The emphasis is on structural

and conceptual issues; detailed treatments can be found in more complete

and more technical recent accounts24,25,38 and references therein. The de-

velopment of the subject can be seen by following older monographs11,13,15

and reviews on geometrodynamics.1–6

2.1. Viewpoint

The central lesson of general relativity is that gravity is encoded in space-

time geometry. It is this feature that is directly responsible for the most

spectacular predictions of the theory discussed in the second part of this

book: black holes, big bang and gravitational waves. But it also leads to its

most severe limitations. Inside black holes and at the big-bang, not only

do matter fields become singular, but so does geometry. Space-time simply

ends. Physics of general relativity comes to an abrupt halt. The key idea at

the heart of loop quantum gravity is to retain the interplay between geometry

and gravity but overcome the limitations of general relativity by replacing

classical Riemannian geometry by its suitable quantum analog. Thus, as

in general relativity, there is no background metric, no passive arena on

which quantum dynamics of matter is to unfold. Quantum geometry is

just as physical and dynamical as quantum matter. This viewpoint is in

striking contrast to approaches developed by particle physicists where one

typically begins with quantum matter on a classical background geometry

and uses perturbation theory to incorporate quantum effects of gravity. In

bA summary of the status of semi-classical issues can be found in some recent
reviews24,38 . Also, I will discuss spin-foams — the path integral partner of the canonical
approach discussed here — only in passing. This program20,25 has led to fascinating
insights on a number of mathematical physics issues — especially the relation between

quantum gravity and state sum models — and is better suited to the analysis of global
issues such as topology change. However, it is yet to shed new light on conceptual and
physical issues discussed above.
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loop quantum gravity, there is a background manifoldc but no background

fields whatsoever.

In the classical domain, general relativity stands out as the best available

theory of gravity, some of whose predictions have been tested to an amazing

degree of accuracy, surpassing even the legendary tests of quantum electro-

dynamics. Therefore, it is natural to ask: Does quantum general relativity,

coupled to suitable matter or supergravity, its supersymmetric generaliza-

tion, exist as consistent theories non-perturbatively? Although its underly-

ing quantum geometry is not rigidly tied to general relativity, much of the

effort in loop quantum gravity is devoted to answering these questions.

In the particle physics circles the answer is often assumed to be in the

negative, not because there is concrete evidence against non-perturbative

quantum gravity, but because of the analogy to the theory of weak in-

teractions. There, one first had a 4-point interaction model due to Fermi

which works quite well at low energies but which fails to be renormaliz-

able. Progress occurred not by looking for non-perturbative formulations

of the Fermi model but by replacing the model by the Glashow-Salam-

Weinberg renormalizable theory of electro-weak interactions, in which the

4-point interaction is replaced by W
± and Z propagators. Therefore, it is

often assumed that perturbative non-renormalizability of quantum general

relativity points in a similar direction. However this argument overlooks

the fact that general relativity is qualitatively different. Perturbative treat-

ments pre-suppose that the underlying space-time can be assumed to be

a continuum at all scales of interest to physics under consideration. This

assumption is safe for weak interactions. In the gravitational case, on the

other hand, the scale of interest is the Planck length `Pl and there is no

physical basis to pre-suppose that the continuum picture should be valid

down to that scale. The failure of the standard perturbative treatments may

largely be due to this grossly incorrect assumption and a non-perturbative

treatment which correctly incorporates the physical micro-structure of ge-

ometry may well be free of these inconsistencies.

Are there any situations, outside loop quantum gravity, where such ex-

pectations are borne out in detail mathematically? The answer is in the

affirmative. There exist quantum field theories (such as the Gross-Neveu

model in three dimensions) in which the standard perturbation expan-

cIn 2+1 dimensions, although one begins in a completely analogous fashion, in the final

picture one can get rid of the background manifold as well. Thus, the fundamental theory
can be formulated combinatorially.11,12 To achieve this in 3+1 dimensions, one needs
more complete theory of intersecting knots in 3 dimensions.
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sion is not renormalizable, although the theory is exactly soluble! Failure

of the standard perturbation expansion can occur because one insists on

perturbing around the trivial, Gaussian point rather than the more physi-

cal, non-trivial fixed point of the renormalization group flow. Interestingly,

thanks to recent work by Lauscher, Reuter, Percacci, Perini and others,

there is now non-trivial and growing evidence that situation may be simi-

lar in Euclidean quantum gravity. Impressive calculations have shown that

pure Einstein theory may also admit a non-trivial fixed point. Furthermore,

the requirement that the fixed point should continue to exist in presence of

matter constrains the couplings in non-trivial and interesting ways.36 It is

therefore of considerable interest to follow up on these indications.

Finally, recall that in classical general relativity, while requirements of

background independence and general covariance do restrict the form of in-

teractions between gravity and matter fields and among matter fields them-

selves. The situation is the same in loop quantum gravity; so far it does

not have a built-in principle which determines these interactions. Conse-

quently, in its present form, it is not a satisfactory candidate for unification

of all known forces. Rather, the first goal of loop quantum gravity is to

construct a consistent, non-perturbative theory by elevating the interplay

between geometry and gravity to the quantum level. Since this interplay

has had profound implications in the classical domain, it is reasonable to

hope that quantum general relativity will also have qualitatively new pre-

dictions, pushing further the existing frontiers of physics. Section 3 and

Bojowald’s article provide considerable support for this hope.

2.2. Quantum Geometry

Although loop quantum gravity does not provide a natural unification of

dynamics of all interactions, it does provide a kinematical unification. More

precisely, in this approach one begins by formulating general relativity in

the mathematical language of connections, the basic variables of gauge the-

ories of electro-weak and strong interactions. Thus, now the configuration

variables are not metrics as in Wheeler’s geometrodynamics2,3,4,5,6 but cer-

tain spin-connections; the emphasis is shifted from distances and geodesics

to holonomies and Wilson loops.11,15 Consequently, the basic kinematical

structures are the same as those used in gauge theories. A key difference,

however, is that while a background space-time metric is available and cru-

cially used in gauge theories, there are no background fields whatsoever

now. Their absence is forced upon us by the requirement of general covari-

ance (more precisely, diffeomorphism invariance).
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Now, most of the techniques used in the familiar, Minkowskian quan-

tum theories are deeply rooted in the availability of a flat back-ground

metric. In particular, it is this structure that enables one to single out the

vacuum state, perform Fourier transforms to decompose fields canonically

into creation and annihilation parts, define masses and spins of particles and

carry out regularizations of products of operators. Already when one passes

to quantum field theory in curved space-times, extra work is needed to

construct mathematical structures that can adequately capture underlying

physics (see Ford’s article in this volume). In our case, the situation is much

more drastic12: there is no background metric whatsoever! Therefore new

physical ideas and mathematical tools are now necessary. Fortunately, they

were constructed by a number of researchers in the mid-nineties and have

given rise to a detailed quantum theory of Riemannian geometry.24,25,38

Because the situation is conceptually so novel and because there are

no direct experiments to guide us, reliable results require a high degree of

mathematical precision to ensure that there are no hidden infinities. Achiev-

ing this precision has been a priority in the program. Thus, while one is

inevitably motivated by heuristic, physical ideas and formal manipulations,

generally the final results are mathematically rigorous. In particular, due

care is taken in constructing function spaces, defining measures and func-

tional integrals, regularizing products of field operators, and calculating

eigenvectors and eigenvalues of geometric operators. Consequently, the final

results are all free of divergences, well-defined, and respect the background

independence (diffeomorphism invariance).

Let us now turn to specifics. For simplicity, I will focus on the grav-

itational field; matter couplings are discussed in references [11,13,25,38].

The basic gravitational configuration variable is an SU(2)-connection, A
i
a

on a 3-manifold M representing ‘space’. As in gauge theories, the mo-

menta are the ‘electric fields’ E
a
i
.d However, in the present gravitational

context, they also acquire a space-time meaning: they can be naturally

interpreted as orthonormal triads (with density weight 1) and determine

the dynamical, Riemannian geometry of M . Thus, in contrast to Wheeler’s

geometrodynamics2,3,4, the Riemannian structures, including the positive-

definite metric on M , is now built from momentum variables.

The basic kinematic objects are: i) holonomies he(A) of A
i
a
, which dic-

tate how spinors are parallel transported along curves or edges e; and

dThroughout, indices a, b, .. will refer to the tangent space of M while the ‘internal’
indices i, j, ... will refer to the Lie algebra of SU(2).
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ii) fluxes ES,t =
∫

S
ti E

a

i
d
2
Sa of electric fields, E

a

i
(smeared with test fields

ti) across a 2-surface S. The holonomies —the raison d’être of connections—

serve as the ‘elementary’ configuration variables which are to have unam-

biguous quantum analogs.

The first step in quantization is to use the Poisson algebra between these

configuration and momentum functions to construct an abstract (star-)

algebra A of elementary quantum operators. This step is straightforward.

The second step is to introduce a representation of this algebra by ‘concrete’

operators on a Hilbert space (which is to serve as the kinematic setup for

the Dirac quantization program).6,9,11 For systems with an infinite num-

ber of degrees of freedom, this step is highly non-trivial. In Minkowskian

field theories, for example, the analogous kinematic algebra of canonical

commutation relations admits infinitely many inequivalent representations

even after asking for Poicaré invariance! The standard Fock representation

is uniquely selected only when a restriction to non-interacting theories is

made. The general viewpoint is that the choice of representation is dic-

tated by (symmetries and more importantly) the dynamics of the theory

under consideration. A priori this task seems daunting for general relativ-

ity. However, it turns out that the diffeomorphism invariance —dictated by

‘background independence’— is enormously more powerful than Poincaré

invariance. Recent results by Lewandowski, Okolow, Sahlmann and Thie-

mann, and by Fleischhack show that the algebra A admits a unique diffeo-

morphism invariant state!29,24,30 Using it, through a standard procedure

due to Gel’fand, Naimark and Segal, one can construct a unique represen-

tation of A. Thus, remarkably, there is a unique kinematic framework for

any diffeomorphism invariant quantum theory for which the appropriate

point of departure is provided by A, irrespective of the details of dynam-

ics ! This tightness adds a considerable degree of confidence in the basic

framework.

Chronologically, this concrete representation was in fact introduced al-

ready in early nineties by Ashtekar, Baez, Isham and Lewandowski. It led

to the detailed theory of quantum geometry that underlies loop quantum

gravity. Once a rich set of results had accumulated, researchers began to

analyze the issue of uniqueness of this representation and systematic im-

provements over several years culminated in the simple statement given

above.

Let me describe the salient features of this representation.24,38 Quan-

tum states span a specific Hilbert space H consisting of wave functions

of connections which are square integrable with respect to a natural, dif-
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feomorphism invariant measure. This space is very large. However, it can

be conveniently decomposed into a family of orthogonal, finite dimensional

sub-spaces H = ⊕
γ,~j

H
γ,~j

, labelled by graphs γ, each edge of which itself

is labelled by a spin (i.e., half-integer) j.24,25 (The vector ~j stands for the

collection of half-integers associated with all edges of γ.) One can think of

γ as a ‘floating lattice’ in M —‘floating’ because its edges are arbitrary,

rather than ‘rectangular’. (Indeed, since there is no background metric on

M , a rectangular lattice has no invariant meaning.) Mathematically, H
γ,~j

can be regarded as the Hilbert space of a spin-system. These spaces are

extremely simple to work with; this is why very explicit calculations are

feasible. Elements of H
γ,~j

are referred to as spin-network states.17,24,25

In the quantum theory, the fundamental excitations of geometry are

most conveniently expressed in terms of holonomies.24 They are thus one-

dimensional, polymer-like and, in analogy with gauge theories, can be

thought of as ‘flux lines’ of electric fields/triads. More precisely, they turn

out to be flux lines of area, the simplest gauge invariant quantities con-

structed from the momenta E
a

i
: an elementary flux line deposits a quantum

of area on any 2-surface S it intersects. Thus, if quantum geometry were

to be excited along just a few flux lines, most surfaces would have zero

area and the quantum state would not at all resemble a classical geometry.

This state would be analogous, in Maxwell theory, to a ‘genuinely quan-

tum mechanical state’ with just a few photons. In the Maxwell case, one

must superpose photons coherently to obtain a semi-classical state that can

be approximated by a classical electromagnetic field. Similarly, here, semi-

classical geometries can result only if a huge number of these elementary

excitations are superposed in suitable dense configurations.24,38 The state of

quantum geometry around you, for example, must have so many elementary

excitations that approximately ∼ 1068 of them intersect the sheet of paper

you are reading. Even in such semi-classical states, the true microscopic

geometry is still distributional, concentrated on the underlying elementary

flux lines. But the highest energy contemporary particle accelerators can

only probe distances of the order of 10−18 cm. Since the microstructure be-

comes manifest only at the Planck scale 10−33 cm, even these accelerators

can only see a coarse-grained geometry which can be approximated by a

smooth metric. This explains why the continuum picture we use in physics

today works so well. However, it is only an approximation that arises from

coarse graining of semi-classical states.

The basic quantum operators are the holonomies ĥe along curves or

edges e in M and the fluxes ÊS,t of triads Ê
a
i
. Both are self-adjoint on
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H. Furthermore detailed work by Ashtekar, Lewandowski, Rovelli, Smolin,

Thiemann and others shows that all eigenvalues of geometric operators con-

structed from the fluxes of triad are discrete.17,24,25,38 This key property is,

in essence, the origin of the fundamental discreteness of quantum geometry.

For, just as the classical Riemannian geometry of M is determined by the

triads E
a

i
, all Riemannian geometry operators —such as the area operator

ÂS associated with a 2-surface S or the volume operator V̂R associated

with a region R— are constructed from ÊS,t. However, since even the clas-

sical quantities AS and VR are non-polynomial functionals of triads, the

construction of the corresponding ÂS and V̂R is quite subtle and requires a

great deal of care. But their final expressions are rather simple.24,25,38

In this regularization, the underlying background independence turns

out to be a blessing. For, diffeomorphism invariance constrains the possible

forms of the final expressions severely and the detailed calculations then

serve essentially to fix numerical coefficients and other details. Let me illus-

trate this point with the example of the area operators ÂS . Since they are

associated with 2-surfaces S while the states are 1-dimensional excitations,

the diffeomorphism covariance requires that the action of ÂS on a state

Ψ
γ,~j

must be concentrated at the intersections of S with γ. The detailed

expression bears out this expectation: the action of ÂS on Ψ
γ,~j

is dictated

simply by the spin labels jI attached to those edges of γ which intersect

S. For all surfaces S and 3-dimensional regions R in M , ÂS and V̂R are

densely defined, self-adjoint operators. All their eigenvalues are discrete.

Naively, one might expect that the eigenvalues would be uniformly spaced

given by, e.g., integral multiples of the Planck area or volume. Indeed, for

area, such assumptions were routinely made in the initial investigations

of the origin of black hole entropy and, for space-time volume, they are

made in quantum gravity approaches based on causal sets described in

Dowker’s chapter. In quantum Riemannian geometry, this expectation is

not borne out; the distribution of eigenvalues is quite subtle. In particular,

the eigenvalues crowd rapidly as areas and volumes increase. In the case of

area operators, the complete spectrum is known in a closed form, and the

first several hundred eigenvalues have been explicitly computed numerically.

For a large eigenvalue an, the separation ∆an = an+1 − an between con-

secutive eigenvalues decreases exponentially: ∆an ≤ exp−(
√

an/`Pl) `
2

Pl
!

Because of such strong crowding, the continuum approximation becomes

excellent quite rapidly just a few orders of magnitude above the Planck

scale. At the Planck scale, however, there is a precise and very specific re-

placement. This is the arena of quantum geometry. The premise is that
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the standard perturbation theory fails because it ignores this fundamental

discreteness.

There is however a further subtlety. This non-perturbative quantization

has a one parameter family of ambiguities labelled by γ > 0. This γ is called

the Barbero-Immirzi parameter and is rather similar to the well-known θ-

parameter of QCD.24,25,38 In QCD, a single classical theory gives rise to

inequivalent sectors of quantum theory, labelled by θ. Similarly, γ is classi-

cally irrelevant but different values of γ correspond to unitarily inequivalent

representations of the algebra of geometric operators. The overall mathe-

matical structure of all these sectors is very similar; the only difference is

that the eigenvalues of all geometric operators scale with γ. For example,

the simplest eigenvalues of the area operator ÂS in the γ quantum sector

is given bye

a{j} = 8πγ`
2

Pl

∑

I

√

jI(jI + 1) (1)

where {j} is a collection of 1/2-integers jI , with I = 1, . . .N for some N .

Since the representations are unitarily inequivalent, as usual, one must rely

on Nature to resolve this ambiguity: Just as Nature must select a specific

value of θ in QCD, it must select a specific value of γ in loop quantum

gravity. With one judicious experiment —e.g., measurement of the lowest

eigenvalue of the area operator ÂS for a 2-surface S of any given topology—

we could determine the value of γ and fix the theory. Unfortunately, such

experiments are hard to perform! However, we will see in Section 3.2 that

the Bekenstein-Hawking formula of black hole entropy provides an indirect

measurement of this lowest eigenvalue of area for the 2-sphere topology and

can therefore be used to fix the value of γ.

2.3. Quantum dynamics

Quantum geometry provides a mathematical arena to formulate non-

perturbative dynamics of a class of candidate quantum theories of gravity,

eIn particular, the lowest non-zero eigenvalue of area operators is proportional to γ. This
fact has led to a misunderstanding in certain particle physics circles where γ is thought
of as a regulator responsible for discreteness of quantum geometry. As explained above,
this is not the case; γ is analogous to the QCD θ and quantum geometry is discrete in
every permissible γ-sector. Note also that, at the classical level, the theory is equivalent
to general relativity only if γ is positive; if one sets γ = 0 by hand, one cannot recover

even the kinematics of general relativity. Similarly, at the quantum level, setting γ = 0
would lead to a meaningless theory in which all eigenvalues of geometric operators vanish
identically.
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without any reference to a background classical geometry. It is not rigidly

tied to general relativity. However, for reasons explained in section 2.1, so

far most of the detailed work on quantum dynamics is restricted to general

relativity, where it provides tools to write down quantum Einstein’s equa-

tions in the Hamiltonian approach and calculate transition amplitudes in

the path integral approach. Until recently, effort was focussed primarily on

Hamiltonian methods. However, over the last five years or so, path integrals

—called spin foams— have drawn a great deal of attention. This work has

led to fascinating results suggesting that, thanks to the fundamental dis-

creteness of quantum geometry, path integrals defining quantum general

relativity may be finite. A summary of these developments can be found in

references[20,25]. In this Section, I will summarize the status of the Hamil-

tonian approach. For brevity, I will focus on source-free general relativity,

although there has been considerable work also on matter couplings.24,25,38

For simplicity, let me suppose that the ‘spatial’ 3-manifold M is com-

pact. Then, in any theory without background fields, Hamiltonian dynamics

is governed by constraints. Roughly this is because in these theories diffeo-

morphisms correspond to gauge in the sense of Dirac. Recall that, on the

Maxwell phase space, gauge transformations are generated by the func-

tional DaE
a which is constrained to vanish on physical states due to Gauss

law. Similarly, on phase spaces of background independent theories, diffeo-

morphisms are generated by Hamiltonians which are constrained to vanish

on physical states.

In the case of general relativity, there are three sets of constraints. The

first set consists of the three Gauss equations

Gi := Da E
a

i
= 0, (2)

which, as in Yang-Mills theories, generates internal SU(2) rotations on the

connection and the triad fields. The second set consists of a co-vector (or

diffeomorphism) constraint

Cb := E
a

i F
i

ab = 0, (3)

which generates spatial diffeomorphism on M (modulo internal rotations

generated by Gi). Finally, there is the key scalar (or Hamiltonian) constraint

S := ε
ijk

E
a

i
E

b

j
Fab k + . . . = 0 (4)

which generates time-evolutions. (The . . . are extrinsic curvature terms, ex-

pressible as Poisson brackets of the connection, the total volume constructed

from triads and the first term in the expression of S given above. We will
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not need their explicit forms.) Our task in quantum theory is three-folds: i)

Elevate these constraints (or their ‘exponentiated versions’) to well-defined

operators on the kinematical Hilbert space H; ii) Select physical states

by asking that they be annihilated by these constraints; iii) introduce an

inner-product on the space of solutions to obtain the final Hilbert space

Hfinal, isolate interesting observables on Hfinal and develop approximation

schemes, truncations, etc to explore physical consequences. I would like to

emphasize that, even if one begins with Einstein’s equations at the classical

level, non-perturbative dynamics gives rise to interesting quantum correc-

tions. Consequently, the effective classical equations derived from the quan-

tum theory exhibit significant departures from classical Einstein’s equations.

This fact has had important implications in quantum cosmology.

How has loop quantum gravity fared with respect to these tasks? Since

the canonical transformations generated by the Gauss and the diffeomor-

phism constraints have a simple geometrical meaning, it has been possible

to complete the three steps. For the Hamiltonian constraint, on the other

hand, there are no such guiding principles whence the procedure is more

involved. In particular, specific regularization choices have to be made and

the final expression of the Hamiltonian constraint is not unique. A system-

atic discussion of ambiguities can be found in reference [24]. At the present

stage of the program, such ambiguities are inevitable; one has to consider all

viable candidates and analyze if they lead to sensible theories. A key open

problem in loop quantum gravity is to show that the Hamiltonian con-

straint —either Thiemann’s or an alternative such as the one of Gambini

and Pullin— admits a ‘sufficient number’ of semi-classical states. Progress

on this problem has been slow because the general issue of semi-classical

limits is itself difficult in any background independent approach.f However,

a systematic understanding has now begun to emerge and is providing the

necessary ‘infra-structure’.24,38 Recent advance in quantum cosmology, de-

scribed in Section 3.2, is an example of progress in this direction. The

symmetry reduction simplifies the theory sufficiently so that most of the

ambiguities in the definition of the Hamiltonian constraint disappear and

the remaining can be removed using physical arguments. The resulting the-

ory has rich physical consequences. The interplay between the full theory

and models obtained by symmetry reduction is now providing crucial in-

puts to cosmology from the full theory and useful lessons for the full theory

from cosmology.

f In the dynamical triangulation18,27 and causal set22 approaches, for example, a great
deal of care is required to ensure that even the dimension of a typical space-time is 4.
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To summarize, from the mathematical physics perspective, in the Hamil-

tonian approach the crux of dynamics lies in quantum constraints. The

quantum Gauss and diffeomorphism constraints have been solved satis-

factorily and detailed regularization schemes have been proposed for the

Hamiltonian constraint. This progress is notable; for example, the analo-

gous tasks were spelled out in geometrodynamics2,3,4 some 35 years ago but

still remain unfulfilled. In spite of this technical success, however, it is not

clear if any of the proposed strategies to solve the Hamiltonian constraint

incorporates the familiar low energy physics in the full theory, i.e., beyond

symmetry reduced models. Novel ideas are being pursued to address this

issue. I will list them in section 4.

3. Applications of Quantum Geometry

In this section, I will summarize two developments that answer several of the

questions raised under first two bullets in section 2.1. The first application

is to black holes and the second to cosmology. The two are complementary.

In the discussion of black holes, one considers full theory but the main is-

sue of interest —analysis of black hole entropy from statistical mechanical

considerations— is not sensitive to the details of how the Hamiltonian con-

straint is solved. In quantum cosmology, on the other hand, one considers

only a symmetry reduced model but the focus is on the Hamiltonian con-

straint which dictates quantum dynamics. Thus, as in all other approaches

to quantum gravity, concrete advances can be made because there exist

physically interesting problems which can be addressed without having a

complete solution to the full theory.

3.1. Black-holes

This discussion is based on work of Ashtekar, Baez, Corichi, Domagala, En-

gle, Krasnov, Lewandowski, Meissner and Van den Broeck, much of which

was motivated by earlier work of Krasnov, Rovelli, Smolin and others.24,31,32

As explained in the Introduction, since mid-seventies, a key question

in the subject has been: What is the statistical mechanical origin of the

entropy SBH = (ahor/4`
2

Pl
) of large black holes? What are the microscopic

degrees of freedom that account for this entropy? This relation implies that

a solar mass black hole must have (exp 1077) quantum states, a number

that is huge even by the standards of statistical mechanics. Where do all

these states reside? To answer these questions, in the early nineties Wheeler

had suggested the following heuristic picture, which he christened ‘It from
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Bit’. Divide the black hole horizon into elementary cells, each with one

Planck unit of area, `
2

Pl
and assign to each cell two microstates, or one

‘bit’. Then the total number of states N is given by N = 2n where n =

(ahor/`
2

Pl
) is the number of elementary cells, whence entropy is given by

S = lnN ∼ ahor. Thus, apart from a numerical coefficient, the entropy

(‘It’) is accounted for by assigning two states (‘Bit’) to each elementary

cell. This qualitative picture is simple and attractive. But can these heuristic

ideas be supported by a systematic analysis from first principles? Quantum

geometry has supplied such an analysis. As one would expect, while some

qualitative features of this picture are borne out, the actual situation is far

more subtle.

A systematic approach requires that we first specify the class of black

holes of interest. Since the entropy formula is expected to hold unambigu-

ously for black holes in equilibrium, most analyses were confined to sta-

tionary, eternal black holes (i.e., in 4-dimensional general relativity, to the

Kerr-Newman family). From a physical viewpoint however, this assumption

seems overly restrictive. After all, in statistical mechanical calculations of

entropy of ordinary systems, one only has to assume that the given sys-

tem is in equilibrium, not the whole world. Therefore, it should suffice

for us to assume that the black hole itself is in equilibrium; the exterior

geometry should not be forced to be time-independent. Furthermore, the

analysis should also account for entropy of black holes whose space-time

geometry cannot be described by the Kerr-Newman family. These include

astrophysical black holes which are distorted by external matter rings or

‘hairy’ black holes of mathematical physics with non-Abelian gauge fields

for which the uniqueness theorems fail. Finally, it has been known since the

mid-seventies that the thermodynamical considerations apply not only to

black holes but also to cosmological horizons. A natural question is: Can

these diverse situations be treated in a single stroke?

Within the quantum geometry approach, the answer is in the affirma-

tive. The entropy calculations have been carried out in the ‘isolated hori-

zons’ framework which encompasses all these situations. Isolated horizons

serve as ‘internal boundaries’ whose intrinsic geometries (and matter fields)

are time-independent, although the geometry as well as matter fields in the

external space-time region can be fully dynamical. The zeroth and first laws

of black hole mechanics have been extended to isolated horizons.28 Entropy

associated with an isolated horizon refers to the family of observers in the

exterior, for whom the isolated horizon is a physical boundary that sep-

arates the region which is accessible to them from the one which is not.
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This point is especially important for cosmological horizons where, without

reference to observers, one can not even define horizons. States which con-

tribute to this entropy are the ones which can interact with the states in

the exterior; in this sense, they ‘reside’ on the horizon.

Fig. 1. Quantum Horizon. Polymer excitations in the bulk puncture the horizon, en-
dowing it with quantized area. Intrinsically, the horizon is flat except at punctures where
it acquires a quantized deficit angle. These angles add up to endow the horizon with a
2-sphere topology.

In the detailed analysis, one considers space-times admitting an iso-

lated horizon as inner boundary and carries out a systematic quantization.

The quantum geometry framework can be naturally extended to this case.

The isolated horizon boundary conditions imply that the intrinsic geometry

of the quantum horizon is described by the so called U(1) Chern-Simons

theory on the horizon. This is a well-developed, topological field theory. A

deeply satisfying feature of the analysis is that there is a seamless matching

of three otherwise independent structures: the isolated horizon boundary

conditions, the quantum geometry in the bulk, and the Chern-Simons the-

ory on the horizon. In particular, one can calculate eigenvalues of certain

physically interesting operators using purely bulk quantum geometry with-

out any knowledge of the Chern-Simons theory, or using the Chern-Simons

theory without any knowledge of the bulk quantum geometry. The two

theories have never heard of each other. But the isolated horizon boundary

conditions require that the two infinite sets of numbers match exactly. This
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is a highly non-trivial requirement. But the numbers do match, thereby

providing a coherent description of the quantum horizon.24

In this description, the polymer excitations of the bulk geometry, each

labelled by a spin jI , pierce the horizon, endowing it an elementary area

ajI
given by (1). The sum

∑

I
ajI

adds up to the total horizon area ahor.

The intrinsic geometry of the horizon is flat except at these punctures,

but at each puncture there is a quantized deficit angle. These add up to

endow the horizon with a 2-sphere topology. For a solar mass black hole, a

typical horizon state would have 1077 punctures, each contributing a tiny

deficit angle. So, although quantum geometry is distributional, it can be

well approximated by a smooth metric.

The counting of states can be carried out as follows. First one constructs

a micro-canonical ensemble by restricting oneself only to those states for

which the mass and angular momentum multipole moments lie in small in-

tervals around fixed values M
(n)

hor
, J

(n)

hor
. (As is usual in statistical mechanics,

the leading contribution to the entropy is independent of the precise choice

of these small intervals.) For each set of punctures, one can compute the

dimension of the surface Hilbert space, consisting of Chern-Simons states

compatible with that set. One allows all possible sets of punctures (by

varying both the spin labels and the number of punctures) and adds up

the dimensions of the corresponding surface Hilbert spaces to obtain the

number N of permissible surface states. One finds that the horizon entropy

Shor is given by

Shor := lnN =
γo

γ

ahor

4`2

Pl

−

1

2
ln(

ahor

`2

Pl

) + o ln(
ahor

`2

Pl

) (5)

where γo ≈ 0.2735 is a root of an algebraic equation 32,31 and o(x) denote

quantities for which o(x)/x tends to zero as x tends to infinity. Thus, for

large black holes, the leading term is indeed proportional to the horizon

area. This is a non-trivial result; for example, early calculations often led

to proportionality to the square-root of the area.

However, even for large black holes, one obtains agreement with the

Hawking-Bekenstein formula only in the sector of quantum geometry in

which the Barbero-Immirzi parameter γ takes the value γ = γo. Thus, while

all γ sectors are equivalent classically, the standard quantum field theory

in curved space-times is recovered in the semi-classical theory only in the

γo sector of quantum geometry. It is quite remarkable that thermodynamic

considerations involving large black holes can be used to fix the quantization

ambiguity which dictates such Planck scale properties as eigenvalues of
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geometric operators. Note however that the value of γ can be fixed by

demanding agreement with the semi-classical result just in one case —e.g., a

spherical horizon with zero charge, or a cosmological horizon in the de Sitter

space-time, or, . . . . Once the value of γ is fixed, the theory is completely

fixed and we can ask: Does this theory yield the Hawking-Bekenstein value

of entropy of all isolated horizons, irrespective of the values of charges,

angular momentum, and cosmological constant, the amount of distortion,

or hair. The answer is in the affirmative. Thus, the agreement with quantum

field theory in curved space-times holds in all these diverse cases.24,33

Why does γo not depend on other quantities such as charges? This im-

portant property can be traced back to a key consequence of the isolated

horizon boundary conditions: detailed calculations show that only the grav-

itational part of Poisson brackets (more precisely, symplectic structure) has

a surface term at the horizon; the matter Poisson brackets only have vol-

ume terms. (Furthermore, the gravitational surface term is insensitive to

the value of the cosmological constant.) Since quantization is dictated by

Poisson brackets, there are no independent surface quantum states asso-

ciated with matter. This provides a natural explanation of the fact that

the Hawking-Bekenstein entropy depends only on the horizon area and is

independent of electro-magnetic (or other) charges.

So far, all matter fields were assumed to be minimally coupled to gravity

(there was no restriction on their couplings to each other). If one allows non-

minimal gravitational couplings, the isolated horizon framework (as well as

other methods) show that entropy should depend not just on the area but

also on the values of non-minimally coupled matter fields at the horizon. At

first, this non-geometrical nature of entropy seems to be a major challenge

to approaches based on quantum geometry. However it turns out that, in

presence of non-minimal couplings, the geometrical orthonormal triads E
a

i

are no longer functions just of the momenta conjugate to the gravitational

connection A
i
a but depend also on matter fields. Thus quantum Riemannian

geometry —including area operators— can no longer be analyzed just in the

gravitational sector of the quantum theory. The dependence of the triads

and area operators on matter fields is such that the counting of surface

states leads precisely to the correct expression of entropy, again for the

same value of the Barbero-Immirzi parameter γ. This is a subtle and non-

trivial check on the robustness of the quantum geometry approach to the

statistical mechanical calculation of black hole entropy.

Finally, let us return to Wheeler’s ‘It from Bit’. The horizon can indeed

be divided into elementary cells. But they need not have the same area; the
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area of a cell can be 8πγ`
2

Pl

√

j(j + 1) where j is an arbitrary half-integer

subject only to the requirement that 8πγ`
2

Pl

√

j(j + 1) does not exceed the

total horizon area ahor. Wheeler assigned to each elementary cell two bits.

In the quantum geometry calculation, this corresponds to focussing just

on j = 1/2 punctures. While the corresponding surface states are already

sufficiently numerous to give entropy proportional to area, other states with

higher j values also contribute to the leading term in the expression of

entropy.g

To summarize, quantum geometry naturally provides the micro-states

responsible for the huge entropy associated with horizons. In this analysis,

all black hole and cosmological horizons are treated in an unified fashion;

there is no restriction, e.g., to near-extremal black holes. The sub-leading

term has also been calculated and shown to be −

1

2
ln(ahor/`

2

Pl
).32 Finally,

in this analysis quantum Einstein’s equations are used. In particular, had

we not imposed the quantum Gauss and diffeomorphism constraints on

surface states, the spurious gauge degrees of freedom would have given an

infinite entropy. However, detailed considerations show that, because of the

isolated horizon boundary conditions, the Hamiltonian constraint has to be

imposed just in the bulk. Since in the entropy calculation one traces over

bulk states, the final result is insensitive to the details of how this (or any

other bulk) equation is imposed. Thus, as in other approaches to black hole

entropy, the calculation is feasible because it does not require a complete

knowledge of quantum dynamics.

3.2. Big bang

Over the last five years, quantum geometry has led to some striking results

in quantum cosmology. Most of these are summarized in Bojowald’s chap-

ter. My goal is to complement his discussion with some recent results which

provide a firmer foundation to the subject, validating qualitative expecta-

tions based on effective, classical descriptions. For completeness, however,

I must first summarize the salient features of the underlying framework

which is discussed in greater detail in Bojowald’s chapter.

Traditionally, in quantum cosmology one has proceeded by first impos-

ing spatial symmetries — such as homogeneity and isotropy — to freeze

out all but a finite number of degrees of freedom already at the classical

gThese contributions are also conceptually important for certain physical considerations
— e.g. to ‘explain’ why the black hole radiance does not have a purely line spectrum.
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level and then quantizing the reduced system. In the simplest (i.e., ho-

mogeneous, isotropic) model, the basic variables of the reduced classical

system are the scale factor a and matter fields φ. The symmetries imply

that space-time curvature goes as ∼ 1/a
n, where n > 0 depends on the

matter field under consideration. Einstein’s equations then predict a big-

bang, where the scale factor goes to zero and the curvature blows up. As

indicated in Section 1, this is reminiscent of what happens to ferro-magnets

at the Curie temperature: magnetization goes to zero and the susceptibility

diverges. By analogy, the key question is: Do these ‘pathologies’ disappear

if we re-examine the situation in the context of an appropriate quantum

theory? In traditional quantum cosmologies, without additional input, they

do not. That is, typically, to resolve the singularity one either has to use

matter (or external clocks) with unphysical properties or introduce addi-

tional boundary conditions, e.g., by invoking new principles, that dictate

how the universe began.

