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Chapter 1
Introduction

Ay! There are times when the great universe
Like cloth in some unskilful dyers’ vat
Shrivels into a hand’s-breadth, and perchance
That time is now! Well! Let that time be now.
Let this mean room be as that mighty stage
Whereon kings die, and our ignoble lives
Become the stakes God plays for.

Oscar Wilde: A Florentine Tragedy

The universe, ultimately, is to be described by quantum theory. Quantum aspects
of all there is, including space and time, may not be significant for many purposes,
but are crucial for some. And so a quantum description of cosmology is required
for a complete and consistent worldview. At any rate, even if we were not directly
interested in regimes where quantum cosmology plays a role, a complete physical
description could not stop at a stage before the whole universe is reached. Quantum
theory is essential in the microphysics of particles, atoms, molecules, solids, white
dwarfs and neutron stars. Why should one expect this ladder of scales to end at a
certain size? If regimes are sufficiently violent and energetic, quantum effects are
non-negligible even on scales of the whole cosmos; this is realized at least once in the
history of the universe: at the big bang where the classical theory of general relativity
would make energy densities diverge.

One might ask a quantum theory of what should be considered. The classical
universe is described by general relativity, which may be quantized on its own if
its degree of freedom, space–time geometry, is seen as fundamental. Alternatively,
general relativity might be seen as ultimately being a phenomenological continuum
theory, much as in hydrodynamics. By itself, it would not reveal what the funda-
mental, microscopic degrees of freedom should be. Nonetheless, general relativity
serves as a crucial guideline in constructing a quantum theory of gravity, for it is
to be reproduced as the semiclassical limit on a certain range of scales, including
those on which we currently probe the universe. This by itself is challenging enough
a task owing to the existence of many mathematical consistency conditions. Most
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2 1 Introduction

current theories indeed point to the presence of new microscopic entities, and they
provide insights into some of their properties—be they described as strings, loops
or something else. Irrespective of what exactly is realized, general relativity must be
extended for it is singular; and quantum theory must play a role.

Quantum gravity applies to many situations, most importantly early-universe cos-
mology and black holes. Cosmology complicates and simplifies considerations at the
same time. It comes with severe conceptual problems of how to interpret the wave
function of the whole universe, with all observers having to be situated within the
system. Despite many activities for several decades, a proper understanding of this
situation remains a challenge. But there is also an advantage in this context: the
cosmological principle, which states the assumption of homogeneity on large scales
and is by now well justified by extensive galaxy maps, reduces the number of degrees
of freedom. One obtains a technically simpler framework, which is helpful for testing
existing general theories but also provides possible physical insights.

Much of quantum gravity is part of mathematical physics due to the heavy tools
required. But one should keep in mind that the objective is quite different from usual
mathematical edifices: quantum gravity at present is not constructed on firm ground;
it rather grows toward a certain, vaguely formulated aim. Some principles must
certainly exist and be used, but there are no generally accepted axioms from which
one could start, stepping ahead theorem by theorem. This situation often makes
developments, even crucial ones, appear fuzzy. Nevertheless, progress is clearly
visible by models becoming more and more controlled and realistic and, put the
other way, by several developments having been ruled out with later progress.

Accordingly, the focus in this book will not be so much on specific cases, unless
they illustrate key features, but rather on a general framework which, at the current
stage in time and in the author’s personal opinion, summarizes distinctive properties
of quantum cosmology. This guide through the scaffolding should provide readers
interested in working on those problems with a quick route to the construction site,
discussing tools and stating open issues to provide an entrance into this rather messy
field. Keep in mind that, while the final building is likely to follow the shape and
height already indicated, the scaffolding itself eventually will have to be torn down.
But before the building stands, the reader is advised not to pay too much attention to
all kinds of details: one should not measure carpets before the walls are set down.

There are two main instances in which quantum physics arises: quantum dynamics
and quantum geometry. Quantum dynamics includes the usual conceptual problems
of measurements, observables and the role of quantum variables such as fluctuations
and correlations. Especially in quantum cosmology it also, ultimately, requires one
to understand the meaning and the arrow of time. As general issues, all this is rather
insensitive to the specific realization of quantum space–time, and can thus be found
and analyzed already in the Wheeler–DeWitt formulation of quantum cosmology
started in the 1960s. Quantum geometry, on the other hand, depends more sensitively
on the quantization framework used. Here, the structure of space and time on their
smallest, possibly atomic scales and their refinement in the course of time is crucial.
The most specific such realization so far has been made within the framework of
loop quantum gravity, which will be introduced and used throughout this book. But
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all general aspects, whenever applicable, will be discussed with as small a number
of ingredients from a loop quantization as possible.

We will begin the exposition with a rather detailed discussion of quantum theory
in the context of cosmology. This introduction will show why an atomic understading
of space–time structure is relevant, a specific form of which is then provided using
the methods of loop quantum gravity. In this canonical quantization one starts with
a “kinematical” quantization of spatial geometry, already illustrating the discrete
nature. Dynamics then shows how such atomic structures change in time according
to a quantum Hamiltonian. At this stage, control over atomic quantum space–times
will be gained.

An analysis of dynamical equations in general is complicated, especially if gravity
is involved which requires self-interaction and non-linearity. Part II of this book will
introduce the key tool to a manageable analysis: effective descriptions. They will
first be applied to quantum cosmology in the Wheeler–DeWitt form, and then to loop
quantum cosmology which introduces additional non-linearities. At this stage, we
will see the first intuitive mechanism of resolving singularities by repulsive quantum
forces. At the same time it will become clear that quantum dynamics, not just quantum
geometry, is highly relevant for understanding the big bang. With these results, a
discussion of what the actual meaning of resolving singularities might be will be
given.

The third part extends constructions and results from isotropic models to
several less symmetric cases, first to anisotropic ones which also include models
of the Schwarzschild black-hole interior. Here we will see the first applications to
black hole dynamics. (There are other important applications of quantum gravity
to black holes, mainly in the context of black-hole thermodynamics. They are not
part of this book since those methods differ considerably from what one uses in
quantum cosmology. This line of research has so far provided scant insight about
the dynamics.) General black-hole models, including a phase of gravitational col-
lapse and possibly one of Hawking evaporation, require inhomogeneous geometries.
Spherically symmetric ones are the simplest among those and will be discussed in
detail. Also here, results about singularity resolution are available, but still incon-
clusive. By similar constructions one can describe models such as Einstein–Rosen
waves or those of Gowdy type, which do have local gravitational degrees of freedom.
They provide further interesting examples of singularities and possible resolutions,
but investigations have only just begun. Inhomogeneities can also be introduced as
perturbations on a homogeneous background space–time, which brings us back to
applications in cosmology.

Part IV is a discussion of the typical mathematical issues involved in quantum
cosmology: properties of difference equations, the derivation and use of physical
Hilbert spaces, and general aspects of effective descriptions.1

1 Some of the material in this book is based upon work supported by the National Science Foun-
dation under Grant No. 0748336. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect the views of the
National Science Foundation.









Chapter 2
Cosmology and Quantum Theory

Next to flat Minkowski space, the simplest solutions of general relativity are given
by isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) universe models.
Thanks to spatial isotropy, there is just a single parameter, the scale factor a(t)
determining the spatial scale via the line element

ds2 = −N (t)2dt2 + a(t)2dσ 2
k (2.1)

with

dσ 2
k = dr2

1 − kr2 + r2(dϑ2 + sin2 ϑdϕ2). (2.2)

As usual, k = 0,±1 distinguishes a three-space of constant curvature k.Although
there is a second coefficient in (2.1) in addition to a(t), the lapse function N (t), it
can be removed by rescaling the time parameter such that dτ = N (t)dt, where τ is
proper time as measured by co-moving observers. The scale factor, on the other hand,
cannot be eliminated completely unless it is time-independent, and so it describes the
changing spatial scales of an evolving isotropic universe. Its dynamics is given by
specializing Einstein’s equation to isotropic metrics (2.1): the Friedmann equation

(
ȧ

Na

)2

+ k

a2 = 8πG

3
ρ (2.3)

where the dot is a derivative by the original t and ρ is the energy density of matter,
and the second-order Raychaudhuri equation

(ȧ/N )•

aN
= −4πG

3
(ρ + 3P) (2.4)

in which also the pressure P of matter appears. The latter equation is not independent
but can be derived from the Friedmann equation using the continuity equation

ρ̇ + 3
ȧ

a
(ρ + P) = 0 (2.5)

of matter.

M. Bojowald, Quantum Cosmology, Lecture Notes in Physics 835, 7
DOI: 10.1007/978-1-4419-8276-6_2, © Springer Science+Business Media, LLC 2011
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2.1 Scaling

In all these equations, the rescaling freedom of the time variable does not matter
since it is always N (t)dt that enters; the equations are thus time-reparameterization
invariant. While the scale factor cannot be removed completely by a change
of coordinates, it can, in the spatially flat case, be rescaled by a constant: a changes to
a/λwhen coordinates are rescaled by r �→ λr. (For non-vanishing spatial curvature,
fixing k = ±1 removes any rescaling freedom.1 For k = 0 no natural normalization
is available.) Thus, a does not have absolute meaning; only ratios such as the Hubble
parameter ȧ/Na or the deceleration parameter q = −aN (ȧ/N )•/ȧ2 are unambigu-
ous. For k = +1, one can give meaning to the volume a3Vunit = ∫

	

√
det hd3x with

Vunit = 2π2 the volume of the three-dimensional unit sphere, as the measure given
by the spatial metric hab integrated over the whole compact space. However, even
in this case a itself can hardly be considered a relevant physical parameter because
determining its value would require one to measure the size of the universe. In prin-
ciple, this might be possible, for instance if one can detect repeated patterns in the
sky from light traversing the compact space more than once [1]. But no such patterns
have been found so far with certainty, and so the full information in a3Vunit cannot
play a role in current cosmology.

Since general relativity is generally covariant and fully independent of the choice
of space-time coordinates, any equations of motion it provides automatically have the
invariance property under changes of coordinates, or under those changes that respect
the symmetry of a given model. Nevertheless, such scalings can sometimes have a
subtle flavor especially in canonical formulations or their quantizations: the Hubble
parameter is a scaling-independent measure for the rate of change of a, which can
provide a canonical momentum, but there is no scaling-independent measure for the
size itself unless one chooses and fixes extra structures such as a distinguished spatial
region. While equations are then coordinate-scaling independent, they might depend
on the region chosen. Such issues will play a central (though somewhat formal) part
in the fundamental set-up of quantum cosmology, and their treatment will, rather
surprisingly, turn out to be deeply related to the atomic nature of space and time.

In full general relativity, coordinate changes are implemented as gauge transformations
generated by constraints. The Friedmann equation (2.3) constitutes the isotropic form of
the Hamiltonian constraint, generating time reparameterizations. From this perspective, one
would expect rescalings of a, multiplying only spatial coordinates in the line element, to
be generated by the diffeomorphism constraint. However, the diffeomorphism constraint,
depending on gradients of the fields, vanishes identically when evaluated in isotropic con-
figurations, and thus cannot contribute to isotropic models. Moreover, a non-trivial diffeo-
morphism (or other) constraint would remove one pair of canonical degrees of freedom—and
there is only one in isotropic models. Even before considering the dynamics, all gravitational
degrees of freedom would be removed. Rescaling a thus cannot be a gauge transformation;
it rather corresponds to transformations between different reductions to isotropy, between
different models rather than within one model. This observation already indicates that the
rather innocent-looking rescaling freedom is closely related to symmetry reduction.

1 Rescaling freedom in the closed model is discussed in more detail in Sect. 3.2.1.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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2.2 Wheeler–DeWitt Quantization

Wheeler–DeWitt models [2, 3] provided the first quantizations of cosmological mod-
els. Here, indeed, the scale factor itself was taken as one of the canonical variables,
conjugate to

pa = − 3

4πG

aȧ

N
(2.6)

according to the Einstein–Hilbert action reduced to isotropic metrics. Following the
principles of basic quantum mechanics, wave functions are thus of the form ψ(a),
supported on the positive real line a > 0.

The quantization of a phase space with a configuration variable a restricted to positive values
requires some care. If one introduces the usual operator −i�d/da to represent p̂a such that
it obeys the required commutation relation with the multiplication operator â, it is not self-
adjoint with respect to an inner product based on the integration

∫ ∞
0 da. One can see this

in several ways: The derivative operator has an imaginary eigenvalue with eigenfunction
exp(−a), which is normalizable on the positive half-line. Moreover, the operator, when
exponentiated, generates translations of wave functions along a,which is not unitary because
it moves the wave function out of the integration range of the inner product. With a non-self-
adjoint p̂a, the construction of a self-adjoint Hamiltonian will be complicated.

One solution to the problem is to begin with a different, non-canonical algebra of phase-
space variables a together with D := apa, such that {a, D} = a is still closed. Moreover,
a and D generate canonical transformations that are complete in the sense that they define
a transitive and free group action leaving the phase space fixed. In particular, the factor of
a in D ensures that the Hamiltonian vector field X D = {·, D} is tangent to the boundary
at a = 0, unlike X pa . These are the requirements of group-theoretical quantization [4],
which proceeds by constructing a quantum theory from unitary representations of the group
generated. The representation space then provides a Hilbert space on which â and D̂ act as
self-adjoint operators. For quantum gravity in general terms, this program has been adopted
in the context of affine quantum gravity [5, 6]. In our treatment we will be led to replace a
with a variable taking both signs (thanks to orientation) so that we will not have to deal with
this problem.

Quantization in cosmology introduces all the usual quantum properties such as
fluctuations and quantum uncertainty for the size of the universe itself. However,
expectation values are not easy to compute since it is not a priori clear what inner
product should be taken: There is, first, the possibility of non-normalizable “scatter-
ing” states if a universe is to expand forever and to reach arbitrarily large values of
a; secondly, the Friedmann equation only depends on the canonical variables a and
pa (and those for matter), but not on their time derivatives. Canonically, it is not an
evolution equation, which could become some kind of Schrödinger equation upon
quantization, but a constraint

C = −
(

4πG

3
pa

)2

a−1 + ka + 8πG

3
a3ρ = 0. (2.7)

We may directly quantize it by inserting operators,
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4πG�

3
√

a

∂

∂a

(
4πG�

3
√

a

∂

∂a
ψ

)
+ kaψ = −8πG

3
Ĥmatterψ (2.8)

with some matter Hamiltonian Ĥmatter. In the coefficients, the Planck length �P =√
G� appears. Unlike in quantum mechanics, the ordering of factors is not unique.

2.3 Evolution

Only states annihilated by the quantized constraint Ĉ can be considered physical,
forming the so-called physical Hilbert space.2 As the next problem we thus see
the need of having to understand the solution space of the Friedmann constraint
operator, and being able to endow it with an inner product. Only expectation values
and fluctuations or other moments of a physical state can correspond to observable
quantities.

Traditionally, the focus in quantum cosmology has been on finding solutions
for states in a diverse set of models, mainly with a semiclassical interpretation in
mind. The form of the Wheeler–DeWitt equation, quadratic in the momentum pa,

then suggests that states may be normalized by a Klein–Gordon type inner product
(and in some models one is exactly dealing with the Klein–Gordon equation; see
Example 5.1). For instance, if one treats a as a measure of time and includes a scalar
matter degree of freedom as well, one obtains a hyperbolic differential equation [7]
with an initial-value problem that suggests to pose an initial wave function at a fixed
value of a. In some cases, however, such an interpretation is problematic, such as in
a closed model where the same value of a may be reached twice, at times that would
be considered far apart in the classical picture. It is sometimes suggested that the
notion of time changes considerably in quantum cosmology, requiring a reversal of
the arrow of time in a collapsing phase [8].

Complete constructions of the physical Hilbert space are possible [9], but cannot
often be performed explicitly; usually a successful implementation hinges on special
forms of matter ingredients that can serve the purpose of an internal time, such as a
free, massless scalar or dust.

Example 2.1 (Dust) The Hamiltonian formulation of dust-like matter with
vanishing pressure, as developed in [10], reduces in isotropic models to a simple
Hamiltonian Hmatter = pT linear in the momentum conjugate to proper time T of
dust particles. Upon quantization of p̂T = −i�∂/∂T, the constraint equation (2.8),
ignoring questions of self-adjointness, then takes the form of a Schrödinger equa-
tion with time T . If we transform the variables (a,T) to V := (2πG)−1a3/2 and
λ := 3(4πG)−1T, the equation takes the simple form

2 Alternatively to this Dirac quantization of constraints, one may quantize the reduced phase space
of observables O invariant under gauge transformations δεO = {O, εC} generated by (2.7). Again,
it is difficult to see an evolution picture because in general there is no obvious time parameter among
the observables; see Chaps. 12 and 13.

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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i�
∂ψ

∂T
= �

2

2

∂2ψ

∂V 2 + K V 2/3ψ (2.9)

of a non-relativistic particle at “position” V in a potential W (V ) = −K V 2/3 with a
constant K = 1

2 k(2πG)2/3. (Time T must be reversed in order to have agreement
for all the signs in this interpretation.)

The flat model corresponds to a free particle with stationary states ψ p(V ) =
exp(ipV/�). We can write a general solution for a wave packet as

�(V, T ) =
∫

C(p)ψ p(V ) exp(−iE(p)T/�)dp (2.10)

with E(p) = −p2/2m. The coefficients C(p) are determined by an initial wave
function at T=0, �(V, 0) = ∫

C(p)ψ p(V )dp, via Fourier transformation. For the
free particle, the Fourier transformation and its inversion can be done explicitly, pro-
viding the general time-dependent solution of travelling and spreading wave packets.
If the initial momentum expectation value is negative, corresponding to a collapsing
universe, the wave packet will reach the boundary V = 0 and disappear from the
configuration space, implying a loss of unitarity of the evolution. This problem is
a consequence of the self-adjointness issue mentioned in Sect. 2.2, which can be
dealt with by specifying appropriate boundary conditions for wave functions. For
these wave functions, the dynamics will then differ from the free particle [11, 12].
Alternatively, one can use the operator D̂ quantizing apa, requiring extra factors of
a−1 in the Wheeler–DeWitt equation which again lead to deviations from the free
particle; see also Sect. 5.3.1.

2.4 Bohmian Viewpoint

The Bohmian interpretation [13–16] is a reformulation of quantum mechanics which
has the consequence of amending the classical equations of motion by correction
terms, summarized as a quantum potential. The quantum potential depends on the
wave function and thus introduces non-classical degrees of freedom. Solving the
equation would require one to solve for the expectation values and the wave function
at the same time, which usually can be done only in approximations and truncations.
(Starting from a different viewpoint, canonical effective equations, introduced later in
this book and used throughout, can be understood as a systematic way of organizing
the quantum corrections in terms of parameters characterizing the state, the moments
subject to their own evolution.) The Bohmian interpretation has been used in (loop)
quantum cosmology for instance in [17–20].

In addition to the Schrödinger equation for the wave function, the Bohmian view-
point postulates the guiding equation

V̇ = �

2i

ψ∗∂ψ/∂V − (∂ψ∗/∂V )ψ

ψ∗ψ
(2.11)

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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for a variable V of classical type. One can interpret this equation as relating
the classical velocity of V to the quantum-mechanical probability current, or the
V -derivative of the phase of the wave function.

Splitting the wave function ψ(V, T ) = R(V, T ) exp(i S(V, T )/�) into norm R
and phase S implies a pair of equations equivalent to the Schrödinger equation: the
continuity equation

∂R2

∂T
− ∂(R2∂S/∂V )

∂V
= 0 (2.12)

for the density |ψ |2 = R2,which follows from the imaginary part of the Schrödinger
equation, and the Hamilton–Jacobi equation

∂S

∂T
− 1

2

(
∂S

∂V

)2

− W (V )+ 1

2
�

2 ∂
2 R

∂V 2 = 0 (2.13)

with the quantum potential − 1
2 �

2∂2 R/∂V 2.

The Bohmian viewpoint is sometimes used in quantum cosmology because it
provides equations for the scale-factor or volume variable, rather than just wave
functions which would be difficult to interpret. Another interpretational scheme often
claimed to avoid conceptual difficulties in quantum cosmology is the consistent-
histories approach [21–24].

2.5 WKB Approximation

Similarly to the derivation of the quantum potential of the Bohmian interpretation, the
WKB approximation to quantum mechanics begins by making an exponential ansatz
for the wave function, now as an �-expansion ψ(V ) = exp(i�−1 ∑∞

n=0 �
n Sn(V ))

with �-independent functions Sn(V ).Leading orders in � for small n should then give
semiclassical physics and the first quantum corrections. As usual for �-expansions,
the WKB series is an asymptotic expansion, not a converging series.

In the reformulated Wheeler–DeWitt equation of the form of a non-relativistic
particle, (2.9), we use the WKB ansatz for stationary states with time dependence
exp(iET/�). The second-order derivative of the wave function by V is

�
2 d2ψ

dV 2 =
(

−
(

dS0

dV

)2

+ �

(
i
d2S0

dV 2 − 2
dS0

dV

dS1

dV

)
+ O

(
�

2
))

ψ .

If we include the potential W (V ) and the constant E, the first two orders in � of
the stationary Wheeler–DeWitt equation result in the Hamilton–Jacobi equation

1

2

(
dS0

dV

)2

+ W (V ) = E
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solved by

S0(V ) =
∫ √

2(E − W (V ))dV (2.14)

and the potential-independent equation

i
d2S0

dV 2 − 2
dS0

dV

dS1

dV
= 0

which, using the equation for dS0/dV, we solve by

S1(V ) = i

2
log

dS0

dV
= i log

(
(2(E − W (V )))1/4

)
.

To first order in �, the wave function thus takes the form

ψ E (V ) = C
4
√

E − W (V )
exp(iS0(V )/�) (2.15)

with a solution S0(V ) of the Hamilton–Jacobi equation and a constant C.
The next order provides an equation

i
d2S1

dV 2 −
(

2
dS0

dV

dS2

dV
+

(
dS1

dV

)2
)

= 0

which can be expressed as a condition relating dS2/dV to the first and second deriva-
tive of the potential devided by dS0/dV squared. Since the leading order of the WKB
approximation assumes that S2 is negligible or vanishes, the momentum dS0/dV
squared must be much larger than the first two derivatives of the potential. Thus,
the leading terms of the WKB approximation are valid as long as the potential is
sufficiently slowly varying compared to the wave length of the wave function. In
particular, the approximation breaks down at turning points of the classical motion,
where the momentum vanishes. (Notice that this breakdown is unrelated to the prob-
lem of time since turning points of V, not T are relevant).

In quantum cosmology, the WKB approximation is useful in order to see the
behavior of wave functions as mathematical solutions. However, it also presents
several problems: First, it requires a choice of time variable and does not easily
show how much of the results depends on the choice. Moreover, it usually produces
solutions of plane-wave form rather than travelling semiclassical wave packets. Even
after finding approximate wave functions, one must still compute expectation values,
fluctuations, correlations or other quantum variables in order to derive predictions
for observations, a task which is often complicated, or even impossible if one does
not have control over the physical inner product. A less well-known disadvantage
is that its results do not agree with those obtained by low-energy effective actions
[25], adding to the problem that its semiclassical interpretation is not all that clear. In
later chapters of this book we will mainly use the framework of effective canonical
dynamics [26, 27] which can overcome all these problems.
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2.6 General Problems

Non-semiclassical properties of states at small volume, near the classical singularity,
are of interest as well. In the Wheeler–DeWitt setting, this regime has mainly been ad-
dressed in the form of posing boundary conditions on boundaries of minisuperspace,
primarily at a = 0. However, the form of possible conditions turned out not to be
very much restricted, and so rather different candidates are equally viable depending
on which arguments one makes to evaluate them. Also the singularity issue remains
largely unaddressed in the Wheeler–DeWitt quantization; only further ingredients
such as those from loop quantum cosmology provide sufficient information about
quantum geometry at small volume to address this important problem. In addition to
loop quantum cosmology, whose properties are laid out in detail in this book, further
extensions of the typical models of quantum cosmology are being considered. First,
it is important in any setting to include inhomogeneities, for instance by a mode ex-
pansion [28]. Back-reaction terms from inhomogeneity then contribute to the usual
Wheeler–DeWitt equation. But inhomogeneity does not just imply additional terms
in the homogeneous equation; it also brings in more constraints. A difficult anomaly
problem arises to make sure that this set of constraints is consistent. In the Wheeler–
DeWitt approach, this problem has not been tackled; we will later approach it with
ingredients from loop quantum gravity.

In addition to bringing in new degrees of freedom, several features suggested by
full quantum theories of gravity can be combined with Wheeler–DeWitt techniques.
These ingredients include supersymmetry in quantum cosmology [29, 30] (or just
fermionic matter, which can change some of the usual properties [31]), higher dimen-
sions or higher-curvature terms, and finally the effects from loop quantum gravity.
Loop quantum cosmology is the approach to quantum cosmology that has brought in
the most characteristic features. Finally, quantum cosmology has consistently proven
a fertile ground for (even) more exotic explorations. Among those are speculations
about a possible turn-around of the arrow of time in a collapsing universe [8, 32–34]
and multiverse considerations [35].

In what follows, we focus on issues closely related to the singularity problem on
the one hand, and microscopic, potentially observable effects on the other. For this,
the specifics of quantum geometry are required, provided in the most detailed form
suitable for quantum cosmology by a loop quantization. But before getting to these
issues, which constitute some of the traditional problems of quantum cosmology
and will play a role later, there is the basic problem of wave functions depending on
the ambiguous scale factor a. One must ensure that the classical scaling invariance
finds an analog as a transformation on wave functions. In this context, it is useful
to have a closer look at quantum geometry and draw the analogy between material
atomic systems and, figuratively speaking, space-time atoms. A material body is
composed of many atoms, and its total energy can be changed in two ways: we can
add further atoms to enlarge the body, or we can excite the atoms already there. The
analog of energy in a general relativistic or cosmological situation is volume, and so, if
geometry is quantized, we expect that quantum cosmology allows an atomic universe
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to grow in two different ways: by generating new spatial atoms or by exciting those
already present. How exactly these processes are realized will have to be determined
from a fundamental theory of quantum geometry and its dynamics, but applied in
the cosmological situation it already shows a key property: there is not just a single
function like the classical a(t) to determine the growth of a universe; there must be
at least two functions to keep track of the number of spatial atoms as well as their
excitation levels or individual sizes.

If we choose some finite region in space, measured in coordinates by a size V
independent of time, its geometrical size determined via the line element (2.1) is
a(t)3V . The atomic picture of a homogeneous universe, on the other hand, gives
an expression N (t)v(t) simply as the product of the individual atomic volume v(t)
(which is the quantity changing by excitations) with their number N (t). Thus, the
key identity

V (t) = N (t)v(t) = V a(t)3 (2.16)

directly shows how the role of a single classical time-dependent function is now
replaced by the interplay of two. Moreover, since coordinates are not quantized but
only geometry is, the coordinate volume V does not enter in the atomic expression.
That already shows that a proper implementation of this picture in quantum cosmol-
ogy will lead to a description invariant under the classical rescaling-freedom of the
scale factor—only the invariant v(t) enters or, if a given spatial region is specifically
referred to, also N (t), but never only a(t). To make this precise at least in a suf-
ficiently general class of models, we need to understand the dynamics of quantum
geometry and its atomic structure, which will then tell us what the possible behaviors
of v(t) and N (t) are, how they determine the behavior of wave functions, and how
this affects observable or conceptual issues.
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Chapter 3
Kinematics: Spatial Atoms

Quantum geometry determines properties of quantized space–time structures, which
can be interpreted as providing an atomic understanding of space–time. A view
results which is fascinating not only in its physical implications but also in its rich
combination of aspects of geometry and quantum theory. Many relevant features
can already be seen by analogy with quantized particles, then borne out by rigorous
constructions of quantum space–time.

3.1 Quantized Particles

Different aspects seen already in single-particle quantum mechanics are important
in the context of quantum space–time as well. First, we consider an ordinary free
and non-relativistic particle. Its well-known solutions show that the wave function
in general spreads out in time even if the particle is not moving. Clearly, there is
more freedom in quantum compared to classical dynamics: quantum variables such
as fluctuations usually change independently of what one classically considers as
the degrees of freedom; even a particle which classically would stay at rest can have
non-trivial quantum dynamics. The degree of spreading can easily be determined
by solving an equation of motion for the position fluctuation: With the Hamiltonian
Ĥ = p̂2/2m and the general identity

d

dt
〈Ô〉 = 〈[Ô, Ĥ ]〉

i�
(3.1)

for an arbitrary operator Ô, we have the equation

d

dt

(
〈q̂2〉−〈q̂〉2

)
=〈[q̂

2, Ĥ ]〉−2〈q̂〉〈[q̂, Ĥ ]〉
i�

= 1

m
〈q̂ p̂ + p̂q̂〉 − 2

m
〈q̂〉〈 p̂〉 = 2

m
Cqp.

(3.2)

The fluctuation (�q)2 = 〈q̂2〉 − 〈q̂〉2 is not guaranteed to remain constant
in time; more precisely, its spreading is controlled by the covariance
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Cqp = 1
2 〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈 p̂〉 of the state. A usual unsqueezed Gaussian state,

for instance, which is often used for an initial profile and has the form ψ(q) ∝
exp(−q2/4σ 2)with a real variance σ, has vanishing covariance. Such an initial state
would ensure that the initial spreading does not change momentarily. However, as a
function of time the covariance must satisfy another equation of motion:

d

dt
Cqp = 2

m
(�p)2 (3.3)

again derived using (3.1). The covariance could be constant only if the momentum
fluctuation �p vanishes, which cannot be the case for a normalizable state. On the
other hand, the equation of motion for�p itself, derived by the same methods, tells us
that it is a constant in time. We can thus solve (3.3) for Cqp(t) = 2(�p)2t/m+C (0)

qp

in terms of its initial value C (0)
qp . This solution, in (3.2), gives

�q(t) =
√

2

m2 (�p)2t2 + 2

m
C (0)

qp t +�q(0) (3.4)

as the well-known result showing the spreading of a free-particle state in time.
We have discussed this familiar example, already encountered in Sect. 2.3, at some

length because it illustrates useful methods which we will come back to later, and
because it provides important lessons. As seen clearly in this simple example, while
one is always free to choose an initial state and make it as simple as possible, quantum
dynamics in general changes its properties as time goes on. Here, we have seen that
a vanishing covariance cannot be maintained in time; states tend to get “squeezed”
and develop non-vanishing correlations. This is true even in situations which one
would consider as semiclassical, and here correlations are even an integral part of
decoherence scenarios [1].

To visualize the meaning of correlations, we use the second-order moments (�q)2,
Cqp and (�p)2 of a state to define the family of ellipses

q2(�p)2 + 2qpCqp + p2(�q)2 = const (3.5)

around the origin in the q − p-plane. These ellipses demonstrate the amount of
quantum fluctuations: for Cqp = 0, for instance, we have an ellipse of semimajor
axes �q along the q-axis and �p along the p-axis. For Cqp �= 0, these ellipses
are rotated such that certain linear combinations of q and p show the maximal and
minimal fluctuations. A distribution function with these properties can be computed
from the wave function: the Wigner function

W (q, p) = 1

2π�

∞∫

−∞
ψ∗

(
q + 1

2
α

)
ψ

(
q − 1

2
α

)
e−ipα/�dα. (3.6)

The factor of 1/2π� ensures that W (q, p) and the marginal distributions it pro-
vides by integrating over q or p, respectively, are normalized:

∫∞
−∞

∫∞
−∞

W (q, p)dqd p = 1.

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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(A probability distribution in a strict sense, that is a non-negative function, is
obtained if and only if ψ(q) is Gaussian.)

For a Gaussian state

ψ(q) = exp
(
− 1

4 (σ
−2
R + iσ−2

I )q2
)

(3.7)

of arbitrary squeezing, we obtain the Wigner function

W (q, p) = 1

π�
exp

(
− 1

2

(
σ−2

R + σ 2
R/σ

4
I

)
q2 + 2σ 2

Rσ
−2
I qp/�− 2σ 2

Rp2/�2
)
. (3.8)

In terms of fluctuations and the covariance, related to σR/I via (�q)2 = σ 2
R . (�p)2 =

�
2/4σ 2

R + �
2σ 2

R/4σ
4
I and Cqp = −�σ 2

R/2σ
2
I (see for instance (13.6)), we can write the

exponent as

E := −2�
−2

(
q2(�p)2 + 2qpCqp + p2(�q)2

)
. (3.9)

Constant-level lines of the Gaussian Wigner function in phase space are thus ellipses. In order
to determine their proportions, we choose reference values q0 and p0 with the dimensions
of q and p. respectively, and work with dimensionless ratios q/q0 and p/p0. In the absence
of a ground state or other specific features of states, no distinguished values for q0 or p0 can
be provided (unlike, for instance, if one could refer to the harmonic-oscillator ground state
with fixed fluctuations of the correct dimensions). After dividing E by q2

0 p2
0, we express

all terms by dimensionless variables, in which we find the major axis of the ellipse rotated
against the q-axis by an amount

tan(2α) = q0 p0Cqp

q2
0 (�p)2 − p2

0(�q)2
. (3.10)

An interpretation of the covariance is thus as the rotation of the likelihood ellipse in phase
space. The axes lengths of the ellipse are

p2
0(�q)2 + q2

0 (�p)2 ±
√
(p2

0(�q)2 − q2
0 (�p)2)2 + 4q2

0 p2
0C2

qp

2q2
0 p2

0

which thanks to (�q)2(�p)2 − C2
qp = �

2/4 (a Gaussian state saturates the uncertainty
relation) can be written as

p2
0(�q)2 + q2

0 (�p)2 ±
√
(p2

0(�q)2 + q2
0 (�p)2)2 − q2

0 p2
0�2

2q2
0 p2

0

.

Since there are no distinguished values for q0 and p0 in general, the only available meaning
of the squeezing of states is by non-vanishing correlations, rotating the likelihood ellipse.
Changing position and momentum fluctuations while keeping the uncertainty relation satu-
rated at vanishing correlations provides a meaningful sense of squeezing only if one can refer
to a distinguished state, such as the harmonic-oscillator ground state. In quantum cosmology,
no ground state is available to define squeezing in the absence of correlations. From now on,
we will use only the general sense of squeezing as determined by Cqp �= 0.

If (�p)2 is constant in time (as for the free particle), (�q)2 must be large for large Cqp.

The major axis of the ellipse then has a length approximately given by�q, while the minor
axis is very small. The ellipse is stretched out in one direction, along a linear combination
of q and p determined by the covariance or the angle α in (3.10). While this linear combina-
tion has large fluctuations, the orthogonal one has very small ones and thus behaves rather

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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classical. In this way the emergence of a classical degree of freedom via decoherence can be
seen, whose precise form is determined by the underlying dynamics. Squeezed states with
large covariance automatically arise in the process, and play an important role for the nearly
classical behavior. In general quantum systems deviations from Gaussian form more general
than squeezing arise.

As far as semiclassical regimes are concerned, we arrive at our

First Principle State dynamics is important and to be derived. In particular, the
form of appropriate semiclassical states cannot always be guessed, or assumed to be
unsqueezed Gaussians.

From elementary particle physics, for which perturbations around the free vacuum
state are often sufficient, one is used to Gaussian states to play a central role. But
the form of the vacuum is a dynamical question, and general situations in quantum
cosmology may not even allow a distinguished vacuum or ground state. More general
classes of states and methods to deal with them must be used. In Sect. 5.4.1.3 we
will see an example of states rapidly moving away from Gaussian form, then settling
into a new, better preserved shape as determined by its moments [2]. Other example
systems have dynamical coherent states of exactly preserved shape, but these systems,
such as the harmonic oscillator, are very special and rarely realistic. More generally,
states of “stable” shape exist [3], but this is a mathematical rather than physical
generalization of the desired properties of dynamical coherent states. In fact, in these
more general states the shape does change: As time goes on, the entire state evolution
is determined by the change of as many parameters as there are classical degrees of
freedom; however, unlike in the harmonic-oscillator case, these parameters are not in
one-to-one correspondence with expectation values. They partially affect fluctuations
and other moments of the state as well, and thus the state’s shape evolves. In particular,
semiclassicality may be lost as the states evolve.

Considerations of the free particle in quantum mechanics offer another observa-
tion. If the particle is very massive or macroscopic with large m in (3.4), it takes a
long time for the wave function to spread out from some tightly peaked initial state. In
a naive interpretation, this would suggest that macroscopic bodies do not show quan-
tum effects at all. This conclusion can, of course, not be true since there are important
properties even in macroscopic situations, such as conductivity, which rely on quan-
tum aspects of their constituents. At this stage, the composite, atomic nature of matter
becomes important: microscopic building blocks are much smaller, and they almost
always behave very quantum. This is an obvious statement for condensed-matter
physics, but it shows that quantum cosmology, where the dominant view is usu-
ally one of a large macroscopic and homogeneous universe, must properly take into
account the underlying atomic nature of space–time if it is to describe all quantum
phases of the universe reliably.

Second Principle Microscopic physics is important. In cosmology, even homoge-
neous models must include the proper small-scale quantum behavior. They constitute
many-body systems when seen in quantum gravity; the large “number of particles”,
corresponding to N (t) of the preceding chapter, may lead to characteristic effects.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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For instance regarding the singularity problem, a massive homogeneous “blob”
universe, which contains all its matter smeared-out, may be non-singular in some
models. For instance, examples exist in which effective violations of energy condi-
tions can trigger a “bounce” where the isotropic universe volume is minimal [4]. But
if the microscopic dynamics of its quantum building blocks remains singular, which
is a question more complicated to address, the theory is still in danger of breaking
down.

For the dynamics of many-particle systems at high energies, quantum field theory
rather than particle quantum mechanics is required. Here, one starts with fields on a
given space–time and applies quantization techniques. For gravity and cosmology,
however, it is the space–time itself that is to be quantized. Familiar techniques,
which always implicitly assume the availability of a background space–time, then
fail. Canonical quantization of a scalar field on Minkowski space–time, for instance,
might make use of a mode expansion

φ(x) =
∫

d3k√
2ωk

(
âkeik·x + â†

ke−ik·x)
. (3.11)

to define annihilation operators âk and distinguish the vacuum state |0〉 as the state
annihilated by all âk.Many-particle states are obtained by acting with creation oper-
ators, the adjoints of annihilation operators, on the vacuum:

|k1, n1; . . . ; ki , ni 〉 = (â†
k1
)n1 · · · (â†

ki
)ni |0〉. (3.12)

In such states, the total normal-ordered energy as the eigenvalue in

Ê |k1, n1; . . . ; ki , ni 〉 =
i∑

j=1

�n jω(k j )|k1, n1; . . . ; ki , ni 〉 (3.13)

is non-zero.
The mode decomposition, however, requires space–time equipped with a back-

ground metric to be defined: at least the integration measure d3x
√

det h must be
known in order to integrate the original field and obtain its modes (or use preferred
Cartesian coordinates in which the spatial metric is hab = δab). In (3.11), the scalar
product k · x refers to a flat background. Without the modes, we cannot even define
the vacuum state. This consideration finally provides the third principle:

Third Principle Tools of quantum field theory must be appropriately adapted to
deal with quantum geometry in a background-independent way. While the simplest
cosmological models are homogeneous and of finitely many degrees of freedom,
allowing straightforward quantizations of geometrical variables, significant changes
in the quantization methods due to the generally covariant nature of the underlying
field theory must also be reflected in quantum cosmology.

Quantum cosmology must take into account the lessons learned in attempted
constructions of quantum gravity. Constructing quantum gravity or even deriving
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quantum cosmology from it remains a formidable challenge, but important features
can nevertheless be implemented and explored in sufficiently general formulations
of quantum cosmological models. Sufficient generality is important for reliable con-
clusions and for stringent tests of the full framework, even if it comes at the expense
of additional ambiguities.

All three principles will be revisited throughout this book; they are important for
conceptual properties, for instance regarding singularities, and observational ones.
We will begin by reviewing the reformulation proposed by loop quantum gravity to
incorporate the Third Principle. The first two principles will have to be faced once
we deal with the dynamics.

3.2 Quantized Space–Time

In general relativity, the dynamical object is the space–time metric, now to be quan-
tized. As mentioned in the introduction, we do not require a viewpoint of general
relativity being fundamental, but rather take a more general one: even if there is
a more fundamental underlying theory, which may eventually be arrived at by the
quantization procedure, there must be a consistent way of endowing the metric with
fluctuations and uncertainty. There is a tried-and-true traditional method to unravel
quantum properties of hitherto classical theories: canonical quantization, a procedure
that takes a classical phase space and returns a non-commuting algebra of observ-
ables, such as pairs of basic operators on whose representation quantization can be
built.

Coordinates are often used to describe space–times, but this is only superficially
related to expressing point-particle dynamics by coordinates that become operators
q̂.Unlike the positions of point particles, space–time coordinates are not measurable;
they can play no role in the final algebra of quantum observables. What can be mea-
sured is only the geometry and dynamics of space–time, which requires extended
objects. Fully coordinate-independent observables, on the other hand, are infamously
difficult to construct: only very few general expressions are known, and even approx-
imate constructions become very tedious in anything but the simplest models. Instead
of trying to quantize classical observables, a two-step procedure looks more promis-
ing: one first considers just spatial quantum geometry at a fixed time (referring
to objects such as lengths, areas, volumes which for given regions are coordinate
independent), and then imposes additional constraints to make sure that kinematical
objects are combined suitably to space–time observables. Once complete, the results
will show the quantum dynamics of space–time; but even before all constraints are
implemented, spatial quantum geometry already provides interesting results.
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3.2.1 Scaling

Kinematically, we consider objects such as the volume VR =
∫

R d3x
√

deth of some
spatial region R,where hab is the metric induced by a space–time metric on a spatial
slice t = const with respect to some time coordinate. Volumes are surely sufficient
to probe isotropic quantum geometries, in which case the classical phase space is
small: as seen before, there is a single canonical pair (a, pa). But if we allow all
possible regions, spatial observables even in this simple geometry provide infinitely
many numbers VR = V (R)a3 for any given a, where V (R) is the coordinate-
dependent, co-moving volume of the region measured just with the non-dynamical
unit line element dσk of constant curvature, (2.2). With a single dynamical degree
of freedom, however, quantization can give wave functions only in one variable,
such as ψ(a) as used in a Wheeler–DeWitt quantization. It must then be ensured
that wave functions have the correct scaling behavior under changing coordinates or
V so that observables are invariant; otherwise one’s quantization would not capture
pure quantum geometry.

For a compact space (for instance the closed model), the total space would be a convenient
choice to define VR .But one may still capture all isotropic degrees of freedom completely by
any subspace, with a smaller value of V . Moreover, in the closed model in its most general
formulation one is not required to use the unit sphere as the total space multiplied by the
scale factor, although it is certaily convenient. If a sphere of non-unit radius is used for the
spatial coordinates, the coordinate volume changes to V = λ3Vunit. One can obtain the
new coordinate system by the transformation r 	→ λr while the angular coordinates do not
change. The parameter k 	→ λ−2k, obeying the scaling law of curvature, remains positive but
now differs from one. The line element is invariant with the usual transformation a 	→ λ−1a
of the scale factor under rescaling the coordinates, and so the curvature term k/a2 in the
Friedmann equation is invariant. Notice that this rescaling of coordinates and the sphere is
not the same as changing a smaller integration region within the unit sphere even if λ < 1,
if one chooses a smaller integration region within the sphere, k and a do not change. Just as
in the flat model, also in the closed model rescaling the coordinates and choosing different
integration regions is allowed by independent choices. The parameter V retains a free value
and is not fixed. Sometimes, V is called a “regulator” and then argued to require the limit
V → ∞ (or the maximum value in a compact space) rather than full V -independence of
wave functions. However, V is not a regulator because the classical predictions do not depend
on the chosen value. It is simply a parameter that labels different but equivalent formulations
of the symmetry reduction within one and the same model. While one may have reasons to
restrict all attention to a specific simple value, in doing so one loses access to an important
consistency check. Especially in isotropic and homogeneous models, in which the anomaly
problem, to be discussed later, trivializes, making sure that the proper V -behavior is realized
is the only remaining test of consistency.

The scaling issue turns out to be a manifestation of a more general problem: How
do we form a complete set of coordinate-independent measures of spatial geometry
(intrinsic as well as extrinsic for the whole phase space) while retaining an algebra
simple enough for further constructions? This problem, as of now, has not been solved
in Wheeler–DeWitt-type quantizations, which when applied beyond homogeneous
models remain formal. But at the level of spatial quantum geometry it can be solved
after a change of phase-space variables.

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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3.2.2 Canonical Gravity

For a Hamiltonian formulation of general relativity (see [5]), one first brings the
space–time metric in a form

ds2 = −N 2dt2 + hab(dxa + N adt)(dxb + N bdt) (3.14)

where hab, the only part contributing on a spatial slice t = const, is the spatial
metric. The lapse function N and shift vector N a provide the remaining components
of a space–time metric, and can be seen to contain information about the spatial
foliation in space–time: The unit normal vector na to a spatial slice t = const satisfies
Nna = (∂/∂t)a − N a, and the inverse space–time metric is gab = hab + nanb.

The spatial metric hab can serve as a set of configuration variables, and a suitable
geometric notion of its “velocities” is the extrinsic curvature

Kab = 1

2N
(ḣab − Da Nb − Db Na). (3.15)

It does indeed have a time derivative of the spatial metric, denoted by the dot, and
extra contributions if the shift vector is not constant and thus the spatial slice is
deformed as seen from the time coordinate t : the normal vector is not proportional to
(∂/∂t)a . The symbol Da denotes the spatial covariant derivative operator compatible
with the metric hab.

3.2.2.1 Action and Constraints

In these variables, the Einstein–Hilbert action of general relativity (ignoring boundary
terms) can be expressed as

Lgrav = 1

16πG

∫
d3x

√−detgR

= 1

16πG

∫
d3x N

√
deth

(
(3)R + Kab K ab − (Ka

a)2
)

(3.16)

with the three dimensional Ricci scalar (3)R computed from hab. In this way, the
action looks like a complicated version of the general form known from classical field
theories, with a kinetic term quadratic in the velocities Kab and a potential depending
only on configuration variables as well as their spatial derivatives, here given by the
spatial Ricci scalar. From the kinetic term, we first compute the momentum

pab(x) = δLgrav

δḣab(x)
= 1

2N

δLgrav

δKab
=
√

det h

16πG
(K ab − K c

c qab) (3.17)
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conjugate to hab : In this field-theoretical context, we have Poisson brackets

{hab(x), pcd(y)} = δc
(aδ

d
b)δ(x, y). (3.18)

From the action we obtain the Hamiltonian

Hgrav =
∫

d3x
(

ḣab pab − Lgrav

)

=
∫

d3x

(
16πG N√

deth

(
pab pab − 1

2
(pc

c)
2
)
+ 2pab Da Nb − N

√
detq

16πG
(3)R

)

=:
∫

d3x(NCgrav + N aCgrav
a ). (3.19)

All terms in the Hamiltonian are linear in the lapse function N and the shift vector
N a, but time derivatives of these fields do not appear. As components of the space–
time metric, the action is to be extremized with respect to them, too, not just with
respect to the spatial metric hab.While variation with respect to hab and pab provides
equations of motion due to the canonical piece ḣab pab, variation by lapse and shift
leads to constraints on the phase-space variables: the diffeomorphism constraint

Cgrav
a = −2Db pb

a (3.20)

and the Hamiltonian constraint

Cgrav = 16πG√
deth

(
pab pab − 1

2
(pa

a )
2
)
−
√

deth

16πG
(3)R. (3.21)

Matter terms will contribute extra pieces, which is why we denote the pure grav-
itational terms with the superscript “grav”. In vacuum, Cgrav

a = 0 and Cgrav = 0.
If these constraints are solved and objects invariant under the Hamiltonian flow

they generate are considered, we are dealing with space–time observables indepen-
dent of any coordinate choices. As already mentioned, completing such a program
is extremely difficult; we thus postpone a discussion of the constraints at the clas-
sical level, trying to represent the tensorial objects hab and pab as operators. For
this, we first need extra structures to get rid of the indices and integrate to scalars,
for only those can directly be operators. (Otherwise, an appropriate behavior under
complicated tensor transformations in a quantum algebra of non-scalar objects must
be ensured, which, as experience shows, is prone to becoming anomalous.) One
possibility to remove indices is by contraction with other geometrical objects, not
containing the dynamical fields so as to retain linear structures. For instance, one
may associate the length �e[hab] =

∫
e dt

√
ėa ėbhab with any differentiable curve e

in space. For any given curve, this is a scalar object not changing under coordinate
transformations. But it is not linear in phase-space variables due to the square root.

3.2.2.2 Ashtekar–Barbero Variables

No linear scalar representation of the full phase space of general relativity is known
in terms of metric variables. But such a formulation does exist in terms of a new
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set, formed by the densitized triad Ea
i together with the Ashtekar–Barbero con-

nection Ai
a [6, 7]. The densitized triad replaces the spatial metric and is defined

in several steps: Instead of using the metric we first introduce the co-triad ei
a via

hab = ei
aei

b. (The index i does not refer to the tangent space but simply labels the three
co-triad co-vectors. Its position, unlike the one of a, b, . . . , is thus not relevant and
we will freely move it up or down as convenient. No spatial metric is required to do
so. For repeated indices, as in the defining relation, we will understand the summa-
tion convention unless stated otherwise.) A given metric does not uniquely define
a co-triad, which can be redefined by any orthogonal transformation ei

a 	→ Ri
j e

j
a ,

Ri
j Rk

i = δk
j ,without changing hab.There is thus more freedom than in metric formu-

lations, which later on will be removed via additional constraints. From the co-triad,
one then obtains the triad ea

i as its matrix inverse: ea
i e j

a = δ j
i . Equivalently, the triad,

as suggested by the notation, is obtained by raising the index of ei
a using the inverse

metric hab. (The co-triad and the triad form dual orthonormal bases of the co-tangent
and tangent space, respectively.) Finally, we densitize the triad by multiplying it with
the scalar density

√
deth = |det(ei

a)| :

Ea
i := |det(e j

b)|ea
i . (3.22)

Notice the absolute value at this stage. Even after factoring out the rotational freedom of a
triad, it does have more information than a metric. Unless it is degenerate, the triplet of triad
vectors can be left- or right-handed, meaning that the determinant of ei

a seen as a 3 × 3-
matrix can take both signs. Changing the sign corresponds to a large gauge transformation
in O(3)/SO(3) not connected to the unit. It is thus not removed by factoring out the flow
generated by a constraint, and remains relevant for geometry. Its meaning is that of the
orientation of space, which will become important later in quantum cosmology.

Similarly, we manipulate extrinsic curvature Kab by first contracting with the triad
on one index, defining K i

a := eb
i Kab. This expression turns out to be canonically

conjugate to the densitized triad,

{K i
a(x), Eb

j (y)} = 8πGδb
aδ

i
jδ(x, y). (3.23)

To define scalar objects to be quantized, it is useful to do one final step and combine
extrinsic curvature with the spin connection i

a that is compatible with the triad:

Daeb
i = ∂aeb

i + b
acec

i − εi jk
j
a eb

k = 0, solved by

i
a = −εi jkeb

j

(
∂[aek

b] +
1

2
ec

kel
a∂[cel

b]
)
. (3.24)

We then have the Asthekar–Barbero connection

Ai
a = i

a + γ K i
a (3.25)

with the Barbero–Immirzi parameter γ > 0 [8]. This provides the final canonical
pair with
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{Ai
a(x), Eb

j (y)} = 8πγGδb
aδ

i
jδ(x, y), (3.26)

a relation which directly follows from (3.23) since i
a is a functional of the triad and

thus Poisson-commutes with it. These canonical variables have a structure analogous
to what is known in gauge theories: a connection and a densitized vector field. They
are subject to a Gauss constraint

D(A)
a Ea

i := ∂a Ea
i + εi jk A j

a Ea
k = Da Ea

i + γ εi jk K j
a Ea

k = 0 (3.27)

of the usual form. (In the last reformulation we used the fact that the covariant
divergence of a densitized vector field equals the coordinate divergence. Since the
spin connection is compatible with the triad, the Gauss constraint is equivalent to
εi jk K j

a Ea
k = 0. This relation implies that Kab = K i

aei
b is a symmetric tensor.)

Compared to those gauge theories that occur in particle physics, the gravitational
diffeomorphism constraint, which now reads

Cgrav
a = Fi

ab Eb
i (3.28)

with the Yang–Mills curvature

Fi
ab = ∂a Ai

b − ∂b Ai
a − εi jk A j

a Ak
b (3.29)

is new, and the Hamiltonian is quite different from the Yang–Mills form and now a
constraint contribution

Cgrav =
(
εi jk Fi

ab − 2(1+ γ−2)(Ai
a − i

a)(A
j
b −  j

b )
) E [aj Eb]

k√|detE | . (3.30)

3.2.2.3 Holonomy-Flux Algebra

Since we are ignoring the constraints for now, their specific form does not play a
role; we can thus define and use objects which are well-known from general gauge
theories: holonomies

he[Ai
a] =Pexp

∫

e

ėa Ai
aτi dλ (3.31)

for curves e in space, and fluxes

F ( f )
S [Ea

i ] =
∫

S

na Ea
i f i d2 y (3.32)

through surfaces S in space with smearing functions f i taking values in the internal

space. (The co-normal na = 1
2εabcε

uv ∂xb

∂yu
∂xc

∂yv of S : y 	→ x(y) is independent of any
metric.)
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For our purpose of finding a set of linear scalar quantities, these variables turn
out to be immensely useful. Fluxes are already spatial scalars linear in one of the
canonical variables, Ea

i . And while holonomies are not linear in Ai
a, they do form a

linear algebra together with the fluxes:

{he[A], F ( f )
S [E]} = 8πγGη(e, S)O( f )

e,S (τi he[A]) (3.33)

with a topological number η(e, S) which determines how and how often the curve
e and the surface S intersect, and O denoting a suitable ordering of τi ∈ su(2)
and he[A] ∈ SU(2) depending on where on the curve e its intersections with S lie.
For instance, if the intersection is at the endpoint of e, we have O

( f )
e,S (τi he[A]) =

he[A]τi f i (e(1)), and O
( f )
e,S (τi he[A]) = f i (e(0))τi he[A] if the intersection is at the

starting point. (Unless stated otherwise, we will always assume curves to be defined
on the interval [0, 1] of their parameter.) In general, we have

O
( f )
e,S =

∑
p∈e∩S

f i (p)he→p[A]τi h p←e[A] (3.34)

with he→p the holonomy along the starting piece of e up to p, and h p←e along the
ending piece from p onwards. See also [9] for detailed calculations of the holonomy-
flux algebra.

The algebra (3.33) can explicitly be represented as operators on a Hilbert space
[10]. All quantities are coordinate independent, and they do not make use of any
extra structures except their labels e, S and f. (They certainly make use of standard
structures such as topological or differentiable ones of the underlying manifold.
But no extra metric, for instance, is introduced which would make the construction
background dependent.) The algebra of F ( f )

S [E] and he[A] replaces the algebra

of annihilation and creation operators âk and â†
k for quantum field theories on a

background.
The specific form of the algebra suggests to view holonomies as creation operators,

raising the excitation level of fluxes: a state annihilated by some FS[E] would, after
being acted on by a holonomy along a curve intersecting S, have a non-vanishing
flux through S due to F̂S(ĥe|ψ〉) = ĥe F̂S|ψ〉 + [F̂S, ĥe]|ψ〉 = [F̂S, ĥe]|ψ〉 �= 0
with a non-vanishing commutator. What is needed for a construction of all possible
excited states in this way is also a state to start with, from which holonomies can
then generate new excitations. In common quantum field theories, this state would
be the vacuum devoid of particles; here it would be a state where not even fluxes,
and thus the densitized triad or spatial metric, would be present. It is a state in
which geometry itself is highly quantum and only lowly excited, unlike any classical
geometry. Such a state is extremely difficult to imagine physically, but it has a very
simple mathematical expression: if we choose the connection representation of states
ψ[Ai

a], it is a mere constant. Then indeed, fluxes which would be derivative operators
in such a representation, all vanish.

Let us thus define this state as the quantum geometrical “vacuum”, ψ0(Ai
a) = 1.

Since holonomies only depend on the connection, they will become multiplication
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operators, directly showing their action on the state. More precisely, as basic operators
we should allow all matrix elements of holonomies, which are in SU(2). Multiplying
several ones of them can be tedious due to the group structure, but what is relevant
now is already illustrated by the simpler case of holonomies taking values in the
Abelian group U(1). (This group would be obtained in a loop quantization of elec-
tromagnetism [11].) Then, each holomony is a simple connection-dependent phase
factor he[Aa] = exp(i

∫
e dλėa Aa), and excited states can be written as

ψe1,ne1 ;...;ei , nei
= ĥ

ne1
e1 · · · ĥ

nei
ei ψ0. (3.35)

As functionals, these states look like

ψg,n(Aa) =
∏
e∈g

he(Aa)
ne =

∏
e∈g

exp(ine ∫
e

dλėa Aa) (3.36)

In this notation, each occurrence of a curve ei in space signals that geometry is
excited along that curve: fluxes through surfaces intersected by the curve will be
non-zero. Moreover, each curve ei can be excited several times, as indicated by the
integer nei . Thus, curves and the integers technically play roles analogous to particle
wave numbers and occupation numbers in quantum field theories on a background
space–time.

These constructions are used in a more general setting in the diverse models of loop quantum
gravity. We now assume that we have a d-dimensional spatial manifold � (which in the
concrete applications of symmetry-reduced models will be d < 3,but formally the dimension
could be larger than three). Furthermore, we assume a compact structure group G, and as
fields (i) a G-connection Ai

a and a densitized L G-valued vector field Ea
i forming the gauge

part of the theory (with Ea
i dual to an L G-valued (d − 1)-form �i

a1...ad−1
= εa1...ad Ead

i ),

and (ii) scalars φI : � → R with densitized momenta pI : � → R forming the “matter”
part of the theory. In the actual models, the scalars may arise as some of the components of
the full gravitational connection, rather than playing the role of physical matter. The fields
form canonical variables

�gauge = 1

κ

∫

�

d3x Ȧi
a Ea

i −→ {Ai
a(x), Eb

j (y)} =κδi
j δ

b
aδ(x, y)

�scalar =
∫

�

d3x φ̇I pI −→ {φI (x), pJ (y)} =δ J
I δ(x, y)

with a coupling constant κ, and are subject to certain constraints Cα[Ai
a, Eb

j , φI , pJ ] = 0.

Examples for this general setting of fields are Yang–Mills theory, where (Ai
a, Eb

j ) are subject

to the Gauss law Gi := ∂a Ea
i + εi j

k A j
a Ea

k = 0 (for G = SU(2)), or general relativity in
Ashtekar–Barbero variables. Later chapters will provide a large set of further examples in
which scalars arise from symmetry reduction. In this context, we start with a gauge theory
(Ai

a, Ea
i ) in 3+1 dimensions and impose invariance under some symmetry group S acting on

the principal fiber bundle P → � that underlies the gauge theory. An example which will be
discussed in more detail later is spherically symmetric gravity; see also Sect. 9.1. It turns out
that spherically symmetric SU(2)-connections and densitized triads can always be written as

3DAi
aτi dxa =Ax (x)τ3dx + Aϕ�̄

A
ϕ dϑ + Aϕ(x)�

A
ϕ sin ϑdϕ + τ3 cosϑdϕ

3DEa
i τ

i ∂

∂xa
=Ex (x)τ3 sin ϑ

∂

∂x
+ Eϕ�̄ϕE sin ϑ

∂

∂ϑ
+ Eϕ(x)�ϕE

∂

∂ϕ

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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with a U(1)-connection Ax , a densitized triad Ex , real-valued scalars Aϕ, Eϕ, and the angles
α and β in�A

ϕ = cosβ(x)τ1+sin β(x)τ2, �
ϕ
E = cos(α(x)+β(x))τ1+sin(α(x)+β(x))τ2.

The remaining fields are fixed by the conditions tr(�̄A
ϕ �

A
ϕ ) = 0 = tr(�̄ϕE�

ϕ
E ).All free fields

depend only on the radial coordinate x, and are thus defined on a 1-dimensional manifold.
Loop quantization then presents a specific way of canonical quantization, turning the

Poisson algebra of basic fields into an operator algebra. Any such quantization requires
smearing for field theories to remove delta-functions in the elementary Poisson brackets,
usually done using a background metric, as in

∫
�

dd x
√

dethφ(x) for a scalar field. But such
a procedure is not suitable if the metric itself (or a densitized triad) is to be quantized: no linear
algebra of basic smeared objects would result. The advantage of connection variables is that
they provide a natural smearing without having to make use of a fixed metric: holonomies
(3.31) along curves e in space, fluxes (3.32), in general through surfaces of codim(S, �) = 1,
scalar values φI (x), and integrated momenta

∫
R pJ (y)dd y can all be defined without an

extra metric, and the integrations they contain remove all delta-functions from their Poisson
brackets.

Constructing a Hilbert-space representation leads to states in a space of square-integrable
functions L2( ¯A × �̄, dμAL) with a compact space ¯A × �̄ of generalized connections and
scalars [12]. For (finite analytical) graphs g ⊂ � with edge set E(g) and vertex set V (g),
we define spaces of g-connections

Ag = {Ag : E(g)→ G} (holonomies along the graph g)

and g-scalars

�g = {φg : V (g)→ R̄Bohr} (vertex values on g)

taking values in the Bohr compactification of the real line (see below). For g ⊂ g′, projections
πA

g : Ag′ → Ag andπ�g : �g′ → �g are defined by restriction, and they allow the definition

of the full space of generalized connections and scalars by projective limits to arrive at ¯A and
�̄ as the spaces of fields “on an arbitrarily fine graph”. To define generalized scalars we use a
certain compactification of the real line, the so-called Bohr compactification R ⊂ R̄Bohr. In
this way, generalized scalars, just like generalized connections, take values in a compact set.
This feature will allow us to provide a consistent definition of the inner product on ¯A × �̄.
The Bohr compactification is a topological space such that all continuous functions are the
almost-periodic ones:

f (φ) =
∑

μ∈I⊂R countable

fμexp(iμφ)

The set of almost-periodic functions forms an Abelian C∗-algebra, and as a consequence
the space R̄Bohr on which these functions are defined (the Gel’fand spectrum) is compact.
The Bohr compactification also inherits an Abelian group structure from R, allowing us to
introduce the Haar measure

∫

R̄Bohr

dμHaar(φ) f (φ) = lim
T→∞

1

2T

T∫

−T

dφ f (φ).

An orthonormal basis with respect to this measure is given by {φ 	→ exp(iμφ) : μ ∈ R};
the Hilbert space L2(R̄Bohr, dμHaar) is non-separable. For more information on R̄Bohr, see
Sect. 3.2.3.4. With these constructions we proceed to defining the inner product on our states.
We focus on the dense set of cylindrical states: the projection πg : ¯A × �̄ → Ag × �g,

obtained by combining πA
g and π�g , lifts any fg : Ag × �g → C to the cylindrical state

ψ = fg ◦ πg such that
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ψ(A, φ) = fg(A(e1), . . . , A(en), φ(v1), . . . , φ(vm)).

On these states, the inner product is obtained from the Haar measures on G and R̄Bohr [13]:
If ψ(1) and ψ(2) are cylindrical with respect to the same graph g,

〈ψ(1), ψ(2)〉 =
∫

Gn×R̄
m
Bohr

|E(g)|∏
i=1

dμHaar(hi )

|V (g)|∏
j=1

dμHaar(φ j )

× f (1)g (h1, . . . hn, φ1, . . . , φm)
∗ f (2)g (h1, . . . hn, φ1, . . . , φm).

If states are not based on the same graph, one can embed both graphs in a larger one by
subdivision, or by an extension of the graphs by “dummy” edges without connection depen-
dence. From properties of the Haar measure one quickly sees that states are orthogonal if
they are cylindrical with respect to graphs such that there is an edge e for whichψ(1) depends
non-trivially on A(e) while ψ(2) does not. On the resulting Hilbert space holonomies act by
multiplication, fluxes as derivative operators measuring the excitation level of geometry.

How exactly flux values are increased by excitations of geometry is derived from
the action of the flux operator. We already know the states, and a flux, which is
linear in the densitized triad, becomes a simple functional derivative operator by the
connection. Again in the U(1)-example (with {Aa(x), Eb(y)} = 8πγGδb

aδ(x, y) ),

F̂Sψg,n = 8πγG�

i

∫

S

d2 yna
δψg,n

δAa(y)
= 8πγ �2

P
i

∑
e∈g

∫

S

d2 yna
δhe

δAa(y)

∂ψg,n

∂he

= 8πγ �2
P

∑
e∈g

ne

∫

S

d2 y
∫

e

dtna ėaδ(y, e(t))he
∂ψg,n

∂he
= 8πγ �2

P

∑
e∈g

neη(e, S)ψg,n

(3.37)

with the intersection number η(e, S). Since such a state is reproduced after acting
with a flux operator, we can directly read off the flux eigenvalues, which are propor-
tional to sums over integers. Thus, the flux spectrum is discrete, providing a detailed
realization of discrete spatial geometry [10].

Returning to SU(2)-valued variables, as required for general relativity, we have
slightly more complicated expressions for states and operators. Instead of multi-
plying phase factors, as elements of irreducible U(1)-representations which all are
1-dimensional, we now multiply all possible matrix elements of SU(2)-holonomies
along a set of edges. Such states can conveniently be expressed in terms of spin
network states [14]

ψg, j,C (A
i
a) =

∏
v∈g

Cv
∏
e∈g

ρ je (he[A]) (3.38)

where g is a graph in space, labelled with spins je on its edges for irreducible SU(2)-
representations ρ j and with projection matrices Cv in the vertices of the graph which
tell us how to pick and combine matrix elements of the holonomies used.

If we consider the example of an n-valent vertex v in which n edges e1, . . . , en meet and, to
be specific, all have the vertex as their endpoint, a suitable projection matrix Cv has n indices
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Fig. 3.1 Splitting an
n-valent vertex into unique
trivalent vertex contractions

j j j

k k kk

j

j j

j1

2 3 4 n–2 n–1

n

n–3321
...

such that the incoming holonomies (hei )
Ai Bi are multiplied to Cv,A1,...,Anρ j1 (he1 )

A1 B1 · · ·
ρ jn (hen )

An Bn . (The remaining indices Bi will be contracted with projection matrices in the
vertices corresponding to starting points of the edges incoming at v.) For a gauge-invariant
state, the projection matrices have to satisfy certain conditions. A gauge transformation
maps internal vectors vA at a point to g A

Bv
B with g ∈ SU(2). Holonomies along a curve

e : [0, 1] → � transform as he 	→ g(e(1))heg(e(0))−1 such that (hev)
A = (he)

A
Bv

B

transforms as an internal vector at e(1) if vA is an internal vector at e(0). The spin-
network vertex v considered here, with v = ei (1) for all edges, thus receives a gauge
transformation Cv,A1,...,Anρ j1 (g(v))

A1 C1 · · · ρ jn (g(v))
An Cn by moving gauge factors from

the incoming holonomies to the projection matrix. For the spin network to be gauge invariant,
Cv,A1,...,Anρ j1 (g(v))

A1 C1 · · · ρ jn (g(v))
An Cn = Cv,C1,...,Cn must hold, which can be realized

only if the trivial representation is contained in the tensor product of the ρ jn . For a trivalent
vertex, for instance, a gauge-invariant contraction exists if there is an integer 0 ≤ k ≤ 2 j1
such that j3 = j2 − j1 + k, where we assume j1 ≤ j2. If this condition is satisfied, there
is a unique gauge-invariant contraction. Higher-valent vertices do not have unique contrac-
tions. One can parameterize spaces of contraction matrices by integer spins, splitting the
n-valent vertex into subsequent trivalent contractions as illustrated in Fig. 3.1. All interme-
diate spins ki can take values only in finite ranges, and spaces of contraction matrices are
finite dimensional.

Holonomies then act by contributions of new factors, changing some of the labels
je in an original state by tensor-product decomposition. Fluxes become intersection
sums of derivative operators on SU(2), of the well-known angular-momentum form:
By analogy with (3.37), functional derivatives by the connection can be written in
terms of

Ĵ i
e = tr

(
(heτ

i )T ∂/∂he

)
(3.39)

or using invariant derivative operators on SU(2). Since angular-momentum operators
have discrete spectra and we now sum finitely many such contributions over intersec-
tions of the graph and a surface, SU(2)-fluxes have discrete spectra, too. (If an edge
lies entirely on the surface, thus having infinitely many intersections, the flux van-
ishes thanks to a product naėa = 0 in (3.37).) Also the action of holonomies shows
a key feature: While holonomy operators are well-defined, one cannot extract a con-
nection operator from them. Trying to do so, for instance by applying the classical
identity

ėa(p)Ai
a(p)τi = lim

t→0

dhe|[0,t]
dt

in the limit where e approaches e(0) = p, fails because he|[0,t1]ψ and he|[0,t2]ψ are
orthogonal for t1 �= t2: they are cylindrical with respect to different graphs.
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From the elementary fluxes one can construct more familiar geometrical objects

[15–17], such as the area AS[E] =
∫

S d2 y
√

na Ea
i nb Eb

i of a surface S or the volume

VR[E] =
∫

R d3x
√|detE | of a region R. Area eigenvalues, just like fluxes, depend

on spin labels on curves in the graph intersecting the surface; volume eigenvalues
depend on the contraction in vertices within the region. Also these operators have
discrete spectra, which in the case of area follow easily from the square of derivative
operators. For volume, the spectrum is more difficult to compute since the determinant
of Ea

i involves products of three factors of triad components, resulting in couplings
of different SU(2)-representations. Nevertheless, recoupling theory allows one to
derive matrix elements [18, 19], and powerful computer codes now exist to analyze
the eigenvalues [20, 21]. This is expected to be of particular importance for quantum
cosmology since the volume spectrum can show how a discrete growing universe
must refine its structure as it expands. We will come back to refinement in more
detail once we have introduced the dynamics.

3.2.3 Isotropic Models

Many constructions characteristic of canonical quantum gravity can conveniently be
illustrated and explicitly be evaluated in symmetric models. The simplest case is that
of isotropy, where the spatial geometry is determined by a single number: the scale
factor a. Quantum cosmology has traditionally been formulated in this context, and
also much work in loop quantum cosmology has been done in an isotropic setting.

3.2.3.1 Symmetry Reduction

Classical symmetry reduction is performed by restricting fields to those left invariant
by a set of symmetries (possibly up to gauge transformations only). For invariant
connections, for instance, one is looking for the general form of 1-forms ω on a
principal fiber bundle P = (�,G, π) with structure group G and base manifold �
such that s∗ω = ω for any element s ∈ S of a symmetry group S acting on P.

This general definition has two important consequences:

1. An action on the principal fiber bundle P is required, while one usually starts
with a desired symmetry on the base manifold, such as isotropy on the space
�. Lifts of the symmetry action to the whole bundle must thus be found, which
are often non-unique. (They are classified by conjugacy classes of homomor-
phisms λ : F → G, where F is the isotropy subgroup of S and G the structure
group.) This lifting procedure gives rise to different inequivalent classes of
invariant connections, which in physical terms can be classified by topological
charges. (An example is magnetic charge as the quantity characterizing topolog-
ically inequivalent spherically symmetric U(1)-connections; see the following
example.)
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2. In terms of local connection 1-forms, invariance implies that a connection may
change under a symmetry transformation, but only by a gauge transformation:
s∗A = g(s)−1 Ag(s)+g(s)−1dg(s)where g : S→ G is a mapping between the
symmetry and structure groups. This mapping is not a group homomorphism,
but must satisfy certain other conditions. Solving these conditions is equivalent
to determining the possible lifts of symmetry actions to the bundle. In the
bundle language, invariant connections are given by (i) a connection AS/F

on a reduced bundle Q over �/S whose structure group ZG(λ(F)) is the
centralizer of λ(F) in G, and (ii) scalar fields φ : Q ×L F⊥ → L G subject
to φ(Ad f X) = Adλ( f )(φ(X)) for f ∈ F, X ∈ L S. For more details of the
bundle formulation, see [5].

Example 3.1 (Magnetic charge) Magnetic monopoles are spherically symmetric
configurations of the magnetic field, which can be described by a U(1)-connection
Aa, the vector potential. We are thus interested in the general form of spherically
symmetric connections on U(1)-principal fiber bundles, on which the symmetry
group SU(2) is acting. In general, inequivalent lifts of a symmetry group S from
the base manifold, where its action is given and may have an isotropy subgroup F,
to a principal fiber bundle with structure group G over the same base manifold, are
classified by conjugacy classes of group homomorphisms λ : F → G. They describe
the twisting along fibers when the symmetry action is lifted from the base manifold
to the bundle. In this example, we have F ∼= U(1) ∼= G, all conjugacy classes are
labelled by an integer k ∈ Z and can be represented as λk(exp(tτ3)) = exp(ikt).
For every k, invariant U(1)-connections must have the form of an arbitrary radial
U(1)-connection Ar dr plus a contribution of� : L F → L G with�|L F⊥ = 0 for
U(1), �|L F = dλk : τ3 	→ ik applied to the pull-back of the Maurer–Cartan form
on S under an embedding of S/F in S. For spherical symmetry with S = SU(2) and
F = U(1), this pulled-back form can be expressed as

AS/F = (τ2 sin ϑ + τ3 cosϑ)dϕ + τ1dϑ. (3.40)

With these ingredients, we obtain generic spherically symmetric U(1)-connections
of the form

A = Ar dr + k cosϑdϕ.

We have a radial (densitized) magnetic field with Br = −k sin ϑ, which implies
a magnetic charge

Q = 1

4π

∫

S2

Banadϑdϕ = −k.

For a reduction of the full phase space, one must determine invariant forms of
densitized vector fields as well. Once the form of invariant connections is known, for
which a richer basis of mathematical results exists, the general form of invariant fields
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can uniquely be read off from the symplectic structure they must imply. For every free
field AI in the symmetric form of connections Ai

a, there is a conjugate field E I in the
invariant form of densitized triads Ea

i such that
∫
�

d3x Ȧi
a Ea

i =
∫
�/S ȦI E I when

evaluated on invariant fields. For gravitational variables one must take into account an
extra condition to ensure that momenta of Ai

a can be non-degenerate. This condition
in most of the standard cases leads to a unique sector with no topological charge.
Examples will be provided in Sect. 9.1 and the next section.

3.2.3.2 Isotropic Configurations

For isotropic connections invariant under arbitrary translations R
3 and rotations,

combining to the Euclidean group, one can always choose a gauge where they take
the form

Ai
a = c̃δi

a . (3.41)

The single component c̃ is spatially constant but for general solutions to the equations
of motion depends on time. A densitized triad of the same symmetry type is of the
form

Ea
i = p̃δa

i . (3.42)

The reduced symplectic potential

1

8πγG

∫

R

d3x Ea
i δAi

a =
3V

8πγG
p̃δc̃, (3.43)

where δ denotes a derivative on phase space as opposed to space �, then shows that
c̃ and p̃ form a canonical pair,

{c̃, p̃} = 8πγG

3V
. (3.44)

In this derivation, as before, we have selected a bounded region R ⊂ � to make
the spatial integration of homogeneous fields well-defined. If we are considering a
cosmological model with compact spatial manifolds, we could choose R = �, but
this is not possible for unbounded spatial manifolds. And even for compact spaces, we
may as well choose a smaller region as long as it is non-empty; no information about
homogeneous configurations is lost provided we just know them in an arbitrarily
small neighborhood. The definition of our variables then depends on the choice of
the region, and its coordinate size V = ∫

R d3x . Physical results, of course, must be
independent of the choice.

In metric variables, isotropic models are formulated on the phase space with coor-
dinates (a, pa); triad variables differ from this description by a canonical transforma-
tion as well as an extension of the configuration space. From the general relationships

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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between (Ai
a, Eb

j ) and metric variables, one can directly derive the relation between

(c̃, p̃) and the scale factor. For the triad component, we obtain | p̃| = 1
4 ã2, where

the factor of 1/4 can be seen to arise from matching variables of a closed model,
not subject to arbitrary rescaling freedom of coordinates, at a fixed curvature scale
[5, 22]. Computing the spin connection and extrinsic curvature for an isotropic metric,
we combine them to obtain c̃ = 1

2 (k+γ ȧ). For flat models, one may rescale the scale
factor ã so as to eliminate the factor of 1/4 in p̃, as often done. We will denote the
rescaled parameter as a = 1

2 ã, such that | p̃| = a2, c̃ = 1
2 k+γ ȧ.When a is rescaled,

also coordinates and thus V are rescaled such that a3V remains unchanged. Taking
this into account, the Poisson-bracket relation (3.44) remains unchanged under any
rescaling.

Before we describe possible quantizations of these variables, turning the Poisson
bracket (3.44) into a commutator relationship, we should properly deal with the
factor of V . It merely multiplies the constant result for the Poisson bracket, but it is
coordinate dependent. No such factors can be represented on a Hilbert space, which
is defined independently of any coordinates chosen on space. We thus redefine our
basic variables to absorb V :

c := V 1/3c̃, p := V 2/3 p̃. (3.45)

The particular powers of V will turn out to be suitable later on in the context of a loop
quantization. Moreover, they make the basic variables coordinate independent since
p̃ and V 2/3 change exactly in opposite ways when coordinates are rescaled, leaving
the product invariant. Our new basic variables (c, p), being coordinate independent,
should thus be representable on a Hilbert space. They do, however, depend on the
size of the region R chosen which affects V but not p̃ or c̃.Care is then still needed in
interpretations of our quantizations once they are formulated. In particular, although
there is no explicit V -dependence in the symplectic form

� = 3

8πγG
dc ∧ dp, (3.46)

it must be rescaled proportionally by λ if the region R is enlarged to change V
to λV . This rescaling will require a corresponding transformation on the resulting
Hilbert-space representation.

