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...These are the causes of the formation of
pure primary bodies. The presence in each
kind of further varieties is due to the
construction of the two basic triangles. This
originally produces triangles not in one size
only, but some smaller and some larger, the
number of sizes corresponding to the number
of varieties. So their combinations with
themselves and with each other give rise to
endless complexities, which anyone who is to
give a likely account of reality must survey

Plato, Timaeus
(translated by Desmond Lee,

Penguin, London (1965))





Preface

The above illustration shows a variant woodcut printer’s device on verso last leaf
of rare XVI century edition of Plato’s Timaeus, (Divini Platonis Operum a
Marsilio Ficino tralatorum, Tomus Quartus. Lugduni, apud Joan Tornaesium
M.D.XXXXX). The printer’s device to the colophon shows a medaillon with a
tetrahedron in centre, and the motto round the border: Nescit Labi Virtus, Virtue
Cannot Fail. This woodcut beautifully illustrates the role of the perfect shape of the
tetrahedron in classical culture. The tetrahedron conveys such an impression of
strong stability as to be considered as an epithome of virtue, unfailingly capturing
us with the depth and elegance of its shape. In the course of history the geometry
of the tetrahedron, of the Platonic solids and more generally of the highly sym-
metrical discrete patterns one encounters in Nature and Art has always been
connected with some of the more sophisticated aspects of Mathematics and
Physics of the time. From Plato’s Timaeus, to Piero della Francesca’s Libellus De
Quinque Corporibus Regularibus, to Pacioli’s De Divina Proportione, up to
Kepler’s Harmonices Mundi there have always been attempts to use the Platonic
solids and their many variants to provide mathematical models of the physical
universe. What makes these shapes perfectly irresistible to many mathemati-
cians and physicists, both amateur and professional, is culturally related to their
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long–standing role in natural philosophy, but also to the deceptive fact that the
geometry of these discrete structures often points to unexpected connections
between very distinct aspects of Mathematics and Physics. A property, this latter,
that modern theoretical physics has brought attention to even more. Indeed,
polyhedral manifolds, the natural generalization of Platonic Solids, play quite a
distinguished role in such settings as Riemann moduli space theory, strings and
quantum gravity, topological quantum field theory, condensed matter physics, and
critical phenomena. The motivation of such a wide spectrum of applications goes
beyond the observation that polyhedral manifolds provide a natural discrete ana-
logue of the smooth manifolds in which a physical theory is framed. Rather, it is
often a consequence of an underlying structure, only apparently combinatorial,
which naturally calls into play non-trivial aspects of representation theory, of
complex analysis, and topology in a way which makes manifest the basic geo-
metric structures of the physical interactions involved. In spite of these remarks,
one has to admit that in almost all existing literature, the role of triangulated
manifolds remains that of a convenient discretization of the physical theory, a grab-
bag of techniques which are computationally rather than conceptually apt to dis-
close the underlying physics and geometry. The restriction to such a computational
role may indeed be justified by the physical nature of the problem, as is often the
case in critical statistical field theory, but sometimes it is not. This is the dis-
criminating criterion motivating this Lecture Notes, since in the broad panorama
the theory offers, the relation between polyhedral surfaces, Riemann moduli spaces,
non-critical string theory, and quantum computing emerges as a clear path probing
the connection between triangulated manifolds and quantum physics to the deepest.

Chapter 1 is devoted to a detailed study of the geometry of polyhedral mani-
folds, in particular of triangulated surfaces. This subject, which may be considered
a classic, has recently seen a flourishing of many new results of great potential
impact in the physical applications of the theory. Here the focus is on results which
are either new or not readily accessible in the standard repertoire. In particular we
discuss from an original perspective the structure of the space of all polyhedral
surfaces of a given genus and their stable degenerations. In such a framework, and
in the whole landscaping of the space of polyhedral surfaces, an important role is
played by the conical singularities associated with the Euclidean triangulation of a
surface. We provide a detailed analysis of the geometry of these singularities,
introduce the associated notion of cotangent cones, circle bundles, and of the
attendant Euler class on the space of polyhedral surfaces. This is a rather delicate
point which appears in many guises in quantum gravity, and string theory, and
which is related to the role that Riemann moduli space plays in these theories. Not
surprisingly, the Witten–Kontsevich model lurks in the background of our anal-
ysis, and some of the notions we introduce may well serve for illustrating, from a
more elementary point of view, the often deceptive and very technical definitions
that characterize this subject.

We turn in Chap. 2 to the formulation of a powerful dictionary between
polyhedral surfaces and complex geometry. It must be noted that, both in the
mathematical and in the physical applications of the theory, the connection
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between Riemann surfaces and triangulations typically emphasizes the role of
ribbon graphs and of the associated metric. The conical geometry of the polyhedral
surface is left aside and seems to play no significant a role. This attitude can be
motivated by Troyanov’s basic observation that the conformal structure does not
see the conical singularities of a polyhedral surface. However, this gives a narrow
perspective of the much wider role that the theory has to offer. Thus, we connect a
polyhedral surface to a corresponding Riemann surface by taking fully into
account its conical geometry. This connection is many-faceted and exploits a vast
repertoire of notion ranging from complex function theory to algebraic geometry.
We start by defining the barycentrically dual polytope associated with a polyhedral
surface and discuss the geometry of the corresponding ribbon graph. By adapting
to our case an elegant version of Strebel theorem provided by Mulase, we
explicitly construct the Riemann surface associated with the dual polytope. This
directly bring us to the analysis of Troyanov’s singular Euclidean structures and to
the construction of the bijective map between the moduli space Mg; N0 of Riemann
surfaces (M, N0) with N0 marked points, decorated with conical angles, and the
space of polyhedral structures. In particular the first Chern class of the line bundles
naturally defined over Mg; N0 by the cotangent space at the ith marked point is
related with the corresponding Euler class of the circle bundles over the space of
polyhedral surfaces defined by the conical cotangent spaces at the ith vertex of the
triangulation. Whereas this is not an unexpected connection, the analogy with
Witten–Kontsevich theory being obvious, we stress that the conical geometry adds
to this property the possibility of a deep and explicit characterization of the Weil–
Petersson form in terms of the edge-lengths of the triangulation. This result is
obtained by a subtle interplay between the geometry of polyhedral surfaces and
3-dimensional hyperbolic geometry, and it will be discussed in detail in Chap. 3
since it explicitly hints to the connection between polyhedral surfaces and quan-
tum geometry in higher dimensions.

As we said before, Chap. 3 deals with the interplay between polyhedral surfaces
and 3-dimensional hyperbolic geometry, and to the characterization of the Weil–
Petersson form xWP on the space of polyhedral structures with given conical
singularities. An important role in such a setting is played by the recent nice results
by G. Mondello on an explicit expression of the Weil–Petersson form for hyper-
bolic surfaces with geodesic boundaries. In order to construct a combinatorial
representative of xWP for polyhedral surfaces we exploit this result and the con-
nection between similarity classes of Euclidean triangles and the triangulations of
3-manifolds by ideal tetrahedra. We describe this construction in detail since it will
also characterize a striking mapping between closed polyhedral surfaces and
hyperbolic surfaces with geodesic boundaries. Such a mapping has a life of its own
strongly related with the geometry of moduli space of pointed Riemann surfaces
and it provides a useful framework for discussing such matter as open/closed string
dualities.

The content of Chap. 4 constitutes an introduction to the basic ideas of two-
dimensional quantum field theory and non-critical strings. This is a classic which
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however is useful for illustrating the interplay between Quantum Field Theory,
moduli space of Riemann surfaces, and the properties of polyhedral surfaces which
is the leitmotiv of this LNP. At the root of this interplay there is 2D quantum
gravity. It is well know that such a theory allows for two complementary
descriptions: On one side we have a conformal field theory (CFT) living on a 2D
world-sheet, a description that emphasizes the geometrical aspects of the Riemann
surface associated with the world-sheet; on the other side, the theory can be
formulated as a statistical critical field theory over the space of polyhedral surface
(dynamical triangulations). We show that many properties of such 2D quantum
gravity models are connected with a geometrical mechanism which allows to
describe a polyhedral surface with N0 vertices as a Riemann surface with N0

punctures dressed with a field whose charges describe discretized curvatures
(connected with the deficit angles of the triangulation). Such a picture calls into
play the (compactified) moduli space of genus g Riemann surfaces with N0

punctures Mg; N0 and allows to prove that the partition function of 2D quantum
gravity is directly related to the computation of the Weil–Petersson volume of
Mg; N0 : By exploiting the large N0 asymptotics of the such Weil–Petersson volume,
recently characterized by Manin and Zograf, it is then easy to connect the
anomalous scaling properties of pure 2D quantum gravity, the KPZ exponent, to
the Weil–Petersson volume of Mg; N0 : This ultimately relates with the difficult
problem of constructively characterizing the appropriate functional measures on
spaces of Riemannian manifolds often needed in the study of quantum gravity
models and in the statistical mechanics of extended objects. We also address the
more general case of the interaction of conformal matter with 2D quantum gravity,
and in particular the characterization of the associated KPZ exponents. By elab-
orating on the recent remarkable approach by A. Kokotov to the spectral theory
over polyhedral surfaces we provide a general framework for analyzing KPZ
exponents by discussing the scaling properties of the corresponding discretized
Liouville theory.

In a rather general sense, polyhedral surfaces provide also a natural kinematical
framework within which we can discuss open/closed string duality. A basic prob-
lem in such a setting is to provide an explanation of how open/closed duality is
dynamically generated. In particular how a closed surface is related to a corre-
sponding open surface, with gauge-decorated boundaries, in such a way that the
quantization of such a correspondence leads to a open/closed duality. Typically, the
natural candidate for such a mapping is Strebel’s theorem which allows to recon-
struct a closed N-pointed Riemann surfaces M of genus g out of the datum of a the
quadratic differential associated with a ribbon graph. Are ribbon graphs, with the
attendant BCFT techniques, the only key for addressing the combinatorial aspects
of Open/Closed String Duality? The results of Chap. 3 show that from a closed
polyhedral surface we naturally get an open hyperbolic surface with geodesic
boundaries. This gives a geometrical mechanism describing the transition between
closed and open surfaces which, in a dynamical sense, is more interesting than
Strebel’s construction. Such a correspondence between closed polyhedral surfaces
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and open hyperbolic surface is indeed easily promoted to the corresponding moduli
spaces: Mg; N0 � R

N
þ the moduli spaces of N0-pointed closed Riemann surfaces of

genus g whose marked points are decorated with the given set of conical angles, and
Mg; N0ðLÞ � R

N0
þ the moduli spaces of open Riemann surfaces of genus g with N0

geodesic boundaries decorated by the corresponding lengths. Such a correspon-
dence provides a nice kinematical set up for establishing a open/closed string
duality, by exploiting the recent striking results by M. Mirzakhani on the relation
between intersection theory over Mðg; N0Þ and the geometry of hyperbolic surfaces
with geodesic boundaries. The results in this chapter directly connect with many
deep issues in 3-D geometry ultimately relating with the volume conjecture in
hyperbolic geometry and with the role of knots invariants. This eventually bring us
to the next topic we discuss.

Indeed, Chaps. 5 and 6 deal with the interplay between triangulated manifolds,
Knots, Topological Quantum Field Theory, and Quantum Computation. As Justin
Roberts has nicely emphasized, the standard topological invariants were created in
order to distinguish between things and, owing to their intrinsic definitions, it is
clear what kind of properties they reflect. For instance, the Euler number v of a
smooth, closed and oriented surface S determines completely its topological type
and can be defined as v (S) = 2 - 2g, where g is the number of handles of S. On
the other hand, quantum invariants of knots and 3-manifolds were discovered, but
their indirect construction based on quantum group technology often hides
information about the purely topological properties they are able to detect. What is
lost at the topological level is however well paid back by the possibility of
bridging this theory with a plenty of issues in pure mathematics and theoretical
physics. To the early connections such as quantum inverse scattering and exact
solvable models it is worth adding the operator algebra approach used originally
by Jones in defining his knot polynomial. However, the most profitable develop-
ment of the theory was that suggested by Schwarz and formalized by Witten.
Indeed, recognizing quantum invariants as partition functions and vacuum
expectation values of physical observables in Chern–Simons–Witten topological
quantum field theory provides a physical explanation of their existence and
properties. Even more radically, one could speak of a conceptual explanation, as
far as the topological origin of these invariants keeps on being unknown. In this
wider sense, quantum topology might be thought of as the mathematical sub-
stratum of an SU(2) CSW topological field theory quantized according to the path
integral prescription (the coupling constant k C 1 is constrained to be an integer

related to the deformation parameter q by q = exp 2pi
kþ2

� �
).

The CSW environment provides not only the physical interpretation of quantum
invariants but it does include as well all the historically distinct definitions. In
particular, monodromy representations of the braid group appear in a variety of
conformal field theories since point-like ‘particles’ confined in 2-dimensional
regions evolve along braided worldlines. As a matter of fact, the natural extension
of CSW theory to a 3-manifold m

3 endowed with a non empty 2-dimensional
boundary qm3 induces on qm3 a specific quantized boundary conformal field
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theory, namely the SU(2) Wess–Zumino–Witten (WZW) theory at level ‘ = k ? 2.
The latter provides in turn the framework for dealing with SU(2)q–colored links
presented as closures of oriented braids and associated with Kaul unitary repre-
sentation of the braid group. A further extension of this representation proposed
can be used to construct explicitly the quantum 3-manifold invariants within a
purely algebraic setting. Such quantities are essentially the Reshetikhin–Turaev–
Witten invariants evaluated for 3-manifolds presented as complements of knots/
links in the 3-sphere S3, up to an overall normalization. Discretizations of mani-
folds appear here at a fundamental level, in particular from SU(2)-decorated
triangulations of 3-dimensional manifolds to triangulated boundary surfaces
supporting a (boundary) Conformal Field Theory. Their use is relevant both in the
characterization of the theory and in the actual possibility of computing the
topological invariants under discussion. This computational role is a basic property
since the possibility of computing quantities of topological or geometric nature
was recognized as a major achievement for quantum information theory by the
Fields medalist Michael Freedman and co-workers. Their topological quantum
computation setting was designed to comply with the behavior of modular functors
of 3D Chern–Simons–Witten (CSW) non-abelian topological quantum field theory
(TQFT) the gauge group being typically SU(2). In physicists’ language, such
functors are partition functions and correlators of the quantum theory and, owing
to gauge invariance and invariance under diffeomorphisms, which freeze out local
degrees of freedom, they share a global, topological character. More precisely, the
physical observables are associated with topological invariants of knots—the
prototype of which is the Jones polynomial—and the generating functional is an
invariant of the 3-dimensional ambient manifold, the Reshetikhin–Turaev–Witten
invariant. We will discuss these matters in detail, with many illustrative examples
and diagrams.

We think that these case studies illustrate well the richness of the subject with a
repertoire of mathematical techniques and physical concepts that may disclose new
exciting territories of research.

Pavia, April 2011 Mauro Carfora
Annalisa Marzuoli
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Chapter 1
Triangulated Surfaces
and Polyhedral Structures

In this chapter we introduce the foundational material that will be used in our analysis
of triangulated surfaces and of their quantum geometry. We start by recalling the
relevant definitions from Piecewise–Linear (PL) geometry, (for which we refer freely
to [20, 21]). After these introductory remarks we specialize to the case of Euclidean
polyhedral surfaces whose geometrical and physical properties will be the subject
of the first part of the book. The focus here is on results which are either new
or not readily accessible in the standard repertoire. In particular we discuss from
an original perspective the structure of the space of all polyhedral surfaces of a
given genus and their stable degenerations. This is a rather delicate point which
appears in many guises in quantum gravity, and string theory, and which is related
to the role that Riemann moduli space plays in these theories. Not surprisingly, the
Witten–Kontsevich model [10] lurks in the background of our analysis, and some
of the notions we introduce may well serve for illustrating, from a more elementary
point of view, the often deceptive and very technical definitions that characterize this
subject. In such a framework, and in the whole landscaping of the space of polyhedral
surfaces an important role is played by the conical singularities associated with the
Euclidean triangulation of a surface. We provide, in the final part of the chapter, a
detailed analysis of the geometry of these singularities. Their relation with Riemann
surfaces theory will be fully developed in Chap. 2.

1.1 Triangulations

A n-simplex σ n ≡ (x0, . . . ,xn) with vertices x0, . . . , xn is the following subspace
of R

d , (with d > n),

σ n :=
{

n∑
i=0

λixi

∣∣∣∣∣λi ≥ 0,
n∑

i=0

λi = 1, xi ∈ R
d

}
(1.1)

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 1
DOI: 10.1007/978-3-642-24440-7_1, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 1.1 σ n, for
n = 0, 1, 2, 3

σ 0

1

2

3

σ 

σ 

σ 

where x0, . . . , xn are n + 1 points in general position in R
d . The {λi} provide the

barycentric coordinates of the points x ∈ σ n, i.e., σ n � x =∑n
i=0 λixi . In particu-

lar, the barycentre of σ n is the point

w(σ n) :=
n∑

i=0

1

n+ 1
xi . (1.2)

A face of an n-simplex σ n is any simplex whose vertices are a subset of those of
σ n, and a simplicial complex T is a finite collection of simplices in R

d such that if
σ n

1 ∈ T then so are all of its faces, and if σ n
1 , σ

m
2 ∈ T then σ n

1 ∩ σm
2 is either a face

of σ n
1 or is empty. The h-skeleton of T is the subcomplex K h ⊂ T consisting of

all simplices of T of dimension ≤ h. Note that every simplicial complex with N
vertices admits a canonical embedding into the (N − 1)-dimensional simplex and
consequently into Euclidean space (Fig. 1.1).

Let T be a (finite) simplicial complex. Consider the set theoretic union |T | ⊂ R
d

of all simplices from T

|T | .= ∪σ∈Tσ. (1.3)

Note that |T | can be also seen as the set of all formal (finite) linear combinations

|T | � μ :=

⎧⎪⎨
⎪⎩
∑
σ 0

i ∈T

μ(σ 0
i )σ

0
i

∣∣∣∣∣∣∣0 ≤ μi ≤ 1,
∑
σ 0

i ∈T

μ(σ 0
i ) = 1

⎫⎪⎬
⎪⎭, (1.4)

of vertices σ 0
i of T. The {μ(σ 0

i )} are the (barycentric) coordinates of the point
μ ∈ |T |. Introduce on the set |T | a topology that is the strongest of all topolo-
gies in which the embedding of each simplex into |T | is continuos, (the set A ⊂ |T |
is closed iff A∩ σ k is closed in σ k for any σ k ∈T ). The space |T |is the underlying
polyhedron, geometric carrier of the simplicial complex T, it provides the topological
space underlying the simplicial complex. The topology of |T | can be more conve-
niently described in terms of the star of a simplex σ, star(σ ), the union of all
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simplices of which σ is a face. The open subset of the underlying polyhedron |T |
provided by the interior of the carrier of the star of σ is the open star of σ.Notice that
the open star is a subset of the polyhedron |T |, while the star is a sub-collection of
simplices in the simplicial complex T. It is immediate to verify that the open stars can
be used to define the topology of |T |. The polyhedron |T | is said to be triangulated
by the simplicial complex T. More generally, we adopt the following

Definition 1.1 (Triangulation of a topological space) A topological space is tri-
angulable if it is homeomorphic to the polyhedron of a simplicial complex T,
i.e., if M 
 |T |. A triangulation (Tl ,M) of a topological space M is a simpli-
cial complex T together with a map f : T →M which is a homeomorphism of the
simplicial polyhedron |T | onto M.
Let

V (T ) := {σ 0(1), . . . , σ 0(N0(T ))} ∈ K0 (1.5)

denote the set of N0(T ) vertices of a triangulation (M,T ), and by

E(T ) := {σ 1(1), . . . , σ 1(N1(T ))} ∈ K1 (1.6)

the corresponding set of edges. Then, we have

Definition 1.2 The incidence (or boundary) relation of the triangulation (Tl ,M) is
the map

∂(T ) : E(T ) −→V (T )× V (T )
G2

,

(σ 1(1), . . . , σ 1(N1(T ))) �−→
[(
σ 0(a1), σ

0(b1)
)
/ ∼, . . . , (σ 0(aN1), σ

0(bN1

)
/ ∼] ,
(1.7)

which to each edge σ 1(k) of (Tl ,M) associates a corresponding unordered pair(
σ 0(ak), σ

0(bk)
)
/ ∼ of distinct vertices of (Tl ,M),where∼ is the natural relabel-

ing action G2
(
σ 0(ak), σ

0(bk)
) := (σ 0(bk), σ

0(ak)
)
.

Since two vertices of (Tl ,M) are connetecd at most by one edge, we have that
the cardinality of

∣∣∂−1 (σ 0(ak), σ
0(bk)

)∣∣ can be 0 or 1. The symmetric (0, 1)matrix

Ijk :=
∣∣∂−1(σ 0(aj), σ

0(bk)
)∣∣, (1.8)

is the incidence matrix of (Tl ,M). It follows that the number of edges incident on
the vertex σ 0(k) is provided by

q(k) =
∑
h �=k

Ihk, (1.9)

(for a 2-dimensional triangulation this is also the number of triangles incident on a
vertex). An automorphismΦ(T ) := (ΦV (T ), ΦE(T )) of (Tl ,M) is a pair of bijective
maps
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ΦV (T ) : V (T ) −→ V (T ) ΦE(T ) : E(T ) −→ E(T ), (1.10)

that preserve the incidence relation ∂(T ) : E(T ) → V (T )×V (T )
G2

defining (M,T ).
We have

Definition 1.3 Let (Tl ,M) be a triangulation with N0(T ) vertices and N1(T ) edges.
The group of automorphism Aut(T ) of (Tl ,M) is the group generated by the set of
automorphisms {Φ(T )}.

A simplicial map f : T → L between two simplicial complexes T and L is
a continuous map f : |T | → |L| between the corresponding underlying polyhe-
drons which takes n-simplices to n-simplices for all n, (piecewise straight-line seg-
ments are mapped to piecewise straight-line segments). The map f is a simplicial
isomorphism if f −1 : L → T is also a simplicial map. Such maps preserve the nat-
ural combinatorial structure of R

n. Note that a simplicial map is determined by its
values on vertices. In other words, if f : K0 → L0 carries the vertices of each simplex
of T into some simplex of L, then f is the restriction of a unique simplicial map.

Sometimes, one refers to a simplicial complex T as a simplicial division of |T |.
A subdivision T ′ of T is a simplicial complex such that |T ′| = |T | and each
n-simplex of T ′ is contained in an n-simplex of T, for every n. A property of sim-
plicial complex T which is invariant under subdivision is a combinatorial property
or Piecewise-Linear (PL) property of T, and a Piecewise-Linear homeomorphism
f : T → L between two simplicial complexes is a map which is a simplicial iso-
morphism for some subdivisions T ′ and L′ of T and L. A well-known subdivision is
provided by the barycentric subdivision. This is almost a graphical notion, simple to
draw (in low dimensions), but a little bit annoying to define. It can be characterized
inductively: the barycenter of a vertex σ 0 is the vertex itself, and assume that we have
defined the barycentric subdivision for the generic k − 1 simplex ∈ T , for k ≥ 2.
The construction is extended to the k-dimensional simplex σ k ∈ T by introducing a
new vertex σ ′0 which is the barycentric average of the vertices of σ k, and by taking
the cone, (see the next paragraph), with respect to σ ′0 of the barycentric subdivision
of the k − 1-dimensional boundary of σ k.

1.2 Piecewise-Linear Manifolds

A PL manifold of dimension n is a polyhedron M 
 |T | each point of which has
a neighborhood PL homeomorphic to an open set in Rn. PL manifolds are realized
by simplicial manifolds under the equivalence relation generated by PL homeomor-
phism. Any piecewise linear manifold can be triangulated, and viceversa a triangu-
lated space can be characterized as a PL-manifold according to the [21] (Fig. 1.2).

Theorem 1.1 A simplicial complex T is a simplicial manifold of dimension n if for
all r-simplices σ r ∈ T , the link of σ r, link(σ r) has the topology of the boundary of
the standard (n− r)-simplex, viz. if link(σ r) 
 S

n−r−1.
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Fig. 1.2 Barycentric
subdivision of a
2–dimensional simplicial
complex

Recall that the link of a simplex σ in a simplicial complex T is the union of all
faces σf of all simplices in star(σ ) satisfying σf ∩σ = ∅, also recall that the Cone on
the link link(σ r),C(link(σ r)), is the product link(σ r)× [0, 1] with link(σ r)× {1}
identified to a point. The above theorem follows [21] by noticing that a point in the
interior of an r-simplex σ r has a neighborhood homeomorphic to Br×C(link(σ r)),

where Br denotes the ball in R
n. Since link(σ r) 
 S

n−r−1, and C(Sn−r−1) 
 Bn−r,

we get that |T | is covered by neighborhoods homeomorphic to Br × Bn−r 
 Bn

and thus it is a manifold. Note that the theorem holds whenever the links of ver-
tices are (n − 1)-spheres. As long as the dimension n ≤ 4, the converse of this
theorem is also true. But this is not the case in larger dimensions, and there are
examples of triangulated manifolds where the link of a simplex is not a sphere.
In general, necessary and sufficient conditions for having a manifolds out of a sim-
plicial complex require that the link of each cell has the homology of a sphere, (see
e.g. [21] for further details).

Often one generates an n-dimensional PL-manifold by glueing a finite set of
n-simplices {σ n}. A rather detailed analysis of such glueing procedures is given in
Thurston’s notes [21], and here we simply recall the most relevant facts.

Definition 1.4 Given a finite set of simplices and the associated collection of faces,
a glueing is a choice of pairs of faces together with simplicial identifications maps
between faces such that each face appears in exactly one of the pairs.

The identification space resulting from the quotient of the union of the simplices
by the equivalence relation generated by the identification maps, is homeomorphic
to the polyhedron of a simplicial complex. In particular, the glueing maps are linear,
and the simplicial complex T obtained by glueing face-by-face n-simplices has the
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structure of a PL-manifold in the complement of the (n− 2)-skeleton. Since the link
of an (n − 2)-simplex is a circle, it is not difficult to prove that the PL-structure
actually extend to the complement of the (n−3)-skeleton, and that the identification
space of a glueing among finite n-simplices is a PL-manifold if and only if the link
of each cell is PL-homeomorphic to the standard PL-sphere.

In dimension n > 2, not every simplicial complex T obtained by glueing simplices
along faces is a simplicial manifold, and in general one speaks of pseudo- manifolds.

Definition 1.5 The map T →M generates (the triangulation of) an n-dimensional
pseudomanifold if: (i) every simplex of T is either an n-simplex or a face of
an n-simplex; (ii) each (n − 1)-simplex is a face of at most two n-simplices;
(iii) for any two simplices σ n, τ n of T, there exists a finite sequence of n-simplices
σ n = σ n

0 , σ
n
1 , . . . , σ

n
j = τ n such that σ n

i and σ n
i+1 have an (n− 1)-face in common,

(i.e., there is a simplicial path connecting σ n and τn).

Recall that a regular point p of a polyhedron |T | is a point having a neighborhood
in |T | homeomorphic to an n-dimensional simplex, otherwise p is called a singular
point. Absence of singular points in a pseudo-manifolds characterizes triangulated
manifolds. Moreover, an n-dimensional polyhedron |T | is a pseudo- manifold if and
only if the set of regular point in |T | is dense and connected and the set of all singular
points is of dimension less than n− 1.

In order to construct a simplicial manifold T by glueing simplices σ n, through
their n− 1-dimensional faces, the following constraints must be satisfied

n∑
i=0

(−1)iNi(T ) = χ(T ), (1.11)

n∑
i=2k−1

(−1)i
(i + 1)!

(i − 2k + 2)!(2k − 1)!Ni(T ) = 0, (1.12)

if n is even, and 1 ≤ k ≤ n/2. Whereas if n is odd

n∑
i=2k

(−1)i
(i + 1)!

(i − 2k + 1)!2k!Ni(T ) = 0, (1.13)

with 1 ≤ k ≤ (n − 1)/2. These relations are known as the Dehn-Sommerville
equations. The first, (1.11), is just the Euler-Poincaré equation for the triangulation
T of which Ni(T ) denotes the number of i-dimensional simplices, the f-vector of the
triangulation T. The conditions (1.12) or (1.13), are a consequence of the fact that in
a simplicial manifold, constructed by glueings, the link of every (2k − 1)-simplex
(if n is odd) or 2k-simplex (if n is even), is an odd-dimensional sphere, and hence it
has Euler number zero. Note that in order to generate an n-dimensional polyhedron
there is a minimum number q̂(n) of simplices σ n that must join together at any
n − 2-simplex. For instance, in dimension 2, in order to have a simplicial complex
we must have at least three triangles incident on the generic vertex σ 0(j). If this
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Fig. 1.3 The triangular
pillow (T pill , S2) is a
semi-simplicial triangulated
surface generated by gluing
the boundaries of two
distinct triangular faces

condition is not met we generally speak, with a slight abuse of language, of a a
semi-simplicial complex . Note that this does not necessarily imply a failure of the
Dehn–Sommerville relations (1.12) and (1.13). For instance, in what follows an
important role is played by the following elementary semi-simplicial object

Definition 1.6 The triangular pillow (T pill, S2) is the semi-simplicial triangula-
tion of the sphere S

2 obtained by gluing the edges of two distinct triangles without
identifying their interior.

Is elementary to check that in this way we get a semi-simplicial complex with
f-vector N0(T ) = 3, N1(T ) = 3, N2(T ) = 2, and where the star of each vertex
σ 0(j) contains just two triangles. Nonetheless, the relations (1.11) and (1.12) still
yield

∑n
i=0(−1)iNi(T ) = χ(T ) = 2 and 2N1(T ) = 3N2(T ), as for a regular

triangulation. The paper of Thurston [22] discusses nice examples of generalized
triangulations of the sphere where two edges of a triangle are folded together to form
a vertex incident to a single triangle (Fig.1.3).

By the very definition of PL manifolds, it follows that there exist distinct tri-
angulations, T (i), of the some PL manifold M. For later convenience, it is bet-
ter to formalize this remark, and recall the following standard characterization by
Tutte [26]:

Definition 1.7 Two triangulations, T (1) and T (2) of the some underlying PL mani-
fold M are identified if there is a one-to-one mapping of vertices, edges, faces, and
higher dimensional simplices of T (1) onto vertices, edges, faces, and higher dimen-
sional simplices of T (2) which preserves incidence relations. If no such mapping
exists the corresponding triangulations are said to be distinct.

Sometimes, (e.g., Thurston [21], p.105), such triangulations are said to be
combinatorially equivalent. However, we shall avoid this terminology since often
combinatorial equivalence is used as synonimous of PL-equivalence.
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1.3 Polyhedral Surfaces

By a closed surface of genus g we mean a 2-dimensional smooth (C∞) manifold
which is an orientable, compact, connected and without boundary. Let T denote an
oriented finite 2-dimensional semi-simplicial complex with underlying polyhedron
|T |. Denote respectively by F (T ), E(T ), and V (T ) the set of N2(T ) faces, N1(T )
edges, and N0(T ) vertices of T, where Ni(T ) ∈ N is the number of i-dimensional
subsimplices σ i(...)∈ T. If we assume that |T | is homeomorphic to a closed surface
M of genus g, then

Definition 1.8 (Polyhedral surfaces) A polyhedral surface (Tl ,M) of genus g is a
Euclidean triangulation of the closed surface M such that

(Tl ,M) := f : T −→M (1.14)

is a realization of the homeomorphism |Tl | → M where each edge σ 1(h, j) of T is
a rectilinear simplex of variable length l(h, j). In simpler terms, T is generated by
Euclidean triangles glued together by isometric identification of adjacent edges.

This is a good place to mention that in physics there is a well-established use of
the term Regge surfaces for indicating Euclidean triangulations with fixed connec-
tivity. However, when we speak of a polyhedral surfaces we shall always mean a
triangulation (Tl ,M) of M whose connectivity is not fixed a priori. For this reason
it is worthwhile stressing that

Remark 1.1 (Regge vs. polyhedral surfaces) In these lecture notes we shall avoid
the term Regge surface, and explicitly refer to (Tl ,M) as a Euclidean triangulation
of M, or simply as a polyhedral surface. We also note that in such a general setting a
dynamical triangulation (Tl=a,M)is a particular case [2, 1] of a polyhedral surface
realized by rectilinear and equilateral simplices of a fixed edge-length l = a (Fig. 1.4).

Remark 1.2 We can naturally associate with a Euclidean triangulation (Tl,M) the
topologically open surface M ′ :=M \K0(T ) obtained by removing the 0-skeleton,
(i.e. the collection of vertices {σ 0(1), . . . , σ 0(N0(T ))}), from M (Fig. 1.5).

In terms of M ′ we can characterize admissible paths and path homothopy on
(Tl ,M) according to [25]

Definition 1.9 A path c : [0, 1]→M on a polyhedral surface (Tl ,M) is admissible
if it has finitely many intersections with the edges {σ 1(i, k)} of the triangulation and
if c(s) ∈ M ′ for any 0 < s < 1. A family of paths ct, t ∈ [0, 1] , is an admissible
homotopy if s→ ct(s) ∈M is an admissible path for any t ∈ [0, 1] .

Note that whereas the path c(s) is required to evolve in M ′ for 0 < s < 1, it can
start, for s = 0, at a vertex σ 0(i) and end, for s = 1, at a vertex σ 0(k) of (Tl ,M).

By slightly perturbing c(s = 0) and c(s = 1), we can always assume, if necessary,
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Fig. 1.4 A polyhedral
surface of genus g = 3

Fig. 1.5 The open
polyhedral surface obtained
by removing vertices

that both c(s = 0) and c(s = 1) are interior points of some simplex σ j,with j = 1, 2.
In this connection we have

Definition 1.10 Let x0 be a chosen base point in M. The set of all admissible homo-
topy classes in (Tl ,M) starting and ending at the base point x0 form a group, with
respect to path-concatenation, which can be identified with the fundamental group
π1(M ′, x0) of (M ′, x0) := (M, x0) \ K 0(T ).
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For a chosen fixed triangle σ 2
0 ∈ T , let us consider the pair

(
σ j , [c]

)
where σ j

is a j-simplex of T, j = 0, 1, 2, and [c] is an admissible homotopy class of paths
joining a point in σ 2

0 to a point in σ j . The collection of such pairs
{(
σ j, [c]

)}
together

with the projection map P : (σ j, [c]
) �→ σ j define the j-simplices σ̂ j := (

σ j, [c]
)

of a non locally finite simplicial complex whose geometrical realization
(
M̂,T̂ ,P

)
characterizes the universal branched cover of (Tl ,M) according to [25]

Definition 1.11 The universal branched cover
(
M̂,T̂ ,P

)
of the piecewise flat sur-

face (Tl ,M) is the geometric realization of the simplicial complexT̂ obtained by
requiring P : σ̂ j �→ σ j to be an isometry on each simplex.

There is a natural simplicial action of π1(M ′, x0) onT̂ given by

π1(M ′, x0)×T̂ −→ T̂(
[a] ,

(
σ j , [c]

)) �−→ (σ j, [ca]).
(1.15)

This extends to an isometric action ofπ1(M ′, x0) on
(
M̂,T̂ ,P

)
and one has the iden-

tification (Tl ,M) =
(
M̂,T̂ ,P)/π1(M ′, x0

)
. These elementary topological prop-

erties play an important role in the characterization of the geometry of triangulated
Euclidean surfaces.

1.4 The Metric Geometry of Polyhedral Surfaces

The metric geometry of a Euclidean triangulation is defined by the distribution of
edge-lengths σ 1(m, n)→ l(m, n) ∈ R+ satisfying the appropriate triangle inequal-
ities l(h, j)≤ l(j, k) + l(k, h), whenever σ 2(k, h, j)∈F (T ). Such an assignment
uniquely characterizes the Euclidean geometry of the triangles σ 2(k, h, j)∈T and in
particular, via the cosine law, the associated vertex angles θjkh

.= ∠[l(j, k), l(k, h)],
θkhj

.= ∠[l(k, h), l(h, j)], θhjk
.= ∠[l(h, j), l(j, k)]; e.g.

cos θjkh = l2(j, k)+ l2(k, h)− l2(h, j)
2l(j, k)l(k, h)

. (1.16)

If we note that the area Δ(j, k, h) of σ 2(j, k, h) is provided, as a function of
θjkh, by

Δ(j, k, h) = 1

2
l(j, k)l(k, h) sin θjkh, (1.17)

then the angles θjkh, θkhj, and θhjk can be equivalently characterized by the formula

cot θjkh = l2(j, k)+ l2(k, h)− l2(h, j)
4Δ(j, k, h)

, (1.18)
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Fig. 1.6 An admissible path
on a polyhedral surface

which will be useful later on. The cosine law (1.16) shows that datum of the edge-
lengths σ 1(m, n) → l(m, n) ∈ R+ is equivalent to the assignment of a metric,
in each triangle of (Tl ,M), that can be extended to a piecewise flat metric on
the triangulated surface (Tl ,M) in an obvious way. Explicitly [25], the generic
triangle σ 2(j, k, h) ∈ (Tl ,M) has a Euclidean length structure, (naturally invari-
ant under the automorphisms corresponding to permutations of its vertices), which
allows to define the Euclidean length l(c) of a curve c : [0, 1] → σ 2(j, k, h).
Since the length structure on σ 2(h, j, k) is defined by the distribution of edge-
lengths σ 1(h, j), σ 1(j, k), σ 1(k, h) �→ l(h, j), l(j, k), l(k, h) ∈ R+, it can be
coherently extended to all adjacent triangles, say to σ 2(m, j, h). In particular,
for a curve c : [0, 1] → σ 2(h, j, k) ∪ σ 2(m, j, h) which is the concatenation,
c = c1c2 of c1 :

[
0, 1

2

] → σ 2(h, j, k) and c2 :
[ 1

2 , 1
] → σ 2(m, j, h), we have

l(c) = l(c1) + l(c2). By iterating such a procedure, we can evaluate the length of
any piecewise–smooth curve [0, 1] � t �→ c(t) ∈ (Tl ,M) and define the distance
d(p, q) between any two points p, q of (Tl ,M) as the infimum of the length of curves
joining the two given points. It follows that (T ,M; d) is a length space, (in particular
a geodesic space since (T ,M; d) is complete). Note that the distance function so
defined is intrinsic (Fig. 1.6).

As we shall see momentarily, the 3N2(T ) angles {θjkh} carry the curvature struc-
ture of the polyhedral surface (Tl,M), and, as in standard Riemannian geometry,
a natural question is to what extent this curvature information characterizes (Tl ,M).

The natural starting point for answering to this basic question is provided by the fol-
lowing characterization [19]
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Fig. 1.7 GL2(R) holonomy around a vertex

Definition 1.12 (Rivin’s local Euclidean structure) The assignment

E (T ) :
{
σ 2(k, h, j)

}
F (T )

−→ R
3N2(T )+

σ 2(k, h, j) �−→ (θjkh, θkhj, θhjk)

(1.19)

of the angles θjkh, θkhj, and θhjk (with the obvious constraints θjkh > 0, θkhj > 0,
θhjk > 0, and θjkh + θkhj + θhjk = π ) to each σ 2(k, h, j) ∈ T defines the local
Euclidean structure E (T ) of (Tl ,M).

It must be stressed that the datum of E (T ) does not allow to reconstruct the metric
geometry of a triangulated surface. It only characterizes the similarity classes of the
realization of each σ 2(k, h, j) as an Euclidean triangle; in simpler words, their shape
and not their actual size.

As emphasized by Rivin [19], the knowledge of the locally Euclidean structure
on |T | →M corresponds to the holonomy representation

H(T ) : π1(M\K 0(T )) −→ GL2(R) (1.20)

of the fundamental group of the punctured surface M\K0(T ) into the general linear
group GL2(R), and the action of GL2(R) is not rigid enough for defining a coherent
Euclidean glueing of the corresponding triangles σ 2(k, h, j) ∈ T . A few subtle
properties of the geometry of Euclidean triangulations are at work here, and to put
them to the fore let us consider q(k) triangles σ 2(k, hα, hα+1) incident on the generic
vertex σ 0(k) ∈ Tl and generating the star

Star
[
σ 0(k)

] .= ∪q(k)
α=1σ

2(k, hα, hα+1), hq(k)+1 ≡ h1. (1.21)

We have the following characterization of the geometry of Star
[
σ 0(k)

]
(Fig. 1.7).
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Proposition 1.1 To any given locally Euclidean structure

E
(
Star

[
σ 0(k)

]) .= {(θα+1,k,α, θk,α,α+1, θα,α+1,k)
}

(1.22)

on Star
[
σ 0(k)

]
there corresponds a conical defect

Θ(k) .=
q(k)∑
α=1

θα+1,k,α, (1.23)

supported at σ 0(k), and a logarithmic dilatation [19], with respect to the vertex
σ 0(k), of the generic triangle σ 2(k, hα, hα+1)∈Star[σ 0(k)], given by

D(k, hα, hα+1)
.= ln sin θk,α,α+1 − ln sin θα,α+1,k . (1.24)

Proof If {l(m, n)} is a distribution of edge-lengths to the triangles σ 2(k, hα, hα+1)

of Star
[
σ 0(k)

]
compatible with E (T ), then by identifying

θk,α,α+1 ≡ ∠[l(k, hα), l(hα, hα+1)]
θα,α+1,k ≡ ∠[l(hα, hα+1), l(hα+1, k)], (1.25)

and by exploiting the law of sines, we can write

D(k, hα, hα+1) = ln
l(hα+1, k)
l(k, hα)

. (1.26)

In terms of this parameter, we can define ([19]) the dilatation holonomy of Star
[
σ 0(k)

]
according to

H
(
Star

[
σ 0(k)

]) .= q(k)∑
α=1

D(k, hα, hα+1). (1.27)

The vanishing of H
(
Star

[
σ 0(k)

])
implies that if we circle around the vertex σ 0(k),

then the lengths l(hα+1, k) and l(k, hα+1) of the pairwise adjacent oriented edges
σ 1(hα+1, k) and σ 2(k, hα+1) match up for each α = 1, ..., q(k), with hα = hβ if
β = α modq(k), and Star

[
σ 0(k)

]
is endowed with a conically complete singular

Euclidean structure. ��
Definition 1.13 A local Euclidean structure E (T ) such that the dilatation holonomy
H
(
Star

[
σ 0(k)

])
vanishes for each choice of star Star

[
σ 0(k)

] ⊂ T is called coni-
cally complete.

Later on we shall see that under a natural topological condition this notion of
completeness implies the following basic result

Theorem 1.2 (Rivin [19], Troyanov [23, 24]) There exist a Euclidean metric on
(Tl ,M) with preassigned conical singularities at the set of vertices V (T ) if and
only if the local Euclidean structure E (T ) is conically complete.
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Fig. 1.8 Euclidean holonomy and the corresponding deficit angle around a vertex

In other words, the triangles in T can be coherently glued into a Euclidean trian-
gulation of the surface, with the preassigned deficit angles

ε(k) .= 2π −Θ(k) (1.28)

generated by the given E (T ), if and only if E (T ) is complete in the above sense.
Thus, (Tl ,M) is locally Euclidean everywhere except at the vertices {σ 0(k)} where
the sumΘ(k) of the angles θα+1,k,α, associated with the triangles incident on σ 0(k),
is in excess (negative curvature) or in defect (positive curvature) with respect to the
2π flatness constraint. In particular, if the deficit angles {ε(k)}V (T ) all vanish, we
end up in the familiar notion of holonomy associated with the completeness of the
Euclidean structure associated with (Tl ,M) and described by a developing map
whose rotational holonomy around any vertex is trivial (Fig. 1.8).

1.5 Complex-Valued Holonomy

There is a natural way to keep track of both dilation factors and conical defects
by introducing a complex-valued holonomy. This is a first indication of the impor-
tant role that function theory has in capturing the geometry of polyhedral surfaces.
Let (τk, τh, τj) a ordered triple of complex numbers describing the vertices of a
realization, in the complex plane C, of the oriented triangle σ 2(k, h, j), with edge
lenghts l(k, h), l(h, j), l(j, k). By using Euclidean similarities we can always map
(τk, τh, τj) to (0, 1, τjkh), with

τjkh
.= τj − τk

τh − τk
= l(j, k)

l(k, h)
e
√−1θjkh , (1.29)

where
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arg τjkh = arg(τj − τk)− arg(τh − τk) = θjkh ∈ [0, 2π), (1.30)

(thus Imτjkh > 0). The triangle (0, 1, τjkh) is in the same similarity class E (σ 2(k,
h, j)) of σ 2(k, h, j), and the vector τjkh, the complex modulus of the triangle

σ 2(k, h, j) with respect to σ 0(k), parametrizes E (σ 2(k, h, j)). The same similar-
ity class is obtained by cyclically permuting the vertex which is mapped to 0, i.e.,
(τh, τj, τk)→ (0, 1, τkhj ) and (τj , τk, τh)→ (0, 1, τhjk ), where

τkhj
.= τk − τh

τj − τh
= l(k, h)

l(h, j)
e
√−1θkhj , (1.31)

τhjk
.= τh − τj

τk − τj
= l(h, j)

l(j, k)
e
√−1θhjk , (1.32)

are the moduli of E (σ 2(k, h, j)) with respect to the vertex σ 0(h) and σ 0(j), respec-
tively.

Elementary geometrical considerations imply that the triangles

(τjkh τhjk τkhj, 0, τhjk τjkh),

(0, 1, τjkh),

(τjkh, τhjk τjkh, 0),

(1.33)

are congruent. This yields the relations

τjkh τhjk τkhj = −1,

τjkhτhjk = τjkh − 1,

(1.34)

according to which a choice of a moduli with respect a particular vertex specifies
also the remaining two moduli. For instance, if we describe E (σ 2(k, h, j)) by the
modulus τjkh

.= τ, (Imτ > 0), with respect to σ 0(k) then we get

τjkh
.= τ,

τkhj = 1

1− τ ,

τhjk = 1− 1

τ
.

(1.35)

By selecting the standard branch on C(−∞,0] := C − (−∞, 0] of the natural
logarithm, we also get

ln τjkh = ln τ,

ln τkhj =− ln(1− τ),
ln τhjk = ln(1− τ)− ln τ + π√−1.

(1.36)
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l(k,h)

l(h,j)

l(j,k)
θ

jkh

θ
jkh

0 1

τ
 jkh

τRe

τIm 

Fig. 1.9 The complex modulus τ describing the similarity class of a triangle

These remarks directly imply the

Proposition 1.2 The logarithmic dilation of the generic triangle σ 2(k, hα, hα+1) ∈
Star

[
σ 0(k)

]
, can be extended to its complexified form according to

DC(k, hα, hα+1)
.= ln τhα+1,k,hα = ln

l(hα+1, k)
l(k, hα)

+√−1 θhα+1,k,hα , (1.37)

where τhα+1,k,hα is the complex modulus of the triangle σ 2(k, hα, hα+1) with respect
to the vertex σ 0(k). We can define the associated dilatation holonomy as

HC
(
Star

[
σ 0(k)

]) .= q(k)∑
α=1

DC(k, hα, hα+1)

=
q(k)∑
α=1

D(k, hα, hα+1)+
√−1

q(k)∑
α=1

θhα+1,k,hα

= H
(
Star

[
σ 0(k)

])+√−1Θ(k),

(1.38)

where Θ(k) is the conical defect supported at the vertex σ 0(k).

It follows that the triangulation |Tl | →M will be conicaly complete if and only if
ReHC

(
Star

[
σ 0(k)

]) = 0 for every vertex star, and its conical defects are provided
by
{
ImHC

(
Star

[
σ 0(k)

])}
. In other words, a necessary and sufficient condition on

the locally Euclidean structure
{
θjkh, θkhj, θhjk

}
F (T ) in order to define a glueing and

hence a Euclidean triangulation (Tl ,M) is the requirement that

q(k)∏
k=1

τhα+1,k,hα ∈ U (1), (1.39)
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for each Star
[
σ 0(k)

]
, i.e. that the image of HC(T ) lies in the group U (1). Com-

plete conical structures on polyhedral surfaces have a number of subtle properties
which somehow contrast with their ancillary role of geometrical objects approximat-
ing smooth surfaces. Actually they have a life of their own that can be quite more
fascinating than expected. This is particularly manifest when we fix our attention not
just on a particular metrically triangulated surface but rather on the collection of all
possible such objects (Fig. 1.9).

1.6 The Space of Polyhedral Structures POLg,N0(M)

To begin with, it is worthwhile to recall a few facts from the smooth framework.
The space of smooth Riemannian metrics M et(M), on a compact surface M, is

the open subset, in the Fréchet space of symmetric 2-tensor fields C∞(M,⊗2
ST∗M),

defined by the positive definite bilinear forms. Since a g(1) + b g(2) is in M et(M),

for any g(1), g(2) ∈ M et(M) and a, b ∈ R+, it follows that M et(M) is an
∞-dimensional open convex cone in the compact open C∞ topology. Let D iff (M)

denote the∞-dimensional (topological) group of smooth diffeomorphismms of M.
If ϕ∗g, φ ∈ D iff (M) denotes the pull-back of a metric g ∈ M et(M), then the
orbit

Og :=
{

g′ ∈M et(M)
∣∣ g′ = φ∗g , φ ∈ D iff (M)

}
, (1.40)

describes all metrics g′ ∈ M et(M) which are geometrically equivalent to a given
g ∈ M et(M). Since the action of D iff (M) on M et(M) has fixed points cor-
responding to the isometries Ig := {ϕ ∈ D iff (M)|φ∗g = g, } of the given g ∈
M et(M), each orbit Og is labelled by the corresponding isometry group Ig, (the
closed Lie subgroup of D iff (M), whose Lie algebra is isomorphic to the algebra
generated by the Killing vector fields of (M, g)). Note that the set of metrics for which
Ig 
 {idM }, (i.e. no symmetries), is an open set in M et(M), and geometries of
larger symmetry are contained in the boundary of geometries with smaller isome-
try groups. In general, if one denotes by M et(M)G :=

{
g ∈M et(M),Ig ≈ G

}
,

where G denotes a (conjugacy class of ) isometry Lie subgroup of D iff (M), then we
can write the orbit space M et(M)/D iff (M), the space of Riemannian structures,
as a stratified∞-dimensional space, i.e.

M et(M)

D iff (M)

 ∪GSG , SG :=M et(M)G/D iff (M), (1.41)

where the strata, SG, are the (∞-dimensional) orbifold of Riemannian structures
with the given isometry group Ig 
 G, partially ordered by the (countable) con-
jugacy classes of (compact) subgroups G ∈ D iff (M), i.e. SG ⊂ SH whenever
SG ∩SH �= ∅ and H ⊂ G, H �= G, (SH denoting the closure of SH ).

As recalled above, the distribution of edge-lengths σ 1(m, n)→ l(m, n) ∈ R+ of
the polyhedral surface (Tl,M), gives rise to an intrinsic distance function d turning
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Fig. 1.10 The orbit space
describing distinct
Riemannian structures

(M,g  )2

(M,g  )1

(M,g  )3

  Og  1

  Og  2

  Og  3

Met(M)

(Tl ,M) into a metric space. This suggests the following geometrical characterization
(Fig. 1.10).

Definition 1.14 (Polyhedral structures) Any two polyhedral surfaces (Tl ,M) and
(T ′l ′ ,M), of genus g and with N0 labelled vertices, are said to define the same
Polyhedral structure if the associated distribution of edge lengths induces the same
metric geometry on the underlying surface M. We shall denote by POLg,N0(M) the
set of all Polyhedral structures generated by polyhedral surfaces (Tl,M) of genus
g, with N0 labelled vertices.

Note that Polyhedral structures are singular Euclidean structures (in the sense of
Troyanov [23, 24] where the adjective singular refers here to the fact that polyhedral
surfaces (Tl ,M) in general exhibit conical singularities on their vertex set V (T ).
The geometrical implications of the existence of such a singular set will be discussed
at length in Chap. 2. For now, we have the following (Fig. 1.11).

Remark 1.3 POLg,N0(M) can be characterized as a space homeomorphic to an open

set of R
N1+ , with N1 = 3N0+ 6g− 6, topologized by the standard ε-neighborhoods

Uε ⊂ R
N1+ . Explicitly, let (Tl ,M) be a polyhedral surface with

lT := min
{

l(h, j)| σ 1(h, j)∈E(T )
}
, (1.42)

and let
{
dT (h, k) := dT

(
σ 0

T (h), σ
0
T (k)

)}
be the corresponding distances among the

N0 labelled vertices {σ 0
T (j)} ∈ (Tl ,M). If ε is a positive number such that 0 < ε <

lT/2, then the ε-neighborhood Uε(Tl ,M) of (Tl ,M) in POLg,N0(M) is the set of
all metric triangulations (T ′l ′,M) whose vertex distances, {dT ′(h, k)} , are such that

dT (h, k)− ε < dT ′(h, k) < dT (h, k)+ ε. (1.43)

(Note that, since any such (T ′l ′,M) necessarily has N1 = 3N0 + 6g − 6 edges,
the relation (1.43) yields a corresponding bound on the edge lengths {lT ′(h, j)} of
(T ′l ′ ,M)).
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Fig. 1.11 Portions of distinct polyhedral surfaces (T ,M), (T ′,M), (T ′′,M) . . . yielding for the
some Polyhedral structure around the given vertex

1.7 The Space of Polyhedral Surfaces T met
g,N0

(M; {Θ(k)})

Can we characterize POLg,N0(M) as the set of all polyhedral surfaces (Tl ,M)mod-
ulo the action of a mapping factoring out distinct isometry classes of (Tl ,M)? This
question is naturally suggested by the obvious analogy between POLg,N0(M) and the
space of Riemannian structures on surfaces, and its answer amounts finding out what
role plays here the diffeomorphism group. The discretization involved in triangulat-
ing the surface M strongly reduces D iff (M), and the residual invariance is provided
by the group of diffeomorphisms, D iff (M,N0), which leave the vertex set V (T )
of (Tl ,M) invariant. In the case we are considering, the action of D iff (M,N0) is
taken over implicitly by a natural combinatorial mapping among polyhedral surfaces
that will be discussed momentarily. Also note that, under a rather obvious analogy,
the group of automorphisms Aut(T ) of (Tl ,M), will play a role analogous to the
one played by the isometry groups Ig for the space of Riemannian structures. In this
connection, it is worthwhile to recall the following, (see Chap. 13 of [21]), [3]

Definition 1.15 (Thurston orbifold) A smooth (metrizable) topological space X is
an orbifold in the sense of Thurston if it possess an atlas defined by a collection{(

Uk, Ũk, ϕk, Γk
)}

k∈I , where for each k varying in the index set I, Uk is an open
subset of X with ∪Uk = X , each Ũk is an open subset of R

n−1 × [0,∞], the local
chart ϕk : Ũk → Uk is a continuous map, and Γk is a finite group of orientation
preserving diffeomorphisms of Ũk such that each ϕk factors through a homeomor-
phism between Ũk/Γk and Uk . Moreover, for every x ∈ Ũk and y ∈ Ũh with
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ϕk(x) = ϕh(y), there is a diffeomorphism ψ between a neighborhood V of x and a
neighborhood W of y such that ϕh(ψ(z)) = ψk(z) for all z ∈ V .

Thus, a n-dimensional orbifold X is basically a space endowed with an atlas of
coordinate neighborhoods which are diffeomorphic to quotients of R

n by a finite
diffeomorphism group preserving the orientation, i.e., a manifold modulo the action
of a finite group. In our setting we have

Proposition 1.3 The group of automorphims Aut(T ) of a polyhedral surface
(Tl ,M) acts naturally on R

N1(T )+ via the homomorphism Aut(T )→ GN1(T ),where
GN1(T ) denotes the symmetric group over N1(T ) elements. The resulting quotient

space R
N1(T )+ /Aut(T ) is a differentiable orbifold in the sense of Thurston.

Proof (We are modelling part of our analysis on the very readable and detailed
presentation [15]). Let us remark that GN1(T ) acts on the N1(T )-dimensional Euclid-
ean space R

N1(T ) by permutations of each R factor, ( i.e., by permutation of axes).
This permutation is a particular case of an orthogonal transformation of R

N1(T ), and
since the positive quadrant R

N1(T )+ is naturally embedded into R
N1(T ), we can think

of Aut(T ) as acting on R
N1(T )+ through a finite subgroup of the orthogonal group

O(N1(T )), with respect to the Euclidean structure of R
N1(T )+ . It follows that the

resulting quotient space R
N1(T )+ /Aut(T ) is a differentiable orbifold in the sense of

Thurston [21].

Definition 1.16 Let M be a closed orientable surface of genus g. We define the
following sets of triangulations of M:

(i) Tg,N0(M): The set of all distinct triangulations (T ,M), (in the sense of
Definition 1.7), with N0(T ) = N0 labelled vertices satisfying the topologi-
cal constraints N0 −N1(T )+N2(T ) = 2− 2g, 2N1(T ) = 3N2(T );

(ii) T met
g,N0

(M): The set of all polyhedral surfaces {(Tl ,M)} obtained by attributing
edge-lengths to the triangulated surfaces (T ,M) ∈ Tg,N0(M),

(iii) T met
g,N0

(M; {Θ(k)}): The set of all polyhedral surfaces {(Tl ,M)|{Θ(k)}} in

T met
g,N0

(M) with a prescribed set of conical angles {Θ(k)}N0
k=1 over the labelled

vertices {σ 0(k)} ∈ (T ,M).

Note that the triangulations in Tg,N0(M) are not metrical. In particular any two
triangulations (T (1),M) and (T (2),M) in Tg,N0(M) are considered equivalent iff
they have the same incidence relations.

We have the following explicit characterization of the space POLg,N0(M) of
polyhedral structures is associated with polyhedral surfaces

Proposition 1.4 The space POLg,N0(M) of polyhedral structures is a differentiable
orbifold

POLg,N0(M) :=
⊔

[T ]∈Tg,N0 (M)

R
N1+

Aut(T )
, (1.44)
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of dimension

dim
[
POLg,N0(M)

] = N1 = 3N0 + 6g − 6, (1.45)

locally modelled by

T met
g,N0

(M)

Aut(T )
. (1.46)

Note that the union�[T ]∈Tg,N0 (M) runs over the finite set of equivalence classes [T ]
of distinct triangulations (T ,M) in Tg,N0(M) labelling the distinct metrical orbicells

R
N1+ /Aut(T ).Also, recall that a polyhedral structure Mpol on a surface M is the equiv-

alence class of distinct polyhedral surfaces {(Tl ,M)} whose edge-lengths distribu-
tion induce the same metric geometry on (M,N0). Let Uε(Mpol) ⊂ POLg,N0(M)

denote a sufficiently small neighborhood of a given Mpol ∈ POLg,N0(M). What
the above result says is that the polyhedral structures in Uε(Mpol) are locally para-
metrized by the polyhedral surfaces (Tl ,M) in T met

g,N0
(M) obtained by edge-length

assignments E(T ) �→ R
N1+ which are in an ε-neighborhood of those defining Mpol,

(see (1.43)). This parametrization is defined up to the natural action of the auto-
morphism group of (Tl ,M), (as we shall see, there is a natural sense under which
Aut(T ) can be associated with Mpol ).

Proof The open cells of POLg,N0(M), being associated with triangulations (Tl ,M)

with a given number of metrized edges, have dimension given by N1 = 3N0+6g−6
which is constant on the set, Tg,N0(M), of distinct triangulations (Tl ,M) of M with
N0 labeled vertices, (see def. 1.7). This proves (1.45).

In order to explicitly construct the local parametrization of (1.44) in terms of
(1.46), let us recall that by Pachner theorem [17, 18] any triangulation (T ′,M) in
Tg,N0(M) can be reached from a given (Tl ,M) by applying a finite number of flip-

moves. To define this move compatibly with the topology of R
N1+ let σ 2(h, j, k) and

σ 2(k, j,m) two adjacent triangles in (Tl ,M) sharing the edge σ 1(j, k). Denote by
d(h,m) the distance of the two vertices σ 0(h) and σ 0(m) opposite to the shared edge
σ 1(j, k). The isometric flip move

Fl
[
T ,T ′

] : T met
g,N0

(M) −→ T met
g,N0

(M),

(Tl ,M) �−→ Fl
[
T ,T ′

]
(Tl ,M) = (T ′,M),

(1.47)

can be defined by a finite sequence of local mappings (see Figs. 1.12 and 1.13) of the
form

Fljk
hm

[
T ,T ′

] : σ 2(h, j, k) ∪ σ 2(k, j,m) �−→ σ 2(h, j,m) ∪ σ 2(m, k, h), (1.48)

provided by the 1-parameter deformation which collapses the edge σ 1
t (j, k) in

(Tl ,M) and generates a new edge σ 1
t (h,m), (and a new triangulation (T ′,M) of

M), according to
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(j)σ 0

(m)σ 0

(k)σ 0

(h)σ 0

(j)σ 0

(m)σ 0

(k)σ 0

(h)σ 0

Fig. 1.12 The smooth edge-collapse and edge-expansion used to describe the isometric flip move
used in the proof of Proposition 1.4

Fl(T  , M)l

met

(g, N  )
(M)

0

      Isometric Flip moves

Fig. 1.13 The flip move orbit defining a singular Euclidean structure

∂ σ 1
t (j, k) = (σ 0(j), σ 0(k)

)
, σ 1

t (h,m) = ∅, t ∈ [−1, 0], (1.49)

∂ σ 1
t (h,m) = (σ 0(h), σ 0(m)

)
, σ 1

t (j, k) = ∅, t ∈ [0, 1] , (1.50)

where ∂ denotes the (incidence) boundary operator, and where the corresponding
edge lengths are give by

σ 1
t (j, k) �−→ lt(j, k) := |t|l(j, k), t ∈ [−1, 0] , (1.51)

σ 1
t (h,m) �−→ lt(h,m) := (1− t)

[
l(h, k)+ l(k,m)

]+ td(h,m), t ∈ [0, 1] .

This collapse-expansion deformation smoothly interpolates between the pair of
triangles σ 2(h, j, k) ∪ σ 2(k, j,m) in the given triangulation (Tl ,M) and the new
pair

Fljk
hm

[
T ,T ′

] (
σ 2(h, j, k) ∪ σ 2(k, j,m)

) := σ 2(h, j,m) ∪ σ 2(m, k, h), (1.52)
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which necessarily belongs to a distinct triangulation (T ′,M) of the surface M.
Note that the Euclidean distances between corresponding points in the quadrilater-
als (σ 0(h), σ 0(j), σ 0(m), σ 0(k))t=−1 and (σ 0(h), σ 0(j), σ 0(m), σ 0(k))t=1 are pre-
served. This implies that the flip-move (1.51) is well defined in the R

N1+ topology,
and it is an isometry between (Tl ,M) and (T ′,M).

Remark 1.4 (Equilateral triangulations) To avoid misunderstandings, it is perhaps
worthwhile to stress that the flip move is not an isometry when constrained to the
subset of T met

g,N0
(M) defined by the equilateral triangulations (Tl=a,M) of the sur-

face M. In such a case the elementary flip move (1.51) must be tuned in such a
way that the final flipped pair σ 2(h, j,m) ∪ σ 2(m, k, h) remains equilateral. This
forces a t-dependent change of the distance function d(h,m). Indeed, the deforma-
tion [−1, 1] � t �→ dt(h,m) must interpolate from the original, (t = −1), value
d(h,m) = √3a to the final dt(h,m)|t=1 = a, (a being the side length of the equi-
lateral triangles ∈ (Tl=a,M)). This entails a deformation of the metric geometry of
(Tl=a,M), actually mapping (Tl=a,M) into a metrically distinct equilateral surface
(T ′l=a,M). This is a basic property that lies at the heart of dynamical triangulation
theory, since it allows to use flip moves to explore (a subset of the) inequivalent
metric structures on the space of polyhedral surfaces. It must be stressed that in this
way one probes, (in the large N0–limit), at most a dense subset of the possible metric
structures, and that the stratification of the resulting space does not have the orbifold
property, (this directly follows from the analysis of the set of dual ribbon graphs
associated with equilateral triangulations [15, 16]).

In our more general setting, equilateral triangulations do not play such a distin-
gushed role since an equilateral triangulation (Tl=a,M) is mapped, by a sequence of
elementary flip moves (1.51), into an isometric polyhedral surface (T ′l ′ �=a,M)which
is no longer equilateral.

Coming back to the proof of Proposition 1.4, let us consider the mapping

π̃ : T met
g,N0

(M) −→ POLg,N0(M),

(Tl ,M) �−→ Fl(Tl ,M),

(1.53)

that associates to (Tl ,M) its orbit under a generic finite sequence, Fl
[
T ,T ′

]
(Tl ,M),

of isometric flip moves

Fl(Tl ,M) :=
{
(T ′l ′,M) ∈ T met

g,N0
(M)| (T ′l ′,M) = Fl

[
T ,T ′

]
(Tl,M)

}
. (1.54)

Fl(Tl ,M) is the singular Euclidean structure Mpol associated with the polyhedral
surface (Tl ,M). Since automorphisms ∈ Aut(T ) generate equivalent polyhedral
surfaces in T met

g,N0
(M), the orbit map (1.53) descend to the quotient space

π : T met
g,N0

(M)

Aut(T )
−→ POLg,N0(M),

(Tl ,M) ∼Aut(T ) (T ′l ′,M) �−→ Fl(Tl ,M) 
 Fl(T ′
l′ ,M).

(1.55)
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Conversely, let Mpol ∈ POLg,N0(M) a singular Euclidean structure and let
(Tl ,M) and (T ′l ′,M) two distinct polyhedral surfaces in π−1(Mpol) ⊂ T met

g,N0
(M).

Denote by Aut(T ) the automorphisms group of (Tl,M). Let Fl
[
T ,T ′

]
be the

(sequence of) flip moves such that Fl
[
T ,T ′

]
(Tl ,M) = (T ′l ′,M), and let β ∈

Aut(T ). We have(
Fl
[
T ,T ′

] ◦ β ◦ Fl
[
T ,T ′

]−1
)
(T ′l ′,M) = (Fl

[
T ,T ′

] ◦ β) (Tl ,M)

= Fl
[
T ,T ′

]
(Tl ,M) = (T ′l ′,M),

(1.56)
thus β ′ := Fl

[
T ,T ′

] ◦ β ◦ Fl
[
T ,T ′

]−1 ∈ Aut(T ′). In other words, the action of
Aut(T ) on POLg,N0(M) is defined modulo a conjugacy class of flip moves on any
polyhedral surface (Tl ,M) representative of Mpol .

For ε small enough, let Uε(Mpol) denote an ε-neighborhood of a given Mpol ∈
POLg,N0(M). Its inverse image, π̃−1

(
Uε(Mpol)

)
, under the map π̃ is a subset

of T met
g,N0

(M). Let (Tl ,M) be a polyhedral surface generating, (under flip moves),
the given Mpol , i.e., Mpol = Fl(Tl ,M), see (1.54). There is an obvious continuous
bijection between Uε(Mpol) and π̃−1

(
Uε(Mpol)

)
defined by representing the generic

M̂pol ∈ Uε(Mpol) via the corresponding orbit mapM̂pol = Fl(Tl± ε ,M). Moreover,
according to the above remarks, the action of the automorphism group Aut(T ) on
this map is well-defined under flip conjugation. It follows that

π : π̃
−1
(
Uε(Mpol)

)
Aut(T )

−→ Uε(Mpol) ⊂ POLg,N0(M), (1.57)

is a homeomorphism providing a local coordinate chart

(UT , πT ) :=
(
π̃−1

(
Uε(Mpol)

)
Aut(T )

, π

)
, (1.58)

for POLg,N0(M). If a singular Euclidean structure M∗
pol belongs to the intersection

(UT (1), πT (1))∩ (UT (2), πT (2)) of any two such a local coordinate chart, then there

are two isometric polyhedral surfaces, say (T (1)
l1
,M) and (T (2)

l2
,M), representing

locally M∗
pol .According to the above remarks, we can always find a finite sequence of

isometric flip moves such that we can transform (T (1)
l1
,M) into (T (2)

l2
,M), modulo

a conjugated action of Aut(T (1)). Since the flip move is defined by an interpolation
which is smooth in the R

N1 topology, the two local coordinate charts (UT (1), πT (1))

and (UT (2), πT (2)) have diffeomorphic intersection, and consequently POLg,N0(M)

is a differentiable orbifold locally modelled on (UT , πT ) ⊂ T met
g,N0

(M)/Aut(T ) as
stated.

A direct consequence of Proposition 1.4 is the following

Theorem 1.3 The space of polyhedral structures POLg,N0(M) generated by closed
polyhedral surfaces (Tl ,M) of genus g with N0 vertices has
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C ard
{
Tg,N0(M)

}
, (1.59)

distinct orbifold strata, where C ard denotes the cardinality of the set of distinct
triangulations considered.

Proof Since, according to Proposition 1.4, the strata
R

N1+
Aut(T ) of POLg,N0(M) are

labelled by the finite set of distinct triangulations [T ] ∈ Tg,N0(M), the theorem
immediately follows. ��

In order to explore the basic properties of the space of polyhedral structures
POLg,N0(M) we need to discuss the structure of T met

g,N0
(M) in the neighborhood of

a given polyhedral surface (Tl ,M). This will provide the appropriate notion of local
deformation of polyhedral surfaces. A thorough analysis of the deformation theory
of polyhedral surface, (in the general case of Euclidean, Hyperbolic, and Spher-
ical triangulated surfaces), is presented in a series of remarkable papers by Luo
[7, 12, 13], who, building of the influential work of Thurston [22], Rivin [19], and
Leibon [11], provides a very detailed and illustrative geometrical framework for
the theory. Here we take a slightly different point of view, more apt to the physi-
cal applications, emphasizing the natural connections with the Witten–Kontsevich
theory.

1.8 Cotangent Cones and Circle Bundles
Q(k) Over T met

g,N0
(M)

A basic question in discussing the deformation theory of T met
g,N0

(M) is to characterize
the space of the infinitesimal deformations of a given polyhedral surface (Tl ,M),

i.e. a suitable notion of tangent space to T met
g,N0

(M) at (Tl ,M). The idea is to formal-

ize the intuitive picture of what a deformation of a neighborhood of a vertex σ 0(k)
in a polyhedral surface looks like. To this end, we inject the given vertex σ 0(k) in
the origin O of (R3;O, x, y, z), where we identify R

3, endowed with the vector
product ×, with the Lie algebra so(3) of the rotation group SO(3). Since σ 0(k)
is a conical point whose generators are edges of Euclidean triangles, we can asso-
ciate with σ 0(k) the polyhedral cone with apex O, whose generators have lengths
normalized to 1 and whose directrix is a piecewise-geodesic curve on the surface
of a unit sphere S

2 centered at the origin. This curve is a spherical polygon whose
side-lengths are provided by the original vertex angles {θα} generating the conical
geometry around σ 0(k). This construction has a natural SO(3) symmetry which,
when reduced, generates a set of spherical polygons which parametrizes all possible
distinct polyhedral cones in (R3;O, x, y, z) having the same intrisic metric geometry
of the local Euclidean structure E

(
Star

[
σ 0(k)

])
near σ 0(k). This set characterizes

the polyhedral cotangent cone to E
(
Star

[
σ 0(k)

])
atσ 0(k).There is a natural bundle

associated with this construction which, to some extent, provides a suitable notion
of (co)tangent space to T met

g,N0
(M) at (Tl ,M).
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We begin with a few notational remarks. Recall that if q(k) ≥ 2 triangles
σ 2(hα, k, hα+1) are incident on σ 0(k), then

Star
[
σ 0(k)

] .= ∪q(k)
α=1 σ

2(hα, k, hα+1), hq(k)+1 ≡ h1, (1.60)

where the index α is taken modulo q(k). We denote by

E
(
Star

[
σ 0(k)

]) .= {(θα,k,α+1, θk,α+1,α, θα+1,α,k)
}
, (1.61)

the generic conically complete locally Euclidean structure on Star
[
σ 0(k)

]
, and

consider the ordered sequence of vertex angles at σ 0(k)

{θα,k,α+1}α=q(k)
α=1 , θq(k),k,q(k)+1 ≡ θq(k),k,1, (1.62)

as a point of [0, π ]q(k), modulo cyclic permutations in Zq(k). The boundary points
0 and π corresponds to the degeneration of those triangles σ 2(hα, k, hα+1) whose
corresponding vertex angle θα,k,α+1 either goes to 0, (a thinning triangle), or to π,
(a fattening triangle). Note that in the former case we have that the edge length
l(hα, hα+1)→ 0 with l(l(k, hα) and l(k, hα+1) both > 0; wheras, in the latter case
we have l(hα, hα+1) = l(k, hα) + l(k, hα+1). According to Proposition 1.1 to any
E
(
Star

[
σ 0(k)

])
we can associate a conical defect

Θ(k) .=
q(k)∑
α=1

θα,k,α+1, (1.63)

supported at σ 0(k),which induces a conical geometry on Star
[
σ 0(k)

]
. Since (1.63)

depends only on the σ 0(k) angles
{
θα,k,α+1

} ∈ E
(
Star

[
σ 0(k)

])
, it is natural to

define the set of vertex angle structures at σ 0(k) associated with E
(
Star

[
σ 0(k)

])
according to

V ertq(k) :=
{
{θα}k ∈ [0, π]q(k)/Zq(k)

∣∣∣ ∃E (
Star

[
σ 0(k)

])
s.t.{θα}k = {θα,k,α+1}

}
,

(1.64)
(we shall often drop the index k in {θα}k if it is clear from the geometrical context
which vertex we are considering). Similarly, for a given Θ(k) ∈ R

+, we define the
set of vertex angle structures associated with the conical angle Θ(k) as

V ertq(k)
[
Θ(k)

] :=
⎧⎨
⎩ {θα}k ∈ V ertq(k)

∣∣ q(k)∑
α=1

θα = Θ(k)
⎫⎬
⎭. (1.65)

Remark 1.5 Since the automorphism group Aut(T ) of a given a triangulation
(Tl ,M) in T met

g,N0
(M) fixes every vertex, we can consistently label the vertices of

(Tl ,M) by the index set V := (1, . . . , k, . . . ,N0). This also induces a correspond-
ing labeling on the vertex angles {θ(h, k, j)} of (Tl ,M) which is coherent with the
vertex star–grouping (1.62). Explicitly, if we define the ordering
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. . . ≺ {θα}k ≺ {θβ}k+1 ≺ . . . , (1.66)

i.e.,

. . . ≺ {θα,k,α+1}α=q(k)
α=1 ≺ {θβ,k+1,β+1}α=q(k+1)

β=1 ≺ . . . , (1.67)

we can label the vertex angles {θ(h, k, j)} by an index set Φ with cardinality 3N2.

In particular we can associate to the polyhedral surface (Tl ,M) the vertex angles
vector

T met
g,N0

(M) −→ (0, π)3N2 = ⊕N0
k=1 V ertq(k)

(Tl ,M) �−→ −→ϑ (Tl) :=
({θα}1, . . . , {θβ}N0

)
,

(1.68)

and the angle–vertex incidence matrix

ATl := [akJ ]k∈V, J∈Φ, (1.69)

where akJ ≡ 1 if the vertex angle ∠J is incident on the vertex σ 0(k), akJ ≡ 0
otherwise. Namely, akJ ≡ 1 iff ∠J = θα,k,α+1 for some α ∈ (1, . . . , q(k)). Note in
particular that the subset of triangulations T met

g,N0
(M; {Θ(k)}) with a prescribed set

of conical angles {Θ(k)} can be equivalently characterized by the condition

T met
g,N0

(M; {Θ(k)}) =
{
(Tl ,M) ∈ T met

g,N0
(M)

∣∣∣ATl

−→
ϑ (Tl)

t = −→Θ (Tl)
t
}
, (1.70)

where ATl
�ϑ(Tl)

t denotes the matrix product between ATl and the transposed (col-

umn) vector
−→
ϑ (Tl), and where

−→
Θ (Tl) denotes the given conical angles vector

associated with (Tl ,M), i.e.

−→
Θ (Tl) := (Θ(1), . . . , Θ(k), . . . , Θ(N0)). (1.71)

��
The general idea behind the introduction of V ertq(k) and V ertq(k)

[
Θ(k)

]
is that

these sets may serve as coordinate spaces for the conical angles {Θ(k)} associated
with polyhedral surfaces. However this fails short of being a significant parametriza-
tion since the incidence order q(k) may vary with the vertex σ 0(k) and with the
polyhedral surface (Tl ,M) ∈ T met

g,N0
(M) considered. To bypass this difficulty, it is

convenient to telescope [4] the set {θα}q(k)α=1 in V ertq(k) as q(k)→∞, i.e. to inject

{θα}q(k)α=1 not in a particular V ertq(k) but rather in the inductive limit of V ertq(k) as
q(k)→ ∞. This is easily realized by observing that there is a natural sequence of
inclusions(
θ1, . . . , θq(k)

)
↪→ V ertq(k) ↪→ . . .V ertq(k)+h ↪→ V ertq(k)+h+1 ↪→ . . . , (1.72)
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defined, (e.g., in the V ertq(k) ↪→ V ertq(k)+1 case), by the q(k)+1 distinct injections

(
θ1, . . . , θq(k)

) jq,q+1
β−→ (

θ1, . . . , θβ−1, 0, θβ, . . . , θq(k)
)
, (1.73)

where β = 1, . . . , q(k) + 1. Thus, independently from the particular vertex σ 0(k)
and triangulation (Tl ,M) considered, we introduce the following characterization

Definition 1.17 The inductive limit of the family
{
V ertq, jq,q+1

β

}
, as q → ∞,

defines the space of vertex angle structures

V ert := lim
q→∞

{
V ertq ↪→ V ertq+1, jq,q+1

β

}

 [0, π ]∞ , (1.74)

associated with the set of Euclidean vertex stars
{
E
(
Star

[
σ 0(k)

])}
of polyhedral

surfaces in T met
g,N0

(M).

Explicitly, we may think of a sequences {θα}q(k)α=1 ∈ V ertq(k), associated with
E
(
Star

[
σ 0(k)

])
, as the coordinates of the corresponding conical structure in the

local chart V ertq(k) of V ert, i.e.

⊕N0
k=1V ertq(k) ↪→ V ert. (1.75)

We can locally model the geometrical realizations of the local chart V ertq(k)
in terms of spherical polygons. This will characterize a natural polygonal bundle
over V ert which, as described in the introductory remarks, will play the role of the
cotangent bundle to T met

g,N0
(M). To carry out such a construction explicitly, let us

consider the link of σ 0(k) in Star
[
σ 0(k)

] ∈ (Tl ,M) ∈ T met
g,N0

(M),

link(k) := link(Tl ,M)

(
σ 0(k)

)

 S

1, (1.76)

viz. the union of all edges σ 1(hα, hα+1) in Star
[
σ 0(k)

]
satisfying σ 1(hα, hα+1) ∩

σ 0(k) = ∅, (see Th. 1.1). We can naturally map link(k) to a closed rectifiable
piecewise-smooth Jordan curve c(k) on the unit sphere

c(k) : [0, 1] −→link(k) ↪→ S
2,

t �−→ x(t) ↪→ c(k)(t),

(1.77)

where x(t)∈ link(k), and where c(k)(0)= c(k)(1).The image c(k)([0, 1]) of the curve
c(k) can be explicitly constructed by intersecting, in

(
(R3,×) ∼= so(3);O, x, y, z

)
,

a geometrical realization of the given Euclidean structure E
(
Star

[
σ 0(k)

])
with a

unit sphere S
2 centered in the origin O, (see Fig. 1.14). This generates a cone whose

intrinsic metric depends only on the length |c(k)| of the curve c(k), (see Fig. 1.15),
and we have the characterization, (see also [5])



1.8 Cotangent Cones and Circle Bundles Q(k) Over T met
g,N0

(M) 29

S2

link (k)
c

       r = 1

x

y

z

(t)
(k)

t

x(t)

the curve   c(k)

[0,1]

Fig. 1.14 The image of the curve (1.77) is characterized by the intersection, in (R3;O, x, y, z), of
a geometric realization of E

(
Star

[
σ 0(k)

])
with a unit sphere S

2 centered in the origin O ≡ σ 0(k).
This intersection is well-defined up to a natural SO(3) action

S 2

1

0

S

c(k)

|c  | = Θ(k)(k)

Fig. 1.15 The cone associated with the curve c(k) on the unit sphere S2. The intrinsic metric of
such a cone depends only on the length |c(k)| of the curve c(k), (to emphasize this we have rounded
the image of the curve). This length is the conical angle Θ(k) at the vertex. If the cone generated
by c(k) is cut open along a generator and unfolded into the (complex) plane, the curve c(k) covers
the circle S1 and Θ(k) gives the length (with multiplicity) of the circuitation around S1
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Lemma 1.1 The conical angle Θ(k) at the vertex σ 0(k) is the length |c(k)| of the
Jordan curve (1.77). ��

The mapping (1.77) also induces on the curve c(k) the decoration defined by the
q(k) points {pα} images of the vertices {σ 0(hα)} ∈ link(k). In particular the vertex
angle θα(k) associated with the triangle σ 2(hα, k, hα) provides the length∣∣c(k)(α, α + 1)

∣∣ := θα(k), (1.78)

of the arc of geodesic c(k)(α, α + 1) between the point pα and pα+1.