In a series of seminal papers Bojowald has shown that the situation in

loop quantum cosmology is quite different: the underlying quantum geome-

try makes a qualitative difference very near the big-bang.26,24 At first, this

seems puzzling because after symmetry reduction, the system has only a

finite number of degrees of freedom. Thus, quantum cosmology is analogous

to quantum mechanics rather than quantum field theory. How then can one

obtain qualitatively new predictions? Ashtekar, Bojowald and Lewandowski

— with key input from Fredenhagen — have clarified the situation: if one

follows the program laid out in the full theory, then even for the symme-

try reduced model one is led to an inequivalent quantum theory — a new

quantum mechanics!

This is still puzzling because in quantum mechanics we have the von-

Neumann uniqueness theorem for the representations of the Weyl algebra

generated by U(λ) = exp iλx and V (µ) = exp iµp. How can then new quan-

tum mechanics arise? Recall first that the assumptions of the von-Neumann

theorem: i) the representation of the algebra be irreducible; ii)U(λ) and

V (µ) be represented by 1-parameter groups of unitary operators; and iii)

U(λ) and V (λ) be weakly continuous in the parameters λ and µ respec-

tively. The last requirement is a necessary and sufficient condition ensuring

that the two groups are generated by self-adjoint operators x and p. In

the context of quantum mechanics, all three conditions are natural. Now,

in full quantum geometry, holonomies are the analogs of U(λ) and triads

are the analogs of p. The (kinematical) Hilbert space H carries a represen-

tation of the algebra they generate. However, a key characteristic of this
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representation is that, while the holonomies are well-defined operators on

H, there are no operators corresponding to connections themselves. Since

loop quantum cosmology mimics the structure of the full theory, one is now

led to drop the analog of the requirement that U(λ) be continuous in λ.

With this weakening of assumptions, the von Neumann uniqueness result

no longer holds: Inequivalent representations of the Weyl algebra emerge

even in quantum mechanics.h This is why the representation used in loop

quantum cosmology is inequivalent to that used in the older, traditional

quantum cosmology. And in the new representation, quantum evolution is

well-defined right through the big-bang singularity.

More precisely, the situation in dynamics can be summarized as follows.

Because of the underlying symmetries, the Gauss and the diffeomorphism

constraints can be eliminated by gauge fixing already in the classical theory.

Therefore, dynamics is dictated just by the Hamiltonian constraint. Let us

consider the simplest case of homogeneous, isotropic cosmologies coupled

to a scalar field. In the traditional quantum cosmology, this constraint is

the celebrated Wheeler-DeWitt equation2,3 — a second order differential

equation on wave functions Ψ(a, φ) that depend on the scale factor a and

the scalar field φ. Unfortunately, some of the coefficients of this equations

diverge at a = 0, making it impossible to obtain an unambiguous evolution

across the singularity. In loop quantum cosmology, the scale factor naturally

gets replaced by µ the momentum conjugate to the connection. µ ranges

over the entire real line and is related to the scale factor via |µ| = (const a
2;

negative µ correspond to right handed triads, positive to left handed, and

µ = 0 corresponds to the degenerate triad representing the singularity. Let

us expand out the quantum state as | Ψ >=
∑

Ψ(µ, φ) | µ φ > Then, the

Hamiltonian constraint takes the form:

C
+(µ)Ψ(µ + 4µo, φ)+C

o(µ)Ψ(µ φ)+C
−(µ)Ψ(µ − 4µo, φ) = `

2

Pl
ĤφΨ(µ, φ)

(6)

where C
±(µ), Co(µ) are fixed functions of µ; µo, a constant, determined

by the lowest eigenvalue of the area operator and Ĥφ is the matter Hamil-

tonian. Again, using the analog of the Thiemann regularization from the

hIn the analog of the representation used in loop quantum cosmology, the Hilbert space
is not L

2(R, dx) but L
2(R̄

Bohr
, dµo) where R̄

Bohr
is the Bohr compactification of the real

line and dµo the natural Haar measure thereon. (Here, Bohr refers to the mathematician

Harold Bohr, Nils’ brother who developed the theory of almost periodic functions.) Now,
although U(λ) is well-defined, there is no operator corresponding to x itself. The operator
p on the other hand is well-defined.
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full theory, one can show that the matter Hamiltonian is a well-defined

operator.

Primarily, being a constraint equation, (6) restricts the physically per-

missible Ψ(µ φ). However, if we choose to interpret µ as a heuristic time

variable, (6) can be interpreted as an ‘evolution equation’ which evolves

the state through discrete time steps. The highly non-trivial result is that

the coefficients C
±(µ), Co(µ) are such that one can evolve right through the

classical singularity, i.e., right through µ = 0. Since all solutions have this

property, the classical singularity is resolved. However, as in the full theory,

to complete the quantization program, one has to introduce the appropriate

scalar product on the space of solutions to the constraint, define physically

interesting operators on the resulting Hilbert space Hfinal and examine their

expectation values and fluctuations, especially near the singularity.

All these steps have been carried out in detail in the case when φ is a

massless scalar field39. Specifically, in each classical solution, φ is a mono-

tonic function of time. Therefore, one can regard it as an ‘internal clock’

with respect to which the scale factor evolves. With this interpretation,

the discrete equation (6) takes the form ∂
2

t Ψ = −ΘΨ, where Θ is a self-

adjoint operator, independent of φ ∼ t. This is precisely the form of the

Klein-Gordon equation in static space-times. (In technical terms, this pro-

vides a satisfactory ‘deparametrization’ of the theory.) Therefore, one can

use techniques from quantum field theory in static space-times to construct

an appropriate inner product and define a complete family of (‘Dirac’) ob-

servables. Using the two, one can construct semi-classical states —analogs

of coherent states of a harmonic oscillator— and write down explicit ex-

pressions for expectation values and fluctuations of physical observables in

them. As one might expect, the evolution is well-defined across the singu-

larity but quantum fluctuations are huge in its neighborhood.

Now that there is a well-defined theory, one can use numerical meth-

ods to evolve quantum states and compare quantum dynamics with the

classical one in detail. Since we do not want to make a priori assumptions

about what the quantum state was at the big-bang, it is best to start the

evolution not from the big bang but from late times (‘now’). Consider then

wave functions which are sharply peaked at a classical trajectory at late

times and evolve them backward. The first question is: how long does the

state remain semi-classical? A pleasant surprise is that it does so till very

early times —essentially till the epoch when the matter density reaches the

Planck density. Now, this is precisely what one would physically expect.

However, with a complicated difference equation such as (6), a priori there
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Fig. 2. Comparison between quantum and classical evolutions via plot of |Ψ(µ, φ)|.
Since µ → −µ changes only the triad orientation, it suffices to consider just µ ≥ 0.
Backward quantum evolution in the top half of the figure shows that Ψ follows the
‘expanding branch’ of the classical trajectory until it enters the Planck regime. Then
quantum fluctuations become large and on the other side of the big-bang, the quantum
state remerges as semi-classical, joining on to the ‘contracting branch’. Thus, quantum
geometry in the Planck regime bridges two vast semi-classical regions.

is no guarantee that semi-classicality would not be lost very quickly. In

particular, this result provides support for the standard practice, e.g., in

inflationary models, of assuming a classical continuum in the very early uni-

verse. Next, one can ask what happens to the quantum state very near and

beyond the big-bang. As explained above, the state loses semi-classicality

(i.e. fluctuations become large) near the big-bang. Does it then remain in

a ‘purely quantum regime’ forever or does it again become semi-classical

beyond a Planck regime on the ‘other side’ of the big bang? This is a ques-

tion that lies entirely outside the domain of the standard Wheeler-Dewitt

equation because it loses predictivity at the big-bang. In loop quantum

cosmology, on the other hand, the evolution is well-defined and completely

deterministic also beyond the big-bang. A priori there is no way to know

what the answer would be. Space-time may well have been a ‘quantum

foam’ till the big-bang and classicality may then have emerged only after

the big-bang. Or, there may have been a classical space-time also on the

‘other side’. Detailed numerical calculations show that the wave function

becomes semi-classical again on the other side; there is a ‘bounce’. Thus,

loop quantum cosmology predicts that the universe did not originate at
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the big bang but has a long prior history. Through quantum dynamics, the

universe tunnels from a contracting phase in the distant past (‘before the

bang’) to an expanding phase in the distant future (‘now’) in a specific

manner. Classically, of course such a transition is impossible.

To summarize, the infinities predicted by the classical theory at the

big-bang are artifacts of assuming that the classical, continuum space-time

approximation is valid right up to the big-bang. In the quantum theory, the

state can be evolved through the big-bang without any difficulty. However,

the classical, continuum completely fails near the big-bang; figuratively, the

classical space-time ‘dissolves’. This resolution of the singularity without

any ‘external’ input (such as matter violating energy conditions) is dra-

matically different from what happens with the standard Wheeler-DeWitt

equation of quantum geometrodynamics2,3,4,5,6. However, for large values of

the scale factor, the two evolutions are close; as one would have hoped, quan-

tum geometry effects intervene only in the ‘deep Planck regime’ resulting

in a quantum bridge connecting two classically disconnected space-times.

From this perspective, then, one is led to say that the most striking of the

consequences of loop quantum gravity are not seen in standard quantum

cosmology because it ‘washes out’ the fundamental discreteness of quantum

geometry.

4. Summary and Outlook

From the historical and conceptual perspectives of section 1, loop quantum

gravity has had several successes. Thanks to the systematic development

of quantum geometry, several of the roadblocks encountered by quantum

geometrodynamics2,3,4,5,6 were removed. There is a framework to resolve

the functional analytic issues related to the presence of an infinite number

of degrees of freedom. Integrals on infinite dimensional spaces are rigorously

defined and the required operators have been systematically constructed.

Thanks to this high level of mathematical precision, the canonical quan-

tization program has leaped past the ‘formal’ stage of development. More

importantly, although some key issues related to quantum dynamics still re-

main, it has been possible to use the parts of the program that are already

well established to extract useful and highly non-trivial physical predic-

tions. In particular, some of the long standing issues about the nature of

the big-bang and properties of quantum black holes have been resolved. In

this section, I will further clarify some conceptual issues, discuss current

research and outline some directions for future.
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• Quantum geometry. From conceptual considerations, an important is-

sue is the physical significance of discreteness of eigenvalues of geometric

operators. Recall first that, in the classical theory, differential geometry

simply provides us with formulas to compute areas of surfaces and volumes

of regions in a Riemannian manifold. To turn these quantities into physical

observables of general relativity, one has to define the surfaces and regions

operationally, e.g. using matter fields. Once this is done, one can simply use

the formulas supplied by differential geometry to calculate values of these

observable. The situation is similar in quantum theory. For instance, the

area of the isolated horizon is a Dirac observable in the classical theory

and the application of the quantum geometry area formula to this surface

leads to physical results. In 2+1 dimensions, Freidel, Noui and Perez have

recently introduced point particles coupled to gravity.34 The physical dis-

tance between these particles is again a Dirac observable. When used in this

context, the spectrum of the length operator has direct physical meaning.

In all these situations, the operators and their eigenvalues correspond to

the ‘proper’ lengths, areas and volumes of physical objects, measured in

the rest frames. Finally sometimes questions are raised about compatibility

between discreteness of these eigenvalues and Lorentz invariance. As was

recently emphasized by Rovelli, there is no tension whatsoever: it suffices to

recall that discreteness of eigenvalues of the angular momentum operator

Ĵz of non-relativistic quantum mechanics is perfectly compatible with the

rotational invariance of that theory.

• Quantum Einstein’s equations. The challenge of quantum dynamics in

the full theory is to find solutions to the quantum constraint equations and

endow these physical states with the structure of an appropriate Hilbert

space. We saw in section 3.2 that this task can be carried to a satisfactory

completion in symmetry reduced models of quantum cosmology. For the

general theory, while the situation is well-understood for the Gauss and dif-

feomorphism constraints, it is far from being definitive for the Hamiltonian

constraint. It is non-trivial that well-defined candidate operators represent-

ing the Hamiltonian constraint exist on the space of solutions to the Gauss

and diffeomorphism constraints. However there are many ambiguities24 and

none of the candidate operators has been shown to lead to a ‘sufficient num-

ber of’ semi-classical states in 3+1 dimensions. A second important open

issue is to find restrictions on matter fields and their couplings to grav-

ity for which this non-perturbative quantization can be carried out to a

satisfactory conclusion. As mentioned in section 2.1, the renormalization

group approach has provided interesting hints. Specifically, Luscher and
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Reuter have presented significant evidence for a non-trivial fixed point for

pure gravity in 4 dimensions. When matter sources are included, it con-

tinues to exist only when the matter content and couplings are suitably

restricted. For scalar fields, in particular, Percacci and Perini have found

that polynomial couplings (beyond the quadratic term in the action) are

ruled out, an intriguing result that may ‘explain’ the triviality of such theo-

ries in Minkowski space-times.36 Are there similar constraints coming from

loop quantum gravity? To address these core issues, at least four different

avenues are being pursued: the Gambini-Pullin framework based on (Vas-

siliev) invariants of intersecting knots15; the spin-foam approach based on

path integral methods20,25; and the discrete approach summarized in the

chapter by Gambini and Pullin, and the ‘master constraint program’ pur-

sued by Dittrich and Thiemann23 and the related ‘affine quantum gravity’

approach of Klauder21.

• Quantum cosmology. As we saw in section 3, loop quantum gravity has

resolved some of the long-standing physical problems about the nature of

the big-bang. In quantum cosmology, there is ongoing work by Ashtekar, Bo-

jowald, Willis and others on obtaining ‘effective field equations’ which incor-

porate quantum corrections. Thanks to recent efforts by Pawlowski, Singh

and Vandersloot, numerical loop quantum cosmology has now emerged as a

new field. By a suitable combination of analytical and numerical methods,

it is now feasible to analyze in detail a large class of homogeneous models

with varying matter content. These models serve as a ‘background’ which

can be perturbed. Since the dynamics of loop quantum cosmology is deter-

ministic across the singularity, evolution of inhomogeneities can be studied

in detail. This is in striking contrast with, say the pre-big-bang scenario or

cyclic universes where new input is needed to connect the classical branches

before and after the big-bang.

• Quantum Black Holes. As in other approaches to black hole entropy,

concrete progress could be made because the analysis does not require de-

tailed knowledge of how quantum dynamics is implemented in full quantum

theory. Also, restriction to large black holes implies that the Hawking ra-

diation is negligible, whence the black hole surface can be modelled by an

isolated horizon. To incorporate back-reaction, one would have to extend

the present analysis to dynamical horizons.28 It is now known that, in the

classical theory, the first law can be extended also to these time-dependent

situations and the leading term in the expression of the entropy is again

given by ahor/4`
2

Pl
. Hawking radiation will cause the horizon of a large

black hole to shrink very slowly, whence it is reasonable to expect that the
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Chern-Simons-type description of the quantum horizon geometry can be

extended also to this case. The natural question then is: Can one describe

in detail the black hole evaporation process and shed light on the issue of

information loss?

The standard space-time diagram of the evaporating black hole is shown

in figure 3. It is based on two ingredients: i) Hawking’s original calculation

of black hole radiance, in the framework of quantum field theory on a fixed

background space-time; and ii) heuristics of back-reaction effects which sug-

gest that the radius of the event horizon must shrink to zero. It is generally

argued that the semi-classical process depicted in this figure should be reli-

able until the very late stages of evaporation when the black hole has shrunk

to Planck size and quantum gravity effects become important. Since it takes

a very long time for a large black hole to shrink to this size, one then ar-

gues that the quantum gravity effects during the last stages of evaporation

will not be sufficient to restore the correlations that have been lost due to

thermal radiation over such a long period. Thus there is loss of information.

Intuitively, the lost information is ‘absorbed’ by the final singularity which

serves as a new boundary to space-time.
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Fig. 3. The standard space-time diagram depicting black hole evaporation.

However, loop quantum gravity considerations suggest that this argu-

ment is incorrect in two respects. First, the semi-classical picture breaks

down not just at the end point of evaporation but in fact all along what

is depicted as the final singularity. Recently, using ideas from quantum

cosmology, the interior of the Schwarzschild horizon was analyzed in the
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context of loop quantum gravity. Again, it was found that the singularity

is resolved due to quantum geometry effects.35 Thus, the space-time does

not have a singularity as its final boundary. The second limitation of the

semi-classical picture of figure 3 is its depiction of the event horizon. The

notion of an event horizon is teleological and refers to the global structure

of space-time. Resolution of the singularity introduces a domain in which

there is no classical space-time, whence the notion ceases to be meaningful;

it is simply ‘transcended’ in quantum theory. This leads to a new, possi-

ble paradigm for black hole evaporation in loop quantum gravity in which

the dynamical horizons evaporate with emission of Hawking radiation, the

initial pure state evolves to a final pure state and there is no information

loss.37 Furthermore, the semi-classical considerations are not simply dis-

missed; they turn out to be valid in certain space-time regions and under

certain approximations. But for fundamental conceptual issues, they are

simply inadequate. I should emphasize however that, although elements

that go into the construction of this paradigm seem to be on firm footing,

many details will have to be worked out before it can acquire the status of

a model.

• Semi-classical issues. A frontier area of research is contact with low

energy physics. Here, a number of fascinating challenges appear to be

within reach. Fock states have been isolated in the polymer framework24

and elements of quantum field theory on quantum geometry have been

introduced.38 These developments lead to concrete questions. For example,

in quantum field theory in flat space-times, the Hamiltonian and other oper-

ators are regularized through normal ordering. For quantum field theory on

quantum geometry, on the other hand, the Hamiltonians are expected to be

manifestly finite.38,24 Can one then show that, in a suitable approximation,

normal ordered operators in the Minkowski continuum arise naturally from

these finite operators? Can one ‘explain’ why the so-called Hadamard states

of quantum field theory in curved space-times are special? These issues also

provide valuable hints for the construction of viable semi-classical states of

quantum geometry. The final and much more difficult challenge is to ‘ex-

plain’ why perturbative quantum general relativity fails if the theory exists

non-perturbatively. As mentioned in section 1, heuristically the failure can

be traced back to the insistence that the continuum space-time geometry

is a good approximation even below the Planck scale. But a more detailed

answer is needed. Is it because, as recent developments in Euclidean quan-

tum gravity indicate36, the renormalization group has a non-trivial fixed

point?
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• Unification. Finally, there is the issue of unification. At a kinemati-

cal level, there is already an unification because the quantum configuration

space of general relativity is the same as in gauge theories which govern

the strong and electro-weak interactions. But the non-trivial issue is that

of dynamics. I will conclude with a speculation. One possibility is to use

the ‘emergent phenomena’ scenario where new degrees of freedom or par-

ticles, which were not present in the initial Lagrangian, emerge when one

considers excitations of a non-trivial vacuum. For example, one can begin

with solids and arrive at phonons; start with superfluids and find rotons;

consider superconductors and discover cooper pairs. In loop quantum grav-

ity, the micro-state representing Minkowski space-time will have a highly

non-trivial Planck-scale structure. The basic entities will be 1-dimensional

and polymer-like. Even in absence of a detailed theory, one can tell that

the fluctuations of these 1-dimensional entities will correspond not only to

gravitons but also to other particles, including a spin-1 particle, a scalar

and an anti-symmetric tensor. These ‘emergent states’ are likely to play an

important role in Minkowskian physics derived from loop quantum gravity.

A detailed study of these excitations may well lead to interesting dynamics

that includes not only gravity but also a select family of non-gravitational

fields. It may also serve as a bridge between loop quantum gravity and string

theory. For, string theory has two a priori elements: unexcited strings which

carry no quantum numbers and a background space-time. Loop quantum

gravity suggests that both could arise from the quantum state of geome-

try, peaked at Minkowski (or, de Sitter ) space. The polymer-like quan-

tum threads which must be woven to create the classical ground state

geometries could be interpreted as unexcited strings. Excitations of these

strings, in turn, may provide interesting matter couplings for loop quantum

gravity.
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The expansion of our universe, when followed backward in time, implies
that it emerged from a phase of huge density, the big bang. These stages
are so extreme that classical general relativity combined with matter
theories is not able to describe them properly, and one has to refer to
quantum gravity. A complete quantization of gravity has not yet been
developed, but there are many results about key properties to be ex-
pected. When applied to cosmology, a consistent picture of the early
universe arises which is free of the classical pathologies and has implica-
tions for the generation of structure which are potentially observable in
the near future.

1. Introduction

General relativity provides us with an extremely successful description of

the structure of our universe on large scales, with many confirmations by

macroscopic experiments and so far no conflict with observations. The re-

sulting picture, when applied to early stages of cosmology, suggests that the

universe had a beginning a finite time ago, at a point where space, mat-

ter, and also time itself were created. Thus, it does not even make sense

to ask what was there before since “before” does not exist at all. At very

early stages, space was small such that there were huge energy densities to

be diluted in the later expansion of the universe that is still experienced

today. In order to explain also the structure that we see in the form of

galaxies in the correct statistical distribution, the universe not only needs

to expand but do so in an accelerated manner, a so-called inflationary pe-

riod, in its early stages. With this additional input, usually by introducing

382
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inflation with exponential acceleration1,2,3 lasting long enough to expand

the scale factor a(t), the radius of the universe at a given time t, by a ratio

afinal/ainitial > e
60. The resulting seeds for structure after the inflationary

phase can be observed in the anisotropy spectrum of the cosmic microwave

background (most recently of the WMAP satellite4,5), which agrees well

with theoretical predictions over a large range of scales.

Nonetheless, there are problems remaining with the overall picture. The

beginning was extremely violent with conditions such as diverging energy

densities and tidal forces under which no theory can prevail. This is also

true for general relativity itself which led to this conclusion in the first

place: there are situations in the universe which, according to the singularity

theorems, can be described only by solutions to general relativity which,

under reasonable conditions on the form of matter, must have a singularity

in the past or future.6 There, space degenerates, e.g. to a single point in

cosmology, and energy densities and tidal forces diverge. From the observed

expansion of our current universe one can conclude that according to general

relativity there must have been such a singularity in the past (which does

not rule out further possible singularities in the future). This is exactly

what is usually referred to as the “beginning” of the universe, but from

the discussion it is clear that the singularity does not so much present a

boundary to the universe as a boundary to the classical theory: The theory

predicts conditions under which it has to break down and is thus incomplete.

Here it is important that the singularity in fact lies only a finite time in

the past rather than an infinite distance away, which could be acceptable.

A definitive conclusion about a possible beginning can therefore be reached

only if a more complete theory is found which is able to describe these very

early stages meaningfully.

Physically, one can understand the inevitable presence of singularities

in general relativity by the characteristic property of classical gravitation

being always attractive. In the backward evolution in which the universe

contracts, there is, once matter has collapsed to a certain size, simply no

repulsive force strong enough to prevent the total collapse into a singularity.

A similar behavior happens when not all the matter in the universe but only

that in a given region collapses to a small size, leading to the formation of

black holes which also are singular.

This is the main problem which has to be resolved before one can call

our picture of the universe complete. Moreover, there are other problem-

atic issues in what we described so far. Inflation has to be introduced into

the picture, which currently is done by assuming a special field, the infla-
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ton, in addition to the matter we know. In contrast to other matter, its

properties must be very exotic so as to ensure accelerated expansion which

with Einstein’s equations is possible only if there is negative pressure. This

is achieved by choosing a special potential and initial conditions for the

inflaton, but there is no fundamental explanation of the nature of the in-

flaton and its properties. Finally, there are some details in the anisotropy

spectrum which are hard to bring in agreement with theoretical models. In

particular, there seems to be less structure on large scales than expected,

referred to as a loss of power.

2. Classical Cosmology

In classical cosmology one usually assumes space to be homogeneous and

isotropic, which is an excellent approximation on large scales today. The

metric of space is then solely determined by the scale factor a(t) which gives

the size of the universe at any given time t. The function a(t) describes

the expansion or contraction of space in a way dictated by the Friedmann

equation7

(

ȧ

a

)2

=
8π

3
Gρ(a) (1)

which is the reduction of Einstein’s equations under the assumption of

isotropy. In this equation, G is the gravitational constant and ρ(a) the

energy density of whatever matter we have in the universe. Once the matter

content is chosen and ρ(a) is known, one can solve the Friedmann equation

in order to obtain a(t).

As an example we consider the case of radiation which can be described

phenomenologically by the energy density ρ(a) ∝ a
−4. This is only a phe-

nomenological description since it ignores the fundamental formulation of

electrodynamics of the Maxwell field. Instead of using the Maxwell Hamil-

tonian in order to define the energy density, which would complicate the

situation by introducing the electromagnetic fields with new field equations

coupled to the Friedmann equation, one uses the fact that on large scales

the energy density of radiation is diluted by the expansion and in addition

red-shifted. This leads to a behavior proportional a−3 from dilution times

a
−1 from redshift. In this example we then solve the Friedmann equation

ȧ ∝ a
−1 by a(t) ∝

√

t− t0 with a constant of integration t0. This demon-

strates the occurrence of singularities: For any solution there is a time t = t0

where the size of space vanishes and the energy density ρ(a(t0)) diverges.

At this point not only the matter system becomes unphysical, but also the
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gravitational evolution breaks down: When the right hand side of (1) di-

verges at some time t0, we cannot follow the evolution further by setting up

an initial value problem there and integrating the equation. We can thus

only learn that there is a singularity in the classical theory, but do not ob-

tain any information as to what is happening there and beyond. These are

the two related but not identical features of a singularity: energy densities

diverge and the evolution breaks down.

One could think that the problem comes from too strong idealizations

such as symmetry assumptions or the phenomenological description of mat-

ter. That this is not the case follows from the singularity theorems which

do not depend on these assumptions. One can also illustrate the singularity

problem with a field theoretic rather than phenomenological description of

matter. For simplicity we now assume that matter is provided by a scalar

φ whose energy density then follows from the Hamiltonian

ρ(a) = a
−3
H(a) = a

−3( 1

2
a
−3
p
2

φ
+ a

3
V (φ)) (2)

with the scalar momentum pφ and potential V (φ). At small scale factors a,

there still is a diverging factor a−3 in the kinetic term which we recognized

as being responsible for the singularity before. Since this term dominates

over the non-diverging potential term, we still cannot escape the singularity

by using this more fundamental description of matter. This is true unless

we manage to arrange the evolution of the scalar in such a way that pφ → 0

when a→ 0 in just the right way for the kinetic term not to diverge. This is

difficult to arrange in general, but is exactly what is attempted in slow-roll

inflation (though with a different motivation, and not necessarily all the

way up to the classical singularity).

For the evolution of pφ we need the scalar equation of motion, which can

be derived from the HamiltonianH in (2) via φ̇ = {φ,H} and ṗφ = {pφ, H}.

This results in the isotropic Klein–Gordon equation in a time-dependent

background determined by a(t),

φ̈+ 3ȧa−1
φ̇+ V

′(φ) = 0 . (3)

In an expanding space with positive ȧ the second term implies friction such

that, if we assume the potential V ′(φ) to be flat enough, φ will change only

slowly (slow-roll). Thus, φ̇ and pφ = a
3
φ̇ are small and at least for some

time we can ignore the kinetic term in the energy density. Moreover, since

φ changes only slowly we can regard the potential V (φ) as a constant Λ

which again allows us to solve the Friedmann equation with ρ(a) = Λ. The



October 7, 2005 16:8 WSPC/Trim Size: 9in x 6in for Review Volume 14˙bojowald2

386 M. Bojowald

solution a ∝ exp(
√

8πGΛ/3 t) is inflationary since ä > 0 and non-singular:

a becomes zero only in the limit t→ −∞.

Thus, we now have a mechanism to drive a phase of accelerated expan-

sion important for observations of structure. However, this expansion must

be long enough, which means that the phase of slowly rolling φ must be

long. This can be achieved only if the potential is very flat and φ starts

sufficiently far away from its potential minimum. Flatness means that the

ratio of V (φinitial) and φinitial must be of the order 10−10, while φinitial must

be huge, of the order of the Planck mass.8 These assumptions are neces-

sary for agreement with observations, but are in need of more fundamental

explanations.

Moreover, inflation alone does not solve the singularity problem.9 The

non-singular solution we just obtained was derived under the approximation

that the kinetic term can be ignored when φ̇ is small. This is true in a certain

range of a, depending on how small φ̇ really is, but never very close to a = 0.

Eventually, even with slow-roll conditions, the diverging a−3 will dominate

and lead to a singularity.

3. Quantum Gravity

For decades, quantum gravity has been expected to complete the picture

which is related to well-known properties of quantum mechanics in the

presence of a non-zero ~.

3.1. Indications

First, in analogy to the singularity problem in gravity, where everything

falls into a singularity in finite time, there is the instability problem of

a classical hydrogen atom, where the electron would fall into the nucleus

after a brief time. From quantum mechanics we know how the instability

problem is solved: There is a finite ground state energy E0 = −

1

2
me

4
/~2,

implying that the electron cannot radiate away all its energy and not fall

further once it reaches the ground state. From the expression for E0 one can

see that quantum theory with its non-zero ~ is essential for this to happen:

When ~ → 0 in a classical limit, E0 → −∞ which brings us back to the

classical instability. One expects a similar role to be played by the Planck

length `P =
√

8πG~/c3 ≈ 10−35m which is tiny but non-zero in quantum

theory. If, just for dimensional reasons, densities are bounded by `−3

P
, this

would be finite in quantum gravity but diverge in the classical limit.
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Secondly, a classical treatment of black body radiation suggests the

Rayleigh–Jeans law according to which the spectral density behaves as

ρ(λ) ∝ λ
−4 as a function of the wave length. This is unacceptable since

the divergence at small wave lengths leads to an infinite total energy. Here,

quantum mechanics solves the problem by cutting off the divergence with

Planck’s formula which has a maximum at a wave length λmax ∼ h/kT

and approaches zero at smaller scales. Again, in the classical limit λmax

becomes zero and the expression diverges.

In cosmology the situation is similar for matter in the whole universe

rather than a cavity. Energy densities as a function of the scale factor behave

as, e.g., a−3 if matter is just diluted or a−4 if there is an additional redshift

factor. In all cases, the energy density diverges at small scales, comparable

to the Rayleigh–Jeans law. Inflation already provides an indication that

the behavior must be different at small scales. Indeed, inflation can only be

achieved with negative pressure, while all matter whose energy falls off as

a
−k with non-negative k has positive pressure. This can easily be seen from

the thermodynamical definition of pressure as the negative change of energy

with volume. Negative pressure then requires the energy to increase with

the scale factor at least at small scales where inflation is required (e.g.,

an energy Λa3 for exponential inflation). This could be reconciled with

standard forms of matter if there is an analog to Planck’s formula, which

interpolates between decreasing behavior at large scales and a behavior

increasing from zero at small scales, with a maximum in between.

3.2. Early quantum cosmology

Since the isotropic reduction of general relativity leads to a system with

finitely many degrees of freedom, one can in a first attempt try quantum

mechanics to quantize it. Starting with the Friedmann equation (1) and

replacing ȧ by its momentum pa = 3aȧ/8πG gives a Hamiltonian which

is quadratic in the momentum and can be quantized easily to an operator

acting on a wave function depending on the gravitational variable a and

possibly matter fields φ. The usual Schrödinger representation yields the

Wheeler–DeWitt equation10,11

3

2

(

−

1

9
`
4

P
a
−1

∂

∂a
a
−1

∂

∂a

)

aψ(a, φ) = 8πGĤφ(a)ψ(a, φ) (4)

with the matter Hamiltonian Ĥφ(a). This system is different from usual

quantum mechanics in that there are factor ordering ambiguities in the

kinetic term, and that there is no derivative with respect to coordinate time
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t. The latter fact is a consequence of general covariance: the Hamiltonian

is a constraint equation restricting allowed states ψ(a, φ), rather than a

Hamiltonian generating evolution in coordinate time. Nevertheless, one can

interpret equation (4) as an evolution equation in the scale factor a, which

is then called internal time. The left hand side thus becomes a second order

time derivative, and it means that the evolution of matter is measured

relationally with respect to the expansion or contraction of the universe,

rather than absolutely in coordinate time.

Straightforward quantization thus gives us a quantum evolution equa-

tion, and we can now check what this implies for the singularity. If we look

at the equation for a = 0, we notice first that the matter Hamiltonian still

leads to diverging energy densities. If we quantize (2), we replace pφ by a

derivative, but the singular dependence on a does not change; a−3 would

simply become a multiplication operator acting on the wave function. More-

over, a = 0 remains a singular point of the quantum evolution equation in

internal time. There is nothing from the theory which tells us what physi-

cally happens at the singularity or beyond (baring intuitive pictures which

have been developed from this perspective12,13).

So one has to ask what went wrong with our expectations that quantiz-

ing gravity should help. The answer is that quantum theory itself did not

necessarily fail, but only our simple implementation. Indeed, what we used

was just quantum mechanics, while quantum gravity has many consistency

conditions to be fulfilled which makes constructing it so complicated. At the

time when this formalism was first applied there was in fact no correspond-

ing full quantum theory of gravity which could have guided developments.

In such a simple case as isotropic cosmology, most of these consistency con-

ditions trivialize and one can easily overlook important issues. There are

many choices in quantizing an unknown system, and tacitly making one

choice can easily lead in a wrong direction.

Fortunately, the situation has changed with the development of strong

candidates for quantum gravity. This then allows us to reconsider the singu-

larity and other problems from the point of view of the full theory, making

sure that also in a simpler cosmological context only those steps are under-

taken that have an analog in the full theory.

3.3. Loop quantum gravity

Singularities are physically extreme and require special properties of any

theory aimed at tackling them. First, there are always strong fields (clas-
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sically diverging) which requires a non-perturbative treatment. Moreover,

classically we expect space to degenerate at the singularity, for instance a

single point in a closed isotropic model. This means that we cannot take the

presence of a classical geometry to measure distances for granted, which is

technically expressed as background independence. A non-perturbative and

background independent quantization of gravity is available in the form of

loop quantum gravity,14,15,16 which by now is understood well enough in

order to be applicable in physically interesting situations.