3.2.3.3 Quantum Representation

Given just a pair of canonical variables allowed to take all real values, one possible
quantum representation is a standard Schrödinger one as in quantum mechanics.
Following this procedure will essentially be a Wheeler–DeWitt quantization, where
we may choose either the triad representation with wave functions ψ(p) or the
connection representation with wave functionsψ(c), required to be square integrable
to make up a kinematical Hilbert space. Compared to the earlier choice of wave
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functions ψ(a) in Chap. 2, this formulation has two minor advantages: (i) we use
one of the coordinate-independent (but integration-region dependent) variables, and
(ii) any of the two basic variables takes the full real line as its range, such that no
boundary conditions are required, in contrast to a > 0 which can make adjointness
conditions of operators difficult.

But this representation cannot be the final one since we know that a full quanti-
zation in inhomogeneous situations does not allow quantum representations of con-
nection components directly, but only of their holonomies. If an isotropic model is to
grasp any of these characteristic features, it should be based on variables analogous to
holonomies. For an isotropic connection, it suffices to consider segments of straight
lines (along generators of the homogeneity group). Only the length of the segment
matters, but not its position or direction. A single parameter �0 can then be used
to label all such straight-edged holonomies. For curves along integral vector fields
with tangent ėa = Xa, normalized with respect to a metric δab on the homogeneous
space, we have holonomies

Pexp
∫

e

c̃δi
a Xaτi = exp(�0τi X i c̃) = cos

( 1
2�0c̃

)+ 2τi X i sin
( 1

2�0c̃
)
. (3.47)

Since c̃ (in contrast to Xi ) is the only dynamical variable, we can express all relevant
functions by the U(1)-holonomies h�0(c) = exp( 1

2 i�0c̃) = exp( 1
2 i�0c/V 1/3),where

the length parameter first multiplies the original connection component c̃, which
is then expressed in terms of the new c. Similarly, fluxes are integrated densitized
triads, which for an isotropic configuration and a square surface of edge length given
by the same parameter �0 is of the form F�0(p) = �2

0 p̃ = �2
0 p/V 2/3. As is clear

from the definitions, all these quantities are independent of coordinates, and they are
independent of the region of size V chosen. In addition to the classical geometry
given by a phase-space point (c̃, p̃), they only depend on the label �0 which alone
now plays the role of all the curves and surfaces used in the full representation.

We could have chosen different parameters as labels for holonomies and fluxes at
different places, instead of a single �0.The reason for not doing so is the understanding
that an isotropic quantum configuration should require a rather regular graph, made
of straight edges roughly of the same length �0. Such a graph also provides natural
choices for similar-sized square surfaces filling a whole plane, such that each of them
is transversal to one edge and intersects other surfaces at most at their boundaries.
Regularity then requires all these surfaces to have the size �2

0, which we have used
above.

In this picture, we have the added benefit of bringing in the number of discrete
sites N in a natural way, allowing us to incorporate the Second Principle of Sect. 3.1:
If there are N sites of linear dimension �0 in a region of size V , then N = V /�3

0
(Fig. 3.2). The geometrical size of each discrete site as measured by the metric to be
quantized, moreover, is �3

0 p̃3/2 = �3
0a3, which we can identify with the elementary

size v in the refinement picture used before. Indeed, with the relations written here
we identically satisfy (2.16). As we will see in the next chapter about dynamics, the

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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Fig. 3.2 A region of size V ,
built from patches of linear
size �0

0

parameter �0, once it is allowed to become phase-space dependent, is in fact directly
related to refinement.

We thus choose the 1-parameter family {exp( 1
2 iμc), p}|μ∈R as our basic set of

objects to construct the quantum representation. Here, we have definedμ = �0/V 1/3,

and have dropped the μ2-factor of p since it would just be a multiplicative con-
stant. The specific form of μ and its relationship with �0 and V are not relevant for
basic operators, for which we can treat μ simply as a real-valued parameter. But the
relationship to underlying discrete structures will become important for composite
operators such as inverse triads or the Hamiltonian constraint.

As in the full theory, we construct the state space by starting from a basic state
ψ0, given in the connection representation by a mere constant, and generate all other
states by multiplying with “holonomies” as creation operators. The result is a space
of states all having the general form

ψ(c) =
∑
μ∈I

ψμexp
( 1

2 iμc
)

(3.48)

where I ⊂ R is a countable index set. As already encountered in Sect. 3.2.2.3, all
these functions are called almost periodic, forming a subset of all continuous func-
tions on the real line. Since the space of these functions forms a C∗-algebra, there
is a compact space such that almost-periodic functions give the set of all contin-
uous functions on that space. This space is compact because its set of continuous
functions is a unital C∗-algebra. It contains the real line because almost-periodic
functions are functions of a real variable. The real line allows many more continuous
functions, and so the space on which almost-periodic functions are all the continu-
ous ones must be larger, with additional points making continuity conditions more
restrictive. This larger space contains the real line as a dense subset; it is called the
Bohr compactification RBohr of R.

Having based isotropic loop quantization on the space of almost-periodic func-
tions, the quantum configuration space will be the Bohr compactification RBohr rather
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than the real line itself. The usual integration on R also extends to RBohr, which is
an Abelian group and thus has a unique Haar measure up to a constant factor. It can
be written explicitly as

∫

RBohr

dμ f̄ (c) = lim
T→∞

1

2T

T∫

−T

dc f (c) (3.49)

where for any continuous function f̄ on RBohr, f is its restriction to the dense subset
R on which the ordinary integration measure is used.

As usual, holonomies then act on states simply by multiplication. We pick a basis
given by the uncountable set {|μ〉}μ∈R where

〈c|μ〉 = exp( 1
2 iμc) (3.50)

in the connection representation. It is clear that these states span all states (3.48), and
with the inner product based on (3.49) they are orthonormal. On the basis, holonomies
act by shifting the labels:

̂exp( 1
2 iδc)|μ〉 = |μ+ δ〉. (3.51)

To compare with basic holonomy operators in the full theory, one can think of this
action as being analogous to changing the spin of an SU(2)-representation by coupling
the edge spin of a spin network state with the spin of the holonomy used for the
operator; or one can think of it as a holonomy operator extending an already existing
edge, thus making the length parameter larger. In an isotropic context, these two
interpretations (or any mixtures thereof) cannot be separated—a degeneracy which
has to be taken into account for proper interpretations of operator actions.

The flux operator p̂ can be expressed directly as a derivative operator

p̂ = 8πγ �2
P

3i

d

dc
(3.52)

taking into account the factor in the symplectic structure (3.46) and introducing the
Planck length �P =

√
G�. Its action on the basis states follows directly as

p̂|μ〉 = 4πγ �2
P

3
μ|μ〉 (3.53)

which shows that we picked the flux eigenbasis with (3.50). Just as in the full case,
(3.37), the flux operator has a discrete spectrum: all its eigenstates are normalizable.
Unlike with the full spectrum, however, every real number is an eigenvalue. These
two properties are consistent with each other in the present case of a non-separable
Hilbert space. As we will see later, the mathematical definition of a discrete spectrum
via the normalizability of eigenstates turns out to be the appropriate one here, too,
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because it shows that crucial features of the full theory are realized in isotropic
models as well. Also our isotropic quantum geometry is thus atomic in the sense of
discrete flux spectra.

Now having the basic representation of the isotropic holonomy-flux algebra at
our disposal, we can analyze its rescaling behavior. We had absorbed factors of V
in the original canonical variables c̃ and p̃ in order to deal with coordinate-invariant
quantities. But then the variables c and p, as well as their resulting quantum the-
ory, become dependent on the volume V of a region chosen arbitrarily. Changing
the region must result in a well-defined transformation between the quantum repre-
sentations obtained for different values of V ; otherwise there would be no way of
eventually testing whether observables are indendent of the rescaling.

To analyze this, let us rescale V to λV with a positive real number λ. Then, c and
p change to λ1/3c and λ2/3 p, respectively. Also the symplectic structure changes to
λ� which indeed follows from the classical rescaling. Thus, the rescaling transfor-
mation is not canonical. Since the symplectic structure of basic variables is rescaled,
also the quantum representation must change: commutators of basic operators, fol-
lowing from the basic Poisson brackets, are to be divided by λ. Instead of modifying
commutators, which are universally defined, we can formally implement this rescal-
ing of the representation by changing Planck’s constant to λ� in all equations where
it enters. (Of course, the physical value of � is fixed. The scaling can be normalized
to the correct value only if the underlying discreteness scale of quantum gravity is
taken into account. Such a scale is not explicitly available in minisuperspace models,
but will be included at a later stage once we discuss inhomogeneity; Sect. 10.1.) This
indeed provides the correct rescaling relationship between c and p. For instance,
in (3.52) we have d/dc 	→ λ−1/3d/dc, while �2

P 	→ λ�2
P, combining to the correct

p̂ 	→ λ2/3 p̂. From (3.53) we then read off that the state parameter μ must rescale
to λ−1/3μ. (In particular, μ rescales like the classical c−1, not like the flux p whose
eigenvalues it provides after multiplying it with 4πγ �2

P/3.) Also this is consistent,
for (3.51) tells us that μ and the holonomy coefficient δ ∝ �0/V 1/3 must rescale in
the same way for |μ+ δ〉 to have a meaningful rescaling.

In quantum cosmology we are thus dealing with a family of models (ĉ, p̂, [·, ·])V .
Classically, changing V is not a canonical transformation; in quantum theory there is
no unitary relationship between models of different V with the same Hilbert-space
representation. Still, there are simple means to check the V -independence of results,
as we will use them in what follows.

As a final remark, we notice that we could have decided to fix �0 once and for all, as it
was indeed done in the first formulations of loop quantum cosmology [23, 24]. There is a
disadvantage of implying, essentially, that one makes the configuration space of connections
strictly periodic. From holonomies of this type, we could not reconstruct c̃ ∈ R completely,
but only up to integer multiples of 4π/�0. Almost-periodic functions, on the other hand,
do not require a periodification of the configuration space but rather compactify it by an
enlargement. At the kinematical level, no freedom is lost by using the Bohr compactification.
Still, it remains to be seen at this stage what the dynamics actually requires: it will also rely
on holonomies as basic building blocks of the Hamiltonian; and if there is a choice of �0 to
be made there, as it will turn out to be indeed the case, one could have made that restriction
already at the kinematical level. Dynamics, in this case, would see only one sector of periodic

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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connections, and nothing would be lost by fixing attention to one periodic sector from the
outset. To allow the full freedom of how this might turn out, we do not fix �0 for now,
permitting all exp( 1

2 i�0c̃) as operators. (In fact, lattice refinement especially for anisotropic
models will require this general attitude, as we will see later.) Quantum dynamics will then
be based on the Bohr compactification of the real line as the configuration space. Since we
already indicated the relationship between �0 and lattice refinement, this issue will naturally
be revisited in the chapter on dynamics.

3.2.3.4 More on Bohr

The Bohr compactification of the real line plays an important role in loop quantum
cosmology to include all kinematical sectors of the models in one non-separable
Hilbert space. The dynamics sometimes picks a separable sector, but since the one that
is realized depends on the specific form of the dynamics and is subject to quantization
ambiguities, as we will see, it is useful to consider all quantum configurations in one
setting even though this information is only kinematical. In this context, several
properties and characterizations of the Bohr compactification are of interest. For
additional mathematical discussions, see [25, 26].

• The Bohr compactification of the real line contains R densely. It is thus not a
periodification which would identify different points in R and not contain all the
original ones. It is also different from the one-point compactification, which, too,
contains the real line densely but adds just one point at infinity. The difference can
be seen by the set of continuous functions on these two compact spaces. For the
Bohr compactification, as used in the definition, this is the set of almost-periodic
functions; for the one-point compactifications, this is the set of functions f (c)
for which limc→−∞ f (c) and limc→∞ f (c) exist and agree. The only functions
continuous on the Bohr compactification as well as the one-point compactification
are the constant ones.

• One can visualize the Bohr compactification by subsets in a torus [0, 1]2. The
whole real line can be embedded in the torus as a straight line x = ωy if ω is
irrational. In the trace topology, the resulting subset of the compact torus can be
completed to a compact space containing the real line (the original embedding)
densely.

• The Fourier space of the Bohr compactification is the discrete real line whose open
neighborhoods are arbitrary unions of single points. This is indeed the space of
momenta as it arises from (3.48) with (3.53).

• If we contrast a periodification with the Bohr compactification, the configuration
space in one case is a circle with Fourier space given by the integers Z. The
enlargement of the Bohr compactification as compared to the periodification allows
more momenta filling all of R. As a trace of the compactness of the configuration
space, the momentum space is the real line with discrete topology.

• A Wigner function for states supported on R̄Bohr can be defined as [25]
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W (c, p) = 1

2π�2
P

∫

R̄Bohr

ψ∗
(

p − 1
2α

)
ψ

(
p + 1

2α
)

h(2α/�
2
P)(c)dα (3.54)

with holonomies h(δ)(c) = exp(iδc/2). The Wigner function of a triad eigenstate,
for instance, is then a delta-function peaked at the triad eigenvalue, and independent
of c. Further properties of the Bohr-Wigner function are discussed in [25].

3.2.3.5 Inverse-Triad Operators

For a first glimpse on the singularity issue we now have a look at suitable quantizations
of a−1 or any other inverse power, which would diverge at the classical singularity of
isotropic cosmology. In a Wheeler–DeWitt quantization, a−1 can easily be quantized
as a multiplication operator acting on wave functions ψ(a). It is densely defined
and thus suitable. It certainly fails to be a bounded operator, but so does â itself.
Kinematically, the classical singularity does not appear to be different in Wheeler–
DeWitt quantum cosmology.

At first, the problem seems worse in loop quantum cosmology: we would now have
to find an inverse of the triad operator p̂ which has a discrete spectrum containing
zero. No such operator has a densely defined inverse. One could define an inverse
using multiplication with μ−1 on all states except |0〉, but since |0〉 is orthogonal
to all states |μ〉 with μ �= 0,1 this procedure would not make the inverse densely
defined. It thus does not correspond to an operator on the Hilbert space. This issue
would not just be a problem indicating a singularity, it would even prevent us from
quantizing Hamiltonians, including the gravitational one (3.30), which all contain
some form of inverse-triad components.

Nevertheless, operators whose classical limit is a−1 do exist. To see this, we follow
a construction which is also available in the full theory [27, 28] and which in the next
chapter will allow us to quantize Hamiltonian constraints and matter Hamiltonians.
Applied in an isotropic setting [29], we have the identity

2i

δ
eiδc/2{e−iδc/2, |p|r/2} = {c, |p|r/2} = 4πγGr

3
|p|r/2−1 sgn p (3.55)

If we choose the real parameter r to be in the range 0 < r < 2, we have an inverse
power of the triad component p on the right-hand side, while no inverse is required
on the left. The left-hand side of this equation can easily be quantized by using
the volume operator V̂ = p̂3/2, holonomy operators for exp(iδc/2) and turning the
Poisson bracket into a commutator divided by i�. A densely defined operator with
an inverse of p as the classical limit results.

To be closer to operators of the full form we first replace the exponentials by
SU(2)-holonomies evaluated in isotropic connections:

1 Assuming a sequence of states in |ψn〉 ∈ H /(C|0〉) such that limn→∞ |ψn〉 = |0〉, we obtain
the contradiction 0 = limn→∞〈0|ψn〉 = 〈0| limn→∞ ψn〉 = 1.
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Fig. 3.3 Correction function
(3.59) from inverse-triad
corrections
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tr(τ3exp(δcτ3)[exp(−δcτ3), V̂ r ]) = sin(δc/2)V̂ r cos(δc/2)−cos(δc/2)V̂ r sin(δc/2).
(3.56)

(The trace can be evaluated explicitly after inserting exp(Aτ3) = cos
( 1

2 A
) +

2τ3 sin
( 1

2 A
)
.) Using the basic operators, it is easy to see that the resulting

̂|p|r/2−1sgn(p) = 3

4πγ �2
Pδr

(
̂eiδc/2[̂e−iδc/2, | p̂|r/2] − ̂e−iδc/2[̂eiδc/2, | p̂|r/2]

)

(3.57)
has the same eigenbasis |μ〉 as the triad operator, with eigenvalues

(
̂|p|r/2−1sgn(p)

)
μ
= 1

δr

(
4πγ �2

P

3

)r/2−1

(|μ+ δ/2|r/2 − |μ− δ/2|r/2) (3.58)

clearly well-defined even atμ = 0. Atμ = 0, in fact, the eigenvalue vanishes instead
of being divergent like the classical value. For large |μ| � δ, on the other hand, the
classical expression sgn(μ)|4πγ �2

Pμ/3|r/2−1 is approached. The difference gives
rise to correction functions

α(r)(μ) =

(
̂pr/2−1sgn p

)
μ

pr/2−1
μ sgn pμ

=
(

̂|p|r/2−1sgn(p)
)
μ

∣∣∣∣∣
4πγ �2

P
3

μ

∣∣∣∣∣
1−r/2

sgn(μ)

= 1

δr
|μ|1−r/2

(
|μ+ δ/2|r/2 − |μ− δ/2|r/2

)
sgn(μ) �= 1

(3.59)

in quantizations of expressions that classically contain inverses of densitized-triad
components; see Fig. 3.3. (The δ-dependence is not explicitly noted as an ambiguity
in α(r) because it simply rescales μ.)

This calculation demonstrates that densely defined operators with the classical
limit of an inverse power of p do exist; we will later use these constructions for
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Hamiltonians. The classical divergence at the singularity implies that these operators
cannot be inverse operators of p̂ :

p̂r/2−1 p̂1−r/2 �= 1;
they only approach the inverse in the classical limit. In this way, the initial problem
of p̂ having zero in its discrete spectrum is overcome.

Instead of being singular, the small-μ behavior is bounded and approaches zero
at μ = 0 as already seen. Around μ ∼ δ/2, a peak is reached demarkating the
strong quantum-geometrical behavior for small μ and the nearly classical behavior
for large values. The position of the peak is not unique, but depends on quantization
ambiguities. For instance, one can use different values of δ and also different r in
the specified range without changing the crucial properties. As we will see later,
the precise form of the function enters cosmological and other equations, such that
ambiguities can in principle be fixed by phenomenology. The freedom is also reduced
by considering the anomaly problem of quantum constraints, where inverse-triad
operators enter, too; see Sect. 10.3.

For phenomenology, it will be important to consider the typical size of deviations
of inverse-triad operators from the classical expectation. In an effective formulation,
we would refer not to eigenvalues μ as in (3.59) but to an effective geometry recon-
structed fromμ via pμ = 4πγ �2

Pμ/3. This relationship leads to correction functions

α(r)(pμ) = 1

δr

(
4πγ �2

P

3

)−1

|pμ|1−r/2sgn(pμ)

×
(
|pμ + 2πγ δ�2

P/3|r/2 − |pμ − 2πγ δ�2
P/3|r/2

)
(3.60)

with strong corrections setting in at pμ ∼ 2πγ δ�2
P/3.At this stage lattice refinement

again becomes relevant. If corrections are to arise from a general quantum state, we
should use in expressions such as (3.56) not the total volume V of our region of
coordinate size V , but the elementary volume of coordinate size �3

0. (Otherwise, the
expressions we obtain cannot be considered local. Further justification comes from
the analogous operators in the full theory, where only local vertex terms touched
by the holonomies contribute. See [30] for a calculation using kinematical coherent
states in the full theory.) The conversion from pμ to the scale factor then does not
come from |pμ| = V 2/3a2, but from |pμ| = |F�0(p)| = �2

0a2; see also Sect. 10.1.
Once the replacement of the cell volume by the patch volume is made, we refer to
almost-local phase-space variables; Planck’s constant or the Planck length in com-
mutators or other quantum formulas no longer rescale when V changes. In terms of
a, we have a correction function

α(r)(a) = �2
0

δr

(
4πγ �2

P

3

)−1

a2−r (|a2 + 2πγ δ�2
P/3�

2
0|r/2 − |a2 − 2πγ δ�2

P/3�
2
0|r/2

)

(3.61)
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with strong corrections setting in at a ∼ a∗ := √2πγ δ/3�P/�0.

This refined procedure has two consequences: (i) While using the region of size V
would make expressions dependent on V , which is not allowed for observables, the
elementary sizes F�0 are independent of V and instead refer to an underlying discrete
state via the quantity �0; and (ii) with the region �3

0 being smaller than V we get deeper
into the small-scale regime and inverse-triad corrections will become comparatively
larger (a∗ being proportional to �−1

0 ).When elementary sizes are used in expressions
for correction functions, the latter peak for values of the discrete increment δ of
about the elementary plaquette size a2�2

0/�
2
P relative to the Planck scale, not for δ ∼

a2V 2/3/�2
P which could be huge, and is even subject to coordinate and other choices.

These features must be taken into account for consistent formulations of models as
well as reliable phenomenology, but also for a meaningful realization of inverse-
triad corrections. We will provide an inhomogeneous calculation in Sect. 10.1.4.2,
exhibiting these properties explicitly. As another consequence of the fuller treatment,
the range of values for the ambiguity parameter δ will be restricted.

The explicit formulas provided here rely on the Abelianization of the full theory when
it is reduced to isotropy. Several new features arise if one tries to construct inverse-triad
operators in an SU(2)-setting and to evaluate the characteristic commutators [31]. First, the
commutators quantizing tr(h{h−1, V }) no longer commute with the volume operator and it
becomes less clear how to compare spectra when they refer to different eigenbases. Secondly,
inverse-triad operators, though still densely defined, are no longer bounded [32]. The latter
is a feature which is shared by some related operators in anisotropic models discussed later,
and is thus not only a consequence of non-Abelian behavior. The non-commutativity of
inverse-triad operators with the volume operator, on the other hand, is directly related to
the full non-Abelian nature. It is probably the most serious issue that suggests some caution
toward results obtained only in isotropic models.
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Chapter 4
Dynamics: Changing Atoms of Space–Time

In the previous chapter, we have seen some aspects of spatial quantum geometry, with
its characteristic discrete spectra, emerge even in isotropic models. Now, these spatial
structures have to fit into a consistent quantum space–time which in a certain sense
reduces to a solution of Einstein’s equation in a semiclassical or low-curvature limit.
Only completing this most challenging step will make the theory one of quantum
gravity, rather than of spatial quantum geometry.

4.1 Refinement and Internal Time

On general grounds, we expect discrete growth of the expanding universe in any
theory with a microstructure of space–time. This has been anticipated several times
[1, 2, 3] but never fully formulated. Loop quantum gravity makes progress at least in
describing discrete spatial structures, and in providing means to analyze their evolu-
tion. A handle on these inhomogeneous features is necessary even for the consistency
of the quantum cosmological theory: any kind of discreteness is in danger of being
enlarged by the expansion of the universe and of becoming macroscopic unless its
structure is being dynamically refined. It is not guaranteed that refinement happens
in a suitable way so as to be consistent with the possibility of a macroscopic, very
nearly continuous universe. Whether suitable refinement is realized can be checked
in model systems, thereby providing feedback on the correct low-curvature limit of
the full theory.

The picture we will take to develop dynamics is that of an evolving quantum
geometry. Mathematically, it is implemented by constructing states in the Hilbert
spaces seen before, but subject to the condition that they be annihilated by a quan-
tization of the classical constraints: Ĉ |ψ〉 = 0. As the classical constraints make
sure that initial data indeed are as they can be derived by restricting the geometry
of a space–time solution to one of its spatial slices, quantum constraints ensure that
there is no spurious gauge-dependent information in the quantum states we use. Dis-
cussing quantum constraints can be quite involved not just because the expressions
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48 4 Dynamics: Changing Atoms of Space–Time

of constraints are complicated, but also because they are not always guaranteed to
have zero as an eigenvalue in their discrete spectrum. In fact, especially for the
Hamiltonian constraint of quantum gravity one expects interesting physical states to
correspond to zeros in the continuous part of the spectrum. (There may be states in
the discrete part as well.) Solutions then will not be normalizable in the spaces we
constructed so far, and new inner products would have to be introduced to extract
observable information from the states. Technical issues of constructing physical
Hilbert spaces are discussed in Chap. 12.

Also the issue of observables strikes again: A general operator on the kinematical
Hilbert space will not map a solution of Ĉ |ψ〉 = 0 to another such solution; it is
guaranteed to do so only if it commutes with Ĉ : [Ô, Ĉ] = 0. Such operators are
called Dirac observables, and thanks to the commutation property they correspond
to classical observables as phase-space functions invariant under the flow generated
by the constraints: their classical correspondents satisfy {O,C} = 0. Unfortunately,
complications in constructing general observables at the classical level become even
more severe at the quantum level. For instance, one would have to be very careful
with factor orderings to make a classical observable commute exactly with the con-
straints after quantization. (And exact commutation is required when it comes to
removing gauge.)

We will discuss issues of physical Hilbert spaces and quantum observables in
more detail in a later chapter; here we are primarily interested in the fact that the
non-commutativity of the Hamiltonian constraint and operators for spatial geometry
in general implies that physical states must be superpositions of different eigenstates
of any operator of spatial geometry. Explicitly, this follows from the fact that the
Hamiltonian constraint contains connection components, quantized to holonomies,
which as creation operators excite the spatial geometry. No state with a sharp non-
degenerate spatial geometry can be an eigenstate of such creation operators, and
general superpositions are required.

Choosing a particular non-observable operator φ̂, for instance the volume or a
matter field, and its eigenbasis, we expand a physical state as |ψ〉 = ∑

φ |ψ〉φ
where φ is a label for the eigenstates of φ̂. (Terms |ψ〉φ in such a superposition
are not physical states unless φ̂ is an observable.) We may then view the family
|ψ〉φ as an evolving quantum geometry, or a “state-time” [4]. It represents physical
information, for it is just another way of writing the original physical state |ψ〉,
supposed to solve the quantum constraint equation. Evolution is described not in
coordinate time, as one usually does it in classical solutions, but with respect to an
internal time φ. One could use a similar picture in classical gravity: The classical
variable φ corresponding to the operator φ̂ we picked for the decomposition fulfills
an equation of motion dφ/dt = {φ,C} = f with some phase-space function f. At
any phase-space point where f �= 0, the usual t-derivatives in classical equations of
motion can be traded forφ-derivatives by dividing all equations of motion by f.While
such a procedure would usually make classical calculations more complicated than
necessary, not even being too useful since one is mostly interested in the dependence
of quantities on variables such as proper time, it is a more natural viewpoint to take in

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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quantum gravity. The quantum representation of geometry, after all, does not contain
any space–time coordinates; it can refer only to degrees of freedom as found in the
classical phase space, and so the internal-time picture is the only one available for
evolution. Once physical states are parameterized with respect to an internal time,
one can compute time-dependent expectation values of operators other than time φ̂
and their fluctuations or other moments. Even if such an operator Ô would not be an
observable, the expectation value φ〈ψ |Ô|ψ〉φ is meaningful. In general, however,
care must be taken as to the inner product used here. For instance, one would like a
sense of unitarity of φ-evolution to be realized, which then implies that φ〈ψ |ψ〉φ is
constant in φ. (This is, of course, not guaranteed if the family |ψ〉φ comes from an
arbitrary decomposition of some state in any eigenbasis.)

Effective techniques allow one to formulate the concept of local internal time
systematically, and to address the possible failure of unitarity of the evolution mean-
ingfully. These methods and consequences such as the complexity of time will be
discussed in Chap. 13; for now it suffices to know that consistent formulations can
be provided, and we turn to the construction of the constraint operators themselves.

4.2 Constructions in the Full Theory

We will make use of the concept of internal time mainly in cosmological models
where it is rather tractable. But we will first have to see what the Hamiltonian con-
straint and the dynamics it provides look like in the full theory, since this will be
our guideline in reduced constructions just as it was for states and basic operators.
Also for the dynamics, the key will be the use and form of holonomies, their appear-
ance in the Hamiltonian constraint, and the way they influence superpositions in
the averaging of kinematical to physical states. Remaining non-holonomy terms in
the constraint are also important and provide clues to the small-scale behavior of
quantum gravity, but they merely influence the concrete coefficients rather than the
general form of such superpositions.

4.2.1 Gravitational Constraint

The classical expression of the Hamiltonian constraint in Ashtekar–Barbero variables
is

Cgrav[N ] = 1

16πγG

∫

�

d3x N

(

εi jk Fi
ab

Ea
j Eb

k√| det E |

− 2(1 + γ−2)(Ai
a − �i

a)(A
j
b − �

j
b )

E [a
i Eb]

j√| det E |

)

(4.1)
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Fig. 4.1 A loop used to
quantize curvature
components

s1

s2

Δ α

smeared with the lapse function N . As the main term responsible for the creation
of geometrical excitations, we first turn to the curvature components Fi

ab. They are
functionals of the connection components Ai

a, which in a loop representation can-
not be quantized directly. Instead we have to use holonomies, providing curvature
components via the well-known expression

sa
1 sb

2 Fi
abτi = 	−1(hα − 1)+ O(	) (4.2)

for the leading-order term of a holonomy along a closed loop α of square shape, of
coordinate area 	 and along the tangent vectors sa

1 and sa
2 ; see Fig. 4.1.

The loop will give rise to holonomies and thus, when acting with the constraint,
excitations of geometry [5]. There are different specific constructions, with different
general behaviors. For instance, when acting on a given state the loop α may lie
entirely on the graph of edges already excited for the state. In this case, the graph
itself would not be changed, and no new vertices are being created (see e.g. [6]); only
the excitation levels of existing edges are raised or lowered. Otherwise, if α does not
lie entirely on the state’s graph, new vertices and new edges will emerge [7]. In the
picture of an evolving geometry, the number N of discrete sites may or may not
change in the internal evolution parameter φ. But in all possible constructions put
forward so far, individual sizes of elementary sites, earlier called v, must change:
since the volume operator does not commute with all holonomies, [V̂ , h] �= 0,
vertex volumes of states must change in φ. While we do not yet have a systematic
way of averaging these inhomogeneous results to isotropic geometries, the behavior
seen here provides strong motivation for a lattice-refinement picture, and it does put
limits on some parameters.

As the next important term in the classical constraint we have the triad-dependent
function εi jk Eb

j Ec
k/

√| det E |. Fluxes cannot directly be used to quantize this
expression since they have discrete spectra containing zero, making the determi-
nant potentially degenerate. Instead, as already seen in the isotropic setting, one
applies the classical identity [7]

{

Ai
a,

∫ √| det E |d3x

}

= 2πγGεi jkεabc
Eb

j Ec
k√| det E | sgn det(Ed

l ) (4.3)

(or another form since it is not unique) and quantizes the left-hand side regularly
by using holonomies for Ai

a, the volume operator, and turning the Poisson bracket
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into a commutator divided by i�. A densely defined operator results. This key result
of loop quantum gravity shows that Hamiltonians in quantum gravity, with similar
constructions for matter Hamiltonians [8], can be made well-defined by particular
properties of quantum geometry [7]. We do not have to normal-order Hamiltonian
operators, which would be difficult in a background-independent way that lacks the
ordinary creation and annihilation operators.1 Coefficients in any superposition of
physical states are automatically well-defined. In particular, the specific form of triad
operators appearing in the constraint, containing commutators such as h[h−1, V̂ ],
changes vertices and their intertwiners for states they act on; thus another reason to
expect a changing v(φ) in a physical state.

The remaining terms in the constraint are more difficult since they contain the spin
connection (3.24), a complicated functional of Ea

i . Fortunately, they can be reduced
to what has already been quantized by employing another Poisson identity [7]:

K i
a = γ−1(Ai

a − �i
a) ∝

{

Ai
a,

{∫

d3x Fi
ab

εi jk Ea
j Eb

k√| det E | ,
∫ √| det E |d3x

}}

. (4.4)

Putting all these ingredients together, one constructs a well-defined Hamiltonian
operator, schematically of the form

Ĉgrav[N ]ψg ∝
∑

v∈V (g)

N (v)
∑

eI ,eJ ,eK ∈E(g)

ε I J K tr
(

hI J heK

[
h−1

eK
, V̂

])
ψg (4.5)

summing over vertices v and triples of edges eI � v of a graph g, with hIJ the
holonomy around a closed loop tangent to eI and eJ in a vertex v. The specific form
is subject to ambiguity, but the general form is characteristic and, as used later, easily
extended to model systems.

There are several characteristic features implied by the construction steps, which
give rise to corrections to the classical dynamics explored in quite some detail in this
book. Also several fundamental properties arise in a specific form. For instance, for
the resulting operator to be well-defined it is crucial that one orders the commutators
quantizing inverse-triad components to the right of holonomies representing the cur-
vature. When the commutator acts first on a cylindrical state, only vertex contributions
appear. If holonomies act first, on the other hand, they create new vertices on arbi-
trary points of edges existing in the initial state, and on those new vertices (which are
trivalent but not immediately gauge-invariant) the commutator has non-trivial action.
Such an ordering would not give rise to a cylindrically consistent operator [7]. Once
a consistent operator is defined, one may order it symmetrically by averaging with its
adjoint. But this procedure is different from ordering the holonomies for curvature to
the right [9]: for an operator creating new edges, as the Hamiltonian constraint does

1 Notice that this sense of regularity does not by itself imply UV-finiteness in the usual meaning
of quantum field theory. To test finiteness, one would have to compute scattering amplitudes of
particle excitations on a quantum geometry state, which is difficult. It thus remains open how
exactly a fundamentally finite version of loop quantum gravity could resolve non-renormalizability
issues of perturbative quantum gravity.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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by multiplying with holonomies, the adjoint removes edges. A symmetric ordering
of such operators is different from simply reordering factors in its regularization.

The behavior of vertices under the action of the Hamiltonian constraint also plays
a role for an argument of anomaly-freedom which one may make [10]. Commu-
tators of Hamiltonian constraint operators should mimic the classical constraint
algebra for the dynamics and gauge aspects to be consistent. (This theme will be
discussed in more detail in the part on inhomogeneities, Chap. 10.) From the form
of full Hamiltonian constraint operators one can argue that this is realized at least on
diffeomorphism-invariant states, which are annihilated by the commutator. However,
several difficulties with this very general statement arise: first, it has been pointed
out that an extension to states that are not fully diffeomorphism invariant, and on
which the off-shell constraint algebra should nevertheless be represented faithfully
for anomaly-freedom, is difficult [11, 12]. Secondly, anomaly-freedom in the sense
proposed in [10], even if it would work at a fundamental level, does not at all guaran-
tee that effective geometries can be formulated with a consistent dynamics, a question
which we will address later by other means. Thirdly, the same argument of anomaly-
freedom does not apply in midisuperspace models such as spherically symmetric
ones, see Chap. 9, whose vertex structure is different from the full one. While this
failure of the argument may be due to a possible inadequacy of midisuperspace mod-
els regarding questions of fundamental anomaly-freedom, it should also be taken as
a warning sign.

4.2.2 Matter Hamiltonian

Matter fields are quantized by similar means in a loop quantization, using graph
states, and then coupled dynamically to the geometry by adding the matter Hamil-
tonian to the constraint. For a scalar field ϕ, the density-weighted momentum
π = √| det E |ϕ̇/N is a density of weight one. In the ϕ-representation, states, as
described in Sect. 3.2.2.3 will simply be of the form already used for the gravita-
tional field, except that each vertex now also carries a label νv ∈ R describing the
dependence on the scalar field ϕ(v) through exp (iνvϕ(v)) [13]. (The scalars take
values in the Bohr compactification of the real line.) Well-defined lattice operators
are given by ̂exp (iν0ϕ(v)), for any ν0 ∈ R, which shifts the label νv by ν0. The
momentum, with its density weight, has to be integrated before it can meaningfully
be quantized. We introduce

PR :=
∫

R
d3xπ

where R is a spatial region. Since we have {ϕ(v), PR} = χR(v) in terms of the
characteristic function χR(v) = 1 if v ∈ R and zero otherwise, a momentum
operator PR has eigenvalue

∑
v∈R �νv in a state introduced above.

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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For the matter Hamiltonian of a scalar field ϕ with momentum π and potential
W (ϕ) we have the classical expression

Hϕ[N ] =
∫

d3x N (x)

(
1

2
√| det E |π(x)

2 + Ea
i Eb

i

2
√| det E |∂aϕ(x)∂bϕ(x)+ √| det E |W (ϕ)

)

containing inverse powers of the metric. It can be quantized by loop techniques
[8, 14] making use of identities similar to (4.3). One first generalizes the identity to
arbitrary positive powers of the volume in a Poisson bracket,

{Ai
a, V r

v } = 4πγGr V r−1
v ei

a (4.6)

with Vv the volume of a small region including only the vertex v, and then combines
such factors with suitable exponents r to produce a given product of triad and co-triad
components. Since such identities would be used only when inverse components of
densitized triads are involved and a positive power of volume must result in the
Poisson bracket, the allowed range for r is 0 < r < 1. Any such Poisson bracket
will be quantized to

ėa{Ai
a, V r

v } 	→ −2

i�δ
tr

(
τ i hv,e

[
h−1

v,e, V̂ r
v

])
(4.7)

using holonomies hv,e in direction ėa, starting at v and of parameter length δ. These
general parameterized expressions are also useful for alternative quantizations of
terms in the gravitational part of the constraint, where different choices of r would
represent quantization ambiguities.

The exponent used for the gravitational part is r = 1, while the scalar Hamilto-
nians introduced in [8, 14] use r = 1/2 for the kinetic term and r = 3/4 for the
gradient term. With

εabcεi jk{Ai
a, V 1/2

v }{A j
b, V 1/2

v }{Ak
c, V 1/2

v } = (2πγG)3εabcεi jk
ei

ae j
bek

c

V 3/2
v

= 6(2πγG)3
det(ei

a)

V 3/2
v

and

εabcεi jk{A j
b, V 3/4

v }{Ak
c, V 3/4

v } = (3πγG)2εabcεi jk
e j

bek
c

V 1/2
v

= 6(3πγG)2
Ea

i

V 1/2
v

sgn det(e j
b)

one can replace all inverse powers in the scalar Hamiltonian:
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Ĥϕ[N ]ψg =
∑

v∈g

N (v)

⎛

⎝1

2
P̂2

v

(
1

48

∑

eI ,eJ ,eK

ε I J K B̂(1/2)v,eI B̂(1/2)v,eJ B̂(1/2)v,eK

)2

+ 1

2

(
1

48

∑

eI ,eJ ,eK

ε I J K (	eI ϕ)(v)B̂
(3/4)
v,eJ B̂(3/4)v,eK

)2

+ V̂vW (ϕ(v))

⎞

⎠ψg (4.8)

where B(r)v,e denotes the vertex contribution at vertex v of a quantization of (4.7);	eϕ

denotes the difference operator along the edge e, and P̂v is the vertex contribution
to the momentum operator of the scalar.

In this way, inverse-triad corrections arise in matter Hamiltonians as well as in
the gravitational part of the constraint, affecting the dynamics. What kind of effec-
tive action this might correspond to and whether these corrections can be consistent
(not spoiling general covariance) will be discussed later in Chap. 10 about inhomo-
geneous perturbations. For now, we point out the relationship of full inverse-triad
expressions based on (4.7) with the corresponding behavior in isotropic models. In
isotropic models, we have seen that it is important to use the local patch volume
Vv (as a power of the elementary fluxes F�0 ) in order to ensure the correct scaling
dependence. In (4.7), or the Hamiltonians (4.5) and (4.8), we could use Vv as well as
the total volume V or that of any other region: volume contributions from vertices
not lying on the edge used for holonomies in the commutator drop out, anyway.
In homogeneous models, on the other hand, all vertices are equivalent and no such
difference arises. It is then important to ensure that only local vertex contributions
feature in the homogeneous expressions, which as seen in [15] has several other
important implications regarding consistency.

4.2.3 Problem of Dynamics

Handling the dynamics is the key problem of any approach to quantum gravity. It
splits into quite different but closely related subissues, the consistent construction
of the dynamics on one hand, and the evaluation on the other. In isotropic quantum
cosmology, the construction simplifies considerably and some of the key problems,
such as that of anomalies, trivialize. One can thus focus on developing methods for
the evaluation of quantum gravitational dynamics, which in the full setting has gained
only preliminary insights. Important issues of the evaluation, which we will see in
detail, are the role of lattice refinement, quantum back-reaction, and the implications
of changing states. Later constructions in models including inhomogeneity will allow
us to discuss also quantum space–time structure.

4.3 Isotropic Universes

A reduction of the Hamiltonian constraint from the full theory to symmetric models at
the quantum level is difficult, but there is information about the reduction of states and
spatial quantum geometry, as discussed in detail in Sects. 8.2.5, 9.1.3, and 10.1.2. This

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_9
http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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formalism allows us to derive the basic quantum geometrical principles for isotropic
loop quantum cosmology and then construct a Hamiltonian constraint operator along
the lines used in the full theory. Since general spectral properties of basic operators,
holonomies and fluxes, are preserved in this reduction, one can expect to capture
important features of full loop quantum gravity at least at a qualitative level. Specific
results seen in models can then be used to focus further derivations in the full theory.

4.3.1 Symmetry

Different procedures exist and are still being elaborated to reduce states from the full
stage to a reduced setting [16–22]. A natural definition of a symmetric state is one
that, as a functional on the space of connections, is supported only on the subset of
invariant connections [16]. By this procedure, one can directly reduce any given state
by evaluating it in the general expression of invariant connections for a symmetry
type of interest, such as isotropy. The result will not be a spin network state, but
rather a distribution on the full state space; it can be interpreted as being obtained
by averaging an inhomogeneous state over the symmetry group. Such states are not
embedded in the full Hilbert space but rather constitute truly reduced states. They
comprise a minisuperspace quantization, but one obtained with input from the full
theory. In contrast to Wheeler–DeWitt quantizations, crucial quantum space–time
structures are still realized in the models derived in this way.

Suitable combinations of basic operators can then be found which map those states
to others of this form, defining the basic representation of the model by reduction
from the full holonomy-flux algebra. Difficulties arise when one tries to implement
the full Hamiltonian constraint in such a way since it will not preserve the space of
symmetric states, and projections to ensure this cannot easily be introduced at the
distributional level. Constructions which may seem unnatural or contrived within
a minisuperspace model but are required to incorporate full features thus remain
required to implement the dynamics in a way mimicking the full one. No unique
dynamics can result in this way, which even with a complete reduction would not be
possible since the full dynamics is not unique in the first place. But with sufficiently
general parameterizations one can explore the range of possibilities and extract gen-
eral phenomena. As always with coarse-grained descriptions of microscopic physics,
one has to suitably parameterize one’s ignorance. If this is not done at a sufficiently
general level, results will be spurious. No guidelines are provided in Wheeler–DeWitt
quantizations, but much information is available from loop quantum gravity.

In particular, we will have to account for the crucial properties seen in the full
theory. Every proposal for the full Hamiltonian constraint so far changes the indivi-
dual sizes of discrete building blocks of geometry. In an isotropic setting this means
that the function v(φ) in (2.16), now written in an internal time φ, must indeed be a
function and cannot be constant in general. Although the precise form of v(φ) and
the associated N (φ) cannot easily be derived as mean fields of the refinement, a

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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quantization of isotropic dynamics must take the non-constant behavior of v(φ) into
account in a sufficiently general way.

4.3.2 Models

Since holonomies are the basic operators exciting and refining the geometry, they
will be crucial also in isotropic models. As already seen in Sect. 3.2.3.3, holonomies
refer to the number N = V /�3

0 of lattice states; now in a dynamical situation,
N (φ) will be a function of internal time. As in the full case, holonomies initially
enter the Hamiltonian constraint via curvature components of the Ashtekar–Barbero
connection, which in an isotropic setting reduces essentially to the Hubble parameter.
Classically, we have a Hamiltonian constraint

Cgrav = − 3

8πGγ 2 c2
√|p| + Hmatter(p, ϕ, pϕ) = 0 (4.9)

written for simplicity only in the spatially flat case (and without curvature coupling
in the matter Hamiltonian). Once the variables c and p are inserted in terms of the
scale factor a, this constraint indeed gives rise to the Friedmann equation with energy
density

ρ = Hmatter

a3V
(4.10)

in terms of a matter Hamiltonian for the region of size V .
The constraint also generates Hamiltonian equations of motion ḟ (c, p) ={

f (c, p),Cgrav[N ]} for a general phase-space function f. To specify the choice
of time coordinate, referred to by the dot, we have introduced the lapse function
N , Cgrav[N ] = NCgrav. Its main choices usually are N = 1 for proper time
and N = a = √| p̃| for conformal time. Using the appearance of the lapse func-
tion in the canonical form of the metric, this indeed provides the correct isotropic
line elements ds2 = −dt2 + a2

(
dx2 + dy2 + dz2

)
in terms of proper time t, and

ds2 = a2
(−dη2 + dx2 + dy2 + dz2

)
in terms of conformal time η. Equations of

motion for the basic variables read

ṗ = 2N
√|p|c/γ, (4.11)

implying the relationship c = V 1/3γ ȧ/N already seen, and

ċ = {c,Cgrav[N ]} = − c2

2γ
√|p| (N + 2pdN/d p)+ 8πγG

3

∂Hmatter

∂p
. (4.12)

This equation is the Raychaudhuri equation of the isotropic model, which can be
brought to the standard form after using the thermodynamical relation

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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P = −∂E

∂V
= − 1

3a2V N

∂Hmatter

∂a
(4.13)

for pressure. At this time, one should note that both equations, (4.11) and (4.12),
are derived from the Hamiltonian constraint. When quantized, the Hamiltonian most
likely receives quantum corrections, such that also these two equations, even the
innocent-looking (4.11), will be corrected.

The classical Hamiltonian constraint is not directly representable in terms of
holonomies due to the appearance of the non-almost periodic c2. However, almost
periodicity can be checked only when the full real range of the curvature variable c is
taken, which includes arbitrarily large values of curvature where one would no longer
trust the classical dynamics. At this time, the fundamental requirement that operators
in an isotropic loop quantization must be representable through holonomies which
are almost periodic in c becomes a guiding principle for deciding how the classical
dynamics must change in quantum gravity. Restricting the function c2/p ∝ (ȧ/a)2

to just a finite range, for instance up to Planckian curvatures, still allows one to extend
it to an almost-periodic function in c over the full range. Such an extension is not
unique, sin c and 1

2 sin(2c) being just two examples to extend c almost-periodically,
but the resulting quantization ambiguity, as always, can be parameterized and then
tested.

If we choose a class of almost-periodic extensions of c2 by δ−2 sin2(δc) with a
parameter δ,we can directly use the basic actions of exp(iδc) and p̂ to write the action
of a Hamiltonian constraint operator. As expected from the presence of holonomies,
it is a shift operator with terms raising and lowering the isotropic triad levels μ.
Expanding a general state in the triad eigenbasis, |ψ〉 = ∑

μ ψμ|μ〉, we obtain the
state’s triad representation as the set of coefficients ψμ, which may also depend on
other fields if different kinds of matter are present.

The construction proceeds along the following steps, which are analogous to
those from the full theory but can now be performed very explicitly. We represent√|p| via a commutator eiδc

[
e−iδc, V̂

]
to mimic the full treatment in the presence of

inverse powers of the densitized triad. (In isotropic models the inverse powers cancel
completely in the gravitational part of (4.9), and the treatment of inverse triads is not
required at this stage. Crucial properties remain unchanged if one uses a more straight-
forward quantization of

√|p|.) The action of the commutator on triad eigenstates
follows as before for inverse-triad operators. Also the action of the holonomy term
can be computed easily: sin2(δc) maps |μ〉 to − 1

4 (|μ+ 4δ〉 − 2|μ〉 + |μ− 4δ〉).
In the full theory, a consistent Hamiltonian constraint operator requires an ordering
in which holonomies quantizing the curvature components Fi

ab appear to the left.
Taking the same ordering in reduced models, we arrive at an operator with action

Ĉgrav|μ〉 ∝ δ−3sgn(μ)
(
Vμ+δ − Vμ−δ

)
(|μ+ 4δ〉 − 2|μ〉 + |μ− 4δ〉). (4.14)

The constraint equation Ĉgrav|ψ〉 = Ĉgrav
∑
μ ψμ|μ〉 = ∑

μ(Ĉgravψ)μ|μ〉 = 0

then implies a difference equation (Ĉgravψ)μ = 0, of the form
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sgn (μ+ 4δ)
(
Vμ+5δ − Vμ+3δ

)
ψμ+4δ(ϕ)− 2sgn(μ)

(
Vμ+δ − Vμ−δ

)
ψμ(ϕ)

+ sgn(μ− 4δ)
(
Vμ−3δ − Vμ−5δ

)
ψμ−4δ(ϕ) = −4

3
πGγ 3δ2�2

P Ĥmatter(μ)ψμ(ϕ)

(4.15)
for the wave functionψμ(ϕ) in the triad representation. Its coefficients, written here in

terms of volume eigenvalues Vμ = (
4πγ �2

P|μ|/3)3/2
, follow from the representation

of
√|p| as commutators.
The difference equation (4.15) follows from a constraint operator in which the

commutator h
[
h−1, V̂

]
quantizing triad components is ordered entirely to the right

of holonomies quantizing curvature components. This ordering is in fact suggested
by the full theory as explained in Sect. 4.2.1. But once the operator has been defined,

one can always order it symmetrically by replacing Ĉgrav with 1
2

(
Ĉgrav + Ĉ†

grav

)
.

In this case coefficients of the difference equation change but the structure remains
intact:

1

2

(
sgn(μ+ 4δ)

(
Vμ+5δ − Vμ+3δ

) + sgn(μ)
(
Vμ+δ − Vμ−δ

))
ψμ+4δ(ϕ)

− 2sgn(μ)
(
Vμ+δ − Vμ−δ

)
ψμ(ϕ)+ 1

2
(sgn(μ)

(
Vμ+δ − Vμ−δ

)

+ sgn(μ− 4δ)
(
Vμ−3δ − Vμ−5δ

)
)ψμ−4δ(ϕ)

= −4

3
πGγ 3δ2�2

P Ĥmatter(μ)ψμ(ϕ). (4.16)

There are other ways to order an operator symmetrically, such as
√

Ĉ†
gravĈgrav, but this

would be more complicated to compute. One might also be tempted to define an operator
symmetrically from the outset by splitting the sin2(δc) in two factors to be positioned to the

two sides of the commutator: sin(δc)h
[
h−1, V̂

]
sin(δc). (The commutator h

[
h−1, V̂

]
=

V̂ − hV̂ h−1 automatically gives rise to symmetric operators when an su(2)-trace is taken.)
However, this procedure does not properly mimic constructions in the full theory where hα
for a whole loop as in (4.2) could not be split into two equal factors.

Depending on the treatment of extrinsic-curvature contributions to the Lorentzian
constraint (4.1), using (4.4), a difference equation of higher order than shown here
may result. Such equations have been derived in [23, 24, 25].

4.3.3 Quantum-Geometry Corrections

In addition to obvious quantum features, two classes of quantum-geometry correc-
tions are present: holonomy and inverse-triad corrections. Both of them are based
directly on properties of the holonomy-flux algebra and the accompanying discrete-
ness of space, but there is a difference in their realization. Inverse-triad corrections
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result from a quantization of the classical reformulation (4.3) or (4.7) without regular-
ization. Holonomy corrections, on the other hand, are obtained after replacing c2 in
the isotropic Hamiltonian constraint by some almost-periodic function approximated
by c2 when δc is small. After this modification of connection terms, the dynamics is
no longer identical to the classical one. One may understand the higher-order terms
as some of the contributions expected from higher-curvature effective actions,2 but
the modification is done at whim. It disappears in the classical limit only if δ → 0
in the classical limit, which requires one to relate the curve parameter to the Planck
length. This relation, as seen in the context of lattice refinement, can be done only by
reference to an underlying inhomogeneous state, not within the symmetric model;
see Sect. 4.4.1.

The parameter δ is a regulator because it modifies the classical theory before it
can be quantized by loop methods. Since the limit δ → 0 cannot be taken at the
operator level—otherwise an operator for ĉ, not just for holonomies would exist—
one must give the extra terms arising from the regularization some physical meaning.
In loop quantum cosmology, this is done by interpreting them as higher powers
of curvature which are not relevant for the small-curvature regime of the classical
theory but are required for a well-defined quantum representation. At this stage,
as always in loop quantizations, one takes a considerable risk: one assumes that
the classical constraints can be modified in this way and still produce a reasonable
theory. In particular covariance is at stake here, for one is adding only higher powers
of the Ashtekar–Barbero connection at the Hamiltonian level, not higher powers
of covariant curvature contractions at the level of an action. We will come back to
the important related problem of anomalies later in this book (Chap. 10). For now,
we notice that the key and still outstanding test of holonomy corrections is not to
evaluate their dynamical implications in homogeneous models where they can be
implemented freely, thanks to a trivialization of the anomaly problem, but rather a
consistent extension to inhomogeneities.

In some models, notably isotropic ones with a free, massless scalar, it is possible
to quantize the Hamiltonian constraint in exponentiated form, rather than exponenti-
ating just the connection components [26]. One obtains an unregularized loop quan-
tization without higher-order corrections. Such a quantization would be preferred
compared to regulated ones because it would allow the anomaly-free inclusion of
inhomogeneities in much simpler terms. It would also eliminate all holonomy effects.
At the present stage of developments, however, the models in which such an unreg-
ulated loop quantization can be applied appear too special to rule out holonomy
corrections altogether.

One can remove the regulator δ at the level of the difference equation provided one
requires solutions to be smooth enough [27]. The difference equation then becomes
a differential equation, essentially reproducing the Wheeler–DeWitt equation as
the continuum limit. However, with the limit δ → 0 taken only at the level of

2 These cannot be all contributions because higher-derivative terms of the metric do not arise by
the holonomy replacement. See Chap. 13 for a general treatment of effective canonical dynamics
which introduces new quantum degrees of freedom analogously to higher-derivative actions.

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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equations of motion for states, not in a full quantization, the resulting theory cannot
be considered as fundamental.

It is sometimes suggested that the coordinate volume V , which appears in δ but
also in inverse-triad corrections, is a regulator and should be taken to infinity or the
total size of a compact space. This is not correct because the classical theory simply
does not depend on the value of V . Sometimes in this context it is claimed that
inverse-triad corrections disappear, just as holonomy corrections would disappear if
the limit δ → 0 could be taken. Also here, the limit could only be taken at the level
of equations, not at the level of operators where no inverse of the flux operator exists.

4.4 The Role of an Underlying State

So far, we have treated the parameter δ for different almost-periodic extensions as
a constant. In a derivation of holonomies directly from isotropic connections in the
general expression, we have δ = �0/V 1/3 as seen earlier. In terms of the mean fields
of lattice refinement, this can be written as δ = N −1/3, which shows that a lattice-
refinement model must be based on a parameter δ(φ) depending on the internal time
φ used to realize the refinement. In other words, while the size V is that of a constant
region chosen once and for all to set up the quantization, the coordinate length �0 of
curves used for holonomies can in general not be considered as a constant. Physically,
the elementary discrete geometry must be refined during expansion to avoid that the
discreteness scale is blown up to macroscopic sizes by the expanding universe. Such
refinement indeed happens by a fundamental Hamiltonian constraint operator, which
may generate new vertices and always changes the elementary sizes v(φ) of discrete
building blocks.

In isotropic models, it is often convenient to use the scale factor a as internal time,
such that we will have a function δ(a). In the mean-field picture, this will make the
step-size δ of the difference equation dependent on the label μ: the equation is no
longer one of constant step-size. We will later discuss how such equations can be
dealt with; for now we are only interested in their general form.

4.4.1 Refinement Models

For specific difference equations based on refinement models, we would need N (a)
or v(a), related by N v = V a3, as it arises from the genuine full dynamics in a
suitable state. Lacking a derivation, we parameterize N (a) = N0a−6x such that
δ(a) ∝ a2x and v(a) = V a3(1+2x)/N0. This is only an ansatz to probe different
behaviors; in general N (a) need not be of power-law form for all a.But power-laws
provide insights into the possible behaviors and can, at least for small ranges for a
to vary, be used as approximations of general functions. Looking at different values
of x, this procedure will show the behavior in different phases of refinement. For
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x > 0, N is decreasing with expansion; for x = 0 it is constant and the discrete
volume v ∝ a3 is proportional to the total volume. For 0 > x > −1/2, both v and
N are increasing, which makes it the regular range expected from the full behavior
of the discrete dynamics.

Another, independent argument for x < 0 is that δ(a) then depends on a via a negative
power, whose dimension can be compensated for only by a positive power of a parameter
with dimension length. If the Planck length is used as this parameter, δ → 0 in the classical
limit, removing holonomy corrections.

If x = −1/2, the local sizes v remain constant while the number N of sites
increases proportionally to volume. As already seen, this behavior is unlikely from
the point of view of the full theory because local vertex contributions to volume are
always changed by the Hamiltonian constraint. It could at best be a coarse-grained,
averaged description in a special case of the full dynamics. If x < −1/2, finally, the
discrete sizes v must decrease when the universe expands. Since both N and v are
bounded from below, the generic range where power-law behavior can be realized
for long times is −1/2 < x < 0.Near the upper bound, however, the discrete volume
contributions v are in danger of increasing too fast, or N is not increasing fast enough
and refinement is too weak. In this regime, phenomenological restrictions on x can
easily be found [28–32].

More generally, N may be a generic function, which one can think of as being
composed of different power-law phases each parameterized by its own x . At this
place we can see the real strength of using the Bohr compactification of the real
line as kinematical quantum configuration space: for a single power-law form, the
dynamical equation would always be periodizable by using |p|1−x instead of p as the
state label, and |p|x c as the canonically conjugate curvature parameter in holonomies.
Since the dynamics splits the range of all values into distinct sectors connecting only
countably many values by the difference equation, we could from the outset have
worked with states periodic in �0c̃ = c/N 1/3 ∝ a2x c. Irrespective of whether we
assume periodicity when choosing the dynamics or when formulating the kinematical
states, such an assumption will always seem ad-hoc. If different power-laws or a non-
power law function are involved, however, no periodicity occurs at all. This shows the
real strength of the Bohr compactification by providing a repository for all possible
refinement cases. (In a later chapter we will see that anisotropic models also make
use of the full Bohr compactification without implicitly using periodic sectors, even
if they are based on power-law behaviors of N , crucially leading to non-equidistant
difference equations.)

At this stage, it is worth commenting on differences between the mean-field picture and a pure
minisuperspace quantization. We have first derived the constraint operator for a constant δ,
and are then putting in the μ-dependence to ensure that full properties are reliably captured.
One can also take the point of view that δ(p) is used from the outset, having to quantize a more
complicated phase-space function exp (iδ(p)c) instead of ordinary holonomies. For simple
choices of δ(p) of power-law form, such quantizations can be performed: one employs a
canonical transformation such that the product δ(p)c which appears in the exponential is
now one of the basic variables, and considers “holonomies” to be written in this variable. If
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δ(p) ∝ |p|x is of power-law form, such a transformation can easily be done with |p|1−x being
the new momentum conjugate to |p|x c.For x = −1/2, for instance, this momentum would be
the volume V = |p|3/2. Pretending that c/

√|p| is to be used in almost-periodic holonomies
would thus lead to a difference equation which is equidistant in volume values rather than
densitized-triad values. For largeμ, this procedure is equivalent to inserting δ(μ) ∝ |μ|−1/2

directly in the basic difference equation (4.16), as one can see by substitution; for smaller
μ, one can think of the equation obtained after a canonical transformation as providing one
specific factor ordering of exp (iδ(p)c)which unlike the basic exp (iδc)with constant δ is not
defined uniquely. As one can see, however, there are difficulties in particular around μ = 0
due to the absolute value used in fractional powers and the appearance of inverses of μ.
Physically, this is not surprising since the μ-dependence of δ arises from lattice refinement,
and around μ = 0 not many lattice sites are excited. The lattice is thus very irregular, and
one cannot expect to describe the behavior well by using simple power-laws for N (p).
Keeping a general function δ(μ) for basic properties of the dynamics, and specializing to
simple forms only to analyze concrete cases at larger μ, is then the best way to shed light
on the discrete dynamics.

Refinement is also relevant for inverse-triad operators and the corrections they
imply, which contain the basic holonomies and fluxes (or the volume operator). In
the commutator (4.7) used crucially in their definition, the local vertex volume Vv
features, corresponding to the plaquette sizes in a refinement model.3 As already dis-
cussed in Sect. 3.2.3.5, it is then not p = V 2/3a2 (the total box size) which features
in commutators or correction functions but the plaquette size N −2/3 p = �2

0a2.

This change makes the flux contribution, appearing as the argument of correc-
tion functions, smaller, and the correction correspondingly larger. For instance for
x = −1/2 in a power-law form N (p)−1/3 = δ(p) ∝ |p|x , the plaquette size
�2

0a2 = N −2/3|p| is constant. Large p do not make inverse-triad corrections shrink
in this case, as it would happen without lattice refinement. Note that for a correct
treatment of inverse-triad corrections with refinement, implemented by a phase-space
dependent N (a), the refinement function is not to be inserted in the commutator
before its computation, which would give the wrong result since the a-dependence
of the factor would change the classical Poisson bracket. Refinement and the a-
dependence is a mean-field effect, and thus to be inserted in the final expressions
of an effective or coarse-grained theory. Since minisuperspace models by defini-
tion constitute coarse-grained descriptions of the full theory, mean-field treatments
cannot be avoided altogether.

4.4.2 Interpretations

Different viewpoints have emerged in the development of loop quantum cosmology,
all rooted in the original constructions of [23, 33–36]:

3 In such commutators in the full theory, a single Vv gives the same contribution as the volume
operator of all of space: contributions from vertices not lying on the edges used for the holonomy
in the commutator cancel. But this observation does not change the fact that inverse-triad operators
receive contributions only from local vertex contributions of the volume operator. In reduced models,
homogeneity implies that all vertex contributions must contribute equally; one can properly capture
the full behavior only by using single vertex or plaquette contributions from the outset.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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Pure minisuperspace quantization4: One may argue that the curvature relation
(4.2), δ2sa

1 sb
2 Fi

abτi ∼ hα − 1 with hα ∼ sin2(δc) in isotropic models, used crucially
in quantizing the Hamiltonian constraint, should be evaluated by fixing the geometric
area A = a2δ2 as an ambiguity parameter rather than the coordinate area δ2. If A
indeed takes a fixed value, one obtains δ ∝ 1/

√|p|, corresponding to the refinement
scheme x = −1/2. In particular, by fixing A one trivially ensures that local patches
of the underlying lattice state are constant, and thus N ∝ V . (Most such realizations
make use of the further ad-hoc assumption that this fixed value of A should be the
minimal or some close-to-minimal non-zero eigenvalue of the full area spectrum. This
condition is ad-hoc because it brings in the full area spectrum—the area operator in a
reduced model does not have a non-zero minimal eigenvalue—and in that it crucially
refers to the area operator at a place where it is not made use of in full constructions.
Moreover, the resulting size of holonomy corrections is incompatible with inverse-
triad corrections [15], implying an �0 that gives rise to large inverse-triad corrections
even at large volume.)

The main (and perhaps only) justification of such a viewpoint toward the dynamics
of loop quantum cosmology, compared to a constant δ, is a posteriori: A behavior
of δ ∝ 1/

√|p| in holonomies appearing in the dynamics provides an additional
suppression of higher powers of curvature at large volume, thus making it easier
to comply with semiclassical and near-continuum behavior (provided inverse-triad
corrections are ignored, which is often done in this context). Holonomy corrections
depending on c2/p rather than just c2 are better behaved at large volume especially if
there is a positive cosmological constant (in which case c ∝ √|p| at large volume is
growing) or in the presence of intrinsic curvature. Moreover, holonomy corrections
automatically depend on the scale-independent Hubble parameter ȧ/a. The pure
minisuperspace viewpoint, without additional mean-field effects, thus presents a
valid refinement scheme regarding curvature, but there are no strict arguments why
it should be the preferred one. In fact, this viewpoint fails in Kantowski–Sachs models
for the Schwarzschild interior, where a refinement with N ∝ V is not viable near
the horizon; see Sect. 8.3. The scheme is also inconsistent with slow-roll inflation in
the presence of inhomogeneities [39].

The starting point itself of the pure minisuperspace view is not fully convincing:
curvature components Fi

ab are coordinate dependent, so why should one not refer to
coordinate areas in their regularization? A reference to coordinates is indeed what
happens in the full regularization, where using geometrical areas such as A would not
be possible. Finally, the improved view in holonomies goes only half-way toward
a consistent regularization. It uses refinement ideas in holonomies, where large-
volume effects are potentially most problematic, but not for fluxes. Accordingly,
minisuperspace quantizations typically produce wrong inverse-triad corrections by

4 These models were initially introduced under the name “improved” quantization [37, 38], indi-
cating advantages in certain regimes of low curvature and large volume. However, the modifications
introduced in these models turned out to be rather ad-hoc. (To appreciate this realization, the mod-
els are sometimes called “improvised.”) By now, what goes by the name “improved dynamics” is
under strong pressure from different types of inconsistencies. The improved dynamics is itself to
be improved, giving the name a rather misleading connotation.

http://dx.doi.org/10.1007/978-1-4419-8276-6_8


64 4 Dynamics: Changing Atoms of Space–Time

overlooking the refinement for the volume operator appearing in commutators (see
the Second Principle). In the pure minisuperspace context, it is then often stated
erroneously that inverse-triad corrections play no role. By insisting that all quantum
effects be realized in reduced operators, rather than partially in an underlying state,
this view remains stuck in a mere minisuperspace picture, ignoring lessons from the
full theory.

One undeniable advantage of the improved dynamics is that it removes ambi-
guities, if only by ad-hoc choices, and thus tends to provide very specific schemes
and equations. For this reason, this special kind of the dynamics in loop quantum
cosmology is often explored.

Refined loop quantum cosmology: A general and consistent viewpoint realizes
that refinement is mainly implemented by properties of an underlying state: it is
a mean-field effect that appears in minisuperspace models but crucially rests on
behavior in the full theory. The incompleteness of the full theory and the compli-
cated nature of symmetry reduction at the quantum level make it difficult to derive
refinement models, but characteristic properties can be implemented by means of
sufficiently general parameterizations; see Sect. 9.1.6.3 for a model that illustrates
how refinement schemes could be derived. The state dependence will further be illus-
trated below. As the main justification for this refined view we state that it is required
in general models such as black-hole interiors, and that only such a treatment can
produce a consistent form of inverse-triad corrections.

4.4.3 Refinement from Reduction

Refinement arises in reduced models as a consequence of properties of underlying
states used in the reduction. One may wonder why state-dependence should arise
at all, and why effects cannot be captured completely in a reduction of operators.
Properties of solutions to constraint equations certainly depend on the operators used,
but the definition of reduced operators is normally not expected to depend on proper-
ties of solutions to the full operator. And refinement, ultimately a consequence of the
generation of new vertices or lattice sites by full Hamiltonian constraint operators,
is a property of solutions to the full constraint equation.

If quantum cosmological models were fundamental, they should in fact be defined
fully in terms of their operator algebra, and no free function such as N (p) or extra
parameters such as N0 or x could appear. But quantum cosmological models are
not fundamental; they provide an average description of full quantum gravity. In
the averaging, additional features not captured fully by the operator algebra arise as
mean fields.

A further crucial property especially in loop quantum gravity is the fact that
regularizations of the full Hamiltonian constraint depend on the state the operator is
going to act on. We refer to the graph when defining the loops used to rewrite the
curvature components of the constraint. In the end, cylindrical consistency allows
us to extend the graph-dependent definition to that of a consistent operator on the

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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full Hilbert space, but the state dependence of it remains. This state dependence
can then reappear in reduced models in a way whose explicit details may be rather
hidden by the reduction procedure but can still be parameterized. Such a reduction
is complicated to do for the actual problem of interest, the Hamiltonian constraint
operator of loop quantum gravity. But the resulting state dependence can easily be
seen in an example:

Example 4.1 Consider a classical phase space with three canonical degrees of free-
dom (q1, p1; q2, p2; q3, p3), subject to the first-class constraints D = p2,C = p3.

Instead of performing a symmetry reduction, we are going to look at consequences of
different implementations of gauge fixing the “diffeomorphism” constraint D, thus
reducing the “Hamiltonian” constraint C.As the classical gauge-fixing condition we
choose F = q2 − 1 = 0.

Let us propose the state-dependent quantization (with regularization)

Ĉ(n) = p̂3 + 1 − q̂2
2 + p̂2

2

2n + 1

on the subspace of the Hilbert space formed by states ψ1 ⊗ |n〉 ⊗ ψ3 with(
q̂2

2 + p̂2
2

) |n〉 = (2n + 1)|n〉. By using any integer n ≥ 0, a constraint opera-
tor with the correct classical limit is defined on the full Hilbert space. Note that
the state-dependent regularization of Ĉ(n) produces an anomalous quantization with[

D̂, Ĉ(n)
]

= q̂2/ (n + 1/2) �= 0, resembling what may happen with the diffeomor-

phism and Hamiltonian constraint in loop quantum gravity.
If we simply implement the gauge-fixing conditions for D in a reduced setting, n

becomes inaccessible. Just as we insert symmetric forms for the phase-space variables
in a minisuperspace quantization, we would require p2 = 0 and q2 = 1 to implement
D = 0 and F = 0 in a constraint operator Ĉred for a reduced model, leaving us with
the n-dependent

Ĉred,(n) = p̂3 + 1 − 1

2n + 1
.

We can recover n and thus uniquely fix the reduced Hamiltonian only if we know
the state |n〉 that gives rise to the gauge fixing at the full quantum level, corresponding
to the state of non-symmetric degrees of freedom in a minisuperspace quantization
(the underlying state). At the state level, p2 = 0 and q2 = 1 is possible only for
n = 0,which fixes n and brings the reduced Hamiltonian to the simple form Ĉ = p̂3.

In this example, no trace of the state-dependent regularization is left if the reduc-
tion is done completely because no regularization of the operator was required in
the first place; we just picked an unnecessarily contrived operator. For loop quan-
tum gravity, the initial regularization and state dependence of the full Hamiltonian
constraint is crucial, and so it should be expected to leave a trace in reduced models
as well. It is also easy to see that the reduction parameters, as long as they are not
eliminated by a complete reduction, may depend on the reduced or physical degrees
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of freedom, just as a general refinement function N does. In the example here, we
may regularize C to

Ĉ(n) = p̂3 +
(

1 − q̂2
2 + p̂2

2

2n + 1

)

p̂1

and obtain a reduced Hamiltonian

Ĉred,(n) = p̂3 +
(

1 − 1

2n + 1

)

p̂1

with a state-dependent correction depending on the physical observable p̂1.

In the preceding example, a full reduction, computing the exact state that imple-
ments the reduction condition, allowed us to arrive at a unique reduced Hamiltonian
without any remnant of the state-dependent regularization. A further property that is
realized in loop quantum gravity (the full diffeomorphism constraint relating sym-
metric and non-symmetric degrees of freedom) prevents this from happening, as a
slight variation of the example shows:

Example 4.2 Now, take the constraints D = p2 + p3 with C = p3 and the previous
gauge-fixing condition F = q2 − 1 = 0. Implementing D = 0 and F = 0 in a
reduction with the same Ĉ(n) as before then leads to the reduced Hamiltonian

Ĉred,(n) = p̂3 + 1 − 1 + p̂2
3

2n + 1

and we are guaranteed a remnant of the state dependence in any reduced model:
any value for n that may be obtained from a complete reduction can only depend
on the (q2, p2)-state, and it cannot cancel the extra p3 appearing in the reduced
Hamiltonian.

As this set of examples shows, gauge-fixing the diffeomorphism constraint (for
which symmetry reduction is one example), the regularization of the Hamiltonian
constraint with its state dependence, and the anomaly issue all matter for a complete
understanding of refinement. Currently, these issues are only poorly understood, and
the best one can do is a sufficiently general parameterization of refinement options.

4.5 Basic Singularity Removal: Quantum Hyperbolicity

Given the difference equation in any form of lattice refinement, we use it to understand
quantum evolution in the small-volume regime, near the singularity μ = 0. First, in
contrast to a Wheeler–DeWitt quantization based on metric variables and the scale
factor a, the singular state is now in the interior of the configuration space rather
than at a boundary: the freedom of having two possible orientations of the triad
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makesμ take values of both signs. This fact opens up a direct way of testing whether
there is a singularity in the sense of breakdown of evolution, since the difference
equation for a state in the triad representation provides a natural evolution scheme
via its recurrence. Irrespective of what internal time one would choose to describe
evolution, that is whether it is indeed the triad value μ or something else entirely, we
can test whether physical wave functions satisfying the constraint equation remain
well-defined in a neighborhood of the singularity [40, 41].

Going through the recurrence, starting with suitable initial values on one side
of positive μ, say, it is indeed easy to see, using (4.15) that μ = 0 does not pose
any obstruction. The matter Hamiltonian remains regular at μ = 0, just as it does
in the full theory at degenerate triads. Nevertheless, it could happen that the recur-
rence stops at μ = 0 if coefficients of the difference equation vanish, preventing one
from determining the next values of the wave function. For the form written here,
coefficients can indeed vanish just at the classical singularity: for backward evolu-
tion toward smaller μ, the relevant term is Vμ−3δ(μ) − Vμ−5δ(μ), which vanishes if
μ = 4δ(μ). It multiplies ψ0, the value of the wave function at the classical singular-
ity, which thus remains undetermined by initial data. This would be a disaster if that
value would be required to continue the recurrence: the wave function at negative
μ, “at the other side of the singularity,” would not be determined by initial data at
positive μ. At vanishing volume, evolution would still break down, and we would
have a singularity as classically.

It turns out, however, thatψ0 is not needed for the further recurrence: it completely
decouples from the rest of the wave function. Whenever it would show up in the
difference equation, it is multiplied with a coefficient that vanishes at this rung of
the ladder. (For the symmetric ordering of the constraint giving rise to the difference
equation (4.16), we move through μ = 0 without decoupling. Other orderings lead
to singularities sinceψ0 or other values of the wave function nearμ = 0 could not be
determined but would be needed for further recurrence.) In this way, the recurrence
can be undertaken through the place of the classical singularity; there is no singularity
anymore and our evolving quantum space–time instead extends to a new region not
seen classically. “Before” the big bang, in this internal-time picture and now back
in forward evolution, we have a contracting universe since V (μ) decreases with
increasing μ for μ < 0. The change in sign of μ means that the orientation of the
triad reverses in the big bang transition where the universe, as it were, turns its inside
out.

Instead of determining the value of ψ0, the difference equation taken at
μ = 4δ(μ) provides a linear equation for two values of the wave function that
would be used in the recurrence for ψ0 if the ψ0-coefficient in the difference equa-
tion would not vanish. By the preceding recurrence steps, the linear equation can
be traced back to one for the initial values chosen at some large μ, providing a
dynamical initial condition [42, 43].

All this happens deeply in the quantum regime and different effects are at play.
The difference-equation nature, crucial for the recurrence, relies on the use of
holonomies. Comparing this to the classical expression of the constraint, we are
considering higher-order corrections to the classically quadratic term in c, as it is
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required for almost-periodic expressions. We also have crucially made use of the reg-
ular behavior of inverse-triad operators, especially in the matter Hamiltonian (which
then annihilates |0〉). We have not specified a refinement scheme but just used the
property that aroundμ = 0, δ(μ) is regular. Since singularity-traversal requires only
a fewμ-steps, possible changes in δ(μ) can be ignored. The argument is independent
of the refinement scheme. Finally, since we are considering the evolution of an entire
wave function, there are implicit quantum back-reaction effects of the whole state
on its expectation values, implying further deviations from classical evolution. All
these effects are at play in the highly quantum phase around μ = 0, which makes
the development of an intuitive picture difficult. There are, however, simple special
cases where one of the effects is dominant, or where the different effects can be
separated from one another. Such models provide more intuitive pictures of at least
some aspects of singularity resolution in loop quantum cosmology, and they allow
one to develop effective descriptions, the topic of the next part.
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Chapter 5
Effective Equations

With (4.15), and perhaps a lattice-refining δ(μ), we have derived a fundamental
difference equation that governs the dynamical behavior of a wave function for an
isotropic evolving quantum geometry. The equation’s structure shows that, at a basic
level, there is no big bang singularity in this model since dynamics does not stop
where the classical singularity would be. At this level, however, it is difficult to iso-
late specific mechanisms of singularity prevention active in general, or to describe
the kind of (quantum) geometry that replaces the classical singular space-time: Con-
ceptually, one would have to face the thorny issues of interpreting the wave function
appropriately or, more precisely, of determining observables of interest and com-
puting their expectation values by a suitable inner product to normalize the wave
function. (See Sect. 7.3 and Chap. 12 for more on these topics.) Technically, explicit
solutions in all but the simplest models are hard to come by; and even if some could
be found (for instance by numerical methods), all the quantum geometry and quan-
tum dynamics effects we have seen—holonomies, inverse-triad corrections as well
as ubiquitous quantum back-reaction—usually occur at once, blurring the overall
picture. While one can say that the big bang, according to the difference equation,
is a transition from collapse to expansion, with a role played by reversal of orienta-
tion, specific statements about the universe before the big bang, such as the sizes it
reached, its semiclassical properties or even the notion of time, require more details
of the solutions to be known.

5.1 Quantum Effects in Separation

As we have seen in the constructions of loop quantum gravity, the main classes
of quantum corrections in this setting are those due to holonomies, due to inverse-
triad operators, and due to quantum back-reaction. None of them is, a priori, to be
underestimated in its direct influence on the wave function and in changes to the
classical physics it implies. But quantum physics, anyway, is different from classical
physics already in its basic mathematical formulation. Thus, it is not immediately
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clear what implications exactly a certain change in a Hamiltonian operator may
entail. Quantum features are brought out and analyzed much more clearly in effective
equations: equations of motion of the classical type, which nevertheless incorporate
quantum corrections such as effective potentials or new interactions and degrees
of freedom. Such equations directly arise if one can manage to formulate quantum
dynamics for expectation values of operators of interest in certain states, rather than
for the states or wave functions. As such, they deal with the full quantum dynamics,
but organized in a way different from the standard one. A derivation, however, is
complicated since expectation values are not the only degrees of freedom in quantum
physics; they usually couple to and interact with all kinds of moments of a state such
as its fluctuations or correlations.