Remark 1.6 The {c(k)(α, α + 1)} are geodesic arcs since they are defined by the
intersection between S

2 and planes passing through the center of S
2.

Kapovich and Millson have studied in depth the properties of the set of spherical
polygons and of the associated moduli spaces, (see [9] and references therein). Here
we exploit a few elementary aspects of their analysis playing an important role in
our framework. We start by recalling the

Definition 1.18 (Labeled spherical polygons [9]) A q(k)-tuple of oriented geodesic
arcs c(k)(α, α + 1) ∈ S

2 of lengths

0 <
∣∣c(k)(α, α + 1)

∣∣ < π, (1.79)

such that the end-point of the geodesic segment c(k)(α, α + 1) coincides with the
initial point of the geodesic segment c(k)(α + 1, α + 2) defines a closed spherical
q(k)-gon

P(k)(c(k)) := {c(k)(α, α + 1)} . (1.80)

��
Let us remark that the labeling here refers to the fact that the geodesic seg-

ments c(k)(α, α + 1) defining the edges of the polygon are path-ordered. More-
over, as long as 0 <

∣∣c(k)(α, α + 1)
∣∣ < π, the geodesic arcs c(k)(α, α + 1) are

equivalently characterized by the ordered sequence of q(k) points {pα}, and we
can identify P(k)(c(k)) = {pα}. The more general case

∣∣c(k)(α, α + 1)
∣∣ ∈ [0, π ] ,

which corresponds to spherical polygons associated with degenerating triangles in
E
(
Star

[
σ 0(k)

])
, can be handled with a detailed analysis of the possible singular

polygonal configurations associated with the triangle degenerations. In order to avoid
the complications due to these singular configurations, we shall consider uniquely
the generic case under the restriction (1.79).

There is a natural SO(3) diagonal action on the spherical polygons P(k)(c(k))
defined by [9]

g · P(k)(c(k)) :=
(

g · −→Op1, . . . , g · −→Opq(k)

)
, (1.81)

where g ∈ SO(3) and where
−→
Opα is the vector in R

3 connecting the center O of S
2

with the point pα ∈ S
2. Denote by Pq(k)(S

2) the space of spherical polygons [9].
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Since, according to the above remarks, there is a one–to–one correspondence between
SO(3) equivalence classes of spherical polygons and polyhedral cones modelling a
neighborhood of the vertex σ 0(k) it is natural to introduce the

Definition 1.19 The quotient space of Pq(k)(S
2) by the SO(3) action described

above,

Qq(k)(S
2) :=Pq(k)(S

2)/SO(3), (1.82)

defines the space of polyhedral cones over the vertex σ 0(k) ∈ (Tl ,M).

In order to fix the SO(3) gauge freedom in Pq(k)(S
2) in (1.82) we start by

remarking that the configuration space of spherical polygons with given side-lengths
{∣∣c(k)(α, α + 1)

∣∣} can be characterized as the set

P(k)

(
S

2; {∣∣c(k)(α, α + 1)
∣∣})

:=
{
{pα} ∈ S

2q(k)
∣∣∣−→Opα · −→Opα+1 = cos

∣∣c(k)(α, α + 1)
∣∣},

(1.83)

where · denotes the scalar product in R
3. In particular, we can always choose the

geodesic arc c(k)(q(k), 1) of the spherical polygon P(k)(c(k)) to lie in the (O, x, y)-
plane ⊂ R

3. Let (−→ε 1,
−→ε 2) be orthonormal basis vectors in (O, x, y), and let us

denote by p0 the midpoint of the geodesic arc c(k)(q(k), 1). We take p0 to be the
origin of the piecewise geodesic path c(k). Rotate the polygon P(k)(c(k)) around the

origin in the (O, x, y)-plane so that
−→
Op0 ≡ −→ε 1. This fixes the position of the vector−→

Op1 according to

−→
Op1 = cos

∣∣c(k)(q(k), 1)
∣∣

2
−→ε 1 + sin

∣∣c(k)(q(k), 1)
∣∣

2
−→ε 2. (1.84)

(Fig. 1.16).
In such a representation there is a natural map defined by

πφ(k) :Pq(k)(S
2) −→

[
S

1/2π
]q(k)

{pα} �−→ {φ(α, k)}q(k)α=1 :=
{∣∣c(k)(0, α)∣∣

Θ(k)

}q(k)

α=1

,

(1.85)

where
∣∣c(k)(0, α)∣∣ denotes the length of the piecewise geodesic arc of curve c(k)(0, α)

between the midpoint p0 ∈ c(k)(q(k), 1), (the origin of the piecewise geodesic path
c(k)), and the polygon vertex pα. Note that the normalization to the total conical

angle Θ(k) =∑q(k)
α=1 θα is well–defined since, according to Lemma 1.1,

Θ(k) =
q(k)∑
α=1

∣∣c(k)(α, α + 1)
∣∣ . (1.86)



32 1 Triangulated Surfaces and Polyhedral Structures

  x

φ (1, k)

φ (2, k) φ (3, k)

S 2

αp

p
0   y

  z

Fig. 1.16 The decoration defined by the q(k) points {pα} images of the vertices {σ 0(hα)} ∈ link(k).
The arc–length computed from the origin p0, defined by chosing the geodesic arc c(k)(q(k), 1) of
the spherical polygon P(k)(c(k)) to lie in the (O, x, y)-plane ⊂ R

3, characterizes the map φ(α, k)
associated with the point pα

Moreover, we have

φ(α + 1, k) = φ(α, k)+
∣∣c(k)(α, α + 1)

∣∣
Θ(k)

, α = 1, . . . , q(k)− 1, (1.87)

which directly follows from the definition of φ(α, k), and

φ(1, k) = φ(q(k), k)+
∣∣c(k)(q(k), 1)

∣∣
Θ(k)

− 1, α = q(k), (1.88)

which is a consequence of the identity

∣∣c(k)(q(k), 1)
∣∣

Θ(k)
= 1−

q(k)−1∑
α=1

(φ(α + 1, k)− φ(α, k)). (1.89)

Conversely,∣∣c(k)(α, α + 1)
∣∣ = Θ(k)

[
φ(α + 1, k)− φ(α, k)

]
, α = 1, . . . , q(k)− 1,

(1.90)
and



1.8 Cotangent Cones and Circle Bundles Q(k) Over T met
g,N0

(M) 33

∣∣c(k)(q(k), 1)
∣∣ = Θ(k) [φ(1, k)− φ(q(k), k)+ 1

]
. (1.91)

It follows that, relative to the framing (1.84), we can uniquely represent any
spherical polygon, with given edge lengths {∣∣c(k)(α, α + 1)

∣∣ = θα(k)}, in terms of
the set

Ξ{φ(α,k)} :=
{ {φ(α + 1, k)− φ(α, k)}| {φ(α, k)} ∈ [S1/2π

]q(k)}
. (1.92)

The quotient map

P(k)(S
2; {∣∣c(k)(α, α + 1)

∣∣}) −→ P(k)(S
2; {∣∣c(k)(α, α + 1)

∣∣})
SO(3)

, (1.93)

associating to a polygon P(k)(c(k)) its representative in the framing (1.84), shows
that (1.90) and (1.91) provide a homeomorphism

Ξq(k)({φ(α, k)}) −→ P(k)(S
2; {∣∣c(k)(α, α + 1)

∣∣})
SO(3)

, (1.94)

which characterizes Ξq(k)({φ(α, k)}) as a slice for the SO(3) action on the spaces
of spherical polygons with given edge-lengths. It follows that we can represent the
space of polyhedral cones over the vertex σ 0(k), Qq(k)(S

2), according to

Qq(k)(S
2) 
 Ξq(k)({φ(α, k)}). (1.95)

In particular, if V (T ) denotes the vertex set of (Tl ,M), then the map

πk : V (T )× V ert −→�N0
k=1 Qq(k)(S

2)

(σ 0(k), {θα}k) �−→ ({φ(α, k)}, {φ(α + 1, k)− φ(α, k)} = {θα}k),
(1.96)

is a choice of a polyhedral cone having, near the given vertexσ 0(k), the same intrinsic
Euclidean structure E

(
Star

[
σ 0(k)

])
defined by the vertex angles {θα}k. Thus, it is

natural to introduce the following

Definition 1.20 The mapping

(Tl ,M)|σ 0(k) �−→ Qq(k)(S
2), (1.97)

defines the polyhedral cotangent cone to (Tl ,M) at the vertex σ 0(k).

Roughly speaking, the identification of Qq(k)(S
2) with the polyhedral cotan-

gent space at σ 0(k) is also justified by noticing that the polyhedra in Qq(k)(S
2)

are side-wise dual to the tangent space [21] over the corresponding open triangle
σ̆ 2(α, k, α+ 1).
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 x

S 2

 y

 z

(T  , M)l

 (k)
0

Fig. 1.17 Qq(k)(S
2) characterizes the polyhedral cotangent cone to (Tl ,M) at the vertex σ 0(k)

In a well-defined sense, the pair
(
σ 0(k),Qq(k)(S

2)
)

comes decorated with coordi-
nates: ({φ(α, k)}) associated with the vertex σ 0(k), and ({φ(α + 1, k)− φ(α, k)})
associated with the choice of a polyhedral cone in Qq(k)(S

2) over σ 0(k). For later
use it is useful to formalize this remark into the

Definition 1.21 The map(
σ 0(k),Qq(k)

(
S

2)) �−→ ({φ(α, k)}, {φ(α + 1, k)− φ(α, k)}), (1.98)

defines the polyhedral cotangent coordinates associated with the vertex σ 0(k) ∈
(Tl ,M). In particular the assignment of a 1-form in

(
σ 0(k),Qq(k)

(
S

2
))
,

vk :=
q(k)∑
α=1

(φ(α, k)− φ(α + 1, k)) d (φ(α, k)) , (1.99)

(recall that φ(α + 1, k) := φ(1, k) for α = q(k)), characterizes the choice of a
polyhedral cone in

(
σ 0(k),Qq(k)

(
S

2
))

(Fig. 1.17).

Note that the 1-form vk is intrinsically defined over Q(k)(S
2), in the sense that it

does not depend on the chosen origing point p0 used for characterizing the polygonal
arc-length map φ(α, k).The above characterization of the polyhedral cotangent cone
to (Tl ,M) at the vertex σ 0(k) can be extended to T met

g,N0
(M) according to the

Lemma 1.2 Let Ck := ({φ(α, k)}, {φ(α + 1, k) − φ(α, k)}) denote the generic
polyhedral cone in Qq(k)(S

2), then the mapping
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met

(g, N  )
(M)

0

(T  , M;            )l
σ   (k)

0

(T*  , M;            )l
σ   (k)

0

(T**  , M;              )l
σ   (k)

0

Fig. 1.18 The polyhedral cotangent cones Qq(k)(S
2) to the polyhedral surface (Tl ,M) at the ver-

tex σ 0(k), characterizes as (Tl ,M; σ 0(k)) varies in T met
g,N0

(M), a (polygonal) circle bundle over

T met
g,N0

(M). Since there are N0 labeled vertices for each (Tl ,M), there are N0 such a bundle over

T met
g,N0

(M)

T met
g,N0

(M) −→ ⊗N0
k=1 Qq(k)(S

2)

(Tl ,M) �−→ (
C1 . . . ,Ck, . . . ,CN0

) (1.100)

defined by the N0 polyhedral cotangent cones at the (labelled vertices of the) the
polyhedral surfaces (Tl,M) ∈ T met

g,N0
(M), defines N0 circle bundles Q(k) over

T met
g,N0

(M).

Proof The S
1 fiber of Q(k) is naturally associated with the spherical polygon defining

the polyhedral cones in Q(k).Moreover, the definition of φ(k, α) easily implies that
the bundle projection

prk : Q(k) −→T met
g,N0

(M)

Ck �−→ Ck|σ 0(k)∈(Tl ,M),

(1.101)

is continuous when restricted to open sets of (Tl ,M) in T met
g,N0

(M). By considering

the inductive limitΞ∞ of the family of polyhedral spaces
{
Ξ{φ(α,k)}

}
as q(k)→∞,

and by considering the polyhedral cotangent cone Q(k) as a point in Ξ∞, it is also
easy to see that prk is well-defined under the flip move (1.51), (we need to use Ξ∞
because the incidence number q(k) changes under flip moves) (Fig. 1.18). ��
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1.9 The Conical Symplectic Form on T met
g,N0

(M, {Θ(k)})

Let us turn our attention to the space T met
g,N0

(M, {Θ(k)}) of polyhedral surfaces with

a given set of conical angles {Θ(k)}N0
k=0 over their N0 labelled vertices {σ 0(k)}, (see

Definition 1.16). Consider, at the generic point vertex σ 0(k) of (Tl ,M) the 1-form
νk (1.99) describing the choice of a polyhedral cone in Qq(k)(S

2). For q(k) = 2, vk
is obviously closed. However, as soon as q(k) ≥ 3 we have

Lemma 1.3 If σ 0(k) ∈ (Tl ,M) is a vertex with incidence q(k) ≥ 3, then vk is not
closed and its differential

dvk = dφ(q(k), k) ∧ dφ(1, k)+
q(k)−1∑
β=1

dφ(β, k) ∧ dφ(β + 1, k) (1.102)

can be pulled-back under the map (1.96) πk to the two form ωk = π∗k (dvk)defined
on V ertq(k)[Θ(k)] by

ωk =
∑

1≤α<β≤q(k)−1

d
(

θα

Θ(k)

)
∧ d

(
θβ

Θ(k)

)
. (1.103)

Proof We provide a proof by induction. As a preliminary step, notice that, since we
work at fixed conical angle Θ(k), we can introduce the Θ(k)-normalized angles

θ̂α(k) := θα(k)
Θ(k)

. (1.104)

Moreover, from d θ̂α(k) = π∗k (d (φ(α + 1, k)− φ(α, k))) it follows that we can
write ∑

1≤α<β≤q(k)−1

d θ̂α ∧ d θ̂β (1.105)

= π∗k
⎛
⎝ ∑

1≤α<β≤q(k)−1

d (φ(α + 1, k)− φ(α, k)) ∧ d (φ(β + 1, k)− φ(β, k))

⎞
⎠.

Exploiting this representation it is easily checked that ωk = π∗k (dvk) holds for
q(k) = 3. We consider this as the first inductive step and complete the induction
by showing that if ωk = π∗k (dvk) holds for q(k) = n > 3, then it also holds for
q(k) = n+ 1. We start with the identity

∑
1≤α<β≤q(k)−1

d (φ(α + 1, k)− φ(α, k)) ∧ d (φ(β + 1, k)− φ(β, k)) (1.106)
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=
q(k)−2∑
α=1

d (φ(α + 1, k)− φ(α, k)) ∧
q(k)−1∑
β=α+1

(φ(β + 1, k)− φ(β, k)),

from which it easily follows that, in passing from q(k) to q(k)+1,we have the recur-
rence relation (for notational ease, we drop the explicit k-dependence in φ(α, k)),

∑
1≤α<β≤q(k)

d (φ(α + 1)− φ(α)) ∧ d (φ(β + 1)− φ(β))

=
∑

1≤α<β≤q(k)−1

d (φ(α + 1)− φ(α)) ∧ d (φ(β + 1)− φ(β))

+
q(k)−1∑
α=1

d (φ(α + 1)− φ(α)) ∧ d (φ(q(k)+ 1)− φ(q(k))) .

(1.107)

Since

q(k)−1∑
α=1

d (φ(α + 1)− φ(α)) ∧ d (φ(q(k)+ 1)− φ(q(k))) (1.108)

= dφ(1) ∧ dφ(q(k))+ dφ(q(k)) ∧ dφ(q(k)+ 1)+ dφ(q(k)+ 1) ∧ dφ(1),

we can explicitly rewrite (1.107) as∑
1≤α<β≤q(k)

d (φ(α + 1)− φ(α)) ∧ d (φ(β + 1)− φ(β)) (1.109)

=
∑

1≤α<β≤q(k)−1

d (φ(α + 1)− φ(α)) ∧ d (φ(β + 1)− φ(β))

+ dφ(1) ∧ dφ(q(k))+ dφ(q(k)) ∧ dφ(q(k)+ 1)+ dφ(q(k)+ 1) ∧ dφ(1).

This recurrence relation immediately yields the required equality ωk = π∗k (dvk)

at the induction step q(k) �→ q(k)+ 1. ��
By exploiting the forms ωk as σ 0(k) varies in (Tl ,M) ∈ T met

g,N0
(M, {Θ(k)})

we can naturally introduce a globally defined 2-form ωT ({Θ}) on each (Tl ,M) ∈
T met

g,N0
(M, {Θ(k)}) according to

ωT ({Θ}) :=
N0∑

k=1

Θ2(k)ωk =
N0∑

k=1

∑
1≤α<β≤q(k)−1

dθα(k) ∧ dθβ(k). (1.110)

We have

Theorem 1.4 Let (Tl ,M) ∈ T met
g,N0

(M, {Θ(k)}) be a polyhedral surface decorated

with a given assignment of conical angles {Θ(k)}N0
k=1 over its vertices, then the

mapping
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(Tl ,M) �−→ ωT ({Θ}) (1.111)

defines a symplectic form over T met
g,N0

(M, {Θ(k)}).
Proof From the relation 3N2 = 2N1 it follows that the face number N2 of a poly-
hedral surface (Tl ,M) is always even. Without loss in generality we can assume
that N2 ≥ 4, otherwise we would end up in the case N2 = 2 corresponding
to the triangular pillow which generates a trivially closed dvk for each vertex,
(q(k) = 2, k = 1, 2, 3). Let us note that the 2-form ωT ({Θ}) is actually defined
over the space

V ert [(Tl ,M)] := ×N0
k=1V ert

[
Θ(k)

] 
 R

∑N0
k=1(q(k)−1) (1.112)

of vertex angles associated with the given triangulation (Tl ,M)∈T met
g,N0

(M, {Θ(k)}).
Since

∑N0
k=1 q(k) = 3N2, from 3N2 = 2N1 and Euler relation (1.11), we easily

compute

N0∑
k=1

(q(k)− 1) = 5

2
N2 + 2g − 2, (1.113)

where g denotes the genus of the surface M. It follows, (since N2 ≥ 4), that∑N0
k=1(q(k)− 1) is an even number. Thus, ωT ({Θ}) is defined over the even dimen-

sional manifold V ert [(Tl ,M)] . Since we have the natural map

(Tl ,M) −→ V ert [(Tl ,M)] , (1.114)

by abusing notation we can think of ωT ({Θ}) as defined (by pull-back) over
T met

g,N0
(M, {Θ(k)}).

In order to show that ωT ({Θ}) is non-degenerate we need to introduce tan-
gent vectors to V ert [(Tl ,M)] , namely, infinitesimal variations of the vertex struc-
tures of (Tl ,M). In particular, we shall be interested in those vector fields over
V ert [(Tl ,M)] that generates metrical deformations of the polyhedral surface
(Tl ,M). To this end let us denote by l(k, α) the length of the edges σ 1(k, hα) ∈
Star

[
σ 0(k)

]
and by l(α, α+1) the length of the edges σ 1(hα, hα+1) ∈ link(k), (see

(1.76)). Let us consider the directed edges of the oriented triangle σ 2(hα, k, hα+1) ∈
Star

[
σ 0(k)

]
realized by the vectors

−→
l (k, α),

−→
l (α, α + 1), and

−→
l (α + 1, k) in

the Euclidean plane (R2, δ). As we vary the vertex angle θα(k),

θα(k) �−→ θα(k)+ tεα(k), 0 ≤ t ≤ 1, (1.115)

the directed edge
−→
l (α, α + 1) varies according to

−→
l (α, α + 1) �−→ −→l (α, α + 1)+ εα(k) l(k, α + 1)

∂

∂θα(k)
, (1.116)
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where ∂
∂θα(k)

denotes the tangent vector to the unit circle S
1 centered at the vertex

σ 0(k). Thus, the metric variations of link(k) induced by variations in V ert
[
Θ(k)

]
are described by

link(k) �−→
{
εα(k) l(k, α + 1)

∂

∂θα(k)

}q(k)−1

α=1
∈ TV ert

[
Θ(k)

]
. (1.117)

By letting the vertex σ 0(k) run over (Tl ,M) ∈ T met
g,N0

(M, {Θ(k)}), we can extend
(1.117) to the map

v(T ) : T met
g,N0

(M, {Θ(k)}) −→ T(Tl ,M)V ert

(Tl ,M) �−→ v(T )(Tl ,M) :=
{
εα(k) l(k, α + 1)

∂

∂θα(k)

}q(k)−1

α=1
, k = 1, . . . ,N0,

(1.118)
where T(Tl ,M)V ert := ×N0

k=1TV ert
[
Θ(k)

]
. We may formally interpret such a

mapping as defining a tangent vector to T met
g,N0

(M, {Θ(k)}) at (Tl ,M). To show
that ωT ({Θ}) is non–degenerate, let us localize v(T ) to the generic oriented triangle
σ 2(h, k, j) of (Tl ,M) by considering the vector field in T(Tl ,M)V ert defined by

v(T ) :=
(

l(k, h)ε(k)
∂

∂θ(k)
, l(j, k)ε(j)

∂

∂θ(j)
, l(h, j)ε(h)

∂

∂θ(h)

)
, (1.119)

where (θ(k), θ(j), θ(h)) ∈ V ert
[
Θ(k)

]× [Θ(j)] × [Θ(h)] are the vertex angles of
σ 2(h, k, j), and l(·, ·) are the corresponding edge-lengths. Assuming that q(k), q(j),
and q(h) triangles are respectively incident on the vertices of σ 2(h, k, j), we order
V ert

[
Θ(k)

] × [Θ(j)] × [Θ(h)] by identifying (θ(k), θ(j), θ(h)) with the triple
(θ1(k), θ1(j), θ1(h)). Let us consider the interior product between ωT ({Θ}) and v(T )

iv(T )ωT ({Θ}) =
∑

a=k,j,h

∑
1≤α<β≤q(a)−1

iv(T )
(
dθα(a) ∧ dθβ(a)

)
. (1.120)

(Fig. 1.19).
From

iv(T )
(
dθα(a) ∧ dθβ(a)

) = iv(T ) (dθα(a)) dθβ(a)− iv(T )
(
dθβ(a)

)
dθα(a), (1.121)

and iv(T ) (dθα(a)) = dθα(a)
(
v(T )

) = vα
(T ), we easily compute

iv(T )ωT ({Θ}) = l(k, h) ε (k)
q(k)−1∑
α=2

dθα(k)+ l(j, k) ε (j)
q(j)−1∑
α=2

dθα(j)

+ l(h, j) ε (h)
q(h)−1∑
α=2

dθα(h).

(1.122)
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Fig. 1.19 The geometrical
set up for introducing
tangent vectors to
V ert [(Tl ,M)] describing
infinitesimal variations of the
vertex structures of (Tl ,M)

(k)σ 0

(h        )σ0(h  )σ 0

θ

+1

(k)α

α

ε (k)
α

l(    ,        )α α +1

l( k ,        )
α

+
1

Since iv(T )ωT ({Θ}) = 0 iff ε(k) = ε(j) = ε(h) = 0, there are no non–trivial
(infinitesimal) deformations of Euclidean triangles σ 2(h, k, j) in ker ωT ({Θ}). Thus
ωT ({Θ}) is non–degenerate on T(Tl ,M)V ert and provides a symplectic form onV ert.

��
Remark 1.7 We can consider more general infinitesimal deformations of the Euclid-
ean triangle σ 2(h, k, j) by setting

dl(j, h) =
∑

a=k,j,h

∂l(j, h)
∂θ(a)

dθ(a), (1.123)

and similarly for the remaining edge-lengths l(h, k) and l(k, j).Note that such defor-
mations are always such that the one-form

θ(k)d ln l(j, h)+ θ(j)d ln l(h, k)+ θ(h)d ln l(k, j) (1.124)

is closed [19], i.e.,

dθ(k) ∧ d ln l(j, h)+ dθ(j) ∧ d ln l(h, k)+ θ(h) ∧ d ln l(k, j) = 0. (1.125)

Such a relation can be considered as the two-dimensional counterpart of the Schläfli
formula (see [14] for a thorough analysis of the geometrical meaning of these forms).

Not surprisingly, there are many points of contact between the above introduction
of a symplectic structure on the space of polyhedral surfaces T met

g,N0
(M, {Θ(k)})

and the seminal analysis by M. Kontsevich of the interplay between the geometry
of the moduli space of Riemann surfaces and space of ribbon graphs with given
boundary lengths [10]. The duality between ribbon graphs and polyhedral surface,
and their connection to Riemann moduli theory, is the most obvious explanation.
However, as we shall see, the singular metric geometry of polyhedral surfaces adds
some surprising zest to such matters.

The decoration of T met
g,N0

(M) with the N0 polyhedral cotangent cones Q(k) cor-
responds to modelling a polyhedral manifold (Tl ,M) as a surface (M,N0) with
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N0 marked points (the vertices) decorated with a field of polyhedral cones (curva-
ture!). As we have seen, the analysis of such a field provides, via the symplectic
form ωT ({Θ}), information on the local deformation of T met

g,N0
(M) in a neighbor-

hood of the given (Tl ,M). Does ωT ({Θ}) also capture global properties of the
space of polyhedral surfaces? The hinted connection with Kontsevich theory allows
an obvious affirmative answer, and in line with these remarks we explicitly connect
the local forms {ωk} to the Euler class of the No combinatorial bundles Q(k) over
T met

g,N0
(M, {Θ(k)}).

1.10 The Euler Class of the Circle Bundle Q(k)

Let Uφ(Tl ,M) and Uφ̃(Tl ,M), with Uφ(Tl ,M) ∩ Uφ̃(Tl ,M) �= ∅, denote two
open neighborhoods in T met

g,N0
(M, {Θ(k)}) of a polyhedral surface (Tl ,M).Assume

that over Uφ(Tl ,M) the combinatorial bundle Q(k) is trivialized by the coordinates
({φ(α, k)}, {φ(α + 1, k) − φ(α, k)}) whereas over Uφ̃(Tl ,M) the trivialization is
provided by ({φ̃(α, k)}, {φ̃(α + 1, k) − φ̃(α, k)}). The relation between these two
trivializations is provided by

φ̃(α, k) = φ(α, k)+ f
(
{φ(μ, k)}q(k)μ=1

)
, (1.126)

corresponding to a {φ(μ, k)}q(k)μ=1-dependent rotation e2π
√−1f of the circle S

1/2π

over which the polygonal arc lengths {φ(α, k)}q(k)α=1 are defined. We can associate
with Q(k)|Uφ

the u(1) valued 1-form

A(k)|Uφ :=

−
q(k)∑
α=1

(
φ(α + 1, k)− φ(α, k)− 1

q(k)

)
e−2π

√−1φ(α,k)de2π
√−1φ(α,k).

(1.127)

We have

Lemma 1.4 The 1-form A(k)|Uφ defines a U (1)-connection over the circle bundle
(Q(k),T

met
g,N0

(M, {Θ(k)})).
Proof If for notational ease we drop the explicit k-dependence then, under the change
of trivialization (1.126), we get

Ã|Uφ̃
:= −

q∑
α=1

(
φ̃(α + 1)− φ̃(α)− 1

q

)
e−2π

√−1φ̃(α)d e2π
√−1φ̃(α)

= A|Uφ
−
( q∑
α=1

(
φ̃(α + 1)− φ̃(α)− 1

q

))
e−2π

√−1f d e2π
√−1f

= A|Uφ + e−2π
√−1f d e2π

√−1f , (1.128)
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where we have exploited the fact that (1.126) leaves (φ(α + 1)− φ(α)) (form) invari-

ant and that
∑q
α=1

(
φ̃(α + 1)− φ̃(α)− 1

q

)
= −1. ��

From the definition (1.127) of the connection form A(k) we have

A(k) = 2π
√−1

q()∑
α=1

(
φ(α, k)− φ(α + 1, k)+ 1

q(k)

)
dφ(α, k)

= 2π
√−1 vk + 2π

√−1

q(k)

q(k)∑
α=1

dφ(α, k), (1.129)

where vk denotes the 1-form associated with the choice of a polyhedral cone in

Qq(k)(S
2), (see (1.99)). Since d

(∑q(k)
α=1 dφ(α, k)

)
≡ 0,we can compute the curva-

ture of A(k) according to

Ω(k) := dA(k) = 2π
√−1 dvk, (1.130)

and we get that the Euler class of the circle bundle (Q(k),T
met

g,N0
(M, {Θ(k)})) is

given by the 2-form
√−1

2π
Ω(k) = − dvk . (1.131)

According to Lemma 1.3 we have

Theorem 1.5 (the euler class of Q(k)) The 2-form ωk is the pull–back, under the
polyhedral map πk defined by (1.96), of the Euler class

√−1/2π Ω(k) of the circle
bundle (Q(k),T

met
g,N0

(M, {Θ(k)})),

ωk =
∑

1≤α<β≤q(k)−1

d
(
θα(k)
Θ(k)

)
∧ d

(
θβ(k)
Θ(k)

)
= −π∗k

(√−1

2π
Ω(k)

)
. (1.132)

��
This result is the counterpart, directly expressed in terms of the geometry of poly-

hedral surfaces in T met
g,N0

(M, {Θ(k)})), of the celebrated Kontsevich analysis of the
Ribbon graph complex associated with the combinatorial description of the mod-
uli space of pointed Riemann surfaces. (It is worthwhile to remark that, in such a
Riemann moduli setting, the explicit use of a connection for computing the Euler
class of a family of cyclically ordered set is discussed in [8]). We shall explicitly
exploit the characterization (1.132) in Chap. 4, when evaluating the symplectic vol-
ume of T met

g,N0
(M, {Θ(k)}).We conclude this introductory chapter by examining the

possible degenerations of polyhedral surfaces. Since polyhedral surfaces turn out
to be Riemann surfaces in disguise, we shall model the possible degenerations of a
(Tl ,M) ∈ T met

g,N0
(M)) along the standard degenerations relevant in Riemann moduli

space theory.
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Fig. 1.20 A triangulated surface can degenerate either by disconnection of a component or by
handle-pinching

1.11 Degenerations and Stable Polyhedral Surfaces

The space of polyhedral structures POLg,N0(M) is not a compact orbifold since tri-
angulated surfaces can degenerate. For instance, let σ 1(h, j), σ 1(j, k), and σ 1(k, h)
three adjacent edges not bounding a triangle σ 2(h, j, k) in (Tl ,M). Assume that
l(h, j) = l(j, k) = l(k, h) := (1 − t)l, t ∈ [0, 1] . Then, as t ↘ 1, the edge-
path σ 1(h, j)∪ σ 1(j, k)∪ σ 1(k, h) collapses and either disconnects a component of
(Tl ,M) or pinches a handle of (Tl ,M) Fig. 1.20.

If we allow for semi-simplicial complexes, (as we do in this lecture notes), then
a limiting and important case of degeneration is obtained as follows.

Definition 1.22 (Slitting and replicating edges) Let (Tl ,M)(hj) ∈ POLg,N0(M) be
a given Euclidean triangulated surface with a marked edge σ 1(h, j). The slit-open
transformation on (Tl ,M)(hj) is defined by removing (slitting) the interior of the
marked edge σ 1(h, j) and by connecting (replicating) the vertices σ 0(h) and σ 0(j)
with two distinct oriented edges σ 1

(−)(h, j) and σ 1
(+)(j, h),

edge − slit
(Tl ,M)(hj) " & −→ (

T̃l , M̃(h,j)
)
.

edge − replicate
(1.133)

This procedure generates a (semi-simplicial) triangulated surface
(
T̃l , M̃(h,j)

)
with

boundary ∂M̃(h,j) = σ 1
(−)(h, j)∪σ 1

(+)(h, j) ≈ S
1. If l(h, j) is the length of the marked
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σ   (j)0
σ   (h)

0

σ   (h,j)
1

σ   (h,j)
1

 (+)

σ   (h,j)
1

 (-)

Fig. 1.21 The slit-open trasformation in a portion of a Euclidean triangulated surface

edge σ 1(h, j), then we stipulate that the length of the boundary ∂M̃(h,j) is provided
by 2l(h, j) (Fig. 1.21).

Consider the surface with boundary Σ(h,j) obtained from the surface ∂σ 3(j, h,
b, a) of a tetrahedron by slitting open and replicating the edge σ 1(h, j).
Similarly, let

(
T̃l , M̃(h,j)

)
be the triangulated surface obtained by the action of the

slit–replica deformation on a given Euclidean triangulated surface with a marked
edge (Tl ,M)(hj) ∈ POLg,N0(M). Let us glue, via an orientation reversing simpli-
cial map, Σ(h,j) to (T̃l , M̃(h,j)). In this way we obtain a closed (semi-simplicially)
triangulated surface (T∗l ,M) := (T̃l , M̃(h,j)) ∪ Σ(h,j) ∈ POLg,N0+2(M), (with
the same topology of (Tl ,M)(hj), since we are gluing back a disk). Let us para-
metrize the length of the neck σ 1

(−)(h, j) ∪ σ 1
(+)(h, j) in (T∗l ,M) according to

t �→ Lneck := 2(1 − t)l(h, j), t ∈ [0, 1]. Then as t → 1, we obtain a family
of triangulated surfaces (T∗l ,M)t which degenerate by pinching-off a pillow tail
(T pill ,S2), (see def. 1.6), into a surface with N0 ordinary vertices and a pinching
node σ 0∗ , i.e.

as t
(T∗l ,M)t " ↓ −→ (T̂ l ,M) := (T×l ,M) ∪

σ 0∗
(T pill,S2),

goes to 1

(1.134)

where (T×l ,M) is a polyhedral surface with N0−2 vertices connected to the pillow
tail (T pill ,S2) through σ 0∗ .
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  SLIT

GLUE

    SHRINK
Fig. 1.22 The slitting and glueing procedure giving rise to a family of triangulated surfaces which
degenerate by forming a pillow surface tail

Remark 1.8 Note that the pinching node σ 0∗ is not counted for as a vertex of (T̂ l ,M)

(Fig. 1.22).

Remark 1.9 (Euclidean and hyperbolic pillow tail) Here the polyhedral pillow tail
(T pill ,S2) is geometrically realized by collapsing the neck σ 1

(−)(h, j)∪ σ 1
(+)(h, j) of

the slit-open surface of a tetrahedron σ 3(j, h, b, a). This is equivalent to gluing the
edges of the two distinct oriented Euclidean triangles σ 2(a, j, b) and σ 2(a, h, b).

The resulting “triangulated” surface, even if hard to visualize, (it cannot be ren-
dered as the boundary of a convex 3-dimensional region in the Euclidean space E

3),
is a perfectly sound polyhedral surface topologically equivalent to the sphere. Its
three vertices σ 0(α), α = 1, 2, 3, support positive deficit angles ε(α) > 0, and the
(discretized form of the) Gauss–Bonnet theorem provides indeed

3∑
α=1

ε (α)

2π
= 2 = χ(S2), (1.135)

where χ(S2) is the Euler characteristic of S
2. If we slightly round off these conical

points by smearing vertex curvature, and add some positive curvature (negative
is even better! see below) to the two triangular faces, then we get the (incorrect)
visualization of (T pill ,S2) adopted, for illustrative purposes, in the figures. Since
the thrice-punctured sphere is the largest subdomain of S

2 supporting a hyper-
bolic metric, if we replace the Euclidean triangles σ 2(a, j, b) and σ 2(a, h, b) with
corresponding hyperbolic ideal triangles σ 2

hyp(a, j, b) and σ 2
hyp(a, h, b), (with all

removed vertices pushed on the circle at infinity), then the above gluing pattern
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among the two (ideal) triangles, (defined up to traslations, since the edges have infi-
nite lengths), generates the well-known hyperbolic structure of finite area on the the
thrice-punctured sphere (T pill

hyp,S
2/{σ 0(α)}): the hyperbolic pillow tail, (this is nicely

described in [21]). The (finite) automorphism group of (T pill
hyp ,S

2/{σ 0(α)}) allows to
map the punctures (vertices) at the points (0, 1,∞) of the extended complex plane

C ∪ {∞} and one can also denote the (hyperbolic) pillow tail as
(

T pill
hyp ,CP

1
(0,1,∞)

)
.

The pillow tail has a particular role in analyzing the degenerations of both polyhedral
and smooth surfaces. The underlying rationale is related to the fact that Geometric
Invariant Theory requires at least three marked points for having a form of stability in
the degenerations of geometrical structures. This is a well-known phenomenon for
Riemann surfaces when discussing moduli space compactifications. It may appear
rather obvious for polyhedral surfaces since one cannot form semi-simplicial trian-
gulated surfaces with less than 3 vertices. However, at a deeper level, the stability
of the pillow tail can be considered as a direct consequence of the fact that to a
Euclidean triangulated surface one can naturally associate [24, 25, 26] a correspond-
ing Riemann surface. Explicitly, we have the following result that will be proved in
Chap. 2.

Theorem 1.6 The pillow tail (Tpill ,S2) is conformally equivalent to the thrice-
punctured sphere CP

1
(0,1,∞) and thus it is stable in the Riemann moduli sense.

These remarks suggest the following natural characterization

Theorem 1.7 (Stable polyhedral surfaces) Let (Tl ,M) ∈ POLg,N0(M)be a polyhe-
dral surface of genus g with N0 vertices. Consider, according to definition 1.9, a finite
collection {Si} of admissible paths which are embedded circles in M ′ :=M\K 0(T ),
where K 0(T ) := {σ 0(1), . . . , σ 0(N0)

}
is the 0-skeleton of (Tl ,M), and where each

circle Si is in a distinct isotopy class relative to M ′. Also assume that none of these
circles bound a disk in M containing at most a vertex of (Tl ,M). Then by contract-
ing such circles to zero length, via an area preserving length-contraction isotopy,
(Tl ,M) can degenerate only by:

(i) Pinching into separate components,
(ii) Handle-pinching,

(iii) Pillow-tail pinching,
and gives rise to a stable polyhedral surface with N0 vertices (T̂ l ,M).

Proof The somewhat delicate point of the above statement is to show that the degen-
eration of (Tl ,M) ∈ POLg,N0(M), generated by contracting the circles Si withing
a given isotopy class, yields a (semi-simplicial) polyhedral surface with N0 vertices.
Note that (iii) can be considered as a particular case of (i), and that handle-pinching
can be reduced to (i) by cutting out the handle, (in two non-pinching regions), and
gluing it back after pinching. Thus, it is sufficient to examine in detail only case (i),
i.e. the degeneration associated with pinching (Tl ,M) into separate components.
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To discuss case (i), fix the attention on a Si which is a disconnecting circle in M,
i.e. if Di is the disk bounded by Si, then Di and M\Di are disconnected subsets of
M. Since any of the embedded circle Si : [0, 1]→M ′, s �→ Si(s), is an admissible
path, it has finitely many intersections with the edges of (Tl ,M) ∈ POLg,N0(M).

Thus, without loss in generality, and up to an isotopy, we may assume that a given
Si intersects a finite number of edges {σ 1(j)}Ji

j=1, and each edge at most once, say

at the edge-length midpoint. Explicitly, let {σ 0(k)}Ki
k=1, Ki ≥ 2, denote the vertices

contained in the disk Di bounded by the embedded circle Si . Note that Di may be
topologically non-trivial. Let {σ 1(j)}Ji

j=1 be the set of edges in (Tl ,M) connecting

the vertices {σ 0(k)}Ki
k=1 ∈ Di with the vertices in M\Di . Denote by {σ̂ 0

j (Si)}, with

j = 1, . . . , ji, the mid-point intersections Si∩{σ 1(j)}Ji
j=1 and, as the notation suggests,

characterize them as auxiliary vertices generating, by adding corresponding edges, a
new triangulation (T ′l ,M). This new auxiliary triangulation (with N0 + Ji vertices)
describes the some polyhedral structure associated with (Tl ,M), since the added
auxiliary vertices are not conical. Let Li denote the length of the circle Si as induced
by the metric geometry of (Tl ,M).Consider a length-contraction isotopy (relative to
M ′) of the given Si defined by the family of paths S(t)i , t ∈ [0, 1] , s �→ S(t)i (s) :=
(1 − t)Si(s), with the requirement that the (Euclidean) area of the corresponding
disk D(t)

i , bounded by S(t)i , remains fixed for all t ∈ [0, 1] . Since we are considering

a length contraction in a given isotopy class relative to M ′, D(t)
i ∪ S(t)i contains

Ji(t)+Ki vertices, viz. the original set {σ 0(k)}Ki
k=1 which by isotopy must be always

contained in D(t)
i , plus the auxiliary {σ̂ 0

j (S
(t)
i )} intercepted by the boundary shrinking

circle S(t)i . Similarly, the open surface M\D(t)
i contains N0 − (Ji(t)+Ki) vertices.

As t ↗ 1, S(t)i shrinks to a point and the Ji(t) auxiliary vertices {σ̂ 0
k (Si)} coalesce

into a nodal point σ 0∗ (Si). Correspondingly, the triangulation (T ′l ,M)t pinches off
into two distinct components: a closed triangulated surface D∗i ∪ σ 0∗ (Si) with Ki + 1
vertices joined, via the node σ 0∗ (Si), to an open triangulated surface (T∗l ,M\σ 0∗ (Si))

with N0 − (Ki + 1) vertices. Thus, the union

(T̂ l ,M)Si :=
(

T∗l ,M\σ 0∗ (Si)
)
∪
(

D∗i ∪ σ 0∗ (Si)
)
, (1.136)

is a polyhedral surface with N0 vertices, (recall that σ 0∗ (Si) is not counted as a vertex),
and describes the pinching–off degeneration of (Tl ,M) along the embedded circle
Si .

Remark 1.10 Note that we can arrange the pinching in such a way that the conical
angle Θ(Si) at σ 0∗ (Si), that may result from the Si-collapsing, is the same on both
side of the pinching node. Also, by a finite number of flip moves, we can always make
the incidence on the node σ 0∗ (Si) the same as seen from both sides of the resulting
stable triangulation.

Since the number of isotopy classes of embedded circles relative to M ′ is finite,
there is at most a finite number of such degenerations. In particular, if Si contains just
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σ   (j)0

σ   (h)
0

^

S i shrink

circle

D i

Fig. 1.23 The geometrical set up for proving Theorem 1.7. Dashed lines represent the added edges
which, together with the mid-point vertices σ̂ 0

j (Si) intercepted by the shrinking circle Si , charac-
terize the auxiliary triangulation (T ′l ,M)

two vertices, (and hence their slit open connecting edge), then it is easy to see that
the resulting D∗i ∪ σ 0∗ (Si) is a triangular pillow (T pill,S2), and (T̂ l ,M)Si represents
a stable pillow tail degeneration of (Tl ,M). Finally, if Si is a nonseparating circle,
then Si must be a representative, in the given isotopy class relative to M ′, of one
of the g disjoint simple closed curves which can be cut from an orientable surface
of genus g without disconnecting it. In such a case, (T̂ l ,M)Si is associated with a
handle-pinching degeneration (Fig. 1.23).

Such a characterization of the possible degenerations of a polyhedral surface is
clearly modelled on what happens in Riemann surface theory, an analogy which will
be fully justified in Chap. 2, and that suggests to compactify POLg,N0(M) by com-
pleting it with the stable polyhedral surfaces {(T̂ l ,M)Si }. Since pillow-tail degener-
ation is stable, we define (Figs. 1.24, 1.25).

Definition 1.23 The space POLg,N0(M) of stable polyhedral surfaces of genus
g with N0 vertices is defined by completing POLg,N0(M) in such a way that the
closure ∂ POLg,N0(M) of POLg,N0(M) in POLg,N0(M) consists of stable polyhe-
dral surfaces {(T̂ l ,M)Si }with N0 vertices and with a finite set of pillow-tail pinching
degenerations.

Pushing further the analogy with standard moduli space theory, let us observe that
any point p on a stable polyhedral surface (Tl,M) ∈ POLg,N0(M) defines a natural
mapping

(Tl ,M) −→ POLg,N0+1(M) (1.137)
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Fig. 1.24 The conical angles
at the pinching node σ 0∗ (Si)

are the same as seen from
both sides of the stable
polyhedral surface  (S  )

0
i*

Θ(S )i

σ   (S  )
0

i*

flip

flip

Fig. 1.25 By a finite sequence of flip moves we can always arrange the pinching in such a way
that the incidence on the node σ 0∗ (Si) is the same as seen from both sides of the resulting stable
triangulation, (here q

[
σ 0∗ (Si)

] = 3). In order to illustrate the flips, the figure does not correctly
render the fact that also the conical angles on both sides are the same

that determines a stable polyhedral surface (T̂ l ,M) ∈ POLg,N0+1(M). Explicitly,
we can distinguish three possible cases (Fig. 1.26):

(A) As long as the point p ∈ (Tl ,M) is disjoint from the vertex set {σ 0(k)}N0
k=1

of (Tl ,M) one simply defines (T̂ l ,M) to be the new triangulation we get from
(Tl ,M) by promoting p to a be a vertex, i.e., p := σ 0(N0 + 1), and adding the
corresponding new edges, (if p is in the interior of a triangle σ 2(k, h, j) ∈ (Tl ,M)

then we need to add three new edges issuing from σ 0(N0+ 1) and connecting to the
vertices σ 0(k), σ 0(h), and σ 0(j) of σ 2(k, h, j); If p belongs to an edge σ 1(h, j)
shared between two adjacent triangles σ 2(k, h, j), and σ 2(h, i, j) ∈ (Tl ,M) then
we need to add two new edges connecting σ 0(N0 + 1) to the vertices σ 0(k), and
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Fig. 1.26 The pinching point σ 0∗ (Si) associated with a shrinking circle Si does not count as an
ordinary vertex. Rather, it is a nodal point in the stable polyhedral surface (T̂ l ,M)Si

σ 0(i)). Since the added vertex does not carry a conical angle, the new triangulation
(T̂ l ,M) represents the same polyhedral structure associated with (Tl ,M).

(B) If the point p is one of the vertices of (Tl ,M), i.e., if p = σ 0(h) for some
vertex σ 0(h) ∈ {σ 0(k)}N0

k=1, then proceed according to the following steps: (i) for

any 1 ≤ i ≤ N0, with i �= h, identify σ̂ 0(i) ∈ (T̂ l ,M) with the corresponding
σ 0(i) ∈ (Tl ,M); (ii) take a triangular pillow (T pill ,S2), label with a the index h one
of its three vertices (σ 0

pill(1), σ
0
pill(2), σ

0
pill(3)), say σ 0

pill(1) �→ σ 0
pill(h), and attach

it to the given p = σ 0(h) ∈ (Tl ,M) so as to generate a pinching node σ 0∗ , (and
remove it from the N0 count of the vertices); (iii) relabel the remaining two vertices
(σ 0

pill(2), σ
0
pill(3)) ∈ (T pill,S2) as σ̂ 0(h) and σ̂ 0(N0+1). In this way, we get a genus

g stable polyhedral surface

sh [(Tl ,M)] = (T̂ l ,M) := (Tl ,M)h ∪
p=σ 0∗

(T pill,S2) ∈ POLg,N0+1(M) (1.138)

with a pillow tail and with a double vertex corresponding to the original vertex
p = σ 0(h) (Fig. 1.27).

(C) Finally, if p coincides with a pinching node σ 0∗ (Si) of (Tl ,M), then (T̂ l ,M) ∈
POLg,N0+1(M) results from: (i) separating the two pinched components of (Tl ,M);
(ii) Setting σ̂ 0(j) := σ 0(j) for any 1 ≤ j ≤ N0; (iii) Inserting a copy of a triangu-
lar pillow (T pill ,S2) with two of its vertices, say (σ 0

pill(2), σ
0
pill(3)) identified with

the preimage of p = σ 0(h) so as to generate two pinching nodes (σ 0∗ (2), σ 0∗ (3));
(iv) identify the third vertex σ 0

pill(1) ∈ (T pill ,S2) with σ̂ 0(N0 + 1).
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Fig. 1.27 Since the point p
is disjoint from the vertex set
{σ 0(k)}N0

k=1 of (Tl ,M), it is
promoted to be a new vertex
p := σ 0(N0 + 1)

σ   ( N  + 1 )0 p
0

Conversely, let

π : POLg,N0+1(M) −→ POLg,N0(M)

forget
(T̂ l ,M) " & −→ (Tl ,M)

collapse

(1.139)

the projection which forgets the (N0 + 1)st vertex σ̂ 0(N0 + 1) of (T̂ l,M) and, if
σ̂ 0(N0+1) is in a pillow tail component (T pill ,S2) ∈ (T̂ l ,M), collapses (T pill ,S2)

and replaces the corresponding pinching node σ 0∗ with the remaining vertex of
(T pill ,S2) (Fig. 1.28).

The fiber of π over (Tl ,M) is parametrized by the map (1.137), and if (Tl ,M)

has a trivial automorphism group Aut(T ) then π−1(Tl ,M) is by definition the poly-
hedral surface (Tl ,M), otherwise it is identified with the quotient (Tl ,M)/Aut(T ).
Thus, under the action of π,we can consider POLg,N0+1(M) as a family (in the orb-
ifold sense) of polyhedral surfaces over POLg,N0(M). Note that, by construction,
POLg,N0+1(M) comes endowed with the N0 natural sections s1,..., sN0

sh : POLg,N0(M) −→ POLg,N0+1(M), (1.140)

defined by (1.138) (Fig. 1.29).
It is important to realize that the N0 combinatorial bundles defined by the poly-

hedral cotangent cones at the (labelled vertices of the) (Tl,M) in T met
g,N0

(M),

(see Lemma 1.2), naturally extend to the stable polyhedral surfaces in POLg,N0(M).

Again this is in a rather obvious analogy with the line bundles on the moduli space
of N0-pointed Riemann surfaces, (see Chap. 2), and Kontsevich’s characterization
of combinatorial classes over the moduli space of ribbon graphs. However, here the
situation is geometrically simpler.
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σ   ( N  + 1 )0
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Fig. 1.28 If the point p is a vertex, say σ 0(h), of (Tl ,M), we introduce a pillow tail (T pill , S2),

this removes the vertex σ 0(h) transforming it in a pinching node. The operation is completed by
relabelling the two new vertices of (T pill , S2) as σ̂ 0(h) and σ̂ 0(N0 + 1)

 ( N  + 1 )0
0

 ^

separate, add pillow & relabel

 p

Fig. 1.29 If p coincides with a pinching node σ 0∗ (Si) of (Tl ,M), then separate the pinched com-
ponents and insert a pillow tail (T pill , S2). This generates two pinching nodes and a new vertex in
(T pill , S2) which gets the label σ̂ 0(N0 + 1)
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Chapter 2
Singular Euclidean Structures
and Riemann Surfaces

As we have seen in Chap. 1, a Euclidean triangulated surface (Tl ,M) characterizes
a polyhedral metric with conical singularities associated with the vertices of the tri-
angulation. In this chapter we show that around any such a vertex we can introduce
complex coordinates in terms of which we can write down the conformal conical
metric, locally parametrizing the singular structure of (Tl ,M). This makes available
a powerful dictionary between 2-dimensional triangulations and complex geometry.
It must be noted that, both in the mathematical and in the physical applications of
the theory, the connection between Riemann surfaces and triangulations typically
emphasizes only the role of ribbon graphs and of the associated metric. The con-
ical geometry of the polyhedral surface (Tl ,M) is left aside and seems to play no
significant a role. Whereas this attitude can be motivated by the observation (due
to Troyanov [8]) that the conformal structure does not see the conical singularities
(see below, for details), it gives a narrow perspective of the much wider role that
the theory has to offer. Thus, it is more appropriate to connect a polyhedral surface
(Tl ,M) to a corresponding Riemann surface by taking fully into account the conical
geometry of (Tl ,M). This connection is many-faceted and exploits a vast repertoire
of notion ranging from complex function theory to algebraic geometry. We start by
defining the barycentrically dual polytope (PT ,M) associated with a polyhedral sur-
face (Tl ,M) and discuss the geometry of the corresponding ribbon graph. Then, by
adapting to our case the elegant approach in [4], we explicitly construct the Riemann
surface associated with (PT ,M). This directly bring us to the analysis of Troyanov’s
singular Euclidean structures and to the construction of the bijective map between
the moduli space Mg,N0 of Riemann surfaces (M, N0) with N0 marked points, dec-
orated with conical angles, and the space of polyhedral structures. In particular the
first Chern class of the line bundles naturally defined over Mg,N0 by the cotangent
space at the i-th marked point is related with the corresponding Euler class of the
circle bundles over the space of polyhedral surfaces defined by the conical cotangent
spaces at the i-th vertex of (Tl ,M). Whereas this is not an unexpected connection,
the analogy with Witten–Kontsevich theory being obvious, we stress that the conical
geometry adds to this property the possibility of a deep and explicit characterization

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 55
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of the Weil–Petersson form in terms of the edge-lengths of (Tl ,M). This result [1] is
obtained by a subtle interplay between the geometry of (Tl ,M) and 3-dimensional
hyperbolic geometry, and it will be discussed in detail in Chap. 3 since it explicitly
hints to the connection between polyhedral surfaces and quantum geometry in higher
dimensions.

2.1 The Barycentrically Dual Polytope of a Polyhedral Surface

Many subtle aspects of the geometry of the set POL g,N0(M) of polyhedral surfaces
(Tl ,M) are captured by the properties of the barycentrically dual polytope associated
with (Tl ,M). In this section we study in full detail this polytope, eventually making
contact with ribbon graph theory.

Denote by (T (1),M) := |T (1)l | → M the (first) barycentric subdivision of
(Tl ,M) = |Tl | → M, realized by the medians of the triangles σ 2(i, jk) ∈ T, (recall
that by Ceva’s theorem the medians all intersect at the barycenter of σ 2(i, jk)). This
procedure divides each σ 2(i, jk) into six new triangles and we have (Fig. 2.1)

Definition 2.1 The closed stars in (T (1),M) of the vertices of the original triangu-
lation (Tl ,M) form a collection of 2-cells {ρ2(i)}N0(T )

i=1 characterizing the conical
polytope (M, PT ) := |PTl | → M barycentrically dual to (Tl ,M).

The adjective conical emphasizes that here we are considering a geometrical pre-
sentation |PTl | → M of P where the 2-cells {ρ2(i)}N0(T )

i=1 retain the conical geometry
induced on the barycentric subdivision by the original conical metric structure of
(Tl ,M).

In order to describe explicitly the geometry of (PT ,M) let us consider the generic
oriented (counter clockwise) triangle σ 2(h, j, k) ∈ (Tl ,M) of sides σ 1(h, j),
σ 1( j, k), andσ 1(k, h).Note that each edgeσ 1(h, j)has two orientations,σ 1(h, j) =
−σ 1( j, h). Denote by

σ 0(h)↘ σ 1(h, j), (2.1)

σ 1(h, j)↗ σ 0( j) (2.2)

the source and the target of the edgeσ 1(h, j), respectively. These define the incidence
(or boundary) map among the generic edge σ 1(h, j) and the corresponding source
σ 0(h), and target σ 0( j) vertices.

Let W (h, j), W ( j, k), and W (k, h) respectively denote the barycenters of the
edges σ 1(h, j), σ 1( j, k), and σ 1(k, h). We have

Definition 2.2 The oriented half-edges ρ1(•, •)±, connecting W (h, j), W ( j, k),
and W (k, h) to the vertex ρ0(h, j, k) of the polytope (M, PT ), are defined by the
incidence relations

W ( j, h)↘ ρ1(h, j)+ ↗ ρ0( j, k, h)↘ ρ1(h, k)− ↗ W (k, h), (2.3)



2.1 The Barycentrically Dual Polytope of a Polyhedral Surface 57

Fig. 2.1 The conical dual
polytope

(P  , M)T

W (k, j)↘ ρ1( j, k)+ ↗ ρ0(k, h, j)↘ ρ1( j, h)− ↗ W (h, j), (2.4)

W (h, k)↘ ρ1(k, h)+ ↗ ρ0(h, j, k)↘ ρ1(k, j)− ↗ W ( j, k). (2.5)

Note that

ρ1(h, j) = ρ1(h, j)− ∪W ( j, h) ∪ ρ1(h, j)+, (2.6)

and ρ1(h, j)+ ≡ −ρ1( j, h)−. We denote by

L̂(•, •)± :=
∣∣∣ρ1(•, •)±

∣∣∣ (2.7)

the length of the given half edge (Fig. 2.2).

Remark 2.1 If we fix our attention to a given triangle σ 2(h, j, k) ∈ (Tl ,M) we can
exploit a simpler notation for the lengths of the half edges incident on the vertex,
ρ0(h, j, k) ∈ (M, PT ), dual to σ 2(h, j, k), i.e.,

L̂(k) := |ρ1(h, j)+| = |ρ1( j, h)−|, (2.8)

L̂(h) := |ρ1( j, k)+| = |ρ1(k, j)−|, (2.9)

L̂( j) := |ρ1(k, h)+| = |ρ1(h, k)−|. (2.10)

It must be stressed that this notation is ambiguous as soon as we consider two
adjacent triangles in (Tl ,M) and the corresponding trivalent vertices in (PT ,M).
In this latter case we have to use the more explicit labeling L̂(•, •)± := ∣∣ρ1(•, •)±∣∣ .
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Fig. 2.2 The geometry of half edges

Since the medians of an arbitrary triangle σ 2(h, j, k) ∈ (Tl ,M) divide one
another in the ratio 2 : 1, the lenghts of the medians W ( j, k)ρ2(h), W (k, h)ρ2( j),
W (h, j)ρ2(k) of the triangle σ 2(h, j, k) are given by 3L̂(h), 3L̂( j), and 3L̂(k),
respectively, (we can use here the simpler notation described in Remark 2.1). More-
over, since one can always construct a triangle from the medians of an arbitrary
triangle we have that L̂(h), L̂( j), and L̂(k) satisfy the triangle inequality (Fig. 2.3)

L̂(k) ≤ L̂(h)+ L̂( j), � (k, h, j), (2.11)

where � (k, h, j) stands for cyclic permutation. An elementary computation pro-
vides the relations connecting the side lengths l(•, •) to the L̂(•)’s

L̂2( j) = 1
18 l2( j, k)+ 1

18 l2(h, j)− 1
36 l2(k, h)

L̂2(k) = 1
18 l2(k, h)+ 1

18 l2( j, k)− 1
36 l2(h, j)

L̂2(h) = 1
18 l2(h, j)+ 1

18 l2(k, h)− 1
36 l2( j, k),

l2(k, h) = 8L̂2(h)+ 8L̂2(k)− 4L̂2( j)

l2(h, j) = 8L̂2( j)+ 8L̂2(h)− 4L̂2(k)

l2( j, k) = 8L̂2(k)+ 8L̂2( j)− 4L̂2(h).

(2.12)

Let θkh j , θh jk, θ jkh respectively denote the angles associated with the vertices
σ 0(h), σ 0( j), σ 0(k) of the triangle σ 2(h, j, k). Denote by
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Fig. 2.3 The relation between the edge-lengths of the conical polytope and the edge-lenghts of the
triangulation

φ jk := ∠[L̂( j), L̂(k)],
φkh := ∠[L̂(k), L̂(h)],
φh j := ∠[L̂(h), L̂( j)],

(2.13)

the angles formed by the half edges incident on the 3-valent vertex ρ0(h, j, k).
The medians of σ 2(h, j, k) induce a splitting of the vertex angles θkh j , θh jk , θ jkh

according to (Fig. 2.4)

θkh j = θ−kh j + θ+kh j , � (k, h, j), (2.14)

and the similitude between the trianglesσ 2(h, j, k) and (W (h, j),W ( j, k),W (k, h))
yields the relations

φ jk = π − θ−jkh − θ+h jk,

φkh = π − θ−kh j − θ+jkh,

φh j = π − θ−h jk − θ+kh j .

(2.15)

Finally, let us denote by α±(kh j) the angles between the median issued from the
vertex σ 0(h) and the oriented edge σ 1( j, k). We have

α−kh j = θ jkh + θ−kh j ,

α+kh j = θh jk + θ+kh j .
(2.16)
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Fig. 2.4 The relation between the median splitting of the angles at the vertices of the triangle
σ 2(h, j, k) and the angles among half edges

Similarly

α−h jk = θkh j + θ−h jk, (2.17)

α+h jk = θ jkh + θ+h jk, (2.18)

and

α−jkh = θh jk + θ−jkh, (2.19)

α+jkh = θkh j + θ+jkh, (2.20)

for the angles between the oriented edges σ 1(k, h), σ 1(h, j) and the medians issued
from σ 0( j) and σ 0(k), respectively (Fig. 2.5).

The set of these elementary relations allow to recover, as the indices (h, j, k) vary,
the metric geometry of the dual polytope (PT ,M) from the geometry of the original
singular Euclidean triangulation (Tl ,M).

2.2 Polytope Automorphisms and Ribbon Graphs

The geometrical realization of the polytope (PT ,M) directly implies that we can
associate with (PT ,M) the graph
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ΓP =
⎛
⎝{ρ0(h, j, k)}

N1(T )⊔
{W (h, j)}, {ρ1(h, j)−}

N1(T )⊔
{ρ1(h, j)+}

⎞
⎠. (2.21)

whose vertex set

v(ΓP ) := {ρ0(h, j, k)}N2(T ) ∪ {W (h, j)}N1(T ) (2.22)

is identified with the barycenters of the triangles {σ o(h, j, k)}N2(T ), and with the
barycenters {W (h, j)}N1(T ) of the edges {σ 1(h, j)} belonging to the original trian-
gulation (Tl ,M), whereas the edge set

e(ΓP) := {ρ1(h, j)}N1(T ) = e−(ΓP ) ∪ e+(ΓP) (2.23)

is generated by the half-edges

e−(ΓP) := {ρ1(h, j)−}N1(T ), e+(ΓP) := {ρ1(h, j)+}N1(T ), (2.24)

joined through the barycenters {W (h, j)}N1(T ) of the corresponding σ 1(h, j)
(Fig. 2.6).

Proposition 2.1 The graph ΓP is the edge refinement of the three-valent graph

K 1(P) :=
(
{ρ0(h, j, k)}N2(T ), {ρ1(h, j)}N1(T ),IP

)
(2.25)

defined by the incidence relation IP of the 1-skeleton of the Regge polytope (PT ,M).



62 2 Singular Euclidean Structures and Riemann Surfaces

Proof Let Ge denote of a (directed graph) G := (v, e,I ), defined by a set of vertices
v of valence≥ 3, a set of directed edges e, and an incidence relation I : e→ v× v.
Recall [4] that the edge refinement Ge of G is the graph obtained by adding a midpoint
We on each edge ρ1 ∈ e. We have Ge = (v ∪ ve, e− ∪ e+,Ie) where ve := {We} is
the set of added 2-valent vertices, e− ∪ e+ is the set of edges splitted in half-edges
by the midpoints {We}, and where the induced incidence relation Ie is consistent
with I . The (counterclockwise) orientation in the 2-cells {ρ2(k)} of (PT ,M) gives
rise to a cyclic ordering on the set of edges {ρ1} of the 3-valent graph K 1(P,M)
defined by the 1-skeleton of (PT ,M). Thus, the edges {ρ1}N1(T ) of K 1(P,M) are
directed and the barycenters {W (h, j)}N1(T ) generate a mid-point splitting which
gives rise to the graph ΓP . The incidence relations of ΓP are clearly consistent with
those of K 1(P). In particular, since K 1(P) is a trivalent graph, by eliminating all
2-valent vertices from ΓP we can immediately recover the 1-skeleton of (PT ,M)
from its edge refinement ΓP . 
�

The relevance of the edge refinement ΓP stems from the observation that the
natural automorphism group Aut (P) of (P,M), (i.e., the set of bijective maps pre-
serving the incidence relations defining the geometrical realization of (P,M)), is
not the standard automorphism group Aut (K 1

abs(P)) of K 1(P) thought of as the
underlying abstract graph, but rather the automorphism group of its edge refinement
ΓP , i.e.,

Aut (P) := Aut (ΓP). (2.26)

Explicitly, by adapting the definition of automorphism of the edge-refinement of
a graph [4], we have

Definition 2.3 A graph automorphism of ΓP is a triple of bijections

αv : {ρ0(h, j, k)} −→ {ρ0(h, j, k)},
αe : {W (h, j)} −→ {W (h, j)},
β : {ρ1(h, j)+} ∪ {ρ1(h, j)−} −→ {ρ1(h, j)+} ∪ {ρ1(h, j)−},

(2.27)

which are compatible with the incidence relation of ΓP .

Note that the orientation in the 2-cells {ρ2(k)} of (PT ,M) gives rise also to a
cyclic ordering on the set of half-edges {ρ1(h, j)±}N1(T ) incident on the vertices
{ρ0(h, j, k)}N2(T ). Thus,

Aut (ΓP) ⊂ Aut (K 1
abs(P)), (2.28)

since the elements in Aut (ΓP) are the automorphisms in Aut (K 1
abs(P)) that preserve

the cyclic ordering at each vertex.
Recall that we can associate with the polyhedral surface (Tl ,M) the topologically

open surface M ′ := M \ K 0 obtained by removing the vertices V (T ) from (Tl ,M).
Then, M ′ admits a canonical deformation retraction onto the spine of M ′, defined
by the union of the closed simplices of the barycentric subdivision of (Tl ,M) that
lie in M ′. Namely, the inclusion K 1(P) ↪→ M ′ is a homotopy equivalence.
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We have the following characterization

Propositon 2.2 The edge-refinement ΓP of the 1-skeleton K 1(P) of the barycen-
trically dual polytope (PT ,M) of a polyhedral surface of genus g has the following
properties:

(1) ΓP is a ribbon graph [4], i.e., the edge refinement of an abstract graph Γ
endowed with a cyclic ordering on the set of the half-edges,

{ρ1(h, j)+, ρ1( j, k)+, ρ1(k, h)+}, (2.29)

incident on each 3-valent vertex ρ0(h, j, k) ∈ Γ. The ribbon graph ΓP has
N0(T ) boundary components {∂(k)ΓP }, N1(T ) edges, and N2(T ) 3-valent
vertices with

2g − 2+ N0(T ) = 1

2
N2(T ). (2.30)

(2) ΓP is metrized by the function

L̂ : e±(Γ ) −→ R
3N2(T )+ (2.31){

(ρ1(h, j)±, ρ1( j, k)±, ρ1(k, h)±)
} �−→ {(

L̂(k), L̂(h), L̂( j)
)}
, (2.32)

that assigns to each (unoriented) half-edge, incident on ρ0(h, j, k), a positive
real number.
Conversely, any metrized edge refinement of a ribbon graph Γ, with n0(Γ )

boundary components, n1(Γ ) edges, and n2(Γ ) 3-valent vertices such that

2g − 2+ n0(Γ ) = n1(Γ )− n2(Γ ), (2.33)

characterizes an oriented surface M̃(Γ ) with n0(Γ ) boundary components
∂(k)M̃, possessing Γ as a spine. By capping the boundary components ∂(k)M̃
with n0(Γ ) topological disks we get a surface M of genus g endowed with a
Euclidean triangulation |T | → M, with f-vector N0(T ) = n0(Γ ), N1(T ) =
n1(Γ ), N2(T ) = n2(Γ ), admitting Γ as the edge-refinement of the 1-skeleton
of the barycentrically dual polytope (PT ,M) associated with (Tl ,M).

Proof The first part of the proposition directly follows from the connection, estab-
lished above, between the ribbon graph ΓP and the edge refinement of 1-skeleton
K 1(P) associated with the polyhedral surface (Tl ,M).

For the second part, let us recall that an abstract, 3-valent, ribbon graph Γ :=
(v, e,I ) with n0(Γ ) boundary components, n1(Γ ) edges, and n2(Γ ) 3-valent ver-
tices such that 2g − 2+ n0(Γ ) = n1(Γ )− n2(Γ ), characterizes the notion of map
of a surface. This implies that geometrically one can realize Γ by using a double
index notation to represent (half-)edges on an oriented two-plane, and connect any
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Fig. 2.6 The ribbon graph
associated with the
barycentrically dual polytope
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two edges, according to the incidence I , in such a way that the double index nota-
tion (and hence the orientation) is consistent. This immediately implies that Γ is
topologically an oriented topological surface with boundary which retracts on Γ.
According to the Euler relation, by capping the boundaries with disks components
we get a closed surface of genus g, as stated.1 Let Γe := (v∪ ve, e− ∪ e+,Ie) be the
edge refinement of Γ. Denote by v(h, j, k) ∈ v(Γ ) the generic 3-valent vertex, and
let

(
e±(h, j), e±( j, k), e±(k, h)±

) ∈ e(Γe) the three half-edges incident on it. Γe

is metrized by assigning, for each v(h, j, k) ∈ v(Γ ), a length to the corresponding
half-edges, according to (Fig. 2.7)

(
e±(h, j), e±( j, k), e±(k, h)±

) �−→ (
L̂(k), L̂(h), L̂( j)

)
, (2.34)

where each triple
(

L̂(k), L̂(h), L̂( j)
)
∈ R

3+, satisfies the triangle inequality

L̂(k) ≤ L̂(h)+ L̂( j), � (k, h, j). (2.35)

This assignment can be used to characterize a Euclidean triangulation of the n0(Γ )

disks capping the boundary components of Γ according to the following steps:

(i) place the 3-valent vertex v(h, j, k) ∈ v(Γ ) in the origin of an oriented (counter
clockwise) Euclidean 2-plane (R2, δ), (δ the Euclidean metric). Each incident
edge (e(h, j), e( j, k), e(k, h)) and the associated 2-valent vertices

(ve(h, j), ve( j, k), ve(k, h)), (2.36)

1 see [2–4] for an in depth analysis of the various aspects of the connection between ribbon
graphs and surface theory. The name ribbon graph which is indeed quite evocative, as confronted
to equivalent denominations as fat graphs, or maps of surfaces, apparently first appears in [2].
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Fig. 2.7 The construction of the triangle σ 2(h, j, k) out of its median triangle
Δ[ve(h, j), σ 0(k),G(h)]

defining the edge refinement, are injectively mapped into (R2, δ) modulo a
rotation, i.e., ve(h, j) can be on any point of the circumference Ck of radius
L̂(k), centered at the origin of (R2, δ). Similarly ve( j, k), and ve(k, h) can
be anywhere on the associated circumferences, with ve(h, j) �= ve( j, k) �=
ve(k, h).

(ii) Select and fix in (R2, δ) an incident half-edge, say e+(h, j), entering in
v(h, j, k), and consider, in (R2, δ), the directed segment of length 3L̂(k) gen-
erated by e+(h, j). This segment will connect the point ve(h, j) ∈ (R2, δ)

to another point that we denote σ 0(k). Over the segment (ve(h, j), σ 0(k))
construct the unique oriented triangle Δ[ve(h, j), σ 0(k),G(h)], with vertex
G(h) ∈ (R2, δ), and sides of lengths 3L̂(h) and 3L̂( j), respectively (Fig. 2.7).

(iii) Draw the directed parallel to the side (σ 0(k),G(h)) passing through v(h, j, k).
Along this oriented line fix a new vertex σ 0(h) by considering the directed
segment (v(h, j, k), σ 0(h)) of length 2L̂(h). We can now fix the action of
the rotation group on (R2, δ) by declaring that this oriented line contains the
mid-vertex ve( j, k). The corresponding segment (ve( j, k), σ 0(h)) has length
3L̂(h). Finally, the two oriented lines [σ 0(h), ve(h, j)] and [σ 0(k), ve( j, k)]
meet at a point that we denote σ 0( j). The triangle σ 2(h, j, k), the vertices of
which are defined by the points σ 0(h), σ 0( j), σ 0(k), has medians of lengths(

3L̂(k), 3L̂(h), 3L̂( j)
)

and its median triangle is Δ[ve(h, j), σ 0(k),G(h)].
(iv) By exploiting the relations (2.12) we can compute the lengths l(h, j), l( j, k),

and l(k, h) of the sides of the triangle σ 2(h, j, k) so defined. Finally, from
(1.16) also the associated vertex angles θh jk, θ jkh, and θkh j .
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This elementary construction defines the mapping

(Γe, L̂(•)) �
(

v(h, j, k), L̂(k), L̂(h), L̂( j)
)
�−→ σ 2(h, j, k) ∈ (R2, δ), (2.37)

which associates to each 3-valent vertex v(h, j, k) of the metrized ribbon graph Γ a
well-defined Euclidean triangle σ 2(h, j, k).

Let us denote by {v(h, jα, jα+1)}(h), jq(h)+1 ≡ j1 the collection of 3-valent
vertices in a given boundary component ∂(h)Γ of the ribbon graph Γ, containing
q(h) vertices. According to the above construction, we can associate to any such
component a corresponding finite simplicial complex

∂(h)Γ �−→ T(h) :=
{
σ 2(h, jα, jα+1)

}
(h)
, (2.38)

defined by q(h) triangles
{
σ 2(h, h, jα, jα+1)

}
all incident on the same vertex σ 0(h),

and characterizing a Euclidean triangulation f(h) : T(h) −→ D(h) ⊂ M, of the disk
D(h) capping ∂(h)Γ. The triangulated capping disk (T(h), D(h)) has a natural conical
geometry associated with the conical angle

Θ(h) :=
q(h)∑
α=1

θα+1,hα (2.39)

supported at σ 0(h). If (λ(h), β(h)) denote polar coordinates, (based at σ 0(h)), of a
point p ∈ D(h), then D(h) can be geometrically realized as the space

{(λ(h), β(h)) : λ(h) ≥ 0;β(h) ∈ R/(2π − ε(h))Z}/ (0, β(h)) ∼ (0, β ′(h))
(2.40)

endowed with the conical metric

dλ(h)2 + λ(h)2dβ(h)2. (2.41)

This construction can be coherently extended to all boundary components ∂(h)Γ
of Γ and characterize (Tl ,M) as the polyhedral surface associated with Γ, cor-
respondingly identifying the given ribbon graph with the (edge refinement of the)
1-skeleton of the barycentrically dual polytope of (Tl ,M). 
�

2.3 Remarks on Metric Ribbon Graphs

Let us denote by RGg,N0 the set of all connected ribbon graphs Γ of genus g,
with given edge-set e(Γ ) and N0 labeled boundary components, with 2 − 2g −
N0(T )< 0, and such that every vertex has valency ≥ 3. The set RGmet

g,N0
of metric

ribbon graphs obtained from RGg,N0 by assigning a length to each edge ∈ e(Γ )

can be characterized [3, 4] as a space homeomorphic to R
|e(Γ )|
+ , (|e(Γ )| denoting

the number of edges in e(Γ )), topologized by the standard ε-neighborhoods Uε ⊂
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R
|e(Γ )|
+ , (this is strictly true only for the top-dimensional component associated with

trivalent ribbon graph. The general case is discussed in great detail in [4]). The
automorphism group Aut (Γ ) acts naturally on such a space via the homomorphism
Aut (Γ )→ Ge(Γ ),where Ge(Γ ) denotes the symmetric group over |e(Γ )| elements.
The topology on the set of ribbon graphs is characterized by a (Whitehead) expansion
� and collapse � procedure which amounts to expanding or collapsing edges and
separating or coalescing vertices. Explicitly, if l(t) = tl is the length of an edge
ρ1( j) of a ribbon graph Γl(t) ∈ RGmet

g,N0
, then, as t → 0, we get the metric ribbon

graph Γ̂ :=� (Γ ) which is obtained from Γl(t) by collapsing the edge ρ1( j). The
expansion is realized by reversing this construction. Denote [4] by X met�Γ the set of all
metric ribbon graphs that can be obtained by Γ through all possible expansions of Γ,
modulo identifications under ribbon graph isomorphisms preserving the half-edges
structure. In full analogy with the case of polyhedral surfaces we have discussed in
detail in Sect. 1.6, the quotient space R

|e(Γ )|
+ /Aut (Γ ) is a differentiable orbifold in

terms of which we can write

RGmet
g,N0
=

⊔
Γ ∈RGg,N0

R
|e(Γ )|
+

Aut (Γ )
. (2.42)

The set RGmet
g,N0

is [3, 4] a locally compact Hausdorff space modelled on strata

(rational orbicells)
X met�Γ
Aut (Γ ) of codimension

∑
ρ0∈Γ

(
deg(ρ0)− 3

)
.

Let us denote by K1 R Pmet
g,N0

the top-dimensional, (dim
[

K1 R Pmet
g,N0

]
= 3N0 +

6g − 6), open orbicell in RGmet
g,N0

, associated with the 3-valent ribbon graphs in
RGg,N0 barycentrically dual to metrical triangulations in T met

g,N0
.Note that K1 R Pmet

g,N0

is modelled on a subset of metric ribbon graphs X met�Γ which is acted upon by a
collapse-expansion move, dual of the flip move acting on the metrical triangulations
∈ T met

g,N0
. According to Proposition 2.2 there is a natural combinatorial isomorphism

POLg,N0(M) � K1 R Pmet
g,N0
⊂ RGmet

g,N0
, (2.43)

between the space of Polyhedral structures on surfaces of genus g with N0 vertices
and the space of (isomorphism classes of) 3-valent metrical ribbon graphs K1 R Pmet

g,N0
which are barycentrically dual to polyhedral surfaces (Tl ,M).

2.4 The Riemann Surface Associated with (PT , M)

In this section we explicitly construct the Riemann surface associated with the
conical polytope (PT ,M). To this end, let Γ denote the ribbon graph defined
by the edge-refinement of the 1-skeleton K 1 PT of the conical polytope (PT ,M).
Let ρ2(h), ρ2( j), and ρ2(k) respectively be the 2-cells ∈ (PT ,M) barycentrically
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dual to the vertices σ 0(h), σ 0( j), and σ 0(k) of a triangle σ 2(h, j, k) ∈ (Tl ,M).
Denote by ρ0(h, j, k) the 3-valent, cyclically ordered, vertex of Γ defined by

ρ0(h, j, k)
.= ∂ρ2(h)

⋂
Γ

∂ρ2( j)
⋂
Γ

∂ρ2(k). (2.44)

Similarly, if ρ1(h, j)+ and ρ1( j, h)−, respectively are the oriented half-edges in
ρ2(h) and ρ2( j) incident on ρ0(h, j, k), we can formally write (Fig. 2.8)

ρ1(h, j)+
⊔
ρ1( j, h)− .= ∂ρ2(h)

⋂
Γ

∂ρ2( j). (2.45)

A notation, this latter that emphasizes the distinct orientation of the same half-edge
of Γ as seen by the two adjacent oriented cells ρ2(h) and ρ2( j). Recall that the full
oriented edge ρ1(h, j) of Γ shared by ρ2(h) and ρ2( j) is provided by ρ1(h, j)− ∪
ρ1(h, j)+ as seen from ρ2(h) and by ρ1( j, h)− ∪ ρ1( j, h)+ as seen from ρ2( j).
The complementary half-edge ρ1(h, j)−, (and its reversed orientation counterpart
ρ1( j, h)+), is incident on some other vertex of Γ and should not be confused with
ρ1( j, h)− ! Such a notation may seem unwieldy, but it has the advantage of being
algorithmic and easily allows to propagate data along the ribbon graph Γ once we
have chosen a labeling for the N0(T ) 2-cells of (PT ,M).