Here, we only mention salient features of the theory which will turn out

to be important for cosmology; for further details see [17]. The first one

is the kind of basic variables used, which are the Ashtekar connection18,19

describing the curvature of space and a triad (with density weight) de-

scribing the metric by a collection of three orthonormal vectors in each

point. These variables are important since they allow a background inde-

pendent representation of the theory, where the connection Ai
a is integrated

to holonomies

he(A) = P exp

∫

e

A
i

aτiė
adt (5)

along curves e in space and the triad Ea
i

to fluxes

FS(E) =

∫

S

E
a

i
τ

i
nad2

y (6)

along surfaces S. (In these expressions, ėa denotes the tangent vector to a

curve and na the co-normal to a surface, both of which are defined without

reference to a background metric. Moreover, τj = −

1

2
iσj in terms of Pauli

matrices). While usual quantum field theory techniques rest on the presence

of a background metric, for instance in order to decompose a field in its

Fourier modes and define a vacuum state and particles, this is no longer

available in quantum gravity where the metric itself must be turned into an

operator. On the other hand, some integration is necessary since the fields

themselves are distributional in quantum field theory and do not allow a

well-defined representation. This “smearing” with respect to a background

metric has to be replaced by some other integration sufficient for resulting

in honest operators.20,21 This is achieved by the integrations in (5) and (6),

which similarly lead to a well-defined quantum representation. Usual Fock

spaces in perturbative quantum field theory are thereby replaced by the

loop representation, where an orthonormal basis is given by spin network

states.22
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This shows that choosing basic variables for a theory to quantize has

implications for the resulting representation. Connections and triads can

naturally be smeared along curves and surfaces without using a background

metric and then represented on a Hilbert space. Requiring diffeomorphism

invariance, which means that a background independent theory must not

change under deformations of space (which can be interpreted as changes

of coordinates), even selects a unique representation.23,24,25,26,27 These are

basic properties of loop quantum gravity, recognized as important require-

ments for a background independent quantization. Already here we can

see differences to the Wheeler–DeWitt quantization, where the metric is

used as a basic variable and then quantized as in quantum mechanics. This

is possible in the model but not in a full theory, and in fact we will see

later that a loop quantization will give a representation inequivalent to the

Wheeler–DeWitt quantization.

The basic properties of the representation have further consequences.

Holonomies and fluxes act as well-defined operators, and fluxes have dis-

crete spectra. Since spatial geometry is determined by the triad, spatial

geometry is discrete, too, with discrete spectra for, e.g., the area and vol-

ume operator.28,29,30 The geometry of space-time is more complicated to

understand since this is a dynamical situation which requires solving the

Hamiltonian constraint. This is the analog of the Wheeler–DeWitt equation

in the full theory and is the quantization of Einstein’s dynamical equations.

There are candidates for such operators,31 well-defined even in the presence

of matter32 which in usual quantum field theory would contribute divergent

matter Hamiltonians. Not surprisingly, the full situation is hard to ana-

lyze, which is already the case classically, without assuming simplifications

from symmetries. We will thus return to symmetric, in particular isotropic

models, but with the new perspective provided by the full theory of loop

quantum gravity.

4. Quantum Cosmology

Symmetries can be introduced in loop quantum gravity at the level of states

and basic operators,33,34,35 such that it is not necessary to reduce the classi-

cal theory first and then quantize as in the Wheeler–DeWitt quantization.

Instead, one can view the procedure as quantizing first and then intro-

ducing symmetries which ensures that consistency conditions of quantum

gravity are observed in the first step before one considers treatable situ-

ations. In particular, the quantum representation derives from symmetric
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states and basic operators, while the Hamiltonian constraint can be ob-

tained with constructions analogous to those in the full theory. Between

the dynamics of models and the full theory there is thus no complete link

yet and not all ingredients of models have been derived so far. But the for-

mulation of quantum gravity in a background independent manner implies

characteristic properties which are also realized in models. This allows us

to reconsider the singularity problem, now with methods from full quan-

tum gravity. In fact, symmetric models present a class of systems which

can often be treated explicitly while still being representative for general

phenomena. For instance, the prime examples of singular situations in grav-

ity, and some of the most widely studied physical applications, are already

obtained in isotropic or spherically symmetric systems, which allow access

to cosmology and black holes.

4.1. Representation

Before discussing the quantum level we reformulate isotropic cosmology in

connection and triad variables instead of a. The role of the scale factor

is now played by the triad component p with |p| = a
2 whose canonical

momentum is the isotropic connection component c = −

1

2
ȧ with {c, p} =

8πG/3. The main difference to metric variables is the fact that p, unlike

a, can take both signs with sgnp being the orientation of space. This is a

consequence of having to use triad variables which not only know about

the size of space but also its orientation (depending on whether the set of

orthonormal vectors is left or right handed).

States in the full theory are usually written in the connection represen-

tation as functions of holonomies. Following the reduction procedure for an

isotropic symmetry group leads to orthonormal states which are functions

of the isotropic connection component c and given by36

〈c|µ〉 = e
iµc/2

µ ∈ R . (7)

On these states the basic variables p and c are represented by

p̂|µ〉 = 1

6
`
2

P
µ|µ〉 (8)

êiµ′c/2
|µ〉 = |µ+ µ

′
〉 (9)

with the properties:

(i) [êiµ′c/2, p̂] = −

1

6
`
2

P
µ
′ ̂
e−iµ′c/2 = i~({eiµ

′
c/2
, p})∧,

(ii) p̂ has a discrete spectrum and
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(iii) only exponentials eiµ
′
c/2 of c are represented, not c directly.

These statements deserve further explanation: First, the classical Poisson

relations between the basic variables are indeed represented correctly, turn-

ing the Poisson brackets into commutators divided by i~. On this repre-

sentation, the set of eigenvalues of p̂ is the full real line since µ can take

arbitrary real values. Nevertheless, the spectrum of p̂ is discrete in the tech-

nical sense that eigenstates of p̂ are normalizable. This is indeed the case

in this non-separable Hilbert space where (7) defines an orthonormal basis.

The last property follows since the exponentials are not continuous in the

label µ′, for otherwise one could simply take the derivative with respect to

µ
′ at µ′ = 0 and obtain an operator for c. The discontinuity can be seen,

e.g., from

〈µ|êiµ′c/2
|µ〉 = δ0,µ′

which is not continuous.

These properties are quite unfamiliar from quantum mechanics, and

indeed the representation is inequivalent to the Schrödinger representation

(the discontinuity of the c-exponential evading the Stone–von Neumann

theorem which usually implies uniqueness of the representation). In fact,

the loop representation is inequivalent to the Wheeler–DeWitt quantization

which just assumed a Schrödinger like quantization. In view of the fact that

the phase space of our system is spanned by c and p with {c, p} ∝ 1 just

as in classical mechanics, the question arises how such a difference in the

quantum formulation arises.

As a mathematical problem the basic step of quantization occurs as

follows: given the classical Poisson algebra of observables Q and P with

{Q,P} = 1, how can we define a representation of the observables on a

Hilbert space such that the Poisson relations become commutator relations

and complex conjugation, meaning that Q and P are real, becomes ad-

jointness? The problem is mathematically much better defined if one uses

the bounded expressions eisQ and eit~
−1

P instead of the unbounded Q and

P , which still allows us to distinguish any two points in the whole phase

space. The basic objects eisQ and e
it~

−1
P upon quantization will then not

commute but fulfill the commutation relation (Weyl algebra)

e
isQ

e
it~

−1
P = e

ist
e

it~
−1

P
e

isQ (10)

as unitary operators on a Hilbert space.

In the Schrödinger representation this is done by using a Hilbert space

L
2(R, dq) of square integrable functions ψ(q) with

∫

R
dq|ψ(q)|2 finite. The
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representation of basic operators is

e
isQ

ψ(q) = e
isq
ψ(q)

e
it~

−1
P
ψ(q) = ψ(q + t)

which indeed are unitary and fulfill the required commutation relation.

Moreover, the operator families as functions of s and t are continuous and

we can take the derivatives in s = 0 and t = 0, respectively:

−i
d

ds

∣

∣

∣

∣

s=0

e
isQ = q

−i~
d

dt

∣

∣

∣

∣

t=0

e
it~

−1
P = p̂ = −i~

d

dq
.

This is the familiar representation of quantum mechanics which, according

to the Stone–von Neumann theorem is unique under the condition that eisQ

and eit~
−1

P are indeed continuous in both s and t.

The latter condition is commonly taken for granted in quantum mechan-

ics, but in general there is no underlying physical or mathematical reason.

It is easy to define representations violating continuity in s or t, for instance

if we use a Hilbert space `2(R) where states are again maps ψq from the

real line to complex numbers but with norm
∑

q
|ψq |

2 which implies that

normalizable ψq can be non-zero for at most countably many q. We obtain

a representation with basic operators

e
isQ

ψq = e
isq
ψq

e
it~

−1
P
ψq = ψq+t

which is of the same form as before. However, due to the different Hilbert

space the second operator eit~
−1

P is no longer continuous in t which can

be checked as in the case of eiµc/2. In fact, the representation for Q and P

is isomorphic to that of p and c used before, where a general state |ψ〉 =
∑

µ
ψµ|µ〉 has coefficients ψµ in `2(R).

This explains mathematically why different, inequivalent representa-

tions are possible, but what are the physical reasons for using different

representations in quantum mechanics and quantum cosmology? In quan-

tum mechanics it turns out that the choice of representation is not that

important and is mostly being done for reasons of familiarity with the

standard choice. Physical differences between inequivalent representations

can only occur at very high energies37 which are not probed by available

experiments and do not affect characteristic quantum effects related to the

ground state or excited states. Thus, quantum mechanics as we know it can
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well be formulated in an inequivalent representation, and also in quantum

field theory this can be done and even be useful.38

In quantum cosmology we have a different situation where it is the high

energies which are essential. We do not have direct observations of this

regime, but from conceptual considerations such as the singularity issue

we have learned which problems we have to face. The classical singularity

leads to the highest energies one can imagine, and it is here where the

question of which representation to choose becomes essential. As shown by

the failure of the Wheeler–DeWitt quantization in trying to remove the

singularity, the Schrödinger representation is inappropriate for quantum

cosmology. The representation underlying loop quantum cosmology, on the

other hand, implies very different properties which become important at

high energies and can shed new light on the singularity problem.

Moreover, by design of symmetric models as obtained from the full the-

ory, we have the same basic properties of a loop representation in cosmolog-

ical models and the full situation where they were recognized as being im-

portant for a background independent quantization: discrete fluxes F̂S(E)

or p̂ and a representation only of holonomies he(A) or eiµc/2 but not of

connection components Ai
a or c. These basic properties have far-reaching

consequences as discussed in what follows:39

discrete triad only holonomies

? ?
well-defined inverse volume discrete evolution

@R �	
non-singular

? ?
non-perturbative modifications higher order terms

By this reliable quantization of representative and physically interesting

models with a known relation to full quantum gravity we are finally able

to resolve long-standing issues such as the singularity problem.

4.2. Quantum evolution

We will first look at the quantum evolution equation which we obtain as

the quantized Friedmann equation. This is modeled on the Hamiltonian

constraint of the full theory such that we can also draw some conclusions

for the viability of the full constraint.
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4.2.1. Difference equation

The constraint equation will be imposed on states of the form |ψ〉 =
∑

µ
ψµ|µ〉 with summation over countably many values of µ. Since the states

|µ〉 are eigenstates of the triad operator, the coefficients ψµ which can also

depend on matter fields such as a scalar φ represent the state in the triad

representation, analogous to ψ(a, φ) before. For the constraint operator we

again need operators for the conjugate of p, related to ȧ in the Friedmann

equation. Since this is now the exponential of c, which on basis states acts

by shifting the label, it translates to a finite shift in the labels of coef-

ficients ψµ(φ). Plugging together all ingredients for a quantization of (1)

along the lines of the constraint in the full theory leads to the difference

equation40,36

(Vµ+5 − Vµ+3)ψµ+4(φ) − 2(Vµ+1 − Vµ−1)ψµ(φ) (11)

+(Vµ−3 − Vµ−5)ψµ−4(φ) = −

4

3
πG`

2

P
Ĥmatter(µ)ψµ(φ)

with volume eigenvalues Vµ = (`2
P
|µ|/6)3/2 obtained from the volume oper-

ator V̂ = p̂
3/2, and the matter Hamiltonian Ĥmatter(µ).

We again have a constraint equation which does not generate evolution

in coordinate time but can be seen as evolution in internal time. Instead

of the continuous variable a we now have the label µ which only jumps

in discrete steps. As for the singularity issue, there is a further difference

to the Wheeler–DeWitt equation since now the classical singularity is lo-

cated at p = 0 which is in the interior rather than at the boundary of the

configuration space. Nevertheless, the classical evolution in the variable p

breaks down at p = 0 and there is still a singularity. In quantum theory,

however, the situation is very different: while the Wheeler–DeWitt equa-

tion does not solve the singularity problem, the difference equation (11)

uniquely evolves a wave function from some initial values at positive µ, say,

to negative µ.41,36 Thus, the evolution does not break down at the classical

singularity and can rather be continued beyond it. Quantum gravity is thus

a theory which is more complete than classical general relativity and is free

of limitations set by classical singularities.

An intuitive picture of what replaces the classical singularity can be ob-

tained from considering evolution in µ as before. For negative µ, the volume

Vµ decreases with increasing µ while Vµ increases for positive µ. This leads

to the picture of a collapsing universe before it reaches the classical big

bang singularity and re-expands. While at large scales the classical descrip-

tion is good,42 when the universe is small close to the classical singularity it
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starts to break down and has to be replaced by discrete quantum geometry.

The resulting quantum evolution does not break down, in contrast to the

classical space-time picture which dissolves. Using the fact that the sign

of µ, which defines the orientation of space, changes during the transition

through the classical singularity one can conclude that the universe turns

its inside out during the process. This can have consequences for realistic

matter Hamiltonians which violate parity symmetry.

4.2.2. Meaning of the wave function

An important issue in quantum gravity which is still outstanding is the

interpretation of the wave function and its relation to the problem of time.

In the usual interpretation of quantum mechanics the wave function de-

termines probabilities for measurements made by an observer outside the

quantum system. Quantum gravity and cosmology, however, are thought

of as theories for the quantum behavior of a whole universe such that, by

definition, there cannot be an observer outside the quantum system. Ac-

cordingly, the question of how to interpret the wave function in quantum

cosmology is more complicated. One can avoid the separation into a classi-

cal and quantum part of the problem in quantum mechanics by the theory

of decoherence which can explain how a world perceived as classical emerges

from the fundamental quantum description.43 The degree of “classicality”

is related to the number of degrees of freedom which do not contribute

significantly to the evolution but interact with the system nonetheless. Av-

eraging over those degrees of freedom, provided there are enough of them,

then leads to a classical picture. This demonstrates why macroscopic bod-

ies under usual circumstances are perceived as classical while in the micro-

scopic world, where a small number of degrees of freedom is sufficient to

capture crucial properties of a system, quantum mechanics prevails. This

idea has been adapted to cosmology, where a large universe comes with

many degrees of freedom such as small inhomogeneities which are not of

much relevance for the overall evolution. This is different, however, in a

small universe where quantum behavior becomes dominant.

Thus, one can avoid the presence of an observer outside the quantum

system. The quantum system is described by its wave function, and in some

circumstances one can approximate the evolution by a quantum part being

looked at by classical observers within the same system. Properties are then

encoded in a relational way: the wave function of the whole system con-

tains information about everything including possible observers. Now, the
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question has shifted from a conceptual one — how to describe the system

if no outside observers can be available — to a technical one. One needs

to understand how information can be extracted from the wave function

and used to develop schemes for intuitive pictures or potentially observable

effects. This is particularly pressing in the very early universe where every-

thing including what we usually know as space and time are quantum and

no familiar background to lean on is left.

One lesson is that evolution should be thought of as relational by de-

termining probabilities for one degree of freedom under the condition that

another degree of freedom has a certain value. If the reference degree of

freedom (such as the direction of the hand of a clock) plays a distinguished

role for determining the evolution of others, it is called internal time: it is

not an absolute time outside the quantum system as in quantum mechanics,

and not a coordinate time as in general relativity which could be changed

by coordinate transformations. Rather, it is one of the physical degrees of

freedom whose evolution is determined by the dynamical laws and which

shows how other degrees of freedom change by interacting with them. From

this picture it is clear that no external observer is necessary to read off the

clock or other measurement devices, such that it is ideally suited to cos-

mology. What is also clear is that now internal time depends on what we

choose it to be, and different questions require different choices. For a lab

experiment the hand of a clock would be a good internal time and, when

the clock is sufficiently isolated from the physical fields used in the exper-

iment and other outside influence, will not be different from an absolute

time except that it is mathematically more complicated to describe. The

same clock, on the other hand, will not be good for describing the universe

when we imagine to approach a classical singularity. It will simply not with-

stand the extreme physical conditions, dissolve, and its parts will behave in

a complicated irregular manner ill-suited for the description of evolution.

Instead, one has to use more global objects which depend on what is going

on in the whole universe.

Close to a classical singularity, where one expects monotonic expansion

or contraction, the spatial volume of the universe is just the right quantity

as internal time. A wave function then determines relationally how matter

fields or other gravitational degrees of freedom change with respect to the

expansion or contraction of the universe. In our case, this is encoded in

the wave function ψµ(φ) depending on internal time µ (which through the

volume defines the size of the universe but also spatial orientation) and

matter fields φ. By showing that it is subject to a difference equation in µ
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which does not stop at the classical singularity µ = 0 we have seen that rela-

tional probabilities are defined for all internal times without breaking down

anywhere. This shows the absence of singularities and allows developing in-

tuitive pictures, but does not make detailed predictions before relational

probabilities are indeed computed and shown how to be observable at least

in principle.

Here, we encounter the main issue in the role of the wave function: we

have a relational scheme to understand what the wave function should mean

but the probability measure to be used, called the physical inner product,

is not known so far. We already used a Hilbert space which we needed to

define the basic operators and the quantized Hamiltonian constraint, where

wave functions ψµ, which by definition are non-zero for at most countably

many values µ ∈ R, have the inner product 〈ψ|ψ
′
〉 =

∑

µ
ψ̄µψ

′

µ. This is

called the kinematical inner product which is used for setting up the quan-

tum theory. But unlike in quantum mechanics where the kinematical inner

product is also used as physical inner product for the probability interpre-

tation of the wave function, in quantum gravity the physical inner product

must be expected to be different. This occurs because the quantum evo-

lution equation (11) in internal time is a constraint equation rather than

an evolution equation in an external absolute time parameter. Solutions

to this constraint in general are not normalizable in the kinematical in-

ner product such that a new physical inner product on the solution space

has to be found. There are detailed schemes for a derivation which have

been applied in different models.44,45,46 In particular the recent Ref. [46]

computes the inner product for a model with remaining physical degrees

of freedom, which confirms and solidifies expectations obtained from the

difference equation alone. This also strengthens the link to a simplified,

effective route to extract physical statements which will be discussed in

Sec. 4.4 together with the main results.

A related issue, which is also of relevance for the classical limit of the

theory is that of oscillations on small scales of the wave function. Being

subject to a difference equation means that ψµ is not necessarily smooth

but can change rapidly when µ changes by a small amount even when the

volume is large. In such a regime one expects classical behavior, but small

scale oscillations imply that the wave function is sensitive to the Planck

scale. There are also other issues related to the fact that now a difference

rather than differential equation provides the fundamental law.47 For a

complete understanding of the solution space it is worthwhile to study the

mathematical problem of if and when solutions with suppressed oscillations
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exist. This is easy to answer in the affirmative for isotropic models subject

to (11) where in some cases one even obtains a unique wave function.48,49

However, already in other homogeneous but anisotropic models the issue is

much more complicated to analyze.50,51

In a more general situation than homogeneous cosmology there is an

additional complication. In general, it is very difficult to find an internal

time to capture the evolution of a complicated quantum system, which is

called the problem of time in general relativity. In cosmology, the volume

is a good internal time to understand the singularity, but it would not be

good for the whole history if the universe experiences a recollapse where the

volume would not be monotonic. This is even more complicated in inhomo-

geneous situations such as the collapse of matter into a black hole. Since we

used internal time µ to show how quantum geometry evolves through the

classical singularity, it seems that the singularity problem in general cannot

be solved before the problem of time is understood. Fortunately, while the

availability of an internal time simplifies the analysis, requirements on a

good choice can be relaxed for the singularity problem. An internal time

provides us with an interpretation of the constraint equation as an evolu-

tion equation, but the singularity problem can be phrased independently

of this as the problem to extend the wave function on the space of metrics

or triads. This implies weaker requirements and also situations can be an-

alyzed where no internal time is known. The task then is to find conditions

which characterize a classical singularity, analogous to p = 0 in isotropic

cosmology, and find an evolution parameter which at least in individual

parts of an inhomogeneous singularity allows to see how the system can

move through it. This has been established in models with spherical sym-

metry such as non-rotating black holes.52 These inhomogeneous cases are

now under study but only partially understood so far, such that in the next

section we return to isotropic cosmology.

4.3. Densities

In the previous discussion we have not yet mentioned the matter Hamilto-

nian on the right hand side, which diverges classically and in the Wheeler–

DeWitt quantization when we reach the singularity. If this were the case

here, the discrete quantum evolution would break down, too. However, as

we will see now the matter Hamiltonian does not diverge, which is again a

consequence of the loop representation.
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4.3.1. Quantization

For the matter Hamiltonian we need to quantize the matter field and in

quantum gravity also coefficients such as a−3 in the kinetic term which

now become operators, too. In the Wheeler–DeWitt quantization where a

is a multiplication operator, a−3 is unbounded and diverges at the classical

singularity. In loop quantum cosmology we have the basic operator p̂ which

one can use to construct a quantization of a−3. However, a straightforward

quantization fails since, as one of the basic properties, p̂ has a discrete

spectrum containing zero. In this case, there is no densely defined inverse

operator which one could use. This seems to indicate that the situation is

even worse: an operator for the kinetic term would not only be unbounded

but not even be well-defined. The situation is much better, however, when

one tries other quantizations which are more indirect. For non-basic opera-

tors such as a−3 there are usually many ways to quantize, all starting from

the same classical expression. What we can do here, suggested by construc-

tions in the full theory,32 is to rewrite a−3 in a classically equivalent way

as

a
−3 = (π−1

G
−1trτ3e

cτ3
{e

−cτ3 ,

√

V })6

where we only need a readily available positive power of p̂. Moreover,

exponentials of c are basic operators, where we just used su(2) notation

e
cτ3 = cos 1

2
c + 2τ3 sin 1

2
c in order to bring the expression closer to what

one would have in the full theory, and the Poisson bracket will become a

commutator in quantum theory.

This procedure, after taking the trace, leads to a densely defined oper-

ator for a−3 despite the nonexistence of an inverse of p̂:53

̂a−3 =
(

8i`−2

P
(sin 1

2
c

√

V̂ cos 1

2
c− cos 1

2
c

√

V̂ sin 1

2
c)

)6

. (12)

That this operator is indeed finite can be seen from its action on states |µ〉

which follows from that of the basic operators:

̂a−3
|µ〉 =

(

4`−2

P
(
√

Vµ+1 −

√

Vµ−1 )
)6

|µ〉 (13)

immediately showing the eigenvalues which are all finite. In particular, at

µ = 0 where we would have the classical singularity the density operator

does not diverge but is zero.

This finiteness of densities finally confirms the non-singular evolution

since the matter Hamiltonian

Ĥmatter = 1

2

̂a−3p̂
2

φ + V̂ V (φ) (14)
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in the example of a scalar is well-defined even on the classically singular

state |0〉. The same argument applies for other matter Hamiltonians since

only the general structure of kinetic and potential terms is used.

4.3.2. Confirmation of indications

The finiteness of the operator is a consequence of the loop representation

which forced us to take a detour in quantizing inverse powers of the scale

factor. A more physical understanding can be obtained by exploiting the

fact that there are quantization ambiguities in this non-basic operator. This

comes from the rewriting procedure which is possible in many classically

equivalent ways, which all lead to different operators. Important properties

such as the finiteness and the approach to the classical limit at large volume

are robust under the ambiguities, but finer details can change. The most

important choices one can make are selecting the representation j of SU(2)

holonomies before taking the trace54,55 and the power l of |p| in the Poisson

bracket.56 These values are restricted by the requirement that j is a half-

integer (j = 1/2 in the above choice) and 0 < l < 1 to obtain a well-

defined inverse power of a (l = 3/4 above). The resulting eigenvalues can

be computed explicitly and be approximated by the formula55,56

(a−3)eff = a
−3
pl(a

2
/a

2

max
)3/(2−2l) (15)

where amax =
√

j/3 `P depends on the first ambiguity parameter and the

function

pl(q) =
3

2l
q
1−l

(

(l + 2)−1
(

(q + 1)l+2
− |q − 1|l+2

)

(16)

− (l + 1)−1
q
(

(q + 1)l+1
− sgn(q − 1)|q − 1|l+1

))

.

on the second.

The function pl(q), shown in Fig. 1, approaches one for q � 1, has

a maximum close to q = 1 and drops off as q2−l for q � 1. This shows

that (a−3)eff approaches the classical behavior a−3 at large scales a �

amax, has a maximum around amax and falls off like (a−3)eff ∼ a
3/(1−l)

for a � amax. The peak value can be approximated, e.g. for j = 1/2,

by (a−3)eff(amax) ∼ 3l−12−l(1 − 3−l)3/(2−2l)
`
−3

P
which indeed shows that

densities are bounded by inverse powers of the Planck length such that

they are finite in quantum gravity but diverge in the classical limit. This

confirms our qualitative expectations from the hydrogen atom, while details

of the coefficients depend on the quantization.
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Fig. 1. The function pl(q) in (16) for some values of l, including the limiting cases l = 0
and l = 1.

Similarly, densities are seen to have a peak at amax whose position is

given by the Planck length (and an ambiguity parameter). Above the peak

we have the classical behavior of an inverse power, while below the peak

the density increases from zero. As suggested by the behavior of radiation

in a cavity whose spectral energy density

ρT (λ) = 8πhλ−5(eh/kTλ
− 1)−1 = hλ

−5
f(λ/λmax)

can, analogously to (15), be expressed as the diverging behavior λ
−5

multiplied with a cut-off function f(y) = 8π/((5/(5 − x))1/y
− 1) with

x = 5 + W (−5e−5) (in terms of the Lambert function W (x), the inverse

function of xex) and λmax = h/xkT , we obtain an interpolation between

increasing behavior at small scales and decreasing behavior at large scales

in such a way that the classical divergence is cut off.

We thus have an interpolation between increasing behavior necessary

for negative pressure and inflation and the classical decreasing behavior

(Fig. 2). Any matter density turns to increasing behavior at sufficiently

small scales without the need to introduce an inflaton field with tailor-

made properties. In the following section we will see the implications for

cosmological evolution by studying effective classical equations incorporat-

ing this characteristic loop effect of modified densities at small scales.
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λmax or amax

Fig. 2. Comparison between the spectral energy density of black body radiation
(wide curve) and an effective geometrical density with their large scale approximations
(dashed).

4.4. Phenomenology

The quantum difference equation (11) is rather complicated to study in

particular in the presence of matter fields and, as discussed in Sec. 4.2.2,

difficult to interpret in a fully quantum regime. It is thus helpful to work

with effective equations, comparable conceptually to effective actions in field

theories, which are easier to handle and more familiar to interpret but still

show important quantum effects. This can be done systematically,36,57,58

starting with the Hamiltonian constraint operator, resulting in different

types of correction terms whose significance in given regimes can be esti-

mated or studied numerically.59 There are perturbative corrections to the

Friedmann equation of higher order form in ȧ, or of higher derivative, in

the gravitational part on the left hand side, but also modifications in the

matter Hamiltonian since the density in its kinetic term behaves differently

at small scales. The latter corrections are mainly non-perturbative since the

full expression for (a−3)eff depends on the inverse Planck length, and their

range can be extended if the parameter j is rather large. For these reasons,

those corrections are most important and we focus on them from now on.
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The effective Friedmann equation then takes the form

aȧ
2 = 8π

3
G

(

1

2
(a−3)eff p

2

φ + a
3
V (φ)

)

(17)

with (a−3)eff as in (15) with a choice of ambiguity parameters. Since the

matter Hamiltonian does not just act as a source for the gravitational field

on the right hand side of the Friedmann equation, but also generates Hamil-

tonian equations of motion, the modification entails further changes in the

matter equations of motion. The Klein–Gordon equation (3) then takes the

effective form

φ̈ = φ̇ ȧ
d log(a−3)eff

da
− a

3(a−3)effV
′(φ) (18)

and finally there is the Raychaudhuri equation

ä

a
= −

8πG

3

(

a
−3
d(a)−1

eff
φ̇

2

(

1 −

1

4
a
d log(a3

d(a)eff)

da

)

− V (φ)

)

(19)

which follows from the above equation and the continuity equation of

matter.

4.4.1. Bounces

The resulting equations can be studied numerically or with qualitative

analytic techniques. We first note that the right hand side of (17) be-

haves differently at small scales since it increases with a at fixed φ and

pφ. Viewing this equation as analogous to a constant energy equation

in classical mechanics with kinetic term ȧ
2 and potential term V(a) :=

−

8π

3
Ga

−1

(

1

2
(a−3)eff p

2

φ
+ a

3
V (φ)

)

illustrates the classically attractive na-

ture of gravity: The dominant part of this potential behaves like −a
−4

which is increasing. Treating the scale factor analogously to the position of

a classical particle shows that a will be driven toward smaller values, im-

plying attraction of matter and energy in the universe. This changes when

we approach smaller scales and take into account the quantum modifica-

tion. Below the peak of the effective density the classical potential V(a)

will now decrease, −V(a) behaving like a positive power of a. This implies

that the scale factor will be repelled away from a = 0 such that there is

now a small-scale repulsive component to the gravitational force if we allow

for quantum effects. The collapse of matter can then be prevented if repul-

sion is taken into account, which indeed can be observed in some models

where the effective classical equations alone are sufficient to demonstrate

singularity-free evolution.
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This happens by the occurrence of bounces where a turns around from

contracting to expanding behavior. Thus, ȧ = 0 and ä > 0. The first con-

dition is not always realizable, as follows from the Friedmann equation (1).

In particular, when the scalar potential is non-negative there is no bounce,

which is not changed by the effective density. There are then two possi-

bilities for bounces in isotropic models, the first one if space has positive

curvature rather than being flat as assumed here,60,61 the second one with

a scalar potential which can become negative.62,63 Both cases allow ȧ = 0

even in the classical case, but this always corresponds to a maximum rather

than minimum. This can easily be seen for the case of negative potential

from the Raychaudhuri equation (19) which in the classical case implies

negative ä. With the modification, however, the additional term in the

equation provides a positive contribution which can become large enough

for ä to become positive at a value of ȧ = 0 such that there is a bounce.

This provides intuitive explanations for the absence of singularities from

quantum gravity, but not a general one. The generic presence of bounces de-

pends on details of the model such as its matter content or which correction

terms are being used,64,65 and even with the effective modifications there

are always models which classically remain singular. Thus, the only general

argument for absence of singularities remains the quantum one based on

the difference equation (11), where the conclusion is model independent41

and which also confirms bounce pictures qualitatively.59,46

4.4.2. Inflation

A repulsive contribution to the gravitational force can not only explain the

absence of singularities, but also enhances the expansion of the universe

on scales close to the classical singularity. Thus, as seen also in Fig. 3 the

universe accelerates just from quantum effects, providing a mechanism for

inflation without choosing special matter.

Via the generation of structure, inflationary phases of the universe can

have an imprint on the observable cosmic microwave background. Obser-

vations imply that the predicted power spectrum of anisotropies must be

nearly independent of the scale on which the anisotropies are probed, which

implies that the inflationary phase responsible for structure formation must

be close to exponential acceleration. This is true for slow-roll inflation, but

also for the inflationary phase obtained from the effective density once a

non-zero scalar potential is taken into account.66 For more detailed compar-

isons between theory and observations one needs to consider how inhomoge-
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Fig. 3. Numerical solution to the effective Friedmann equation (17) with a vanishing
scalar potential. While the modification in the density on the left is active the expansion
is accelerated, which stops automatically once the universe expands to a size above the
peak in the effective density.

neous fields evolve, which already requires us to relax the strong symmetry

assumption of homogeneity. The necessary methods are not well-developed

at the current stage (see Refs. 35, 67, 68 for the basic formulation), but

preliminary calculations of implications on the power spectrum have been

undertaken nonetheless. Ref. 69 indicates that loop inflation can be distin-

guished from simple inflaton models because the power depends differently

on scales.

It turns out that this loop phase alone can provide a sufficient amount

of inflation only for unnatural choices of parameters (such as extremely

large j), and those cases are even ruled out by observations already. At this

point, the modified matter dynamics of (18) and its φ̇-term becomes impor-

tant. Classically, it is a friction term which is used for slow-roll inflation.

But in the modified regime at small scales the sign of the term changes

once (a−3)eff is increasing. Thus, at those small scales friction turns into

antifriction and matter is driven up its potential if it has a non-zero ini-

tial momentum (even a tiny one, e.g., from quantum fluctuations). After

the loop phase matter fields slow down and roll back toward their minima,

driving additional inflation. The potentials need not be very special since

structure formation in the first phase and providing a large universe happen

by different mechanisms. When matter fields reach their minima they start

to oscillate and usual re-heating to obtain hot matter can commence.
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Loop quantum cosmology thus presents a viable alternative to usual

inflaton models which is not in conflict with current observations but can be

verified or ruled out with future experiments such as the Planck satellite. Its

attractive feature is that it does not require the introduction of an inflaton

field with its special properties, but provides a fundamental explanation of

acceleration from quantum gravity. This scenario is thus encouraging, but so

far there are still several open questions not just about details. Compared to

inflaton models, which have been studied extensively in all possible details,

many opportunities for potential new effects but also the need for crucial

viability tests still remain.

Even if we assume the presence of an inflaton field, its properties are

less special than in the purely classical treatment. We still need to assume a

potential which is sufficiently flat, but there is now an explanation of initial

values far away from the minimum. For this we again use the effective Klein–

Gordon equation and the fact that φ is driven up its potential. One can then

check that for usual inflaton potentials the value of typical initial conditions,

as a function of chosen ambiguity parameters and initial fluctuations of the

scalar, is just what one needs for sufficient inflation in a wide range.70,71

After the modifications in the density subside, the inflaton keeps moving up

the potential from its initial push, but is now slowed down by the friction

term. Eventually, it will stop and turn around, entering a slow roll phase

in its approach to the potential minimum. Thus, the whole history of the

expansion is described by a consistent model as illustrated in Fig. 4, not

just the slow roll phase after the inflaton has already obtained its large

initial values.

One may think that such a second phase of slow-roll inflation washes

away potential quantum gravity effects from the early expansion. That this

is not necessarily the case has been shown in Ref. 70, based on the fact that

around the turning point of the inflaton the slow-roll conditions are violated.

In this scenario, structure we see today on the largest scales was created

at the earliest stages of the second inflationary phase since it was enlarged

by the full inflationary phase. If the second inflationary regime did not last

too long, these scales are just observable today where in fact the observed

loss of power can be taken as an indication of early violations of slow-

roll expansion. Thus, loop quantum cosmology can provide an explanation,

among others, for the suppression of power on large scales.