An expectation value 〈Ôn〉 of some integer power (n > 1) of an operator Ô can-
not, in general, be reduced to expectation values of lower powers. There are infinitely
many independent moments measuring the differences 〈(Ô −〈Ô〉)n〉,whose dynam-
ics in general can be formulated only by a partial differential equation such as the
Schrödinger or Wheeler–DeWitt equation rather than a finite set of ordinary differ-
ential equations as in classical mechanics or homogeneous cosmology. Expectation-
value dynamics, subject to equations of motion on an infinite-dimensional space,
then cannot always be useful, but there are solvable models in which expectation
values decouple from the moments, and there are semiclassical or other regimes in
which the magnitude of higher-order moments is systematically suppressed by fac-
tors of � (or rather, as we will see,

√
�). In those cases, much information can be

gained by analyzing equations for expectation values, or possibly those equations in
combination with additional ones for a finite number of the moments. This method
provides means to study at least the approximate behavior in certain classes of states,
incorporating all quantum corrections.

The strategy for effective descriptions based on expectation-value dynamics will
thus begin with an attempt to find the simplest model system of decoupled dynamics,
which might not be realistic but opens up a route to more general situations. If there
is such a highly controlled system, one can proceed by perturbation theory to extend
it to cases closer to what one is interested in. Such a strategy is analogous to what
is done in much of particle physics: start with free quantum field theories which
can be quantized completely and non-perturbatively, and add to them the effects of
interactions by perturbation theory. An analogous procedure for systems with finitely
many classical degrees of freedom is applied in this chapter to quantum cosmology,
followed later in Chap. 13 by a more general discussion of its parallel nature to what
is done in quantum field theories.

For a tractable model, we should first reduce the number of relevant corrections to
be taken into account. While we cannot arbitrarily change the quantum dynamics by
removing some quantum corrections, there are often parameter choices (such as mat-
ter contents, quantization ambiguities or the class of states considered) which render
some effects subdominant. In particular, we have different ranges of the geomet-
rical variables—in isotropic settings chiefly the curvature or the Hubble parameter
ȧ/a together with the scale factor itself—for holonomy corrections on one hand and
inverse-triad corrections on the other to enter the game:

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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• Holonomy corrections are weak if the argument of the holonomy’s exponential
function is small compared to one, �0ȧ � 1. Formulated for the Hubble parameter
and using N = V /�3

0 with (2.16), we obtain

ȧ

a
� H∗ := 1

�0a
=

(
N (a)

V a3

)1/3

= 1

v(a)1/3
. (5.1)

If this inequality holds for H = ȧ/a, holonomy corrections are very small. In
other words, and rather intuitively, the Hubble distance should be much larger than
the discreteness scale v(a)1/3.

• Inverse-triad corrections are weak if elementary fluxes are large compared to
Planckian sizes, �2

0| p̃| � �2
P; see (3.59) and Fig. 3.3. Thus,

a � a∗ := �P

�0
= �PN (a)1/3

V 1/3 = a

v(a)1/3
�P (5.2)

or simply v(a) � �3
P ensures small inverse-triad corrections.

Quantum-geometry corrections of either type are small if �P � v(a)1/3 � 1/H .

In both cases, it is thus the elementary size v of discrete building blocks that, in
comparison with classical phase-space values or fundamental constants, determines
the relevance of quantum-geometry corrections. As one can directly see, the equations
are invariant under the rescaling options which we always have: changing coordinates
or changing the region of size V used to formulate the homogeneous phase space
and its quantization. As written, no side of either equation depends on V ; and while
(5.2) has factors depending on the coordinates, both sides of that equation behave in
the same way when coordinates are changed. These equations, just like the quantum
corrections they describe, are scaling invariant. In fact, they can be fully formulated
in terms of the scaling-invariant v(a) and H (and the constant �P).

If we assume an underlying discrete state in which v(a) is sufficiently large,
v(a) � �3

P, for all values of a considered, inverse-triad corrections can be ignored.
In the simplest case of a constant v, which with x = −1/2 is possible as a limiting
case of the generic region of lattice refinement, the size of inverse-triad corrections is
preserved during evolution. If they are suppressed once, for instance at large volume,
they will not become significant even if one evolves toward the big bang. For other
cases of x, or even non-power law forms of N (a), the significance of inverse-triad
corrections will, however, change during evolution, and must be analyzed carefully.

Holonomy corrections become important only if the energy density Gρ,which by
the Friedmann equation is proportional to ȧ2/a2, comes close to the characteristic
(a-dependent) density H 2∗ = v(a)−2/3 of discrete patches. Physically one clearly
expects quantum effects due to the discreteness to set in at this stage, which is
also borne out directly by (5.1). Again, we may initially choose x = −1/2 for the
simplest case of a constant v(a), but now the matter density itself, and thus ȧ/a via
the Friedmann equation, is changing dynamically. For a general scalar field source ϕ
we would have to know the behavior of ϕ(a) and its momentum pϕ(a) to see when its
energy density becomes large. We may pick the simplest case of a free, massless scalar

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_3
http://dx.doi.org/10.1007/978-1-4419-8276-6_3#Fig3
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whose potential vanishes, thus implying a constant momentum pϕ = V a3ϕ̇ and a
purely kinetic energy density behaving as ρfree = 1

2 p2
ϕ/a

6V 2. The a-dependence of
ρfree is evident, which can easily be compared with one’s choice of v(a)−2/3 to see
when (5.1) gets violated. (The choices of this example, x = −1/2 with a scalar free
and massless, were also made in [1], but for other reasons).

5.2 Wave-Function Dynamics

The Wheeler–DeWitt equation for a wave function of the universe can be solved
explicitly in several cases. In most of them, quantum back-reaction results: expec-
tation values of operators of interest in evolving states do not follow the classical
trajectories but show deviations depending on the amount of quantum fluctuations
and other quantum parameters. Especially near the singularity at vanishing scale
factor, a boundary in the phase space underlying Wheeler–DeWitt quantizations, the
form of the wave function can matter significantly; explicit examples, in which the
guiding equation of a Bohmian viewpoint was taken to express scale-factor dynam-
ics, have for instance been analyzed in [2, 3]. Even more situations can be studied
numerically, also including several of the corrections of loop quantum gravity.

Example 5.1 For a free, massless scalar as the matter source, we have the purely
kinetic energy density ρfree = p2

ϕ/2a6V 2. In terms of triad variables (but not using
holonomies, thus assuming a Wheeler–DeWitt representation) and a specific ordering
to make it soluble, the Wheeler–DeWitt equation

(
−γ−2 ̂c2

√|p| + 4πG

3

p̂2
ϕ

|p|3/2
)
ψ = 0

becomes

−8πG

3
p
∂

∂p

(
p
∂

∂p
ψ

)
+ 1

2

∂2

∂ϕ2ψ = 0.

With � := √
3/16πG log |p|, the equation reduces to the Klein–Gordon equation

with general solution ψ(�, ϕ) = ψ+(ϕ + �) + ψ−(ϕ − �) for arbitrary functions
ψ±. Normalizability restrictions on the admissible functions that arise from a phys-
ical inner product on the solution space will be discussed in Sect. 12.3.2. Left- and
right-moving, or collapsing and expanding, solutions ψ± are independent in this
Wheeler–DeWitt model. An interesting interpretation of holonomy corrections from
loop quantum cosmology is that they introduce scattering between these solutions at
high density, allowing the transition from collapse to expansion [4].

Once the form of the wave function becomes relevant, systematic investigations—
analytical or numerical—are rather involved. The problem is not so much handling
the equations, but rather gaining sufficient control over the large parameter space that

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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is available for an initial state. Moreover, in a quantum cosmological situation it is not
always straightforward to guess what form a good semiclassical state may have, or in
which way it would evolve into a stronger quantum state. If a whole wave function, or
even a sufficiently general class, must be provided, there are hardly any guidelines.
At this stage, a systematic organization of all the parameters of a generic wave
function becomes important. A general formulation of these properties, together
with implications for quantum corrections at the level of equations of motion, is
provided by effective descriptions.

5.3 Solvable Models for Cosmology

It turns out that a free, massless scalar in a spatially flat isotropic universe provides
a model much simpler than one could have hoped for, in a sense very different
from what is illustrated by the availability of explicit wave-function solutions in
Example 5.1: it is a free quantum model in which even the unavoidable interactions
that happen between matter and gravity do not cause quantum back-reaction: in
suitable factor orderings, expectation values of basic operators satisfy equations of
motion completely independent of the behavior of moments of a state: they can be
solved for exactly without knowing much else about the state, which could even be
highly quantum.

5.3.1 Wheeler–DeWitt Quantization

Formulating the flat Friedmann equation in canonical variables shows that the
momentum of the scalar ϕ is a quadratic expression of the gravitational canonical
variables. We will use the latter in a general form

V = 3V

8πG f0(1 − x)
a2(1−x), P = − f0a2x ȧ such that {V, P} = 1 (5.3)

which later on will allow us to encompass all x-power-law refinement schemes
δ(a) = f0a2x/γV 1/3 at once (if holonomies eiP are used). We can then write the
Friedmann equation as

pϕ = ∓
√

3

4πG
a2|ȧ|V = ∓

√
16πG

3
(1 − x)|V P| (5.4)

which is indeed quadratic in the canonical variables (except for the absolute value,
see below). The right-hand side corresponds to an upside-down harmonic-oscillator
Hamiltonian after a linear canonical transformation of variables.

Here, the parameter f0 which determines the discreteness scale of lattice refinement drops
out, as appropriate for the classical theory. The parameter x enters only as a constant rescaling
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of pϕ, which is itself a constant. Both parameters, f0 and x, will play a more quantitative
role once we loop-quantize this model, even though the qualitative behavior of solutions in
the exactly solvable model will be insensitive to their values.

As for dimensions, f0V −1/3a2x = γ δ(a) is dimensionless and so is P, while V has
the dimension of an action. When V is changed, V changes in the same way while P
remains unchanged. Note that f0 is independent of V because f0a2x = γ �0 must be
independent of V .

We interpret pϕ(V, P) as the Hamiltonian of the system, generating the dynamical
flow of V and P with respect to the internal time ϕ. In fact, writing (5.4) as a
constraint

C := pϕ ± H(V, P) = 0 with H(V, P) :=
√

16πG

3
(1 − x)|V P| (5.5)

as a positive Hamiltonian, equations of motion are

dϕ

dϕ
= {ϕ,C} = 1,

dpϕ
dϕ

= {pϕ,C} = 0 (5.6)

dV

dϕ
= {V,C} = ±∂H

∂P
,

dP

dϕ
= {P,C} = ∓∂H

∂V
. (5.7)

The first equation means that the gauge parameter used here as time is identical with
the scalar ϕ; the following equations then provide evolution of V and P with respect
to ϕ in the ordinary Hamiltonian way. To translate back to proper time, one would
use the original Hamiltonian constraint (4.9) with lapse function N = 1.Multiplying
the ϕ-equations of motion by dϕ/dτ = {ϕ,Cgrav[1]} then provides the equations of
motion in proper time τ.

The Hamiltonian can easily be quantized, choosing the symmetric ordering

Ĥ =
√

4πG

3
(1 − x)|V̂ P̂ + P̂ V̂ |. (5.8)

Comparing with the quantization in Example 5.1, which corresponds to p̂2
ϕ ∝

V̂ P̂ V̂ P̂ (for x = 0), we have

p̂2
ϕ ∝ 1

4
(V̂ P̂ + P̂ V̂ )2 = V̂ P̂ V̂ P̂ − i�V̂ P̂ − 1

4
�

2,

constituting a different ordering. Here, the operator is symmetric with respect to
an inner product with integration measure dV ; in Example 5.1 the choice resulted
in an operator symmetric with the measure d log |p|. Logarithmic scale factors are
often used in Wheeler–DeWitt quantizations to map the singular boundary a = 0 to
infinity (which, however, does not remove the singularity).

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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We are using a variable V which takes values only on the positive real line. At the effective
level, we can take the required boundary conditions into account, as alluded to in Sect. 2.2
and Example 2.1, by using the “affine” phase-space variables V and D := V P with the
non-canonical algebra {V, D} = V . These variables generate a free, transitive and symplec-
tomorphic group action on R

+ × R and can be used for a group-theoretical quantization of
the phase space [5]. A unitary representation on a Hilbert space then provides self-adjoint
operators V̂ and D̂, while a self-adjoint operator for P does not result. The model is thus an
example for the more general affine quantization program [6, 7].

The Hamiltonian H ∝ |D| is now linear, but formulated in non-canonical variables. The
solvability of the system is still realized because it is based on a linear algebra (V, D, H)
of basic variables together with the Hamiltonian. Any quantization respecting the linearity
will lead to the same solvability properties by which expectation values and moments of
a state can be explicitly solved for. The affine variables are preferable from a kinematical
perspective. However, dynamical equations of the model show that the boundary V = 0
is not crossed for any finite ϕ; thus we may keep using the simpler canonical variables. In
particular, this will allow us access to quantum fluctuations of the curvature parameter P,
not just of D.

In Ĥ , after taking the square root of p2
ϕ, the absolute value required for a positive

Hamiltonian can make it difficult to progress further if our aim was to find complete
wave functions as solutions or analyze the Hamiltonian operator directly. This diffi-
culty is a very characteristic one in quantum gravity, where square-root Hamiltonians
arise in many deparameterizations. (The theory is even more complicated if one does
not or cannot deparameterize. In this context we will see a further, crucial advantage
of effective descriptions in Sect. 13.2.3)

Thanks to the solvability, which will now be demonstrated, most of the cosmo-
logically interesting information can be gained side-stepping wave functions. First
turning to expectation values, we must derive and solve equations such as

d

dϕ
〈V̂ 〉 = 〈[V̂ , Ĥ ]〉

i�
. (5.9)

Also here, the absolute value in Ĥ seems to make a derivation of the commu-
tator with V̂ difficult. But if we have a state that is supported only on the pos-
itive part of the spectrum of V̂ P̂ + P̂ V̂ , the expectation value 〈[V̂ , Ĥ ]〉+ ∝
〈V̂ (V̂ P̂+ P̂ V̂ )−(V̂ P̂+ P̂ V̂ )V̂ 〉+ in such a state, denoted by the subscript “+”, can be
computed without implementing the absolute value: Ĥ in both terms of the commuta-
tor acts directly on the state that obeys the positivity condition, where it agrees with the
expression without the absolute value. After the absolute value can safely be dropped,
the remaining expression for the Hamiltonian is quadratic and the commutator fol-
lows straightforwardly. Similarly, on a state supported only on the negative part of the
spectrum of V̂ P̂ + P̂ V̂ ,we have 〈[V̂ , Ĥ ]〉− ∝ −〈V̂ (V̂ P̂ + P̂ V̂ )−(V̂ P̂ + P̂ V̂ )V̂ 〉−.

Superpositions of these different kinds of states, supported on opposite signs of the spectrum
of V̂ P̂ + P̂ V̂ , cannot be treated in the same way, but usually such information for expectation
values would not be of much use, anyway: to see this, we can use the analogy of a free,
relativistic particle with a wave function satisfying the Klein–Gordon equation

− ∂
2ψ

∂t2 + ∂2ψ

∂x2 = 0. (5.10)

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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Its classical formulation is presented by the constraint E2 − p2 = 0 relating energy and
momentum. Writing energy as the momentum of time, we have −p2

t + p2 = 0 which with
pt analogous to pϕ has a form similar to the Friedmann equation used here. We can solve
for pt = ±|p| where an absolute value appears, too.

After quantization, equations of motion for 〈q̂〉 are computed as in quantum cosmology,
making use of states supported entirely on the positive or negative, respectively, parts of the
spectrum of p̂. Since the sign of the momentum is definite in both cases, they correspond
to purely right-moving or purely left-moving states, respectively. It now becomes clear why
the evolution of an expectation value of q̂ in a superposition of such states would be of low
interest: as an expectation value in two wave packets moving in opposite directions, it would
indicate a point somewhere between the wave packets, which in general can be very far away
from the actual positions of the wave packets; it can even be at a place where the probability
to observe the particle in a single measurement would be zero. Similarly, if we compute
fluctuations as we will do it for cosmology, they can grow arbitrarily large just because the
wave packets in the superposition are moving away from each other. Such cases of large
fluctuations do not at all correspond to strong quantum behavior, and so their knowledge for
a superposition would even be potentially misleading. If we restrict attention to purely right-
moving or purely left-moving superpositions, on the other hand, no such issues arise. Thus,
it is in fact much more suitable to consider only states of definite sign of the momentum, or
of H in quantum cosmology, and compute expectation values or moments. Then, absolute
values can be dropped, immensely simplifying calculations. If superpositions of solutions
of opposite signs are desired, knowing the shape of individual wave packets still allows one
to infer the behavior of superpositions.

For the absolute value to be dropped in the Hamiltonian, states used must always
be supported on a definite sign of the spectrum of V̂ P̂+ P̂ V̂ .Since theϕ-independent
Hamiltonian is preserved during evolution, it is enough to ensure positivity (or neg-
ativity) for the initial state, thus posing conditions for initial values to be chosen.
While expectation values and moments do evolve, the sign of V̂ P̂ + P̂ V̂ will be
preserved such that equations of motion valid at all times are obtained. There is a
second sign choice involved in specifying the dynamics: the one in the relationship
(5.5) between pϕ and H. This sign distinguishes negative-frequency and positive-
frequency modes and plays a role quite different from the sign for left-moving and
right-moving modes. It will be important in the discussion of physical inner products
in Chap. 12; for now, we may simply fix it by choice, which we do as the positive
sign. In particular, for expectation values of basic operators we have

d

dϕ
〈V̂ 〉 = 〈[V̂ , Ĥ ]〉

i�
=

√
4πG

3

1 − x

i�
〈[V̂ , V̂ P̂ + P̂ V̂ ]〉 =

√
16πG

3
(1 − x)〈V̂ 〉

(5.11)

d

dϕ
〈P̂〉 = −

√
16πG

3
(1 − x)〈P̂〉 (5.12)

which can easily be solved:

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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〈V̂ 〉(ϕ) = Vi exp
(√

16πG/3(1 − x)ϕ
)
,

〈P̂〉(ϕ) = Pi exp
(
−√

16πG/3(1 − x)ϕ
) (5.13)

with initial values satisfying the constraint

√
16πG

3
(1 − x)Vi Pi = −pϕ. (5.14)

To obtain solutions in proper time τ rather than internal time ϕ,we solve the equation

pϕ = a3ϕ̇V =
(

8πG f0(1 − x)V

3V

)3/(2(1−x)) dϕ

dτ
V

= −
(

8πG f0(1 − x)Vi

3V

)3/(2(1−x))

e
√

12πGϕ dϕ

dτ
V (5.15)

for ϕ(τ), using again that pϕ must be constant. With exp
(√

12πGϕ(τ)
)

∝ −τ as

the solution to (5.15) with constant pϕ, the proper-time solutions for 〈V̂ 〉(τ ) and
〈P̂〉(τ ) directly follow. In particular, 〈V̂ 〉(τ ) ∝ (−τ)2(1−x)/3 corresponds exactly to
the classical behavior for a stiff fluid, for which V ∝ a2(1−x) ∝ (−τ)2(1−x)/3.

Not only the solutions but also the equations themselves reveal the correct Fried-
mann dynamics of a free, massless scalar. This behavior follows from the construction
together with the absence of quantum back-reaction in the present model, but for the
later discussion of modified Friedmann equations in loop quantum cosmology it is
instructive to derive the proper-time equations from those in internal time ϕ. Using
the relationships between the proper-time derivative ϕ̇ and the scalar momentum,
and the one between a and V, we compute the Friedmann equation

(
ȧ

a

)2

=
(

ϕ̇

2(1 − x)〈V̂ 〉
d〈V̂ 〉
dϕ

)2

=
(

V −1a−3 pϕ

2(1 − x)〈V̂ 〉
)2

· 16πG

3
(1 − x)2〈V̂ 〉2 = 4πG

3

p2
ϕ

a6V 2 (5.16)

and from

d2〈V̂ 〉
dϕ2 = 16πG

3
(1 − x)2〈V̂ 〉 (5.17)

(taking one more derivative of (5.11)) the equation

ä

a
+ 2

(
ȧ

a

)2

+ 2(1 − x)

((
ȧ

a

)2

− 4πG

3

p2
ϕ

a6V 2

)
= 0. (5.18)
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The second part, multiplying (1 − x), vanishes by virtue of the Friedmann equation;
the first one being zero is equivalent to the Raychaudhuri equation of a stiff fluid.

At this stage, we have provided a quantization of the model and determined the
exact behavior of expectation values. The dynamics of states is based on the operator
algebra that defines the quantum system and its dynamics via commutators with the
Hamiltonian. By solving the equations of motion, we have computed expectation
values ready to deliver physical properties of the model. Similarly, as seen later,
we can compute fluctuations, correlations, and higher moments of an evolving state,
providing information about the statistics of repeated measurements. What we do not
provide in this way of describing the quantum system, not making use of a Hilbert-
space representation, is a handle on eigenvalues of operators, or on the outcomes of
single measurements. But for quantum cosmology, in which we never do a direct
measurement on the whole system presented by the universe but rather averaged
collections of small individual ones, the information we do obtain is clearly sufficient.
We can then fully exploit the advantage of a representation-independent treatment,
keeping the algebra of basic operators with the Hamiltonian fundamental.

The quantization analyzed so far corresponds to a Wheeler-DeWitt equation for
the states used since a direct representation of the curvature variable P, rather than
just holonomies, was assumed. This model thus cannot resolve the classical singu-
larity, and indeed wave packets simply follow the classical trajectories as shown by
the solutions for expectation values. (In interacting models quantum back-reaction
might produce new quantum forces preventing the singularity; see Example 7.1. This
possibility remains incompletely studied in Wheeler–DeWitt quantizations, but even
if it could be realized, singularity avoidance would not be general: the free, massless
scalar model used here remains singular in any case.)

5.3.2 Loop Quantization

Loop quantum cosmology shows more promise for resolving singularities, which we
have in fact already seen at the level of the fundamental difference equation. Since
we cannot directly quantize non-almost periodic expressions such as c2 (or P2), the
previously realized solvable nature is no longer satisfied as in the Wheeler–DeWitt
model. One could worry that the infinite number of higher-order terms when P2

is extended to an almost-periodic function such as sin2P would make the model
deviate strongly from the solvable one. Additional terms would become relevant just
in the high-curvature regime of most interest, where P � 1 no longer holds. Quite
surprisingly, it turns out that even the loop-quantized free, massless scalar model is
of an exactly solvable nature. Its Hamiltonian is no longer quadratic, but in suitable
variables it is realized as a linear model where basic operators together with the
Hamiltonian still form a linear algebra. This realization of loop quantum cosmology
[8] is called harmonic cosmology, whose cosmological implications we will explore
further in the next chapter. Here, we derive its basic formulation and the relevant
equations.

http://dx.doi.org/10.1007/978-1-4419-8276-6_7
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The solvable dynamics analyzed in the Wheeler–DeWitt setting is representation-
independent and sensitive just to the fundamental algebra. With a loop quantization,
we now have an inequivalent representation. Properties of the representation itself
clearly cannot feature at a representation-independent level, but it comes along with
a new algebra of basic operators, now including holonomies, and thus new physics.
In particular, the Hamiltonian must be adapted to the basic algebra by including the
quantum-geometry corrections of loop quantum gravity, thus changing the dynamics.

Solvable loop models can only be derived with suitable choices of variables that
are not canonical; otherwise the non-quadratic Hamiltonian in V and P will hide any
solvability features. In addition to V as defined before, let us introduce the variable
J := V exp(iP) and promote these basic variables to a quantum ∗-algebra generated
by operators V̂ and Ĵ , such that V̂ is self-adjoint, V̂ † = V̂ , while Ĵ is not due to the
presence of the imaginary unit in its classical analog. We thus have two independent
(anti-)self-adjoint combinations Ĵ± := Ĵ ± Ĵ †, whose freedom will later have to be
restricted by reality conditions. While these variables are not canonical, they satisfy
a linear algebra

[V̂ , Ĵ±] = � Ĵ∓, [ Ĵ+, Ĵ−] = 4�V̂ (5.19)

which correctly quantizes the classical Poisson brackets between them. Most
importantly, the loop-quantized Hamiltonian, again using evolution in internal time
ϕ, is linear in these variables, Ĥ = √

16πG/3(1− x)| 1
2 i Ĵ−|, except for the absolute

value which can be dealt with as in the preceding Wheeler–DeWitt case. There is
then a linear algebra between the basic operators and the Hamiltonian, implying
solvability and the absence of quantum back-reaction as it did for systems with
a Hamiltonian quadratic in canonical variables. Holonomy corrections are fully
included: with −P = f0a2x ȧ = δc = �0c̃ we have �0 = γ−1 f0a2x suitable
for a power-law form of lattice refinement.

In accordance with the classical identity J J ∗ = V 2 we have to impose a reality
condition at the quantum level: Ĵ Ĵ † = V̂ 2 in this ordering. Once implemented, this
condition brings us to the correct number of real degrees of freedom. As a condition
quadratic in operators, it will imply relations between fluctuations and expectation
values. But as a relationship that does not arise dynamically, it does not correspond
to quantum back-reaction: imposed once for an initial state, it will remain true at all
times.

We notice that solvability is realized for a specific factor ordering between V and
exp(iP) in the original quantum constraint, which does not agree with the ordering
used in ( 4.15). Also here, we have chosen a very special ordering to realize solvability.
In a Wheeler–DeWitt-type equation, the ordering corresponds to

p̂2
ϕ ∝ − Ĵ 2−=−(V̂ êiP −̂e−iP V̂ )2=−V̂ êiP V̂ êiP + V̂ 2 +̂e−iP V̂ êiP V̂ −̂e−iP V̂ ̂e−iP V̂

or to a difference operator

p̂2
ϕ |ω〉 ∝ −(ω + 1)(ω + 2)|ω + 2〉 + ω(2ω + 1)|ω〉 − ω(ω − 1)|ω − 2〉 (5.20)

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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in terms of V̂ -eigenstates |ω〉. The resulting difference equation does not correspond
to the non-singular one (4.15) arising from loop quantum cosmology, but away
from ω = 0 expectation-value solutions analyzed here capture its properties up
to factor-ordering corrections. Moreover, we are ignoring inverse-triad corrections
to realize exact solvability. (They will be dealt with in more detail in Chap. 10). All
those additional effects can be included approximately by perturbations around the
solvable model. Then, quantum back-reaction results once quantum effects become
important. For a framework of such perturbations, we will first return to the Wheeler–
DeWitt model and analyze effects it implies in weak-curvature regimes where no loop
representation should be necessary.

5.4 Isotropic Perturbation Theory: Spatial Curvature, a
Cosmological Constant, and Interacting Matter

For small-curvature regimes, holonomy corrections of loop quantum gravity are not
important; and since we keep for now our assumption that inverse-triad corrections
are weak as well, systems can be analyzed by a Wheeler-DeWitt model. In order to
avoid interpretational issues of a wave function, we will work with the solvable quan-
tum model obtained for a free, massless scalar in a spatially flat isotropic geometry.
This will allow us to directly compute dynamical expectation values as well as prop-
erties of evolving states such as their fluctuations and correlations. However, only the
spatially flat case with the specific matter content is exactly solvable; in other cases,
which are certainly of high interest, too, quantum back-reaction results, implying
that expectation values alone no longer obey a closed set of differential equations.
In internal-time evolution, the Hamiltonian will no longer be quadratic in canonical
variables, nor will it have the form of a linear system in new variables. Equations of
motion of the form (5.9) will require expectation values of commutators non-linear
in basic variables on the right-hand side. Such terms constitute independent quantum
variables not reducible to expectation values of basic operators; they are subject to
their own dynamics which must be known in order to be able to solve for the time
dependence of expectation values.

5.4.1 Free Matter

If we have spatial curvature or a cosmological constant of either sign, the free,
massless scalar still provides a global internal time. But its flow is now generated by
a Hamiltonian H(V, P) not quadratic in canonical variables: Solving the Friedmann
equation for pϕ and introducing our earlier parameterization of variables, we have

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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pϕ = ∓
√

3

4πG
a2

√
ȧ2 + k −�a2V

= ∓
√

16πG

3
(1 − x)V

×
√√√√

P2 + k f 2
0

(
8πG(1 − x) f0V

3V

) 2x
1−x −� f 2

0

(
8πG(1 − x) f0V

3V

) 1+2x
1−x

. (5.21)

As a function of V and P, this expression is not even polynomial, let alone quadratic,
and its derivatives as they would enter Poisson brackets are certainly non-linear. The
square root may in fact be difficult to quantize at an operator level since doing
so via the spectrum would require one to determine the equivalent of the energy
spectrum of a particle in a general power-law potential (depending on x). And even
if one can find the spectrum in special cases and define the square root via the
spectral decomposition, the computation of commutators with V̂ and P̂ as required
for equations of motion would be even more involved. This is another place where
an effective treatment via expectation values and moments will be of much use to
shed light on evolving state properties.

Instead of quantizing the Hamiltonian and solving evolution equations for full
wave functions, we will exploit the relation to the solvable model realized before,
and approximately determine the evolution of state parameters. To do so concretely,
we will make use of a “background-state method”, analogous to a procedure well-
known from quantum field theory. In our case, this method entails that the quantum
Hamiltonian operator is expanded around expectation values 〈V̂ 〉, 〈P̂〉 in a back-
ground state that corresponds to a solution of the solvable model. Perturbation the-
ory then allows one to add quantum corrections due to the interacting nature of the
non-solvable model. The background-state expansion can formally be written for the
operator H(V̂ , P̂) = H(〈V̂ 〉 + (V̂ − 〈V̂ 〉), 〈P̂〉 + (P̂ − 〈P̂〉) itself:

H(V̂ , P̂) “ = ”
∞∑

n=0

n∑
k=0

1

n!(n − k)!
∂n H(〈V̂ 〉, 〈P̂〉)
∂〈V̂ 〉k〈P̂〉n−k

1

n!
∑

symm

(V̂ −〈V̂ 〉)k(P̂−〈P̂〉)n−k

= H(〈V̂ 〉, 〈P̂〉)+∂H(〈V̂ 〉, 〈P̂〉)
∂〈V̂ 〉 (V̂ −〈V̂ 〉)+∂H(〈V̂ 〉, 〈P̂〉)

∂〈P̂〉 (P̂−〈V̂ 〉)

+ 1

2

∂2 H(〈V̂ 〉, 〈P̂〉)
∂〈V̂ 〉2

(V̂ − 〈V̂ 〉)2

+ 1

2

∂2 H(〈V̂ 〉, 〈P̂〉)
∂〈V̂ 〉〈P̂〉

(
(V̂ −〈V̂ 〉)(P̂−〈P̂〉)+(P̂−〈P̂〉)(V̂ −〈V̂ 〉)

)

+ 1

2

∂2 H(〈V̂ 〉, 〈P̂〉)
∂〈P̂〉2

(P̂ − 〈P̂〉)2 + · · · (5.22)

with quotation marks indicating that this is not a strict equation for operators on the
full Hilbert space of states. It is rather an identity valid in suitable regimes such as
semiclassical ones, as we will justify in more detail in Chap. 13 on general effective
descriptions.

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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For a totally symmetric Hamiltonian, we have inserted a summation over the
permutation group, summing up all possible reorderings of the following operators.
If the right-hand side of (5.22) is truncated to a certain polynomial
order in basic operators, with coefficients ∂n H(〈V̂ 〉, 〈P̂〉)/∂k〈V̂ 〉∂n−k〈P̂〉 depend-
ing only on expectation values, commutators with V̂ and P̂ can easily be computed.
Once expectation values are taken, quantum corrections depend on the fluctuations
(V )2 = 〈(V̂ − 〈V̂ 〉)2〉 and (P)2 = 〈(P̂ − 〈P̂〉)2〉 as well as the covariance
CV P = 1

2 〈(V̂ − 〈V̂ 〉)(P̂ − 〈P̂〉)+ (P̂ − 〈P̂〉)(V̂ − 〈V̂ 〉)〉. Higher-order corrections
appear with coefficients of the general moments

(O1 O2 . . . On) : =
〈
(Ô1 − 〈Ô1〉)(Ô2 − 〈Ô2〉) · · · (Ôn − 〈Ôn〉)

〉
symm

= 1

n!
∑
π∈Sn

〈
(Ôπ(1) − 〈Ôπ(1)〉)(Ôπ(2) − 〈Ôπ(2)〉) · · · (Ôπ(n) − 〈Ôπ(n)〉)

〉

(5.23)

ordered totally symmetrically. In Chap. 13 we will see that formal expansions of
operators as in (5.22) can be avoided (and simplified) using Poisson geometry on
the quantum phase space of expectation values together with the moments (5.23) of
basic operators.

If we keep only the linear operator order in this expansion, we can directly verify
that the Ehrenfest-type equations

d〈V̂ 〉
dϕ

= 〈[V̂ , H(V̂ , P̂)]〉
i�

= ∂H(〈V̂ 〉, 〈P̂〉)
∂〈P̂〉 + · · · (5.24)

d〈P̂〉
dϕ

= 〈[P̂, H(V̂ , P̂)]〉
i�

= −∂H(〈V̂ 〉, 〈P̂〉)
∂〈V̂ 〉 + · · · (5.25)

will simply reproduce the classical equations of motion for the expectation values.
The second-order terms written above do not contribute to equations of motion of
expectation values such as 〈V̂ 〉 since, e.g., 〈[V̂ , (P̂−〈P̂〉)2]〉 = i�〈(2 P̂−2〈P̂〉)〉 = 0.
These terms do, however, contribute to the evolution of quantum fluctuations and
correlations. Quantum corrections to the evolution of expectation values then arise
from cubic operator terms in the background-state expansion. This will most clearly
be seen by the following examples, or by the general presentation of Chap. 13.

Example 5.2 (Harmonic cosmology) For the solvable model of Sect. 5.3.1, we have

Ĥ ∝ 1

2
(V̂ P̂ + P̂ V̂ ) = 〈V̂ 〉〈P̂〉 + 〈P̂〉(V̂ − 〈V̂ 〉)+ 〈V̂ 〉(P̂ − 〈P̂〉)

+ 1

2

(
(V̂ − 〈V̂ 〉)(P̂ − 〈P̂〉)+ (P̂ − 〈P̂〉)(V̂ − 〈V̂ 〉)

)

as an exact expansion around the background state with expectation values 〈V̂ 〉 and
〈P̂〉. Ehrenfest equations produce

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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d〈V̂ 〉
dϕ

= 〈V̂ 〉, d〈P̂〉
dϕ

= −〈P̂〉 (5.26)

free of quantum back-reaction thanks to the absence of cubic terms in the Hamil-
tonian. For moments of second order, using for instance

d

dϕ
(V )2 = 〈[V̂ 2, Ĥ ]〉

i�
− 2〈V̂ 〉d〈V̂ 〉

dϕ
(5.27)

we obtain in a similar way the equations

d(V )2

dϕ
= 2(V )2,

dCV P

dϕ
= 0,

d(P)2

dϕ
= −2(P)2. (5.28)

These linear equations can easily be solved:

〈V̂ 〉 ∝ eϕ, 〈P̂〉 ∝ e−ϕ, (V )2 ∝ e2ϕ, (P)2 ∝ e−2ϕ. (5.29)

As a consequence, relative fluctuations V/〈V̂ 〉 and P/〈P̂〉 are constant, and the
semiclassicality that may be posed on an initial state is exactly preserved even if we
get arbitrarily close to large curvature 〈P̂〉.

If we use the self-adjoint dilation operator D̂ instead of P̂, we obtain equivalent
results. The linear Hamiltonian

Ĥ ∝ D̂ = 〈D̂〉 + (D̂ − 〈D̂〉)
provides equations of motion

d〈V̂ 〉
dϕ

= 〈V̂ 〉, d〈D̂〉
dϕ

= 0 (5.30)

d(V )2

dϕ
= 2(V )2,

dCV D

dϕ
= CV D,

d(D)2

dϕ
= 0. (5.31)

The solutions obtained before are consistent with these equations, confirming that
the boundary problem associated with V = 0 does not play a role for the dynamics
of this model. However, in the formulation using D̂ we do not gain access to the
curvature fluctuationP but only toD, which is a higher moment from the point
of view of P.

5.4.1.1 Positive Spatial Curvature

For concreteness, we first consider the case of k = 1 (for a unit sphere, or k =
(Vunit/V )2/3 in general) and� = 0, choosing the refinement scheme x = 0 to make
the Hamiltonian linear at least in V :
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H(V, P) = V
√

P2 + k f 2
0 . (5.32)

We have absorbed an irrelevant constant factor of
√

16πG/3 in pϕ, rescaling our
internal time. For quantum equations of motion, we will have to compute expectation
values of commutators with V and P. Since the commutators will no longer be linear
in basic operators, equations of motion will mix expectation values with higher
moments such as fluctuations.

For a Wheeler–DeWitt model, the refinement parameters in the basic variables and the
Hamiltonian just amount to the selection of a convenient choice of canonical variables. There
are no quantum-geometry effects; all values for the refinement parameters are allowed, and
they have no influence on the dynamics. We keep f0 in the equations even though it has no
clear meaning in a Wheeler–DeWitt formulation since it will be useful for a comparison with
the loop equations at low curvature. Its value is not important in a pure Wheeler–DeWitt
context since it always cancels out for expressions in terms of a.

Following the background-state procedure, truncating the Hamiltonian at cubic
order in basic operators, we obtain equations of motion for expectation values up to
second order in quantum variables, including expectation values of second-degree
polynomials of basic operators as source terms [9]:

d〈V̂ 〉
dϕ

= 〈V̂ 〉〈P̂〉√
〈P̂〉2 + f 2

0

− 3

2
f 2
0

〈V̂ 〉〈P̂〉
(〈P̂〉2 + f 2

0 )
5/2
(P)2 + f 2

0
CV P

(〈P̂〉2 + f 2
0 )

3/2
(5.33)

d〈P̂〉
dϕ

= −
√

〈P̂〉2 + f 2
0 − 1

2
f 2
0

(P)2

(〈P̂〉2 + f 2
0 )

3/2
. (5.34)

Here, the second-order quantum variables are the fluctuation (P)2 = 〈(P̂ −〈P̂〉)2〉
and the covariance CV P = 1

2 〈V̂ P̂ + P̂ V̂ 〉 − 〈V̂ 〉〈P̂〉; the remaining second-order

moment (V )2 = 〈(V̂ − 〈V̂ 〉)2〉 does not enter these equations, but its evolution is
of high interest since it determines the behavior of volume fluctuations.

In order to analyze the dynamics of expectation values, we must know how P
and CV P evolve, which cannot simply be treated as constants. They are subject to
their own equations of motion, again following from the background-state expanded
Hamiltonian operator and Hamiltonian-type equations of motion such as (5.27).
Expanded to quantum variables of second order, we obtain

d(P)2

dϕ
= −2

P√
P2 + f 2

0

(P)2 (5.35)

dCV P

dϕ
= f 2

0
V

(P2 + f 2
0 )

3/2
(P)2 (5.36)
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d(V )2

dϕ
= 2 f 2

0
V

(P2 + f 2
0 )

3/2
CV P + 2

P√
P2 + f 2

0

(V )2. (5.37)

From the equations of motion (5.33) and (5.34) we immediately read off that there
is now quantum back-reaction: the evolution of expectation values is influenced by
other properties of a quantum state. To determine how significant these effects are,
we estimate the quantum-correction terms for a suitable class of states. Since we are
looking at the small-curvature regime with this Wheeler–DeWitt type quantization,
we can expect a state to be semiclassical such that its fluctuations are small. We may
for instance choose a state saturating the uncertainty relation

(V)2(P)2 − C2
V P ≥ �

2

4
(5.38)

at least at some initial time, and then see how the state evolves and how its changing
shape back-reacts on expectation values. For the orders considered, one can directly
see that the uncertainty relation is preserved by evolution: a state saturating the
relation once will always do so; it is a dynamical coherent state as long as higher-
order moments can be ignored.

Fluctuations can be large even in a dynamical coherent state if the covariance CV P

is large. One might assume CV P to vanish initially, but it evolves according to (5.36).
The main question is thus how quickly it can grow, similarly to the free particle as in
Sect. 3.1. Its rate of change is proportional to curvature fluctuations (P)2, which
change proportionally to themselves and moreover proportionally to 〈P̂〉. Both 〈P̂〉
and P are small in the semiclassical small-curvature regime. For initially small
curvature fluctuations, curvature fluctuations thus remain small for long times and
do not raise CV P too much. We expect that expectation values in a small-curvature
regime, especially around the recollapse phase of the closed model considered here,
follow trajectories very close to the classical ones.1 Ignoring quantum back-reaction
terms, this approximation provides the general solution

Pclassical(ϕ) = P0 cosh(ϕ − ϕ0)+
√

P2
0 + f 2

0 sinh(ϕ − ϕ0) (5.39)

Vclassical(ϕ) = V0

√
P2

0 + f 2
0

−P0 sinh(ϕ − ϕ0)+
√

P2
0 + f 2

0 cosh(ϕ − ϕ0)

. (5.40)

To see more of the behavior of the full state, we solve the equations of motion
for quantum variables. The coupled system together with expectation values is quite

1 This expectation is visible numericall as well [10], a reference which for Gaussian states also
agrees with several other statements made here.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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complicated, but since we know that the classical solutions provide a good approxi-
mation for the expectation values, we can use them on the right-hand sides of (5.35),
(5.36) and (5.37). Choosing without loss of generality ϕ0 = 0 and P(ϕ0) = 0 in the
general solution, picking the recollapse point as initial time, we can directly integrate
the equations one by one:

(P)2(ϕ) = (P)20 cosh2(ϕ) ∝ 1

V (ϕ)2
(5.41)

CV P (ϕ) = (CV P )0 + V0(P)20
f0

sinh(ϕ)

cosh(ϕ)
(5.42)

(V )2(ϕ) = (V )20 + 2 f −1
0 V0(CV P )0 tanh(ϕ)+ f −2

0 V 2
0 (P)20 tanh2(ϕ)

cosh2(ϕ)
.

(5.43)

As the first line shows, curvature fluctuations are indeed small at large volume, such
that our approximation is self-consistent. It also shows that these fluctuations are
symmetric around the recollapse point since they depend only on V, not on whether
that volume is reached before or after collapse. This is not the case for volume
fluctuations, however, which in general do not have a reflection-symmetric form in
ϕ. From (5.43) they are reflection symmetric only if (CV P )0 = 0, realized if the
state is uncorrelated at the recollapse; see Fig. 5.1.

Given the fact that correlations evolve in time and are in general non-zero, a
symmetric state is thus a very special case. With long cosmic evolution times, strong
correlations may indeed build up out of some uncorrelated state which may have been
realized earlier. In fact, the build-up of correlations is usually what decoherence
is based on; see Sect. 3.1: a state’s distribution evolves to a flat elliptical shape,
where some variables take on nearly classical dependence. Taken over to quantum
cosmology, one should thus expect that an evolving universe, reaching the recollapse
point, should be in a highly squeezed state. In the present model, this means that
volume fluctuations around the recollapse are highly asymmetric: after the recollapse
they might be much smaller than before—or much larger. A complete analysis of
state evolution and decoherence, even in this simple model, remains to be done to see
how the recollapse should be seen from a semiclassical perspective. But it highlights
the importance of keeping track of all state parameters, not just unsqueezed Gaussian
states as they often present the first (and only) choice for numerical evolutions of
wave packets.

So far we have solved the case of x = 0, which makes the Hamiltonian simpler since it is
linear at least in V .However, this case of lattice refinement, if it were used in a loop quantum
cosmology version of the model, is not particularly realistic: if we take our solutions seriously
only up to where the curvature variable |P| reaches a value of the order one, which would
signal the onset of strong holonomy corrections in loop quantum cosmology, we obtain a

volume ratio V0/V|P|=1 =
√

1 + 1/ f 2
0 . For this ratio to be sufficiently large, allowing the

recollapse volume V0 to be significantly larger than the volume where the quantum-geometry

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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Fig. 5.1 Symmetric and
asymmetric recollapsing
states [9]. The volume
expectation value is
represented by the central
line, fluctuations by the top
and bottom ones. Top
diagram: The effect of
volume fluctuations is hardly
visible on a large scale.
Bottom diagram: Differently
spreading states depending
on the correlations at the
recollapse point. Only for
vanishing correlations is the
state symmetric around the
recollapse.
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phase begins, we would have to choose f0 extremely small. From the perspective of lattice
refinement, this would be possible but not entirely natural.

We can nevertheless use our solutions to shed light on the behavior for general cases of x,
without changing the qualitative properties. For that, we just need to transform non-linearly
from the variables (V, P) for a desired x to new variables

Ṽ : = V

G f0

(
(1 − x)G f0V

V

)1/(1−x)

,

P̃ : = P

(
V

(1 − x)G f0V

)x/(1−x)

= P

(
V

G f0 Ṽ

)x

. (5.44)

Solutions for V and P will then take the form of x = 0-solutions found before, but
with Ṽ and P̃ inserted instead of V and P. Expectation values will thus refer to certain
powers of the basic variables, rather than to those of V and P directly; and also quantum
variables will be derived for the tilde-variables rather than the basic ones. A transformation of
quantum variables based on a non-linear map of basic operators would be very complicated;
in particular the orders will mix, such that fluctuations of V and P will depend on all kinds
of higher moments of Ṽ and P̃. But knowing the moments corresponding to some complete
set of classical variables will tell us how the state behaves qualitatively, such as regarding
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its symmetry around the recollapse: In particular, it is clear that large asymmetries around
the recollapse in general arise, irrespective of the value of x .

5.4.1.2 Negative Cosmological Constant

For a negative cosmological constant in a spatially flat universe, the Hamiltonian
takes the same form as for positive spatial curvature provided we choose x = −1/2
instead of x = 0. Just some factors change and we have to put in � < 0, which by
the previous procedure leads to solutions

Pclassical(ϕ) = −√|�| f0 sinh

(
3

2
ϕ

)
(5.45)

Vclassical(ϕ) = V0

cosh
( 3

2ϕ
) , (5.46)

again choosing the recollapse to happen at ϕ = 0, and

(P)2(ϕ)=(P)20 cosh2
(

3

2
ϕ

)

CV P (ϕ)= (CV P )0 + V0 (P)20√|�| f0

sinh
( 3

2ϕ
)

cosh
( 3

2ϕ
)

(V )2 (ϕ) = (V )20 +2V0 (CV P )0 |�|−1/2 f −1
0 tanh

( 3
2ϕ

) +V 2
0 (P)20 |�|−1 f −2

0 tanh2
( 3

2ϕ
)

cosh2
( 3

2ϕ
) .

(5.47)
Qualitative properties are clearly the same, and compared to the value of x = 0 in a
spatially closed universe we have the advantage that large recollapse volumes will be

possible, V0/V|P|=1 =
√

1 + 1/|�| f 2
0 � 1, if only |�| is small. This condition can

be satisfied independently of f0 and does not require fine tuning of the refinement
scheme. (Notice that f0 has different dimensions depending on the value of x). We
may have to fine tune �, but this we are quite accustomed to, anyway.

5.4.1.3 Positive Cosmological Constant

For a positive cosmological constant, it is again the x = −1/2-case that makes the
Hamiltonian linear in V . Equations for expectation values and quantum variables
can approximately be solved as before, but here the large-volume regime is entirely
different from the earlier two models. The flipped sign of the cosmological constant
means that some signs in the solutions change, too, such as

Pclassical(ϕ) = P0 cosh

(
3

2
(ϕ − ϕ0)

)
+

√
P2

0 −� f 2
0 sinh

(
3

2
(ϕ − ϕ0)

)
(5.48)
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Vclassical(ϕ) = V0

√
P2

0 −� f 2
0

P0 sinh
( 3

2 (ϕ − ϕ0)
) +

√
P2

0 −� f 2
0 cosh

( 3
2 (ϕ − ϕ0)

) . (5.49)

This implies that the classical volume is unbounded from above, and in fact diverges
for some finite value of ϕ. The unboundedness is certainly as it should be, for a
free, massless scalar in a spatially flat space-time does not trigger a recollapse if
there is a positive cosmological constant. Moreover, from dϕ/dτ ∝ pϕ/V (ϕ) (using
x = −1/2) one can solve for proper time τ(ϕ) and verify that in this variable, unlike
in internal time ϕ, it takes an infinite duration for the volume to diverge.

Problematic in the present scheme is, however, the fact that not only the volume
diverges, as an approximation to the evolution of expectation values, but also some
of the quantum variables such as V or CV P , while

(P)2(ϕ) = (P)20

⎛
⎝cosh

(
3

2
(ϕ − ϕ0)

)
+ P0√

P2
0 −� f 2

0

sinh

(
3

2
(ϕ − ϕ0)

)⎞
⎠

2

(5.50)
remains finite. Using this solution, one can solve for the other variables, but, com-
paring (5.49) with (5.50), it is already clear thatV must diverge when V does: for
infinite V the solution forP ∝ 1/V 2 gives zero, which by the uncertainty relation
requires an infinite volume fluctuation.

At this stage, the approximation breaks down: if quantum variables of second
order diverge, we cannot ensure that those of higher order can be ignored in the
process of solving up to second order. In fact, pushing the approximation to the
next, third order and using numerical solutions indicates that several other higher
moments tend to infinity, too [11]. The region of diverging volume is rather difficult
to understand with the effective methods used so far, but one can nevertheless apply
this scheme self-consistently to analyze the approach to large volume and see when
higher moments become significant. One result, obtained up to around tenth order
of the moments, is that a dynamical state quickly deviates from an initial Gaussian,
but then, as in the example of Fig. 5.2, a new hierarchy of moments seems to arise.

Near the time of diverging volume one would have to use the entire collection
of infinitely many moments, subject to a highly coupled dynamics. At this stage, a
direct analysis of the wave function and the difference equation it satisfies becomes
more useful. While analytic discussions are difficult also here, results from reduced
phase-space quantization [12] (and numerical solutions) show how a state travels to
diverging volume—and beyond. In fact, since these evolutions are done in terms ofϕ,
and a self-adjoint extension of the Hamiltonian can be used for the evolution, nothing
stops at the finite value of ϕ where the volume diverges. This is hard to interpret from
the viewpoint of a classical space-time: no observer can reach this point because
it would require an infinite amount of proper time. Formally, one can interpret the
behavior in such a way that the self-adjoint extension of the Hamiltonian (which turns
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Fig. 5.2 Example for the evolution of odd-order moments, which vanish for an initial Gaussian.
They rapidly deviate from the initial values, but then settle into a new hierarchy of a non-Gaussian
state better adapted to the evolution [11]. (Spikes appear at zeros of the moments due to the loga-
rithmic scale. The values of the scalar field are taken relative to the point of divergence ϕdiv where
Vclassical(ϕdiv) → ∞).

out not to be unique in this case [13]) imposes a certain form of reflecting boundary
condition at infinity, making the wave packet bounce back to finite volume. Formally,
one may extend space–time; but if no observer can cross the divide, the extension
lacks physical meaning. Only strong quantum back-reaction effects inducing a true
recollapse at finite volume could make the extension meaningful, but such a behavior
is not indicated by the higher-order analysis of [11].

Numerically, it is difficult to unravel if and in what sense the spread-out state indeed reaches
infinite volume. It certainly follows the classical trajectory toward infinity very closely—
as closely as one can say within the diverging quantum uncertainties. But since volume
fluctuations diverge, too, the wave packet gets spread out more and more. Quantum back-
reaction does ensue due to the large fluctuations and higher moments, and they yank the wave
away from its classical track. One could expect a detailed analysis to show that the wave
does not reach infinite volume, after all, but is held back by large moments. Then, proper
time would not diverge, either, and the following collapse phase would be a true part of
space–time. The low-curvature classical limit would be badly violated during the transition.
However, numerically one sees, on the contrary, that the volume divergence is strengthened
by the first several orders [11]. In any case, it is already clear that, rather counter-intuitively,
this large-volume, small-curvature regime is one where quantum effects of a wave function
are crucial to understanding the behavior of the wave function.

Diverging fluctuations in this model do not arise from strong quantum effects, but rather
as an artefact of the internal time used in this specific case. The volume diverges at a finite
ϕ, such that in a contour plot of the wave function, the region swept out by a wave packet
resembles a strip parallel to the V -axis. Volume fluctuations are obtained from cross-sections
of the wave function along the V -axis, and they (as well as some other moments) become
large just by having a wave function moving along V . The wave function would still be
considered semiclassical based on fluctuations of other quantities. All this happens at an
infinite point in proper time, never reached by observers.
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5.4.2 Scalar Potential

If the free, massless scalar is generalized by including a non-trivial potential, several
difficulties arise. First, ϕ will now show some kind of non-trivial evolution, which
only rarely allows it to be a good global internal time: ϕ may not have a monotonic
relation with coordinate time (and pϕ will have zeroes during its evolution). More-
over, in the internal view the Hamiltonian H = −pϕ now becomes time dependent
via the potential W (ϕ). In particular, it is no longer preserved and a dynamical state
supported only on the positive part of the spectrum is not guaranteed to remain so
supported at all times. Thus, dropping the absolute value in any Hamiltonian arising
from pϕ is more difficult to justify. Nevertheless, for brief evolution times, where ϕ
still serves as internal time, and for states supported at sufficiently large values of
the Hamiltonian, far from the demarkation between positive and negative frequency,
the approximation used so far will remain a good one.

One can demonstrate this in more detail: the second-order equation corresponding
to the Hamiltonian constraint is

p̂2
ϕψ = 16πG

3
(1 − x)2

(
V̂ 2 P2 −

(
8πG

3

)(2+x)/(1−x)

×
(

1 − x

V

)(1+2x)/(1−x)

( f0V̂ )3/(1−x)W (ϕ)

)
ψ. (5.51)

To separate the signs of frequencies, one makes use of the equation for pϕ directly,
rather than its square. However, if we solve classically for −pϕ = H(V, P, ϕ) and
then quantize H(V, P, ϕ), due to [ p̂ϕ, Ĥ ] �= 0 on kinematical states the equation

− p̂ϕψ = Ĥψ (5.52)

is not equivalent to the second-order equation (5.51) but rather to

p̂2
ϕψ = − p̂ϕ Ĥψ = −Ĥ p̂ϕψ − [ p̂ϕ, Ĥ ]ψ = Ĥ2ψ − [ p̂ϕ, Ĥ ]ψ. (5.53)

A strict solution for pϕ at the operator level is much more difficult to construct in
the case of a time-dependent Hamiltonian.

But for solutions one is usually interested in, the additional commutator term in
(5.53) turns out to be small. The form of the Hamiltonian indicates that we have a
commutator

[ p̂ϕ, Ĥ ] ∼ i�V 2
(

8πG f0(1 − x)

3V

)3/(1−x) |V̂ |3/(1−x)W ′(ϕ)
Ĥ

whose expectation value is small compared to that of Ĥ2 in (5.53) provided that H
is suffiently large and the potential not too steep.

There are now two conditions to be ensured: V 2(V/V )3/(1−x)W (ϕ) � V 2 P2 ≈
H2 for the potential term to be perturbative, and �V 2(V/V )3/(1−x)W ′(ϕ)/H � H2
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for the commutator in (5.53) to be negligible require W � V −2 H2(V/V )−3/(1−x)

and �W ′ � V −2 H3(V/V )−3/(1−x). For a sufficiently small and flat potential, long
evolution times can be considered in our approximation, using the first-order equation
and dropping absolute values.

Further, much stronger support for the treatment of effective Hamiltonians in the
presence of a non-trivial potential comes from the framework of effective constraints
[14, 15], to be described in more detail in Sect. 13.2. In this way one avoids the need
to deparameterize, and yet an effective Hamiltonian can be derived by solving a con-
strained system. Sufficiently far away from regions in which pϕ is nearly zero, close
to a turning point for ϕ in coordinate time, ϕ can still be used as local internal time.
(As a trace of non-unitary state evolution, ϕ may acquire an imaginary contribution,
but this has no adverse consequences for observables [16, 17].) To move through
the turning point, another local internal time must be used, just as different time
coordinates are usually required to coordinatize a whole manifold. Changes of local
internal times can be achieved by gauge transformations of the effective constrained
system.

From the analysis of cosmological-constant models, which can be interpreted
as models with a constant scalar potential, it is clear that quantum back-reaction
generically arises. Equations of motion take the same form as before, with W (ϕ)

replacing�.Solutions are more difficult to find due to the non-trivial time dependence
of the potential, but numerically one can easily investigate the behavior for some
types of potentials. It would also be of interest to summarize the effect of quantum
variables in some kind of effective potential or other terms, which would no longer
contain independent degrees of freedom but correct the classical equations of motion
for V and P to incorporate quantum effects. This is sometimes possible in effective
theories, especially if an adiabatic approximation around a ground state can be used,
see Chap. 13.

In quantum cosmology we do not have a ground state, and it turns out that no other
adiabatic approximation to solve for quantum variables and insert them back into
the equations of motion for expectation values is possible [18]. Quantum variables
thus do play a very crucial role, and they cannot be reduced to mere corrections such
as an effective potential. New quantum degrees of freedom are essential, and we are
dealing with a higher-dimensional effective system. This observation is especially
relevant in strong quantum regimes such as those expected at small volume or high
curvature. But then, we will also have to include the quantum-geometry effects of
loop quantum cosmology, which we will do in the next chapter.
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Chapter 6
Harmonic Cosmology: The Universe
Before the Big Bang and How Much
We Can Know About It

To understand the strong quantum phase that is expected to be realized in a small
and highly curved universe around the big bang, we return to the solvable model
of loop quantum cosmology developed in Sect. 5.3.2. Solvability is realized for a
free, massless scalar in a spatially flat isotropic universe, but formulated in the
non-canonical variables V and J = V exp(iP) rather than V and P used for a
Wheeler–DeWitt model. The linear Hamiltonian H = −√

16πG/3(1− x)| 1
2 iJ−| ∝

|i(J − J ∗)| then provides solvability: the evolution of expectation values does not
couple to quantum variables. (As in Sect. 5.3.1, dropping the absolute value is justi-
fied for a time-independent Hamiltonian provided initial values for a state make it be
supported on a definite sign of the spectrum of iJ−.) Equations of motion can then be
solved for expectation values as well as quantum variables to determine the behavior
of a whole state. With the equations, also the qualitative behavior of solutions will
be insensitive to the refinement scheme as specified by the parameter x , as long at
least as it is of power-law form.

6.1 Reality

We consider basic operators satisfying the linear algebra

[V̂ , Ĵ ] = � Ĵ , [V̂ , Ĵ †] = −� Ĵ †, [ Ĵ , Ĵ †] = −2�V̂ (6.1)

whose dynamics is given by a linear Hamiltonian Ĥ ∝ i( Ĵ − Ĵ †). Just as in the
Wheeler–DeWitt model before, the resulting dynamical equations will be easy to
solve. But there is a new issue due to the complex-valuedness of variables and the
non-canonical form of their algebra. Expectation values of these variables cannot be
prescribed arbitrarily, for the relationship Ĵ Ĵ † = V̂ 2 which must hold with a unitary
quantization of exp(iP) ordered to the right of V̂ in Ĵ implies an equality

|〈 Ĵ 〉|2 − 〈V̂ 〉2 = (�V )2 − (�J+)2 + (�J−)2 (6.2)
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relating expectation values to fluctuations of V̂ and Ĵ± = Ĵ ± Ĵ †. We will refer to this
important equation, as well as to others derived for higher-order moments, as a reality
condition, since it derives from the fact that the classical P entering the definition of
the complex J must be real. Once (6.2) is implemented by restricting 〈 Ĵ 〉, together
with the simple reality condition 〈V̂ 〉 ∈ R, we are dealing with expectation values of
states in the physical Hilbert space realizing the correct adjointness relations of
basic operators. The reality condition (6.2) also reduces the number of degrees
of freedom contained in the expectation values back to two since the imaginary
part of J can no longer be chosen independently of its real part.

As used here, it is sometimes convenient to work with the complex J and J̄ , rather than
the real or purely imaginary J±. One can easily translate back and forth thanks to the linear
relationship between these variables. Care should just be used in the interpretation of the
variables: what may look like a fluctuation in one set, for instance (�J )2 = 1

4 ((�J+)2 +
2�(J+ J−)+ (�J−)2), actually contains a covariance in the other. As we have already seen,
correlations often play special roles in semiclassical regimes via decoherence, and they do
so more specifically in questions about the asymmetry of states. Despite possibly differing
appearances in the variables J and J̄ , we will thus make statements precise by using only
the real variables Ĵ+ and i Ĵ− to determine what should be considered a covariance and what
a fluctuation, or mixtures of both. At the present level of formulating and solving equations
of motion, however, these issues can be postponed.

In these considerations, the fluctuations on the right of (6.2) are considered fixed,
so that (6.2) is a reality condition for expectation values, reducing to the classical one
when fluctuations and � vanish. The moments themselves must be subject to reality
as well. In fact, analogous conditions arise at higher order which reduce the second-
order moments to the right number [1]. We obtain those conditions by considering
operator equations of the form

V̂ i Ĵ j Ĵ †k( Ĵ Ĵ † − V̂ 2) = 0 with i + j + k > 0 (6.3)

which directly follow from the initial operator equation and are thus implied. But
expectation values in the presence of the extra factors do not agree exactly with the
basic reality condition (6.2); they rather differ from it by terms involving moments
of higher order, at least third. For instance, at third order, with a single extra operator
in the equation, we have the third-order moments

�(V J J̄ ) ≡ 〈(V̂ − 〈V̂ 〉)( Ĵ − 〈 Ĵ 〉)( Ĵ † − 〈 Ĵ †〉)〉symm (6.4)

�(V 3) ≡ 〈(V̂ − 〈V̂ 〉)3〉 (6.5)

appearing in the reality condition

�(V J J̄ ) − �(V 3) = 2〈V̂ 〉(�V )2 − 2(Re�(V J )Re〈 Ĵ 〉 + Im�(V J )Im〈 Ĵ 〉)
that follows from the expectation value of V̂ ( Ĵ Ĵ † − V̂ 2) = 0. Just as we use (6.2) to
restrict semiclassical expectation values up to terms of order �, we use third-order
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reality conditions to restrict semiclassical second-order moments. To leading order
in �,

〈V̂ 〉(�V )2 = Re(〈 Ĵ †〉�(V J ))

= Re〈 Ĵ 〉Re�(V J ) + Im〈 Ĵ 〉Im�(V J ), (6.6)

as a restriction for second-order moments. Similarly, we obtain

〈V̂ 〉Re�(V J ) = 1

2

(
Re〈 Ĵ 〉Re(�J )2 + Im〈 Ĵ 〉Im(�J )2 + Re〈 Ĵ 〉�(J J̄ )

)
,

〈V̂ 〉Im�(V J ) = 1

2

(
Re〈 Ĵ 〉Im(�J )2 − Im〈 Ĵ 〉Re(�J )2 + Im〈 Ĵ 〉�(J J̄ )

)
(6.7)

from the other third-order conditions. General considerations of this type show that
none of the higher-order conditions restricts second-order moments further. Thus, the
six initial second-order moments (counting real and imaginary parts of �(V J ) and
(�J )2 separately, while (�V )2 and �(J J̄ ) are always real) are restricted by three
conditions. Three degrees of freedom remain, just as we expect it for two fluctuations
and one correlation. Only the counting is more complicated for non-canonical basic
operators, and must take into account all relations betweem them.

Reality conditions as derived here present an example of Casimir conditions discussed in
Sect. 13.1.4. Interpreting J J̄ − V 2 = 0 as a constraint on the classical phase space, the large
set of expectation-value conditions arising from (6.3) is an example of effective-constraint
methods developed in [2–4]. The reality condition, although just one constraint, is of second
class on the non-symplectic phase space spanned by (V, J, J̄ ), using generalizations of
Dirac’s classification of constraints to general Poisson manifolds [5]. Thus, only conditions
for the moments result but no gauge flow need be factored out.

Since all reality conditions derived from (6.3) are based on Ĵ Ĵ † − V̂ 2 = 0, and thus on the
understanding that exp(iP) is ordered to the right of V in Ĵ , some of their coefficients may
change in different orderings. However, this does not affect general statements made here.

6.2 Uncertainty

Uncertainty relations follow for every pair of self-adjoint operators by a well-known
application of the Schwarz inequality; see Sect. 13.1.3. For our non-canonical, par-
tially complex basic variables in harmonic loop quantum cosmology we derive three
independent inequalities for the pairs (V̂ , Ĵ+), (V̂ , i Ĵ−) and ( Ĵ+, i Ĵ−) of self-adjoint
operators:

(�V )2(�J+)2 − �(V J+)2 ≥ �
2 H2 (6.8)

−(�V )2(�J−)2 + �(V J−)2 ≥ 1

4
�

2〈 Ĵ+〉2 (6.9)

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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−(�J+)2(�J−)2 + �(J+ J−)2 ≥ �
2〈V̂ 〉2 (6.10)

with H = 〈Ĥ〉 = − 1
2 i〈 Ĵ−〉. The second-order moments featuring in here are

restricted by reality conditions as well, and just as we have seen for the number
of moments, the number of uncertainty relations is reduced to the expected number
(one per canonical pair) when reality is imposed.

A direct calculation shows that this is indeed the case. We first rewrite (6.6) and
(6.7) in terms of Ĵ± instead of Ĵ and Ĵ †:

〈V̂ 〉(�V )2 = 1

4
(〈 Ĵ+〉�(V J+) + 〈 Ĵ−〉�(V J−)) (6.11)

〈V̂ 〉�(V J+) = 1

4
(〈 Ĵ+〉(�J+)2 + 〈 Ĵ−〉�(J+ J−)) (6.12)

〈V̂ 〉�(V J−) = 1

4
(〈 Ĵ−〉(�J−)2 + 〈 Ĵ+〉�(J+ J−)). (6.13)

From suitable combinations we then derive

〈V̂ 〉2((�V )2(�J+)2 − �(V J+)2) = 1

4
〈 Ĵ−〉2((�J+)2(�J−)2 − �(J+ J−)2)

〈V̂ 〉2(−(�V )2(�J−)2 + �(V J−)2) = 1

4
〈 Ĵ+〉2(−(�J+)2(�J−)2 + �(J+ J−)2)

and conclude, noting that −i〈 Ĵ−〉 = 2H by the constraint, that both (6.8) and (6.9)
are equivalent to (6.10). Only one of the uncertainty relations is required once second-
order reality is imposed, giving rise to only one independent uncertainty relation per
canonical pair.

In these calculations we have ignored terms higher than second order. If higher-
order terms are significant, the equivalence of second-order uncertainty relations no
longer follows in the same way. In fact, when higher-order terms matter in reality
conditions, one must use uncertainty relations for higher-order moments as well,
not just at second order. Higher-order uncertainty relations also follow from the
Schwarz inequality, but they have a more complicated form that mixes moments of
different orders. For the purposes of our discussions here, second-order relations will
be sufficient.

6.3 Repulsive Forces and Bouncing Cosmologies

The linear Hamiltonian provides equations of motion for expectation values which,
thanks to solvability, decouple into finite sets. We will absorb a factor of√

16πG/3(1 − x) in the internal time variable defined as λ := √
16πG/3(1 − x)ϕ.

For expectation values we have
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d

dλ
〈V̂ 〉 = 1

i�
〈[V̂ , Ĥ ]〉 = −1

2
(〈 Ĵ 〉 + 〈 Ĵ †〉) (6.14)

d

dλ
〈 Ĵ 〉 = 1

i�
〈[ Ĵ , Ĥ ]〉 = −〈V̂ 〉 = d

dλ
〈 Ĵ †〉. (6.15)

and for fluctuations and correlations

d

dλ
(�V )2 = −�(V J ) − �(V J̄ ) (6.16)

d

dλ
(�J )2 = −2�(V J ),

d

dλ
(� J̄ )2 = −2�(V J̄ ) (6.17)

d

dλ
�(V J ) = −1

2
(�J )2 − 1

2
�(J J̄ ) − (�V )2 (6.18)

d

dλ
�(V J̄ ) = −1

2
(� J̄ )2 − 1

2
�(J J̄ ) − (�V )2 (6.19)

d

dλ
�(J J̄ ) = −�(V J ) − �(V J̄ ). (6.20)

In particular, the right-hand side of (6.2) is constant in time, and reality conditions
need be imposed only for initial expectation values. If initial values are posed in a
semiclassical regime, the left-hand side of (6.2) must be of the order 〈V̂ 〉�, and thus
be much smaller than the squares of expectation values themselves. In this way, the
classical condition is recovered.

Both 〈V̂ 〉 and 〈 Ĵ 〉 have the same dimension as �, and second-order moments in semiclassical
states are typically of the order �. The right combination of semiclassical behavior with
dimensions results in the order of magnitude �〈V̂ 〉 for quantum fluctuations squared and the
right-hand side of (6.2). There are no free dimensionful constants in this model that could
be used to provide the correct dimensions of fluctuations without reference to dynamical
variables such as 〈V̂ 〉. Indeed, the behavior �〈V̂ 〉 for second-order moments will be shown
clearly by the following discussion of dynamical coherent states.

Equations of motion of the linear model, such as (6.14) and (6.15) for expectation
values and (6.16–6.20) for second-order moments, are linear and finitely coupled,
making them easily solvable. The reality conditions are quadratic, but preserved in
time. Thus, they need not be considered when solving equations of motion; one will
just have to make sure that they are satisfied by initial values used. (Numerically one
may have to monitor that reality conditions, as well as uncertainty relations, remain
respected in the presence of rounding errors, which can sometimes be a subtle issue
[1].) The quadratic terms they contain do not amount to quantum back-reaction of
fluctuations on expectation values, and they do not complicate the solution procedure.
For the expectation values, we obtain

〈V̂ 〉(λ) = 1

2
(Ae−λ + Beλ) (6.21)
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〈 Ĵ 〉(λ) = 1

2
(Ae−λ − Beλ) + iH (6.22)

with two integration constants A and B, while H = 〈Ĥ〉, the expectation value of
the Hamiltonian, must equal the imaginary part of 〈 Ĵ 〉. Comparing with the solutions
(5.13) for a Wheeler-DeWitt quantization of the same system, we notice that there are
different combinations of the exponentials. The dynamics is thus indeed different,
but so far it is not clear whether the singularity would be avoided: 〈V̂ 〉 can easily be
zero at some λ provided A and B have opposite signs.

At this point, we still have to impose the reality condition (6.2), which for
the specific form of solutions implies AB = H2 + c1 with another constant
c1 := (�J+)2 − (�J−)2 − (�V )2 preserved by evolution. Looking at a state which
is semiclassical at least once, say at large volume, we know that the fluctuation
parameter c1 must be of the order �〈Ĥ〉 (which is constant just like c1).

Up to quantum corrections, we thus have AB = H2 + O(H�) > 0, implying
that A and B must have the same sign. Choosing the positive one, and defining
A/B =: e2ε, the solution (6.21) can only be of the form 〈V̂ 〉(λ) = H cosh(λ − ε)

which never becomes zero: the classical as well as Wheeler–DeWitt approach to
vanishing volume is replaced by a smooth bounce. Even though this is a statement
about a true quantum regime, we did not have to make any assumptions about the
form of the state there; all we used was the condition that it be semiclassical at large
volume. In this way, as we will also see it for other questions, the solvable model
allows powerful conclusions about deep quantum properties. Reality conditions are
preserved dynamically; still, some moments evolve and may become more strongly
quantum. But the existence of dynamical coherent states shows that the quantum
behavior is not exceedingly strong in this model.

An intuitive way to understand the removal of the singularity is by an effective
space-time picture, which in the case of isotropic models follows from an effective
Friedmann equation. This must be an equation of motion just for 〈V̂ 〉, a power of the
scale factor, not coupled to 〈 Ĵ 〉 as it is so far in (6.14) and (6.15). We can eliminate
〈 Ĵ−〉 in terms of the scalar momentum, pϕ = −H = √

4πG/3(1 − x)i〈 Ĵ−〉, which
will then enter the kinetic energy density ρfree = p2

ϕ/2a6V 2 of the free scalar. The

other variable, 〈 Ĵ+〉, is not independent of 〈 Ĵ−〉 and can be obtained by using the
reality condition:

〈 Ĵ+〉2 = 〈 Ĵ−〉2 + 4〈V̂ 〉2 + 4c1.

Combined, we have

(
d〈V̂ 〉
dϕ

)2

= 4πG

3
(1 − x)2〈 Ĵ+〉2 = 16πG

3
(1 − x)2〈V̂ 〉2 − p2

ϕ + O(�)

or, in terms of proper time τ appearing in the derivative denoted by a dot,

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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(
ȧ

a

)2
=

(
ϕ̇

2(1 − x)〈V̂ 〉
d〈V̂ 〉
dϕ

)2

=
(

4πG f0a−3 pϕ

3a2(1−x)V 2

)2 (
3V 2

4πG f 2
0

a4(1−x) − p2
ϕ + O(�)

)

= 4πG

3

p2
ϕ

a6V 2

(
1 − 4πG f 2

0
3V 2 a−4(1−x) p2

ϕ + O(�)

)
(6.23)

= 8πG

3
ρfree

(
1 − ρfree · 8πG f 2

0

3
a2(1+2x)

)
+ O(�). (6.24)

(Recall V = 3a2(1−x)V /8πG f0(1 − x) from (5.3).) To leading order, we thus
have the Friedmann equation with the energy density of a free, massless scalar;
but quantum corrections are effectively included by a term of higher order in the
free scalar’s kinetic energy. This term becomes important at high densities, near the
critical one of

ρcrit = 3

8πG f 2
0 a2(1+2x)

= 3

8πGγ 2L2 (6.25)

with the patch size L = 
0a (γ 
0 = V 1/3γ δ(a) = f0a2x ), where it can cancel the
classical term and cause an extremum in the evolution of the scale factor.

This complete effective equation reproduces a modified Friedmann equation found first
by a tree-level approximation incorporating holonomy corrections directly in the classical
Hamiltonian [6, 7], which was also tested numerically [6, 7]. Thanks to solvability and
the absence of quantum back-reaction, no strong extra corrections arise and the tree-level
approximation turns out to be good.

Tree-level expansions have been tested numerically in several models, but only for strongly
peaked states in which quantum back-reaction is weak. In this context, it is important to note
that quantum back-reaction arises from moments appearing in time derivatives of equations
of lower order, such as those for expectation values. Quantum back-reaction is caused by
quantum fluctuations, among other moments, but is distinct from the statistical effect of
quantum fluctuations. The initial meaning of quantum fluctuations is that they determine the
spread of outcomes of repeated measurements done for many systems in the same state. Such
an interpretation is unavailable in quantum cosmology; instead, the primary role of quantum
fluctuations is as a state parameter that influences the evolution of expectation values and
leads to deviations from the classical behavior, providing quantum corrections.

Keeping this in mind, even in the presence of fluctuations, deviations of 〈V̂ 〉(ϕ) from tree-
level equations may be small, even smaller than the value of fluctuations in a state used would
indicate. What is affected by quantum back-reaction is not the measurement of the volume,
but the rate of change d〈V̂ 〉/dϕ. As seen from (5.33) (for a Wheeler–DeWitt quantization),
the rate of change of volume is affected mainly by (�P)2 and CV P , not by (�V )2. Even
large volume fluctuations do not change the evolution much if curvature fluctuations and
correlations are sufficiently small. A comparison of deviations of 〈V̂ 〉 from the tree-level
equations with volume fluctuations �V, as sometimes used to justify tree-level approxi-
mations, is not meaningful because it would confuse the two different roles of fluctuations,
statistical aspects and the dynamical quantum back-reaction.

Moreover, fluctuations typically grow as states are evolved. While one can always choose
a suitably peaked initial state, quantum back-reaction becomes strong if one waits long

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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enough. At this stage, tree-level equations break down and one has to include higher orders
by systematic effective equations.

The second equation of motion, the one for d〈 Ĵ+〉/dϕ, can be reformulated in
a similar way as a second-order equation for 〈V̂ 〉, resembling the Raychaudhuri
equation. Following the same procedure as in Sect. 5.3.1, we first derive the second-
order equation

d2〈V̂ 〉
dϕ2 = 16πG

3
(1 − x)2〈V̂ 〉 + O(〈V̂ 〉�). (6.26)

Curiously, this is exactly the same (5.17), as obtained earlier; corrections from
loop quantum cosmology arise only by the O(〈V̂ 〉�)-terms from the reality condition,
corresponding to the different factor orderings used. Holonomy corrections, there-
fore, do not correct the equation for d2〈V̂ 〉/dϕ2. However, to derive the Raychaudhuri
equation for ä, we use the Friedmann equation. With the modified Friedmann (6.23),
we then obtain the modified Raychaudhuri equation

ä

a
= −4πG

3
ρfree

(
1 − (2 − x)

ρfree

ρcrit

)
(6.27)

which is corrected compared to (5.18). At high densities, near the new extremum
of a, the correction implies a positive second derivative of a by time: ä > 0 for
ρfree > ρcrit/(2 − x), ensuring that the high-density extremum implied by (6.23) is
a minimum.

Incidentally, the phase of acceleration spans only a rather small range of densities:
for −1/2 ≤ x ≤ 0, acceleration begins when ρfree rises above a value between 2

5ρcrit

(for x = −1/2) and 1
2ρcrit (for x = 0). The density at the onset of acceleration does

not depend much on the value of x in the given range. In both cases, the density
must be of the critical size within just one order of magnitude in order to produce
acceleration from holonomy corrections.

Of course, we have already seen the presence of a minimum in the exact cosh-like
solution for the free scalar model. An effective equation would not be necessary
at this stage, just as it is not of much use to write down an effective action for a
free quantum field theory. But the power of effective descriptions of such simple
systems is that they can be used as starting points for perturbative analyses of more
complicated, interacting systems. While still technically involved, such a procedure is
usually much easier to perform than an outright quantization and subsequent analysis
of the interacting system; and yet, as is well known from particle physics, most of
the desired information can be extracted effectively and efficiently.