Let ∂(ρ2(h)) be the oriented boundary of ρ2(k) ⊂ (PT ,M). The open disk

B2(h)
.=

{
p ∈ ρ2(h)\∂(ρ2(h))

}
, (2.46)

centered on the vertex σ 0(k) ∈ (Tl ,M), is contained in the star st (σ 0(h)).Note that
any two such balls, say B2(h) and B2( j), h �= j, are pairwise disjoint, and that the
complex

(Tl ,M) /
N0(T )⋃
k=1

B2(k) (2.47)

retracts on the 1-skeleton K 1 PT of (PT ,M). Let us denote by

L(h) =
q(h)∑
α=1

(
L̂(h, α)− + L̂(h, α)+

)
(2.48)

the length of the boundary ∂(ρ2(h)) of ρ2(h),where L̂(h, α)∓ are the lengths of the
2q(k) ordered half-edges {ρ1(h, α)∓} ∈ ∂(ρ2(h)).

With these preliminary remarks along the way, we associate to any vertex σ 0(h) ∈
(Tl ,M) the complex coordinate t (h) ∈ C, defined in the open disk Uρ2(h) ⊂ C of
unit radius (Fig. 2.9),
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Fig. 2.8 The oriented half-edges of the polytopal ribbon graph Γ around the vertex ρ0(h, j, k)

B2(h)
t (h)−→ Uρ2(h)

.= {t (h) ∈ C| |t (h)| < 1}
p �−→ t (h)[p], t (h)[σ 0(h)] ≡ 0.

(2.49)

In terms of t (h)we can explicitly write down the singular Euclidean metric locally
characterizing the conical Euclidean structure in B2(h), according to

ds2
(h) :=

L2(h)

4π2
|t (h)|−2

(
ε(h)
2π

)
|dt (h)|2 , (2.50)

where L(h) is the length of ∂(ρ2(h)) = ∂B
2
(h) and ε(h) is the corresponding deficit

angle in B2(h). One easily recognizes in (2.50) the metric of a Euclidean cone of
total angle Θ(h) = 2π − ε(h).

If vh : B2 → R is a continuous function (C2 on B2 − {σ 0(h)}) such that, for
t (h) → 0, |t (h)| ∂vh

∂t (h) → 0 and |t (h)| ∂vh
∂ t(h) → 0, then we can also consider the

conformal class C(h) of all metrics possessing the same conical structure of ds2
(h)

C(h) ≡
[
ds2
(h)

]
. (2.51)

In particular we have that
(
M,Csg

)
can be (locally) represented as

ds2
(h) = e2vh

L2(h)

4π2|t (h)|2 |dt (h)|2, (2.52)

where the conformal factor vh is given by

vh
.=

(
Θ(h)

2π

)
ln |t (h)| . (2.53)
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This explicitly shows that the conical metric is conformal to a smooth metric, (for
later convenience, here we have chosen the cylindrical metric on the punctured disk,
but we could have chosen the metric |dt (h)|2 as well), and thus establishes a basic
observation due to Troyanov [6, 7] (Fig. 2.10).

Proposition 2.3 The conical singularities are invisible from the conformal view-
point.

A somewhat direct consequence of such a remark is that we can, without giv-
ing particular analytical attention to the conical singularities, glue together the uni-
formizations {Uρ2(h)}N0(T )

h=1 along the pattern defined by the 1-skeleton of (PT ,M)
and generate on M the quasi-conformal structure(

(M;N0),Csg

)
.=

⋃
(PT ,M)

{Uρ2(h); ds2
(h)}N0(T )

h=1 (2.54)

giving (Tl ,M) the structure of a Riemann surface with N0 marked points. As we
shall see, the conical singularities will appear, in such a picture, as a decoration of
the marked points.

In order to carry out explicitly such a construction, we exploit the basic observation
that the conical metric (2.52) is conformal, (see (2.53)), to the cylindrical metric
canonically associated with the quadratic differential

φ|ρ2
h
:= L2(h)

4π2|t (h)|2 |dt (h)|2, (2.55)

on the punctured disk Δ∗h ⊂ Uρ2(h),

Δ∗h := {t (h) ∈ C| 0 < |t (h)| < 1}. (2.56)

φ|ρ2
h

has a second order pole in Δ∗h and it naturally extends as a Jenkins–Strebel
quadratic differential to the vertex and half-edge uniformizations of the whole ribbon
graph Γ. To see this explicitly, let us associate to the oriented half-edge ρ1(h, j)+
of Γ ∩ ρ2(h) a complex coordinate z(h, j)+ defined in the strip

Uρ1(h, j)+
.= {z(h, j)+ ∈ C |0 < Rez(h, j) < L̂(h, j)+}, (2.57)

L̂(h, j)+ being the length of the half-edge considered. The coordinate ζ(h, j, k),
corresponding to the 3-valent vertex ρ0(h, j, k) ∈ Γ ∩ ρ2(h), is defined in the open
set (Fig. 2.11)

Uρ0(h, j,k)
.= {ζ(h, j, k) ∈ C | |ζ(h, j, k)| < δ, ζ(h, j, k)[ρ0(h, j, k)] = 0},

(2.58)
where δ > 0 is a suitably small constant. Finally, the generic two-cell ρ2(k) is,
according to the remarks above, parametrized in the unit disk

Uρ2(k)
.= {t (k) ∈ C | |t (k)| < 1, t (k)[σ 0(k)] = 0}, (2.59)
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conical
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U

S2

1

c

0

S

Fig. 2.9 The conical geometry around a vertex σ 0(k) can be represented in terms of a complex
variable t (k)

where σ 0(k) is the vertex ∈ (Tl ,M) corresponding to the given two-cell.
The coordinate neighborhoods {Uρ0(h, j,k)}N2(T )

(h, j,k), {Uρ1(h, j)+}N1(T )
(h, j) , and

{Uρ2(k)}N0(T )
(k) can be coherently glued, along the pattern associated with the rib-

bon graph Γ, by noticing that to each oriented half-edge ρ1(h, j)+ we can associate
the standard quadratic differential on Uρ1(h, j)+ given by

φ|ρ1(h, j)+ = dz(h, j)+ ⊗ dz(h, j)+. (2.60)

Such φ|ρ1(h, j)+ can be extended to the remaining local uniformizations Uρ2(k),

and Uρ0(h, j,k), by exploiting a classic result in Riemann surface theory according to
which a quadratic differential φ has a finite number of zeros nzeros(φ) with orders
ki and a finite number of poles n poles(φ) of order si such that (Fig. 2.11)

nzero(φ)∑
i=1

ki −
n pole(φ)∑

i=1

si = 4g − 4. (2.61)

In our case we must have nzeros(φ) = N2(T ) with ki = 1, (corresponding to the
fact that the 1-skeleton of (PT ,M)is a trivalent ribbon graph Γ ), and n poles(φ) =
N0(T ) with si = s ∀i, for a suitable positive integer s. According to such remarks
(2.61) reduces to

N2(T )− s N0(T ) = 4g − 4. (2.62)

From the Euler relation N0(T ) − N1(T ) + N2(T ) = 2 − 2g, and 2N1(T ) =
3N2(T )we get N2(T )−2N0(T ) = 4g−4. This is consistent with (2.62) if and only
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(P  , M)TΓ

Fig. 2.10 The cylindrical and the conical metric over a polytopal cell are conformally related

if s = 2. Thus the extension φ of φ(h)|ρ1(h) along the 1-skeleton Γ of (PT ,M)must
have N2(T ) zeros of order 1 corresponding to the trivalent vertices {ρ0(h, j, k)} ofΓ
and N0(T ) quadratic poles corresponding to the polygonal cells {ρ2(k)} of perimeter
lengths {L(k)}, (see (2.55)). Around a zero of order one and a pole of order two,
every (Jenkins-Strebel) quadratic differential φ has a canonical local structure which
(along with (2.60)) is given by [4]

(|PTl | → M)→ φ
.=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ|ρ1(h, j)+ = dz(h, j)+ ⊗ dz(h, j)+,

φ|ρ0(h, j,k) = 9
4 ζ(h, j, k) dζ(h, j, k)⊗ dζ(h, j, k),

φ|ρ2(k) = − [L(k)]2

4π2t2(k)
dt (k)⊗ dt (k),

(2.63)

where {ρ0(h, j, k), ρ1(h, j)+, ρ2(k)} runs over the set of vertices, half-edges, and
2-cells of (PT ,M). Since φ|ρ1(h, j)+ , φ|ρ0(h, j,k), and φ|ρ2(k) must be identified
on the non-empty pairwise intersections Uρ0(h, j,k) ∩ Uρ1(h, j)+, Uρ1(h, j)+ ∩ Uρ2(k)
we can associate to the polytope (PT ,M) a complex structure ((M; N0),Csg) by
coherently gluing, along the pattern associated with the ribbon graph Γ, the local
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+
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Fig. 2.11 The complex coordinate neighborhoods associated with the polytope (PT ,M)

uniformizations {Uρ0(h, j,k)}N2(T ), {Uρ1(h, j)+}2N1(T ), and {Uρ2(k)}N0(T ). Explicitly,
let {Uρ1(h, j)+}, {Uρ1( j,k)+}, {Uρ1(k,h)+} be the three generic open strips associated
with the three cyclically oriented half-edges ρ1(h, j)+, ρ1( j, k)+, ρ1(k, h)+ inci-
dent on the vertexρ0(h, j, k).Then the corresponding coordinates z(h, j)+, z( j, k)+,
and z(k, h)+ are related to ζ(h, j, k) by the transition functions2 (Fig. 2.11)

ζ(h, j, k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
z(k, h)+

] 2
3 ,

e
2π
3
√−1

[
z(h, j)+

] 2
3 ,

e
4π
3
√−1

[
z( j, k)+

] 2
3 ,

(2.64)

Similarly, if {Uρ1(h, jβ)±}, β = 1, 2, ..., q(k) are the open strips associated with

the q(k) (oriented) half edges {ρ1(h, jβ)±} boundary of the generic polygonal cell

2 If we glue directly the flat stripes z(h, j)+, z( j, k)+, and z(k, h)+ by suitably identifying their
extremities then we would get the familiar conical singularity of 3π associated with a zero of order
1 of a J–S quadratic differential. Recall that a zero of order k generates a conical singularity given
by π(k + 2). This conical singularity is rather annoying since it is not directly related with the
conical singularities of the polyhedral surface (Tl ,M). It can be eliminated by introducing, at the
vertex ρ0(h, j, k), the uniformizing coordinate ζ(h, j, k) with ζ(h, j, k) = [z(k, h)+]2/3. This
can be seen as another manifestation of Troyanov’s basic observation that conical singularities are
invisible from the conformal viewpoint.
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ρ2(h), then the transition functions between the corresponding coordinate t(h) and
the {z(h, jβ)±} are given by

t (h) = exp

⎛
⎝2π
√−1

L(h)

⎛
⎝v−1∑
β=1

L̂(h, jβ)+ z(h, jv)
±
⎞
⎠

⎞
⎠, v = 1, ..., q(h), (2.65)

with
∑v−1
β=1 · .= 0, for v = 1, and where L(h) denotes the perimeter of ∂(ρ2(h)).

By iterating such a construction for each vertex {ρ0(h, j, k)} in the polytope (PT ,M)
we get a very explicit characterization of a complex structure that we denote by
((M; N0),C ).

As for the metrical properties of this complex structure note that for any closed
curve c : S1 → Uρ2(k), homotopic to the boundary of Uρ2(k), we get

∮
c

√
φ|ρ2(k) = L(∂(ρ2(k))) := L(k). (2.66)

In general, let

∣∣φ|ρ2(k)

∣∣ = [L(k)]2

4π2|t (k)|2 |dt (k)|2, (2.67)

denote the cylindrical metric canonically associated with a quadratic differential with
a second order pole. If we define Δr

k := {t (k) ∈ C| r ≤ |t (k)| ≤ 1} , then in terms
of the area element associated with the flat metric

∣∣φ|ρ2(k)

∣∣ we get

∫
Δr

k

i

2

[L(k)]2

4π2|t (k)|2 dt (k) ∧ dt(k) = [L(k)]2

2π
ln

(
1

r

)
, (2.68)

which, as r → 0+, diverges logarithmically. Thus, the (punctured) coordinate neigh-
borhood Uρ2(k), endowed with the flat metric (2.67),

∣∣φ|ρ2(k)

∣∣, is isometric to a flat
semi-infinite cylinder. Even if this latter geometry is perfectly consistent with the
metric ribbon graph structure, it is not the natural metric to use since we wish to explic-
itly keep track of the polyhedral surface (T,M) which generates the given ribbon
graph Γ. According to Proposition 2.3, given a normalized deficit angle
ε(k)
2π

.= 1 − Θ(k)
2π , the conical geometry (2.52) and the cylindrical geometry (2.67)

on the punctured disk Δ∗k ⊂ Uρ2(k) can be conformally related by choosing the
conformal factor e2vk in (2.52) according to, (see (2.53)),

e2vk = |t (k)|2
(
Θ(k)
2π

)
. (2.69)
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It follows that the conical metric

ds2
(k) := e2vk

∣∣φ|ρ2(k)

∣∣
= [L(k)]2

4π2 |t (k)|2 |t (k)|
2
(
Θ(k)
2π

)
|dt (k)|2

= [L(k)]2

4π2
|t (k)|−2

(
ε(k)
2π

)
|dt (k)|2 , (2.70)

can be consistently propagated along the ribbon graph associated with the polytope
(PT ,M). We have thus established the

Theorem 2.1 Let (Tl ,M) be a polyhedral surface of genus g with N0 vertices, and let
Γ be the (edge-refinemente of the) ribbon graph associated with the corresponding
barycentrically dual polytope (PT ,M), then the map

(PT ,M) −→ (
(M; N0),Csg

)
=

N2(T )⋃
{ρ0(h, j,k)}

Uρ0(h, j,k)

2N1(T )⋃
{ρ1(h, j)+}

Uρ1(h, j)+
N0(T )⋃
{ρ2(k)}

(
Uρ2(k), ds2

(k) := e2vk
∣∣φ|ρ2(k)

∣∣),
(2.71)

defines the decorated Riemann surface ((M; N0),Csg),with N0marked points, asso-
ciated with the singular Euclidean structure defined by the polyhedral surface
(Tl ,M).

2.5 Troyanov’s Singular Euclidean Structures

Note that ((M; N0),Csg) is a N0-pointed Riemann surface decorated with the deficit
angles ε(h) and the cell-perimeter L(h), associated with the marked point σ 0(h) and
with the uniformizing 2-cellρ2(h), respectively. Since we are dealing with Euclidean
triangles, we have

∑N0(T )
k=1 Θ(k) = πN2(T ). From the Euler and Dehn–Sommerville

relations (1.11), (1.12), N0(T )− N1(T )+ N2(T ) = χ(T ) and 2N1(T ) = 3N2(T ),
we immediately get that the decoration of the marked points of ((M; N0),Csg), by
the deficit angles is constrained by

N0(T )∑
k=1

ε(k)

2π
= 2− 2g, (2.72)

which appears here as a version of the Gauss–Bonnet theorem. One can do better
than this, by following the strategy so nicely described by Troyanov [6, 7]. Let us
start by extending the normalized angular deficit function ε(k)

2π from the 0-skeleton
K 0(T ) to the whole triangulated surface (Tl ,M) by setting
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ε(x)

2π
:= −

(
Θ(x)

2π
− 1

)
, ∀x ∈ K 0(T )

ε(x)

2π
:= 0, ∀x �∈ K 0(T ).

(2.73)

Correspondingly we can define a flat surface (M, ds2) with a discrete set of
isolated conical singularities of deficit angle ε(x)

2π to be a surface of genus g, M,
endowed with a Riemannian metric ds2 which is isometric to the conical metric
(2.50) in the neighborhood of every point x ∈ M, where the deficit function ε(x)

2π ∈
(−∞, 1) is provided by (2.73). The deficit angle decoration of ((M; N0),Csg) can
be naturally summarized [6, 7] in a formal linear combination of the points {σ 0(k)}
with coefficients given by the corresponding deficit angles (normalized to 2π ).

Definition 2.4 [6, 7] The real divisor associated with the Riemann surface ((M; N0),

Csg) defined by (Tl ,M) is the formal linear combination

Div(T ) :=
N0(T )∑
k=1

(
−ε(k)

2π

)
σ 0(k) =

N0(T )∑
k=1

(
Θ(k)

2π
− 1

)
σ 0(k) (2.74)

supported on the set of vertices {σ 0(i)}N0(T )
i=1 .

According to (2.72), the degree |Div(T )| of the divisor is provided by

|Div(T )| :=
N0(T )∑
k=1

(
Θ(k)

2π
− 1

)
= −χ(M). (2.75)

The real divisor |Div(T )| characterizes the Euler class of the Riemann surface
with conical singularities ((M; N0),Csg), (hence of (Tl ,M)), and yields for a cor-
responding Gauss–Bonnet formula. Explicitly, the Euler number associated with
((M; N0),Csg) is defined, [14], by

e(Tl ,M) := χ(M)+ |Div(T )|. (2.76)

and the Gauss–Bonnet formula reads [14]:

Theorem 2.2 (Troyanov) (Gauss–Bonnet for Riemann surfaces with conical sin-
gularities) Let ((M; N0),Csg) be a Riemann surface with conical singularities
described by the divisor

Div(T )
.=

N0(T )∑
k=1

(
Θ(k)

2π
− 1

)
σ 0(k), (2.77)

associated with the marked points (vertices) {σ 0(k)}N0(T )
k=1 . Let ds2 be the conformal

metric (2.50) representing the divisor Div(T ). Then
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1

2π

∫
M

KdA = e(Tl ,M), (2.78)

where K and dA respectively are the curvature and the area element corresponding
to the local metric ds2.

According to (2.75) e(Tl ,M) = 0, and the Gauss–Bonnet formula implies

1

2π

∫
M

KdA = 0. (2.79)

Thus, the Riemann surface ((M; N0),Csg) associated with a Euclidean triangu-
lation (Tl ,M) naturally carries a conformally flat structure. Clearly this is a rather
obvious result, (since the metric in (Tl ,M)−{σ 0(i)}N0(T )

i=1 is flat). However, it admits
a very deep converse proved by Troyanov [6–8], (see also the prescient paper by
Picard [5]):

Theorem 2.3 (Troyanov) Let ((M,C ),Div) be a Riemann surface (M,C ) , with a
divisor such that e(M,Div) = 0. Then there exists on M a unique (up to homothety)
conformally flat metric ds2 with ds2 ∈ C representing the divisor Div, and depend-
ing smoothly from the conformal structure C and the divisor Div. Moreover, given
a compact oriented surface M, there are natural bijections between the following
structures:

(i) The set of geometric equivalence classes of Euclidean triangulations (Tl ,M)
on M, defined up to homothety;

(ii) The set of flat metrics ds2 on M with conical singularities up to homothety;
(iii) The set of conformal structures C on M decorated by a finite real divisor Div,

associated with normalized deficit angles { ε(k)2π } < 1, with vanishing Euler
class e(Tl ,M).

Even if we are not going to prove directly Troyanov’s theorem here, a few com-
ments are in order.

Let ((M; N0),Csg) be the pointed Riemann surface associated with a polyhedral

surface (T,M).Denote by {pk}N0
k=1 ∈ (M; N0) the marked points associated with the

vertices {σ 0(k)} ∈ (T,M). The conformal class
[
ds2

] := [e2v |φ||] of the conical
metric representing ((M; N0),Csg) can be written, around the generic marked point
pk, as [

ds2
(k)

]
=

[
e2vk

∣∣φ|ρ2(k)

∣∣] = e2Vk ds2
0 , (2.80)

where ds2
0 is a smooth metric on M, and where the conformal factor Vk is

provided by

V |U
ρ2(k)
= −ε(k)

2π
ln |t (k)| + u. (2.81)

The function u is assumed continuous and C2 on Uρ2(k) − pk and is such that,

for t (k) → 0, |t (k)| ∂u
∂t (k) , and |t (k)| ∂u

∂ t(k) both→ 0, (see (2.52)). Note that over
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the Riemann surface ((M; N0),Csg) associated with a polyhedral surface (Tl ,M),
we can always (locally!) take the flat metric |dt (k)|2 as the reference ds2

0 . However,
for later use, is more profitable to consider the general case, not assuming a priori
the local flatness of ds2

0 . The Gaussian curvature K of ds2 is related to the Gaussian
curvature K0 of the smooth metric ds2

0 by the relation

KdA = K0d A0 − d ∗ dV, (2.82)

where d A0 and d A = e2V d A0 are the area elements of ds2
0 and ds2, respectively.

By interpreting d ∗ dV as a (1, 1) current on ((M; N0),Csg), a direct computation
yields

d ∗ dV = π
N0∑

k=1

(
−ε(k)

2π

)[
∂

(
dt (k)

2π
√−1t (k)

)
− ∂

(
dt(k)

2π
√−1t(k)

)]
+ 2
√−1∂∂u,

= −2π
N0∑

k=1

(
−ε(k)

2π

) √−1

2
δpk dt (k) ∧ dt(k)+ 2

√−1∂∂u. (2.83)

From which we get the (inhomogeneous) Liouville equation associated with the
conformal metric ds2 with conical singularities {− ε(k)2π }, i.e.

−4∂t∂ t u = e2V K − K0 − 2π
N0∑

k=1

(
−ε(k)

2π

)
δpk , (2.84)

where δpk is the Dirac distribution supported on the marked points pk . Note that
from 1

2π

∫
M K0d A0 = χ(M) and (2.72), we get, upon integrating (2.84) over M,

1

2π

∫
M

K d A = 1

2π

∫
M

e2V KdA0 = 1

2π

∫
M

K0d A0 +
N0∑

k=1

(
−ε(k)

2π

)
= 0, (2.85)

in agreement with the vanishing of the Euler class (2.78) of ((M; N0),C ).
According to Theorem 2.1 we can associate with a polyhedral surface (Tl ,M)

a decorated Riemann surface ((M; N0),Csg). This suggests that there may be a
direct correspondence between the space of polyhedral surfaces POLg,N0(M) and
the moduli space Mg,N0 suitably decorated. This is indeed the case, and we have the
following

Theorem 2.4 There is a bijective map

ϒ : POLg,N0(M) −→Mg,N0 ×R+ × R
N0−1
≥0 ,

(Tl ,M) �−→
[
((M; N0),C ) , a , {1− ε(k)

2π
}N0

]
,

(2.86)

where Mg,N0 is the moduli space of Riemann surfaces of genus g with N0 marked

points, a := A(Tl ,M) > 0 is the (Euclidean) area of (Tl ,M), and {ε(k)}N0
k=1 is
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the sequence (satisfying the constraint
∑N0

k=1 ε(k) = 2− 2g), of the deficit angles of
(Tl ,M).

Proof The existence of a correspondence, defined up to a homothety, between
Mg,N0 ×R

N0−1
≥0 and POLg,N0(M) follows from Troyanov’s Theorem 2.3. Con-

versely, to a polyhedral surface (Tl ,M) ∈ POLg,N0(M) of given area A(Tl ,M) ≡
a there corresponds a well-defined Riemann surface ((M; N0),Csg) with area

A
[
((M; N0),Csg)

] = a,decorated with the real divisor Div(T ) :=∑N0
k=1

(
ε(k)
2π

)
σ 0(k)

defined by the deficit angles {ε(k)}. In order to prove that the map ϒ so defined is
a bijection we observe that (Tl ,M) ∈ POLg,N0(M) characterizes a unique 3-valent
metric ribbon graph Γ decorated with the cell-perimeters {L(k)}N0 associated with
the dual polytope (PT ,M). Viceversa, to ((M,C ),Div, |(M,C )| = a) there corre-
sponds a unique polyhedral surface ∈ POLg,N0(M) decorated with a corresponding
3-valent metric ribbon graph Γ with N0 labelled boundary components of given
lengths {L(k)}N0 , and with the conical structure defined by the divisor Div. We can
identify the pair (Γ,Div) with a conical polytope (PT ,M). Since 3-valent metric
ribbon graphs are dense in the space of all metric ribbon graphs RGmet

g,N0
, the map ϒ

naturally descends to the mapψ :Mg,N0 ×R
N0+ → RGmet

g,N0
, between the {L(k)}N0 -

decorated moduli space Mg,N0 ×R
N0+ and the space of all metric ribbon graphs Γ

with N0 labeled boundary components, defined by Strebel theorem. It is well-known
that this latter map is a bijection between the two orbifold spaces Mg,N0 ×R

N0+ and
RGmet

g,N0
, (the paper [4] provides an in depth analysis of this result).

2.6 Chern and Euler Classes Over POLg,N0(M)

The above result characterizes the spaces of polyhedral surfaces POLg,N0(M) as a
local covering forMg,N0 .This is strongly related with the familiar covering ofMg,N0

generated by ribbon graphs via Strebel theory, (see Th. A.2 ), and which plays a basic
role in Witten–Kontsevich theory [2]. In full analogy with this latter case, we have a
natural correspondence between the circle bundles {Q(k)} decorating POLg,N0(M)
and the line bundles {Li } naturally defined over Mg,N0 by the cotangent space T ∗i M
at the ith marked point of ((M; N0),Csg), (see Appendix A).

In order to make this correspondence more explicit, let us consider in POLg,N0(M)
the subset POLg,N0 (M, {Θ(k)}, A(M))of polyhedral structures of given area A(M),

and with a given sequence of conical angles {Θ(k)}N0
k=1. According to the represen-

tation provided in Proposition 1.4, this is an orbifold

POLg,N0

(
M, {Θ(k)}, A(M)

)
:=

⊔
[T ]∈Tg,N0 (M)

R
N1+

Aut (T )

∣∣∣∣∣∣
({Θ(k)},A(M))

, (2.87)

of dimension
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dim
[
POLg,N0(M)

]∣∣
({Θ(k)},A(M)) = 2N0 + 6g − 6, (2.88)

locally modeled by the polyhedral surfaces in

T met
g,N0

(M, {Θ(k)})
Aut (T )

, (2.89)

with given area A(Tl ,M) = A(M).
As a consequence of Lemma 1.2, the space POLg,N0 (M, {Θ(k)}, A(M)) comes

with the natural decoration provided by the N0 circle bundles {Q(k)} associated
with the sequence of polyhedral cotangent cones {Qq(k)(S

2)}N0
k=1 defined over the

N0 vertices of the polyhedral surface (Tl ,M). Under the bijective map ϒ defined
by Theorem 2.4, these circle bundles naturally correspond to the N0 line bundles
{Li } over Mg,N0 defined by the cotangent space Ti M at the i-th marked point of
((M; N0),Csg), i.e., for the generic k = 1, . . . , N0, we can write

Q(k) = ϒ∗ (Lk) . (2.90)

Where the bundle pull-back action simply corresponds to decorate Lk with the
conical metric induced by the vertex structure around the given σ 0(k) ∈ (Tl ,M).
Similarly, the first Chern class c1(Lk) of Lk, (see Appendix A), is naturally mapped
into the Euler class of Q(k). We have

Theorem 2.5 The Euler class of the circle bundle Q(k) is the pull-back, under the
map ϒ, of the first Chern class c1(Lk) of the line bundle Lk over Mg,N0 ,

√−1

2π
Ω(k) = ϒ∗ (c1(Lk)) , (2.91)

and we can write∑
1≤α<β≤q(k)−1

d

(
θα(k)

Θ(k)

)
∧ d

(
θβ(k)

Θ(k)

)
= −π∗k

[
ϒ∗ (c1(Lk))

]
, (2.92)

where πk is the polyhedral map defined by (1.96).

Proof The first part of the theorem follows from (2.90), whereas the explicit expres-
sion (2.92) is an obvious consequence of Theorem 1.5. 
�
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Chapter 3
Polyhedral Surfaces
and the Weil–Petersson Form

Let Mg,N0 denote the Deligne–Mumford compactification of the moduli space
Mg,N0 of N0–pointed Riemann surfaces of genus g, (see Appendix A). It is well-
known that the Chern classes {c1(Lk)} introduced in the previous chapter can be
used to define the Witten–Kontsevich intersection theory over Mg,N0 . In such a
setting it is also possible [20, 10] to characterize various relevant properties of the
Weil–Petersson volume of Mg,N0 . Such a connection is rather involved and deeply
related to the algebraic-geometrical subtleties of Witten–Kontsevich theory. Thus, it
comes as a pleasant surprise that the conical geometry of polyhedral surface allows to
explicitly construct a representative of the Weil–Petersson formωW−P on the space of
polyhedral structures with given conical singularities POLg,N0 (M, {Θ(k)}, A(M)) ,
(to our knowledge this connection first appeared in [4]; a similar property has been
proved for ribbon graphs by Mondello in the remarkable papers [11, 12], and recently
by other authors, see e.g. [7]). In order to construct such a combinatorial represen-
tative of ωW−P we exploit the connection between similarity classes of Euclidean
triangles and the triangulations of three-manifolds by ideal tetrahedra. This is a well-
known property in hyperbolic geometry, (see e.g. [3]), that we are going to describe
in some detail since it will play a basic role in connecting the quantum geometry of
polyhedral surfaces to three-dimensional manifolds.

3.1 Horospheres in H
3

To set the stage, let H
3 denote the 3D hyperbolic space thought of as the subspace

of Minkowski spacetime (M4, 〈·, ·〉) defined by [3]

H
3 = {−→x .= (x0, x1, x2, x3)| 〈−→x ,−→x 〉 = −1, x0 > 0

}
, (3.1)

and equipped with the induced Riemannian metric defined by the restriction to the
tangent spaces TxH

3 of the standard Minkowski inner product (Fig. 3.1)〈−→x ,−→y 〉 .= −x0 y0 + x1 y1 + x2 y2 + x3 y3. (3.2)

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 83
DOI: 10.1007/978-3-642-24440-7_3, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 3.1 A 2D rendering of
the 3D hyperbolic space H

3

realized as a subspace of
Minkowski spacetime

x x

x

x 0

1 2

3

Recall that the group of orientation preserving isometries of H
3 can be identified

with the group PSL(2,C)which acts transitively on H
3 with point stabilizer provided

by SU(2). Let x ∈ H
3 and −→y ∈ Tx H

3 with
〈−→y ,−→y 〉 = 1, then the geodesic in

H
3 starting at x with velocity −→y is traced by the intersection of H

3 with the two-
dimensional (2D) hyperplane of M4 generated by the position vector −→x and the
velocity −→y , and is described by the mapping

R � t �−→ γ (t) = cosh(t)−→x + sinh(t)−→y . (3.3)

Let γ (∞) denote the endpoint of γ on the sphere at infinity ∂H3 	 S
2, a closed

horosphere centered at γ (∞) is a closed surface Σ ⊂H
3 which is orthogonal to

all geodesic lines in H
3 with endpoint γ (∞). In particular, two horospheres with

centre at the same point at infinity are at a constant distance. Note that, as a set, the
horospheres can be parametrized by future-pointing null vectors belonging to the
future light-cone

L
+ .=

{−→x .=
(

x0, x1, x2, x3
) ∣∣ 〈−→x ,−→x 〉 = 0, x0 > 0

}
, (3.4)

by identifying the generic horosphere Σw with the intersection between H
3 and the

null (affine) hyperplane
〈−→y ,−→w 〉 = −1/

√
2 defined by the null vector −→w , i.e.

−→w �−→ Σw
.=
{

y ∈ H
3 | 〈−→y ,−→w 〉 = − 1√

2
,
〈−→w ,−→w 〉 = 0

}
. (3.5)

(Fig. 3.2).
More explicitly, (see e.g. [8]), given a null (position) vector−→w := −→OP ∈ L

+, the
affine plane {

y ∈ M4 | 〈−→y ,−→w 〉 = − 1√
2
,
〈−→w ,−→w 〉 = 0

}
, (3.6)
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is parallel to the plane
{

y ∈ M4 | 〈−→y ,−→w 〉 = 0
}

providing the tangent space TwL
+

of L
+ at P, and it has Σw as a non void intersection with H

3. Conversely, given a
horosphereΣ in H

3, this can be always characterized as the intersection of H
3 with an

affine hyperplane parallel to a null-hyperplane, tangent to L
+ along a future-pointing

light ray issuing from the origin. This light ray characterizes a unique null (position)
vector−→w such that (3.6) holds, (note that we are here following the normalization in
[17]; this provides the correct relation between λ and H lengths. This normalization
differs from the standard one in [15] and adopted in [4], giving results which are off
by factors of

√
2) (Fig. 3.2).

The one-to-one correspondence between null (position) vectors and horospheres
shows that future-pointing light rays in L

+ characterize the set of parallel horospheres
and allows to associate a natural functional with any pair of horospheresΣu andΣv

according to

λ (Σu,Σv)
.=
√
− 〈−→u ,−→v 〉 . (3.7)

the quantityλ (Σu,Σv)defines the lambda length [15] betweenΣu andΣv. Ifγ (p, q)
denotes the unique geodesic in H

3 connecting the respective centers p and q ofΣu and
Σv, then λ (Σu,Σv) can be related do the signed geodesic distance δ(u, v) between
the intersection points γ (p, q) ∩Σu and γ (p, q) ∩Σv, according to

λ (Σu,Σv) =
√

eδ(u,v), (3.8)

(δ(u, v) is by convention < 0 if Σu and Σv cross each other).
To discuss the connection between polyhedral surfaces and hyperbolic geom-

etry, it will be convenient to represent H
3 by the upper half-space model H

3,+
up ,

i.e. as the open upper half space
{
(X,Y, Z) ∈ R

3 | Z > 0
}

endowed with the
Poincaré metric Z−2

(
dX2 + dY 2 + dZ2). The boundary of H

3 is here provided by
∂H3,+

up =
(
R

2 × {0})∪{∞} , and, up to isometries, we can always map a given point
p to∞.Geodesics in the half-space model are obtained by parametrization of vertical
lines {x}×R+ and circles orthogonal to R

2×{0}. In particular, since geodesics with
end point∞ are vertical lines, it easily follows that in H

3,+
up the horospheres (cen-

tered at∞) are horizontal hyperplanes. It is also worthwhile recalling that the hyper-
bolic distance between two points p, and q ∈ H

3 is explicitly provided in H
3,+
up by,

(see e.g. [3], Corollary A.5.8),

dH3(p, q) = 2 tanh−1
[
(X p − Xq)

2 + (Yp − Yq)
2 + (Z p − Zq)

2

(X p − Xq)2 + (Yp − Yq)2 + (Z p + Zq)2

] 1
2

. (3.9)

In particular, if we take any two geodesics l1 and l2 with end-point∞ and evaluate
their hyperbolic distance dH3(l1, l2) along the horospheres Σ1

.= {z = t1} and
Σ2

.= {z = t2}, with t2 > t1, separated by a distance dH3(Σ1,Σ2), then we get the
useful relation (see e.g. Sect. 3.8 of the electronic version of [18]),

dH3(l1, l2)
∣∣
Σ2 = dH3(l1, l2)

∣∣
Σ1

ed
H3 (Σ1,Σ2). (3.10)
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Fig. 3.2 A horosphere Σw can be realized as the non-void section of H
3 with a null plane parallel

to a corresponding tangent plane to the future light-cone L
+. It follows that L

+ can be used to
parametrize the set of all horospheres. The figure also shows the geodesic t �→ γ (t) orthogonal to
Σw and whose endpoint γ (∞) provides the center of Σw
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3.2 Ideal Tetrahedra in H
3,+
up

Let σ 3
hyp

.= (v0(0), v0(k), v0(h), v0( j)) be an ideal simplex in H
3,+
up , i.e. a simplex

whose faces are hyperbolic triangles, edges are geodesics, and with vertices lying

on ∂H3,+
up . In order to describe the basic properties of σ 3

hyp recall that, up to isometries

of H
3,+
up ,we can always assume that one of its four vertices, say v0(0), is at the point

∞ whereas the remaining three v0(k), v0(h), and v0( j) lie on the circumference
intersection of R

2 × {0} with a Euclidean half-sphere D
2
r of radius r and centre

c ∈ {(X,Y, Z) ∈ R
3|Z = 0

}
. Note that D

2
r inherits from H

3,+
up the structure of a 2D

hyperbolic space and that, consequently the simplex σ 2
hyp

.= (
v0(k), v0(h), v0( j)

)
,

providing the 2D face of σ 3
hyp

.= (v0(0), v0(k), v0(h), v0( j)
)

opposite to the vertex

v0(0) 	 ∞, is itself an ideal simplex in D
2
r . Denote by Δ∞(v0(0)) the intersection

between σ 3
hyp and a horosphere Σ∞ centered at v0(0)

.= ∞ and sufficiently near to

v0(0). Since all horospheres are congruent, Σ∞ can be mapped onto a horizontal
plane z = t ⊂ H

3,+
up by a conformal mapping fixing∞, to the effect thatΔ∞(v0(0))

is a Euclidean triangle T∞
(
σ 3

hyp

)
≡ σ 2(k, h, j) in the plane of the horosphere.

This latter remark implies that the vertex angles (θ jkh, θkh j , θh jk) of T∞(σ 3
hyp) can

be identified with the inner dihedral angles at the three edges v1(∞, k), v1(∞, h),
and v1(∞, j) of σ 3

hyp, i.e.

θ jkh �−→ φ∞k
.= ∠

[
v2(0, j, k), v2(0, k, h)

]
,

θkh j �−→ φ∞h
.= ∠

[
v2(0, k, h), v2(0, h, j)

]
,

θh jk �−→ φ∞ j
.= ∠

[
v2(0, h, j), v2(0, j, k)

]
,

(3.11)

where v2(., ., .) denote the faces of σ 3
hyp. It is easy to prove, again by intersect-

ing σ 3
hyp with horospheres Σk, Σh, Σ j sufficiently near to the respective vertices

v0(k), v0(h), v0( j), that dihedral angles along opposite edges in σ 3
hyp are pairwise

equal φ∞k = φh j , φ∞h = φ jk, φ∞ j = φkh . This implies that the (Euclidean) trian-

gles cut by the horospheres Σk, Σh, Σ j are all similar to T∞
(
σ 3

hyp

)
. In particular,

note that the geometrical realizations of the simplices

σ 2
hyp(k, h, j)

.= v2(k, h, j),

σ 2
hyp(∞, k, h)

.= v2(0, k, h),

σ 2
hyp(∞, j, k)

.= v2(0, j, k),

(3.12)

are ideal triangles in H
3. It follows that the above construction is independent from the

choice of which of the four vertices of σ 3
hyp is mapped to∞ and we can parametrize

the ideal tetrahedra σ 3
hyp in H

3,+
up in terms of the similarity class [σ 2(k, h, j)] of
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Fig. 3.3 The ideal
tetrahedron σ 3

hyp in H
3,+
up .

The intersection between
σ 3

hyp and a horosphere Σ∞,
centered at v0(0)

.= ∞, is a
Euclidean triangle
T∞(σ 3

hyp) ≡ σ 2(k, h, j) in
the plane Σ∞

ν0 (0)

ν0(k)

ν0(h)

ν0( j )

∞

Σ∞

σ2 (k,h,j)

Fig. 3.4 The Euclidean
triangles cut by the
horospheres Σk , Σh, Σ j
are all similar to the
Euclidean triangle
T∞(σ 3

hyp) ≡ σ 2(k, h, j) in
the plane Σ∞

the associated Euclidean triangle T (σ 3
hyp): any two ideal tetrahedra σ 3

hyp in H
3,+
up are

congruent iff the associated triangles T (σ 3
hyp) are similar. This is in line with the

basic property of H
3 according to which if a diffeomorphism of H

3 preserves angles
then it also preserves lengths (Fig. 3.3 and 3.4).
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3.3 A Sky-Mapping for Polyhedral Surfaces

The above remarks concerning the connection between Euclidean triangles and ideal
tetrahedra σ 3

hyp suggest that it may be worthwhile to consider the decoration of each

triangle σ 2(k, h, j) and of each vertex σ 0(i) of a polyhedral surface (Tl ,M) ∈
T met

g,N0
(M) with a corresponding null vector, i.e.

σ 2(k, h, j) �−→ −→ξ (k, h, j) ∈ L
+, (3.13)

σ 0(i) �−→ −→ξ (i) ∈ L
+ . (3.14)

The rationale underlying this mapping is that the null vector
−→
ξ (k, h, j) character-

izes a visual horosphere Σ∞(k, h, j) where an observer O∞ in a neighborhood of
{∞} ∈ H

3,+
up sees a Euclidean triangle σ 2(k, h, j) ∈ (Tl ,M) resulting from the

projection of a hyperbolic triangle σ 2
hyp(k, h, j) living in the R

2 × {0} portion of the

boundary of H
3,+
up . The projection takes place along the H

3,+
up geodesics defined by

the vertex null vectors {−→ξ (k)}.Thus, the horosphereΣ∞(k, h, j) represents a (local)
screen and the pair (Σ∞(k, h, j),Σk) characterizes the visual incoming direction
from which the observer sees the vertex σ 0

hyp(k) := ν0(k). Note that the geometrical

information encoded in each pair of null vectors
(−→
ξ (k, h, j),

−→
ξ (k)

)
can be equiv-

alently provided by a twistor field attached to the vertex σ 0(k), (see [11] for details
on this alternative point of view).

As the triangles {σ 2(k, h, j)} and the vertices {σ 0(i)} vary in (Tl ,M), this visual
decoration characterizes a mapping from the space of triangulated surfaces T met

g,N0
(M)

to (N2 copies of) the future light cone L
+, defined by

T met
g,N0

(M) −→ ×N2
k=1 L

+

(Tl ,M) �−→
{(−→
ξ (k),

−→
ξ (h),

−→
ξ ( j)

)
; −→ξ (k, h, j)

}
.

(3.15)

If we let the observer O∞ sit exactly at the point∞ ∈ H
3,+
up , then the above construc-

tion corresponds to take the cone in H
3,+
up , from the point∞ ∈ H

3,+
up , over the set of

hyperbolic triangles {σ 2
hyp(k, h, j} in the hyperbolic subspace R

2×{0}.A horosphere
Σ∞ in a neighborhood of∞, (such asΣ∞(k, h, j)), is thus a screen surronding the
observer O∞ ≡ ∞ ∈ H

3,+
up and (3.15) characterizes what this observer sees under

her sky mapping (Fig. 3.5).
A basic issue concerning this visual correspondence is what kind of triangulation

in the hyperbolic space R
2 × {0} gives rise to the polyhedral surface the observer at

∞ ∈ H
3,+
up sees in her sky. In particular, is there a hyperbolyc surface whose image in

a neighborhood of {∞} ∈ H
3,+
up is a polyhedral surface (Tl ,M) with conical singu-

larities? Quite surprisingly answering to such a question provides a deep connection
between the geometry of T met

g,N0
(M), the Weil–Petersson form, and the moduli space

of hyperbolic surfaces with boundaries.
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Fig. 3.5 The sky mapping
between the horosphere Σ∞,
acting as the observer screen,
and the R

2 × {0} portion of
the boundary of H

3,+
up : a

hyperbolic triangle
σ 2

y (k, h, j) with vertices on

R
2 × {0} is seen as a

Euclidean triangle
σ 2(k, h, j) on Σ∞

3.4 The Computation of Lambda-Lengths

A key step in discussing the relation among polyhedral surfaces and hyperbolic geom-
etry generated by the sky mapping involves the computation of the lambda-lengths
(3.7) in terms of the Euclidean lengths of the edges ofσ 2(k, h, j).To this end, we con-
sider horospheresΣk , Σh, Σ j sufficiently near to the vertices v0(k), v0(h), v0( j)
of σ 2

hyp(k, h, j). We start by evaluating the lambda-lengths (3.7) along the vertical

geodesics connecting v0(0) 	 ∞ with the triangle σ 2
hyp(k, h, j) (Fig. 3.4). We have

Lemma 3.1

λ (Σ∞,Σk) =
√

t

zk
,

λ (Σ∞,Σh) =
√

t

zh
,

λ
(
Σ∞,Σ j

) =
√

t

z j
,

(3.16)

where z = zk, z = zh, and z = z j respectively define the z coordinates of the
intersection points between the horospheres Σk, Σh, Σ j and the corresponding
vertical geodesics.

Proof We compute explicitly λ (Σ∞,Σk) , the remaining cases being completely
similar. We can assume that t > zk, and evaluate the distance between the points
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(
x
(
v0(k)

)
, y
(
v0(k)

)
, z = zk

) := Σk ∩ γ
(
v0(k),v0(0)

)
and

(
x
(
v0(k)

)
, y
(
v0(k)

)
,

z = t) := Σ∞ ∩ γ
(
v0(k), v0(0)

)
, along the vertical geodesics γ (v0(k), v0(0)) con-

necting v0(0) 	 ∞ with v0(k). From (3.9) we get

tanh
δ(Σ∞,Σk)

2
= t − zk

t + zk
, (3.17)

or, more explicitly,

eδ(Σ∞,Σk) − 1

eδ(Σ∞,Σk) + 1
= t − zk

t + zk
. (3.18)

This immediately yields exp (δ(Σ∞,Σk)) = t
zk

and (3.8) provides the required
lambda-length according to

λ (Σ∞,Σk) =
√

t

zk
. (3.19)

��
The computation of the remaining λ-lengths λ (Σk,Σh) , λ

(
Σh,Σ j

)
, and

λ
(
Σ j ,Σk

)
is provided by Lemma 3.2.

Lemma 3.2

λ (Σk,Σh) = l(k, h)√
zk zh

, (3.20)

λ
(
Σh,Σ j

) = l(h, j)√
zhz j

, (3.21)

λ
(
Σ j ,Σk

) = l( j, k)√
z j zk

, (3.22)

where l(k, h), l(h, j), and l( j, k) are the Euclidean lengths of the triangle
σ 2(k, h, j) in Σ∞.

Proof Consider the intersection of the ideal triangle σ 2
hyp(∞, k, h) with the

horospheres Σ∞, Σk, and Σh . Each such an intersection characterizes a corre-
sponding horocyclic segment �∞, �k, �h whose hyperbolic length defines the
h-length of the horocyclic segment. In particular, the horocyclic segment traced
by σ 2

hyp(∞, k, h) ∩ Σ∞ is the side σ 1(k, h) of the Euclidean triangle σ 2(k, h, j).
According to (3.9), its h-length is provided by

H
(
σ 0(k), σ 0(h)

)
:= dH3

(
σ 0(k), σ 0(h)

)
= 2 tanh−1

√
l2(k, h)

l2(k, h)+ 4t2 . (3.23)



92 3 Polyhedral Surfaces and the Weil–Petersson Form

On the other hand, the horocyclic segment σ 1(k, h) is opposite to the geodesic
segment intercepted by the horospheres Σk, and Σh along the hyperbolic edge
σ 1

hyp(k, h). The lambda-length of this segment is λ (Σk,Σh) , and according to a
result by Penner [15, 17], (respectively, Proposition 2.8 and Lemma 4.4), these quan-
tities are related by1

H
(
σ 0(k), σ 0(h)

)
= λ (Σk,Σh)

λ (Σ∞,Σk) λ (Σ∞,Σh)
, (3.24)

from which, by taking into account (3.16), we get

λ (Σk ,Σh) = 2t√
zk zh

tanh−1

√
l2(k, h)

l2(k, h)+ 4t2 . (3.25)

Similarly, we compute

λ
(
Σh,Σ j

) = 2t√
zhz j

tanh−1

√
l2(h, j)

l2(h, j)+ 4t2 , (3.26)

λ
(
Σ j ,Σk

) = 2t√
z j zk

tanh−1

√
l2( j, k)

l2( j, k)+ 4t2 . (3.27)

Note that these relations must hold for any Σ∞ approaching the ideal vertex
ν0(0)	∞. In particular, if we take the limit Σ∞ → ν0(0) 	 ∞, corresponding to
t ↗ +∞, we easily find

λ (Σk,Σh) = l(k, h)√
zk zh

, (3.28)

λ
(
Σh,Σ j

) = l(h, j)√
zhz j

, (3.29)

λ
(
Σ j ,Σk

) = l( j, k)√
z j zk

. (3.30)

(Fig. 3.6) ��

The relation (3.24) holds also among the
{
λ
(
Σ j ,Σk

)}
and we can also compute

the h-lengths associated with the ideal triangle σ 2
hyp(k, h, j), decorated with the

horospheres Σk , Σh, Σ j , according to

1 The reader is cautioned that the whole subject of λ-lengths and H-lengths is often plagued
by factors of 2, (and related

√
2
′
s), appearing and disappearing from the relevant formulae. This

largely depends from the normalization chosen. In a recent review paper [17] Penner has clarified
this normalization issue. Here we adopt the conventions stipulated in [17].
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ν0(k)

ν0(h)

∞

Σ k

Σ h

∞

σ2     (∞,k,h)hyp

F

F

F

k

h

σ1 (k,h)

σ0 (k)

σ0 (h)

σ1     (k,h)hyp

Fig. 3.6 The intersection of the ideal triangle σ 2
hyp(∞, k, h) with the horospheres Σ∞, Σk , and

Σh defines the corresponding horocyclic segments �∞, �k , �h

H(Σk,Σh) = λ (Σk ,Σh)

λ
(
Σh,Σ j

)
λ
(
Σ j ,Σk

) , (3.31)

H(Σh,Σ j ) = λ
(
Σh,Σ j

)
λ
(
Σ j ,Σk

)
λ (Σk,Σh)

, (3.32)

H(Σ j ,Σk) = λ
(
Σ j ,Σk

)
λ (Σk,Σh) λ

(
Σh,Σ j

) . (3.33)

In particular, from (3.20) ÷ (3.22) we get

H(Σk,Σh) = l(k, h)

l(h, j)l( j, k)
z j , (3.34)

H(Σh,Σ j ) = l(h, j)

l( j, k)l(k, h)
zk, (3.35)
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H(Σ j ,Σk) = l( j, k)

l(k, h)l(h, j)
zh . (3.36)

3.5 Polyhedral Surfaces and Hyperbolic Surfaces
with Boundaries

The geometrical analysis of the previous sections shows that to each of the N2(T )
Euclidean trianglesσ 2(k, h, j)of a polyhedral surface (Tl ,M)we can associate a cor-
responding ideal tetrahedron σ 3

hyp(∞, k, h, j) ∈ H
3,+
up , decorated with the horocyclic

sectors induced by a choice of horospheresΣk, Σh, Σ j . In turn, this decorated ideal
tetrahedron generates an ideal triangle σ 2

hyp(k, h, j) decorated by horocycle sectors,
whose hyperbolic lengths can be recovered in terms of the Euclidean lenghts {l(k, h)}
of σ 2(k, h, j). Thus, we are naturally led to explore the possibility of glueing the
ideal triangles {σ 2

hyp(k, h, j)} in the same combinatorial pattern defined by (Tl ,M).
This must be done in such a way that the horosphere field on (Tl ,M) provides a
consistent horocyclical decoration of the vertices of the ideal triangulation defined
by the hyperbolic triangles {σ 2

hyp(k, h, j)}. In performing such an operation one must
take care of some basic facts:

(i) A conical star of Euclidean triangles
{
σ 2(k, hα, hα+1)

}q(k)
α=1 cannot be isomet-

rically embedded in a single horosphereΣ∞ unless the conical angle is trivial,
i.e. Θ(k) = 2π ;

(ii) The ideal triangles {σ 2
hyp(k, hα, hα+1)} are rigid since any two of them are

congruent;
(iii) The adjacent sides of any two ideal triangles in {σ 2

hyp(k, hα, hα+1)} can be
identified up to the freedom of performing an arbitrary traslation along the
edges, (each edge σ 1

hyp(k, hα) of an ideal triangle is isometric to the real line,
its hyperbolic lenght being infinite, and two adjacent edges may freely slide
one past another);

These degrees of freedom can be exploited in order to specify how the decoration
provided by the horocyclic sectors in an ideal triangle is extended to the adjacent ideal
triangle. If we denote by K 0(T ) the 0-skeleton of a triangulation (T, M) with a vertex
set V(T) and by M/K 0(T ) the corresponding open surface obtained by removing
vertices from M, (see Remark 1.2), then we have

Theorem 3.1 Let {L+
(k)} denote N0 copies of the future light cone L

+ and let

[
(Tl ,M); {−→ξ (k)}] ∈ T met

g,N0
(M)⊗N0

k=1 L
+
(k) (3.37)

be a polyhedral surface with a given set of future-directed null vectors
{−→
ξ (k)

}
assigned on its N0 vertices. Then:
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(a) The decorated polyhedral surface
[
(Tl ,M); {−→ξ (k)}] has a dual description

as a ideal triangulation H ((Tl ,M); {�k(t)}) of the open surface M/K 0(T ),
endowed with a horocyclic foliation {t �→ �k(t)}, 0 ≤ t ≤ ∞, in a neighbor-
hood of each ideal vertex

{
ν0(k)

}
. We denote by

T ideal
g,N0

(M/K 0)⊗N0
k=1 L

+
(k), (3.38)

the set of such horocyclically decorated ideal triangulations of M/K 0, (where
now the future light cone L

+ is thought of as representing the set of horospheres).
(b) The mapping

H : T met
g,N0

(M) −→T ideal
g,N0

(M/K 0)⊗N0
k=1 L

+
(k)

(Tl ,M) �−→ (H (Tl ,M), {�k(t)}),
(3.39)

characterizes an incomplete hyperbolic structure on M/K 0(T ) parametrized
by a set of N0 horocyclic Thurston invariants

d[�k ] = ln
Θ(k)

2π
, with

N0∑
k=1

(
ed[�k ] − 1

)
= 2g − 2 . (3.40)

where {Θ(k)} are the conical angles of (Tl ,M).
(c) The hyperbolic structure on H (Tl ,M) can be completed so as to generate

a hyperbolic surface Ω(Tl ,M) with N0 geodesic boundaries ∂Ωk of signed
length |∂Ωk |± = d[�k] = ln Θ(k)

2π , were the sign is chosen to be positive (with
respect to the natural orientation of Ω(Tl ,M)) if Θ(k) > 2π, negative if
Θ(k) < 2π, and Θ(k) = 2π is associated with a geodesic boundary ∂Ωk of
zero length, i.e. a cusp.

(d) Let T∂g,N0
denote the Teichmüller space of hyperbolic surfaces Ω of genus g

with N0 geodesic boundaries ∂Ωk , (see Section A.5), then

Ω : T met
g,N0

(M) −→T∂g,N0

(Tl ,M) �−→Ω(Tl ,M),
(3.41)

induces a natural bijection

ΩΘ : POLg,N0(M, {Θ(k)}, A(M)) −→Mg,N0(L)× Z
N0
2 (3.42)

between the space of polyhedral structures, POLg,N0(M, {Θ(k)}, A(M)),with
given area A (M) and conical angles {Θ(k)}, and the moduli space Mg,N0(L)
of Riemann surfaces of genus g with N0 boundary components of signed length
vector L × Z

N0
2 :=

{
Lk = | ln Θ(k)

2π |
}N0

k=1 ×
{
sign(ln Θ(k)

2π )
}N0

k=1.

Proof It is well-known [18] that by glueing ideal triangles along the pattern of a
Euclidean triangulation, satisfying the 2π -flatness constraint around each vertex, we
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can generate a complete hyperbolic structures on the underlying surface M. Thus, in
order to prove the theorem we need to control the effect that the presence of conical
angles has on the completeness of the hyperbolic structure associated with (Tl ,M).
It is sufficient to carry such analysis on the generic vertex star Star

[
σ 0(k)

] ∈
(Tl ,M).

Let us consider the star Star [σ 0(k)] of a vertex σ 0(k) over which q(k) triangles
σ 2(k, hα, hα+1) are incident. Let

−→
ξ (k) be the future-pointing null vector associated

with σ 0(k), and letΘ(k) be the conical angle of Star
[
σ 0(k)

]
.As usual, we denote by

{θα(k)} the corresponding sequence of q(k) vertex angles θhα,k,hα+1 , with the index

α defined modulo q(k). If Σ∞ is a horosphere centered at v0(0) := limt↗∞ t
−→
ξ (k),

then, as emphasized above, we cannot isometrically embed the whole Star [σ 0(k)]
in the chosen Σ∞ unless Θ(k) = 2π. Thus, rather than fixing our attention
on a single horosphere, we consider the foliation of horospheres associated with
the null direction t

−→
ξ (k), 0≤ t ≤∞, and exploit the freedom in identifying the

triangles
{
σ 2 (k, hα, hα+1)

}
, along their adjacent edges

{
σ 1(k, hα)

}
, modulo a

translation along the (vertical) geodesic edges of the associated ideal hyperbolic
triangles

{
σ 2

hyp

(
v0(0) = ∞, k, hα

) }
. This translation generates in H

3,+
up a sequence

of horospheres {Σα∞}, α= 1, 2, . . . , centered at v0(0)=∞, and such that
Σα+1∞ ⊂ Bα∞, where {Bα∞} is the sequence of horoballs bounded by {Σα∞}. We
define inductively such a sequence according to the following prescription:

(i) Each horosphereΣα∞, in the sequence {Σα∞}, is represented by a corresponding
horizontal plane z = tα endowed with the Cartesian coordinates (O, x, y)
induced by H

3,+
up . We denote by πα+1,α the natural projection

πα+1,α : Σα+1∞ −→Σα∞
(x, y, z = tα+1) �−→(x, y, z = tα),

(3.43)

induced by the vertical geodesics in H
3,+
up .

(ii) The α-th triangle σ 2(k, hα, hα+1) of Star
[
σ 0(k)

]
is embedded in {Σα∞} in

such a way that the (copy of the) vertex σ 0(k) of σ 2(k, hα, hα+1) is located at
the origin (0, 0) of the plane z = tα.

(iii) Under the projection πα+1,α : Σα+1∞ → Σα∞, the edge σ 1(k, hα+1) of
the triangle σ 2(k, hα+1, hα+2) ↪→ Σα+1∞ goes into the edge σ 1(k, hα+1) of
σ 2(k, hα, hα+1) ↪→ Σα∞, modulo a hyperbolic isometry, i.e. a similarity gen-
erated by the dilation

ed
H3 (Σ

α+1∞ ,Σα∞) (3.44)

along the projecting geodesic, and by a rotation in the Σα∞ plane.
(iv) Since the triangles

{
σ 2(k, hα, hα+1)

}
of Star [σ 0(k)] are identified modulo

q(k) and generate a conical angle Θ(k) :=∑q(k)
α=1 θα(k), we set
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tα+1

tα
=

⎧⎪⎨
⎪⎩
(
Θ(k)
2π

) 1
q(k)

, if Θ(k) ≥ 2π,(
Θ(k)
2π

)− 1
q(k)

, if Θ(k) ≤ 2π ,
(3.45)

in such a way that the horospheres Σα+1∞ and Σα∞ are at a constant hyperbolic
distance

dH3

(
Σα+1∞ ,Σα∞

)
= ln

(
tα+1

tα

)
= 1

q(k)

∣∣∣∣ln
(
Θ(k)

2π

)∣∣∣∣ , (3.46)

which reduces to zero whenΘ(k) = 2π. This spiral staircase construction allows to

deal with the conical structure of the star of Euclidean triangles
{
σ 2(k, hα, hα+1)

}q(k)
α=1

and to glue, modulo hyperbolic isometries, the corresponding set of hyperbolic ideal
triangles σ 2

hyp(k, hα, hα+1), α = 1, ..., q(k), (hα = hβ if β = α modq(k)).
Explicitly, the natural hyperbolic structure on

q(k)⋃
α=1

σ 2
hyp(k, hα, hα+1)−

{
v0(k)

}
, (3.47)

(v0(k) being the vertex associated with σ 0(k)), induces a similarity structure on the
link associated with v0(k)

link
[
v0(k)

]
:=

q(k)⋃
α=1

σ 1
hyp(hα, hα+1), (3.48)

which characterizes, as k varies, the hyperbolic surface one gets by glueing the
hyperbolic triangles σ 2

hyp(k, hα, hα+1). To determine such a similarity structure,
let us consider the image of the above spiral staircase construction near the ideal
vertex v0(k). We start with the hyperbolic triangle σ 2

hyp(k, h1, h2). Let Σ1
k denote

a horosphere chosen sufficiently near v0(k) so that the oriented horocyclic segment
�

1
k cut in σ 2

hyp(k, h1, h2) by Σ1
k has (Euclidean) length given by

|�1
k |Euc = θ1(k)

2π
(3.49)

(Figs. 3.7 and 3.8).
This horocyclic segment can be extended, in a counterclockwise order, to the

other q(k)−1 ideal triangles in the set {σ 2
hyp(k, hα, hα+1)} by requiring that the α-th

segment �
α
k in such an extension has length |�α

k |Euc = θα(k)/2π, and meets orthog-
onally the geodesic side σ 1

hyp(k, hα+1) of the ideal triangle σ 2
hyp(k, hα+1, hα+2),

along a corresponding horosphere Σα
k congruent to Σ1

k . Such an extension proce-
dure characterizes a sequence of congruent horospheres {Σα

k }∞α=1.

According to (3.46), we assume that
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Fig. 3.7 The staircase
construction with
horospherical steps
associated with a conical
angle

π α+1, α

Σ
1

Σ
 q(k)

∞

∞

σ   (k)
0

dH3

(
Σα+1

k ,Σα
k

)
= 1

q(k)

∣∣∣∣ln
(
Θ(k)

2π

)∣∣∣∣. (3.50)

Since the horospheres {Σα
k } are congruent and the identification between adjacent

sides of the ideal triangles σ 2
hyp(k, hα, hα+1) is only defined up to a shift, (and

a rotation around the vertical geodesic ending in v0(k)), such an extension pro-
cedure generates a sequence of q(k) horocyclic segments {�α

k } which, for each
α= 1∼ mod q(k), re-enters the triangle σ 2

hyp(k, h1, h2) with a horocyclic seg-

ment �̂
α
k which will be parallel to �

1
k but not necessarily coincident with it. In

particular, we can introduce the signed hyperbolic distance between the horocycle
segments �

1
k and �̂

q(k)+1
k according to (Fig. 3.9)

∓dH3

(
�

1
k , �̂

q(k)+1
k

)
= ∓

q(k)∑
α=1

dH3

(
Σα

k ,Σ
α+1
k

)
= ln

Θ(k)

2π
.= d[�k], (3.51)

where the sign is chosen to be positive iff Θ(k) < 2π, i.e. if the horodisk sec-
tor bounded by �

1
k contains the sector bounded by �̂

q(k)+1
k . Thus, the horocycle

curve t �→ �k(t), 0 ≤ t ≤ 1, defined by the q(k) horocyclic segments {�α
k },

closes up iff its Euclidean length |�k(t)|Euc := ∑q(k)
α=1 |�α

k |Euc is 1. Note that, as
soon as d[�k ] �= 0, the horocyclic curve t �→ �k(t), can be extended to a curve
t �→ �̃k(t), 0 ≤ t <∞,with bounded (Euclidean) length. However, its intersection
with the hyperbolic edge σ 1

hyp(k, h1) generates a non-convergent Cauchy sequence

of points along σ 1
hyp(k, h1), (the hyperbolic distance between such points being

always
∣∣d [v0(k)

]∣∣). Stated differently, the Euclidean similarity structure between
the Euclidean triangle σ 2(k, h1, h2)|Σ1

k
cut by the horosphereΣ1

k , and the Euclidean

triangle σ 2(k, h1, h2)|Σq(k)+1
k

cut by Σq(k)+1
k does not generate a complete hyper-
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σ0 (k)

σ2     (k,α,α+1)hyp

θ   (k)α

Σ k

Σ∞
α = 1

α = 2 
l(k,α=1)=1

F  

α=1

1

1
k

|

Fig. 3.8 The intersection of the ideal triangle σ 2
hyp(k, α, α + 1), (here for α = 1), with the

horosphere Σ1
k defines a corresponding horocyclic segment �

1
k

bolic structure. Such a similarity structure is completely characterized by the number
d[�k], which does not depend from the initial choice of �

h1
v0(k)

, and is an invariant

only related to the conical defect Θ(k) supported at the vertex σ 0(k) of (Tl ,M).
It can be identified with the holonomy invariant introduced by Thurston [18] in order
to characterize the completeness of the hyperbolic structure of a surface obtained
by gluing hyperbolic ideal triangles (the structure being complete iff the invariants
d[�k] are all zero for each ideal vertex v0(k)).

The topological constraint in (3.40) is an obvious rewriting of the computation
(2.75) of the degree of the divisor associated with the conical singularities, (i.e.
a restatement of the Gauss–Bonnet theorem—see Theorem 2.2). This completes
the proof of part (a) and part (b) of the theorem. To prove part (c), we exploit a
classical result by Thurston, ([18], prop. 3.4.21), according to which the glueing of the
N2(T ) ideal triangles according to the procedure just described gives rise to an open
hyperbolic surface Ω with geodesic boundaries. Each boundary component ∂Ωk is
associated with a corresponding vertex σ 0(k) of |Tl | → M, and has a signed length
provided by ± |∂Ωk | = d[�k], where the ± sign encodes the outward or inward,
(with respect to the standard counterclockwise orientation induced by (Tl ,M)),
spiraling of the horocycle segments t �→ �k(t) around the given vertex. Thus

{± |∂Ωk |} = |d[�k]| =
{

sign

(
ln
Θ(k)

2π

)}N0

k=1
×
{

Lk =
∣∣∣∣ln Θ(k)2π

∣∣∣∣
}N0

k=1
. (3.52)
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Fig. 3.9 The intersection of
the ideal triangles
{σ 2

hyp(k, α, α + 1)}, (here for
α = 1, 2, 3, with q(k) = 3),
with a corresponding
sequence of horospheres
{Σα

k } generates the
horocyclic segments �

α
k . The

segment �
q(k)+1
k re-enters

σ 2
hyp(k, 1, 2) at a signed

distance d[�k ] from �
1
k . The

spiraling empahsizes that
this mechanism goes on
indefinitely

Σ
k

1

Σ
k

2

Σ
k
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Σ
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F  3
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σ 2     (k,1,2)
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hyp
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The mapping between (Tl ,M) and the corresponding hyperbolic surface with
boundaryΩ(Tl ,M) characterizes (3.41). Recall that POLg,N0 (M, {Θ(k)}, A(M)) ,

the space of polyhedral surfaces of given area A(M) and conical angles {Θ(k)}N0
k=1, is

locally modeled by the polyhedral surfaces in T met
g,N0

(M, {Θ(k)})/Aut (T ) with area

A(Tl ,M) = A(M), (see (2.89)). For the generic hyperbolic surface Ω ∈ T∂g,N0
,

let Map∂g,N0
denote the mapping class group defined by the group of all the iso-

topy classes of orientation preserving homeomorphisms which leave each boundary
component ∂Ω j pointwise (and isotopy-wise) fixed. Since the hyperbolic surfaces
Ω(Tl ,M) are obtained by completion of ideal triangulations generated by (Tl ,M),
the automorphisms group Aut (T ) of (Tl ,M) can be injected in Map∂g,N0

. Thus,
(41) naturally descends to a mapping between POLg,N0 (M, {Θ(k)}, A(M)) and the
moduli space Mg,N0(L) of Riemann surfaces of genus g with N0 boundary compo-

nents of signed length vector Z
N0
2 × L := {±Lk = ln Θ(k)

2π }N0
k=1. Conversely, let Ω

be a Riemann surface with N0 geodesic boundaries {∂Ωk} of signed length vector
{±Lk}, satisfying the topological constraint

N0∑
k=1

(
e±Lk − 1

)
= 2g − 2, (3.53)

(see (3.40)), then {Θ(k)2π := e±Lk } is a coherent set of conical angles which, accord-
ing to Troynov’s theorem characterizes, up to homotety, a polyhedral structure in
POLg,N0 (M, {Θ(k)}, A(M)) . This shows that the mapΩΘ is a bijection, and com-
pletes the proof of Theorem 3.1 (Fig. 3.10). ��
Remark 3.1 As discussed above, the completion defining the boundary component
∂Ωk ofΩ(Tl ,M) is generated by adjoining, along the geodesics ending in v0(k), one
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σ   (k)
0

spiraling
geodesics

σ²     (k,α,α+1)
hyp

σ²  (k,α,α+1)
x  (k)α 

horocycle

∂Ω
k

Fig. 3.10 A representation of how the conical singularity in the Euclidean star star [σ 0(k)] gener-
ates a geodesic boundary ∂Ωk . Here the geodesic sides of the ideal triangles σ 2

hyp(k, α, α + 1) are
seen, from the intersecting horocicle curve, as spiraling down. Since adjacent sides of ideal triangles
can glide with respect to each other, one can understand heuristically what goes on by drawing an
analogy with a diaphragm shutter the blades of which are the ideal triangles

limit point for each horocycle curve t �→ �(t). Among these geodesics we have the
q(k) distinguished geodesics associated with the ideal edges {σ 1

hyp(k, hα)}q(k)α=1. The
corresponding limit points mark q(k) distinguished points {xα(k)} on the geodesic
boundary ∂Ωk . Moreover, according to (3.46), these distinguished points are at a
constant hyperbolic distance from each other,

dH3 (xα(k), xα+1(k)) = 1

q(k)

∣∣∣∣ln
(
Θ(k)

2π

)∣∣∣∣ , (3.54)

where, as usual, the indexα is defined modulo q(k) (Fig. 3.10). ��

3.6 The Weil–Petersson Form on T met
g,N0

(M, {Θ(k)})

According to the uniformization theorem, the Teichmüller space Tg,N0 can be equiv-
alently described as the space of hyperbolic metrics ds2 of constant curvature −1
on M/K 0(T ), up to isometries isotopic to the identity relative to the marked points,
(see Appendix A). Let us also recall that in such a hyperbolic setting, where points
in Tg,N0 are considered as hyperbolic surfaces with punctures, one can introduce a
trivial bundle, Penner’s decorated Teichmüller space,

T̃g,N0

πhor−→ Tg,N0 (3.55)
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whose fiber over a punctured surface Ω̃ is the set of all N0-tuples of horocycles in
Ω̃, with one horocycle around each puncture. A section of this fibration is defined
by choosing the total length of the horocycle assigned to each puncture in Ω̃.

In such a framework, an important role is played by ideal triangulations of the
punctured surface Ω̃ and by the corresponding lambda-lengths associated with the
decorated edges of the triangles σ 2

hyp.According to a seminal result by Penner ([12],

Theorem 3.3.6), the pull-back π∗horωWP under the map πhor : T̃g,N0 → Tg,N0 of the
Weil–Petersson two-form ωWP is explicitly given by

−2
∑
[σ 2

hyp]
d ln λ0 ∧ d ln λ1 + d ln λ1 ∧ d ln λ2 + d ln λ2 ∧ d ln λ0, (3.56)

where the sum runs over all ideal trianglesσ 2
hyp whose ordered edges take the lambda-

lengths λ0, λ1, λ2. Note that (for dimensional reason) π∗ωWP is a degenerate pre-
symplectic form. As we have seen in the previous section, we can associate with a
polyhedral surface (Tl ,M) ∈ T met

g,N0
(M) an incomplete hyperbolic structure defined

by a ideal triangulation H (Tl ,M) decorated by horocycles {�k}. It easily follows
that we can pull-back Penner’s Kähler two-form π∗horωWP to T met

g,N0
(M). We have

Theorem 3.2 Let ωid
WP denote the Penner representation of the Weil–Petersson form

on the set of decorated ideal triangulations T ideal
g,N0

(M/K 0) ⊗N0
k=1 L

+
(k), then to

any polyhedral surface (Tl ,M) ∈ T met
g,N0

(M) we can associate the Weil–Petersson
pre-symplectic form

(Tl ,M) �−→H ∗ωid
WP(Tl) = −2

∑
E(T )

dl(k, h) ∧ dl(h, j)

l(k, h)l(h, j)

+ dl(h, j) ∧ dl( j, k)

l(h, j)l( j, k)
+ dl( j, k) ∧ dl(k, h)

l( j, k)l(k, h)
,

(3.57)

where H is the mapping defined by Theorem3.1, and E(T ) denotes the edge-set of
the polyhedral surface (Tl ,M).

Proof The Weil–Petersson form on the set of decorated ideal triangulations is explic-
itly given by

ωid
WP = −2

∑
[σ2

hyp ]F(T )

d ln λ (Σk,Σh) ∧ d ln λ
(
Σh,Σ j

)

+ d ln λ
(
Σh,Σ j

) ∧ d ln λ
(
Σ j ,Σk

)
+ d ln λ

(
Σ j ,Σk

) ∧ d ln λ (Σk,Σh) .

(3.58)

The pull-back H ∗ωid
WP(Tl) of ωid

WP under the mapping H , defined by Theorem
3.1, can be computed by exploiting the expressions (3.20–3.22) which provide the
lambda-lengths in terms of the Euclidean edge-lengths l(k, h) of the polyhedral
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surface (Tl ,M) ∈ T met
g,N0

(M). It is easily checked that under such a correspondence

H ∗ωid
WP(Tl) reduces to (3.57). ��

According to Theorem 3.1, the hyperbolic structure that can be associated with a
polyhedral surface generates, under completion, a hyperbolic surfaceΩ(Tl ,M)with
N0 geodesic boundary components ∂Ωk of length |∂Ωk | = | ln(Θ(k)/2π)|.Thus, the
delicate issue here is to extend (3.57) to the space T met

g,N0
(M; {Θ(k)}) of polyhedral

surfaces with a given set of conical angles {Θ(k)}. Since the Weil–Petersson form
(3.57) is degenerate, it is more appropriate to discuss this extension problem for the
Poisson structure associated with (3.57), (see section A.5). We have the following

Theorem 3.3 To T met
g,N0

(M) we can associate the Poisson structure generated by
the Weil–Petersson bivector field whose local expression, at the generic polyhedral
surface (Tl ,M), is provided by

η(Tl ,M) = 1

8

N0∑
k

∑
1≤α<β≤q(k)

sinh
[

1
2

(
1− 2(β−α)

q(k)

) ∣∣∣ln Θ(k)
2π

∣∣∣]
sinh

[
1
2

∣∣∣ln Θ(k)
2π

∣∣∣]
× ∂

∂ ln l(α, α + 1)
∧ ∂

∂ ln l(β, β + 1)
.

(3.59)

Proof The proof of (3.59) rests on a remarkable result by Mondello [12] who has
been able to extend to the case of hyperbolic surface with boundary the Poisson
bivector associated with the Penner representation (3.56) of the Weil–Petersson form.
Explicitly, we can adapt to our particular case the general Theorem 4.1 of [12], and
consider the hyperbolic surface Ω, with N0 geodesic boundaries ∂Ωk, generated
by completing the ideal triangulation (H (Tl ,M), {�k}) associated with (Tl ,M).
Recall that, according to Remark 3.1, each geodesic boundary component ∂Ωk is
decorated with the q(k) points {xα(k)}q(k)α=1 separated by a distance given by (3.54).
In such a case, (Theorem 4.1 of [12]), the Poisson bivector η(Ω) takes the explict
form2

η(Ω) = 1

8

N0∑
k

∑
1≤α<β≤q(k)

sinh
[ 1

2 |∂Ωk | − dk(xα(k), xβ(k))
]

sinh
[ 1

2 |∂Ωk |
]

× ∂

∂ ln λ(α, α + 1)
∧ ∂

∂ ln λ(β, β + 1)
,

(3.60)

where dk(xα(k), xβ(k)) is the length of the geodesic arc running from xα(k) to xβ(k)
along the oriented boundary ∂Ωk in the positive direction, and where λ(α, α + 1)
denotes the λ-length associated with the ideal edge σ 1

hyp(hα, hα+1) dressed with the
corresponding horocycles. Note that in [12], the above decorations are associated with
the spine induced by a maximal system of disjoint simple geodesic arcs starting and

2 Since we use the λ-length and we ordered the summation over the indices α and β, (3.60) is off
by a factor 1/4 with respect to the expression for the Poisson bivector given in [12].
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ending perpendicularly at the boundaries. In our case, they are naturally generated by
the horospherical correspondence (Tl ,M) �→ H (Tl ,M). Similarly to the compu-
tation leading to (3.57), we can exploit (3.20–3.22) providing the lambda-lengths in
terms of the Euclidean edge-lengths l(k, h) of the generating (Tl ,M) ∈ T met

g,N0
(M),

so as to get

∂

∂ ln λ(α, α + 1)
= ∂

∂ ln l(α, α + 1)
. (3.61)

Moreover, since the points {xα(k)}q(k)α=1 are separated by

dH3 (xα(k), xα+1(k)) = 1

q(k)

∣∣∣∣ln
(
Θ(k)

2π

)∣∣∣∣ , (3.62)

(see (3.54)), we have

dk(xα(k), xβ(k)) = (β − α)
q(k)

∣∣∣∣ln Θ(k)2π

∣∣∣∣ , (3.63)

for any 1 ≤ α < β ≤ q(k). Introducing these expressions and the relation |∂Ωk | =∣∣∣ln Θ(k)
2π

∣∣∣ in (3.60) we easily get (3.59). ��
The {Θ(k)}-constant leaves of the Poisson structure defined by η(Tl ,M) are the

spaces T met
g,N0

(M; {Θ(k)}) of polyhedral surfaces with the given set of conical angles.
We have the

Corollary 3.1 The restriction η(Tl ,M)|{Θ(k)} of the Poisson bivector to the {Θ(k)}-
constant leaves is non-degenerate and defines (by duality) a symplectic structure
ωΘWP on T met

g,N0
(M; {Θ(k)}).

Proof In analogy with the discussion of the conical symplectic form in Chap. 1, (see
Sect. 1.9), let us consider the deformation induced in the edges {l(α, α + 1)} by the
variation, at constant Θ(k), of the vertex angles {θα(k)}, i.e.

(Tl ,M) �−→
{

l(k, α + 1)
∂

∂θα(k)

}q(k)−1

α=1
, k = 0, . . . , N0, (3.64)

(see (1.118), with respect to which we have dropped the factor εα(k), irrelevant for
our purposes). Along such variations we have

∂

∂ ln l(α, α + 1)
= l(α, α + 1)

l(k, α + 1)

∂

∂θα(k)
, (3.65)

and we can write (3.59) as

η(Tl ,M) =
N0∑
k

∑
1≤α<β≤q(k)

F(k)(α, β)
∂

∂θα(k)
∧ ∂

∂θβ(k)
, (3.66)
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where

F(k)(α, β) := l(α, α + 1)l(β, β + 1)

l(k, α + 1)l(k, β + 1)
×

sinh
[

1
2

(
1− 2(β−α)

q(k)

) ∣∣∣ln Θ(k)
2π

∣∣∣]
sinh

[
1
2

∣∣∣ln Θ(k)
2π

∣∣∣] . (3.67)

One can easily check that the following chain of identities holds

∑
1≤α<β≤q(k)

F(k)(α, β)
∂

∂θα(k)
∧ ∂

∂θβ(k)

=
q(k)−1∑

v=1

q(k)∑
μ=v+1

F(k)(v, μ)
∂

∂θv(k)
∧ ∂

∂θμ(k)

=
q(k)−1∑

v=1

q(k)−1∑
μ=v+1

F(k)(v, μ)
∂

∂θv(k)
∧ ∂

∂θμ(k)

+
q(k)−1∑

v=1

F(k)(v, q(k))
∂

∂θv(k)
∧ ∂

∂θq(k)

=
q(k)−1∑

v=1

q(k)−1∑
μ=v+1

F(k)(v, μ)
∂

∂θv(k)
∧ ∂

∂θμ(k)

−
q(k)−1∑
η=1

q(k)−1∑
v=1

F(k)(v, q(k))
∂

∂θv(k)
∧ ∂

∂θη(k)
, (3.68)

where, in the last line, we have exploited the fact that, since we work at constant
Θ(k), we have

∂

∂θq(k)
= −

q(k)−1∑
η=1

∂

∂θη(k)
. (3.69)

Moreover, we can write

q(k)−1∑
η=1

q(k)−1∑
v=1

F(k)(v, q(k))
∂

∂θv(k)
∧ ∂

∂θη(k)

=
∑

1≤v<η≤q(k)−1

[
F(k)(v, q(k))− F(k)(η, q(k))

] ∂

∂θv(k)
∧ ∂

∂θη(k)
,

(3.70)

so that we eventually get
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∑
1≤α<β≤q(k)

F(k)(α, β)
∂

∂θα(k)
∧ ∂

∂θβ(k)

=
∑

1≤α<β≤q(k)−1

[
F(k)(α, β)− F(k)(α, q(k))+ F(k)(β, q(k))

] ∂

∂θα(k)
∧ ∂

∂θβ(k)
.