There are diverse scenarios since different phases of inflation can be

combined, and eventually the right one has to be determined from obser-

vations. One can also combine bounces and inflationary regimes in order



O
cto

b
er

7
,
2
0
0
5

1
6
:8

W
S
P

C
/
T
rim

S
ize:

9
in

x
6
in

fo
r

R
ev

iew
V
o
lu

m
e

1
4
˙b

o
jow

a
ld

2

4
0
8

M
.
B
o
jo

w
a
ld

0

0.5

φ

0 100 5000 10000t

0

5

10

a

a/300

Fig. 4. History of the scale factor (top) and inflaton (bottom) with the left hand side in slow motion. (Tics on the right horizontal axis
mark increments in t by 100.) The upper right data are rescaled so as to fit on the same plot. Units for a and φ are Planck units, and
parameters are not necessarily realistic but chosen for plotting purposes. Dashed lines mark the time and scale factor where classical
behavior of (a−3)

eff
starts.



October 7, 2005 16:8 WSPC/Trim Size: 9in x 6in for Review Volume 14˙bojowald2

Loop Quantum Cosmology 409

to obtain cyclic universes which eventually reach a long phase of accel-

erated expansion.72 In particular, this allows the conctruction of models

which start close to a simple, static initial state and, after a series of cy-

cles, automatically reach values of the scalar to start inflation. In this way,

a semiclassical non-singular inflationary model73,74,75 is formulated which

evades the singularity theorem of Ref. 9.

Current observations are already beginning to rule out certain, very

large values of the ambiguity parameter j such that from future data one can

expect much tighter limits. In all these scenarios the non-perturbative mod-

ification of the density is important, which is a characteristic feature of loop

quantum cosmology. At larger scales above the peak there are also pertur-

bative corrections which imply small changes in the cosmological expansion

and the evolution of field modes. This has recently been investigated76 with

the conclusion that potential effects on the power spectrum would be too

small to be noticed by the next generation satellites. The best candidates for

observable effects from quantum gravity thus remain the non-perturbative

modifications in effective densities.

5. Conclusions and Outlook

What we have described is a consistent picture of the universe which is

not only observationally viable but also mathematically well-defined and

non-singular. There are instances where quantum gravity is essential, and

others where it is helpful in achieving important effects. The background

independent quantization employed here is very efficient: There are a few

basic properties, such as the discreteness of spatial geometry and the rep-

resentation only of exponentials of curvature, which are behind a variety

of applications. Throughout all the developments, those properties have

been known to be essential for mathematical consistency before they were

recognized as being responsible for physical phenomena.

For instance, for the singularity issue the basic properties are all needed

in the way they turn out to be realized. First, the theory had to be based

on triad variables which now not only provides us with the sign of ori-

entation, and thus two sides of the classical singularity, but also in more

complicated models positions the classical singularity in phase space such

that it becomes accessible by quantum evolution. Then, the discreteness

of spatial geometry encoded in triad operators and the representation of

exponentials of curvature play together in the right way to remove diver-

gences in densities and extend the quantum evolution through the classical
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singularity. These features allow general results about the absence of sin-

gularities without any new or artificial ingredients, and lead to a natural

solution of a long-standing problem which has eluded previous attempts for

decades. Symmetry assumptions are still important in order to be able to

perform the calculations, but they can now be weakened considerably and

are not responsible for physical implications. The essential step is to base

the symmetry reduction on a candidate for full quantum gravity which is

background independent and therefore allows one to study the essence of

quantum geometry.

Absence of singularities in this context is a rather general statement

about the possibility to extend a quantum wave function through a regime

which classically would appear as a singularity. More explicit questions,

such as what kind of new region one is evolving to and whether it again be-

comes classical or retains traces of the evolution through a quantum regime,

depend on details of the relevant constraint operators. This includes, for

instance, quantization ambiguities and the question whether a symmetric

operator has to be used. The latter aspect is also important for technical

concepts such as a physical inner product.

Here we discussed only isotropic models which are classically described

solely by the scale factor determining the size of space. But a more realistic

situation has to take into account also the shape of space, and changes of

the distribution of geometry and matter between different points of space.

The methods we used have been extended to homogeneous models, allowing

for anisotropic spaces, and recently to some inhomogeneous ones, defined

by spherical symmetry and some forms of cylindrical symmetry. In all cases,

essential aspects of the general mechanism for removing classical singulari-

ties which has first been seen only in the simple isotropic models are known

to be realized.a Moreover, in the more complicated systems it is acting much

more non-trivially, again with the right ingredients provided by the back-

ground independent quantization. Nevertheless, since the inhomogeneous

constraints are much more complicated to analyze, absence of singularities

for them has not yet been proven completely. The inhomogeneous systems

now also allow access to black hole and gravitational wave models such that

their quantum geometry can be studied, too.

Effective equations are a useful tool to study quantum effects in a more

aThis does not refer to the boundedness of densities or curvature components for all

geometries, which is known not to be present in anisotropic models77,78 or even on
some degenerate configurations in the full theory.79 What is relevant is the behavior on
configurations seen along the dynamical evolution.
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familiar setting given by classical equations of motion. They show diverse

effects whose usefulness in cosmological phenomenology is often surpris-

ing. Also here, the effects were known to occur from the quantization and

the transfer into effective classical equations, before they turned out to be

helpful. In addition to inflationary scenarios and bounces which one can see

in isotropic cosmologies, modified densities have more implications in less

symmetric models. The anisotropic Bianchi IX model, for instance, is clas-

sically chaotic which is assumed to play a role in the complicated approach

to a classical singularity.80,81 With the effective modifications the dynamics

changes and simplifies, removing the classical chaos.82 This has implications

for the effective approach to a classical singularity and can provide a more

consistent picture of general singularities.83 Effective classical equations can

also be used to study the collapse of matter to a black hole, with modi-

fications in the development of classical singularities and horizons.84 This

can now also be studied with inhomogeneous quantum models which allow

new applications for black holes and cosmological phenomenology where

the evolution of inhomogeneities is of interest in the context of structure

formation.

With these models there will be new effects not just in cosmology but

also for black holes and other systems which further check the overall con-

sistency of the theory. Moreover, a better understanding of inhomogeneities

evolving in a cosmological background will give us a much better computa-

tional handle on signatures in the cosmic microwave or even gravitational

wave background, which may soon be testable with a new generation of

observations. One may wonder how it can be possible to observe quantum

gravity effects, given that the Planck scale is so many orders of magnitude

away from scales accessible by today’s experiments. The difference in scales,

however, does not preclude the observation of indirect effects even though

direct measurements on the discreteness scale are impossible, as illustrated

by a well-known example: Brownian motion allows to draw conclusions

about the atomic structure of matter and its size by observations on much

larger scales.85 Similarly, cosmological observations can carry information

on quantum gravity effects which otherwise would manifest themselves only

at the Planck scale.
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We review recent efforts to construct gravitational theories on discrete
space-times, usually referred to as the “consistent discretization” ap-
proach. The resulting theories are free of constraints at the canonical
level and therefore allow to tackle many problems that cannot be cur-
rently addressed in continuum quantum gravity. In particular the theo-
ries imply a natural method for resolving the big bang (and other types)
of singularities and predict a fundamental mechanism for decoherence
of quantum states that might be relevant to the black hole information
paradox. At a classical level, the theories may provide an attractive new
path for the exploration of issues in numerical relativity. Finally, the
theories can make direct contact with several kinematical results of con-
tinuum loop quantum gravity. We review in broad terms several of these
results and present in detail as an illustration the classical treatment
with this technique of the simple yet conceptually challenging model of
two oscillators with constant energy sum.

1. Introduction

The idea that space-time might be discrete has arisen at various levels in

gravitational physics. On one hand, some approaches hypothesize that at

a fundamental level a discrete structure underlies space-time. Other ap-

proaches start with a continuum theory but upon quantization discrete

structures associated with space-time emerge. Finally, discretizations are

415
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widely used in physics, and in gravity in particular, as a calculational tool

at two levels: a) at the time of numerically computing predictions of the

theory (classical and quantum mechanically) and b) as a regularization tool

for quantum calculations.

Whatever the point of view that may lead to the consideration of a

discrete space-time, the formulation of gravitational theories on such struc-

tures presents significant challenges. At the most immediate level, the pres-

ence of discrete structures can conflict with diffeomorphism invariance, a

desirable property of gravitational theories. This manifests itself in various

ways. For instance, if one simply proceeds to discretize the equations of

motion of general relativity, as is common in numerical relativity applica-

tions, one finds that the resulting equations are inconsistent: the evolution

equations do not preserve the constraints, as they do in the continuum. In

another example, if one considers the discretization of the constraints of

canonical quantum gravity, the resulting discrete constraints fail to close

an algebra, which can be understood as another manifestation of the in-

consistency faced in numerical relativity.

A new viewpoint has recently emerged towards the treatment of theories

on discrete space-times. At the most basic level, the viewpoint advocates

discretizing the action of the theory and working out the resulting equa-

tions of motion rather than discretizing the equations of motion directly.

The resulting equations of motion stemming from the discrete action are

generically guaranteed to be consistent. So immediately the problem of

consistency is solved. This has led to the approach being called the “consis-

tent discretization” approach. This approach has been pursued in the past

in numerical approaches to unconstrained theories and is known as “vari-

ational integrators” (see Lew et al.1 for a review) and it appears to have

several desirable properties. Constrained systems have only been considered

if they are holonomic (i.e. they only depend on the configuration variables),

although there are some recent results in the mathematical literature for

anholonomic constraints2.

In spite of these positive prospects, the resulting theories have features

that at first sight may appear undesirable. For instance, quantities that

in the usual continuum treatment are Lagrange multipliers of first class

constrained systems (and therefore freely specifiable), become determined

by the equations of motion. The equations that determine the Lagrange

multipliers in general may have undesirable complex solutions.

On the other hand, the approach has potentially very attractive fea-

tures: equations that in the continuum are constraints among the dynamical
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variables become evolution equations that are automatically solved by the

scheme. Having no constraints in the theory profoundly simplifies things

at the time of quantization. The conceptually hard problems of canonical

quantum gravity are almost entirely sidestepped by this approach. For in-

stance, one can introduce a relational description in the theory and therefore

solve the “problem of time” that created so much trouble in canonical quan-

tum gravity. The resulting relational description naturally implies a loss of

unitarity that may have implications for the black hole information puzzle.

The discrete theories also have a tendency to avoid singularities, since the

latter usually do not fall on the computational grid. At a quantum level this

implies that singularities have zero probability. This provides a singularity

avoidance mechanism that is distinct from the one usually advocated in

loop quantum cosmology. From the point of view of numerical relativity,

the resulting evolution schemes preserve the constraints of the continuum

theory to a great degree of accuracy, at least for solutions that approximate

the continuum limit. This is different from usual “free evolution” schemes

which can converge to continuum solutions that violate the constraints. As

we will see, we are still somewhat away from being able to advocate that

the resulting schemes can be competitive in numerical relativity. But given

that enforcing the constraints has been identified by some researchers as the

main obstacle to numerical relativity, the proposed schemes deserve some

consideration.

An aspect of presupposing a discrete structure for space-time that may

also appear undesirable is that in loop quantum gravity the discrete struc-

tures only emerge after quantization. The initial formulation of the theory

is in the continuum. Therefore there is the risk that the new viewpoint may

not be able to make contact with the many attractive kinematical results

of loop quantum gravity. We will see that a connection is in fact possible,

and it retains the attractive aspects of both approaches.

In this paper we would like to review the “consistent discretization”

approach to gravitational theories. In Section 2 we will outline the basics of

the strategy. In Section 3 we concretely apply the method to a simple yet

important model problem so the reader can get a flavor of what to expect

from the method classically. In Section 4 we discuss cosmological models

and in Section 5 the introduction of a relational time and the black hole

information puzzle. In Section 6 we discuss connections with continuum

loop quantum gravity. We end with a discussion.
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2. Consistent Discretizations

We start by considering a continuum theory representing a mechanical sys-

tem. Although our ultimate interest is in field theories, the latter become

mechanical systems when discretized. Its Lagrangian will be denoted by

L̂(qa
, q̇

a), a = 1 . . .M . This setting is general enough to accommodate, for

instance, totally constrained systems. In such case q̇ will be the derivative

of the canonical variables with respect to the evolution parameter. It is

also general enough to include the systems that result from formulating on

a discrete space-time lattice a continuum field theory.

We discretize the evolution parameter in intervals (possibly varying

upon evolution) tn+1 − tn = εn and we label the generalized coordinates

evaluated at tn as qn. We define the discretized Lagrangian as

L(n, n+ 1) ≡ L(qa

n, q
a

n+1
) ≡ εnL̂(qa

, q̇
a) (1)

where

q
a = q

a

n and q̇
a
≡

q
a
n+1

− q
a
n

εn
. (2)

Of course, one could have chosen to discretize things in a different fash-

ion, for instance using a different approximation for the derivative, or by

choosing to write the continuum Lagrangian in terms of different variables.

The resulting discrete theories generically will be different and will approx-

imate the continuum theory in different ways. However, given a discrete

theory, the treatment we outline in this paper is unique.

The action can then be written as

S =

N
∑

n=0

L(n, n+ 1). (3)

It should be noted that in previous treatments3,4 we have written the

Lagrangian in first order form, i.e. L =
∫

dt (pq̇ −H(p, q)). It should be

emphasized that this is contained as a particular case in the treatment we

are presenting in this paper. In this case one takes both q and p to be

configuration variables, and one is faced with a Lagrangian that involves

qn, pn and qn+1 as variables, being independent of pn+1. The reason we

frequently resort to first order formulations in the various concrete examples

we discuss is that the Ashtekar formulation is naturally a first order one

and we usually tend to frame things in a closely related way. But again,

there is no obstruction to using either first or second order formulations

with our framework, they are both contained as particular cases.
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If the continuum theory is invariant under reparameterizations of the

evolution parameter, one can show that the information about the intervals

εn may be absorbed in the Lagrange multipliers. In the case of standard

mechanical systems it is simpler to use an invariant interval εn = ε.

The Lagrange equations of motion are obtained by requiring the action

to be stationary under variations of the configuration variables qa fixed at

the endpoints of the evolution interval n = 0, n = N + 1,

∂L(n, n+ 1)

∂qa
n

+
∂L(n− 1, n)

∂qa
n

= 0. (4)

We introduce the following definition of the canonically conjugate mo-

menta of the configuration variables,

p
a

n+1
≡

∂L(n, n+ 1)

∂q
a
n+1

(5)

p
a

n ≡

∂L(n− 1, n)

∂qa
n

= −

∂L(n, n+ 1)

∂qa
n

(6)

Where we have used Eq. (4). The equations (5) and (6) define a canon-

ical transformation for the variables qn, pn to qn+1, pn+1 with a the type 1

generating function F1 = −L(qa
n, q

a
n+1

). Notice that the evolution scheme is

implicit, one can use the bottom equation (since we are in the non-singular

case) to give an expression for qn+1 in terms of qn, pn, which in turn can be

substituted in the top equation to get an equation for pn+1 purely in terms

of qn, pn.

It should be noted that there are several other possible choices, when

going from the set of equations (5,6) to an explicit evolution scheme (see

Di Bartolo et al.5 for further details.)

The canonical transformation we introduced becomes singular as an

evolution scheme if

∣

∣

∣

∣

∂
2
L(n, n+ 1)

∂q
a
n+1

∂qb
n

∣

∣

∣

∣

vanishes. If the rank of the matrix of

second partial derivatives is K the system will have 2(M −K) constraints

of the form,

ΦA(qa

n
, p

a

n
) = 0 (7)

ΨA(qa

n+1
, p

a

n+1
) = 0. (8)

And these constraints need to be enforced during evolution, which may lead

to new constraints. We refer the reader for the detailed Dirac analysis to

Di Bartolo et al.5.
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To clarify ideas, let us consider an example. The model consists of a

parameterized free particle in a two dimensional space-time under the in-

fluence of a linear potential. The discrete Lagrangian is given by,

Ln ≡ L(qa

n, π
a

n, Nn, q
a

n+1
, π

a

n+1
, Nn+1) (9)

= π
a

n
(qa

n+1
− q

a

n
) −Nn[π0

n
+

1

2
(π1

n
)2 + αq

1

n
].

We have chosen a first order formulation for the particle (otherwise there

are no constraints and the example is trivial). However, this Lagrangian is

of the type we considered in this paper, one simply needs to consider all

variables, qa
, π

a
, N as configuration variables. The system is clearly singular

since the π′
s and N only appear at level n (or in the continuum Lagrangian,

their time derivatives are absent). When considered as a Type I generating

function, the above Lagrangian leads to the equations

p
a

π, n+1
=

∂Ln

∂πa
n+1

= 0, (10)

p
a

q, n+1
=

∂Ln

∂qa
n+1

= π
a

n, (11)

pN, n+1
=

∂Ln

∂Nn+1

= 0, (12)

and

p
a

π, n
= −

∂Ln

∂πa
n

= −(qa

n+1
− q

a

n
) + π

1

n
Nnδ

a

1
+Nnδ

a

0
, (13)

p
a

q, n = −

∂Ln

∂qa
n

= π
a

n + δ
a

1
αNn, (14)

p
N, n

= −

∂Ln

∂Nn

= π
0

n
+

1

2
(π1

n
)2 + αq

1

n
. (15)

The constraints (10,12,14,15) can be imposed strongly to eliminate the π’s

and the N ’s and obtain an explicit evolution scheme for the q’s and the

pq’s,

q
0

n
= q

0

n+1
−

Cn+1

αp
1

q, n+1

, (16)

q
1

n = q
1

n+1
−

Cn+1

α
, (17)

p
0

q, n
= p

0

q, n+1
, (18)

p
1

q, n
= p

1

q, n+1
+

Cn+1

p1

q, n+1

, (19)
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and the Lagrange multipliers get determined to be,

Nn =
Cn+1

αp
1

q, n+1

, (20)

where Cn+1 = p
0

q, n+1
+ (p1

q, n+1
)2/2 + αq

1

n+1
. The evolution scheme runs

backwards, one can construct a scheme that runs forward by solving for N

and π at instant n when imposing the constraints strongly. The two meth-

ods yield evolution schemes of different functional form since one propa-

gates “forward” in time and the other “backward”. The inequivalence in

the functional form stems from the fact that the discretization of the time

derivatives chosen in the Lagrangian is not centered. It should be empha-

sized that if one starts from given initial data and propagates forwards with

the first system of equations and then backwards using the second, one will

return to the same initial data.

So we see in the example how the mechanism works. It yields evolution

equations that usually are implicit as evolution schemes. The equations are

consistent. The Lagrange multipliers get determined by the scheme and

there are no constraints left on the canonical variables. The evolution is

implemented by a (non-singular) canonical transformation. The number of

degrees of freedom is larger than those in the continuum. There will exist

different sets of initial data that lead to different solutions for the discrete

theory but nevertheless will just correspond to different discrete approxima-

tions and parameterizations of a single evolution of the continuum theory.

3. The Rovelli Model

To analyze the method in a simple —yet challenging— model we consider

the model analyzed by Rovelli6 in the context of the problem of time in

canonical quantum gravity: two harmonic oscillators with constant energy

sum. The intention of this section is to illustrate how the method works and

some of the expectations one can hold when applying the method to more

complex situations. The model itself can obviously be treated with more

straightforward discretization techniques given its simplicity. The fact that

the method works well for the model should not be construed as proof that

it will be successful in other numerical applications. Current efforts suggest

that the technique is successfully applicable to Gowdy cosmologies.

The model has canonical coordinates q1, q2, p1
, p

2 with the standard

Poisson brackets and a constraint given by,

C =
1

2

(

(p1)2 + (p2)2 + (q1)2 + (q2)2
)

−M = 0, (21)
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with M a constant. No Hamiltonian system can correspond to this dynam-

ical system since the presymplectic space is compact and therefore cannot

contain any S × R structure. Nevertheless, we will see that the consistent

discretization approach does yield sensible results. This helps dispel certain

myths about the consistent discretization scheme. Since it determines La-

grange multipliers a lot of people tend to associate the scheme as some sort

of “gauge fixing”. For this model however, a gauge fixing solution would be

unsatisfactory, since it would only cover a portion of phase space. We will

see this is not the case in the consistent discretization scheme. We will also

see that the evolution scheme is useful numerically in practice.

We start by writing a discrete Lagrangian for the model,

L(n, n+ 1) = p
1

n

(

q
1

n+1
− q

1

n

)

+ p
2

n

(

q
2

n+1
− q

2

n

)

(22)

−

Nn

2

(

(p1

n)2 + (p2

n)2 + (q1n)2 + (q2n)2 − 2M
)

,

and working out the canonical momenta for all the variables, i.e.,

P
1

q
, P

2

q
, P

1

p
, P

2

p
. One then eliminates the p1,2 and the P 1,2

p
and is left with

evolution equations for the canonical pairs,

q
1

n+1
= q

1

n +Nn

(

P
1

q,n − 2q1n
)

(23)

q
2

n+1
= q

2

n
+Nn

(

P
2

q,n
− 2q2

n

)

(24)

P
1

q,n+1
= P

1

q,n
−Nnq

1

n
(25)

P
2

q,n+1
= P

2

q,n
−Nnq

2

n
. (26)

The Lagrange multiplier gets determined by the solution(s) of a

quadratic equation,
(

(q1
n
)2 + (q2

n
)2

)

(Nn)2 − 2
(

P
1

q,n
q
1

n
+ P

2

q,n
q
2

n

)

Nn +

+
(

P
1

q,n

)2

+
(

P
2

q,n

)2

+
(

q
1

n

)2

+
(

q
2

n

)2

− 2M = 0. (27)

We would like to use this evolution scheme to follow numerically the

trajectory of the system. For this, we need to give initial data. Notice that

if one gives initial data that satisfy the constraint identically at level n,

the quadratic equation for the lapse has a vanishing independent term and

therefore the solution is that the lapse N vanishes (the nonvanishing root

will be large and far away from the continuum generically). To construct

initial data one therefore considers a set for which the constraint vanishes

and introduces a small perturbation on one (or more) of the variables.

Then one will have evolution. Notice that one can make the perturbation

as small as desired. The smaller the perturbation, the smaller the lapse and

the closer the solution will be to the continuum.
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For concreteness, we choose the following initial values for the variables,

M = 2,

q
1

0
= 0, (28)

q
2

0
= (

√

3 − ∆) sin(
π

4
), (29)

P
1

q,0
= 1, (30)

P
1

q,0
= (

√

3 − ∆) cos(
π

4
), (31)

We choose the parameter ∆ to be the perturbation, i.e., ∆ = 0 corresponds

to an exact solution of the constraint, for which the observable A = 1/2 (see

below for its definition). The evolution scheme can easily be implemented

using a computer algebra program like Maple or Mathematica.

Before we show results of the evolution, we need to discuss in some de-

tail how the method determines the lapse. As we mentioned, it is obtained

by solving the quadratic equation (27). This implies that generically there

will be two possible solutions and in some situations they could be negative

or complex. One can choose any of the two solutions at each point during

the evolution. It is natural numerically to choose one “branch” of the so-

lution and keep with it. However, if one encounters that the roots become

complex, we have observed that it is possible to backtrack to he previous

point in the iteration, choose the alternate root to the one that had been

used up to that point and continue with the evolution. Similar procedure

could be followed when the lapse becomes negative. It should be noted that

negative lapses are not a problem per se, it is just that the evolution will

be retraced backwards. We have not attempted to correct such retracings,

i.e. in the evolutions shown we have only “switched branches” whenever the

lapse becomes complex. This occurs when the discriminant in the quadratic

equation (27) vanishes.

Figure 1 shows the evolution of q1 as a function of n. The figure looks

choppy since the “rate of advance” (magnitude of the lapse) varies during

the evolution.

Figure 1 also exhibits that in a reparameterization invariant theory like

this one it is not too useful to plot parameterization dependent quantities.

One would have to exhibit relational quantities that are true observables

of the theory to obtain physically relevant information. In this particular

model, Rovelli has given an explicit expression for a relational (“evolving”)

observable

q
2(q1) =

√

M/A− 1
[

q
1 cosφ±

√

2A− (q1)2 sinφ
]

, (32)
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Fig. 1. The evolution of one of the variables of the oscillator model as a function of the
discretization parameter n. The irregular nature of the curve is due to the fact that the
lapse is a dynamical variable and therefore the rate of advance changes during evolution.
The sharp feature around n = 250 is due to the fact that the lapse becomes negative
and the evolution runs backwards for a while, until about n = 310.

where A and φ are constants of the motion (“perennials”), whose expression

in terms of the coordinates is,

4A = 2M + (p1)2 − (p2)2 + (q1)2 − (q2)2, tanφ =
p
1
q
2
− p

2
q
1

p1p2 + q2q1
. (33)

The relational observable gives an idea of the trajectory in configuration

space in a manner that is invariant under reparameterizations. In figure 2

we show the error in the evaluation of the relational observable with respect

to the exact expression of the continuum in our model.

This model has two independent “perennials” that can be used to con-

struct relational observables like the one we just discussed. The first one of

these perennials happens to be an exact conserved quantity of the dis-

cretized theory. The relation between perennials in the continuum and

conserved quantities of the discrete theory was further discussed in7. The

perennial in question is,

O1 = p
1
q
2
− p

2
q
1
. (34)

Another perennial is given by

O2 = (p1)2 − (p2)2 + (q1)2 − (q2)2. (35)

This quantity is not an exact conserved quantity of the discrete model, it is

conserved approximately, as we can see in figure 3. We see that the discrete
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Fig. 2. The error in the evaluation of the relational observable in the discretized evo-
lution, compared with respect to the exact continuum expression. We show the absolute
error, but since the quantities are of order one it can also be understood as the relative
error. The peaks in the error are due to the functional form of the observable involving
the square root of 2A − q

2

1
. This vanishes when q1 = ±1 (see previous plot) and this

magnifies the error in the observable.
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Fig. 3. The model has two “perennials”. One of them is an exact conserved quantity
of the discrete theory, so we do not present a plot for it. The second perennial (O2)
is approximately conserved. The figure shows the relative error in its computation in
the discrete theory. It is worthwhile noticing that, unlike what is usual in free evolution
schemes, errors do not accumulate, they may grow for a while but later they might
diminish.
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Fig. 4. Absolute value of the constraint of the continuum theory, evaluated in the
discrete theory. The plot shows that the constraint of the continuum theory does not in-
crease in the discrete theory as a function of evolution (a major desired goal in numerical
relativity). The value of the constraint is also a measure of the error in the quantities of
the discrete theory with respect to those of the continuum one (compare with the error
in the observable in figure 3, for example) that can be used to independently assess the
accuracy of the theory in convergence studies.

theory conserves the perennial quite well in relative error and even though

in intermediate steps of the evolution the error grows, it decreases later.

In figure 4 we depict the absolute value of the constraint of the contin-

uum theory as a function of discrete time n. It is interesting to observe that

in the discrete theory the variables approximate the ones of the continuum

with an error that is proportional to the value of the constraint. Therefore

the value of the constraint can be taken as an indicator of how accurately

one is mirroring the continuum theory. It is a nice feature to have such

an error indicator that is independent of the knowledge of the exact solu-

tion. This is clearly exhibited by contrasting (4) with (3) and seeing how

the value of the constraint mirrors the error in the perennial. It should be

noted that the proportionality factor between the value of the constraint

and the error is a function of the dynamical variables and therefore the

value of the constraint should only be taken as an indicator, not an ex-

act measure of the error. However, it is a good indicator when one carries

out convergence studies, since there the dynamical variables do not change

in value significantly from one resolution to the next and the constraint

diminishes as one converges to the continuum.
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Fig. 5. The orbit in configuration space. As it is readily seen, the consistent discrete

approach covers the entire available configuration space. This clearly exhibits that the
approach is not a “gauge fixing”. Gauge fixed approaches cannot cover the entire con-
figuration space due to its compact nature. The dynamical changes in the value of the
lapse can be seen implicitly through the density of points in the various regions of the
trajectory. Also apparent is that the trajectory is traced on more than one occasion in
various regions. Deviation from the continuum trajectory is not noticeable in the scales
of the plot.

Figure 5 shows the trajectory in configuration space. As we see, the

complete trajectory is covered by the discretized approach. This is im-

portant since many people tend to perceive the consistent discretization

approach as “some sort of gauge fixing”. This belief stems from the fact

that when one gauge fixes a theory, the multipliers get determined. In spite

of this superficial analogy, there are many things that are different from a

gauge fixing. For instance, as we discussed before, the number of degrees

of freedom changes. In addition to this, this example demonstrates another

difference. If one indeed had gauge fixed this model, one would fail to cover

the entire available configuration space, given its compact nature.

An issue of interest in any numerical method is the concept of con-

vergence. Any reasonable numerical scheme should be such that one has

control on the approximation of the exact solution. Figure 6 shows the con-

vergence in the error of the estimation of the observable O2. We see that

one has convergence in the traditional sense, i.e. making the discretization
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Fig. 6. Convergence of the method with increasing resolution. We display the relative
error in one of the perennials of the theory as a function of n. The two runs with the
coarser resolutions are shown with one point out of every ten displayed. The finer run
is shown with one point displayed out of every thirty. The range of n displayed corre-
sponds to a full trajectory along the ellipse in configuration space. So the improvement
in accuracy is throughout the entire evolution with different levels of improvement at
different points. See the text as to why we fine tune the evolution steps for the various
runs in the convergence study.

step smaller lowers the errors. However, one notes differences with the usual

type of convergence in the sense that here we have that it is not uniform as

a function of the evolution time. One notes, for example, that at isolated

points some of the coarser runs have very low errors. To understand this

one needs to recall that in our approach discrete expressions differ from the

continuum ones as,

O = Ocontinuum + f(p, q)C (36)

with C the constraints. It could happen that at a particular point in a coarse

evolution the constraint chances to take a value very close to zero. Slightly

finer resolution runs may not land on top of that particular point and

therefore will apparently have larger errors in the region. Eventually, if one
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increases the resolution enough, one will be able to achieve better accuracy

than with the coarser run. The reader may ponder why the parameter we

have chosen to characterize the discretization is listed with several digits of

precision in the convergence runs. The reason is the following: our algorithm

exhibits some sensitivity on the parameter in the following sense. If one

chooses slightly different values of ∆, the way in which the scheme will

usually cover the phase space will be different. For instance, one choice

may cover the configuration space ellipse in one continuous sweep, another

close choice may reverse course several times before covering the ellipse.

From a physical point of view this is no problem, but from the point of

view of comparing runs as a function of n one wishes to compare runs that

behave in the same way. Therefore when one “halves the stepsize” one may

need to fine tune by trial an error to make sure one is comparing evolutions

that behave similarly in terms of the (unphysical) parameter n.

4. Applications in Classical and Quantum Cosmology

To try to seek an application more connected with gravitational physics,

yet simple enough that we can solve things analytically, let us consider

a cosmological model. The model in question will be a Friedmann model

with a cosmological constant and a scalar field. To make the solution of

the model analytically tractable we will consider a very massive scalar field

(i.e. we will ignore the kinetic term of the field in the action). We have

actually solved this and other models without this approximation numer-

ically and obtained results that are conceptually similar to the ones we

present here.

The Lagrangian for the model, written in terms of Ashtekar’s new vari-

ables (there is no impediment in treating the model with traditional vari-

ables if one wishes) is,

L = EȦ+ πφ̇−NE
2(−A2 + (Λ +m

2
φ

2)|E|) (37)

where Λ is the cosmological constant,m is the mass of the scalar field φ, π is

its canonically conjugate momentum and N is the lapse with density weight

minus one. Here E and A are the functions of time which are what remains

of the triad and connection for the homogeneous case. The appearance of

|E| in the Lagrangian is due to the fact that the term cubic in E is supposed

to represent the spatial volume and therefore should be positive definite.

In terms of the ordinary lapse α we have α = N |E|

3/2. The equations of
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motion and the only remaining constraint (Hamiltonian) are

Ȧ = N(Λ +m
2
φ

2)sgn(E)E2 (38)

Ė = 2NE2
A (39)

φ̇ = 0 (40)

π̇ = −2N |E|

3
m

2
φ (41)

A
2 = (Λ +m

2
φ

2)|E| (42)

It immediately follows from the large mass approximation that φ =

constant. To solve for the rest of the variables, we need to distinguish four

cases, depending on the signs of E and A. Let us call ε = sgn(E) and

χ = sgn(A). Then the solution (with the choice of lapse α = 1) is,

A = χ exp
(

χεt

√

Λ +m2φ2

)

(43)

E = ε

exp
(

2χεt
√

Λ +m2φ2

)

Λ +m2φ2
(44)

There are four possibilities according to the signs ε, χ. If ε = χ = 1 or

ε = χ = −1 we have a universe that expands. If both have different signs,

the universe contracts. This just reflects that the Lagrangian is invariant

if one changes the sign of either A or E and the sign of time. It is also

invariant if one changes simultaneously the sign of both A and E.

Let us turn to the observables of the theory (quantities that have vanish-

ing Poisson brackets with the constraint (42) and therefore are constants of

the motion). The theory has four phase space degrees of freedom with one

constraint, therefore there should be two independent observables. Immedi-

ately one can construct an observable O1 = φ, since the latter is conserved

due to the large mass approximation. To construct the second observable

we write the equation for the trajectory,

dπ

dA
=

−2Em2
φ

Λ +m2φ2
= −

2A2
m

2
φ

(Λ +m2φ2)2
sgnE (45)

where in the latter identity we have used the constraint. Integrating, we get

the observable,

O2 = π +
2

3

m
2
φ

(Λ +m2φ2)
2
A

3sgnE (46)
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and using the constraint again we can rewrite it,

O2 = π +
2

3

m
2
φ

Λ +m2φ2
AE. (47)

Although the last two expressions are equivalent, we will see that upon

discretization only one of them becomes an exact observable of the discrete

theory.

We consider the evolution parameter to be a discrete variable. Then the

Lagrangian becomes

L(n, n+ 1) = En(An+1 −An) + πn(φn+1 − φn) (48)

−NnE
2

n
(−A2

n
+ (Λ +m

2
φ

2

n
)|En|)

The discrete time evolution is generated by a canonical transformation

of type 1 whose generating function is given by −L, viewed as a function

of the configuration variables at instants n and n+ 1. The canonical trans-

formation defines the canonically conjugate momenta to all variables. The

transformation is such that the symplectic structure so defined is preserved

under evolution. The configuration variables will be (An, En, πn, φn, Nn)

with canonical momenta (PA
n , P

E
n , P

φ
n , P

π
n , P

N
n ) defined in the traditional

fashion by functional differentiation of the action with respect to the canon-

ical variables. We do not reproduce their explicit expression here for reasons

of brevity, the reader can consult them in reference7. The definitions of the

momenta can be combined in such a way as to yield a simpler evolution

system,

An+1 −An = Nn(PA

n+1
)2
n
(Λ +m

2
φ

2

n
)sgnPA

n+1
, (49)

P
A

n+1
− P

A

n
= 2NnAn(PA

n+1
)2 (50)

φn+1 − φn = 0 (51)

P
φ

n+1
− P

φ

n = −2Nn(PA

n+1
)2m2

φn|P
A

n+1
|, (52)

0 = −A
2

n + (Λ +m
2
φ

2

n)|PA

n+1
|, (53)

and the phase space is now spanned by An, P
A
n , φn, P

φ
n .