6.4 Quantum Big Bang

In a solvable system, things are simple and clean. In the present context we have seen
that a spatially flat isotropic model sourced by a free massless scalar, in loop quantum

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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cosmology, shows a bounce of the scale factor if the corresponding quantum state is
semiclassical once (e.g. at large volume). Even if it evolves away from a semiclassical
state when smaller volumes are reached, quantum properties of the free state cannot
be strong enough to prevent the bounce. (In fact, in the next section we will see
that a near-coherent state does remain nearly coherent throughout the bounce phase,
although its fluctuations can still change noticeably).

But if the model is no longer solvable, even if it is just perturbed by another con-
tribution to its energy density by a term small compared to the kinetic one, quantum
back-reaction ensues. States may evolve much more strongly over the required cos-
mological periods of time, even if local changes remain perturbatively small. If there
is a non-constant scalar potential, ϕ will not always be a global internal time and
is unlikely to serve as time all the way between large volume and the bounce. One
would patch together several effective space-time regions, each described in terms of
ϕ as internal time but linked in different phases where ϕ would have turning points
with respect to coordinate time (and pϕ vanishes). Physically, the semiclassical state
at large volume is supposed to arise via decoherence at intermediate times. These
complicated processes, possible only by interactions with an environment of many
degrees of freedom, must now be wound backwards if the big-bang state is to be
understood. In all these constructions, the solvable dynamics would severely be dis-
turbed, implying that considerable changes must be taken into account for an analysis
that could be called reliable and robust. What we need is a general effective equation,
formulated for arbitrary states and in the presence of an unconstrained potential. We
will see that conclusions from such an equation can in fact be drawn, and it provides
the basis for specific analyses of concrete matter models or special classes of states.

If there is a matter potential not large compared to the kinetic term, perturbative
techniques can be used as in the preceding chapter. Our classical ϕ-Hamiltonian
now is

H :=
√

16πG

3
(1 − x)

√
V 2 P2 − 3V 2

8πG(1 − x)2

(
8πG(1 − x) f0

3V
V

)3/(1−x)

W (ϕ).

(6.28)

After doing the loop replacement of V P by − 1
2 iJ−, we expand H = ∑∞

k=0 Hk with

Hk := −i

√
4πG

3
(1 − x)J−

( 1
2
k

)(
3V 2

2πG(1 − x)2

(
8πG(1 − x) f0

3V
V

)3/(1−x) W (ϕ)

J 2−

)k

.

We are clearly dealing with a non-linear Hamiltonian, which implies quantum back-
reaction terms. They can be derived from a background-state expansion around
expectation values, or by the effective methods of Chap. 13 based on Poisson geom-
etry, giving equations of motion such as [8]

http://dx.doi.org/10.1007/978-1-4419-8276-6_13


108 6 The Universe Before the Big Bang and How Much We Can Know About It

d〈V̂ 〉
dϕ

= − i〈 Ĵ+〉
(

∂ H

∂ J−
+

∞∑
n=2

n∑
a=0

∂n+1 H

∂V a∂ J n−a+1−

�(V a J n−a− )

a!(n − a)!

)

− i
∞∑

n=2

n∑
a=0

∂n H

∂V a∂ J n−a−

�(V a J n−a−1− J+)

a!(n − a − 1)! . (6.29)

The second line arises from the fact that commutators of non-canonical basic oper-
ators are not mere constants, or that expectation values and moments do not have
vanishing Poisson brackets for non-canonical variables. (In this sense, the more
interacting nature of the loop-quantized model, which does not allow a harmonic
formulation in canonical variables, is responsible for effects based on these terms.
One consequence discussed below is the asymmetry of fluctuations before and after
the bounce.) Quantum corrections, as always, arise from coupling terms of expecta-
tion values and moments �(· · · ) as defined in (5.23).

Although there are more terms than before in the solvable model, formally even
infinitely many ones, we can follow the previous route to an effective Friedmann
equation [8, 9]: The Hamiltonian HQ = ∑

k〈Ĥk〉 is no longer linear in 〈 Ĵ−〉, but
when equated with −pϕ provides a polynomial equation to a given perturbative order:
For x = −1/2 and up to k = 1 for instance,

HQ = −√
3πGi〈 Ĵ−〉

(
1 − 4πG f 2

0

3

〈V̂ 〉2

(i〈 Ĵ−〉)2
(1 + ε1)W (ϕ)

)
= −pϕ (6.30)

where

ε1 =
∞∑

n=2

(−1)n

(
�(J n−)

〈 Ĵ−〉n
− 2

�(V J n−1− )

〈V̂ 〉〈 Ĵ−〉n−1
+ �(V 2 J n−2− )

〈V̂ 〉2〈 Ĵ−〉n−2

)

is the first correction from quantum back-reaction (obtained as the relative-moment
expansion of V 2/J−, or of V 3/(1−x)/J− for general x).

Perturbatively, we can solve this polynomial equation to find i〈 Ĵ−〉 in terms of
pϕ :

i〈 Ĵ−〉 = pϕ√
3πG

(
1 + 1

4

W (ϕ)(1 + ε1)a6V 2

p2
ϕ

)
= pϕ√

3πG

(
1 + 1

8

ρpot

ρkin
(1 + ε1)

)
.

(6.31)
The reality condition, which does not change by interaction terms, again provides
〈 Ĵ+〉 in terms of 〈 Ĵ−〉, 〈V̂ 〉 and quantum terms:

〈 Ĵ+〉
2〈V̂ 〉 = ±

√√√√1 −
(

〈 Ĵ−〉
i(2〈V̂ 〉)

)2

− ε0

with ε0 = ((�J+)2 − (�J−)2 − (�V )2)/〈V̂ 〉2.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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Then, in turn, we insert 〈 Ĵ 〉− in terms of pϕ, providing

〈 Ĵ+〉 = ±2〈V̂ 〉√1 − ρQ/ρcrit (6.32)

with

ρQ := ρ + ε0ρcrit + W
∞∑

k=0

εk+1

(
Wa6V 2

p2
ϕ

)k

(6.33)

and the same value of ρcrit as in the solvable case. Higher orders in k provide
their own correction parameters as relative moment expansions of V 3k/(1−x) J 1−2k− .

At this stage, we notice that it is not the classical energy density ρ that appears in the
quantum-geometry correction, but a quantum-corrected version ρQ . This quantity
allows us to generalize the regularity result of the free model to an arbitrary inter-
acting one: Since 〈 Ĵ+〉 must be real as one of the reality conditions, the quantum
density ρQ cannot be larger than ρcrit thanks to (6.32). (Depending on the value of
x, ρcrit may be a-dependent. Specific realizations of the boundedness condition then
depend on the history of the scale factor.)

In contrast to the solvable model, however, reaching the upper bound for the
density does not automatically imply a bounce for expectation values. Extra terms
in the (6.29) of ϕ-motion for 〈V̂ 〉 from quantum back-reaction mean that there are
terms in the effective Friedmann equation

(
ȧ

a

)2

= 8πG

3

(
ρ

(
1 − ρQ

ρcrit

)
± 1

2

√
1 − ρQ

ρcrit
ηW + V 2a6W 2

2p2
ϕ

η2

)
(6.34)

with general quantum corrections η = ∑
k ηk+1(V 2a6W/p2

ϕ)k where, e.g.,

η1 =
∞∑

n=2

(−1)n

(
n

�(J n−1− J+)

〈 Ĵ−〉n
− 2(n − 1)

�(V J n−2− J+)

〈V̂ 〉〈 Ĵ−〉n−1
+ (n − 2)

�(V 2 J n−3− J+)

〈V̂ 〉2〈 Ĵ−〉n−2

)
.

(6.35)
If η �= 0, the point where the maximal energy density is reached does not correspond
to a bounce; and whether or not there is a bounce at all depends on the specific
behavior of the state. As seen from the terms in the corrections, it is only quantum
correlations that could prevent the bounce. If a state is uncorrelated at the critical
density, even if it is highly fluctuating, a bounce will still ensue.

What is not so clear, however, is whether the universe will indeed bounce back to
large volume or, if several zeros of ȧ become possible due to the moment dynamics,
get stuck in oscillations at small volume. Such models would resemble emergent
or oscillatory scenarios as in [10–15]. Another possibility is for the wave function,
which initially was sharply peaked at large volume, to split up into several pack-
ets. One of them may bounce, but others may not do so or even tunnel through to
the minisuperspace region where the triad is inverted. (Reflection symmetry may
sometimes be treated as a large gauge transformation, requiring wave functions to
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be (anti-)symmetric and not leaving any freedom for tunneled wave functions. But
due to the presence of fermions violating parity, this assumption of reflections as
large gauge transformations is not realistic.) Even though one packet would describe
a bouncing universe, the whole state would imply a much stronger quantum phase.
Only decoherence scenarios could tell how the transition would be perceived in terms
of measurable quantities. Which scenarios are possible is still to be determined by a
systematic analysis of many specific cases, using the coupled dynamics of expecta-
tion values and the moments.

6.5 Dynamical Coherent States

Much of the interesting behavior of cosmic quantum states is determined by their
leading moments: fluctuations and correlations. While fluctuations are realized in
any quantum state, specific studies often assume simple uncorrelated Gaussian states.
This may not capture all properties reliably, and so correlations themselves must be
included and analyzed—especially since many processes such as decoherence rely
on the build-up of quantum correlations. Examples for the role of correlations seen so
far in isotropic quantum cosmology are the asymmetry of states around the recollapse
of a closed universe (Sect. 5.4.1.1), and changes to as well as a potential prevention of
a bounce in loop quantum cosmology beyond the harmonic model. For the would-be
bounce, one also must know what kinds of quantum states one can expect in general,
and we thus return to the solvable model and analyze its dynamical coherent states
in more detail [16]. Possible implications for singularities will be discussed more
generally in the following chapter.

A solvable model is of the most highly controlled form, and dynamical coherent
states are the most highly controlled ones within the model. By definition, such
states saturate the uncertainty relation at all times, which means that many of their
properties must be preserved during evolution. Well-known examples are coherent
states of the harmonic oscillator, which retain a constant shape while they follow the
classical trajectory. However, there are also squeezed states, dynamically coherent as
well, but with oscillating fluctuations. Their shape does not remain constant in time,
but changes in a way controlled by their correlation. Similarly, what we have already
seen in quantum cosmology clearly shows that we have to understand correlations
of quantum states near the big bang, and see how large they and their roles could be.

“Stable” coherent states can be defined more generally [17] for a large class of anharmonic
systems. Like the harmonic oscillator, these systems have families of states |z〉 labeled by a
complex number z, such that |z〉(t) = |z +ωt〉 with a real ω. For the harmonic oscillator, the
specific expression of z in terms of state parameters depends only on expectation values; since
no moments change as z evolves to z + ωt, the shape of the state is dynamically preserved.
For anharmonic systems, however, the expression of z in terms of state parameters depends
on some of the moments. As a consequence, the shape of the state may change considerably
in time. These states are not dynamically coherent, and semiclassicality can easily be lost
when a state evolves.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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Back in the solvable model, we have a finite set of equations of motion (6.16)–
(6.20) for second-order moments, which are linear and can be solved
straightforwardly:

(�V )2(λ) = 1

2
(c3e−2λ + c4e2λ) − 1

4
(c1 + c2)

(�J )2(λ) = 1

2
(c3e−2λ + c4e2λ) + 1

4
(3c2 − c1) − i(c5eλ − c6e−λ)

(� J̄ )2(λ) = 1

2
(c3e−2λ + c4e2λ) + 1

4
(3c2 − c1) + i(c5eλ − c6e−λ)

�(V J )(λ) = 1

2
(c3e−2λ − c4e2λ) + i

2
(c5eλ + c6e−λ)

�(V J̄ )(λ) = 1

2
(c3e−2λ − c4e2λ) − i

2
(c5eλ + c6e−λ)

�(J J̄ )(λ) = 1

2
(c3e−2λ + c4e2λ) + 1

4
(3c1 − c2).

We have kept the constant c1 = −(�V )2 + �(J J̄ ) introduced earlier, and added
five more integration constants ci . From the reality condition with the parameters in
our expectation-value solution 〈V̂ 〉(λ) = A cosh(λ), we have c1 = A2 − H2, and
using Ĥ = − 1

2 i( Ĵ − Ĵ †) we obtain

(�H)2 = −1

4

(
(�J )2 − 2�(J J̄ ) + (� J̄ )2

)
= 1

2
(c1 − c2). (6.36)

These six constants cannot be chosen arbitrarily because the three uncertainty
relations (6.8), (6.9) and (6.10), or only one of them if the second-order reality
conditions (6.6) and (6.7) are imposed as well, must be satisfied for the variables.
Dynamical coherent states saturate these inequalities at all times λ, imposing four
conditions on the integration constants:

4c3c4 = H2
�

2 + 1

4
(c1 + c2)

2 (6.37)

(c1 − c2)c3 − c2
6 = 1

4
A2

�
2 = (c1 − c2)c4 − c2

5 (6.38)

4c5c6 = A2
�

2 + c2
2 − c2

1. (6.39)

As a first application of these equations, we determine bounds on the asymmetry,
before and after the free bounce, of fluctuations of a state. From the solutions and
uncertainty constraints on the parameters, we have [18]



112 6 The Universe Before the Big Bang and How Much We Can Know About It

∣∣∣∣ lim
λ→−∞

(�V )2
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= 4
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√
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(�H)2

A4 − 1

4

�2
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(6.40)

making it clear that states in general are not symmetric. A better measure than the
difference of relative volume fluctuations is the ratio of relative fluctuations before
and after the bounce themselves, since it is independent of their absolute size. Solving
the equations for c4 and dividing by it, we find

∣∣∣∣∣1 − (�V )2−
(�V )2+

∣∣∣∣∣ = |c4 − c3|
c4

= 2δH/A

δ2/2(�H)2 ± δH/A + 1
2 (�H)2 H2/A2 + 1

8 A2�2/(�H)2

(6.41)
where

δ :=
√(

H2

A2 − 1

)
(�H)4 +

(
A2 − H2 + 1

4
�2

)
(�H)2 − 1

4
A2�2

∼
√

(A2 − H2)(�H)2 − 1

4
A2�2.

(Note that 〈V̂ 〉+ = 〈V̂ 〉−, and thus (�V )−/(�V )+ is identical to the ratio of relative
volume fluctuations �V/〈V̂ 〉.)

This asymmetry parameter would vanish for a symmetric state, but one can easily
see that it can be as large as of the order of ten. Even if we set c1 + c2 = 0,

absolutely minimizing c3c4 in the saturation equation (6.37), no strong restriction
arises. Thus, generic states are non-symmetric around the bounce. Also here, as seen
in Sect. 5.4.1.1 for recollapses, one can verify that a correlation parameter controls
the asymmetry.

These equations are consistent with second-order reality conditions. If we insert
the explicit solutions into (6.6) and (6.7) and compare coefficients of different powers
of eλ, we obtain three independent equations

c5 = A

2H

(
2c4 − 1

2
(c1 + c2)

)
, c6 = A

2H

(
2c3 − 1

2
(c1 + c2)

)
(6.42)

c5 + c6 = H

A
(c1 − c2). (6.43)

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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We first use these equations to eliminate c5 and c6 from the sum

c3 + c4 = H

A
(c5 + c6) + 1

2
(c1 + c2) = H2

A2 (c1 − c2) + 1

2
(c1 + c2). (6.44)

The remaining constants on the right-hand side are related to state parameters via

c1 + c2 = 2(A2 − H2 − (�H)2), c1 − c2 = 2(�H)2 (6.45)

using (6.36). For the asymmetry we are interested in the absolute value of the differ-
ence of c3 and c4, which can be obtained from the sum using (6.37):

(c3 − c4)
2 = (c3 + c4)

2 − 4c3c4 = H4

A4 (c1 − c2)
2 + H2

A2 (c2
1 − c2

2) − H2
�

2

= 4H2
((

1 − H2

A2

)
(�H)2 − �

2

4
+

(
H2

A2 − 1

)
(�H)4

A2

)
.

(6.46)

This equation is equivalent to (6.40).
At this stage, we have reproduced the asymmetry derived from all three uncertainty

relations in a different way, using reality conditions and only one of the uncertainty
relations. Since we already know that second-order reality conditions reduce the
number of uncertainty relations to just one, this result is not surprising. However,
the rederivation allows a powerful generalization of the asymmetry formula to all
semiclassical states, not just dynamically coherent ones. Reality conditions of the
form used are valid provided only that moments of order higher than second are sub-
dominant, which is the most general definition of semiclassical states. The preceding
derivation remains valid if we change the equality in (6.37) to an inequality once we
depart from dynamical coherent states. In this way, the last formula changes to the
inequality

(c3 − c4)
2 ≤ 4H2

((
1 − H2

A2

)
(�H)2 − �

2

4
+

(
H2

A2 − 1

)
(�H)4

A2

)
(6.47)

providing the asymmetry for all semiclassical states. The inequality even applies
more generally to states which may not be semiclassical as long as moments of order
three or higher are suppressed compared to second-order moments. Fluctuations and
correlations, on the other hand, need not be restricted for the validity of the equations
used and can be large.

The relative asymmetry (6.41) is more difficult to reproduce for classes of states
that are not dynamically coherent because the presence of an inequality for (c3 −c4)

2

rather than an equality makes it impossible to combine the sum and difference of c3
and c4 in such a way to bound |c4 − c3|/c4 from above. Equation (6.41) is thus the
key result for which dynamical coherent states are important. It has one consequence
which is more difficult to see by other means. As mentioned, it implies factors of
order up to ten between the fluctuations which may not seem large, but one should
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Fig. 6.1 Asymmetry
parameter |1 − �+/�−|
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H. Different curves
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keep in mind that they are realized for highly controlled dynamical coherent states in
a solvable model. Moreover, in non-solvable models quantum back-reaction means
that correlation terms in the equations of motion in general significantly alter the
evolution such that states spread out even more. Based on general principles, without
restricting the class of states by further means, no strong statement about the behavior
near or before the bounce can be made. What is more, the asymmetry behavior
even of dynamical coherent states in the solvable model is very sensitive to initial
values. Figure 6.1 shows examples of asymmetry parameters for different amounts of
matter, showing that it reacts very sensitively to small changes in initial conditions
A and H. Especially for a large H = −pϕ, which is required to ensure kinetic
domination, the sensitivity is very pronounced.

Even if the solvable model could be taken as an approximation to the real universe,
observations would not determine state parameters relevant at the bounce in precisely
enough a manner. As illustrated by this example of cosmic forgetfulness [19], it is
practically impossible to draw conclusions about full properties of the state of the
universe before the big bang, as it presents itself in loop quantum cosmology. Only
some parameters, such as expectation values, can be extrapolated directly without
high sensitivity to initial values.

In the context of these discussions, it is important to realize that deterministic
behavior is not questioned. This means that one can always choose an extremely
sharply peaked initial state of precisely known properties and claim that its fluctua-
tions do not change significantly. Cosmic forgetfulness rather refers to how precisely
such information could be extracted in realistic terms with imperfect knowledge of
state properties at any given time, for which the sensitivity is crucial.

As one would expect, restrictions on parameters obtained by effective equations are also
consistent with relations that have been derived in a rather different way for wave-function
evolution [20]. Results obtained in this way are even more general because no restriction on
higher-order moments is required, as long as one expresses asymmetry equations in terms
of � log V rather than �V/〈V̂ 〉. (For a semiclassical state, � log V reduces to �V/〈V̂ 〉, as
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can be seen by Taylor expanding the volume around its expectation value in the integral that
defines �V . If the volume fluctuation is small, only the leading term of the Taylor expansion
need be considered.) As already mentioned, the sensitivity of the asymmetry toward state
parameters, and thus the basis of cosmic forgetfulness, can be seen easily only for the much
higher controlled dynamical coherent states or specific classes of states.

One can see the reason for the existence of (perhaps surprisingly) sharp bounds on the
spreading of states over extremely long times in the role of the covariance, combined with
the fact that the model considered is harmonic. One can show that it is the covariance which
controls the asymmetry [16]. If one then assumes that � log |pϕ | is given and bounded at large
volume, where a semiclasical state should be realized, the harmonic dynamics with |pϕ | ∼
|V P| at large volume immediately produces a bound on correlations for given fluctuations
independent of the uncertainty relation. Moreover, the explicitly known dynamics shows that
the covariance is constant until large curvature is reached just before the bounce point. The
initial semiclassicality in this way controls the asymmetry in the bounce phase, explaining
why sharp relations for the asymmetry are available.

Even though there are highly controlled bounds on relative fluctuations (and thus semi-
classicality) in this solvable model, the asymmetry of fluctuations themselves may still be
significant. The reason for this is that the difference (6.40) of relative volume fluctuations
is bounded by relative matter fluctuations. (The fluctuation �H refers to the scalar momen-
tum.) The more interesting relative change of volume fluctuations (6.41), which is insensitive
to the actual size of volume fluctuations, is obtained by dividing relative matter fluctuations
by relative volume fluctuations. In general, matter fluctuations and volume fluctuations are
independent quantities; it is even reasonable to assume that matter behaves “more quantum”
than geometry. (This assumption is realized also in quantum field theory on curved space-
times.) Relative matter fluctuations should then be significantly larger than relative volume
fluctuations, and the asymmetry (6.41) can easily be larger than one.

The issue of the asymmetry has appeared controversial in some part of the literature. Initially
the question arose from claims in [7] saying that states have symmetric fluctuations, based
on numerical evidence. However, the methods of [7] used for the plots shown most often,
with very symmetric fluctations, contain a desqueezing procedure for the initial Gaussian
states explicitly mentioned in Sect. V.B.2 of that paper. Later on, an effective analysis [16,
21] showed the importance of squeezing for the asymmetry (which was already visible in
[7], although not interpreted in this way). Especially the issue of cosmic forgetfulness [19]
has stimulated several follow-up papers, some disputing its relevance and countering it with
“cosmic recall” [22]. In this context, one should note that the sizes provided for asymme-
try bounds in these different treatments were always consistent with one another, but often
interpreted in diametrically opposite ways. Curiously, especially the weakest bounds found
in this context have been attributed the strongest meaning [22]. In that article, an asym-
metry bound was derived for semiclassical states which is linear in fluctuations. Since the
asymmetry is defined for quadratic fluctuations and fluctuations are small for semiclassical
states, a linear fluctuation bound is automatically smaller than quadratic fluctuations, even
if no difference is taken to compute the asymmetry [23]. A significant improvement of the
bounds was then given by the new scattering methods of [20], which for semiclassical states
is equivalent to the bounds presented here based on effective techniques. However, in spite
of the equivalence regarding the assymmetry, the results of [20] cannot address the issue of
cosmic forgetfulness because they do not discuss the sensitivity to initial values.

In this context, see also the discussion in Sect. 7.4.

http://dx.doi.org/10.1007/978-1-4419-8276-6_7
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6.6 Lessons for Effective Actions

In this chapter, we have analyzed a harmonic system of loop quantum cosmology
for which effective equations, describing the evolution of expectation values and
moments of a state, can be analyzed exactly. As in this example, effective techniques
for canonical systems such as canonical quantum gravity primarily provide effective
Hamiltonians or constraints and effective equations of motion. It would be of interest
to find an equivalent effective action, but this is not straightforward. Nevertheless,
what we have seen based on effective equations and solvable models provides some
insights into the general properties of a general effective action that might correspond
to loop quantum cosmology.

There have been attempts to find effective actions in a backward way, by trying to
reproduce effective equations of motion of harmonic systems, using f (R) theories
[24] or Lovelock theories [25]. None of the features pointed out here are realized
in those actions. These attempts do not present a systematic derivation of an effec-
tive action; they rather try to extend the known effective dynamics from one point
in superspace (the exactly solvable isotropic model) into an infinite-dimensional
neighborhood in superspace. Without any control, for instance by the consideration
of consistency requirements resulting from anomaly-freedom (Chap. 10), the result-
ing action principles are too ambiguous to be relevant for cosmological evaluations.
Related aspects have been discussed in [17], pointing out in particular the nonunique-
ness of effective actions obtained by simply matching the isotropic equations they
provide with modified equations of isotropic quantum cosmology.

In general non-solvable models, quantum back-reaction means that the quantum
system has more dynamically interacting degrees of freedom than the classical one.
At the level of an effective action, this can only be modeled by higher time derivatives
as they naturally arise from higher-curvature terms. The quantum action is then non-
local in time, just as it must ultimately be non-local in space due to the presence of
spatially integrated holonomies and fluxes as basic variables. Later, in our discussion
of inhomogeneities, we will however show that higher-curvature terms cannot be the
only contributions to an effective action, with interesting consequences for potential
cosmological observations; see Sect. 10.3.

We can also infer that the form of the effective action must be matter dependent; it
cannot be independently formulated for vacuum quantum gravity. After all, solvabil-
ity is realized for a particular matter ingredient—a free, massless scalar— and this
case implies the absence of quantum back-reaction. In other words, the free system
underlying quantum gravity, corresponding to the harmonic oscillator for quantum
field theory, is realized not in vacuum but with this specific kind of matter. Since
quantum back-reaction at the level of an effective action is reflected in the higher-
derivative terms, the presence of higher-derivative terms must depend on the matter
ingredients, another indication that quantum corrections cannot just be of the usual
higher-curvature type which would be matter independent. From this conclusion,
one may also expect some kind of unification even though so far there is no hint for
this in the fundamental formulation of loop quantum gravity. Quantum-correction

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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6.6 Lessons for Effective Actions 117

terms in an effective action that faithfully reflects the solvability properties seen in
models must provide some balance between gravitational and matter contributions.

The models analyzed so far by effective means only included holonomy effects as
quantum-geometry corrections, in addition to quantum back-reaction. Another effect
is the one from inverse-triad corrections, which changes the dynamics of homoge-
neous models but does not add much new to the general picture of effective descrip-
tions. At the inhomogeneous level, however, we will see further implications in a
later chapter.

Both types of quantum-geometry corrections, when formulated in terms of the
coordinate-dependent connection component c̃ or the scale factor, depend on the
lattice spacing 
0 of an underlying state. Higher powers of the connection, as they
may contribute to a higher-curvature effective action, come in the form (
0c̃)n, which
can be written as (γ v(a)1/3ȧ/a)n in terms of the fundamental patch volume v(a).

Coefficients of higher-order terms and their dimensions are thus provided not directly
by the Planck length but by the state-dependent v(a); as usual, effective actions
depend on the state. The form of the state must be known for a specific effective
action, and no unique one can result in the absence of a distinguished state such as the
vacuum for the low-energy effective action; see Sect. 13.1.5. In particular, v(a) need
not be constant but may change as the universe expands. (Of course, one may Taylor
expand v(a) as a function of a and rearrange the higher-order corrections in terms
of constant coefficients.) In this way, the elementary discreteness and its refinement
enters effective descriptions and can have a bearing on potential observations. We
will see this more clearly in the context of inhomogeneities, Sect. 10.1.2.3.

References

1. Bojowald, M., Mulryne, D., Nelson, W., Tavakol, R.: Phys. Rev. D 82, 124055 (2010).
arXiv:1004.3979

2. Bojowald, M., Sandhöfer, B., Skirzewski, A., Tsobanjan, A.: Rev. Math. Phys. 21, 111 (2009).
arXiv:0804.3365

3. Bojowald, M., Tsobanjan, A.: Phys. Rev. D 80, 125008 (2009). arXiv:0906.1772
4. Bojowald, M., Tsobanjan, A.: Class. Quantum Grav. 27, 145004 (2010). arXiv:0911.4950
5. Bojowald, M., Strobl, T.: Rev. Math. Phys. 15, 663 (2003). hep-th/0112074
6. Singh, P., Vandersloot, K.: Phys. Rev. D 72, 084004 (2005). gr-qc/0507029
7. Ashtekar, A., Pawlowski, T., Singh, P.: Phys. Rev. D 73, 124038 (2006). gr-qc/0604013
8. Bojowald, M.: Gen. Rel. Grav. 40, 2659 (2008). arXiv:0801.4001
9. Bojowald, M.: Phys. Rev. Lett. 100, 221301 (2008). arXiv:0805.1192

10. Ellis, G.F.R., Maartens, R.: Class. Quantum Grav. 21, 223 (2004). gr-qc/0211082
11. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quant. Grav. 21, 233 (2004). gr-qc/0307112
12. Mulryne, D.J., Tavakol, R., Lidsey, J.E., Ellis, G.F.R.: Phys. Rev. D 71, 123512 (2005).

astro-ph/0502589
13. Bojowald, M.: Nature 436, 920 (2005)
14. Parisi, L., Bruni, M., Maartens, R., Vandersloot, K.: Class. Quantum Grav. 24, 6243 (2007).

arXiv:0706.4431
15. Lidsey, J.E., Mulryne, D.J., Nunes, N.J., Tavakol, R.: Phys. Rev. D 70, 063521 (2004).

gr-qc/0406042

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
http://dx.doi.org/10.1007/978-1-4419-8276-6_10


118 6 The Universe Before the Big Bang and How Much We Can Know About It

16. Bojowald, M.: Phys. Rev. D 75, 123512 (2007). gr-qc/0703144
17. Gazeau, JP., Klauder, J.: J. Phys. A Math. Gen. 32, 123 (1999)
18. Bojowald, M.: Proc. Roy. Soc. A 464, 2135 (2008). arXiv:0710.4919
19. Bojowald, M.: Nat. Phys. 3(8), 523 (2007)
20. Kaminski, W. Pawlowski, T.: Phys. Rev. D 81, 084027 (2010). arXiv:1001.2663
21. Bojowald M.: Phys Rev D 75, 081301(R) (2007). gr-qc/0608100
22. Corichi, A., Singh, P.: Phys. Rev. Lett. 100, 161302 (2008). arXiv:0710.4543
23. Bojowald, M.: Phys. Rev. Lett. 101, 209001 (2008). arXiv:0811.2790
24. Olmo, G.J., Singh, P.: JCAP 0901, 030 (2009). arXiv:0806.2783
25. Date, G., Sengupta, S.: Class. Quantum Grav. 26, 105002 (2009). arXiv:0811.4023



Chapter 7
What Does It Mean for a Singularity
to be Resolved?

We have now seen and studied in quite some detail a general mechanism by which
loop quantum cosmology can resolve singularities, based on the fundamental differ-
ence equation, and a very specific one of an effective bounce in a solvable model.
In such a situation, and also in comparison with Wheeler–DeWitt quantizations, the
question arises what it should mean, in general, for a singularity to be resolved.

The general issue is rather messy due to the presence of several different statements
even in the classical determination of singularities. One may use curvature divergence
as a physical condition known from many explicit solutions, but one difficult to handle
at a general level. Strict theorems mainly make use of the comparatively weak and
rather different notion of geodesic incompleteness. When potential resolutions of
singularities are to be discussed, the first question to ask is which one of the classical
criteria for a singularity one should focus on.

Another important condition to be considered is the genericness of resolution
mechanisms. Singularities can be avoided even classically by clever choices of initial
values [1]. The classical singularity problem does not state that all realistic solutions
must develop singularities; the problem is rather caused by the fact that no mechanism
is known that could avoid singularities generically. Genericness is also the most
important condition for quantum cosmological resolutions of singularities; also here
it is not that difficult to avoid specific types of singularities since the freedom, for
instance in violating energy conditions, is much higher than classically.

7.1 Density Bounds

We have already encountered bounds for the quantum density ρQ in the context of the
quantum Friedmann equation; see the remarks after (6.32). Since there are quantum
corrections from fluctuations and higher moments in the expression (6.33) for the
quantum density, the physical matter density that follows from the quantum matter
Hamiltonian may still be unbounded in non-semiclassical states. For stronger results
about density bounds, the matter density must be constrained by additional means,
probably involving the dynamics of specific models.
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An alternative result exists for models with a cosmological constant in addition
to the free, massless scalar. These models are not harmonic, but have one advantage
compared to general matter systems because they are still deparameterizable by ϕ.

If one considers the spectrum of a density operator defined by quantizing the matter
energy divided by the volume with inverse-volume techniques of loop quantum
gravity, on upper bound for density values can be obtained [2].

Although a rigorous derivation is important, the existence of such a bound is not altogether
surprising [3, 4]. The loop modification of c by sin(δc)/δ replaces the unbounded c by
a bounded function. Unless quantum back-reaction is strong, the matter density is then
bounded by the Friedmann equation. The non-trivial aspect of loop quantum cosmology is
not to bound the density in isotropic models, but to construct consistent embeddings of such
models in a full quantum system that includes inhomogeneities. Such an embedding has
not yet been achieved completely consistently, but the relationship between loop quantum
cosmology and loop quantum gravity is showing the available possibilities.

Upper bounds for the spectrum of density operators can be interpreted as one
contribution to the resolution of singularities. However, they also show the limitations
of some of the current results obtained in loop quantum cosmology. In isotropic
models one can easily construct density operators, once methods for inverse-triad
quantizations are known following [5]. But in inhomogeneous situations or the full
theory there is no well-defined way to obtain density operators in loop quantum
gravity; only quantities of density weight zero can be quantized. One may thus
quantize the matter Hamiltonian Ĥ [6] and the volume V̂ [7, 8] corresponding to
some finite region. Their expectation values in a given state then provide a measure for
the density 〈Ĥ〉/〈V̂ 〉. One can use the same construction in isotropic models, which
would bring the results closer to those of the full theory. An alternative expression

for the matter density results, one that differs from the expectation value 〈 ̂H V −1〉 of
an isotropic density operator. The difference is given by moments of the state, and is
strong in a highly quantum state. If the moments of the state are large, the physical
matter density may be unbounded even if there is an upper bound on the spectrum of
density operators. To decide whether actual densities are bounded, one must bring the
moments and the shape of states under better control. No general, state-independent
bounds as in [2] can be expected. Not many results in this direction are known, but
it has already been demonstrated numerically that the bounds of [2] can be breached
if the shape of states is taken into account [9].

7.2 Bounces

A more specific scenario for singularity resolution is a turn-around of a from collapse
to expansion, or a bounce [10], keeping the scale factor away from zero and energy
densities finite.

Example 7.1. (Fluctuation-triggered bounce) In a Wheeler–DeWitt treatment of the
model analyzed in Example 2.1, the requirement of self-adjointness in the face of a
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boundary of the a-axis requires special fall-off conditions for wave functions. The
wave function is always suported on a > 0, which implies that the expectation value
of â cannot become zero. In contrast to the classical solutions, a bounce or at least a
mechanism to keep 〈â〉 away from the singular a = 0 is indicated.

In order to see the role of the boundary more clearly, we use effective equations for
the system quantized with the non-canonical variables V and D = V P, {V, D} = V .

As discussed in Sect. 2.2, group-theoretical quantization then leads to self-adjoint
basic operators on the phase space R

+ × R. In Example 2.1 we reformulated the
system in Schrödinger form in the presence of dust, for which the Hamiltonian, when
quantized by our non-canonical operators, can be taken to be of the self-adjoint form
Ĥ = V̂ −1 D̂2V̂ −1. (By contrast, Ĥ = P̂2 is not self-adjoint on the positive half-
plane.) In the affine variables, the Hamiltonian is no longer quadratic and requires a
choice of factor ordering, here done in a simple (but non-unique) symmetric way. The
dynamics is no longer of free-particle form, resolving the problem of wave packets
crossing the boundary seen in Example 2.1.

In order to determine the role of fluctuations at small volume, we perform a
background-state expansion and then compute an expectation value of the Hamil-
tonian, or use the methods of Chap. 13. To second order, we obtain the quantum
Hamiltonian

HQ = 〈D̂〉2

〈V̂ 〉2
+ 1

〈V̂ 〉2
(�D)2 − 4

〈D̂〉
〈V̂ 〉3

�(V D) + 3
〈D̂〉2

〈V̂ 〉4
(�V )2. (7.1)

Fluctuation terms clearly change the Hamiltonian and, when large, can affect the
dynamics. For instance, for a state that remains unsqueezed Gaussian at small scales
we have �(V D) = 0 and (�D)2 = 〈V̂ 〉2

�

2/4(�V )2. (The uncertainty relation,
saturated for a Gaussian, follows as in the discussion of harmonic cosmology; see
Chap. 13 for details.) For such states, we can write

HQ = P2
(

1 + 3
(�V )2

〈V̂ 〉2

)
+ 1

4

�

2

(�V )2 = pT (7.2)

with the dust momentum pT equal to the Hamiltonian in this deparameterization.
We have transformed back to the conventional curvature parameter P, now defined
as 〈D̂〉/〈V̂ 〉. Since there is no explicit T -dependence, pT is conserved. Classically,
it equals P2 and is positive; thus, P or the time derivative of the scale factor can-
not vanish and there is no bounce. With the fluctuation terms, there is a chance
for P to vanish at non-zero pT , in some cases corresponding to an extremum of a,

provided fluctuations are significant. Fluctuations are dynamical, satisfying the equa-
tion d(�V )2/dT = 4〈D̂〉(�(V D)2(�V )2/〈V̂ 〉), and the general behavior requires
an analysis of the whole system coupling expectation values to fluctuations and cor-
relations. In some examples, wave-function dynamics (for instance in the Bohmian
viewpoint) has shown that bounces do arise [11–13].

Effective equations in some loop quantized systems show bounces that are not
solely based on quantum fluctuations, but more importantly on quantum-geometry

http://dx.doi.org/10.1007/978-1-4419-8276-6_2
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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modifications. Such equations have not been derived yet in many models because the
interacting nature of any common matter system in the presence of gravity makes
this rather involved. But a solvable model has been identified, and it can be used as
the basis for perturbation expansions. In such situations, which may be rather special
but can be analyzed concretely, evidence for bounces has been seen. Assuming that
a state remains sufficiently semiclassical at high densities and that matter is domi-
nated by kinetic energy terms, the conclusion for a bounce to happen is rather robust.
This conclusion can clearly be inferred from the perturbation equations we looked
at before, which can also be extended to anisotropic or inhomogeneous situations.
Sometimes one appeals to asymptotic properties, indicating that kinetic terms do
become asymptotically dominant near a singularity since, in contrast to the poten-
tial in the energy density, they carry an inverse power of the scale factor. Also the
Belinsky–Khalatnikov–Lifshitz (BKL) conjecture [14] may be taken to indicate that
homogeneous models describe the approach to a singularity generically, in which
case the dynamics for long stretches of time would be determined by the simple
Bianchi I model. If the free massless scalar Bianchi I model would in general have
bounces, one could expect this result to apply also to more generic situations.

But the very asymptotic regime used in this line of arguments is avoided by
a bounce, which would imply that the universe never gets arbitrarily close to a
singularity where kinetic domination or BKL-type arguments can be used. Theorems
about asymptotic properties do not provide estimates of when exactly such a regime
is reached, which could then be tested at the bounce. Even if this were possible, the
presence of a bounce would become dependent on initial conditions since changing
them would put the asymptotic regimes at different places. For these reasons, a
kinetic-driven inhomogeneous bounce relying on asymptotic arguments such as the
BKL conjecture cannot be generic.

Moreover, in these considerations one would still assume the quantum gravi-
tational state to be sufficiently semiclassical. However, quantum back-reaction is
in general important and can significantly change the behavior. Then, the classical
theorems about the asymptotic dynamics would be uprooted and could no longer
be used—the quantum system is one of many independent dynamical variables in
coupled motion which must be re-analyzed for its asymptotic properties. Even if the
time derivative of the scale factor approaches zero due to the action of some quantum
repulsive force mediated by discrete geometry, quantum variables may not allow it
to be precisely zero. In the effective Friedmann equation (6.34), for instance, we are
comparing a density term, which in the solvable model vanishes at the bounce, with
a correlation term. Even if one might have reason to expect quantum correlations to
be small, if they are not exactly zero they would still be significant compared to zero.

In the big-bang phase, not just expectation values but also fluctuations, corre-
lations and higher moments of a state are important. Effective equations describe
this as a higher-dimensional dynamical system where quantum variables couple to
expectation values. Such systems can have properties quite different from what a low-
dimensional truncation might indicate. For instance, instead of bouncing sharply the
scale factor could approach small sizes and linger there with nearly vanishing ȧ. But
quantum fluctuations fluctuate, and so ȧ may never be exactly zero as required for a

http://dx.doi.org/10.1007/978-1-4419-8276-6_6
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Fig. 7.1 A wave packet as a
function of volume
(horizontal) and time,
bouncing, spreading and
tunneling as indicated by the
contours growing to the right
(bouncing) and left
(tunneling) [47]. (Dashed:
expectation value,
long-dashed curve: zero
volume)
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bounce; or it might become zero many times, resulting in repeated oscillations of a
small universe. In principle it is even possible for a to approach the singular value
zero asymptotically, despite the bound on energy density during kinetic domination.
Different asymptotic behaviors resulting from the state dependence of evolution have
been demonstrated in the Wheeler–DeWitt context [15, 16]. All these possibilities
remain, at present, wide open. A general conclusion is much more difficult to reach
than in the simple solvable model or in situations close to it.

Even if one could show the presence of a bounce generally, or at least in a suffi-
ciently large class of models and situations, it would provide only a classical picture
by an effective geometry. (In Chap. 10 we will discuss obstructions to the existence of
effective line elements due to quantum-geometry effects in the presence of inhomo-
geneities.) Quantum effects would be included, for instance by holonomy corrections
of geometry and by quantum back-reaction, but the effective bounce would only refer
to the expectation value of a wave function. Repulsive forces of quantum geometry
then erect a potential barrier which classical dynamics cannot penetrate. But quan-
tum physics is rarely impressed by a barrier as long as it is of finite height. Wave
functions can simply tunnel through (see Fig. 7.1), and if they reach a = 0 in this way
one would again have to grapple with the singularity issue. Thus, the wave function
must still be ensured to be non-singular in a fundamental rather than effective sense,
based on the difference equation it has to obey.

At this point, we have to come back to the factor ordering in the Hamiltonian con-
straint, which was restricted by singularity removal based on the difference equation,
but which was independently chosen in a particular form to make the free scalar model
solvable. These orderings do not agree: using the solvable ordering for a fundamental
singularity analysis would not allow one to evolve through μ = 0, as can be seen
by looking at the recurrence that follows from (5.20). The solvable ordering must be

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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seen as an approximation, just as we had to ignore inverse-triad corrections to real-
ize solvability. Re-ordering terms will introduce additional corrections which spoil
the linear nature of the model, but which like ordinary interactions can be included
perturbatively as long as quantum effects are not very strong.

Ultimately referring to the difference equation to study the singularity issue and
to shed light on what came before the big bang makes us face the interpretational
question of what time is in a deep quantum regime. It is unlikely to be a classically
supported internal time such as ϕ or a, especially if deparameterizability is required
to realize such a time choice. To cross quantum regimes, one might even have to
switch to genuine quantum variables as time parameters which would have no clas-
sical analog [17, 18]. Covariances would indeed be a good choice since they are often
monotonic when a state gets ever more squeezed. (Squeezing has in fact been related
to entropy in several cosmological settings [19–25].) What the difference equation,
essentially using as internal time the triad component (the scale factor squared with
a sign for orientation), gives us as a picture for the transition through the classical
singularity is a branch of a negatively oriented universe flipping to a positively ori-
ented one, turning its inside out. This view is of particular interest if parity-violating
matter is coupled to gravity, as this would strongly influence the transition and make
the pre- and post-big bang phases differ in fundamental properties.

What the effective scenarios studied so far indicate, on the other hand, would be a
bouncing trajectory with respect to some matter clock, which stays at one orientation
of space but provides a minimum for volume. But this is borne out clearly only if
one avoids strong quantum regimes by choosing a large matter content and large pϕ,

making the universe kinetic-dominated at large volume where it can bounce easily
by loop effects. In a deep quantum regime, single trajectories no longer matter;
many different branches typically arise in superposition. Such a superposition can
include both orientations of space, even for “times” which would all be considered
as being before the big bang. Maybe there is not even a single notion of time that
can explain the whole transition; time like geometry would have to emerge from the
wave function. No such scenario for the emergence of time is available yet, but taken
together all indications for the singularity removal in loop quantum cosmology show
that this is what must be realized. Approaching the strong quantum regime with more
refined techniques than are available now will open up access to this deep conceptual
problem.

7.3 Quantum Cosmology

In the general setting of quantum cosmology, not using specific loop-quantization or
other effects, singularity removal has been suggested and discussed in many different
ways. None of these effects is as strong as the repulsive force arising from holonomy
corrections in loop quantum cosmology, but subtle mechanisms sometimes exist.
Due to the relative weakness, a conclusion about singularity removal here depends
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more strongly on interpretational issues of the wave function. See for instance [26]
for a definition and analysis in the context of the consistent-histories formulation.

7.3.1 Interpretational Issues

Quantum cosmology plays a special role in quantum physics because the observer is
always within the quantum system. The Copenhagen interpretation becomes inap-
plicable, but other options are available. Several of them have been claimed to be the
only viable one in this context, most emphatically for the Bohmian viewpoint and the
consistent-histories approach [27–29] (or even the many-worlds interpretation). The
question of how to interpret quantum states is relevant for the singularity problem in
quantum cosmology whenever arguments are based on typical quantum properties
of wave functions rather than quantum-geometry effects. From this perspective, one
can describe the main progress made by loop quantum cosmology as avoiding inter-
pretational issues either by using quantum hyperbolicity for general wave functions,
or by providing strong quantum-geometry effects.

In many applications of loop quantum cosmology, and in most parts of this book,
one can take a pragmatic view. For observational aspects it is mainly the dynamics
of expectation values and fluctuations that matters. Fluctuations, via quantum back-
reaction, are then important for the dynamics, but not for the measurement problem
where interpretational issues would strike with full force. It may even be possible
to base the quantum-to-classical transition from fluctuations to matter perturbations
in the early universe on quantum back-reaction of modes [30], but this problem still
needs to be explained, perhaps by decoherence. (see also Sect. 10.4.1.)

7.3.2 Examples

If singularity resolution is to be based on aspects of wave functions, specific mech-
anisms require further input in addition to just a quantization scheme, as it has been
done in the traditional proposals for initial conditions of a wave function by Vilenkin
[31] and Hartle–Hawking [32]. This approach accepts the presence of a classically
counterintuitive regime around the singularity, and replaces it with quantum notions
such as tunneling or signature change, or outright quantum potentials [33]. Such
schemes have primarily been formulated in isotropic models, and one often encoun-
ters difficulties when one tries to extend them to more general situations [34, 35].
Also future singularities have been discussed in this spirit [36]. In loop quantum
cosmology, restrictions for states arise via dynamical initial conditions [37, 38].

Sometimes it is argued that quantization of a cosmological model with the positive
scale factor a as the configuration variable resolves the singularity in the sense that
a-expectation values of regular wave functions cannot be zero: any normalizable
state must be supported at non-vanishing values of a, providing contributions to the

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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expectation value which cannot completely cancel since no negative a are allowed.
A minimum for a in the sense of expectation values may thus arise at small volume
and strong curvature (where one may not trust Wheeler–DeWitt quantizations but
rather prefer a loop quantization which then removes zero as the minimum for the
basic geometrical variable p). The problem with this statement is that it depends on
interpretational issues of the wave function as well as on implicit assumptions on
the physical inner product. No explicit geometrical picture of how the singularity is
resolved arises in this way, but it has been realized in some cases; see e.g. [39].

More specifically referring to quantum dynamics, quantum back-reaction provides
additional terms to an effective Friedmann equation which should be imortant near
a = 0. Some cases where a bounce at small volume ensues are indeed known [11–13,
15], not derived by the methods used in the preceding chapters but by explicit wave
functions or a Bohmian formulation of quantum cosmology; see also the example
at the beginning of this chapter. In this way, geometrical pictures of singularity
resolution result which qualitatively can be compared with those of loop quantum
cosmology. But the robustness in this case is much less investigated. In fact, at least
the solvable Wheeler–DeWitt model analyzed before, which is free of quantum back-
reaction, does not have a bounce. Whether or not singularities are removed by such
a mechanism alone would thus depend on the matter type.

7.3.3 Dependence on Ambiguities

Any mechanism to avoid singularities must happen or at least mainly apply in strong
quantum regimes. It may thus be sensitive to ambiguities such as factor ordering
choices which have no classical analog. As an example, we look at the volume
quantization in loop quantum cosmology, which has an influence not just on the
dynamical approach to a singularity (the volume operator features prominently in
the dynamics) but also on the identification of homogeneous singularities as states
annihilated by the volume.

In analyzing inverse-triad corrections, here and in cosmological applications of
the corrected perturbation equations of Chap. 10, we mostly use the behavior for
larger values of μ where correction functions (3.59) drop off to the classical value
one, as in Fig. 3.3. On very small scales, the approach to zero at μ = 0 is characteristic
for operators with U(1)-holonomies as they appear in homogeneous models or in the
perturbative treatment. In particular, as we have seen explicitly in isotropic models
the volume operator V̂ and gauge-covariant combinations of commutators such as
tr(τ i ĥ[ĥ−1, V̂ ]) commute. It is thus meaningful to speak of the (eigen-)value of
inverse volume on zero-volume eigenstates. For non-Abelian holonomies such as
those for SU(2) in the full theory, the operators become non-commuting [40]. The
inverse volume at zero-volume eigenstates thus becomes unsharp and one can at
most make statements about expectation values rather than eigenvalues, which again
requires more information on suitable states. Then, the expectation values are not
expected to become sharply zero at zero volume, as calculations indeed show [41]

http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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(using a kinematical notion of coherent states). In addition, also here quantization
ambiguities matter: We can write volume itself, and not just inverse volume, through
Poisson brackets such as [40]

V =
∫

d3x

(
εabcεi jk

6(10πγ G/3)3

∫
d3 y1{Ai

a(x), |det e(y1)|5/6}

×
∫

d3 y2{A j
b(x), | det e(y2)|5/6}

∫
d3 y3{A j

c (x), |det e(y3)|5/6}
)2

.

After regularization, splitting the integration into sums over small patches of
coordinate size 
3

0 with volume contributions Vv ≈ 
3
0| det(ei

a)|, we obtain

Vv = 
6
0

( | det e|√
Vv

)2

= 
6
0

(
εabcεi jk

ei
a

V 1/6
v

e j
b

V 1/6
v

ek
c

V 1/6
v

)2

=
(

εabcεi jk

6(10πγ G/3)3 
3
0{Ai

a, V 5/6
v }{A j

b, V 5/6
v }{A j

c , V 5/6
v }

)2

whose quantization, making use of commutators, differs from the original volume
operator of loop quantum gravity. If non-Abelian holonomies are used, the new vol-
ume operator does not commute with the full volume operator of [7] or [8]. This
clearly shows that the usual quantization ambiguity in writing inverse-triad expres-
sions also applies to what is considered the relevant geometrical volume. (Related
ambiguities for flux operators have been discussed in [42].) For geometrical prop-
erties one may not only consider the original volume operator constructed directly
from fluxes, but any operator having volume as the classical limit. In order to find
zero-volume states to be related to classical singularities, the general fundamental
dynamics of the form (4.15) indicates that operators constructed through commuta-
tors with the original volume operator are more relevant than the volume operator
constructed directly from fluxes [40]. Thus, as one example of the relevance of quan-
tization ambiguities for questions of singularity removal, specific volume eigenstates
have to be used with great care in applications with non-Abelian holonomies.

7.4 Negative Attitude

Singularity removal in general terms may depend sensitively on specific properties
of the quantum state of the universe which is not under observational control. This
problem applies to the question whether singularities are removed, but also to how
specifically resolution would be achieved. In such a situation, a “negative attitude” is
useful, where one tries to quantify limitations to what can actually be said in detail,
and to find out which possibilities remain within the bounds. An example is the
analysis of asymmetries of states before and after a bounce of the solvable model,

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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as already discussed in detail. Continuing such an analysis in this and other models
will show clearly how much the small-volume behavior of quantum cosmology can
be elucidated, and which questions must remain open. The derivations of strong
symmetry bounds in highly specific or even solvable models, by contrast, is much
less relevant because it does not show how the behavior may be restricted in realistic
situations.

Several results in loop quantum cosmology can be seen to be investigated along
the viewpoint of negative attitude. For instance, singularities in tree-level equations
have been identified in scalar models, which are not big-bang but sudden future
singularities [43]. While the analysis based on tree-level equations would still have
to be justified by a detailed derivation of effective equations with the potential used,
as a negative result the statement is of interest: it shows the limitations of tree-level
equations and what quantum back-reaction terms would have to provide to achieve
non-singular behavior in that case. Also, extending c2 in the isotropic Hamiltonian
constraint to almost-periodic functions in more complicated ways than normally done
can lead to new types of singularities of diverging Hubble parameter even before the
high-density regime of the holonomy-induced bounce is reached [44]. Such studies
show how generic the singularity-resolution mechanisms of loop quantum cosmology
are.

Similarly, possible cases of the large-volume behavior have been studied with
a parameterized form for the growth of quantum fluctuations. The model used was
actually the solvable one, where explicit solutions for the behavior of fluctuations are
available, but with a different factor ordering. What was found by the parameteriza-
tion was that the behavior of fluctuations can be very important for the large-volume
behavior, too, even in the absence of a positive cosmological constant as we discussed
it earlier. If the wrong behavior of fluctuations is used, even a flat model can lead to a
recollapse at large volume in disagreement with the expected classical limit [45, 46].
This is true even for a behavior of fluctuations that would still allow one to interpret
states as semiclassical. The analysis underlines the importance of considering the
exact state properties for effective equations, rather than picking a certain form of
dynamical fluctuations or correlations. All quantum variables must be evolved from
their initial values onwards to ensure that the correct dynamics, also of expectation
values, is captured.

The distinguishing feature of those examples is that they show possible limitations
to proposed singularity-avoidance mechanisms, rather than providing more examples
of the same special scenario such as a bounce. As the theory is further developed,
instances of possible breaches, rather than superficial uniqueness claims of simple
mechanisms, will be very valuable to probe its general behavior.
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Chapter 8
Anisotropy

Models can be useful to analyze a complicated general theory. To that end, they
must be simple enough to be tractable but at the same time be able to capture crucial
properties. Symmetry reduction is a popular tool to do this with general relativity, and
it also applies to quantum gravity. In loop quantum gravity, already the kinematical
framework can show several technical difficulties, mainly due to the non-Abelian
nature which makes operators such as that for volume quite involved. Such issues
have to be faced before one even tries to describe and solve the dynamics, and so
already a kinematical reduction must be undertaken with care.

8.1 Constructing Models

In the full setting of loop quantum gravity we only have the connection represen-
tation; no triad representation is available because not all flux operators commute
with one another. They are, after all, SU(2)-derivatives with the well-known angular-
momentum algebra for all pairs of fluxes corresponding to intersecting surfaces. This
sense of non-commutativity [1] is not very strong, and it is not immediately clear
whether there might be implications for the structure of space–time. (In Chap. 10
we will see rather indirect implications on the structure of space–time from prop-
erties of flux operators, but not from their non-commutativity.) Nevertheless, there
are technical implications at the level of kinematical representations of the theory.
In particular, it is natural in such a situation to choose the connection representa-
tion as the starting point also for symmetry reduction, which is in fact facilitated
by the availability of detailed classifications of invariant connections on principal
fiber bundles; see Sect. 3.2.3.1 The structure of invariant objects in the space of all
connections is well understood and can be used for quantum reduction.

The first step is to find the reduced form of holonomies. Once this is known,
one can, by analogy with (3.35), construct the reduced kinematical Hilbert space as
the one generated by holonomies out of the constant state. A symmetric sector of
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the kinematical setting of loop quantum gravity follows, derived by acting with a
reduced set of holonomies on the basic state. In a second step, one would use the
canonical structure to represent triad components. This step, however, is not always
trivial since triads, after reduction, are not necessarily represented by pure derivative
operators. In this way, the non-Abelian structure of the full theory may feature also
in models. The simplest models are those that can be formulated in Abelian terms,
either directly for the triads by virtue of their invariant form, or for a new set of
variables with the same geometric information.

Invariant connections are subject to a set of conditions implementing the symme-
try or other properties (such as polarization conditions). Once these conditions are
solved for to parameterize a space of invariant connections, a sufficiently large set
of functions must be found which separates these connections (and so has different
values for at least two such functions when evaluated in two different connections)
and which can be realized as resulting from matrix elements of certain holonomies
of the connections. These conditions do not specify the function space completely;
for instance, one can choose holonomies along different kinds of curves to result
in different classes of separating functions. Among the possible cases one would
then, as always, pick one which provides the strongest simplifications in the alge-
braic behavior (such as straight edges along symmetry generators for homogeneous
models). To some degree, this is analogous to choosing adapted coordinates when
discussing symmetric space–times; in arbitrary coordinates even a highly symmetric
solution can look complicated and hide important properties. In models of quantum
gravity, however, there is an additional uncertainty concerning whether the general
behavior is already captured by one choice of basic functions. In contrast to the
choice of coordinates there is, after all, no simple transformation that would guar-
antee independence of, say, the choice of curves. Different sectors might thus arise
from choosing different types of curves, and differences in the resulting dynamics
should be studied to see how general conclusions can be drawn.

For isotropy, for instance, we have a single component c of invariant connections
in a fixed SU(2)-gauge. Taking holonomies for straight edges along generators of
translations on the homogeneous space, a complete set of matrix elements is of
the form {eiμc : μ ∈ R} as used earlier [2]. The resulting function space turns
out to be that of almost-periodic functions: all continuous functions on the Bohr
compactification of the real line. Choosing a set {einc : n ∈ Z}, on the other hand,
would not have separated connections (although it would have come from holonomies
via edges of a fixed coordinate length). Strictly periodic functions do not provide a
complete kinematical quantization, even though, as we already saw, they are sufficient
to capture the crucial behavior of isotropic quantum dynamics [3].

One could as well choose different edges in this or other examples, not resulting in
almost-periodic functions; see [4]. Among those possibilities, the quantization based
on the Bohr compactification is arguably the simplest one, providing an Abelianized
version of the model since the Bohr compactification of R, just like the real line
itself, is an Abelian group.
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Moreover, holonomies evaluated along more general edges are asymptotically almost-
periodic [5] for large c. The behavior near classical singularities (small μ) can thus be
expected to be captured well by almost-periodic functions, while general lattice refinement
in any case removes the almost-periodicity of states when one evolves to larger volume.

The choice of curves, or other ingredients, is thus an extra step in addition to
implementing the symmetry of connections. Most of the work done so far in loop
quantum cosmology is based on the use of straight curves, or integral curves of the
symmetry generators, and the simple almost-periodic structures they imply. As in
this case, ideal would always be a formulation of models in Abelian form, where
a complete set of commuting momenta exists and invariant triad components can
be represented just as derivative operators by the invariant connection components.
This is not always possible even in symmetric models, but non-Abelian features
may nevertheless be tractable more generally in such settings. In many models,
it can also happen that momenta of the invariant connection components are not
identical with invariant triad components, especially if a canonical transformation
is involved to bring the invariant space of connections into a quantizable form. In
such a case, even if momenta do not agree with triad components, one could call
quantizations of the momenta flux operators since they would be part of a basic
algebra analogous to the holonomy-flux algebra in the full theory. In this way, non-
Abelian traces of triad operators can show up in models even if they allow commuting
momenta conjugate to the connections. Here, possibilities to understand implications
of the non-Abelianness arise: While fluxes commute, simplifying calculations, triad
operators may be more complicated and show non-Abelian features explicitly. In
particular, calculations and constructions can in such a case often be simplified using
not the connection representation but the flux representation.

Once the kinematics is formulated, constraint operators are to be constructed.
The diffeomorphism constraint can usually be dealt with just as in the full theory,
and the main task is to construct the Hamiltonian constraint operator. At this point,
the relationship of the class of functions used to separate invariant connections to
holonomies along certain edges becomes important. For a correct implementation of
lattice refinement, which is the crucial ingredient in the dynamics given by a Hamil-
tonian constraint, one must know the relation between quantizations of connection
components showing up in the classical constraint and holonomies as they can be
used to quantize them. Generic properties of an underlying lattice structure then tell
one how parameters of holonomies must depend on geometrical properties such as
the size and shapes of regions considered. Since this information goes beyond what
can be derived in a pure mini- or midi-superspace model (even though it can cer-
tainly be formulated completely in such a setting), no unique dynamics can result.
But suitably parameterized, the possible choices can be analyzed well and further
restricted by the phenomenology or other aspects they imply.

The following sections and later chapters will provide several examples for what
has been discussed here in general terms.
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8.2 Bianchi Cosmology

Bianchi models are based on homogeneous spaces with a 3-dimensional symmetry
group acting transitively. The most general anisotropic spatial metric of diagonal
form that obeys these symmetries can be written as

hab =
3∑

I=1

hIω
I
aω

I
b,

where the ωI
a are left-invariant 1-forms on the homogeneous space. A homogeneous

spatial manifold can be identified with the group space up to possible discrete iden-
tifications. For any given Lie group with elements parameterized as G(xa) with as
many group coordinates xa as the group has dimensions, left-invariant 1-forms can
explicitly be calculated via the Maurer–Cartan form G−1∂aG = TIω

I
a, where TI are

Lie-algebra generators. (See e.g., [6] for more details relevant for this section.)

8.2.1 Bianchi Dynamics

The form of theωI
a follows just from the symmetry type and does not contain dynam-

ical information, which instead is completely contained in the metric coefficients hI .

They are spatial constants but may be functions of time, with momenta π I ∝ ḣ I .

The dynamics on the phase space is controlled by the Hamiltonian constraint

NCgrav = 1

2

(
h2

1(π
1)2 + h2

2(π
2)2 + h2

3(π
3)2

)
− h1h2π

1π2 (8.1)

−h1h3π
1π3 − h2h3π

2π3 − det h

(16πG)2
(3)R = 0 (8.2)

for a lapse N = √
det h/16πG, with the spatial Ricci scalar

(3)R = −1

2

(
n1h1

h2h3
+ n2h2

h1h3
+ n3h3

h1h2
− 2

n1n2

h3
− 2

n1n3

h2
− 2

n2n3

h1

)

in terms of Bianchi parameters nI ∈ {0,±1} determining the symmetry type: Struc-
ture constants of the symmetry group (of class A) are C I

J K = εJ K I n(I ). (For instance,
nI = 0 for the Bianchi I model with group R

3, and nI = 1 for the Bianchi IX model
with group SU(2)).

It is often useful to apply a canonical transformation

αI := 1

2
log hI , ρ I := 2h(I )π

I (8.3)
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and diagonalize the resulting kinetic term in the constraint by introducing Misner
parameters [7]:

α1 =: α + β+ + √
3β−, α2 =: α + β+ − √

3β−, α3 =: α − 2β+ (8.4)

for the metric variables and

ρ1 =: 1

3
pα + 1

6
p+ + 1

2
√

3
p−, ρ2 =: 1

3
pα + 1

6
p+ − 1

2
√

3
p−, ρ3 =: 1

3
pα − 1

3
p+

for the momenta. The constraint then takes the form

NCgrav = 1

24
(−p2

α + p2+ + p2−)− e6α

(16πG)2
(3)R (8.5)

with the anisotropy potential

(3)R = − 1

2
e−2α

(
n1e4(β++√

3β−) + n2e4(β+−√
3β−) + n3e−8β+

−2n1n2e4β+ − 2n1n3e−2(β+−√
3β−) − 2n2n3e−2(β++√

3β−)
)
. (8.6)

Example 8.1 (Kasner model) The Bianchi I model is obtained for the choice nI = 0,
thus (3)R = 0. Equations of motion

ρ̇ I = {ρ I , NCgrav} = 0

imply that all ρ I are constant in time, and

α̇I = {αI , NCgrav} = 1

4
(2ρ I − ρ1 − ρ2 − ρ3) =: ṽI .

These coefficients enter the spatial metric components

hI = e2αI = h(0)I e2ṽI t .

Solutions αI (t) = ṽI t + α
(0)
I are subject to the constraint

0 = NCgrav =
∑

I

α̇2
I −

(
∑

I

α̇I

)2

=
∑

I

(ṽI )2 −
(
∑

I

ṽI

)2

.

Since the Hamiltonian constraint was used with a lapse function N ∝ √
det h ∝

exp((ṽ1 + ṽ2 + ṽ3)t), we transform to proper time by τ = ∫ τ N (t)dt ∝ exp((ṽ1 +
ṽ2 + ṽ3)t) and write the line element as the Kasner solution

ds2 = −dτ 2 + τ 2v1
(dx1)2 + τ 2v2

(dx2)2 + τ 2v3
(dx3)2
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with Kasner exponents

v I = ṽI
∑

J ṽJ

Due to their definition and the constraint, the exponents must satisfy

∑

I

v I = 1 =
∑

I

(v I )2.

For all solutions of this form, one v I is negative, two are positive. The behavior
of expansion or contraction is thus very different from isotropic. The volume V ∝
τv

1v2v3
is always monotonic and vanishes at τ = 0, a singularity.

8.2.2 Connection Variables and Holonomies

Invariant connections of Bianchi type are of the form Ai
a = c̃i

Iω
I
a with spatial

constants c̃i
I . Taking straight lines eI along vector fields Xa

I = ėa
I dual to the ωI

a
(Xa

Iω
J
a = δ J

I ), we obtain holonomies

heI = exp

(
∫
eI

Ai
aτi Xa

I ds

)
= exp(�(I )0 τi c̃

i
I ) (8.7)

with the length parameters �I
0 = ∫

eI
ds as before. All three holonomies heI in

the three spatial directions can be arbitrary elements of SU(2), fully indepen-
dent of one another. They certainly do not commute in general, such that the full
non-Abelian nature has been reduced in no way. Triads would still be represented as
non-commuting derivative operators

Ĵ i
I = tr((hI τ

i )T ∂/∂hI ) (8.8)

on the three copies of SU(2); see (3.39). The volume operator is constructed from
ε I J K εi jk Ĵ i

I Ĵ j
J Ĵ k

K , whose action is equivalent to that of the full volume operator on
the six-vertex obtained as the intersection of three closed loops. In this case, the
volume operator is complicated and cannot explicitly be diagonalized completely;
nor can the Hamiltonian constraint be implemented explicitly.

In the homogeneous setting a functional derivative operator by connection components sees
both endpoints of edges at the same time, such that the heI , from the point of view of
flux operators, correspond to three closed edges acted on by SU(2)-derivatives at a ver-
tex where they all intersect. The full volume operator is sensitive to the way holonomies
are contracted in a vertex, and possible contractions are dictated by the gauge behavior
of holonomies. In this way, the interpretation of homogeneous vertices follows by using
the gauge transformations heI �→ g−1heI g with the same g for all holonomies and,

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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thanks to homogeneity, without a distinction between gauge transformations at the start-
ing and endpoint of the edge. In the sense of a spin network, gauge-invariant contractions
C B1 B2 B3

A1 A2 A3
ρ j1 (he1 )

A1 B1ρ j2 (he2 )
A2 B2ρ j3 (he3 )

A3 B3 of all three holonomies must then be such
that

C B1 B2 B3
A1 A2 A3

ρ j1 (g
−1)A1

C1ρ j2 (g
−1)A2

C2ρ j3 (g
−1)A3

C3ρ j1 (g)
D1

B1ρ j2 (g)
D2

B2ρ j3 (g)
D3

B3 = C D1 D2 D3
C1C2C3

.

This is the same condition as the one for a 6-valent vertex where three straight edges with
spins j1, j2 and j3, respectively, intersect.

8.2.2.1 Abelianization

Bianchi models of the so-called type A can be diagonalized, which means that the
form c̃i

I = c̃(I )δi
I in terms of only three independent components c̃I will be preserved

by evolution. Most of the important dynamical properties, for instance in the approach
to a singularity, are shown in full detail already by such a diagonalization, which is
thus of interest also for an implementation in a quantum model. Putting the diagonal
form into general Bianchi holonomies results in expressions

heI = exp(�(I )0 c̃I τI ) = cos(�(I )0 c̃I /2)+ 2τI sin(�(I )0 c̃I /2) (8.9)

which can be evaluated easily but still do not commute. However, these holonomies
are of a restricted form, satisfying for instance

tr(log(heI ) log(heJ )) = �
(I )
0 �

(J )
0 c̃I c̃J tr(τI τJ ) = 0

for I �= J. Any pair of such holonomies obeys gh = hg + h−1g + hg−1 − tr(hg);
even though they do not commute, there is a general way to reorder them in simple
terms, a manipulation that would not be possible if arbitrary SU(2)-elements would
be allowed as in the non-diagonal case.

This restricted behavior indicates that a reformulation of the variables allows an
Abelian representation, which is indeed the case [8]: Taking matrix elements of (8.9)
shows that a complete set of functions on diagonal homogeneous connections is given
by exp(i�(I )0 c̃I /2), such that the Hilbert space L2(R̄3

Bohr, dμ3) arises simply as the
triple product of the isotropic one: we use functions of three connection components
c̃I , almost periodic in each of them. Without the diagonalization, by contrast, we
have the form

heI = exp(�(I )0 c̃i
I τi ) = cos(�(I )0 C̃I /2)+ 2ni

I τi sin(�(I )0 C̃I /2)

with C̃2
I = ∑3

i=1(c̃
i
I )

2 and ni
I = c̃i

I /C̃I of general holonomies. Information in the
non-trivial components ni

I , which in the diagonal case would reduce to δi
I , is not

captured by almost-periodic functions.
A diagonal invariant triad has the form Ea

i = p̃(I )δ I
i Xa

I with components p̃ I dual
and conjugate to the c̃I :
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{c̃I , p̃ J } = 8πγGδ J
I

V

with the coordinate volume V = L 1L 2L 3 in terms of independent sizes L I along
the three directions. As in the isotropic case, we redefine

cI := L (I )c̃I , pJ := 1

2
L K L LεK L(J ) p̃ J = V

L (J )
p̃ J (8.10)

such that

{cI , pJ } = 8πγGδ J
I . (8.11)

Our phase space is just the co-tangent space over the triple product of the Bohr
compactification of R, such that the quantized fluxes have the simple form

p̂ I = 8πγ �2
P

i

∂

∂cI
(8.12)

Their spectra can directly be determined as in the isotropic case:

p̂ I |μ1, μ2, μ3〉 = 4πγ �2
PμI |μ1, μ2, μ3〉 (8.13)

with eigenstates

〈c1, c2, c3|μ1, μ2, μ3〉 = exp(i(μ1c1 + μ2c2 + μ3c3)/2). (8.14)

Also the volume operator is simple: in the diagonal case, classically
V = √|p1 p2 p3| for a region of coordinate size V , which directly gives the vol-
ume operator and its complete spectrum (4πγ �2

P)
3/2|μ1μ2μ3|1/2. The reduction of

the SU(2)-gauge leaves a residual transformation pI �→ −pI , which requires a
corresponding symmetry property of states ψμ1μ2μ3 in the triad eigenbasis under
μI �→ −μI .

One way to probe whether an Abelian formulation of a model is possible is to
look at the reduced Gauss constraint. It has the general form ∂a Ea

i + εi jk A j
a Ea

k = Ti

where Ti is a possible source term resulting from a theory with non-vanishing torsion.
Ignoring torsion for now, homogeneous models lead to variables where ∂a Ea

i = 0,
such that Ai

I = Xa
I Ai

a and E I
i = ωI

a Ea
i must point in the same internal direction for

fixed I ; their vector product in internal space vanishes. We have implicitly used this
property before since we diagonalized the connection and triad in the same frame.
If this were not the case, the derivatives by connection components would not be
identical with triad components but rotated against them. With a constant rotation
there would be no problem; but if the rotation is phase-space dependent, contain-
ing the connection components themselves, triad operators would be complicated
expressions in terms of basic operators, depending not just on the fluxes but also on
connections. In this case, they may not commute and develop complicated spectra.
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We will see an explicit example later on in the discussion of spherically symmetric
and other midi-superspace models, where the partial derivative in the Gauss con-
straint no longer vanishes. Another example is a non-vanishing torsion source, as
it results when fermions are coupled. In such cases, canonical transformations can
sometimes be used to facilitate explicit quantizations in manageable terms.

In the presence of torsion, connections and triads cannot be diagonalized in the same basis,
providing an interesting model to probe non-Abelian features. If we couple fermions to
gravity the Gauss constraint changes by a source term from the fermion axial current
[9, 10]:

G[�] :=
∫

�

d3x�i
(
Db Pb

i − 1
2

√
det h Ji

)
=

∫

�

d3x�i
(
Db Pb

i − πξ τi ξ − πχτiχ
)

(8.15)

in terms of half-densitized [11] 2-spinors χ, ξ and their momenta πχ = iχ† and πξ = iξ†.

Reduced to a Bianchi-type model, this constraint becomes [12]

φ
j
I pI

k εi jk = 1

2

√
| det(pI

j )|Ji . (8.16)

If we assume φi
I = c(I )�i

I and pI
i = p(I )�I

i , diagonalized in the same basis �i
I , vanishing

spatial components of the fermion current would be required in contrast to the freedom
allowed in the classical model. In fact, the spin connection now receives a contribution from
a torsion term of the form

8πγG

4(1 + γ 2)
ε j

kl e
k
a J l (8.17)

which turns out to be inconsistent with the diagonal ansatz C(K )�
i
Kω

K
a if J i �= 0 (using the

�i
K as it appears in the diagonal triad). Since the spin connection is part of the Ashtekar–

Barbero connection, the latter cannot be diagonal in the triad basis. There are additional
torsion terms contributing to the connection in the presence of fermions, which must be used
for the canonical homogeneous variables. To be sufficiently general, we write

Ai
a = (L K )−1c(K )�

i
Kω

K
a , Ea

i = L (K )

V
p(K )T K

i Xa
K (8.18)

where T I
i is not required to equal �i

I . In fact, the relation between �i
I and T I

i is partially
determined by dynamical fields as the reduced Gauss constraint shows. This provides one
example where connection and triad components after reduction are no longer canonically
conjugate: we have

∫

�

d3x Ea
i Lt Ai

a = p(I )T I
i Lt

(
c(I )�

i
I

)
= p(I )Lt

(
c(I )�

i
I T I

i

)
− c(I ) p(I )�i

I Lt T I
i .

(8.19)

Not cI is conjugate to pI but c(I )�i
I T (I )

i is. (Euler) parameterizing T I
i as T (εI ) =

exp(ε3T3) exp(ε2T1) exp(ε1T3) using generators TI of SO(3) and inserting this product in
the Liouville form shows that the angles εI are canonically conjugate to functions of those
in �i

I . (For instance, ε1 is conjugate to −tr((c · �)(p · T (ε1 + π/2, ε2, ε3))), where c and
p here denote the diagonal matrices with components cI and pI , respectively.)
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For simplicity, we continue the discussion with the case where isotropy is realized in surfaces
transversal to the fermion current. This allows the ansatz

�
j
J =

⎛

⎝
1 0 0
0 cos ρ −sin ρ

0 sin ρ cos ρ

⎞

⎠ , T J
j =

⎛

⎝
1 0 0
0 cos σ sin σ

0 −sin σ cos σ

⎞

⎠ (8.20)

where ρ and σ are the only non-vanishing rotation angles. The Liouville term in the action
then simplifies:

1

8πγG

∫

�

d3x Ea
i Lt Ai

a = 1

8πγG
p(I )Lt

(
c(I )�

i
I T I

i

)
− c(I ) p(I )�i

I Lt T I
i

= 1

8πγG

(
ċ1 p1 + Lt (c2 cos(ρ − σ))p2 + Lt (c3 cos(ρ − σ))p3

− σ̇ (c2 p2 + c3 p3) sin(ρ − σ)
)

= 1

8πγG

(
ċ1 p1 + ˙̄c2 p2 + ˙̄c3 p3 + σ̇ pσ

)
,

(8.21)
where we introduced

c̄2 = c2cos(ρ − σ), c̄3 = c3cos(ρ − σ), pσ = −(c2 p2 + c3 p3)sin(ρ − σ). (8.22)

(The variable pσ is fixed in terms of the fermion current via the Gauss constraint.) In these
components, the symplectic structure is

{
c1, p1

}
= 8πγG,

{
c̄2, p2

}
= 8πγG,

{
c̄3, p3

}
= 8πγG, {σ, pσ } = 8πγG.

(8.23)
The kinematical degree of freedom σ is due to torsion, but will be removed after solving
the Gauss constraint (which would be trivial for the same symmetry type in the absence of
torsion). This Poisson algebra can easily be quantized by loop techniques. For c1, c̄2 and c̄3
a Bohr representation arises, while the angle σ is simply represented on U(1).

At this stage, we see that some connection components have to be modified in (8.22) to
keep them conjugate to the triad. Alternatively, we could have chosen to keep the connection
components unchanged but transform the triad components to new forms. Then, triads and
fluxes would not agree, and triads (unlike fluxes) may not commute in a resulting quantum
representation. These issues are thus related to the non-Abelian nature of the full theory,
which is modeled in this setting. It turns out to be more convenient to transform the connection
components, however, since this amounts simply to an implicit subtraction of torsion terms
[12]: Writing

c̄2 = c2 cos(ρ − σ) = c2�
i
2T 2

i = φi
2T 2

i

and recalling that T I
i gives the direction of Ea

i , we can interpret c̄2 as a component

(L (2)−1(K ))−c̄2 = L 1L 3 Ai
a Eb

i
Xa

2ω
2
b

p2

of the projection of Ai
a onto Ea

i . This projection can be seen to remove exactly the torsion
contribution to extrinsic curvature contained in Ai

a . The projection transversal to Ea
i , and

thus the torsion contribution in separation, is realized by the new variable pσ .We will provide
more details about the dynamical implications of fermions in Sect. 8.2.4.3
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For another method to deal with non-Abelian features in non-diagonal Bianchi models, see
[13].