(3.71)
Introducing this result in (3.66) yields

η(Tl ,M) =
N0∑

k=1

∑
1≤α<β≤q(k)−1

[
F(k)(α, β)

−F(k)(α, q(k))+ F(k)(β, q(k))
] ∂

∂θα(k)
∧ ∂

∂θβ(k)
. (3.72)

Thus, in order to prove the non-degeneracy of η(Tl ,M) over T met
g,N0

(M; {Θ(k)}),we
need to prove that, for 1 ≤ α < β ≤ q(k)− 1, we always have[

F(k)(α, β)− F(k)(α, q(k))+ F(k)(β, q(k))
] �= 0, (3.73)

as we move around the vertices of (Tl ,M).An elegant way of providing such a check
is to note that the function F(k)(α, β), defined over T met

g,N0
(M; {Θ(k)}), naturally

extends to the Teichmüller space Tg,N0(M) of N0-pointed closed Riemann surfaces
of genus g, and then exploit the following deep property of equilateral triangulations

Theorem 3.4 (Belyĭ’s theorem [2]) The set of compact Riemann surfaces associated
with equilateral polyhedral surfaces of genus g is a countable and dense subset of
the Teichmüller space Tg,N0(M).

Thus, according to Belyĭ’s theorem, we can limit our analysis to equilateral poly-
hedral surfaces. This considerably simplifies (3.73), and one easily checks that the
vanishing of (3.73) necessarily implies that

e−dk (xα(k),xβ(k)) + e−|∂Ωk |+dk(xα(k),xq (k)) + e−dk(xβ(k),xq (k))

= e−|∂Ωk |+dk(xα(k),xβ(k)) + e−dk(xα(k),xq (k)) + e−|∂Ωk |+dk(xβ(k),xq (k)),
(3.74)

where dk(xα(k), xβ(k)) is provided by (3.63), and |∂Ωk | is the geodesic bound-
ary length given by (3.52). The condition (3.74) holds iff α = β and |∂Ωk | = 0,
thus under the stated hypotheses (3.73) never vanishes on the subset of equilat-
eral triangulations ⊂ T met

g,N0
(M; {Θ(k)}). By density, this extends to the whole

T met
g,N0

(M; {Θ(k)}). It follows that η(Tl ,M)|{Θ(k)} is non-degenerate and defines
on T met

g,N0
(M; {Θ(k)}) a symplectic structure. ��

Remark 3.2 The density property of equilateral triangulated surfaces (Dynamical
Triangulations) is strictly related to a result, due to Voevodskii and Shabat [19], which
establishes a remarkable bijection between dynamical triangulations and curves over
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algebraic number fields. The proof in [19] exploits the characterization of the collec-
tion of algebraic curves defined over the algebraic closure Q of the field of rational
numbers, (i.e. over the set of complex numbers which are roots of non-zero polyno-
mials with rational coefficients), provided by Belyĭ’s theorem [2]. According to such
a result, a nonsingular Riemann surface M has the structure of an algebraic curve
defined over Q if and only if there is a holomorphic map (a branched covering of M
over the sphere)

f : M → CP
1 (3.75)

that is ramified only at 0, 1 and∞, (such maps are known as Belyĭ maps). In other
words, the Riemann surface associated with a dynamical triangulation (with edge-
lengths normalized to a = 1) is, in a canonical way, a ramified covering of the
Riemann sphere CP

1 with ramification locus contained in {0, 1,∞}. The triangula-
tion (actually its barycentrically dual ribbon graph decorated with the corresponding
quadratic differential) is the preimage of the interval [0,1], in particular the set of
vertices appears as the preimage of 0 and the set of half-cylinders over the cells
{ρ2(k)} as the preimage of ∞. The mid points of the edges {ρ1(h)}, (identified
with the barycenters of the edges of |Ta=1| → M), correspond to the preimage of
1. Moreover, every branched covering of CP

1 defining a Riemann surface over Q

arises in this fashion. It is worthwhile remarking that the inverse image of the line
segment [0, 1] ⊂ CP

1 under a Belyĭ map is a Grothendieck’s dessin d’enfant, thus
dynamically triangulated surfaces are eventually connected with the theory of the
Galois group Gal(Q/Q) action on the branched coverings f : M → CP

1. The
correspondence between Belyĭ maps, dessin d’enfant and JS quadratic differentials
has been recently analyzed in depth by Mulase and Penkava [5], an equally inspiring
paper is [1] by Bauer and Itzykson.

3.7 The Symplectic Volume of the Space
of Polyhedral Structures

As we have discussed in Sect. 1.11, the space of polyhedral structures POLg,N0(M)
is not a compact orbifold since triangulated surfaces can degenerate. In line with the
relation with the stable compactification Mg,N0 of the Riemann moduli space, we
have specifically considered those degenerations yielding for a suitable notion of sta-
ble polyhedral surface, introducing the space POLg,N0 , (see Theorem 1.7, and Def-
inition 1.23). Thus, it is important to discuss how the symplectic form ωΘWP extends
to POLg,N0 . In full generality the detailed analysis of the behavior, under degenera-
tions, of the combinatorial representativeωΘWP of the Weil–Petersson form, as well as
of the Euler classeωk associated with the circle bundle (Q(k),T

met
g,N0

(M, {Θ(k)})), is
extremely delicate, (for the Witten–Kontsevich theory see [9] and the detailed analy-
sis in [13, 14]). For our purposes it is sufficient to discuss how the Weil–Petersson
(W–P) bivector (3.59) η(Tl ,M) behaves in presence of a pinching node in a stable
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polyhedral surface. According to the characterization of stable polyhedral surface
described in Theorem 1.7, and Definition 1.23, we have

Lemma 3.3 Let (T̂ Tl ,M) ∈ POLg,N0 be the stable polyhedral surface we get from
(Tl ,M) by metrically collapsing, along a shrinking circle Sk , a polyhedral surface
(Tl ,M). Then the W–P bivector η(Tl ,M) naturally extends to (T̂ Tl ,M).

Proof Let (T̂ Tl ,M) ∈ POLg,N0 be the stable polyhedral surface we get from
(Tl ,M) by metrically collapsing the shrinking circle Sk, and let σ 0∗ (Sk) be the
corresponding pinching point in (T̂ Tl ,M).Assume, for simplicity that the shrinking
circle Sk is homotopically trivial, (i.e. we are not pinching a handle), so that at the
nodal point σ 0∗ (Sk),we can separate (T̂ Tl ,M) into the two components (T̂ Tl ,M)(1)
and (T̂ Tl ,M)(2) resulting from the pinching, with(

T̂ Tl ,M
) = (T̂ Tl ,M

)
(1) �σ 0∗ (Sk)

(
T̂ Tl ,M

)
(2). (3.76)

Let us denote by σ 0∗,1(1) the conical vertex on (T̂ Tl ,M)(1) associated with the

pinching point σ 0∗ (Sk), similarly we denote by σ 0∗,2(1) the corresponding vertex

on (T̂ Tl ,M)(2). To the component (T̂ Tl ,M)(1) we can associate the corresponding
Weil–Petersson bivector, (see (3.66)),

η
(
T̂ Tl ,M

)
(1) = F1

(1)(α, β)
∂

∂θ
(1)
α (1)

∧ ∂

∂θ
(1)
β (1)

+
N0(1)∑
k=2

∑
1≤α<β≤q(k)

F1
(k)(α, β)

∂

∂θ
(1)
α (k)

∧ ∂

∂θ
(1)
β (k)

, (3.77)

where we have isolated the contribution coming from σ 0∗,1(1). For the polyhedral

surface (T̂ Tl ,M)(1) we have an analogous expression

η
(
T̂ Tl ,M

)
(2) = F2

(1)(α, β)
∂

∂θ
(2)
α (1)

∧ ∂

∂θ
(2)
β (1)

+
N0(2)∑
k=2

∑
1≤α<β≤q(k)

F2
(k)(α, β)

∂

∂θ
(2)
α (k)

∧ ∂

∂θ
(2)
β (k)

. (3.78)

The pinching prescription we have adopted in Theorem 1.7 and Definition 1.23
implies that, modulo the action of a finite number of flip moves, at the vertices σ 0∗,1(1)
andσ 0∗,2(1) the corresponding vertex angles are pairwise equal, i.e. θ(2)α (1) = θ(2)α (1),

so that by identifying σ 0∗,1(1) and σ 0∗,2(1) via an orientation reversing homeomor-
phism we get that at the pinching node σ 0∗ (Sk) the contribution to the W–P bivector
vanishes,

F1
(1)(α, β)

∂

∂θ
(1)
α (1)

∧ ∂

∂θ
(1)
β (1)

− F2
(1)(α, β)

∂

∂θ
(2)
α (1)

∧ ∂

∂θ
(2)
β (1)

≡ 0 . (3.79)
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Thus, the W–P bivector associated with the stable polyedhral surface (T̂ Tl ,M) ∈
POLg,N0 can be written as

η
(
T̂ Tl ,M

) = N0(1)∑
k=2

∑
1≤α<β≤q(k)

F1
(k)(α, β)

∂

∂θ
(1)
α (k)

∧ ∂

∂θ
(1)
β (k)

+
N0(2)∑
k=2

∑
1≤α<β≤q(k)

F2
(k)(α, β)

∂

∂θ
(2)
α (k)

∧ ∂

∂θ
(2)
β (k)

, (3.80)

with N0(1)+N0(2) = N0. The argument can be easily adapted to a handle-pinching.
Thus, the Weil–Petersson bivector naturally extends to POLg,N0 . ��

The symplectic form ωΘWP associated with the Weil–Petersson bivector η(Tl ,M)

endows T met
g,N0

(M; {Θ(k)}), and its stable closure T
met

g,N0
(M; {Θ(k)}), with a well-

defined notion of symplectic volume according to

Volsymp

[
T met

g,N0
(M; {Θ(k)})

]
:=
∫
T

met
g,N0

(M;{Θ(k)})
exp

(
ωΘWP

)
, (3.81)

where exp
(
ωΘWP

)
means that we are integrating over the maximal power of the Weil–

Petersson form over T
met

g,N0
(M; {Θ(k)}), i.e.

exp
(
ωΘWP

) :=
(
ωΘWP

)m
m! , (3.82)

with m = 2N0 + 6g − 6 = dim T met
g,N0

(M; {Θ(k)}), is the symplectic volume form.
Let us recall, (see (2.87), that T met

g,N0
(M{Θ(k)}) is a local model for the orbispace

POLg,N0 (Θ, A) of polyhedral structures of given area A := A(M), and with a given

sequence of conical angles Θ := {Θ}N0
k=1, (since notation wants to travel light we

have dropped a few k’s and M’s with respect to (2.87)),

POLg,N0 (Θ, A) :=
⊔

[T ]∈Tg,N0

R
N1+

Aut (T )

∣∣∣∣∣∣
(Θ, A)

, (3.83)

where the union runs over the set Tg,N0 of equivalence classes3 [T] of distinct trian-
gulations (T, M), (in the sense of Definition 1.7), with N0(T ) = N0 labelled vertices
satisfying the topological constraints N0 − N1(T ) + N2(T ) = 2 − 2g, 2N1(T ) =
3N2(T ). Note that these equivalence classes [T] in Tg,N0 label the distinct metrical

orbicells R
N1+ /Aut (T ). It follows that we can extend (3.81) to an orbifold integration

characterizing the symplectic volume of POLg,N0 (Θ, A) according to

3 Recall that any two triangulations (T (1),M) and (T (2),M) in Tg,N0 are considered equivalent
iff they have the same incidence relations-see Definition 1.7.
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Volsymp
[
POLg,N0 (Θ, A)

] = ∫
POLg,N0 (Θ,A)

exp
(
ωΘWP

)

:=
∑

[T ]∈Tg,N0

1

|Aut (T )|
∫

T
met
g,N0

(M;Θ)
∣∣∣[T ]

exp
(
ωΘWP

)
,

(3.84)
where the sum runs over the finite set of equivalence classes [T] of distinct triangu-
lations (T, M) in Tg,N0 , and where

T
met
g,N0

(M;Θ)
∣∣∣[T ] (3.85)

denotes the set of stable polyhedral surfaces in T
met
g,N0

(M;Θ) whose incidence is
in the equivalence class [T] defined by (T, M). The above summation over Tg,N0 is
a finite sum over a finite number of orbifold strata. Each stratum being labelled by
the equivalence class [T] representative of all the PL-equivalent triangulations with
the same incidence relations of (T,M), (see also Theorem 1.3). Finally, in order to
avoid overcounting the same stratum, we have divided by the order |Aut (T )| of the
automorphism group of the stratum [T] corresponding to (T,M).

One may well argue that a more natural notion of volume to consider would have
been that obtained by exploiting directly the Euclidean volume form

∧
E(T )

dl(α, β)

∣∣∣∣∣∣
(Θ, A)

, (3.86)

where the exterior product runs over the edge set of the triangulations (Tl ,M) ∈
T met

g,N0
(M;Θ). In applications (typically Regge calculus) this is often the case. How-

ever, the Euclidean volume of POLg,N0 (Θ, A) is very difficult to compute (even if
we limit the analysis to a single orbifold strata as is, somewhat artificially, done in
Regge calculus).

The relevance of the symplectic volume (3.84) over the Euclidean volume4

of POLg,N0 (Θ, A) stems from the relations (2.86) and (3.42), provided by the
Theorems 2.4 and 3.1. These relations provide bijections between the spaces of
polyhedral structures POLg,N0(M), POLg,N0 (Θ, A) and the (decorated) Riemann
moduli spaces Mg,N0 and Mg,N0(L), respectively. Both such bijections (2.86) and
(3.42) extend to the respective stable compactifications, i.e.

Υ : POLg,N0(M) −→Mg,N0 ×R+ × R
N0−1
≥0 ,

(Tl ,M) �−→
[
((M; N0),C ), A, {Θ(k)}N0

]
,

(3.87)

ΩΘ : POLg,N0(Θ(k), A) −→Mg,N0(L)× Z
N0
2 , (3.88)

4 The interplay between the Euclidean volume and the symplectic volume, instrumental to the
Witten–Kontsevich intersection theory over moduli space, is discussed in depth in [6].



3.7 The Symplectic Volume of the Space of Polyhedral Structures 111

and allow us to characterize a natural notion of volume, for the space of polyhedral
structures POLg,N0 and POLg,N0 (Θ, A) , in terms of the symplectic volumes of the
Riemann moduli spaces Mg,N0 and Mg,N0(L). We have

Theorem 3.5 If POLg,N0(A) and POLg,N0 (Θ, A) respectively denote the set of
polyhedral structures in POLg,N0(M) with given polyhedral area A and with a given

sequence of conical angles {Θ(k)}N0
k=1, (always at fixed A), then the symplectic vol-

umes of the Riemann moduli spaces Mg,N0 and Mg,N0(L) induce natural volume
forms on POLg,N0(A) and POLg,N0 (Θ, A) for which we compute

Vol
[
POLg,N0(A)

] = √N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1
VolWP

[
Mg,N0

]
, (3.89)

and

Vol
[
POLg,N0 (Θ, A)

] = VolWP
[
Mg,N0(L)

]
. (3.90)

Proof We start proving (3.90). Since by construction ωΘWP = Ω∗Θ [ωWP], under the
action of the map ΩΘ we can write

VolWP
[
Mg,N0(L)

] := ∫
Mg,N0 (L)

exp (ωWP)

=
∫
ΩΘ [POLg,N0 (Θ,A)]

exp (ωWP)

=
∫

POLg,N0 (Θ,A)
exp

(
ωΘWP

)
:= Vol

[
POLg,N0 (Θ, A)

]
, (3.91)

as stated. Note that Vol
[
POLg,N0 (Θ, A)

]
is the symplectic volume of POLg,N0

(Θ, A) with respect to the natural symplectic form ωΘWP. In order to prove (3.89), let
us remark that the possible conical angles {Θ(k)} in POLg,N0(A) are (only) subjected
to the Gauss–Bonnet constraint (2.75), which we can rewrite as

N0∑
k

Θ(k) = 2π(N0 + 2g − 2) . (3.92)

It follows that the set of possible {Θ(k)} in POLg,N0(A) vary in the (N0 − 1)-
dimensional simplex in R

N0

ΔΘ :=
{
Θ(k) ≥ 0,

N0−1∑
k=1

Θ(k) = 2π(N0 + 2g − 2)

}
, (3.93)

(for simplicity, we allow also for degenerate angles Θ(k) = 0). This can be consid-
ered as the 2π(N0 + 2g − 2)-dilated standard unit simplex
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ΔN0−1 :
{
(x1, . . . , x N0) ∈ R

N0≥0

∣∣∣∣∣
N0∑

k=1

xk = 1

}
(3.94)

in R
N0 . Note that ΔΘ carries the natural volume form induced by the Euclidean

measure dμN0−1
E in the affine hyperplane

∑N0
k=1 xk = 1, (x1, . . . , x N0) ∈ R

N0 .

Since VolWP
[
Mg,N0

]
does not depend on the actual distribution of the {Θ(k)}N0

k=1,

under the action of the map ϒ, (see (2.86)), we can write

VolWP
[
Mg,N0

]× VolE [ΔΘ ] :=
∫
ΔΘ

dμN0−1
E

∫
Mg,N0

exp (ωWP)

=
∫
ϒ[POLg,N0 (A)]

dμN0−1
E exp (ωWP)

=
∫
ΔΘ

dμN0−1
E

∫
POLg,N0 (Θ,A)

exp
(
ωΘWP

)
:= Vol

[
POLg,N0 (A)

]
, (3.95)

where we have exploited the fact that the bijectionϒ is the identity when considered
as a map from the set of all possible conical angles {Θ(k)}N0

k=1 to the simplex ΔΘ,

and that, at fixed {Θ(k)}N0
k=1 we have

ϒ∗(ωWP) = ωΘWP . (3.96)

The Euclidean volume of the standard unit simplex ΔN0−1 is given by

VolE

[
ΔN0−1

]
=

√
N0

(N0 − 1)!√2N0−1
. (3.97)

SinceΔΘ is the 2π(N0+2g−2)-dilated standard unit simplex, we immediately get

VolE [ΔΘ ] =
√

N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1
, (3.98)

from which, once inserted in (3.95), the relation (3.89) follows. ��
Remark 3.3 From the above analysis, in particular from the chain of passages (3.95)
leading to the identification between VolWP

[
Mg,N0

]×VolE [ΔΘ ] and the volume of
the space of polyhedral surfaces POLg,N0 (A), it follows that it is natural to introduce
the following

Definition 3.1 If F :POLg,N0 (A)→R is a (measurable) function over POLg,N0(A)],
then we set ∫

POLg,N0 (A)
dμN0−1

E exp (ωWP) F[(Tl ,M)] (3.99)
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:=
∫
ΔΘ

dμN0−1
E

∫
POLg,N0 (Θ,A)

exp
(
ωΘWP

)
F[(Tl ,M)], (3.100)

It follows, from this definition and Theorem 3.5, that the average value of F over
POLg,N0 (A) defined by

〈F〉POLg,N0 (A)
:=

∫
POLg,N0 (A)

dμN0−1
E exp (ωWP) F[(Tl ,M)]

Vol[POLg,N0 (A)]
(3.101)

is provided by

〈F〉POLg,N0 (A)
= (N0 − 1)!√2N0−1
√

N0[2π(N0 + 2g − 2)](N0−1)VolWP
[
Mg,N0

]
=
∫

POLg,N0 (A)
dμN0−1

E exp (ωWP) F[(Tl ,M)]. (3.102)

Since the computation of the volumes of POLg,N0(A) and POLg,N0(Θ, A) involve
orbifold integrations, the above theorem and the relation (3.84) imply the following
explicit representation of (3.89) and (3.90).

Theorem 3.6 If T
met
g,N0

(M;Θ) denotes the set of stable polyhedral surfaces locally
modeling POLg,N0(Θ, A), then

VolWP
[
Mg,N0(L)

] = ∑
[T ]∈Tg,N0

1

|Aut (T )|
∫

T
met
g,N0

(M;Θ)
∣∣∣[T ]

exp
(
ωΘWP

)
, (3.103)

and

VolWP
[
Mg,N0

] = (N0 − 1)!√2N0−1
√

N0[2π(N0 + 2g − 2)](N0−1)

×
∑

[T ]∈Tg,N0

1

|Aut (T )|
∫
ΔΘ

dμN0−1
E

∫
T

met
g,N0

(M;Θ)
∣∣∣[T ]

exp
(
ωΘWP

)
,

(3.104)
where the sum runs over the finite set of equivalence classes [T] of distinct trian-

gulations (T,M) in Tg,N0 , and where T
met
g,N0

(M;Θ)
∣∣∣[T ] denotes the set of stable

polyhedral surfaces in T
met
g,N0

(M;Θ) whose incidence is in the equivalence class
[T] defined by [T,M].

Proof The representation (3.103) is an immediate consequence of the characteriza-
tion (3.84) of orbifold integration over POLg,N0(Θ, A) and of (3.90). The represen-
tation (3.104) follows similarly by exploiting (3.84) in the relation (3.95). ��

Both these representations of the symplectic volumes of the Riemann moduli
spaces VolWP

[
Mg,N0(L)

]
and VolWP

[
Mg,N0

]
in terms of the set of polyhedral sur-

faces T met
g,N0

(M;Θ) will play a key role in the applications to quantum gravity and
string theory that we describe in the next chapters.
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Chapter 4
The Quantum Geometry of Polyhedral
Surfaces

4.1 Introduction

Among the many significant ideas and developments that connect Mathematics with
contemporary Physics one of the most intriguing is the role that Quantum Field
Theory (QFT) plays in Geometry and Topology. We can argue back and forth on
the relevance of such a role, but the perspective QFT offers is often surprising and
far reaching. Examples abound, and a fine selection is provided by the revealing
insights offered by Yang–Mills theory into the topology of 4-manifolds, by the rela-
tion between Knot Theory and topological QFT, and most recently by the interaction
between Strings, Riemann moduli space, and enumerative geometry. Doubtless many
of the most striking connections suggested by physicists failed to pass the censorship
of the Department of Mathematics, and so do not appear in the above official list.
As ill-defined these techniques may be, if we give them some degree of mathematical
acceptance then the geometrical perspective they afford is always quite non-trivial
and extremely rich. It is within such a framework that we shall examine in this and
following chapters some aspects of the relation between an important class of QFTs
and polyhedral surfaces. We start with a rather general introduction on geometri-
cal aspects of QFT that will allow us to introduce naturally a notion of Quantum
Geometry.

4.2 Space of Maps and QFT

To place the arguments to follow in a natural geometrical context, let us denote
by M and V n smooth Riemannian manifolds with dim M = 2, dim V n = n≥ 2,
and let Map (M,V n) := {φ : M → V n} be the associated space of continuous
maps. For simplicity of exposition we assume here that both the surface M and the
manifold V n are compact and oriented, and to allay anxiety we may suppose that
φ ∈ Map (M,V n) is in the appropriate space of maps, (e.g., in the Sobolev class

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 115
DOI: 10.1007/978-3-642-24440-7_4, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 4.1 The map φ and the
coupling field f

(M, γ)

φ

(V , g)

f

n

W 1,2(M,V n)). In such a framework, let us consider the set of natural Lagrangians
on Map(M,V n) defined by some finite order jet of mappings φ → L (φ, α) from
Map(M,V n) to the space of (smooth) functions C∞(M,R), which are invariant
under the diffeomorphism groups D iff (M), and D iff (V n), and depend on a set of
geometrical fields defined on V n, collectively denoted by α, and which play the role
of couplings parameters of the theory. Note that the set of such coupling fields, C ,

is itself an infinite dimensional space of geometrical origin (Fig. 4.1).
For instance, if (M, γ ) is a Riemannian 2-dimensional surface with metric γ and

(V n, g) is a n-dimensional Riemannian manifold with metric g, then a typical natural
lagrangian we may wish to consider is

L (φ, α) = a−1 [trγ (x)(φ
∗g)+ af (φ)K

]
,

where trγ (x)(φ
∗g) := γ μv(x)∂μφi(x)∂vφ

j(x)gij(φ(x)), x ∈ M, μ, v = 1, 2,
i, j = 1, . . . , n. Here a > 0 is a parameter with the dimension of a length squared,
f : V n → R is a smooth functions on V n, and K is the Gaussian curvature of
(M, γ ). Since the dynamical field on M is φ ∈ Map(M,V n), the remaining field
f ∈ C∞(V n,R), together with the metric tensor g of V n, play here the role of point
dependent coupling parameters α on V n, i.e.,

α = a−1 (g, af ) , (4.1)

controlling the energetic of the action

Sγ [φ;α] = a−1
∫

M

[
trγ (x)(φ

∗g)+ af (φ)K
]

dμγ , (4.2)

where dμγ is the Riemannian volume element on (M, γ ). Explicitly, a−1g sets the
scale of φ(M) as seen in (V n, g), whereas the scalar field f ∈ C∞(V n,R), the
dilaton, provides the intrinsic scale of (M, γ ), (a parameter, this latter, not captured
by the energy density a−1trγ (x)(φ

∗g) of the mapφ ∈ Map(M,V n) since this term is,
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Fig. 4.2 Spaces of maps
Map(M,V n) parametrized
by the space of couplings C M

ap
(M

, V
)

C

S[φ;α]

φ

α

      Couplings

for dimM = 2, conformally invariant). Further position dependent coupling terms
could have been added to the above action, (in particular a−1

∫
M U (φ) dμγ and

a−1
∫

M φ∗ω where U ∈ C∞(V n,R) and ω ∈ C∞(V n,∧2TV ∗) is a 2-form on V n)

(Fig. 4.2).

4.3 The Space of Natural Lagrangians

In classical physics (and in geometry) we typically fix our attention on a fixed subset
α0 ∈ C of the possible coupling fields. For instance, in the above example we may set
α0 = a−1 (g0, 0), and look for mapsφ ∈ Map(M,V n)minimizing Sγ [φ;α0], (viz.,
harmonic maps in (V n, g0)). It is also often useful to consider the same variational
problem when we change the coupling fields α in a neighborhhod of the given α0,

e.g., α0 �→ α0 + δα = a−1 (g0 + h, 0 + af ), where the symmetric bilinear form
h ∈ C∞(V n,⊗2TV ∗) and the scalar field f ∈ C∞(V n,R) are small in a suitable
norm. This allows us to study fluctuations and stability issues around the given
extremizing fields φ ∈ Map(M,V n) when we (adiabatically) change the geometry
of the target manifold (V n, g). This is a natural procedure which characterizes the
action S [φ;α] as a deformation of the fiducial S [φ;α0]. We write this deformation
in general form as

Sγ [φ;α] = Sγ [φ;α0] +
∑
i≥1

∫
M

Oi(φ, αi), (4.3)

where we have denoted by Oi(φ, αi) the distinct terms in the lagrangian density
L (φ, α) defining the deformations associated to the perturbed coupling fields αi .

For instance, in the example which is presciently accompanying us, we may consider
the deformation of the harmonic map actionSγ [φ;α0] = a−1

∫
M

[
trγ (x)(φ

∗g0)
]

dμγ

defined by
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Fig. 4.3 A coordinatization
of the deformations of a
given fiducial action
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Sγ [φ;α] = Sγ [φ;α0] + a−1
∫

M

[
trγ (x)(φ

∗h)
]

dμγ

+ a−1
∫

M
af (φ)K dμγ + a−1

∫
M

U (φ) dμγ + a−1
∫

M
φ∗ω,

where h∈C∞(V n,⊗2TV ∗), f ∈C∞(V n,R), U ∈C∞(V n,R), andω ∈C∞(V n,

∧2TV ∗) are the (perturbing) fields. Note that Sγ [φ;α0] is invariant under the confor-
mal transformation (Σ, γμv) �→ (Σ, e−ψγμv), ψ ∈ C∞(M,R). This symmetry
is preserved by the perturbing fields h and ω, but is broken by the fields f and U.
Further coupling fields can be introduced as long as the target Riemannian manifold
(V n, g) is endowed with special geometrical structures (e.g., associated with the
presence of supersymmetries). At this point, it is also important to stress that classi-
cally the type of coupling fields δα which are compatible with the given Sγ [φ;α0]
is dictated by the symmetry assumptions on Sγ [φ;α0] we wish to be preserved
or broken by the perturbations. This is no longer true in QFT where symmetries
may be dynamically broken or generated by the spectrum of quantum fluctuations.
In any case, it is somewhat natural to interpret the coupling fields so introduced
α1 := a−1h, α2 := a−1(af ), α3 := a−1U , and α4 := a−1ω as a sort of coordinates
for Sγ [φ;α] in a neighborhood of the fiducial Sγ [φ;α0]. In a highly formal way
we may think that this coordinatization provides a differentiable structure of sort on
the formal space A C T (M,V n;C ) of actions associated with natural Lagrangians
on Map(M,V n)× C , i.e.,
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A C T (M,V n;C )
∣∣
S0−Patch ” := ”⎧⎨

⎩(. . .,Oi(φ, αi). . .)| Sγ [φ;α] = Sγ [φ;α0] +
∑
i≥1

∫
M

Oi(φ, αi)

⎫⎬
⎭.

(4.4)

This space, as formal as it may appear, relates naturally to Euclidean Quantum Field
Theory where one is forced, by the very nature of the quantization procedure, to
introduce a running energy scale parameter t and a collection of special tangent
vectors ∂

∂tαi, describing the variations of the coupling fields with the energy scale t,
which formally provide a distinguished semi-flow in C (Fig. 4.3).

4.4 An Informal Geometrical View to Renormalization

In the above variational set up, the fluctuations in the field φ ∈ Map(M,V n) gov-
ern at most a second order neighborhood of the configuration φ0 extremizing the
action Sγ [φ;α0]. In quantum physics the situation changes drastically and, at least
in principle, all possible fluctuations in φ should matter. In such a setting, the role of
the action Sγ [φ;α] is to provide a bias with which we weight the various configu-
rations φ ∈ Sγ [φ;α0] accessible to the system. The biasing mechanism is through
quantum interference (QFT proper) or through stochastic analysis (Euclidean QFT).
In a (very few) favourable cases, the two mechanisms are related (axiomatic QFT)
and the resulting theory allows for a formalism which is rather appealing in its math-
ematical structure. A good example which is worthwhile to keep in mind, and which
to some extent fits nicely in our geometrical set up is the case when M is the circle
and (V n, g, x0) is a pointed Riemannian manifold, i.e., the loop space Map(S1,V n).

This space is naturally endowed with a probability measure, the pinned Wiener mea-
sure Wx0(V

n) on continuous paths in V n starting and ending at some fixed point
x0 ∈ V n, and it is the framework appropriate for blending quantum mechanics with
the Riemannian geometry of (V n, g). If the target manifold V n is a compact Lie
group, (endowed with a bi-invariant Riemannian metric), then the measure space{
Map(S1,V n),Wx0(V

n)
}

is invariant under the flow induced by W 1,2 vector fields
on Map(S1,V n) [21]. This is basically an extension of the Cameron–Martin the-
orem which characterizes the path space P := {η ∈ C ([0, 1],R

n) |η(0) = 0},
endowed with the standard Wiener measure W0, and according to which the mapping
P → P, defined by η �→ η + f with f ∈ P, f (0) = 0, preserves (up to a
density) the measure space {P,W0} iff

∫ 1
0 | d

ds f |2ds < ∞. Explicitly, one defines

H := {f ∈ P| d
ds f exists a.e. and satisfies

∫ 1
0 | d

ds f |2ds < ∞}. This Hilbert space
is densely embedded in P, (however W0(H ) = 0), and can be identified with the
tangent space TηP to {P,W0} (Fig. 4.4).

For a geometrical action S[φ;α], such as Sγ [φ;α], the Euclidean QFT of rele-
vance is characterized by the set of correlations, among the values {φ(xi)} ∈ (V n)k

that the fields may attain at distinct marked points x1, . . . , xk ∈ M,formally
defined by
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Fig. 4.4 Wiener measure on
path space over a
Riemannian manifold

W   (
V)

x 0

x0

V

Z [φ(xi);α] ”
.= ”

1

Z0

∫
{Map(M,V n)}

Dα[φ](φ(x1) . . . φ(xi) . . .) e−S[φ;α], (4.5)

where Dα[φ] is a functional measure on Map(M,V n), possibly depending on the
couplings α ∈ C , and Z0 is a normalization constant typically chosen so that
Z0

−1Dα[φ] is a probability measure. In particular, if, according to (4.3), we con-
sider S[φ;α] as a deformation of a fiducial S[φ;α0], i.e., S[φ;α] = S[φ;α0] +∑

a≥1

∫
M Oa(φ, αa), then an expression of the structure (4.5) follows from observing

that we can write∫
{Map(M,V n)}

Dα[φ] e−S[φ;α] =
∫
{Map(M,V n)}

Dα[φ]e−S[φ;α0]∏
a

∫
M

Oa(φ, αa),

where Oa(φ, αa) are to be promoted to (operator-valued) local distributions (sup-
ported on distinct points xa ∈ M), and the

∏
a is suitably ordered. Thus, in such

a setting one typically assumes Z0 := ∫{Map(M,V n)} Dα[φ]e−S[φ;α0]. Notice also
that the probability measure so defined formally induces on the coupling space C a
covariance

G (αi, αj) := 1

Z0

∫
{Map(M,V n)}

Dα[φ]e−S[φ;α0]
∫

M
Oi(φ, αi)

∫
M

Oj(φ, αj), (4.6)

which, if positive, turns C into a measure space, {C ;D[G ]} (this covariance is often
called the Zamolodchikov metric in 2D QFT; Fig. 4.5).

Although rigorous bona-fide functional measure on the map spaces Map(M,V n)

can be introduced (cf. [47, 66, 74]), the somewhat fanciful expressions defined
above hardly makes sense by themselves, even at a physical level of rigor, if
we do not devise a way of controlling the spectrum of fluctuations of the fields
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Fig. 4.5 Correlations over
fluctuating surfaces
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φ ∈ Map(M,V n). In particular, it is not obvious how to introduce a subspace of
{Map(M,V n); e−S[φ;α]Dα[φ]} playing the role that the Cameron–Martin tangent
space H has in the case of the Wiener measure space {P,W0}. Indeed, one funda-
mental problem concerning (4.5) is to introduce a filtration in

{Map(M,V n), e−S[φ;α]Dα[φ]},
parametrized by a length scale t, (the only scale of measurement significant in a
relativistic quantum theory). This filtration allows to control the way (4.5) behaves
under scale-dependent transformations of the fields φ ∈ Map(M,V n) and of the
couplings α ∈ C . Thus, a basic ingredient in any such a QFT is the search for a flow,
(renormalization group flow),

RGt : [Map(M,V n)× C ] −→ [Map(M,V n)× C ]
(φ, α) �−→ RGt(φ, α) = (φt;α(t)), (4.7)

which, as we vary the scale of distances t at which we probe the Riemannian surface
M, allows to tame the energetics of the fluctuations of the fields φ : M → V n in
terms of the couplings α �→ α(t). In order to describe this procedure in physical
terms, select two scales of distances, say Λ−1 and Λ′−1

, (one can equivalently
interpret Λ and Λ′ as the respective scales of momentum in the spectra of field
fluctuations), with Λ′−1

> Λ−1. The general idea, central in Wilson’s analysis of
the the renormalization group flow, is to assume that if the action S[φΛ;α(Λ)] ∈
A C T (M,V n;C ) describes the theory at a cut-off scale Λ−1, then there is a map

R̃G ΛΛ′ : A C T (M,V n;C ) −→ A C T (M,V n;C ),

S[φΛ;α(Λ)] �−→ S[φΛ′ ;α(Λ′)] .= R̃G ΛΛ′S[φΛ;α(Λ)]
(4.8)
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such that the action S[φΛ′ ;α(Λ′)] .= R̃G ΛΛ′S[φΛ;α(Λ)] provides the effective
theory at scale Λ′−1

, obtained upon suitably averaging field-fluctuations in moving
from the distance scale Λ−1 to the scale Λ′−1

. Such a map is required to satisfy the
semigroup property R̃GΛΛ′′ = R̃G Λ′Λ′′ ◦ R̃G ΛΛ′ for all Λ′′ < Λ′. This formal
(semi)-flow, if exists, induces a corresponding flow on Map(M,V n)× C

RGΛΛ′ : [Map(M,V n)× C ] −→ [Map(M,V n)× C ]
(φΛ, α(Λ)) �−→ RG ΛΛ′(φΛ, α(Λ)) = (φΛ′ ;α(Λ′)),

(4.9)

by requiring that the natural commutativity relation

R̃G ΛΛ′S[φΛ;α(Λ)] = S[RGΛΛ′(φΛ, α(Λ))],
holds. Note that formally, under the action of RG ΛΛ′ we can either pull-back or
push-forward the measure e−S[φ;α]Dα[φ]. Given the physical meaning of the renor-
malization group flow, the push-forward should be perhaps more appropriate in a
measure-theoretic sense, however, for simplicity we shall use the pull-back measure

RG ∗
ΛΛ′(Dα[φ]) e−̃RG ΛΛ′S[φ;α]. Indeed, in order to characterize the flow RGΛΛ′ we

assume that it should leave the measure space {Map(M,V n)× C , e−S[φ;α]Dα[φ]}
quasi-invariant in a suitable sense. The idea is roughly the following: suppose that,
at least for (Λ′ \ Λ) small enough, we can put the pulled-back functional measure

RG ∗
ΛΛ′(Dα[φ]) e−̃RG ΛΛ′S[φ;α] in the same form as the original functional measure

Dα[φ] e−S[φ;α], except for a small modification of the couplings α. Explicitly, let
Λ′ = e−εΛ, with 0 < ε < 1, and assume that for every such ε there exists a
corresponding coupling α + δ α such that the following identity holds

RG ∗
ε(Dα[φ]) e−̃RG εS[φ;α] = Dα+δα[φ] e−S[φ;α+δα], (4.10)

where we have denoted R̃G ε the action of the map R̃G ΛΛ′ for Λ′ = e−εΛ.

In other words, we assume that an infinitesimal change in the cutoff can be com-
pletely absorbed in an infinitesimal change of the couplings. If this equation is valid
at least to some order in ε, we can iteratively use it to see how α is affected by
a finite change of the cutoff. If we set t .= − ln(Λ′ \ Λ), then the map RGt so
induced by R̃G ΛΛ′ on [Map(M,V n)×C ], as t varies, is the renormalization group
flow RGt introduced above, (see (4.9)). Since [Map(M,V n) × C ] is non-linear,
the infinitesimal quasi-invariance described by (4.10) is what we may reasonably
expect to replace the quasi-invariance characterizing linear measure spaces such as
{P,W0}. This infinitesimal quasi-invariance yields for what is basically an integra-
tion by parts formula characterizing a set of distinguished tangent vector fields to
the measure space {C ;D[G ]}. To show how this comes about, let us consider a scale
interval −ε ≤ t ≤ ε, for ε > 0, and assume that the associated functional measure
Dα[φ] e−S[φ;α] has natural transformation properties under RGt, i.e.,
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RGt{Map(M,V n)}

Dα(t)[φt] e−S[φt;α(t)]

=
∫
{Map(M,V n)}

RG ∗
t (Dα[φ]) e−̃RG tS[φ;α].

(4.11)

The strategy is to exploit (4.10) by evaluating, along the RG t map, the flow derivative
d
dt Z[α(t)] at the generic scale t, where

Z[α(t)] .=
∫
RGt{Map(M,V n)}

Dα(t)[φt] e−S[φt;α(t)].

Denoting, from notational ease, (M,V n)t := RG t{Map(M,V n)}, we compute at
a very (in)formal level

d
dt

Z [α(t)] = lim
ε→0

1

ε

[∫
(M,V n)t+ε

Dα(t) [φt] e−S[φt;α(t)]

−
∫
(M,V n)t

Dα(t) [φt] e−S[φt;α(t)]
]

= lim
ε→0

1

ε

[∫
RG ε((M,V n)t)

Dα(t) [φt] e−S[φt;α(t)]

−
∫
(M,V n)t

Dα(t) [φt] e−S[φt;α(t)]
]

=
∫
(M,V n)t

lim
ε→0

1

ε

[
RG ∗

ε

[
Dα(t) [φt]

]
e−̃RG εS[φt;α(t)]

−Dα(t) [φt] e−S[φt;α(t)]
]

= −
∫
(M,V n)t

β(α(t))
∂

∂α(t)

(
Dα(t) [φt] e−S[φt;α(t)]

)
, (4.12)

where we have introduced the β-flow vector field on the space of couplings C

β(α(t)) .= − ∂

∂t
α(t), (4.13)

and where we have exploited the semigroup property of the flow and the scaling
hypothesis (4.10) (Figs. 4.6, 4.7). Since the integration is over RG t{Map(M,V n)},
we can formally extract the operator β(α(t)) ∂

∂α(t) from the functional integral, and
rewrite the relation (4.12) as (Fig. 4.8){

d
dt
+ β(α(t))

∂

∂α(t)

}
Zt[α] = 0. (4.14)

Roughly speaking (4.14) says is that if we rescale distances in M by a factor
et and at the same time we flow in the space of couplings along β for a time t,
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Averaging field 
fluctuations over
scales < t 

scale t

(M,γ)

(V,g)

Fig. 4.6 Averaging fluctuations over length scales < t

Fig. 4.7 Renormalization as a map in the space of actions

the theory we obtain looks the same as before. If the theory is, along the lines
sketched above, renormalizable by a renormalization of the couplings, many of its
properties can be desumed by the analysis of (4.13). In the framework so described,
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Fig. 4.8 The geometry of
the beta function
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the renormalization group formally appears as a natural geometrical flow on the mea-
sure space

{
Map(M,V n)× C ;Dα(t)[φt]

}
and the β-flow vector fields (4.13) play

a role analogous to the role played by the Cameron–Martin vector fields for Wiener
measure space. In particular, since {C ;D[G ]} is a measure space when endowed
with the Dα(t)[φt]-induced covariance defined by the Zamolodchikov metric Gij , (see
(4.16)), it is natural to argue whether the β-vector fields are gradient of a suitable
functional Φ(α) with respect to G : i.e., if β(α) = G (DΦ(α) ◦ v), (here DΦ(α) ◦ v
denotes the linearization of Φ(α) in the direction of the coupling perturbation v).
This is a fascinating open issue, (see e.g., [8]), deeply connected with a geometrical
understanding of the renormalization group in its role of averaging out fluctuations:
being a gradient flow would avoid recurrent behaviors like limit cycles and strange
attractors. It would also imply that any such a functional Φ(α) is monotonically non-
increasing along the flow and that the renormalization group flow is, as intuitively
expected, irreversible. A somewhat weaker form of such irreversibility is associated
with the celebrated Zamolodchikov’s c-theorem [76], which, under a unitarity con-
dition, states that for 2D QFT there exists a function c(α) which is monotonically
non-increasing along the renormalization group flow. The associated fixed points of
the RG flow are conformal field theories (CFT), corresponding to which c(α) reduces
to the corresponding central charge c.

These formal aspects of renormalization theory on the space of maps Map(M,V n)

naturally led to a coherent view of Quantum Geometry when we consider the basic
properties of the QFT associated with the harmonic map action we have been using
as our guiding example.
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4.5 The Weyl Anomaly and Liouville Action

In the analysis of 2D quantum gravity a prominent role [29, 30] is played by the
non-linear σ -model action with a dilatonic f(φ) and a tachyonic1 U (φ) coupling

Sγ [φ;α] = 1

4π l2
s

∫
M

γ μv∂μφ
i∂vφ

jgijdμγ + 1

4π l2
s

∫
M
(4π l2

s )f (φ)R(γ )dμγ

+ 1

4π l2
s

∫
M

U (φ)dμγ ,

where, for later convenience, we have introduced the string length ls :=
√

a
4π , and

the scalar curvature R(γ ) := 2K of the Riemannian surface (M, γ ), (recall that
K is the Gaussian curvature of (M, γ )). As already emphasized, this is one of the
possible deformations of the fiducial Polyakov action,

S̃γ [φ;α] := 1

4π l2
s

∫
M

[
trγ (x)(φ

∗g)
]

dμγ , (4.15)

the critical points of which are harmonic maps of the Riemann surface (M, γ ) into
(V n, g), and which is the building block of (bosonic) string theory.

The connection between (4.15) and (4.16) is multifaceted, and in order to disclose
the role of polyhedral surfaces in 2D quantum gravity we need to discuss some
elementary aspects of such a connection. According to (4.5), the partition function
over Map(M,V n) associated with (4.15) is provided by

Z
[
γ ;α] := ∫

{Map(M,V n)}
Dα[φ] e−S̃γ [φ;α]. (4.16)

String theory2 extends this QFT picture by promoting also the two-dimensional
metric γ over the surface M to a dynamical field, and the quantization of the action
(4.15) is characterized by the functional integration of Z

[
γ ;α] over the space of

Riemannian structures Met(M)/D iff (M) associated with a surface Mg of given
genus3 g, and then by summing over all topologies i.e.,

Z [α] :=
∞∑

g=0

∫
Met(Mg)/D iff (Mg)

D[M/D]g Z
[
γ ;α] , (4.17)

1 The concept of tachyon is slightly misleading in non-critical string theory, where low dimensions
are sampled and the usual instability associated with tachyons in critical strings is not present. For
details see vol. I, Chap. 9 of [61].
2 For the elementary notion of string theory we shall exploit we refer freely to the excellent
presentation in [41, 43] and [61].
3 There are clearly too many g’s around, however no confusion should arise since it will be always
clear from the context when we are dealing with the genus g of the surface M or with the running
metric g of the target manifold V n.
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where we have denoted by D[M/D]g a formal measure on Met(Mg)/D iff (Mg).

The starting point for discussing the basic (perturbative) properties of (4.17),
at least at fixed surface genus g, is the observation that the space of Riemannian
metrics Met(M) on a 2-dimensional Riemannian manifold M, (working at fixed
genus we drop the suffix g from notation), can be decomposed by means of a local
slice for the action of the group of confeomorphisms W (M) � D iff (M), where
W (M) := C∞(M,R+) denotes the group of Weyl rescalings over M, and � denotes
the semidirect product. In particular, for u ∈ C∞(M,R), there is a natural projection
map

π : W (M) � D iff (M) → C O γ̂

(eu, φ) �−→ π(eu, φ) := e2u(φ∗γ̂ ),
(4.18)

where C O γ̂ is the W (M) � D iff (M)-orbit in Met(M) of a given metric γ̂ ∈
Met (M), and φ∗γ̂ is the pull-back of γ̂ under φ ∈ D iff (M). Note that

u ∈ C∞(M,R) := w(M), (4.19)

can be interpreted as an element of the Lie algebra w(M) of W(M).
Let us also recall that the tangent space T(M,γ )Met(M) to Met(M) at (M, γ )

is isomorphic to the space of (smooth) symmetric bilinear forms C∞(M,⊗2T∗M)

over M, endowed with the pre-Hilbertian L2 inner product

(U ,V )L2(M,dμγ )
.=
∫

M
〈U ,V 〉γ dμγ , (4.20)

where 〈U ,V 〉γ is the pointwise γ -metric in ⊗2T∗M .

From (4.18) it follows that T(M,γ )C O γ̂ , the tangent space to the orbit C Oγ ,

is the image of the injective operator with closed range

P1 : C∞(M,TM) → C∞(M,⊗2T∗M)

w �→ P1(w)
.= £wγ,

(4.21)

where £w denotes the conformal Lie derivative along the vector field w

(£wγ )ab := ∇awb +∇bwa − ∇cwc. (4.22)

Standard elliptic theory implies that the L2(M, dμγ )-orthogonal subspace to
Im P1 in T(M,γ )Met(M), is spanned by the kernel4 of the L2 adjoint P†

1 of P1,

P†
1 : C∞(M,⊗2T∗M) → C∞(M,T∗M)

h �→ P†
1h .= −2γ ij∇ihjkdxk .

(4.23)

4 According to Riemann–Roch theorem dim KerP1−dim KerP†
1 = 6−6g. Since dim Ker P1 =

6 for the sphere,= 2 for the torus,= 0 for surfaces with g ≥ 2, it follows that in the case of surfaces
dim KerP†

1 is finite-dimensional, and is given by = 0, 2, 6g − 6 when g = 0, 1,≥2, respectively.
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This entails the well-known Berger–Ebin L2(M, dμγ )-orthogonal splitting
[9, 23] of the tangent space T(M,γ )Met(Σ),

T(M,γ )Met(M) ∼=
[
T(M,γ )Met(M) ∩ KerP†

1

]
⊕ ImP1

[
C∞(M,TM)

]
⊕ Im trγ

[
C∞(M,⊗2T∗M)

]
, (4.24)

according to which, for any given 2-tensor h ∈ T(M,γ )Met(M), we can write

hab = hTT
ab + £wγab +

(
trγ h
)
γab, (4.25)

where hTT
ab denotes the div-free and trace-free part of h, (∇ahT

ab = 0, trγ hTT = 0),
and where the vector field w is characterized as the solution, (unique up to the
conformal Killing vector fields of (M, γ )), of the elliptic PDE P†

1P1w = P†
1h.

For a given γ ∈ Met(M), tensor fields hTT
ab ∈ T(M,γ )Met(M) parametrize non-

trivial infinitesimal deformations of the conformal class [γ ], whereas £wγab provide
deformations tangent to the D iff (M) � W (M)-orbit through [γ ].

If we identify Met(M)
D iff (M)�W (M)

with the moduli space Mg(M) of genus g Riemann
surfaces, then the above properties of the action of W (M)� D iff (M) on Met(M)

allow to parametrize locally a generic metric γ ∈ Met(M) by means of a diffeo-
morphism ψ ∈ D iff (M), a Weyl rescaling f := e2u ∈ W (M), and 3g−3 complex
parameters {μκ} varying in Mg(M), i.e.,

℘ : Mg × (W (M) � D iff (M)) → Met(M)

(γ̂αβ(μκ), e2u, ψ) �−→ ℘(γ̂αβ(μκ), e2u, ψ)
.= γαβ = e2u (ψ∗γ̂ (μκ)

)
αβ

,
(4.26)

where γ̂αβ(μκ) are the components of the reference metric on the surface M whose
conformal class defines the point {μκ } in Mg we are considering, (e.g., a constant
curvature metric). Moreover, if D[γ ] denotes a formal measure on Met(M) then,
its pull-back on Mg(M) × D iff (M) × W (M) under the slice map (4.26) can be
expressed5 as [16, 17]

℘∗ (D[γ ]) =
[
det′
(

P†
1P1

)] 1
2

γ=e2u(ψ∗γ̂ (μκ ))
dωWP [μk] Dγ̂ [u] D [ψ] , (4.27)

where dωWP [μk] denotes the Weil-Petersson measure on the Riemann moduli space
Mg(M), whereas D[ψ] and Dγ̂ [u] denote formal functional measure over (the tan-
gent spaces to) D iff (M) and W(M), respectively. The Jacobian of the slice map

(4.26), (the Faddev–Popov determinant), is represented in (4.27) by det′
(

P†
1P1

)
,

the ζ -regularized determinant, (restricted to the non-zero modes), of the elliptic oper-
ator

5 We are restricting for simplicity to the case of surface genus g ≥ 2. In the case g = 0, 1,
(4.27) acquires finite-dimensional determinants related to the presence of conformal Killing vectors.
A careful analysis of the whole subject is presented in [16, 17].



4.5 The Weyl Anomaly and Liouville Action 129

P†
1P1 : C∞(M,TM) −→ C∞(M,TM)

wa �−→ (P†
1P1)

b
awa = −2∇a

(
∇awb +∇bwa − γ ab∇cwc

)
,

(4.28)

acting on vector fields.

The determinant det′
(

P†
1P1

)
does not transform equivariantly under the confor-

mal rescaling γ̂ �→ e2u(ψ∗γ̂ (μκ)), and we have [6, 16, 17][
det′
(

P†
1P1

)] 1
2

γ=e2u(ψ∗γ̂ (μκ ))
dωWP [μk] Dγ̂ [u] D [ψ]

=
[
det′
(

P†
1P1

)] 1
2

γ̂ (μκ ))
e−26SL(γ̂ ,u)dωWP [μk] Dγ̂ [u] D [ψ] , (4.29)

where

SL(γ̂ , u) = 1

48π

∫
M

dμγ̂

[
1

2
γ̂ μv∂μu∂vu + R(γ̂ )u

]
+ Γ 2

0

∫
M

dμγ̂ eβu, (4.30)

is the Liouville action6 (the parameters Γ0 and β associated with the potential term
eβu depend upon the procedure used for regularizing the functional measure (4.29)).
We also have [17][

det′Δ
A(M)

] 1
2

γ=e2u(ψ∗γ̂ (μκ ))

=
[

det′Δ
A(M)

] 1
2

γ̂ (μκ ))

e−SL(γ̂ ,u), (4.31)

where Δ and A(M) respectively are the scalar Laplacian and the area of the surface
M, (in the corresponding metrics γ and γ̂ ). If we assume that the target manifold V n

is flat, then these results, together with the standard characterization7 of the Gaussian
measure Dα[φ] over {Map(M,V n) [16, 62]∫

{Map(M,V n)}
Dα[φ] e−S̃γ [φ;α] :=

[
det′Δγ

Aγ (M)

]− n
2

, (4.32)

provide the celebrated relation

Z[γ ;α]
[
det′
(

P†
1P1

)] 1
2

γ
dωWP Dγ [u] Dγ [ψ]

∣∣∣∣
γ=e2u(ψ∗γ̂ )

=
[

det′Δ
A(M)

]− n
2

γ̂

[
det′
(

P†
1P1

)] 1
2

γ̂
e−(26−n)SL(γ̂ ,u)dωWP Dγ̂ [u] Dγ̂ [ψ] , (4.33)

which, for bosonic matter {φ}with central charge cφ = n = 26 allows the decoupling
of the Liouville field u from the path-integration, a property which characterizes
critical (bosonic) string theory.

6 SL(γ̂ , u) is actually the difference of the Liouville actions SL(ϕ) and SL(ϕ + u) respectively
associated with the conformal metrics γ̂ = eϕ |dz|2 andγ = eϕ+u|dz|2.The explicit characterization
of SL(ϕ) is very delicate since eϕ is not a function but the (1, 1) component of the metric tensor. A
thorough analysis of the subject, with the relevant references, is discussed in [69].
7 For notational ease, we have chosen units for the fields φk such that 1

4π l2
s
= 1.
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4.6 Non-critical Strings and 2D Quantum Gravity

In 2D quantum gravity we are interested in keeping track of the Liouville mode
since it describes the interaction of the conformal matter fields {φk}nk=1 with two-
dimensional gravity. According to the remarks of the previous section, this interaction
is formally described by the partition function∫

Mg(M)

dωWP

[
det′Δ
A(M)

]− n
2

γ̂

[
det′
(

P†
1P1

)] 1
2

γ̂

∫
W (M)

e−(26−n)SL(γ̂ ,u)Dγ̂ [u] ,

(4.34)
where we have dropped the inessential integration over Dγ̂ [ψ] , (i.e., we have
factored out the (∞) volume of the diffeomorphism group D iff (M)). Note that
formally (4.34) will be dominated by the classical configurations extremizing the
Liouville action SL(γ̂ , u)when the central charge cφ = n of the matter fields {φk}nk=1
tends to −∞. The whole subject of classical versus quantum Liouville theory
is nicely discussed, with many illustrative examples, in the remarkable set of lectures
[77]. Here, we stress those basic aspects which directly relate to the role of polyhedral
surfaces in 2D quantum gravity.

The starting point of quantum Liouville theory is the observation that off criticality,
(i.e., for cφ = n �= 26), we need to look more carefully into the structure of the
measure Dγ [u] over the Liouville mode in (4.34). Formally, given a fiducial metric
γ̂ , the measure Dγ=e2u(ψ∗γ̂ ) [u] at u ∈ W (M) is associated with the eu-weighted
L2-inner product

(f , h)L2(M,eudμγ̂ )
:=
∫

M
fheudμγ̂ =

∫
M

fh dμγ , f , h ∈ TuW (M), (4.35)

induced on TuW (M) by the L2(M, dμγ ) pairing (4.20). It is notoriously difficult
[18] to use the measure Dγ=e2u(ψ∗γ̂ ) [u] for generating the Feynman rules of the
(quantum) Liouville theory defined by (4.33), a consequence of the fact that the
inner product (f , h)L2(M,eudμγ̂ )

is not invariant under the translations

u �−→ ũ := u(x)− w(x), (4.36)

in the Lie algebra w(M), where w(x) is an arbitrary given8 function ∈ C∞(M,R).

To introduce a more manageable measure, let us consider the (exponential) mapping
from the Lie algebra w(M) to the group W(M),

πu : w(M) −→ W (M)

u �−→ eu,
(4.37)

and notice that the inner product (f , h)L2(M,eudμγ̂ )
, on the tangent space Teu W (M)

at eu, pulls-back under such a map to the inner product on w(M), (identified as the
tangent space T1W (M) at the identity eu = 1), defined by

8 However, (4.35) is invariant under the combined action of the above translation and of the
conformal rescaling γ̂ �→ γ̂ e2w(x).
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π∗
u [(f , h)L2(M,eudμγ̂ )

] =
∫

M
fhdμγ̂ := (f , h)L2(M,dμγ̂ )

. (4.38)

Let us denote by D̃γ̂ [u] the Gaussian measure over w(M) associated with this
latter pairing. Then, the pull-back, under the map (4.37), of the measure space(
W (M),Dγ=e2u(ψ∗γ̂ ) [u]

)
to the measure space

(
w(M) � C∞(M,R), D̃γ̂ [u]

)
,

is characterized by a functional Jacobian,

π∗
u
(
Dγ=e2u(ψ∗γ̂ ) [u]

) = |Jac(πu)| D̃γ̂ [u] . (4.39)

which, as argued at various level of mathematical rigor [13, 18, 20], is provided by
a (renormalized) Liouville-type action of the form

S(ren)
L (γ̂ , u) �−→ 1

4π

∫
M

dμγ̂

[
γ̂ μv∂μu∂vu+QR(γ̂ )u

] +Γ 2
∫

M
dμγ̂ e2bu,

(4.40)
in term of parameters Q and b to be determined by requiring that the theory is
independent from the (arbitrary) choice of the background metric γ̂ within a given
conformal class.9

The (formal) measure space
(
w(M), e−S(ren)

L (γ̂ ,u)D̃γ̂ [u]
)

is the one typically

used for discussing quantum Liouville theory, and we can rewrite the factorization
of the measure in non-critical string theory, (see (4.33)), as

dωWP

[
det′Δ
A(M)

]− n
2

γ̂

[
det′
(

P†
1P1

)] 1
2

γ̂
e−S(ren)

L (γ̂ ,u)D̃γ̂ [u] . (4.41)

To make sense of the modular integration in (4.41) we need to enforce in (4.41) the
independence from the choice of a background metric γ̂ , (within a given conformal
class). To this end let us consider the mapping

π̃ξ : w(M)×Met(M) −→ w(M)×Met(M)

(̃u, γ̃μv) �−→
(

u = ũ − Q
2
ξ, γ̂μv = eξ γ̃μv

)
, (4.42)

where γ̃μv is a new reference metric, ξ ∈ C∞(M,R) is a smooth conformal fac-
tor, and ũ the ξ -translated u field in w(M). As we shall see momentarily, it is
straightforward to analyze the behavior of S(ren)

L (γ̂ , u)) under the combined trans-
formation (4.42). The only delicate term in (4.40) is represented by

∫
M dμγ̂ e2bu.

Indeed, the exponential of a (path-integrated) field, e2bu, requires a regularization
which is metric-dependent and, on the reference (M, γ̂ ), one should write e2bu more
explicitly as [

e2bu
]
γ̂
, (4.43)

9 A fully rigorous derivation of (4.40) is still an open mathematical problem.
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with [
e2bu
]

eξ γ̃
= eb2ξ

[
e2bu
]
γ̃
, (4.44)

(see e.g., [77]). Thus, under the action of (4.42) we have that∫
M

dμγ̂

[
e2bu
]
γ̂
=
∫

M
dμγ̃ e

(
b2−bQ+1

) [
e2b̃u
]
γ̃
, (4.45)

and
[
e2bu
]
γ̂

is a (1, 1) tensor, (i.e., has conformal weight 1), iff

b2 − bQ + 1 = 0, ⇒ Q = b + b−1. (4.46)

By exploiting this latter constraint, the relation

R(γ̂ )dμγ̂ =
(
R(γ̃ )− Δ̃ξ

)
dμγ̃ , (4.47)

and the integration by parts formula∫
M

uΔ̃ξdμγ̃ = −
∫

M
γ̃ μv∂μu∂vξdμγ̃ , (4.48)

where Δ̃ denotes the Laplacian on (M, γ̃ ), it is straightforward to verify that under
the combined transformation (4.42) we can write

S(ren)
L (γ̂ , u)) = S(ren)

L (γ̃ , ũ))− 6Q2

48π

∫
M

dμγ̃

[
1

2
γ̃ μv∂μξ∂vξ + R(γ̃ )ξ

]
. (4.49)

The structure of the Liouville action (4.30) suggests to add and subtract to this
expression the quantity

Γ0

∫
M

dμγ̃

[
e2b̃u
]
γ̃
, (4.50)

so that, if we shift the parameter Γ in (4.40) according to

Γ �−→ Γ − Γ0, (4.51)

we can rewrite (4.49) as

S(ren)
L (γ̂ , u)) = S(ren)

L (γ̃ , ũ))− 6Q2SL(γ̃ , ũ). (4.52)

Moreover, since the measure D̃γ̂ [u] is formally invariant under the translation

u = ũ − Q
2 ξ in w(M), its pull-back under π̃ξ is provided by

π̃∗ξ
(
D̃γ̂ [u]
) = eSL(γ̃ ,̃u) D̃γ̃ [̃u] , (4.53)
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with the usual Jacobian, associated with the conformal anomaly of a free-field theory,
provided by the Liouville action SL(γ̃ , ũ). Thus, we eventually get10

e
−π̃∗ξ
(

S(ren)
L (γ̂ ,u)

)
π̃∗
ξ

(
D̃γ̂ [u]
) = e(1+6Q2)SL(γ̃ ,̃u)e−S(ren)

L (γ̃ ,̃u)D̃γ̃ [̃u] , (4.54)

and the pull-back of the full measure (4.41) under the mapping π̃ξ is provided by

π̃∗
ξ

(
dωWP

[
det′Δ
A(M)

]− n
2

γ̂

[
det′
(

P†
1P1

)] 1
2

γ̂
e−S(ren)

L (γ̂ ,u)D̃γ̂ [u]

)

= dωWP

[
det′Δ
A(M)

]− n
2

γ̃

[
det′
(

P†
1P1

)] 1
2

γ̃
e[(1+6Q2)−(26−n)]SL(γ̃ ,̃u)e−S(ren)

L (γ̃ ,̃u)D̃γ̃ [̃u] ,

(4.55)
where, (in transforming γ̂ to γ̃ ), we have exploited the corresponding conformal
anomaly formula (4.33).

From (4.55) it immediately follows that the functional measure describing (quan-
tum) Liouville theory is independent from the choice of the background metric γ̂ iff
[(1 + 6Q2)− (26 − n)] = 0, i.e., if the parameter Q takes the value

Q =
√

25 − n
6

. (4.56)

Introducing this expression in (4.46) also yields the corresponding value(s) for b

b± =
√

25 − n
24

±
√

1 − n
24

. (4.57)

In order that the semiclassical limit holds,11 we have to select the − sign in (4.57)

b :=
√

25 − n
24

−
√

1 − n
24

, (4.58)

(we also have the reality condition restricting cφ = n < 1, however, for reasons that
will be clear momentarily, we do not stress this restriction describing the minimal
gravity realization of quantum Liouville theory [77]). Thus, we eventually get for
(4.40) the expression

S(ren)
L (γ̂ , u) = 1

4π l2
s

∫
M

dμγ̂

[
γ̂ μv∂μ(uls)∂v(uls)+ ls

√
25 − n

6
R(γ̂ )(uls)

]

+ T0

l2
s

∫
M

dμγ̂ e2l−1
s b(uls),

(4.59)
where b is given by (4.58), and where we have reintroduced the string length ls, and
set Γ 2 := T0

l2
s

for later convenience.

10 This shows that S(ren)
L (γ, u) characterizes a conformal field theory with central charge cu =

1 + 6Q2, [41, 43, 57].
11 We remind the reader that formally the classical limit corresponds to n ↘ −∞, see the
comments to the expression of the partition function (4.34).
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4.7 A Spacetime Interpretation of the Liouville Mode

The structure of the action (4.60), with the presence of a kinetic term, suggests an
intriguing interpretation of the role of the Liouville mode [12]. The idea is to promote
the Liouville field u to an extra spacetime variable φn+ 1 by setting

φn+ 1 := ls

√(
25 − n

6

)
u, (4.60)

so as to rewrite the Liouville action as

S(ren)
L (γ̂ , u) = 1

4π l2
s

∫
M

γ̂ μv
[

6

25 − n
∂μφ

n+ 1∂vφ
n+ 1
]

dμγ̂

+ 1

4π

∫
M

lsφn+ 1R(γ̂ )dμγ̂ + T0

l2
s

∫
M

e2b
√

6
25−n l−1

s φn+ 1

dμγ̂ .

(4.61)
At this point, let us make a step back, and consider the path integral∫

{w(M)}

∫
{Map(M,V n)}

D̃γ̂ [u] Dα[φ] e−S̃γ̂ [φ;α]−S(ren)
L (γ̂ ,u). (4.62)

Note that if, according to (4.60), we identify u with φn+ 1 and introduce on V n+ 1 �
V n × R the product metric

gabdφa ⊗ dφb := gijdφi ⊗ dφj + 6

25 − n
dφn+ 1 ⊗ dφn+ 1, (4.63)

with a, b = 1, . . . , n + 1, then we can write

S̃γ̂ [φ;α] + S(ren)
L (γ̂ , u) = Sγ̂ [φ; f (φ),U (φ)]

:= 1

4π l2
s

∫
M

γ̂ μv
[
∂μφ

a∂vφ
bgab

]
dμγ̂ +

∫
M

f (φ)R(γ̂ )dμγ̂

+ 1

4π l2
s

∫
M

4πT0 exp

[
4π

√
6

25 − n

(√
25 − n

6
−
√

1 − n
6

)
f (φ)

]
dμγ̂ ,

(4.64)
where we have introduced the linear dilaton field

f (φ) := ls
4π

φn+ 1, (4.65)

and where

U (φ) = 4πT0 exp

[
4π

√
6

25 − n

(√
25 − n

6
−
√

1 − n
6

)
f (φ)

]
(4.66)
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plays the role of a tachyonic field, (screening the strong coupling f ↗ ∞ linear
dilaton regime12). Thus, Sγ̂ [φ; f (φ),U (φ)] formally has the structure of a non-
linear σ -model action in a flat V n+ 1 � V n × R with a linear dilatonic coupling
in the n + 1-direction, (see (4.15)), and a tachyonic term. To show that this formal
structure is dynamical, let us remark that since w(M) = C∞(M,R),we can identify
Map(M,V n) × w(M) � Map(M,V n+ 1 := V n × R). Thus, under the natural
projection

π : Map(M,V n+ 1 � V n × R) −→ Map(M,V n)×w(M)

{φa}n+ 1
a= 1 �−→

(
φk, φn+ 1 = ls

√(
25 − n

6

)
u

)
,

(4.67)

we can formally pull back the product measure D̃γ̂ [u] Dα[φ] to a measure over
Map(M,V n+ 1 := V n × R),

D(n+ 1)
α [φ] := π∗ (D̃γ̂ [u] Dα[φ]

)
, (4.68)

so as to get ∫
{w(M)}

∫
{Map(M,V n)}

D̃γ̂ [u] Dα[φ] e−S̃γ̂ [φ;α]−S(ren)
L (γ̂ ,u)

=
∫
{Map(M,V n+ 1)}

Dα[φ] e−Sγ̂ [φ;f (φ),U (φ)], (4.69)

where now the measure Dα[φ] runs over the map space Map(M,V n+ 1). Thus,
even if the original Liouville field theory does not decouple from the matter fields
{φk}nk=1, its properties can be exploited to generate an extra space dimension13

which characterizes a CFT with central charge c[{φa}n+ 1
a= 1] = 26, compensating

the D iff (M) central charge cψ = −26 and yielding for an effective anomaly free
theory. The price one has to pay, for such an effective field theory extension, is the
presence of the linear dilaton f (φ), (whose presence can make the theory unreliable
as f → ∞), and of the attendant (screening) tachyonic field U (φ). Eventually, we
can write the partition function (4.34) describing quantum Liouville theory as∫

Mg(M)

dωWP

[
det′Δ
A(M)

]− n
2

γ̂

[
det′
(

P†
1P1

)] 1
2

γ̂

∫
W (M)

e−(26−n)SL(γ̂ ,u)Dγ̂ [u] ,

=
∫

Mg(M)

dωWP

[
det′
(

P†
1P1

)] 1
2

γ̂

∫
{Map(M,V n+ 1)}

Dα[φ] e−Sγ̂ [φ;f (φ),U (φ)].

(4.70)

12 When φn+ 1 ↗ ∞ and U (φ) is real, (n ≤ 1), the term exp U (φ) dominates the action
Sγ̂ [φ; f (φ),U (φ)] which then becomes large and positive, suppressing, in the path integral over
Map(M,V n+ 1), the configurations for which φn+ 1 ↗∞.
13 The extra dimension is actually time-like if n > 26.
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4.8 A Renormalization Group Perspective

As anticipated in Sect. 4.5, the quantum Liouville action (4.64) formally has the
structure of the σ -model action (4.15), (around a flat spacetime). Thus, it is worth-
while to briefly discuss the properties of Sγ̂ [φ; f (φ),U (φ)] from a renormalization
group point of view, in particular not assuming a priori the flatness of the target
V n+ 1 manifold, and thus endowing it with a non-trivial (n + 1)-dimensional metric
l−2
s g(φ(x)), i.e., in place of (4.64) we shall consider the action

Sγ̂ [φ; g(φ), f (φ),U (φ)]
:= 1

4π l2
s

∫
M

γ̂ μv
[
∂μφ

a∂vφ
bgab(φ)

]
dμγ̂ +

∫
M

f (φ)R(γ̂ )dμγ̂

+ 1

4π l2
s

∫
M

4π T0 exp

[
4π

√
6

25 − n

(√
25 − n

6
−
√

1 − n
6

)
f (φ)

]
dμγ̂ ,

(4.71)
where g(φ) is no longer given by the flat product metric (4.63). Under such an
assumption, both the metric l−2

s g(φ(x)) of the target manifold (V n+ 1, g), the dila-
ton field f (x) = (ls \ 4π)φn+ 1, and the tachyonic field U (φ), (see (4.66)), play the
role of the couplings, at the given point x ∈ M, for the fields {φa(x)}n+ 1

a= 1 of the
theory. Note that the space C of such local couplings can be identified with
the infinite-dimensional stratified manifold

C = Met(V n+ 1)

D iff (V n+ 1)× R+
× C∞(V n+ 1,R)× C∞(V n+ 1,R+), (4.72)

whereMet(V n+ 1)denotes the cone of Riemannian metrics over V n+ 1,D iff (V n+ 1)

is the group of diffeomorphisms of V n+ 1, R+ denotes the group of constant rescal-
ings defined by ls �→ λls, for λ a positive number, and where C∞(V n+ 1,R) and
C∞(V n+ 1,R+) parametrizes the dilaton and the tachyonic couplings, respectively.

If we introduce a non-trivial metric g in V n+ 1, then the ratio of the length scale
of the target space metric gab (i.e., its squared radius of curvature r2

curv) to the string
length squared l2

s , provides a useful dimensionless parameter in terms of which we
may consider a point-like limit of the theory, where the size of the surface (M, γ ) is
much smaller than the physical length scale of (V n+ 1, gab). This implies that when
curvature of target Riemannian manifold (V n+ 1, g) is small as seen by the immersed
surface M, the measure Dg[φ]e−S[φ;α] is concentrated around the minima of the
fiducial (harmonic map) action S̃γ̂ [φ;α] associated with Sγ̂ [φ; g(φ), f (φ),U (φ)],
i.e., the constant maps x → φ(x) = φ0, and we can control the nearly Gaussian
fluctuations δφ about φ0.

Under these hypotheses, the renormalization group analysis of an action of the
form (4.64), (see e.g., [31, 64, 70, 71]), gives rise to a perturbative β-flow for the
coupling fields α = 1

4π l2
s
(g, 4π l2

s f ,U ). If for the sake of simplicity we work at

T0 = 0, (i.e., we discard the tachyonic coupling U), then the beta-flows for the pair
(g, 4π l2

s f ) read, at leading order,
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∂

∂τ
gik(τ ) = 8π l2

s (Rik(τ )+ 2∇i∇kf (τ ))+ O((4π l2
s )

2), (4.73)

∂

∂τ
f (τ ) = cφ

6
− 8π l2

s

(
1

2
Δf (τ )− |∇f (τ )|2

)
+ O((4π l2

s )
2), (4.74)

where, in our case

cφ = dim V n+ 1 − 26 = n − 25. (4.75)

The structure of the beta functions shows that, whereas the quantum
Liouville action (4.64) is not conformally invariant for a generic spacetime man-
ifold (V n+ 1, g), the pertubative QFT it defines over the space Map(M,V n+ 1), is
conformally invariant as long as we choose the metric g and the dilaton f couplings
so that the corresponding β-functions, defined by the right members of (4.73) and
(4.74), vanish at the given perturbative order. Explicitly, this provides the conditions

8π l2
s (Rik(τ )+ 2∇i∇kf (τ ))+ O((4π l2

s )
2) = 0, (4.76)

and

−c0

6
+ 8π l2

s

(
1

2
Δf (τ )− |∇f (τ )|2

)
+ O((4π l2

s )
2) = 0, (4.77)

which formally have the structure of equations of motion for the coupling fields
(gab, f ). As is well-known, this latter interpretation takes shape in the fact that (4.76)
and (4.77) can be also obtained as extremals of the effective action functional on
(V n+ 1, g, f ) given by

Fc0 [g(τ ), f̂ (τ )] :=
∫

V n+ 1

[
8π l2

s

(
R(g)+ |∇ f̂ |2

)
− cφ

6

]
e−f̂ dμg, (4.78)

where we have set f̂ (τ ) := 2f (τ ). This follows explicitly by considering the
τ -dependent linearization

DFc0 [g(τ ); f̂ (τ )] ◦
(
ψab(τ ), φ(τ)

)
, (4.79)

of Fc0 in the direction of an arbitrary variation of the fiducial RG flow of the couplings
τ �→ (gab(τ ), f̂ (τ )), i.e.,

gab
(ε)(τ ) := gab(τ )+ εψab(τ ), gab

(ε)(τ ) ∈ Met(V n+ 1), ∀ε ∈ [0, 1], (4.80)

and

f̂(ε)(τ ) := f̂ (τ )+ εφ(τ). (4.81)
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Fig. 4.9 The parameter a = 4π l2
s and the curvature of |Riem(g)| set the scale at which (M, γ̂ )

probes the ambient manifold (V n+ 1, g)

A lengthy but otherwise standard computation, (see e.g., [11], Lemma 5.3), provides

DFc0 [g(τ ); f̂ (τ )] ◦
(
ψab(τ ), φ(τ)

)
:= d

dε
Fc0 [g(ε)(τ ); f̂(ε)(τ )]

∣∣∣∣
ε=0

= −8π l2
s

∫
Σ

ψab(τ )
(
Rab(τ )+∇a∇bf̂ (τ )

)
e−f̂ (τ )dμg(τ )

+ 8π l2
s

∫
Σ

(
Ψ (τ)

2
− φ(τ)

)(
2�f̂ (τ )− |∇ f̂ (τ )|2 +R(τ )

)
e−f̂ (τ )dμg(τ )

− c0

6

∫
Σ

(
Ψ (τ)

2
− φ(τ)

)
e−f̂ (τ )dμg(τ )

where we have set Ψ (τ) := ψab(τ )gab(τ ). It is readily checked that the lineariza-
tion DFc0 [g(τ ); f̂ (τ )] ◦ (ψab(τ ), φ(τ)

)
indeed vanishes, for arbitray variations(

ψab(τ ), φ(τ)
)
, when (4.76) and (4.77) hold at the leading order in 4π l2

s (Figs. 4.9,
4.10).

Since the effective action (4.78) governs the low energy limit of the couplings
(gab(τ ), f̂ (τ )) as spacetime fields obeying Einstein type equations,14 the renormal-

14 The effective action (4.78) is written in the so called string frame. By a conformal transformation
it is possible to move to the Einstein frame where (4.78) takes a manifest Einstein–Hilbert structure;
see e.g., [43, 57] for details. The picture becomes more complex with the presence of the tachyonic
coupling U (φ), and in general the implementation of conformal invariance just at leading order is
not believed to be sufficient for a reliable effective field theory description.
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Fig. 4.10 The point-like limit: nearly Gaussian fluctuations near constant maps

ization group analysis just sketched shows that a spacetime interpretation of the
Liouville field goes much deeper than a formal rewriting of the action (4.64), bring-
ing in some of the key features of the dynamics of spacetime physics. In particular,
since quantum Liouville field theory governed by (4.64) appears as a weak-coupling
(conformally invariant) fixed point of the renormalization group of the action (4.71),
a natural question concerns the existence of other (possibly, strong coupling) fixed
points and of a renormalization group interpolation among such field configurations.
Connected with this problem are the sample properties of the quantum Liouville
field: how do the fields φa probe the spacetime geometry of the manifold V n+ 1? To
appreciate the nature of the issue under discussion is perhaps worthwhile making a
parallel with diffusive motion by using brownian paths, where free motion distance
is proportional to the square root of time, (rather than to time, as in ballistic motion).
Thus, free diffusive motion, as described by Wiener measure, is rather inefficient
in sampling space15 (however, this is an inefficiency which pays off in the long
run, since what is lost in distance is regained in a better control, via diffusion, of the
ambient geometry!). Similarly, the quantum Liouville measure associated with (4.64)
describes a sort of diffusive motion of a random surface around a point ∈ V n+ 1,

(this point can be identified with the background field φa
(0) associated with the con-

stant map dominating the path integral in the weak coupling regime). To what an

15 This remark on diffusive motion is nicely stressed and discussed by Faris in [28].
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extent this diffusion process is an efficient sampling16 of V n+ 1 naturally brings to
the fore the Knizhnik–Polyakov–Zamolodchikov susceptibility exponents related to
the quantum Liouville action (4.64).