From (50) we determine,

P
A

n+1
=

1 + ξ
√

1 − 8PA
n
AnNn

4AnNn

, (54)

where ξ = ±1 and we will see the final solution is independent of ξ. Sub-

stituting in (53) and solving for the lapse we get,

Nn =

[

−P
A
n

(

Λ +m
2
φ

2

n

)

+A
2

nsgnPA
n

] (

Λ +m
2
φ

2

n

)

2A5
n

. (55)
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Let us summarize how the evolution scheme presented actually operates.

Let us assume that some initial data A(0)
, P

A

(0)
, satisfying the constraints of

the continuum theory, are to be evolved. The recipe will consist of assigning

A0 = A
(0) and PA

1
= P

A

(0)
. Notice that this will automatically satisfy (53).

In order for the scheme to be complete we need to specify P
A
0

. This is

a free parameter. Once it is specified, then the evolution equations will

determine all the variables of the problem, including the lapse. Notice that

if one chooses PA
0

such that, together with the value of A0 they satisfy the

constraint, then the right hand side of the equation for the lapse (55) would

vanish and no evolution takes place. It is clear that one can choose PA
0

in

such a way as to make the evolution step as small as desired.

The equation for the lapse (55) implies that the lapse is a real number

for any real initial data. But it does not immediately imply that the lapse

is positive. However, it can be shown that the sign of the lapse, once it is

determined by the initial configuration, does not change under evolution.

The proof is tedious since one has to separately consider the various possible

signs of ε and χ.This is an important result. In spite of the simplicity of

the model, there was no a priori reason to expect that the construction

would yield a real lapse. Or that upon evolution the equation determining

the lapse could not become singular or imply a change in the sign of the

lapse, therefore not allowing a complete coverage of the classical orbits in

the discrete theory.

In general the discrete theory, having more degrees of freedom than the

continuum theory, will have more constants of the motion than observables

in the continuum theory. In this example, the discrete theory has four de-

grees of freedom. One can find four constants of the motion. One of them

we already discussed. The other one is φ. The two other constants of the

motion can in principle be worked out. One of them is a measure of how

well the discrete theory approximates the continuum theory and is only

a function of the canonical variables (it does not depend explicitly on n).

The constant of the motion is associated with the canonical transformation

that performs the evolution in n. It is analogous to the Hamiltonian of the

discrete theory. The expression can be worked out as a power series involv-

ing the discrete expression of the constraint of the continuum theory. This

constant of motion therefore vanishes in the continuum limit. The other

constant of the motion also vanishes in the continuum limit.

That is, we have two of the constants of the motion that reduce to the

observables of the continuum theory in the continuum limit and two others

that vanish in such limit. The discrete theory therefore clearly has a rem-
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nant of the symmetries of the continuum theory. The canonical transforma-

tions associated with the constants of the motion which have non-vanishing

continuum limit map dynamical trajectories to other trajectories that can

be viewed as different choices of lapse in the discrete theory. This is the

discrete analog of the reparameterization invariance of the continuum the-

ory. As we will see soon the lapse in the discrete theory is determined up

to two constants. The choice of these two constants is the remnant of the

reparameterization invariance of the continuum theory that is present in

the discrete theory.

Figure (7) shows the comparison of the discrete evolution of the model

with the exact solution of the continuum theory. As we see the discrete

theory approximates the continuum theory very well.
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Fig. 7. The discrete evolution of the triad E and the connection A as a function of the
discrete evolution parameter n. We have chosen initial conditions that produce a positive
branch of A for n > 0 and a negative branch for n < 0. For the triad we chose both
branches positive.

Figure (8) blows up the region of the evolution close to the singular-

ity. As it can be seen the discrete theory evolves through the singular-

ity. Emerging on the other side the evolution has a different value for the

lapse and therefore a different time-step. This could be used to implement

the proposal of Smolin that physical constants change when one tunnels

through the singularity (in lattice theories the lattice spacing determines

the “dressed” value of physical constants). See Smolin8 for further discus-

sion of this point.

To quantize the theory one has to implement the equations of evolution

via a unitary transformation. Details of the derivation can be found in7.
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Fig. 8. The approach to the singularity in the discrete and continuum solutions. The

discrete theory has a small but non-vanishing triad at n = 0 and the singularity is
therefore avoided.

The result is

< A1, φ1, n||A2, φ2, n+ 1 > = δ(φ1 − φ2) (56)

× exp

(

i
sgn(A1)A

2

2
(A1 −A2)

Θ

)

√

|A1|

πΘ
.

It should be noted that not all canonical transformations correspond

to unitary evolutions at the quantum level. If the canonical transformation

defines an isomorphism between the phase spaces at levels n and n+1, then

one can show that the canonical transformation can be implemented by an

isometry at a quantum level. If the isomorphism is an automorphism then

the canonical transformation can be implemented as a unitary transforma-

tion. A good discussion of canonical transformations in quantum mechanics

can be found in Anderson9.

With the unitary transformation introduced above one can answer any

question about evolution in the Heisenberg picture for the model in ques-

tion. One could also choose to work in the Schrödinger picture, evolving

the states. Notice that the wavefunctions admit a genuine probabilistic in-

terpretation. This is in distinct contrast with the usual “naive Schrödinger

interpretation” of quantum cosmology which attempted to ascribe proba-

bilistic value to the square of a solution of the Wheeler–DeWitt equation

(see Kuchař10 for a detailed discussion of the problems associated with the

naive interpretation).

An interesting aspect of this quantization is that for any square-

integrable wavefunction and for any value of the parameter n, the expecta-



October 7, 2005 16:8 WSPC/Trim Size: 9in x 6in for Review Volume 15˙pullin2

Consistent Discrete Space-Time 435

tion value of (PA
n )2, and therefore that of E2 is non-vanishing, and so are

the metric and the volume of the slice. Therefore quantum mechanically one

never sees a singularity. The mechanism for elimination of the singularity

is quite distinct from the one encountered in loop quantum cosmology11.

The reader may ask how generic is our mechanism. Are singularities al-

ways avoided? Singularities are avoided (simply because the a lattice point

generically will not coincide with them) provided that they do not occur at

a boundary of the phase space. If they occur at a boundary, it is guaranteed

that a lattice point will coincide with the singularity and therefore it will

not be avoided. In the example we showed the singularity does not occur on

the boundary. However, it appears this is a special feature of the large mass

approximation in the scalar field. For other models we have studied, at least

worked out in the Ashtekar variables, the connection diverges at the singu-

larity and therefore the singularity is at one boundary of the phase space.

This can be remedied by changing variables before discretizing so that the

singularity is not on a boundary, but it is not what is the direct outcome

of discretizing the theory in the Ashtekar variables. An alternative that

also eliminates the singularity is to rewrite things in terms of holonomic

variables as is done in loop quantum cosmology.

As we will discuss in the next section, it is more desirable to introduce a

quantization that is relational in nature. This is because the evolution pa-

rameter n cannot be observed physically and therefore is not a good choice

of time to have a quantization that is physical. Having implemented the

evolution equations as a unitary transformation and having a probabilistic

interpretation for the wavefunctions is all that is needed to work out a re-

lational quantization in detail without any of the conceptual problems that

were encountered in the past (see Page and Wootters12 and the critique of

their work by Kuchař10).

To define a time we therefore introduce the conditional probabilities,

“probability that a given variable have a certain value when the variable

chosen as time takes a given value”. For instance, taking A as our time

variable, let us work out first the probability that the scalar field conjugate

momentum be in the range ∆P φ = [P φ

(1)
, P

φ

(2)
] and “time” is in the range

∆A = [A(1), A(2)] (the need to work with ranges is because we are dealing

with continuous variables). We go back to the naive quantization and recall

that the wavefunction Ψ[A, φ, n] in the Schrödinger representation admits a

probabilistic interpretation. One can also define the amplitude Ψ[A,P φ
, n]

by taking the Fourier transform. Therefore the probability of simultaneous
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measurement is,

Psim(∆P φ
,∆A) = lim

N→∞

1

N

N
∑

n=0

∫

P
φ

(2)
,A(2)

P
φ

(1)
,A(1)

Ψ2[A,P φ
, n]dP φ

dA. (57)

We have summed over n since there is no information about the “level” of

the discrete theory at which the measurement is performed, since n is just

a parameter with no physical meaning. With the normalizations chosen if

the integral in P φ and A were in the range (−∞,∞), Psim would be equal

to one.

To get the conditional probability Pcond(∆P φ
|∆A), that is, the proba-

bility that having observed A in ∆A we also observe P φ in ∆P φ, we use

the standard probabilistic identity

Psim(∆P φ
,∆A) = P (∆A)Pcond(∆P φ

|∆A) (58)

where P (∆A) is obtained from expression (57) taking the integral on P
φ

from (−∞,∞). We therefore get

Pcond(∆P
φ
|∆A) =

limN→∞

1

N

∑N

n=0

∫ P
φ

(2)
,A(2)

P
φ

(1)
,A(1)

Ψ2[A,P φ
, n]dP φ

dA

limN→∞

1

N

∑N

n=0

∫

∞,A(2)

−∞,A(1)
Ψ2[A,P φ, n]dP φdA

. (59)

Notice that all the integrals are well defined and the resulting quantity

behaves as a probability in the sense that integrating from (−∞,∞) in P φ

one gets unity.

Introducing probabilities is not enough to claim to have completed a

quantization. One needs to be able to specify what happens to the state

of the system as a measurement takes place. The most natural reduction

postulate is that,

|ψ >→
ΠP φ,A|φ >

√

| < φ|ΠP φ,A|φ > |

, (60)

where

ΠP φ,A =
N

∑

n=0

|P
φ
, A, n >< P

φ
, A, n|. (61)

The model considered is too simple to test too much of the framework,

however, we have shown that one can work out in detail the discrete treat-

ment at a classical an quantum mechanical level without conceptual ob-

structions. It is a big leap to claim that because everything worked well for

such a simple model these ideas will succeed in full GR. Currently we are
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working in detail the discretization of Gowdy cosmologies, which have field

theoretic degrees of freedom. Recently achieved success13 in such models

greatly enhances our confidence in the ability of this scheme to discretize

general relativity.

For now, we would like to take a glimpse at some possibilities that the

framework will introduce in the full theory, we do so in the next section.

5. Fundamental Decoherence and Other Quantum

Applications

Having made the case that one can approximate general relativity by a

discrete theory that is constraint-free allows us to make progress in many

aspects of quantum gravity. Most of the hard conceptual problems that

one faces in canonical quantum gravity are related to the presence of con-

straints in the theory. For an unconstrained theory, most obstructions are

eliminated. One of the first obstructions we can deal with is the “problem of

time”. To a certain extent we have shown that this is possible in Rovelli’s ex-

ample (which has a “problem of time”) and in the cosmological model. But

actually progress is possible in a more generic sense. One can, for instance,

implement the relational time that was proposed by Page and Wootters12

in the full theory. The idea consists in quantizing the theory by promoting

all variables to quantum operators, unlike the usual Schrödinger quantiza-

tion in which a variable called “time” is kept classical. One then picks from

among the quantum operators one that we will call “clock”. It should be

emphasized that it is a quantum operator and therefore will have an expec-

tation value, fluctuations, etc. One then computes conditional probabilities

for the other variables in the theory to take certain values when the “clock”

variable has a given value.

The resulting conditional probabilities do not evolve according to a

Schrödinger equation. If one chooses as “clock” a variable that behaves

close to classicality (small fluctuations) then one can show that the condi-

tional probabilities evolve approximately by a Schrödinger evolution. But as

the fluctuations in the clock variable increase there appear corrective terms

in the evolution equations. The fist kind of corrective terms were evaluated

in reference14 and have the form of a Lindblad type of evolution. A feature

of the evolution implied by the use of “real clocks” as we are considering is

that it is not unitary. In general pure states evolve into mixed states. This

is easy to understand in our discrete approach. There we saw that evolu-

tion in terms of the discrete parameter n was implemented by a canonical
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transformation. Upon quantization evolution is implemented by a unitary

operator. However, the real clock variable we choose will in general have a

probability distribution with a certain spread in n. If evolution is unitary

in n then it cannot be unitary in the clock variable since in general for a

given value of the clock variable one will have a superposition of states with

different values of n.

This lack of unitarity could in principle be experimentally observable.

We have estimated its magnitude15. In order to make an estimate one needs

to make a model of what is the “most classical” clock one can construct. To

do this we borrowed from ideas of Ng and Van Dam, Amelino-Camelia and

more recently Lloyd and collaborators16. They start with the observation

of Salecker and Wigner17 that the accuracy of a clock is limited by its mass

δT >
√

T/M (in units of ~ = c = 1) where T is the time to be measured.

Then they argue that the maximum amount of mass one can concentrate

can be achieved in a black hole. If the clock is a black hole its accuracy

is given by its quasinormal frequencies, δT > T
2

P
M . where TP is Planck’s

time. Combining the two inequalities we get, δT ∼ TP
3
√

T/TP

If one now considers a model system consisting of two quantum me-

chanical levels and estimates the lack of coherence induced by the use of

the relational time one finds that it that the elements of the density matrix

that are off-diagonal in the energy basis decay exponentially. The exponent

is given by t
(4/3)

P
T

(2/3)
ω

2

12
where T is the time we observe the system and

ω12 is the Bohr frequency between both levels. Given the presence of the

tP factor, this effect is unobservable for almost all experimental situations.

An exception could be “macroscopic” quantum states, like the ones that

are starting to become available through Bose-Einstein condensates. Cur-

rent technology does not produce states that are “macroscopic enough” for

the effect to be observable, and it remains to be seen if future technologies

could produce such states (and keep them free of ambiental decoherence

effects) for this effect to be observable (for an independent discussion see

Simon and Jaksch18).

One place where the fundamental decoherence could play a role is in

the black hole information puzzle. Black holes take a very long time to

evaporate and therefore there is a chance for the decoherence to build up.

The question is: does it build up enough to wipe out all coherence from

the states before the black hole would have done the same via Hawking

evaporation? We recently estimated the effect by considering a very naive

model of a black hole consisting of two energy levels separated by kT with

k the Boltzmann constant and T the temperature predicted by Hawking
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for the black hole. We found out19 that

|ρ12(Tmax)| ∼ |ρ12(0)|

(

MPlanck

MBH

)
2
3

(62)

where ρ12 is an off-diagonal element of the density matrix of the state of

interest at the time the black hole would have evaporated. For a Solar sized

black hole the magnitude of the off diagonal element is 10−28, that is, it

would have de facto become a mixed state even before invoking the Hawking

effect. The information paradox is therefore unobservable in practice. It

should be noted that this estimate is an optimistic one. In reality clocks

fare much worse than the estimate we worked out and the fundamental

decoherence will operate even faster than what we consider here.

6. Connections with Continuum Loop Quantum Gravity

In spite of the possibilities raised by the discrete approach, some readers

may feel that it forces us to give up too much from the outset. This was

best perhaps captured by Thiemann20, who said “While being a fascinating

possibility, such a procedure would be a rather drastic step in the sense

that it would render most results of LQG obtained so far obsolete”. Indeed,

the kinematical structure built in loop quantum gravity, with a rigorous

integration measure and the natural basis of spin foam states appear as

very attractive tools to build theories of quantum gravity. We would like to

discuss how to recover these structures in our discrete approach.

To make contact with the traditional kinematics of loop quantum grav-

ity, we consider general relativity and discretize time but keep space contin-

uous, and we proceed as in the consistent discretization approach, that is,

discretizing the action and working out the equations of motion. We start

by considering the action written in terms of Ashtekar variables21,

S =

∫

dtd
3
x

(

P̃
a

i F
i

0a −N
a
Ca −NC

)

(63)

where N,Na are Lagrange multipliers, P̃ a
i

are densitized triads, and the

diffeomorphism and Hamiltonian constraints are given by, Ca = P̃
a
i
F

i

ab
,

C =
P̃

a
i P̃

b
j

√

detq

(

ε
ijk
F

i

ab
− (1 + β

2)Ki

[a
K

j

b]

)

where βKi
a ≡ Γi

a −A
i
a and Γi

a is the

spin connection compatible with the triad, and q is the three metric. We

now proceed to discretize time. The action now reads,

S =

∫

dtd
3
x

[

Tr
(

P̃
a
(

Aa(x) − V (x)An+1,a(x)V −1(x) + ∂a(V (x))V −1(x)
)

)

−N
a
Ca −NC + µ

√

detqTr
(

V (x)V †(x) − 1
)

]

(64)



October 7, 2005 16:8 WSPC/Trim Size: 9in x 6in for Review Volume 15˙pullin2

440 R. Gambini and J. Pullin

In the above expression V (x) = VIT
I is the parallel transport matrix along

a time-like direction and F0a is approximated by the holonomy along a

plaquette that is finite in the “time-like” direction and infinitesimal in the

“space-like” direction and T 0 = 1/
√

2 and T a = −iσ
a
/
√

2, a = 1..3 and σ’s

are the Pauli matrices and the coefficients VI are real. We have omitted the

subscript n to simplify the notation and kept it in the quantities that are

evaluated at n + 1. The last term involves a Lagrange multiplier µ and is

present in order to enforce the fact that the parallel transport matrices are

unitary. We notice that the SU(2) gauge invariance is preserved in the semi-

discrete theory. This in turn implies that Gauss’ law for the momentum

canonically conjugate to the connection, Ẽa
n+1

≡ V
−1
P̃

a
V is preserved

automatically upon evolution. Remarkably, although the theory does not

have a diffeomorphism constraint, one can show that the quantity that

in the continuum would correspond to the diffeomorphism constraint is a

conserved quantity (to intuitively see this, notice that the action is invariant

under (time independent) spatial diffeomorphisms and n and n + 1). One

can then impose that this quantity vanish and this requirement is consistent

with evolution. One would therefore have a theory with the same constraints

as kinematical loop quantum gravity and with an explicit evolution scheme

as is usual in consistently discretized theories.

We have actually worked22 out the procedure in detail for the case of

2+1 dimensions, treating gravity as a BF theory. The procedure reproduces

the physical space for the theory of traditional quantizations.

Summarizing, one can apply the consistent discretization approach by

discretizing only time. The resulting theory has no constraints, but the

diffeomorphism constraint can be introduced additionally, so the resulting

theory has the same kinematics as loop quantum gravity. The dynamics is

implemented via a unitary operator. As in the full discrete approach, one

can envision bypassing many of the hard conceptual questions of canonical

quantum gravity, for instance introducing a relational notion of time. This

can actually be seen as a concrete framework to implement loop quantum

gravity numerically, since it is not expected that one will be able to work

out things analytically in the full case.

7. Discussion and Frequently Asked Questions

It is instructive at this point to revise a list of questions that were posed

about the formalism when it was beginning to be developed7:
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(i) Solubility of the multiplier equations: Solving the constraints by

choosing the Lagrange multipliers produces a theory that is constraint free.

This is analogous to what happens when one gauge fixes a theory. It is well

known that gauge fixing is not a cure for the problems of general relativity

since gauge fixings usually become problematic. In the same sense, it could

happen that the algebraic equations that determine the Lagrange multipli-

ers (the lapse and the shift in the case of general relativity) in our approach

develop problems in their solutions (for instance, negative lapses, or com-

plex solutions). As we argued in the text, it is clear that the formalism is

not a gauge fixing nor does it share its pathologies, as we saw in the Rovelli

model. We also have seen in several examples, now ranging from mechanics

to Gowdy cosmologies, that the equations determining the multipliers can

be solved.

(ii) Performing meaningful comparisons: When comparing a discrete

theory with a continuum theory, one needs to choose the quantities that

are to be compared. In particular, the continuum theory has “observables”

(“perennials”), that is, quantities that have vanishing Poisson brackets with

the constraints while the discrete theory is constraint-free. The Rovelli

model shows how to deal with these issues. In particular the relationship

between perennials and conserved quantities in the discrete theories.

(iii) The continuum limit: In continuum constrained theories with first

class constraints, the Lagrange multipliers are free functions. Yet in our dis-

crete construction, the Lagrange multipliers are determined by the initial

conditions. If one wishes to take a naive continuum limit, the discrete equa-

tions that determine the Lagrange multipliers must become ill-defined. To

extract meaningful information about the continuum theories, one needs to

proceed differently. We have seen in the Rovelli example how one can reach

better and better continuum approximations by tuning the initial data of

the discrete theory.

(iv) Singularities: Discrete theories in principle have the possibility of

evolving through a Big Bang singularity, since generically the singularity

will not lie on a point on the lattice. We have seen this implemented con-

cretely in cosmological models.

(v) Problem of time: We discussed evolution in the discrete by using a

relational approach in terms of the observables of these theories. This shows

how the problem of time can be solved in these theories.

(vi) Discretization ambiguities: An important element is to note that

the Lagrange multipliers get determined by this construction only if the

constraint is both a function of q and p. If the constraint is only a function
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of q or of p then the constraints are automatically preserved in evolution

without fixing the Lagrange multipliers. This raises a conceptual question.

For certain theories in the continuum, one can make a canonical transfor-

mation to a new set of variables such that the constraints depend only on

q or on p. The resulting discrete theories will therefore be very different in

nature, but will have the same continuum limit. From the point of view of

using discrete theories to quantize gravity, we believe this ambiguity should

receive the same treatment that quantization ambiguities (choice of canon-

ical variables, factor orderings, etc.) get: they are decided experimentally.

Generically there will be different discrete theories upon which to base the

quantization and some will be better at approximating nature than oth-

ers in given regimes. Many of them may allow to recover the continuum

limit, however they may have different discrete properties when one is far

from the semiclassical regime. A full discussion of the continuum limit in

the quantum case is still lacking and is one of the main open issues of the

framework.

8. Conclusions

The consistent discretization approach is emerging as an attractive tech-

nique to handle discrete general relativity, both at a classical and at a

quantum mechanical level. In quantum gravity, since it does away with the

constraints it solves in one sweep some of the hardest conceptual issues

of canonical quantization. In classical general relativity there is a growing

body of evidence that suggests that the discretizations work numerically

and approximate the continuum theory (including its constraints) in a con-

vergent and stable way. Having discrete theories with these properties clas-

sically is a desirable point of view for any effort towards quantization. The

discrete approach also yields directly computable evolutions quantum me-

chanically opening the possibility for concrete numerical quantum gravity

calculations.
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CHAPTER 16

CAUSAL SETS AND

THE DEEP STRUCTURE OF SPACETIME

FAY DOWKER

Blackett Laboratory, Imperial College,
Prince Consort Road, London SW7 2AZ, UK

The causal set approach to quantum gravity embodies the concepts of
causality and discreteness. This article explores some foundational and
conceptual issues within causal set theory.

1. Introduction

The problem of quantum gravity in its narrow sense is the problem of finding

a theory that incorporates both Quantum Mechanics and General Relativ-

ity. A broader vision is that a theory of quantum gravity would restore to

physics a unified framework, a framework in which there is no fundamental

division in principle between observer and observed nor between matter and

spacetime. One reading of Einstein’s writings on Quantum Mechanics and

Unification is that he viewed success in the broad quest as a prerequisite

to a solution of the narrow problem.

Every approach to quantum gravity in this broad conception must em-

body answers to two fundamental questions: “What is quantum mechan-

ics?” and “What is the deep structure of spacetime?” This article will touch

on the former question and focus on the latter and the answer to it provided

by the approach known as causal set theory which marries the two concepts

of discreteness (or atomicity) and causality.

The view that causality is a more fundamental organising principle, even

than space and time, is an ancient tradition of thought. Corresponding to

this view, momentary events have a better claim to be basic than objects

extended in time like particles, the latter being understood as persistent

patterns of events rather than enduring “substances”. Within Relativity,

the recognition that almost all of the geometrical properties of Minkowski

445
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space could be reduced to order theoretic relationships among point events

came very early.1

The concept of atomicity also has a long history as do philosophical chal-

lenges to the antithetical notion of a physical continuum. Of course Quan-

tum Mechanics itself is named for the discreteness of atomic and subatomic

phenomena. In more recent times, the increasing importance of comput-

ing with its discrete algorithms and digital processing has had a pervasive

influence on intellectual culture. Whatever the roots of the concept, it is

certainly now the case that many workers believe that a fundamentally dis-

crete structure to reality is required to reconcile spacetime with the quan-

tum. Einstein himself adumbrated this view and it is impossible to resist

the temptation of quoting him here:

“But you have correctly grasped the drawback that the continuum

brings. If the molecular view of matter is the correct (appropriate) one,

i.e., if a part of the universe is to be represented by a finite number of

moving points, then the continuum of the present theory contains too great

a manifold of possibilities. I also believe that this too great is responsible

for the fact that our present means of description miscarry with the quan-

tum theory. The problem seems to me how one can formulate statements

about a discontinuum without calling upon a continuum (space-time) as an

aid; the latter should be banned from the theory as a supplementary con-

struction not justified by the essence of the problem, which corresponds to

nothing “real”. But we still lack the mathematical structure unfortunately.

How much have I already plagued myself in this way!”

A. Einstein in a letter to Walter Dällenbach, November 1916, translated

and cited by John Stachel.2

Causal set theory3,4,5,6,7 arises by combining discreteness and causality

to create a substance that can be the basis of a theory of quantum gravity.

Spacetime is thereby replaced by a vast assembly of discrete “elements” or-

ganised by means of “relations” between them into a “partially ordered set”

or “poset” for short. None of the continuum attributes of spacetime, neither

metric, topology nor differentiable structure, are retained, but emerge it is

hoped as approximate concepts at macroscopic scales.

Amongst current approaches, causal set theory can claim to lie at the

extreme end of the granularity scale: it is maximally discrete. No contin-

uum concept is required to specify the underlying reality which is purely

combinatorial. The elements have no internal structure; they are the fun-

damental units of reality. All one can do is count: count elements, count

relations, count certain patterns of elements and relations. The slogan might

be coined, “Real numbers are not real in a causal set.”
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The hypothesis that the deep structure of spacetime is a discrete poset

characterises causal set theory at the kinematical level; that is, it is a propo-

sition about what substance is the subject of the theory. However, kinemat-

ics needs to be completed by dynamics, or rules about how the substance

behaves, if one is to have a complete theory. In this article I will explore

some foundational issues within these two categories in a non-technical way.

I have not attempted to give anything approaching a review of causal set

theory. Reference 8, by Rafael Sorkin who has done more than anyone to

further the causal set approach, gives more details of current developments.

2. Kinematics

2.1. The causal set

Mathematically, a causal set is defined to be a locally finite partially ordered

set, or in other words a set C together with a relation ≺, called “precedes”,

which satisfy the following axioms:

(1) if x ≺ y and y ≺ z then x ≺ z, ∀x, y, z ∈ C (transitivity);

(2) if x ≺ y and y ≺ x then x = y ∀x, y ∈ C (non-circularity);

(3) for any pair of fixed elements x and z of C, the set {y|x ≺ y ≺ z} of

elements lying between x and z is finite.

Of these axioms, the first two say that C is a partially ordered set or

poset and the third expresses local finiteness. The idea is that in the deep

quantum regime of very small distances, spacetime is no longer described

by a tensor field, the metric, on a differentiable manifold, but by a causal

set. The discrete elements of the causal set are related to each other only

by the partial ordering that corresponds to a microscopic notion of before

and after, and the continuum notions of length and time arise only as

approximations at large scales.

The richness of the structure of partial orders is reflected in the many

different sets of terminologies used by mathematicians and physicists who

study them. One of the most useful and suggestive for the purposes of

quantum gravity is the “genealogical” jargon whereby one thinks of a causal

set as a family tree. An element x is an ancestor of an element y if x ≺ y,

and y is then a descendant of x.

To arrive at this structure as the kinematical basis for quantum gravity,

one can start by conjecturing discreteness and see how this leads to the

addition of causal structure, or vice versa. The scientific arguments for

the two interweave each other and it’s an artificial choice. Indeed, it is
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the fact that the two concepts “complete” each other in the context of a

proposed substructure for spacetime that is one of the strongest motivations

for the causal set programme. For the purposes of the current exposition

let’s choose to begin by postulating a discrete spacetime.

2.2. An analogy: discrete matter

In quantum gravity, we know what the continuum description of spacetime

is at macroscopic scales – it is a Lorentzian manifold – and are trying to

discover the discrete substratum. It is useful to imagine ourselves in the

analogous situation for a simple physical system. Consider a quantity of a

material substance in a box in flat space for which we have a continuum

description – a mass density, say – but which we suspect is fundamentally

discrete. The question is, “What could the discrete state be that gives rise

to this continuum approximation?” and a good first response is to try to

discretise the continuum. We then try to give the discrete object so created

“a life of its own” as an entity independent of the continuum from which

it was derived. We then ask whether we can believe in this discrete object

as fundamental and whether and how we can recover from it a continuum

approximation which may not be exactly the original continuum from which

we started but which must be “close” to it.

In the case of the material substance, let us postulate that it is made of

identical atoms. The varying mass density then can only be due to differing

number densities of atoms in space. We discretise by somehow distributing

the atoms in the box so that the number of atoms in each sufficiently large

region is approximately proportional to the mass density integrated over

that region. We may or may not have reasons to suspect what the atomic

mass actually is, but in any case it must be small enough so that the spacing

between the atoms is much smaller than the scales on which the density

varies.

Each method of discretising will produce distributions of atoms that

have different properties and which type is more favourable as a fundamen-

tal state depends on which features of the continuum theory we wish to

preserve and how fruitful each turns out to be when we come to propose

dynamics for the discrete structure itself. Suppose for example that the

continuum theory of the material is invariant under Euclidean transforma-

tions (rotations and translations) at least locally in small enough regions

over which the mass density is approximately constant and ignoring edge

effects. There are ways to discretise which do not respect the invariance
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under Euclidean transformations. For example, we can divide the box into

cubes small enough so the density is approximately constant in each. In

each cube, place an atom at every vertex of a Cartesian lattice with lat-

tice spacing chosen inversely proportional to the mass density in the cube.

We can produce in this way an atomic state from which we can recover

approximately the correct continuum mass density but it is not invariant

under the Euclidean group – there are preferred directions – and if a fully

fledged fundamental discrete theory is based on such lattice-like atomic

states, this will show up in deviations from exact Euclidean invariance in

the continuum approximation to this full underlying theory.

If a discretisation that respects the invariance is desired, there must

be no preferred directions and this can be achieved by taking a random

distribution of atoms, in other words atomic positions chosen according to

a Poisson distribution so that the expected number of atoms in a given

region is the mass in that region (in atomic mass units). This will produce,

with high probability, an atomic configuration that does not distinguish

any direction.

Having placed the atoms down, we kick away the prop of the contin-

uum description and ask if the distribution of atoms itself could be the

underlying reality; in particular how do we start with it and recover, ap-

proximately, a continuum description? To answer this question, we can use

the discretisation in reverse: a continuum mass density is a good approx-

imation to an atomic state if that atomic state could be a discretisation

of the mass density. In the case of the atomic states arising from random

discretisations, this is modified to: a mass density is a good approximation

if the atomic state could have arisen with relatively high probability from

amongst the possible discretisations. Then it must be checked that if two

continua are good approximations to the same atomic state, they must be

close to each other – this is crucial if this relationship between discrete

states and continuum states is to be consistent.

Finally, we propose the atomic state as the underlying reality, reinterpret

mass as a measure of the number of atoms in a region, ask whether there

are atomic states which have no continuum approximation and what their

meaning is, start working on a dynamics for the atoms etc.

2.3. Discrete spacetime

These steps are straightforward in this simple case, and can be taken in

analogous fashion in the discretisation of a continuum spacetime given by
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a Lorentzian metric tensor on a differentiable manifold. Let us tread the

same path.

What plays the role of the mass density? A good candidate for the mea-

sure of the sheer quantity of spacetime in a region is the volume of that

region. It is calculated by integrating over the region the volume density

given by the square root of minus the determinant of the spacetime met-

ric,
∫

region

√

−g d
4
x and is a covariant quantity: it is independent of the

coordinates used to calculate it.

In the case of quantum gravity we have independent evidence, from the

entropy of black holes for example,9 that the scale of the discreteness is of

the order of the Planck scale formed from the three fundamental constants,

G, ~ and c. If the Planck length is defined to be lp =
√

κ~ where κ = 8πG

and we have set c = 1, then the fundamental unit of volume will be Vf ≡ νl
4

p

where ν is a number of order one and yet to be determined. In order to

discretise a spacetime, we distribute the atoms of spacetime, which we will

call simply “elements”, in the spacetime in such a way that the number of

them in any sufficiently large region is approximately the volume of that

region in fundamental volume units.

Analogous to the question of Euclidean invariance in the material ex-

ample, we must ask: do we want to preserve Lorentz invariance or not? We

might think of laying down a grid of coordinates on spacetime marked off

at ν
1/4

lp intervals and placing an element at every grid vertex. The prob-

lem that immediately arises is that it is not a covariant prescription and

this manifests itself dramatically in frames highly boosted with respect to

the frame defined by the coordinates, where the distribution of elements

will not be uniform but will contain large void regions in which there are

no elements at all (see e.g. reference 10 for a picture). Such a coordinate-

dependent discretisation will therefore violate Lorentz invariance. This is

a much more serious matter than the breaking of Euclidean invariance for

a coordinate-based discretisation of the material. The breaking of Lorentz

invariance manifests itself by a failure of the distribution of elements to be

uniform at all in highly boosted frames. If such a discrete entity were to

be proposed as fundamental, it would have to be concluded that in highly

boosted frames there can be no manifold description at all.

There is as yet no evidence that Lorentz invariance is violated so let

us try to maintain it in quantum gravity. In seeking a Lorentz invariant

discretisation process the crucial insight is, again, that the discretisation

should be random.5 It is performed via a process of “sprinkling” which is

the Poisson process of choosing countable subsets of the spacetime for which
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the expected number of points chosen from any given region of spacetime

is equal to its volume in fundamental units. That this process is exactly

Lorentz invariant in Minkowski spacetime is a consequence of the fact that

the Minkowskian volume element is equal to the Euclidean volume element

on Rn and the fact that the Poisson process in Rn is invariant under any

volume preserving map (see e.g. reference 11).

The sprinkling process results in a uniform distribution of elements in

the spacetime but this set of discrete elements cannot, by itself, provide

a possible fundamental description of spacetime. Here, our analogy with

a simple mass density in a box breaks down. When, having constructed a

distribution of atoms in the box, we take away the continuum mass density,

like whisking away the tablecloth from under the crockery, the atoms retain

their positions in space because Euclidean space is an assumed background

– the table – for the whole setup. But in the case of quantum gravity, the

sprinkled elements are meant to be the spacetime and if we whisk spacetime

away from the elements we have sprinkled into it – removing the table not

just the tablecloth – the elements just collapse into a heap of unstructured

dust. The sprinkled elements must be endowed with some extra structure.