8.2.3 Dynamics and Refinement

For the dynamics, we start with the classical expression

H = 1

8πG

⎧
⎨

⎩

[
(c2�3 + c3�2 − �2�3)(1 + γ−2)− n1c1 − γ−2c2c3

]
√∣∣∣∣

p2 p3

p1

∣∣∣∣

+
[
(c1�3 + c3�1 − �1�3)(1 + γ−2)− n2c2 − γ−2c1c3

]
√∣∣∣∣

p1 p3

p2

∣∣∣∣

+
[
(c1�2 + c2�1 − �1�2)(1 + γ−2)− n3c3 − γ−2c1c2

]
√∣∣∣∣

p1 p2

p3

∣∣∣∣

⎫
⎬

⎭
(8.24)

of the constraint in terms of the diagonal variables, where

�I = 1

2

(
pK

pJ
n J + pJ

pK
nK − pJ pK

(pI )2
nI

)
(8.25)

are the spin-connection components and nI again classify the Bianchi type.
In order to loop quantize the constraint, we write the general form

Ĥ = i

8π2γG2�δ1δ2δ3

∑

I J K

ε I J K tr(hI h J h−1
I h−1

J hK [h−1
K , V̂ ])+ Ĥ� (8.26)

of a constraint operator [8] as in (4.5), where Ĥ� depends on the Bianchi model
and incorporates the spin-connection terms [14]. Connection components are then
expressed via the three independent holonomies hI = exp(iδ(I )cI /2) with δI =
�I

0/L
(I ).

Following the same steps as in isotropic cosmology, we can take the trace, rep-
resent the constraint as a combination of shift operators, and derive a difference
equation in the triad representation in terms of the independent quantum numbers
μI . We will see examples for such difference equations in later sections, and now
focus on general aspects regarding the form of models.

8.2.3.1 Lattice Refinement

In an anisotropic setting with several independent connection components, the
connection-dependent part of the constraint would, compared to isotropy, allow even

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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more choices to represent it in terms of almost-periodic functions. The freedom can
again be reduced by realizing the expression in the form of a holonomy around a
square loop. Such a relation to holonomies is also important for implementing differ-
ent refinement schemes. To that end one takes the constraint operator (or difference
equation) obtained for constant holonomy parameters δI in hI = exp(iδI cI /2),
relates these parameters to geometrical sizes such as lengths or areas, and introduces
a possible dependence on the geometry. Also here, there is now much more freedom
than in isotropic models since holonomies along the three independent directions
can depend differently on the geometry. Even if one restricts attention to power-law
cases, a single parameter such as x before does not suffice. This parameter can still
be used to characterize the total volume dependence of the number of patches, but
in each direction patches may refine differently. To summarize this, we now write

N1(t)v1(t)N2(t)v2(t)N3(t)v3(t) = V
√

|p1(t)p2(t)p3(t)| (8.27)

for the volume, which must factorize into three independent equations

NI (t)vI (t) = L I
√

|pI (t)| (8.28)

for the extensions of the three directions, where V = L 1L 2L 3. The product
N1N2N3 as the total number of patches can then be parameterized to be propor-
tional to a power |p1 p2 p3|−x of volume, but this does not fix the individual depen-
dences of NI (p1, p2, p3). If dependences are such that NI (pI ) depends only on the
geometry of its own direction, for instance NI ∝ |pI |1/2 or |pI |−x more generally,
the refinement resembles what we have in isotropic models, just for three directions
independently. In this case, while step sizes may not immediately be equidistant,
variables can be redefined to make them so. But in anisotropic models the generic
behavior would be one where each NI depends on all the triad variables, which in
general results in a difference equation whose steps cannot all be made uniform. In
fact, it is rather natural to expect that NI depends on the extension in direction I,
given by the co-triad component |eI | = √|p1 p2 p3|/pI . (This non-trivial case is
required for consistent dynamics in the sense of stability [15]. At least one of the
variables can be made uniform, corresponding to the total volume as the isotropic
average of the degrees of freedom. Also at the quantum level there thus seems to
be an advantage to using Misner-type variables splitting the scale factors into the
volume and anisotropy parameters.) One thus has to deal with difference equations
on a genuinely non-uniform lattice, which poses new mathematical and numerical
problems. Methods of handling non-equidistant difference equations of this form are
being developed [16, 17].

8.2.3.2 Singularity

The general type of difference equations can be used to infer properties similar to
those of isotropic models. First, there is no singularity because wave functions are,
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starting with initial and boundary values, uniquely evolved on all of minisuperspace,
including configurations which from the classical perspective would lie beyond a
singularity. For this conclusion, only steps in the difference equation around where
one of theμI vanishes need be used, which is independent of the refinement scheme.
Further restrictions on the refinement do, however, arise by making sure that the
difference equation has good stability properties: solutions in classically allowed
regions must be oscillatory rather than increase exponentially. For this, the refine-
ment must be such that classical regions are provided with sufficiently fine lattices,
while quantum regions can have significant coarseness. In contrast to isotropic mod-
els, ensuring this behavior in the whole minisuperspace is non-trivial and restricts
refinements even beyond the volume dependence; see Sect. 8.3 and Sect. 11.2.1.3 for
further details.

8.2.3.3 Fermions

Another interesting application of anisotropic models is the inclusion of fermions in
the dynamics. The direction distinguished by the fermion current does not allow its
inclusion in isotropic models, but rather simple anisotropic ones can be obtained. An
advantage compared to isotropic models with a scalar source is that a fundamental
fermion restricts, via Pauli’s exclusion principle, the amount of matter that can be
present per degree of freedom. The kinetic energy of a scalar field can be made
arbitrarily large by raising its momentum, a freedom often exploited to produce
bounces in kinetic-dominated regimes. A fermion field, on the other hand, has a
maximum excitation level per degree of freedom, which does not allow one to raise
the density arbitrarily.

Continuing with the constructions in Sect. 8.2.3 we now incorporate a matter
source Hfermion = 3

2πGJ 2
1 /p2

√|p1| in the Hamiltonian constraint, with a den-
sitized fermion current J1 := √

det h J1 pointing in the anisotropic direction. (At
this stage, we assume the Gauss constraint to be solved; see [12] for more details.)
We represent fermion states as the space of functions f (�α) of four independent
half-densitized Grassmann-valued variables �α, α = 1, . . . , 4, for the four compo-
nents contained in the fermion fields ξ and χ. The fermionic momenta πξ = iξ† and
πχ = iχ† then give rise to components �̄α, represented as �∂/∂�α. The densitized
current component J1 = ξ†σ1ξ + χ†σ1χ then becomes

Ĵ1 = �
∂

∂�2
�1 + �

∂

∂�1
�2 + �

∂

∂�4
�3 + �

∂

∂�3
�4. (8.29)

The operator ∂
∂�2

�1+ ∂
∂�1

�2 can easily be diagonalized: Each 2-spinor copy has two

eigenstates f0(�) = 1 and f 0(�) = �1�2 of eigenvalue zero, and one eigenstate
each f±(�) = �1±�2 of eigenvalue ±1.Taking the tensor product of both 2-spinor
copies ξ and χ then gives current eigenvalues zero, ±� and ±2�.

States in the triad representation are now given by wave functions ψμ1,μ2 (�) with the flux
eigenvalues μ1 and μ2 and the fermion dependence via �. For the vacuum model, there is

http://dx.doi.org/10.1007/978-1-4419-8276-6_11
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a symmetry transformation flipping the sign of μ1, or changing the orientation of space. It
thus amounts to a parity transformation which does not leave the fermion fields invariant.
The complete parity transformation �̂ is represented as

ψμ1,μ2 (�1,�2,�3,�4)
�̂−→ ψ−μ1,μ2 (�3,�4,�1,�2) (8.30)

switching the places of the 2-spinor components.

The energy density of fermions can only be microscopic: eigenvalues of J1 can
be at most 2�. Fermion models can thus be expected to be significantly different
from kinetic-dominated scalar models, but they have not been studied in detail yet.

8.2.4 Reduction from Anisotropy to Isotropy

Anisotropic models are useful also in that they allow explicit symmetry reductions at
the quantum level, providing a test-bed for the general procedure of deriving models
from the full theory. Starting with a general homogeneous setting, isotropy can be
introduced and then compared with the original isotropic reduction. In this way one
again goes beyond the minisuperspace quantization of a single model, putting all
homogeneous models in one setting. Moreover, the techniques allow perturbations
around isotropic models, adding perturbative anisotropies to the dynamics.

To illustrate the reduction, we follow [18] and use an LRS Bianchi I model which
has one rotational symmetry axis in addition to the homogeneous Bianchi I symme-
tries. Invariant connections and triads in this case are

Ai
adxaτi = Ãτ 1dx + Ãτ 2dy + C̃τ 3dz (8.31)

Ea
i

∂

∂xa
τ i = p̃Aτ

1∂x + p̃Aτ
2∂y + p̃Cτ

3∂z (8.32)

and have Poisson brackets

{ Ã, p̃A} = 4πγG

V
, {C̃, p̃C } = 8πγG

V
. (8.33)

As before, we factorize the coordinate volume into V = (L 1)2L 3 (with L 1 = L 2

owing to the rotational symmetry) and absorb factors into the basic variables by
rescaling

A = L 1 Ã, C = L 3C̃, pA = L 1L 3 p̃A, pC = (L 1)2 p̃C . (8.34)

The new variables are invariant under rescaling the coordinates by x �→ λ1x,
y �→ λ1 y, z �→ λ3z. (Notice the density weight of momenta: when we rescale
coordinates, the densitized vector field E I ∂/∂x I transforms to λ2

1λ3 E I ∂/∂(λ(I )x I )).
As in general diagonal Bianchi models, there is a residual gauge transformation

pA �→ −pA which can be fixed by requiring pA ≥ 0. The sign of pC , however,
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does have invariant kinematical meaning as the orientation of the triad. Both triad
components together determine the volume

Vaniso =
√

p2
A|pC |. (8.35)

The classical Hamiltonian constraint takes the simple form

Haniso = −(8πG)−1γ−2
(

A2 pA√|pC | + 2AC
√|pC |

)
+ Hmatter(pA, pC ) = 0

(8.36)

as a reduction of the general Bianchi Hamiltonian (8.24).
For a perturbative treatment it is useful to perform a linear canonical transforma-

tion which explicitly splits the variables into isotropic ones and perturbations (a form
of Misner variables for LRS Bianchi models):

(c̄, p̄) =
(

1

3
(2A + C),

1

3
(2pA + pC )

)
(8.37)

(ε, pε) =
(

1

3
(A − C),

1

3
(pA − pC )

)
(8.38)

with Poisson brackets

{c̄, p̄} = 8πγG

3
, {ε, pε} = 4πγG

3
. (8.39)

The original variables are obtained by the inverse transformation

(A,C) = (c̄ + ε, c̄ − 2ε), (pA, pC ) = ( p̄ + pε, p̄ − 2pε). (8.40)

For perturbations we assume pε � p̄; in particular, the approximation will break
down close to classical singularities of the isotropic type where p̄ = 0. For the
connection we only assume ε  1 regardless of the value of the isotropic c̄.

There are different ways to introduce such a transformation; the one chosen here
gives rise to a volume expression

Vaniso =
√

| p̄3 − 3p2
ε p̄ − 2p3

ε | = | p̄|3/2
(

1 − 3

2

p2
ε

p̄2 + O(p3
ε/ p̄3)

)
(8.41)

which agrees with the isotropic one up to terms of at least second order in pε. The
Hamiltonian constraint becomes

Haniso = − 3

8πGγ 2 | p̄|−3/2
(

c̄2 p̄2 − ε2 p̄2 + 1
2 c̄2 p2

ε + 2c̄ p̄εpε + O(p3
ε / p̄3)

)
+ Hmatter( p̄, pε)

(8.42)
up to terms of third order in the perturbation.
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At the non-perturbative anisotropic level, the Hilbert space and the basic
holonomy-flux representation on it are constructed as in general anisotropic models.
We have the space

Haniso ∼= Hiso ⊗ Hiso (8.43)

of almost-periodic functions in two variables, with orthonormal basis

〈A,C |μ, ν〉 = exp(i(μA + νC)/2), μ, ν ∈ R. (8.44)

Holonomy operators act by multiplication as before,

h(ρ)A |μ, ν〉 = |μ+ ρ, ν〉, h(τ )C |μ, ν〉 = |μ, ν + τ 〉 (8.45)

for

h(ρ)A = exp(iρA/2), h(τ )C = exp(iτC/2), (8.46)

and fluxes are

p̂A|μ, ν〉 = 2πγ �2
Pμ|μ, ν〉, p̂C |μ, ν〉 = 4πγ �2

Pν|μ, ν〉. (8.47)

Gauge invariance of states under the residual transformation can be ensured by work-
ing only with states

∑
μ,ν ψμ,ν |μ, ν〉 where ψμ,ν is symmetric in μ. In terms of the

triad operators, we have the volume operator V̂ =
√

p̂2
A| p̂C |.

8.2.4.1 Isotropic Distributions

The relationship between isotropic and anisotropic variables is now to be formulated
at the quantum level. Isotropic states are not contained in the anisotropic Hilbert
space, for they are not normalizable from that perspective. They can instead be
realized as distributions. To do so explicitly, we select the dense subspaces Cyliso
and Cylaniso of cylindrical functions in the two Hilbert spaces. They are finite linear
combinations of the basis states |μ〉 and |μ, ν〉, respectively. Distributional states are
linear functionals on the cylindrical subspaces. Taking all spaces together, we write
the two Gel’fand triples Cyliso ⊂ Hiso ⊂ Cyl�iso and Cylaniso ⊂ Haniso ⊂ Cyl�aniso.

Isotropic states [19] in the anisotropic model can now be introduced as distribu-
tions supported only on isotropic connections with ε = 0. Such states must indeed be
distributional: they are supported on a set of measure zero in the space of anisotropic
connections. Explicitly, they can be implemented by an antilinear map

σ : Cyliso → Cyl�aniso, |μ〉 �→ (μ| (8.48)

such that
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σ(|μ〉)[|ρ, τ 〉] = (μ|ρ, τ 〉 = 〈μ|ρ, τ 〉|A=C=c for all |ρ, τ 〉
implements the distributional restriction to isotropy A = C = c by using

〈A,C |ρ, τ 〉|A=C=c = 〈c, c|ρ, τ 〉 = exp(i(ρ + τ)c/2).

We compute (μ| by expanding σ(|μ〉) =: ∑κ,λ σκ,λ(μ)〈κ, λ|:

σρ,τ (μ) = σ(|μ〉)[|ρ, τ 〉] =
∫

e−iμc/2ei(ρ+τ)c/2dμH(c) = δμ,ρ+τ .

Thus,

(μ| = σ(|μ〉) =
∑

ρ,τ

δμ,ρ+τ 〈ρ, τ | =
∑

ρ

〈ρ,μ− ρ| (8.49)

summing over all real numbers, which for a distribution in Cyl�aniso is well-defined.
To confirm the symmetry of the states, we evaluate (μ|ρ, τ 〉 = δμ,ρ+τ : the dis-

tribution is non-zero only if the averaged label ρ + τ equals the isotropic one, in
eigenvalues

1
2γ �

2
P(ρ + τ) = 2( p̂A)ρ + ( p̂C )τ = 3( ˆ̄p)ρ+τ

as required for triad operators quantizing the second relation (8.40). Fluxes are
thus isotropic in the states. Moreover, (μ|h(ρ)A h(ρ)−1

C = (μ|: the dual action of
exp(iρA/2) exp(−iρC/2) = exp(3iρε/2) acts trivially on symmetric distributions,
in accordance with the fact that they are supported only on isotropic connections
with ε = 0.

In this simple, finite-dimensional case the definition of a symmetric state can
easily be seen to amount to the following procedure: Take an isotropic state in the
connection representation and multiply it with a δ-distribution supported at ε = 0
on the Bohr compactification of the real line, δ(A − C) = ∑

ρ eiρ(A−C)/2,

eiμC/2δ(A − C) = eiμC/2
∑

ρ

eiρ(A−C)/2 =
∑

ρ

ei(ρA+(μ−ρ)C)/2 = σ(|μ〉)(|A,C〉).

The result is a symmetric distributional state in the anisotropic model according
to (8.49). Our original definition (8.48) generalizes this concept to more general
systems where explicit constructions of delta-distributions on subspaces of invariant
connections would be too complicated.

Unlike holonomies, not all operators map a symmetric state to another symmetric
one by their dual action. This prevents us from directly defining all operators for the
isotropic model, such as the Hamiltonian constraint, by deriving them from the dual
action of anisotropic operators. But suitable operators do exist for which a reduction
can be done, and they suffice to derive the basic operators of the model and the
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holonomy-flux algebra. For flux operators, one can easily see that 2 p̂A + p̂C = 3 ˆ̄p
is the only one mapping an isotropic state (μ| to another isotropic state:

σ(|μ〉) p̂ = 1
3 (μ|(2 p̂A + p̂C ) = 4

3πγ �
2
Pμ(μ| = σ( ˆ̄p|μ〉). (8.50)

It also agrees with the isotropic flux operator ˆ̄p defined in the isotropic model: the
actions of p̂ and σ commute. For holonomies, arbitrary products of h A and hC map
an isotropic state to another one, which follows from the fact that h Ah−1

C acts as
the identity while the remaining factor simply amounts to an isotropic holonomy
operator. Holonomy operators form a closed algebra with the isotropic flux operator
ˆ̄p = 1

3 (2 p̂A + p̂C ):

[h(ρ)A h(τ )C , ˆ̄p]|μ, ν〉 = − 4
3πγ �

2
P(ρ + τ)|μ+ ρ, ν + τ 〉 = − 4

3πγ �
2
P(ρ + τ)h(ρ)A h(τ )C |μ, ν〉,

(8.51)
thus [h(ρ)A h(τ )C , ˆ̄p] = − 4

3πγ �
2
P(ρ + τ)h(ρ)A h(τ )C . The anisotropy operator p̂ε :=

1
3 ( p̂A − p̂C ) could also be included in a closed algebra due to

[h(ρ)A h(τ )C , p̂ε] = − 1
6γ �

2
P

( 1
2ρ − τ

)
h(ρ)A h(τ )C (8.52)

(after all, the anisotropic operators form a closed algebra) but it does not map an
isotropic distribution to another such distribution.

Operators isolated so far represent many of the elements of the classical basic
algebra, split into averaged isotropic and perturbative anisotropic ones. The unique
flux ˆ̄p fixing isotropic distributions corresponds to the average flux. Holonomy prod-
ucts fixing any isotropic state represent the connection perturbation ε. While these
operators are intrinsically defined, making use only of the symmetry properties, no
unique quantization corresponding to c̄ can be obtained in this way. Even at the
algebraic level of operators, where the distributional nature of symmetric states does
not matter, a reduced model is not simply a subspace of a less symmetric one.
Instead, it also requires a factorization procedure: We can act with all holonomies
on symmetric states since they leave this space invariant. Thus, the unique averaged
flux together with all anisotropic holonomies defines the reduced basic algebra. On
any given symmetric state, many anisotropic holonomies have the same action. A
unique representation thus requires factoring out equivalent actions.

This is fully analogous to the classical situation where the splitting of anisotropic
variables A and C into an isotropic average c̄ and an anisotropy is not unique. The
situation here is thus equivalent to classical averaging problems, which for inhomo-
geneities play important roles in cosmology. Classically, a given p̄, corresponding
to our unique flux operator mapping isotropic states to isotropic ones, determines
a form of ε (corresponding to the uniquely defined holonomy operator h Ah−1

C fix-
ing isotropic states) as a linear combination of A and C by requiring { p̄, ε} = 0.
A unique form for c̄ and pε can then be obtained only with an additional choice.
(We did this classically by requiring the volume (8.41) to receive corrections only
to second order.) One can for instance define p̂ε = 1

3 ( p̂A − p̂C ) as above and then
require that (8.52) vanish, analogously to {c̄, pε} = 0. This prescription yields h2

AhC



8.2 Bianchi Cosmology 151

as a specific choice of the isotropic holonomy operator in addition to the flux ˆ̄p. The
pair indeed forms a subalgebra of the anisotropic operator algebra, isomorphic to the
isotropic algebra and mapping isotropic states to isotropic states.

This example illustrates the constructions of symmetric models within a fuller set-
ting. Models cannot be directly embedded in the full theory, but their basic algebra
and quantum representation can be derived from the full one: We use the classi-
cal relations between symmetric and non-symmetric variables to define a distin-
guished subalgebra of the non-symmetric holonomy-flux algebra Aaniso. Using the
fact that the non-symmetric representation is cyclic on |0, 0〉 such that the subspace
Aaniso|0, 0〉 is dense in Haniso, we generate the representation of the reduced model
by acting only with the symmetric subalgebra on the cyclic state. In this way we
define the reduced state space, which is equipped with an inner product by requiring
holonomy operators to be unitary and fluxes to be self-adjoint. Upon completion, this
inner-product space defines the Hilbert space of the isotropic model and its quan-
tum representation in agreement with the loop quantization of the classically reduced
model. Key properties of holonomies and fluxes, such as the spatial discreteness they
imply, then descend to the models. Characteristic features of the representation are
inherited from those of the less symmetric system or even the full theory. From the
basic algebra one can construct more complicated operators such as the Hamiltonian
constraint by following the constructions done in the full theory.

The constructions in the anisotropic setting can also be used to illustrate difficulties
expected for a reduction of models from the full theory: (i) The Hamiltonian con-
straint is constructed by analogy, not derived, even though its characteristic features
known from the full theory are implemented. (ii) The averaging problem is relevant
since one must know not only the classical embedding of symmetric configurations in
non-symmetric ones but also a projection or factorization map in the opposite direc-
tion, here used to single out the isotropic degree of freedom c̄. This problem is easily
tractable for isotropic models within anisotropic ones, but much more complicated
for inhomogeneities even classically [20, 21]. Once the reduced algebra and Hamil-
tonian constraint have been constructed, the development of perturbation theory is
merely a technical issue. For isotropic models within LRS Bianchi I space–times,
this has been done in [18] (see the next subsection), for isotropic models in Bianchi
IX space–times in [22].

8.2.4.2 Anisotropic Perturbations

For small connection components, the nature of the fundamental evolution equation
as a difference equation does not matter much and a Wheeler–DeWitt limit can be
taken. This is routinely done to confirm the continuum, small-curvature limit of
loop quantum cosmology [23]. (See also [24].) In the present context of uninhibited
isotropic curvature, we intend to treat the average isotropic component c̄ still in its
quantum configuration space R̄Bohr, while ε is a small perturbation for which only a
part of the quantum configuration space near ε = 0 should matter, blind to the Bohr-
compactified nature. A wave packet peaked at a small value of ε, for instance, would
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not be sensitive to the whole configuration space. The behavior of the perturbation
can thus be formulated on the ordinary Schrödinger Hilbert space HS = L2(R, dε),
with a dynamical equation in the triad representation expected to be of difference
type for p̄, but differential for pε.

States: Accordingly, we assume that the wave function does not vary rapidly when
pε changes. In an approximate sense, an operator for ε, rather than just its holonomy,
then exists. With the Schrödinger Hilbert space HS for anisotropies, we define the
perturbative Hilbert space

Hpert := Hiso ⊗ HS (8.53)

and realize its dense subset Cyliso ⊗ CylS as a subspace of the dual Cyl�aniso. In the
Schrödinger Hilbert space we have to choose a suitable dense set CylS, which for
our purposes will be the set of all functions that are products of a polynomial and a
Gaussian. Schrödinger states in CylS can be interpreted as distributions on the Bohr
Hilbert space [25] using the antilinear map

π : CylS → Cyl�Bohr, π(ψ)[|ρ〉] :=
∫

eiρεψ(ε)dε for ψ ∈ HS.

Dual actions of basic operators on those states are given by

( p̂επ(ψ))[|ρ〉] =π(ψ)[ p̂†
ε |ρ〉] = 4

3πγ �
2
P

∫
ρeiρεψ(ε)dε

= 4
3πγ �

2
P

∫
eiρε · i

d

dε
ψ(ε)dε = π

(− 4
3 iπγ �2

Pdψ/dε
) [|ρ〉]

(8.54)
and

(eiτεπ(ψ))[|ρ〉] =ψ[e−iτε|ρ〉] =
∫

ei(ρ−τ)εψ(ε)dε =
∫

eiρεeiτεψ(ε)dε

=π(eiτεψ)[|ρ〉].
(8.55)

The momentum operator is a derivative operator on the Schrödinger as well as the
Bohr Hilbert space, while (eiτεπ(ψ))(ε) = π(eiτεψ)(ε).On the Schrödinger Hilbert
space, unlike the Bohr Hilbert space, we can now take the derivative with respect to
τ. By going to the dual action on the image of π, we obtain a simple multiplication
operator for ε, well-defined with domain π(CylS).

While the perturbative space does not have a canonical isotropic subspace, any
fixed state � ∈ CylS, understood as the map C → CylS, 1 �→ �, provides a
mapping id ⊗ � : Cyliso → Cylpert from isotropic cylindrical states to perturbative
cylindrical states. For states in the image, anisotropies are small in mean value, but
not eliminated exactly, if the state is chosen to have significant support only for
small perturbations. There are now two ways to implement symmetries: the strict
one by σ and the perturbative one by π� := (�⊗ π) ◦ (id ⊗�), both as maps from
Cyliso to Cyl�aniso:
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The � here denotes the antilinear dualization of isotropic states.
On the perturbative Hilbert space, averaged operators can be implemented as

before. In addition, we now have non-trivial operators for perturbations. Any
anisotropic operator Ô acting on Haniso has a dual action on � ⊗ π(Cylpert), but
does not necessarily fix this subspace of Cyl�aniso. It does so perturbatively when
we expand it as a sum of operators in the perturbative sector. With an unsqueezed
Gaussian for �, for instance, we have perturbative states of the form

ψ(A,C) = eiν̄c̄/2e−(ε−ε0)
2/4σ 2

e3iεp0
ε /4πγ �2

P

where c̄ = 1
3 (2A + C) and ε = 1

3 (A − C) are understood as functions of A and C.
By the chain rule, we then have flux operators

p̂Aψ = −4π iγ �2
P
∂

∂A
ψ = −4

3
π iγ �2

P

(
2
∂

∂ c̄
+ ∂

∂ε

)
ψ =

(
4
3πγ �

2
Pν̄ + p̂ε

)
ψ

(8.56)
and

p̂Cψ = −8π iγ �2
P
∂

∂C
ψ = −8

3
π iγ �2

P

(
∂

∂ c̄
− ∂

∂ε

)
ψ =

(
4
3πγ �

2
Pν̄ − 2 p̂ε

)
ψ.

(8.57)

Composite operators. Expansions can be used for composite operators, for
instance when eigenvalues are already known. If an anisotropic operator Ô has
eigenstates |μ, ν〉, we take the eigenvalues Oμ,ν and insert, following (8.56), (8.57),

μ = 2
3 ν̄ + pε/2πγ �2

P = 2
3 ν̄ + P,

ν = 1
3 ν̄ − pε/2πγ �2

P = 1
3 ν̄ − P

(8.58)

with P := pε/2πγ �2
P. This procedure yields a function O(ν̄, P) which we expand

in the perturbation P/ν̄,

O(ν̄, P) =
∑

k

O(k)
iso (ν̄)Pk . (8.59)

Note that P itself need not be small compared to one by our assumptions, which
would mean pε � �2

P. We have, however, used P � ν̄ for anisotropies small

compared to the isotropic average, such that each O(k)
iso (ν̄) must drop off at least
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as ν̄−k . For any fixed k, the values O(k)
iso (ν̄), interpreted as eigenvalues, define an

isotropic operator Ô(k)
iso = ∑

ν̄ O(k)
iso (ν̄)|ν̄〉〈ν̄| such that Ô(k)

iso |ν̄〉 := O(k)
iso (ν̄)|ν̄〉. Thus,

we obtain the expansion

Ô ∼
∑

k

Ô(k)
iso ⊗ P̂k (8.60)

acting on Hpert.

Such expansions will also have to be applied to operators implementing lattice
refinement. For instance, the C-holonomy, taken not as a basic operator but as one
with refinement N3(pA, pC ) in its argument, has the action

h(N3)
C |μ, ν〉 = |μ, ν + N3(μ, ν)

−1〉
on anisotropic states. We expand

N3(μ, ν) = N3
( 2

3 ν̄ + P, 1
3 ν̄ − P

) = N3
( 2

3 ν̄,
1
3 ν̄

)+ P
(
∂μN3 − ∂νN3

)+· · ·
and write the refinement in terms of isotropic discrete labels only, but with higher-
order terms in the P-expansion:

h(N3)
C |μ, ν〉 = |μ, ν + N3

( 2
3 ν̄,

1
3 ν̄

)−1 − P(∂μN3 − ∂νN3)+ · · · 〉.

A similar equation is obtained for h(N1)
A . As a result, the action of

(h(N1)
A )−1h(

N3)
C |μ, ν〉 = |μ−N1

( 2
3 ν̄,

1
3 ν̄

)−1+· · · , ν+N3
( 2

3 ν̄,
1
3 ν̄

)−1+· · · 〉
on isotropic distributions is the identity only for isotropic refinements, N1 = N3.

For operators not having |μ, ν〉 as eigenstates, an expansion is not always possible.
To continue with the example of lattice-refining holonomies, we first prepare the
expansion by writing, for instance, h(N3)

C = exp(iC/2N3) = exp(ic̄/2N3) exp(−iε/
N3). The ε-expansion can now easily be done, but the first exponential may depend
on P via N3 whose expansion is non-trivial. We may write

exp(ic̄/2N3) = exp(ic̄/2N3(2ν̄/3, ν̄/3))− 1

2
ic̄P(∂μN3 − ∂νN3)+ · · ·

to expand in P and write an operator in a form analogous to (8.60), but the expansion
coefficients are not all almost-periodic in c̄ as they should if the operator were to
act on Cylpert. Lattice-refining holonomies can be expanded around the isotropic
model if and only if the refinement functions are of the form NI (μ + ν) = NI (ν̄)

depending only on the isotropic discrete scale. Then, no coefficients with non-almost
periodic functions in c̄ arise. The condition for a reduction and an expansion to
exist, requiring anisotropic refinement functions to depend only on the isotropic
discreteness scale, is consistent with the absence of refinement in Wheeler–DeWitt
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models, whose representation is used here for the anisotropy parameter. Anisotropic
refinement cannot fully be modeled perturbatively.

Hamiltonian constraint. The main example for an operator to be expanded is the
Hamiltonian constraint. It will provide the form of a difference-differential equation,
because the isotropic average is Bohr quantized, while the perturbation is Schrödinger
quantized. The form resembles that of isotropic matter models where for instance a
kinetic scalar Hamiltonian can simply be quantized to a second-order derivative as
used before. However, the structure of the equation for perturbative anisotropies turns
out to be crucially different from what is obtained in isotropic matter models (4.15):
Now even highest-order terms in the difference operator contain operator-valued
coefficients, of the form

Âν̄+4ψν̄+4(ε)+ B̂ν̄ψν̄(ε)+ Ĉν̄−4ψν̄−4(ε) = 0. (8.61)

In order to derive the form of the operator coefficients and some of their crucial
properties we now perform the anisotropic expansion as already defined in general
terms.

Following the general construction of Hamiltonian constraint operators in loop
quantum gravity—(4.5) in the full theory or in model systems as in (8.26)—we begin
with

Ĥ =8δ−3 sin
( 1

2δA
)

cos
( 1

2δA
)

sin
( 1

2δC
)

cos
( 1

2δC
)

ÔA

+ 4δ−3 sin2 ( 1
2δA

)
cos2 ( 1

2δA
)

ÔC (8.62)

with

ÔA := i

2(πγ )3/2�2
P

(
sin

( 1
2δA

)
V̂ cos

( 1
2δA

) − cos
( 1

2δA
)

V̂ sin
( 1

2δA
))

(8.63)

ÔC := i

2(πγ )3/2�2
P

(
sin

( 1
2δC

)
V̂ cos

( 1
2δC

) − cos
( 1

2δC
)

V̂ sin
( 1

2δC
))
. (8.64)

The numerical coefficient is chosen mainly for simplicity of the following equations,
and including a factor �−2

P = (G�)−1 as it results from quantizations of the Poisson
brackets {A, V } and {C, V }, respectively, as used to represent the inverse determinant
of the triad. In all these expressions, we use the same δ for both sets of independent
variables since we are interested in a comparison with isotropy, and we ignore lattice
refinement in order to highlight the structure of the resulting equations more clearly.

The operators ÔA and ÔC are diagonal in the triad eigenbasis, which allows us
to perform their expansion via the eigenvalues

(ÔA)μ,ν = 2δ�P
√|ν|, (ÔC )μ,ν = �Pμ

(√|ν + δ| − √|ν − δ|
)
. (8.65)

Inserting the perturbed μ = 2
3 ν̄ + P and ν = 1

3 ν̄ − P, we obtain

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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OA(ν̄, P) = 2√
3
δ�P

(√|ν̄| − 3

2

1√|ν̄| P − 9

8

1

|ν̄|3/2 P2 + · · ·
)

(8.66)

OC (ν̄, P) = 2√
3
δ�Psgn(ν̄)

(
2|ν̄|�3δ

√|ν̄| + 3

(
�3δ

√|ν̄| − |ν̄|�3δ
1√|ν̄|

)
P

− 9

4

(
2|ν̄|�3δ

1√|ν̄| + |ν̄|�3δ
1

|ν̄|3/2

)
P2 + · · ·

)
(8.67)

with

�δ f (ν̄) := 1

2δ
( f (ν̄ + δ)− f (ν̄ − δ)). (8.68)

The holonomy contributions can be expanded by ordinary Taylor expansions of
sine and cosine with A = c̄ + ε and C = c̄ − 2ε:

4 sin
(

1
2 δA

)
cos

(
1
2 δA

)
sin

(
1
2 δC

)
cos

(
1
2 δC

)
= sin2(δc̄)− δ sin(δc̄) cos(δc̄)ε

− δ2
(

2 + 3 sin2(δc̄)
)
ε2 + · · · (8.69)

4 sin2( 1
2δA

)
cos2( 1

2δA
) = sin2(δc̄)+ 2δ sin(δc̄) cos(δc̄)ε

+ δ2
(

1 − 3 sin2(δc̄)
)
ε2 + · · · . (8.70)

Combining all terms present in (8.62) and expanding in P as well as ε, we finally
obtain

4�P√
3

sin2(δc̄)

δ2

(√|ν̄| + ν̄�3δ
√|ν̄|

)

− 2
√

3�P
sin2(δc̄)

δ2

(
1√|ν̄| − sgn(ν̄)

(
�3δ

√|ν̄| − 1

3
|ν̄|�3δ

1√|ν̄|
))

P

− 4�P√
3

sin(δc̄) cos(δc̄)

δ

(√|ν̄| − 2ν̄�3δ
√|ν̄|

)
ε

− 3
√

3�P

2

sin2(δc̄)

δ2

(
1

|ν̄|3/2 + sgn(ν̄)

(
2�3δ

1√|ν̄| + |ν̄|�3δ
1

|ν̄|3/2

))
P2

− 2
√

3�P
sin(δc̄) cos(δc̄)

δ

(
1√|ν̄| − 2sgn(ν̄)

(
�3δ

√|ν̄| − |ν̄|�3δ
1√|ν̄|

))
εP

− 4�P√
3

(
(2 + 3 sin2(δc̄))

√|ν̄| − (1 − 3 sin2(δc̄))ν̄�3δ
√|ν̄|

)
ε2 + · · ·

(8.71)
By a tedious but straightforward calculation one turns this expansion into a dif-

ference equation by representing the sines and cosines on isotropic triad eigenstates,
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while ε and P become operators in the Schrödinger Hilbert space for the perturbative
anisotropy; the operator form of Âν̄ , B̂ν̄ and Ĉν̄ in (8.61) follows. To leading order
for large ν̄  δ (for which the action of �3δ reduces to a derivative by ν̄) the linear
perturbation terms drop out, as in the classical expansion. For the recurrence one
must invert the operator coefficients, which is not guaranteed to be possible for all
states. A breakdown may signal singularities in the perturbative formulation.

8.2.4.3 Singularities

As usual, the perturbative expansion has a limited range of validity. Generically, one
should expect it to break down in particular close to a classical singularity where
anisotropies usually grow very large. Nevertheless, there are special initial conditions
for which anisotropies would remain small rather close to a classical singularity, and
so it is of interest to see if the singularity removal based on quantum hyperbolicity
of the loop quantized anisotropic model can also be seen perturbatively. As already
noted, the recurrence is crucially different from that of non-perturbative models in
that operators, not just complex coefficients, must be inverted.

It turns out that large values of ν̄ ensure the invertibility of differential opera-
tors in the dynamical equation, but this does not happen at small ν̄ where the P̂-
terms in (8.71) are more relevant. Some of the coefficients even diverge, for instance
�3δ|ν̄|−3/2 for ν̄ = 3δ, and the perturbed equation itself becomes ill-defined. In
fact, such a breakdown where coefficients start to diverge happens even if ν̄ is not
zero. Although such values of ν̄ are small and of the order one, one can still arrange
states for which P � ν̄ remains satisfied. There are thus initial conditions for which
the perturbative quantum dynamics breaks down before the perturbation assump-
tion does: the perturbed model does not remove the singularity, even though it is a
perturbation of the non-singular isotropic model within the non-singular anisotropic
one. While those states may be very special, their existence shows that the generic
singularity-removal mechanism of quantum hyperbolicity cannot be realized pertur-
batively.

The analysis provides a cautionary conclusion: perturbative treatments of quantum
space–times near singularities do not always provide a reliable result. Perturbations
may appear singular even though the underlying non-perturbative treatment makes
singularities disappear, and also the opposite behavior is conceivable. Perturbation
theory can, however, be used well to analyze the approach to a classical singularity
and signal any deviation from classical behavior; or it can be used for evolution away
from a singularity, as in observational cosmology.

8.3 Black Hole Models Inside the Horizon

Anisotropic homogeneous models can be used for non-rotating black holes. The
Schwarzschild space–time
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ds2 = −
(

1 − 2M

r

)
dt2 + 1

(1 − 2M/r)
dr2 + r2d�2 (8.72)

is spherically symmetric, static outside the horizon at r = 2M, and homogeneous
inside the horizon. Inside the horizon, it is not of any of the Bianchi types but rather
of Kantowski–Sachs form: a geometry that is homogeneous with one rotational axis,
not implementable as an LRS Bianchi model. It presents an interesting system for
loop quantization because it can be used to shed light on black-hole singularities.
And the presence of a horizon poses additional questions for consistency, not just
regarding the usual causality aspects but also for lattice refinement: near the horizon,
the size of any homogeneous region becomes very small such that a refinement
model, as used earlier, for which N ∝ V, provides only a few patches even though
the near-horizon region for large black holes is supposed to be macroscopic. We will
discuss this issue after presenting the technical formulation of the model.

8.3.1 Canonical Formulation

We now have invariant variables of the form [26, 27]

Ai
aτi dxa = c̃τ3dx + (ãτ1 + b̃τ2)dϑ + (−b̃τ1 + ãτ2) sin ϑdϕ + τ3 cosϑdϕ

(8.73)

Ea
i τ

i ∂

∂xa
= p̃cτ3 sin ϑ

∂

∂x
+( p̃aτ1 + p̃bτ2) sin ϑ

∂

∂ϑ
+(− p̃bτ1 + p̃aτ2)

∂

∂ϕ
. (8.74)

Our coordinates (x, ϑ, ϕ) are adapted to the symmetry, where we denote the radial
variable as x to indicate that it need not be the area radius r (for which the angular
part of the metric would have a coefficient r2). In fact, in the interior of (8.72) with
r < 2M the non-angular spatial coordinate is x = t : the angular metric component
is not x2. For a general densitized triad of the symmetric form, we have the spatial
line element

ds2 = p̃2
a + p̃2

b

| p̃c| dx2 + | p̃c|d�2 (8.75)

obtained from qab = Ea
i Eb

i /| det(Ec
j )|. For comparisons of quantum and classical

behaviors, we will also use the co-triad

ei
aτi dxa = ecτ3dx + (eaτ1 + ebτ2)dϑ + (−ebτ1 + eaτ2) sin ϑdϕ (8.76)

with components

ea =
√| p̃c| p̃a√

p̃2
a + p̃2

b

, eb =
√| p̃c| p̃b√

p̃2
a + p̃2

b

, ec =
sgn p̃c

√
p̃2

a + p̃2
b√| p̃c|
. (8.77)
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The phase space is spanned by the spatial constants (ã, b̃, c̃, p̃a, p̃b, p̃c) ∈ R
6,

which have non-vanishing Poisson brackets

{ã, p̃a} = γG/L , {b̃, p̃b} = γG/L , {c̃, p̃c} = 2γG/L

Here, we have fixed the orbital coordinate area of size 4π, and L is the size of a
coordinate interval along x used in integrating out the fields in

1

8πγG

∫
d3x Ȧi

a Ea
i = L

2γG
˙̃c p̃c + L

γG
˙̃b p̃b + L

γG
˙̃a p̃a

to derive the reduced symplectic structure. The SU(2)-gauge transformations rotating
a general triad are partially fixed to U(1) by demanding the x-component of Ea

i to
point in the internal τ3-direction in (8.74). The U(1)-gauge freedom allows one to set
ã = 0 = p̃a, still leaving, as in the Bianchi I LRS model of the preceding section,
a discrete residual gauge freedom (b̃, p̃b) �→ (−b̃,− p̃b). The remaining variables
can be rescaled as

(b, c) := (b̃,L c̃), (pb, pc) := (L p̃b, p̃c). (8.78)

to make the canonical structure L -independent:

{b, pb} = γG, {c, pc} = 2γG. (8.79)

All this mimics what we had done for isotropic cosmology, just replacing the coor-
dinate volume V used earlier by L . Also as before, this parameter will play a role
in lattice refinement. In particular, there are only three L -independent quantities: b,
pc and c/pb. A proper discussion of lattice refinement is necessary to allow for a
dependence of observable expressions on all four phase-space variables, in particular
on pb by itself as it is suggested for instance by inverse-triad corrections. Without
lattice refinement, one would be misled into believing that inverse-triad corrections,
or any quantum correction depending on pb but not on c, could not exist.

8.3.2 Loop Quantization

To express the elementary variables through holonomies it suffices to choose curves
along the x-direction of coordinate length �x

0 = τL and alongϑ of coordinate length
�ϑ0 = μ since this captures all information in the two connection components,

h(τ )x (A) = exp
∫ τL

0
dxc̃τ3 = cos

τc

2
+ 2τ3 sin

τc

2
(8.80)

h(μ)ϑ (A) = exp
∫ μ

0
dϑ b̃τ2 = cos

μb

2
+ 2τ2 sin

μb

2
. (8.81)
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As in general anisotropic models, the quantum Hilbert space is based on cylindrical
states depending on the connection through countably many holonomies, which can
always be written as almost-periodic functions f (b, c) = ∑

μ,τ fμ,τ exp(i(μb +
τc)/2) of two variables. These form the set of functions on the double product of the
Bohr compactification of the real line, a compact Abelian group. Its Haar measure
defines the inner product of the (non-separable) Hilbert space, where states

〈b, c|μ, τ 〉 = ei(μb+τc)/2 μ, τ ∈ R (8.82)

form an orthonormal basis. Holonomies simply act by multiplication on these states,
while densitized-triad components become derivative operators

p̂b = −iγ �2
P
∂

∂b
, p̂c = −2iγ �2

P
∂

∂c
. (8.83)

They act as

p̂b|μ, τ 〉 = 1
2γ �

2
Pμ|μ, τ 〉, p̂c|μ, τ 〉 = γ �2

Pτ |μ, τ 〉, (8.84)

immediately showing their eigenvalues.
The Hamiltonian constraint, now to be quantized, requires care due to the pres-

ence of intrinsic curvature (or a non-vanishing spin connection in the homogeneous
slicing). It can be written as

Cgrav = 1

γ 2

∫
d3xεi jk(−0Fk

ab + γ 2�k
ab)

Eai Ebj

√| det E | (8.85)

where�k
abτkdxa ∧dxb = − sin ϑτ3dϑ∧dϕ is the intrinsic curvature of two-spheres,

while 0Fk
ab is the curvature computed from Ai

a ignoring the spin-connection term
sin ϑτ3dϕ in (8.73). (The factors of γ ensure that (8.85) is the Lorentzian con-
straint, which in homogeneous models can be formulated without explicit reference to
extrinsic curvature.) We replace the inverse determinant of Ea

i by a Poisson bracket,
following [28],

εi jkτ
i Eaj Ebk

√| det E | = −1

4πγG

∑

K∈{x,ϑ,ϕ}

1

L K
εabcωK

c h(δK )
K {h(δK )−1

K , V } (8.86)

with edge lengths �x
0 = δxL and �

ϑ/ϕ
0 = δϑ , and left-invariant one-forms ωK

c on
the symmetry group manifold. We use independent δ-parameters for the different
directions. So far, they are treated as constants and could take the same value, but
they are mainly place-holders for lattice refinement, for which in general different
behaviors are realized for the independent directions; see below.

For curvature components 0Fk
ab we use a holonomy around a closed loop

0Fi
ab(x)τi = ωI

aω
J
b

A(I J )
(h(δ)I J − 1)+ O((b2 + c2)3/2

√
A ) (8.87)
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with

h(δ)I J = h(δI )
I h(δJ )

J (h(δI )
I )−1(h(δJ )

J )−1 (8.88)

and AI J being the coordinate area of the loop, using the corresponding combinations
of L I . Putting all factors together and replacing Poisson brackets by commutators,
we have the Hamiltonian constraint operator

Ĉ(δ) = 2i(γ 3δx δ
2
ϑ�

2
P)

−1tr

(∑

IJK

εIJK ĥ(δI )
I ĥ(δJ )

J ĥ(δI )−1
I ĥ(δJ )−1

J ĥ(δK )
K [ĥ(δK )−1

K , V̂ ]

+ 2γ 2δ2
ϑτϑ ĥ(δx )

x [ĥ(δx )−1
x , V̂ ]

)

= 4i(γ 3δx δ
2
ϑ�

2
P)

−1
(

8 sin
δϑb

2
cos

δϑb

2
sin

δx c

2
cos

δx c

2

×
(

sin
δϑb

2
V̂ cos

δϑb

2
− cos

δϑb

2
V̂ sin

δϑb

2

)

+
(

4 sin2 δϑb

2
cos2 δϑb

2
+ γ 2δ2

ϑ

)(
sin

δx c

2
V̂ cos

δx c

2
− cos

δx c

2
V̂ sin

δx c

2

))

(8.89)
which acts as

Ĉ (δ)|μ, τ 〉 = (2γ 3δxδ
2
ϑ�

2
P)

−1
(

2(Vμ+δϑ ,τ − Vμ−δϑ ,τ )(|μ+ 2δϑ , τ + 2δx 〉
− |μ+ 2δϑ , τ − 2δx 〉 − |μ− 2δϑ , τ + 2δx 〉 + |μ− 2δϑ , τ − 2δx 〉)

+ (Vμ,τ+δx − Vμ,τ−δx )(|μ+ 4δϑ , τ 〉 − 2(1 + 2γ 2δ2
ϑ )|μ, τ 〉 + |μ− 4δϑ , τ 〉)

)

on basis states. This operator may be ordered symmetrically, defining Ĉ (δ)
symm :=

1
2 (Ĉ

(δ) + Ĉ (δ)†), whose action is

Ĉ (δ)
symm|μ, τ 〉 = (2γ 3δxδ

2
ϑ�

2
P)

−1 (
(Vμ+δϑ ,τ − Vμ−δϑ ,τ + Vμ+3δϑ ,τ+2δx − Vμ+δϑ ,τ+2δx )

× |μ+ 2δϑ , τ + 2δx 〉
− (Vμ+δϑ ,τ − Vμ−δϑ ,τ + Vμ+3δϑ ,τ−2δx − Vμ+δϑ ,τ−2δx )|μ+ 2δϑ , τ − 2δx 〉
− (Vμ+δϑ ,τ − Vμ−δϑ ,τ + Vμ−δϑ ,τ+2δx − Vμ−3δϑ ,τ+2δx )|μ− 2δϑ , τ + 2δx 〉
+ (Vμ+δϑ ,τ − Vμ−δϑ ,τ + Vμ−δϑ ,τ−2δx − Vμ−3δϑ ,τ−2δx )|μ− 2δϑ , τ − 2δx 〉
+ 1

2 (Vμ,τ+δx − Vμ,τ−δx + Vμ+4δϑ ,τ+δx − Vμ+4δϑ ,τ−δx )|μ+ 4δϑ , τ 〉
− 2(1 + 2γ 2δ2

ϑ )(Vμ,τ+δx − Vμ,τ−δx )|μ, τ 〉
+ 1

2 (Vμ,τ+δx − Vμ,τ−δx + Vμ−4δϑ ,τ+δx − Vμ−4δϑ ,τ−δx )|μ− 4δϑ , τ 〉
)
.

(8.90)
Transforming this operator to the triad representation obtained as coefficients of a
wave function |ψ〉 = ∑

μ,τ ψμ,τ |μ, τ 〉 in the triad eigenbasis and using the volume
eigenvalues

Vμ,τ = 4π
√

|( p̂c)μ,τ |( p̂b)μ,τ = 2π(γ �2
P)

3/2
√|τ |μ,
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a difference equation

γ 3/2δx δ
2
ϑ

π�P
(Ĉ(δ)

symm |ψ〉)μ,τ = 2δϑ (
√|τ + 2δx | + √|τ |) (ψμ+2δϑ ,τ+2δx − ψμ−2δϑ ,τ+2δx

)

+ (
√|τ + δx | − √|τ − δx |)((μ+ 2δϑ )ψμ+4δϑ ,τ

− 2(1 + 2γ 2δ2
ϑ )μψμ,τ + (μ− 2δϑ )ψμ−4δϑ ,τ )

+ 2δ(
√|τ − 2δx | + √|τ |) (ψμ−2δϑ ,τ−2δx − ψμ+2δϑ ,τ−2δx

) = 0
(8.91)

results for physical states. (For smallμ the equation has to be specialized further due
to the remaining gauge freedom; see [26].)

8.3.3 Tree-Level Equations

For a first analysis of the consequences of quantum-geometry corrections one may
modify the classical equations by holonomy (or inverse-triad) terms suggested by the
loop-quantized Hamiltonian constraint. In this way, ignoring quantum back-reaction
in effective equations, one derives the tree-level approximation to loop quantum cos-
mology. Even with this simplification, a complete analysis of global space–times is
complicated, not the least because of the considerable ambiguities in formulating
detailed quantum-geometry corrections for homogeneous models, and then extend-
ing them to the spherically symmetric exterior outside the horizon. Investigations are
still ongoing, even while some results have already emerged. For instance, possible
non-singular space–times and extended horizons, based on holonomy or discretiza-
tion corrections, have been constructed [29–35], deriving consequences for instance
for Hawking evaporation in [36]. Black-hole collapse models with corrections moti-
vated by the behavior of inverse triads are studied in [37–43].

These considerations must await a fully consistent, anomaly-free formulation of
inhomogeneities before reliable constructions of global space–times can be achieved.
So far, consistent deformations of spherically symmetric models have been found
only in models with inverse-triad corrections [44–46] or a subclass of holonomy
corrections [47]; see also the next chapter. The equations of [32] are based on a
consistent set of discretizations, but ones obtained after a partial gauge-fixing.

8.3.4 Lattice Refinement

For lattice refinement, let us now assume that we have a lattice with N vertices in
a form adapted to the symmetry: there are Nx vertices along the x-direction (whose
triad component pc gives rise to the label τ ) and N 2

ϑ vertices in spherical orbits
of the symmetry group (whose triad component pb gives rise to the label μ). Thus,
N = NxN

2
ϑ . Since holonomies in such a lattice setting are computed along single

links, rather than through all of space (or the whole cell of size L ), basic ones are
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hx = exp(�x
0 c̃τ3) and hϑ = exp(�ϑ0 b̃τ2). Edge lengths are related to the number

of vertices in each direction by �x
0 = L /Nx and �ϑ0 = 1/Nϑ , or δx = 1/Nx ,

δϑ = 1/Nϑ . With the rescaled connection components c = L c̃ and b = b̃ we have
basic holonomies

hx = exp(�x
0L −1cτ3) = exp(cτ3/Nx ),

hϑ = exp(�ϑ0 bτ2) = exp(bτ2/Nϑ).
(8.92)

Using this in the Hamiltonian constraint operator then gives a difference equation
whose step-sizes are 1/NI .

Now allowing a phase-space dependent N to implement refinement, we obtain
an operator containing flux-dependent holonomies instead of basic ones, for instance
Nx (μ, τ)hx = Nx (μ, τ) exp(cτ3/Nx (μ, τ)) which reduces to an Nx -independent
connection component c in regimes where curvature is small. Keeping track of all
prefactors and holonomies in the commutator as well as the closed loop, one obtains
the difference equation [15]

C+(μ, τ)
(
ψμ+2Nϑ (μ,τ)−1,τ+2Nx (μ,τ)−1 − ψμ−2Nϑ (μ,τ)−1,τ+2Nx (μ,τ)−1

)

+ C0(μ, τ)
(
(μ+ 2Nϑ(μ, τ)

−1)ψμ+4Nϑ (μ,τ)−1,τ

−2(1 + 2γ 2Nϑ(μ, τ)
−2)μψμ,τ + (μ− 2Nϑ(μ, τ)

−1)ψμ−4Nϑ (μ,τ)−1,τ

)

+ C−(μ, τ)
(
ψμ−2Nϑ (μ,τ)−1,τ−2Nx (μ,τ)−1 − ψμ+2Nϑ (μ,τ)−1,τ−2Nx (μ,τ)−1

) = 0.
(8.94)

with

C±(μ, τ) = 2Nϑ(μ, τ)
−1(

√
|τ ± 2Nx (μ, τ)−1| + √|τ |) (8.95)

C0(μ, τ) =
√

|τ + Nx (μ, τ)−1| −
√

|τ − Nx (μ, τ)−1|. (8.96)

(A total factor NxN
2
ϑ for the number of vertices drops out because the right-hand

side is zero in vacuum, but would multiply the left-hand side in the presence of a
matter term.)

As in isotropic models, different refinement schemes can be analyzed. First, the
volume dependence of the total number of vertices allows different choices, such
as NxN

2
ϑ ∝ V −2x in power-law form. Even if this power is fixed, for instance by

using a number of vertices proportional to volume, different options remain. If the
number of vertices is proportional to transversal areas, we are led to Nx ∝ √|τ | and
Nϑ ∝ √

μ as introduced in [48]. Here, Nx and Nϑ are determined by eigenstates
of p̂c and p̂b, respectively. If the number of vertices in a given direction is propor-
tional to its linear extension, we have Nϑ ∝ √|τ | and Nx ∝ μ/

√|τ | as determined
by eigenstates of quantized co-triad components; see (8.77). Interestingly, these two
cases can clearly be distinguished, and the first one be ruled out [15]: it leads to unsta-
ble evolution where wave functions would behave exponentially even in large parts
of the phase space in which they should be semiclassical. (See Sect. 11.2.1.3).Here

http://dx.doi.org/10.1007/978-1-4419-8276-6_11
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we have an example for restrictions of different refinement models. In particular, it
shows that one cannot always confine attention to difference equations which are of
constant step-size, or can be transformed to be of this form; for this would be the
case only for the refinement model of the first type (with Nx a function of τ and Nϑ

a function of μ only) which is ruled out.
Actually, no refinement model whose number of vertices follows a power law

in its volume dependence can be consistent in the black-hole interior case. Here,
the presence of a horizon becomes important, which is supposed to be a semiclas-
sical regime of low curvature (for large black holes). However, in the phase-space
coordinates corresponding to a homogeneous slicing the horizon is encountered at
μ = 0, where the volume collapses. Thus, the number of vertices with a power-law
dependence of the volume with x < 0 is very small in some neighborhood of the
horizon, where the homogeneous model should still be valid, and strong discreteness
corrections ensue. For a consistent refinement scheme one has to ensure that the
number of vertices remains large even when the volume vanishes at the horizon (but
not necessarily at the singularity where the volume vanishes as well due to τ = 0).
Power-law forms do not result in semiclassical behavior in sufficiently large regions
of the phase space. Strict prescriptions of the volume dependence of refinement, such
as the case x = −1/2 going back to [49], or N ∝ V, are not viable.

8.3.5 Singularity

The singularity must be analyzed directly at the level of the difference equation for
a few recurrence steps around τ = 0, where the refinement does not matter. As
in general anisotropic models, the recurrence continues through τ = 0, removing
the classical singularity. Some coefficients do vanish in the recurrence, implying
decouplings of some values. Detailed considerations show that this requires solutions
to be symmetric under τ → −τ [50], which is a consequence of the dynamics. (If
one would add a matter term to the difference equation, this behavior would no
longer be realized. But then the model would lose its interpretation as black-hole
interior, although it could still be regarded as a cosmological model.) The reflection
symmetry of solutions is an interesting consistency test: it implies that the behavior
after the classical singularity is the same as that before. Since the exterior is static
in the classical solution, the reflection symmetry is an important condition for the
non-singular interior to be matchable to a static exterior. For such a matching to be
done explicitly, we must consider the quantization of spherically symmetric models.
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Chapter 9
Midisuperspace Models: Black Hole Collapse

Inhomogeneous models of various kinds provide important steps toward the full
theory, adding the issue of infinitely many degrees of freedom. The simplest inho-
mogenous model is that of spherical symmetry, which provides interesting ways to
test the formalism as well as applications in the context of black holes. In the vacuum
case the model has a finite number of dynamical degrees of freedom, but the infinitely
many kinematical ones already allow one to test field theoretic aspects.

9.1 Spherical Symmetry

Spherically symmetric models are constructed along the lines seen already for
homogeneous ones. We start by taking the classical form of spherically symmet-
ric connections and densitized triads [1]:

A=Ax (x)τ3dx+(A1(x)τ1+A2(x)τ2)dϑ+(A1(x)τ2−A2(x)τ1) sin ϑdϕ+τ3 cosϑdϕ
(9.1)

and

E = E x (x)τ3 sin ϑ
∂

∂x
+ (E1(x)τ1 + E2(x)τ2) sin ϑ

∂

∂ϑ
+ (E1(x)τ2 − E2(x)τ1)

∂

∂ϕ
(9.2)

with real functions Ax , A1, A2, E x , E1 and E2 on the radial manifold B coordi-
natized by x . (Again, we denote the radial coordinate by x to indicate that it is in
general not identical to the area radius.) The functions E x , E1 and E2 on B are
canonically conjugate to Ax , A1 and A2:

�B = 1

2γG

∫

B

dx(dAx ∧ dE x + 2dA1 ∧ dE1 + 2dA2 ∧ dE2). (9.3)

These expressions are spherically symmetric in the following sense: infinitesi-
mal rotations act by Lie derivatives with respect to superpositions of vector fields
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X = sin ϕ∂ϑ + cot ϑ cosϕ∂ϕ, Y = − cosϕ∂ϑ + cot ϑ sin ϕ∂ϕ, and Z = ∂ϕ. The
first term of A is clearly rotationally invariant, while for the others we have

LX A = (A1τ1 + A2τ2) cosϕdϕ − (−A2τ1 + A1τ2)
cosϕ

sin ϑ
dϑ

− τ3

(
sin ϕ

sin ϑ
dϕ + cosϑ cosϕ

sin2 ϑ
dϑ

)

=
[

A,
cosϕ

sin ϑ
τ3

]
+ d

(cosϕ

sin ϑ
τ3

)

LY A = (A1τ1 + A2τ2) sin ϕdϕ − (−A2τ1 + A1τ2)
sin ϕ

sin ϑ
dϑ

− τ3

(
cosϕ

sin ϑ
dϕ − cosϑ sin ϕ

sin2 ϑ
dϑ

)

=
[

A,
sin ϕ

sin ϑ
τ3

]
+ d

(
sin ϕ

sin ϑ
τ3

)

LZ A = 0.

Thus, any rotation of the connection amounts to just a gauge transformation, which is
also true for the densitized triad (9.2). Expressions of this form were first used in the
context of Yang–Mills theories [2, 3]. A general mathematical theory is based on the
classification of invariant connections on symmetric principal fiber bundles [4, 5],
which shows all possible classes of invariant connections. See also [6] for a summary.

These variables are subject to constraints, obtained by inserting the invariant forms
into the full expressions. We have the Gauss constraint

G[λ] =
∫

B

dxλ(E x ′ + 2A1 E2 − 2A2 E1) ≈ 0 (9.4)

generating U(1)-gauge transformations (the prime denoting a derivative by x), the
diffeomorphism constraint

Dgrav[Nx ] =
∫

B

dx Nx (2A′
1 E1 + 2A′

2 E2 − Ax E x ′) (9.5)

and the Hamiltonian constraint

Cgrav[N ] = (2G)−1
∫

B

dx N
(
|E x |((E1)2 + (E2)2)

)−1/2

(9.6)

×
(

2E x (E1 A′
2 − E2 A′

1)+ 2Ax E x (A1 E1 + A2 E2)

+ (A2
1 + A2

2 − 1)
(
(E1)2 + (E2)2

)
−(1+γ 2)

×
(

2Kx E x (K1 E1+K2 E2)+(K 2
1 +K 2

2 )((E
1)2+(E2)2)

))
(9.7)

=: −HE[N ] + P[N ] (9.8)
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where HE is the first (so-called Euclidean) part depending explicitly on connection
components, and P the second part depending on extrinsic-curvature components
(which are themselves functions of AI and E I ). Spherically symmetric extrinsic cur-
vature is written in a form analogous to (9.1), without the last term which is necessary
only for connections but not for 1-forms, defining the components K1 and K2. The
classical equations have been analyzed and solved in complex Ashtekar variables in
[7–9], where Wheeler–DeWitt-type equations were provided as well.

A Wheeler–DeWitt quantization of midisuperspace models results in functional
derivative equations where, for instance in the connection representation, the E I

become functional derivatives. A loop quantization, on the other hand, replaces all
connection components by holonomies. To that end, it is useful to introduce variables

Aϕ(x) :=
√

A1(x)2 + A2(x)2, (9.9)

Eϕ(x) :=
√

E1(x)2 + E2(x)2 (9.10)
and α(x), β(x) defined by

�A
ϕ (x) =: τ1 cosβ(x)+ τ2 sin β(x), (9.11)

�
ϕ
E (x) =: τ1 cos (α(x)+ β(x))+ τ2 sin (α(x)+ β(x)) (9.12)

for the internal directions

�A
ϕ (x) := (A1(x)τ2 − A2(x)τ1)/Aϕ(x), (9.13)

�
ϕ
E (x) := (E1(x)τ2 − E2(x)τ1)/Eϕ(x). (9.14)

Similarly, we have�A
ϑ (x) = −τ1 sin β(x)+τ2 cosβ(x) and an analogous expression

for�ϑE . These variables are adapted to a loop quantization in that holonomies along
integral curves of generators of the symmetry group are of the form exp(δAϕ�A

ϕ ).

However, Eϕ is not the momentum conjugate to Aϕ, which instead is given by

Pϕ(x) := 2Eϕ(x) cosα(x). (9.15)

Canonical coordinates are thus the conjugate pairs Ax , E x ; Aϕ, Pϕ;β, Pβ with

Pβ(x) := 2Aϕ(x)E
ϕ(x) sin α(x) = Aϕ(x)P

ϕ(x) tan α(x) (9.16)

The momenta as basic variables will directly be quantized (some of them smeared),
resulting in flux operators with equidistant discrete spectra. But unlike in the full
theory and (torsion-free) homogeneous models, the resulting quantum representa-
tion has a volume operator that does not commute with flux operators: classically we
have {V, Pϕ} = 2Eϕ{cosα, Pϕ} �= 0 since cosα = �A

ϕ · �ϕE depends on the con-
nection. This property follows since volume is determined by triad components, in
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particular Eϕ which is related to Pϕ, in a rather complicated way involving the con-
nection component Aϕ.Thus, the volume operator has eigenstates different from flux
eigenstates, which makes the computation of commutators with holonomies more
complicated [10]. An alternative way to derive volume eigenvalues in a quantization
based on the variables Ax , A1 and A2 is pursued in [11, 12].

This issue is a consequence of inhomogeneity: The Gauss constraint now reads
∂x E x + Pβ = 0, which would require sin α = 0 in a homogeneous model where
∂x E x = 0.With spatially varying E x ,however, cosα is free to change and constitutes
one of the degrees of freedom. The non-commutativity of volume and fluxes can thus
be seen as a consequence of inhomogeneity, which is responsible for further technical
complications; see also the discussion in [13]. Nevertheless, this issue can be rather
straightforwardly dealt with in spherically symmetric models, which thus provide an
ideal class of models between homogeneous ones and the full theory.

9.1.1 Canonical Transformation

By a canonical transformation which ensures that now Eϕ plays the role of a basic
momentum variable one can considerably simplify the formalism. Such a step will,
of course, change the configuration variables, no longer being purely connection
components. At first sight, this seems to render the procedure unsuitable for a loop
quantization where basic operators make use of holonomies of the connection. After a
transformation of the canonical variables, holonomies in general will be complicated
functions of the new variables such that the new quantum representation would not
be suitable for a loop quantization. It turns out, however, that the special form of
a spherically symmetric spin connection and extrinsic curvature for a given triad
leads to new variables which are ideally suited to a loop representation even from
the dynamical point of view. As we will see, we just trade connection components
for extrinsic-curvature components.

The co-triad corresponding to a densitized triad (9.2) is given by

e = exτ3dx + eϕ�
ϑ
E dϑ + eϕ�

ϕ
E sin ϑdϕ (9.17)

with

eϕ = √|E x | and ex = sgn(E x )
Eϕ√|E x | . (9.18)

From this form, using general equations, one computes the spin connection

 = −(α + β)′τ 3dx + e′
ϕ

ex
�
ϕ
E dϑ − e′

ϕ

ex
�ϑE sin ϑdϕ + τ3 cosϑdϕ (9.19)

and the extrinsic curvature for lapse function N and shift N x ,
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K=N−1(ėx−(N x ex )
′)τ3dx+N−1(ėϕ−N x e′

ϕ)�
ϑ
E dϑ+N−1(ėϕ−N x e′

ϕ)�
ϕ
E sin ϑdϕ.

(9.20)
We define the ϕ-components of  and K as

ϕ := −e′
ϕ

ex
= − E x ′

2Eϕ
, Kϕ := N−1(ėϕ − N x e′

ϕ) (9.21)

which combines to Aϕ =
√
2
ϕ + γ 2 K 2

ϕ since the two internal ϕ-directions,�ϑE and

�
ϕ
E in the dϕ-terms in (9.19) and (9.20), respectively, are internally orthogonal.
Many steps in the usual constructions of a loop quantization become more com-

plicated when triad components are not among the basic canonical variables. On
the other hand, applying a canonical transformation such that Pϕ is replaced by Eϕ

may lead to more complicated configuration variables which are no longer related to
holonomies in a simple way. Fortunately, some properties of the explicit form (9.19)
of the spin connection and (9.20) of extrinsic curvature in spherical symmetry allow
one to perform a suitable canonical transformation.

Since the momentum of Ax is already given by a triad component E x , it will be
left unchanged by our canonical transformation and we can focus on the variables
Aϕ, Pϕ;β, Pβ.Using the definitions (9.15) and (9.16) of Pϕ and Pβ in the canonical
Liouville form and trading in Eϕ for Pϕ results in

PϕdAϕ + Pβdβ = 2Eϕ cosαdAϕ + Pβdβ

= Eϕd(2Aϕ cosα)− 2Eϕ Aϕd cosα + Pβdβ

= Eϕd(2Aϕ cosα)+ Pηdη. (9.22)

In the last line we now have Eϕ as the momentum of the configuration variable
2Aϕ cosα, and the old Pη := Pβ as the momentum of the angle η := α + β

determining the internal triad direction.
As a function of the original variables, Aϕ cosα looks complicated and does not

seem to be related to holonomies. In fact, in terms of canonical variables α is a
function of both Aϕ and the momenta Pϕ and Pβ such that it cannot be expressed
as a function of holonomies in the original variables alone. However, the structure
of (9.19) and (9.20) shows that there is a simple geometrical meaning to the new
configuration variable conjugate to Eϕ.Here it is important to notice that the internal
directions along a given angular direction of a spherically symmetric  in (9.19) are
always internally perpendicular to those of E (note that�ϑE and�ϕE are exchanged in
(9.19) compared to (9.2)), while the corresponding extrinsic-curvature components
are parallel to those of E . Since A is obtained by summing  and K , we write

Aϕ�
A
ϕ = ϕ�̄+ γKϕ�

with � := �
ϕ
E and �̄ := �ϑE . This implies

Aϕ cosα = Aϕ�
A
ϕ ·� = γKϕ (9.23)
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where the left equality uses just the definition of α in (9.11) and (9.12). Thus, the
new configuration variable is simply proportional to the extrinsic-curvature com-
ponent Kϕ.

Note that it is well known in the full theory that extrinsic-curvature components are
conjugate to densitized-triad components. But as we have seen for Ashtekar–Barbero
variables, this does not imply that the ϕ-components as defined here are conjugate,
while E1, E2 would obviously be conjugate to A1, A2 as well as K1, K2. The non-
trivial fact is that in contrast to the angular Ashtekar–Barbero connection components,
the angular extrinsic-curvature component as configuration variable allows one to use
triad components as momenta. As the derivation shows, this consequence depends
crucially on properties of the spherically symmetric spin connection and extrinsic
curvature. That Eϕ is conjugate to Kϕ follows from the fact that E and K have the
same internal directions, while the orthogonality of internal directions in  to those
of E is relevant for details of the canonical transformation.

With the new canonical triad variables, using

A′
ϕ sin α = (Aϕ sin α)′ − Aϕα

′ cosα = ′
ϕ − γKϕα

′

we have the Euclidean part

HE[N ] = −(2G)−1
∫

B

dx N (x)|Ex |−1/2
(
(2
ϕ + γ 2 K 2

ϕ − 1)Eϕ + 2γ KϕEx (Ax + η′)− 2Ex′
ϕ

)

(9.24)
of the Hamiltonian constraint and the full constraint

H [N ] = −(2G)−1
∫

B

dx N (x)|E x |−1/2
(
(1 − 2

ϕ + K 2
ϕ)E

ϕ

+ 2γ−1 KϕE x (Ax + η′)+ 2E x′
ϕ

)
(9.25)

withϕ = −(E x )′/2Eϕ as a function of triad components as per (9.21). From (9.19)
we have γ−1(Ax +η′) = Kx , and the constraint can directly be written as a function
of the densitized triad and extrinsic curvature.

9.1.2 States

With the new spherically symmetric configuration variables Ax , γ Kϕ, η the
construction of the quantum theory proceeds along the general lines of a loop rep-
resentation. The sole connection component in the one-dimensional setting is Ax ,

which is represented by U(1)-holonomies he(A) = exp
( 1

2 i
∫

e Ax dx
)

along edges e
in the one-dimensional radial manifold B. The other configuration fields are scalars,
taking values in R (for γ Kϕ) and U(1) (for eiη), respectively. They are thus repre-
sented by point holonomies hv(Kϕ) = exp(iγ Kϕ(v)) with γ Kϕ taking values in the
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Bohr compactification of the real line, and hv(η) = exp(iη(v)) taking values in U(1).
Both point holonomies are associated with vertices v: points in the radial manifold
B. At this place, we will follow the general constructions outlined in Sect. 3.2.2.3.

A spin network state is obtained by evaluating holonomies in irreducible represen-
tations of their respective groups and multiplying them to a complex-valued function
on the configuration space. Taking U(1)-representations ρk : eiα �→ eikα for integer
k and R̄Bohr-representations ρμ : z �→ eiμz for real μ, we have

Tg, k, μ(A) =
∏
e∈g

exp

⎛
⎝1

2
ike

∫

e

Ax (x)dx

⎞
⎠ ∏

v∈V (g)

exp(iμvγ Kϕ(v)) exp(ikvη(v)).

(9.26)

If we allow all edge labels ke ∈ Z and vertex labels μv ∈ R and kv ∈ Z for arbitrary
finite graphs g in the one-dimensional radial manifold B, we obtain a basis which is
orthonormal in the product of Haar measures on the groups involved.

By definition in (9.9), Aϕ is always non-negative, which is sufficient for the full
space of connections because a sign change in both components A1 and A2 can
always be compensated for by a gauge rotation. The extrinsic-curvature component
Kϕ, on the other hand, is measured relatively to the internal direction �ϕE in (9.20)
and thus both signs are possible: Kϕ ∈ R. This is a further advantage of using
extrinsic curvature rather than connection components for the angular components:
no boundary effects arise for instance in the discussion of self-adjointness of flux
operators (see Sect. 2.2).

Flux operators are obtained from functional derivatives by configuration variables.
For Ê x , we obtain the action

Ê x (x) f (h) = −2iγ �2
P

∑
e

∂ f

∂he

δhe

δAx (x)
= 1

2
γ �2

P

∑
e
x

he
∂ f

∂he
(9.27)

where f can be any cylindrical function depending on the holonomies he(A) =
exp

( 1
2 i

∫
e Ax dx

)
. To simplify the notation we assumed that x lies only at boundary

points of edges, which can always be achieved by subdivision, and which contributes
the additional 1

2 . (Similar operators for flux or orbital area have been considered in
[14, 15], with applications to horizon states.) The other flux components, Pϕ and
Pβ, are density-valued scalars and thus will be turned into well-defined operators
after integrating over regions I ⊂ B. We obtain

∫

I

Êϕ f (h) = −2i�2
P

∫

I

δ

δKϕ(x)
dx f (h) = −2i�2

P

∫

I

dx
∑

v

∂ f

∂hv

δhv

δKϕ(x)

= −2i�2
P

∑
v∈I

∂

∂Kϕ(v)
f (h) (9.28)

and similarly

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
http://dx.doi.org/10.1007/978-1-4419-8276-6_2
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∫

I

P̂η f (h) = −2iγ �2
P

∑
v∈I

∂

∂η(v)
f (h). (9.29)

On spin networks, this gives

Ê x (x)Tg, k, μ = γ �2
P

ke+(x) + ke−(x)
2

Tg, k, μ (9.30)

∫

I

ÊϕTg, k, μ = γ �2
P

∑
v∈I

μvTg, k, μ (9.31)

∫

I

P̂ηTg, k, μ = 2γ �2
P

∑
v∈I

kvTg, k, μ (9.32)

where e±(x) are the two edges (or two parts of a single edge) meeting at x .
These operators allow us to quantize the volume V (I ) = 4π

∫
I dx

√|E x |Eϕ of
a region I × S2 ⊂ B × S2, resulting in the volume operator

V̂ (I ) = 4π
∫

I

dx |Êϕ(x)|
√

|Ê x (x)| (9.33)

where Êϕ(x) is the distribution-valued operator

Êϕ(x)Tg, k, μ = γ �2
P

∑
v∈B

δ(v, x)μvTg, k, μ.

Note that, just as Aϕ in (9.9), also Eϕ is defined to be non-negative in (9.10). Thus,
only labelsμv ≥ 0 should be allowed. Again, as in Bianchi models or the Kantowski–
Sachs model, it is technically easier first to allow all values μv ∈ R and in the end
require physical states to be symmetric underμv �→ −μv (solving the residual gauge
transformation). We thus write explicit absolute values around Êϕ(x) and μv. The
volume operator then has eigenstates (9.26) with eigenvalues

Vk, μ = 4πγ 3/2�3
P

∑
v

|μv|
√

1

2
|ke+(v) + ke−(v)|. (9.34)

Here, the eigenvalues follow immediately with eigenstates identical to flux
eigenstates.

The Gauss constraint

G[λ] =
∫

B

dxλ(E x ′ + Pη) ≈ 0 (9.35)

is easily quantized to
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Ĝ[λ]Tg, k, μ = γ �2
P

∑
v

λ(v)(ke+(v) − ke−(v) + 2kv)Tg, k, μ = 0. (9.36)

One can formally derive this expression by assuming piecewise constant λ, for which∫ x+
x− λE x ′dx = λ(E x (x+) − E x (x−)) can be used for each segment of constant λ,

and eventually taking the limit in which smooth λ are obtained. Directly solving the
Gauss constraint imposes the condition

kv = −1

2
(ke+(v) − ke−(v)) (9.37)

to be satisfied for gauge-invariant spin network states. In (9.26) we thus eliminate
the integer-valued vertex labels kv and obtain the general form of gauge-invariant
spherically symmetric spin networks

Tg, k, μ =
∏

e

exp

⎛
⎝1

2
ike

∫

e

(Ax + η′)dx

⎞
⎠ ∏

v

exp(iμvγ Kϕ(v)). (9.38)

They depend only on the gauge invariant configuration variables Ax +η′ = γ Kx and
γ Kϕ. At this stage, all configuration variables which enter are extrinsic-curvature
components. Having used Kϕ for point holonomies thus turns out to be a nat-
ural step at the level of gauge-invariant states. (Note that the presence of point
holonomies depending on Kϕ without integrations allows non-trivial gauge-invariant
spin-network states with bivalent vertices in a one-dimensional manifold).

9.1.3 Basic Representation from the Full Theory

As in the example of reducing an anisotropic model to isotropy in Sect. 8.2.5,
we can induce basic holonomy and flux operators from the full theory on spheri-
cally symmetric states. This demonstration will support the construction given so
far by showing how basic operators of the model are related to those used in the
full theory. Spherically symmetric states can again be interpreted as distributions
in the full Hilbert space, but the dual action of arbitrary full operators applied to
distributional symmetric states does in general not lead to another symmetric state.
In fact, if we use symmetric distributions without taking further steps, we manage
to embed symmetric states as distributions in the connection representation of the
full theory, but implement symmetry conditions only for connections and not for
triads. A consistent reduced model, already at the classical level, requires analogous
conditions to be imposed for connections as well as the densitized triad. In a con-
nection representation, triad conditions can only be imposed at the operator level.
Even classically the Hamiltonian flow generated by a phase-space function would
in general depart from the subspace of invariant connections if arbitrary triads were
allowed (while the flow always stays inside the subspace of invariant connections
and invariant triads if the symmetric model is well-defined).

http://dx.doi.org/10.1007/978-1-4419-8276-6_8


176 9 Midisuperspace Models: Black Hole Collapse

There are, however, notable exceptions of objects whose flow does fix the space
of invariant connections, and which allow us to obtain all operators for the basic
variables directly from the full theory. This is the case for holonomies of Ax and
Aϕ, which commute with connections anyway. But we can also find special fluxes
whose classical expressions generate a flow that stays in the subspace of invariant
connections. For instance, for the τ3-component of a full flux for a symmetry orbit
S2, F3

S2(x) := − ∫
S2 2tr(τ3(E(x)�dx))d2 y, we have

{Ai
a(x), F3

S2}|Ainv×E = 8πγGδi
3δ

x
a

∫

S2

δ(x, y)d2 y

which defines a distributional vector field on the phase space parallel to the subspace
Ainv × E of invariant connections (parallel to Ax ). If we look at any other internal
component, such as F2

S2 using τ2, on the other hand, the Poisson bracket is propor-

tional to δi
2δ

x
a , which is not parallel to the subspace of invariant connections where

only the τ3-component is non-vanishing for ∂x�A. Similarly, one can see that the
flux

F�
A

I ×S1 := −2
∫

I ×S1

(
tr(�A

ϕ (x)(E(x)�dϕ))dxdϑ + tr(�A
ϑ (x)(E(x)�dϑ))dxdϕ

)

for a cylindrical surface along an interval I ⊂ B generates a flow parallel to Aϕ
leaving the space of invariant connections invariant. (We must use�A rather than�E :
the resulting functions on phase space produce a flow along Ai

a-components, parallel
to the space of invariant connections. Moreover, {Ai

a,�
A} = 0 while {Ai

a,�E } �= 0.
The �E , had we used them, would thus contribute to the flow.)