4.9 KPZ Scaling

In order to discuss the standard Liouville field theory derivation of the KPZ suscep-
tibility, it is convenient to redefine the dilatonic field f (φ) according to

f (φ) �−→ f ′(φ) := 4π

√
6

25 − n
f (φ) =

√
6

25 − n
lsφn+ 1, (4.82)

and (4.64) as

Sγ̂ [φ; f ′(φ),T0]
:= 1

4π l2
s

∫
M

γ̂ μv
[
∂μφ

a∂vφ
bgab

]
dμγ̂ + Q

4π

∫
M

f ′(φ)R(γ̂ )dμγ̂

+ T0

l2
s

∫
M

exp

[(√
25 − n

6
−
√

1 − n
6

)
f ′(φ)
]

dμγ̂ , (4.83)

where Q =
√

25−n
6 . With these notational remarks along the way, if we consider the

fixed-area partition function at given genus g

Zg[A] :=
∫
Mg(M)

dωWP

∫
Map(M,V n+ 1)

Dα[φ]e−Sγ̂ [φ;f ′,T0]

δ

(
A −
∫

M
exp

[(√
25 − n

6
−
√

1 − n
6

)
f ′
]

dμγ̂

)
,

(4.84)

associated with (4.83), where δ(. . .) denotes the Dirac function, then we get
[13, 20, 44] the relation

Zg[A] = Zg[1]A (1−g)
12 [n−25−√(25−n)(1−n)]−1, (4.85)

characterizing the scaling, with surface area A, of Zg[A]. This is a particular case
of the celebrated Knizhnik–Polyakov–Zamolodchikov (KPZ) relations, [13, 20, 44],
and it is considered a characteristic signature of the interaction between matter and 2D
quantum gravity. In particular, if we define the associated susceptibility17 exponent
ΓKPZ via the asymptotic relation

16 One can well argue that such a sampling process characterizes V n+ 1 in a neighborhood of the
given point.
17 Our definition of ΓKPZ is concocted in such a way to explicitly keep track of the genus g.
Another standard definition of the string susceptibility exponent Γstring is via the asymptotic scaling
Zg[A] ∼ A(Γstring−2)(1−g)−1.The two critical exponents are related byΓstring = (ΓKPZ−2g)/(1−g).
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Zg[A] ∼A>>1 AΓKPZ−3, (4.86)

then we get

ΓKPZ = (1 − g)
12

(
n − 25 −√(25 − n)(1 − n)

)
+ 2. (4.87)

A heuristic derivation of (4.85) is elementary, in sharp contrast with the difficulties
in providing both a mathematical characterization of KPZ scaling, not to mention its
rigorous proof. As for the heuristics, let us consider the one-parameter (ε) family of
constant shifts in the fields {φa}n+ 1

a= 1 defined by

φa �−→ φa
ε := φa + εlsQ

(√
25 − n

6
−
√

1 − n
6

)−1

, 0 ≤ ε ≤ ln A. (4.88)

Note that this induces a corresponding shift in the dilatonic field f ′(φ) given by

f ′ �−→ fε := f ′ + ε

(√
25 − n

6
−
√

1 − n
6

)−1

, 0 ≤ ε ≤ ln A. (4.89)

Under the action of (4.88), we immediately compute

Sγ̂ (φ, fε;T0) = Sγ̂ (φ, f ′; eεT0)+ εQ

(√
25 − n

6
−
√

1 − n
6

)−1

χ(M), (4.90)

where we have exploited the Gauss–Bonnet theorem
∫

M dμγ̂ R(γ̂ ) = 4πχ(M).

Similarly, we compute

δ

(
A −
∫

M
exp

[(√
25 − n

6
−
√

1 − n
6

)
fε

]
dμγ̂

)

= e−εδ

(
e−εA −

∫
M

exp

[(√
25 − n

6
−
√

1 − n
6

)
f ′
]

dμγ̂

)
, (4.91)

which follows from δ(ax) = |a|−1δ(x). Since the formal path measure D[φ] over
Map(M,V n+ 1) in (4.84) is invariant under a shift, the above trasformation laws
imply that

Zg[Aε] :=
∫
Mg(M)

dωWP

∫
Map(M,V n+ 1)

D[φ]e−Sγ̂ (φ,fε;T0)

δ

(
A −
∫

M
exp

[(√
25 − n

6
−
√

1 − n
6

)
fε

]
dμγ̂

)
,

= e
−ε

(
Q
(√

25−n
6 −
√

1−n
6

)−1

χ(M)+1

)
Zg[e−εA], (4.92)
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where we have set

Zg[e−εA] :=
∫
Mg(M)

dωWP

∫
Map(M,V n+ 1)

D[φ]e−Sγ̂ (φ,f
′;eεT0)

δ

(
e−εA −

∫
M

exp

[(√
25 − n

6
−
√

1 − n
6

)
f ′
]

dμγ̂

)
.

(4.93)

Since we are considering the constant shift (4.89) at a fixed area, we have Zg[Aε] =
Zg[A], and (4.93) implies the scaling law

Zg[A] = e
−ε

(
Q
(√

25−n
6 −
√

1−n
6

)−1

χ(M)+1

)
Zg[e−εA]. (4.94)

In particular, if we set ε = ln A, then we get

Zg[A] = A
−
(

Q
(√

25−n
6 −
√

1−n
6

)−1

χ(M)+1

)
Zg[1], (4.95)

which immediately yields (4.85).
More generally, (4.85) extends to the coupling between conformal matter of cen-

tral charge cm and 2D quantum gravity according to

Zg[A; cm] = Zg[1; cm]A
(1−g)

12 [cm−25−√(25−cm)(1−cm)]−1, (4.96)

with the attendant susceptibility exponent

ΓKPZ [cm] := (1 − g)
12

(
cm − 25 −√(25 − cm)(1 − cm)

)
+ 2. (4.97)

The above heuristic argument leading to the scaling ansatz (4.96) is believed to
be reliable for cm small, a fact reflected in the expression for γstring[cm] which is
ambiguous for cm > 1. From the point of view of non-critical string theory, we are
entering a region of strong coupling regime between conformal matter and gravity,
the screening effect of the tachyonic potential U (φ) in (4.69) is no longer active,
and the analysis of the coupling between matter and quantum gravity requires the
understanding, not yet fully achieved, of the quantum dynamics of Liouville theory.
We have already stressed that, in contrast with the rather effective heuristic arguments
leading to (4.85) and its generalization, it is extremely hard to provide a fully rigorous
proof of KPZ scaling. Only recently, and in the very general (and mathematically
compelling) setting of the theory of random fields, Duplantier and Sheffield [22]
have been able to address rigorously a probabilistic derivation of the KPZ scaling
in Liouville quantum gravity. Another interesting (semi-rigorous) analysis has been
proposed by David and Bauer [14] by exploiting a heat kernel technique.

A few comments are in order as to the nature of the difficulties in deriving the
KPZ susceptibility. Let us start by observing that for pure gravity, i.e., for n = 0,
(4.87) reduces to the well-known value
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ΓKPZ = 5g − 1

2
. (4.98)

which shows that the scaling properties of the surfaces sampled by the functional
measure (4.70) have a two-fold origin: one is associated with the Liouville mode
itself, the other is generated by the coupling of the Liouville mode with confor-
mal matter. Already the scaling property of the pure gravity case appear a little bit
intriguing and one may wonder as to its geometrical origin. This has its roots in
the formal definition (4.30) of the Liouville action which, if taken at face value,
has a few drawbacks from the mathematical point of view. These latter have been
clearly emphasized by Zograf and Takhtadzhyan [79], (see also [69]). Their point is
that if {(U(α), z(α))}α∈I is a local covering of M with coordinate charts (U(α), z(α))
and transition functions fαβ : z(β)(U(α) ∩ U(β)) → z(α)(U(α) ∩ U(β)), then the
conformal factors {ϕ(α)} in the corresponding local parametrization of the metric
γ |(α) = eϕ(α) |dz(α)|2 are not scalar functions, but rather the components of a metric
tensor field, thus transforming according to

ϕ(β) = ϕ(α) ◦ fαβ + ln
∣∣∣f ′αβ ∣∣∣2 . (4.99)

This remark directly implies that Dirichlet type integrals of the form

SL[M, {(U(α), z(α))}] :=
√−1

2

∫
M

(
|∂zϕ|2 + eϕ

)
dz ∧ dz, (4.100)

(hence also (4.30) and (4.83)), cannot be defined only in terms of the Riemann surface(
M, {(U(α), z(α))}

)
as the integral of the local 2-form [69]

ω|(α) :=
(∣∣∂z(α)ϕ(α)

∣∣2 + eϕ(α)

)
dz(α) ∧ dz(α), (4.101)

since the term
∣∣∂z(α)ϕ(α)

∣∣2 does not transform equivariantly under (4.99). The sim-
plest decoration of the Riemann surface

(
M, {(U(α), z(α))}

)
that allows for a coher-

ent definition of the Liouville action is provided by the insertion of punctures in
M, say N0 to conform to our notation, and this allows to define the Liouville
action as

√−1/2
∫

M\N0
ω by introducing a suitable regularization at the punctures

[69, 79]. A basic property of such a regularized Liouville action Sreg
L [M \N0] is that

−Sreg
L [M \N0] appears as the Kähler potential of the Weil-Petersson metric on the

Teichmüller space T(g,N0)(M) of N0 punctured Riemann surfaces [69, 79], i.e.,

∂∂
(−Sreg

L [M \ N0, {(U(α), z(α))}]
) = 2

√−1ωwp. (4.102)

Thus, in the weak coupling limit (around a stationary value φ0 of the field φ),

we can write,18 (up to the constant factor Sreg
L [M \ N0]|φ0),

18 A mathematically rigorous formulation of Quantum Liouville theory which takes into care the
subtleties of the definition of the Liouville action is discussed in [69].
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−Sreg
L [M \ N0] �

√−1ωwp + · · · . (4.103)

As a consequence of these remarks, we may tentatively identify (4.84) with

Zg[A] ∝
∫
M(g,N0)(M)

eωWP = Vol[M(g,N0)(M)], (4.104)

which would indicate a modular origin to the pure gravity KPZ exponent. As we have
seen, punctured Riemann surfaces can be rather directly put into correspondence with
polyhedral surfaces, and it does not come as a surprise that the above rough heuristics
can be put on a firm basis in the polyhedral setting.

4.10 2D QG and Polyhedral Surfaces: General Remarks

From a mathematical point of view, and in line with the renormalization group
strategy described in the previous sections, one may well argue that 2D quantum
gravity reduces to the study of a critical filtration of decorated probability measures

{Z[γ, {φ(xi)};α] Dα[γ ]}α1
� · · · {Z[γ, {φ(xi)};α] Dα[γ ]}αk

� · · · , (4.105)

on the space Met(M)/D iff (M),where Z[γ, {φ(xi)};α] is a matter field correlation
function over Map(M,V n), (see (4.5)), and where criticality is related to the onset
of local scale invariance driven by a set of tunable parameters α. At criticality,
averaging over metrics with respect to {Z[γ, {φ(xi)};α] Dα[γ ]}αcrit

, eliminates scale
dependence in the QFT defined over Map(M,V n), and the random fields {φ(xi)}
will describe a distribution of geometrical objects whose scaling dimensions, related
to the KPZ susceptibility exponents, provide a rather direct evidence of a quantum
regime in the interaction between matter fields and geometry.

A natural way for addressing the study of such critical families of probability
measures over Met(M)/D iff (M) emerges naturally when we approximate the set
of Riemannian surfaces with polyhedral metrics. In particular, equilateral polyhedral
surfaces (Dynamical Triangulations) provide one of the most powerful technique for
analyzing two-dimensional quantum gravity in regimes which are not accessible to
the standard field-theoretic formalism. This is basically due to the circumstance that
in such a discretized setting the filtration (4.105) reduces to a suitably constrained
enumeration of distinct triangulations admitted by a surface of given topology, (see
e.g., [3] for a review). At criticality, (corresponding to tuning the number of vertices
N0 ↗ ∞ and the edge-length l ↘ 0), one recovers a scaling measure, describing
the gravitational dressing of conformal operators in the continuum theory. It has
been argued, mainly as a consequence of a massive numerical evidence, that such
a (counting) measure automatically accounts for the anomalous scaling properties
of the measure D[γ ] and Dγ [u] governing the continuum path-quantization of 2D
gravity, (see (4.27)). However, the geometrical origin of such a property is rather
elusive and it is not clear how the counting for dynamical triangulations factorizes,
so to speak, in terms of a discrete analogous of a moduli space measure D[μk] and
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of a Liouville measure eSL(γ̂ ,u)Dγ [u] over the conformal degrees of freedom of the
theory.

The geometrical explanation of the behavior of the dynamical triangulation mea-
sure is not obvious if we only consider polyhedral surfaces as a sort of approximating
net in the space of Riemannian structures Met(M)

D iff (M)
. Even if such heuristics is mathe-

matically motivated by the density of equilateral polyhedral surfaces in Teichmüller
space, as implied by Belyĭ’s theorem, (see Theorem 3.4 and [73]), this does not
provide a detailed hint to the rationale which connects triangulation counting to the
quantum gravity measure. The effectiveness of dynamical triangulation is also related
to the (old19) matrix models. These latter provide natural generating functions for
counting the distinct dual ribbon graphs associated with polyhedral surfaces, (possi-
bly decorated with matter fields), and they have a life of their own20 in different guises
both in string theory, integrable models, as well as in moduli space theory where they
have played a fundamental role [39, 40, 46]. Notwithstanding the success achieved
on a mathematical and physical level, a deep understanding of their raison d’être is
still unclear. On the physical side, in particular from the point of view of strings, the
basic role of (decorated) geometrical discretization lies in the observation that large
N matrix field theory has (under rather general hypotheses) the structure of a string
theory. This was first observed by ’t Hooft for SU(N) gauge theories [67], hinting
to a connection which nowadays has its roots in open and closed strings duality.
On the mathematical side the explanation of the successful role of polyhedral sur-
faces is deeply connected with the geometrical mechanism we have been discussing
in the previous chapters, and which allows to describe a polyhedral surface with
N0 vertices as a N0-pointed Riemann surface dressed with a Liouville field whose
charges describe localized curvatures. As we have seen, the Riemann moduli spaces
for closed and open surfaces, Mg,N0 and Mg,N0 (L), are naturally called into play
in such a representation. This suggests again that a form of open closed/duality is
at work here, too. The origin of the interplay between strings, 2D quantum gravity,
and polyhedral surfaces, (with the attendant old and new matrix models), lies indeed
in the distinct cellularization of moduli spaces which allow to provide good cellular
decomposition of moduli space in the form either of ribbon graph [39, 40, 55, 65], or
light-cone coordinates [33]21, or Penner hyperbolic parametrization [59, 60]. This is
a basic issue in string field theory22 that we will not pursue here, but which nicely
blends together the mathematical and the physical rationale on the role of polyhedral
surfaces (and matrix models) alluded before.

19 As compared with the Matrix theory describing flat 11-dimensional M-theory in the discrete
light-cone quantization—see [43] for a review and relevant references.
20 An excellent review is provided by [19].
21 The light-cone cellular decomposition of the N-pointed Teichmüller space arises from the
structure theory of abelian differential of the third kind. As in the case of quadratic differentials
associated to ribbon graphs, also here we get a graph structure yielding for a cellular decomposition
which descends to Riemann moduli space and exhibits certain computational advantages with
respect to the ribbon graph cellularization [56].
22 For a nice and clear presentation see [41].
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To conclude these preliminary remarks, it is worthwhile stressing that a rationale
explaining the common combinatorial threads among moduli space, matrix models,
string theory, and integrable models has recently emerged in the work of Eynard
and Orantin, and in the striking results of Mirzakhani. Building on ideas familiar
in matrix models (and string field theory [27]), Eynard and Orantin [24–26] have
introduced a deep framework for Topological Recursion. In a nutshell, if vg,N is
a geometrical quantity defined over the moduli space Mg,n of n-pointed Riemann
surfaces of genus g, (under the usual stability assumptions on (n,g)), then their theory
establishes recursive formulas of the form, (here we are following [10])

vg, n = f1(vg, n− 1)+ f2(vg− 1,n+ 1)+
∑

g1 + g2 = g; n1 + n2 = n− 1

f3(vg1, n1 + 1, vg1, n2 + 1),

(4.106)
where the summation runs over all possible partitions of g and n − 1 such that
2gi − 1 + ni > 0, i = 1, 2, and where f1, f2, are linear operators and f3 is bilinear.
The strategy underlying these relations is the familiar one of constructing structured
objects, (vg,n), over moduli space, out of simpler pieces, (vg,n−1 and vg−1, n+ 1),

defined in terms of buiding blocks of Riemann surfaces, (typically pair of pants or
thrice-punctured spheres). Intersection numbers in Witten–Kontsevich theory [46],
metrical ribbon graphs, matrix models, afford relevant examples obeying recursion
relations of the type (4.106), which thus appear as the common combinatorial frame-
work underlying these theories. Also the remarkable recursion formula discovered,
in the context of hyperbolic geometry, by Mirzakhani [50, 51] falls within this class.
A deep geometric connection between these two approaches is discussed at length
in a series of remarkable papers by Mulase and Safnuk [54], to which we refer for
further details.

Even if the analysis of the work of Eynard and Orantin is beyond the scope of
these lecture notes, we shall make use of Mirzakhani’s results. We start by connecting
2D quantum gravity to the orbifold integral representation (3.104) of the symplectic
volume of Mg,N0 , provided by Theorem 3.6. Then, by exploiting the large N0

asymptotics of the Weil-Petersson volume of Mg,N0 recently discussed by Manin
and Zograf [48, 78], we show that the anomalous scaling properties of pure gravity
is only due to the modular degrees of freedom of Mg,N0 , as suggested by (4.104).

4.11 The Moduli Space Mg,N0 and 2D Quantum Gravity

As we have recalled in the previous sections, the non-critical string partition function,
at fixed genus, is provided by giving meaning to the formal path integral

Z [α] :=
∫
Met(M)/D iff (M)

D[M/D]
∫
{Map(M,V n)}

Dα[φ] e−Sγ [φ;α], (4.107)

(see (4.16) and (4.17)), in particular by factorizing a Gaussian measure on the
(tangent) space of Riemannian metrics Met(M) into a moduli space measure,
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a (non-Gaussian) Weil measure, and a Gaussian measure on the tangent space to
D iff (M). In such a picture, pure 2D quantum gravity is characterized by eliminat-
ing the degrees of freedom represented by φ ∈ Map(M,V n) by setting the central
charge c = n ≡ 0. According to the QFT heuristics we have discussed before, this
procedure still leaves a residual Liouville mode φn+ 1 ∝ the dilaton field f, which is
responsible for a non-trivial KPZ scaling characterized by a susceptibility exponent
ΓKPZ = (5g − 1)/2, (see (4.98)). To address the analysis of (4.107) from a more
geometrical point of view, we can associate with it the filtration (4.105) obtained by
replacing the Riemannian surfaces (M, γ ) with corresponding polyhedral surfaces
(Tl ,M) with N0 vertices, and discuss how the behavior of the associated sequence
of partition functions behave for large N0. If we set c = n ≡ 0, then at fixed genus g
and at fixed area A we can replace (4.107) with an infinite sequence of finite statistical
sums

Z [α]n=0 �−→
{
Zg,N0 [α]

}
(4.108)

whose generic term Zg,N0 , at fixed N0, heuristically has the form

Zg,N0 [α] := ”
∑

Polyhedral surfaces

”e−α0N0−βχ(M), (4.109)

where α := (α0, β) are running coupling constants, χ(M) = 2 − 2g is the Euler
characteristic of the surface M, and the summation is over all polyhedral surfaces
POLg,N0(A) of genus g, with N0 vertices and given area A. The summation is between
quotes because we have to decide how to define it, yet. There are two alternatives:
(i) since (4.109) is a regularization we may well decide to pick a suitable finite set
of representative polyhedral surfaces in POLg,N0(A). Dynamical triangulations are
quite a convenient choice, owing to their density properties for large N0 and their
simple geometry in discussing the asymptotic behavior of (4.109); (ii) the other
alternative is to consider the full space POLg,N0(A). This is apparently a more com-
plicated choice since we need to replace the sum in (4.109) with an integral, with the
attendant difficult problem of selecting the appropriate measure23 for POLg,N0(A).

As discussed in Chap. 3 we have a good control over POLg,N0(A) and on its natural
(pre)symplectic measure, thus here we take this second choice. In particular, since
the term e−α0N0−βχ(M), at fixed g and N0, is constant over POLg,N0(A), we can
regularize Z [α]n=0 according to

Definition 4.1 The regularizing filtration associated with the pure gravity partition
function Z [α]n=0 is provided by the sequence {Zg,N0 [α]}, N0 ∈ N, defined by

Zg,N0 [α] := Vol
[
POLg,N0(A)

]
e−α0N0−βχ(M), (4.110)

23 The situation is apparently similar to what happens in standard two-dimensional Regge calculus.
There, however, a poor understanding of the correct measure to use over (a badly selected part of)
POLg,N0 (A) has hampered the use of Regge calculus for regularizing 2D quantum gravity.
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where Vol
[
POLg,N0(A)

]
is the (pre)-symplectic volume of POLg,N0(A) defined by

Theorem 3.5, and where α := (α0, β) are running coupling constants.

We shall see momentarily that this characterization indeed leads to the correct
scaling properties for pure 2D quantum gravity.

Since the computation of the volume of POLg,N0(A) involves an orbifold inte-
gration we have, as in the case of Theorem 3.5, an explicit representation of (4.110)
in terms of a finite summation over combinatorially distinct triangulations

Zg,N0 [α] = e−α0N0−βχ(M)

×
∑

[T ]∈Tg,N0

1

|Aut(T )|
∫
ΔΘ

dμN0−1
E

∫
T

met
g,N0

(M;Θ)

∣∣∣[T ]
exp
(
ωΘ

WP

)

=
√

N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1
e−α0N0−βχ(M)VolWP

[
Mg,N0

]
,

(4.111)
where the notation is that of Theorem 3.5. In particular, the sum runs over the
finite set of equivalence classes [T] of distinct triangulations (T, M) in Tg,N0 , and

T
met
g,N0

(M;Θ)

∣∣∣[T ] denotes the set of stable polyhedral surfaces in T
met
g,N0

(M;Θ)

whose incidence is in the equivalence class [T ] defined by (T, M). With these pre-
liminary remarks along the way we have

Theorem 4.1 For N0 sufficiently large, the generic term Zg,N0 [α] in the filtration
(4.110) scales with N0 according to

Zg,N0 [α] ≈
√

N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1

× (N0 + 1)
5g− 7

2 C−N0

(
Bg +

∞∑
k=1

Bg,k

(N0 + 1)k

)
e−α0N0−βχ(M),

(4.112)
where C = − 1

2 j0 d
dz J0(z)|z=j0 , (J0(z) the Bessel function, j0 its first positive zero);

(note that C � 0.625 . . .), and where the parameters Bg and Bg, k depends only
from the genus g.

Proof The proof is a direct consequence of the large N0 asymptotics of VolW−P
(Mg,N0 ) discussed by Manin and Zograf [48, 78]. They obtained

VolW−P(Mg,N0 ) = π2(3g− 3+N0)

× (N0 + 1)
5g− 7

2 C−N0

(
Bg +

∞∑
k=1

Bg,k

(N0 + 1)k

)
,

(4.113)

where C = − 1
2 j0 d

dz J0(z)|z=j0 � 0.625 . . . , with J0(z) the Bessel function, and
j0 its first positive zero. The genus dependent parameters Bg are explicitly given
[48] by
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⎧⎪⎨
⎪⎩

B0 = 1
A1/2Γ (− 1

2 )C
1/2 , B1 = 1

48 ,

Bg = A
g−1

2

22g−2(3g−3)!Γ (
5g−5

2 )C
5g−5

2

〈
τ

3g−3
2

〉
, g ≥ 2

(4.114)

where A .= −j−1
0 J ′0(j0), and

〈
τ

3g−3
2

〉
is a Kontsevich-Witten intersection number,

(the coefficients Bg,k can be computed similarly—see [48] for details). By inserting
this asymptotics in (4.111) we get the stated result.  "

From (4.112) we immediately get the

Lemma 4.1 In the large N0 limit Zg,N0 [α] scales with N0 according to

Zg,N0 [α] ≈ Bgπ
(6g−6)eμ0N0 N0

5g−1
2 −3
(

1 + O(
1

N0
)

)
e−α0N0−βχ(M), (4.115)

where eμ0 :=
√

2eπ3

C > 1, and where C is the constant appearing in (4.113).

Proof From Stirling’s formula in the form

k! � √
2π(k + 1)k+ 1

2 e−k−1
[

1 + O
(

1

k

)]
k →∞, (4.116)

(which is accurate also for small k), we get the estimate
√

N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1
≈
(

2πe√
2

)N0

. (4.117)

By inserting this into (4.112) and gathering terms we get the stated asymptotic.

Thus, (4.115) provides the correct genus-g pure gravity critical exponent

ΓKPZ = 5g − 1

2
. (4.118)

The nature of the asymptotic (4.115) also shows that ΓKPZ has a modular origin,
arising from the cardinality of the cell decomposition of Mg,N0 . To go deeper into
such a remark, let us recall the expression for the large N0(T ) asymptotics of the
distinct triangulation counting in (4.111). This latter asymptotics can be obtained
from purely combinatorial (and matrix theory) arguments, (see [3] for the relevant
references starting from the classical paper (for the g = 0 case) by Tutte [72], see
also [7]), to the effect that

Card
[
Tg,N0

] ∼ 16cg

3
√

2π
· ev0N0(T )N0(T )

5g− 7
2

(
1 + O(

1

N0
)

)
, (4.119)

where cg is a numerical constant depending only on the genus g, and ev0 = (108
√

3)
is a (non-universal) parameter depending on the set of triangulations considered.24

24 Here we deal with generalized triangulations, barycentrically dual to trivalent graphs; in the

case of regular triangulations in place of 108
√

3 we would get ev0 = ( 44

33 ). Also note that the
parameter cg does not play any relevant role in 2D quantum gravity.
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Through a comparison of the asymptotics (4.115) and (4.119), we easily get that the

integral over the local cells T
met
g,N0

(M;Θ)

∣∣∣[T ] in (4.111)

∫
ΔΘ

dμN0−1
E

∫
T

met
g,N0

(M;Θ)

∣∣∣[T ]
exp
(
ωΘ

WP

)
, (4.120)

is proportional to AN0−1 for some constant A and does not contribute to the KPZ
scaling.

4.12 Polyhedral Liouville Action and KPZ Scaling

A natural question concerns the possibility of extending the above analysis to the
more general case of random polyhedral surfaces supporting a Map(M,V n) QFT
with n �= 0. To begin with, let us remark that in such a setting the path integral over
Map(M,V n) is typically discretized according to∫

{Map(M,V n)}
Dα[φ] e−Sγ [φ;α]

� e−α0N0−βχ(M)

∫ N0∏
k=1

Dφk exp

⎛
⎝−∑

ij

(φi − φj)
2/2l2

s

⎞
⎠, (4.121)

where the sum is over the edge-connected vertices σ 0(i) and σ 0(j) of (Tl ,M),

(see e.g., [3]). However, here we take a different perspective and avoid regularizing
the action Sγ [φ;α] via a discretized Laplacian. Indeed, if we consider the generic
polyhedral surface (Tl,M) ∈ T met

g,N0
(M;Θ) of given area Aγ (M) as a N0-pointed

Riemann surface ((M,N0), γ ) with conical singularities, then it is still profitable
(and fully rigorous) to consider the Gaussian measure Dα[φ] over {Map(M,V n)

defined by [16, 62]∫
{Map(M,V n)}

Dα[φ] e−S̃γ [φ;α] :=
[

det′Δ((M,N0), γ )

Aγ (M)

]− n
2

, (4.122)

where S̃γ [φ;α] is the harmonic map action (4.15), and det′Δ((M,N0), γ ) denotes
the ζ -function regularized determinant for the scalar Laplacian on ((M,N0), γ ).

Moreover, the discretization (4.121) does not take into account the basic fact that
even in the polyhedral setting we still have a large residual action of the diffeomor-
phism group D iff (M,N0) that plays an important role in the theory. In particular,
together with the scalar Laplacian Δ((M,N0), γ ) we need to consider the regular-
ized determinant of the vector Laplacian

P†
1P1 : C∞((M,N0),TM) −→ C∞((M,N0),TM)

wa �−→ (P†
1P1)

b
awa = −2∇a

(
∇awb +∇bwa − γ ab∇cwc

)
,

(4.123)
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(see (4.28)), acting on smooth vector fields wa that vanish at the N0 vertices of the
polyhedral surface (Tl ,M).

This strategy in discussing the interplay between the geometry of polyhedral sur-
faces and two-dimensional Quantum Field Theory is justified by the fact that recently
the determinant det′Δ((M,N0), γ ) has been fully characterized by Kokotov25 in a
very elegant way [45].

For the convenience of the reader we have provided a rather complete introduction
to Kokotov’s results in Appendix B, and in such a framework we start by examining
how (4.122) behaves under conformal trasformations among polyhedral surfaces. To
this end, following [45], we consider for η ∈ [0, 1] two distinct families of polyhedral
surfaces with different areas A(1) �= A(2),

η �→ (T(1),M)η ∈ POLg,N0(A(1)) (4.124)

η �→ (T(2),M)η ∈ POLg, N̂0
(A(2)), (4.125)

and with a corresponding different set of marked vertices

{pk(η)}N0
k=1 := {σ 0

(1)(k, ; η)}N0
k=1, (4.126)

{qh(η)}N̂0
h=1 := {σ 0

(2)(h, η)}N̂0
h=1, (4.127)

(note that generally N0 �= N̂0). We assume that these two vertex sets are disjoint
for all η ∈ [0, 1], and that they support distinct η-independent conical singularities
{Θ(1)(k)} and {Θ(2)(h)}. We also assume that (T(1),M)η and (T(2),M)η, η ∈ [0, 1]
define the same (η-independent) conformal structure

((M,N0),C
(1)
sg ) � ((M, N̂0),C

(2)
sg ) � (M,C ). (4.128)

According to (2.70) the conical metric ds2
T(1)

around the generic conical point
pk(η) is given, in term of a local conformal parameter z(1)(k, η), (with pk(η) �→
z(1)(k, η) = 0), by

dsT(1) (k)
2 :=

[
L(k)
]2

4π2
∣∣z(1)(k, η)∣∣2

∣∣z(1)(k, η)∣∣2
(

Θ(1)(k)
2π

) ∣∣dz(1)(k, η)
∣∣2 , (4.129)

whereas the conical metric ds2
T(2)

around the generic conical point qh(η) is given, in
term of a local conformal parameter z(2)(h, η), (with qh(η) �→ z(2)(h, η) = 0), by

ds2
T(2)

(h) :=
[
L′(h)
]2

4π2
∣∣z(2)(h, η)∣∣2

∣∣z(2)(h, η)∣∣2
(

Θ(2)(h)
2π

) ∣∣dz(2)(h, η)
∣∣2 . (4.130)

25 In this respect, the situation is here quite simpler than that described in the delicate and prescient
analysis of the measure issue in Regge calculus addressed in a series of paper by Menotti and Peirano,
(see [49] and references therein).
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Since the points {qh(η)}N̂0
h=1 ∈ M, supporting the conical singularities of the

metric ds2
T(2)

, are disjoint from the conical set {pk(η)}N0
k=1, they are regular points

as seen by (T(1),M). To exploit such a remark we need to explicitly identify the

vertices {qh}N̂0
h=1 with a corresponding set of smooth points of (T(1),M). It is clear

that such an identification is defined modulo the action of the diffeomorphism group
D iff (M,N0) preserving setwise the N0 vertices {pk}N0

k=1 of (T(1),M), (see Appen-
dix A). Thus, we assume that there is a (smooth) embedding

ι̂ : (T(1),M) ↪→ (T(2),M), (4.131)

injecting the N0 vertices {pk}N0
k=1 of (T(1),M) into (T(2),M) in such a way that

ι̂(pi) �∈ {qh}N̂0
h=1 ∀pi ∈ {pk}N0

k=1. Let Uk ⊂ (T(1),M) be a neighborhood of

the generic vertex pk ∈ (T(1),M) such that {(Uk, z(1)(k)}N0
k=1 is a covering of

(T(1),M) with local conformal parameter neighborhoods, and let ι̂k := ι̂|Uk denote
the restriction of the embedding ι̂ to such Uk. According to the above remarks,
if we take the pull-back, under ι̂, of the conical metric ds2

T(2)
of (T(2),M)∩ ι̂k,

then we can assume [45] that there are smooth functions fT(2) [T(1), z(1)(k, η)] of
the local conformal parameter z(1)(k, η) such that, in a neighborhood of the vertices

{pk(η)}N0
k=1 ∈ (T(1),M)η, the pull-backed metric ι̂∗

(
ds2

T(2)

)
can be written as

ι̂∗
(

ds2
T(2)

)∣∣∣
pk(η)

:= ∣∣fT(2)[T(1), z(1)(k, η)]
∣∣2 ∣∣dz(1)(k, η)

∣∣2 . (4.132)

Similarly, if we interchange the role of (T(1),M)η and (T(2),M)η, then there is
an embedding

ι : (T(2),M) ↪→ (T(1),M), (4.133)

and smooth functions of the local conformal parameter z(2)(h, η),

fT(1)[T(2), z(2)(h, η)], (4.134)

such that in a neighborhood of the points {qh(η)}N̂0
h=1 ∈ M the pull-backed metric

ι∗h
(

ds2
T(1)

)
takes the form

ι∗h
(

ds2
T(1)

)∣∣∣
qh(η)

:= ∣∣fT(1)[T(2), z(2)(h, η)]
∣∣2 ∣∣dz(2)(h, η)

∣∣2 . (4.135)

With these notational remarks along the way, we have the following basic result by
Kokotov [45], (see also Appendix B),

Theorem 4.2 Let det′Δ(T(1)) and det′Δ(T(2)) respectively denote the ζ -regularized
determinants of the Laplacian associated with the conical metrics ds2

T(1)
and ds2

T(2)
.

Then, there is a constant C12 independent of η ∈ [0, 1] such that
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det′Δ(T(1))

det′Δ(T(2))
= C12

A(1)

A(2)

∏N̂0
h=1

∣∣fT(1) (T(2), h)
∣∣ 16
(

Θ(2)(h)
2π −1

)

∏N0
k=1

∣∣fT(2) (T(1), k)
∣∣ 16
(

Θ(1)(k)
2π −1

) , (4.136)

where26 we have set

fT(1) (T(2), h) := fT(1)[T(2), z(2)(h, η) = 0], (4.137)

and

fT(2) (T(1), k) := fT(2) [T(1), z(1)(k, η) = 0]. (4.138)

It is important to stress that the assignment of these Liouville fields cannot be arbi-
trary. Indeed, if we consider three polyhedral surfaces (T(α),M) ∈ POLg,N0(α)

(A(α)), α = 1, 2, 3, within the same conformal class, and define [45]

Q(α) := det′Δ(α)

A(α)

, (4.139)

then by considering the product of ratios
∏

α(Q(α)/Q(α+ 1)), (with α+ 1 = 1 for
α = 3), one gets a basic result of Kokotov [45], consequence of the Weil reciprocity
law, that we rewrite in our setting as the cocycle condition

3∏
α=1

N0(α)∏
kα=1

[ |fT(α+2) (T(α), kα)|
|fT(α+1) (T(α), kα)|

] 1
6

(
Θ(α)(kα)

2π −1

)
= 1, (4.140)

where α is, as usual, defined mod 3. Note that the f-ratios in the above expression are
independent from the local conformal parameter z chosen.

We can profitably rewrite (4.136) in a more symmetric form:

Lemma 4.2 Let

uT(2) (T(1), k) := {2 ln
∣∣fT(2) (T(1), k)

∣∣}, (4.141)

denote the discretized Liouville fields on (T(1),M) describing the polyhedral surface
(T(2),M) around the vertices {pk} of (T(1),M). Similarly, let

uT(1) (T(2), h) := {2 ln
∣∣fT(1) (T(2), h)

∣∣}, (4.142)

be the discretized Liouville fields on (T(2),M) locally describing (T(1),M) around
the vertices {qh} of (T(2),M). Then we have

26 With respect to the statement of this result in Appendix B we have slightly specialized the
notation.
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det′Δ(T(1))

A(1)
exp

1

12

[ N0∑
k=1

(
Θ(1)(k)

2π
− 1

)
uT(2) (T(1), k)

]

= C12
det′Δ(T(2))

A(2)
exp

1

12

⎡
⎣ N̂0∑

h=1

(
Θ(2)(h)

2π
− 1

)
uT(1) (T(2), h)

⎤
⎦. (4.143)

Note that the exponential terms in (4.143) are the natural counterpart, on the poly-
hedral surfaces (T(1),M) and (T(2),M), of the dilaton coupling

∫
M fR(γ̂ )dμγ̂ .

As shown in [45], the ratio on the right hand side of (4.136) corresponds, for a
polyhedral surface, to the standard Liouville action

det′Δ(1)

det′Δ(2)
= C12

A(1)

A(2)
exp

{√−1

6π

∫
M

ln
ρ(2)

ρ(1)
∂z∂z ln

(
ρ(1)ρ(2)

)
dz ∧ dz

}
,

(4.144)

associated with two smooth, conformally related, metrics ds2
(1) = ρ−2

(1) (z, z)dz ⊗ dz

and ds2
(2) = ρ−2

(2) (z, z)dz ⊗ dz. More explicitly, by comparing (4.136) and (4.143)
with (4.31) we formally have the correspondence

Lemma 4.3

SL(γ̂ , u) =⇒ S(Pol)
L

(
T(1),T(2)

) := 1

24

[ N0∑
k=1

(
Θ(1)(k)

2π
− 1

)
uT(2) (T(1), k)

−
N̂0∑

h=1

(
Θ(2)(h)

2π
− 1

)
uT(1) (T(2), h)− 24lnC12

⎤
⎦. (4.145)

Kokotov’s analysis naturally extends to the regularized determinant of the vector
Laplacian (4.123) on the (ordered27) pair of polyhedral surfaces (T(1),M) and
(T(2),M), and we have

Theorem 4.3

[
det′
(

P1
†P1

)
T(1)

] 1
2 =
[

det′
(

P†
1P1

)
T(2)

] 1
2

e−26S(Pol)
L (T(1),T(2)), (4.146)

27 The ordering is important for characterizing the diffeomorphism group relevant to the problem:
D iff (M,N0) if we are injecting (T(1),M) into (T(2),M) so as to consider the neighborhoods of
the vertices {qh} ∈ (T(2),M) as (conformally) smooth as seen by (T(1),M), whereas D iff (M, N̂0)

is the appropriate group when we inject (T(2),M) into (T(1),M).
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or equivalently

[
det′
(

P†
1P1

)
T(1)

] 1
2

exp
26

24

[ N0∑
k=1

(
Θ(1)(k)

2π
− 1

)
uT(2) (T(1), k)

]

= C26
12

[
det′
(

P†
1P1

)
T(2)

] 1
2

exp
26

24

⎡
⎣ N̂0∑

h=1

(
Θ(2)(h)

2π
− 1

)
uT(1) (T(2), h)

⎤
⎦ .
(4.147)

Proof As stressed above, it is not difficult to directly check that Kokotov’s technique
extends to the heat kernel characterization of det′(P1

†P1) on N0-pointed Riemann
surfaces (M,N0), (for this latter see e.g., [17] Sects. F and L), decorated with conical
singularities.  "

If we fix a reference polyhedral surface (T̂ ,M) and compare it with the whole set
of polyhedral surfaces (Tl ,M) ∈ POLg,N0(A) we can specialize the above results
to the

Lemma 4.4 Let (T̂ ,M) ∈ POLg, N̂0
(Â) be a given polyhedral surface of area Â,

vertex set {qi}N̂0
i=1, conical angles {θ̂ (i)}N̂0

i=1 and local metric

ds2
T̂
(h) = L̂2(h)

4π2

∣∣ẑh
∣∣2( θ̂ (h)2π −1

) ∣∣dẑh
∣∣2 . (4.148)

Let us denote by (Tl ,M) ∈ POLg,N0(A) the generic polyhedral surface of area

A and vertex set {pk}N0
k=1 supporting conical angles {θ(k)}N0

k=1. We assume that

A �= Â, N̂0 ≥ N0, and that for any (Tl ,M) there exists a corresponding embedding

ι̂T : (Tl,M) ↪→ (T̂ ,M), (4.149)

injecting the vertices {pk}N0
k=1 of (Tl ,M) into smooth points of (T̂ ,M), i.e., ι̂T (pk) �∈

{qi}N̂0
i=1. We let {(Uk, zk)} ⊂ (Tl ,M) be local coordinate neighborhoods of the

vertices {pk} ∈ (Tl ,M), and for a vertex qh ∈ ι̂T (Uk) we denote by

ζh(k) := ι̂−1
T (qh)

∣∣∣
Uk

, (4.150)

the corresponding value of the conformal parameter zk in Uk. Then, for any (Tl ,M)

there exists a corresponding set of smooth Liouville fields

uT̂ (T , zk) := ln

[
L̂2(h)
4π2

|zk − ζh(k)|2
(

θ̂ (h)
2π −1
)]

, (4.151)
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such that

ι̂∗T
∣∣
Uk

(
ds2

T̂

)
= euT̂ (T , zk) |dz(k)|2 , k = 1, . . . ,N0, (4.152)

provides the (smooth) conformal structure locally describing (T̂ ,M) around suffi-
ciently small neighborhoods {Ũk} of the vertices {pk} of (Tl ,M).

Proof Since the points ι̂ −1
T

(
{qh(η)}N̂0

h=1

)
are disjoint from the vertices {pk(η)}N0

k=1

of (Tl ,M), by restricting the neighborhood Uk to a suitably smaller coordinate
neighborhood (Ũk, zk) of the generic vertex pk, (e.g., by requiring that |zk | < |ζh(k)|
for any ζh(k) ∈ ι̂ −1

T (qh)),we immediately get the expression of the smooth Liouville
fields (4.151) in terms of which we can explicitly write the parametrization (4.132)
for (T̂ ,M).  "

As (Tl ,M) varies in POLg,N0(A) we can characterize the area of M in the pulled-

back metric ι̂ ∗T
(

ds2
T̂

)
according to

Â(T ) =
N0∑

k=1

∫
Uk

ϕk(zk) ι̂
∗
T (dμ̂)
∣∣
Uk

, (4.153)

where

ι̂ ∗T (dμ̂)
∣∣
Uk

=
√−1

2
euT̂ (T , zk)dzk ∧ dzk, (4.154)

is the pull-back of the Riemannian measure on (T̂ ,M) associated with the metric
(4.148), and {ϕk}N0

k=1 is a partition of unity subordinated to the the covering {Uk}N0
k=1

of (Tl ,M). In general such an area Â(T ) will not be equal to the area Â of the
given polyhedral surface (T̂ ,M) since, under the vertex injection ι̂T : (Tl ,M) ↪→
(T̂ ,M), the image ι̂T (Tl ,M) may fold, intersect, or accumulate around a subset
of vertices of (T̂ ,M). To somewhat characterize such a behavior let us start by
observing that since around pk the corresponding Liouville field uT̂ (T , zk) is smooth
we can exploit the mean value theorem, and introduce a parameter βk(T ) ∈ R such
that, for any given coordinate neighborhood Uk,∫

U k

ϕk(zk) ι̂ ∗T (dμ̂)
∣∣
Uk

= eβk(T )uT̂ (T ,k), (4.155)

where

uT̂ (T , k) := uT̂ (T , zk = 0) = ln

[
L̂2(h)
4π2

|ζh(k)|2
(

θ̂ (h)
2π −1
)]

. (4.156)
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Geometrically, βk(T ) represents the logarithm of the area of the Liouville vertex cell

(
U k, ι̂

∗
T

(
ds2

T̂

))
, (4.157)

describing the given (T̂ ,M) around the pk-vertex of (Tl ,M). We can take the
average of the {βk(T )}N0

k=0 over the N0 vertexes of (Tl ,M) so as to obtain

β(T ) := N−1
0

N0∑
k=1

βk(T ), (4.158)

providing the average (of the logarithm of the) vertex area associated with the descrip-
tion of (T̂ ,M) with respect to (Tl ,M). Eventually, we are naturally led to average
this quantity over the whole set of polyhedral surfaces (Tl ,M) in POLg,N0(A)

and characterize the Liouville free vertex area28 associated with
(
POLg,N0(A), ι̂

)
according to

β(ι̂) := Vol
[
POLg,N0(A)

]−1
∫

POLg,N0 (A)

β(T )dμN0−1
E exp (ωWP) , (4.159)

(see Definition 3.1 and the accompanying remarks for the definition of POLg,N0(A)

averages). Since for large values of N0 the integral over POLg,N0(A) may be domi-
nated by degenerate triangulations, it is not obvious that the parameterβ(ι̂) so defined
is, for N0 ↗∞, always well-behaved, and, (owing to the presence of the logarithm),
it may be even appropriate to analytically continue it in the complex domain. In any
case, it characterizes the effective area of (T̂ ,M) as described by the vertex Liouville
fields {uT̂ (T , k)}N0

k=1 as they fluctuate over the triangulations in POLg,N0(A). Thus,
we introduce the following

Definition 4.2 (Effective Area) The effective area of (T̂ ,M) generated by the
Liouville fields {uT̂ (T , k)}N0

k=1 over a polyhedral surface (Tl ,M) ∈ POLg,N0(A) is
provided by

Âeff (T ) :=
N0∑

k=1

eβ(ι̂)uT̂ (T ,k), (4.160)

where β( ι̂ ) is the Liouville free vertex area associated with
(
POLg,N0(A), ι

)
defined

by (4.159).

Armed with these preparatory results and remarks, let us envisage now the sit-
uation where the given polyhedral surface (T̂ ,M) is generated out of random
immersions φ : (Tl ,M) ↪→ (V n, gab = δab) of the polyhedral surfaces (T ,M) ∈

28 As the name suggests, this is basically a free energy.
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POLg,N0(A) in the (flat) ambient manifold (V n, δ), (δ denoting the Euclidean met-
ric), viz. (T̂ ,M) := φ ((Tl ,M)) with

ds2
T̂
= φ∗ (δ) . (4.161)

In such a case, we can naturally identify the injection ι̂T
({pk}N0

)
of the vertex set

{pk}N0 of (Tl ,M) in the given (T̂ ,M) with the image φ
({ph}N0

)
. For N0 finite, and

in full analogy with the field theoretic analysis described in the previous sections,
the corresponding random Liouville fields uT̂ (T , zk) on (Tl ,M) can be promoted
to an immersion variable

φn+ 1 := uT̂ (T , zk), (4.162)

so as to consider the given (T̂ ,M) as being actually generated by random immersions
of the polyhedral surfaces (T ,M) ∈ POLg,N0(A) in the (flat) ambient manifold
(V n+ 1, δ). Also note that in such a setting the parameter β(ι̂), defined by (4.159),
providing the Liouville free vertex area associated with the pair

(
POLg,N0(A), ι̂

)
is

now a functional of the embedding variables {φ}, and in order to emphasize such a
dependence we correspondingly write β(ι̂) ≡ βn.

With the configuration just described we can naturally associate the functional

(T̂ ,M) �−→ Zg,N0,A[(T̂ ,M); Âeff ]

:=
∫

POLg,N0 (A)

⎛
⎝[det′Δ(T )

A(T )

]− (n+ 1)
2
[

det′
(

P1
†P1

)
T(1)

] 1
2

× e
[(n+ 1)−26]

24

[
N0∑

k=1

(
Θ(1)(k)

2π −1

)
uT̂ (T ,k)

]

× δ

(
Âeff −

N0∑
h=1

eβnuT̂ (T ,h)

))
dμE exp (ωWP) , (4.163)

which, normalized with respect to the volume of POLg,N0(A), can indeed be inter-
preted as the probability of generating the given (T̂ ,M), with N̂0 vertices and with
a given effective area Âeff , out of random immersions of the polyhedral surfaces
(T ,M) ∈ POLg,N0(A) in a flat Euclidean space V (n+ 1). Note that in (4.163) we
have promoted the Liouville field φn+ 1, locally described by uT̂ (T , zk), to a free
dynamical field by introducing a further determinant factor det′Δ(T )/A(T ) associated
with the free-field scalar action S̃γ [φn+ 1], so that

[
det′Δ(T )

A(T )

]− (n)
2 ⇒
[

det′Δ(T )

A(T )

]− (n+ 1)
2

. (4.164)

Even if averaged over POLg,N0(A), the functional Zg,N0,A[(T̂ ,M);Âeff ] exhibits
a non-trivial scale dependence. Explicitly, let us consider a one-parameter constant
shift of the Liouville field uT̂ (T , zk) according to
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uT̂ (T , k) �−→ uε

T̂
(T , k)+ ε βn

−1, 0 ≤ ε ≤ ln Âeff . (4.165)

Under this shift we compute

Zg,N0,A[(T̂ ,M); Âε
eff ]

:=
∫

POLg,N0 (A)

([
det′Δ(T )

A(T )

]− n+ 1
2
[

det′
(

P†
1P1

)
T(1)

] 1
2

× e
(n−25)

24

[
N0∑

k=1

(
Θ(1)(k)

2π −1

)
uε

T̂
(T ,k)

]

× δ

(
Âeff −

N0∑
h=1

eβnu
ε

T̂
(T ,h)

))
dμE exp (ωWP)

= e
−ε
(

(n−25)
24 β−1

n χ(M)+1
)

Zg,N0,A[(T̂ ,M); e−εÂε
eff ], (4.166)

where

Zg,N0,A[(T̂ ,M); e−εÂeff ]

:=
∫

POLg,N0 (A)

([
det′Δ(T )

A(T )

]− n+ 1
2
[

det′
(

P†
1P1

)
T(1)

] 1
2

× e
(n−25)

24

[
N0∑

k=1

(
Θ(1)(k)

2π −1

)
uT̂ (T ,k)

]

× δ

(
e−εÂeff −

N0∑
h=1

eβnuT̂ (T ,h)

))
dμE exp (ωWP) . (4.167)

Setting ε = ln Âeff , we get from (4.166) the area scaling law

Zg,N0,A[(T̂ ,M); e−εÂeff ] = A
−
(

(n−25)
24 β−1

n χ(M)+1
)

Zg,N0,A[(T̂ ,M); 1].
(4.168)

Note that this is consistent with the KPZ scaling exponent ΓKPZ given by (4.87) if
the parameter βn assumes the value

βn = n − 25

12

b2

b2 + 1
, (4.169)

where b is provided by

b :=
√

25 − n
24

−
√

1 − n
24

, (4.170)

(see (4.58)).
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The above analysis, while not being yet a proof of KPZ scaling for the coupling
of conformal matter interacting with quantum polyhedral surfaces, clearly goes a
long way in showing the pivotal role of Kokotov’s discretized Liouville action in
addressing such a delicate question. And we expect that the techniques described
may led to a deeper understanding of the anomalous scaling of conformal matter
interacting with 2D gravity.

4.13 Polyhedral Surfaces and Open/Closed String Duality

In a rather general sense, polyhedral surfaces provide also a natural kinemati-
cal framework within which we can discuss open/closed string duality.29 Indeed,
advances in our understanding of open/closed string duality have provided a number
of paradigmatical connections between Riemann moduli space theory, piecewise-
linear geometry, and the study of the gauge/gravity correspondence. These connec-
tions have a two-fold origin. On the mathematical side they are deeply related to the
fact that moduli space admits natural polyhedral decompositions which are in a one-
to-one correspondence with classes of suitably decorated graphs. On the physical side
they are consequence of the observation that these very decorated (Feynman) graphs
parametrize consistently the quantum dynamics of conformal and gauge fields.

A basic problem in any such a setting is to provide an explanation of how
open/closed duality is dynamically generated. In particular how a closed surface
is related to a corresponding open surface, with gauge-decorated boundaries, in such
a way that the quantization of such a correspondence leads to a open/closed duality.
Typically, the natural candidate for such a mapping is Strebel’s theorem which, as
we have been recalling, allows to reconstruct a closed N-pointed Riemann surfaces
M of genus g out of the datum of a the quadratic differential associated with a rib-
bon graph [53, 65]. Looked at face value, ribbon graphs are open Riemann surfaces
which one closes by inserting punctured discs, (so generating semi-infinite cylindri-
cal ends). The dynamics of gauge fields decorating the boundaries of the ribbon graph
is naturally framed within the context of boundary conformal field theory (BCFT)
which indeed plays an essential role in the onset of a open/closed duality regime.
The rationale of such a role of BCFT is to be seen in the fact that BCFT is based
on algebraic structures parametrized by the moduli space M(g;N). This parame-
trization is deeply connected with Strebel’s theorem in the sense that it is consistent
with the operation of sewing together any two ribbon graphs (open surfaces) with
(gauge-decorated) boundaries, provided that we match the complex structure and the
decoration in the overlap and keep track of which puncture is ingoing and which is
outgoing. In such a setting a BCFT leads to a natural algebra, over the decorated
cell decomposition of Riemann moduli space, which can be related to the algebra
of physical space of states of the theory and to their boundary dynamics. It is fair to

29 This is a vast subject with thousands of relevant papers. A nice selection, among those empha-
sizing the connection with combinatorial aspects, is provided by [1, 2, 15, 32, 34–38].
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say that in such a sense BCFT realizes open/closed duality as the quantization of a
gauge-decorated Strebel’s mapping.

Are ribbon graphs, with the attendant BCFT techniques, the only key for address-
ing the combinatorial aspects of open/closed string duality? In Chap. 3, while dis-
cussing the symplectic geometry of the space of polyhedral surfaces, we have been
naturally led to the Penner and Thurston (see e.g., [59, 68]) parametrization of moduli
space. This does not emphasize the role of conformal geometry, but rather exploits
the parametrization of the moduli space in terms of hyperbolic surfaces, and one
generates a combinatorial decomposition of Riemann moduli space via the geome-
try of surface geodesics. As we have seen, one of the advantages of the hyperbolic
point of view is that one has a subtle interplay between the hyperbolic geometry of
open surfaces and the singular Euclidean structure associated with closed polyhedral
surface. In particular we have shown that, in assembling a surface with ideal hyper-
bolic triangles out of the glueing pattern of a closed polyhedral surface (Tl ,M),

we get an open surface with boundary Ω(Tl ,M), where the boundary lengths are
naturally associated with the conical angles of (Tl ,M). This gives a geometrical
mechanism describing the transition between closed and open surfaces which, in a
dynamical sense, is more interesting than Strebel’s construction. As we have proven,
the correspondence between closed polyhedral surfaces and open hyperbolic surface
is easily promoted to the corresponding moduli spaces: Mg;N0 × R

N+ the moduli
spaces of N0-pointed closed Riemann surfaces of genus g whose marked points are
decorated with the given set of conical angles, and Mg;N0(L) × R

N0+ the moduli
spaces of open Riemann surfaces of genus g with N0 geodesic boundaries decorated
by the corresponding lengths. This provides a nice kinematical set up for establishing
a open/closed string duality once the appropriate field decoration is activated.30

We start by recalling that, according to Theorem 3.5, if the spaces POLg,N0(A)

and POLg,N0 (Θ,A) denote the set of polyhedral structures in POLg,N0(M) with

given polyhedral area A and with a given sequence of conical angles {Θ(k)}N0
k=1,

then the symplectic volumes of the Riemann moduli spaces Mg,N0 and Mg,N0(L)

induce natural volume forms on POLg,N0(A) and POLg,N0 (Θ,A), and we have

Vol
[
POLg,N0(A)

] = √
N0[2π(N0 + 2g − 2)](N0−1)

(N0 − 1)!√2N0−1
VolWP
[
Mg,N0

]
, (4.171)

Vol
[
POLg,N0 (Θ,A)

] = VolWP
[
Mg,N0(L)

]
, (4.172)

where the boundary lengths vector L is given by

L =
({

Lk =
∣∣∣∣ln Θ(k)

2π

∣∣∣∣
}N0

k=1

)
. (4.173)

30 Different geometrical aspects of the role of the hyperbolic point of view in open/closed string
duality have been discussed also by Kaufmann and Penner [42].
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We can actually compute the dependence of VolWP
(
Mg,N0(L)

)
from the bound-

ary lengths L = (L1, . . . ,LN0

)
by exploiting a striking result due to Mirzakhani

[50, 51]

Theorem 4.4 (Maryam Mirzakhani 2003) The Weil-Petersson volume VolWP(
Mg,N0(L)

)
is a polynomial in L1, . . . ,LN0

VolWP
(
Mg,N0(L)

) = ∑
(α1,...,αN0 )∈(Z≥ 0)N0

|α|≤3g− 3+N0

Cα1...αN0
L2α1

1 . . .L
2αN0
N0

, (4.174)

where |α| = ∑N0
i=1 αi and where the coefficients Cα1...αN0

> 0 are (recursively
determined) numbers of the form

Cα1...αN0
= π6g−6+2N0−2|α| · q (4.175)

for rationals q ∈ Q.

Moreover Mirzakhani [50, 51] is also able to express Cα1...αN0
in terms of the

intersection numbers < τα1 . . . ταN0
> [75] of the tautological line bundles L (i)

over Mg,N0 according to

Cα1...αN0
= 2m(g,N0)|α|

2|α|
∏N0

i=1 αi !(3g − 3 + N0 − |α|)! < τα1 . . . ταN0
>, (4.176)

< τα1 . . . ταN0
>

.=
∫

Mg,N0

ψ
α1
1 . . . ψ

αN0
N0

· ω3g− 3+N0−|α|
WP , (4.177)

where ψi is the first Chern class of L (i), and where m(g,N0)
.= δg, 1δN0, 1. Note in

particular that the constant term C0...0 of the polynomial VolWP
(
Mg,N0(L)

)
is the

volume of Mg,N0 i.e.,

C0...0 = VolWP

(
Mg,N0

)
=
∫
Mg,N0

ωWP
3g− 3+N0(T )

(3g − 3 + N0(T ))! . (4.178)

We use this basic result of Mirzakhani by exploiting the identification (4.172) between
VolWP
[
Mg,N0(L)

]
and Vol

[
POLg,N0 (Θ,A)

]
. We also need the polyhedral charac-

terization of first Chern classψi of L (i) provided by Theorems 1.5 and 2.5, according
to which we have

ωk :=
∑

1≤α<β≤q(k)−1

d
(
θα(k)
Θ(k)

)
∧ d
(
θβ(k)
Θ(k)

)
= −π∗

k

[
ϒ∗ (c1(Lk))

]
, (4.179)

(see (2.92)), where πk is the polyhedral map defined by (1.96). Under such a dictio-
nary, we can interpret Mirzakhani’s result as expressing a natural kinematical duality
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between the modular geometry of open Riemann surfaces and the quantum geometry
of closed polyhedral surfaces. Explicitly we have

Theorem 4.5 The symplectic volume of Vol
[
POLg,N0 (Θ,A)

]
is provided by

Vol
[
POLg,N0 (Θ,A)

] = ∑
(α1,...,αN0 )∈(Z≥0)

N0

|α|≤3g− 3+N0

Cα1...αN0

∣∣∣∣ln Θ(1)

2π

∣∣∣∣
2α1

. . .

∣∣∣∣ln Θ(N0)

2π

∣∣∣∣
2αN0

,

(4.180)
where

Cα1...αN0
= 2m(g,N0)|α|(−1)|α|

2|α|
N0∏
i=1

αi !(3g − 3 + N0 − |α|)!

×
∫

POLg,N0 (Θ,A)

ω
α1
1 . . . ω

αN0
N0

· (ωΘ
WP

)3g− 3+N0−|α|
. (4.181)

In particular, If T
met
g,N0

(M;Θ) denotes the set of stable polyhedral surfaces locally
modeling POLg,N0(Θ,A), then∫

Mg,N0

ψ
α1
1 , . . ., ψ

αN0
N0

· ω3g− 3+N0−|α|
WP

=
∑

[T ]∈Tg,N0

(−1)|α|
|Aut(T )|

∫
T

met
g,N0

(M;Θ)

∣∣∣[T ]
ω

α1
1 . . .ω

αN0
N0

· (ωΘ
WP

)3g− 3+N0−|α|
.

(4.182)

Proof The expression for Vol
[
POLg,N0 (Θ,A)

]
follows from a direct substitu-

tion of the length vector L := {Lk} given by (4.173) into Mirzakhani’s theorem,
and from the bijective mapping between the space of stable polyhedral structures
POLg,N0 (Θ,A) and the moduli space Mg,N0(L). By parametrizing the orbifold

integration over Mg,N0(L) with the integration over the orbicells T
met
g,N0

(M;Θ)

∣∣∣[T ]
provides (4.182).  "

The identification (4.182) shows that intersection theory over the moduli space
Mg,N0 has an explicit realization in terms of polyhedral surfaces, and that in particular
it is generated by summing over distinct polyhedral surfaces with a given distribution
of conical angles. A further manifestation of the fact that the Witten–Kontsevich
model corresponds to a topological sector of 2D quantum gravity, not dynamically
coupled to curvature.

In order to discuss at a deeper level the duality between polyhedral and hyper-
bolic surfaces implied by the above theorem, let us go back to the sky mapping we
defined in Sect. 3.3. There, we considered the decoration of each triangle σ 2(k, h, j)
and of each vertex σ 0(i) of a polyhedral surface (Tl ,M) ∈ T met

g,N0
(M) with a corre-

sponding null vector, σ 2(k, h, j) �→ −→
ξ (k, h, j), σ 0(i) �−→ −→

ξ (i), belonging to the
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future light cone L
+. The vector

−→
ξ (k, h, j) defines a visual horosphere Σ∞(k, h, j)

where an observer O∞ in a neighborhood of {∞} ∈ H
3,+
up describes a Euclidean

triangle σ 2(k, h, j) ∈ (Tl ,M) resulting from the projection of a hyperbolic tri-
angle σ 2

hyp(k, h, j) living in the R
2 × {0} portion of the boundary of H

3,+
up . Such

a projection takes place along the H
3,+
up geodesics defined by the vertex null vec-

tors {−→ξ (k)}. Thus, the horosphere Σ∞(k, h, j) represents a (local) screen and the
pair (Σ∞(k, h, j),Σk) characterizes the visual incoming direction from which the
observer describes the boundary component31 ∂Ωk. The vertex null vectors {−→ξ (k)}
can be interpreted as fields on the hyperbolic surface Ω with preassigned Dirichlet
conditions on the distinct ∂Ωk . Since it would be very difficult to work explicitly
with these fields, let us consider instead the corresponding λ-lengths λ(Σ∞,Σk)

associated with the vertical null geodesic connecting v0(0) � ∞ with the generic
boundary component ∂Ωk of the the hyperbolic surface Ω. According to formula
(3.10), governing the distance scaling in hyperbolic three-geometry, as we move
the screen Σ∞, β → Σ∞(β), 0 ≤ β ≤ ∞, along these vertical geodesics, we
experience a rescaling of the lengths of the geodesic boundaries {Lk} given by{

eδ(Σ∞(β),Σk)Lk

}N0

k=1
, (4.183)

where δ(Σ∞(β),Σk) is the signed hyperbolic distance between the respective
horosphere, (recall that λ (Σ∞,Σk) =

√
eδ(Σ∞,Σk), see (3.8)). We can consider

the Weil-Petersson volume VolWP
(
Mg,N0(Lδ)

)
associated with the moduli space of

such boundary rescaled hyperbolic surfaces. According to Mirzakhani’s theorem this
volume can be expressed as

VolWP

(
Mg,N0(e

δ(Σ∞(β),Σk)Lk)
)
= 2m(g,N0)|α|

(3g − 3 + N0 − |α|)!

×
∑

(α1...αN0 )∈(Z≥0)
N0

|α|≤3g− 3+N0

∫
Mg,N0

N0∏
i=1

L2αi
i eαiδ(Σ∞(β),Σi)

2|α|αi ! ψ
αi
i ω

3g− 3+N0−|α|
WP .

(4.184)

Let us consider the scaling regime in which theβ-varying signed hyperbolic distances
δ(Σ∞(β),Σk) increases according to

δ(Σ∞,Σk) → δ(Σ∞(β),Σk) := βδ(Σ∞,Σk), (4.185)

and simultaneously the corresponding boundary lengths shrinks

Lk → Lk(β) := β−1Lk, 0 ≤ β ≤ ∞, (4.186)

in such a way that

31 Recall that these boundary components correspond, under hyperbolic completion, to the ideal
vertices σ 0

hyp(k) := v0(k).
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Lk(β)e
δ(Σ∞(β),Σk), (4.187)

remains constant. In other words, we are sampling hyperbolic surfaces which are
far away from the Euclidean projection screen, and projecting there as polyhedral
surfaces (Tl ,M) with conical angles {Θ(k)} such that∣∣∣∣ln Θ(k)

2π

∣∣∣∣ = lim
β↗∞Lk(β)e

δ(Σ∞(β),Σk). (4.188)

Under such scaling regime, we indeed get from (4.184) and Theorem 4.5

VolWP

(
Mg,N0(e

δ(Σ∞(β),Σk)Lk(β))
)
= Vol
[
POLg,N0 (Θ,A)

]
. (4.189)

The open/closed duality we have been discussing so far has aspects that naturally
involve three-dimensional hyperbolic manifolds. One may wonder whether or not
such a geometry is just a static arena or an active player. Thus, in the next section, we
go back to geometric considerations for addressing such an issue. This will provide
a suitable framework for introducing a set up related with Chern–Simons theory, a
subject that will be discussed in more detail in the next two chapters.

4.14 Glimpses of Hyperbolic 3-Manifolds
and of Their Volume

The open/closed duality between polyhedral surfaces and hyperbolic surfaces with
geodesic boundaries can be naturally extended to three-dimensional hyperbolic cone-
manifolds. Recall that to a polyhedral surface (Tl ,M) we can associate either
the marked horosphere (Σk, zk) or, equivalently, the (unique) geodesic γ (k,∞)

in H
3,+
up connecting the vertex v0(k) with the vertex at ∞ of an ideal tetrahe-

dron σ 3
hyp(∞, k, h, j) in H

3,+
up . In particular, to any two adjacent triangles sharing

a common edge, say σ 2(k, h, j) and σ 2(k, j, l), correspond pairwise adjacent tetra-
hedra, σ 3

hyp(∞, k, h, j) and σ 3
hyp(∞, k, j, l), that can be glued along the isometric

faces σ 2
hyp(j, k,∞) and σ 2

hyp(∞, k, j). Each face-pairing is realized by an isometry

of H
3,+
up

fjk : σ 2
hyp(j, k,∞) −→ σ 2

hyp(∞, k, j) (4.190)

which reverses orientation (so as to have orientability of the resulting complex).

In this way, by pairwise glueing the q(k) ideal tetrahedra
{
σ 3

hyp(∞, k, hα, hα+1)
}
,

associated with the corresponding Euclidean triangles σ 2(k, hα, hα+1), we generate
a polytope

P3(k) .= "q(k)
α=1σ

3
hyp(∞, k, hα, hα+1)

/{
fhαk
}

(4.191)
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with a conical singularity along the core geodesic γ (k,∞). Explicitly, let us denote
by ψ·,· the dihedral angles associated with the edges σ 1

hyp(·, ·) of this polytope.
From the relations between the dihedral angles of each hyperbolic tetrahedron
σ 3

hyp(∞, k, h, j) and the vertex angles of the corresponding Euclidean triangle

σ 2(k, h, j) it easily follows that

ψ∞,h = θhjk + θkjl ,

ψkj = θkhj + θklj,

ψhj = θhkj,

ψ∞,k =
q(k)∑
α=1

θα,k,α+1 = Θ(k).

(4.192)

Note in particular that the conical defect Θ(k) at the vertex σ 0(k) ∈ Star[σ 0(k)]
propagates as a conical defect along the core geodesic γ (k,∞) of H

3,+
up . It follows

that P3(k) has a non-complete hyperbolic metric and that the singularity on γ (k,∞)

is conical with angle Θ(k). In order to endow P3(k) with a hyperbolic structure, let
P̃γ (k) denote the universal cover in H

3,+
up of P3(k), with the core geodesic γ (k,∞)

removed. P̃γ (k) carries a natural hyperbolic structure and the holonomy represen-
tation of its fundamental group, π1(P̃γ (k)) = Z, is generated by an isometry of
P̃γ (k) ⊂ H

3,+
up of the form

ρ(k) : π1(P̃γ (k)) −→ Isom
(
H

3,+
up

)
(cs, s) �−→

[
a(k)
(

eiφ(s) 0
0 e−iφ(s)

)
, s
]
,

(4.193)

where a(k) > 1 and s �→ cs, 0 ≤ s < ∞ is closed curve winding around the link
of σ 0(k) in Star

[
σ 0(k)
]

with φ(s = 2π) = Θ(k). Since a(k) > 1, the isometry

is hyperbolic (fixing the point v0(k) and ∞ in H
3,+
up ). For simplicity, let us identify

v0(k) with the origin of H
3,+
up . The horosphere Σk intersects "σ 3

hyp(∞, k, hα, hα+1)

along a sequence of offset horocycle segments
{
�

hα

k

}
such that

dH3(�
h1
k , �̂

hq(k)
k ) =

∣∣∣∣∣ln
∑q(k)

α=1 θα+ 1, k, α

2π

∣∣∣∣∣ . (4.194)

Similarly the concentric horosphere ∗Σk defined by z = a(k)zk, a(k) ≥ 1, inter-

sects the "σ 3
hyp(∞, k, hα, hα+1) along a sequence of horocycle segments

{
∗
�

hα
k

}
such that dH3(∗�h1

k ,∗ �̂
hq(k)
k ) =

∣∣∣ln Θ(k)
2π

∣∣∣ . Let us consider the rectangular paral-

lelepiped labeled by the segments
(
�

h1
k , �̂

hq(k)
k ;∗ �

h1
k ,∗ �̂

hq(k)
k

)
. A straightforward

application of (3.10) provides the following relations between the (hyperbolic)
lengths of the sides of this parallelepiped
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k

∣∣∣ =e−d
H3 (Σk,

∗Σk)
∣∣∣�̂hq(k)

k

∣∣∣ ,∣∣∣∗�h1
k

∣∣∣ =e−d
H3 (Σk,

∗Σk)
∣∣∣�h1

k

∣∣∣ , (4.195)

where |. . .| denotes the length of the corresponding horocycle segment. Since

dH3(Σk,
∗Σk) = 2 tanh−1 a(k)− 1

a(k)+ 1
= ln a(k), (4.196)

we get ∣∣∣∗�̂hq(k)

k

∣∣∣ = a(k)−1
∣∣∣�̂hq(k)

k

∣∣∣ , ∣∣∣∗�h1
k

∣∣∣ = a(k)−1
∣∣∣�h1

k

∣∣∣ . (4.197)

Moreover, from (3.51) we have∣∣∣�̂hq(k)
k

∣∣∣ = e

∣∣∣ln Θ(k)
2π

∣∣∣ ∣∣∣�h1
k

∣∣∣ , ∣∣∣∗�̂hq(k)
k

∣∣∣ = e

∣∣∣ln Θ(k)
2π

∣∣∣ ∣∣∣∗�h1
k

∣∣∣ . (4.198)

By comparing these expressions, it follows that we can match the length of horocycle

segment ∗�̂hq(k)
k with the length of the segment �

h1
k if we choose the parameter a(k)

according to

a(k) = e

∣∣∣ln Θ(k)
2π

∣∣∣
. (4.199)

Such a matching condition allows, under the action of ρ(k)
(
π1
(
P̃γ (k)
))
, an (off-

set) identification between opposite faces of
(
�

h1
k , �̂

hq(k)

k ;∗ �
h1
k ,∗ �̂

hq(k)

k

)
, and con-

sequently we can choose this rectangular parallelepiped as a fundamental domain
for the action of the holonomy representation ρ(k). The resulting developing map
describes P̃γ (k) as an incomplete manifold and P3

hyp(k)
.= P̃γ (k) \ ρ(k) is topo-

logically equivalent to a solid torus S
1×B2, (B2 being the meridianal 2-dimensional

disc) with the central geodesic missing. Note that such a geodesic can be naturally
identified with the geodesic boundary component ∂Ωk of the open hyperbolic surface
Ω. In order to get an intuitive picture of what happens, observe that the identification
polytope P3(k), cut by the horosphere Σ∞, is topologically a solid cylinder sliced
by the faces of the component tetrahedra. If we remove a tube of small (infinitesimal)
width around the central geodesic γ (k,∞) we get a topological solid torus sliced
into parallelepipeds, with a thin and long tubular hole associated with the removed
geodesic. The isometry (4.193) twists up this solid torus with a shearing motion, like
a 3-dimensional photographic diaphragm. Adjacent parallelepipeds slide one over
the other tilting up, while the central tube correspondingly winds up accumulating
towards an horizontal S

1.

We can formally extend this geometric analysis to the whole polyhedral surface
(Tl ,M) by forming the support space (for a compatible hyperbolic structure)

V .= "N1(T )

σ 2
hyp(l,m,∞)

σ 3
hyp(∞, k, h, j)

/
{flm} , (4.200)
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(the number of hyperbolic faces to be paired is equal to the number N1(T ) of edges
in |Tl | → M). Note that the link of the vertex at ∞ in V is

link [∞]
.=

N1(T )⋃
σ 1

hyp(l,m)

σ 2
hyp(k, h, j), (4.201)

where the glueing along the edges
{
σ 1

hyp(l,m)
}

is modelled after the polyhedral

surface (Tl ,M). If this latter has genus g, then from the Euler and Dehn-Sommerville
relations

N0(T )− N1(T )+ N2(T ) = 2 − 2g,

2N1(T ) = 3N2(T ),
(4.202)

we get that the support space V has

N2(T ) = 2N0(T )+ 4g − 4 ≥ N0(T )+ g (4.203)

ideal tetrahedra with N0(T ) vertices associated with its boundary components
∂V . As we have seen in Sect. 3.5, the edge-glueing of {σ 2

hyp(k, h, j)} gives rise
to an incomplete hyperbolic surface and consequently also V cannot support,
as it stands, a complete hyperbolic structure. To take care of this, we start by
removing from V an open (horospherical) neighborhood of the vertices. In this
way, each tetrahedron σ 3

hyp(∞, k, h, j) becomes a octahedron with four (Euclid-
ean) triangular faces (in the same similarity class which defines the given tetra-
hedron), and four (hyperbolic) exagonal faces. Note that the boundary of the
removed open neighborhood of ∞ is triangulated by Euclidean triangles and
it reproduces |Tl | → M . Note also that the removed neighborhoods cut out
an open disk Dk around each vertex v0(k) in ∂V . Next, we remove from V
also an open neighborhood of the geodesics {γ (k,∞)}N0(T )

k=1 . In this way we
get from the support space V a handlebody HV . Topologically, HV is [0, 1] ×
Ω, where Ω is the surface with boundary ("∂Ωk) associated with the hyper-
bolic completion of "σ 2

hyp(k, h, j). The handlebody HV plays here the role of

the polytope P̃γ (k) introduced in connection with the support space (4.191).
By identifying the bottom Ω0 � ∂HV |0 and top Ω1 � ∂HV |1 copies of the sur-
face Ω by means of the appropriate orientation reversing boundary homeomorphism
h : ∂HV |0 → ∂HV |1, with h(∂Ωk |0) = −∂Ωk|1, we get the support space

V
(
{Θ(k)}N0(T )

k=1

)
\ K .= HV \ ∼h (4.204)

(V \K , for notational ease), where K is the knot-link generated in HV by the action
of the identification homeomorphism h on the boundaries connecting the tubes asso-
ciated with the removed core geodesics {γ (k,∞)}N0(T )

k=1 . It is not yet obvious that
V \K admits a complete hyperbolic structure. First, we have been rather cavalier on
the delicate issue concerning orientation in glueing the ideal tetrahedra, (for semi-
simplicial triangulations problems connected with orientability of the hyperbolic
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complexes obtained upon face-identifications can be rather serious and we may end
up in a ideal triangulation which may actually not define a manifold). Moreover,
around the removed geodesics {γ (k,∞)}N0(T )

k=1 the geometry is conical, and in order
to establish completeness for the hyperbolic structure we have to discuss how hyper-
bolic Dehn filling can be extended to cone manifolds. These are delicate issues which,
to the best of our knowledge, do not have answers that can be easily given in general
terms. Notwithstanding the technical difficulties in characterizing complete hyper-
bolic structures on V \ K , their existence, when established, implies a number of
important consequences which bear relevance to our analysis.

First of all, if the support space V \ K generated by (Tl ,M), is indeed a three-
dimensional hyperbolic manifold Vhyp({Θ(k)} \ K , then we can easily compute its

hyperbolic volume in terms of the conical angles ({Θ(k)}N0(T )

k=1 ). As a matter of fact
we can associate to any triangle σ 2(k, h, j) of |Tl | → M the volume Vol[σ 3

hyp] of

the corresponding ideal tetrahedron σ 3
hyp. According to Milnor’s formula , (see e.g.,

[5], for a very informative analysis), such a volume can be expressed in terms of
the Lobachevsky functions L (θjkh), L (θkhj), and L (θhjk) of the respective vertex
angles of σ 2(k, h, j), where

L (θjkh)
.= −
∫ θjkh

0
ln |2 sin x| dx. (4.205)

In our setting, this translates into the mapping

σ 2(k, h, j) �−→ Vol
[
σ 3

hyp(∞, k, h, j)
]

= L (θjkh)+L (θkhj)+L (θhjk),
(4.206)

which is well-defined since, due to the symmetries of the dihedral angles, the valuta-

tion of Vol
[
σ 3

hyp(∞, k, h, j)
]

is independent from which vertex of the tetrahedron is

actually mapped to ∞, (see [5], Property C.2.8). Thus, we can compute the volume
of the three-dimensional hyperbolic manifold Vhyp \ K as

Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)
\ K
]

=
N2(T )∑

{σ 2(k, hα,hα+ 1)}
[
L (θα+ 1, k, α)+L (θk, α, α+ 1)+L (θα, α+ 1, k)

]
, (4.207)

where the summation extends over all triangles σ 2(k, hα, hα+1) in the Regge trian-
gulated surface |Tl | → M . Equivalently, in terms of the complex moduli ζα+1,k,α
of the triangles σ 2(k, hα, hα+1), we get

Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)
\ K
]

=
N2(T )∑

{σ 2(k, hα,hα+ 1)}
[
L (argζα+ 1, k, α)+L (argζk, α, α+ 1)+L (argζα, α+ 1, k)

]
.

(4.208)
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It is worthwhile to remark that if one computes the Hessian of Vol
[
Vhyp
]

with
respect the angular variables

{
θα+1,k,α

}
of the generic triangle σ 2(k, hα, hα+1)

one gets

Hk,k
.= ∂2

∂ θα+1,k,α
2 Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)]
= − cot θα+1,k,α

= l2(hα+1, k)+ l2(k, hα)− l2(hα, hα+1)

4Δ(α + 1, k, α)
,

Hα,α
.= ∂2

∂ θk,α,α+1
2 Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)]
= − cot θk,α,α+1

= l2(k, hα)+ l2(hα, hα+1)− l2(hα+1, k)
4Δ(k, α, α + 1)

,

Hα+1,α+1
.= ∂2

∂ θα,α+1,k
2 Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)]
= − cot θα,α+1,k

= l2(hα, hα+1)+ l2(hα+1, k)− l2(k, hα)

4Δ(α, α + 1, k)
,

(4.209)

where Δ
.= Δ(α + 1, k, α) denotes, up to cyclic permutation, the Euclidean area of

the triangle σ 2(k, hα, hα+1). From (4.209) we get

l2(hα+ 1, k) = 2Δ(Hα+ 1, α+ 1 + Hk, k),

l2(k, hα) = 2Δ
(
Hk, k + Hα, α

)
,

l2(hα, hα+1) = 2Δ(Hα, α + Hα+ 1, α+ 1),

(4.210)

which provide sign conditions on Hlm. Actually, it is relatively easy [63] to show
that the restriction of the Hessian of Vol

[
Vhyp \ K

]
to the local Euclidean structure

on each σ 2(k, hα, hα+1) is negative-definite. This latter remark implies that (minus)
the Hessian of the hyperbolic volume can be used as a natural quadratic form, on
the space of deformations of the Euclidean structures associated with polyhedral
surfaces, which naturally pairs with the Weil-Petersson measure. It is also clear
that formally the hyperbolic volume (4.207) does not require the existence of a
complete hyperbolic structure on the support space V \K , and we may well associate
the function (4.207) to V \ K . However, the existence of a complete hyperbolic
structure implies that such a volume function is a topological invariant by Mostow
rigidity. Moreover, one can formulate the so-called volume conjecture , (see [58] for
a review), which, in our setting, may be phrased by stating that if K is not a split
link and Jn(K ; t) is its colored Jones polynomial associated with the n-dimensional
irreducible representation of sl2(C), then

2π lim
n→∞

ln
∣∣Jn(K ; exp

[ 2π i
n

]
)
∣∣

n
= Vol
[
Vhyp

(
{Θ(k)}N0(T )

k=1

)
\ K
]

(4.211)

(in the standard formulation of the volume conjecture the role of the support space
V ({Θ(k)}N0(T )

k=1 ) is played by S
3, and one assumes that the complement S

3\K of
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the link K admits a (complete) hyperbolic structure). Jn(K ; t) is defined through the
n-dimensional irreducible representations of the quantum group Uq(sl(2,C)). For
some hyperbolic knots in S

3, in particular for the figure eight knot (and for torus links,
which are non-hyperbolic and yield 0 on the right member of (4.211)), the conjec-
ture has been proved.32 This connection between knot polynomials and hyperbolic
volume has been actually promoted to be part of a more general conjecture relating
the asymptotics of the colored Jones polynomials to the Chern-Simons invariant

2π i · lim
n→∞

ln Jn(K ; exp
[ 2π i

n

]
)

n
= CS
[
Vhyp�K

]+ iVol
[
Vhyp�K

]
(4.212)

and

lim
n→∞

Jn+ 1(K ; exp
[ 2π i

n

]
)

Jn(K ; exp
[ 2π i

n

]
)

= exp

(
1

2π i

(
CS
[
Vhyp�K

]+ iVol
[
Vhyp�K

]))
(4.213)

where again we have formally referred all quantities to Vhyp�K , in particular
CS
[
Vhyp�K

]
is the Chern-Simons invariant of the connection defined by the hyper-

bolic metric on Vhyp�K . It should be clear that these statements have a status quite
more conjectural then the original ones owing to the conical nature of Vhyp�K ,

nonetheless they are reasonable in view of the holographic principle. Recall that a
geometrical version of classical holography is familiar in hyperbolic geometry as the
Ahlfors-Bers theorem which applies to hyperbolic manifolds V containing a compact
subset determining a conformal structure on the boundary at ∞ of V. In such a case
the geometry of V is uniquely determined by such induced conformal structure at
∞. It should be clear from its very set-up that our approach to closed/open duality
is, geometricaly speaking, holographic in nature. Roughly speaking it is akin to a
simplicial version of Ahlfors-Bers theorem, (for a serious analysis of this issue for
conical hyperbolic manifolds see [52]).
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Chapter 5
State Sum Models and Observables

From a historical viewpoint the Ponzano–Regge asymptotic formula for the 6 j sym-
bol of the group SU(2) [50], together with Penrose’s original idea of combinator-
ial spacetime out of coupling of angular momenta—or spin networks—[51], is the
precursor of the discretized approaches to 3-dimensional (3D) Euclidean quantum
gravity collectively referred to as ‘state sum models’ after the 1992 paper by Turaev
and Viro [55]. The prominent role here is played by the colored tetrahedron encod-
ing the tetrahedral symmetry of the 6 j symbol-reminiscent of the Platonic solid
shown in the reproduction of Fig. 5.1—and recognized in the semiclassical limit as
a geometric 3-simplex whose edge lengths are irreps labels from the representation
ring of either SU(2) or its universal enveloping algebra Uq(sl(2)) with deformation
parameter q = root of unity.