We already know that by counting elements we can recover volume in-

formation in the continuum approximation. Powerful theorems in causal

analysis12,13,14 show that what is needed in the continuum to complete vol-

ume information to give the full spacetime geometry is the causal structure

of a spacetime.a

The causal structure of a spacetime is the totality of the information

about which events can causally influence which other events. For each point

p of the spacetime, we define the set J
−(p) (J+(p)) the causal past (future)

of p, to be the set of points, q, in the spacetime for which there is a future

(past) directed causal curve – a curve with an everywhere non-spacelike, fu-

ture (past) pointing tangent vector – from q to p. The collection of all these

causal past and future sets is the causal structure of the spacetime. This is

often colloquially called the “light cone structure” because the boundaries

of these sets from a point p are the past and future lightcones from p and

the sets themselves are the lightcones and their interiors.

aThe theorems apply to spacetimes that satisfy a certain global causality condition –
past and future distinguishability – which means that distinct points have distinct causal
pasts and futures and which we will assume for every continuum spacetime referred to

here. We can say that the theorems imply that causal set theory predicts spacetime must
satisfy this condition because only such spacetimes will be able to approximate a causal
set.
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Let us therefore, in our discretisation procedure, endow the elements

sprinkled into the spacetime with the order given by the spacetime causal

structure: elements ei ≺ ej if they are sprinkled at points pi and pj re-

spectively in the continuum such that pi ∈ J
−(pj). The set of sprinkled

elements with this induced order is a causal set satisfying the axioms given

above.

Now we give the causal set independence from the spacetime. To re-

cover from it approximately the continuum we discretised, we follow the

guidance of the example of the substance in a box: a spacetime M is a

good approximation to a causal set C if C could have arisen from M by

the discretisation process we have described (sprinkling and endowing with

induced order) with relatively high probability.

As mentioned in the material-in-a-box example, consistency requires

that if two continua are good approximations to the same discretum, they

should be close to each other. This is a central conjecture, the Hauptver-

mutung, of causal set theory and it is surprisingly hard even to formulate it

precisely due to the difficulty of defining a notion of distance on the space

of Lorentzian manifolds. We use the intuitive idea constantly – how else

would it make sense to talk of one spacetime being a small perturbation of

another – but only recently has progress been made in this direction.15,16

This progress has been inspired by causal sets, in particular by utilising and

comparing the different probability distributions on the space of causal sets

given by the sprinkling processes into different Lorentzian manifolds. If it

is the case that using sprinklings is the only way covariantly to say what

we mean by two Lorentzian spacetimes being close, it would be further

evidence for causal sets as the deep structure.

2.4. Reassessed in a quantal light

It may be argued that the above steps leading to the proposal of causal

sets for quantum gravity kinematics have been taken under the assumption

that the continuum is an approximation to one single discrete spacetime

whereas Quantum Mechanics would suggest that a continuum spacetime

is better characterised as corresponding to a coarse grained set of many

discreta. This point has validity and in addressing it, we are drawn into

the realm of dynamics and the question of what form a quantum dynamics

for causal sets might take, the subject of the next section. Certainly, the

statement that the number and ordering of causal set elements correspond

to continuum volume and causal structure, respectively, will have to be
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judged and interpreted in the light of the full dynamical theory. In the

meantime, however, Quantum Mechanics need make us no more squeamish

about the statement, “Spacetime is a causal set”, than about the statement,

“Things are made of atoms.”

Even if it turns out that only a whole bunch of discreta can properly

be said to correspond to a continuum spacetime, we can still make the

claim that discrete data can give rise, in a Lorentz invariant manner, to

a continuum spacetime if they are organised as a causal set. In this case,

we would say that the data common to, or shared by, each member of the

bunch of discreta – a coarse graining of them all – is a causet. The question

would then be, what discretum can be coarse grained to give a causet?

The answer is, another “finer” causet! Indeed causets admit a notion of

coarse graining that is consistent with the inverse procedures of discretisa-

tion and continuum approximation given above because it is itself a random

process. To perform a 1

q
: 1 coarse graining of a causet, go through it and

throw away each element with fixed probability p = 1 − q. A causet a is a

coarse graining of a causet b if a could have resulted with relatively high

probability from the process of coarse graining b.

On this view, a spacetime M could correspond dynamically to a set of

“microscopic” states which are causets with no continuum approximation

at all, but which have a common coarse graining to which M is a good

approximation.

It should be mentioned that this process of coarse graining allows the

notion of scale dependent topology to be realised in causal set theory. Many

quantum gravity workers have the intuitive picture that at scales close to

the Planck scale, the topology of spacetime will be complicated by many

wormholes and other nontrivial topological excitations, but at every day

scales the topology is trivial. As attractive as this idea is, I know of no way

in the continuum to make it concrete. If spacetime is a causet, however,

coarse graining it at different scales (i.e. with different deletion probabilities

p) gives rise to different causets which may have continuum approximations

with different topologies, including different dimensions.

3. Dynamics

If we imagine a bag containing all the causets with N elements, where N is

some immensely large number, then drawing out of the bag a causet uni-

formly at random will result, with probability approaching 1 as N tends to

infinity, in a causet with a very specific and rather surprising structure. This
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structure is of three “levels”: the first level is of elements with no ancestors

and has roughly N/4 members, the second is of elements with ancestors in

level 1 and has roughly N/2 members and the remaining elements are in

level 3 with ancestors in level 2.17

These 3-level causets have no continuum approximation – they are uni-

verses that “last” only a couple of Planck times. If the fundamental reality

is a causal set then we have to explain why the causet that actually occurs

is a manifold-like one and not one of the, vastly more numerous, 3-level

causets. This is the causal set version of a problem that is common to all

discrete approaches to quantum gravity: the sample space of discreta is

always dominated in sheer numbers by the non-manifold-like ones and a

uniform distribution over the sample space will render these bad ones over-

whelmingly more likely. We need a dynamics to cancel out this “entropic”

effect and to produce a measure over the sample space that is peaked on

the manifold-like entities.

As mentioned in the introduction, the broad goal of quantum gravity

includes the unification of observer with observed (or rather the elimina-

tion of the observer as fundamental). Thus, finding a dynamics for quantum

gravity, involves a resolution of the vexed problem of the “Interpretation of

Quantum Mechanics.” There is no consensus on how this is to be achieved

and this difficulty could be seen as a severe obstacle in the quest for quantum

gravity. Turning the problems around, however, the requirements of quan-

tum gravity, for example general covariance, might be taken as a guide for

how to approach Quantum Mechanics in general. Indeed, quantum gravity

points to an approach to Quantum Mechanics that is based on the histories

of a system.

3.1. A histories framework for quantum causal sets

The reader may already be aware that the terms “quantum state” and

“Hilbert space” etc. have been conspicuous by their absence in the present

account. I have avoided them for reasons bound up with our broad goals in

quantum gravity. The standard approach to Quantum Mechanics based on

quantum states, i.e. elements of a Hilbert space, is tied up with the Copen-

hagen interpretation with its emphasis on “observables” and “observers”.

The quantum state is a state “at a moment of time” (in the Schrödinger

picture) and to define it requires a foliation of spacetime by spatial hyper-

surfaces. Taking the principle of general covariance fully to heart suggests

that our goals are better served by instead maintaining the fully space-
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time character of reality inherent in General Relativity, which points to the

framework of the “sum-over-histories” for quantum gravity.18,19,9

The bare bones structure of a histories quantum theory is a sample

space, Ω of possible histories of the system in question – for us, causal

sets – and a dynamics for the system expressed in terms of a “quantum

measure” µ, on Ω. I will say more about the quantum measure below. For

now, note that were µ a probability measure, this would be the familiar case

of a classical stochastic theory and indeed a histories quantum theory can

be thought of as a generalisation of such a theory. That being so, we can

prepare for our task of finding a quantum dynamics by studying classical

stochastic causets.

3.2. A classical warm up

Just as a probability measure on the space of all paths on the integers –

a random walk – can be given by all the “transition probabilities” from

each incomplete path, γ, to γ plus an extra step, so a measure on the

space of all possible past finiteb causets can be specified by giving all the

transition probabilities from each n-element causet, c, to all possible causets

formed from c by adding a single new element to it. The ancestors of the

newly born element are chosen from the elements of c according to the

distribution of the transition probabilities. This is a process of stochastic

“sequential growth” of a causet.20

Without any restrictions, the number of such “laws of growth” is so huge

that the class of them is not very useful to study. Imposing on the dynamics

two physically motivated conditions severely narrows down the class, how-

ever. These conditions are discrete general covariance and Bell causality.

The first condition states that the probability of growing a particular finite

partial causet does not depend on the order in which the elements are born.

This is recognisably a “label independence” condition and analogous to the

independence of the gravitational action from a choice of coordinates. The

second condition is the closest possible analogue, in this setting of causet

growth, of the condition that gives rise to the Bell Inequalities in an or-

dinary stochastic theory in a background with fixed causal structure. It is

meant to imply that a birth taking place in one region of the causet cannot

be influenced by any birth in a region spacelike to the first.

bPast finite means that every element has finitely many ancestors.
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The solution of these two conditions is the class of “Rideout-Sorkin”

models. Each model is specified by a sequence of non-negative real num-

bers, t0 = 1, t1, t2, . . . and the transition probabilities can be expressed in

terms of these “coupling constants.” The models are also known as “gen-

eralised percolations” since they generalise the dynamics called “transitive

percolation” in which a newly born element independently chooses each

of the already existing elements to be its ancestor with probability p. In

generalised percolation a newly born element chooses a set of elements of

cardinality k to be its ancestors with relative probability tk.c

This family of models has proved to be a fruitful test bed for various

issues that will arise in the quantum theory, most notably that of general

covariance.

3.3. The problem of general covariance

Part of the problem of general covariance is to identify exactly how the

principle manifests itself in quantum gravity and how the general covari-

ance of General Relativity arises from it. The answer will surely vary from

approach to approach but some overarching comments can be made. Part

of what general covariance means is that physical quantities and physical

statements should be independent of arbitrary labels. It is needed as a prin-

ciple when the dynamics of the system is not expressible (or not obviously

expressible) directly in terms of the label invariant quantities, but can only

be stated as a rule governing the labelled system. To atone for the sin of

working with these meaningless labels, the principle of general covariance

is invoked and physical statements must be purged of these unphysical

markers.

This is a difficult thing to do even in classical General Relativity. In

quantum gravity, the issue is even more fraught because it is caught up

in the quantum interpretational argy bargy. But the rough form of the

problem can be understood in the following way. When the dynamics is

expressed in terms of labelled quantities, we can satisfy general covariance

by formally “summing over all possible labellings” to form covariant classes

of things (histories, operators, whatever). But in doing so, the physical

meaning of those classes is lost, in other words the relation of these classes

to label-independent data is obscure. Work must then be done to recover

this physical meaning. As an example, consider, in flat spacetime, the set

cIt would be more accurate to say “proto-ancestors” because the set has to be completed
by adding all its own ancestors.
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of non-abelian gauge fields which are zero in a fixed spacetime region and

all fields which are gauge equivalent to them. This is a gauge invariant set

of fields, but its physical meaning is obscure. Uncovering a gauge invariant

characterisation of elements of the set takes work.

In causal set theory, progress has been made on this issue.21,22 A

Rideout-Sorkin dynamics naturally gives a measure on the space of labelled

causets, Ω̃ – the labelling is the order in which the elements are born. This

labelling is unphysical, the only physical structure possessed by a causet is

its partial order. General covariance requires that only the covariant sub-

sets of Ω̃ have physical meaning where a covariant subset is one which if

it contains a labelled causet, also contains all other labellings of it. Such

subsets can be identified with subsets of the unlabelled sample space Ω. For

each covariant, measureable set, A, the dynamics provides a number µ(A),

the probability that the realised causet is an element of A. But what is a

physical, i.e. label-independent characterisation of the elements of such a

set A?

We now know that given almost any causet c in Ω we can determine

whether or not it is in A by asking countable logical combinations of ques-

tions of the form, “Is the finite poset b a stemd in c?” The only case in

which this is not possible is when c is a so-called rogue causet for which

there exists a non-isomorphic causet, c
′ with exactly the same stems as c.

The set of rogues, however, has measure zero and so they almost surely do

not occur and we can simply eliminate them from the sample space.

Which finite posets are stems in c is manifestly label-invariant data and

the result implies that asking these sorts of questions (countably combined

using “not”, “and” and “or”) is sufficient to exhaust all that the dynamics

can tell us.

This result depends crucially on the dynamics. It would not hold for

other sequential growth models in which the special type of causet which

threatens to spoil the result does not have measure zero. So, though we can

claim to have solved the “problem of covariance” for the Rideout-Sorkin

models, when we have a candidate quantum dynamics, we will have to

check whether the “stem questions” are still the whole story.

3.4. The problem of Now

Nothing seems more fundamental to our experience of the world than that

we have those experiences “in time.” We feel strongly that the moment

dA stem of a causet is a finite subcauset which contains all its own ancestors.
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of Now is special but are also aware that it cannot be pinned down: it is

elusive and constantly slips away as time flows on. As powerful as these

feelings are, they seem to be contradicted by our best current theory about

time, General Relativity. There is no scientific contradiction, no prediction

of General Relativity that can be shown to be wrong. But, the general

covariance of the theory implies that the proper way to think of spacetime

is “timelessly” as a single entity, laid out once and for all like the whole reel

of a movie. There’s no physical place for any “Now” in spacetime and this

seems at odds with our perceptions.

In the Rideout-Sorkin sequential growth models we see, if not a resolu-

tion, then at least an easing of this tension. The models are covariant, but

nevertheless, the dynamics is specified as a sequential growth. An element

is born, another one is born. There is growth and change. Things happen!

But the general covariance means that the physical order in which they

happen is a partial order, not a total order. This doesn’t give any physical

significance to a universal Now, but rather to events, to a Here-and-Now.

I am not claiming that this picture of accumulating events (which will

have to be reassessed in the quantum theory) would explain why we expe-

rience time passing, but it is more compatible with our experience than the

Block Universe view.

One might ask whether such a point of view, that events happen in a

partial order, could be held within General Relativity itself. Certain conse-

quences have to be grappled with: if one event, x has occurred, then before

another event, y can occur to its future, infinitely many events must occur

in between and this is true no matter how close in proper time x and y are.

Perhaps it is possible to make this coherent but, to my mind, the discrete-

ness of causal sets makes it easier to make sense of this picture of events

occurring in a partial order.

Another thing left unexplained by General Relativity is the observa-

tional fact of the inexorable nature of time: it will not stop. Tomorrow will

come. We have not so far encountered an “edge” in spacetime where time

simply comes to an end (nor, for that matter, an edge in space). Spacetimes

with boundaries, for example a finite portion of Minkowski space, are just

as much solutions of the Einstein equations as those without and General

Relativity cannot of itself account for the lack of boundaries and holes in

spacetime. In a Rideout-Sorkin universe, one can prove that time cannot

stop. A sequential growth must be run to infinity if it is to be generally

covariant and Joe Henson has proved that in a Rideout-Sorkin model every

element has a descendant and therefore infinitely many descendants.23 If
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such a result continues to hold true in the quantum case, not only would

it prove that tomorrow will always come but also would imply that in sit-

uations where we expect there to be no continuum approximation at all,

such as a Big Crunch or the singularity of a black hole, the causal set will

continue to grow afterwards.

The Rideout-Sorkin models give us a tantalising glimpse of the sorts

of fundamental questions that may find their answers in quantum gravity

when we have it.

3.5. The quantum case

The mathematical structure of ordinary unitary Quantum Mechanics in its

sum-over-histories formulation is a generalisation of a classical stochastic

theory in which instead of a probability measure there is a “quantum mea-

sure” on the sample space.e The quantum measure of a subset, A, of Ω is

calculated in the familiar way by summing and then squaring the ampli-

tudes of the fine grained elements of A. A quantum measure differs from

a classical probability measure in the phenomenon of interference between

histories which leads to it being non-additive. A familar example is the

double slit experiment: the quantum measure of the set of histories which

go through the upper slit plus the quantum measure of the set of histories

which go through the lower slit is not equal to the quantum measure of the

set of all histories which end up on the screen.

After the breakthrough of the Rideout-Sorkin models, it seemed that it

would be relatively straightforward to generalise the derivation to obtain

a quantum measure for causets. Roughly speaking, instead of transition

probabilities there would be transition amplitudes and the quantum mea-

sure would be constructed from them via a generalisation of “sum and

square” appropriate for a non-unitary dynamics.25 General covariance and

the appropriate quantum version of the Bell Causality condition could then

be solved to find the form that the transition amplitudes must take. How-

ever, it is proving difficult to find the required Quantum Bell Causality

condition, not least because the condition is not known even in the case of

ordinary unitary Quantum Mechanics in a background with a fixed causal

structure though we do now have at least a candidate for it.26

eIndeed Quantum Mechanics is the first of an infinite series of generalisations resulting
in a heirarchy of measure theories with increasingly complex patterns of “interference”
between histories.24
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Even if we had in hand a covariant, causal quantum measure, there

would still remain the problem of interpreting it. The interference between

histories and consequent non-additive nature of the quantum measure mean

that we are exploring new territory here. Reference 27 is a first attempt at

a realist interpretation for quantum measure theory. It relies on the ad-

equacy of predictions such as, “Event X is very very unlikely to occur,”

to cover all the predictions we want to make, which should include all the

predictions we can make in standard quantum mechanics with its Copen-

hagen Interpretation. This adequacy is explicitly denied by Kent28 and I

have tended to agree with this judgement. However, the quantum measure

is the result of taking a conservative approach to Quantum Mechanics (no

new dynamics) whilst making histories primary, maintaining fundamental

spacetime covariance and taking a completely realist perspective. As such

it deserves to be persevered with.

4. Conclusions

The belabouring, in section 2, of the correspondence between the inverse

processes of discretisation and continuum approximation makes manifest

a certain conservatism of causal set theory: the steps are familiar, we’ve

been down similar roads before. Moreover, spacetime, albeit discrete, is

still considered to be real. There is no replacement of spacetime by a sub-

stance of a completely different ilk, such as a collection of D0-branes in

11-dimensional flat spacetime29 to choose an example at random, as the

underlying ontology. The radical kinematical input is the postulate of fun-

damental discreteness.

However, no matter how smooth one can make such arguments for causal

sets, no scientific theory can be arrived at by pure philosophical introspec-

tion. For a start, hard scientific labour is already contained in the proof

of the essential result that the causal structure fixes the spacetime metric

up to local volume information. This has been strengthened by results that

show that topological and geometrical information can indeed be “read off”

from a causet which is a sprinkling into Minkowski spacetime. More impor-

tantly, we need to do a great deal of further work. For example, within

kinematics the Hauptvermutung needs to be given a formal mathematical

statement and more evidence provided for it and we need to have more

results on how to read off geometrical information from a causet especially

in the case of curved spacetime.
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In the area of dynamics the Rideout-Sorkin models, though only clas-

sically stochastic, are proving invaluable for exploring issues such as the

problem of general covariance. It is possible that a more or less direct gen-

eralisation of the derivation of these models will lead to the desired quantum

theory. Finding a quantum dynamics is the central challenge for workers in

causal set theory. I have given a somewhat sketchy account of some of the

conceptual hurdles that need to be overcome before this can be achieved.

One thing that has not been explored in this article is how far causal set

theory has come in the area of phenomenology, in other words in the deriving

of observable consequences of the theory. It will be hard for any approach to

quantum gravity to come to be universally accepted without experimental

and observational evidence in the form of predictions made and verified. In

this regard, causal set theory already has the advantage of a long-standing

prediction of the current order of magnitude of the cosmological constant,

or “dark energy density”6,7,9 that has apparently now been verified. The

argument leading to this prediction is heuristic – it depends on certain ex-

pectations about the quantum theory – and can only be made rigorous with

the advent of the full quantum causal set dynamics. However, the sheer un-

expectedness of the observational result amongst the wider community of

theorists – some cosmologists have called it preposterous30 – is great en-

couragement to investigate the arguments further. Numerical simulations of

stochastic cosmologies based on the arguments bear out the conclusion that

the envelope of the fluctuations of the dark energy density tends to “track”

the energy density of matter 31. Improvements would include models which

allow spatial inhomogeneities in the dark energy density.

Moreover, there is great promise for further phenomenological model

building. The unambiguous kinematics of the causal set approach means

that there is an obvious way to try to make phenomenological models: create

a plausible dynamics for matter (particles or fields, say) on the background

of a causal set that is well approximated by the classical spacetime that

we actually observe: Minkowski spacetime or Friedmann-Robertson-Walker

spacetime, depending on the physical context. The dynamics of the matter

might be classical or quantum. The limitation of such model building is that

it doesn’t take into account the quantum dynamics of the causal set itself,

nor any back-reaction, but these models could be a first step in deriving

observable effects of the underlying discreteness on phenomena such as the

propagation of matter over long distances. An example of exactly this form

is a model of point particle motion on a causet which leads to a predic-

tion of a Lorentz invariant diffusion in particle momentum and therefore
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energy.10 A naive application to cosmic protons doesn’t work as a universal

acceleration mechanism that might explain high cosmic energy rays but a

quantum version might do better and the idea could be applied to other

particles like neutrinos.

In causal set theory, we now have the mathematical structure that Ein-

stein lacked, giving us a framework for a fundamentally discrete theory of

spacetime which does not rely on any continuum concept as a aid. How

successful it will be in realising the unification that Einstein hoped for,

will be for the future to decide. But let me end by musing on a unification

even beyond that of quantum gravity: the unification of kinematics and

dynamics. In causal set theory as currently conceived, the subject of the

theory and the laws by which it is governed are different in kind. This is

apparent in the Rideout-Sorkin models for example. The law of growth is

given by a sequence of non-negative numbers. This law is not part of phys-

ical reality which is the causal set. To a materialist like myself, it would

be more satisfying if the laws themselves were, somehow, physically real;

then the physical universe, meaning everything that exists, would be “self-

governing” and not subject to laws imposed on it from outside. Should

these nebulous ideas find concrete expression it would represent perhaps

the ultimate unity of physics.
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An outline of twistor theory is presented. Initial motivations (from 1963)
are given for this type of non-local geometry, as an intended scheme for
unifying quantum theory and space-time structure. Basic twistor ge-
ometry and algebra is exhibited, and it is shown that this provides a
complex-manifold description of classical (spinning) massless particles.
Simple quantum commutation rules lead to a concise representation of
massless particle wavefunctions, in terms of contour integrals or (more
profoundly) holomorphic 1st cohomology. Non-linear versions give el-
egant representations of anti-self-dual Einstein (or Yang-Mills) fields,
describing left-handed non-linear gravitons (or Yang-Mills particles). A
brief outline of the current status of the ‘googly problem’ is provided,
whereby the right-handed particles would also be incorporated.

1. Early Motivations and Fundamental Basis of

Twistor Theory

Twistor theory’s original motivations, prior to December 1963 (which marks

its initiation, as a physical theorya), came from several different directions;

but in general terms, the intention was for a theory that would repre-

sent some kind of scheme for unifying basic principles coming from both

quantum mechanics and relativity. Yet, the theory did not arise out of

an attempt, on my part, to “quantize” space-time structure in any con-

ventional sense. A good measure of my own reasons for not adopting this

more conventional “quantum-gravity” stance came from a suspicion that

the very rules of quantum mechanics might well have to be changed in such

a unification, in order that its disturbing paradoxes (basically, the various

465
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forms of the measurement paradox) might perhaps be satisfactorily resolved

as part of the proposed unification. For, in my own view, a resolution of

these paradoxes would necessarily involve an actual (though presumably

subtle) modification of the underlying quantum-mechanical rules. Never-

theless, it is clear that the rules of quantum mechanics must apply very

precisely to physical systems that are, in an appropriate sense, “small”.

Most particularly, I had always been profoundly impressed by the physical

role that quantum theory had found for the complex number field. This is

manifested most particularly in the quantum linear superposition rule. But

since quantum linearity can be regarded as the main “culprit” with regard

to the measurement paradox one may expect that some kind of (complex?)

non-linearity might begin to show itself when systems get large. For small

systems the complex-linear superposition rule is extraordinarily precise.

We must, however, keep in mind that the notion of “small” that is of

relevance here does not refer (simply) to small distances. We now know

from experimental findings with EPR (Einstein–Rosen–Podolskyb) sys-

tems, that quantum entanglements can stretch unattenuated to at least

some 30 kilometers.c Moreover, as an “objectivist” who had been aware of

the profound puzzles that EPR phenomena would present for a consistent

space-time picture of “quantum reality”, I had considered these phenomena

to be indicative of a need for some kind of objective “non-local geometry”.

Even at the more elementary level of a wavefunction for a single parti-

cle, there is an essential non-locality, as the measurement of the particle

at one place forbids its detection at some distant place, even thought the

spread of the wavefunction may have to encompass both locations in order

for possible quantum interference to be accommodated. We should bear in

mind that all such non-localities refer not just to small distances. When

a notion of “smallness” is relevant, it is more likely that its appropriate

measure might refer to mass displacements between two components of a

superpositiond (e.g. when a physical detector becomes entangled with the

system), and general relativity tells us that mass displacements refer to

space-time curvature differences.

Some years previously,e I had initiated spin-network theory. This theory

had close ties with EPR-Bohm situations, these being entanglements which

are manifested in spin correlations between widely separated events. The

original form of spin-network theory had provided a kind of discrete quan-

tum geometry for 3-dimensional Euclidean space, where spatial notions are

taken to be derived rather than built initially into the theory, and it could

be said to provide a non-local geometry of this nature. But I had recog-
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nized the limitations inherent in the essentially non-relativistic nature of

that theory, and in its inability to describe spatial displacements. Spin net-

works arose from a study of the representation theory of the rotation group

SO(3), and a logical route to follow might seem to be to replace this group

by the Poincaré group. However, that approach did not particularly appeal

to me, partly owing to the Poincaré group’s non-semi-simple nature,f and

generalizing further to the conformal group of Minkowski space — essen-

tially to SO(2,4) — had, for various reasons seemed to me to be a possibility

more in line with what I had in mind.

The representations of SO(3) are described in terms of 2-spinors, these

providing the fundamental representation space of the spin group SU(2), of

SO(3), and I had been very struck by the precise geometrical association

between (projective SU(2)) 2-spinors and actual directions in 3-dimensional

physical space.g In the case of the twistor group SO(2,4), there turned out to

be an even more remarkable geometrical space-time association. Being led

to consider representations of SO(2,4), instead of SO(3), we study its spin

group SU(2,2), in place of SU(2). The fundamental representation space of

SU(2,2) — the reduced (or “half”) spin space for SO(2,4) — is the com-

plex 4-dimensional vector space which I refer to as twistor space T. The full

(unreduced) spin space for SO(2,4) is the direct sum of twistor space T with

its dual space T∗. By virtue of T’s (+ + −−) Hermitian structure, T∗ can

also be identified as the complex conjugate of T. This Hermitian structure

tells us that twistor space T has a 7-real-dimensional subspace N, consisting

of twistors whose (squared) “norm” ‖Z‖, given by this structure, vanishes.

The elements of N are called null twistors, and we find that the projec-

tive null twistors (elements of the projective subspace PN of the projective

twistor space PT) are in precise geometrical correspondence with light rays

in Minkowski space M, i.e. null geodesics. Here we must include the limiting

light rays that are the generators of the light cone at null infinity J for

the conformally compactified Minkowski space M], these being described by

the elements of a complex line PI lying in PT (where I is a certain complex

2-dimensional subspace of T representing space-time “infinity”).

This geometrical fact is remarkable enough, but the relation between

twistors and important physical quantities goes much farther than this. In

the first place, the real scaling of a null twistor Z has a direct physical inter-

pretation, assigning an actual (future-pointing) 4-momentum (equivalently

a frequency) to a massless particle with world-line defined by PZ (taking
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Z ∈ N − I). There remains a phase freedom

Z 7→ eiθZ (θ real) ,

not affecting this 4-momentum. More strikingly, it turns out that every

element Z of T − I (not just those in N), up to this same phase freedom,

has an interpretation describing the kinematics of a massless particle which

can have a non-zero spin. The helicity s of this particle (whose modulus is

the spin) turns out to be simply

s =
1

2
‖Z‖

(taking units with ~ = 1). When s 6= 0 there is no actual “world-line”

defined (in a Poincaré-invariant way), and the particle is, to some extent,

non-localized.

What this demonstrates, since T is a complex vector space, is

that twistor theory reveals a hidden Poincaré-invariant holomorphic

(i.e. complex-analytic) structure to the kinematics of a massless particles

(this kinematics being extended by the above phase freedom). The more

primitive fact that the celestial sphere of an observer, according to rela-

tivity theory, can naturally regarded as a Riemann sphereh (a complex 1-

manifold) is a particular aspect of this holomorphic structure. It had long

struck me as particularly pertinent fact that only in the 1+3 dimensions of

our observed universe can the space of light rays through a point — i.e. the

celestial sphere — be regarded as a complex manifold, and that the (non-

reflective) Lorentz group can then be regarded as the group of holomorphic

self-transformations of this sphere. On this view, it might be possible to

view the celestial sphere as a kind of “quantum spread” of two directions,

somewhat similarly to the way in which The Riemann sphere of possible

“directions of spin” for a massive spin- 1

2
particle can be thought of as a

“quantum spread” of two independent directions (say, “up” and “down”).

Nevertheless, all this twistor structure is, as yet, fully classical, so twistor

theory is actually revealing a hidden role for complex-number structure

which is present already at the classical level of (special) relativistic physics.

This is very much in line with the driving force behind twistor theory.

Rather than trying to “quantize” geometry, in some conventional sense,

one seeks out strands of connection between the underlying mathematics of

the quantum formalism and that of space-time geometry and kinematics. In

relation to what has just been said, it may be pointed out that although this

complex structure is an immediate feature only of massless particles, it is

now a conventional standpoint to regard massless particles as being in some
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sense primary, with mass entering at a secondary stage, via some specific

(e.g. Higgs) mechanism. Although twistor theory is perfectly capable of

handling massive particles (and is neutral with respect to the specific Higgs

mechanism), there indeed is a special “primitive” role for massless particles

in that theory.

Something analogous could said to apply also to the “primitive” nature

of Minkowski space M, since it is here that these holomorphic twistor-

related structures are most evident. Things get considerably more com-

plicated when the effects of mass (or energy) begin to play their roles,

and we are driven to consider general relativity. Here, the correct twisto-

rial procedures are still only partially understood, but there is, neverthe-

less, a tantalizing relation between holomorphic structure and Einstein’s

vacuum equations, as revealed particularly in the “non-linear graviton”

constructioni of 1975/6, and its extensions. Moreover, many years previ-

ously, in the years before 1963, there had been another significant driv-

ing force behind the origination of twistor theory, which had relevance to

this. I had been impressed by hints of a hidden complex structure revealed

in the roles that complex (holomorphic) functions play in numerous ex-

act solutions of the Einstein (vacuum) equations (e.g. plane-fronted waves,

Robinson–Trautman solutions, stationary axi-symmetric solutions, includ-

ing, as I learned later, the Kerr solution). The image of an ice-berg had

come to mind, where all that we normally perceive of this hidden com-

plex structure represents but a tiny part of it. This suggested that some

novel way of looking at (possibly curved) space-time geometry might re-

veal some kind of hidden complex structure, even at the classical level. I

had felt that an understanding of this could be a pointer to understanding

how curved space-time structure might somehow become intertwined with

quantum-mechanical principles (and particularly quantum theory’s com-

plex structure) in some fundamental way.

There is one further (but interrelated) motivation that may be men-

tioned here, namely the idea that the sought-for complex geometry should

in some way automatically incorporate the notion — fundamental to quan-

tum field theory — of the splitting field amplitudes into their positive and

negative frequency parts. This procedure is neatly expressed, for a function

of a single (real) variable, by the holomorphic extendibility of that function

into the “top half” S
+ or “bottom half” S

− of the Riemann sphere S
2,

where S
2 is divided into these two hemispheres by the equator, this repre-

senting the real line R (compactified to a circle by adjoining to it a “point at
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infinity”). In view of the importance of this frequency splitting to quantum

field theory, I had imagined that our sought-for complex geometry should

somehow reflect this frequency splitting in a natural but more global way,

applying now all at once to entire fields, as might be globally defined on

M. As we shall be seeing in §5, this motivation is indeed satisfied in twistor

theory but, as it turned out, in a much more subtle way than I had ever

imagined.

2. Basic Twistor Geometry and Algebra

Choose standard Minkowski coordinates r
0, r

1, r
2, r

3 for M (with r
0 as

the time coordinate, with c = 1). These are to be related to the standard

complex coordinates Z
0, Z1, Z2, Z3 for the vector space T, via the incidence

relation
(

Z0

Z1

)

=
i

√

2

(

r
0 + r

3
r
1 + ir2

r
1
− ir2

r
0
− r

3

)(

Z2

Z3

)

.

To find what locus R in T corresponds to a fixed point R in M, we hold

the coordinates r
a of R fixed and vary Zα while maintaining the incidence

relation. We have two homogeneous linear equations in the Zα, giving us a

linear subspace R of T of dimension 2 to represent R. In terms of the pro-

jective space PT, we find a projective straight line PR (which is a Riemann

sphere) to represent R. Conversely, to find the locus in M corresponding to

a particular Zα, we hold Zα fixed and ask for the family of r
a which satisfy

the incidence relation. Now if we require the r
a to be real — as indeed we

should, if we are properly concerned with Minkowski space M, rather than

its complexification CM — then we find that the condition

Z̄αZα = 0

for a null twistor must hold, where (noting the order of Z’s components, in

what follows)

Z̄α = (Z̄0, Z̄1, Z̄2, Z̄3) = complex conjugate of (Z2
, Z3

, Z0
, Z1) .

In fact, the quantity

‖Z‖ = Z̄αZ
α

= Z̄0Z
0 + Z̄1Z

1 + Z̄2Z
2 + Z̄3Z

3

=
1

2
(|Z0 + Z2

|

2 + |Z1 + Z3
|

2
− |Z0

− Z2
|

2
− |Z1

− Z3
|

2)
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is the twistor norm referred to in §1, this being a Hermitian form of signa-

ture (+ + −−) (because of the swapping of the first two components with

the second in the definition of twistor complex conjugation). Assuming that

‖Z‖ = 0, so Z is a null twistor, we find that the locus z of points in M which

are incident with Z is indeed a light ray (null geodesic), in accordance with

what was asserted in §1. At least this is strictly the case provided that Z2

and Z3 do not both vanish. If they do both vanish, then we can interpret the

light ray z in conformally compactified Minkowski space M], as a generator

of the light cone J at infinity.j

Note that the index positioning on Z̄α is consistent with Z̄ being a

dual twistor (element of T∗). Generally, the operation of twistor complex

conjugation interchanges the spaces T and T∗, so the up/down nature of

twistor indices are reversed under complex conjugation. Sometimes I shall

use the script letter C to denote twistor complex conjugation, as applied to

(abstract-)indexed twistor (or, later, 2-spinor) quantities. Thus, we have,

in particular, CZα = Z̄α and CZ̄α = Zα.