These two fluxes are sufficient for the basic momenta since

−2
∫

S2

tr(τ3(E(x)�dx))d2 y = 4πE x (x)

and

− 2
∫

I ×S1

(
tr(�A

ϕ (x)(E(x)�dϕ))dxdϑ + tr(�A
ϑ (x)(E(x)�dϑ))dxdϕ

)

= 2π
∫

I

Pϕ(x)dx

whose quantizations can thus be obtained directly from the full theory. The canonical
pair is automatically produced in this way, with�A-projections providing Pϕ rather
than Eϕ as the momentum.

For the flow F3
S2(x) we obtain the τ3-component of a vector field along the

x-direction. The pull-back to invariant connections, contained in the definition of



9.1 Spherical Symmetry 177

a distributional symmetric state, ensures that the dual action of the flux opera-
tor for F3

S2(x) on the distribution can be expressed by an SU(2)-invariant vector

field on the reduced representation where only radial holonomies h(e)x appear. (Here
we use SU(2)-holonomies h(e)x = exp(

∫
e Axτ3dx) along the radial direction and

h(x)ϕ = exp(Aϕ(x)�A
ϕ ) at vertices.). For the explicit expression we again assume that

x is an endpoint of two edges, e+(x) and e−(x)which can be achieved by appropriate
subdivision, and obtain

F̂3
S2(x) = 4π iγ �2

P

(
tr

(
(τ3h(e

+(x))
x )T

∂

∂h(e
+(x))

x

)
+ tr

(
(τ3h(e

−(x))
x )T

∂

∂h(e
−(x))

x

))
.

(9.39)

Since τ3 commutes with radial holonomies h(e)x , we do not need to distinguish
between left and right-invariant vector field operators. The action of a derivative

operator tr
(
(τ3h(e)x )T ∂/∂h(e)x

)
= (τ3h(e)x )A

B∂/∂(h
(e)
x )A

B with respect to h(e)x then

amounts to replacing (h(e)x )k by kτ3(h
(e)
x )k and τ3(h

(e)
x )k by − 1

4 k(h(e)x )k . In this way,

Ê x (x) = (4π)−1 F̂3
S2(x) results, in agreement with the reduced flux operator and its

spectrum (9.30).
The operator Ê x also appears in the Gauss constraint. A gauge-invariant state

in the full theory satisfies JL(h
(e+(x))
x ) − JR(h

(e−(x))
x ) + JL(h

(x)
ϕ ) − JR(h

(x)
ϕ ) if we

interpret the reduced set of x- and ϕ-holonomies as a 4-vertex; so in particular

−2tr
(
τ3

(
JL(h

(e+(x))
x )− JR(h

(e−(x))
x )+ JL(h

(x)
ϕ )− JR(h

(x)
ϕ )

))
= 0. The opera-

tors −2tr
(
τ3 J (h(e

±(x))
x )

)
simply give operators Ê x without a difference between

right- and left-invariant ones, while for derivative operators with respect to ϕ-
holonomies we have

−2tr
(
τ3

(
JL(h

(x)
ϕ )− JR(h

(x)
ϕ )

))
= −i

(
tr

(
(h(x)ϕ τ3)

T ∂

∂h(x)ϕ

)

−tr

(
(τ3h(x)ϕ )T

∂

∂h(x)ϕ

))

= itr

(
[τ3, h(x)ϕ ]T ∂

∂h(x)ϕ

)

= itr

(
∂h(x)ϕ
∂β(x)

∂

∂h(x)ϕ

)
= i

∂

∂β(x)

using [τ3, h(x)ϕ ] = ∂h(x)ϕ /∂β(x) for the angle β in�A
ϕ (x) = cosβ(x)τ1 + sin β(x)τ2.

The right-hand side is then simply proportional to P̂β(x): the τ3-component of the
full quantum Gauss constraint when applied to distributional states is identical to the
reduced Gauss constraint.
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It remains to look at the full quantization of

∫

I

Pϕdx = 1

2π

∫

I ×S1

(
�A
ϕ · (E�dϕ)dxdϑ +�A

ϑ · (E�dϑ)dxdϕ
)

acting on symmetric states. Since they are now �A
ϕ -components of derivative oper-

ators with respect to hϕ, the end result is again a simple derivative operator acting
on powers hμϕ with the same properties as in the reduced setting.

Alternatively, we may start by considering the subspace of the full phase space with
invariant K i

a, a subspace different from the one of invariant Ai
a as long as Ea

i remains
unrestricted. (Classically, we obtain the same reduction as before only when Ea

i is
invariant as well, providing the same sector of spherically symmetric models.) We
would then use fluxes F�E

I ×S1 defined as before, except that�E is used in place of�A.

The resulting flow leaves Kϕ invariant since�E are the internal directions of Kϕ (and
{Kϕ,�E } = 0). This flux provides the densitized-triad component Eϕ, canonically
conjugate to Kϕ. Both representations used before can thus be reduced from the full
setting; differences occur only in the intermediate subspaces used. Another difference
arises at the quantum level: There are no holonomies associated with K i

a in the
full theory; thus, loop variables for spherically symmetric K -components cannot
directly be induced. In other words, the canonical transformation employed in the
simplification of geometrical operators, relating densitized-triad components directly
to fluxes, cannot be implemented before the reduction at the quantum level.

9.1.4 Hamiltonian Constraint

Having derived the basic representation of the holonomy-flux algebra, we now follow
the general steps of constructing Hamiltonian constraint operators. The end result is
not unique, as usual, but has the general form [16]

Ĉ[N ] = i

2πGγ 3δ2�2
P

∑
v,σ=±1

σN (v)tr
((

hϑhϕh−1
ϑ h−1

ϕ − hϕhϑh−1
ϕ h−1

ϑ

+ 2γ 2δ2(1 − ̂2
ϕ)τ3

)
hx, σ [h−1

x, σ , V̂ ]
+

(
hx, σ hϑ(v + eσ (v))h−1

x, σ hϑ(v)
−1 − hϑ(v)hx, σ hϑ(v + eσ (v))−1h−1

x, σ

+ 2γ 2δ ∫
eσ (v)

̂′
ϕ�(v)

)
hϕ[h−1

ϕ , V̂ ]

+
(

hϕ(v)hx, σ hϕ(v + eσ (v))−1h−1
x, σ − hx, σ hϕ(v + eσ (v))h−1

x, σ hϕ(v)
−1

+ 2γ 2δ ∫
eσ (v)

̂′
ϕ�̄(v)

)
hϑ [h−1

ϑ , V̂ ]
)
.

(9.40)
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Here, δ is again a parameter that appears in the exponent of angular holonomies
hϑ = exp(δKϕ�̄) and hϕ = exp(δKϕ�), and will be related to lattice refinement
schemes if it is taken as depending on the orbit area E x . (Lattice refinement in
inhomogeneous models, however, has not yet been fully formulated.) As matrix
elements, these SU(2)-holonomies contain our basic holonomies hv[Kϕ] from hϑ and
hϕ, as well as heσ (v)[Ax ] from hx, σ (v) := exp(

∫
eσ (v)

Axτ3dx), eσ (v) indicating the
edge leaving v to the right (σ = 1) or the left (σ = −1). Moreover, matrix elements
of �(v) := τ1 cos η(v) + τ2 sin η(v) and �̄(v) := −τ1 sin η(v) + τ2 cos η(v) act by
multiplication with holonomies hv(η).

In this inhomogeneous model we are dealing with many Hamiltonian constraint
equations since the lapse function N can be varied freely at all vertices v, and Ĉ[N ]
must vanish for all choices. The constraint equation Ĉ[N ]ψ = 0 for all N can then
be formulated as a set of coupled difference equations for states labeled by the triad
quantum numbers ke and μv, which have the form

ĈR+(k−, k+ − 2)†ψ(. . . , k−, k+ − 2, . . .)

+ ĈR−(k−, k+ + 2)†ψ(. . . , k−, k+ + 2, . . .)

+ ĈL+(k− − 2, k+)†ψ(. . . , k− − 2, k+, . . .)
+ ĈL−(k− + 2, k+)†ψ(. . . , k− + 2, k+, . . .)
+ Ĉ0(k−, k+)†ψ(. . . , k−, k+, . . .) = 0, (9.41)

one for each vertex. Only the edge labels ke are written explicitly in this differ-
ence expression, but states also depend on vertex labels μv on which the coefficient
operators ĈI act. The central coefficient is

Ĉ0|μ,k〉 = �P

2
√

2Gγ 3/2δ2

(
|μ|

(√|k+ + k− + 1| − √|k+ + k− − 1|
)

× (|μ−, k−, μ+ 2δ, k+, μ+〉 + |μ−, k−, μ− 2δ, k+, μ+〉
− 2(1 + 2γ 2δ2(1 − 2

ϕ(μ,k)))|μ−, k−, μ, k+, μ+〉)
− 4γ 2δ2sgnδ/2(μ)

√|k+ + k−|′
ϕ(μ,k)|μ−, k−, μ, k+, μ+〉

)

+ Ĥmatter, v|μ−, k−, μ, k+, μ+〉 (9.42)

and

ĈR±(k)|μ−, μ, μ+〉 := ± �P

4
√

2Gγ 3/2δ2
sgnδ/2(μ)

√|k+ + k−|

×
(

|μ−, μ+ 1

2
δ, μ+ + 1

2
δ〉

− |μ−, μ+ 1

2
δ, μ+ − 1

2
δ〉 + |μ−, μ− 1

2
δ, μ+ + 1

2
δ〉

− |μ−, μ− 1

2
δ, μ+ − 1

2
δ〉

)

(9.43)
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ĈL±(k)|μ−, μ, μ+〉 := ± �P

4
√

2Gγ 3/2δ2
sgnδ/2(μ)

√|k+ + k−|

×
(

|μ− + 1

2
δ, μ+ 1

2
δ, μ+〉

− |μ− − 1

2
δ, μ+ 1

2
δ, μ+〉 + |μ− + 1

2
δ, μ− 1

2
δ, μ+〉

− |μ− − 1

2
δ, μ− 1

2
δ, μ+〉

)

(9.44)
with

sgnδ/2(μ) := 1

δ
(|μ+ δ/2| − |μ− δ/2|) =

⎧⎨
⎩

1 for μ ≥ δ/2
2μ/δ for − δ/2 < μ < δ/2
−1 for μ ≤ −δ/2

We will discuss properties of this class of difference equations, in particular those
related to singularity removal, in Sect. 9.3.

9.1.5 Lemaître–Tolman–Bondi Models and Gravitational Collapse

The difference equations of spherically symmetric models are difficult to solve.
General properties of fundamental singularity resolution can be analyzed, as seen
below, but specific properties of the approach to a singularity in gravitational collapse
do not easily show up. As in isotropic models, effective equations would be useful.
Here, however, in addition to complicated quantum back-reaction we have to face
the anomaly-issue: the algebra of all constraints must still form a first-class set
after quantum corrections are included. Anomaly-freedom is trivially realized in
homogeneous models which have just a single constraint, but becomes a severe
consistency condition in inhomogeneous situations. Not many examples are known
in which at least some of the characteristic corrections of loop quantum gravity
would provide consistent sets of effective constraints in explicit ways. Spherical
symmetry is one example in which anomaly issues can be probed, linking to the
physical application of gravitational collapse.

Gravitational collapse of dust clouds can conveniently be discussed with Lemaître–
Tolman–Bondi (LTB) models, whose metrics have the general form

ds2 = −N (x, t)2dt2 + (R(x, t)′)2(dx + N x (x, t)dt)2 + R(x, t)2(dϑ2 + sin2 ϑdϕ2).

(9.45)

This class contains FLRW space-times as well as the Schwarzschild solution, but it
can also describe space-times with local matter degrees of freedom in the form of
dust. To describe the general class of models in terms of loop variables, we have to
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implement the condition (E x )′ = 2Eϕ, implicitly imposed by (9.45), together with
its dual condition K ′

ϕ = 2Kx sgnE x (which makes the diffeomorphism constraint
identically satisfied) in general spherically symmetric models. This reduction can
easily be done at the kinematical state level since the conditions refer directly to
basic expressions of the quantization (provided one just exponentiates the curvature
relation to result in holonomies) and can thus easily be formulated as conditions for
kinematical states.

From the triad relation we derive a condition for fluxes simply by integrating over
arbitrary radial intervals I :

∫

I

Eϕ = 1

2
|E x |∂I (9.46)

where ∂I is the boundary of I at which E x is evaluated, taking into account
orientation to have the correct signs. This relation can be imposed on triad eigenstates
(9.38), where (9.30) and (9.31) imply

μv = 1

2
(|ke+(v)| − |ke−(v)|) (9.47)

for any vertex v. This condition eliminates all vertex labels in favor of the edge
labels which remain free, analogously to the function |E x | = R2 which classically
determines the spatial part of an LTB metric completely.

On these reduced states, it turns out, the LTB condition for holonomy operators
is already implemented. Upon integration and exponentiation, we have

exp

⎛
⎝1

2
isgn(E x )

v2∫

v1

(Ax + η′)dx

⎞
⎠ = exp

(
1

2
iγ Kϕ(v1)

)
exp

(
−1

2
iγ Kϕ(v2)

)

(9.48)

expressed solely in terms of elementary holonomy operators. This condition is
realized in the sense that the left and right-hand sides, as multiplication operators,
have the same action on solutions to the LTB condition satisfying (9.47). Indeed,
the left-hand side simply increases the label of the edge between v1 and v2 (which
we assume to be two adjacent vertices) by one. Thus, it changes both ke+(v1) and
ke−(v2) by ±1 depending on their sign. The two operators on the right-hand side, on
the other hand, change the vertex label μv1 by 1

2 and μv2 by − 1
2 in the right way

to respect the condition (9.47) if it was realized for the original state. (If there are
vertices v between v1 and v2, ke+(v) and ke−(v) change by the same value such that
(9.47) remains implemented without changing μv).

Notice that, unlike conditions for a symmetry reduction, the two LTB condi-
tions for densitized triads and extrinsic curvature have vanishing Poisson brackets
with each other (but not with the constraints). Thus, the curvature condition can
indeed be implemented on the solution space of the triad condition. The implemen-
tation does not add further conditions for states because they are written in a specific
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polarization. LTB states are then simply represented by a chain of integer labels kI for
I = 0, 1, . . .which represents spatial discreteness (a one-dimensional lattice of inde-
pendent sites) as well as the discreteness of quantum geometry (integer kn as eigen-
values of the area radius squared). In a connection representation, they can be written
as Tk(z0, z1, . . .) = ∏

I zkI
I where the assignment I �→ zI := exp( 1

2 i
∫

eI
γ Kx dx) is

a generalized LTB connection.
While states can be reduced immediately to implement the LTB conditions, fur-

ther conditions do result for composite operators because (9.48) must be used if the
action of any operator is to be written on the LTB states where (9.47) has eliminated
vertex labels. This provides reductions, for instance of constraint operators, such
that characteristic quantum-gravity effects in loop operators can be carried over to
constraints for an LTB model. Several consistent versions of different types of quan-
tum corrections have been implemented and studied in [17] at the level of modified
classical equations. So far, the situation regarding an effective picture of space-time
around singularities, including classically naked ones, remains inconclusive.

LTB models have extensively been studied in Wheeler–DeWitt quantizations [18,
19], sometimes also suggesting discrete models. Instead of addressing the singularity,
of prime interest in these investigations is the form of Hawking radiation and possible
quantum-gravity corrections to it [20–24].

9.1.6 Further Applications of Spherical Symmetry

Spherically symmetric models, the simplest inhomogeneous reductions, allow us to
explore several of the consistency issues of canonical quantum gravity. Also proper-
ties of refinement can be seen.

9.1.6.1 Consistent Deformation in the Presence of Dust

In order to probe the consistency of inverse-triad corrections in inhomogeneous
models, we modify the Hamiltonian constraint

H Q
grav[N ] = − 1

2G

∫
dx N

(
α|E x |− 1

2 K 2
ϕEϕ + 2ᾱKϕKx |E x | 1

2

+ α|E x |− 1
2 Eϕ − α|E x |− 1

22
ϕEϕ + 2ᾱ

′
ϕ |E x | 1

2

)
(9.49)

by initially independent corrections α, ᾱ, α, ᾱ, and use

H Q
dust[N ] = 4π

∫
dx N

√
P2

T + β
|E x |
(Eϕ)2

(PT T ′ + P��′)2.
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as the matter source from dust in the canonical form of [25] with a correction function
β. (See for instance [26] for the canonical formulation of spherically symmetric
gravity in the presence of dust).

All correction functions depend on the triad, but one can see that a first-class alge-
bra with the diffeomorphism constraint results only if there is no dependence on Eϕ.
Since the correction functions must be scalar in order to preserve the density weight
of Hamiltonian densities, but Eϕ in one spatial dimension transforms as a densi-
tized scalar, it is reasonable that it cannot appear in correction functions. The radial
component E x remains a densitized vector field after symmetry reduction, and a den-
sitized vector field in one spatial dimension transforms like a scalar without density
weight. Thus, it can easily appear in correction functions. More precisely, we expect
inverse-triad corrections to depend on E x (x)/N (x) for refinement, corresponding
to the size of a discrete patch on the spherical orbit at x .

We leave the diffeomorphism constraint Dgrav + Ddust uncorrected because it
does not contain inverse-triad components and is quantized via its action on graphs,
not giving rise to strong deviations from classical behavior. One obtains a consistent
deformation of the whole constrained system provided that α = α, ᾱ = ᾱ. If this
is the case, the Poisson bracket of two Hamiltonian constraints is [27, 28]

{H Q
grav[N ] + H Q

dust[N ], H Q
grav[M] + H Q

dust[M]}
= Dgrav[ᾱ2|E x |(Eϕ)−2(N M ′ − M N ′)]

+ Ddust[β|E x |(Eϕ)−2(N M ′ − M N ′)]. (9.50)

The right-hand side vanishes on the constraint surface only if β = ᾱ2, provid-
ing in this case a consistent deformation of the classical spherically symmetric
hypersurface-deformation algebra. For ᾱ = 1 the algebra is uncorrected even though
there may still be corrections in the Hamiltonian constraint if α �= 1.

9.1.6.2 Poisson Sigma Models

Poisson sigma models [29–31] constitute an elegant formulation of a large class
of gravitational models including the reduction to spherical symmetry in arbitrary
dimensions. Their dynamics is provided by a two-dimensional field theory with
action

SPSM = − 1

2G

∫

�

(
Ai ∧ dXi + 1

2
P i j Ai ∧ A j

)
(9.51)

for a Poisson tensor P i j on a manifold M (antisymmetric and satisfying the Jacobi
identity εi jk∂

iP jk = 0 such that { f, g} := P i j (∂i f )(∂ j g) is a Poisson bracket),
and fields Xi : � → M, Ai : T� → T ∗M. For a 3-dimensional M, their rela-
tionship with geometrical variables is such that A1 and A2 form a co-dyad on the
two-dimensional manifold�, A3 is the spin connection on�, X3 is the dilaton field
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(arising for instance as one of the scalar components in symmetry reduction) and X1
and X2 are auxiliary fields implementing the condition of torsion freedom.

In dilaton-gravity models [32] as a subclass of Poisson sigma models, the Poisson
tensor has the form

P i j =
⎛
⎝ 0 −V (X3)/2 −X1 + X2

V (X3)/2 0 X1 + X2

X1 − X2 −X1 − X2 0

⎞
⎠ (9.52)

with a free function V (X3), the dilaton potential. For instance, spherically symmetric
gravity in D space-time dimensions, with metrics of the form

ds2 = gμνdxμdxν +�2(xμ)d�2
SD−1

for two-dimensional reduced coordinates xμ can be brought to dilaton-gravity form
with X3 = �D−2 and V (X3) = −(D − 2)(D − 3)(X3)−1/(D−2).

An interesting feature of Poisson sigma models is that this class of field theories
is stable under consistent deformations [33]. Thus, a consistent deformation, for
instance by some form of quantum corrections, must again be a Poisson sigma model.
Since the Poisson tensor represents the only freedom in Poisson sigma models,
consistent quantum corrections can be classified in terms of Poisson structures.

To make use of this feature in the context of corrections from loop quantum gravity,
we must first reformulate spherically symmetric gravity in Ashtekar–Barbero vari-
ables as Poisson sigma models. We can do so by using the (rather involved) canonical
transformation between the models worked out by [34]. In particular inverse-triad
corrections can then be related to modifications of the dilaton potential, with condi-
tions arising for consistency. Incidentally, the relationship between the models and
their constraints can be used to formulate a loop quantization of the general class
of dilaton models, including spherical reductions of higher-dimensional gravity for
which no full loop quantization is known.

9.1.6.3 FLRW in LTB and Possible Derivations of Refinement Models

Classically, the LTB class contains FLRW models. If the relationship can also be
established at the quantum level, using the states of Sect. 9.1.5, the link between
inhomogeneous and homogeneous models can be used to derive possible lattice-
refinement behaviors. At least some information in this direction can already be
gained.

The LTB condition relates the densitized-triad components by Eϕ − 1
2 (E

x )′ = 0,
and flat FLRW models within this class further satisfy x(E x )′ − 2E x = 0.

Thus, Ex ∝ x2. In flat FLRW models, we have indeed Ex = a(t)2x2 with the scale factor
a(t).The derivative condition provides an equation for this form of Ex with time-independent
coefficients; a(t) arises as an integration constant.
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The FLRW condition can be used to write x = 2E x/(E x )′, and then allows us to
see how the homogeneous coordinate x changes due to quantum effects that arise in
the densitized-triad components. The relationship between a coordinate and phase-
space function arises thanks to a gauge-fixing condition implementing additional
symmetries. Using an analogous relation at the quantum level allows us to see how
symmetry conditions affect the quantum representation.

In the present context, we are primarily interested in lattice refinement, which
refers to lattice states embedded in a homogeneous space. If we relate vertex positions
to the coordinate x and then to E x via the gauge-fixing condition, we can see how the
vertex distribution changes dynamically. As an “initial” configuration of maximally
homogeneous form we assume the vertices of a one-dimensional lattice in an LTB
model placed at positions kI = I n with integers I and n, I labelling the vertices and n
representing the flux eigenvalues of a discrete geometry of the corresponding FLRW
model. The reduced dynamics, in elementary form and without lattice refinement,
would merely change n by an integer, preserving the homogeneity of the distribution
kI . Homogeneity is, however, not preserved by the inhomogeneous LTB quantum
dynamics, whose elementary steps map kJ to kJ + 1 for single J.

We read off changes in vertex positions from the inhomogeneous dynamics by
using x = 2E x/(E x )′, with E x at a place I after quantization having eigenvalues
kI , to define xI = 2kI /�kI with �kI = kI+1 − kI . For the initial configuration,
xI = 2I is uniform as expected. A single elementary move of the inhomogeneous
dynamics then maps kJ to kJ + 1 = Jn + 1 for a fixed J. The configuration
can no longer be homogeneous, and the reconstructed vertex positions move. Near
J, we have after the change xJ−1 = 2kJ−1/�kJ−1 = 2(J − 1)n/(n + 1) and
xJ = 2kJ/�kJ = 2(Jn +1)/(n −1)while all other kI do not move. In this way, the
inhomogeneous dynamics implies changes in the lattice underlying the homogeneous
reduction. Generically, the vertex J − 1 moves to the left (n/(n + 1) < 1 if n ≥ 0)
while the vertex J moves to the right ((n + J−1)/(n − 1) > 1 if n > 1) by the
creation of new flux. If we restrict attention to a finite region, which we always do
in homogeneous models, some vertices may move in or out of this region due to the
action of the Hamiltonian constraint. Even if the constraint does not generate new
vertices and preserves the graph of states it acts on, reconstructed lattices in general do
have changing vertex densities to be captured in lattice refinement. As realized in this
example, gauge-fixing diffeomorphisms in the process of dynamically representing
symmetries is expected to play an important role in deriving lattice refinement.

9.1.6.4 Symmetry After Quantization: Effective FLRW in LTB

The classical relationship between FLRW and LTB models can also be used to find
explicit realizations of homogeneous solutions in quantum-corrected inhomogeneous
space-times. Interestingly, obstructions to naive realizations of symmetry, or pure
minisuperspace quantizations, arise [27].

From the Hamiltonian constraint (9.49) for ᾱ = 0, to be specific, we derive the
equations of motion
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R Ṙ2 = α2 F + Rα2(α2E 2 − 1)

and

2R R̈ + Ṙ2 = 2(Ṙ2 + α4E 2)
d logα

d log R
− α2(1 − α2E 2)

for R = √|E x |, with a free function E = √
1 + κ. A classical line element

ds2 = −dt2 + R′2

1 + κ(x)
dx2 + R2d�2

results, which as used before is isotropic if R = a(t)x and κ = −kx2.

Assuming R(t, x) = a(t)x and κ(x) = −kx2 for the FLRW line element, the
equation of motion

R Ṙ2 = α2 F + Rα2(α2E 2 − 1)

gives

aȧ2 + α2a
1 − α2 + kx2α2

x2 = 8πG

3
α2a3ρ (9.53)

for the scale factor, with a spatially constant dust density ρ in F = (8πG/3)R3ρ.

Here, the x-dependence cancels only for α = 1, the classical case; otherwise no
solution for a(t) as a function just of time is possible. This result may suggest that
dynamical embeddings of minisuperspace models in inhomogeneous ones are not
possible at an exact level. Indeed, we have already seen that additional ingredients,
such as lattice refinement which cannot be formulated fully in a minisuperspace
context, are necessary.

Note that the considerations in this subsection are for ᾱ = 1, a case which mod-
ifies the constraints leaving their algebra unchanged. Thus, effective line elements
are meaningful in this model, and classical manifold structures are still realized. One
would not expect the notion of symmetry or homogeneous spaces to change; yet,
the modified dynamics does not allow homogeneous solutions. For ᾱ �= 1, quan-
tum corrections change the algebra of constraints and thus the space-time structure.
In this case, the form of symmetric spaces will have to be modified.

9.2 Models with Local Degrees of Freedom

In general 1 + 1-dimensional midisuperspace models, local dynamical degrees of
freedom exist. The form of an invariant connection in those cases is

A = Ax (x)�x (x)dx + Ay(x)�y(x)dy + Az(x)�z(x)dz + field-independent terms
(9.54)
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where the internal direction �I (x) ∈ su(2), tr(�I (x)2) = − 1
2 , can be restricted

further depending on the symmetry action. In general, however, they do not satisfy
tr(�I�J ) = − 1

2δI J , as it was the case in the spherically symmetric model with
its non-trivial isotropy group, a condition that was responsible for the simplified
structure of states and basic operators. Just as general Bianchi models require a diag-
onalization before a loop quantization can be evaluated explicitly, extra conditions
would be helpful for midisuperspace models.

9.2.1 Models

In cylindrically symmetric models with a space manifold � = R × (S1 × R), for
instance, the symmetry group S = S1 × R acts freely, and invariant connections and
triads have the form

A = Ax (x)τ3dx + (A1(x)τ1 + A2(x)τ2)dz + (A3(x)τ1 + A4(x)τ2)dϕ (9.55)

E = E x (x)τ3
∂

∂x
+ (E1(x)τ1 + E2(x)τ2)

∂

∂z
+ (E3(x)τ1 + E4(x)τ2)

∂

∂ϕ
(9.56)

such that, compared with (9.54), tr(τ3�z) = 0 = tr(τ3�ϕ), but in general tr(�z

�ϕ) �= 0.
The corresponding metric is

ds2 = (E x )−1(E1 E4 − E2 E3)dx2 + E x (E1 E4 − E2 E3)−1

×
(
((E3)2 + (E4)2)dz2 − (E2 E4 + E1 E3)dzdϕ + ((E1)2 + (E2)2)dϕ2

)
(9.57)

which is not diagonal. To simplify the model further one may require the metric to
be diagonal, which physically corresponds to selecting a particular polarization of
Einstein–Rosen waves. This is achieved by imposing the additional condition E2 E4+
E1 E3 = 0 which, in order to yield a non-degenerate symplectic structure, has to be
accompanied by a suitable condition for the connection components. With a quadratic
condition for the triad components, the condition for connection components takes a
different form. It can be derived, for instance, by using the classical Hamiltonian and
ensuring that the triad condition is preserved in time. In terms of extrinsic curvature,
its off-diagonal components will be required to vanish, imposing a restriction on
connection components. We will see this explicitly in the section on Gowdy models,
following [35].

Polarized cylindrical waves of this form have perpendicular internal directions
since now tr(�z�ϕ) = 0 for both A and E, and similar simplifications as in the
spherically symmetric case can be expected. The form of the metric now is

ds2 = (E x )−1 Ez Eϕdx2 + E x
(

Eϕ/Ezdz2 + Ez/Eϕdϕ2
)

(9.58)
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with

Ez :=
√
(E1)2 + (E2)2, Eϕ :=

√
(E3)2 + (E4)2. (9.59)

Einstein–Rosen waves are usually represented in the form

ds2 = e2(γ−ψ)dr2 + e2ψdz2 + e−2ψr2dϕ2 (9.60)

with only two free functions γ and ψ. Compared with (9.58) one function has been
eliminated by gauge-fixing the diffeomorphism constraint.

In fact, this form can be obtained from the more general (9.58) by a field-dependent
coordinate change [36]: The symmetry reduction leads to a space-time metric ds2 =
e�dUdV + W (e−�dX2 + e�dY 2) which indeed has a spatial part as in (9.58) with
three independent functions�,W = E x and� = log(Eϕ/Ez).One then introduces
t := 1

2 (V −U ) and ρ := 1
2 (V +U ), and fixes the diffeomorphism gauge by W = ρ

such that

ds2 = e�(−dt2 + dρ2)+ ρ(e−�dX2 + e�dY 2). (9.61)

Finally, defining � = 2(γ − ψ), e−2ψρ := e−� and renaming X =: ϕ, Y =: z
leads to the metric (9.60).

A Gowdy model of type T 3 [37] has the line element

ds2 = e2a(−dT 2 + dϑ2)+ T (e2W dX2 + e−2W dY 2)

with two free functions a and W depending only on T and ϑ but not on X and Y.
Einstein’s equation can be solved exactly in this case, resulting in [38]

W (T, ϑ) = α+β log T +
∞∑

n=1

(an J0(nT ) sin(nϑ + γn)+ bn N0(nT ) sin(nϑ + δn))

in terms of Bessel functions J0 and N0, and with constant parameters α, β, an, bn,

γn and δn .Homogeneous Kasner solutions are obtained for the special case β = 1/2,
an = bn = 0. Unless bn = 0 and β = 1/2, there is a curvature singularity at T = 0
with diverging Rabcd Rabcd .

9.2.2 Connection Formulation

Initial steps for a loop quantization of midisuperspace models with local degrees of
freedom have been provided by [9, 11, 12, 39], and most completely by [35, 40].
Invariant connections and triads for the symmetry type considered here are

Ai
aτi dxa =Aϑτ3dϑ + (A1

xτ1 + A2
xτ2)dx + (A1

yτ1 + A2
yτ2)dy (9.62)
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Ea
i τ

i ∂

∂xa
= Eϑτ3

∂

∂ϑ
+ (E x

1 τ
1 + E x

2 τ
2)
∂

∂x
+ (E y

1 τ
1 + E y

2 τ
2)
∂

∂y
. (9.63)

As in Sect. 9.1, we define

A1
xτ1 + A2

xτ2 =: Ax�
x
A, A1

yτ1 + A2
yτ2 =: Ay�

y
A (9.64)

E x
1 τ

1 + E x
2 τ

2 =: E x�E
x , E y

1 τ
1 + E y

2 τ
2 =: E y�E

y (9.65)

with gauge invariant Ax , Ay, E x and E y (which will no longer be canonically
conjugate to each other). The internal directions are parameterized by four angles:

�E
x = τ1 cosβ + τ2 sin β, �x

A = τ1 cos(α + β)+ τ2 sin(α + β) (9.66)

�E
y = −τ1 sin β̄ + τ2 cos β̄, �

y
A = −τ1 sin(ᾱ + β̄)+ τ2 cos(ᾱ + β̄). (9.67)

The Gauss constraint

G = 1

8πγG
(∂ϑ Eϑ + A1

x E x
2 − A2

x E x
1 + A1

y E y
2 − A2

y E y
1 ) (9.68)

removes one of the four angles as gauge and allows us to solve for the momentum
of another one. The solution procedure is conveniently expressed in the canonical
pairs (Aϑ , Eϑ), (Ax cosα, E x ), (Ay cos ᾱ, E y), (β, Pβ) with Pβ = −E x Ax sin α,

and (β̄, P β̄ ) with P β̄ = −E y Ay sin ᾱ. The angles can also be arranged as (ξ, Pξ )

with ξ = β − β̄ and Pξ = 1
2 (P

β − P β̄ ), and (η, Pη) with η = β + β̄ and

Pη = 1
2 (P

β + P β̄ ). In these variables, the Gauss constraint simplifies to

G = 1

8πγG
(∂ϑ Eϑ + 2Pη).

From the triad in this parameterization we now determine the corresponding line
element and compare with the form usually used:

ds2 = cos ξ
E x E y

Eϑ
dϑ2 + Eϑ

cos ξ

(
E y

E x
dx2 + E x

E y
dy2 − 2 sin ξdxdy

)
. (9.69)

Also here, a loop quantization will be simplest in the case of a diagonal metric,
allowing an Abelianization. For the off-diagonal components to vanish we have
to impose the polarization condition ξ = 0 or β = β̄. Then indeed the internal
triad components in all three spatial directions will form an orthogonal triple as
in the case of spherical symmetry (but with independent components in the x-and
y-directions). The corresponding condition to be imposed for connection components
can be derived from the requirement that ξ = 0 be preserved in time [35]: {ξ, H} = 0
using the Hamiltonian constraint. As a result, 2Pξ+Eϑ∂ϑ log(E y/E x ) = 0,which is
then automatically preserved in time. This equation can also be seen to be equivalent
to Kxy = 0, such that q̇xy = 0 and the diagonal behavior is preserved.
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Using the polarization condition and solving the Gauss constraint removes the
variables (ξ, Pξ ) and (η, Pη). We are then left with three pairs which turn out to
be (Aϑ , Eϑ), (Kx , E x ) and Ky, E y)with extrinsic-curvature components appearing
for connection components, in a way similar to the spherically symmetric case. The
only difference is that there are three rather than two independent canonical pairs
per point, which will leave one local degree of freedom once all constraints are
considered. After having solved the Gauss constraint, the remaining ones are the
diffeomorphism constraint

D = 1

8πG

(
E x∂ϑKx + E y∂ϑK y − γ−1 Aϑ∂ϑ Eϑ

)
(9.70)

and the Hamiltonian constraint

H = − 1

8πG

1√|Eϑ |E x E y

(
Kx E x Ky E y + γ−1(Kx E x + Ky E y)Aϑ Eϑ

+1

4

(
(∂ϑ Eϑ)2 − (Eϑ∂ϑ log(E y/E x ))2

))
+ 1

8πG
∂ϑ

Eϑ∂ϑ Eϑ√|Eϑ |E x E y
. (9.71)

Also for this model and related ones, a loop representation can directly be
formulated and constraint operators constructed [40]. Adapting the construction of
states and operators as we have seen them in spherical symmetry does not lead to
additional difficulties, the only difference being that we have one additional degree of
freedom per point on B, given by Kz in Einstein–Rosen models or Ky in Gowdy mod-
els. For the new degree of freedom, kinematically, we have additional holonomies
exp(iμzγ Kz) in vertices of spin network states.

9.2.3 Hybrid Quantization

As an intermediate stage between loop quantized mini- and midisuperspace models,
one can begin by writing a Gowdy model as a Bianchi model plus inhomogeneous
field perturbations whose dynamics is governed by a self-interacting Hamiltonian.
The Bianchi background can be quantized by standard loop techniques, and for
the inhomogeneities a Fock-space representation is simpler and better understood.
In the resulting hybrid model [41] the inhomogeneities appear somewhat similar to
anisotropies in the perturbative treatment of Sect. 8.2.5, at least kinematically. The
dynamics of hybrid models is not induced from a loop Hamiltonian for the Gowdy
degrees of freedom; it is constructed by separate loop and Fock quantizations for
the background variables and inhomogeneities, respectively. (Fock representations
within loop quantization have also been discussed in [42, 43]).

This procedure provides several interesting aspects. First, one can attempt to
generalize statements about singularities from homogeneous models to inhomoge-
neous systems, and in fact bounce solutions have been obtained in some cases [44]

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
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based on tree-level equations. This result, by itself, is not very surprising because
the inhomogenous contributions serve as a matter term in the Bianchi background
very similar to what is obtained with kinetic domination. The model also provides a
time-dependent Hamiltonian with the usual choice of an internal time. In this context,
interesting questions about the unitarity of evolution arise, which have been studied
extensively at the level of non-hybrid Fock quantizations of Gowdy models [45–49]

9.3 Properties

Various 1 + 1-dimensional models, including those with local physical degrees of
freedom, can be loop quantized in an Abelianized manner with explicit expressions
for their Hamiltonian constraint. In all cases, a triad representation exists thanks to the
Abelian behavior, which allows one to write the constraint equation as a difference
equation for wave functions. It can be solved with suitable initial and boundary
values, providing crucial insights into whether or not quantum hyperbolicity, the
fundamental singularity removal mechanism seen in homogeneous models, can be
extended to inhomogeneous situations.

9.3.1 Non-Singular Behavior

Difference equations encountered here, such as (41) constitute large sets of coupled
partial difference equations for a wave function ψ(μv, ke) defined at all values of
vertex labels μv and edge labels ke. To define a solution scheme [50], amounting to
a well-posed initial/boundary-value problem giving rise to a unique solution once
sufficient data are specified, we proceed iteratively from vertex to vertex. To have
a starting point in this procedure, we consider a finite region only, requiring spatial
boundary conditions. We then start at one side ∂ of the spatial lattice, which could
be put into an asymptotically flat regime where a highly semiclassical uncorrelated
state can be chosen. We will also have to specify initial values in local internal time,
for which a good choice is the edge labels ke, quantizing E x . As we evolve to small
ke, a spatial slice approaches the singularity when one or more of the edge labels
vanish. Initial values thus are posed by specifying the wave function at a fixed (and
non-vanishing) value for all ke.

Doing so, we have given the boundary values for all μ∂ and k+(∂) =: k− of the
wave function as well as values for large positive ke = k0 and k0 − 1 at all edges e;
we have specified the initial situation, for instance again by a semiclassical state on
the initial slice far away from the singularity. The set of difference equations is then
to be solved for ĈR+ψ(k−, k+ −2) in terms of values of the wave function following
from the initial conditions. We thus move one step further in the recurrence because
we now have information about the wave function at k+ − 2 for a smaller edge label
(our local internal time) evolving toward the classical singularity.
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Next, we have to know how to find ψ from its image under ĈR+. An inversion
of ĈR+ can be done by specifying conditions for the wave function at small μ.
These conditions take the form of boundary values for the recurrence, not in space
(the radial line) but in midisuperspace since μ quantizes the field space variable
Eϕ. (This boundary is not in the singular part of minisuperspace but represents an
ordinary boundary. Boundary conditions can thus safely be chosen there without
precluding one to address the singularity problem. This happens in exactly the same
way as in homogeneous models.) Whether or not there is a physical singularity will
be determined by trying to evolve through the classical singularity at ke = 0 in
the quantized midisuperspace. One crucial difference to cosmological models is that
the coefficients ĈI (k) are not only functions of the local internal time, k+, studied in
the iteration but also of neighboring labels such as k−. These labels do not take part
in the difference equation under consideration for the k+-evolution; the dependence
on them has been determined in iteration steps for previous vertices. This new feature
coming from the inhomogeneous context has a bearing on the singularity issue. Any
extension of the homogeneous non-singularity results will thus be non-trivial.

Singularities are removed in the sense of quantum hyperbolicity if the difference
equation determines the wave function everywhere on midisuperspace once initial
and boundary conditions have been chosen away from classical singularities, in a
connected component of the classical superspace of non-degenerate metrics. The sim-
plest realization is by a difference equation with non-zero coefficients everywhere.
However, since this property is not automatically realized with an equation com-
ing from a general construction of the Hamiltonian constraint, it has to be checked
explicitly. With the difference equation derived before for spherically symmetric or
other midisuperspace models, it turns out that a symmetric constraint indeed leads to
non-zero functions CI (k) which consequently will not pose a problem to the evolu-
tion. All values of the wave function, at positive as well as negative k, are determined
uniquely by the difference equations and the initial and boundary values chosen. Evo-
lution thus continues through the classical singularity at zero k: there is no quantum
singularity even in midisuperspace models. Other quantization choices can lead to
quantum singularities, providing selection criteria to formulate the quantum theory
with implications also for the full framework.

Thus, the same mechanism as in homogeneous models contributes to the removal
of spherically symmetric classical singularities. Key features are that densitized tri-
ads as basic variables in quantum geometry provide us with a local internal time
taking values at two sides of the classical singularity, distinguished from each other
by orientation, combined with a quantum evolution that connects both sides. No
conceptually new ingredients are necessary for inhomogeneous singularities, only
an application of the general scheme to the new and more complicated situation.

As in cosmological models the argument applies only to space-like singularities
such as the one encountered in the Schwarzschild solution: we have to evolve a spa-
tial slice toward the classical singularity in internal time and test whether it will stop.
A time-like or null singularity would require a different mechanism for being
resolved, which is not known at present. In fact, investigations based on quantum-
corrected classical equations for LTB models [17] have not resulted in a clear mech-
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anism by which non-spacelike singularities could be removed effectively. Cases like
negative-mass solutions seem to remain singular, a welcome property helping to rule
out unwanted solutions that would lead to instability [51].

The scenario described here based on the general form of difference equations
for Abelianizable midisuperspace models does not only apply to vacuum black holes
but also to spherically symmetric matter systems as well as Gowdy models. In such
cases, compared to spherical symmetry, there would be new labels for matter fields
or local gravitational degrees of freedom, and a new contribution to the constraint
from the matter Hamiltonian. Such contributions do not change the structure of the
difference equation, and the same conclusions apply. The fundamental mechanism
of singularity removal, based on quantum hyperbolicity, is general and applies well
beyond homogeneous models; the absence of singularities can be demonstrated even
in situations with local gravitational degrees of freedom.

9.3.2 Lattice Refinement and Anomaly Freedom

Comparing midisuperspace constructions with the full theory, there is a difference
which is visible only in inhomogeneous models: the issue whether or not the con-
straint creates new edges and vertices, or just changes labels of existing ones. As
already discussed in general terms, such a question has a strong bearing on lattice
refinement, and thus indirectly affects also homogeneous models. An advantage of
midisuperspace models is that they can show refinement behaviors explicitly while
still remaining tractable. In our treatment so far we did not include explicit refine-
ment along the radial line, which is not part of the initial constructions of constraint
operators in the full theory but has already been considered as potential modifica-
tions of the procedures [52, 53]. In those cases, not creating new edges and vertices
but instead linking existing vertices by holonomy operators might better explain the
presence of correlations at an intuitive level [52], or be of advantage for consistent
constructions of the whole set of quantum constraints. However, it makes checking
and ensuring anomaly-freedom much more complicated.

The main problem of an anomalous quantization would be that too many states
could be removed when imposing inconsistent constraints, leaving insufficiently
many physical solutions. At least qualitatively, we can check this issue with the
constraint we used. If there is no matter field present we expect just one classical
physical degree of freedom, the Schwarzschild mass M. In our solution scheme we
started with a boundary state ψ∂ corresponding to a wave function for this degree
of freedom. Since the state can be specified freely, it is already clear that we do
not lose too many solutions. A more complicated question is whether the number
of independent physical solutions is correct, that is not too large either. The main
difficulty here is the role of semiclassical states to be compared with the number
of classical solutions. New quantum solutions may always arise, but for the correct
classical limit a quantum theory should not produce more semiclassical solutions than
could have a correspondence with classical ones. In the iteration for midisuperspace
models we solve one difference equation forψ at each vertex, such that any freedom
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here would provide new quantum degrees of freedom. Since the difference equation
for ψ has the same form as that in homogeneous loop quantum cosmology, the
number of quantum degrees of freedom turns out to be related to the initial value
problem of quantum cosmology. Dynamical initial conditions [54, 55] thus appear
to be important also to verify the correct classical limit of loop quantum gravity.

If dynamical initial conditions are strong enough, as they are in some isotropic
models, solutions for ψ at each vertex are unique and the mass, quantized by the
boundary state, is the only quantum degree of freedom. Currently, however, the ques-
tion of how strong available conditions are is still open. Ultimately, an answer will
also depend on issues of imposing the physical inner product or of precisely defin-
ing semiclassical states. But at least a simple counting of free variables supports the
connection to initial conditions: The vacuum spherically symmetric model has differ-
ence equations in three independent variables, an edge label k and two neighboring
vertex labels μ.Homogeneous loop quantum cosmology gives rise to an equation of
similar structure, also with three variables. If we assume that there is a mechanism
for a unique solution in homogeneous models, it will as well apply to black holes
of a given mass. Adding matter fields (or more gravitational degrees of freedom as
in Einstein–Rosen waves) increases the number of independent variables to five in
inhomogeneous models (two new vertex labels) as opposed to four in homogeneous
matter models. The type of difference equations thus agrees in homogeneous and
inhomogeneous models in vacuum without local degrees of freedom, suggesting
an agreement also in the number of solutions. But when local classical degrees of
freedom are present, there is additional room for free variables also in quantum states.

As indicated by several examples and applications, the structure of the Hamiltonian-
constraint equation arising from models of loop quantum gravity can potentially pro-
vide explanations for issues as diverse as the singularity problem in cosmology and
black hole physics, initial conditions in quantum cosmology, the semiclassical limit,
issues of quantum degrees of freedom, and the anomaly problem which is related to
covariance and space-time structure. Many specific details and realizations remain to
be checked in generality. Still, such connections between seemingly unrelated issues
in quantum gravity can be seen as support for the overall internal consistency of the
whole theory and, hopefully, provide guidance for future developments.
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Chapter 10
Perturbative Inhomogeneities

An issue of considerable interest for cosmology, and one major testing ground for
quantum gravity, is the inclusion of perturbative inhomogeneities around homoge-
neous models. A successful implementation will allow one to check the stability and
robustness of effects such as singularity resolution seen in isotropic settings, but also
lead the way to cosmological applications of structure formation. As always in inho-
mogeneous settings, the daunting anomaly issue has to be faced when corrections
from a canonical quantization are included in general relativity. Also the derivation
of all quantum back-reaction terms is quite involved, and so no complete formulation
of perturbative inhomogeneities yet exists. Nevertheless, several effects can already
be seen, shedding light on the quantum space–time structure, and by an analysis of
the anomaly issue one is making contact with the full theory when specific forms of
consistent corrections are derived.

10.1 Formalism

Explicit calculations in loop quantum gravity are most easily done when configura-
tion variables, in particular the triad, can be assumed to be diagonal. Examples seen
so far for mechanisms to allow diagonalization are isotropy subgroups of symmetry
groups, polarization conditions, or an explicit diagonalization in Bianchi models.
For cosmological perturbations, diagonalizations of the triad can only be achieved
by gauge choices of different modes. While gauge-fixed treatments of quantization
must be treated with considerable care, at least some information on quantum cor-
rections can be gained in this way. This information, in turn, can be used as a starting
point to be completed in gauge-invariant treatments.

10.1.1 Linear Modes in Cosmological Perturbations

Before setting up a quantization of cosmological perturbations by loop techniques it
will be useful to review the standard decomposition of a linearized metric as used in
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cosmology; see [1] for more details about the corresponding canonical framework.
For perturbations around a flat FLRW model, the general form in conformal time,
with a background lapse function N (t) = a(t), is

ds2 = a(t)2
(
−(1 + 2φ(x, t))dt2 + 2(∂a B(x, t)+ Fa(x, t))dtdxa

+
(
(1 − 2ψ(x, t))δab + ∂a∂b E(x, t)+ 2∂a fb + hT T

ab (x, t)
)

dxadxb
)

(10.1)

where ∂a Fa = 0, ∂a fa = 0, ∂ahT T
ab = 0 and hT T

ab δ
ab = 0. The four fields

φ, ψ, B and E constitute the scalar mode, the two transverse vector fields Fa and fa

the vector mode, and the transverse-traceless hT T
ab the tensor mode.

By applying a Lie derivative to the background metric one determines which of
the free fields in the linearized metric can be removed by changing coordinates. It
turns out that one can always choose a space–time gauge such that φ and ψ are the
only scalar modes and Fa is the only vector mode. The transverse-traceless field hT T

ab
for tensor modes is already gauge invariant and cannot be reduced by coordinate
choices. Disentangling gauge from evolution is a standard procedure in the classical
setting; see also Sect. 10.3.1.2. However, if quantum effects correct the constraints,
not only the equations of motion will be modified but also gauge transformations
and gauge-invariant objects. In such a context of quantum space–time structures,
independent coordinate transformations to determine gauge transformations kine-
matically may not be available. At this stage, the full canonical formalism, providing
gauge and evolution at the same time, becomes crucial. (Sometimes one uses classi-
cal information about gauge-invariant quantities before one quantizes, as for instance
in [2, 3]. While the required equations may simplify considerably, not all possible
quantum effects can be included in this way. We will see examples for effects from
quantum modifications of gauge structures later in this chapter).

Selecting modes and choosing a gauge can justify the use of diagonal densitized
triads to simplify calculations in a loop quantization. For instance, for scalar modes
we can assume an inhomogeneous densitized triad to be of the form Ea

i = a2(1 −
2ψ(x))δa

i , which is diagonal. It turns out that this restriction is not general enough
for a loop quantization: a discrete cubic lattice, for instance, which does not have the
same spin label at each edge and in this sense is inhomogeneous, cannot have all its
vertices isotropic. We thus use an anisotropic (but diagonal) form Ea

i = p̃(i)(x)δa
i , of

a linearized densitized triad even though the classical metric we aim to describe does
have all its diagonal elements at a fixed point identical. This choice still corresponds
to longitudinal gauge with E = 0.

If we then choose a vanishing shift vector N a = 0, which is partially a gauge
choice (B = 0) and partially an assumption about the absence of vector modes,
extrinsic curvature K i

a = k̃(i)(x)δi
a is diagonal, too. (The Ashtekar–Barbero connec-

tion, on the other hand, will not be diagonal because it has non-diagonal contributions
from the spin connection. It is of the form Ai

a = k̃(i)(x)δi
a + ψI (x)εi I

a whose off-
diagonal part ψI arising from the spin connection may, if Ai

a is to be included in
holonomies, be dealt with perturbatively.)
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For diagonal Ea
i and K i

a one can perform many derivations as explicitly as seen
in several of the symmetric models. Calculations of specific quantum correction
terms thus simplify in some gauges, but would be more complicated in others. For
the anomaly issue, on the other hand, too early a gauge fixing would be damaging
since not all the freedom required in the interrelations of different gauge flows could
be seen. After having computed candidate quantum corrections in a given gauge,
one has to go back to the non-gauge fixed situation and see which extra terms—
called counterterms in what follows—are required for an anomaly-free system of
constraints in the presence of quantum corrections. Counterterms, or a whole effective
set of constraints, should ultimately follow directly from a quantum Hamiltonian,
not just by consistency arguments implemented at an effective level. By checking
how specific counterterms can arise in expectation values of consistent constraint
operators one has means to test the consistency of the full theory of loop quantum
gravity. At this level, different gauges can be implemented by using suitable states
peaked on classical geometries when computing expectation values.

In this chapter we will organize the constructions as follows:

• We first compute candidate quantum corrections to show their general forms and
types. This part also serves as further introduction to the general methods of loop
quantum gravity.

• We then use the results at a partial effective level by inserting the corrections, suit-
ably parameterized, into the classical expressions. This step by itself, owing to its
incomplete realization of correction terms, is unlikely to provide consistent equa-
tions, but by evaluating the consistency conditions of anomaly-freedom, secondary
corrections (the counterterms) will be derived.

• With consistent equations at our disposal, we will then analyze the cosmological
effects and applications they provide.

10.1.2 Basic Operators

We now begin explicit computations of quantum-geometry correction terms [4]. In
addition to the diagonal gauge for a linearized geometry, we assume states to be based
on regular cubic lattices, where each vertex v has a unique edge ev,I pointing in one
of the three spatial directions I, I = 1, 2, 3, as in Fig. 10.1 (and one pointing in the
opposite direction which we will denote as ev,−I .) Similarly, each edge ev,I has a
unique transversal surface Sv,I . The assumption of a lattice state allows systematic
derivations; qualitative features of generic states can be captured in this way. As in
spherically symmetric models, we directly use the components of extrinsic curva-
ture in holonomies: hv,I = exp(γ τI

∫
ev,I

dt k̃I (ev,I (t)) to exploit their diagonality

in longitudinal gauge. Similarly, fluxes will be of the form Fv,I = ∫
Sv,I

d2 y p̃I (y).
In a regular lattice, each edge has the same coordinate length 	0, and transversal
surfaces covering the whole space without overlap have coordinate areas 	2

0. This
parameter 	0 is the same that we encountered in the discussion of lattice refinement
in homogeneous systems.
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Fig. 10.1 A regular lattice
with three edges ev,I (solid)
emerging from a vertex in
the three Cartesian directions
and one transversal surface
Sv,I (centered at the dot)

10.1.2.1 Lattice States

For a nearly isotropic geometry we assume k̃ I to be approximately constant along
every edge. Thus,

hv,I = exp

⎛
⎜⎝

∫

ev,I

dλγ k̃ I τ
I

⎞
⎟⎠ ≈ cos

(
	0γ k̃ I (v+ 1

2 I )/2
)

+2τI sin
(
	0γ k̃ I (v+ 1

2 I )/2
)

(10.2)

where v + 1
2 I denotes, in a slight abuse of notation, the midpoint of the edge. We use

(10.2) as the most symmetric relation between holonomies and continuous fields.
Similarly,

Fv,I =
∫

Sv,I

p̃ I (y)d2 y ≈ 	2
0 p̃ I

(
v + 1

2
I

)
. (10.3)

(Note that the surface Sv,I is defined to be centered at the midpoint of the edge
ev,I .) Assuming almost-constant fields along edges and surfaces requires the lat-
tice to be fine enough, which will be true in regimes where fields are not strongly
varying. For more general regimes this assumption has to be dropped and non-local
objects appear even in effective approximations because the local function k̃ I cannot
fully be reconstructed in terms of hv,I if edges of fixed lengths are used. Since the
recovered classical fields must be continuous, they can arise only if quantizations of
hv,I and Fv,I , respectively, for nearby lattice links do not have too widely differing
expectation values in a semiclassical state. Otherwise, continuous classical fields can
only be recovered after a process of coarse-graining.

In addition to the assumption of slowly-varying fields on the lattice scale, we have
made use of the diagonality of extrinsic curvature which allows us to evaluate the
holonomy in a simple way without taking care of the factor ordering of su(2)-values
along the path. We can thus re-formulate the theory in terms of U(1)-holonomies, or
functions
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ηv,I = exp

⎛
⎜⎝i

∫

ev,I

dλγ k̃ I /2

⎞
⎟⎠ ≈ exp

(
i	0γ k̃ I (v + 1

2 I )/2
)

(10.4)

along all lattice links ev,I as they appear in (10.2). On the lattice, a basis of all possible
states is then given by specifying an integer label μv,I for each edge starting at a
vertex v in direction I and defining

〈k̃(x)| . . . , μv,I , . . .〉 :=
∏
v,I

exp

(
iμv,I ∫

ev,I

dλγ k̃ I /2

)
(10.5)

as the functional form of the state | . . . , μv,I , . . .〉 in the k-representation. This con-
struction extends the previous representations of midisuperspace models to the fully
inhomogeneous lattice case.

Such a form of the states is a consequence of the representation of holonomies.
States are functions of U(1)-holonomies, and any such function can be expanded
in terms of irreducible representations which for U(1) are just integer powers. The
analogous procedure would be more complicated if we allowed all possible, including
non-diagonal, curvature components as one is doing in the full theory. In such a
case, one would not be able to reduce the original SU(2)-holonomies to simple phase
factors and more complicated multiplication rules would have to be considered, not to
speak of a devastatingly complicated volume operator. In particular, one would have
to make sure that matrix elements of holonomies are multiplied with one another
in such a way that functions invariant under SU(2)-gauge rotations result [5]; see
Sect. 3.2.2.3. Additional vertex labels are then required which we do not need in the
perturbative situation. Nevertheless, we are able to capture crucial holonomy issues
while avoiding technical difficulties of explicitly doing calculations with SU(2).

For the same reason we have simple multiplication operators given by holonomies
associated with lattice links,

η̂v,I | . . . , μv′,J , . . .〉 = | . . . , μv,I + 1, . . .〉. (10.6)

(Only the label associated with the vertex appearing in the holonomy changes.) Fur-
thermore, there are derivative operators with respect to k̃ I , quantizing the conjugate
triad components. Just as holonomies are obtained by integrating the connection
or extrinsic curvature, densitized-triad components are integrated on surfaces as in
(10.3), before they can be quantized. For a surface S of lattice-plaquette size inter-
secting a single edge ev,I outside a vertex, we have the flux

F̂v,I | . . . , μv′,J , . . .〉 = 4πγ 	2
Pμv,I | . . . , μv′,J , . . .〉 (10.7)

or

F̂v,I | . . . , μv′,J , . . .〉 = 2πγ 	2
P(μv,−I + μv,I )| . . . , μv′,J , . . .〉. (10.8)

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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if the intersection happens to be at the vertex.
As already noted, even for scalar perturbations which classically have triads pro-

portional to the identity, distinct p̃ I (v)-components have to be treated as independent
at the quantum level. One cannot assume all edge labels around any given vertex to
be identical while still allowing inhomogeneity. Moreover, operators require local
edge holonomies that change one edge label μv,I independently of the others. Simi-
larly, corresponding operators F̂v,I and F̂v,J (I �= J ) act on different links emerging
from a vertex v and in general have independent eigenvalues. To pick a regime of
scalar modes, one will choose a state whose edge fluxes are peaked close to the same
triad value in all directions and whose holonomies are peaked close to the same
exponentiated extrinsic curvature values, thus giving effective equations for a single
scalar-mode function. This restriction, requiring fluxes to be identical in different
directions around a vertex, cannot be done at the level of operators.

10.1.2.2 Reduction to Isotropy

Before we continue with the discussion of quantum corrections, we now use the
constructions presented so far to shed more light on the role of inhomogeneities in
the reduction of basic holonomy and flux operators from the full theory to models.
A triad eigenstate (10.5) is of the form

ψ{μv,I }[hv,I ] =
∏
v,I

η
μv,I
v,I = 〈kJ (x)| . . . , μv,I , . . .〉

with kI (x) = 	0k̃ I (x) and ηv,I ≈ exp(iγ kI (v + 1
2 I )/2). This classical field corre-

sponds to an isotropic connection c̃ if γ k̃ I (x) = c̃, or γ kI (x)=	0V −1/3c=N −1/3c,
for all I and x . For an exactly isotropic connection, the restriction of the state then
becomes the isotropic one

ψμ(c) = exp(iμc/2) =: 〈c|μ〉 with μ = N −1/3
∑
v,I

μv,I . (10.9)

Following the general procedure as in Sect. 8.2.5, there is a map σ taking an
isotropic state of the reduced model to a distributional state (μ| = σ(|μ〉) in the
inhomogeneous setting such that

(μ| . . . , μv,I , . . .〉 = 〈μ| . . . , μv,I , . . .〉|γ k̃ I (x)=c̃ for all | . . . , μv,I , . . .〉 (10.10)

with the inner product on the right-hand side taken in the isotropic Hilbert space,
using the restricted state | . . . , μv,I , . . .〉|γ k̃ I (x)=c̃ as an isotropic state (10.9).

Link holonomies as multiplication operators simply reduce to multiplication oper-
ators on isotropic states. Fluxes for lattice sites, however, do not map isotropic states
to other isotropic ones. This can easily be seen using (μ|F̂v,J | . . . , μv,I , . . .〉 =
4πγ 	2

Pμv,J | . . . , μv,I , . . .〉 on states

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
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|ψv,I 〉 := |0, . . . , 0, 1, 0, . . . , 0〉
which have non-zero labels only on one lattice link ev,I . We then have

(μ|F̂v,I |ψv,I 〉 = 4πγ 	2
Pμv,I δμ,1 and (μ|F̂v,I |ψv+I,I 〉 = 0

since the flux surface and the non-trivial link do not intersect in the second case,
and thus (1|F̂v,I |ψv,I 〉 �= (1|F̂v,I |ψv+I,I 〉. However, (ν|ψv,I 〉 = (ν|ψv+I,I 〉 for
any isotropic state (ν|. Thus, (μ|F̂v,I cannot be a superposition of isotropic dis-
tributional states, and flux operators associated with a single link do not map the
space of isotropic states to itself. (The above formulas show that (1| cannot be con-
tained in a decomposition of (μ|F̂v,I in basis states, but we can repeat the arguments
with arbitrary values for the non-zero label in |ψv,I 〉 to show that no isotropic state
(μ| can be contained in the decomposition.)

Instead, we should use extended fluxes which are closer to homogeneous expres-
sions. First, we extend a lattice-site flux F̂v,I to span through a whole plane in the
lattice, leading to

∑
v′:v′

I =vI
F̂v′,I (with vI the I th Cartesian component of the posi-

tion vector for v). This sum corresponds to a homogeneous flux in the whole box of
size V but is still not translationally invariant because the plane {v′ : v′

I = vI } is dis-
tinguished. We make it homogeneous on the lattice by averaging along the direction
I transversal to the plane. We obtain a sum over all lattice vertices within the box:

p̂ I := N −1/3
∑

v

F̂v,I

including a factor N −1/3 from averaging in one direction. (There are N 1/3 parallel
vertex-intersecting planes in the box.) Finally, we take the directional average

p̂ = 1

3

∑
I

p̂ I = 1

3N 1/3

∑
v,I

F̂v,I

to define the isotropic flux operator.
Now, to find the action of this operator on a distributional state (ν| we compute

(ν| p̂| . . . , μv,I , . . .〉 = 4πγ 	2
P

3N 1/3

∑
v′,J

μv′,J (ν| . . . , μv,I , . . .〉 = 4

3
πγ 	2

Pμδν,μ

where μ is defined in terms of μv,I as in (10.9). This result agrees with the isotropic
flux operator defined in isotropic models,

p̂σ(|μ〉) = σ( p̂|μ〉), (10.11)

and in particular shows that p̂, unlike p̂v,I , maps an isotropic distribution to another
such state. Thus, the isotropic representation in loop quantum cosmology follows
from the inhomogeneous lattice representation along the lines of a symmetry reduc-
tion at the quantum level. Notice that this procedure leads directly to an operator for p
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rather than p̃ without explicitly introducing the box size V , which would correspond
here to the averaging volume. By being forced to extend fluxes over the whole lattice
in order to make them homogeneous, the combination V 2/3 p̃ = p automatically
arises.

10.1.2.3 General Behavior of Quantum Corrections

Having the basic operators hv,I and Fv,I in a lattice setting suitable for cosmolog-
ical perturbations, more complicated ones and in particular the constraints can be
constructed by methods of the full theory. As we have seen, local approximations of
the basic operators do not depend directly on the classical fields p̃ I (x) and k̃ I (x)
as components of the densitized triad and extrinsic curvature but on quantities
pI (x) := 	2

0 p̃ I (x) and kI (x) := 	0k̃ I (x) rescaled by factors of the lattice link
size 	0. This re-scaling, which occurs automatically by the general definitions of
basic variables used in a loop quantization, has several advantages. As a minor one,
it makes the basic variables independent of coordinates and provides them unambigu-
ously with dimensions of length squared for pI while kI becomes dimensionless.
(Otherwise, one could choose to put dimensions in coordinates or in metric com-
ponents which sometimes makes arguments for the expected relevance of quantum
corrections confusing.)

This scaling also happens in homogeneous models as already seen, but in that case, espe-
cially in spatially flat models, it is initially the artificial volume V of a box chosen at will
which enters. Since this size is not observable, one has to be careful with interpretations
of basic homogeneous variables. Moreover, in this context the scale factor, for instance, as
the isotropic analog of p̃ I could be multiplied by an arbitrary constant and thus the total
scale would have no meaning even when multiplied by the analog of 	2

0. Thus, correction
functions depending on this quantity in an isotropic model require an additional assumption
on how the total scale is fixed. One has to go beyond what can be constructed in a pure
minisuperspace model by using lattice refinement. Then, the normalization of pI relative to
	0 is provided.

Although the magnitude of the pI is coordinate independent, unlike the value of
the scale factor, say, its relation to the (coordinate-dependent) classical field depends
on 	0 and thus on the lattice size. It may thus appear that pI is dependent on artificial
structures, but this is clearly not the case because it derives directly from a coordinate-
independent flux. The lattice variables are defined independently of coordinates, just
by attaching labels μv,I to lattice links. Once they have been specified and the lattice
has been embedded in a spatial manifold, their relation to classical metric fields can
be determined. To be sure, the classical fields such as metric components, do depend
on the coordinate choice when they are tensorial. But also the relation between pI and
the classical metric depends on the lattice spacing measured in the same coordinates
that have been chosen for the representation of the classical metric. Thus, our basic
quantities are coordinate independent and coordinates enter only when classical
descriptions are recovered in a semiclassical limit.
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In inhomogeneous situations the quantities pI appear in quantum corrections,
their values determining unambiguously when corrections become important; see
also Sect. 5.1. Classically, the values of pI depend on the plaquette size and the
geometry, but the quantum theory has these fluxes as elementary quantum excitations.
Values of pI thus directly characterize a state, just like the particle number does
for the Fock space of quantum field theory. By reference to a quantum state the
fluxes have unambiguous meaning, and their values enter quantum correction terms.
When flux sizes are close to the Planck scale, quantum corrections from inverse-triad
operators will become large. Or, if the pI become too large, approaching the Hubble
length squared or a typical wave length squared, discreteness effects would become
noticeable even in usual regimes of scales which have already been tested. In this
way, quantum effects can be probed by several independent conditions in different
regimes. These scaling properties are important for an interpretation of corrections
and for comparisons with other approaches.

Now, recall the usual expectation that quantum gravity gives rise to low-energy
effective actions with higher-curvature terms such as (16πG)−1

∫
d4x

√| det g|	2
P R2

or (16πG)−1
∫

d4x
√| det g|	2

P Rμνρσ Rμνρσ added on to the Einstein–Hilbert action
(16πG)−1

∫
d4x

√| det g|R. Irrespective of details of numerical coefficients, there
are two key aspects: The Planck length 	P = √

G� must appear for dimensional
reasons in the absence of any other length scale, and higher spatial as well as time
derivatives arise with higher powers of Rμνρσ . In canonical variables, one expects
higher powers and higher spatial derivatives of extrinsic curvature and the triad,
together with components of the inverse metric necessary to define scalar quantities
from higher curvature powers (which forces one to raise indices on the Riemann
tensor, for instance). Higher time derivatives, on the other hand, are more difficult to
see in a canonical treatment and correspond to the presence of independent quantum
variables without classical analog [6], as in Chaps. 5 and 13.

Any quantization starts from the purely classical action (or Hamiltonian) where �

and thus 	P vanishes. In effective equations of the resulting quantum theory, quantum
corrections depending on � will nevertheless emerge. As a first step in deriving such
effective equations, we have non-local holonomy terms in a Hamiltonian operator
which through its expectation values in semiclassical states will give rise to similar
contributions of the same functional form of kI (v). At first sight, however, these
expressions do not agree with expectations from higher-curvature actions. One can
easily see that the use of holonomies (10.4) in a Hamiltonian constraint implies higher
powers of extrinsic curvature by expanding the trigonometric functions, and higher
spatial derivatives of extrinsic curvature by Taylor expanding discrete displacements.
Moreover, higher spatial derivatives of the triad may arise from similar non-local
terms in the spin-connection contribution. But there are no factors of the Planck
length in such higher powers (all factors of G and � are written out explicitly
and not “set equal to one”). In fact, by definition kI (v) is dimensionless since it is
obtained by multiplying the curvature component k̃ I (v)with 	0 in which all possible
dimensions cancel. Higher-power terms here do not need any dimensionful prefactor.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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Moreover, there are no components of the inverse metric (which would be 1/ p̃ I (v)
for our diagonal triads) in contrast to what is required in higher-curvature terms.

These seemingly contradictory properties are reconciled if we make use of the
relationship (10.3) to write 	2

0 = pI / p̃ I . Inverse-metric components 1/ p̃ I then
directly occur in combination with k̃ J factors as required for higher-curvature terms.
After eliminating 	0, there are now factors of pI multiplying the corrections. These
are basic variables of the quantum theory, the fluxes whose eigenvalues proportional
to μv,I determine the fundamental discreteness. Thus, factors of the Planck length
occurring in low-energy effective actions are replaced by the state-specific quantities
pI .While the Planck length 	P = √

G� is expected to appear for dimensional reasons
without bringing in information about quantum gravity (it can just be computed using
classical gravity for G and quantum mechanics for �), the pI are determined by a
state of quantum gravity. If expressed through labels μv,I , the Planck length also
appears, but the factor it provides may be enlarged when μv,I > 1. Moreover, the
lattice labels are dynamical (and in general inhomogeneous) and may thus change
in time, in contrast to 	P.

10.1.3 Composite Operators

For explicit estimates of quantum effects we have to look at candidate constraint
operators. An important ingredient in the construction of constraints is the volume
operator. Using the classical expression V = ∫

d3x
√| p̃1 p̃2 p̃3| we introduce the

lattice volume operator V̂ = ∑
v
∏3

I=1

√
|F̂v,I | which, using (10.8), has eigenvalues

V ({μv,I }) =
(

2πγ 	2
P

)3/2 ∑
v

3∏
I=1

√|μv,I + μv,−I |. (10.12)

As already used in homogeneous and midisuperspace models, we construct oper-
ators for co-triad components based on classical identities such as

{
Ai

a,

∫ √| det E |d3x

}
= 2πγGεijkεabc

Eb
j Ec

k√| det E | sgn det(Ed
l ) = 4πγGei

a .

(10.13)

The resulting operators are of the form he[h−1
e , V̂ ] for SU(2)-holonomies along

suitable edges e, for instance

tr(τ i hv,I [h−1
v,I , V̂v]) ∼ −1

2
i�	0

̂{Ai
a, Vv} (10.14)

for hv,I as in (10.2). Factors of the link size 	0 are needed in reformulating
Poisson brackets through commutators with holonomies, which are provided by the
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discretized integration measure in spatial integrations as they occur in the Hamil-
tonian constraint.

As in the models encountered before, we have a Hamiltonian constraint operator
with vertex contributions of the form

Ĥv = 1

16πG

2i

8πγG�

N (v)

8

∑
IJK

∑
σI ∈{±1}

σ1σ2σ3ε
ijk

× tr(hv,σI I (A)hv+σI I,σJ J (A)hv+σJ J,σI I (A)
−1hv,σJ J (A)

−1

× hv,σK K (A)[hv,σK K (A)
−1, V̂ ]) (10.15)

summed over all non-planar triples of edges in all possible orientations. The
combination

hv,σI I (A)hv+σI I,σJ J (A)hv+σJ J,σI I (A)
−1hv,σJ J (A)

−1

gives a single plaquette holonomy with tangent vectors ev,σI I and ev,σJ J .Compared to
homogeneous models, where we would multiply only two independent holonomies
for the two directions of the loop, we are using loops made of four independent
holonomies when edges are moved parallelly. Taking all possible vertices, the cou-
pling of infinitely many degrees of freedom is realized in this way, although we
usually continue to work with finite graphs contained in a compact region, probing
only finitely many degrees of freedom.

The use of holonomies provides a non-polynomial realization of the Hamiltonian
constraint, the precise form of which depends on the parameter 	0. To check the
correct continuum limit, assuming small and weakly-varying connection components
compared to the edge scale, we expand in 	0. The leading term of the integrand is
of the order 	3

0 which automatically results in a Riemann-sum representation of the
first term in (10.15). Since one needs to assume that the lattice is sufficiently fine for
classical values of the fields Ai

a in regimes and gauges of interest, there are certainly
states corresponding to coarser lattices on which stronger quantum corrections may
result. As usual, semiclassical behavior is not realized on all states but only for a
select class. Ensuring the correct classical limit, our arguments show that for any
low-curvature classical configuration a chosen lattice leads only to small quantum
corrections such that sufficiently many semiclassical states exist.

Using extrinsic curvature as the basic quantity entering in holonomies, rather than
the connection, allows simplifications of the whole constraint by easily combining
the remaining quadratic terms in K i

a with the first term of the constraint; we do
not need to use squares of multiple commutators from quantizing a Poisson bracket
expression for extrinsic curvature in terms of the Euclidean constraint and volume
as in (4.4). Writing

Fi
ab = 2∂[a�i

b] + 2γ ∂[a K i
b] − εijk(�

j
a + γ K j

a )(�
k
b + γ K k

b )

= 2∂[a�i
b] + 2γ ∂[a K i

b] − γ εijk(�
j
a K k

b + �k
b K j

a )− εijk(�
j
a�

k
b + γ 2 K j

a K k
b )

(10.16)

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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we obtain a term 2γ ∂[a K i
b]−γ 2εijk K j

a K k
b resembling a “curvature” 2-form Fi

ab(γK )
as computed from extrinsic curvature alone, a curvature term of the spin connection
as well as cross-terms εijk(�

j
a K k

b + �k
b K j

a ).With the diagonality conditions used so
far, the cross-terms disappear and only the “K -curvature” term and spin connection
terms remain to be quantized: We write the constraint for scalar modes in longitudinal
gauge as H [N ] = HK [N ] + H�[N ] with

HK [N ] := 1

8πG

∫

�

d3x N |det E |−1/2
(
εijkγ ∂a K i

b + K j
a K k

b

)
E [a

j Eb]
k (10.17)

(combined with the (1 + γ 2)-term in the full constraint) and

H�[N ] := 1

8πG

∫

�

d3x N |det E |−1/2
(
εijk∂a�

i
b − �

j
a�

k
b

)
E [a

j Eb]
k . (10.18)

(Also the term of HK containing ∂a K i
b drops out for diagonal variables, such that

the constraint is explicitly γ -independent). Both constraint contributions can rather
easily be dealt with by standard techniques, using K -holonomies around a loop for the
first one and direct quantizations of �i

a for the second. The split-off spin connection
components are quantized separately, which is possible in the perturbative treatment
on a background, see below, and then added on to the operator.

Following the general procedure, first for HK , we obtain vertex contributions

ĤK ,v = − 1

16πG

2i

8πγ 3G�

N (v)

8

∑
IJK

∑
σI ∈{±1}

σ1σ2σ3ε
IJK

× tr
(

hv,σI I hv+σI I,σJ J h−1
v+σJ J,σI I h−1

v,σJ J hv,σK K

[
h−1

v,σK K , V̂v

])
. (10.19)

As before, hv,I denotes a K -holonomy along the edge oriented in the positive
I -direction and starting at a vertex v, but we also include the opposite direction
hv,−I in the sum to ensure rotational invariance. In some of the holonomies, v + I
is again used for the vertex adjacent to v in the positive I -direction. The {IJK}-
summation is taken over all possible orientations of the I J -loop and a transversal
K -direction. For notational brevity, we introduce, as in [4],

cv,I := 1

2
tr(hv,I ), sv,I := −tr(τ(I )hv,I ) (10.20)

such that (10.2) becomes hv,I = cv,I + 2τI sv,I . In a continuum approximation, we
have

cv,I = cos

(
γ kI

(
v + 1

2
I
)
/2

)
, sv,I = sin

(
γ kI

(
v + 1

2
I
)
/2

)
(10.21)

where again kI (v) = 	0k̃ I (v). The traces in (10.19) can then be seen to be of a form
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i

8πγG�
tr(hv,I hv+I,J h−1

v+J,I h−1
v,J hv,K [h−1

v,K , V̂v])

= −εIJK

{ [
(cv,I cv+J,I + sv,I sv+J,I )cv,J cv+I,J + (cv,I cv+J,I − sv,I sv+J,I )

×sv,J sv+I,J
]

Âv,K

}

+ ε2
IJK

{ [
(cv,I sv+J,I − sv,I cv+J,I )sv,J cv+I,J + (sv,I cv+J,I + cv,I sv+J,I )

×cv,J sv+I,J
]

B̂v,K

}
,

(10.22)
where

Âv,K := 1

4π iγG�

(
V̂v − cv,K V̂vcv,K − sv,K V̂vsv,K

)
,

B̂v,K := 1

4π iγG�

(
sv,K V̂vcv,K − cv,K V̂vsv,K

)
.