We start with a review of some basic facts on Ponzano–Regge and Turaev–Viro
state sum models for closed 3-manifolds and relationships of the latter with the gen-
erating functional of SU(2) Chern–Simons–Witten (CSW) Topological Quantum
Field Theory (TQFT). It is worth noting that there exist very informative and more
complete reviews dealing with such topics in connection with geometric topology,
discretized quantum gravity models, TQFT and associated 2D Conformal Field The-
ories [2, 9, 14, 21, 25, 26, 33, 37, 49, 56, 68], just to mention a few. Our treatment
relies basically on the original formulations given in [4, 50], topic 9 and [55] respec-
tively, thus avoiding the algebraic language of unitary modular tensor categories
[49, 68] and focusing on some basic geometric and field-theoretic aspects.

The main body of the chapter is devoted to address a number of generalizations
and extensions of the state sum functionals—some of which developed by the authors
in collaboration with Gaspare Carbone—also in view of applications to topological
quantum computing in the next chapter, thus conveying the idea that the two pictures
might actually merge together [8].

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 175
DOI: 10.1007/978-3-642-24440-7_5, © Springer-Verlag Berlin Heidelberg 2012
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Fig. 5.1 An ancient view to
a tetrahedron

5.1 The Wigner 6j Symbol and the Tetrahedron

Given three angular momentum operators J1, J2, J3—associated with three kine-
matically independent quantum systems—the Wigner-coupled Hilbert space of the
composite system is an eigenstate of the total angular momentum

J1 + J2 + J3
.= J (5.1)

and of its projection Jz along the quantization axis. The degeneracy can be completely
removed by considering binary coupling schemes such as (J1 + J2)+ J3 and J1 +
(J2+ J3), and by introducing intermediate angular momentum operators defined by

(J1 + J2) = J12; J12 + J3 = J (5.2)

and

(J2 + J3) = J23; J1 + J23 = J, (5.3)

respectively. In Dirac notation the simultaneous eigenspaces of the two complete sets
of commuting operators are spanned by basis vectors

| j1 j2 j12 j3; jm〉 and | j1 j2 j3 j23; jm〉, (5.4)

where j1, j2, j3 denote eigenvalues of the corresponding operators, j is the eigenvalue
of J and m is the total magnetic quantum number with range− j ≤ m ≤ j in integer
steps. Note that j1, j2, j3 run over {0, 1

2 , 1, 3
2 , 2, . . . } (labels of SU(2) irreducible

representations), while | j1 − j2| ≤ j12 ≤ j1 + j2 and | j2 − j3| ≤ j23 ≤ j2 + j3 (all
quantum numbers are in � units).

The Wigner 6 j symbol expresses the transformation between the two schemes
(5.2) and (5.3), namely
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| j1 j2 j12 j3; jm〉 =
∑
j23

[(2 j12 + 1)(2 j23 + 1)]1/2
{

j1 j2 j12
j3 j j23

}
| j1 j2 j3 j23; jm〉

(5.5)

apart from a phase factor,1 and where (2 j12 + 1) and (2 j23 + 1) are the dimensions
of the irreps labeled by j12 and j23, respectively. It follows that the square of the 6 j
symbol2 represents the probability that a system prepared in a state of the coupling
scheme (5.2), where j1, j2, j3, j12, j have definite magnitudes, will be measured to
be in a state of the coupling scheme (5.3).

The 6 j symbol can be written as sums of products of four Clebsch–Gordan coef-
ficients or Wigner 3 j symbols. The relations between the 6 j and the latter is given
explicitly by (see e.g. [56])

{
a b c
d e f

}
=
∑

(−)Φ
(

a b c
α β −Γ

)(
a e f
α ε −ϕ

)(
d b f
−δ β ϕ

)(
d e c
δ −ε Γ

)
, (5.6)

whereΦ = d + e+ f + δ+ ε+ϕ. Here Latin letters stand for j-type labels (integer
or half-integers non-negative numbers) while Greek letters denote the associated
magnetic quantum numbers (each varying in integer steps between − j and j, j ∈
{a, b, c, d, e, f }). The sum is over all possible values of α, β, γ, δ, ε, ϕ with only
three summation indices being independent.

On the basis of the above decomposition the 6 j symbol is invariant under any
permutation of its columns or under interchange the upper and lower arguments in
each of any two columns. These algebraic relations involve 3! × 4 = 24 different
6 j with the same value and are referred to as ‘classical’ as opposite to ‘Regge’
symmetries to be discussed below.

The 6 j symbol is naturally endowed with a tetrahedral symmetry, by noticing
first that each 3 j (or Clebsch–Gordan) coefficient vanishes unless its j-type entries
satisfy the triangular condition, namely |b − c| ≤ a ≤ b + c, etc. This suggests
that each of the four 3 j ’s in (5.6) can be be associated with either a 3-valent vertex
or a triangle. Accordingly, there are two graphical representation of the 6 j exhibit-
ing its symmetry properties. Here we adopt the three-dimensional picture intro-
duced in [50], rather than Yutsis’ ‘dual’ representation as a complete graph on four
vertices [63]. Then the 6 j is thought of as a real solid tetrahedron T with edge lengths

1 = a+ 1

2 , 
2 = b+ 1
2 , . . . , 
6 = f + 1

2 in � units3 and triangular faces associated
with the triads (abc), (aef), (dbf), (dec). This implies in particular that the quantities

1 Actually the above expression should contain the Racah W-coefficient W ( j1 j2 j3 j; j12 j23)which
differs from the 6 j by the factor (−) j1+ j2+ j3+ j .
2 According to Condon—Shortely conventions adopted here, the 6 j is a real orthogonal matrix,
and the same holds true for Clebsch–Gordan and Wigner coefficients.
3 The 1

2 -shift is crucial in the analysis developed in [50]: for high quantum numbers the length
[ j ( j+1)]1/2 of an angular momentum vector is close to j+ 1

2 , see the semiclassical analysis given
in Sect. 5.1.2.
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q1 = a+b+ c, q2 = a+ e+ f, q3 = b+d+ f, q4 = c+d+ e (sums of the edge
lengths of each face), p1 = a+b+d+ e, p2 = a+ c+d+ f, p3 = b+ c+ e+ f
are all integer with ph ≥ qk (h = 1, 2, 3, k = 1, 2, 3, 4). The conditions addressed
so far are in general sufficient to guarantee the existence of a non-vanishing 6 j sym-
bol, but they are not enough to ensure the existence of a geometric tetrahedron T,
topologically a 3-disk bounded by a 2-sphere, in Euclidean 3-space, as Fig. 5.1 is
aimed to suggest. More precisely, T exists in this sense if (and only if, see the dis-
cussion in the introduction of [50]) its square volume V (T )2 ≡ V 2, evaluated by
means of the Cayley–Menger determinant, is positive.

5.1.1 The Racah Polynomial and Algebraic Identities
for the 6j Symbol

The generalized hypergeometric series, denoted by p Fq , is defined on p real or com-
plex numerator parameters a1, a2, . . . , ap,q real or complex denominator parameters
b1, b2, . . . , bq and a single variable z by

p Fq

⎛
⎝a1 . . . ap

; z
b1 . . . bq

⎞
⎠ = ∞∑

n=0

(a1)n · · · (ap)n

(b1)n · · · (bp)n

zn

n! , (5.7)

where (a)n = a(a+1)(a+2) · · · (a+n−1) denotes a rising factorial with (a)0 = 1.
If one of the numerator parameter is a negative integer, as actually happens in the
following formula, the series terminates and the function is a polynomial in z.

The key expression for relating the 6 j symbol to hypergeometric functions is
the Racah sum rule (see e.g. [4], topic 11 and [56], Chap. 9 also for the original
references). Then the expression of the so-called Racah polynomial in terms of the
4 F3 hypergeometric function evaluated at z = 1 reads{

a b d
c f e

}
= Δ(abe)Δ(cde)Δ(ac f )Δ(bd f ) (−)β1(β1 + 1)!

×
4 F3

⎛
⎝α1 − β1 α2 − β1 α3 − β1 α4 − β1

; 1
−β1 − 1 β2 − β1 + 1 β3 − β1 + 1

⎞
⎠

(β2 − β1)!(β3 − β1)!(β1 − α1)!(β1 − α2)!(β1 − β3)!(β1 − α4)!
(5.8)

where

β1 = min(a + b + c + d; a + d + e + f ; b + c + e + f )

and the parameters β2, β3 are identified in either way with the pair remaining in the
3-tuple (a+ b+ c+ d; a+ d+ e+ f ; b+ c+ e+ f ) after deleting β1. The four α’s
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may be identified with any permutation of (a+b+e; c+d+e; a+c+ f ; b+d+ f ).
Finally, the Δ-factors in front of 4 F3 are defined, for any triad (abc) as

Δ(abc) =
[
(a + b − c)!(a − b + c)!(−a + b + c)!

(a + b + c + 1)!
]1/2

Such a seemly complicated notation is indeed the most convenient for the purpose
of listing a number of analytical and algebraic properties of the Wigner 6 j symbol.

• The Racah polynomial is placed at the top of the Askey hierarchy including
all of hypergeometric orthogonal polynomials of one (discrete or continuous)
variable [9]. Thus most commonly encountered families of special functions in
quantum mechanics can be obtained from the Racah polynomial by applying suit-
able limiting procedures, as recently reviewed in [53]. Moreover, such an unified
scheme provides in a straightforward way the algebraic ‘defining relations’ of the
Wigner 6 j symbol. In the standard notation adopted in the rest of this chapter such
relations are:
the Biedenharn–Elliott identity (R = a + b + c + d + e + f + p + q + r):

∑
x

(−)R+x (2x + 1)

{
a b x
c d p

}{
c d x
e f q

}{
e f x
b a r

}

=
{

p q r
e a d

}{
p q r
f b c

}
;

(5.9)

the orthogonality relation (δ is the Kronecker delta)

∑
x

(2x + 1)

{
a b x
c d p

}{
c d x
a b q

}
= δpq

(2p + 1)
, (5.10)

where the summation label x runs, for any fixed values of the other entries, over
a finite range owing to triangular inequalities which must hold for each triad in
the 6 j’s.

• Given the Racah polynomial as in (5.8), the unexpected new symmetry of the
6 j symbol discovered in 1958 by Regge [55] (see also [3, 56]) is recognized as
a ‘trivial’ set of permutations on the parameters α, β that leaves 4 F3 invariant.
Combining the Regge symmetry and the ‘classical’ ones, one get a total number of
144 algebraic symmetries for the 6 j . Note in passing that implications of Regge
symmetry on the geometry of the quantum tetrahedron, discussed first in [59],
should deserve further investigations.

• The Askey hierarchy of orthogonal polynomials can be extended to a q-hierarchy
[9], on top of which the q-analog of the 4 F3 polynomial stands. Accordingly, the
q-analog of the Wigner 6 j symbol might be consistently introduced (actually for
q real between 0 and 1), but we postpone this issue to Sect. 5.2.2 where the q-6 j
is recovered as a basic ingredient in the construction of the representation ring of
the (q = root of unity)–analog of SU(2) (crf. [13, 42] for accounts on the theory of
q-special functions and its relations with q-tensor algebra).
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• The 6 j symbol satisfies a 3-term recursion relation in one variable [56] which
derives directly from the Biedenharn–Elliott identity (5.9). It can be recasted in
the form of a second order difference equation, which in turn becomes a differential
equation for a continuous variable in the semiclassical limit analyzed within the
WKB framework, see [4, 43, 50, 63, 64], topic 9. This remark has to do with
a deep property of hypergeometric polynomials in the Askey scheme [9, 42]:
the defining difference (differential) equation and the recursion relation are ‘dual’
to each other but the 6 j happens to be ‘self-dual’ so that the two viewpoints can
be used equivalently.

5.1.2 Ponzano–Regge Asymptotic Formula

According to Bohr’s correspondence principle, classical concepts become increas-
ingly valid in the regime where quantum numbers are large. In handling with angular
momenta variables measured in units of �, the classical limit �→ 0 implies that, for
finite angular momenta, both the j-quantum numbers and the magnetic ones are much
bigger than one. For what concerns pure angular momentum states as those intro-
duced in (5.4), when approaching classical limit all the components of the operators
J’s are confined to narrower ranges around specific values. Thus geometric concepts
typical of the semiclassical vector model arise naturally and the corresponding phys-
ical quantities have to be thought as averaged out. Angular momentum functions
such as Wigner rotation matrices and 3 j symbols, as well as 6 j symbols, admit
well defined ‘asymptotic limits’, whose absolute squares (probabilities) correspond
to classical limits of the related physical quantities (cfr. [4], topic 9 for a survey).

The (positive frequency part of) asymptotic formula for the 6 j symbol proposed
by Ponzano and Regge in [50] reads

{
a b d
c f e

}
∼ 1√

24πV
exp

{
i

(
6∑

r=1


rθr + π4

)}
(5.11)

where the limit is taken for all entries � 1 (recall that � = 1) and 
r ≡ jr + 1/2
with { jr } = {a, b, c, d, e, f }, cfr. footnote 3. V is the Euclidean volume of the
tetrahedron T, θr is the angle between the outer normals to the faces which share the
edge 
r and the formula is valid in the the classically allowed region determined by
the requirement V 2 > 0.

From a purely quantum mechanical viewpoint, the above probability amplitude
has the form of a semiclassical (wave) function since the factor 1/

√
24πV is slowly

varying with respect to the spin variables while the exponential is a rapidly oscillating
dynamical phase (cfr. Wigner’s semiclassical estimate for the probability, namely{

a b d
c f e

}2

∼ 1/12πV ). It is worth noting that, quite independently from the remarks

to be addressed below, the literature concerning more or less ‘rigorous’ derivations
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of (5.11)—and of its counterpart in the classically forbidden region—spreads over
decades, starting from [4, 43, 63, 64], topic 9, up to [59], just to mention a few.

Coming to Feynman’s path sum interpretation of quantum mechanics, the argu-
ment of the exponential in (5.11) can be recognized as a classical action involving
pairs of canonical variables (angular momenta and their conjugate angles). Such an
interpretation, already sketched in [50], has been improved recently by resorting
to rigorous multidimensional WKB analysis and geometric quantization methods
[5, 6].

However, the most intriguing and far-reaching physical interpretation of the
asymptotic formula (5.11) stems from the role it plays as a semiclassical limit
of a path-sum over all quantum fluctuations to be associated with the simplest
3-dimensional discrete ‘spacetime’, an Euclidean tetrahedron T. In fact the argu-
ment in the phase reproduces the classical Regge action SR(
) for T [54] since in
the present case (d − 2) simplices σ 1

i are the edges of T and Vol(σ 1
i ) ≡ 
i are the

associated lengths. On such a crucial remark relies the so-called Ponzano–Regge
state sum for discretized gravity in dimension 3 addressed in the next section.

In this monography we do not address the issue of asymptotic expansions of
more general SU(2) recoupling coefficients or 3nj symbols (see [4], topic 12 for
the necessary background material). We just mention the results of [31], where the
asymptotic formula for the 9 j is worked out on a rigorous basis, and a general scheme
for dealing systematically with (partial) asymptotics of 3nj symbols proposed in [3].
From the viewpoint of special function theory (Sect. 5.1.1) such coefficients are
related to hypergeometric polynomials in more than one discrete variable (the 9 j is
actually in two variables [42]) and the analysis of the associated recursion relations
and differential equations in the large-j limit would be interesting also in view of
applications in quantum chemistry [4].

5.2 State Sum Functionals for Closed 3-Manifolds

5.2.1 Ponzano–Regge State Sum and Semiclassical
Euclidean Gravity

With a slight change of notations with respect to the previous chapters, denote by
T 3( j) → M3 a particular triangulation of a (not necessarily oriented) closed
3-dimensional simplicial PL manifold M3 of fixed topology obtained by assigning
SU(2) spin variables, or ‘colors’, { j} to the edges of T 3. The assignment satisfies a
number of conditions, better illustrated if we introduce the state functional associated
with T 3( j), namely

Z[T 3( j)→ M3; L] = Λ(L)−N0

N1∏
A=1

(−1)2 jA wA

N3∏
B=1

φB

{
j1 j2 j3
j4 j5 j6

}
B

(5.12)
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where N0, N1, N3 are the number of vertices, edges and tetrahedra in T 3( j),
Λ(L)= 4L3/3C (L is a fixed length and C an arbitrary constant), wA

.= (2 jA + 1)

are the dimensions of irreps of SU(2) which weigh the edges, φB = (−1)
∑6

p=1 jp

and {:::}B are 6 j symbols to be associated with the tetrahedra of the triangulation.
The Ponzano–Regge state sum is obtained by summing over triangulations corre-
sponding to all assignments of spin variables { j} bounded by the cut-off L

ZPR[M3] = lim
L→∞

∑
{ j}≤L

Z [T 3( j)→ M3; L], (5.13)

where the cut-off is formally removed by taking the limit in front of the sum
(a regularization procedure that does not provide necessarily a finite result, see the
next section). From a historical viewpoint (5.13) was recognized, see e.g. [46], as
the first example of a consistent discretized ‘path integral’4 for simplicial quantum
gravity, the approach founded in the early 1980s by R. Williams, H. Hamber, J. Hartle
and others (see the review [70] also for a complete list of references up to 1992).
Further developments of these ideas, in particular the ‘dynamical triangulations’ set-
ting, have been extensively addressed up to the end of the 1990s and we refer to the
Lecture Notes co-authored with Ambjørn [1] for a comprehensive review and list of
references.

It is not easy to review in short the huge number of implications and further
improvements of Ponzano–Regge state sum functional (5.13), as well as its deep and
somehow unexpected relationships with so many different topics in quantum field
theory and in pure mathematics. In particular we have to leave aside the analysis of
the prominent role of Ponzano–Regge model in the Loop Quantum Gravity approach,
see e.g. [27, 56, 62] and references therein.

We are going to focus in the rest of this section on the issue of topological invari-
ance of Ponzano–Regge state sum. As already noted in [50] and reviewed for instance
in [21], the state sum ZPR[M3] (if finite) is a combinatorial invariant of the manifold
M3 because its value is independent of the particular triangulation T 3( j) used to
evaluate it. Such feature can be read from a field-theoretic viewpoint as related to the
behavior of the discretized path sum not only under refinements of the mesh but also
under compositions associated to different dissections on the underlying spacetime
(see Sect. 5.3) The ‘combinatorial moves’ that leave (5.13) invariant are expressed
algebraically in terms of the Biedenharn–Elliott identity (5.9), representing the moves
(2 tetrahedra)↔ (3 tetrahedra)

4 By consistency we mean that the discretized counterpart of the functional measure in the
Euclidean path integral would be proportional to

∏
(2 j + 1)d j, according to the identification

between ‘colors’ and edge lengths. Triangular (tetrahedral) inequalities, quite difficult to be imple-
mented within a purely simplicial PL background, are automatically fulfilled since the 6 j symbol
vanishes whenever a constraint of this kind is violated, cfr. the introductory part of this section and
further remarks on regularized functional measures in Sect. 5.2.2.
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x

and of both the Biedenharn–Elliott identity and the orthogonality conditions (5.10)
for 6 j symbols, which represents the so-called Alexander move together its inverse,
namely (1 tetrahedra)↔ (4 tetrahedra)

Then, in view of the remarks in Sect. 5.1.1, these algebraic identities play the
twofold role of ‘defining relations’ for the 6 j and ‘combinatorial constraints’ on
local arrangements of colored tetrahedra in 3-dimensional triangulations. Moreover,
borrowing the language of (braided) tensor categories [62], the Biedenharn–Elliott
identity is recognized as the ‘pentagon’ constraint for the representation ring of
SU(2), while the so-called ‘hexagon’ constraints would correspond to the Racah
identity for the 6 j symbol, whose combinatorial content is related to braiding (a
morphism which is actually trivial in the SU(2) case), see Sect. 5.4.

In Appendix A of [1] we gave a comprehensive account of results from
(d-dimensional) geometric topology concerning relations between PL-homeomorphic
closed PL manifolds and equivalence of their simplicial dissections under families of
combinatorial moves named ‘bistellar’ after Pachner’s paper [48]. Without entering
into much details, we are going to review just a few basic definitions with the aim of
setting up a shorthand notation for combinatorial moves to be extended in Sect. 5.3
in dealing with manifolds with boundary.

Two closed PL manifolds Md
1 and Md

2 are PL-homeomorphic if and only if there
exists a map f : Md

1 → Md
2 which is both a homeomorphism and a simplicial

isomorphism, Md
1 
 Md

2 . Given two triangulations T d
1 → |T d

1 | 
 Md
1 and

T d
2 → |T d

2 | 
 Md
2 , Pachner [48] proved that they are PL-homeomorphic if and
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only if T d
1 can be transformed into T d

2 by a finite sequence of d-dimensional bistellar
moves (and their inverse moves), formally

|T d
1 | 
 |T d

2 | ⇔ T d
1 ∝bst T d

2 . (5.14)

The classification of the allowed moves is based on the observation that each move
involves a finite arrangement of connected d-simplices, topologically a d-dimensional
disk bounded by a (d − 1)-dimensional PL sphere, which must be kept fixed. Each
local operation of this kind is characterized in terms of a pair of sub-simplices,
σ and τ, whose dimensionalities satisfy dim(σ )+ dim(τ ) = d.

If nd is the number of d-simplices ∈ T d involved in a bistellar operation, then{[nd → (d + 1)− (nd − 1)]dbst, nd = 1, 2, . . . , d + 1
}

(5.15)

is a convenient notation for the set admissible moves in dimension d. For instance the
case nd = 1 corresponds to the move [1→ (d + 1)]dbst-one d-simplex is transformed
into (d + 1) d-simplices with the same boundary configuration—and it can be easily
recognized as the Alexander (sometimes called ‘barycentric’) move in any dimension
d, obtained by putting one new vertex inside one d-simplex and joining it to the
original vertices. Its inverse move is represented by [(d + 1) → 1]dbst, and both of
them satisfy the constraint dim(σ ) + dim(τ ) = d since the sub-simplices involved
are indeed one 0-simplex and one d-simplex. According to the above notation, the
admissible bistellar moves in d = 3 , depicted in figures, can be listed as

[1↔ 4]3bst and [2↔ 3]3bst, (5.16)

where a double arrow denotes the move and its inverse. Similarly in d = 2 we have

[1↔ 3]2bst and [2→ 2]2bst, (5.17)

which stand for the Alexander move (and its inverse) and the ‘flip’ move acting on
a pair of triangles joined along an edge (cfr. the role of the latter in dealing with
polyhedral surfaces in Chap. 1, and notice that here operations are blind with respect
to their effective metric realization).

5.2.2 Turaev–Viro Quantum Invariant

In the seminal paper [55] a ‘regularized’ version of (5.13) based on the representation
theory of the quantum deformation of the universal enveloping algebra of sl(2,C)
(the complexified counterpart of the algebra su(2)) denoted by Uq(sl(2)),was shown
to provide be a well-defined (finite) quantum invariant for closed 3-dimensional PL
manifolds. Its expression (for a triangulation with N0 vertices, N1 edges and N3
tetrahedra) reads
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ZTV [M3; q] =
∑
{ j}

ω−2N0

N1∏
A=1

ω2
A

N3∏
B=1

∣∣∣∣ j1 j2 j3
j4 j5 j6

∣∣∣∣
B
, (5.18)

where the summation is over all { j} labeling highest weight irreps of Uq(sl(2))
for q = exp{2π i/r} and j ∈ {0, 1/2, 1, . . . , (r − 2)/2}. The weights in the state
sum are

ω2 = −2r

(q1/2 − q−1/2)2

ω j = (−)2 j [2 j + 1]1/2
(5.19)

where a q-integer [n] is defined as

[n] := [n]q = qn/2 − q−n/2

q1/2 − q−1/2 . (5.20)

Finally each tetrahedron is weighted by∣∣∣∣ j1 j2 j3
j4 j5 j6

∣∣∣∣ = (√−1
)−2

∑
ji
{

j1 j2 j3
j4 j5 j6

}
q
, (5.21)

where on the right-hand side there appears the q-6 j symbols of Uq(sl(2)) whose
entries are the colors ji , i = 1, 2, . . . , 6. The proof that (5.18) for each value of q
is an invariant of the PL structure was made in [55] by resorting to a sophisticated
analysis that we are not going to review here. What sufficies to say is that a prominent
role is played by the q-analog of Biedenharn–Elliott identity (5.9) together with the
properties of the representation ring of Uq(sl(2)),which ensure that the state sum is
actually finite owing to the relations

∑
k ω

2
k = ω2

i ω
2
l and ω2 = ω−2

l

∑
k,i ω

2
k ω

2
i

(where (k, i, l) belong to a triad satisfying triangular inequalities). However (5.18)
should be also an extension of Ponzano–Regge state sum (5.13) as a physical model
as far as ZTV [M3; q = 1] = ZPR[M3] and in the limit q → 1 (r → ∞) :
[2 j + 1] ≈ (2 j + 1)+ O(r−2) and ω2 ≈ r3/2π2 (1+ O(r−2)).

The issue of the (q → 1)-limit of ZT V has been discussed soon after the discov-
ery of this quantum invariant [41] and later on by a number of authors.5 The correct
physical interpretation has been recognized by going through the ‘one-loop’ expan-
sion of TV state sum (as well as PR state sum) to quantum gravity in the first-order
formalism [58], where the classical action is of Chern–Simons-type for the gauge
group SU(2) with (or without) a cosmological constant (see [2, 9] for accounts and
original references).

Actually most developments of Turaev–Viro model have taken place in low-
dimensional geometric topology with the birth of an entirely new branch dealing

5 Actually the geometric content of the q-6 j symbol comes out in such a perturbative (not quite
‘semiclassical’) limit, and interestingly its emerging geometry is spherical at q a root of unity and
hyperbolic in case of q real positive [65].
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with quantum invariants and their ‘perturbative’ or finite-type counterparts (see the
monography [49] and the rich bibliography therein).

Both the physical interpretation and most mathematical applications of quantum
invariants rely on the connection between the state sum (5.18) at a fixed value of
the root of unity q and a Chern–Simons–Witten generating functional addressed
in the next section (we postpone to Sect. 5.4.3 a few remarks on the strictly related
Reshetikhin–Turaev invariant [53] obtained by presenting the 3-manifold as the com-
plement of a knot in the 3-sphere).

5.2.3 Chern–Simons–Witten Generating Functional
and Turaev–Viro Invariant

Let M3 represent in this section a closed oriented smooth 3-manifold and recall that,
once given a C∞ atlas, M3 belongs to a unique PL-type. The state sum (5.18) can
be shown to be equal to the square of the modulus of the Chern–Simons–Witten
(Reshetikhin–Turaev) invariant [53, 60], which in turn represents the quantum gen-
erating functional of an SU(2) Chern–Simons topological field theory [9, 14, 26, 37].
For any fixed root of unity q one has

ZTV [M3; q] ←→ ZCSW [M3; k]ZCSW [M̄3; k] ≡ |ZCSW [M3; k]|2, (5.22)

where the ‘level’ k of the Chern–Simons functional is related to the deformation
parameter q = exp{2π i/r} by identifying it with r and ZCSW [M̄3; k] denotes the
invariant evaluated for M3 with the opposite orientation. The proof of this equiva-
lence has been provided by Turaev himself [68], by Walker [69], by Roberts [58],
Beliakova and Durhuhs [12] and by Kauffman and Lins [37] by resorting to differ-
ent methodologies (see also the review [49]). Without entering into details on the
proof, we conclude this section by reviewing in brief the original construction of the
3-manifold invariant ZCSW [M3; k].

Topological quantum field theories (TQFT) are particular types of gauge theo-
ries, namely field theories quantized through the (Euclidean) path integral prescrip-
tion starting from a classical Yang–Mills action defined on a suitable d-dimensional
space(time). TQFT are characterized by partition functions and observables (correla-
tion functions) which depend only on the global features of the space on which these
theories live, namely independent of any metric which may be used to define the
underlying classical theory. The geometrical and topological generating functionals
and correlation functions of such theories are computable by standard techniques in
quantum field theory and provide novel representations of certain global invariants
(for d-manifolds and for particular submanifols embedded in the ambient space).

Focusing on the 3-dimensional case denote by Σ1 and Σ2 a pair of disjoint
2-dimensional manifolds and by M3 a 3-dimensional manifold with boundary
∂M3 = Σ1∪Σ2 (all manifolds here are Riemannian, compact, smooth and oriented
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and ∪ is the disjoint union). According to the axiomatization given by Atiyah [10] a
unitary 3d quantum field theory corresponds to the assignment of

(i) finite dimensional Hilbert spaces (endowed with non-degenerate bilinear forms)
HΣ1 and HΣ2 to Σ1 and Σ2, respectively;

(ii) a map (‘functor’) connecting such Hilbert spaces

HΣ1

Z[M3]−−−→ HΣ2 (5.23)

where M3 is a cobordism, namely it interpolates betweenΣ1 (incoming bound-
ary) and Σ2 (outgoing boundary). Without entering into details concerning a
few more axioms (diffeomorphism invariance, factorisation etc.) we just recall
that unitarity implies that;

(iii) if Σ̄ denotes the surface Σ with the opposite orientation, then HΣ̄ = H ∗
Σ,

where ∗ stands for complex conjugation;
(iv) the functors (5.23) are unitary and Z[M̄3] = Z∗[M3], where M̄3 denotes the

manifold with the opposite orientation.

In Chern–Simons theory (discussed here for the gauge group SU(2) but general-
izable to any SU(N) the functor (5.23) is the partition function ZC SW associated with
the classical action

SCS(A) =
∫

M3
Tr

(
A ∧ dA+ 2

3
A ∧ A ∧ A

)
(5.24)

written for the case ∂M3 = ∅. Here A is a connection on the trivial SU(2)-bundle
over M3, namely it is a skew–Hermitian matrix of Lie algebra-valued 1-forms with
trace 0, A ∈ Ω(M3, su(2)), d is the exterior differential and the wedge products ∧
of differential forms and traces are combined with matrix multiplication.

The partition function is obtained formally by integrating the exponential of the
classical action (5.24) over the space A/G of equivalence classes of (flat) connections
modulo gauge transformations

ZCSW [M3; k] =
∫

A/G
[DA]exp

{
ik

4π
SCS(A)

}
, (5.25)

where � = 1 and the coupling constant k, the level of the theory, is constrained to be a
positive integer by the quantization procedure. A/G is the quotient ofΩ(M3, su(2))
by the action of the Lie group G of maps g : M3 → G given by

g · A = g−1 Ag + g−1dg; A ∈ A/G . (5.26)

In the field—theoretic setting of path integrals, ‘observables’ of the theory are
quantities which must be gauge—invariant and invariant under diffeomorphisms of
the ambient manifols. These properties are shared by Wilson loop operators Wk(K ),
namely holonomies of the connection 1-form evaluated on closed (knotted) curves
K in M3, formally
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Wk(K ) =
∫

A/G [DA]e ik
4π SCS(A)Tr (holK )∫

A/G [DA]e ik
4π SCS(A)

(5.27)

where hol K
.=Pexp

∫
K A,P is the path ordering and the trace is over Lie-algebra

indices. Recall that, once chosen the adjoint representation of the Lie algebra of the
group SU(2) to express the holonomies, (5.27) represents the Jones polynomial of
the knot K [29, 60]. Both the partition function ZCSW and Jones-type polynomial
invariants of knots will be discussed in the next chapter in connection with (quantum)
computational questions.

Remark The extension of (5.25) to the case ∂M3 �= ∅ requires modifications of the
classical action (5.24) by suitable Wess–Zumino–Witten (WZW) terms providing
non-trivial quantum degrees of freedom on the boundary surfaces, see [9] for a
review. In [7] direct correspondence between 2d (boundary) Regge triangulations
and punctured Riemann surfaces has been established, thus providing a novel explicit
characterization of the WZW model on triangulated surfaces on any genus at a fixed
level 
 = k + 2.

5.3 State Sum Functionals for 3-Manifolds with Boundary

Given the ‘topological’ nature of Turaev–Viro (Ponzano–Regge) state sums in case
of closed 3-manifolds, whenever a 2-dimensional boundary occurs in M3, giving
rise to a simplicial PL-pair (M3,Σ), things might change. The reason for deal-
ing with such extended state sums—not simply addressing this issue on the basis
of the correspondence (5.22) with CSW functional and following for instance the
approach quoted in the previous remark—is related to the possibility of addressing
in a straightforward way 2d discretized (lattice) models on the boundary which are
useful in applications, see the central part and the final remark of Sect. 5.3.3. More-
over, in view of the difficulties in dealing with heuristic path integral definitions of
the invariants given in (5.25, 5.27), the statistical sum approach certainly provides a
more effective computational scheme, cfr. Sect. 5.4.

5.3.1 Turaev–Viro Invariant with a Fixed
Boundary Triangulation

The Turaev–Viro invariant (5.18) can be easily generalized to a simplicial pair
(M3, ∂M3 = T 2( j ′)), where the 2-dimensional boundary triangulation is kept
fixed [68]. More precisely, given the assignments of weights to the interior of a
particular colored triangulation T 3( j) → M3 as in Sect. 5.2.2, consider the tri-
angulation it induces on the boundary, ∂T 3( j ′) := T 2( j ′), where the collective
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variable j ′ denotes the subset of colorings labeling boundary edges (and from now
on { j} are the admissible colorings of Int (T 3( j)). Then the state sum

ZTV [(M3, T 2( j ′)); q] =
∑
{ j}

ω−2N0+n0

N1∏
A=1

ω2
A

n1∏
A′=1

ωA′
N3∏

B=1

∣∣∣∣ j1 j2 j3
j4 j5 j6

∣∣∣∣
B
,

(5.28)
where n0, n1 are the numbers of vertices and edges in T 2( j ′), is a quantum invari-
ant depending explicitly on the fixed boundary coloring { j ′}. The weight of each
boundary vertex is ω and a boundary edge labeled by { j ′}. contributes with ω j ′
given in (5.19). Then these assignments are compatible with the correct behav-
ior of Turaev–Viro partition functions under composition (corresponding to invari-
ance under arbitrary dissections of 3-triangulations). We postpone to Sect. 5.4.1 the
illustration of the original axiomatic formulation of such kind of statistical sums in
terms of initial data sets.

An extension to 3-manifold with boundary could be made for Ponzano–Regge
state sum (5.13) as well by setting q = 1 in (5.28) and replacing each ω2-factor
with Λ(L).

5.3.2 Ponzano–Regge State Sum for a Pair
(

M3, ∂M3)

In this section we are going to extend the Ponzano–Regge state sum of Sect. 5.2.1 to
the case of a compact simplicial PL-pair (M3, ∂M3)where the boundary triangulation
is not kept fixed [17]. The resulting functional (up to regularization) is shown to be
an invariant by resorting to a general set of combinatorial moves (bistellar operations
and shellings).

This result has been generalized to d-dimensional simplicial PL-pairs
(
Md , ∂Md

)
in [18], thus providing an inductive procedure to built up an entire hierarchy of state
sum invariants to be identified with discretized versions of generating functionals of
topological quantum field theory of the BF type [33] (see a few more remarks at the
end of this section).

Given a 3-dimensional simplicial pair (M3, ∂M3) consider the colored triangula-
tion

(T 3( j), ∂T 3( j ′,m)) −→ (M3, ∂M3). (5.29)

representing an admissible assignment of both spin variables to the collection of the
edges ((d−2 )-simplices) in (T 3, ∂T 3) and of momentum projections to the subset of
edges lying in ∂T 3. The collective variable j ≡ { jA}, A = 1, 2, . . . , N1, denotes
all the spin variables, n′1 of which are associated with the edges in the boundary
(for each A: jA = 0, 1/2, 1, 3/2, . . . in � units). Notice that the last subset is
labeled both by j ′ ≡ { j ′C}, C = 1, 2, . . . , n′1, and by m ≡ {mC }, where mC is the
projection of j ′C along the fixed reference axis (of course, for each m, − j ≤ m ≤ j
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in integer steps). The consistency in the assignment of the j, j ′, m variables is ensured
by requiring that

• each 3-simplex σ 3
B , (B = 1, 2, . . . , N3), in (T 3, ∂T 3) must be associated,

apart from a phase factor, with a 6 j symbol of SU(2), namely

σ 3
B ←→ (−1)

∑6
p=1 jp

{
j1 j2 j3
j4 j5 j6

}
B
; (5.30)

• each 2-simplex σ 2
D, D = 1, 2, . . . , n′2 in ∂T 3 must be associated with a Wigner

3 j symbol of SU(2) according to

σ 2
D ←→ (−1)(

∑3
s=1 ms )/2

(
j ′1 j ′2 j ′3
m1 m2 −m3

)
D
. (5.31)

Then the following state sum can be defined

ZPR[(M3, ∂M3)]
= lim

L→∞
∑

{ j, j ′,m≤L}
Z[(T 3( j), ∂T 3( j ′,m))→ (M3, ∂M3); L], (5.32)

where

Z[(T 3( j), ∂T 3( j ′,m))→ (M3, ∂M3); L]

= Λ(L)−N0

N1∏
A=1

(−1)2 jA(2 jA + 1)
N3∏

B=1

(−1)
∑6

p=1 jp

{
j1 j2 j3
j4 j5 j6

}
B

×
n′2∏

D=1

(−1)(
∑3

s=1 ms)/2
(

j ′1 j ′2 j ′3
m1 m2 −m3

)
D
. (5.33)

N0, N1, N3 denote respectively the total number of vertices, edges and tetrahedra
in (T 3( j), ∂T 3( j ′,m)),while n′2 is the number of 2-simplices lying in ∂T 3( j ′, m).
Note that there appears a factor Λ(L)−1 for each vertex in (T 3( j), ∂T 3( j ′,m)),
withΛ(L) ≡ 4L3/3C, C an arbitrary constant. The state sum given in (5.32), (5.33)
when ∂M3 = ∅ reduces to the usual Ponzano–Regge partition function for a closed
manifold M3 given in (5.13).

The state functional (5.33) is clearly invariant under bistellar moves [48] per-
formed in the interior of T 3( j) by the same argument employed in the remark at the
end of Sect. 5.2.1 for the closed case.

The presence of a ∂M3 �= ∅ calls into play other topological transforma-
tions introduced by Pachner in dealing with compact d-dimensional PL-pairs, the
elementary shellings [49, 50]. This kind of operation involves the cancellation of one
d-simplex at a time in a given triangulation (T d , ∂T d)→ (Md , ∂Md) of a compact
PL-pair of dimension d. In order to be deleted, the d-simplex must have some of its
(d−1)-dimensional faces lying in the boundary ∂T d .Moreover, for each elementary
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shelling there exists an inverse move which corresponds to the attachment of a new
d-simplex to a suitable component in ∂T d . It is possible to enumerate these moves
by setting {[nd−1 → d − (nd−1 − 1)]dsh , nd−1 = 1, 2, . . . , d

}
, (5.34)

{[nd−1 → d − (nd−1 − 1)]dinsh , nd−1 = 1, 2, . . . , d
}
, (5.35)

where nd−1 represents the number of (d − 1)-simplices (belonging to a single
d-simplex) involved in an elementary shelling or inverse shelling, respectively.
In d = 3 the admissible shellings are (here the double arrow is just a shorthand
notation, not representing an ‘inverse’ move)

[1↔ 3]3sh and [2→ 2]3sh. (5.36)

It is worth noting the close similarity of the above notations with those used for
2-dimensional bistellar moves in (5.17), namely [1↔ 3]2bst and [2→ 2]2bst : actually
there is a 1–1 correspondence between [·]2bst and either [·]3sh or [·]3insh, reflecting
natural projection mappings as depicted in the following figures.

In [17] algebraic identities representing the three types of elementary shellings
have been established. The first identity represents the move [2 → 2]3sh, the topo-
logical content of which is drawn on the top of Fig.5.2 while its expression reads

∑
cγ

(2c + 1)(−)2c−γ
(

a b c
α β γ

)(
c r p
−γ ρ ψ

)
(−1)Φ

(
a b c
r p q

)

= (−)−2ρ
∑
κ

(−1)−κ
(

p a q
ψ α −κ

)(
q b r
κ β −ρ

)
,

(5.37)

where Latin letters a, b, c, r, p, q, . . . denote angular momentum variables, Greek
letters α, β, γ, ρ, ψ, κ, . . . are the corresponding momentum projections and
Φ ≡ a + b + c + r + p + q. Notice that from now on we agree that all j-variables
in 3 j symbols are associated with edges lying in ∂T 3, while j-arguments of the 6 j
may belong to either ∂T 3 (if they have a counterpart in the nearby 3 j) or Int (T 3).

The other identities [1↔ 3]3sh can be derived (up to regularization factors) from
(5.37) and from both the orthogonality conditions for the 6 j symbols (5.10) and the
unitarity conditions for the 3 j symbols

∑
ψκ

(2a + 1)(−)p−ψ+q−κ
(

a p q
−α ψ κ

)(
a′ p q
α′ −ψ −κ

)
= (−)a+αδaa′ δαα′

∑
qκ

(2q + 1)(−)q−κ
(

a b q
−α −β κ

)(
q a b
−κ α′ β ′

)
= (−)a+α+b+βδαα′ δββ ′ .

(5.38)
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d=3

d=2

Shelling

Bistellar

Fig. 5.2 Top: the shelling [2 → 2]3sh where a tetrahedron with two faces lying on the boundary
disappears while the previously hidden two faces come to the surface. Bottom: the associated bistellar
(flip) move [2→ 2]2bst can be seen as the 2-dimensional projection of the shelling

The shelling [1 → 3]3sh is sketched on the top of Fig. 5.3 and the corresponding
identity is given(

a b c
α β γ

)
(−1)Φ

{
a b c
r p q

}

=
∑
κψρ

(−1)−ψ−κ−ρ
(

p a q
ψ α −κ

)(
q b r
κ β −ρ

)(
r c p
ρ γ −ψ

)
. (5.39)

Finally, the shelling [3→ 1]3sh is depicted on the top of Fig. 5.4 and the associated
identity reads
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d=3

d=2

Shelling

Bistellar

Fig. 5.3 Top: the shelling [1 → 3]3sh where a tetrahedron with one faces lying on the boundary
disappears while the previously hidden three faces come to the surface. Bottom: the associated
bistellar move [1→ 3]2bst

Λ(L)−1
∑

qκ ′,pψ ′,rρ′
(−1)−ψ ′−κ ′−ρ′(−1)2(p+q+r)(2p + 1)(2r + 1)(2q + 1)

×
(

a p q
α −ψ ′ κ ′

)(
b q r
β −κ ′ ρ′

)(
c r p
γ −ρ′ ψ ′

)
(−1)Φ

{
a b c
r p q

}

=
(

b a c
β α γ

) (5.40)

where Λ(L) is defined as in (5.33). Notice that each of the above identities we can
be suitably modified by resorting to orthogonality relations in order to reproduce
inverse shellings (5.35), namely the operations consisting in the attachment of one
3-simplex to the suitable component(s) in ∂T 3.

Comparing the above identities representing the elementary shellings and their
inverse moves with the expression given in (5.33), we see that the state sum
ZPR [(M3, ∂M3)] in (5.32) is formally invariant under both (a finite number of)
bistellar moves in the interior of M3, and (a finite number of) elementary boundary
operations. Then, according to [50] we conclude that (5.32) (up to regularization) is
indeed an invariant of the PL-structure of the pair (M3, ∂M3).
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d=3

d=2

Shelling

Bistellar

Fig. 5.4 Top: the shelling [3 → 1]3sh where a tetrahedron with three faces lying on the boundary
disappears while the previously hidden face comes to the surface. Bottom: the associated bistellar
move [3→ 1]2bst

5.3.3 q-Extension, Induced State Sums and d-Dimensional
Hierachies

The Ponzano–Regge–type state sum (5.32) (5.33) for (M3, ∂M3) can be extended
in terms of the representation ring of the quantum enveloping algebra Uq(sl(2)), q
a root of unity. According to the standard conventions given in (5.19) of Sect. 5.2.2,
(−1)2 j (2 j + 1) are replaced by ω2

j , while eachΛ(L)−1 becomes ω−2. The 6 j sym-
bols weighting tetrahedra are replaced by the q−6 j given in (5.21) and each Wigner
symbol 3j of SU(2) is replaced by its (normalized) q-analog. Recall from [39, 44] that
the relation between the quantum Clebsch–Gordan coefficient ( j1m1 j2m2| j3m3)q
and the q − 3 j symbol is given by

( j1m1 j2m2| j3m3)q = (−1) j1− j2+m3 ([2 j3 + 1])1/2
(

j1 j2 j3
m1 m2 −m3

)
q
, (5.41)

where, as usual, an m variable runs in integer steps between –j and +j, and the classical
expression is recovered when q = 1 . The symmetry properties of the q−3 j symbol
read
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j1 j2 j3
m1 m2 −m3

)
q
= (−1) j1+ j2+ j3

(
j2 j1 j3
m2 m1 −m3

)
1/q(

j1 j2 j3
m1 m2 −m3

)
q
= (−1) j1+ j2+ j3q−m1/2

(
j1 j3 j2
m1 m3 −m2

)
1/q(

j1 j2 j3
m1 m2 −m3

)
q
= (−1) j1+ j2+ j3

(
j1 j2 j3
−m1 −m2 m3

)
q
.

(5.42)

Thus we define the normalized q − 3 j symbols, for deformation parameters q and
1/q respectively, according to[

j1 j2 j3
m1 m2 −m3

]
q

.= q(m2−m1)/6
(

j1 j2 j3
m1 m2 −m3

)
q[

j1 j2 j3
m1 m2 −m3

]
1/q

.= q(m2−m1)/6
(

j1 j2 j3
m1 m2 −m3

)
1/q
.

(5.43)

The orthogonality relation involving the normalized symbols (the analog of the sec-
ond formula in (5.38) used in handling identities representing elementay shellings)
reads

∑
jm

ω2
j (−)φq(m2−m1)/3

[
j1 j2 j
m1 m2 −m

]
q

[
j2 j1 j
−m′2 −m ′1 m

]
q
= δm1m′1δm2m′2 , (5.44)

where φ = m1 + m2 + m3.

The (invariant) state sum introduced in the previous section induces a well defined
state sum on triangulated 2-dimensional PL-manifolds (to be thought of as oriented
for definiteness). This task is accomplished by dropping out the contributions of tetra-
hedra and noting that the structure of local arrangements of 2-simplices in the state
sum (5.32) is naturally encoded in (5.37), (5.39) and (5.40). Then a state functional
for a 2-dimensional colored triangulation of a closed PL-manifold M2

T 2( j;m,m ′) −→ M2 (5.45)

can be consistently defined by requiring that

• each 2-simplex σ 2 ∈ T 2 is associated with the product of two Wigner symbols (a
double 3 j symbol for short)

σ 2 ←→ (−1)
∑3

s=1(ms+m′s )/2
(

j1 j2 j3
m1 m2 −m3

)(
j1 j2 j3
m′1 m′2 −m′3

)
, (5.46)

where {ms} and {m′s} are two different sets of momentum projections associated
with the same angular momentum variables { js}, − j ≤ ms,m ′s ≤ j ∀s = 1, 2, 3.
Then the state sum reads
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Z[T 2( j;m,m ′)→ M2; L]

= Λ(L)−N0

N1∏
A=1

(2 jA + 1)(−1)2 jA (−1)−m A−m ′A

×
N2∏

B=1

(
j1 j2 j3
m1 m2 −m3

)
B

(
j1 j2 j3
m′1 m′2 −m ′3

)
B
, (5.47)

where N0, N1, N2 are the numbers of vertices, edges and triangles in T 2, respec-
tively. Summing over all of the admissible assignments of { j; m, m′} we get

Z[M2] = lim
L→∞

∑
{ j;m,m ′≤L}

Z[T 2( j;m,m′)→ M2; L], (5.48)

where the regularization is formally carried out according to the usual prescription.

According to Pachner theorem for closed PL-manifolds the invariance of (5.48)
is ensured by improving bistellar moves in d = 2, given symbolically by
[2→ 1]2bst [3 ↔ 1]2bst and depicted at the bottom of Figs. 5.2, 5.3 and 5.4 respec-
tively. Algebraic identities encoding these moves, where the basic symbols are double
3 j , are given explicitly in [17, 18]. The state sum given in (5.47)—as well as its the
q-counterpart—is shown to be algebraic-compatible with the bistellar moves, thus
providing a well defined quantum invariant given by

Z[M2; q] = ω2 ω−2χ(M2), (5.49)

where ω2 is defined in (5.19) and χ(M2) is the Euler number of the closed oriented
surface M2.Then the 2-dimensional state sum naturally induced by the 3-dimensional
model with a non empty boundary is not trivial, being given in terms of the only
significant topological invariant for closed oriented surfaces.

Actually the scheme outlined above is aimed to provide an inductive procedure
for generating (state sum) invariants for closed PL-manifolds in contiguous dimen-
sions, namely Z[Md−1] → Z[Md ] as discussed at length in [18]. Without entering
into details here, the general philosophy underlying the construction of a bottom-up
hierarchy of invariants out of SU(2) or Uq(sl(2))-colored triangulations (at a fixed
root of unity) can be summarized as follows

1. Given a (suitable defined) invariant state sum Z[Md−1] for a closed (d − 1)-
dimensional PL-manifold Md−1, one extends it to a state sum for a colored
pair (T d , ∂T d ≡ T d−1). This is achieved by assembling in a suitable
way the square roots of the symbols associated with the fundamental blocks
in Z[Md−1] in order to pick up the 3nj symbol to be associated with the
d-dimensional simplex (the dimension of the SU(2)-labeled (or q-colored)
(d − 2)-simplices is kept fixed when passing from T d−1 to T d ⊃ T d−1).

2. The state sum for
(
T d , ∂T d

)
gives rise to a PL-invariant Z

[(
Md , ∂Md

)]
owing in particular to its invariance under elementary shellings of Pachner [50]
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(the algebraic identities associated with such moves in d = 3 are given in the
previous section, while for higher dimensions the diagrammatical method is
more suitable).

3. From the expression of Z
[(

Md , ∂Md
)]

it is possible to extract a state func-
tional for a closed colored triangulation T d . The proof of its PL-invariance
relies now on the algebrization in any dimension d of the bistellar moves. The
inductive procedure turns out to be consistent with known results in dimension
4 and provides for each d a PL-invariant Z [Md ] where each d-simplex in the
colored triangulation T d is represented by a {3(d − 2)(d + 1)/2} j recoupling
coefficient of SU(2) (or by its q-analog).

4. By construction all of these state sum functionals turn out to be well behaved
under composition (a quite obvious property in case of state sums with fixed
colored triangulations on boundaries, see Sect. 5.3.1). This is achieved by
observing that simplices of maximal dimension in a boundary component are
associated with ‘double’ symbols which, once glued to their counterparts to get
a closed triangulation, are going to disappear owing to orthogonality conditions
(recall that both j-type and m-type colors have to be summed up).

It is worth noting that the invariant in the closed d = 4 case, the so-called 15 j model
introduced originally in [23, 47] is not ‘new’ in the sense that it was recognized to be
related to other known topological invariants, the signature and the Euler character
of the manifold [58]. The other invariants in d > 4 seem ‘new’ but it is not yet clear
if they could be of some interest in physical applications.

As a matter of fact all state sum invariants discussed so far share a nice inter-
pretation in the field-theoretic setting, being interpreted as discretized counterparts
of Topological Quantum Field Theories of the BF-type. Recall that, unlike Chern–
Simons–Witten partition functions, BF theories (with or without a cosmological
constant) [22, 37] can be defined in any spacetime dimension. In particular the gen-
erating function of a BF theory with a cosmological constant in d = 3 corresponds
to a ‘double’ CSW functional, thus improving the correspondence between Chern–
Simons–Witten and Turaev–Viro models discussed in Sect. 5.2.3.

The 15 j-model mentioned above has been radically generalized first by Barrett
and Crane [11], and in the next few years in a number of papers dealing with the
spin foam model (the 4-dimensional extension of the ‘spin network’ setting of loop
quantum gravity based on the Plebanski formulation of gravity as a constrained BF
theory ), see e.g. [24, 62] and references therein.

Remark As a final application of the Ponzano–Regge state sum ZPR
[(

M3, ∂M3
)]

of Sect. 5.3.2 we mention the results we found as co-authors of [8]. Unlike the case
examined in Sect. 5.3.3, where the 2-dimensional boundary surface is completely
decoupled from the ‘bulk’ 3-manifold and the resulting boundary theory is purely
topological, it is possible to perform an holographic projection starting from a suitably
chosen state functional ZPR[(T 3, ∂T 3); L]. The main feature of the procedure is
to provide a semiclassical partition function in the bulk, while the state functional
on the boundary triangulation in the decoupling limit remains quantum and acquires
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non-trivial degrees of freedom. This result represents the first attempt of dealing with
’t Hooft holographic principle [66] within an ab initio discretized quantum gravity
model.

5.4 Observables in the Turaev–Viro Environment

In Sect. 5.2.3 the relation between the Turaev–Viro and the Witten–Reshetikhin–
Turaev approaches has been discussed very briefly in connection with the corre-
spondence (5.22) between their generating functionals. In this section we are going
to present an unifying scheme aimed to address observables, particularly 3-valent
graphs and links invariants, in a TV background theory. Soon after the seminal paper
by Turaev and Viro [55], Viro himself [67, 68] and others [12, 25, 35, 69] dealt
with colored (fat) graphs and links and calculations of specific invariants were car-
ried out there as well as in [16, 32]. It is worth noting that in the smooth category
of unitary topological quantum field theories it has been shown that observables—
vacuum expectation values of Wilson loop operators [26, 37, 60] as given in the
formal expression (5.27)—are basically the same in the Chern–Simons and in a suit-
able BF setting, see e.g. [22, 37]. Also in view such a relationship between a BF
theory with cosmological constant and the Turaev–Viro state sum we do not expect
to find out any essentially new link invariants in the colored-triangulations setting.
However, the method we are going to illustrate with the final scope of giving explicit,
diagrammatic expressions for observables is quite instructive by itself and gives us
the chance of filling a few gaps left aside in previous sections.

5.4.1 Turaev–Viro Quantum Initial Data

Following [67] with some minor changes of notation, we start by defining an abstract
initial data set. Let K be a commutative ring with unit and K ∗ the subgroup of
its invertible elements. Given a finite set I, choose two functions I → K ∗ by
setting i → ωi and i → qi for each i ∈ I and fix a distinguished element
ω ∈ K ∗. Assume that in I 3 there exists an unordered set Adm of admissible
triples. An ordered 6-tuple (i, j, k, l, m, n, ) ∈ I 6 is admissible if the triples
(i, j, k), (k, l,m), (m, n, i), ( j, l, n) are in Adm. Then

(i, j, k, l,m, n, ) →
∣∣∣∣ i j k
l m n

∣∣∣∣ (5.50)

represents the formal assignment of an element of K to each admissible 6-tuple.
If the 6-tuple is not admissible then its symbol is equal to zero. The symbol
| ::: | actually shares the same 24 ‘classical’ symmetries of the 6 j symbol of SU(2)
described in the introductory part of Sect. 5.1, but at this level there is no reference
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to any representation ring. The initial data are called irreducible if, for any i, j ∈ I,
there exists a sequence l1, l2, . . . , lr with l1 = i, lr = j such that the triple
(lt , lt+1, lt+2) is in Adm for all t = 1, 2, . . . , r − 2.

The above initial data satisfy the algebraic conditions listed below, where, in
agreement with the definitions given in (5.19) and (5.20)

ω2
j = [2 j + 1] ∀ j ∈ I (5.51)

is the quantum dimension of the irrep associated with j.

I. ∀ j1, j2, j3, j4, j5, j6 ∈ I such that the triples ( j1, j3, j4), ( j2, j4, j5)
( j1, j3, j6), ( j2, j5, j6) are in Adm

∑
j∈I

ω2
j

∣∣∣∣ j2 j1 j
j3 j5 j4

∣∣∣∣
∣∣∣∣ j3 j4 j6

j2 j5 j

∣∣∣∣ = δ j4 j6 . (5.52)

II. ∀ a, b, c, e, f, j1, j2, j3, j23 ∈ I such that the 6-tuples ( j23, a, e, j1, f, b) and
( j3, j2, j23, b, f, c) are admissible

∑
d∈I

ω2
d

∣∣∣∣ j2 a d
j1 c b

∣∣∣∣
∣∣∣∣ j3 d e

j1 f c

∣∣∣∣
∣∣∣∣ j3 j2 j23
a e d

∣∣∣∣ =
∣∣∣∣ j23 a e

j1 f b

∣∣∣∣
∣∣∣∣ j3 j2 j23
b f c

∣∣∣∣ . (5.53)

III. For any i ∈ I

ω2 = ω−2
j

∑
k,l∈I

( j,k,l)∈Adm

ω2
k ω

2
l . (5.54)

Conditions I.–III. have been used originally in [55] in the construction of
the Turaev–Viro invariant for closed manifolds (see Sect. 5.2.2). Actually I.
and II. axiomatize the orthogonality relation and the Biedenharn–Elliott iden-
tity for (classical) 6j symbols given in (5.10) and (5.9), respectively. Condition
III. does not have a counterpart in the representation ring of SU(2) (and is obvi-
ously strictly related to the finiteness property of the Turaev–Viro invariant).
Irreducible initial data satisfying condition I. are shown to be independent of
the choice of j ∈ I, so that in this case condition III. actually selects a unique
distinguished element ω2 ∈ K ∗, to be looked at as part of the initial data.
The issue of link invariants will call into play the functions qi ∈ K ∗ (i ∈ I )
which turn out to enter the analog of the Racah identity for classical 6 j symbols

IV. For any j1, j2, j12, j3, j, j23 ∈ I

∑
j13∈I

ω2
j13

q j13

∣∣∣∣ j3 j1 j13
j2 j j12

∣∣∣∣
∣∣∣∣ j2 j3 j23

j1 j j13

∣∣∣∣ = q j q j1q j2q j3

q j12q j23

∣∣∣∣ j1 j2 j12
j3 j j23

∣∣∣∣ . (5.55)
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In [67] a few consequences of conditions I.–IV. were proven. In particular

∑
g∈I

ω2
g(qbqdq f qg)

ε

∣∣∣∣ j2 a g
j1 c b

∣∣∣∣
∣∣∣∣ j3 g e

j1 d c

∣∣∣∣
∣∣∣∣ j3 a f

j2 e g

∣∣∣∣
=

∑
h∈I

ω2
h(qaqcqeqh)

ε

∣∣∣∣ j3 b h
j2 d c

∣∣∣∣
∣∣∣∣ j3 a f

j1 h b

∣∣∣∣
∣∣∣∣ j2 f e

j1 d h

∣∣∣∣ ,
(5.56)

where ε = ±1, represents the counterpart of Yang–Baxter relation written in terms of
q-6j symbols (and can be actually recognized as an identity satisfied by the q-analog
of the 9 j symbol, see [44]), while

∑
j∈I

ω2
j (qaq j q

−2
b )ε

∣∣∣∣ i b j
i b a

∣∣∣∣ = (qi )
2ε. (5.57)

can be recognized as the Markov relation for R-matrices written in terms of q-6 j
symbols. The diagrammatic counterparts of the identities (5.55) and (5.57) will be
given in the next section, where their role in the proof of invariance of state sums
associated with colored fat graphs will become clear.

The notion of irreducible quantum initial data comes out when the axiomatization
is modeled on the representation ring of Uq(sl(2)), q = exp{2π i/r}, with the
finite set I given by {0, 1/2, 1, . . . , (r − 2)/2} for r ≥ 3 and ground ring C (see
Sect. 5.2.2). Then the identifications made in (5.19), the definition of q-integer (5.20)
and the relation between | ::: | and the Racah–Wigner symbol {:::}q in (5.21) hold
true. Note that the q-6 j can be defined as a hypergeometric polynomial through an
expression formally similar to the Racah sum rule given in (5.8), see e.g. [53] or [9].

To complete the quantum data, the functions q j are defined according to

q j = e
π i
{

j− j ( j+1)
r

}
(5.58)

with i = √−1.
In Sect. 5.3.1 the Turaev–Viro state sum for a pair (M3, ∂M3 = T 2( j ′)), where

T 2( j ′) is a fixed triangulation on the boundary surface. Here we rewrite the same
expression by adopting the more concise notation of [67]. Thus M stands for a
compact triangulated 3-manifold and a coloring (I-coloring) μ is the assignment to
each edge of M of an element of I such that: (i) for every 2-simplex⊂ M the colors of
its three edges form an admissible triple ∈ Adm; (ii) each 3-simplex T is associated
to the element |T |μ = | ::: | as in (5.50). The set of colorings is denoted by
Col (M) and for quantum initial data the root of unity q is kept fixed (and omitted in
the following).

In the presence of a non empty boundary ∂M we agree that the set of colorings is
naturally extended to Col(M, ∂M) by taking the triangulation of ∂M induced by any
given one of M. The state functional of the colored triangulated pair reads

|M, ∂M |μ = ω−2α+β∏
e

ω2
μ(e)

∏
e′
ωμ(e′)

∏
T

|T |μ, (5.59)
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where α and β are the number of vertices in M and ∂M respectively, e and e′ run
over edges in the interior of M and in ∂M respectively and the last product is over all
tetrahedra in (M, ∂M). The Turaev–Viro state sum is

|M, ∂M | =
∑

μ∈Col(M,∂M)

|M, ∂M |μ. (5.60)

The state functional (5.59) can be modified to deal with selected subsets lying in
∂M. If F is a certain union of components in ∂M then the state functional

|M, F ⊂ ∂M |μ = ω−2α+β′∏
e

ω2
μ(e)

∏
e′′
ωμ(e′′)

∏
T

|T |μ := |M, F |μ, (5.61)

once summed over μ, provides a relative invariant which will enter the expression
of other state sums addressed in the next section. In the above expression α is the
number of vertices in M, β′ is the number of vertices in ∂M\F, e are edges in M not
in ∂M, e′′ runs over edges in ∂M\F and T runs over over all tetrahedra in (M, ∂M).

Finally, the Turaev–Viro invariant (5.60) can be slightly modified in order to
emphasize the role of the colorings of the boundary (components). If λ ∈ Col(∂M)
is an admissible coloring of a fixed 2-dimensional triangulation of ∂M, then it is
always possible to extend it to a (not unique) triangulation in the interior of M. The
state sum

< M, ∂M |λ > .=
∑

μ∈Col(M,∂M)
μ|∂M=λ

|M, ∂M |μ (5.62)

is a topological invariant of (M, ∂M) which does not depend on the extension of the
triangulation but of course the colorings μ of the interior of M are constrained to be
compatible with the given coloring λ of ∂M. The above expression complies with
(5.28) of Sect. 5.3.1.

5.4.2 State Sum Invariants of Colored Fat Graphs in 3-Manifolds

As stated in the introduction of [67], the axiomatic approach developed there (and
reviewed here) is aimed to provide a consistent and rigorous 3-dimensional inter-
pretation of the Jones polynomial for knots (and its generalizations) not resorting
to Witten’s path integral formalism (Sect. 5.2.3, see expression (5.27)). The basic
ingredients used by Turaev in constructing invariants of fat colored graphs in generic
3-manifold—graphs which can be specialized to framed colored links in the 3-sphere
S3—are the (quantum, irreducible) initial data of the previous section, namely q-6 j
symbols and the functions ω,ω j , q j taking values in the ground ring C.Actually the
invariants are defined in terms of the exterior (complement) of the graphs (links) by
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purely geometric-combinatorial tools, thus leaving aside the quantum group machin-
ery and associated R-matrix representations [38, 39, 53].

From now on let N denote a compact, either closed or with a non-empty bound-
ary ∂N , not necessarily oriented smooth 3-manifold which can be equipped with a
colored triangulation as done for a pair (M, ∂M) in the previous section. The most
general state model will be written in the shorthand form < N , Γ |ψ , with Γ a fat,
3-valent colored graph smoothly embedded in the interior of N and ψ an ordinary
3-valent colored graph lying in general position with respect toΓ.This sort of bracket
notation, already used in (5.62) above, is somehow reminiscent of the proper use of
< | >, < | | > in quantum mechanics and quantum field theory. For instance, as
shown in Sect. 5.4.2.3, the ket |ψ > might be interpreted as a vector quantity to be
associated with the set of colorings {λ} of a 2-dimensional surface embedded in N.
The construction of < N , Γ |ψ > proceeds through a number of quite challenging
steps, each providing specialized state sums which are interesting by themselves.

Let us remind a few basic definitions about colored 3-valent graphs (denoted by
small Greek letters φ,ψ, γ, . . . ) and their fat counterparts (denoted by Γ, Γ ′, . . . ).
A finite graph ψ with unoriented edges and possibly with loops is 3-valent if the
number of edges incident on any vertex is either two or three. An I-coloring of ψ is
the assignment of a color to each edge in such a way that any triple of edges stemming
from a 3-valent vertex is colored with an admissible triple of colors, while any pair of
edges incident to a 2-valent vertex has the same color. Starting from a 3-valent colored
graph, a 3-valent fat graph Γ (smoothly embedded in the ambient manifold N) is the
extension to small disks and to narrow bands of the vertices and edges of a 3-valent
graph, respectively. Γ inherits a coloring from its core c(Γ ), an ordinary 3-valent
colored graph, and Col(Γ ) denotes the set of admissible coloring of c(Γ ).Note that
fat graphs are not to be confused with ribbon graphs since vertices of the latter are
endowed with enriched structures, see Chap. 2. The topological union of disks and
bands of Γ is the surface of Γ, S (Γ ) ⊂ N , a 2-dimensional compact submanifold
with a non-empty boundary. A fat graph with an oriented surface is called oriented.
Two fat graphs Γ, Γ ′ ⊂ N are ambient isotopic if they can be smoothly deformed
into each other in the class of fat graphs in N. Coloring–preserving isotopies of fat
graphs are defined in the obvious way.

Remark Recall that a link L in N is a finite collection of disjoint unoriented circles
smoothly embedded in N. A coloring of an m-component link is the assignment of a
color from I to each component. A framed link is a link endowed with a non singular
normal vector field (a framing). Every m-component framed link L in N gives rise
to a fat graph ΓL ⊂ N consisting of m vertices and m edges (loops), where the
edges are topological annuli (for N oriented) and annuli and Möbius bands (for N not
oriented) and the position of the vertex (disk) on each annulus is chosen arbitrarily.
Each coloring of L induces a coloring of ΓL by assigning the same color to an edge
and to the corresponding component of L. Thus there exists a natural injective map
L → ΓL from the set of (isotopy classes of) colored framed links into the set of
(isotopy classes of) colored 3-valent fat graphs in N. Whatever invariant of colored
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fat graphs will be defined, it can be specialized in a straightforward way to colored,
framed links.

5.4.2.1 State Models Associated with Graphs in a Cylinder F × [−1, 1]

The first state model is defined by assuming that the ambient manifold is a cylinder
F × [−1, 1], where F is a compact and oriented surface. A fat, 3-valent graph Γ
is embedded in the cylinder and its surface inherits the orientation of F. A pair of
(possibly intersecting) colored 3-valent graphs, φ and ψ, are embedded in F too.
Here F is going to play the same role as a 2-disk in R

3 with respect to projection of
knots or graphs, giving rise to 2-dimensional configurations or diagrams. A diagram
D of a (generic) graph is obtained by an immersion in F with only double transverse
crossings. An additional rule must be applied: at each crossings, one of the two
edges is cut so that the other overcrosses it. When a fat graph Γ is considered, one
more convention is necessary: when embedded in F × [−1, 1] its vertices (disks)
keep on lying on F, while the thickened edges which overcross are pushed up into
F × (0, 1] and the bands which undercross are tied down into F × [−1, 0). The
choice of solving a transverse crossing in either under- or over-passing is arbitrary
in dealing with graphs (contrary to what happens when projecting a knot living in
R

3 onto a plane) but it can be shown that the final state model does not depend
on this choice. Actually it can be proven that two graph diagrams on F give rise
to isotopic fat graphs in F × [−1, 1] if and only if they are related, as projected
diagrams D(c(Γ )), D(c(Γ ′)) (c is the core of the fat graph), by local Reidemeister-
type moves. We do not insist on this issue here since these moves are encoded
into the algebraic prescriptions given below for the construction of the state model
< φ|Γ |ψ > ∈ C.

The Graph Σ

The initial configuration on F includes the colored 3-valent graphs φ, ψ and the
diagram D(c(Γ )) ≡ D(Γ ) obtained as explained above and endowed with under-
and over-crossings. By 2-dimensional ambient isotopies these three structures can
be arranged in general position, so that all intersections in φ ∪ψ ∪ D(Γ ) are double
transverse crossings of edges. In order to construct an overall graph diagram, let
D(φ) be a diagram of φ obtained by requiring that it lies everywhere over the rest
of the configuration. Similarly, a diagram D(ψ) associated with ψ is required to lie
everywhere under the other two diagrams. Denote the union D(φ) ∪ D(ψ) ∪ D(Γ )
by σ. From σ, forgetting over- and under-crossing information, a new graph

Σ = φ ∪ ψ ∪ D(Γ ) ⊂ F (5.63)

is obtained, the number of vertices of which is the sum of the number of the (3-valent)
vertices of φ, ψ, Γ and the number of (four-valent) vertices generated by joining
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back crossing edges from the diagram σ.Note that, since each edge ofΣ is contained
in an edge of either φ or ψ or Γ, Σ inherits a consistent coloring from the colorings
of its components.

Classification of Vertices of Σ

The graph Σ has five types of vertices

(i) the 2-valent vertices of φ,ψ, Γ ;
(ii) the 3-valent vertices of φ,ψ, Γ ;

(iii) the crossing points of φ with ψ;
(iv) the crossing points of D(Γ ) with φ and ψ;
(v) the self-crossing points of D(Γ ).

Area Coloring of F\Σ

The graph Σ provides a subdivision of the compact surface F into a finite number
of domains. In particular, any connected component of F\Σ is a region of D(Γ )
with respect to φ and ψ. An area coloring η is an arbitrary mapping from the set
of regions into the set of colors I which is admissible if, for each edge e ∈ Σ,
the color of e together and the η-colors of the two regions adjacent to e combine
in an admissible triple. The admissible area (and edge) coloring are denoted by
Adm(D(Γ )), a shorthand notation for Adm(D(Γ );φ,ψ).

Assignments of Weights to Vertices and Regions

The collection of vertices of Σ and regions in F \ Σ is going to be decorated with
weights, denoted by | · |η with η ∈ Adm(D(Γ )), suitably chosen in the (quantum)
initial data of Sect. 5.4.1.

The weight of a region y is given by

| y |η = ω2χ(y)
η(y) (5.64)

where ω2
η(y) is the quantum dimension associated with the value of the given color

(see (5.51)) and χ is the Euler characteristic of the region y (for y a 2-disk χ(y) = 1).
Weights | v |η for vertices v in Σ depend on the classification given above. Thus

(i) a 2-valent vertex has a trivial weight

| v |η = 1;
(ii) if (i, j, k) is the triple of admissible colors assigned to edges incident on the

3-valent vertex v, let (l,m,n) denote the η-colors of the opposite regions.
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m

k

l

i

n

j

The weight of v is

| v |η =
∣∣∣∣ i j k
l m n

∣∣∣∣ , (5.65)

where | ::: | is the q-6 j symbol (5.50).
Types (iii–v) refer to four-valent vertices (crossing points of the underlying

graph diagrams). If v is any such vertex with two branches, let l be the color
of the upper branch and i the color of the lower one (recall that φ lies over
ψ ∪ D(Γ ) and ψ under φ ∪ D(Γ )). Then the four regions surrounding v are
η-colored with j,k,l,m, where the orientation is by convention anticlockwise
and derives from the orientation of the underlying F.

k

m

n

j

li

In particular
(iii) if v is a crossing of φ with ψ its weight is

|v|η = q1/2
k q1/2

n q−1/2
j q−1/2

m

∣∣∣∣ i j k
l m n

∣∣∣∣ , (5.66)

where the q-factors are defined in (5.58);
(iv) if v is a crossing of D(Γ ) with φ or ψ

|v|η = q1/2
k q1/2

n q−1/2
j q−1/2

m

∣∣∣∣ i j k
l m n

∣∣∣∣ ; (5.67)

(v) if v is a self-crossing point of D(Γ )

|v|η = qkqnq−1
j q−1

m

∣∣∣∣ i j k
l m n

∣∣∣∣ . (5.68)
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The State Model < φ|Γ |ψ >

For each η-coloring in Adm(D(Γ );φ,ψ), define the functional

< φ|D(Γ )|ψ >η:=
∏

y

| y |η
∏

v

| v |η. (5.69)

Then the state sum

< φ|Γ |ψ >=
∑

η∈Adm(D(Γ ))

< φ|D(Γ )|ψ >η ∈ C (5.70)

for any choice of φ, ψ, Γ is invariant under ambient isotopies of φ, ψ in F and
isotopies of the fat graph Γ in F × [−1, 1].

The proof is given in Th. 4.1, 4.2 of [67] and relies on a mixing of combinatorial and
algebraic tools. Let us illustrate just a few of them in connection with invariance with
respect to 2-dimensional ambient isotopies, encoded in Reidemeister-type colored
moves performed on the graph diagram σ = D(φ) ∪ D(ψ) ∪ D(Γ ).

The first Reidemeister move is the transformation of a single strand colored with
i ∈ I, bounding two regions with η-colors a,b, into a self-crossing strand, where the
new internal region is colored with j.

a b

i i

a b

j

The algebraic counterpart of this move is given by the identity (5.57) (the analog
of the Markov relation for R-matrix), rewritten here for convenience

∑
j∈I

ω2
j (qaq j q

−2
b )ε

∣∣∣∣ i b j
i b a

∣∣∣∣ = (qi )
2ε.

The second Reidemeister moves has to be applied to a colored 3-valent vertex
configuration (case ii) above), where the lower leg is twisted with the two upper ones
kept fixed, giving rise to a new internal region colored with j13.
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j1

j23

j

j2

j12

j3

j1

j23

j

j13

j3

j12

j2

The algebraic counterpart of this move is the Racah identity (5.55), namely

∑
j13∈I

ω2
j13

q j13

∣∣∣∣ j3 j1 j13
j2 j j12

∣∣∣∣
∣∣∣∣ j2 j3 j23

j1 j j13

∣∣∣∣ = q j q j1 q j2q j3

q j12q j23

∣∣∣∣ j1 j2 j12
j3 j j23

∣∣∣∣ .
The third Reidemeister move involve an exchange transformation between two

arrangements containing three crossings, with the internal regions colored by g
and h, respectively.

f
e

d

a

g

j3

c

j1 j2

b

f
e

d

h
a

j3

c

j2j1

b

The algebraic counterpart is (5.56), representing the Yang–Baxter relation in terms
of q-6 j symbols and weights of type q and ω

∑
g∈I

ω2
g(qbqdq f qg)

ε

∣∣∣∣ j2 a g
j1 c b

∣∣∣∣
∣∣∣∣ j3 g e

j1 d c

∣∣∣∣
∣∣∣∣ j3 a f

j2 e g

∣∣∣∣
=
∑
h∈I

ω2
h(qaqcqeqh)

ε

∣∣∣∣ j3 b h
j2 d c

∣∣∣∣
∣∣∣∣ j3 a f

j1 h b

∣∣∣∣
∣∣∣∣ j2 f e

j1 d h

∣∣∣∣ .



208 5 State Sum Models and Observables

It is worth stressing that, in proving invariance of the above state model, all of the
conditions I.–IV. on initial data have been employed. In dealing with Turaev–Viro
state models for 3-manifolds (Sects. 2.2, 3.1 and 4.1) the explicit proof of invariance
(througt Pachner bistellar moves) is based on conditions I–III, the Racah identity
being putatively associated with a move (2 tetrahedra→ 1 tetrahedron) not permit-
ted on PL triangulated manifolds [61]. On the other hand, the structures introduced
here are (diagrams of) colored graphs embedded in a surface F and information about
the embeddings is encoded in the extra η-colorings to be assigned consistently to the
2-dimensional connected components of F\Σ.Note finally that the state sum invari-
ant does not contain any weight to be associated with the 3-dimensional cylinder:
this is due to the fact that here the ambient manifold is topologically a product of F
by a closed interval. In the next section, where Γ is going to be embedded into a non-
trivial 3-manifold N, the corresponding state model will contain also a contribution
from the complement of Γ in N.