The geometrical correspondence between M] and PN, and also between

the complexification CM
] and PT, has many intriguing features. I mention

only a very few of these here. We have seen that points of M] correspond to

projective lines lying in PN, and that points of PN correspond to light rays in

M]. In M], incidence is represented by a point lying on a light ray; in PN, in-

cidence is represented, correspondingly, by a projective line passing through

a point. A general projective line in PT (not necessarily restricted to lie in

PN) corresponds to a complex space-time point, i.e. a point of CM
]. (This

is a classical correspondence of 19th century geometry, often referred to as

the Klein correspondence, CM
] being understood as a complex 4-quadric.k)

A general point PZ of PT corresponds to a 2-complex-dimensional locus Z

referred to as an α-plane (a standard classical terminology), this being a

“self-dual” 2-plane on which the complex metric (induced from CM
]) van-

ishes identically. There is another type of complex 2-surface on CM
] whose

metric vanishes identically, which is “anti-self-dual”, called a β-plane. The

twistor correspondence represents β-planes in CM
] by complex projective

2-planes in PT.

The Hermitian relationship Z ↔ Z̄ provides a duality transformation of

PT in which points go to complex 2-planes, and vice versa, so this com-

plex conjugation interchanges α-planes with β-planes on CM
]. In general,

the point PZ of PT will not lie on its corresponding plane PZ̄ in PT, the

condition for it to do so being ‖Z‖ = 0. In terms of CM
]: an α-plane Z

will not generally meet its complex conjugate β-plane Z̄ , but the condition
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for it to do so is ‖Z‖ = 0. When they do meet, their intersection is the

complexification Cz of the light ray z that we obtained earlier (the part of

Cz lying in M] being the light ray z itself).

Finally, we note that the projective-space structure of PT completely

fixes the complex-conformal structure of CM
] in a very direct way. By the

term “complex-conformal” structure, I simply mean the structure defined

by the complex null cones, this being equivalent to a locally defined com-

plex metric, up to general conformal rescalings. Two points R, S of CM
]

are null separated if and only if the corresponding lines PR and PS of PT

intersect, whence, the light cone of a point R in CM
] is represented in PT

by the family of lines which meet PR. More generally, we can obtain the

Minkowskian squared interval between R and S as −4R:S(R:I)−1(S:I)−1,

where R:S stands for 1

2
εαβρσRαβSρσ , etc., and where each of Rαβ , etc. is

antisymmetrical and simple; i.e. has the form Rαβ = X[αYβ], etc. Here, I

have made use of the particular infinity twistors Iαβ and Iαβ , representing

the 2-dimensional “infinity” subspace I of T (referred to in §1) or line PI of

PT, subject to

Iαβ = 1

2
εαβρσ Iρσ = CIαβ

, Iαβ = 1

2
ε

αβρσ Iρσ = CIαβ ,

I[αβ Iρ]σ = 0 , I[αβ Iρ]σ = 0 , Iαβ Iβγ = 0 .

(Here εαβρσ and ε
αβρσ are skew-symmetrical Levi-Civita twistors, satisfy-

ing εαβρσε
αβρσ =24 and Cε

αβρσ =εαβρσ and Cεαβρσ =ε
αβρσ). Conformal-

invariance breaking can be achieved by the incorporation of Iαβ or Iαβ into

expressions, as desired.

3. Momentum and Angular Momentum for

Massless Particles

It is convenient to use a 2-spinor notationl for much of twistor theory. The

components of a twistor naturally fall into two pairs, where the first two

are the components of an upper unprimed 2-spinor ω and the second two,

the components of a lower primed spinor π:

ω
0 = Z0

, ω
1 = Z1

, π0′ = Z2
, π1′ = Z3

.

So we can write

Zα = (ωA
, πA′)

and

Z̄α = (π̄A, ω̄
A

′

) ,
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so that

Z̄αZα = π̄Aω
A + ω̄

A
′

πA′

(bearing in mind that the primed spin-space is the complex conjugate of

the unprimed spin-space). Then the incidence relation becomes

ω
A = i rAA

′

πA′

where a standard 2-spinor representation of 4-vectors is being used:

r
AA

′

=
1
√

2

(

r
00

′

r
01

′

r
10

′

r
11

′

)

.

On change of origin, from the original origin O to a new origin Q whose

position vector relative to O is q
a (i.e. q

AA
′

), we find

ω
A
 ω

A
− i qAA

′

πA′ and πA′  πA′

This turns out to be consistent with the physical interpretation of a twistor

Zα = (ωA
, πA′), as providing the 4-momentum/6-angular momentum kine-

matics for a massless particle. From the twistor Zα we can construct quan-

tities (with π̄A = CπA′ and ω̄
A

′

= Cω
A)

pa = π̄AπA′ and M
ab = i ω(A

π̄
B)

ε
A

′
B

′

− iεAB
ω̄

(A
′

π
B

′
)
,

(where in expressions such as these, I am adopting an abstract-index

viewpoint,m which allows me to equate the vector/tensor (abstract) index

“a” with pair of spinor (abstract) indices “AA
′”, etc.) and we find that

they have the correct behaviour (pa  pa, M
ab
 M

ab
− q

a
p

b + q
b
p

a) un-

der change of origin, for pa to be the 4-momentum and M
ab the 6-angular

momentum for a relativistic system. Moreover, the required conditions, for

a massless particle, that pa be null and future pointing, and that the Pauli-

Lubanski spin vector Sa constructed from pa and M
ab be proportional to

pa

Sa =
1

2
eabcdp

b
M

cd = s pa

with s being the helicity (which is the standard requirement), are now au-

tomatically satisfied by the above twistorial definitions, where the only re-

striction on Zα is that πA′ 6= 0, in order that the 4-momentum be non-zero.

Conversely, given a 4-momentum pa and a 6-angular momentum M
ab, sub-

ject to these “massless-particle” conditions, we find that such a Zα always

exists, uniquely up to the phase freedom

Z
α
7→ eiθ

Z
α

.
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Furthermore, it turns out that the helicity s is simply given by

s =
1

2
Z̄αZ

α =
1

2
‖Z‖

as was asserted in §1.

All this has been entirely classical, and we have seen that twistor

space, being a complex space, indeed provides us with a natural (Poincaré-

invariant) complex structure associated with the classical kinematics of a

massless particle. (More explicitly, owing to the above phase freedom, the

complex space that we have exhibited — the twistor space T with the sub-

space I removed — is a circle bundle over the space of classical kinematics

for a massless particle.) But what about the quantum kinematics? It turns

out that all we need is to impose standard canonical commutation rules

between Zα and Z̄α:

[Zα
, Zβ] = 0 , [Z̄α, Z̄β ] = 0 , [Zα

, Zβ] = δ
α

β
,

and then the standard commutators for pa and M
ab (as Poincaré group

generators, namely [pa, pb] = 0, [pa, M
bc] = 2iga

[b
p

c], [Mab
, Mcd] =

4ig[b
[cM

a]
d]) follow unambiguously. There are no factor ordering problems

here (because of the symmetry brackets in the twistor expression for M
ab),

but we must be slightly careful in the case of the helicity operator s, which

nevertheless comes out unambiguously as

s =
1

4
(ZαZ̄α + Z̄αZα) .

We can now consider the notion of a twistor wavefunction which, since

Zα and Z̄α are conjugate variables, should be a function either of Zα or of

Z̄α, but not of both (which is analogous to the rules for ordinary position

x
a and momentum pa, where a wavefunction can be a function of x

a or of

momentum pa, but not both). But what does it mean for a function f(Zα) to

be independent of Z̄α? The condition is ∂f/∂Z̄α = 0, which provides us with

the Cauchy–Riemann equations for f , asserting that f is holomorphic in

Zα. We could, alternatively, choose the conjugate (or dual) representation,

where our wavefunction g is taken to be holomorphic in Z̄α, which means

anti-holomorphic in Zα. It is more convenient, with this representation,

to use a dual twistor variable Wα(= Z̄α) and to consider g(W) simply as

holomorphic in Wα.

To be definite, I shall tend phrase my arguments in terms of the Zα-

representation (and then the results using the Wα-representation follow

essentially by symmetry). In the Zα-representation, we can interpret the
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quantum operator Z̄α, according to

Z̄α = −

∂

∂Zα
.

Note that this enables us to “re-instate holomorphicity” in expressions

which may, classically, have to be described non-holomorphically. For ex-

ample, the classical expression for helicity is given in terms of the distinctly

non-holomorphic quantity Z̄αZα, whereas quantum-mechanically, we have

the entirely holomorphic operator

s =
1

4
(ZαZ̄α + Z̄αZα)

=
1

4
(2ZαZ̄α − δ

α

α)

=
1

2
(−Zα

∂

∂Z

α

− 2) .

We note that the operator

Υ = Zα
∂

∂Zα

is Euler’s homogeneity operator, whose eigenfunctions are homogeneous

functions in Zα with eigenvalue the degree of homogeneity. Thus, if we

wish to describe a massless particle whose helicity takes the specific value

n/2, we can use a twistor function f(Zα) which is homogeneous of degree

−n− 2. For a photon, for example, we would use a function of degree 0 for

the left-handed part and of degree −4 for the right-handed part.

4. Massless Fields and their Twistor Contour Integrals

What is the relation between such a twistor wavefunction for a particle of a

specific helicity and the ordinary space-time description of such a particle?

I shall use 2-spinor notation (where � = ∇a∇
a = ∇AA′∇

AA
′

, etc.). For

helicity 0 we have

�ϕ = 0 ;

for negative helicity n/2 (< 0)

∇

AA
′

φAB...L = 0 ;

and for positive helicity n/2 (> 0)

∇

AA
′

χA′B′...L′ = 0 .
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Here φAB...L has −n/2 indices and χA′B′...L′ has +n/2 indices (a positive

number in each case), and each is totally symmetric

φ(AB...L) = φAB...L , χ(A′B′...L′) = χA′B′...L′ .

In the case s = ±1 (spin 1), we can relate these equations to the more

familiar source-free Maxwell equations

∇

a
Fab = 0 , ∇[aFbc] = 0 ,

given by Fab(= −Fba) defined by

Fab = FAA′BB′ = φABεA′B′ + εABχA′B′ .

(Recall the abstract-index conventions noted in §3; also incorporated are

the basic anti-symmetrical 2-spinor Levi-Civita quantities, used for raising

or lowering 2-spinor indices, ε
AB , ε

A
′
B

′

, εAB , and εA′B′ , where gab =

εABεA′B′ .) In the case s = ±2, we obtain the linearized Einstein vacuum

equations,n expressed in terms of the linearized curvature tensor Kabcd,

with symmetry relations

Kabcd = K[cd][ab] , K[abc]d = 0

and vacuum condition

Kabc
a = 0 ,

all these being automatic consequences of

Kabcd = φABCDεA′B′εC′D′ + εABεCDχA′B′C′D′

(abstract indices!), the Bianchi identity equation

∇[aKbc]de = 0 ,

now re-expressing the spin-2 massless free-field equation above.

I have given the above expressions for Maxwell and linear Einstein fields

in the general case of complex fields, which is appropriate for the description

of wavefunctions, but if we wish to describe a real field, we restrict to the

case where the χ and φ fields are complex conjugates of one another:

χA′B′ = φ̄A′B′ = CφAB , χA′B′C′D′ = φ̄A′B′C′D′ = CφABCD .

In the case of complex fields (wavefunctions), we can specialize to

φAB...L = 0
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which gives a self-dual field (for integer spin), describing a positive-helicity

(right-handed) massless particle, or to

χA′B′...L′ = 0

which gives an anti-self-dual field, describing a negative-helicity (left-

handed) massless particle.

We ask for the relation between these massless field equations and a

twistor wavefunction of homogeneity degree −n − 2. The answer is largely

expressed in the contour-integral expressionso

ϕ(x) = c0

∮

f(ω, π)δZ

for the case n = 0,

χA′B′...L′(x) = cn

∮

πA′πB′ . . . πL′f(ω, π)δZ

for n > 0, and

φAB...L(x) = cn

∮

∂

∂ωA

∂

∂ωB
. . .

∂

∂ωL
f(ω, π)δZ

for n < 0. (The constants cn are here left undetermined, their most appro-

priate values to be perhaps fixed at some later date.) In each case, ω is first

to be eliminated by means of the incidence relation

ω = ixπ

before the integration is performed, the quantity δZ being defined by either

of the following definitions

homogeneous case (
∮

with 1-dimensional real contour): δZ = πA′dπ
A

′

inhomogeneous case (
∮

with 2-dimensional real contour): δZ= 1

2
dπA′∧dπ

A
′

.

In either case, the integration removes the π-dependence, and we are left

with a function solely of x. Moreover, it is a direct matter to verify that

the appropriate massless field equation is indeed satisfied in each case.

In the homogeneous case we get a genuine contour integral — in the

sense that the answer does not change under continuous deformations of

the (closed) contour, within regions where f remains holomorphic — pro-

vided that the entire integrand (including the 1-form δZ) has homogeneity

degree zero, that being the condition that its exterior derivative vanishes.

This condition is ensured by the nature of the 1-form δZ and the balancing
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of the homogeneities of the various terms, using the homogeneity prescrip-

tion for f given above. Here the contour is just a one-dimensional real curve,

so the geometry is normally very simple. The inhomogeneous case, on the

other hand, involves a contour which is a two-dimensional real surface. This

sometimes gives additional freedom, but the geometry is often not so trans-

parent as in the homogeneous case. However, there is a more compelling

reason to expect that the inhomogeneous case provides a broader-ranging

viewpoint. This arises from the fact that we get a genuine contour integral

even when the homogeneities do not balance, the exterior derivative of the

integrand vanishing merely by virtue of its holomorphicity. The role the ho-

mogeneity balancing to zero is now simply that the integral will now vanish

without this balancing.

There are many reasons why the inhomogeneous prescription gives a

more powerful viewpoint, but perhaps the most transparent of these is that

we can now describe the wavefunction of, say, a plane-polarized photon,

which is not in an eigenstate of helicity — whereas this cannot be done di-

rectly in the homogeneous case — helicities +1 and −1 being now involved

simultaneously. Using the inhomogeneous form, we can simply add together

a twistor function of homogeneity degree −4 (to describe the right-handed

part of the photon) and a twistor function of homogeneity degree 0 (to

describe the left-handed part). This would be acted upon by the appro-

priate combination πA′πB′ + ∂
2
/∂ω

A
′

∂ω
B

′

. The cross-terms, for which the

homogeneity does not balance to zero, simply disappear upon integration,

and we are left with the appropriate space-time sum of a self-dual and an

anti-self-dual complex Maxwell field.

In order to get a feeling for the nature of the contour-integral expressions

for massless fields generally, let us consider the homogeneous case, so we just

have a 1-dimensional contour, and take n = 0 with a very simple twistor

function (homogeneity degree −2):

f(Z) =
1

(AαZα)(BβZβ)
.

The singularities of this function are simple poles, represented in PT as

lying along two planes PA and PB, corresponding to the vanishing of the

respective terms AαZα and BβZβ. The point X in CM whose position vector

is x is represented as a line PX in PT (and this lies in PN whenever x is

real). Recall that the line PX is a Riemann sphere, and the function f has,

as its singularities, a simple pole at each of the two points where PX meets

the planes PA and PB. We choose a contour on this sphere which loops
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once between these poles, separating them, so that it cannot be shrunk

away continuously without passing across one pole or the other. In this

case the integration is easily performed, and we obtain a field ϕ(x) that

is a constant multiple of {(xa − qa)(xa
− q

a)}−1, where q
a is the position

vector of the point Q whose representation in PT is the line of intersection

PQ of the two planes PA and PB. Notice that the field is singular only on

the light cone of Q, which is when X and Q are null-separated, i.e. when

the lines PX and PQ meet. This singularity arises when the poles on the

Riemann sphere PX “pinch” together, and the contour cannot pass between

them.

For the wavefunction of a free particle, we require a condition of positive

frequency. This is achieved by demanding that the space-time field extend

holomorphically into the region of CM referred to as the forward tube, which

consists of points whose (complex) position vectors have imaginary parts

which are past-timelike. We find that this corresponds precisely to the family

of lines lying in the upper region PT
+ of projective twistor space. We see

that this positive-frequency condition is easily satisfied for the particular

scalar field ϕ just considered, if we arrange for PQ to lie entirely in PT
−,

for then no line in PT
+ can meet it.p It is clear, also, that something very

similar will hold for any twistor function f whose singularities, in PT
+, lie

within two disjoint closed sets A and B. For then, supposing that we get a

non-zero field at all, with a contour on the Riemann sphere PX separating

PX ∩ A from PX ∩ B, it follows from the fact that A and B are disjoint

closed sets in PT
+ that the contours can never get pinched. This situation

clearly has considerable generality. It applies, for example, equally well to

fields of arbitrary helicity and not simply to the case n = 0, and many types

of positive-frequency wavefunctions are thereby obtained.

5. Twistor Sheaf Cohomology

We see, by means of this contour-integral representation, that twistor the-

ory provides a powerful method of generating wavefunctions for massless

fields, where the massless field equations seem to “dissolve” into pure com-

plex analyticity. There is, however, a curious difficulty with this twistor

representation, the resolution of which will lead us to a more sophisticated

and fruitful point of view. One of the properties of wavefunctions that is

evident in the conventional space-time representation is that such fields are

Poincaré covariant (and in fact conformally covariant), and that they form

a complex linear space. This would be clear also for the twistor represen-
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tation (perhaps even more so, especially for conformal invariance), were it

not for the awkward fact that we seem to need to assign some fixed region

in which the singularities are to reside, and that any such assignment would

destroy manifest Poincaré covariance. The reason for seeming to need to

fix the singularity region is that if we add two twistor functions, the singu-

larities of the sum are likely to occupy the union of the singularity regions

of the two twistor functions individually. If these singularity regions are

allowed too much freedom, then with extensive (and perhaps continuous)

linear combinations, the resulting regions may not merely be complicated;

in certain cases they could even preclude the finding of any appropriate

contour whatsoever.

Compensating this difficulty, there is evidently some mobility in the

singularity regions themselves. In the case of the particular twistor function

f , considered in the previous section, we could replace Bα by adding a

multiple of Aα

Bα  Bα + λAα ,

where λ is any fixed complex number, thereby moving the singularity region

B. It is not hard to see that this gives us a completely equivalent twistor

function to the one that we had before, in the sense that if we subtract

one from the other (while retaining a contour that works for both), then

this “difference” twistor function finds its singularities all on one side of the

contour, necessarily giving zero for the contour integral because the contour

“slips off” on the other side. The same would apply if we choose to move

A, correspondingly, rather than B. This indicates that a deeper perspective

on twistor functions is needed.

As a pointer to this deeper perspective, let us consider the more general

situation of the two disjoint closed sets of singularities A and B in PT
+,

as introduced above (and we should also bear in mind that we may want

to generalize PT
+ itself to some other appropriate region of interest lying

within PT, or perhaps even to some other complex manifold). We may re-

express the conditions on f , A, and B in the following curious-looking way:

the region on which f is assigned to be holomorphic is the intersection

U1 ∩ U2 of two open sets

U1 = PT
+
−A and U2 = PT

+
− B ,

where the union U1 ∪ U2 is the entire region PT
+ that we are interested

in. What is the purpose of this? We shall see in a moment. First, this

situation extends to more complicated open coverings {Ui} of PT
+, which
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we shall require to be locally finite (i.e. only a finite number of the Ui

contain any given point of PT
+), though the sets U1, U2, U3, . . . need not

actually be finite in number. Since there are now liable to be many different

intersections of pairs of these sets, our “twistor function” is now defined in

terms of a collection {fij} of various holomorphic functions fij , with

fij holomorphic on Ui ∩ Uj

subject to

fij = −fji

on intersecting pairs Ui ∩ Uj , and

fij + fjk = fik

on intersecting triples Ui ∩ Uj ∩ Uk. Such a collection {fij} is called a 1-

cochain (of holomorphic sheaf cohomology), with respect to the covering

{Ui} of PT
+. If all the members of this cochain can simultaneously be

expressed in the form

fij = hi − hj , with each hk holomorphic on Uk

then we say that the collection {fij} is a 1-coboundary. (We may check that

the particular freedom that we encountered, with the replacement Bα  

Bα + λAα in our example above, is an example of adding a coboundary to

f .) The elements of 1st cohomology (here holomorphic 1st cohomology)q,

with respect to the covering {Ui}, are the 1-cochains factored out by the

1-coboundaries (so two 1-cochains are deemed equivalent, as elements of

1st cohomology, if their difference is a 1-coboundary).

Now, we would like to get rid of this reference to a particular covering

of PT
+ and to refer just to PT

+ itself. The general procedure for doing this

is to take what is called a “direct limit” of finer and finer coverings, but

this is complicated and non-intuitive. Fortunately, one of the miracles of

complex analysis now comes to our rescue, which tells us that if the sets Ui

are what are called Stein manifolds, then we are already finished, and we

do not need to take the direct limit! The cohomology relative to any Stein

covering {Ui} of PT
+ is independent of the choice of Stein covering, and

therefore refers simply to PT
+ itself, as a whole!

But what is a Stein manifold? The definition refers simply to its intrin-

sic complex-manifold structure, and it does not depend on any particular

imbedding of it in a larger complex manifold (such as PT
+). It is easiest

not to rely on a full definition a Stein manifold here, but merely give some
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examples of certain widespread classes of Stein manifolds, so that we can

see how easy it is to ensure that we do have a Stein covering. In the first

place, any region of Cn that is delineated by the vanishing of a family of

(holomorphic) polynomial equations is Stein (an “affine variety”). Secondly,

any region of CP
n obtainable by excluding the zero locus of a single homo-

geneous polynomial will be Stein. Thirdly, any region of Cn which has a

smooth boundary satisfying a certain “convexity” condition — referred to

as holomorphic pseudo-convexity (specified by a positive-definiteness crite-

rion on a certain Hermitian form defined by the equation of the boundary,

called the Levy formr). This last property tells us that we can always find

small Stein-manifold open neighbourhoods of any point of a complex man-

ifold (e.g. a small spherical ball).

An important additional property is that the intersection of Stein man-

ifolds is again always Stein. We can use this fact to compare 1st cohomol-

ogy elements defined with respect to two different Stein coverings {Ui} and

{VI}. All we need to do is find the common refinement of the two coverings,

which is a covering {WiJ} each of whose members is the intersection of one

set from each of the two coverings:

WiJ = Ui ∩ VJ

(where we may ignore the empty intersections) and this will also be a Stein

covering. Thus, if we have cochains {fij} with respect to {Ui} and {gIJ}

with respect to {VI}, then we can form the sum “f +g”, with respect to the

common refinement {WiJ} as the cochain {fij |IJ + gIJ |ij}, where fij |IJ is

fij on Ui ∩ Uj , restricted to its the intersection with VI ∩ VJ , and gIJ |ij is

gIJ on VI ∩ VJ , restricted to its the intersection with Ui ∩ Uj . It is a direct

matter to show that this leads to a sum of the corresponding cohomology

elements. Hence, the notion of a 1st cohomology element of PT
+ is intrinsic

to PT
+, and does not really care about how we have chosen to cover it with

a collection of open (Stein) sets.s This now gets us out of our difficulty with

the twistor representation of massless fields. But it leads us to a greater

degree of sophistication in the mathematics needed for the description of

physical fields than we might have expected.

One aspect of this sophistication is that our twistor description is al-

ready a non-local one, even for the description of certain things which, in

ordinary space-time, are perfectly local, like a physical field. But we should

bear in mind that this twistor description is primarily for wavefunctions,

and we recall from §1 that the wavefunction of a single particle is already

something with puzzling non-local features (since the detection of the par-
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ticle in one place immediately forbids its detection at some distant place).

Accordingly, twistor theory’s essentially non-local description of wavefunc-

tions is actually something rather closer to Nature than the conventional

picture in terms of a space-time “field”. Indeed, it is frequently pointed

out that this holistic character of a wavefunction distinguishes it funda-

mentally from the kind of local behaviour that is exhibited by ordinary

physical fields or wavelike disturbances, this distinction contributing to the

common viewpoint that a wavefunction is not to be attributed any actual

“physical reality”. However, we see that the cohomological character of the

twistor formulation of a wavefunction gives it precisely the kind of holistic

(non-local) nature that wavefunctions actually posses, and I would contend

that the twistor formulation of a wavefunction assigns just the right kind

of mathematical “reality” to a physical wavefunction.

To emphasize the essential non-locality of the concept of cohomology, we

may take note of the fact that the 1st (and higher) holomorphic cohomology

of any Stein manifold always vanishes. (I have not defined cohomology

higher than the 1st here; the basic difference is that for n-cochains, we need

functions defined on (n + 1)-ple intersections, with a consistency condition

on (n+2)-ple intersections, the coboundaries being defined in terms of “h”s

on n-ple intersections.t) It is important, therefore, that PT
+ is not Stein (it

is, indeed, not pseudo-convex at its boundary PN). It is this that allows non-

trivial holomorphic 1st cohomology elements to exist. However, from what

has just been said, we see that 1st cohomology of an open region always

vanishes locally, in the sense that it vanishes if we restrict it down to a small

Stein set containing any chosen point. First (and higher) cohomology, for

an open complex manifold, is indeed an essentially non-local notion.

To end this section, we take note of the remarkable fact that the positive-

frequency condition for a wavefunction is now neatly taken care of by the

fact that we are referring simply to the holomorphic (1st) cohomology of

PT
+. Correspondingly, negative-frequency complex massless fields would

be those which are described by the holomorphic cohomology of PT
−. This

provides a very close analogy to the way in which the positive/negative

frequency splitting of a (complex) function defined on the real line — com-

pactified into a circle S
1 — can be described in terms of holomorphic ex-

tendibility into the northern or southern hemispheres S
+, S

− of a Riemann

sphere (a CP
1) whose equator represents this S

1 (and where I am arranging

things so that the “north pole” is the point −i, with the “south pole” at

+i). A complex function defined on S
1 can be split into a component which

extends holomorphically into S
+, namely the positive-frequency part, and a
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component which extends holomorphically into S
−, the negative frequency

part. This splitting is very closely analogous to the splitting of a complex

1st cohomology element defined on the “equator” PN of PT (a CP
3) into its

“positive frequency part”, which extends holomorphically into PT
+ , and

its “negative frequency part”, extending holomorphically into PT
−. A com-

plex function can be thought of as an element of “0th cohomology”, and

the whole “splitting” procedure applies also to nth cohomology, defined

on an analogue of PN, dividing CP
2n+1 into two halves analogous to PT

+

and PT
−.

In each case, we can consider that these functions may be “twisted”

to a certain degree, which refers to fixing a particular homogeneity for the

functions (cohomology elements), as defined on the non-projective space

C2n+2. There is, however, a more serious subtlety if we wish these cohomol-

ogy elements to form a Hilbert space, so that there is a (positive definite)

norm, or Hermitian scalar product defined. This requires an appropriate

notion of “fall-off” as the cohomology element approaches the boundary.

We can ensure that this scalar product exists, however, if we demand an-

alyticity at S
1, or at PN (or at the higher-dimensional analogue of PN,

for higher cohomology), which is adequate for most purposes in twistor

theory.u

Some readers might be disturbed by the dual role that PT
+ seems to

be playing in this discussion. On the one hand, we have seen in §3 that it

is associated with positive helicity but, on the other, we now see that it is

associated with positive frequency, which means positive energy. However,

this association between the signs of helicity and energy may be regarded as

a consequence of the (arbitrary) choice that we have made to express things

in terms of T (the Zα-description) rather than T∗ (the Wα-description).

Had we used T∗, we would find that the forward tube is represented in

terms of projective lines in T∗ (the space of dual twistors Wα for which the

norm ‖W‖ = W̄αWα is negative), whereas it would now be the massless

kinematics for negative helicity which is represented by this space, and the

association would be between the signs of minus the helicity and of energy.

6. The Non-Linear Graviton

There is a particular quality possessed by 1st cohomology that seems to

provide a strong pointer to the future development of twistor theory. This

is the existence of certain non-linear generalizations of 1st cohomology that

have important (but as yet incomplete) relevance to the twistor descriptions
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of the known interactions of Nature: the Einstein gravitational interaction

and those forces (electro-weak and strong) described by Yang–Mills theory.

Recall that in 1st cohomology we have functions defined on overlaps of

pairs of open sets, with a consistency relation on triple overlaps of open

sets. This is closely analogous to the procedure for building a (perhaps

“curved”) manifold out of overlapping coordinate neighbourhoods. Here

there are transition functions defined on overlaps of pairs, with a consistency

condition on triple overlaps, and there is a condition of non-triviality for

the resulting manifold that is analogous to the coboundary condition of

cohomology.

The analogy can be made much more precise in the case of small de-

formations of some given complex manifold X . Here we take a (locally

finite) covering {Ui} of X . We consider a cochain {Fij}, where each Fij is

a holomorphic vector field on Ui ∩ Uj . We are to think of the sets Ui as in-

finitesimally “sliding” over one another, as directed by this vector field. In

fact, any non-trivial continuous deformation of X to a new complex mani-

fold can be generated (infinitesimally) by such means, for some non-trivial

1st cohomology element defined by such a cochain. The converse is not

quite true, as unless a certain 2nd cohomology element vanishes — which

usually seems to be the case — we cannot guarantee that the given 1st

cohomology element actually “exponentiates” consistently to give a finite

deformation.

We shall first consider projective twistor space and, to be specific, let us

take X to be either PT
+ or an appropriate neighbourhood of some line PR

in PT. The latter situation refers to the local space-time neighbouring some

space-time point R. We imagine some point Q, near R, moving around,

so as to sweep out some open neighbourhood V of R in CM; then the

corresponding line PQ in PT will sweep out some small open region PR in

PT, called a tubular neighbourhood of PR.

We are going to try to deform twistor space, so that it might, in some

way, encode the structure of a curved space-time. The reason for consid-

ering PT
+ or PR is that it turns out that we cannot deform the whole of

PT, continuously, so as to obtain a distinct complex manifold. For there are

rigorous theorems which tell us that there is no complex manifold with the

same topology as CP
3 whose complex structure actually differs from that

of CP
3. But if we restrict attention to PT

+, or to our tubular neighbour-

hood PR of the line PR, then many such deformations are possible. For

definiteness in what follows, let us work with the tubular neighbourhood

case PR.
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In fact, we can use a twistor function f , homogeneous of degree +2

(this homogeneity corresponding to helicity s = −2, as is appropriate for a

left-handed graviton), to generate the required deformation — where I am

now assuming, for simplicity, that there are just two open sets U1 and U2

covering PR (where we can take these sets to be the intersections of two

Stein manifolds with PR, if we like, but U1 and U2 will not themselves be

Stein), f being defined on U1∩U2. We may take it that the Riemann sphere

PR is divided, by its intersections with U1 and U2, into two slightly extended

hemispherical open sets which overlap in an annular region, these two being

“thickened out” to give us the two 3-complex-dimensional open regions U1

and U2. We shall generate our deformation by means of the vector field F

on U1 ∩ U2, defined (see §2) by

F = I
αβ

∂f

∂Zα

∂

∂Zβ

which we can rewrite as

F = ε
AB

∂f

∂ωA

∂

∂ωB
.

This vector field has homogeneity 0. In fact, in what follows, we shall first

allow F to be a quite general holomorphic vector field on U1 ∩ U2, homo-

geneous of degree 0. The special significance of the particular form given

above will emerge a little later.

If we imagine sliding U1 over U2 by an infinitesimal amount, according to

F, then (by virtue of this homogeneity) we get an infinitesimal deformation

of the complex structure of the projective space PR. In fact, we can now

envisage exponentiating F, so as to get a finite deformation PR˜ of PR.

(Had we chosen a covering of PR with more than two sets, then this might

have been problematic with regard to getting the triple-overlap condition

to behave consistently, and this is the reason for restricting attention the

case of a two-set covering.) Roughly, this amounts to “breaking” PR into

two (overlapping) pieces and then re-gluing the pieces in a slightly displaced

way, so as to obtain PR˜.

How are we to make use of PR˜ as a new kind of (projective) twistor

space? We would like to have some “lines” in PR˜ that can be interpreted

as the points of some sort of “space-time”. We can’t use the same lines as

the PQs that we had before, because these will have now become “broken”

by this procedure. But fortunately, some theorems of Kodaira (1962, 1963)

and Kodaira and Spencer (1958) now come to our rescue, telling us that

(assuming that this deformation — though finite — is in an appropriate

sense “not too big”) there will always be a 4-complex-parameter family
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of holomorphic curves (Riemann spheres) lying in PR˜, characterized by

the fact that they can be obtained continuously from the line PR that we

started with, lying in PT (as the deformation continuously proceeds). Each

curve PQ
˜ of this family — which I shall refer to as a line in PR˜ — is to

be represented by a point Q
˜ of a new complex manifold V

˜. The complex

4-manifold V

˜ is, indeed, defined as the space parameterizing these lines

in PR˜.

In fact, the manifold V

˜ automatically acquires a complex conformal

structure, purely from the incidence properties of PR˜. Recall from §2 that

this was the case with the relationship between CM and PT, since null

separation between two points Q and S, in CM, is represented, in PT,

simply by the meeting of the corresponding lines PQ and PS. We adopt

precisely the same procedure here, so the light cone of a point Q
˜ in V

˜

is defined simply as the locus of points S
˜ whose corresponding line P§˜

meets PQ˜. Again, it follows from general theorems that this light cone’s

vertex is an ordinary quadratic (i.e. not Finsler) one arising from a complex

quadratic metric (which is thereby defined, locally, up to proportionality).

We can now proceed to piece together several small regions V

˜, obtained

from these “local” tubular neighbourhoods PR˜, so as to obtain a more

extended complex conformal manifold M, obtained from a more extended

(projective) twistor space PT , generalizing complex Minkowski space CM

and its relation to PT.

Does M have any particular properties, by virtue of this construction?

Indeed it does. Most significantly, the very existence of points in PT , leads

to M being anti-self dual (where the “anti” part of this terminology is

purely conventional, chosen here to fit in with standard twistor conventions

and use of the Zα-representation). Why is this? The lines in PT constitute

a 4-parameter family, so those passing through some given point PZ, of PT ,

(2 analytic conditions) will constitute a 2-parameter family. The points of

M representing this 2-parameter family of lines will represent a complex

2-surface, which will be called the α-surface Z in M. Now since each pair of

lines through PZ must intersect (at PZ), it follows that each pair of points

in the α-surface Z must be null separated, so that, as in M, any α-surface

must be totally null (vanishing induced conformal metric), and therefore

is either self dual or anti-self dual. Conventionally, we call the α-surfaces

self dual.

Now we ask: what is the condition on the Weyl curvature tensor Cabc
d

(which is well defined, for a conformal manifold) for the existence of a

3-parameter family of (self-dual) α-surfaces? It is a straight-forward cal-
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culation to show that the self-dual part of the Weyl curvature must con-

sequently vanish and, conversely, that the vanishing of the self-dual Weyl

tensor of a conformal (complex) 4-manifold M is (locally) the condition

for the existence (locally) of a 3-parameter family of α-surfaces. The ex-

istence of such a family enables us to construct M’s (projective) twistor

space PT , each point of PT representing an α-surface in M. The above

procedure thus provides us with a direct way of constructing (any) confor-

mally anti-self-dual (complex) 4-manifold from a suitable (but “generic”)

complex 3-manifold PT , the only technical difficulty, in this construction

being actually findingv such a family of lines in PT . Their existence can be

ensured by the procedure to follow.