(10.23)

Only the second line contributes after contracting with εIJK , and results in

ĤK ,v = −N (v)

64πγ 2G

∑
IJK

∑
σI ∈{±1}

(
(s−

v,σI I,σJ J sv,σJ J cv+σI I,σJ J

+s+
v,σI I,σJ J cv,σJ J sv+σI I,σJ J )B̂v,σK K

)
, (10.24)

with

s±
v,σI I,σJ J := sin

(
1

2
γ (kσI I (v + σI I/2)± kσI I (v + σJ J + σI I/2)

)
.

In the homogeneous case the first term in the sum (10.24) vanishes and the leading
contribution is

4 sin(γ kI /2) cos(γ kI /2) sin(γ kJ/2) cos(γ kJ/2)B̂v,K , (10.25)

in agreement with our earlier constructions directly in homogeneous models, where
γ kI = γ 	0k̃ I = 	0V −1/3c = c/N 1/3.

10.1.4 Quantum Corrections

Our two types of quantum-geometry corrections are visible from expression (10.24):
Using commutators to quantize inverse densitized-triad components implies eigen-
values of B̂v,I which differ from the classical expectation at small labelsμv,I .More-
over, using holonomies contributes higher-order terms in extrinsic curvature together
with higher spatial derivatives when sines and cosines are expanded in regimes of
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slowly-varying fields. To see the forms of correction terms, we will now show the
next-leading order of higher powers and spatial derivatives of k̃ I (v), making the
general considerations in Sect. 10.1.2.3 explicit, before dealing with inverse-triad
corrections. Calculations here serve to illustrate the general form; no unique deriva-
tions of curvature corrections exist at the present stage of developments.

10.1.4.1 Curvature

We expand the Hamiltonian explicitly in 	0 after writing kI = 	0k̃ I .This implements
a slowly-varying-field approximation with respect to the lattice spacing. For the
(I, J )-plaquette, a single term in the sum (10.24) becomes

2(s−
v,I,J sv,J cv+I,J + s+

v,I,J cv,J sv+I,J )

= γ 2	2
0k̃ I k̃ J + 1

2
γ 2	3

0

(
k̃ I ∂J k̃J + k̃ J ∂I k̃ I + 2k̃ J ∂I k̃ I

)

+ 1

8
γ 2	4

0

(
k̃ I ∂

2
J k̃J + k̃ J ∂

2
I k̃ I + 4(k̃ I ∂

2
I k̃ J + k̃ I ∂I ∂J k̃J + ∂I k̃ I ∂I k̃ J

+∂J k̃I ∂I k̃ J )+ 2∂I k̃ I ∂J k̃J − 4

3
γ 2k̃ I k̃ J (k̃

2
I + k̃2

J )

)
+ O(	5

0). (10.26)

Link labels k̃ I were initially introduced as values of the extrinsic-curvature compo-
nents evaluated at midpoints of edges in the continuum approximation (10.21) of
our basic non-local variables. The expression above is written in terms of just two
components k̃ I (v) and k̃ J (v) obtained by Taylor expanding the midpoint evaluations
around the vertex v.For a fixed direction K there are in total eight terms to be included
in the sum (10.24). They are obtained from (10.26) by taking into account the four
plaquettes in the (I, J )-plane meeting at vertex v and considering both orientations
in which each plaquette can be traversed.

Summing over all four plaquettes (each traversed in both directions), the cubic
terms drop out and we are left with

γ 2	2
0k̃ I k̃ J − γ 4	4

0

6
k̃ I k̃ J (k̃

2
I + k̃2

J )

+ γ 2	4
0

8
(k̃ I ∂

2
J k̃J + k̃ J ∂

2
I k̃ I + 2(k̃ I ∂

2
I k̃ J + k̃ J ∂

2
J k̃I + ∂I k̃ I ∂I k̃ J

+ ∂J k̃I ∂J k̃J ))+ O(	5
0). (10.27)

The first term, when combined with B̂v,K and summed over all triples IJK , reproduces
the correct classical limit of the constraint HK .

In the final expression, the factor 	2
0 in the leading term together with a factor 	0

from B̂v,K through (10.14) combine to give the Riemann measure of the classical
integral. Higher-order terms, however, come with additional (coordinate dependent)
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factors of 	0 in (10.27) which are not absorbed in the measure. The result is inde-
pendent of coordinates since the whole construction (10.24) in terms of kI is coor-
dinate independent. But for a comparison with higher-curvature terms we have to
formulate corrections in terms of k̃ I and p̃ I as these are the components of classical
extrinsic curvature and densitized triad tensors. Higher-order terms in the expansion
are already formulated with k̃ I in coordinate independent combinations with 	0-
factors. For a comparison with low-energy effective actions, it remains to interpret the
additional 	0 factors, as explained in Sect. 10.1.2.3, by eliminating them in favor of
components of the inverse metric. At this stage, the corrections obtained from loop
quantum gravity have been reconciled with general expectations of effective actions.
Also, the fact that the cubic term in 	0 in (10.27) drops out is in agreement with
higher-curvature corrections since in that case only even powers of the length scale
	P can occur.

This limit, in summary, was obtained in two steps: we first performed the
continuum approximation by replacing holonomies with mid-point evaluations of
extrinsic-curvature components. After this step we are still dealing with a non-local
Hamiltonian since each vertex contribution now refers to evaluations of the classi-
cal field at different points. In a second step, we Taylor expanded these evaluations
around the central vertex v, which gives a local result and corresponds to a further,
slowly-varying-field approximation.

10.1.4.2 Inverse Triad

A direct calculation using (10.5) and (10.12), whose details are very similar to cal-
culations in homogeneous models, shows that B̂v,K , as defined in (10.23), commutes
with all flux operators and thus has the flux eigenstates as eigenbasis. The action

B̂v,K | . . . , μv,K , . . .〉 := (
2πγ 	2

P

)1/2 √|μv,I + μv,−I ||μv,I + μv,−J |
×

(√|μv,K + μv,−K + 1| − √|μv,K + μv,−K − 1|
)

× | . . . , μv,K , . . .〉
(10.28)

directly shows the eigenvalues, which do not agree exactly with the classical expec-
tation eK (v) = √|pI (v)pJ (v)/pK (v)| ∼ √|μv,Iμv,J /μv,K | (indices such that
εIJK = 1) for the co-triad (10.13). But for large values μv,I � 1 the classical
expectation is approached as an expansion of the eigenvalues shows.

More generally, we compute eigenvalues of the operators

B̂(r)v,K :=
(

2πγ 	2
P

)−1 V̂ r |μv,K +1 − V̂ r |μv,K −1

r
(10.29)

where the subscript of the volume operator indicates that its eigenvalue in a lattice
state is computed according to (10.12) with a shifted label of the link ev,K . The
eigenvalues are
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Fig. 10.2 Behavior of the
correction function α(r) in
(10.31) [4]. It approaches
one from above for large
arguments. For small
arguments, the function is
increasing from zero and
reaches a peak value larger
than one. Also shown is the
limiting case r = 2 which
does not show a peak but a
constant correction function
for μ > 1

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.5  1  1.5  2

(r)α

μ/δ

r=1/2
r=3/4

r=1
r=3/2

r=2

B(r)v,K := 1

r

(
2πγ 	2

P

)3r/2−1 |μv,I + μv,−I |r/2|μv,J + μv,−J |r/2

×
(
|μv,K + μv,−K + 1|r/2 − |μv,K + μv,−K − 1|r/2

)
. (10.30)

compared to the classical expectation

(2πγ 	2
P)

3r/2−1|μv,I + μv,−I |r/2|μv,J + μv,−J |r/2|μv,K + μv,−K |r/2−1

for V r−1eK .

Inverse-triad corrections are obtained by extracting the deviations from eK (v)
which Bv,K receives on smaller scales. We introduce the correction function as a
multiplier αv,K (μv,I ) such that Bv,K = αv,K eK (v) and αv,K → 1 for μv,K � 1.
Comparing the eigenvalues of B̂v,K with those of flux operators in the combination√|Fv,I Fv,J /Fv,K | suitable for eK (v), we find

α
(r)
v,K =1

r
|μv,K + μv,−K |1−r/2

(
|μv,K + μv,−K +1|r/2−|μv,K + μv,−K − 1|r/2

)
.

(10.31)

Some examples of r are seen in Fig. 10.2. For regular quantizations of inverse-triad
components, 0 < r < 2.

Having computed the operators and their eigenvalues for general diagonal con-
figurations, we now specialize the correction function to perturbations of the scalar
mode. We reduce the number of independent labels by imposing μv,I + μv,−I =
μv,J +μv,−J for arbitrary I and J. This corresponds to a metric proportional to the
identity δab, as it is realized for scalar perturbations; see Sect. 10.1.1. We then assign
a new variable p(v) = 2πγ 	2

P(μv,I +μv,−I ) to each vertex v, which is independent
of the direction of the edge I and describes the diagonal part of the triad. Quantum
numbers in eigenvalues of the lattice operators can then be replaced by p(v), allowing
us to compare the resulting functions with the classical ones. The remaining sub-
script v indicates that the physical quantities are vertex-dependent, inhomogeneous.
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Averaging over the plaquette orientations in the constraint then becomes trivial and
the total correction reads

α(r)[p(v)] = 1

πrγ 	2
P

|p(v)|1−r/2
(
|p(v)+ 2πγ 	2

P|r/2 − |p(v)− 2πγ 	2
P|r/2

)
.

(10.32)

Using p(v) = 	2
0 p̃(v) = 	2

0a2, an expression as in (3.61) results, but with δ in
(3.61) fixed. Explicitly using an underlying discrete state has provided a normaliza-
tion of inverse-triad corrections, as anticipated in the lattice-refinement picture.

A parameter with a consequence similar to δ of the isotropic setting, but in dis-
cretized form, arises by considering a larger set of quantization ambiguities. Some
quantization ambiguities have already been included by using the same classical
expression of inverse-triad components in terms of B̂(r)v,K with different values of r.
In addition to ambiguities in the exponent r one could use different representations for
holonomies before taking the trace, rather than only the fundamental representation
understood in (10.14) and (10.19); see also [7]. In this case, we have

B̂(r, j)
v,K = 3

ir j ( j + 1)(2 j + 1)

(
2πγ 	2

P

)−1
tr j

(
τ K hv,K V̂ r

v h−1
v,K

)
(10.33)

labeled by the two ambiguity parameters, r for the exponent of volume in commu-
tators and j for the irreducible representation used for holonomies and traces.

Arguments against the use of j �= 1/2 in Hamiltonian operators have been put forward based
on the presence of classically unexpected solutions for constraints modified by holonomy
corrections with higher spins [8, 9]. However, these arguments can be circumvented by
suitable sums of higher-spin contributions so as to remove unwanted solutions. Moreover,
quantum theories commonly produce solutions not expected classically, and new solutions
from higher spins usually have large non-classical values of curvature.

Eigenvalues of such operators can be expressed as

B(r, j)
v,K = 3

r j ( j + 1)(2 j + 1)

(
2πγ 	2

P

)3r/2−1

× |μv,I + μv,−I |r/2|μv,J + μv,−J |r/2
j∑

m=− j

m|μv,K + μv,−K + 2m|r/2

(10.34)

leading to the general class of correction functions

α
(r, j)
v,K = 3

r j ( j + 1)(2 j + 1)
|μv,K + μv,−K |1−r/2

j∑
m=− j

m
∣∣μv,K + μv,−K + 2m

∣∣r/2.

(10.35)

After imposing isotropy the last expression becomes

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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α(r, j) = 6

r j ( j + 1)(2 j + 1)
|μ|1−r/2

j∑
m=− j

m |μ+ m|r/2. (10.36)

The computation of traces involving higher representations of SU(2) as they occur in inverse-
triad operators can be simplified using the following ingredients [10]; see also [7]. First, for
the normalization we note that

tr(τ ( j)
i τ

( j)
k ) = −1

3
j ( j + 1)(2 j + 1)δik (10.37)

with generators τ ( j)
i of the j-representation. In inverse-triad operators such as (10.33), in

which only a single generator is used as a factor and in holonomies, the matrix multipli-
cations and the trace can be computed easily when the generator used is diagonalized, the
diagonalization being possible thanks to the cyclic commutativity of the trace operation.
Then, in the j-representation the diagonalized hv,K reads

h( j)
v,K = exp(cτ ( j)

k ) =

⎛
⎜⎜⎜⎜⎜⎝

e−i jc 0 · · · 0 0
0 e−i( j−1)c 0
.
.
.

. . .
.
.
.

0 ei( j−1)c 0
0 0 · · · 0 ei jc

⎞
⎟⎟⎟⎟⎟⎠

(10.38)

or (h( j)
v,K )αβ = ei(α− j)cδ(α)β for 0 ≤ α, β ≤ 2 j. For instance,

(h( j)
v,K )αβ

[
(h( j)

v,K )
−1
βγ , V̂

]
= δ(α)γ (V̂ − ei(α− j)c V̂ e−i(α− j)c)

and traces reduce to summations such as the one seen in (10.34).

For large j , the sum in α(r, j) can be approximated well as long as μ is not too
close to j. (We present the resulting expressions for inverse-triad corrections as an
illustration of their general form. By this we do not suggest that large j should
necessarily be expected in the dynamical expressions of loop quantizations.) For
μ > j , absolute values can be omitted as all the expressions in the sum are positive.
Approximating the summation by integration [4, 10] yields

α(r, j) = 6μ̃1−r/2

r

(
1

r + 4

(
(μ̃+ 1)r/2+2 − (μ̃− 1)r/2+2

)

− μ̃

r + 2

(
(μ̃+ 1)r/2+1 − (μ̃− 1)r/2+1

))
for μ̃ > 1

where μ̃ := μ/j. For μ < j , the terms in the sum corresponding to m < μ and
m > μ, respectively, must be considered separately before the absolute value can be
dropped. The end result, however, is very similar to the previous one,

α(r, j) = 6μ̃1−r/2

r

(
1

r + 4

(
(μ̃+ 1)r/2+2 − (1 − μ̃)r/2+2

)

− μ̃

r + 2

(
(μ̃+ 1)r/2+1 + (1 − μ̃)r/2+1

))
for μ̃ < 1.
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Fig. 10.3 Comparison
between the correction
function (10.35) and its
approximation (10.39). The
spikes are smeared out by the
approximation [4]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

(r,j)α

μ~

r=1

After some rearrangements, these two expressions can be combined into a single
one as

α(r, j) = 6μ̃1−r/2

r(r + 2)(r + 4)

(
(μ̃+ 1)r/2+1(r + 2 − 2μ̃)

+ sgn (μ̃− 1)|μ̃− 1|r/2+1(r + 2 + 2μ̃)
)
. (10.39)

The approximation is compared to the exact expression of the correction func-
tion obtained through eigenvalues in Fig. 10.3. As one can see, spikes, which arise
from absolute values whenever μ passes an integer as long as it is less than j , are
smeared out by the approximation (except for the point μ̃ = 1 where the approx-
imation remains non-differentiable at second order which is not visible from the
plot). The general trend, however, is reproduced well by the approximation also
to the left of the peak. For applications in effective equations, the approximation
might even be considered more realistic than the exact eigenvalue expression because
those equations would be based on semiclassical states. Since such states cannot be
eigenstates of the triad but must rather be peaked on a certain expectation value,
they will automatically give rise to a smearing-out of the spikes in the eigenvalues.
(The eigenvalue function will be convoluted with the profile of the semiclassical state
if we use a semiclassical state ψμ̄(μ) = φμ−μ̄ peaked at some μ̄ with profile φμ to
write μ̄〈ψ |B̂|ψ〉μ̄ = ∑

μ |φμ−μ̄|2 Bμ = ∑
μ |φμ−μ̄|2αμeμ = αμ̄eμ̄ + moments. In

the last steps, we have factored the inverse-triad operator into the correction function
and co-triad eigenvalues. Deviations from triad eigenstates can be captured either by
convolution with the state profile, or by adding moment terms as in general effective
equations; see also Sect. 10.2.)

This class of correction functions parameterized by two ambiguity parameters r
and j captures the most important general properties of such functions, including
the position of their maxima at μ̃ ≈ 1 (or μ ≈ j) and the initial power-law increase
for small μ (determined by r). In its role for the peak, the spin label j is analogous
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to the ambiguity parameter δ in isotropic models; see (3.61). The inhomogeneous
treament has not only discretized the allowed values by relating them to spin labels
(which in homogeneous treatments are mixed with the coordinate length of edges). It
has also given indications that small values close to the fundamental representation
of SU(2) may be preferred. Corrections thus arise for elementary lattice fluxes not
too far from the Planck scale.

Asymptotically, all correction functions have the correct classical limit on large
scales, such as

α(r, j)(μ̃) ≈ 1 + (r − 2)(r − 4)

40
μ̃−2 + O(μ̃−4) → 1 (10.40)

for (10.32). Moreover, for small μ the correction function goes to zero as

α(r, j)(μ̃) ≈ (2μ̃)2−r/2, (10.41)

which ensures boundedness of the quantized co-triad e(K ) ∝ α
√
μ̃ ∝ μ̃2 (using

r = 1 for this case as in (10.13)), when μ̃ → 0. The same is true for higher j since
the sum (10.36) of odd terms when evaluated at μ = 0 gives zero.

So far, the holonomies we used only contributed the extrinsic-curvature terms HK to the
Hamiltonian but no spin connection terms of H� at all. In the procedure followed here,
we have to quantize �i

a[E] directly which is possible in the perturbative regime where
line integrals of the spin connection have covariant meaning. This gives rise to one further
correction function from the expression of the spin connection

�i
I = −εijkeb

j

(
∂[I ek

b] + 1

2
ec

kel
a∂[cel

b]
)
, (10.42)

as it also contains a co-triad (10.13). We again make use of the fact that the triad and its
inverse have a diagonal form eI

i = E I
i /

√| det E | = e(I )δ I
i and eI = e(I )δi

I with components
given by eI = pI /

√| det E | = (eI )
−1. The spin connection then simplifies to

�i
I = εic

I e(c)∂ce(I ) (10.43)

and in terms of components of the densitized triad reads

�i
I = 1

2
ε

i j
I

p( j)

p(I )

(∑
J

∂ j pJ

pJ
− 2

∂ j pI

pI

)
. (10.44)

For a complete quantization of H� we observe that we need terms of the form 	2
0�

i
a�

j
b and

	2
0∂a�

i
b in the constraint since one factor 	0 of the Riemann measure will be absorbed in the

commutator B̂v,I . To quantize 	0�
i
a , we combine 	0 with the partial derivative ∂I in (10.43)

to approximate a lattice difference operator �I defined by (�I f )v = fv+I − fv for any
lattice function f. A well-defined lattice operator results once a prescription for quantizing
the inverse triad has been chosen. Again one can make use of Poisson identities for the
classical inverse which, however, allows more freedom than for the combination of triad
components we saw in the Hamiltonian constraint. For any choice we obtain a well-defined
operator, which would not be available without the perturbative treatment since the full spin
connection is not a tensorial object.

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
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An explicit example can most easily be derived by writing the spin connection integrated
along a link ev,I as it might appear in a holonomy,

∫

ev,I

dλėa
I�

i
a ≈ 	0�

i
I = εic

I e(c)	0∂ce(I ) ≈ εi K
I

p(K )√| det E |�K e(I )

using the lattice difference operator�I ≈ 	0∂I .We then have to deal with the inverse powers
explicit in the fraction and implicit in the co-triad eI . The latter is standard, replacing eI by
	−1

0 hI {h−1
I , Vv} based on (10.13). The inverse determinant in the fraction cannot be absorbed

in the resulting Poisson bracket because it does not commute with the derivative. Moreover,
absorbing a single inverse in a single co-triad would lead to a logarithm of Vv in the Poisson
bracket which does not allow a densely defined quantization. It can, however, be absorbed
in the flux 	2

0 pK if we do not use the basic flux operator F̂v,K but the classically equivalent
expression

Fv,K ≈ 	2
0 pK = 1

2
	2

0δ
k
(K )εki jε

K I J ei
I e j

J

= −1

4
(4πγG)−2

∑
I J

∑
σI ∈{±1}

σIσJ ε
IJK tr(τ(K )hI {h−1

I , Vv}h J {h−1
J , Vv}) (10.45)

(which is analogous to expressions used in [11]). Since there are now two Poisson brackets,
we can split the inverse Vv evenly among them, giving rise to square roots of Vv in the
brackets:

pK

√| det E | ≈ 	0
Fv,K

Vv

= − 	0

16π2γ 2G2

∑
I J

∑
σI ∈{±1}

σIσJ ε
IJK tr

(
τ(K )hI

{
h−1

I ,
√

Vv
}

× h J

{
h−1

J ,
√

Vv
})
. (10.46)

The remaining factor of 	0 is absorbed in eI inside the derivative which is quantized following
the standard procedure. A well-defined quantization of spin-connection components follows,
one that is not local in a vertex since the difference operator connects to the next vertex.
Similarly, the derivative of the spin connection needed in the Hamiltonian constraint leads
to further connections to next-to-next neighbors.

Explicitly, one can write an integrated spin connection operator quantizing�i
v,I := ∫

ev,I
dλėa

I�
i
a

as

�̂i
v,I = εI

i K

⎛
⎝ 1

16π2γ 2	2
P

∑
J,L ,σJ ,σL

σJσLε
J L K tr

×
(
τ(K )h J [h−1

J , V̂ 1/2
v ]hL [h−1

L , V̂ 1/2
v ]

)

× �K

(
i

2πγ 	2
P

tr(τ (I )hI [h−1
I , V̂v])

))
. (10.47)

Replacing the commutators by classical expressions times correction functionsα(r) (and α =
α(1)) defined as before leads to an expression



218 10 Perturbative Inhomogeneities

(�i
I )corr = α(1/2)(pi )α(1/2)(pI )εI

ice(c)∂c(α(p
I )eI )

= α(1/2)(pi )α(1/2)(pI )

⎛
⎝α(pI )�i

I +
∑
K �=I

α′(pI )pK�i
K

⎞
⎠

for the corrected spin-connection components. For scalar modes, using that all pI at a given
point are equal, this can be written with a single correction function

β[p(v)] = α(1/2)[p(v)]2(α[p(v)] + 2pα′[p(v)]) (10.48)

for �i
I , where α′ = dα/dp.

Having well-defined quantizations of the spin connection at one’s disposal in perturba-
tive settings, one could use them to implement the reality conditions of complex Ashtekar
variables.

Matter Hamiltonian. Another important source of inverse-triad corrections is pre-
sented by matter Hamiltonians, which we demonstrate for a scalar fieldϕ.The general
quantization steps have been described in Sects. 3.2.2.3 and 4.2.2, which can directly
be adapted to the lattice setting. We represent exp (iνvϕ(v)) directly at vertices, and
quantize the momentum via

Pv :=
∫

Rv

d3xπ ≈ 	3
0π(v)

where Rv is a cubic region around the vertex v of the size of a single lattice site.
The matter Hamiltonian

Hϕ[N ] =
∫

d3x N (x)

(
1

2
√

det h
π(x)2 + Ea

i Eb
i

2
√

det h
∂aϕ(x)∂bϕ(x)+ √

det hW (ϕ)

)

with a potential W (ϕ) requires inverse-triad corrections at two places, based on two
versions of the general identity

{Ai
a, V r

v } = 4πγGr V r−1
v ei

a (10.49)

so as to supply the correct inverse powers. Any such Poisson bracket will be
quantized to

ėa
K {Ai

a, V r
v } �→ −2

i�	0
tr(τ i hv,K [h−1

v,K , V̂ r
v ])

using holonomies hv,I in the direction I with tangent vector ėa
K .

Since holonomies in our lattice states have internal directions τK for the direction
K , we can compute the trace explicitly and obtain

̂V r−1
v ei

K = −2

8π irγ 	2
P	0

∑
σ∈{±1}

σ tr(τ i hv,σK [h−1
v,σK , V̂v

r ])= 1

2	0
(B̂(r)v,K −B̂(r)v,−K )δ

i
(K )

(10.50)

http://dx.doi.org/10.1007/978-1-4419-8276-6_3
http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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where, for symmetry, we use both edges touching the vertex v along the direction K
and B̂(r)v,K is the generalized version of (10.23):

B̂(r)v,K := 1

4π iγG�r

(
sv,K V̂ r

v cv,K − cv,K V̂ r
v sv,K

)
(10.51)

The exponent used for the gravitational part was r = 1, and r = 1/2 already
occurred in the spin connection. The scalar Hamiltonian introduced in [12, 13], which
we closely follow here, uses r = 1/2 for the kinetic term and r = 3/4 for the gradient
term. With the relations in Sect. 4.2.2 one can replace the inverse powers in the scalar
Hamiltonian as follows: For the kinetic term, we discretize

∫
d3x

π2

√
det h

≈
∑

v

	3
0

π(v)2√
det h(v)

≈
∑

v

Pv
2

Vv
.

Then, the classically singular

1

Vv
=

(
	3

0

6
εabcεijk

ei
ae j

bek
c

V 3/2
v

)2

=
(

	3
0

6(2πγG)3
εabcεijk{Ai

a, V 1/2
v }{A j

b, V 1/2
v }{Ak

c , V 1/2
v }

)2

(10.52)
is quantized to the square of

1

48
εijkεijk(B̂

(1/2)
v,I − B̂(1/2)v,−I )δ

i
(I )(B̂

(1/2)
v,J − B̂(1/2)v,−J )δ

j
(J )(B̂

(1/2)
v,K − B̂(1/2)v,−K )δ

k
(K ).

Similarly, we discretize the gradient term by

∫
d3x

Ea
i Eb

i√
det h

∂aϕ∂bϕ ≈
∑

v

	3
0

Ea
i (v)E

b
i (v)√

det h(v)
(∂aϕ)(v)(∂bϕ)(v)

≈
∑

v

pI (v)pJ (v)

Vv
�Iϕv�Jϕv

where we replace spatial derivatives ∂a by lattice differences �I . Now, using

δi
(I )

pI (v)

V 1/2
v

= 	2
0

E I
i (v)

V 1/2
v

= 	2
0

6

ε I bcεijke j
bek

c sgn det(el
a)

V 1/2
v

= 	2
0

6(3πγG)2
sgn det(el

a)ε
I bcεijk{A j

b, V 3/4
v }{Ak

c, V 3/4
v }

we quantize the metric contributions to the gradient term by

1

242 ε
I K Lεijk(B̂

(3/4)
v,K − B̂(3/4)v,−K )δ

j
(K )(B̂

(3/4)
v,L − B̂(3/4)v,−L )δ

k
(L)

× εJ M N εimn(B̂
(3/4)
v,M − B̂(3/4)v,−M )δ

m
(M)(B̂

(3/4)
v,N − B̂(3/4)v,−N )δ

n
(N ). (10.53)

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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In addition to the fact that we are using different values for r in each term in the
gravitational and matter parts, giving rise to different correction functions, the matter
terms are less unique than the gravitational term and can be written with different
parameters r. Instead of using r = 1/2 in the kinetic term, for instance, we could
use the class of relations

1√| det E | = | det e|k
| det E |(k+1)/2

=
∣∣∣∣
1

6
εabcεijk(4πGγ )3

×{Ai
a, V (2k−1)/3k}{A j

b, V (2k−1)/3k}{A j
c , V (2k−1)/3k}

∣∣∣
k

for any positive integer k to write the inverse determinant through Poisson brackets
not involving the inverse volume (see also the appendix of [14]). This ambiguity
determines an integer family of quantizations with rk = (2k −1)/3k > 1

3 . For k = 2
we obtain the previous expression, but other choices are possible. Moreover, using
the same r in all terms arising in gravitational and matter Hamiltonians can only be
done in highly contrived ways, if at all. There is thus no clearly distinguished value.
On regular lattice states, all ingredients are composed to a Hamiltonian operator (4.8).

Implementing inverse-triad corrections, (10.32) can be used to write the corrected
matter Hamiltonian on a conformally flat space qab = |p(x)|δab as

Hϕ =
∫

�

d3x N (x)

(
ν[p(x)]

2| p̃(x)|3/2π(x)
2 + σ [p(x)])| p̃(x)| 1

2 δab

2

× ∂aϕ∂bϕ + | p̃(x)| 3
2 W (ϕ)

)
, (10.54)

where a comparison with (4.8) shows that we have correction functions

ν[p(v)] = α(1/2)[p(v)]6 and σ [p(v)] = α(3/4)[p(v)]4. (10.55)

10.2 Quantum Corrections in Effective Equations

In the preceding section, we have computed several examples for individual quantum-
geometry corrections by separate constructions. In a fully quantum corrected Hamil-
tonian, they all arise at the same time, in combination with quantum back-reaction.
The general effective Hamiltonian follows from a background-state expansion as in
Chap. 5, or by the expansions of Chap. 13 using Poisson geometry. Correction terms
are then automatically organized in powers of �, possibly combined with powers of
the lattice spacing 	0 if a continuum approximation is performed as well.

From the explicit calculations of quantum-geometry corrections it may not be
obvious to see how they enter effective equations obtained by expanding around a

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
http://dx.doi.org/10.1007/978-1-4419-8276-6_4
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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semiclassical state. Inverse-triad corrections, for instance, were computed via the
eigenvalues of inverse-triad operators on triad eigenstates, which are not at all semi-
classical. Nevertheless, as we will show in this section, such calculations capture the
quantum-geometry contribution from inverse-triad corrections.

10.2.1 Holonomy Corrections

Holonomy corrections arise because of a classical modification of the constraints,
inserting holonomies for connection components. As quantum-geometry corrections,
they can simply be expanded at a classical level, without worrying about semiclassical
states or physical Hilbert-space issues. Expansions of two different types are present
in inhomogeneous situations, both organized by the lattice spacing 	0: an expansion
of exponentials in terms of higher orders of connection or extrinsic-curvature compo-
nents, and a derivative expansion of the non-local integrations along curves involved
in holonomies. In both cases, the specific routing of curves used for holonomies in the
Hamiltonian is relevant, as well as their relation to curves in the graph of a discrete
state acted on. State properties are thus important for details of the correction terms,
but not so much their semiclassical nature.

More specifically, we can write the expansions for lattice states, with an edge
starting at a vertex v, in the form

sin

(
1

2
γ ∫

e(v)
k̃ I dλ

)
∼ sin

(
1

2
γ 	0(k̃ I (v)+ 	0∂I k̃ I (v)+ · · · )

)

∼ sin

(
1

2
	0c̃

)
+ 	0δc̃ cos

(
1

2
	0c̃

)
+ · · ·

The first expansion is the derivative expansion of the integrated field, the second one
an expansion around the isotropic field value c̃, introducing inhomogeneities δc̃. The
leading term of the expansion produces the isotropic constraint.

10.2.2 Inverse-Triad Corrections

Inverse-triad operators such as B̂v,K in (10.23) arise from commutators of holonomies
with positive powers of the volume operator, obtained by quantizing Poisson brackets
used to rewrite inverse-triad components [12, 15]. In an inhomogeneous setting,
contributions to inverse-triad corrections come from individual lattice sites, with
elementary lattice operators as fluxes F̂ determining the excitation level of links,
and holonomies ĥ changing the excitation levels. In the Abelian case, and dropping
numerical factors, these operators satisfy the algebra [F̂, ĥ] = 	2

Pĥ. Inverse-triad
operators then have the form
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B̂ = 1

2qG�
(ĥ†|F̂ |q ĥ − ĥ|F̂ |q ĥ†) = 1

iqG�
(ŝ|F̂ |q ĉ − ĉ|F̂ |q ŝ)

with some power q, and splitting the holonomy ĥ = ĉ + i ŝ in self-adjoint and anti-
self-adjoint contributions, as it occurs by writing the exponential as a combination
of sine and cosine.

To leading order in �, the Poisson bracket of the flux |F |q with a connection
component is obtained, which is identical to the classical inverse. One might thus
think that inverse-volume corrections in an effective Hamiltonian obtained by a
background-state or moment expansion arise only in terms of higher moments, not
by correcting expressions for expectation values. This expectation, however, is not
fully correct, because it ignores an identity realized for holonomy operators: the basic
operators (F̂, ĥ, ĥ†) are subject to the reality condition ĥĥ† = 1. If this identity is
used, the order of some operator products in a background-state expansion

B̂ = B(〈F̂〉)+
∑
a,b,c

Ba,b,c(〈F̂〉, 〈ĥ〉, 〈ĥ†〉)(F̂ − 〈F̂〉)a(ĥ − 〈ĥ〉)b(ĥ† − 〈ĥ〉†)c

with the classical inverse B(〈F̂〉), or of some monents in a moment expansion, can
be reduced compared to what it appears to be initially. In particular, the initial order
a +b+c of a term with exponents a, b, c above can be reduced to a +|b−c|. If this
procedure is followed consistently, inverse-triad corrections do arise which take the
form of correction functions depending on the expectation values of basic operators,
in particular on 〈F̂〉, but not on moments.

To see this explicitly, let us look at the products of operators ĥ|F̂ |q ĥ† and ĥ†|F̂ |q ĥ
as they appear in inverse-triad operators. Using the basic commutators [ĥ, F̂] =
−	2

Pĥ and [ĥ†, F̂] = 	2
Pĥ†, together with the reality condition ĥĥ† = 1, we reorder

terms as ĥ F̂ = (F̂ − 	2
P)ĥ and ĥ† F̂ = (F̂ + 	2

P)ĥ
† and rewrite

ĥ|F̂ |q ĥ† = |F̂ − 	2
P|q = |〈F̂〉 − 	2

P|q
∞∑

k=0

(
r

k

)
(F̂ − 〈F̂〉)k
|〈F̂〉 − 	2

P|k (10.56)

ĥ†|F̂ |q ĥ = |F̂ + 	2
P|q = |〈F̂〉 + 	2

P|q
∞∑

k=0

(
r

k

)
(F̂ − 〈F̂〉)k
|〈F̂〉 + 	2

P|k . (10.57)

In this way, cancelling holonomy operators as far as possible, we are reducing orders
of operator products to the smallest possible values. Corrections from higher orders
in the product expansion, or from higher moments of a state if an expectation value
is taken, remain, but additional moment-independent corrections (the ±	2

P-terms for
k = 0 in the expansion) have been transferred to the expectation value dependence
of inverse-triad corrections.

The leading terms of background-state expansions are then combined to

1

2qG�
(ĥ†|F̂ |q ĥ − ĥ|F̂ |q ĥ†) = |〈F̂〉 + 	2

P|q − |〈F̂〉 − 	2
P|q

2q	2
P

+ · · · (10.58)
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whose leading term in an �-expansion is |〈F̂〉|q−1, an inverse of the flux eigenvalue if
q < 1. If we include higher-order corrections in �, a correction function as seen before
for inverse-triad corrections results, even if no higher moments of the expansion are
considered.

Unlike holonomy corrections, inverse-triad corrections have the form of an
�-expansion without modifying the classical expression at leading order. They incor-
porate quantum corrections resulting from quantum geometry, conceptually distin-
guished from quantum back-reaction as it results from the dynamics. Since all these
corrections in semiclassical regimes are organized in an �-expansion, one must com-
pare the specific correction terms in order to see which ones might be more dominant.
Corrections from quantum back-reaction are arranged in orders of moments of a state,
in the present context obtained by taking an expectation value of background-state
expansions (10.56). We are thus comparing terms of the order 	2

P/〈F̂〉 from the
inverse-triad expansion (10.58) with relative moments in an expansion starting with
(�F)2/〈F̂〉2 = (F̂ − 〈F̂〉)2/〈F̂〉2. Inverse-triad corrections are dominant if flux
fluctuations are smaller than the Planck length squared. Since elementary flux values
are quantized in multiples of the Planck length squared, this result is reasonable:
we can notice the discreteness, and in particular inverse-triad corrections as a result
of the discreteness, only if quantum fluctuations are not so large that they wash out
the discreteness scale. For a semiclassical state we expect the relative fluctuations
to be small, while flux expectation values in an elementary state are about Planck-
ian. Inverse-triad corrections are thus larger than terms obtained from the moment
expansion.

Quantum fluctuations of individual plaquette fluxes are less than Planckian. Fluctuations
of larger regions, whose fluxes are sums of elementary fluxes, are correspondingly larger:
For weakly correlated plaquette states, the macroscopic fluctuation squared is the sum of all
microscopic fluctuations squared.

We conclude that the terms written in (10.58) contain the leading quantum cor-
rections in their first few orders of �. The result agrees with the formulas obtained
earlier for inverse-triad eigenvalues. Correction functions as derived earlier can thus
be used for any semiclassical state provided only that relative fluctuations are small,
as realized in the context of semiclassical geometry. One need not assume that the
geometry is described by triad eigenstates, which would not be realistic.

For these considerations, we should use only the first �-terms in an expansion
of (10.58), as higher orders would become comparable to the neglected moment
terms. Inverse-triad corrections are thus reliable when they refer to the asymptotic
deviations from the classical value obtained for flux values larger than the peak
position in Fig. 10.2. Corrections for fluxes smaller than the peak position require an
inclusion of at least some of the moment terms, which have not been fully derived yet.

In this regime, identifying |〈F̂〉| = v2/3 with the elementary scale of lattice
refinement, we expand correction functions as ᾱ = 1 + α0(	P/v1/3)m where the
coefficient α0 and (to some degree) the integer exponent m depend on quanti-
zation ambiguities. Lattice refinement for some a-dependence of v(a) then leads
to ᾱ = 1 + α0(a∗/a)σ with a reference scale a∗ and σ = (2x + 1)m: From



224 10 Perturbative Inhomogeneities

the basic identities of lattice refinement, N v = V a3 and N = N0a−6x , we have
	P/v1/3 = (N /V )1/3	P/a = (N0/V )1/3	P/a2x+1. The exponent σ appearing in
inverse-triad corrections that include lattice refinement may thus be close to zero,
unlike the initial exponent m which, by an expansion of inverse-triad values, usually
takes the value m = 4. (Inverse-triad expressions are even functions of flux compo-
nents, so that corrections in terms of the inverse scale factor are at least of the power
four.) The a-dependence of inverse-triad corrections is thus stronger if lattice refine-
ment is ignored, which helps to rule out some parameterizations; see [16] which also
provides further parameter estimates.

If moments can be ignored, correction functions for inverse-triad corrections take
exactly the form derived from eigenvalues. In particular, they can be written as
functions only of the flux expectation values, not of holonomies. In an effective
Hamiltonian, correction functions then depend only on the densitized triad, not on
the connection. As one can easily see, this restricted dependence on the phase-space
variables leads to significant simplifications in the computation for instance of the
constraint algebra, as seen below. Nevertheless, in general one should expect also
a weak dependence on the connection if non-Abelian holonomies are used. In this
case, the holonomy-flux algebra, which is essential for the derivation of inverse-triad
corrections, changes. For instance, we have reality conditions more complicated than
ĥĥ† = 1 as used above. Holonomies in the commutators for inverse-triad corrections
no longer cancel completely, leaving a connection dependence [17]. Such calcula-
tions are more difficult to perform, but as we will see below, a connection dependence
can be included at an effective level in the form of counterterms. Thus, such terms are
not completely neglected. In any case, a U(1)-approximation or Abelianization is an
important tool not just in loop quantum cosmology but also in the full theory (see for
instance [18–20]). An analysis of inverse-triad corrections in cosmology, parameter-
ized in a sufficiently general form, thus tests the full theory of loop quantum gravity.

10.2.3 Types of Corrections

To summarize, holonomy corrections can be computed by expanding lattice
holonomies as polynomials in curvature components, in combination with a slowly-
varying-field approximation that provides higher spatial derivatives. The form of
inverse-triad corrections follows from a consideration of inverse-triad operators based
on algebraic properties of the holonomy-flux algebra, not just on their eigenvalues.
The resulting correction functions depend on the spatial metric and its derivatives via
the elementary fluxes, whose values are typically near Planckian and can then give
rise to sizable corrections. The set of quantum corrections is completed by quantum
back-reaction terms, which are more complicated to compute in a field-theoretic set-
ting and have not been treated reliably yet. They are nevertheless required from the
perspective of higher-curvature terms, and can be expected to play an important role
for anomaly-freedom and covariance.

Since there are several corrections of different types, one may ask whether any of
them could be analyzed in separation, without requiring all corrections to be derived
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at once. This is in fact the case, especially for inverse-triad corrections. They are of
a type which cannot be produced by the other corrections. For instance, holonomy
corrections always produce higher-order terms in the connection, unlike inverse-triad
corrections, and quantum back-reaction terms always include moments of a state, not
just expectation values. If one is interested in anomaly-freedom which requires a test
whether the corrected constraints can form a first-class algebra, one must see, among
other things, whether anomalies obtained from one correction could be cancelled
by terms from another correction. For anomalies that may result from inverse-triad
corrections, this is not the case: the Poisson bracket of terms affected by holonomy
corrections always produces a term with higher-order corrections (at least higher
orders of the background connection if an expansion by inhomogeneities is used).
Terms containing moments always have a Poisson bracket containing a moment,
which follows from the Poisson structure of the quantum phase space discussed
in detail in Chap. 13. Terms with inverse-triad corrections contain neither higher
powers of the connection, nor moments. Inverse-triad corrections must thus provide
an anomaly-free consistent deformation of the classical constraints on their own;
otherwise the theory cannot be consistent no matter what the other corrections look
like. And if inverse-triad corrections deform the classical hypersurface-deformation
algebra non-trivially, the result shows properties of quantum space–time structure
that cannot be eliminated by including other corrections. We will now turn to an
analysis of these questions.

10.3 Anomaly-Freedom of Quantum Corrections

We have obtained candidate terms for quantum-geometry corrections from the lattice
construction. Although they show us what types of corrections we should expect,
they cannot be the final form because they assumed specific structures of states and
used gauge fixings. Due to the gauge fixing we have lost access to the full behavior
of gauge transformations, which makes it difficult, if not impossible, to address
anomalies. In fact, if we were to derive cosmological perturbation equations from
a linear expansion of the resulting equations of motion around FLRW space–times
with the corrections obtained so far, we would get an inconsistent set lacking any
non-trivial solutions.

10.3.1 Consistency Issues

To highlight the consistency issue, we take a look at the classical cosmological
perturbation equations. In longitudinal gauge as used so far, we have

∂c
(
ψ̇ + Hconfφ

) = 4πG ˙̄ϕ∂cδϕ (10.59)

∇2ψ − 3Hconf
(
ψ̇ + Hconfφ

) = 4πG
( ˙̄ϕδϕ̇ − ˙̄ϕ2φ + a2V,ϕ(ϕ̄)δϕ

)

http://dx.doi.org/10.1007/978-1-4419-8276-6_13
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ψ̈+Hconf
(
2ψ̇ + φ̇

)+
(

2Ḣconf + H 2
conf

)
φ = 4πG

( ˙̄ϕδϕ̇ − a2V,ϕ(ϕ̄)δϕ
)

(10.60)

∂a∂
b(φ − ψ) = 0 (10.61)

δϕ̈ + 2Hconfδϕ̇ − ∇2δϕ + a2V,ϕϕ (ϕ̄)δϕ + 2a2V,ϕ (ϕ̄)φ − ˙̄ϕ (
φ̇ + 3ψ̇

) = 0
(10.62)

for scalar metric perturbations hab = a2(1 − 2ψ)δab and a perturbed lapse function
N = a(1 +φ) (in conformal time). As matter source we have assumed a scalar field
ϕ = ϕ̄ + δϕ, and H = ȧ/a is the conformal Hubble parameter, with a derivative
by conformal time η.

This set of equations appears overdetermined: there are five differential equations
for three unknown functions. But since the equations are not independent, which one
can explicitly check by solving (10.61) by φ = ψ and deriving the Klein–Gordon
equation (10.62) from the first three equations (also using the background equations),
non-trivial solutions for perturbations exist. Quantization now introduces corrections
by means of effective equations, which amend the classical ones by correction terms.
For a consistent implementation, corrections must preserve the fact that the equations
are not independent. Inconsistencies could, for instance, arise from anomalies in the
constraint algebra, implying that the first two perturbation equations, which are free
of second-order time derivatives and pose constraints on the initial values, would not
be preserved by evolution. In particular, it is not consistent to use only the corrections
for the background equations, which can rather easily be derived in isotropic models
using the effective techniques discussed earlier. Since the scale factor and background
scalar field appear in coefficients of the perturbation equations, they must satisfy
specific equations of motion to be consistent. If quantum corrections are introduced
in the background, they must also be introduced in the perturbation equations, and
they are highly restricted by consistency.

The second important consistency issue is that of gauge invariance. When a con-
strained theory is quantized, the constraints receive quantum corrections. Corrections
then enter evolution equations as just discussed, but they also affect gauge flows gen-
erated by the constraints. Thus, also expressions of gauge invariant variables must be
corrected. This feature can be implemented correctly only if we do not fix the gauge in
the first place before putting in corrections. In our derivation of candidate correction
terms we did fix the gauge (to make explicit calculations possible by Abelianization),
and so the derivations performed so far are incomplete. We will see in what follows
how the condition of consistency implies what additional corrections must be present
that have not been seen in gauge-fixed derivations of correction functions.
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10.3.1.1 Metric Perturbations

Again for scalar modes but now in a general gauge, we have perturbations φ, ψ, E
and B where N = a(1+φ) as before and hab = a2(1−2ψ)δab+∂a∂b E , N a = ∂a B,
as they appear in a line element

ds2 = a2(η)
(
−(1 + 2φ)dη2 + 2∂a Bdηdxa − ((1 − 2ψ)δab + 2∂a∂b E)dxadxb

)
.

(10.63)

Not all these fields are independent perturbations because they mix under changes of
coordinates, which represent gauge transformations in the classical manifold picture.
There are two independent gauge-invariant combinations, the Bardeen variables [21]

� = ψ − Hconf(B − Ė) (10.64)

� = φ + (
B − Ė

)• + Hconf(B − Ė) (10.65)

and a similar quantity for the gauge-invariant matter perturbation δϕGI.Here, another
consistency issue arises: if the constraints are not compatible with each other and
with the evolution equations, gauge invariance will not be preserved in time. Gauge
artefacts will then couple into the perturbation equations; evolution equations cannot
be expressed solely in terms of gauge-invariant variables.

In quantum gravity, we do not necessarily expect a classical space–time picture
with its coordinate transformations to hold. At this stage, a Hamiltonian formula-
tion offers many advantages because the consistency issues can be addressed at a
purely algebraic level: the constraint algebra must remain first class after including
quantum corrections. Then, constraint equations are preserved in time, preventing
over-determinedness, and gauge invariance of perturbations is preserved, preventing
couplings to gauge artefacts.

To show the classical Hamiltonian derivation first [1, 22], we start with the
Hamiltonian

Hgrav[N ] = 1

16πγG

∫

�

d3x N
(
εijk Fi

ab − 2(1 + γ 2)K i
a K j

b

) E [a
i Eb]

j√| det E |

and perturb it. For all fields X we write X = X̄ + δX such that
∫

d3xδX = 0
is a pure perturbation and X̄ = V −1

∫
d3x X is the average over our integration

region of size V , the same that we also use for the homogeneous background model.
By these conditions, we split the fields in background quantities and perturbations
without overcounting, keeping them clearly separate. Specifically, we have Ea

i =
p̃δa

i + δEa
i , K i

a = k̃δi
a + δK i

a, N = N̄ + δN and N a = δN a without a background
shift when we perturb around an isotropic model. The perturbation of the densitized
triad is related to the metric perturbations by
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δEa
i = −2a2ψδa

i + a2
(

1

3
δa

i �− ∂a∂i

)
E (10.66)

and δK i
a is related to ψ̇ at the level of equations of motion; for now we treat it as an

independent phase-space variable.
With these preparations, we expand (16πG)−1

∫
d3x

(
N̄ H (2) + δN H (1)

)
with

H (1) = −4Hconfaδc
jδK j

c − H 2
conf

a
δ

j
c δEc

j + 2

a
∂c∂

jδEc
j

and

H (2) = aδK j
c δK k

d δ
c
kδ

d
j − a(δK j

c δ
c
j )

2 − 2Hconf

a
δEc

jδK j
c

− H 2
conf

2a3 δEc
jδEd

k δ
k
c δ

j
d + H 2

conf

4a3 (δEc
jδ

j
c )

2 − δ jk

2a3 (∂cδEc
j )(∂dδEd

k ).

Similarly, the diffeomorphism constraint Dgrav[N a] = (8πG)−1
∫
�

N a Fi
ab Eb

i with
N a = δN a (N̄ a = 0) can be expanded. This implies constraint equations
δH/δφ = H (1) = 0, which becomes ∇2ψ − 3H (ψ̇ + Hconfφ), and (for a scalar
M determining the shift perturbation via δN a = ∂a M) δD/δM = 0 which becomes
∂c

(
ψ̇ + Hconfφ

)
. For N̄ = a, δN = aφ we generate equations of motion in con-

formal time such as δ Ėa
i = {δEa

i , H [a(1 + φ)]}, using

{δK i
a(x), δEb

j (y)} = 8πGδb
aδ

i
jδ(x, y).

(There is no shift perturbation for equations of motion of scalar modes.)
For gauge transformations, we consider lapse and shift linear in perturbations:

H [N̄ξ0] = − 1

16πG

∫
d3x N̄ξ0

(
4Hconfaδc

jδK j
c + H 2

conf

a
δ

j
c δEc

j − 2

a
∂c∂

jδEc
j

)

D[∂aξ ] = 1

8πG

∫

�

d3x∂cξ
(

a2δd
k ∂cδK k

d − a2∂kδK k
c − Hconfδ

k
c∂dδEd

k

)
.

The general gauge transformation is δ[ξ0,ξ ] f = { f, H [N̄ξ0]+D[∂aξ ]} for any phase-
space function, corresponding to the Lie derivative along the vector field (ξ0, ∂aξ).

The factor of N̄ in the Hamiltonian constraint used as a generator for gauge transformations is
explained by the relationship between the space–time vector field written in different bases.
In a coordinate system, the components ξμ refer to the basis ta as the time-evolution vector
field and sa

i as three independent spatial vectors: ξa = ξ0ta + ξ i sa
i . The gauge parameters

used in the canonical constraints, on the other hand, refer to the vector field εa = ε0na +εi sa
i

in a basis adapted to the spatial foliation, with unit timelike normal na . The relationship is
determined by lapse and shift: ta = Nna + N a , such that for a vanishing background shift
N̄ a = 0, εa = ε0 N−1ta + εi sa

i = ξ0ta + ξ i sa
i , or ε0 = Nξ0 as the gauge parameter. See

also [1, 23].
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To derive gauge transformations of our perturbation fields, we compare the general
triad perturbation (10.66) with its gauge transformation

δ[ξ0,ξ ]δEa
i = 2Hconfa2ξ0δa

i + a2
(

1

3
δa

i ∇2ξ − ∂a∂iξ

)
.

Thus, δ[ξ0,ξ ]ψ = −Hconfξ
0 and δ[ξ0,ξ ]E = ξ. Similarly, from

δK i
a = −δi

a

(
ψ̇ + Hconf(ψ + φ)

) + ∂a∂
i (

Hconf E − (B − Ė)
)

(from the equation of motion for δEa
i ) and

δ[ξ0,ξ ]δK i
a = ∂ i∂a(ξ

0 + Hconfξ)− H 2
conf

2
ξ0δi

a

we have δ[ξ0,ξ ]ψ = −Hconfξ
0, δ[ξ0,ξ ]E = ξ, δ[ξ0,ξ ](B − Ė) = −ξ0, δ[ξ0,ξ ]φ = ξ̇0

+ Hconfξ
0. In � := ψ − Hconf(B − Ė), all gauge transformations cancel out,

showing its gauge invariance.
Equations of motion can then be expressed fully in terms of gauge-invariant

quantities with all gauge-dependent terms cancelling:

∇2� − 3Hconf(Hconf�+ �̇) = −4πGa2δT 0(GI)
0 (10.67)

∂a
(
Hconf�+ �̇

) = −4πGa2δT 0(GI)
a (10.68)

(
�̈ + Hconf(2�̇ + �̇)+ (2Ḣconf + H 2

conf)�+ 1

2
∇2(�−�)

)
δb

a

− 1

2
∂b∂a(�−�) = 4πGa2δT b(GI)

a (10.69)

with stress-energy components in terms of gauge-invariant matter fields.

10.3.1.2 Evolution versus Gauge

Gauge transformations as well as equations of motion are generated by the con-
straints. One may then wonder why gauge-invariant combinations such as � and
� are subject to evolution at all, if evolution plays the same role as a gauge trans-
formation. First, from the derivations it is clear that gauge and evolution are, in
the perturbative setting, generated by different combinations of the constraints:
δ[ξ0,ξ ] = {·, H [N̄ξ0]+ D[∂aξ ]} and • = {·, H [N̄ (1+φ)]}. For linearized equations,
δ[ξ0,ξ ] is sensitive only to H (1) since the gauge generators are already of second order,
while evolution, in a gauge determined by the background lapse, is sensitive to H (2).

These are different terms in the expansion of the constraint, and so, at least formally,
gauge and evolution are clearly kept separate.
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In fact, by splitting the variables into background quantities and perturbations
we have been able to isolate one global gauge degree of freedom as time, fixing
the background gauge by choosing a specific background lapse. Gauge invariance is
then only imposed for perturbations, not for the background values. Gauge-invariant
perturbations are still subject to the background evolution.

10.3.2 Quantum Corrections

In Sect. 10.1.2.2, we have not derived a complete quantum-corrected Hamiltonian,
but rather gauge-fixed derivations have shown that corrections of certain types must
arise. It is then a highly non-trivial test of the whole consistency to see whether
consistent equations can result. If this is the case, one might also obtain a covariant
space–time picture for the corrections computed in a canonical derivation.

Explicit corrections are available in particular for inverse-triad effects. These
terms were derived for special simple states, and with a gauge fixing assumed. In
this form, corrections are incomplete and likely to be inconsistent from the point of
view of anomaly-freedom. But both issues, the incompleteness of corrections and
consistency, can be combined to get a much wider picture: we start with corrections of
the form seen so far and test what extra terms they require for a consistent formulation.
If a consistent formulation can be found in this way, it suggests terms that one must
be able to see emerge from a more general derivation of quantum corrections. The
full theory is thus being tested, going beyond the simple states used initially. On the
other hand, if no consistent formulation incorporating the corrections seen exists,
they are ruled out. Also in this case feedback for the full theory can be obtained
since one would somehow have to explain why a crucial quantum-geometry effect,
if it cannot be realized consistently, should disappear without a trace in effective
equations. If there is no good reason why an inconsistent correction should cancel
out, the theory suggesting this correction would itself be ruled out.

One example has been considered in quite some detail: consistent formulations of
inverse-triad corrections for linear inhomogeneities on a spatially flat FLRW back-
ground [24]. We have computed the primary correction function α in (10.32) for
lattice states (making use of longitudinal gauge) from eigenvalues of inverse-triad
operators on regular lattice states, as they have been seen to come from a background-
state expansion for effective equations. A characteristic functional behavior arose,
but depending only on the fluxes, corresponding to the fact that inverse-triad opera-
tors in the (Abelianized) lattice setting have the same eigenstates as flux operators.
In general, we should expect relevant semiclassical states not to be based on regular
graphs, and certainly not to be triad eigenstates. Extra dependences on the (non-
Abelian) connection or extrinsic curvature may then arise, which is more difficult
to compute from expectation values at the state level. But the possible form of such
terms, required for consistency, can be seen from considerations of anomaly-freedom.

For inverse-triad corrections we make the ansatz
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H (α)
grav := 1

16πG

∫
d3x

(
N̄

(
ᾱH (0) + α(2)H (0) + ᾱH (α)(2)

)
+ δN ᾱH (α)(1)

)

for a corrected Hamiltonian constraint expanded to second order in inhomogeneities,
with H (0) = −6H 2

confa and

H (α)(1) = −4(1 + f )Hconfaδ
c
jδK j

c − (1 + g)
H 2

conf

a
δ

j
c δEc

j + 2

a
∂c∂

jδEc
j

H (α)(2) = aδK j
c δK k

d δ
c
kδ

d
j − a(δK j

c δ
c
j )

2 − 2Hconf

a
δEc

jδK j
c

−H 2
conf

2a3 δEc
jδEd

k δ
k
c δ

j
d+H 2

conf

4a3 (δEc
jδ

j
c )

2−(1 + h)
δ jk

2a3 (∂cδEc
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The primary correction function is ᾱ (the function α evaluated in the background
variables), as derived before, and α(2) the term it provides when expanded to sec-
ond order in inhomogeneities. In the additional terms, we have inserted counterterm
coefficients f, g and h which have not been derived from the Abelianized quan-
tum Hamiltonian but will be required for a consistent algebra. (Not all terms in the
constraints need be amended by counterterm coefficients for consistency.) The coun-
terterm f multiplies a δK -dependent term; it can thus be interpreted as representing
a connection-dependence of inverse-triad corrections; see also Sect. 10.2.2.

Going through a lengthy analysis of the constraint algebra [24], one finds that it
is first-class to second order in inhomogeneities if 2 f + g = 0 and

−h − f + a

ᾱ

∂ᾱ

∂a
= 0

f − g − 2a
∂ f

∂a
− a

ᾱ

∂ᾱ

∂a
= 0

− f + g − a
∂g

∂a
+ a

ᾱ

∂ᾱ

∂a
= 0

1

6

∂ᾱ

∂a

δEc
j

a3 + ∂α(2)

∂(δEa
i )
(δa

j δ
c
i − δc

jδ
a
i ) = 0.

Moreover, there is a condition ν̄σ̄ = ᾱ2 (in the case of a scalar Hamiltonian (10.54))
for matter correction functions in terms of ᾱ2 if matter is present. The matter Hamil-
tonian, if present, contains counterterms as well. We will later refer to the matter
counterterms f1 and f3 which appear in the scalar-field Hamiltonian constraint with
a lapse perturbation, H (α)

scalar[δN ] = ∫
d3xδN (ν̄H (α)(1)

kin + H (α)(1)
pot ) with a primary

inverse-triad correction function ν̄ analogous to ᾱ, and

H (α)(1)
kin = (1 + f1)

π̄δπ

a3 − (1 + f2)
π̄2

2a3

δi
aδEa

i

2a2 (10.70)
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Fig. 10.4 Illustration of the
hypersurface-deformation
algebra of two Hamiltonian
constraints
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(10.71)

For the matter counterterms we have additional relations with ᾱ and ν̄ by consistency,
such as

f1 = f − a

6ν̄

∂ν̄

∂a
, f2 = 2 f1, a

∂ f3

∂a
+ 3 f3 − 3 f = 0. (10.72)

All coefficients are fixed in terms of ᾱ and ν̄, which can be derived in isotropic
models or in longitudinal gauge as before.

There is thus an anomaly-free system of constraints including quantum correc-
tions, or in other words: inverse-triad corrections constitute a consistent deformation
of the classical theory. The conditions for the counterterms do allow non-trivial solu-
tions; moreover, the amount of quantization ambiguities is reduced by relating matter
correction functions to ᾱ. The underlying discreteness, which via the flux spectrum
is responsible for the presence of inverse-triad corrections, does not destroy general
covariance. (For holonomy corrections, which are also a consequence of discreteness,
this consistency has not yet been verified for cosmological perturbations. Consistent
examples for these corrections exist in models of spherical symmetry [25] and for
2 + 1 gravity [26].)

The hypersurface-deformation algebra obtained from the corrected constraints is
first class:

{H (α)[N1], H (α)[N2]} = D
[
ᾱ2 N̄a−1/2∂a(δN2 − δN1)

]
. (10.73)

But it is not identical to the classical one: the correction function ᾱ appears in its
structure functions. This means that the classical space–time picture does not apply,
because any foliated space–time must lead to the same classical algebra which follows
simply from geometry as illustrated in Fig. 10.4. Even higher-curvature terms do not
change the algebra [27].
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10.3.3 Scalar Modes

Cosmologically, anomaly-freedom provides consistent cosmological perturbation
equations: the Hamiltonian constraint, the diffeomorphism constraint and evolution
equations. In addition, quantum corrections to constraints do change gauge invariant
variables, and only those quantities, but no gauge artefacts, appear in quantum-
corrected perturbation equations [22, 28]

∂c
(
�̇ + Hconf(1 + f )�

) = πG
ᾱ

ν̄
˙̄ϕ∂cδϕ

GI (10.74)

�(ᾱ2�)− 3Hconf(1 + f )
(
�̇ + Hconf�(1 + f )

)
(10.75)

= 4πG
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ν̄
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( ˙̄ϕδϕ̇GI − ˙̄ϕ2(1 + f1)�+ ν̄a2V,ϕ(ϕ̄)δϕ
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)
(10.76)
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dᾱ

da

)
+ �̇(1 + f )

)
(10.77)
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�(1 + f ) (10.78)

= 4πG
ᾱ

ν̄

( ˙̄ϕδϕ̇GI − a2ν̄V,ϕ(ϕ̄)δϕ
GI

)
(10.79)

with the corrected gauge-invariant variables

� = ψ − Hconf(1 + f )
B − Ė

ᾱ2 (10.80)

� = φ +
(

B − Ė

ᾱ2

)•

+ Hconf
B − Ė

ᾱ2 . (10.81)

Moreover, the classical relationship between the two scalar modes is corrected to
� = �(1 + h).

In the presence of a scalar matter degree of freedom, a gravitational gauge-
invariant scalar mode such as � or � can be combined with the matter mode to
form a gauge-invariant perturbation with an expression independent of E and B in
any gauge-fixing. In this way, one defines the curvature perturbation

R = ψ + Hconf

˙̄ϕ (1 + f − f1)δϕ (10.82)

depending on a matter counterterm f1.

Classically, this perturbation obeys an equation of motion that in an expanding
universe has a constant mode and a decaying mode if spatial derivatives can be
ignored, that is for long wave lengths larger than the Hubble radius [29, 30]. The
existence of a conserved quantity can be seen based on general properties of Hamil-
tonian analysis: For scalar modes, there is a single local degree of freedom on the



234 10 Perturbative Inhomogeneities

reduced phase space obtained by implementing all first-class constraints. There must
thus be a second-order evolution equation for the degree of freedom, which can be
chosen to be R. By an appropriate redefinition of R to yR with some function y
depending on the background geometry, one can eliminate the term in this equation
lacking time derivatives. The resulting equation will have a constant solution for
yR, and there are reduced phase-space techniques which can be used to compute
yR systematically [31]. A shorter method has been applied in [16] also in the case
of inverse-triad corrections, and the result is that R itself is conserved on large scales
irrespective of the corrections.

Thus, the curvature perturbation remains conserved on large scales. One can effi-
ciently formulate its evolution in terms of a rescaled perturbation, the Mukhanov vari-
able u = zR with a background function z which classically equals z = a ˙̄ϕ/Hconf
but is also quantum corrected. The new perturbation, unlike the original � and �,
satisfies an evolution equation decoupled from all others, the Mukhanov equation

−ü +
(

s2�+ z̈

z

)
u = 0 (10.83)

with s2 = α2(1 − f3) [16] (with a matter counterterm f3). Despite first appearance,
with corrections only in spatial derivatives but not in time derivatives of the Lapla-
cian, this equation is covariant: it is obtained from a system of first-class constraints
deforming the classical notion of space–time symmetries.

10.3.4 Vector Modes

Vector modes are subject to a smaller number of independent gauge transformations
than scalar modes and are thus easier to make consistent. In conformal time, they
come from metric components of the form

−N 2 = −a2, Na = a2 Fa, hab = a2(δab + ∂a fb + ∂b fa). (10.84)

whose mode functions Fa and fa are divergence-free: ∂a Fa = 0 and ∂a f a = 0.
In a canonical formulation, the function Fa determines the shift perturbation, while
fa enters the spatial metric, or the densitized triad

δEa
i = − p̄(c1∂

a fi + c2∂i f a) (10.85)

with constants satisfying c1 + c2 = 1. Observables only depend on the symmetrized
triad, which is independent of the choice of c1 and c2.The equations in triad variables
plus corrections have been worked out in [32].

10.3.4.1 Inverse-Triad Corrections

The canonical variables are subject to the diffeomorphism constraint
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Dgrav[N a] = 1
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and the Hamiltonian constraint
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(10.87)

for inverse-triad corrections. It turns out that all counterterms required for scalar
modes vanish identically for vector modes. Going through the canonical procedure
of deriving gauge-invariant variables and equation of motion, one finds that the
combination σ a = Fa − ḟ a is gauge invariant (without quantum corrections in
terms of metric components) and must satisfy the corrected equation of motion

1

ᾱ

(
−1

2

d

dη
(∂ iσa + ∂aσ

i )− k̄(ᾱ − ᾱ′ p̄)(∂ iσa + ∂aσ
i )

)
= 8πG p̄δT (v)ia (10.88)

with a vectorial matter perturbation δT (v)ab .

10.3.4.2 Holonomy Corrections

For vector modes, with their simpler gauge structure, it is possible to find consistent
deformations resulting from holonomy corrections. Since no such consistent defor-
mation is known for scalar modes, it is still unclear whether holonomy corrections
can be consistent altogether. But the example of vector modes is instructive in that
it shows possible properties of perturbations around background solutions arising
from holonomy corrections, such as bouncing ones.

An example for a consistent holonomy-corrected Hamiltonian constraint, when
evaluated for vector-mode perturbations, is

H (α)
grav[N ] = 1
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(10.89)
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Now,

σ a = Fa − ḟ a + k̄

(
1 − sin 2δγ k̄

2δγ k̄

)
f a (10.90)

is gauge invariant and satisfies the equation of motion

−1

2

d

dη
(∂ iσa + ∂aσ

i )− 1

2
k̄

(
1 + sin 2δγ k̄

2δγ k̄

)
(∂ iσa + ∂aσ

i ) = 8πG p̄δT (v)ia.

(10.91)

Using the corrected background equation

˙̄p = p̄
sin 2δγ k̄

δγ
(10.92)

the vacuum equation of motion for vector modes can quite simply be written as

d log σ i
k

d log a
= −

(
1 + 2δγ k̄

sin 2δγ k̄

)
. (10.93)

This last form of the equation is not suitable for perturbations through the bounce
where a turns around. (Indeed, at the bounce the right-hand side of (10.93) diverges.)
But it does show that the rate of decay of vector modes in an expanding universe is
modified by holonomy corrections.

10.3.5 Gravitational Waves

Tensor modes are easiest to discuss since they are not subject to gauge transformations
or overdeterminedness. Still, from the propagation of gravitational waves compared
to light one obtains interesting consistency tests [33]. For inverse-triad corrections,
the Hamiltonian implies the linearized wave equation

1

ᾱ
ḧi

a + 2
ȧ

a

(
1 − 2adᾱ/da

α

)
ḣi

a − ᾱ∇2hi
a = 16πG�i

a

for the transverse-traceless part of metric perturbations and with a source-term �i
a .

One can rewrite this equation in simpler form and in Mukhanov style analogously
to (10.83):

−ẅ +
(
ᾱ2�+ ä

a

)
w = 0 (10.94)

wherew is proportional to h [16, 34]. Also this equation is covariant despite appear-
ance, and it is corrected differently than equation (10.83) for scalar modes because
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ᾱ, not s, appears as the coefficient of spatial derivatives. Both terms differ by coun-
terterm correction functions, which are now seen to be important for the relative
evolution of scalar and tensor modes. As an important consequence of the different
equations satisfied by scalar and tensor modes, the tensor-to-scalar ratio is corrected
in a characteristic way; see [16] for the power spectra and indices.

From this, we have the dispersion relation ω2 = ᾱ2k2 for gravitational waves.
In the perturbative range of inverse-triad corrections, we have ᾱ > 1 (see Fig. 10.2)
and thus face the threat of super-luminal motion combined with possible violations
of causality. To test this issue, we must compare the gravitational dispersion relation
with that of electromagnetic waves. The speed of gravitational waves should be
compared to the physical speed of light, which receives corrections from the same
effect of inverse triads in the Maxwell Hamiltonian. Here, we have

HEM =
∫

�

d3x

(
αEM(hcd)

2π√
det h

Ea Ebhab + βEM(hcd)

√
det h

16π
Fab Fcd hachbd

)

(see also [35]) which on an FLRW background implies the wave equation

∂t

(
ᾱ−1

EM∂t Aa

)
− β̄EM∇2 Aa = 0

with dispersion relationω2 = ᾱEMβ̄EMk2.Also light appears “super-luminal”, when
compared to the classical speed of light. But the ratio of ᾱ2 to ᾱEMβ̄EM will determine
whether there is truly super-luminal motion.

Initially, there is no clear relationship between the correction factors, which are
subject to quantization ambiguities and could lead to ratios less than or larger than
one. But implementing anomaly-freedom for the corrected system of constraints
requires, analogously to the condition in Sect. 9.1.6.1, that

ᾱ2 = ᾱEMβ̄EM.

Gravitational waves and light travel at the same speed. Anomaly-freedom ensures
that there are no violations of causality.

10.3.6 Comparison with Gauge-Fixed Treatments

For scalar modes, holonomy corrections have been implemented only in gauge-fixed
treatments of different forms. Different gauge choices exist, such as the longitudinal
[36–38] or the uniform one [39], and quantum corrections can be implemented in
different ways without having a chance to see restrictions from anomaly cancellation.
The available equations are thus rather ambiguous and it is not clear whether they can
make significant predictions. When applied to inverse-triad corrections, gauge-fixed
equations would not reveal the effects seen here by the counterterms.

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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10.4 Cosmological Applications

Even though the very early universe goes through several phases of high density, any-
thing we can currently probe is still orders of magnitude removed from the Planck
scale. In such a situation, one has to look very closely if one wants to find poten-
tially observable phenomena within quantum gravity or quantum cosmology. Loop
quantum gravity, by the deformed space–time structures it leads to, provides new
ingredients in addition to the usual corrections in powers of the density. These new
corrections may help to detect quantum-gravity effects, but for now they mainly
pose an important consistency check which loop quantum gravity still has to pass.
Some coarse models have already been ruled out, others show a remarkable bal-
ance between being close to detectability and barely not being ruled out yet. In this
section we describe the current (and of course incomplete) status of observational
applications in loop quantum cosmology, preceded by a more general discussion of
inhomogeneities in quantum cosmology.

10.4.1 Quantum-to-Classical Transition

If one quantizes the perturbed Hamiltonian constraint, one obtains a quantum equa-
tion correcting the Wheeler–DeWitt or loop equation by back-reaction terms, as well
as an infinite number of constraints for the perturbative modes. The whole system
poses a complicated consistency problem after quantization because it must remain
first class. This problem has not been solved yet even in the Wheeler–DeWitt context,
which has a smaller number of corrections compared to loop quantum cosmology.
But if one ignores the constraints for the modes and analyzes the perturbed Wheeler–
DeWitt equation, one gains access to back-reaction properties [40].

The infinitely many perturbation modes not only provide degrees of freedom to
describe the formation of structure, many of them do not play any role for observa-
tions and thus can be interpreted as a large environment of unaccessed degrees of
freedom. In this situation, one can develop decoherence scenarios in order to explain
how the observed degrees of freedom turn from quantum fluctuations into classi-
cal perturbations by coupling to a large environment of small disturbances [41–44].
However, decoherence in cosmology has a different status than decoherence of mat-
ter systems because of interpretational issues. Accordingly, several aspects of the
quantum-to-classical transition have been questioned [45], and replaced by modified
or alternative scenarios which may result in new options for observations [46–48].

In general, however, quantum effects in cosmology originating from the behav-
ior of gravity are expected to be of the tiny size 	PH if primarily the curvature
scale determines their value. This expectation is no longer correct if the space–time
structure changes, which is where loop quantum cosmology comes in.
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10.4.2 Big-Bang Nucleosynthesis

Before using perturbation equations for the development of structure, already the
modified background equations as they arise in the simplest isotropic models of
loop quantum cosmology have some effects on cosmology. Especially the phase of
big-bang nucleosynthesis is sensitive to the relative expansion rates of relativistic
fermions (protons and neutrons being interconverted by exchanging electrons and
neutrinos) to that of radiation. If the dilution rates are subject to quantum corrections,
production rates of light elements are affected.

From such an analysis one can infer the bound N /a3V < 3/	3
P on the density

of discrete patches [49]. This result is based on a correction to the equation of
state parameter w = 1

3 (1 − d log ᾱ/d log a) for relativistic fermions and radiation,
deviating from the classical conformally invariant naturew = 1/3.One could expect
different dilution rates for fermions and radiation, which could produce larger effects
and stronger bounds. But this does not arise from inverse-triad corrections, which
correct the equations of state of fermions [50] and radiation [51], but do so in the
same way.

In fact, the upper limit N /a3V < 3/	3
P obtained for the patch density is not

unexpected if there should be at most one discrete patch per Planck cube. An
observational analysis of big-bang nucleosynthesis is hard to make more con-
strained in order to produce a tighter bound, but it is encouraging that the bound
obtained is not removed from the expectation by orders of magnitude. Pertur-
bation equations for structure formation, on the other hand, can provide more
specific restrictions of quantum-geometry corrections and still show room for
improvements.

10.4.3 Super-Inflation

Inverse-triad corrections as well as holonomy corrections give rise to a phase of
super-inflation, with an increasing Hubble rate Ḣ > 0 [52]. The phase is normally
not long in terms of the scale factor, which may change only mildly. However,
during super-inflation the number of e-foldings is to be determined by factoring in
the change of the Hubble rate: N = log ((aH )final/(aH )initial), and this number
can more easily be large [53].

Another inflationary effect occurs when loop quantum cosmology is combined
with standard inflation. The usual conditions for the potential then do not change, but
it is easier to provide suitable initial values for the inflaton, far up its potential. During
the brief super-inflation phase of loop quantum cosmology, the inflaton acquires an
anti-friction term which can drive it up the potential [52, 54, 55]. Also bounce models
show this effect, and can set the conditions of inflation from a preceding collapse
phase [56].
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10.4.4 Scalar Modes

Several crucial and characteristic effects have been recognized for scalar modes
which may provide clear observational signatures.

10.4.4.1 Effective Anisotropic Stress

Even in the absence of anisotropic stress in matter,� = �(1 + h) corrects the classi-
cal relationship� = �. This can be interpreted as quantum space–time implying an
effective anisotropic stress even in the absence of sources. As another consequence,
scalar modes can have propagation speeds different from that of light.

10.4.4.2 Curvature Perturbation

The curvature perturbation is an important quantity for an analysis of structure forma-
tion. Its behavior is changed by inverse-triad corrections in loop quantum cosmology
in two different ways: Its gauge-invariant value has a different expression (10.82) in
terms of metric and matter perturbations than classically; and its equation of motion,
the Mukhanov equation (10.83), is corrected. With these modifications, as well as the
loss of the classical space–time structure, it is initially not clear whether the curva-
ture perturbation remains conserved on large scales. (A modified constraint algebra
implies a modified Bianchi identity and corrections to the conservation law of matter,
from which conservation of power can be derived classically.) If it is not conserved,
a growing mode would signal an opportunity for quantum-gravity corrections larger
than expected [57].

Modifications to space–time structure also imply that no effective line element can
be used to describe the expanding geometry. A priori, there is thus no contradiction
between non-conservation of power on large scales and the fact that large-scale scalar
metric perturbationsψ , whose spatial dependence can be ignored, simply rescale the
scale factor in the line element and should not be physically dynamical. In fact,
Sect. 9.1.6.4 contains independent arguments that inverse-triad corrections change
the space–time structure so significantly that the form of flat FLRW line elements
can no longer be taken for granted. An analysis of cosmological structure formation
without the benefit of effective line elements is difficult to perform, even with the
tantalizing prospect of large quantum-gravity corrections. The situation that turns out
to be realized strikes a convenient balance: Thanks to unexpected cancellations the
curvature perturbation is conserved [16], and yet interesting new effects do happen
[58] because of the form in which the Mukhanov equation is corrected. For an analysis
it is helpful that effective perturbed FLRW line elements can be used.

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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10.4.4.3 Large-Scale Modes

If power is conserved for modes outside the Hubble scale, one may expect that the
complicated perturbation analysis within quantum gravity, dealing with the thorny
anomaly problem, could be skipped. Those modes simply follow the background
dynamics, which can be derived in quantum-corrected form by using isotropic models
devoid of any anomaly problems.

However, this expectation is incorrect. First, the relationship between gauge-
invariant perturbations and the original metric and matter perturbations is important.
Moreover, for a complete analysis of the power spectrum one must consider the
phases of Hubble exit and re-entry as well, in which modes no longer are super-
Hubble and become more sensitive to the perturbation dynamics. Indeed, examples
show the existence of quantum corrections in power spectra even in cases in which
power is conserved on large scales [16]. Corrections depend sensitively on some of
the counterterms that arise in the anomaly analysis, and which could not possibly be
seen in a pure background treatment. Corrections to power spectra thus cannot be
mere background effects.

10.4.5 Tensor Modes

Tensor modes have a characteristic blue-tilt, which is enhanced if x > −1/2 for
the lattice-refinement parameter x . For x = −1/2, only small correction of the
size 8πGρ	2

P arise [59–62]. It turns out that the power is increased for large wave
lengths, where strong quantum-geometry effects show up. Normally, quantum grav-
ity is expected to make itself noticeable in the UV for high frequencies [63, 64].
The discrepancy is explained by the fact that the quantum-geometry corrections are
primarily a propagation, not a production effect. Modes of large wave length spend the
longest time outside the Hubble radius, where deviations from the classical behavior
are most characteristic.

The power spectrum of tensor modes is especially interesting in combination with
the scalar spectrum. As already mentioned, the respective Mukhanov equations are
corrected differently, in a way that depends sensitively on counterterms. Stronger
corrections to the tensor-to-scalar ratio than in other scenarios are thus expected.

10.4.6 Indications for Evolution Through a Bounce

Inverse-triad corrections in their anomaly-free form have been found so far only for
regimes in which the corrections are small, α ∼ 1. The strong quantum regime in
which α increases from zero and thereby provide inflation [52] is much more difficult
to control in the presence of inhomogeneities. Thus, consistent deformations of the
classical perturbation equations can so far be analyzed only in combination with
standard inflation [36, 37, 53, 56, 65–67], but not in the possibly more interesting
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case in which they may provide alternative scenarios of structure formation and
perhaps solve some of the fine-tuning problems of inflation.