Specific Examples

The invariants < φ|Γ |ψ > in (5.70) are non trivial even when φ, ψ are empty
graphs, denoted by ∅. In particular, if F is a 2-disk (and thus F× [−1, 1] an ordinary
cylinder in R

3) then

< ∅|Γ |∅ >=
∑

η∈Adm(φ,ψ)

< φ|∅|ψ >η (5.71)

is a generalization of the Jones polynomial of colored framed links L to colored fat
graphs Γ in R

3 (cfr. the remark at the end of the introductory part of Sect. 5.4.2).
A second case comes about when φ and ψ are dual graphs of 2-dimensional

colored triangulations. This situation is easily obtained by assuming that F is a
compact triangulated surface with a fixed coloring λ. Then the dual graph of the
1-skeleton of the triangulation, denoted here by ΓF , is obtained as usual by taking
the barycenter of each triangle and connecting it to the barycenters of the three
contiguous triangles by dual edges {e∗}. Each dual edge e∗ inherits the color λ from
the corresponding transverse edge e in the triangulation. The colored dual graph
Γ λF is of course 3-valent and can take the role of φ, ψ. Thus in the interior of the
symplicial cylinder F × [−1, 1]—whose bases are endowed with the same colored
triangulation—it is possible to insert a fat colored graphΓ and carry out the procedure
described above (in particular the η-coloring of regions of D(Γ ) ⊂ F) to get the
ambient isotopy invariant

< Γ λF |Γ |Γ λF > =
∑

η∈Adm(D(Γ ))

< Γ λF |D(Γ )|Γ λF >η . (5.72)
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5.4.2.2 State Models for Colored Fat Graphs in 3-Manifolds
with Triangulated Boundary

Here N is a compact, non necessarily oriented 3-manifold with a triangulated bound-
ary ∂N and Γ an finite I-colored 3-valent fat graph in the interior of N. The surface
of the fat graph S (Γ ) must be orientable, and an orientation is chosen. The role of
the surface F in the previous section is played here by the surface FΓ = ∂U, where
U is a closed tubular neighborhood of Γ in N. More precisely, FΓ inherits its orien-
tation from S (Γ ) and from the choice of a normal vector field directed outwards,
while U is an oriented handlebody made of 3-balls (regular neighborhoods of the
2-disks of Γ ) and solid cylinders (regular neighborhoods of the bands of Γ ). The
fat graph Γ can be slightly shifted by isotopy to get a copy Γ ′ lying on FΓ , the
boundary of the handlebody. Each of the solid cylinder of the latter can be equipped
with a meridian disk transverse to a portion of the band of Γ ′. The boundary of
each meridian disk is a circle ⊂ FΓ , to be thought of as a graph with one edge
and one vertex (chosen arbitrarily). The meridian circles (actually generators of the
fundamental group of the handlebody U) are thus simple disjoint loops denoted by
ψ1, ψ2, . . . , ψm, where m is the number of edges in Γ. Given an ordered sequence
of colors J ≡ ( j1, j2, . . . , jm) ∈ I m denote by

ψJ = ψ1 ∪ ψ2 · · · ∪ ψm; ωJ =
m∏

k=1

ω jk (5.73)

the resulting colored graph and the associated weight, respectively.
If Int (U) is the interior of the closed handlebody U, define

N\I nt (U ) := M ⇒ ∂M = ∂N ∪ FΓ , (5.74)

so that the 3-manifold M is the closure of the complement of the handlebody U in
the ambient manifold N. Recall that ∂N has been assumed to be triangulated, and
fix now a coloring λ ∈ Col(∂N ). As discussed in connection with the state model
(5.62) in Sect. 5.4.1, the given triangulation in ∂N can be extended to the whole N
and then induced by restriction also on M and ∂M. For each λ ∈ Col(∂N ) define a
relative state model of the pair (N , Γ ) according to

< N , Γ |λ >:= ω2−2s
∑

μ∈Col(M)
μ|∂N=λ

∑
J∈I m

ωJ |M, FΓ |μ < Γ
μFΓ

FΓ
|Γ ′|ψJ >, (5.75)

where s is the number of vertices of Γ ; Γ ′ is the copy of Γ lying on FΓ ; |M, FΓ |μ
is the relative invariant (5.62); ωJ is defined in (5.73) and Γ

μFΓ

FΓ
is the dual graph

of the 1-skeleton of the triangulation of FΓ with μFΓ the restriction of μ to FΓ .
As anticipated in the motivations at the beginning of Sect. 5.4.2, the evaluation

of the invariant relies on a factorization, in which the terms |M, FΓ |μ weights the
3-dimensional triangulation of the complement of the tubular neighborhood of the fat
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graph and the< | | > terms are calculated diagrammatically by means of expressions
like (5.70) which are essentially 2-dimensional.

In Th. 5.1 and 5.2 of [67] the above state model is shown to be a topological
invariant of the triple N , Γ, λ so that, in particular, it does not depend on the choice
of a triangulation of M extending the given one in ∂N . At the same time (5.75) is an
ambient isotopy invariant of Γ (the proofs are omitted).

Properties and Specific Examples

The condition ∂N = ∅ provides particular instances of the state sum denoted by

< N , Γ > ω2−2s
∑

μ∈Col(M)

∑
J∈I m

ωJ |M, FΓ |μ < Γ
μFΓ

FΓ
|Γ ′|ψJ >, (5.76)

where, according to (5.74), ∂M is given by FΓ and colored triangulations of the
latter are induced now from those of M ⊂ N . Ambient isotopy invariants of colored
framed links in closed (oriented) 3-manifolds are included in this kind of state sums.
Actually in Sect. 6 of [67] it is proven that, for any framed link L in S3, the associated
< S3, ΓL > satisfies the standard skein relations of Jones’-type polynomials.

Another property of the (general) invariant is its multiplicativity with respect to a
dissection of N into two compact 3-manifolds N1, N2 with N1 ∩ N2 = G, a closed
triangulated surface. If Γ1 is the portion of Γ lying in N1 and Γ2 the portion in N2
then the following splitting property holds

< N , Γ |λ >= ω−2
∑

v∈Col(G)

< N , Γ1|λ1 ∪ v > · < N , Γ2|λ2 ∪ v >, (5.77)

where λ is the coloring of ∂N and λi the reduction of λ to ∂Ni\G.
Note finally that all state models considered so far, as well as those defined in

the next section, are determined (and evaluated up to q-factors) by the colored core
c(Γ ) of the fat graph Γ and by the orientation of its regular neighborhood. Thus
all these invariants are well defined also for embedded (ordinary) colored 3-valent
graphs (and colored links).

5.4.2.3 State Models for (N, Γ ) Relatively to φ

A further generalization of the invariant of Sect. 5.4.2.2 arises when the structure of
the set of colorings of a triangulated closed surface is taken into account. As shown
in [55], the colorings of a triangulated closed surface G generate a vector space Q(G).
Denoting by |λ > the generator in Q(G) associated with λ ∈ Col(G), each colored
3-valent graph φ ⊂ G gives rise to an element |φ > ∈ Q(G) defined as

|φ >:=
∑

λ∈Col(G)

ωλ < γ λG |∅|φ > |λ >, (5.78)
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where∅ is the empty (fat) graph in G×[−1, 1], γ λG is the dual graph of the 1-skeleton
of the triangulation of G colored with λ and

ωλ = ω−β
∏
e′
ωλ(e′) (5.79)

with β = number of vertices of G and e′ ∈ edges of G. The element |φ > ∈ Q(G)
does not depend on the choice of the triangulation (up to isomorphisms) and in
particular |γ λG > = ω−1

λ |λ > .

If G is the boundary of a compact 3-manifold N and Γ a fat graph in the interior
of N (as in the previous section), then for any colored 3-valent oriented graph φ on
G the state sum

< N , Γ |φ >=
∑

λ∈Col(G)

ωλ < γ λG |∅|φ >< N , Γ |λ > (5.80)

is a relative invariant of (N , Γ ) with respect to φ which can be shown to be inde-
pendent of the choice of the triangulation of G. This state sum is the most general in
the class under consideration in [67] and contains all the previous ones as particular
cases (e.g. if φ = ∅ the absolute invariant< N , Γ > of (5.76) is recovered, while in
case the ambient manifold is a cylinder the invariants of Sect. 5.4.2.1 are obtained).

5.4.3 Heegard Splitting Version of State Models for Closed
Oriented 3-Manifolds

Recall that any smooth, closed, oriented and connected 3-manifold can be generated
by surgery operations performed on tubular neighborhoods of knots or links in the
3-sphere S3 [54]. Let for instance K denote such a knot in S3. A Dehn surgery
amounts to remove first the interior Int(U ) of a regular tubular neighborhood U of
K. Then the two manifolds

S3\Int(U ) ≡ V and U (5.81)

are to be looked at as distinct spaces (they are two handlebodies). Their boundaries

∂(S3\Int(U )) and ∂U ≡ F (5.82)

are topologically tori. The next step consists in gluing back U and S3\ Int(U ) by an
assigned orientation-preserving gluing homeomorphism

h : ∂U → ∂(S3\Int(U )). (5.83)

K and h define in a complete way the decomposition

N := (S3\Int(U )) ∪h U = V ∪h U. (5.84)
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Actually the splitting depends on the homotopy class of h(ψ),whereψ is a meridian
loop on V (generator of the fundamental group of the handlebody). Two smooth
3-manifolds N , N ′ generated by different surgery operations are homeomorphic iff
they are related by a finite sequence of Kirby–Rolfsen moves [54].

Consider now an N as defined in the last equality of (5.84). It is called a presen-
tation of N as a Heegard splitting. (Note however that such a presentation can be
actually achieved for any closed oriented smooth 3-manifold, not necessarily gen-
erated from a Dehn surgery operation on the 3-sphere as above). In any case the
oriented surface F (of genus g) bounding the two handlebodies is called an Heegard
surface. Let {φ1, φ2, . . . , φg} and {ψ1, ψ2, . . . , ψg} be the boundaries of two systems
of meridian disks on V and U, respectively. The two collections of disjoint loops on
F, together with F itself, represent a Heegard diagram of N. (The splitting can be
extended to a manifold with a non empty boundary ∂N where V is a handlebody and
U is such that its boundary is ∂N ∪ F, but then the loops ψ must be selected in a
different manner).

According to the spirit of the construction of the state sums in Sect. 5.4.2.2 (con-
sidered here for ∂N = ∅), the two systems of loops are treated as graphs on F and
colored by setting

{φ1, φ2, . . . , φg} → H = {h1, h2, . . . , hg} ∈ I g (5.85)

{ψ1, ψ2, . . . , ψg} → J = { j1, j2, . . . , jg} ∈ I g. (5.86)

Consider an arbitrary colored 3-valent fat graph Γ ⊂ N and deform it into a Γ ′
lying in the cylindrical neighborhood F × [−1, 1]. Then the state model

< N , Γ >= ω−2
∑
J∈I g
H∈I g

g∏
i=1

ω2
ji

g∏
k=1

ω2
hk
< φH |Γ ′|ψJ >, (5.87)

as the notation suggests, has the same value of the invariant (5.76) defined in
Sect. 5.4.2.2 (for ∂N = ∅ and N oriented). Thus the present version of < N , Γ >

is a topological invariant of the pair (N , Γ ) and in particular an ambient isotopy
invariant of the fat graph Γ (see Th. A.1 in [67]).

The evaluation of (5.87), apart from ω–factors, is reduced to the calculation of
elements of the type of < φ|Γ |ψ > as done in Sect. 5.4.2.1, while the evaluation of
(5.76) includes the intrinsically 3-dimensional relative invariant |M, FΓ |μ defined
in (5.61). It is not surprising that the prominent role is played here by a diagrammatic,
essentially 2-dimensional computation, where the fat graph Γ is shifted to F and the
generating loops of the handlebodies lie on the Heegard surface F by definition. (Note
that, in comparing (5.76) of Sect. 5.4.2.2 and (5.87) above, some caution is in order.
In the first state sum the triangulated handlebody M is associated withΓ itself, F being
its triangulated boundary with dual graph γFΓ , and {ψJ } represent the generating
loops of F itself. In the second state sum the collections {φH } and {ψJ }, independent
of Γ, are associated with the surgery link and its Heegard surface F bounding the
two handlebodies, hidden by the notation.)
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Note finally that (5.87), in case Γ is the empty fat graph

< N ,∅ >≡< N >= ω−2
∑
J∈I g
H∈I g

g∏
i=1

ω2
ji

g∏
k=1

ω2
hk
< φH |∅|ψJ >, (5.88)

is forced to give the value of the Turaev–Viro state sum for any N closed and oriented.
It is worth noting that in the present case the diagrams to be associated with this kind
of configuration of closed loops on the Heegard surface give rise exclusively to area
colorings and vertices of type (iii) in the classification given in Sect. 5.4.2.1. The
weights associated with these vertices are q-6 j symbols with extra qi weights, but,
on applying to concrete cases the identities (5.55), (5.56) or (5.57), the qi weights
are indeed absorbed so that the explicit form of (5.88) is formally recovered to be the
same as the Turaev–Viro original invariant (with only ω2, ω2

i and q-6 j). Of course
the meaning of the individual q-6 j is different in the two cases and the sets of moves
which improve the invariance of the two state sums must be chosen accordingly.

Explicit calculations of the present version of the Turaev–Viro invariant have
been carried out for classes of oriented 3-manifolds (such as lens spaces) [16, 32]
for which < φH |∅|ψJ > can be put in the form∏

i

< φki |∅|ψ ji > .

The resulting invariants can be written as suitable q-3nj symbols of the second kind,
see [56] for their definitions.

More crucially, such a Heegard–splitting version of the Turaev–Viro invariant can
be compared directly with the Witten–Reshetikhin–Turaev generating functional for
an oriented 3-manifold presented by using Dehn surgery along the tubular neigh-
borhood of a link L in S3 [53]. Since we do not give here details on the latter
construction (see also [38]), we just want to remark that the correspondence (5.22)
stated in Sect. 5.2.3 can be recasted by using < N > as defined above instead of
ZT V [N ; q] obtained by presenting N through colored triangulations (recall that every
state model in Sect. 5.4 gives an invariant for each fixed value of the root of unity q).
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Chapter 6
Combinatorial Framework for Topological
Quantum Computing

Unlike perturbatively renormalizable quantum field theory—representing the basic
tool in the standard model in particle physics, where the physically measurable
quantities are obtained as finite limits of infinite series in the physical coupling
constant—both SU (2)Witten–Reshetikhin–Turaev (WRT) and Turaev–Viro models
are actually ‘solvable’ for each fixed value of the coupling constant k or, equivalently,
of the deformation parameter q. Such finiteness property is manifest in the case of the
Turaev–Viro state sum (Sect. 5.2.2 of the previous chapter) and associated colored
link invariants (Sect. 5.4 of the previous chapter) which are expressed as summations
of a finite number of terms. In the WRT framework (Sect. 5.2.3 of the previous
chapter) solvability relies on the ‘heuristic’ path integral quantization prescription of
3-dimensional topological quantum field theories (TQFT) and reflects the existence
of an algebraic symmetry stemming from braid group representations and associated
(quantum) Yang–Baxter equations.

Looking in particular at the Jones polynomial [29, 57] as the prototype of observ-
ables in a WRT environment, an ‘effective’ procedure for calculating it can be carried
out on applying recursively the so-called skein relations to a given knot diagram, see
e.g. [33]. The question of the ‘efficiency’ of such an algorithm can be loosely for-
mulated by asking how computer resources needed for computation should grow as
the size of the input (measured here by the number of crossing of the knot diagrams)
increases. Focusing on the time required to complete the calculation, and referring
to the classical (Turing) model of computation, an algorithm is said to be polynomial
(belonging to the complexity class denoted by P) if its time function grows at most as
a polynomial in the size of the input. Algorithmic procedures in the class P are con-
sidered ‘efficient’, while other types of algorithmic behaviors, classified in various
complexity classes (see below for precise definitions), are referred to as ‘difficult’ or
even ‘intractable’. It is a classic result in complexity theory that the calculation of
the Jones polynomial on a classical computer is an intractable problem [28].

With the above remarks in mind, the issue of effective computability of the basic
functionals and observables of quantum WRT addressed in this chapter, can be
looked at as related to solvability/finiteness of the underlying theory. Turning the

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845, 217
DOI: 10.1007/978-3-642-24440-7_6, © Springer-Verlag Berlin Heidelberg 2012
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argument upside down, the search for new efficient quantum algorithms for process-
ing ‘invariant quantities’—characterizing suitably decorated geometrical objects or
combinatorial patterns—represents an original and possibly very fruitful approach
for improving the underlying physical models, typically formulated in d = 2, 3 space
dimensions, with respect to their (yet unknown) solvability properties. On the other
hand, the search for efficient computational protocols for topological invariants has
been recognized in the last decade as a major achievement for quantum information
theory [7, 14], also in connections with the search for anyonic quantum computing
machines [10, 39].

The first section of this chapter is a short review of the combinatorial framework
for topological quantum computation proposed by Mario Rasetti and one of the
author. Note that we are not going to review specifically foundations of topological
quantum computation, referring the reader to [10, 34, 50] for informative accounts.

The second section is aimed to illustrate a number of algorithmic questions in
knot theory and in the theory of finitely presented groups, focusing in particular
on the braid group. This list of problems give us the chance of defining (classical)
complexity classes of algorithms by resorting to specific examples and not in a purely
abstract way.

In Sect. 6.3 algorithmic question concerning the Jones polynomial are discussed
and the basic definition of ‘colored’ Jones polynomials is given within an algebraic
context (this choice, further expanded in Sect. 6.4.1) makes this chapter quite inde-
pendent from the field-theoretic setting of Sect. 5.2.3 of the previous chapter).

Efficient quantum algorithms for the (approximate) evaluation of colored Jones
polynomials and 3-manifold invariants are addressed in Sect. 6.4. The construction
actually bears on the interplay of three different contexts:

1. a topological context, where the problem is well-posed and makes it possible
to recast the initial instance from the topological language of knot theory to the
algebraic language of braid group theory;

2. a field theoretic context, where tools from 3d quantum Chern–Simons–Witten
(CSW) and associated 2d conformal field theories provide unitary representations
of the braid group;

3. a quantum information context, where specific features of the spin network frame-
work for quantum computation are used to efficiently solve the original problem
formulated in a field-theoretic language.

Finally, Sect. 6.5 deals with implications and improvements of the results of
Sect. 6.4 enlightening mutual connections between quantum geometry and quantum
computing.

6.1 The Spin Network Quantum Simulator

The model for universal quantum computation proposed in [45, 46], the ‘spin net-
work simulator’, is based on the (re)coupling theory of SU(2) angular momenta as
formulated in the basic texts [3, 4] on the quantum theory of angular momentum
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and the Racah–Wigner algebra, respectively, (crf. Sect. 5.1 of the previous chapter).
At the first glance the spin network simulator can be thought of as a non-Boolean
generalization of the Boolean quantum circuit model1 [47], with finite-dimensional,
binary coupled computational Hilbert spaces associated with N mutually commuting
angular momentum operators and unitary gates expressed in terms of:

(i) recoupling coefficients (3nj symbols) between inequivalent binary coupling
schemes of N = (n + 1) SU (2)—angular momentum variables (j—gates);

(ii) Wigner rotations in the eigenspace of the total angular momentum J (M—gates)
(that however will not be taken into account in what follows, see Sect. 5.3.2 of
[46] for details).

BOOLEAN Q-CIRCUIT

TOPOLOGICAL QFT

Q-AUTOMATA

GENERALIZED

Q-CIRCUIT

SPIN NETWORK

Q-SIMULATOR

STATE SUM

MODELS

In the diagram we try to summarize various aspects of the spin network simulator
together with its relationships with other models for quantum computation, in the
light of underlying physical models discussed in the previous chapter.

1 Recall that this scheme is the quantum version of the classical Boolean circuit in which strings
written in the basic binary alphabet (0,1) are replaced by collections of ‘qubits’, namely quantum
states in (C2)⊗N , and the gates are unitary transformations that can be expressed, similarly to what
happens in the classical case, as suitable sequences of elementary gates associated with the Boolean
logic operations and, or, not.
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On the left-hand portion of the diagram the standard Boolean quantum circuit
is connected with a double arrow to the so-called topological approach to quantum
computing proposed in [14] and developed in [15–17]. Such an approach resorts to
the Witten–Reshetikhin–Turaev (WRT) quantum functionals and associated unitary
representations of the braid group of an SU(2) Chern–Simons topological field theory
(Sect. 5.2.3 of the previous chapter). It was shown in [16] that SU(2) CSW functors
at the fifth root of unity, whose domain is restricted to collections of ‘topological’
qubits (disks with three marked points) on which suitable unitary representations of
the braid groups B3 and B3 × B3 act, do reproduce the standard elementary gates
of the quantum circuit model. The Boolean case is in turn connected one-way to the
box of the generalized Q-circuit because it is a particular case of the latter when all
N angular momenta are 1

2 -spins, see Sect. 3.2 of [46].
On the right-hand column, the double arrows stemming from the box of the

Q-simulator relate it to its reference models: from the viewpoint of quantum infor-
mation theory it is a generalized Q-circuit, as already noted before, while its physical
setting can be assimilated to state sum models discussed in the previous chapter.

The upper arrow is to be meant as generating, from the general spin networks
computational scheme, families of finite-state quantum automata able to process a
number of specific algorithmic problems, as will be shown in Sect. 6.4.

Besides the features described above, the kinematic structure of the Q-spin net-
work complies with the requisites of an universal Q-simulator as defined by Feynman
in [13], namely

• locality, reflected in the binary bracketing structure of the computational Hilbert
spaces, which bears on the existence of poly-local, two-body interactions;

• discreteness of the computational space, reflected in the combinatorial structure
of the (re)coupling theory of SU(2) angular momenta [3, 4, 54, 60];

• discreteness of time, given by the possibility of selecting controlled, step-by-step
applications of sequences of unitary operations for the generation of (any) process
of computation;

• universality, guaranteed by the property that any unitary transformation operat-
ing on binary coupled Hilbert spaces (given in terms of SU(2) 3nj symbols) can
be reconstructed by taking a finite sequence of Racah–Wigner transforms each
implemented by a 6j symbol as shown in [4], topic 12.

Then the Wigner 6j symbol, the quantum tetrahedron [8], plays a prominent
role also in the spin network Q-simulator scheme, where it is recognized as the
‘elementary’ unitary operation, from which any algorithmic procedure can be built
up. The role of the algebraic identities satisfied by the 6j’s (Sect. 5.1 of the pre-
vious chapter) in the present context is analyzed at length in [46] (Sect. 5.4.2
and Appendix A).

Remark In dealing with specific algorithmic questions, a warning is however in
order. The complexity class of any classical [quantum] algorithm is defined with
respect to a standard classical [quantum] model of computation. A review of basic
definitions in classical complexity theory, as framed within the standard, Turing
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model of computation (equivalent to the Boolean circuit model), is given in the
following section. As for quantum complexity classes, let us anticipate here that a
quantum algorithm for solving a given computational problem is efficient if it belongs
to the complexity class BQP, the class of problems that can be solved in polynomial
time by a Q-circuit with a fixed, bounded error, as functions of the size of a typical
input. In most examples the size of the input is measured by the length of the string of
qubits necessary to encode the generic sample of the algorithmic problem, as happens
with the binary representation of an integer number, e.g. in calculations aimed to
factorizing it in prime factors [47]. Once taken as reference model the Boolean
Q-circuit, what would be necessary to verify is that a 6j symbol with generic entries
can be efficiently (polynomially) processed by a suitably designed Q-circuit. This
issue is discussed at length in Sect. 6.4.3. ��

6.2 Knots, Braids and Complexity Classes

The analysis of algorithmic questions presented in this section and in the next one
(based on [21]) is carried out with a twofold scope. The first one is about the
necessity of defining classical and quantum complexity classes of computational
problems or algorithms according to standard classifications [19, 47] while a few
basic definitions in topological knot theory, together with its relation with the braid
group and its representations, are needed to handle polynomial invariants of knots
in Sect. 6.4.

A knot K is provided by a continuous embedding of the circle S1 (the
1-dimensional sphere) into the Euclidean 3-space R

3 or, equivalently, into the
3-sphere S3 .= R

3 ∪ {∞}. A link L is the embedding of the disjoint union of M
circles, ∪S

i=1(S
1)i into R

3 or S3, namely a finite collection of knots referred to as the
components of L and denoted by {Li }i=1,2,...,S. Since each circle can be naturally
endowed with an orientation, we can introduce naturally oriented knots (links).

Referring for simplicity to the unoriented case, two knots K1 and K2 are said to
be equivalent, K1 ∼ K2, if and only if they are ambient isotopic. An isotopy can be
thought of as a continuous deformation of the shape of, say, K2 ⊂ R

3 which makes
K2 identical to K1 without cutting and gluing back the ‘closed string’ K2.

The planar diagram, or simply the diagram, of a knot K is the projection of K
on a plane R

2 ⊂ R
3, in such a way that no point belongs to the projection of three

segments, namely the singular points in the diagram are only transverse double points.
Such a projection, together with over- and under-passing information at the crossing
points—depicted in figures by breaks in the under-passing segments—is denoted by
D(K); a link diagram D(L) is defined similarly. In what follows we shall sometimes
identify the symbols K [L] with D(K) [D(L)], although we can obviously associate
with a same knot (link) an infinity of planar diagrams. Examples of diagrams are
depicted in Fig. 6.1.
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Fig. 6.1 Planar diagrams:
the trefoil knot (top) and the
Borromean link (bottom)

The first question on algorithmic complexity-related to the still unsolved problem
in knot theory, namely a complete classification of (isotopy classes of) knots—is
stated as

Problem 0 Give an effective algorithm for establishing when two knots or links are
equivalent.

Note that ‘effective’ is not to be confused with efficient: the latter adjective is
deserved to algorithmic problems which can be solved by a Turing in a number
of steps growing polynomially with the size of the input (this is actually the def-
inition of the complexity class P). ‘Effective’ refers more loosely to a procedure
that can be carried out systematically on each instance of a given computational
problem.

Dealing with knots, the first issue concerns the choice of numerical quantities that
can encode their topological structure. The number of crossings of a knot (diagram)
is clearly a good indicator of the ‘complexity’ of the knot. Indeed, Tait in late 1800
initiated a program aimed to classifying systematically knots in terms of the num-
ber of crossings (see [5, 6, 41, 53] for exhaustive accounts on knot theory and for
references to both older papers and knots tables).

Since a knot K with crossing number κ(K ) can be represented by planar diagrams
with crossing numbers c(D(K )) for each c(D(K ))> κ(K ), the first issue is the
search for procedures aimed to simplify as much as possible the diagrams of a
knot K to get a D′(K ) with c(D′(K )) = κ(K ), which, from now on, denotes the
‘minimum’ crossing number. Reidemeister theorem (see e.g. [5]) gives the answer
to this basic question.
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Fig. 6.2 The three
Reidemeister moves acting
on local configurations of
link diagrams

I II

III

Equivalence of knots (Reidemeister moves). Given any pair of planar diagrams
D, D′ of the same knot (or link), there exists a finite sequence of diagrams

D = D1 → D2 → · · · → Dk = D′ (6.1)

such that any Di+1 in the sequence is obtained from Di on applying one of the
Reidemeister moves (I, II, III) depicted in Fig. 6.2.

The procedure of Reidemeister theorem applies to subsets of link diagrams local-
ized inside disks belonging to the plane where the diagram lives, and can be used
in principle to compare pairs of arbitrarily chosen knot diagrams also in view of
Problem 0. However, notwithstanding the recursively numerable character of the
implementation of the Reidemeister moves with respect to the quite unfeasible notion
of ambient isotopy, such moves can be hardly formalized and encoded into effective
algorithms, basically because of their purely topological character. As we shall see,
transformations on link diagrams can be consistently framed within a group-theoretic
setting by exploiting their connection with braids, the new Markov ‘moves’ being
reformulated in terms of algebraic operations.

In general, a link invariant is a map

L −→ f (L) (6.2)

where the quantity f (L) depends only on the type of the link, namely takes different
values on inequivalent links. Switching to link diagrams, we keep on using the same
notation as in (6.2), but now it is sufficient to verify that f (L) (≡ f (D(L))) does not
change under applications of Reidemeister moves I, II, III.

We have already met a numerical invariant, namely the (minimum) crossing num-
ber κ. It is a natural number which takes the value 0 for the trivial knot represented
as an unknotted circle. Other invariants taking values in Z can be defined for ori-
ented link diagrams, where each crossing is marked by ±1 according to some fixed
convention. For instance, the writhe w(D(L)) of a diagram D of an oriented link L
is the summation of the signs of the crossings of D, namely



224 6 Combinatorial Framework for Topological Quantum Computing

w(D(L)) =
∑

p

εp, (6.3)

where the sum runs over the crossing points {p} and εp = +1 if the (directed) knot
path shows an overpass at the crossing point p, εp = −1 for an underpass. Note
however that both the crossing number and the writhe do change under Reidmeister
move of type I, but are invariant under the moves II and III: this property defines a
restricted kind of isotopy, commonly referred to as regular isotopy. The notion of
regular isotopy is very useful because, by eliminating the move I, we do not really
lose any information about the topology of the link. Moreover, the evaluation of
crossing numbers and writhes can be carried out efficiently by a simple inspection
of the diagrams.

Over the years, mathematicians have provided a number of knot invariants,
by resorting to topological, combinatorial and algebraic methods. Nevertheless, we
do not have yet a complete invariant (nor a complete set of invariants) able to char-
acterize the topological type of each knot and to distinguish among all possible
inequivalent knots, recall Problem 0. As a matter of fact, the most effective invari-
ants have an group-theoretic origin, being framed in the notion of braid groups and
their representation theory. The relation between link and braids is governed by
Alexander theorem (see e.g. [6], Sect. 6.2).

Braids from links (Alexander theorem). Every knot or link in S3 = R
3 ∪ {∞} can

be represented as a closed braid, although not in a unique way.
The Artin braid group Bn, whose elements are (open) braids β, is a finitely

presented group on n ‘standard’ generators {σ1, σ2, . . . , σn−1} plus the identity
element e, which satisfy the relations

σiσ j = σ jσi (i, j = 1, 2, . . . , n − 1) if |i − j | > 1

σiσi+1σi = σi+1σiσi+1 (i = 1, 2, . . . , n − 2).
(6.4)

This group acts naturally on topological sets of n disjoint strands with fixed
endpoints—running downward and labeled from left to right—in the sense that each
generator σi corresponds to a crossing of two contiguous strands labeled by i and
(i+1), respectively: if σi stands for the crossing of the i-th strand over the (i+1)-th
one, then σ−1

i represents the inverse operation with σiσ
−1
i = σ−1

i σi = e, see Fig. 6.3
(top). An element of the braid group can be thought of as a ‘word’, such as for
instance β = σ−1

3 σ2 σ
−1
3 σ2σ

3
1 σ
−1
2 σ1σ

−2
2 ∈ B4; the length |β| of the word β is the

number of its letters, where by a ‘letter’ we mean one of the generators or its inverse
element. By a slight change of notation, denote by Ri j the over-crossing operation
acting on two strands the endpoints of which are labelled by i and j. Then the second
relation in (6.4) can be casted into the form of the algebraic Yang–Baxter relation

R12R13R23 = R23R13R12, (6.5)

represented pictorially in Fig. 6.3 (bottom).
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Fig. 6.3 The generator σi
and its inverse σ−1

i (top).
The algebraic Yang–Baxter
equation (bottom)

1 2 3 1 2 3

3 2 1 3 2 1

=

i i+1i i+1

Fig. 6.4 The two types of
closures of a braid, namely
the plat closure (left) and the
standard closure (right), both
representing the trefoil knot

It is straightforward to get a link out of a braid: we have simply to ‘close up’ the
ends of an open braid β to get a closed braid β̂ that reproduces the diagram of some
link L. Formally

β
closure−−−−→ β̂ ←→ L . (6.6)

Notice however that this operation can be performed in two ways, denoted by β̂st

(the standard closure) and β̂pl (the plat closure), respectively. In Fig. 6.4 the two
admissible closures of a same open braid are shown, where both closed braids can
be seen as deformations (by Reidemeister moves II and III) of the planar diagram of
the trefoil knot depicted in Fig. 6.1 (top).
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As already pointed out, Alexander theorem does not establish a one-to-one cor-
respondence between links and braids. For instance, given a closed braid β̂ = L
with β ∈ Bn, any other braid obtained from β by conjugation, namely β ′ = αβα−1

(for some α ∈ Bn) has a closure β̂ ′ which reproduces the same link L. Thus the
following question can be naturally rised.

Problem 1A Is it always possible to transform efficiently a given knot or link into a
closed braid?

The answer is affirmative, since there exists a classical algorithm which performs
the reduction in a number of steps which is bounded from above by a polynomial
function of the braid index ([6], Sect. 6.2 and original references therein), where the
braid index of a (closed) braid is simply the number of its strands.

Taken for granted the above result about the efficiency of the reduction of any link
diagram to a closed braid, we can now exploit the algebraic properties of braid groups.
For what concerns in particular the issue of equivalence, Reidemeister theorem can
be recasted into Markov theorem. The following statement of this theorem refers to
the case of open braids, which captures the crucial features of the construction, while
the version involving closed braids can be found in [6], Sect. 6.2.

Equivalence of braids (Markov moves). Two braids are equivalent if they differ by
a finite sequence of Markov ‘moves’ of the following two types, together with their
inverse moves:

(i) change a braid β ∈ Bn to a conjugate element in the same group, β → αβα−1,

with α ∈ Bn;
(ii) change β ∈ Bn to in(β)σ±1

n , where in : Bn ↪→ Bn+1 is the natural inclusion
obtained by disregarding the (n + 1)-th strand and σn, σ

−1
n ∈Bn+1.

The next question arises in connection with the search for the most ‘economical’
representation of a knot diagram as a closed braid. The minimum braid index of a
link L is the minimum number n for which there exists a braid β ∈ Bn whose closure
β̂ represents L.

Problem 1B Does there exist an (efficient) algorithm to select, among the diagrams
of a given link L, the diagram with the minimum braid index?

At present no explicit algorithm for addressing this problem is known, so that its
computational complexity class cannot be even evaluated (see [6], Sects. 6.2 and 6.4
for more details).

Coming to algorithmic problems characterized in purely algebraic terms, recall
that braid groups belong to the class of finitely presented groups. Such groups
are defined by means of a finite sets of generators together with relations among
the generators and can have a finite order—as for the classical point groups of
crystallography—or not—as happens for the braid group—(see [43] and older ref-
erences therein). It was Max Dehn who stated the three ‘fundamental problems’
concerning a group G presented in terms of generators, denoted by a, b, c, . . . , and
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relations P, Q, R, . . . , namely

G
.= 〈a, b, c, . . . ; P, Q, R, . . .〉. (6.7)

Any element of G can be written (in multiplicative notation) as a word W in the
alphabeth given by the generators and their inverse elements, as already done for the
braid group. Note that the relations P, Q, R, . . . in (6.7) represent the minimal set of
words in the generators, equivalent to the identity element e (‘minimal’ meaning that
any other word equivalent to the identity can be reduced—by the use of the relations
in the set—to the union of words in the same set).

Given the presentation (6.7) of the group G, Dehn problems are formulated as
follows.

2A. The word problem. For an arbitrary word W in the generators, decide whether
or not W defines the identity element in G.
Equivalently: given two words W , W ′, decide whether W = W ′.
2B. The conjugacy problem. For two arbitrary words W1 and W2 in the generators,
decide whether or not they are conjugate to each other. In a sharper form: find
explicitly an element W ′ for which W2 = W ′W1(W ′)−1.

2C. The isomorphism problem. For an arbitrary group G′ defined by another pre-
sentation G ′ .= 〈a′, b′, c′, . . . ; P ′, Q′, R′, . . .〉, decide whether or not G and G ′ are
isomorphic.

Except for the second issue in Problem 2B, we are in the presence of decision
problems, namely problems that can be addressed by means of classical algorithms
(running on a Turing machine) designed to answer ‘yes’ or ‘no’ to each of the above
questions. Recall that the time complexity function fA of an algorithm A is defined
in terms of the size s of the input. The size is in turn the length of an instance of
the problem, such as the number of binary digits in a string representing a numerical
instance or, in the case of finitely presented groups, the numbers of letters of the input
words. An algorithm associated with a decision problem belongs to the complexity
class P (Polynomial) if, for any instance of size s, the mapping

s→ fA (s) (6.8)

is (bounded by) a polynomial function and to the class NP (Non deterministic

Polynomial) if any guess on the answer can be checked in polynomial time [19].
Algorithmic problems endowed with complexity functions of exponential type have
to be considered as intractable in the framework of classical information theory.

For what concerns the above list of algorithmic questions in the case of a generic
group G, note preliminary that a solution of the complete conjugacy problem 2B
(belonging to a certain complexity class) would imply a solution to Problem 2A (in
the same class) since it would be sufficient to set W ′ = e in the expression W2 =
W ′W1(W ′)−1. It is also clear that the most difficult problem is the last one, which
requires a ‘global’ inspection of the algebraic structures (generators plus relations)



228 6 Combinatorial Framework for Topological Quantum Computing

of the groups under examination. As for the braid group, we leave aside this problem
and refer the reader to [6] (Sect. 6.1) for the definition of a presentation in terms of
generators and relations alternative to the standard ones collected in (6.4).

The known results about the word and the conjugacy problems for the braid group
Bn are briefly summarized below (see [6], Sect. 6.5 and original references therein).

2A. The solution to the word problem is polynomial, with a complexity function of
the order

O(|β|2n ln n), (6.9)

where |β| is the length of the initial representative of the braid β and n is the braid
index.

Surprisingly enough, the following problem, apparently very closely related to the
word problem, turns out to belong to the class of NP-complete problems (recall that
a particular NP problem is ‘complete’ if every other problem in the class can be
polynomially reduced to it [19]).

Problem 2A’ Given a word β in the standard generators σ1, σ2, . . . , σn−1 and their
inverses, determine whether there is a shorter word β ′ which represents the same
element in Bn .

Finally, as for the second Dehn problem

2B. The best known algorithm for the conjugacy problem is exponential in both |β|
and n.

Remark It is worth noticing that the difficulty of solving the conjugacy problem
in braid groups, as compared with the feasibility of the word problem, has been
exploited for the construction of a public-key (classical) cryptosystem in [2]. As for
cryptography, it has been recently proposed in [44] a classical protocol based on
purely topological knot theory. However, such issues are not so close to the main
topics of the present monography and thus we skip other details here.

6.3 Polynomial Invariants of Knots and Related
Algorithmic Problems

Invariants of knots (links) of polynomial type arise (or can be reformulated) by
resorting to representations of the braid group Bn in an algebra A , namely a vector
space over some field (or ring)Λ endowed with a multiplication satisfying associative
and distributive laws. The algebra must have a unit with respect to multiplication
and for our purposes must be also finitely generated, namely its elements can be
decomposed in terms of some finite ‘basis’ set, the number of elements of which
equals the braid index n. The reason for considering an algebra should be clear if we
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recognize, on the one hand, that we can multiply braids ∈ Bn by simply composing
their diagrams: given β1 and β2 ∈Bn we get the product β1β2 by placing the braid
β1 above β2 and gluing the bottom free ends of β1 with the top ends of β2 (this
opearation was implicitly assumed in (6.4) and (6.5), see also Fig. 6.3). On the other
hand, the operation associated with ‘addition’ of braids can be defined in terms of
formal combinations of the type aβ1 + bβ2, for any β1, β2 ∈Bn and a, b∈Λ.

A representation of Bn inside the algebra A is a map

ρA : Bn −→ A (6.10)

which satisfies

ρA(β1β2) = ρA(β1)ρA(β2) ∀β1, β2 ∈ Bn, (6.11)

namely ρA is a group homomorphism from Bn to the multiplicative group G of the
invertible elements of A (in particular: ρA(e)= 1, where e is the identity element
of Bn and 1 denotes the unit of A; ρA(β

−1)=[ρA(β)]−1, ∀β). By using the stan-
dard generators of Bn defined in (6.4), it suffices to define the map (6.10) on the
generators {σi }

ρA(σi ) := gi ∈ G ⊂ A, (i = 1, 2, . . . , n − 1), (6.12)

and extend linearly its action on products and sums of braids. Any pair of contiguous
elements gi and gi+1 must satisfy the Yang–Baxter equation associated with the
representation ρA, namely

gi gi+1gi = gi+1gi gi+1 (6.13)

while gi g j = g j gi for |i − j | > 1.
Once defined the representation ρA we may also introduce associated matrix

representations of some fixed dimension N by representing A over the algebra of
(N × N ) matrices with entries in the field Λ

A −→ M(Λ, N ). (6.14)

If we restrict the domain of the above map to the group of invertible elements, the
assignment (6.14) can be rephrased as the choice an N-dimensional vector space V
over Λ, and thus we have the natural isomorphism

M(Λ, N ) ∼= GLΛ(V, N ), (6.15)

where GLΛ(V, N ) is the general linear group of non-singular,Λ-linear maps V→ V .
Loosely speaking, if we associate with a braid β ∈ Bn a matrix M(β) obtained by
means of a representation (6.14) of dimension N = n, then β can be characterized
by the trace of M(β) (the character of the representation). Such traces are candidates
to be interpreted as invariants of links presented as closed braids, cfr. (6.6) in the
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previous section. A trace function over the algebra A is formally defined as a linear
function over A and, by extension, over a matrix representation algebra (6.14)

A −→ M(Λ, N )
Tr−→ Λ (6.16)

satisfying the property

Tr(M(β)M ′(β ′)) = Tr(M ′(β ′)M(β)). (6.17)

for any M(β),M ′(β ′) which are the images under ρA of two braids β, β ′ ∈Bn.

It can be shown that Tr(M(β)) is a link invariant since it does not change under
Markov move of type (i) defined in the previous section, namely

Tr(M(β)) = Tr(M ′(β ′)) if β and β ′are conjugate. (6.18)

In other words, link invariants arising as Markov traces are regular isotopy invariants,
as can be easily inferred comparing Reidemeister and Markov theorems.

The general algebraic setting outlined above is the framework underlying the orig-
inal constructions of both the Jones [29, 30] and the HOMFLY [18, 41] polynomials
for oriented links (note that these invariants take the same value in the orientations
of the link components are reversed). In particular:

• the Jones polynomial of a link L, J(L; t), is the Markov trace of the representation
of Bn inside the Temperley–Lieb algebra T Ln(t) . It is a Laurent polynomial in
one formal variable t with coefficients in Z, namely it takes values in the ring
Λ ≡ Z[t, t−1];

• the HOMFLY polynomial P(L; t, z) is obtained as a one-parameter family of
Markov traces (parametrized by z) of the representation of Bn inside the Hecke
algebra Hn(t). It is a Laurent polynomial in two formal variables with coefficients
in Z, namely Λ ≡ Z[t±1, z±1].
As discussed at length below, the problem of evaluating (approximating) the Jones

polynomial on a quantum computing machine has called many people’s attention in
the last decade. Purely algebraic definitions as outlined above seem however lack-
ing in selecting unitary representation of the braid group Bn in a natural way. For
instance, the approaches proposed in [1, 58] provide two different types of Hilbert
space structures and associated unitary representations of the braid group by resorting
to clever, but ‘ad hoc’ constructions, on the one hand, and to standard quantum circuit
processing, on the other. Contrarily, approaches inspired by Freedman’s vision of the
‘quantum field computer’ [14] are ab initio framed within the physical background
provided by CSW (SU(2)) topological quantum field theories, so that unitary repre-
sentations of the braid group come out in a straightforward way. In particular, the
formal variable of any polynomial to be associated with a unitary representation has
to be a complex r-th root of unity

q := exp(2π i/r), r ∈ N, r ≥ 1 (6.19)
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and the idea is that, by letting r grow, the polynomial can be evaluated in more
and more points lying on the unit circle in C. The upgraded notation for the Jones
polynomial is then

J (L; q) ∈ Z[q, q−1], (6.20)

while the invariants we will consider in the following section are colored extensions
of the Jones polynomial (6.20) denoted by

J (L; q; j1, j2, . . . , jM) (6.21)

and parametrized by labels { j1, j2, . . . , jM} (the ‘colors’) to be assigned to the S
link components {Li }i=1,2,...,S. From the point of view of equivalence of links,
J (L; q; j1, j2, . . . , jS) turns out to be a ‘regular isotopy’ invariant (cfr. Markov
theorem), but it can be shown that the quantity

q−3w(L)/4

q1/2 − q−1/2 J (L; q; j1, j2, . . . , jS), (6.22)

where w(L) is the writhe of the link L defined in (6.3), is invariant under any type
of ambient isotopies. The colored polynomials (6.22) reduce to Jones’ when all
the colors j1, j2, . . . , jM are equal to a same j, with j = 1/2, but are genuine
generalizations as far as they can distinguish knots with the same Jones polynomial,
see e.g. [41].

Remark It is worth stressing that these invariants are ‘universal’, in the sense that they
arise from a number of historically distinct approaches, ranging from the quasi tensor
category approach by Drinfeld [11] and R-matrix representations obtained with the
quantum group method [38, 52] to monodromy representations of the braid group in
2d conformal field theories [25, 40] (and references therein) up to 3d quantum Chern–
Simons–Witten framework [26, 57] (and references therein) and Sect. 5.2.3 of the
previous chapter. Referring to the representation ring of the quantum deformation of
SU(2) at a root of unity (reviewed in Sect. 6.4.1), the various unitary representations
of the braid group exploited in these approaches turn out to be unitarily equivalent.

��
Coming to algorithmic questions, we focus here on the Jones invariant (6.20),

which is the simplest of the colored polynomials, on the one hand, and the pro-
totype of invariants arising in a purely algebraic context, on the other. The reason
why Jones’ case is so crucial also in the computational context is actually due to
the fact that a ‘simpler’ link invariant, the Alexander–Conway polynomial, can be
computed efficiently, while the problem of computing 2-variable polynomials—such
as the HOMFLY invariant—is NP-hard (see [6] for the definitions of the mentioned
invariants and [28] for an account of computational questions). The issue of compu-
tational complexity of the Jones polynomial in classical information theory can be
summarized as
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Problem 3 How hard is it to determine the Jones polynomial of a link L?

A quite exhaustive answer has been provided in [28], where the evaluation of the
Jones polynomial of an alternating link L̃ at a root of unity q is shown to be #P-hard,
namely computationally intractable in a very strong sense. Recall first that ‘alternat-
ing’ links are special instances of links, the planar diagrams of which exhibit over
and under crossings, alternatively. Thus, the evaluation of the invariant of generic,
non-alternating links is at least as hard. Secondly, the computation becomes feasible
when the argument q of the polynomial is a 2nd, 3rd, 4th, 6th root of unity (refer to
[28] or [48] for details on this technical issue). Finally, the #P complexity class can
be defined as the class of enumeration problems in which structures or configurations
to be counted are recognizable in polynomial time. More precisely, a problem π in
#P is said #P-complete if, for any other problem π ′ in #P, π ′ is polynomial-time
reducible to π; if a polynomial time algorithm were found for any such problem, it
would follow that #P ⊆ P. A problem is #P—hard if some #P—complete problem
is polynomial-time reducible to it [19].

The intractability of Problem 3 relies on the fact that it is not possible to recog-
nize in polynomial time all the equivalent configurations of a same link L, namely
link diagrams {D(L), D′(L), D′′(L), . . .}, related to each other by (regular) isotopy.
Coming back to the problems addressed in Sect. 6.2, since any link can be presented
efficiently as a closed braid (Problem 1A), we are justified in switching to closed
braids and implementing regular isotopy of diagrams by means of Markov move
of type (i). However, the intractability of Problem 1B (selecting the diagram with
the minimum braid index) prevents us from selecting an ‘optimal’ representation of
the isotopy class of diagrams that would provide, in turn, a unique standard config-
uration to be handled for computational purposes. Moreover, since Markov move
(i) provides the practical implementation of the statement of the conjugacy problem
in the braid group (Problem 2B), the whole matter could be reformulated within the
group-theoretic setting as well (where the issue of the optimal presentation would
be related with the NP-complete ‘shorter word’ problem stated in 2A’ of Sect. 6.2).

In the discussion above, the relevant quantities encoding the ‘size’ of a typical
instance of the computational problem—a link diagram L presented as a closed braid
on n strands, L = β̂ as in (6.6)—are of course the number of crossings κ and the
braid index n. We might consider, instead of κ, the length |β| of the open braid β
associated with L, which equals the number of generators (and inverse generators)
in the explicit expression of β as a word in Bn . Finally, also the argument q of the
Jones polynomial (6.20) is a relevant parameter since, when the integer r in (6.19)
becomes� 1,we would reach more and more points on the unit circle in the complex
plane, thus giving more and more accurate evaluations of the invariant. As for the
algorithms to be addressed in the next section, their time complexity functions will
be evaluated in terms of κ and n for each fixed value of the formal variable q.

The computational intractability of Problem 3 does not rules out the chance of an
efficient ‘approximate’ calculation of the values of the Jones invariant.

Problem 4 How hard is it to approximate the Jones polynomial J(L , q) of a link L
at a fixed root of unity q (q �= 2nd, 3rd, 4th, 6th root)?
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Loosely speaking, the approximation in question is given by a number Z such that,
for any choice of a small δ > 0, the numerical value of J(L , q) differs from Z by
an amount ranging between −δ and +δ. Then the value Z can be accepted as an
approximation of the polynomial if Prob {|J(L = β̂, q) − Z | ≤ δ} ≥ 3

4 (see
Sect. 6.4.3 for the more details).

In the framework of classical complexity theory there do not exist algorithms to
handle Problem 4 as it stands. Thus, at least at the time being, this problem is to be
considered as intractable. The formal statement of the answer to Problem 4 in the
quantum computational context was given in [7].

4. The approximation of the Jones polynomial of a link presented as the closure of a
braid at any fixed root of unity is BPQ-complete. Moreover, this problem is univer-
sal for quantum computation, namely is the ‘prototype’ of all problems efficiently
solvable on a quantum computer.

Recall that BQP is the computational complexity class of problems which can be
solved in polynomial time by a quantum computer with a probability of success at
least 1

2 for some fixed (bounded) error. In [7] it was actually proved that PJ=BQP,
where PJ is defined as the class of languages accepted in polynomial time by a
quantum Turing machine with an oracle for the language defined by Problem 4.
This equality between computational classes implies that, if we find out an efficient
quantum algorithm for Problem 4, then the problem itself is complete for the class
BQP, namely each problem in this last class can be efficiently reduced to a proper
approximate evaluation of the Jones polynomial of a suitable link (see [58] for a
detailed discussion on this issue).

According to the above remarks, the search for efficient quantum algorithms for
Problem 4 (not given explicitly in [7]) has represented a breakthrough in quantum
information theory, and in the next section an account of the approach based on the
spin network framework for quantum computation is addressed in some details.

6.4 Efficient Quantum Processing of Colored
Jones Polynomials

The quantum algorithms—developed by one of the author in collaboration with
Silvano Garnerone and Mario Rasetti—are designed to deal with both the colored link
polynomials [20, 22]—viewed as vacuum expectation values of composite Wilson
loop operators in Witten–Chern–Simons theory—and Witten–Turaev–Reshetikhin
invariants of 3-manifolds presented as complements of a colored link in the 3-sphere
[24] (see Sect. 5.2.3 of the previous chapter for the field-theoretic definitions). The
goal is achieved through a two-level procedure summarized as follows.

• A specific unitary representation of the groupoid of colored oriented braids—
associated with colored oriented links presented as plat closures of these braids—is
processed on a q-spin network automaton (Sect. 6.4.1) in a number of steps that
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grows polynomially in the size of the input. Each elementary computational step
is implemented in the automaton scheme by two types of elementary unitary tran-
sition matrices, braidings and changes of basis (fusion matrices), see Sect. 6.4.2.

• Such basic unitaries can be efficiently compiled and approximated by means of
universal elementary gates acting on suitable qubit-registers (Sect. 6.4.3), thus pro-
viding efficiency of the whole algorithmic procedure within the standard model
of the quantum circuit and a positive answer to a generalized version of Problem
4 discussed at the end of Sect. 6.3.

6.4.1 q-Spin Network Automata as Quantum Recognizers

According to [55] a quantum recognizer is a particular type of finite-states quantum
machine defined as a 5-tuple {Q,H , X,Y, T(Y |X)}, where

1. Q is a set of n basis states, the internal states;
2. H is an n-dimensional Hilbert space and we shall denote by |Ψ0〉 ∈H a start

state expressed in the given basis;
3. X and Y = {accept, reject, ε} are finite alphabets for input and output symbols

respectively (ε denotes the null symbol);
4. T(Y |X) is the subset of n × n transition matrices of the form {T (y|x) =

U (x)P(y); x ∈ X, y ∈ Y }, where U(x) is a unitary matrix which determines
the state vector evolution and P(y) is a projection operator associated with the
output measurement on (suitable complete sets of observables associated with)
the upgraded state vector.

In this kind of machine the output alphabet is chosen in such a way that a word w
written in the input alphabet X must be either accepted or rejected, while for the
null symbol the requirement is P(ε) ≡ I (the identity matrix). Thus the one-step
transition matrices applied to the start state |Ψ0〉 can in principle assume the forms

(a) T (ε|x) = U (x)P(ε) ≡ U (x)I ∀x ∈ X,
(b) T (accept|x) = U (x)P(accept) ∀x ∈ X with P(accept) ≡ |Ψ0〉〈Ψ0|,
(c) T (reject|x) = U (x)P(reject) ∀x ∈ X with P(reject) ≡ I− |Ψ0〉〈Ψ0|,

according to whether no measure is performed (case (a)), or the output is
‘accept’/‘reject’, namely cases (b)/(c) respectively. In what follows this kind of
measure-once automaton scheme will be adopted, so that there will be one automa-
ton set up (initial state, unitary evolution and measuring) for each instance of the
algorithmic problem under study.

The general axioms stated above can be suitably adapted to make this machine
able to recognize a language L endowed with a word—probability distribution p(w)
over the set of words {w} ∈ L . In particular, for any word w = x1x2 . . . xl ∈ L
the recognizer one-step transition matrix elements are required to be of the form
Ti j (xs) = Ui j (xs) on reading each individual symbol xs ∈ w, namely no measure-
ment is performed at the intermediate steps (here i, j run from 1 to n, the dimension
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of the Hilbert space H ). Each Ui j (xs) must satisfy the condition

|Ui j (xs)|2 > 0, (6.23)

and the recognizer upgrades the (normalized) initial state to

U (w)|Ψ0〉 .= U (xl) . . .U (x1)|Ψ0〉. (6.24)

Then the machine assigns to the word w the number

p(w) = |〈Ψ0|U (w)P(accept)U (w)|Ψ0〉| with 0 ≤ p(w) ≤ 1, (6.25)

which corresponds to the probability of accepting the word w as a whole.
More generally, the machine accepts a word w according to an a priori probability

distribution Pr(w) with a word—probability threshold 0 ≤ δ ≤ 1 if

|Pr(w)− p(w)| ≤ δ, ∀w ∈ L . (6.26)

In what follows the accuracy δwill be set to 0, so that the two probability distributions
Pr and p coincide.

The families of ‘q-deformed’ spin network automata (included in the upper box
of the spin network simulator scheme in Sect. 6.1 of this chapter) are modeled on the
tensor (monoidal) category associated with the representation ring of Uq(sl(2)) and
are defined for each fixed value of the root of unity q. The algebraic setting is actually
the same we used to deal with Turaev–Viro quantum invariants in the previous chapter
(cfr. in particular the quantum initial data of Sect. 6.4.1). For self consistency we
remind here just the basic notions framed within a categorical background, referring
for instance to [37] (Sect. 6.1) for a quite readable account.

The category in question is denoted here by R(Uq(sl(2))), and its basic objects
are finite-dimensional Uq(sl(2))-modules {V j } which are are irreducible if and
only if the labels { j} run over the finite set {0, 1

2 , 1, 3
2 , . . . , (r − 2)/2}. This dis-

tinguished family of irreps makes R(Uq(sl(2))) a finitely generated ring and V j can
be characterized by a scalar in the ground ring C, the q-integer [2 j + 1]q , [n]q =
(qn/2 − q−n/2)/(q1/2 − q1/2). The ring structure is made explicit in terms of the
direct sum ⊕ and tensor product ⊗ of irreps, namely

V j ⊕ V k ∈ R(Uq(sl(2)) if j, k ≤ (r − 2)/2

V j ⊗ V k ∈ R(Uq(sl(2)) if j + k ≤ (r − 2)/2, (6.27)

where the ranges of the labels have to be suitably restricted. The analog of the
Clebsch–Gordan series, providing the decomposition of the tensor product of two
irreps into a (truncated) direct sum of irreps, reads

V j1 ⊗ V j2 =
min

{
j1+ j2,

(r−2)
2 − j1− j2

}
⊕

j=| j1− j2|
V j . (6.28)
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The ringR(Uq(sl(2))) is much richer than its ‘classical’ SU(2)-counterpart because it
can be endowed with a quasi-triangular Hopf algebra structure. Roughly speaking,
this means that, besides the standard operators ⊕ and ⊗ we can also introduce
a comultiplication 
 : Uq(sl(2)) → Uq(sl(2)) ⊗ Uq(sl(2)), an antipode map
A : Uq(sl(2)) → Uq(sl(2)), a counit ε : Uq(sl(2)) → C and a distinguished
invertible element

R ∈ Uq(sl(2))⊗Uq(sl(2)) (6.29)

called the R-matrix.
According to the categorical setting [59], R(Uq(sl(2))) is endowed with two

morphisms, F (associator) and R (braiding)

(R(Uq(sl(2)));R;F ). (6.30)

The associator F relates different binary bracketing structures in the triple tensor
product of modules V, U, W

F : (V ⊗U )⊗W → V ⊗ (U ⊗W ), (6.31)

and can be explicitly given in terms of the q-deformed counterpart of the 6j-symbol
(as a unitary matrix, it is also referred to as ‘duality’ or ‘fusion’ matrix borrowing the
language of conformal field theories). The braiding morphism bears on the existence
of the R-matrix (6.29) and is formally given by

RV,W : V ⊗W → W ⊗ V

with RW,V ◦RV,W �= IdV⊗W . (6.32)

Once suitable basis sets are chosen in the finite collection of irreducible spaces
∈ R(Uq(sl(2))), the unitary morphisms R and F can be made explicit (they sat-
isfy the pentagon and two hexagon relations which are in correspondence with the
Biedenharn–Elliott identity and the Racah identity for the q-6j, respectively, see their
explicit expressions in Sect. 5.4 of the previous chapter).

Comparing the definition of the quantum recognizer, it should be clear that, once
given a unitary representation of the braid group Bn complying with the algebraic
framework outlined above, the data of the category (6.30) (for any fixed integer
r ≥ 3) are the ingredients of a recognizer designed to accept (reject) the language
L (Bn) of the braid group. More precisely, the input alphabet is represented by
the set of generators {e, σiσ

−1
i } (i = 1, 2, . . . , n − 1), a word w is an open braid

written in terms of the generators and any U(w) can be decomposed into a sequence
of elementary unitaries, each satisfying (6.23), in agreement with the set up of the
algebraic structure of the category (6.30). Then the probability of accepting the given
word (6.25) is going to correspond to the (square of the modulus of) the colored
Jones polynomial of the closure of the open braid associated with the word w. More
details on the interplay between automaton calculations and the standard quantum
circuit model—framed within an improved presentation of the main results proved in
[20–24]—are addressed in the following two sections.
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Fig. 6.5 Three Wilson lines
intersecting Σ1 and Σ2

1

2

j1^ j3̂j2^

j1^* j3^*
j2̂*

6.4.2 Processing Colored Oriented Braids on Spin Network
q-Recognizers

Recall from Sect. 5.2.3 of the previous chapter that observables in an Uq(sl(2))
CSW (Chern–Simons–Witten) topological quantum field theory are vacuum expec-
tation values of Wilson loop operators associated with knots (links) embedded in the
ambient 3-manifold, cfr. the definition in (5.27). As pointed out in the remark at the
end of that section the extension of the functionals to the case ∂M3 �= ∅ requires
modifications of the classical CS action by suitable Wess–Zumino–Witten (WZW)
terms which, once quantized, provide non-trivial quantum degrees of freedom on the
boundary surfaces [9]. Consider in particular an oriented compact three-manifold
M3 with, say, two boundariesΣ1,Σ2 (closed oriented surfaces). The field theoretic
picture of a knot (link) smoothly embedded in (M3, ∂M3) is represented (locally)
by a number of Wilson lines carrying Uq(sl(2)) irreps j i

l intersecting the boundaries
at some ‘punctures’ Pi

l as depicted schematically in Fig. 6.5.
Then the Wilson loop operator is to be associated with the knotted configuration

arising after the identification of the two punctured boundary surfaces (endowed
with the same topology and with opposite orientations) thus providing a ’vacuum‘
expectation value whose value is given by the colored Jones polynomial (6.21).

In [35] Kaul gave an explicit construction of these observable in the framework
of CSW-WZW field theories (see also [51]). In view of the remarks in Sect. 6.4.1
above, it is the associated unitary representation of colored oriented braids which
is going to be processed in the quantum–automaton calculation for colored Jones
polynomials.

The basic ingredients of Kaul construction are oriented geometric braids as
depicted in Fig. 6.6, the strands of which are endowed with colorings given by
Uq(sl(2)) irreps labels. An n-strand colored oriented braid is defined by two sets
of assignments ĵi = ( ji , εi ) with (i = 1, 2, . . . , n), corresponding to the spin ji
labelling the strand and to the orientation εi of the strand, with εi = ±1 (for the
strand going into or away, respectively, from a horizontal rod from which the braid
issues). The first set of assignments is associated to the upper rod, the second to
the lower rod (we use the convention that two braids are composed in the downward
direction). The conjugate of ĵi is defined as ĵ∗i ≡ ( ji ,−εi ). It follows that the assign-
ments on the lower rod are just a permutation of the conjugates of the assignments on
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Fig. 6.6 An oriented braid
on four strands

Fig. 6.7 The composition of
two colored oriented braids
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the upper rod. A colored and oriented braid can thus be represented by the symbol

σ

(
ĵ1 ĵ2 . . . ĵn
l̂1 l̂2 . . . l̂n

)
, (6.33)

where l̂ j = ĵπ(i) for some i and j and a permutation π of {1, 2, . . . n}.
The composition of two colored oriented braids is well defined only if the ori-

entations and the colors of the two braids match at the merging points, as shown in
Fig. 6.7.

The group (actually a groupoid) of colored oriented braid is generated by a number
of identities—one for each assignment of colors and orientations on a topologically
trivial braid—and by the generators {σl} (l = 1, 2, . . . n−1) (Fig. 6.8) which satisfy
the defining relations of Bn already stated in (6.4).

In order to obtain a link (namely a multicomponent knot) from a colored braid we
need to ‘close up’ the open braid. According to [35] only the plat closure, or platting,
of a colored braid is to be considered (recall from Fig. 6.4 that there exist two types
of closures but in any case the procedure of transforming a knot diagram into a braid
is efficiently implementable, cfr. Problem 1A of Sect. 6.2). The plat closure must
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.....

j1̂ j2̂ jn-1
^ jn̂

j1̂* j2̂* jn-1
^* jn̂*.....

.....

...

j1̂ j2̂ jn-1
^ jn̂

j1̂* j2̂* jn-1
^* jn̂*

...

jl̂ ĵ l+1

jl̂* ĵ *l+1...

... ...

...

l

Fig. 6.8 One of the identities and the generator σl of the colored braid group

be obviously performed on a braid with an even number of strands whose colors
assignments match as follows (compare also Fig. 6.9)

σ

(
ĵ1 ĵ∗1 ĵ2 ĵ∗2 . . . ĵ2n ĵ∗2n
l̂1 l̂∗1 l̂2 l̂∗2 . . . l̂2n l̂∗2n

)
. (6.34)

The further step in Kaul’s construction consists in looking at the embedding
of the 2n-strand braid into a 3-sphere S3 with two 3-balls removed, giving rise to a
three-manifold with boundariesΣ1,Σ2 (topologically two-spheres S2 with opposite
orientations). The intersections (‘punctures’) of the braid (6.34) with the boundaries
inherit the colorings and orientations from the corresponding strands of the braid
(Fig. 6.10).

According to the general set up of topological quantum field theories [9, 57],
finite dimensional Hilbert spaces H 1⊗H 2 are associated with the two boundaries
Σ1,Σ2, and the basis sets in these spaces are the so-called conformal blocks of the
boundary WZW conformal field theory at ’level‘ �, with 2n external lines labeled
by (in principle different) irreps of SU (2)q (� is related to CSW coupling constant
by � = k + 2, so that from now on we set q = exp{2π i/�}). Two particular types
of conformal block bases are needed to deal with braids the plat closures of which
will give rise to colored oriented links, and their combinatorial patterns are shown
in Figs. 6.11 and 6.12.

The (orthonormal) basis sets are constructed by taking particular binary cou-
pling schemes of the 2n ‘incoming’ angular momentum variables j1, j2, . . . , j2n

which must sum up to give a spin-0 total singlet state. The rest of the procedure
can be carried out on explicitly applying the prescriptions outlined in Sect. 6.4.1
for the representation ring R(Uq(sl(2))) Looking first at the combinatorial struc-
ture of Fig. 6.11, the most general odd-coupled (orthonormal) basis is consistently
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....

....

j1 j1 j2 j2 j2n j2n
^ ^* ^* ^*^ ^

1 1 2 2 l2n l2nl l l l
^ ^* ^* ^*^ ^

2n-plat closure

....

....

1 j1 j2 j2 j2n j2nj
^ ^* ^* ^*^ ^

l1 l1 l2 l2 l2n l2n
^ ^* ^* ^*^^

platting

2n-braid

Fig. 6.9 The platting of a colored oriented braid σ on 2n strands

Fig. 6.10 A colored braid
pattern B on 2m strands
embedded into the 3-sphere
bounded by Σ1 and Σ2, two
copies of S2 with opposite
orientations

B

...

...

j1^ j1^* j2^ j2^* jm^ jm^*

l1*
^

l1*
^

l2
^

l2*
^

lm
^

lm*
^

1

2

Fig. 6.11 The conformal
block of type {p; r} (odd)

j1 j2 j3 j4 j5 j6 j7 j8 j2n-1 j2n

p0 p1 p2 p3 pn-3 pn-2 pn-1

r1 r2 rn-3

....

Fig. 6.12 The conformal
block of type {q; s} (even)

j2 j3 j4 j5 j2n-2 j2n-1

q1 q2 q3 qn-3 qn-2 qn-1

s1 s2 sn-3

....

j1 j2n

q0

labeled as

|p; r〉j, (6.35)



6.4 Efficient Quantum Processing of Colored Jones Polynomials 241

where j is a shorthand notation for the ordered string j1, j2, . . . j2n, p ≡ p0, p1, . . . ,

pn−1 and r ≡ r1, r2, . . . , rn−3. In the even-coupled case depicted in Fig. 6.12 the
states of the basis are denoted by

|q; s〉j , (6.36)

where j is the same as before while q ≡ q0, q1, . . . , qn−1 and s ≡ s1, s2, . . . , sn−3.

The conformal blocks (6.35) [respectively (6.36)] are the eigenbasis of the odd
[even] unitary braiding matrices U (σ2l+1) [U (σ2l)] (the matrix counterparts of the
braiding morphism R in the categorical language)

U [σ2l+1]|p; r〉( ĵ2l+1, ĵ2l+2)〉 = λpl ( ĵ2l+1, ĵ2l+2)|p; r〉( ĵ2l+2, ĵ2l+1)〉;
U [σ2l ]|q; s〉( ĵ2l , ĵ2l+1)〉 = λql ( ĵ2l , ĵ2l+1)|q; s〉( ĵ2l+1, ĵ2l )〉. (6.37)

The eigenvalues of the braiding matrices depend on the relative orientation of the
strands. For right-handed half twists (i.e. over-crossings) their value is

λt

(
ĵ, î
)
≡ (−) j+i−t q(c j+ci )/2+cmin(i, j)−ct/2, (6.38)

for parallel oriented strands, while

λt

(
ĵ, î
)
≡ (−)| j−i |−t q−|c j−ci |/2+ct/2, (6.39)

if the orientation is anti-parallel. Here c j is the quadratic Casimir operator j ( j + 1)
for the spin-j representation. Moreover the two basis sets are related to each other by

|p; r〉j =
∑
(q;s)

A(q;s)
(p;r)

⎡
⎢⎢⎢⎣

j1 j2
j3 j4
...

...

j2n−1 j2n

⎤
⎥⎥⎥⎦ |q; s〉j, (6.40)

where the symbol A(q;s)
(p;r)[::] is a unitary duality matrix (or, borrowing the lan-

guage from SU(2) representation theory, a q-deformed 3nj recoupling coefficient).
As pointed out several times, any such duality matrix can be decomposed into (sums
of) products of a ‘basic’ duality matrix or q-6j symbol corresponding to the categor-
ical morphism F . An explicit formula will be given in the following section, but a
graphical illustration of the decomposition of (6.40) in the case of six primary fields
is shown in Fig. 6.13.

As proved in [35], the colored polynomial of a link L, presented as the plat closure
of a colored braid

σ

(
ĵ1 ĵ∗1 . . . ĵn ĵ∗n
l̂1 l̂∗1 . . . l̂n l̂∗n

)
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Fig. 6.13 Example of
duality transformation
(a 6-point correlator)
between the two types of
conformal blocks

is given by

J [L; j; q] = Tr
n∏

i=1

[2 ji + 1]q
l〈0; 0|U

[
σ

(
ĵ1 ĵ∗1 . . . ĵn ĵ∗n
l̂1 l̂∗1 . . . l̂n l̂∗n

)]
|0; 0〉j, (6.41)

where j≡ ( j1, j2, . . . , j2n) and [2 ji + 1]q is the quantum dimension of the irrep
labeled by ji . Thus J [L; j; q] can be evaluated by taking the trace on the multi-
indexes j, l of the matrix elements of the above composite braiding operator
U [σ ] in the Kaul representation, e.g. with respect to the odd-coupled basis, where
all the intermediate quantum numbers are constrained to give singlet eigenstates
(a similar result would hold true for the even-coupled basis). Moreover, U [σ ] can be
decomposed into a finite sequence of unitary matrices U [σ2l+1] (diagonal matrices
in the odd-coupled basis adopted in (6.41)) and duality matrices of the type (6.40)
to be applied whenever a switch to the even-coupled basis is needed, namely when
an even U [σ2l ] occurs in the decomposition (see [35] for the explicit expression of
these matrices).

The construction outlined above can be cast into an effective process of calcula-
tion by resorting the concept of ‘measure–once’ quantum recognizer introduced in
Sect. 6.4.1.

An Aq quantum recognizer is defined, for a fixed root of unity q = exp{2π i/�},
by the 5-tuple {Codd ,H , B2n, {accept, reject, ε}, U (B2n)}, where

• Codd is the odd-coupled conformal block basis of the boundary WZW theory (see
(6.35) and Fig. 6.11).

• H is the ordered tensor product of 2n (2 ji + 1)-dimensional Hilbert spaces sup-
porting irreps labeled by a fixed set of ji , with ji ≤ (�− 2)/2 (i = 1, 2, . . . , 2n).

• B2n is the braid group on 2n strands whose generators g ≡ {σ1, σ2, . . . , σ2n−1}
and their inverses represent the input alphabet X (the identity element e ∈ B2n may
play the role of the null symbol ε).

• Y = {accept, reject, ε} is the output alphabet.
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• The transition matrices are expressed in terms of U (B2n), denoting collectively
the Kaul unitary representation matrices, while the projectors P(y) (y ∈ Y ) are
defined as in the general case given in Sect. 6.4.1.

According to the above identifications, we provide the automaton with an input
word w ∈ B2n of length κ (written in the alphabet g by natural composition in B2n)

w = σε1
α1
σε2
α2
· · · σεκακ ; σαi ∈ g, εi = ±1 (6.42)

and such that the (plat) closure of the 2n-strand braid w gives the link L to be
processed. Dropping for simplicity all the matrix indexes, the unitary evolution of
the automaton is achieved on applying the sequence

U (w) = U (σ εκακ )U (σ
εκ−1
ακ−1 ) · · ·U (σ ε1

α1
) (6.43)

to a start ket |0; 0〉j expressed in the odd-coupled basis (6.35).
Whenever an odd-braiding σα = σ2i+1 (or (σ2i+1)

−1) occurs, the automaton one-
step evolution upgrades the internal state by inserting the eigenvalue of the associated
unitary U (σ2i+1) and the two j-type labels of the internal state are switched, see
(6.37). On the other hand, when an even-braiding σβ = σ2i (or (σ2i )

−1) must be
implemented, the automaton has to change the parity of the internal state by means
of a duality matrix of the type (6.40), so that the effective transformation is given by
a product U (σβ)A[::]. Since any duality transformation can be split into a sequence
of basic duality matrices as in Fig. 6.13, we may look at the single q-6j symbol as an
‘elementary’, one-step evolution of the automaton. To assess this claim it is necessary
to estimate the number of q-6j’s entering the generic q-3nj recoupling coefficient
and this can be done at once by resorting to an upper bound derived within the theory
of twist–rotation graphs [12] (see also Appendix A of [46]). In the present case this
upper bound can be actually expressed in terms of 2n, the braid index so that the time
complexity function (the number of computational steps, recall its definition from
(6.8)) for processing a braid-word in B2n of length |w| ≡ κ on a quantum recognizer
Aq(w) grows at most as (Ñ := (2n − 1))

(2n, κ) → fAq (w)(2n, κ) ≤ κ · (Ñ ln Ñ ), (6.44)

implying that the automaton model Aq processes efficiently any such braid w for
fixed q = exp(2π i/(k + 2)) (compare Sect. 6.4.3 for a tighter bound).

Let us finally comment on the ‘probability distribution’ entering the definition
of a quantum automaton that recognizes a language in a probabilistic sense (end
of Sect. 6.4.1). On the basis of the expression of the colored link invariant given in
(6.41) and by comparison with the word probability of a quantum recognizer defined
in (6.25), it should be quite clear that the probability naturally associated with a link
L processed on its own quantum automaton is the square modulus of its colored Jones
polynomial (note that the positivity conditions in (6.23) are always satisfied). More
details on the type of approximation are given at the end of the following section.
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Fig. 6.14 Register for the
qubit-representation space j1

.

.

.

j2m

P0

.

.

.

.

.

.

Pm-1

r1

rm-3

6.4.3 The Qubit Model and Approximate Evaluation
of the Colored Jones Invariants

According to the second goal stated at the beginning of Sect. 6.4, we are going to
show how to implement within a standard quantum circuit scheme the Kaul unitary
representation of the (colored) braid group.

The starting point consists in providing a procedure for encoding the (automaton)
basis states ∈ Codd into a ‘register’ made of a suitable number of qubits, whereby
showing how to realize efficiently in such a new representation space (actually
(C2)⊗N for a suitable N to be determined) the images of the braid group generators.
Note that, according to (6.35), the quantum numbers which label each odd-vector
(j, p and r) (each ranging over the finite set

{
0, 1

2 , . . . ,
k
2

}
) are (4n − 3), so that a

register of �log2 (k + 1)� qubits is sufficient to encode each one of them (�x� denotes
the smallest integer≥ x). The total number of qubits needed to encode for one basis
vector is the product of the number of (mutually commuting) observables that spec-
ify a state times the number of qubits needed to specify the single quantum number,
namely

(4n − 3)× �log (k + 1)� (6.45)

which then grows linearly in the index of the braid group 2n. An ordering on the quan-
tum register must also be chosen, in order to associate with each block of �log (k + 1)�
qubits a well defined quantum number of the system. The ordering adopted here is
shown in Fig. 6.14.
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Recall from the previous section that in Kaul representation the odd generators of
B2n are mapped to unitary matrices which are diagonal in the representation space
H of the automaton, while even elements of B2n require a change of basis given
by a duality matrix as formally given in (6.40). Each duality matrix, in turn, can
be decomposed into a sequence of elementary duality matrices using the following
explicit relation

A(q;s)
(p;r)

⎡
⎢⎣

j1 j2
...

...

j2n−1 j2n

⎤
⎥⎦

=
∑

t1,t2,...,tn−2

n−2∏
i=1

(
Ati

pi

[
ri−1 j2i+1
j2i+2 ri

]
Asi−1

ti

[
ti−1 qi
si j2n

])

×
n−2∏
l=0

Aql+1
rl

[
tl j2l+2
j2l+3 tl+1

]
, (6.46)

where labels in multiple summations are constrained by triangular inequalities, com-
pare also the (truncated) Clebsch–Gordan series (6.28). Here the q-6j is looked at
as a duality matrix A[::], whereby the relation with the standard notation used in
Sect. 5.2.2 of the previous chapter is

A j12
j23

[
j1 j2
j3 j

]
:= (−)( j1+ j2+ j3+ j)([2 j12+1]q [223+1]q)1/2

{
j1 j2 j12
j3 j j23

}
q
. (6.47)

Remark Recall from Sect. 6.1 of this chapter (in particular the final remark) the
prominent role of the 6j as the elementary gate in the spin network framework of
quantum computation. Any 6j symbol (either ‘classical’ or q-deformed) with all of
its six entries fixed can be efficiently computed classically due to the finiteness of the
Racah sum rule (see (5.8) in Sect. 5.1 of the previous chapter). On the other hand,
the 6j is, say, a (2d + 1)× (2d + 1) unitary matrix representing a change of basis, as
given explicitly in (5.5) of Sect. 5.1 of the previous chapter, with the matrix indices
j12, j23 running over the interval of size 2d+1. Thus the assignment of a complexity
class to the problem of calculating a 6j consists in checking whether, as d increases,
the calculation of the 6j falls into the BQP class or not. The standard quantum circuit
by means of which such a task can been achieved for a q-6j and for each q = a root of
unity is given below, while the analog problem involving a classical, SU(2) 6j seems
still open. ��

Since a q-6j is always applied on a (5�log2(k+1)�)-qubit register, it is a standard
result that any such a gate can be efficiently compiled by resorting to a set of universal
elementary gates (cfr. for instance [27]). Upon increasing the size of the input (by
adding new crossings in the braid diagram) more and more q-6j’s may appear in the
decomposition (6.46) of a q-3nj, but a single q-6j gate is still

25�log(k+1)� (6.48)
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Fig. 6.15 The quantum
circuit realization of the
six-point quantum correlator j2

j3

j4

j5

j6

j1

p0

p1

p2

q1

q0

q2

j2

j3

j4

j5

j6

j1

q-6j

q-6j

q-6j

q-6j

dimensional in the qubit-representation space. The counting of the number of
q-6j-factors in (6.46) can be carried on by resorting to graphical representations,
so that, for instance, the six-point correlator in Fig. 6.13 of the previous section is
associated with the quantum circuit depicted in Fig. 6.15. The dependence on 2n,
index of the braid group, of the number N of q-6j ’s in the decomposition of a given
q-3nj amounts to

N = 3n − 5, (6.49)

thus improving the rate of growth Ñ ln Ñ in the complexity function (6.44). Thus,
on the basis of (6.45), (6.48), (6.44) and (6.49), Kaul unitary representation at a fixed
root of unity q can be efficiently compiled within the standard quantum circuit model.

Let us state now the last algorithmic problem of this chapter, namely

Problem 5 How hard is it to approximate the colored Jones polynomial J (L, j;q)
of a link L at a fixed root of unity q (q �= 2nd, 3rd, 4th, 6th root)?

which is a generalization of Problem 4 of Sect. 6.3.
The notion of approximation used in these contexts was formalized by Freedman

et al. in [7]. Adopting here the terminology of [58], additive approximation means
the following: given a normalized function f (x), where x denotes an instance of a
computational problem in the selected coding, one has an additive approximation of
its value for each instance x if one can associate to it a random variable Zx such that

Prob {| f (x)− Zx | ≤ δ} ≥ 3

4
, (6.50)

for arbitrary δ ≥ 0. The time needed to achieve the approximation is going to be
polynomial in the size of the problem and in δ−1.

Recall that, if J(L, c, q) denotes the colored Jones polynomial of a link L made of
S components labeled by c = c1, c2, . . . cS, the natural normalization is provided by
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the product of the quantum dimensions associated with c1, c2, . . . cS (this is actually
the value of the Jones polynomial for a collection of S unknots with the same labeling).
Consider now a (Kaul-type) braid of length κ∈B2n with a coloring j and fix a real
δ > 0. The first step of the procedure consists in generating an ensemble from
which one can sample a random variable Z which is an additive approximation of
the absolute value of the normalized colored Jones polynomial of the plat closure of
the braid, in such a way that the following condition holds true

Prob {|J (L , j, q)− Z | ≤ δ} ≥ 3

4
. (6.51)

In order to check the efficiency of the above approximation, namely proving that it
can be achieved in O(Poly(κ, 2n, δ−1)) steps, two lemmas are needed (see [1, 58]).