The particular form of the vector field F, as given at the beginning of

this section in terms of a twistor function f , provides us only a restricted

class of such projective twistor spaces PT , whose particular significance we

shall be seeing in a moment. For the general projective twistor space PT ,

from which an anti-self-dual conformal manifold can be constructed, we

simply generate our deformation using a general holomorphic vector fieldw

F on U1∩U2, homogeneous of degree 0, in place of one of the above restricted

form. By use of this kind of deformation — for deformations that are “not

too big” — we are assured that PT has the right form for it to have an

appropriate 4-parameter family of lines enabling a generic anti-self-dual M

to be constructed.

We take note of the fact that this construction provides us with a com-

plex anti-self-dual conformal manifold M. Such an M can be the complex-

ification of a real Lorentzian conformal manifold only in the (relatively)

uninteresting case of conformal flatness. For in the complex case, the Weyl

conformal curvature tensor Cabcd can be written in a 2-spinor (abstract-

index) form in just the same way as for the tensor Kabcd of §4

Cabcd = ΦABCDεA′B′εC′D′ + εABεCDXA′B′C′D′ ,

where ΦABCD and XA′B′C′D′ are each totally symmetrical. In the confor-

mally self dual case we have

ΦABCD = 0

and in the conformally anti-self-dual case we have

XA′B′C′D′ = 0 ,

but in the Lorentzian case we must have

XA′B′C′D′ = CΦABCD ,
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so if one vanishes so must the other, whence Cabcd as a whole must vanish

— the condition for (local) conformal flatness. It may be remarked, how-

ever, that in the positive-definite case (signature+ + ++)x and the split-

signature case (signature + + −−)y there is a large family of conformally

(anti-)self-dual 4-manifolds. These spaces, and their twistor spaces, have

a considerable pure-mathematical interest,z there being (different) “reality

conditions” on each of the independent quantities ΦABCD and XA′B′C′D′

in these two cases.

Yet, complex (anti-)self-spaces are by no means devoid of physical inter-

est, especially those which can arise from deformations of (parts of) T for

which F has the special form F = ε
AB

∂f/∂ω
A
∂/∂ω

B, as given at the begin-

ning of this section. We note that, in these cases, the operator ∂/∂πA′ does

not appear, and it follows that its infinitesimal action on Zα = (ωA
, πA′)

leaves πA′ unaffected. Thus, F generates a deformation of (part of) T that

preserves the projection

F : T → S̄∗
,

(where S̄∗ is the complex conjugate of the dual S∗ of the spin space S; note

that S is the space of 2-spinors like ω
A, and S̄∗ is the space of those like

πA′). In each coordinate patch Ui, with standard twistor coordinates, this

projection takes the form

(ωA
, πA′) 7→ πA′ ,

and this now extends to a projection F that applies to the whole (non-

projective) curved twistor space

F : T → S̄∗

The inverse F
−1 of this projection is a fibration of PT , each fibre being the

entire complex 2-surface in T which projects down to a particular π in S̄∗.

In this case, the lines in PT can be neatly characterized as the projective

versions of the holomorphic cross-sections of this fibration. These are the

results of maps R : S̄∗
→ T (whose composition F ◦ R with F is the

identity on S̄∗) which lift S̄∗ back into PT , and they generalize what in the

canonical flat case would be expressed as πA′ 7→ (irAA
′

πA′ , πA′), where r
a

is the position vector of the point in CM that this cross-section defines.

(Note the appearance of the basic incidence relation of §2.)

The 2-surfaces of this fibration have tangent directions annihilated by

a simple closed 2-form τ which is ( 1

2
×) the exterior derivative of a 1-form

ι (of homogeneity degree 2):

2τ = dι , ι ∧ τ = 0
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(the latter condition ensuring simplicity of ι, since τ ∧ τ = 0). The forms ι

and τ are part of the structure of T that is unchanged by the deformation

generated by our special kind of F defined from f as given above; and in the

flat case T, these forms are the two alternative versions of the (Poincaré-

invariant) “δZ”, used in the contour integrals of §4:

ι= IαβZ
αdZ

β =ε
A

′
B

′

πA′dπB′ , τ =
1

2
IαβdZ

α
∧ dZ

β =
1

2
ε

A
′
B

′

dπA′∧dπB′ .

In addition, T has a (“volume”) 4-form φ which is ( 1

4
×) the exterior deriva-

tive of a (“projective-volume”) 3-form θ (each of homogeneity degree 4),

also unchanged by the deformation, where in the flat case T,

θ =
1

6
εαβρσZαdZβ

∧ dZρ
∧ dZσ

, φ =
1

24
εαβρσdZα

∧ dZβ
∧ dZρ

∧ dZσ
,

and we have

4φ = dθ , ι ∧ θ = 0

This local structure possessed by T enables M to be assigned a metric

gab(= εABεA′B′), where the “ε
A

′
B

′

” in g
ab = ε

AB
ε

A
′
B

′

comes from τ (the

area form in the structure of S̄∗) and “εAB” comes from “φ ÷ τ” (the

area form in the fibres of F−1). This metric determines a connection, and

because the projection F : T → S∗ is preserved in our special deformation, it

follows that there is a global parallelism for elements of S̄∗ (the space of πA′ -

spinors). The self-dual part of the Weyl curvature being zero (XA′B′C′D′ =

0), this turns out to imply the vanishing of the Ricci tensor (Rab = 0).

In fact, this argument reverses, and we find that any complex-Riemannian

4-manifold M, which is both Ricci flat and conformally anti-self dual, has

(locally) a twistor space T with the structure just provided above, from

which M can be reconstructed by the foregoing procedure (in which the

points of M are identified as holomorphic cross-sections of the fibration

F
−1).

How are we to interpret such a complex “space-time” M physically?

The first place where such spaces were encountered, in a physical con-

text, was with the H-space construction of Ezra T. Newman (1976, 1979).

Here, one considers the complexified future conformal infinity CJ +, of

an asymptotically flat space-time (assumed analytic), and examines cross-

sections (“cuts”) of CJ +, which satisfy a condition of “vanishing complex

asymptotic shear”, this being a generalization to a curved space-time of a

procedure which would locate the intersections, with CJ +, of the future

light cones of points in CM. In the case where M = CM, this procedure
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indeed enables CM to be reconstructed from the geometrical structure of

its CJ +. However, in the general case of a gravitationally radiating (ana-

lytic) asymptotically flat space-time, one finds that this procedure does not

reproduce the original space-time (complexified) but, instead, produces a

Ricci-flat, conformally anti-self-dual complex 4-space called H-space, which

may be thought of as the “space-time” reconstructed from the anti-self-dual

part of its outgoing gravitational field.aa

Subsequently it was proposedbb that such anti-self-dual Ricci-flat com-

plex spaces, if subjected to an appropriate condition of “positive frequency”

could be viewed as representing a non-linear description of the wavefunction

of a left-handed graviton. Indeed this kind of interpretation is very much in

line with the aims of twistor theory, as put forward in §1. In the standard

perturbative viewpoint, a single “graviton” would be described by a solu-

tion of linearized general relativity, and it is an entirely flat-space quantity,

where curvature and non-trivial causality structure does not arise. These ge-

ometrical properties, characteristic of general relativity proper, only occur

when contributions involving an indefinitely large number of such “linear”

gravitons are involved. But a non-linear graviton, as described by the above

twistorial construction, is already a curved-space entity, and we may take

the view that, in that description, each graviton carries its own measure of

actual curvature. Moreover, being a non-linear entity, the concept of such

a graviton moves us away from the standard linear structure of quantum

mechanics, leading to a hope that eventually some non-linear quantum me-

chanics might arise, according to which the measurement paradox might

eventually be resolved.

7. The Googly Problem; Further Developments

As yet, however, there is no clear relation between this kind of non-linearity

and that which might be relevant to state reduction. Any such development

would seem to require, as an initial step, a more complete description of

the gravitational field than that which was outlined in the previous sec-

tion. The “non-linear graviton” of §6 is, after all, only “half a graviton”

in the sense that it restricts our consideration to only one of the two he-

licities that should be available to a graviton. Of course one could repeat

the entire argument in terms of the dual twistor description — or Wα-

representation — and then we should have a description of a right-handed

non-linear graviton. But this is of no use to us if we wish for a compre-

hensive formalism in which, for example, plane-polarized gravitons might
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be described. In such a formalism, it would have to be possible also to

describe a right-handed (i.e. self-dual) graviton while still using the Zα-

representation (or, equivalently, to describe a left-handed graviton using

the Wα− -representation). This would mean finding the appropriate non-

linear version of a twistor function homogeneous of degree −6 (which, in

the Z
α-representation, means helicity s = +2). This problem is referred to

as the googly problem (a reference to the subtle bowling of a cricket ball

with a right-handed spin about the direction of motion, using a bowling

action which would appear to be imparting a left-handed spin).

I have referred to the googly problem only in the gravitational case, but

there are analogues for electromagnetism and other Yang–Mills fields also.

For left-handed photons (or the left-handed high-energy massless limit of

W- or Z-bosons, or “gluons” of strong interactions) one would anticipate

some sort of twistor deformation that is obtainable from the “exponenti-

ation” of vector field obtainable from a twistor function homogeneous of

degree 0. Indeed, there is such a construction, due to Richard Ward (1977)

which provides the general anti-self-dual solution of the Yang–Mills equa-

tions, for a given specific group, in terms of such a (generally non-linear)

twistor construction. Basically, what is required is to produce a (locally

unconstrained) holomorphic vector bundle (for this group), over some suit-

able region X of PT where, as in §6, we may take X to be either PT
+ or

an appropriate tubular neighbourhood of some line PR in PT. Then, noting

that holomorphicity basically fixes the bundle to be constant over any line

in X , we obtain a fibre over that point in CM which corresponds to this

line. Thus, we can transfer the whole bundle over X to a bundle over the

corresponding region V , in CM. From the fact that there is a single fibre

over any specific point PZ in X , we find a natural connection defined on the

bundle over X that is necessarily constant over the corresponding α-plane

Z in V . This makes the connection an anti-self-dual one, as required, and

we find that this construction is reversible, showing the essential equiva-

lence between anti-self-dual Yang–Mills fields on (appropriate) regions of

CM and holomorphic bundles on the corresponding regions in PT.

This is the geometrical essence of the Ward construction. It has found

many applications, especially in the theory of integrable systems.cc It is

clear, however, that for a full application of these ideas in basic physical

theory, a satisfactory solution to the Yang–Mills googly problem is needed

also. In view of its importance, it is perhaps remarkable how little interest

this topic has aroused so far in the physics community, although the matter

has recently received some attention in the twistor-string literature, which
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I shall refer to briefly at the end of this section.

My own approach has been to concentrate attention more thoroughly on

the gravitational googly problem, in the hope that the seemingly more se-

vere restrictions on what types of construction are likely to be appropriate,

in the gravitational case, may act as a guide to the correct approach. On the

whole, however, there has been much frustration (for over 25 years!), and

it is still not altogether clear whether the correct approach has been found.

Accordingly, I shall only rather briefly outline what seem to be the three

most promising modes of attack on this problem, concentrating mainly on

the first. These may be classified crudely as follows:

• Geometric

• Functorial

• Twistor-string related.

It should be mentioned that a satisfactory solution of the googly problem

should also inform us how the left and right helicities of the graviton are to

combine, so we anticipate a twistorial (“Zα”-)representation of solutions of

the full (vacuum) Einstein equations.

The geometric approachdd is the most fully developed, and it has turned

out to be possible to encode the information of a vacuum (i.e. Ricci-flat),

analytic and appropriately asymptotically flat, complexified, space-time M

in the structure of a deformed twistor space T . The construction of T from

M is completely explicit, and the data determining the structure of M

seems to be given freely (i.e. without differential equations or awkward

boundary conditions having to be solved). However the re-construction of

M from T remains conjectural and somewhat problematic.

The local structure of this proposed complex 4-dimensional twistor space

T can be defined in terms of the (non-vanishing) holomorphic forms ι and

θ (a 1-form and a 3-form, respectively) that we had in §6, where

ι ∧ dι = 0 , ι ∧ θ = 0 ,

as before, from which we can infer that T is foliated, locally, by a family of

holomorphic curves — which I shall refer to as Euler curves defined by θ,

and of holomorphic 3-surfaces, defined by ι, each of these 3-surfaces being

foliated by Euler curves, but now we are to specify each of ι and θ only

up to proportionality. There are, however, some restrictions on how these

forms can be jointly rescaled, which can be stated as the requirement that

the following two quantities Π and Σ are to be invariant:

Π = dθ ⊗ dθ ⊗ θ , Σ = dθ ⊗ ι = −2θ∅dι
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where we demand that the two given expressions for Σ are to be equal, the

bilinear operator “∅” being defined by

η∅(ρ ∧ σ) = (η ∧ ρ) ⊗ σ − (η ∧ σ) ⊗ ρ

as applied to any r-form η and 1-forms ρ and σ. We can express this ∅ in

“index form” as twice the anti-symmetrization of the final index of η with

the two indices of the 2-form which follows the ∅ symbol. (This generalizes

to a ∅-operation between an r-form and a t-form, where we take t× the

antisymmetrization of the final index of the r-form with all indices of the

t-form.) The preservation of the two quantities Π and Σ is really just

asserting that on the overlap of two open sets U

′ and U , the quantities ι

and θ must scale according to the (somewhat strange) rules

ι
′ = κι , θ

′ = κ
2
θ , and dθ

′ = κ
−1dθ ,

for some scalar function κ. The Euler homogeneity operator Υ (a vector

field — see beginning of §3), which points along the Euler curves, can be

defined, formally, by

Υ = θ ÷ φ

where we recall that the 4-form φ of §6 is defined from θ by 4φ = dθ. More

precisely, we can define Υ by

dξ ∧ θ = Υ(ξ)φ

for any scalar field ξ. We find, on the overlap between open regions U ′ and

U (primed quantities κ
′ and Υ

′ referring to U

′), that

κ
′ = κ

−1

Υ
′ = κ

3
Υ

and, consequently,

Υ(κ) = 2κ
−2

− 2κ

and, equivalently Υ(κ−1) = 2κ
2
− 2κ

−1. We can deduce from all this that,

on overlaps, κ
3 takes the form

κ
3 = 1 − f−6(Z

α)

in standard flat-space terms, so we obtain the encoding of a twistor function

f−6, homogeneous of degree −6 (in a fully cohomological way).

This geometrical means of encoding a twistor function of the required

“googly” homogeneity −6 may seem somewhat strange, where the informa-

tion is stored in a curious non-linear deformation of the scaling of the Euler
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curves (the curves which collapse down to points in the passage from T to

PT ). This deformation destroys the clear notion of the homogeneity degree

of a function defined on T . On the other hand, no other procedure has yet

emerged for the encoding of this self-dual curvature information in a de-

formation of twistor space. Moreover, this curious non-linear scaling of the

Euler curves can actually be seen to arise in an well-defined construction

of T in terms of the space-time geometry of M, where the points of T are

defined as solutions of an explicit differential equation defined at CJ +, in

which the self-dual (as opposed to anti-self-dual) Weyl curvature appears as

a coefficient in the equation determining this scaling.ee There also appears

to be a clear algebraic role for these particular scalings in certain relevant

expressions.

Nonetheless, to be fully confident that such procedures are really follow-

ing “correct” lines, one would like to have a clear-cut way of seeing that the

resulting gravitational theory is really left/right symmetric, despite the ex-

treme lop-sidedness that seems to be involved in this geometry. One might

imagine that this could be understood at a formal algebraic level; for the

algebra generated by commuting quantities Z0, Z1, Z2, Z3 is formally iden-

tical with that generated by ∂/∂Z0, ∂/∂Z1, ∂/∂Z2, ∂/∂Z
3. But, can we

see, for example, that if we translate (in some formal sense) a pure left-

helicity (s = −2) “non-linear graviton” — as given by the prescriptions

of §6 — from a construction in terms of ordinary “Zα-coordinates” to one

in terms of “∂/∂Zα-coordinates”, then this now behaves (being now pure

right-handed, s = +2) as though it were a complex manifold, as constructed

in the present section, with a flat PT (i.e. for which PT , is a portion of flat

projective twistor space PT) so that a pure right-helicity graviton is now

being described?

The required notions can be at least partially formulated in terms of

category theory,ff where one finds a certain “functorial” relation between

the multiplicative action of a quantity X and the derivative action of ∂/∂X,

but where the latter is dual to the former, in the sense that the functorial

arrows are reversed.gg One would hope to find that the above deforma-

tions generated by twistor functions of homogeneity degree +2 and −6 to

be related in a similar way. As yet, this is not very clear, the issues being

complicated by a basic obscurity about how one is to “dualize” the pro-

cedures that apply to building a manifold out of open coordinate patches.

These matters are tied up with the issue of the “radius of convergence”

of an analytic function defined by a power series in Zα (so that the func-

tion has an appropriate open set on which it is defined) and whatever the
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corresponding notion should be for a “power series” in ∂/∂Zα.

It would appear to be probable that some insights into the appropriate

“quantum twistor geometry” are to be obtained from the procedures of

non-commutative geometryhh applied to the original twistor space T, since

here we have basic “coordinates” Zα and Z̄α which do not commute, these

behaving formally like Zα and −∂/∂Zα I am not aware of any detailed

work in this direction, however. In the absence of this, I wish to make

some pertinent comments that seem to address this kind of issue from a

somewhat different angle.

There is at least one way in which the replacements

Z̄α  −

∂

∂Zα
and

∂

∂Z̄α

 Zα

do find a clear mathematical representation in important twistor expres-

sions. This is in the (positive definite) Hermitian scalar product 〈f |g〉 be-

tween positive-frequency twistor functions (1st cohomology elements) f and

g, each of a given homogeneity degree r. Let us choose another such twistor

function h, but now of homogeneity r − 1. Then we find the relations

〈

∂f

∂Zα
|h〉 = −〈f |Z

α
h〉 ,

〈Z
α
h|f〉 = −〈h|

∂f

∂Zα
〉 ,

which is consistent with the above replacements, where we must bear

in mind that the quantities in the “〈. . . |” actually appear in complex-

conjugate form and that in the first of these relations a minus sign comes

about when the action of “∂/∂Z̄α” is transferred from leftward to rightward.

To see how to ensure that these relations are satisfied, we need the

general form of the scalar product, but where (for the moment) I restrict

attention to cases for which r > −4. We find that this scalar product takes

the form

〈f |g〉 = c

∮

f̄(Wα)[WαZα]−r−4g(Zα)d4W ∧ d4Z

where c is some constant, independent of r, where d4W = 1

24
ε

αβρσdWα ∧

dWβ ∧ dWβ ∧ dWβ and correspondingly for d4Z (which is the 4-form φ

above), and where (with n > 0)

[x]−n = −(−x)−n(n − 1)!

so that

[x]−1 = x
−1 and

d[x]−n

dx
= [x]−n−1 .
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The scalar product 〈. . . | . . .〉 then satisfies the required relations, above (for

r > −4).

Now, bearing in mind what was said earlier, towards the end of §4, about

the need to consider twistor functions that are not necessarily homogeneous

(this being reinforced by the discussion of the googly problem, earlier in this

section, in which inhomogeneous expressions arise), we find that we shall

need to replace the “[WαZα]−r−4” term in the scalar product by a sum of

such terms in which different values of r are involved (taking note of the

fact that the “cross-terms”, where the integrand has homogeneity other

than zero, must vanish). If we are concerned with only a finite number

of these terms, then we have no problem, but for an infinite number of

terms (again restricting to r > −4, for the moment), then we appear to be

presented with the seriously divergent series

F (x) = x
−1

− 1!x−2 + 2!x−3
− 3!x−4 + 4!x−5

− 5!x−6 + . . . .

Yet, in the 18th century, Euler had already shown that — in a formal sense

at least — this series can be equated to the convergent expressionii

E(x) = (−γ − log x) + x(1 − γ − log x) +
x

2

2!
(1 +

1

2
− γ − log x)

+
x

3

3!
(1 +

1

2
+

1

3
− γ − log x)

+
x

4

4!
(1 +

1

2
+

1

3
+

1

4
− γ − log x) + . . . ,

where γ is Euler’s constant. The function E(x) can be defined in various

equivalent ways, for example by the (equivalent) integral formulae

E(x) = ex

∫

∞

x

e−u

u
du

=

∫

∞

0

e−u

(u + x)
du

where we formally have

F (x) − E(x) = 0 .

This suggests that we might use E(WαZα) in place of our divergent

F (WαZα), in the contour integral expression for 〈f |g〉 (and that this might

also serve to extend the definition of 〈. . . | . . .〉 to values of r with r ≤ −4).
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However, this is not such a simple matter because the singularity struc-

ture of the terms in the series for E(x) involve logarithms, and the standard

contours surrounding the poles that occur in the formal series for F (x) run

into branch cuts, and cannot be directly used. The issues arising here appear

to be somewhat subtle and complicated, and they are not fully resolved at

present. Various approaches for handling such logarithmic terms have been

used in the past, including regarding log x, in a contour integral, as arising

from a limitjj of x
νΓ(ν) as ν → 0. But the most fruitful and satisfactory

procedure appears to be to regard such terms as being treated as though

the contour has a boundary in place of the branch cut in log x, the “log x”

term itself being replaced, more or less, by 2πi. In fact, according to a

detailed study of twistor diagrams (the twistor analogue of Feynman dia-

grams) by Andrew Hodges (1985, 1998), this boundary should be taken at

x = k, where k is some non-zero constant. Hodges also finds that the nat-

ural value of k appears to be given by k = e
−γ (or possibly at k = −e

−γ),

where γ is Euler’s constant. This choice has to do with the requirement that

infra-red divergences be regularized (as indeed they are with this prescrip-

tion), and also that a certain idempotency requirement of twistor diagrams

be satisfied.

It is interesting that this choice of boundary at x = e−γ corresponds

to a requirement that the leading term “(−γ − log x)”, in the expansion of

Euler’s function E(x) above, should vanish. Indeed, we appear to resolve a

difficulty with the contour topology, in the definition of 〈. . . | . . .〉, if we allow

a “blow down” in the twistor space T where our (8-dimensional) contour, in

T × T∗, encounters WαZα = e−γ , a place where −γ − log(WαZα) vanishes

on one branch of the logarithm, which seems to be a requirement for the

consistency of this procedure. However the full significance of all this is

not yet clear, and requires further understanding. This is work presently

in progress, but there is significant hope that the procedures that Hodges

has successfully developed in the theory of twistor diagrams may serve

to illuminate, and to be illuminated by, this study of quantum twistor

geometry.

Finally, some remarks concerning the recent twistor string theory are

appropriate here. In December 2003, Edward Witten introduced the basis

of this new body of ideas.kk Here, many of the procedures of string theory

are united with those of twistor theory to provide some great simplifications

and new insights in the theory of Yang–Mills scattering processes. These

involve multiple “gluon” processes (in the massless limit), where in -and

out- gluon states are taken to be pure helicity states. To some consider-
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able extent, twistor theory is well set up to handle such situations (helicity

states for massless particles being the natural building blocks of the phys-

ical interpretation of twistor theory). So it is perhaps not surprising that

twistor theory can offer considerable simplifications in the description of

such processes.

But it is likely that the string-theory perspective can also offer some

new insights into the basis of twistor theory also. As has been emphasized

at several places above, the information in a twistor wave-function is stored

non-locally (in the form of 1st cohomology or in the non-linear construction

of a deformed twistor space). There is no local information in these con-

structions. The situation is reminiscent of what happens in a topological

quantum field theory, where again there is no local information, but a La-

grangian formalism can nevertheless be introduced. (An oft-cited example

of this is “(2 + 1)-dimensional general relativity”, where the “vacuum” is

treated as a Ricci-flat region, as in standard 4-dimensional general relativ-

ity, but where in this 3-dimensional case the Weyl curvature also vanishes

— automatically. There is now no local field information and no dynam-

ics for this “gravitational field”, yet a Lagrangian formalism can still be

used.) Witten (1988) has shown that such a topological quantum field the-

ory can be treated using string-theoretic procedures and non-trivial results

thereby obtained (such as in the theory of knots and links in 3-dimensional

space). The fact that there is no local dynamics both in the case of twistor

theory and in the situations of a topological field theory suggests that

there could be a link between the two. Indeed, Witten proposes such a

link (this being more strictly a “holomorphic” than a topological theoryll),

and there is considerable hope that this may open up new prospects for

twistor theory, where up to now there has been little in the way of a La-

grangian basis for developing a comprehensive “twistor dynamics” leading

to a genuine approach to a twistorial theory of physics that can stand on

its own.

As for how this might relate to a full solution to the googly problem,

no serious attempt seems to have been made, so far, to tackle the issues

that arise in gravitational theory. But some developments in the case of

Yang–Mills theory have been suggested. These may be regarded as tak-

ing the Ward construction as encompassing the anti-self-dual part of the

Yang–Mills field, but then perturbing away from this so as to provide a full

description in which both self-dual and anti-self-duel parts of the Yang–

Mills field are described. Although this procedure does not yet provide a

full resolution of the googly problem in the Yang–Mills case (let alone the
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Einstein case) it seems to indicate some new directions of procedure which

could open up promising lines of new development.
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Notes

a. See Penrose 1987, pp. 350, 359.

b. See Einstein, Podolsky, and Rosen (1935); Bohm (1951) Ch. 22, §§15–

19; Bell (1987); Baggott (2004).

c. For results of this kind, see Tittel et al. (1998).

d. See Károlyházy, F. (1966); Diósi (1989); Penrose (1996, 2000, 2004).

e. This was around 1955, but only published later; see Penrose (1971,

1975, 2004). It should be mentioned that a version of spin-network

theory is also used in the loop-variable approach to quantum gravity;

see Ashtekar and Lewandowski (2004).

f. However, John Moussouris (1983) has had some success in pursuing

this approach, in his (unpublished) Oxford D.Phil. thesis.

g. This is a well-known correspondence; see, for example, Penrose (2004),

§22.9, Fig. 22.10.

h. See Terrell (1959); Penrose (1959, 2004 §18.5).

i. Penrose (1976).

j. See Penrose and Rindler (1986), Chapter 9; Penrose (2004) §§33.3, 5.

k. Penrose and Rindler (1986) §§9.2,3; Penrose (2004).

l. Penrose and Rindler (1984).

m. Penrose and Rindler (1984), Chapter 2.

n. Fierz and Pauli (1939); Fierz (1940); Penrose and Rindler (1984).

o. See Penrose (1968, 1969); Hughston (1979); Penrose and Rindler

(1986); versions of these expressions can be traced back to Whittaker

(1903) and Bateman (1904, 1944).

p. This type of non-singular field, termed an “elementary state”, being of

finite norm and positive frequency, plays an important role in twistor

scattering theory (see Hodges 1985, 1998). These fields appear to have

been first studied by C. Lanczos.

q. The more conventional term to use here, rather than “holomorphic

cohomology” is “sheaf cohomology”, with a “coherent analytic sheaf”;

see Gunning and Rossi (1965), Wells (1991).



October 7, 2005 16:9 WSPC/Trim Size: 9in x 6in for Review Volume 17˙penrose3

The Twistor Approach to Space-Time Structures 501

r. If the (smooth) boundary is defined by L = 0, where L is a smooth

real-valued function of the holomorphic coordinates zi and their com-

plex conjugates z̄i, and whose gradient is non-vanishing at L = 0,

then the Levy form is defined by the matrix of mixed partial deriva-

tives ∂
2
L/∂zi∂z̄j restricted to the holomorphic tangent directions of

the boundary L = 0. See Gunning and Rossi (1965); Wells (1991).

s. It may be remarked that a full Stein covering of PT
+ must always

involve an infinite number of open sets, because PT
+ is not holomor-

phically pseudo-convex at its boundary PN. In practice, however, one

normally gets away with just a 2-set covering, encompassing a more

extended region PT of than just PT
+.

t. The descriptions of sheaf cohomology that I am providing here are be-

ing given only in the form of what is called C̆ech cohomology. This

turns out to be by far the simplest for explicit representations. But

there are other equivalent forms which are useful in various different

contexts, most notably the Dolbeault (or ∂̄) cohomology and that de-

fined by “extensions” of exact sequences; see Wells (1991), Ward and

Wells (1989).

u. For further details on these matters, see Eastwood, Penrose, and Wells

(1981), Bailey, Ehrenpreis, and Wells (1982).

v. And checking the normal-bundle condition of the next note 23.

w. If we wish to exhibit PT directly, rather than generating it in this way,

we need to demand the existence of “lines” whose normal bundle is of

the right holomorphic class. See Ward and Wells (1989).

x. Atiyah, Hitchin, and Singer (1978).

y. Dunajski (2002).

z. See, for example, Hitchin (1979, 1982); LeBrun (1990, 1998).

aa. See Penrose (1992).

bb. Penrose (1976).

cc. See, particularly, Mason and Woodhouse (1996) for an overview of these

matters.

dd. Penrose (2001a); Frauendiener and Penrose (2001).

ee. Penrose (2001a).

ff. Eilenberg and Mac Lane (1945); Mac Lane (1988).

gg. See Penrose (2001b).

hh. Connes and Berberian (1995).

ii. See Hardy (1949).

jj. See Penrose (1968), although the needed Pochhammar-type contours

were not understood at that time.
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kk. Witten (2003); this was based partly on earlier results due to Parke and

Taylor (1986) and by Berends and Giele (1988) on Gluon scatterings,

and on twistor-related ideas of Nair (1988).

ll. See also Penrose (1988).
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Eötvös experiment, 208

earth’s quadrupole moment, 265, 280,
281

eccentricity effect, 275–278, 280, 283

ECI (earth-centered inertial frame),
280

energy condition, 79, 89, 293, 300–302

equivalence principle, 6, 24, 25, 205,
207–210, 214

ergoregion, 100, 109

ergosphere, 100

ether, 4, 13, 14

Euler

constant, 497, 498

homogeneity operator, 494

event horizon, 95, 106

exceptional groups, 40, 69

factory frequency offset, 280, 283, 285

Fermi model, 355

Fetishism of mathematics, 17

fiber bundle

cross-section of, 29, 36

finite differences, 153

Flamm paraboloid, 97

fluctuating spacetime, 307

force, tidal, 27

frame dragging (Lense-Thirring
effect), 219

general
covariance, 30, 36
non-relativity, 5, 23, 28
relativity, 3, 5, 6, 8, 23–25, 27–36,

416, 437, 439, 441–443
generally covariant systems, 416, 418,

419, 443
GEO, 242, 250, 252
geodesic deviation, 27
geometric operators, 361, 375
googly problem, 465, 491–493, 497,

499
Gowdy spacetime, 83, 84, 90–92
GPS (or Global Positioning System),

257
orbit adjustments, 257, 279, 284

gravitational
billiards, 47, 49, 50, 56, 68, 69
frequency shift, 273, 274, 286
wave detector, 236, 238, 246, 250
waves, 205, 206, 221–223, 228–231,

233, 236, 240, 253–255
Gravity Probe B, 205, 217, 226

harmonic coordinates, 157
Hawking

effect, 296, 297
rigidity theorem, 110

helicity, 468, 473–475, 477–479, 484,
486, 492, 495, 498, 499

Holographic Principle, 313, 314, 342,
345

holomorphic (function, structure)
Riemann sphere, 468–470, 478, 479,
481, 483, 486, 487

holonomies, 356–359, 370, 371
holonomy, 389–391, 394, 401
hyperbolic formulations, 155, 156, 159

inertial frames
systems, 11–14, 17, 21, 24

inertio-gravitational field, 24, 25, 27,
28, 31–33



October 7, 2005 15:38 WSPC/Trim Size: 9in x 6in for Review Volume bkindex

Index 509

inflation, 383, 385–387, 402, 405–407,
409

interferometer, 229, 234, 236–239,
241–251, 254, 255

interval, null

spacelike, 15, 23

timelike, 15, 23

Israel’s theorem, 110

It from Bit, 365, 368

Kac Moody algebras, 39, 49

Kerr metric, 98

Boyer-Lindquist coordinates, 97

Killing horizon, 99, 107

angular velocity, 108

degenerate, 108

kinematics, 3, 11, 13, 14, 20–22, 24,
32, 34

Kottler black holes, 102

Kruskal-Szekeres extension, 95

light ray(s), 467, 468, 471, 472

lightcone fluctuations, 307

LIGO, 229, 231, 238, 240–242,
245–254

Scientific Collaboration, 252–254,
256

local Lorentz invariance, 205, 210,
212–214

loop variables, 402, 406

lunar laser ranging, 208, 209, 216

M-theory, 312, 319–322, 348

Majumdar-Papapetrou black holes,
101

“many Schwarzschild” black holes,
116

massless

field, 477, 479, 502

particle, 465, 467, 468, 474, 477

Mazur-Bunting-ul-Alam uniqueness
theorem, 112

mixmaster model, 81, 82

Nariai black holes, 102

negative energy density, 299–301, 303,
304, 308

non-linear graviton, 469, 484, 491, 495
numerical relativity, 152–155, 157,

160, 164–168, 171–174

orientation, 391, 396, 397, 409

parametrized post-Newtonian
framework, 214

Pauli-Lubanski spin vector, 473
Penrose conformal completion, 103,

104
perihelion advance, 206, 210, 214,

215, 217
Planck length, 350, 355
plenum, 9
positive frequency, 479, 484, 491, 500
PPN parameters, 214, 216
probability, 33, 35
projective space, 486
pseudo-metric, 23, 28

quantum
bridge, 374
cosmology, 387, 390, 393, 394, 396,

400, 407, 409, 414
effects in the early universe, 298
Einstein’s equations, 352
field theory, 6, 34
geometry, 350, 355, 356, 358–362,

364–370, 373–375, 378, 381
quantum gravity, 345, 348, 415–417,

421, 437, 439, 440, 442, 443,
445–448, 450–454, 456, 459,
461–463
problem of, 3
inequalities, 303, 304
mechanics, 18
non-locality, 466, 483
representation, 389, 390

relational time, 396, 398, 417, 437,
438

relativity, principle of, 12, 14
renormalization group, 356, 375, 378



October 7, 2005 15:38 WSPC/Trim Size: 9in x 6in for Review Volume bkindex

510 Index

repulsion, 404
resolution of singularity, 374, 378
Riemann

sphere, 468
tensor, 27–29

Robinson-Trautman black holes, 112
rods, measuring, 12, 36

Sagnac effect, 257, 260, 261, 264, 265,
270, 271

Schwarzschild metrics, 93
second-order Doppler shift, 268, 274,

280, 282
self-dual, 471, 477, 478, 487, 488, 490,

495, 499, 505
semiclassical gravity, 293, 296, 298,

300, 305, 308
Shapiro time delay, 215, 216, 219
shock wave, 92
simultaneity, 10–12, 14
singularity, 76–86, 88–91, 383, 385,
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