Lemma 1 Given a quantum circuit U of length O(Poly(n)), acting on n qubits,
and given a pure state |Φ〉 which can be prepared in time O(Poly(n)), then it is
possible to make samplings in O(Poly(n))-time from a set of two random variables
σ and τ (σ, τ ∈ {0, 1}), in such a way that 〈σ + iτ 〉 = 〈Φ|U |Φ〉.
Lemma 2 Given a set of random variables {ri } such that

ri ≥ 0, lim
n→∞

1

n

n∑
i=1

ri = m, lim
n→∞

1

n

n∑
i=1

(
r2

i − 〈r2
i 〉
)
= v2, (6.52)

then Prob(
∣∣n−1∑

i ri − m
∣∣ ≥ δ) ≤ 2 exp

(−nδ2/(4v)
)
.

(The first lemma can be easily proved with linear algebra arguments while the
second is a modified version of the well known Chernoff bound.)

Summing up, the positive answer to Problem 5 is achieved in two steps:

• the qubit model for the Kaul representation can be efficiently compiled, as shown
in the first part of this section;

• a sampling procedure can be implemented (efficiently) to extract the approximate
value of the colored Jones polynomial.

The circuit that realizes the procedure as a whole is sketched in Fig. 6.16, where

|Φ〉 = |0; 0〉j

is the start state in the automaton calculation expressed in the qubit-representation
while U (b) stands for a suitable decomposition in elementary gates of Kaul unitary
matrix associated with the colored braid b.

|+〉 = 1

2
(|0〉 + |1〉)

is a qubit state and the box in the upper right corner represents generically a mea-
surment M on the Pauli matrices. Then the sampling lemma stated above ensures
that a series of measurements of σx on the first qubit is going to provide the value
for Re(J (L , j, q)), while a series of measurements of σy provide the value for
Im(J (L , j, q)).
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Fig. 6.16 The quantum circuit for the efficient approximation of colored Jones polynomials

6.4.4 Extension to 3-Manifold Quantum Invariants

Recall that every closed, connected and orientable 3-manifold M3 can be obtained
by surgery on an unoriented framed link in the 3-sphere S3 (cfr. Sect. 5.4.3 of the
previous chapter where the Heegard splitting construction on a surgery link has
been reviewed). The Reshetikhin–Turaev quantum invariants of 3-manifolds can be
obtained as combinations of (colored) polynomial invariants of ‘framed’ unoriented
links in S3 [37, 41, 52]. (Within the CSW environment the necessity of introducing
framings is physically motivated by the requirement of general covariance of the
quantized field theory, see e.g. ch. 3 of [26].)

Loosely speaking, a framed oriented link [L; f] is obtained from a link L—thought
of as made of knotted strings—by thickening its strings to get oriented ‘ribbons’.
If L has S knot components K1, K2, . . . , KS, for each Ks we introduce another
closed path K f

s oriented in the same way as Ks and lying within an infinitesimal
neighborhood of Ks in S3. The overall topology of the link is not modified, but for
each Ks we now have an extra variable τ(Ks) telling us how many times the oriented
ribbon is ‘twisted’. Denoting by f .= { fs = n(s), n(s) ∈ Z} (s = 1, 2, . . . , S) the
framing of the link L, fs is the self-linking number of the band, or equivalently the
linking number lk(Ks, K f

s ) ≡ χ(Ks, K f
s ) between the knot Ks and its framing curve

K f
s which winds n(s) times in the right-handed direction. The linking number (for

a link with more than one component knot) is defined for each pair of components
(Ki , K j ) as lk(Ki , K j ) = w(DL) − w(DKi ) − w(DK j ), where w represents the
writhe of the associated knot diagram defined in (6.3). The twist of the band τ(Ks)

is not independent from lk(Ks, K f
s ), and the simplest choice we can made is to

set τ(Ks) = w(Ks), where w(Ks) is the writhe of the sth component. The type
of framing usually adopted within the CSW environment is the so-called ‘vertical’
framing.

Then, denoting by M3
L a closed, connected and oriented 3-manifold obtained by

surgery in S3 along an unoriented colored framed link [L; f, j] with S link compo-
nents, the
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I [M3
L ; f; q] = α−σ [L;f]

∑
{j}
μ j1μ j2 · · ·μ jS J [L; f, j; q] (6.53)

is a topological invariant of the 3-manifold endowed with the framing assignment f
for any fixed root of unity q = exp{2π i/(k + 2)}. In the above expression

α ≡ exp
3π ik

4(k + 2)
; μ j =

√
2

k + 2
sin

π(2 j + 1)

k + 2
,

j ≡ ( j1, j2, . . . , jS) run over {0, 1
2 , . . . ,

k
2 } and the summation is performed over all

admissible colorings. J [L; f, j; q] is the ‘unoriented’ counterpart of the polynomial
for the link L with coloring assignment j on its components and the summation is
performed over all admissible colorings. Finally, σ [L; f] denotes the signature of
the linking matrix χ [L; f] namely the difference between the number of positive and
negative eigenvalues of the symmetric matrix

χ [L; f] =

⎛
⎜⎜⎜⎝

n1 χ(K1, K2) χ(K1, K3) · · · χ(K1, KS)

χ(K2, K1) n2 χ(K2, K3) · · · χ(K2, KS)
... · · · · · · · · · ...

χ(KS, K1) · · · · · · · · · nS

⎞
⎟⎟⎟⎠ (6.54)

where χ(Ki , Kj) is the linking number between the component knots Ki and Kj.

(We refer the reader to, e.g., [37] for the proof of the invariance of (6.53) with respect
to the proper set of Kirby moves.)

Note that the plat presentations of the colored links used to process Kaul represen-
tation in Sect. 6.4.2 (see (6.34) and Fig. 6.9) is different from the presentation given
in the definition above, even though we keep on using the same notation j for the
colorings. In the latter case a coloring is assigned to each of the S link components,
while in the former we label the 2n strands of the associated braid with n colors.
However, what really matters is the fact that both presentations of the link L give
rise to the same invariant, as could be proved by exploiting the algebraic identities in
the Uq(sl(2))—representation ring. From the computational viewpoint this twofold
choice does not matter as well because we might efficiently implement the trans-
formation from a given link diagram to any associated closed braid on a classical
computer (cfr. Problem 1A in Sect. 6.2). Similarly, the overall dependence on the
framing in the factor α−σ [L;f] of (6.53) can be easily taken into account.

In the paper [24] an efficient quantum algorithm for approximating the 3-manifold
invariant I [M3

L ; f; q] has been provided for the first time. The starting point relies
on a modification of the unitary representation of Sect. 6.4.2 provided by Kaul him-
self in [36], where in the CSW–WZW environment the vacuum expectation value of
an unoriented 2n-strands braid—the plat closure of which gives the surgery link—is
worked out explicitly. In particular, a modification of the action of the braiding matri-
ces on odd (even) conformal blocks (6.37) is needed. The analysis of the upgraded
algorithmic procedure then follows the general, two-level approach stated at the
beginning of Sect. 6.4 and carried out in Sects. 6.4.2 and 6.4.3 (automaton calculation
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plus quantum circuit-representation). Without entering into other details it suffices to
conclude that the time complexity function for the evaluation of an additive approxi-
mation of the colored 3-manifold invariant (6.53) for a given framing f of the surgery
link (with κ crossings) at a fixed root of unity grows as O(Poly(κ, 2n, δ−1)).

Remark In Sect. 5.4 of the previous chapter both state sum invariants of 3-manifolds
(with or without boundary) and observables corresponding to colored fat graphs
have been shown to rely on Turaev–Viro quantum initial data stated in Sect. 6.4.1.
Actually it has been observed that invariants of colored (oriented) links are essentially
the same for both presentations of the (oriented) closed ambient manifold M3 (here
we have been using Heegard splitting presentations along surgery links and there we
resorted to colored triangulations). However, in Sect. 5.4.3 of the previous chapter
the following particular form of the Turaev–Viro invariant for a handlebody N has
been written as

〈N ,∅〉 ≡ 〈N 〉 = ω−2
∑
J∈I g
H∈I g

g∏
i=1

ω2
ji

g∏
k=1

ω2
hk
〈φH |∅|ψJ 〉. (6.55)

Without repeating here the details of this construction, {φH } and {ψJ } represent
colored generating loops associated with the surgery link and its Heegard surface
andω’s factors are quantum dimensions. The amplitudes 〈φH |∅|ψJ 〉 can be evaluated
on the basis of the rules given in Sect. 5.4.2.1 and contain (products of) q-6j symbols,
quantum dimensions and powers of the root of unity q. These combinations can be
shown to amount to 3nj symbols—of definite types and for suitable choices of n—at
least in the case of lens spaces (see the references given in the previous chapter). On
the other hand, it is quite clear that the Turaev–Viro invariant for a closed 3-manifolds
(which can be non orientable) is itself a combination of the same ingredients as
before. Then the results of the present chapter on the efficiency of the approximate
evaluation of (Jones and Reshetikhin–Turaev) quantum invariants are extended in a
straightforward way to all of the state sum models of the Turaev–Viro type for each
choice of the underlying admissible colorings. The goal is achieved with no need
of selecting explicitly a representation of the (colored) braid group, but simply by
resorting to the argument used above to decompose a general duality matrix A[::]
(Sect. 6.4.2) and to process in a qubit-representation a single q-6j (Sect. 6.4.3). ��

6.5 Quantum Computing and Quantized Geometries:
An Outlook

Summarizing the content of this chapter, wit has been shown that all the significant
quantities—partition functions and observables—in an SU(2) quantum CSW theory
can be efficiently approximated at finite values of the coupling constant k. The intrin-
sic field-theoretic solvability of CSW theory is thus reflected in its computability on
a quantum computer.
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Actually the crucial feature of possessing only global, purely topological degrees
of freedom makes quantum CSW theory likely to be simulated within a computational
scheme based on a discrete space of states [13] and able to implement efficiently poly-
local braiding operations. The same conclusions hold true for all ab initio discretized
colored state sums of the Turaev–Viro type encountered in the previous chapter, as
noted in the remark above. Thus on the basis of Witten’s celebrated results on relation-
ships between gauge theories and gravity in 2 + 1 dimensions [56] exploited many
times through this book, we are actually computing (abstractly) features of quan-
tized geometries but at the same time physical devices able to realize anyonic-type
quantum computing [10, 39] should behave just like quantum 3d spacetimes.2

The idea that many (if not all) aspects of our reality may be thought of as ‘out-
puts’ of some kind of information processing is both appealing and intriguing [42].
In this connection the role of information theory and its tools are so enhanced that
might become a unifying paradigm. Thus we may ask whether (i) an abstract univer-
sal model of computation, able to simulate any discrete quantum system including
solvable topological field theories, must exists by its own; or (ii) a (suitably cho-
sen) quantum system is by itself a computing machine whose internal evolution can
reproduce its own dynamics and, possibly, the proper dynamics of similar physical
systems.

The classical version of hypothesis (i) is usually taken for granted as far as, on
the one hand, a (probabilistic) Turing machine is capable of simulating the evolu-
tion of any classical system within a given accuracy, and, on the other, all concrete,
finite-size realizations of the abstract machine obey the laws of classical physics. The
feasibility of hypothesis (ii) depends heavily on which system is chosen as a simula-
tor and which types of boundary or initial conditions must be imposed to reproduce
the dynamical behavior of observed physical systems. Moreover, the concept of ‘effi-
cient’ processing of information seems difficult to be handled without an abstract
reference model of computation. With the previous remarks in mind, assumption
(i) seems quite reliable when the reference model of computation is the spin network
simulator (and associated q-automata), given its abstract definition as the discretized
counterpart of the quantum field computer [14]. However spin networks—thought
of as real ensembles of interacting angular momenta and spins of atomic or mole-
cular systems—can play as well the role of the reference quantum system in state-
ment (ii) (not to mention possible forthcoming experimental implementations of
anyonic systems). Thus, much in the sense of (ii), spin networks may act—under
suitable constraints—as computing machines able to process information encoded
into quantum spins to output ‘quantized’ 3-geometries obeying Einstein equations
in the classical limit (compare the Ponzano–Regge model [49] in Sect. 5.2.1 of the
previous chapter).

2 It has been recently proposed to describe topological phases of matter and anyonic-type vertex
operators within a Turaev–Viro background [31, 32]. Such a proposal seems quite promising but at
present only a few features of this approach have been worked out, so that we have not included it
in this monography.
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Appendix A
A Capsule of Moduli Space Theory

In this Appendix we summarize notation and a few basic definitions of Riemann
Moduli theory that we have been freely using in these lecture notes, (for details we
mainly refer to [6–8]).

A.1 Riemann Surfaces with Marked Points and Divisors

We shall denote by ðMg; CÞ a Riemann surface of genus g, (most often we simply
write ðM;CÞ if the genus is clear from the context). Recall that ðM;CÞ is
characterized by an atlas of local coordinate charts ðUk;ukÞ defined by maps
uk : Uk ! C whose transition functions, uh � u�1

k : ukðUk \ UhÞ ! uhðUh \ UkÞ;
are holomorphic maps between open subsets of C: Any such a chart ðU;uÞ is said
to provide a local conformal parameter, and for the generic p 2 U one sets uðpÞ :

¼ z ¼ xþ
ffiffiffiffiffiffiffi
�1
p

y: A N0-pointed surface ððM; N0Þ;CÞ; or surface with N0 marked
points, is an oriented closed, (connected), surface of genus g decorated with a
distinguished set of N0 pairwise distinct points fp1; . . .; pN0g: (Note that
ððM; N0Þ;CÞ is distinct from the open Riemann surface ðM0;CÞ :¼ ðM;CÞ n
fp1; . . .; pN0g obtained by removing from ðM;CÞ the points fp1; . . .; pN0g).The
tangent and cotangent spaces at p 2 ðM;CÞ are naturally obtained by tensoring
with C the tangent TpM and cotangent space TpM� of the underlying real surface
M, i.e., TC; pM :¼ TpM � C and TC; pM� :¼ TpM� � C: The respective basis
induced by the local conformal parameter z are provided by the usual
expressions Fig. A.1

@

@z
:¼ 1

2
@

@x
�

ffiffiffiffiffiffiffi
�1
p @

@y

� �
;

@

@z
:¼ 1

2
@

@x
þ

ffiffiffiffiffiffiffi
�1
p @

@y

� �
; ðA:1Þ

dz :¼ dxþ
ffiffiffiffiffiffiffi
�1
p

dy; dz :¼ dx�
ffiffiffiffiffiffiffi
�1
p

dy; ðA:2Þ
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dx ^ dy ¼
ffiffiffiffiffiffiffi
�1
p

2
dz ^ dz: ðA:3Þ

One can naturally split TC; pM into the holomorphic T 0pM :¼ Cf@=@zg and
antiholomorphic T 00p M :¼ Cf@=@zg tangent spaces at p 2 ðM;CÞ according to

TC; pM ¼ T 0pM � T 00p M; with T 00p M ¼ T 0pM; (where the overline � denotes complex
conjugation). In this connection it is worthwhile recalling that a smooth map
f : M ! N between two surfaces M and N is holomorphic if and only if the

corresponding tangent map f� : TC; pM �! TC; f ðpÞN is such that f� T 0pM
� �

�
T 0f ðpÞN: This implies that there is a linear isomorphism between TpM and the

holomorphic tangent space T 0pM ¼ Cf@=@zg; an isomorphism, this latter, which
provides a natural dictionary between geometrical quantities on the surface M and
their corresponding realizations on ðM;CÞ: Holomorphic maps also preserve the
holomorphic–antiholomorphic decomposition of the cotangent space TC; pM� ¼
T 0pM� � T 00p M�; and the corresponding splitting XðMÞ ¼ �pþq	 2X

ðp;qÞðMÞ of the

space of differential forms on ðM;CÞ: Explicitly, the spaces Xð1;0ÞðMÞ; Xð0;1ÞðMÞ;
and Xð1;1ÞðMÞ of forms of type ðp; qÞ are locally generated by the monomials
uðzÞdz; uðzÞdz; and uðzÞdz ^ dz; respectively. Corresponding to such a splitting

we have the Dolbeault operators @ : Xðp;qÞðMÞ ! Xðpþ1; qÞðMÞ and @ : Xðp;qÞðMÞ !
Xðp; qþ1ÞðMÞ; with @@ ¼ 0; @ @ ¼ 0; @@ ¼ �@@, and d ¼ @ þ @; where d denotes
the exterior derivative. Locally,

p
i

((M, N  ), C)0

Fig. A.1 A N0-pointed Riemann surface ððM;N0Þ;CÞ of genus g obtained by injecting a string of
N0 pairwise distinct points in ðM;CÞ: Here g ¼ 1 and N0 ¼ 9, we typically assume that
2g� 2þ N0 [ 0, in such a case the automorphism group, Aut ðM;N0Þ, of the resulting pointed
Riemann surface is finite. Recall that Aut ðM;N0Þ is the largest group of conformal automor-
phisms that the Riemann surface ððM;N0Þ;CÞ can admit
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@ :¼ @

@z
dz; @ :¼ @

@z
dz: ðA:4Þ

In particular, a form w 2 Xðp;0Þ is holomorphic if @w ¼ 0: A metric on a
Riemann surface ðM;CÞ is conformal if locally it can be written as

ds2 ¼ h2ðzÞdz� dz; ðA:5Þ

for some smooth function hðzÞ[ 0: The corresponding Kähler form is given by

- :¼
ffiffiffiffiffiffiffi
�1
p

2
h2ðzÞdz ^ dz: ðA:6Þ

The Gaussian curvature of the (smooth) metric ds2 ¼ h2ðzÞdz� dz is provided
by

K :¼ �Dds2 ln h; ðA:7Þ

where Dds2 ; (D if is clear from the context which conformal metric we are using), is
the Laplace–Beltrami operator with respect to the metric ds2; viz.

D :¼ 1
h2

@2

@x2
þ @2

@y2

� �
¼ 4

h2ðzÞ
@

@z

@

@z
: ðA:8Þ

Let us recall, (see e.g. the very readable presentation in [7]), that a divisor D on
a Riemann surface ðM;CÞ is a formal linear combination

D ¼
X

nkzk ðA:9Þ

where nk 2 Z and the zk are points 2 M: D is required to be locally finite, namely
for any q 2 M there is a neighborhood Uq � M of q such that Uq \ fzkg contains
only a finite number of the fzkg appearing in D. Since we typically deal with
compact Riemann surfaces ðM;CÞ; this implies that the formal sum defining D is
finite. The set of divisors on ðM;CÞ naturally forms an additive (abelian) group
DivðMÞ: The degree of a divisor D ¼

P
nkzk; (on a compact surface Riemann

surface ðM;CÞ), is defined according to

deg D :¼
X

nk: ðA:10Þ

Let f be a meromorphic function, i.e. the local quotient of two holomorphic
functions on ðM;CÞ: Let k 2 N; if f has a zero of order k at z 2 ðM;CÞ; define the
order of f at z to be ordz f :¼ kð[ 0Þ; conversely, if f has a pole of order k at
z 2 ðM;CÞ we define ordz f :¼ �k: The order of f at all other points is defined to
be 0. The divisor of a meromorphic function f, f 6
 0; is conventionally denoted by
(f), and defined as

ðf Þ :¼
X

ordzh fð Þzh; ðA:11Þ
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where the sum is over all zeros and all poles of f. A divisor D is called a principal
divisor if it is the divisor (f) of a meromorphic function f 6
 0: Since a
meromorphic function f on ðM;CÞ has the same number of zeros and poles
(counted with multiplicity) it immediately follows that the degree of its divisor
(f) satisfies

deg ðf Þ ¼ 0: ðA:12Þ

More generally, if Mn is a (not necessarily compact) complex manifold of
dimension n, a divisor can be naturally associated with hypersurfaces (i.e. n� 1-
dimensional submanifolds) of Mn: Explicitly, if Vi are irreducible analytic
hypersurfaces of Mn; (i.e., for each point p 2 Vi � Mn; Vi can be given in a
neighborhood of p as the zeros of a single holomorphic function f, and it cannot be

written as Vi ¼ eV1 [ eV2; where eVa; a ¼ 1; 2 are analytic hypersurfaces of Mn),
then a divisor on Mn is a locally finite formal linear combination of irreducible
analytic hypersurfaces of Mn

D ¼
X

Vk

nkVk: ðA:13Þ

Note that given any such a divisor, we can always find an open cover fUag of
Mn such that in Ua; with Ua \ Vi 6¼ ;; the hypersurface Vi has a local defining
equation Vi ¼ fgiaðzÞ ¼ 0g where giaðzÞ is a holomorphic function in Ua: In each
Ua the set of fgiaðzÞg; associated with all Vi for which Ua \ Vi 6¼ ;; characterizes a
meromorphic function fa according to

fa :¼
Y

i

g ni
ia ; ðA:14Þ

which are the local defining functions for the divisor D. The set of local defining
functions ffag associated with an open covering fUag of Mn can be also used for
characterizing the line bundle ½D� associated with the given divisor D, this is the
bundle over Mn defined by the transition functions fwab :¼ fa=fbg for any Ua \
Ub 6¼ ;: Note that the line bundle ½D� is trivial if and only if D is the divisor of a
meromorphic function.

Recall that if H2k
DRðMn;RÞ denotes the 2k-th DeRham cohomology group of Mn;

and V � Mn is an analytic subvariety of (complex) dimension k; then the
fundamental class (V) in the homology group H2kðMn;RÞ is defined by the pairing

H2k
DRðMn;RÞ � H2kðMn;RÞ �! R

g; ðVÞ �!
Z

V
g:

ðA:15Þ

By Poincaré duality this determines the fundamental class gV 2 H2n�2k
DR ðMn;RÞ

of V. Thus, given a divisor D ¼
P

Vk
nkVk; we can introduce its fundamental class

ðDÞ and its Poincaré dual gD 2 H2
DRðMnÞ according to
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ðDÞ :¼
X

nkðVkÞ; ðA:16Þ

gD :¼
X

nkgVk
: ðA:17Þ

Given a line bundle L over Mn; locally defined by transition functions fwabg
relative to a covering fUag of Mn; let

c1ðLÞ ¼
ffiffiffiffiffiffiffi
�1
p

2p
N; ðA:18Þ

be the (first) Chern class of L, where NjUa
¼ dxa denotes the curvature of

L associated with any locally given connection 1-form xa: A basic result
connecting line bundles, divisors and Chern classes is the observation that if L is
the line bundle associated with a divisor D, then, (see [7] for a nicely commented
proof),

c1ðLÞ ¼ c1ð½D�Þ ¼ gD 2 H2
DRðMnÞ: ðA:19Þ

A.2 The Teichmüller Space Tg;N0ðMÞ

In discussing the connection between polyhedral surfaces and Riemann surfaces
we are naturally led to consider the relation between the space POLg;N0ðMÞ and
Mg;N0; the moduli space of N0-pointed Riemann surfaces of genus g. This latter
features as a basic object of study in a large variety of mathematical and physical
applications of Riemann surface theory, and as such it is susceptible of many
possible characterizations. From our perspective it is appropriate to adopt a
Riemannian geometry viewpoint and define Mg;N0 as a suitable quotient of the
space of conformal classes of riemannian metrics the surface M can carry. For
details and proofs we refer to [16].

Let us consider the set of all (smooth) Riemannian metrics on the genus-
g surface M, (see Sect. 1.6),

MetðMÞ¼: g 2 S2ðMÞj gðxÞðu; uÞ[ 0 if u 6¼ 0f g; ðA:20Þ

where S2ðMÞ is the space of symmetric bilinear forms on M, and let us denote by
C1ðM;RþÞ the group of positive smooth functions acting on metrics g 2MetðMÞ
by pointwise multiplications. This action is free, smooth (and proper), and the
quotient

Conf ðMÞ :¼ MetðMÞ
C1ðM;RþÞ

; ðA:21Þ

is the Fréchet manifold of conformal structures. Note that Conf ðMÞ naturally
extends to the pointed surface ðM; N0Þ; obtained by decorating M with N0 marked
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points fp1; . . .;N0g; as long as the conformal class contains a smooth
representative metric [18]. Let

Met�1ðM; N0Þ,!MetðM; N0Þ ðA:22Þ

be the set of metrics of constant curvature �1; describing the hyperbolic structures
on ðM; N0Þ: If DiffþðMÞ is the group of all orientation preserving diffeomorphisms
then

DiffþðM; N0Þ ¼ w 2 DiffþðMÞ : w preserves setwise fpigN0
i¼1

� �
ðA:23Þ

acts by pull-back on the metrics in Met�1ðM; N0Þ: Let Diff0ðM; N0Þ be the
subgroup consisting of diffeomorphisms which when restricted to ðM; N0Þ are
isotopic to the identity, then the Teichmüller space Tg;N0ðMÞ associated with the
genus g surface with N0 marked points M is defined by

Tg;N0ðMÞ ¼
Met�1ðM; N0Þ
Diff0ðM; N0Þ

: ðA:24Þ

From a complex function theory perspective, Tg;N0ðMÞ is characterized by
fixing a reference complex structure C0 on ðM; N0Þ (a marking) and considering
the set of equivalence classes of complex structures ðC; f Þ where f : C0 ! C is an
orientation preserving quasi-conformal map, and where any two pairs of complex
structures ðC1; f1Þ and ðC2; f2Þ are considered equivalent if h � f1 is homotopic to f2
via a conformal map h : C1 ! C2: Let us assume that the reference complex
structure C0 admits an antiholomorophic reflection j : C0 ! C0: Since any
orientation reversing diffeomorphism eu can be written as u � j for some
orientation preserving diffeomorphism u; the (extended) mapping class group

MapðM; N0Þ¼: Diff ðM; N0Þ=Diff0ðM; N0Þ ðA:25Þ

acts naturally on Tg;N0ðMÞ according to

MapðM; N0Þ � Tg;N0ðMÞ �! Tg;N0ðMÞ
ðu; ðC; f ÞÞ �! ðC; f � u�1Þ; u 2 DiffþðM; N0Þ
ðeu; ðC; f ÞÞ �! ðC�; f � j � u�1Þ eu 2 Diff ðM; N0Þ �DiffþðM; N0Þ

	
; (A.26)

where the conjugate surface C� is the Riemann surface locally described by the
complex conjugate coordinate charts associated with C: It follows that the
Teichmüller space Tg;N0ðMÞ can be also seen as the universal cover of the moduli
space Mg;N0 of genus g Riemann surfaces with N0ðTÞ marked points defined by

Mg;N0 ¼
Tg;N0ðMÞ

MapðM; N0Þ
ðA:27Þ

This characterization represents the moduli associated to ððM; N0Þ;CÞ by an
equivalence class of Riemannian metrics ½ds2� on M, where two metrics ds2

ð1Þ and

ds2
ð2Þ define the same point ½ds2� of Mg;N0 if and only if there exists f 2 C1
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ðM;RþÞ and an orientation preserving diffeomorphism w 2 Diffg;N0 fixing each

marked point pk individually such that ds2
ð2Þ ¼ f W� ds2

ð1Þ

� �
: According to the

remark above, the class ½ds2� may contain singular metrics provided that they are
conformal to a smooth one. As emphasized by M. Troyanov, this implies that we
can represent ½ds2� 2Mg;N0 by conical metrics, as well.

For a genus g Riemann surfaces with N0ðTÞ[ 3 marked points the complex
vector space QN0ðMÞ of (holomorphic) quadratic differentials is defined by tensor
fields w described, in a locally uniformizing complex coordinate chart ðU; fÞ; by a
holomorphic function l : U ! C such that w ¼ lðfÞdf� df: Away from the
discrete set of the zeros of w; we can locally choose a canonical conformal
coordinate zðwÞ (unique up to zðwÞ 7! 
 zðwÞ þ const) by integrating the

holomorphic 1-form
ffiffiffiffi
w

p
; i.e.,

zðwÞ ¼
Z f ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðf0Þdf0 � df0
q

; ðA:28Þ

so that w ¼ dzðwÞ � dzðwÞ: If we endow QN0ðMÞ with the L1-(Teichmüller) norm

jjwjj¼:
Z

M
jwj; ðA:29Þ

then the Banach space of integrable quadratic differentials on M,

QN0ðMÞ¼
: fwj; jjwjj\þ1g; ðA:30Þ

is non-empty and consists of meromorphic quadratic differentials whose only
singularities are (at worst) simple poles at the N0 distinguished points of
ðM;N0Þ: QN0ðMÞ is finite dimensional and, (according to the Riemann–Roch
theorem), it has complex dimension

dimC QN0ðMÞ ¼ 3g� 3þ N0ðTÞ; ðA:31Þ

From the viewpoint of Riemannian geometry, a quadratic differential is
basically a transverse-traceless two tensor deforming a Riemannian structure to a
nearby inequivalent Riemannian structure. Thus a quadratic differential w ¼
lðfÞdf� df also encodes information on possible deformations of the given
complex structure. Explicitly, by performing an affine transformation with
constant dilatation K [ 1; one defines a new uniformizing variable z0ðwÞ
associated with w ¼ lðfÞdf� df by deforming the variable zðwÞ defined by
(A.28) according to

z0ðwÞ ¼ KReðzðwÞÞ þ
ffiffiffiffiffiffiffi
�1
p

ImðzðwÞÞ: ðA:32Þ
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The new metric associated with such a deformation is provided by

dz0ðwÞ









2
¼ ðK þ 1Þ2

4
dzðwÞ þ

K � 1
K þ 1

dzðwÞ











2

: ðA:33Þ

Since dz2
ðwÞ is the given quadratic differential w ¼ lðfÞdf� df; we can

equivalently write dz0ðwÞ









2

as

dz0ðwÞ









2
¼ ðK þ 1Þ2

4
lj j dfþ K � 1

K þ 1
l

lj j1=2

 !
df














2

; ðA:34Þ

where ðl= lj jÞdf� df�1 is the (Teichmüller-) Beltrami form associated with the
quadratic differential w: If we consider quadratic differentials w ¼ lðfÞdf� df in

the open unit ball Qð1ÞN0
ðMÞ¼: fwj; jjlðfÞjj\1g in the Teichmüller norm (A.29),

then there is a natural choice for the constant K provided by

K ¼ 1þ jjlðfÞjj
1� jjlðfÞjj : ðA:35Þ

In this latter case we get

dz0ðwÞ









2
¼ jjlðfÞjj2

ðjjlðfÞjj � 1Þ2
lj j dfþ 1

jjlðfÞjj
l

lj j1=2

 !
df














2

: ðA:36Þ

According to Teichmüller’s existence theorem any complex structure on can be

parametrized by the metrics (A.36) as w ¼ lðfÞdf� df varies in Qð1ÞN0
ðMÞ: This is

equivalent to saying that for any given ðM; gÞ; (with ðM;N0; ½g�Þ defining a
reference complex structure C0 on ðM;N0Þ), and any diffeomorphism f 2
Diff0ðM; N0Þ mapping (M,g) into1 ðM; g1Þ; there is a quadratic differential w 2
Qð1ÞN0
ðMÞ and a biholomorphic map F 2 Diff0ðM; N0Þ; homotopic to f such that

½F�g1� is given by the conformal class associated with (A.36). This is the familiar
point of view which allows to identify Teichmüller space with the open unit ball

Qð1ÞN0
ðMÞ in the space of quadratic differentials QN0ðMÞ: It is also worthwhile

noticing that (A.36) allows us to consider the open unit ball Qð1ÞN0
ðMÞ in the space

of quadratic differential as providing a slice for the combined action of
Diff0ðM; N0Þ and of the conformal group Conf sðM; N0Þ on the space of
Riemannian metrics MetðM; N0Þ; i.e.,
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1 With ðM;N0; ½g1�Þ—a complex structure distinct from ðM;N0; ½g�Þ:



Qð1ÞN0
ðMÞ,!MetðM; N0Þ

Diff0ðM; N0Þ
’ Conf sðM; N0Þ � Tg;N0ðMÞ

dz0w









2

� �
�! jjljj2

ðjjljj � 1Þ2
lj j � dfþ 1

jjljj
l

lj j1=2

 !
df














2

;

ðA:37Þ

where

Conf sðM; N0Þ¼: f : M ! R
þj f 2 HsðM;RÞf g ðA:38Þ

denotes the (Weyl) space of conformal factors defined by of all positive (real
valued) functions on M, f 2 HsðM;RÞ; whose derivatives up to the order s exist in
the sense of distributions and are represented by square integrable functions.

In line with the above remarks, one introduces also the space BN0ðMÞ of (L1

measurable) Beltrami differentials, i.e., of tensor fields - ¼ mðfÞdf� df�1;

sections of k�1 � k; (k being the holomorphic cotangent bundle to M), with
supM jmðfÞj\1: The space of Beltrami differentials is naturally identified with the
tangent space to Tg;N0ðMÞ; i.e.,,

- ¼ mðfÞdf� df�1 2 TCTg;N0ðMÞ; ðA:39Þ

(with C a complex structure in Tg;N0ðMÞ). The two spaces QN0ðMÞ and BN0ðMÞ
can be naturally paired according to

wj-h i ¼
Z

M
lðfÞmðfÞdfdf: ðA:40Þ

In such a sense QN0ðMÞ is C-anti-linear isomorphic toTCTg;N0ðMÞ; and can be
canonically identified with the cotangent space T�CTg;N0ðMÞ to Tg;N0ðMÞ: On the
cotangent bundle T�CTg;N0ðMÞ we can define the Weil–Petersson metric as the inner
product between quadratic differentials corresponding to the L2-norm provided by

wk k2
WP¼

:
Z

M
h�2ðfÞ wðfÞj j2 dfj j2; ðA:41Þ

where w 2 QN0ðMÞ and hðfÞ dfj j2 is the hyperbolic metric on M. Note that w
h is a

Beltrami differential on M, thus if we introduce a basis f @
@la
g3g�3þN0

a¼1 of the vector

space of harmonic Beltrami differentials on ðM;N0Þ; we can write

Gab ¼
Z

M

@

@la

@

@lb
hðfÞ dfj j2 ðA:42Þ

for the components of the Weil–Petersson metric on the tangent space to Tg;N0ðMÞ:
We can introduce the corresponding Weil–Petersson Kähler form according to

xWP :¼
ffiffiffiffiffiffiffi
�1
p

GabdZa ^ dZ
b
; ðA:43Þ
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where fdZag are the basis, in QN0ðMÞ; dual to f @
@la
g under the pairing (A.40). Such

Kähler potential is invariant under the mapping class group MapðM; N0Þ to the
effect that the Weil–Petersson volume 2-form xWP on Tg;N0ðMÞ descends on

Mg;N0; and it has a (differentiable) extension, in the sense of orbifold, to Mg;N0 .

A.3 Some Properties of the Moduli Spaces Mg;N0

It is well-known that the moduli space Mg;N0 is a connected orbifold space of
complex dimension 3g� 3þ N0ðTÞ and that, although in general non complete, it
admits a stable compactification (Deligne–Mumford) Mg;N0 . This latter is, by
definition, the moduli space of stable N0-pointed surfaces of genus g, where a
stable surface is a compact Riemann surface with at most ordinary double points
such that its parts are hyperbolic. Topologically, a stable pointed surface (or,
equivalently a stable curve, in the complex sense), is obtained by considering a
finite collection of embedded circles in M0 :¼ M=fp1; . . .; pN0g; each in a distinct
isotopy class relative to M0; and such that none of these circles bound a disk in
M containing at most one pk: By contracting each such a circle, and keeping track
of the marked points in such a way that any component of the resulting surface can
support a hyperbolic metric, we get the stable pointed surface of genus g. Thus, the
closure @Mg;N0 of Mg;N0 in Mg;N0 consists of stable surfaces with double points,

and gives rise to a stratification decomposing Mg;N0 into subvarieties. By

definition, a stratum of codimension k is the component of Mg;N0 parametrizing

stable surfaces (of fixed topological type) with k double points. The orbifold Mg;N0

is endowed with N0ðTÞ natural line bundles Li defined by the cotangent space to
M at the i-th marked point.

A basic observation in moduli space theory is the fact that any point p on a
stable curve ððM; N0Þ;CÞ 2Mg;N0 defines a natural mapping

ððM; N0Þ;CÞ �!Mg;N0þ1 ðA:44Þ

that determines a stable curve ððM; N0 þ 1Þ;C0Þ 2Mg;N0þ1. Explicitly, as long as

the point p is disjoint from the set of marked points fpkgN0
k¼1 one simply defines

ððM; N0 þ 1Þ;C0Þ to be ððM; N0; fpgÞ;CÞ: If the point p ¼ ph for some ph 2
fpkgN0

k¼1; then: (i) for any 1	 i	N0; with i 6¼ h; identify p0i 2 ððM; N0 þ 1Þ;C0Þ
with the corresponding pi; (ii) take a thrice-pointed sphere CP

1
ð0;1;1Þ; label with a

sub-index h one of its marked points ð0; 1;1Þ; say 1h; and attach it to the given
ph 2 ððM; N0Þ;CÞ½ �; (iii) relabel the remaining two marked points ð0; 1Þ 2
CP

1
ð0;1;1Þ as p0h and p0N0þ1: In this way, we get a genus g noded surface

sh ððM; N0Þ;CÞ½ � ¼ ððM; N0 þ 1Þ;C0Þ½ �¼: ððM; N0Þ;CÞh [ CP
1
ð0;1;1hÞ ðA:45Þ
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with a rational tail and with a double point corresponding to the original marked
point ph: Finally if p happens to coincide with a node, then ððM; N0 þ 1Þ;C0Þ½ �
results from setting p0j¼

:
pj for any 1	 i	N0 and by: (i) normalizing ððM; N0Þ;CÞ½ �

at the node ( i.e.,, by separating the branches of ððM; N0Þ;CÞ½ � at p); (ii) inserting a
copy of CP

1
ð0;1;1Þ with f0;1g identified with the preimage of p and with

p0N0þ1¼
:

1 2 CP
1
ð0;1;1Þ: Conversely, let

p : Mg;N0þ1 �!Mg;N0 (A.46)

ððM; N0 þ 1Þ;CÞ½ � ‘ &
forget

collapse
�! ððM; N0Þ;C0Þ½ �

the projection which forgets the ðN0 þ 1Þst marked point and collapse to a point
any irreducible unstable component of the resulting curve. The fiber of p over
ððM; N0Þ;CÞ is parametrized by the map (A.44), and if ððM; N0Þ;CÞ has a trivial
automorphism group Aut½ððM; N0Þ;CÞ�then p�1ððM; N0Þ;CÞ is by definition the
surface ððM; N0Þ;CÞ, otherwise it is identified with the quotient

ððM; N0Þ;CÞ=Aut½ððM; N0Þ;CÞ�: ðA:47Þ

Thus, under the action of p; we can consider Mg;N0þ1 as a family (in the

orbifold sense) of Riemann surfaces over Mg;N0 and we can identify Mg;N0þ1 with
the universal curve Cg;N0;

p : Cg;N0 �!Mg;N0 : ðA:48Þ

Note that, by construction, Cg;N0 (but for our purposes is more profitable to

think in terms of Mg;N0þ1) comes endowed with the N0 natural sections s1; . . .; sN0

sh : Mg;N0 �! Cg;N0 (A.49)

ððM; N0Þ;CÞ½ � �! sh ððM; N0Þ;CÞ½ �¼: ððM; N0Þ;CÞh [ CP
1
ð0;1;1hÞ;

defined by (A.45).

The images of the sections si characterize a divisor fDigN0
i¼1 in Cg;N0 which has a

great geometric relevance in discussing the topology of Mg;N0 : Such a study exploits

the properties of the tautological classes over Cg;N0 generated by the sections fsigN0
i¼1

and by the corresponding divisors fDigN0
i¼1: To define such classes, recall that the

cotangent bundle (in the orbifold sense) to the fibers of of the universal curve p :

Cg;N0 �!Mg;N0 gives rise to a holomorphic line bundle xg;N0¼
:

x
Cg;N0=Mg;N0

over

Cg;N0 (the relative dualizing sheaf of p : Cg;N0 �!Mg;N0 ), this is essentially the
sheaf of 1-forms with a natural polar behavior along the possible nodes of the
Riemann surface describing the fiber of p: It is worthwhile to discuss the behavior of
the relative dualizing sheaf xg;N0 restricted to the generic divisor Dh generated by the
section sh: To this end, let z1ðhÞ and z2ð1hÞ denote local coordinates defined in the
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disks Dph¼
: fjz1ðhÞj\1g and D1h¼

: fjz2ð1hÞj\1g respectively centered around the

marked points ph 2 ððM; N0Þ;CÞ; and1 2 CP
1
ð0;1;1Þ: Let Dth ¼ fth 2 C : jthj\1g:

Consider the analytic family shðthÞ of surfaces of genus g defined over Dth and
obtained by removing the disks jz1ðhÞj\jthj and jz2ð1hÞj\jthj from ððM; N0Þ;CÞ
and CP

1
ð0;1;1Þ and gluing the resulting surfaces through the annulus

fðz1ðhÞ; z2ð1hÞÞj z1ðhÞz2ð1hÞ ¼ th; th 2 Dthg by identifying the points of
coordinate z1ðhÞ with the points of coordinates z2ð1hÞ ¼ th=z1ðhÞ: The family
shðthÞ ! Dth opens the node z1ðhÞz2ð1hÞ ¼ 0 of the section shjððM;N0Þ;CÞ:Note that in

such a way we can independently and holomorphically open the distinct nodes of the

various sections fskgN0
k¼1: More generally, while opening the node we can also vary

the complex structure of ððM; N0Þ;CÞ by introducing local complex coordinates

ðsaÞ3g�3þN0
a¼1 for Mg;N0 around ððM; N0Þ;CÞ: If

shðsa; thÞ !Mg;N0 �Dth ðA:50Þ

denotes the family of surfaces opening of the node, then in the corresponding
coordinates ðsa; thÞ the divisor Dh; image of the section sh; is locally defined by the
equation th ¼ 0: Similarly, the divisor D¼:

PN0
h¼1 Dh is characterized by the locus

of equation
QN0

h¼1 th ¼ 0:
The elements of the dualizing sheaf xg;N0 jshðthÞ¼

:
xg;N0ðDhÞ are differential

forms uðhÞ ¼ u1dz1ðhÞ þ u2dz2ð1hÞ such that uðhÞ ^ dth ¼ fdz1ðhÞ ^ dz2ð1hÞ;
where f is a holomorphic function of z1ðhÞ and z2ð1hÞ: By differentiating
z1ðhÞz2ð1hÞ ¼ th; one gets f ¼ u1z1ðhÞ � u2z2ð1hÞ which is the defining relation
for the forms in xg;N0ðDhÞ: In particular, by choosing u1 ¼ f=2z1ðhÞ; and u2 ¼
f=2z2ð1hÞ we get the local isomorphism between the sheaf of holomorphic
functions OshðthÞ over shðthÞ and xg;N0ðDhÞ

f �! uðhÞ ¼ f
1
2

dz1ðhÞ
z1ðhÞ

� 1
2

dz2ð1hÞ
z2ð1hÞ

� �
: ðA:51Þ

If we set f ¼ f0 þ f1ðz1ðhÞÞ þ f2ðz2ð1hÞÞ; where f0 is a constant and f1ð0Þ ¼
0 ¼ f2ð0Þ; then on the noded surface sh, (th ¼ 0), we get from the relation
z2ð1hÞdz1ðhÞ þ z1ðhÞdz2ð1hÞ ¼ 0;

uhjz2ð1hÞ¼0 ¼
f0 þ f1ðz1ðhÞÞ

z1ðhÞ
dz1ðhÞ; (A.52)

uhjz1ðhÞ¼0 ¼ �
f0 þ f2ðz2ð1hÞÞ

z2ð1hÞ
dz2ð1hÞ;

on the two branches Dph \ ððM; N0Þ;CÞ and D1h \ CP
1
ð0;1;1Þ of the node where

z1ðhÞ and z2ð1hÞ are a local coordinate (i.e., z2ð1hÞ ¼ 0 and z1ðhÞ ¼ 0;

respectively). Thus, near the node of sh; xg;N0ðDhÞis generated by dz1ðhÞ
z1ðhÞ and

dz2ð1hÞ
z2ð1hÞ subjected to the relation dz1ðhÞ

z1ðhÞ þ
dz2ð1hÞ
z2ð1hÞ ¼ 0: Stated differently, a section of
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the sheaf xg;N0ðDhÞ pulled back to the smooth normalization ððM; N0Þ;CÞph

F

CP
1
ð0;1;1hÞ of sh can be identified with a meromorphic 1-form with at most simple

poles at the marked points ph and1h which are identified under the normalization
map, and with opposite residues at such marked points. By extending such a

construction to all N0 sections fshgN0
h¼1; we can define the line bundle

xg;N0ðDÞ¼
:
xg;N0

XN0

i¼1

Di

 !
�! Cg;N0 ðA:53Þ

as xg;N0 twisted by the divisor D¼:
PN0

h¼1 Dh; viz. the line bundle locally generated

by the differentials dz1ðhÞ
z1ðhÞ for z1ðhÞ 6¼ 0 and � dz2ð1hÞ

z2ð1hÞ for z2ð1hÞ 6¼ 0; with

z1ðhÞz2ð1hÞ ¼ 0; and h ¼ 1; . . .;N0: As above, fz1ðhÞgN0
h¼1 are local variables at

the marked points fphgN0
i¼1 2 ððM; N0Þ;CÞ; whereas z2ð1hÞ is the corresponding

variable in the thrice-pointed sphere CP
1
ð0;1;1Þ:

If, roughly speaking, we interpret Mg;N0þ1, as a bundle of surfaces over Mg;N0 ,

then the stratification of Mg;N0þ1 into subvarieties fVkg provides an intuitive
motivation for the existence of characteristic classes (Q-Poincaré duals of the fVkg)
that describe the topological properties of Mg;N0 . Two such families of classes have

proven to be particularly relevant. The first is obtained by pulling back xg;N0 to Mg;N0

by means of the sections sk: In this way one gets the line bundle

s�kxg;N0¼
:
Lk !Mg;N0 ðA:54Þ

whose fiber at the moduli point ððM; N0Þ;CÞ is defined by the cotangent space
T�ðM;pkÞ to ððM; N0Þ;CÞ at the marked point pk: By taking the the first Chern class

c1 Lkð Þ of the resulting bundles fLkgN0
k¼1 one gets the Witten classes

wðg;N0Þ;k 2 H2ðMg;N0 ;QÞ

wðg;N0Þ; k¼
:

c1 Lkð Þ: ðA:55Þ

Conversely, if we take the Chern class c1 xg;N0ðDÞ

 �

of the line bundle
xg;N0ðDÞ and intersect it with itself j� 0 times, then one can define the Mumford

kðg;N0Þ; j classes 2 H2jðMg;N0 ;QÞ according to [1]

kðg;N0Þ ;j¼
:
p� c1 xg;N0ðDÞ


 �
 �jþ1
� �

; ðA:56Þ

where p� denotes fiber integration. If ŵN0þ1¼
:
wðg;N0þ1Þ ;N0þ1 denotes the Witten

class in H2ðMg;N0þ1 ;QÞ associated with the last marked point, then kðg;N0Þ; j can be
also defined as

kðg;N0Þ; j¼
:
p� ŵN0þ1

� �jþ1
� �

: ðA:57Þ
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It is worthwhile recalling that kðg;N0Þ ;1 is the class of the Weil–Petersson Kähler

form xW�P on Mg;N0 ; [1],

kðg;N0Þ ;1 ¼ p� c1 xg;N0ðDÞ

 �
 �2

� �
¼ 1

2p2
½xW�P�: ðA:58Þ

A.4 Strebel Theorem

A basic result in phrasing the correspondence between Riemann surfaces and
combinatorial structures is provided by Strebel’s theory of holomorphic (and
meromorphic) quadratic differentials [17]. Recall that these objects are the
holomorphic (meromorphic) sections of T 0M � T 0;M i.e., the tensor fields on
ðM;CÞ that can be locally written as U ¼ /ðzÞdz� dz; for some holomorphic
(meromorphic) /ðzÞ: Geometrically the role of holomorphic quadratic differential

stems from the basic observation that for a given point p 2 U; the function fðqÞ :

¼
R q

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/ðzÞdz2

p
provides a local conformal parameter in a neighborhood U0 � U

of p if /ðpÞ 6¼ 0: In terms of the coordinate f we can write U ¼ df� df; and the
sets f�1fzj =z ¼ constg; and f�1fzj <z ¼ constg foliate U 0 in the standard f ¼
X þ

ffiffiffiffiffiffiffi
�1
p

Y orthogonal way. In general, the structure of the foliation induced by U
around its zeros and poles is quite more sophisticated, however the case relevant to
ribbon graphs and polyhedral surfaces can be fully described by the Strebel
theorem. For future reference, it is worthwhile having it handy in the elegant
formulation provided by Mulase and Penkawa [15]:

Theorem A.1 Let ððM; N0Þ ;CÞ be a closed Riemann surface of genus g� 0 with

N0� 1 marked points fpkgN0
k¼1; where 2� 2g� N0\0: Let us denote by

ðL1; . . .; LN0Þ an ordered N0-tuple of positive real numbers. Then there is a
unique (Jenkins–Strebel) meromorphic quadratic differential U on ððM; N0Þ;CÞ
such that:

(i) U is holomorphic on M n p1; . . .; pN0f g;
(ii) U has a double pole at each pk; k ¼ 1; . . .;N0;

(iii) The union of all non-compact horizontal leaves f�1fzj =z ¼ constg form a
closed subset � ððM; N0Þ;CÞ of measure zero;

(iv) Every compact horizontal leaf k is a simple loop circling around one of the

poles. In particular, if kk is the loop around the pole pk; then Lk ¼
H
kk

ffiffiffiffi
U
p

;

(the branch of
ffiffiffiffi
U
p

is chosen so that the integral is positive when the
circuitation along k is along the positive orientation induced by
ððM; N0Þ;CÞÞ;

(v) Every non-compact horizontal leaf of U is bounded by zeros of U:
Conversely, every zero of degree m of U bounds mþ 2 horizontal leaves;
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(vi) If N2 denotes the number of zeros of the quadratic differential U; then U
induces a unique cell-decomposition of ððM; N0Þ;CÞ with N0 2-cells, N1 1-
cells, and N2 0-cells where N1 ¼ N0 þ N2 � 2þ 2g: The 1-skeleton of this
cell decomposition is a metric ribbon graph with vertex-valency � 3.

It is straightforward to check that Strebel’s theorem characterizes a map S :

Mg;N0 �RN0
þ ! RGmet

g;N0
which, given a sequence of N0 positive real numbers

fLðkÞg; associates to a pointed Riemann surface ððM; N0Þ;CÞ 2Mg;N0 a metric
ribbon graph C 2 RGmet

g;N0
with N0 labelled boundary components f@CðkÞg of

perimeters fLðkÞg: This map is actually a bijection since, given a metric ribbon

graph C 2 R
jeðCÞj
þ with N0 labelled boundary components f@CðkÞg of perimeters

fLðkÞg; we can, out of such combinatorial data, construct a decorated Riemannian
surface ððM; N0Þ;C; fLðKÞgÞ 2Mg;N0 �RN0

þ : The characterization of the

correspondance S�1 : C 7! ððM; N0Þ;C; fLðKÞgÞ is described in a cristal clear
way in [15], and one eventually establishes [11] the

Theorem A.2 Strebel theory defines a natural bijection

Mg;N0 �RN0
þ ’ RGmet

g;N0
; ðA:59Þ

between the decorated moduli space Mg;N0 �RN0
þ and the space of all metric

ribbon graphs RGmet
g;N0

with N0 labelled boundary components.

A.5 The Teichmüller Space of Surfaces with Boundaries

This is also the appropriate place for a few remarks on moduli space theory for

surfaces with boundaries. The elements of the Teichmüller space T@
g;N0

of
hyperbolic surfaces X with N0 geodesic boundary components are marked
Riemann surface modelled on a surface Sg;N0 of genus g with complete finite-area
metric of constant Gaussian curvature �1; (and with N0 geodesic boundary
components @S ¼ t@Sj), i.e., a triple ðSg;N0 ; f ;XÞ where f : Sg;N0 ! X is a
quasiconformal homeomorphism, (the marking map), which extends uniquely to a
homeomorphism from Sg;N0 [ @S onto X [ @X: Any two such a triple
ðSg;N0 ; f1;Xð1ÞÞ and ðSg;N0 ; f2;Xð2ÞÞ are considered equivalent iff there is a

biholomorphism h : Xð1Þ ! Xð2Þ such that f�1
2 � h � f1 : Sg;N0 [ @S! Sg;N0 [ @S

is homotopic to the identity via continuous mappings pointwise fixing @S:

For a given string L ¼ L1; . . .; LN0ð Þ 2 R
N0
� 0; we let T@

g;N0
ðLÞ denote the

Teichmüller space of hyperbolic surfaces X with geodesic boundary components
of length

j@X1j; . . .; j@XN0 jð Þ ¼ L1; . . .; LN0ð Þ¼: L 2 R
N0
� 0: ðA:60Þ
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This characterizes the boundary length map

L : T@
g;N0
�! R

N0
� 0

X�! LðXÞ ¼ j@X1j; . . .; j@XN0 jð Þ;
ðA:61Þ

and we can write T@
g;N0
ðLÞ :¼ L�1ðLÞ: Note that, by convention, a boundary

component such that j@Xjj ¼ 0 is a cusp and moreover Tg;N0ðL ¼ 0Þ ¼ Tg;N0 ;
where Tg;N0 is the Teichmüller space of hyperbolic surfaces with N0 punctures,
(with 6g� 6þ 2N0� 0). For each given string L ¼ L1; . . .; LN0ð Þ there is a natural
action on Tg;N0ðLÞ of the mapping class group Map@g;N0

defined by the group of all
the isotopy classes of orientation preserving homeomorphisms of X which leave
each boundary component @Xj pointwise (and isotopy-wise) fixed. This action
changes the marking f of Sg;N0 on X, and characterizes the quotient space

Mg;N0ðLÞ¼
: Tg;NðLÞ

Map@g;N0

ðA:62Þ

as the moduli space of Riemann surfaces (homeomorphic to Sg;N0 ) with N0

boundary components of length j@Xkj ¼ Lk: Note again that when Lk ! 0f g;
Mg;N0ðLÞ reduces to the usual moduli space Mg;N0 of Riemann surfaces of genus
g with N0 marked points. It is worthwhile noticing that, since the boundary

components of a surface Xg;N0 2 T@
g;N0

are left pointwise fixed, any surface Xg;N0

in T@
g;N0

; for N0 [ 1; can be embedded into a surface X0gþ1;N0�1 2 T@
gþ1;N0�1 by

glueing the two legs of a pair of pants onto two of the boundary components of
Xg;N0 : The attachment of a torus with two boundary components allows also to
include Xg; 1 in Xgþ1; 1: Such a chain of embeddings induces a corresponding chain
of embeddings of the mapping class group Map@g;N0

into Map@gþ1;N0�1: Under
direct limit, this gives rise to a notion of stable mapping class group playing a
basic role in the study of the cohomology of the moduli space.

We conclude this notational capsule by specializing to the boundary case the
characterization of the Weil–Petersson inner product. The reader will find many
more details in the remarkable and very informative papers by Mondello, (in
particular [13]). As in Sect. A.2, we introduce the real vector space of holomorphic
quadratic differentials Q@

N0
ðXÞ whose restrictions to @X is real. The corresponding

space of Beltrami differentials, identified with the tangent space TCT@
g; N0

; will be
denoted by BN0ðXÞ and the they are paired according to

ðldf� df; mdf� df�1Þ �!
Z

X
lmdfdf; ðA:63Þ

where ldf� df 2 Q@
N0
ðXÞ and mdf� df�1 2 BN0ðXÞ: As in the boundaryless case,

by noticing that the ratio between a quadratic differential and the hyperbolic metric
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hdf� df on X is a Beltrami differential, we can define the Weil–Petersson inner

product on TCT@
g; N0

according to

G@

ab
¼
Z

M

@

@la

@

@lb
hðfÞ dfj j2 ðA:64Þ

where f @
@la
g3g�3þ2N0

a¼1 is a basis of the vector space of harmonic Beltrami

differentials on X: The corresponding Weil–Petersson form is provided by

xWP :¼
ffiffiffiffiffiffiffi
�1
p

G@

ab
dZa ^ dZ

b
; ðA:65Þ

where fdZag are the basis, in Q@
N0
ðMÞ; dual to flag under the pairing (A.63). Note

in particular that

gab :¼
ffiffiffiffiffiffiffi
�1
p Z

X
h�2dZadZ

b jdfj2; ðA:66Þ

defines the Weil–Petersson Poisson tensor associated with xWP: It is important to
stress that, (because of the presence of the boundaries), the Weil–Petersson form is

degenerate (in particular it is not Kähler) on T@
g;N0

: However, the Poisson structure

defined by gab induces a foliation in T@
g;N0

whose symplectic leaves are the spaces

T@
g;N0
ðLÞ; of Riemann surfaces with given boundary length vector L 2 R

N0
� 0;

endowed with xWP: Mondello [13] has provided a nice geometrical

characterization of the Poisson structure gab in terms of ideal hyperbolic

triangulations of the surfaces X 2 T@
g;N0

: As we have seen, this characterization
plays an important role in Chap. 3, and it hints to even deeper connections
between the geometry of the space of polyhedral surfaces and hyperbolic
geometry.
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Appendix B
Spectral Theory on Polyhedral Surfaces

In this appendix we briefly discuss the basic facts of spectral theory of Laplace
type operators on polyhedral surfaces that we have exploited in these lecture notes.

B.1 Kokotov’s Spectral Theory on Polyhedral Surfaces

Spectral theory for cone manifolds has a long standing tradition, (a fine sample of
classical works is provided by [2–5, 10]). Here we shall mainly refer to the elegant
results recently obtained by Kokotov [9]. They provide a rather complete analysis
of the determinant of the Laplacian on polyhedral surfaces. It must be stressed that
whereas the study of the determinant of the Laplacian in the smooth setting is a
well-developed subject, results in the polyhedral case have been sparse and often
subjected to quite restrictive hypotheses [5, 12].

As a consequence of the presence of the conical points fp1; . . .;N0g; the
Laplacian D on the Riemann surface ððM;N0Þ;CsgÞ is not an essentially self-
adjoint operator. There are (infinitely) many possible self-adjoint extensions of D;
with domains typically determined by the behavior of functions (formally)
harmonic at the conical points. To take care of this extension problem in a natural
way, let us recall that the minimal domain Dmin of the Laplacian on C10 ðM0;RÞ
consists of the graph closure on the set C10 ðM0;RÞ; where a function u 2 Dmin if
there is a sequence fukg 2 C10 ðM0;RÞ and a function w 2 L2ðMÞ such that uk ! u
and Duk ! w in L2ðMÞ; where L2ðMÞ denotes the space of square summable
functions on ððM;N0Þ;CsgÞ: Similarly, the maximal domain Dmax for D;
corresponding to the domain of the adjoint operator to D on Dmin; is the
subspace of functions v 2 L2ðMÞ such that for all u 2 Dmin there is a function
f 2 L2ðMÞ with v;Duh i ¼ f ; uh i; where h�; �i denotes the L2ðMÞ pairing on
ððM;N0Þ;CsgÞ: All possible distinct self-adjoint extensions of D on ððM;N0Þ;CsgÞ
are parametrized by a domain DD; with Dmin � DD � Dmax [14]. Explicitly, we
can consider without loss of generality the case in which we have just one conical

M. Carfora and A. Marzuoli, Quantum Triangulations, Lecture Notes in Physics 845,
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point fpg with conical angle h; and denote by z the local conformal parameter in a
neighborhood of p. One introduces [9] the functions (formally harmonic on
ðM; pÞ;Csg


 �
Þ; defined by

Vk

ðzÞ :¼ jzj


2pk
h exp

ffiffiffiffiffiffiffi
�1
p 2pk

h
argz

	 �
; k [ 0; ðB:1Þ

V0
þ :¼ 1; V0

� :¼ ln jzj: ðB:2Þ

These functions are in L2ðMÞ as long as k\ h
2p ; and we can consider the linear

subspaces E of L2ðMÞ generated by the functions uVk

ðzÞ; with 0	 k\ h

2p ; where
u is a C1-mollifier of the characteristic function of the cone with vertex at p, e.g.,

uðzÞ :¼ c exp ðjzj2 � 1Þ�1; jzj\1; and uðzÞ ¼ 0; for jzj � 1; with uðz ¼ 0Þ ¼ 1;
(assuming that the region isometric to the cone corresponds to jzj\1). The self-
adjoint extension of D are then parametrized by the subspaces of functions E such
that [9]

Du; vh i � u;Dvh i ¼ lim
e&0þ

I
u
@v

@r
� v

@u

@r

� �
¼ 0; ðB:3Þ

for all u; v 2 E; and where r :¼ jzj; (note that in the above characterization one
exploits the delicate fact that any u 2 Dmin is such that uðzÞ ¼ OðrÞ as r & 0—see
Sect. 3.2.1 of [9] for details). The Friedrics extension, which is the relevant one for
the results to follow, is associated with the subspace E generated by the functions
uVk
þðzÞ; 0	 k\ h

2p : The associated domain DD :¼ Dmin þ E comprises functions
which are bounded near the apex of the cone.

Denote by Hðz; z0; gÞ the heat kernel for the Friedrichs extension of the
Laplacian D: This is a distribution on M �M � ½0;1Þ such that, for all u 2 DD :

¼ Dmin þ E away from the conical points, the convolution
R

M Hðz; z0; gÞuðz0Þ dAz0

is smooth for all g[ 0; and

@

@g
þ DðzÞ

� �
Hðz; z0; gÞ ¼ 0; (B.4)

lim
g&0þ

Hðz; z0; gÞ ¼ dðz; z0Þ;

where ðz; z0; gÞ 2 ðM �MnDiagðM �MÞÞ � ½0;1Þ; and DðzÞ denotes the
Laplacian with respect to the variable z. The Dirac initial condition is
understood in the distributional sense, i.e., for any smooth u 2 C10 ðM0;RÞ \DD;R

M Hðz; z0; gÞuðz0Þ dAz0 ! uðzÞ; as g& 0þ; where the limit is meant in the
uniform norm on C10 ðM0;RÞ: We are now ready to state Kokotov’s main results.

Theorem B.1 (Kokotov [9], Theorem 1) Let ððM;N0Þ;CsgÞ be the Riemann

surface, with conical singularities Div ðTÞ :¼
PN0

k¼1
HðkÞ

2p � 1
� �

; associated with
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the polyhedral manifold ðPT ;MÞ; and let D be (the Friedrichs extension) of the
corresponding Laplace operator. Then

(i) D has a discrete spectral resolution, the eigenvalues 0 ¼
k0\k1	 k2	 � � � ! 1 have finite multiplicities, and the associated spectral
counting function NðkÞ :¼ Card k� 1 : kk	 k½ � ¼ OðkÞ; as k!1:

(ii) If Tr egD denotes the heat trace of the heat kernel Hðz; z0; gÞ associated with
ðD;DDÞ; then, for some e [ 0; the asymptotics

Tr egD :¼
Z

M
Hðz; z; gÞ dA ¼ Area ððM;N0Þ;CsgÞ

4pg

þ 1
12

XN0

k¼1

2p
HðkÞ �

HðkÞ
2p

	 �
þ Oðe�e=gÞ;

ðB:5Þ

holds in the uniform norm on C1ðM0;RÞ:

Let

fDðsÞ :¼
X

kk [ 0

1
ks

k

ðB:6Þ

denote the f-function associated with the positive part of the spectrum of the
operator ðD;DDÞ; then we have

Theorem B.2 (Kokotov [9]) The function fDðsÞ is holomorphic in the half-plane
f< s [ 1g; and there is an entire function e(s) such that

fDðsÞ ¼
1

CðsÞ
Area ððM;N0Þ;CsgÞ

4pðs� 1Þ

	

þ 1
12

XN0

k¼1

2p
HðkÞ �

HðkÞ
2p

	 �
� 1

" #
1
s
þ eðsÞ

)
; (B.7)

where CðsÞ denotes the Gamma function. fDðsÞ is a regular at s ¼ 0; and one can
define the Ray-Singer f-regularized determinat of ðD;DDÞ according to

det
0

D :¼ exp �f0Dðs ¼ 0Þ
� �

: ðB:8Þ

As a direct consequence of this representation, one has [9] the

Corollary B.1 Let ððM;N0Þ;CsgÞ and ð gðM; N0Þ;CsgÞ two homothetic Riemann

surfaces, with (the same) conical singularities Div ðTÞ :¼
PN0

k¼1
HðkÞ

2p � 1
� �

r0ðkÞ;

and let ds2 and eds2 ¼ jds2; with k [ 0 a positive constant, be the respective

conical metrics, (see Theorem 2.1) If we denote by det0 D and det0 eD the associated
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f-regularized determinants, then one has the rescaling

det
0 eD ¼ j

� vðMÞ
6 �1ð Þ� 1

12

PN0

k¼1

2p
HðkÞþ

HðkÞ
2p �2

n o
det
0

D: ðB:9Þ

For g 2 ½0; 1�; let us consider two distinct families of polyhedral surfaces

g 7! ðTð1Þ;MÞg 2 POLg;N0ðMÞ ðB:10Þ

g 7! ðTð2Þ;MÞg 2 POLg; N̂0
ðMÞ; ðB:11Þ

(note that generally N0 6¼ N̂0; and that g may be allowed to vary on a smooth parameter

manifold [9]). We assume that the corresponding vertex sets fr0
ð1Þðk; ; gÞg

N0
k¼1 and

fr0
ð2Þðh; gÞg

N̂0
h¼1 are disjoint for all g 2 ½0; 1�; and that they support distinct

g-independent conical singularities fHð1ÞðkÞg and fHð2ÞðhÞg: We also assume that
ðTð1Þ;mÞg; and ðTð2Þ;mÞg; g 2 ½0; 1�; define the same (g-independent) conformal

structure ððM;N0Þ;Cð1Þsg Þ ’ ððM;N̂0Þ;Cð2Þsg Þ: Let fpkðgÞgN0
k¼1 2 M and fqhðgÞgN̂0

h¼1 2
M be the disjoint sets of points associated with the divisors

Div ðTð1Þ; gÞ :¼
XN0

k¼1

Hð1ÞðkÞ
2p

� 1

� �
pkðgÞ; ðB:12Þ

and

Div ðTð2Þ; gÞ :¼
XN̂0

h¼1

Hð2ÞðhÞ
2p

� 1

� �
qhðgÞ: ðB:13Þ

According to (2.70) the conical metric ds2
Tð1Þ

of ððM;N0Þ;Cð1Þsg Þ around the

generic conical point pkðgÞ is given, in term of a local conformal parameter tðk; gÞ;
by

ds2
Tð1Þ; ðkÞ :¼ LðkÞ½ �2

4p2 tðk; gÞj j2
tðk; gÞj j2

Hð1ÞðkÞ
2p


 �
dtðk; gÞj j2; ðB:14Þ

whereas the conical metric ds2
Tð2Þ

of ððM;N̂0Þ;Cð2Þsg Þ around the generic conical

point qhðgÞ is given, in term of a local conformal parameter zðh; gÞ, by

ds2
Tð2Þ; ðkÞ :¼ L0ðhÞ½ �2

4p2 zðh; gÞj j2
zðh; gÞj j2

Hð2ÞðhÞ
2p


 �
dzðh; gÞj j2: ðB:15Þ

Since in the metric ds2
Tð1Þ

the points fqhðgÞgN̂0
h¼1 2 M; supporting the conical

singularities of ds2
Tð2Þ
; are regular points, we can assume that there are smooth
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functions gð2; hÞðgÞ of zðh; gÞ such that in a neighborhood of qhðgÞ the metric ds2
Tð1Þ

takes the form

ds2
Tð1Þ;





qhðgÞ

:¼ gð2; hÞðzðh; gÞÞ


 

2 d zðh; gÞj j2: ðB:16Þ

Similarly, we can assume that there are smooth functions fð1; kÞðgÞ such that in a

neighborhood of pkðgÞ the metric ds2
Tð2Þ

takes the form

ds2
Tð2Þ;





pkðgÞ

:¼ fð1; kÞðzðk; gÞÞ


 

2 dzðk; gÞj j2: ðB:17Þ

With these notational remarks along the way, we have the following

Theorem B.3 (Kokotov [9]) If det Dð1Þ and det Dð2Þ respectively denote the f-
regularized determinants of the (Friedrichs extension of the) Laplacian associated
with the conical metrics ds2

Tð1Þ
and ds2

Tð2Þ
; then there is a constant C independent of

g 2 ½0; 1� such that

det0 Dð1Þ

det0 Dð2Þ
¼ C

Area ðM;N0Þ;Cð1Þsg

� �

Area ðM; bN0Þ;Cð2Þsg

� �
QN̂0

h¼1 gð2; hÞ










1
6

Hð2ÞðhÞ
2p �1


 �

QN0
k¼1 fð1; kÞ










1
6

Hð1ÞðkÞ
2p �1


 � ; ðB:18Þ

where Area ððM;N0Þ;CðjÞsg Þ;j ¼ 1; 2, denotes the area of the Riemann surface

ððM;N0Þ;Cð1Þsg Þ in the corresponding conical metric ds2
TðjÞ

, and where we have set

fð1; kÞ :¼ fð1; kÞðzðk; gÞ ¼ 0Þ and gð2; hÞ :¼ gð2; hÞðzðh; gÞ ¼ 0Þ:

As emphasized by Kokotov, this results extends to polyhedral surfaces
Polyakov’s formula describing the scaling, under a conformal transformation, of
the determinant of the Laplacian on a smooth Riemann surface.
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b-function, 123
3j symbol, 177

double, 50
quantum, 56

6j symbol, 176
as a quantum gate, 219
algebraic identities, 179, 183
in terms of 4F3, 178
quantum, 175
symmetries, 177

A
Askey hierarchy, 179

q-deformed, 179
Automorphism group

of the dual polytope, 62
Automorphisms group

of a polyhedral surface, 20

C
Chern and Euler classes

of the space of polyhedral

Chern class, 259
Chern–Simons invariant, 171
Chern–Simons–Witten functional, 175
Collapse-expansion deformation, 22
Combinatorial moves, 182

bistellar type, 184
elementary shellings, 190
relation between bistellar moves

and shellings, 189
Combinatorial properties, 4
Complex structure, 72
Complexity class, 220

BQP, 221
Jones invariant, 231
NP, 227
# P, 232
P, 232
problems in group theory, 227
problems in knot theory, 221

Cone, 5
Conformal parameter

local, 151
Conformal structure

around conical singularities, 55
manifold of, 259

Conical angles
and divisors, 76
representation on the unit sphere, 30

Conical defect, 13
Conical defects

propagation of, 166
Conical singularities

existence of preassigned, 13
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B
Beltrami differentials, 263
Belyi’s theorem, 106
Berger–Ebin decomposition

for TT tensors, 127
Braid group, 224

Kaul representation, 237
representation in an algebra, 228
R-matrix, 202
trace function, 229

surface, 79



C (cont.)
Coupling

dilatonic, 125
tachyonic, 125

Couplings
as coordinates for an action, 118

Coupling parameters, 116
controlling an action, 116

Cut-off scale, 121
Cylindrical metric, 70

D
Deficit angle, 14

and curvature, 14
Deformation

of a fiducial action, 117
Degenerations

of polyhedral surfaces, 47
Degree of a divisor, 99
Dehn–Sommerville equations, 6
Determinant of Laplacian

for conical metrics, 152
Developing map, 167
Diffeomorphisms

group of, 17
Diffeomorphisms group

fixing the vertex set, 19
Dihedral angles

tetrahedra and, 87
Dilation holonomy, 13
Dilaton field

linear, 134
Discretized Liouville fields, 153
Divisor

on a Riemann surface, 100
Dual polytope

the metric geometry of the, 60
Dynamical triangulations, 8, 23, 145

as an approximating net, 145

E
Edge

barycenter, 56
Edge lengths, 10
Edge refinement

of a ribbon graph, 61
of an abstract graph, 63

Edge-replicating, 43
Effective action functional, 137
Effective area, 157
Effective theory, 122
Euclidean length structure, 11

Euler class
of circle bundles over space of

polyhedral surfaces, 40
Euler number, 76
Euler–Poincaré equation, 6

F
Face, 2
Face pairing, 165
Fattening triangles, 26
Fiducial action

deformation of, 120
Filtration, 121
First Chern class, 162
Fixed connectivity, 8
Flip move, 21

and equilateral triangulations, 23
isometric, 21

Fluctuations
averaging, 122
spectrum of, 120

Functional integration
over the space of Riemannian

structures, 126
Functional Jacobian, 131
Functional measure

in non-critical string theory, 131
in quantum Liouville theory, 133

f-vector, 6

G
Geodesic boundaries

decorated, 101
hyperbolic surface with, 99

Glueings, 5
Group of confeomorphisms, 126

H
Half-edges, 56
Handlebody, 168
Handle-pinching degeneration, 47
Harmonic map action

deformation of, 117
Heegard splitting, 212

Turaev–Viro state sum, 213
Hierarchies of state sums, 197
h-length, 91
Holography, 171
Holonomy

complex valued, 14
rotational, 14
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Holonomy representation, 12, 166
Horocycle

Thurston invariant, 99
Horocycles

signed hyperbolic distance
between two, 98

Horocyclic segment, 91
Horocyclical decoration, 94
Horosphere

as a local screen, 89
Euclidean triangle cut by a, 87
Euclidean triangles in a, 87
visual, 89

Horospheres, 84
and null vectors, 84

Hyperbolic cone-manifolds
three dimensional, 165

Hyperbolic distance, 85
Hyperbolic space

3-dimensional, 83
upper half-space model, 85

Hyperbolic structure
complete, 96
incomplete, 99, 102

Hyperbolic surface, 166
incomplete, 168
obtained by glueing triangles, 97
with punctures, 102

Hyperbolic volume, 169

I
Ideal simplex

ideal triangle, 87
ideal tetrahedron, 87, 94

Ideal triangle
and horocyclic segments, 91
glueing, 94
h-lengths associated with a, 93
rigidity, 94
sliding, 94

Incidence relations, 56
Intersection numbers

Mirzakhani approach, 162
Intersection theory

Witten–Kontsevich, 83
Isometry group, 17

J
Jones polynomial, 170
Jones polynomials

additive approximation, 232, 245
as Markov traces, 230

in the CSW framework, 230
universality, 231

K
Knot-link, 168
KPZ exponent

for random polyhedral surfaces, 159
KPZ relations, 140
KPZ scaling

in the conformal gauge, 141

L
Lambda length

computation of, 90
Laplace operator

on conical manifolds, 85
Lie derivative

conformal, 127
Link

of a simplex, 5
Link invariants, 223

linking number, 248
Liouville action

discretized, 154
regularized, 143

Liouville free vertex area, 157
Liouville mode, 129, 147
Liouville theory

quantum, 130
Liouvuille action, 129, 154
Lobachevsky function, 169
Logarithmic dilation, 13

complexified, 16

M
Manin and Zograf’s asymptotics, 148
Mapping class group

for surfaces with boundary, 100
Markov moves, 226
Matrix model

and Eynard and Orantin’s approach, 146
Medians

of a triangle, 58
Metric geometry

of polyhedral surfaces, 10
Metric

piecewise flat, 11
Milnor’s formula, 169
Minimum incidence, 6
Moduli

and singular metrics, 144
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M (cont.)
Moduli space

Deligne–Mumford compactification, 264

N
Natural Lagrangians, 116
Non-linear r model, 125

O
Orbifold

in the sense of Thurston, 19

P
Pachner theorem, 21
Partition function

fixed area, 140
Path

admissible, 8
Piecewise-Linear (PL)

manifold, 4
Piecewise-Linear (PL)

properties, 4
Pillow tail

polyhedral, 44
role of, 45
stability of, 46

Pillow tail component, 21
Pillow tail degeneration, 47
Pillow-tail pinching, 44
Pinching node, 44, 50

behavior of the combinatorial
WP form at a, 108

Pointed Riemann-surface
stable, 269

Pointed surface, 255
Point-like limit

in non-linear r model, 136
non-linear, 122

Poisson bivector, 103
Polyakov action, 126
Polyakov’s formula, 277
Polygonal bundle, 28
Polyhedral arc-length map, 34
Polyhedral cone, 25

and spherical polygons, 25
directrix of a, 25

Polyhedral cotangent cone, 25, 33
Polyhedral cotangent cones

and circle bundles over the space of poly-
hedral surfaces, 34

Polyhedral structures, 18

as singular Euclidean structures
parametrization of the space of
set of all, 19

Polyhedral surface, 8
and Regge surface, 8
local Euclidean structure of, 12
null vector on a, 88
open, 8

Polyhedral surfaces
curvature structure of, 11
deformations of, 25
distance between two points, 11
infinitesimal deformations of, 25
similarity class of the triangles of, 12
slit-open transformation on, 43
stable, 46
stable degenerations of, 42
tangent vector to the space of, 39
the space of stable, 47
the various set of, 20

Polyhedron, 4
Polyhedron underlying, 2
Polytope

barycentrically dual, 55
the conical, 56

Ponzano–Regge model
for a closed 3-manifold, 180, 181
for a simplicial pair, 188
holographic projection, 197

Pseudo-manifolds, 6
Pure gravity critical exponent, 149

Q
Quadratic differentials, 70

and Strebel theorem
Jenkins–Strebel, 70

Quantum invariants of 3-manifolds, 247
Quantum invariants of colored fat graphs, 249

R
Random polyhedral surfaces

partition function for, 158
Regge surfaces, 8
Regular point

of a polyhedron, 6
Reidemeister moves, 223

regular isotopy, 224
Renormalization group flow, 121, 122
Ribbon graph, 63

metrized, 66
Ribbon graphs

and differentiable orbifolds, 67
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metric, 66
topology of the space of, 67

Riemann moduli space, 128
Riemannian structures

orbifold of, 17
space of, 17

R-matrix

S
Schläfli formula, 40
Similarity structure, 97

obtained by glueing, 97
Simplex, 1
Simplices

equilateral, 8
Simplicial complex, 3
Simplicial division, 4
Simplicial isomorphism, 4
Simplicial manifolds, 4
Simplicial map, 4
Singular Euclidean metric, 69
Singular Euclidean strutures

conically complete, 13
Singular point

of a polyhedron, 6
Skeleton, 2
Sky mapping, 90
Slice theorem

for the group of confeomorphisms, 126
Space of actions, 118
Space of maps, 115
Space of polyhedral cones

over a vertex, 31
Space of polyhedral surfaces

tangent space to, 25
Space of Ribbon graphs

orbicell, 67
Space of Riemannian metrics, 146
Space of spherical polygons, 30
Spacetime fields, 138
Spherical polygons, 28

the space of, 30
Spin network, 218

q-deformed automata
quantum simulator, 219, 251

Spiral staircase, 97
and similarity structure, 97

Star of a simplex, 2
Star

open, 3
Stirling’s formula, 149
Strebel theory, 79
Subdivision, 4

Susceptibility exponent, 140, 142
Symplectic form

over the space of polyhedral surfaces, 37
Symplectic volume, 109

T
Tautological classes, 265
Teichmüller space, 101

decorated, 102
The space of polyhedral structures

as a differentiable orbifold, 20
Thinning, 26
Thinning triangles, 39
Thrice-punctured sphere, 45
Thurston, 5
Topological knot theory, 221

Alexander theorem, 224
closures of knot diagrams, 225

Triangle
complex modulus of a, 15
similarity class, 15

Triangle inequalities, 10
Triangular pillow

visualization of, 45
Triangulations, 3

combinatorially equivalent, 7
complex geometry and, 55
distinct triangulations of the

same PL-manifolds, 7
Turaev–Viro quantum invariants

fixed boundary triangulation, 200
initial data, 198

Tutte, 7

V
Vertex

complex coordinates around a, 55
Vertex angle structure, 26
Vertex angle structures

the space of, 26
Vertex angles, 10
Vertex angles vector, 27
Visual diractions, 89, 164
Volume conjecture

hyperbolic, 170

W
Weil–Petersson form, 83
Weil–Petersson measure, 128
Weil–Petersson metric, 263
Weil–Petersson two-form, 102
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W (cont.)
for polyhedral surfaces, 102
Poisson structure associated with the, 103

Weil–Petersson volume
of moduli space of Riemann surfaces with

boundaries, 164
Weyl rescalings

group of, 126
Lie algebra of, 127

Whitehead expansion and collapse, 67
Wiener measure, 119
Wilson loop

Y
Yang–Baxter relation, 224, 229
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