The same comments apply to evolution of structure through a bounce, which
would suggest several ingredients for an alternative scenario of structure forma-
tion [68]. The situation of bounce models in loop quantum cosmology is thus more
incomplete than the situation of inflationary models in the same framework. Here
we provide a brief overview.

10.4.6.1 Matching

Bounce cosmology can be analyzed to a large degree based on classical equations
amended by matching conditions for modes at the bounce [69]. Quantum gravity
is then important only, but crucially so, to tell how structure is transferred from
the collapse phase to expansion. There are always two independent solutions for the
evolution of the scalar mode, subject to a second-order equation in time, and one must
know how the dominant mode of the collapse phase, generating structure, is matched
with the two modes in the expanding phase. Classically, there is a singularity instead
of the bounce, and so one cannot simply perturb a classical equation by quantum
corrections. The gauge-invariant modes and their dynamics must be derived and
analyzed, again requiring one to consider and solve the anomaly problem. If one tries
to avoid a full treatment, for instance by resorting to gauge-fixing choices, one loses
access to the full linear dynamics. While some results may still be approximately
correct in some sense, even a small error in the matching conditions can have a
significant effect on the structure that arises at later times after the modes are evolved.
On the other hand, the matching can also provide enhancement effects of quantum-
gravity corrections for the same reason: even if matching coefficients change by tiny
amounts of the usual size expected for quantum gravity, their implications can have
sizeable effects if they are responsible for mixing in a growing mode.

10.4.6.2 Gauge Fixing

Bounce models based on holonomy corrections of loop quantum cosmology have
been extended to linear perturbations by employing gauge fixing [39]. While tensor
modes are not subject to gauge transformations or strong consistency requirements
from anomaly freedom, their quantum corrections are restricted if one demands that
they follow from a consistent system of equations that also includes scalar modes.
If tensor-mode equations are obtained without paying attention to the consistency
of accompanying scalar-mode equations, their analysis must be considered as based
on gauge-fixing as well. In this spirit, tensor modes have been analyzed with strong
inverse-triad corrections (super-inflation) or holonomy corrections (bounce) in [56,
70–73].

Another form to fix the gauge is the hybrid approach [74]; see Sect. 9.2.3. Also here
the gauge-fixing removes the anomaly problem and allows one to study the evolution

http://dx.doi.org/10.1007/978-1-4419-8276-6_9
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of structure through a bounce, at least numerically. One analysis performed in this
way had provided another cautionary note: Linear perturbations evolved through the
bounce seem to be enhanced significantly just at the holonomy bounce, suggesting
that perturbation theory in this regime may be unstable [75].
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Chapter 11
Difference Equations

Difference equations of a specific type play a large role in loop quantum cosmology.
All equations initially encountered are linear, as usual for a dynamical equation for
wave functions. But their coefficients are in general non-constant and depend on
the discrete variables, which implies several subtleties in the analysis and solution
of such equations. Moreover, in models less symmetric than isotropic ones or with
matter fields, partial difference equations, difference-differential equations or highly
coupled “functional” differential equations in inhomogeneous contexts arise. Several
examples for such classes of difference equations have been derived in the models
seen in preceding chapters. In this chapter, some mathematical properties related to
questions of physical interest are discussed. Finally, we will sketch how non-linear
difference equations may arise as a result of inhomogeneity.

11.1 Singularities and Dynamical Initial Conditions

In a mathematical sense, the difference equations of loop quantum cosmology are
singular: their coefficients of highest (or lowest) order may vanish for some val-
ues of the recurrence parameters. Transition matrices then become degenerate and
non-invertible, which may upset the whole recurrence scheme and prevent one from
computing a complete wave function starting with initial values. If the recurrence
does indeed break down, the system would be considered singular also in a physi-
cal sense. But mathematically singular behavior does not always imply physically
singular behavior; the difference between these concepts is exactly loop quantum
cosmology’s way to resolve classical singularities.

A transition matrix can most easily be formulated if a difference equation of some
given order is, without loss of generality, reformulated as a first-order difference
equation in vector form. A second-order difference equation a(n)ψn−1 + b(n)ψn +
c(n)ψn+1 = 0, for instance, can be reformulated as a first-order equation

An

(
ψn−1
ψn

)
:=

(
a(n) 0
0 1

) (
ψn−1
ψn

)
=

( −b(n) −c(n)
1 0

)(
ψn
ψn+1

)
=: Bn

(
ψn
ψn+1

)

(11.1)
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written here as backward evolution which is of interest when approaching a classical
singularity (at n = 0, say) from large positive values of n. The transition matrix

T n
m := A−1

m+1 Bm+1 A−1
m+2 Bm+2 · · · A−1

n−1 Bn−1 A−1
n Bn (11.2)

then determines how the valueψm = (T n
m)11ψn+(T n

m)12ψn+1 is obtained from initial
values that may be chosen at n and n + 1, provided all the matrices An involved are
in fact invertible.

For the type of difference equation (4.15) considered in isotropic loop quantum
cosmology, A1 is not invertible and T n

0 does not exist for any n �= 0. With A1
having a non-trivial kernel, the recurrence does not completely determine the values
of (ψ0, ψ1) which T n

0 was supposed to provide in terms of the initial data. This can
be a problem if (ψ0, ψ1) is required for further evolution, which would have to give
a unique value for ψ−1 by applying B0 to (ψ0, ψ1), and so on.

Example 11.1 The difference equation of isotropic loop quantum cosmology has the
general form analyzed here, more specifically a(n) = X (n−1) and c(n) = X (n+1)
with X (0) = 0. Moreover, b(0) = 0. We obtain the matrices

An =
(

X (n − 1) 0
0 1

)
, Bn =

(−b(n) −X (n + 1)
1 0

)
.

The only degenerate case of An is for n = 1, in which case we have a kernel
spanned by (1, 0), corresponding to the freedom of choosingψ0 (the first component
of (ψn−1, ψn) at n = 1 in (11.1)). In attempting to follow the recurrence further,
we next apply B0 to a vector which, with the undetermined ψ0 (the first component
of (ψn, ψn+1) at n = 0 in (11.1)), is known only up to multiples of (1,0). While
B0 does not annihilate this vector, the recurrence is not sensitive to the action of B0
on it. (The undetermined ψ0 is simply carried through from the first component of
the right-hand side of (11.1) to the second component of the left-hand side.) Also
the next matrix, B−1, which has a kernel spanned by (0, 1), is insensitive to the
undetermined ψ0 and the recurrence progresses unhindered.

As seen in the example, the finite-dimensional formulation of the recurrence, with
ψn appearing at different places of the vectors involved in (11.1), makes the discus-
sion of the recurrence difficult to organize. An infinite-dimensional formulation has
an advantage at this stage: We consider whole sequences �i ∈ C

Z, fix initial values
�0 := (. . . , ψn, ψn+1, . . .) with specifically assigned initial data (ψn0 , ψn0+1) for
some fixed n0 (and with entries ψk other than ψn0 and ψn0+1 as dummy variables),
and evolve by applying suitable matrices to the sequences. In particular, we now
define the infinite-dimensional matrices

http://dx.doi.org/10.1007/978-1-4419-8276-6_4
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An =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1 0 · · · 0 0
0 1 0

. . .

1
... a(n)

...

1
. . .

0 1 0
0 0 · · · 0 1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.3)

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

1 0 · · · 0 0
0 1 0

. . .

1
... 0 −b(n) −c(n)

...

1
. . .

0 1 0
0 0 · · · 0 1

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.4)

where the entry a(n) in the diagonal An and the entries −b(n) and −c(n) in Bn

appear in row n − 1 (with −b(n) in column n, −c(n) in column n + 1). Then, we
iterate by solving the equations

An0−i�i+1 = Bn0−i�i

for i = 0, 1, . . . . Most of these infinitely many components of each equation are of
the trivial form ψk = ψk, except for one equation that determines ψn0−i−1 from the
two preceding values (if a(n0 − i) �= 0). After N steps, the sequence �N contains
N + 2 specific values for the wave function in terms of initial data.

In this form, we can generally formulate the condition of quantum hyperbolocity:
If one of the An is degenerate, such as A1 in the case of isotropic loop quantum
cosmology, we require that all Bn map kerA1 into itself. If this is the case, values
for ψn that remain undetermined owing to the non-invertability of A1 do not spoil
the further recurrence; those undetermined values will remain undetermined, but
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they will not be required to compute the rest of the wave function uniquely from
initial values. Generalizations to higher-order difference equations are easily done
in this form, as are generalizations to the case of multiple kernels: If several Am are
degenerate, we require that all Bn map

⋃
m kerAm into itself.

In a physical sense, the evolution is thus non-singular: initial values posed on
one side of n = 0 can uniquely be extended throughout the domain where a general
wave functionψn is defined. No extra input is needed to determine the wave function
once the classical singularity is passed. In loop quantum cosmology, this comes about
because the state |0〉 of vanishing volume decouples from the dynamics: the value the
wave function takes there remains undetermined, but it is not required for knowing
the wave function anywhere else. The singularity is eliminated, but not by excluding
states of vanishing volume by hand. Instead, it is the dynamics itself which decides
to step over such states, rejecting the singularity.

What is important here is the property that evolution across the classical singularity is unique
and happens without extra input. Even classically it is sometimes possible to extend space–
time solutions through a singularity in a distributional sense if the space–time metric is
not twice differentiable everywhere but leads to a diverging curvature tensor which can
be made sense of as a distribution on space–time. While this would allow one to define a
formal solution to Einstein’s equation at both sides of the singularity, retaining the singular
divergence but removing the singular boundary, such an extension is not unique. There is no
deterministic removal of classical singularities in this way. The difference equations of loop
quantum cosmology, on the other hand, uniquely extend the wave function across regions of
superspace which classically would be singular. This condition is similar in spirit to using
generalized hyperbolicity as a condition substituting geodesic incompleteness in classical
singularity theorems [1, 2].

Note also that quantum hyperbolicity applies to all wave functions solving the difference
equation. Thus, singularity removal is independent of properties of the physical inner product,
providing a very general mechanism. Specific pictures of non-singular space–times, such as
bounces, may require further details and then tend to be less general.

The kernel of A1 has a further consequence: imposing the difference equation,
and now defining the transition matrices T n0−1 : �0 → �n0−1 by

T n0−1 = A −1
2 B2 · · ·A −1

n0
Bn0 ,

leads to a state which must satisfy vT B1T n0−1�0 = 0 for any v ∈ kerA1 since
A1�n0 = B1�n0−1 = B1T n0−1�0. Thus for a kernel of dimension k we obtain
k independent linear conditions on the initial values in �0. Without specifying ini-
tial conditions, initial data are restricted by the dynamics. These are the dynamical
initial conditions [3, 4] discussed in specific cases before. In general, the number of
dynamical initial conditions on a wave function is determined by dim

⋃
m kerAm .

Similar considerations hold in anisotropic and even midisuperspace models, but
the analysis is more involved since ψn would not just be complex-valued but take
values in �2-spaces or even in products of such spaces with a large number of factors.
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11.2 Properties

For interpretations and physical applications, specific mathematical properties of
difference equations as they arise in loop quantum cosmology are of interest. The
main ones are stability, which is a statement about oscillating versus exponential
behavior of solutions, and asymptotic boundedness, which provides conditions for an
exponentially decaying rather than increasing solution. These properties are related
to physical Hilbert space issues, which will be discussed in a dedicated way in the
next chapter.

11.2.1 Stability

Difference equations in loop quantum cosmology are formulated for wave functions
on minisuperspace. There are regions, typically of large values of densitized-triad
components, where one expects all solutions to the constraint equation (or at least
a large set for certain initial values) to behave semiclassically. Thus, they should
be oscillatory and not increase (or decrease) exponentially. Even if one is using a
Hamiltonian constraint operator which is formally self-adjoint and has the correct
continuum limit (for instance if holonomy corrections vanish for δ → 0) stable
behavior in this sense is not guaranteed if one actually uses a finite non-zero step-
size. Analyzing stability and making sure that it is realized in all required regimes
provides stringent tests for the viability of a quantization scheme [5]. In loop quantum
cosmology, this is closely related to lattice refinement.

One can probe stability numerically by solving the tree-level equations obtained
by replacing the classically quadratic connection terms in the Hamiltonian constraint
with periodic functions of the connection as indicated by holonomy corrections. Such
a modified Hamiltonian in general does not correspond to an effective Hamiltonian
but only constitutes the tree-level approximation. (This means that there are no cor-
rections from quantum dynamics, but only from quantum geometry.) Normally, it
would be difficult to justify using these equations, for instance to analyze the fate of
classical singularities where quantum dynamics and quantum back-reaction should
be significant, too. But one can use these equations to test whether quantum geometry
remains tame enough in regimes which should be very nearly semiclassical. Here,
quantum back-reaction cannot be strong, and deviations of tree-level equations from
classical equations would indicate that the quantization is incorrect, or unstable in
the terminology of difference equations.

These methods, which have often been applied, can be used as tests of stability
in various cases, such as for Bianchi models [6–8] or the black-hole interior [9–
13]. Their drawback is that they rely on numerical evolutions which require an
analysis of a large number of different solutions to probe the full parameter space.
An elegant procedure to analyze stability in general terms, in a way insensitive
to picking specific initial values for solutions, is provided by generating-function
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techniques. This method also allows one to compute specific initial conditions for a
wave function of desired behavior. Another technique which applies more generally
and is more closely related to numerical tools is von-Neumann stability.

11.2.1.1 Generating Functions

Properties of solutions to a difference equation for coefficients ψm can conveniently
be collected in a generating function, defined as the function

G(x) =
∞∑

m=0

ψm xm (11.5)

of one variable x such that m!ψm is its m-th Taylor coefficient. Recurrence relations
forψm with non-constant coefficients are mapped to differential equations for G(x).
Each monomial m-dependent coefficient of ψm of some order k in the difference
equation will contribute a k-th order derivative to the differential equation for G(x).
At first order, we have the useful equation

∂(xk G(x))

∂x
=

∞∑
m=0

(m + k)ψm xm+k−1. (11.6)

These properties clearly show that generating functions are most suitable for dif-
ference equations with polynomial coefficients of low order. In loop quantum cos-
mology, difference equations often have non-polynomial coefficients (in particular,
square roots), but they can be approximated by polynomial ones in certain regimes
such as for large m. This is in fact the region where a stability analysis is most
important.

One manifestation of unstable behavior can often be found in rapidly oscillating
solutions of the form of a modulated (−1)m . This means that differences of adjacent
values of a solution ψm would be of the same order as ψm and converge to zero
only if the ψm themselves converge to zero (which would be acceptable since the
oscillation would be suppressed for large m). Such differences can be analyzed in
terms of the generating function [14] by looking at (1 − x)G(x) since

(1 − x)G(x) = ψ0 +
∞∑

m=0

(ψm+1 − ψm)x
m+1.

If this function is free of singularities at x = −1, the sequence ψm converges
to a finite value without oscillation. Knowing the generating function and studying
its poles thus allows one to find initial values for solutions ψm which evolve to a
converging value without short-scale oscillations.

Example 11.2 In the Taylor expansion of G(x) := (1 + x)−1, which satisfies
d((1 + x)G(x))/dx = 0 and may accordingly be viewed as a generating function
for solutions of a difference equation ψm+1 + ψm = 0, the coefficients of xm in



11.2 Properties 253

1

1 + x
= 1 − x + x2 − x3 + · · · (11.7)

have alternating sign, in accordance with the fact that there is a simple pole at x = −1.
Poles at x = 1 can imply different behaviors. Two examples of this are seen in the
expansions for (1 − x)−1,

1

1 − x
= 1 + x + x2 + x3 + · · · ,

and log(1 − x),

− log(1 − x) = x + 1

2
x2 + 1

3
x3 + · · ·

In the first, the coefficients of the sequence are of constant value (solvingψm+1 −
ψm = 0); in the second, they converge to zero. A function G(x) := − log(1 − x)
solves d((1 − x)dG(x)/dx)dx = 0, qualifying it as the generating function of (m +
1)ψm+1 − mψm = 0.

As we will discuss later, what is more relevant for the overall growth of coefficients
is the pole at x = 1 of (1 − x)G(x).

11.2.1.2 Von-Neumann Stability

Von-Neumann stability analysis in general applies to partial difference equations, but
also here one can reduce discussions essentially to an ordinary difference equation
by singling out one parameter as evolution variable and decomposing the rest by
orthogonal functions. Evolution is then determined by a time-dependent matrix,
whose eigenvalues reveal stability properties.

Higher-order equations can be reduced to a first-order equation for vector-
valued functions:

∑M
k=−M an+kψn+k = 0 is equivalent to a vector equation of

the form vn = B(n)vn−1 for vn = (ψn+M , ψn+M−1, . . . , ψn−M+1)
T . The evo-

lution of an eigenvector wn−1 with eigenvalue λ(n) of the matrix B(n) is given by
wn = λ(n)wn−1. Thus, when the size of the corresponding eigenvalue is |λ(n)| > 1,
the values in the sequence associated to wn−1 will grow as well. In this way, one can
provide a general analysis of the difference equations of loop quantum cosmology
and test in which regions of minisuperspace solutions with generic non-exponential
behavior are possible. If this overlaps with the whole range where semiclassical
behavior is expected, the model is consistent. This method was one of the first to
indicate that lattice refinement is necessary for consistent models of loop quantum
cosmology [15].

11.2.1.3 Bianchi I LRS Behavior

We first look at an LRS version of the Bianchi I model, a homogeneous model which
allows one rotational symmetry axis as also seen for black-hole interior models in
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Sect. 8.3. (See [15], and [16–18] for further examples.) This reduction leaves two
independent parameters in an invariant triad. After loop quantization (without lattice
refinement to be specific) and rescaling the wave function by the volume to simplify
coefficients, tm,n = V (m, n)ψm,n,we can bring (8.91)— without the γ 2-term in one
coefficients which arises from the intrinsic curvature of the Kantowski–Sachs model
but is absent in Bianchi I LRS—to the form of the partial difference equation

c(n)(tm−2,n−2tm,n+tm+2,n)+2d(m)(tm+1,n+1−tm+1,n−1−tm−1,n+1+tm−1,n−1) = 0
(11.8)

in two independent variables. Here,

c(n) =
{

0 if n = 0√
1 + 1/2n − √

1 − 1/2n otherwise
(11.9)

and

d(m) =
{

0 if m = 0
1/m otherwise.

(11.10)

Since tm,n includes the volume of each basis state, it must vanish at the minisu-
perspace boundaries: t0,n = 0 = tm,0 for all n and m. With t̃m,n = tm+1,n − tm−1,n
(m ≥ 1), we simplify the recursion relation further:

c(n)(t̃m+1,n − t̃m−1,n)+ 2d(m)(t̃m,n+1 − t̃m,n−1) = 0. (11.11)

There is no loss of information while going from t to t̃ because we can compute
tm+1,n = t̃m,n + tm−1,n once we know t̃ and use the boundary conditions for t.
Boundary values of t̃ are free.

We first reduce the partial difference equation (11.11) for t̃m,n to a set of ordinary
difference equations by separation, looking for solutions of the form t̃m,n = ambn .

Then am and bn must satisfy

am+1 − am−1 = 2λ

m
am, bn+1 − bn−1 = −λc(n)bn (11.12)

with a separation parameter λ. Any pair of solutions for these two sequences will
provide a solution to the original recursion relation.

The equation for am has polynomial coefficients (after multiplying with m) and
can easily be studied by generating functions (as in the preceding section). Oscil-
latory behavior of solutions is indeed likely: For negative λ, for instance, solutions
generically alternate in the signs of am and also grow unstably in size. Such a behav-
ior, realized even in regimes of large m which are supposed to result in semiclassical
behavior, cannot be allowed for acceptable solutions. In fact, for large m the right-
hand side of the first equation in (11.12) is usually small compared to the left-hand
side such that am+2 ≈ am . Going in even multiples of the basic step thus does not
show strong oscillations. The relation between neighboring values am+1 and am is

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
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then crucial to see whether or not oscillations arise. This behavior is determined by
the initial values a0 and a1 which give a2 = 2λa1 + a0. For negative λ, a2 can
easily have the opposite sign of a1 which translates to am having the opposite sign of
am+1 for large m and thus alternating behavior. (For positive λ it is easy to suppress
oscillations. However, since λ enters the equation for bn with the sign reversed, the
b-sequence will then develop alternating behavior.)

To determine the generating function for am, we multiply the difference equation
by mxm−1 and sum over all m ≥ 0 :

∞∑
m=0

((m + 1)am+2 − 2λam+1 − (m + 1)am) xm = 0. (11.13)

Multiplications with m can then be related to derivatives by x, such that

d

dx

(
G(x)− a0

x
− xG(x)

)
− 2λ

G(x)− a0

x

= d

dx

(
1 − x2

x
G(x)

)
− 2λ

G(x)

x
+ a0

1 + 2λx

x2 = 0

(11.14)

must be satisfied. This equation has singularities at x = −1, x = 0 and x = 1.
The pole at x = −1 will be of interest for the oscillatory behavior, as seen before in
general terms. Strictly speaking, the pole at x = 0 makes it difficult to Taylor expand
around it, although this procedure was used to introduce the generating function. But
this does not affect properties of formal expansion coefficients.

In fact, for the form of resulting equations it is convenient to eliminate the pole
at x = 0 by redefining

H(x) = G(x)− a0

x
(11.15)

which must satisfy

d

dx

(
(1 − x2)H(x)

)
− 2λH(x) = a0. (11.16)

We have eliminated one singularity in the differential equation and the new func-
tion is still related to solutions of our difference equation: Expanding

H(x) =
∞∑

m=0

αm xm, (11.17)
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and comparing with G(x) shows that

am = αm−1, for m ≥ 1. (11.18)

This simple shift clearly does not affect the oscillating behavior. Moreover, once
we know the two initial values of theαm-sequence,α0 (equalling a1) andα1 (equalling
a2), we can find those of the am sequence using

α1 − a0 = 2λα0. (11.19)

The question of main interest now is how to avoid alternating oscillatory behavior.
Because of the (1−x2) factor appearing in the differential equation (11.16) for H(x),
the function will in general have poles at x = ±1, and is regular for |x | < 1. If there
is no singularity at x = 1, we have (1 − x)H(x)|x=1 = α0 + ∑∞

m=0(αm+1 −αm) =
limm→∞ αm such that the sequence αm has a finite limit. Moreover, if there is no
pole at x = −1, we have limm→∞(αm+1 − αm) = 0 and alternating oscillations
are suppressed. Obviously, (1 − x)H(x) will have the same behavior at x = −1 as
H(x). The absence of a pole requires a relation between the two initial values α0
and α1.

We first solve the homogeneous equation (11.16) for a0 = 0 by H(x) =
c(1 + x)λ−1(1 − x)−λ−1. By varying the constant c we obtain the general
solution to the inhomogeneous equation as

H(x) = c(x)(1 + x)λ−1(1 − x)−λ−1 (11.20)

with

c(x) = a0

x∫ (
1 − t

1 + t

)λ
dt = c0 − 2λa0

λ− 1
(1+x)1−λ

2 F1(1−λ,−λ; 2−λ; (1+x)/2)

(11.21)

for λ �= 1 in terms of the hypergeometric function 2 F1. (If λ = 1, the equation
can be integrated in a manner similar to the λ = −1 case in the example below. As
mentioned, the case of negative λ is more interesting as regards oscillating behavior
in the am-solutions.) This gives

H(x) = c0(1+x)λ−1(1−x)−λ−1− 2λa0

λ− 1
(1−x)−λ−1

2 F1(1−λ,−λ; 2−λ; (1+x)/2)

(11.22)

where only the first term is relevant for the singularity structure at x = −1 since
the hypergeometric function 2 F1(a, b; c; z) is regular at z = 0 (taking the value
2 F1(a, b; c; 0) = 1 for all a, b, c). Thus, the singularity at x = −1 can always be
removed by choosing c0 = 0. Since

a1 = α0 = H(0) = c0 − 2λa0/(λ− 1)2 F1(1 − λ,−λ; 2 − λ; 1/2)

= c0 + a0 − λa0(ψ(1/2 − λ/2)− ψ(1 − λ/2))
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with the digamma function ψ(z) = d
(z)/dz, we have the condition

a1 = a0(1 − λ(ψ(1/2 − λ/2)− ψ(1 − λ/2))). (11.23)

This expression is finite for all λ that are not positive integers since the digamma
function is analytic except for simple poles at −z ∈ N. For λ = −1, for instance,
we can use ψ(1)−ψ(3/2) = 2 log 2 − 2 and obtain the special case studied in more
detail below.

At x = 1, 2 F1(a, b; c; (1 + x)/2) has a branch point which is logarithmic for
c − a − b ∈ Z or c − a − b �∈ Q. Thus, (1 − x)G(x) always has a singularity at
x = 1, for positive λ enhanced by the factor (1 − x)−λ−1. For λ > 0 the sequence
αm is unbounded.

Example 11.3 To be specific, we now choose λ = −1. With the initial condition
H(0) = α0 and the relation (11.19) between a0 and the initial values α0 and α1, we
obtain the solution

H(x) = α0 − (2α0 + α1)x − (4α0 + 2α1) log(1 − x)

(1 + x)2
. (11.24)

For generic α0 and α1, this function has singularities at x = ±1. To ensure that
the singularity at x = −1 does not give rise to oscillatory behavior at large m, we
require that

lim
x→−1

(
(1 − x)(1 + x)2 H(x)

)
= 0. (11.25)

Solving this relation implies

α1 = 4 log 2 − 3

2 log 2 − 1
α0

and so (1−x)H(x) is regular also at x = 1. (At x = 1, a singularity remains in H(x)
because of the log(1 − x) term, but (1 − x)H(x) is regular. With the logarithmic
behavior, coefficients of the Taylor series go as 1/m.) One can check that the pole
at x = 1 for λ > 0 is of higher order. Thus, those solutions will not be bounded, but
they do not show oscillations.

This example illustrates how precise conditions for initial values of sequences can
be found that give rise to solutions whose oscillations are damped. The same model
is also an interesting example for applying von-Neumann stability analysis. In fact,
the model used so far turns out to be unstable unless lattice refinement is taken into
account [15]. Difference equations then become more complicated with step-sizes
no longer being constant. In such a case, generating functions are more difficult to
find, but von-Neumann stability analysis can still be used. We will see this in the
following example, which turns out to be more restrictive than Bianchi I models.
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11.2.1.4 Kantowski–Sachs

The strongest restrictions on refinement analyzed so far arise for the Kantowski–
Sachs model describing a non-rotating vacuum black hole interior as in Sect. 8.3.
Since this is an anisotropic model, much a-priori freedom exists for possible refine-
ment schemes. However, the possibilities are strongly restricted by stability condi-
tions. In fact, so far no scheme has been formulated that would provide good be-
havior in all semiclassical regimes, especially near the horizon. But even in regimes
far from the horizon, where implications of the coordinate singularity present in the
Kantowski–Sachs form could be ignored, many possible refinements are ruled out.

Stability problems in the loop-quantized Kantowski–Sachs model were first seen
using generating functions [18]. It turns out that they can be resolved only with
non-trivial lattice refinements which require non-equidistant difference equations.
Generating functions are then less suitable, but von-Neumann analysis can still be
used.

We consider two choices of Nx and Nϑ to determine the lattice refinement as
discussed in Chap. 8. The simpler case is Nx ∝ √

τ and Nϑ ∝ √
μ which provides

a difference equation transformable to an equidistant one. (In the context of stability
it is sufficient to consider regimes of fixed sign of τ and μ; we thus drop absolute
values, assuming positive signs.) For large values of μ, τ, the coefficients (8.95),
(8.96) of the Hamiltonian constraint become

C±(μ, τ) ∼ 4δ
√
τ

μ
, C0(μ, τ) ∼ δ

τ
.

Asymptotically, the coefficients of the ψμ±2δ/
√
μ,τ and ψμ,τ terms in the difference

equation become C0(μ, τ)μ, which we insert into the Hamiltonian constraint equa-
tion (8.94). We also change variables to μ̃(μ) = μ3/2 and τ̃ (τ ) = τ 3/2,which makes
the lattice-refined steps almost equidistant: we can expand

μ(μ̃+ 3δ) = (μ̃+ 3δ)2/3 = μ̃2/3 + 2δμ̃−1/3 + · · · = μ+ 2δ/
√
μ+ · · ·

In a continuum approximation, the values of ψμ evaluated at μ + 2δ/
√
μ are thus

well approximated by the values of ψ̃μ̃ := ψμ(μ̃) evaluated at μ̃+ 3δ, up to higher
derivatives of the wave function which can be attributed to quantization ambiguities
and are irrelevant for semiclassical stability. We obtain the equidistant difference
equation [19]

4τ̃ (ψμ̃+3δ,τ̃+2δ − ψμ̃−3δ,τ̃+3δ + ψμ̃−3δ,τ̃−3δ − ψμ̃+3δ,τ̃−3δ)

+ μ̃(ψμ̃+6δ,τ̃ − 2ψμ̃,τ̃ + ψμ̃−6δ,τ̃ ) = 0.

(In general, a non-equidistant difference equation in one variable μ with steps eval-
uated at μ + kδμx is transformed to nearly-equidistant form by μ̃ = μ1−x , with
step-size kδ(1 − x).)

The asymptotic behavior can be seen from evolution on the integer lattice given
by varying m and n in μ̃ = 3mδ and τ̃ = 3nδ. Using n as our evolution parameter,

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_8
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we make the ansatz ψ3mδ,3nδ = um exp(inω) in order to test stability for evolution
in n. We obtain a recurrence relation

2in(un+1 − un−1)− m sin(θ)un = 0

for un, equivalent to the vector equation
(

un+1
un

)
=

(− 1
2 im sin(θ)/n 1

1 0

) (
un

un−1

)
. (11.26)

Stability is determined by the size of eigenvalues of the evolution matrix, which are

λ± = −im sin θ ±
√

16n2 − m2 sin2 θ

4n
.

For 16n2 − m2 sin2 θ ≥ 0, |λ| = 1 and the solution is stable; unstable modes
arise when 16n2 −m2 sin2 θ < 0. The most unstable mode corresponds to the choice
sin θ = 1, giving instabilities in terms of the original variables when μ > 4τ. In this
regime, all solutions behave exponentially rather than oscillatory. It includes parts
of the solutions for the Schwarzschild interior near the singularity, but also parts for
values of μ and τ where one expects classical behavior to be valid. Especially near
the horizon, but not just at the horizon withμ = 0, the stability condition is violated.
Irrespective of the physical inner product which would be used to evaluate such wave
functions for their observable information, instability implies that quantum solutions
in those regions cannot be wave packets following the classical trajectory. The correct
classical limit is not realized for a quantization based on the refinement scheme used
here.

For the choices Nϑ ∝ √
τ and Nx ∝ μ/

√
τ we will find that no instability

arises for large μ and τ. Now, there is no choice of variables that allows us to
asymptotically approach an equidistant recursion relation because of the mixing of
theμ and τ variables in the step-size functions. Instead, we will make the assumption
that in the limit of largeμ, τ the solution does not change much between lattice points
separated by steps of the size δN −1

x and δN −1
ϑ .

In the limit of large μ and τ the coefficient functions of the recursion relation to
leading order are now

C±(μ, τ) ∼ 4δ, C0(μ, τ) ∼ δ

μ
.

The difference equation to be analyzed then is

4(ψμ+2δ/
√
τ ,τ+2δ

√
τ/μ − ψμ−2δ/

√
τ ,τ+2δ

√
τ/μ

− ψμ+2δ/
√
τ ,τ−2δ

√
τ/μ + ψμ−2δ/

√
τ ,τ−2δ

√
τ/μ)

+ (ψμ+4δ/
√
τ ,τ − 2ψμ,τ + ψμ−4δ/

√
τ ,τ ) = 0.

We assume that we have a solution to this relation that does not vary much between
increments of μ by ±2δ/

√
μ, and similarly for τ. Both Nx and Nϑ are constant to
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first order in shiftsμ±2δN −1
x and similarly for τ, in the asymptotic limit. Thus, we

assume that α = 2δN −1
x and β = 2δN −1

ϑ are constants, and use the scalings μ =
αm and τ = βn.We get an equation similar to the case of Nx ∝ √

τ and Nϑ ∝ √
μ,

but with constant coefficients. Using the decomposition ψαm,βn = un exp(imθ), we
arrive at the matrix equation

(
un+1
un

)
=

(− i
2 sin θ 1

1 0

) (
un

un−1

)
. (11.27)

The relevant matrix has eigenvalues λ with |λ| = 1 for all m and n, and the solution
is stable.

Still, the lattice refinement found to be stable for large μ and τ cannot be a fully
satisfactory quantization of Kantowski–Sachs models. For classical solutions, small
curvature is realized not just for large densitized-triad components but also for small
μ, a regime which in the interpretation of a Schwarzschild black-hole interior would
be near the horizon. Quantum corrections should certainly be small in this regime,
but for the refinement scheme used we have a small vertex number Nx ∝ μ/

√|τ | for
smallμ.With a small number of vertices, discreteness corrections are large. Near the
horizon the refinement scheme has to deviate from what is given here, not because
of instability but to ensure small quantum-geometry corrections. In particular, we
cannot have a total vertex number N 2

ϑ Nx proportional to volume (or a positive
power of volume) since the volume μ

√|τ | drops off to zero near the horizon. Using
the relations

Nx (λ)vx (λ) = | p̃b(λ)|√| p̃c(λ)|
L , Nϑ(λ)vϑ(λ) = √| p̃c(λ)|

relating discrete and continuous geometries, the patch sizes vx have to decrease
sufficiently fast when the horizon is approached for Nx to remain large while p̃b

is decreasing. Note that we need not consider the horizon itself for this argument,
where the coordinates used for the homogeneous Schwarzschild slicing would break
down. It is sufficient to consider a near-horizon regime, which should be accessible
within the model and semiclassically.

11.2.2 Boundedness

In regimes which are either expected to be strongly quantum, such as those around
classical singularities, or classically forbidden, such as the large-volume region in
recollapsing models, solutions behave exponentially. This may happen in an unre-
stricted way—exponentially increasing or decreasing—in strong quantum regimes,
but in classically forbidden regimes one must pick the correctly decaying solution.
With two independent exponential solutions for a difference equation, picking the
decaying one out of all solutions most of which increase exponentially is a tough
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numerical task. It is thus important to find analytical tools to select initial values for
wave functions that evolve exactly into the decaying branch. Generating functions
can be used also here, but continued fractions provide an alternative powerful method
[20]. A numerical discussion in the case of the closed isotropic model can be found
in [21].

For an example, let us look at the difference equation

am+1 − am−1 = 2λm−1am .

As used before, it is not the difference equation of isotropic models, but arises when
the partial difference equation of an anisotropic model is separated, λ ∈ R being the
separation parameter. The generating function for solutions is

G(x) =
∞∑

m=0

am+1xm = c0(1 + x)λ−1(1 − x)−λ−1

− 2λa0

λ− 1
(1 − x)−λ−1

2 F1(1 − λ,−λ; 2 − λ; (1 + x)/2)

which was used before for stability but is also useful to determine asymptotic prop-
erties. For solutions to have oscillations with shrinking amplitude, G(x) must be
regular at x = −1 to guarantee that

∑
m(−1)mam is convergent. This is realized

only for special initial values of the solution to the difference equation, satisfying

a1/a0 = 1 − λψ(1/2 − λ/2)+ λψ(1 − λ/2)

with the digamma function ψ(z) = d log
(z)/dz. Moreover, the parameter c0 in
the generating function must vanish in this case. The initial values are determined
through a1 = G(0) while a0 already appears in the generating function.

Bounded solutions to the isotropic difference equations can also be controlled.
For asymptotic boundedness it is sufficient to consider large values of n such that
coefficients of the general equation simplify to

ψn+4 − 2ψn + ψn−4 = −�nψn (11.28)

written here for the flat vacuum model with a cosmological constant �, or

sn+4 + 2sn + sn−4 = �nψn (11.29)

for sn := (−1)n/4ψn .

In these equations we implicitly use the lattice-refinement parameter x = 0 for illustrative
purposes. Physically, the refinement is not sufficiently strong at large volume n where os-
cillations of the wave function stop in spite of classically unending expansion. The model
(11.28) is thus not realistic for all n, but it does provide an interesting mathematical exam-
ple. For the stronger refinement of x = −1/2, for instance, we obtain a difference equation
ψn+4 − (2 −�)ψn +ψn−4 = 0 with constant coefficients, easily solved by ψn = exp(ikn)
with cos 4k = 1 − �/2. For small positive Lambda, two independent solutions oscillating
for all n, no matter how large, result.
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Generic solutions exponentially increase for large n and numerically it is difficult
to pick the exponentially decaying and thus bounded one. Also here, we have to find
conditions on initial values of the solution ensuring boundedness, which are easier
to determine from the recurrence

h(n + 4) = �n − 2 − 1

h(n)
(11.30)

for h(n) := sn/sn−4. If we successively insert values of h(n − 4k), k = 0, 1, . . .
using the difference equation, we obtain an expression for h(n +4) in terms of initial
values at small n. For a bounded solution, we want h(n) to converge, which by the
considerations given is equivalent to the convergence of a continued fraction in terms
of initial values [20]. For sn, this translates to the condition

s0

s1
= �− 1

2�− · · · .

Continued-fraction methods are more widely applicable and can also be used for
other models. In the particular case considered here, or rather a Euclidean version
obtained by switching the sign of�, the ratio is of interest in comparison with exact
solutions of the equation in terms of Bessel functions [22]: the Euclidean analog of
(11.28) is solved by

ψn = C1 Jn/4+1/2�(1/2�)+ C2Yn/4+1/2�(1/2�)

which is bounded at large n only for C2 = 0. The integration constant is related to
initial values in the recurrence, for which we have the continued-fraction condition
of boundedness. Combining the conditions results in

Jm−1+1/2�(1/2�)

Jm+1/2�(1/2�)
= 2 + 4�m − 1

2 + 4�(m + 1)− 1
2+4�(m+2)−···

.

11.3 Non-Linear Loop Quantum Cosmology

Consider a spatial slice with a perturbatively inhomogeneous geometry around an
FLRW model, approximated as a collection of isotropic patches whose individual
geometries are all similar and nearly uncorrelated. In an idealization of identical
isotropic geometries, independently characterized by (c̄i , p̄i ), we write the inhomo-
geneous state as

ψinhom(c̄1, p̄2, c̄2, p̄2, . . .) ≈
∏

i

ψiso(c̄i , p̄i ). (11.31)
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In this case, the state should not differ from an exactly isotropic one, but as
an inhomogeneous state it is subject to different dynamics. We view the isotropic
geometries as a collection of points in minisuperspace, in this picture having a many-
particle state. If we expand the spatially integrated inhomogeneous Hamiltonian
constraint around the isotropic one,

C(A, E) =
∑

i

Ciso(c̄, p̄)+ C (2)(δA, δE) (11.32)

to second order with δE ∼ p̄i+1 − p̄i and δA ∼ c̄i+1 − c̄i (or some other differencing
scheme whose precise form is not important here), we obtain the isotropic (one-
particle) Hamiltonian to leading order and a (two-particle) interaction term C (2) =∑

i, j Ci, j between different isotropic geometries in minisuperspace. (There is no
interaction in space. For the strength of interaction terms, the difference in geometries
is important, not the difference in spatial positions of the patches.)

With the inhomogeneous state and a quantization of the expanded Hamiltonian
we compute the quantum Hamiltonian

CQ = 〈ψinhom|Ĉ|ψinhom〉 =
∑

i

C iso
Q +

∑
i j

∫ ∫
(ψ∗

iso)
2Ĉi jψ

2
iso. (11.33)

In the second term, two factors ofψiso remain fromψinhom due to the two-particle
interaction. Hamiltonian evolution of the inhomogeneous system with the coupling
term of higher order in the wave function, after picking an internal time, is then
equivalent to non-linear Schrödinger evolution. For instance, if the coupling term is
a delta-function, the discrete non-linear Schrödinger equation

i�
∂ψn

∂t
= ψn+1 − 2|ψn|2ψn + ψn−1 (11.34)

is obtained. (In this case, the derivation is analogous to the Gross–Pitaevski equation
following for a Bose–Einstein condensate.) A delta-function interaction is not real-
istic in the cosmological case, which rather provides polynomial interaction terms.
Then, the non-linearity will be different and spans several increments in the difference
equation, but is still strictly related to the form of the interactions.

This example illustrates how inhomogeneous features could be captured by non-
linear effects in the homogeneous description, rather than providing a fundamentally
non-linear wave equation as for instance in [23, 24].
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Chapter 12
Physical Hilbert Spaces

The Wheeler–DeWitt equation or the difference equation of loop quantum cosmology
present a constraint that states have to satisfy, analogous to the Friedmann equation
which is a constraint in canonical relativity. Zero eigenvalues of the constraint oper-
ator are thus to be found. For the difference equation (4.15) encountered for isotropic
models there is in fact a kinematically normalizable eigenstate of zero eigenvalue,
given byψμ = δμ,0.This state, however, is supported only on the classical singularity
and of no interest to describe an expanding universe.

Sometimes also interesting states can correspond to normalizable zero-eigenstates,
for instance if they belong to a model in which all solutions recollapse, requiring
exponentially decaying wave functions at large volume. But in general one has to
deal with states that belong to a zero eigenvalue as part of the continuous spectrum,
and which cannot be normalizable in the kinematical inner product as it is defined
on the Bohr Hilbert space. Then, solutions to the constraint equation cannot form a
subspace of the kinematical Hilbert space but constitute a new physical Hilbert space
to be constructed by endowing the solution space with a physical inner product. Sev-
eral techniques to do so exist, but explicit constructions are complicated in general
models. For a reparameterization–invariant system as realized by models of general
relativity, the physical Hilbert space issue is often related to the problem of time.

12.1 Group Averaging

One method to derive a physical Hilbert space for a given constrained system is group
averaging [1]. It applies in particular if all the constraints to be solved generate a
unitary group action on the kinematical Hilbert space. One can then integrate over
the group to ensure that states considered are invariant under the action.

For a single self-adjoint constraint Ĉ, the unitary group action is Abelian:
exp (itĈ), t ∈ R. Starting with an arbitrary kinematical state |ψ〉, an averaged state
is obtained by integrating exp (itĈ)|ψ〉 over all values of t. The integration does
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not necessarily exist for all states, and the result may not be another normalizable
state. However, for states |ψ〉 in a suitable dense set D ⊂ H the integration can
be made sense of as a distribution: a linear functional 〈ηψ | : D → C mapping every
state |φ〉 ∈ D to a complex number. This number is defined by

〈ηψ |φ〉 =
∞∫

−∞
dt〈ψ |exp(itĈ)|φ〉. (12.1)

Heuristically, one can interpret
∫ ∞
−∞ dtexp(itĈ) = δ(Ĉ) as a delta-function whose

insertion ensures that the action of Ĉ on states vanishes. The distributional, group-
averaged state may then be written as ηψ = δ(Ĉ)ψ which is not normalizable
in the kinematical inner product because one would have to multiply two delta-
functions before integrating. The group-averaging inner product makes sense of such
an expression by elegantly removing one of the delta-functions, making the integral
well-defined and invariant under the group action.

In a similar way, symmetric states, obtained not by implementing first-class con-
straints but by imposing symmetry, can be interpreted as ordinary states multiplied
with delta-functions to make a state vanish on non-symmetric configurations. Dis-
tributional techniques similar to group averaging have been used to make sense of
the reduced state spaces, giving rise to the models of loop quantum cosmology as in
Sects. 8.2.5 and 10.1.2.2.

The space of distributions on D, called D ′, does not carry a natural inner product.
But on its subspace obtained by group averaging one can easily introduce one. Given
two such distributions 〈ηψ | and 〈ηφ |, we define the bilinear form

〈ηφ |ηψ 〉phys :=
∞∫

−∞
dt〈φ| exp(itĈ)|ψ〉. (12.2)

On the right-hand side we use kinematical states |φ〉 and |ψ〉 averaged to |ηφ〉 and
|ηφ〉, respectively. Such states are not unique, but thanks to unitarity of the group
action the integral in the definition of 〈ηφ |ηψ 〉phys does not depend on which repre-
sentative is chosen: Any other states averaging to the same distributions must be of
the form |φ′〉 = exp(iuĈ)|φ〉 and |ψ ′〉 = exp(ivĈ)|ψ〉 with real u and v, such that

∞∫

−∞
dt〈φ′| exp(itĈ)|ψ ′〉 =

∞∫

−∞
dt〈φ| exp(i(t + v − u)Ĉ)|ψ〉 =

∞∫

−∞
dt ′〈φ| exp(it ′Ĉ)|ψ〉.

Factoring out a possible kernel of the bilinear form and Cauchy-completing the
space provides the physical Hilbert space. Uniqueness properties and examples can
be found in [2–4].

Alternatively, one can understand the procedure by first introducing a parameter
λ along the unitary flow generated by the constraint operator on arbitrary states:

http://dx.doi.org/10.1007/978-1-4419-8276-6_8
http://dx.doi.org/10.1007/978-1-4419-8276-6_10
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Ĉ |φλ〉 = i
d

dλ
|φλ〉. (12.3)

One thus deals with the constraint in a way similar to a Hamiltonian providing
a Schrödinger-type equation. A family of states solving the Schrödinger equation
(12.3) is a solution to the constraint only if it is actually λ-independent such that
Ĉ |φλ〉 = 0 follows from d|φλ〉/dλ = 0. In the solution space, this can be achieved
by integrating overλ and defining |φ〉 = ∫ ∞

−∞ dλ|φλ〉.The state |φ〉 is then annihilated

by the constraint, and noting that we can always write |φλ〉 = exp(−iλĈ)|φ0〉 thanks
to the Schrödinger equation |φλ〉 satisfies, we recognize |φ〉 as the group average
of |φ0〉. In general one has to be careful with commuting the action of Ĉ and the
λ-integration. This is taken care of in the detailed procedure of group averaging by
selecting an appropriate dense set D .

Example 12.1 Self-adjointness is not always required for group averaging integrals
to exist, but violations can have undesired consequences. First taking the simple
self-adjoint case Ĉ = i∂x , the flow equation −∂xφλ(x) = ∂λφλ(x) has the general
solution φλ(x) = φ(λ+ x) which easily integrates over λ to a constant independent
of x . Now looking at the constraint Ĉ = ∂x which is not self-adjoint, we have
φλ(x) = φ(λ + ix) as the general solution of the flow equation. Interpreting this
general solution as an arbitrary holomorphic function on the complex plane with
coordinate λ+ ix, the λ-integration is performed along a line parallel to the real axis
but shifted by an amount of x . Clearly, φ must fall off at infinity for the integration
to exist. Since any bounded entire function is a constant according to Liouville’s
theorem, the only pole-free function allowed is the trivial zero function. Otherwise,
φ must have poles on the complex plane. But then, changing x and shifting one of the
integration contours past a pole with non-vanishing residue will change the value of
the integration. Except for the zero solution, averaged solutions cannot be constant
and independent of x, as one would expect it for the constraint ∂x . They are only
piecewise constant and include discontinuous steps at values of x corresponding to
the imaginary parts of poles of φ.

Example 12.2 ([5]). Let the constraint be Ĉ = −ax̂ p̂ + b with two constants a and
b which may be complex-valued. To implement group averaging we first solve the
flow equation

(ax i∂x + b)φλ(x) = i∂λφλ(x)

in the x-representation. The general solution is

φλ(x) = e
1
2 ib(a−1log(x)−λ) f (log(x)/a + λ)

with an arbitrary differentiable function f. This solution realizes the flow of the
constraint on the state space. To proceed further and integrate over λ, it is useful
to Fourier transform f provided that a is real: f (u) = (2π)−1

∫ ∞
−∞ dωe−iωu f̃ (ω).

Then,
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∞∫

−∞
dλφλ(x) = e

1
2 iblog(x)/a

∞∫

−∞

dω

2π
e−iωlog(x)/a f̃ (ω)

∞∫

−∞
dλe−i(ω+b/2)λ

if we are allowed to commute the integrations. If b is real, the λ-integration results in
δ(ω + b/2) and we have invariant solutions φ(x) ∝ eiblog(x)/a . If b is not real, the
integration would have to be done more carefully, and appropriate fall-off conditions
for f̃ would be required for convergence.

12.2 Observables

Physical observables are self-adjoint operators on the physical Hilbert space. If one
knows a kinematical operator Ô which commutes with the constraint Ĉ, then called
a Dirac observable, its action can directly be taken over to group-averaged states by
the dual action:

〈Ôηψ |φ〉 := 〈ηψ |Ô†|φ〉 =
∞∫

−∞
dt〈ψ | exp(itĈ)Ô†|φ〉 (12.4)

provides an action on physical states. It is independent of the representative chosen:
Another one is related to |φ〉 by |φ′〉 = exp(iuĈ)|φ〉 with a real number u that just
adds to t in the integration without changing the result. If Ô does not commute with
Ĉ one may still define its action on physical states in this way, but the notion is
ambiguous: it depends on which representative |ψ〉 is chosen for the physical state
|ηψ 〉 before averaging the right-hand side.

A natural action of operators not commuting with the constraint on physical states
is obtained for evolving observables, a special class of relational observables [6–10],
provided one manages to write the constraint as Ĉ = −i�∂ϕ + Ĥ with a suitable
phase–space variable ϕ (called internal time) and a ϕ-independent Ĥ . Then,

Ô(ϕ) = e−iϕ Ĥ/�Ôeiϕ Ĥ/� (12.5)

provides parameterized families of operators commuting with the constraint Ĥ −
i�∂ϕ :

[Ô(ϕ), Ĉ] = i�∂ϕÔ(ϕ)+ exp(−iϕ Ĥ/�)[Ô, Ĥ ] exp(iϕ Ĥ/�) = 0.

Here, we crucially use the ϕ-independence of Ĥ , which implies i�∂ϕÔ(ϕ) =
exp(−iϕ Ĥ/�)Ĥ Ô exp(iϕ Ĥ/�)− exp(−iϕ Ĥ/�)Ô Ĥ exp(iϕ Ĥ/�). A physical state
is thus mapped into a physical state by Ô(ϕ).

Virtues and disadvantages of evolving observables have been discussed in [11].
Evolving observables satisfy the equation
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∂〈Ô(ϕ)〉
∂ϕ

= −〈[Ô, Ĥ ]〉
i�

. (12.6)

Notice the minus sign, to be commented on at the end of Sect. 12.3.1.

12.3 Internal Time

Solving quantum constraints and computing observable quantities is often facilitated
if global internal-time variables exist; most of the explicit techniques even rely on
that feature: the existence of simple phase–space functions that can be used as global
parameters in dynamical solutions. We have already seen this in the preceding section,
where the existence of a phase–space variable ϕ allowing us to write the constraint
as a linear momentum of time ϕ plus a time-independent Hamiltonian, providing
general expressions for observables. This procedure is called deparameterization.

12.3.1 Non-Relativistic Parameterized Systems

Constraints are rather simple to solve if a phase–space variable ϕ exists such that they
take the form Ĉ = p̂ϕ + Ĥ where H is independent of ϕ and its momentum pϕ.One
can then replace the constraint equation Ĉ |ψ〉 = 0 by a conventional Schrödinger
flow in the internal time ϕ. If Ĥ in this decomposition is self-adjoint, a physical inner
product can be defined using the kinematical one at any fixed value of ϕ.

Physical states in such a case are solutions to the Schrödinger equation

i�∂ϕψ(ϕ) = Ĥψ(ϕ)

and thus clearly depend on the internal time ϕ. In contrast to the discussion of general
constraints where we introduced an identical equation in terms of λ instead of ϕ,
however, no further averaging is necessary: ϕ represents a variable on the phase
space of the system, not an auxiliary quantity to reformulate the equations. The
constraint equation Ĉ |ψ〉 is solved by the Schrödinger flow, and we can easily define
the physical inner product

〈ψ1(ϕ)|ψ2(ϕ)〉phys = 〈ψ1(ϕ0)|ψ2(ϕ0)〉ϕ0

in terms of the kinematical inner product of unconstrained states, assumed to take
the form 〈·|·〉 = ∫

dϕ〈·|·〉ϕ. We are thus dropping one ϕ-integration and replace it
with evaluation at some fixed ϕ0. Since the inner product is preserved by any unitary
ϕ-evolution, the physical inner product is independent of the choice of ϕ0.

A complete set of observables can formally be constructed in the evolving-
observable sense. First, p̂ϕ is clearly an observable since we assumed Ĥ to be ϕ-
independent: [ p̂ϕ, Ĉ] = 0. Any kinematical operator Ô other than ϕ̂ can be made
into an evolving observable
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Ô(ϕ) = exp(−i(ϕ − ϕ0)Ĥ/�)Ô exp(i(ϕ − ϕ0)Ĥ/�) (12.7)

mapping physical solutions into other physical solutions. Properties such as expecta-
tion values in physical states can simply be computed by the restricted inner product
〈·|·〉ϕ0 .

Example 12.3 (Linear Hamiltonian) For Ĥ = p̂, the Schrödinger equation ∂ϕψ =
−∂qψ has the general solution ψ(ϕ − q). We immediately see that the motion of
the expectation value 〈q̂〉 must be linear in internal time ϕ, and that the initial shape
of the state is preserved during the motion. While p̂ is already an observable, the
position observable must be an evolving one:

Q̂ = exp(−i(ϕ − ϕ0) p̂/�)q̂ exp(i(ϕ − ϕ0) p̂/�) = q̂ − (ϕ − ϕ0) (12.8)

(using [q̂, f ( p̂)] = i� f ′( p̂)). Thus, ∂〈Q̂〉/∂ϕ = −1, in accordance with (12.6). At
this stage, we can explain the possibly unexpected minus sign in (12.6), opposite of
what one normally has for Schrödinger evolution, for instance in (5.9). We invert
(12.8) to write q̂(ϕ) = Q̂ +ϕ−ϕ0,where Q̂, as a Dirac observable, is a constant of
motion. For the time-dependent expectation value 〈q̂〉(ϕ)we then have d〈q̂〉/dϕ = 1,
with the expected sign. In general, the inversion involved in the transition between
observables and internal-time dependent operators is the origin of the sign difference
between (12.6) and (5.9).

12.3.2 Relativistic Parameterized Systems

Relativistic systems have constraints of the form Ĉ = p̂2
ϕ− Ĥ2, and are deparameter-

izable if Ĥ does not depend on ϕ. They can thus be brought into the non-relativistic
parameterized form only by taking a square root, which requires sign choices. To view
the resulting equations as those corresponding to a system with definite frequency
sign of ϕ-evolution, one factorizes

p̂2
ϕ − Ĥ2 = ( p̂ϕ + |Ĥ |)( p̂ϕ − |Ĥ |).

The two sectors of solutions annihilated by either of the two factors correspond to
positive and negative frequency, respectively. Within these sectors, solutions can also
be classified by the sign of Ĥ , which are called right-moving and left-moving by
analogy with the case Ĥ = p̂ for a free, massless relativistic Klein–Gordon particle.

For a simple form of Ĥ , such as p̂2 +m2 for a free relativistic particle of mass m,
one can formulate a complete inner product, find all physical solutions and derive
properties such as the ϕ-dependence of expectation values and moments. A useful
formulation employs a Dirac-style procedure to take the square root in terms of
matrices [12]. Others are based on Fourier transformation.

Example 12.4 (Klein–Gordon inner product) For a free, massless relativistic particle
we consider the constraint E2 − p2 = 0, quantized to

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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∂2ψ

∂t2 − ∂2ψ

∂x2 = 0

Solutions can easily be found as ψ(t, x) = ψ+(x + t) + ψ−(x − t) with arbitrary
ψ+ and ψ−. The inner product is easiest to discuss after a Fourier transformation,
for which we consider wave functions satisfying (ω2 − k2)ψ̃(ω, k) = 0. Thus, ψ̃ is
supported only on ω = |k| (positive frequency) or ω = −|k| (negative frequency).

The Klein–Gordon bilinear form

(ψ1, ψ2) = i
∫

dx

(
ψ∗

1
∂ψ2

∂t
− ∂ψ∗

1

∂t
ψ2

)

is preserved in time for solutionsψ1 andψ2 to the Klein–Gordon equation. However,
it does not directly provide an inner product because it is not positive definite:

(ψ1, ψ2) =
∫

dx

(∫
dk1ψ̃

∗
1 ei(ω1t−k1x)

∫
dk2ω2ψ̃2e−i(ω2t−k2x)

+
∫

dk1ω1ψ̃
∗
1 ei(ω1t−k1x)

∫
dk2ψ̃2ei(ω2t−k2x)

)

=
∫

dk(ω1(k)+ ω2(k))ψ̃
∗
1 ψ̃2e−i(ω1(k)−ω2(k))t

shows that there are three different cases:

• ψ1 = ψ2, positive frequency: ψ̃1 supported on ω = |k|. Then, (ψ1, ψ1) =
2

∫
dk|k|ψ̃∗

1 ψ̃1 > 0 and we have positive Klein–Gordon norm.
• ψ1 = ψ2, negative frequency: ψ̃1 supported on ω = −|k|. Then, (ψ1, ψ1) =

−2
∫

dk|k|ψ̃∗
1 ψ̃1 < 0 and we have negative Klein–Gordon norm.

• ψ1 and ψ2 of opposite frequency signs, e.g. ω1 = |k1|, ω2 = −|k2|. Then,
(ψ1, ψ2) = 0 and the solutions are orthogonal.

A Hilbert space with a definite inner product can be defined as (H , 〈·, ·〉) =
(H+, (·, ·))⊕ (H−,−(·, ·)) [13].

Example 12.5 (Relativistic harmonic oscillator [14]). We consider a system with
two degrees of freedom q and ϕ with momenta p and pϕ, subject to the constraint

Ĉ = p̂2
ϕ − p̂2 − q̂2.

Physical states must solve the equation

i�
∂

∂ϕ
ψ(q, ϕ) = ±

√
p̂2 + q̂2ψ(q, ϕ)

and can be written as

ψ±(q, ϕ) =
∞∑

n=0

cnφn(q) exp(∓iλnϕ/�)
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in terms of harmonic-oscillator eigenstates φn(q), λn = √
(2n + 1)�. The constants

cn in this general solution are determined by “initial” values chosen at a fixed value
of ϕ. For instance, using the well-known harmonic-oscillator coherent states at ϕ = 0
(in the present context playing the role of a kinematical coherent state), we have

cn = exp

(
−|z|2

2

)
zn

√
n! , z ∈ C

such that

ψ(q, 0) =
(

2

π

)1/4

exp

(
−1

2
|z|2 − z2 + 2q2 − 4izq)

)

The corresponding evolving state has coefficients

cne−iλnϕ/� = 1√
n!e−|z|2/2zn exp(−i

√
2n + 1ϕ/

√
�)

and is non-coherent for ϕ �= 0, but may be considered as a physical semiclassical
state for some time of the evolution [14].

In general, the construction of physical semiclassical states via wave functions
can be surprisingly subtle. For instance, in the physical Hilbert space underlying
loop quantum cosmology sourced be a free massless scalar [15], one may choose
Gaussian states at a fixed value ofϕ and evolve withϕ as internal time. If the Gaussian
is sharp enough, one expects to have a good semiclassical state with small volume and
curvature fluctuations. However, an actual computation of the fluctuations reveals
that in this innocent-looking state they are infinite [16]. One can define semiclassical
states via the moments, as already used in Chap. 5, but reconstructing the form of a
wave function from given fluctuations or higher moments is highly non-trivial.

12.4 Examples in Quantum Cosmology

If ϕ is taken as the free massless scalar field in a model of quantum cosmology,
one can use the procedures seen here to derive physical Hilbert spaces and their
properties. As already used for the solvable models of Chap. 5, one can rewrite the
Friedmann equation as a relativistically deparameterizable constraint

p2
ϕ − 16πG

3
(1 − x)V 2 P2 = 0 (12.9)

in the canonical variables (5.3). ; see (5.4). In a similar form, physical Hilbert spaces
for the Wheeler–DeWitt quantization of this constraint have been introduced in [17].
The ϕ-Hamiltonian is then the one used in the discussion of solvable models. Anal-
ogously, holonomy corrections and inverse-triad corrections of loop quantum cos-
mology can be included in the Hamiltonian before applying the same techniques to

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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compute the physical Hilbert space [15, 18]. In addition to this extension of the meth-
ods of [17] to loop quantum cosmology, [15, 18] have provided detailed numerical
tools to compute physical states and extract observables. An alternative derivation
of the physical Hilbert space for such systems, based on a Dirac-style first-order
formulation of the constraint operator quadratic in p̂ϕ can be found in [12].

For meaningful physical evolution in internal time it is important that the ϕ-
Hamiltonian is self-adjoint. As shown by [19] and [20], the ϕ-Hamiltonian of
isotropic loop quantum cosmology is essentially self-adjoint for the flat and closed
models with vanishing (or negative) cosmological constant. With a positive cosmo-
logical constant, however, the Hamiltonian is not essentially self-adjoint [21]. This
property is related to the fact, mentioned in Sect. 5.4.1.3, that the classical volume
diverges at a finite ϕ. A semiclassical state thus reaches the boundary at infinity in a
finite amount of internal time, and must be reflected back in order to preserve prob-
ability. Reflection conditions for wave functions are not unique and do not follow
from classical physics; thus, there is no unique self-adjoint extension of the quantum
Hamiltonian. Physical interpretations of the reflection and possible extensions of
the dynamics are questionable, however, because infinite volume requires an infinite
amount of proper time to be reached.

Another approach to construct a physical inner product is based on spin–foam models [23], a
suggested covariant, path-integral like version of loop quantum gravity which has branched
out into quantum cosmology. The first construction of spin–foam motivated physical inner
products in quantum cosmology was done for a model without matter but a positive cosmo-
logical constant [22]. More recently, a more general formulation of spin–foam cosmology
has been attempted [24, 25] and is still being developed. Well-known results of loop quan-
tum cosmology regarding physical Hilbert spaces can then be used to shed light on more
complicated constructions for general spin foams [26–31].

Constructions of physical Hilbert spaces in quantum cosmology are straightfor-
ward applications of standard methods if there is no non-trivial matter potential,
such that the resulting Hamiltonians are indeed ϕ-independent. Otherwise the whole
procedure complicates enormously to the degree of being intractable. If deparame-
terization is formally applied to models without good internal time, instead using a
variable with turning point (a zero of its momentum along a physical solution) for
a description local in time, the system freezes at the turning point [32, 33]. At this
point, or even before the freeze-out [34], it is difficult to decide which aspects of
the physical state can still be trusted. Transformations to a new time variable which
remains valid around the turning point of the old time would have to change the
physical Hilbert space, whose construction is based on the choice of time for de-
parameterization. Even if the physical Hilbert space could be derived completely,
such transformations would be difficult to perform. Moreover, time must be chosen
before quantization in such a setting, and different choices of time give rise to dif-
ferent quantum representations with possibly differing physics. Here, effective tools
to address physical Hilbert space issues become essential to understand physical
properties of generic models in loop quantum cosmology, as introduced in the next
and final chapter.

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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Chapter 13
General Aspects of Effective Descriptions

Effective actions or equations are always a powerful tool to analyze general effects
of a quantum theory. They can be difficult to derive, but once obtained at least in an
approximate form they allow detailed studies and provide more intuition than what
can be obtained from dealing with wave functions. Key for their derivation is the
availability of a simple solvable model in which quantum properties can be obtained
in an exact and compact form. In quantum mechanics, this sovable model is the
harmonic oscillator, which in the form of free field theories also appears as the firm
solvable basis for quantum field theory on a background space-time. Perturbation
theory around the solvable model allows one to include anharmonicities, interactions
or extra fields. The harmonic cosmology of a free massless scalar in a flat, isotropic
universe plays the solvable role for quantum cosmology.

13.1 Canonical Effective Equations

For a canonical quantization such as loop quantum cosmology we have to use a
Hamiltonian way of deriving effective equations. We start with a ∗-algebra A of
operators, possibly together with a representation on a Hilbert space H .A represen-
tation would help us in dealing with pure states, but our discussion here will be at the
general level of density states which may be mixed. We will focus on operators whose
algebra, rather than representation, turns out to be more important; most statements
in this chapter are representation-independent. (The algebra of observables is crucial.
We will be able to distinguish between a Wheeler–DeWitt quantization and a loop
quantization because the latter contains only holonomies of connection components
which obey different algebraic relations with fluxes. Once the algebra of operators
is fixed, crucial consequences are captured independently of whether a Schrödinger
or Bohr representation is introduced.)

M. Bojowald, Quantum Cosmology, Lecture Notes in Physics 835, 275
DOI: 10.1007/978-1-4419-8276-6_13, © Springer Science+Business Media, LLC 2011
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13.1.1 States and Moments

A state is a positive linear functional ω : A → C on the ∗-algebra, that is a linear
functional satisfying ω( Â∗ Â) ≥ 0 for all Â ∈ A as well as ω( Â∗) = ω( Â)∗.
(The latter property can be derived if the algebra is unital, as we normally assume.)
One example is a pure state ψ in a Hilbert-space representation of A , for which
ωψ( Â) = 〈ψ, Âψ〉, or a density matrix ρ for which ωρ( Â) = tr( Âρ). The notion
of states allows us to view observables in the algebra A in a “classical” way as
functions on a phase space. We first introduce the space on which these functions are
defined as the space P of all states ω on the algebra. Any element A of the algebra
then defines a function 〈 Â〉 : P → C, ω �→ ω( Â). As the notation indicates, this
function is nothing but the expectation-value functional associated with Â.

13.1.2 Quantum Phase Space

Classical observables are real-valued functions on the phase space. Accordingly,
we require that quantum observables Ô provide real expectation-value functionals
〈Ô〉, a large class being self-adjoint ones: Ô∗ = Ô. Moreover, classical observ-
ables are functions on a phase space, which is equipped with a Poisson bracket. For
expectation-value functionals, we introduce

{〈 Â〉, 〈B̂〉} = 〈[ Â, B̂]〉
i�

. (13.1)

For functions obtained as products or other expressions in terms of expectation-
value functions, we extend the Poisson bracket using linearity and the Leibniz rule.
It follows from the properties of the commutator that this is indeed a Poisson bracket.
(Note that we define the Poisson bracket by (13.1). It is not required to equal the
classical Poisson bracket for all expressions corresponding to Â and B̂. In general, it
will be identical to the classical Poisson bracket only if Â and B̂ are basic operators.)

For explicit calculations, it is often most useful to choose coordinates. There is
a natural choice if we have a distinguished set of basic operators in our algebra,
which form a closed subalgebra under taking commutators and which can be used to
generate all other elements in the algebra by their products. For quantum mechanics,
these basic operators would usually be taken as the position and momentum operators
q̂ and p̂ with [q̂, p̂] = i�, but one may use other versions such as eiμc/2 and p̂ with
[eiμc/2, p̂] = − 4

3πγ �
2
Pμeiμc/2 in loop quantum cosmology, or entire smeared field

algebras in quantum field theory and the holonomy-flux algebra in loop quantum
gravity.

Let us assume that we have a set of basic operators Ĵi , i = 1, 2, . . . , N , which
is linear and closed under taking commutators: [ Ĵi , Ĵ j ] = i�Ck

i j Ĵk . (For a canonical

algebra, we allow the identity Ĵ = 1̂I as a possible basic operator.) Expectation-
value functionals of the basic operators then satisfy the same Poisson algebra:
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{〈 Ĵi 〉, 〈 Ĵ j 〉} = Ck
i j 〈 Ĵk〉. But they do not provide a complete set of coordinates on

the space of all functions on P because in general we have 〈 Ĵi Ĵ j 〉 	= 〈 Ĵi 〉〈 Ĵ j 〉, and
no other general relation between 〈 Ĵi Ĵ j 〉 or other expectation values of products and
the basic expectation values of Ĵi exists. In fact, even if the basic algebra is finite,
as in quantum mechanics or homogeneous models of quantum cosmology, the space
of states is usually infinite-dimensional. (Exceptions are cyclic finitely generated
algebras as they occur for spin systems; see the examples below.) Expectation-value
functionals of products of the basic operators, called moments, provide the remaining
coordinates. Unless there are non-trivial relations between operators in the algebra,
all moments of density states are independent and in fact of infinite number.

It is convenient to define moments not directly as expectation-value functionals
of products of basic operators but in the form already introduced in (5.23):

�(O1 O2 · · · On) :=
〈
(Ô1 − 〈Ô1〉)(Ô2 − 〈Ô2〉) · · · (Ôn − 〈Ôn〉)

〉
symm

= 1

n!
∑
π∈Sn

〈
(Ôπ(1) − 〈Ôπ(1)〉)(Ôπ(2) − 〈Ôπ(2)〉) · · · (Ôπ(n) − 〈Ôπ(n)〉)

〉

(13.2)

where we totally symmetrize to remove redundancy due to re-ordering. (Moreover,
symmetrization makes the moments real provided the Ôi used are self-adjoint.) These
moments are non-trivial only for n ≥ 2 since 〈(Ô −〈Ô〉)〉 = 0 for normalized states.
At second order, we use the standard notation (�O)2 = �(O2).

With this choice of moments, it is guaranteed that expectation-value functionals of
the basic operators Poisson commute with their moments: {〈Ô〉,�(O1 O2 . . .)} = 0
provided the basic operators Ô, Ô1 and Ô2 satisfy a canonical algebra. This property
often provides computational advantages, but even for non-canonical basic operators
the choice of moments in this form is useful because they are all expected to be small
in a semiclassical state, or vanish in a classical correspondence. In this limit only the
basic expectation values remain and correspond to classical variables. Accordingly,
the moments (5.23) are sometimes called quantum variables. For the general Poisson
bracket of moments for canonical basic operators, see [1].

13.1.3 Relations

With expectation-value functionals and the moments we have a complete set of
coordinates on the state space. But the moments cannot take arbitrary real values:
Fluctuations of the form (�O)2 = 〈(Ô − 〈Ô〉)2〉 must clearly be non-negative, but
in general they are restricted even more strongly by uncertainty relations. For each
pair (Ô1, Ô2) of operators we have the Schwarz inequality

〈�̂O∗
1 �̂O1〉〈�̂O∗

2 �̂O2〉 ≥ |〈�̂O∗
1 �̂O2〉|2

with �̂Oi := Ôi − 〈Ôi 〉. If the operators are self-adjoint, this means

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
http://dx.doi.org/10.1007/978-1-4419-8276-6_5


278 13 General Aspects of Effective Descriptions

〈(�̂O1)
2〉〈(�̂O2)

2〉 ≥ |〈�̂O1�̂O2〉|2. (13.3)

Writing

�̂O1�̂O2 = 1

2
(�̂O1�̂O2 + �̂O2�̂O1)+ i

1

2i
[�̂O1, �̂O2]

with

1

2
〈�̂O1�̂O2 + �̂O2�̂O1〉 = 1

2
〈Ô1 Ô2 + Ô2 Ô1〉 − 〈Ô1〉〈Ô2〉

and [�̂O1, �̂O2] = [Ô1, Ô2] we have

|〈�̂O1�̂O2〉|2 = 1

4

(
〈Ô1 Ô2 + Ô2 Ô1〉2 − 2〈Ô1〉〈Ô2〉

)2 + 1

4
〈−i[Ô1, Ô2]〉2.

Again, we have used self-adjointness of the operators to compute the absolute square
of the complex number 〈�̂O1�̂O2〉. For the moments, we thus have the inequalities

(�O1)
2(�O2)

2 −�(O1 O2)
2 ≥ 1

4
〈−i[Ô1, Ô2]〉2 (13.4)

as uncertainty relations whenever Ô1 and Ô2 are self-adjoint. Similar conditions
exist for moments of higher order, but they mix the order and are more tedious to
derive.

Usually, [Ô1, Ô2] ∼ �. Near the saturation of the uncertainty relation, second-
order moments are thus of the order �, as realized for instance for Gaussian states of
canonical quantum systems (see the example below). In that case, �(O1 · · · On) ∼
O(�n/2) provides a suitable condition for semiclassicality much wider than one using
Gaussians or any specific class of wave functions.

Example 13.1 For the basic operators q̂ and p̂ represented as the usual operators on
the Hilbert space of square-integrable functions of q ∈ R, pure Gaussian states have
the general formψ(q) = exp(−z1q2+z2q+z3)with three complex numbers zi such
that Rez1 > 0 for normalizability. The parameter z3 is irrelevant for the moments
since its real part is fixed by normalization while its imaginary part contributes only
a phase factor. Writing z1 = α1 + iβ1 and z2 = α2 + iβ2 with real αi and βi ,

we have

〈q̂〉 = α2

2α1
, 〈 p̂〉 = �

α1β2 − α2β1

α1
, (13.5)

(�q)2 = 1

4α1
, (�p)2 = �

2α1 + �
2 β

2
1

α1
, �(qp) = −�

β1

2α1
(13.6)

characterizing the peak position, fluctuations and correlations of the state. For all
allowed values of the parameters, Gaussian states saturate the uncertainty relation
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(�q)2(�p)2 −�(qp)2 = 1

4
�

2. (13.7)

For β1 = Imz1 	= 0, the state is correlated. In this case, the uncertainty product
(�q)2(�p)2 is larger than the minimally possible value �

2/4. Correlations �(qp)
are bounded from above for given values of fluctuations �q and �p. These are all
the moments that can be varied for a Gaussian state; such states are thus much more
special than general semiclassical ones.

With (13.2), we are considering moments for general density states. If moments
are desired only for pure states of some type, further conditions arise which are
complicated to derive completely. Fortunately, such a restriction is rarely necessary.
Especially for quantum cosmology which constitutes models obtained by averaging
inhomogeneous configurations, density states should be expected to be relevant for
sufficient generality.

The preceding example illustrates that none of the second-order moments for a
canonical algebra of basic operators is redundant even for pure states: At saturation
we have one relation between the three variables, and there are indeed two free
parameters in a Gaussion once the expectation values of q̂ and p̂ are fixed. The
third independent moment then enters as a free parameter to describe deviations
from saturation. Such unsaturated states, however, are more difficult to write down
in closed form with specific moments; they are certainly no longer Gaussian. The
following examples illustrate the relationship between moments and density states.

Example 13.2 Take the algebra M2 of complex 2 × 2-matrices, with an adjoint
defined in the usual way by transposition combined with complex conjugation. Self-
adjoint generators can be taken to be the Pauli matrices σi together with the identity
id. There are relations idσi = σi = σi id and σiσ j = δi j + εi jkσk between them
such that any product can be reduced to an expression linear in the generators. That
means that expectation values of matrices in the set {id, σi } as basic operators are
sufficient to parameterize all expectation values, and no independent moments exist.
Disregarding the trivial unit which must always have the same expectation value one,
the quantum phase space is thus three-dimensional—in accordance with the fact that
2 ×2 density matrices have three free parameters. (They are self-adjoint and of trace
one.) An irreducible Hilbert-space representation H2, on the other hand, provides
a two-dimensional state space: the usual spin-1/2 representation is complex two-
dimensional, which with normalization and factoring out a total phase corresponds
to two real dimensions. In this simple example, we thus see that the state space we
obtain by expectation values and moments is larger than the space of pure states.

Example 13.3 Now take the tensor product M2 ⊗ M2 of the algebra M2 with itself.
It has 16 generators {id ⊗ id, id ⊗ σi , σ j ⊗ id, σk ⊗ σl}. Again, all products can be
reduced to expressions linear in the generators, and disregarding the unit we obtain a
15-dimensional state space in accordance with the dimension of the space
of self-adjoint, trace one, 4 × 4 density matrices. An irreducible Hilbert-space rep-
resentation H2 ⊗H2, on the other hand, is complex four-dimensional, implying six
real dimensions for the pure state space.
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13.1.4 Casimir Conditions

Further conditions may arise if several irreducible representations exist for a given
linear system [ Ĵi , Ĵ j ] = i�Ck

i j Ĵk . For instance, one may specify values of Casimirs

for group coherent states, such as Ĉ := Ĵ 2
1 + Ĵ 2

2 + Ĵ 2
3 = �

2 j ( j + 1) for SU(2)
with Ck

i j = εk
i j . Taking an expectation value of the operator equation then relates

expectation values of the basic operators to second-order moments (for a quadratic
Casimir), and provides relations for higher moments from expectation values of
the form

〈 Ĵ k
1 Ĵ l

2 Ĵ m
3 Ĉ〉 = �

2 j ( j + 1)〈 Ĵ k
1 Ĵ l

2 Ĵ m
3 〉. (13.8)

Evaluations of these relations then follow the lines as in the example of reality
conditions for harmonic loop quantum cosmology used in Sect. 6.1, which amount
to a Casimir condition for the algebra sl(2,R).

One may view the Casimir operator as a constraint operator and deal with it along
the lines of effective constraints to be described in Sect. 13.2 for first-class constraints.
In contrast to the procedure described there, however, a Casimir constraint is second
class, even if it is a single constraint. In such a case, it amounts to a constraint on a non-
symplectic Poisson manifold (with degenerate Poisson tensor) for which constraints
are classified in a generalized way compared to Dirac’s well-known procedure;
see [2]. A Casimir constraint, by definition, commutes with all basic operators:
[ Ĵi , Ĉ] = 0. In the quantum phase space, it does not generate any gauge transforma-
tions, a property that distinguishes second-class constraints.

13.1.5 Equations of Motion

On the state space parameterized by expectation values and moments, a flow is defined
once a Hamiltonian operator in the algebra A has been chosen. For expectation values
of arbitrary time-independent operators Ô, we have the well-known equation

d〈Ô〉
dt

= 〈[Ô, Ĥ ]〉
i�

(13.9)

which can be derived equally well in a Schrödinger or Heisenberg picture. Such an
equation also applies to evolving observables in deparameterized systems, as seen
in the preceding chapter; (12.6). Using linearity and the Leibniz rule of derivatives
we extend the dynamics to all moments, for instance

d(�O)2

dt
= d(〈Ô2〉 − 〈Ô〉2)

dt
= 〈[Ô2, Ĥ ]〉

i�
− 2〈Ô〉 〈[Ô, Ĥ ]〉

i�
. (13.10)

Example 13.4 (Harmonic oscillator) With Ĥ = 1
2m p̂2+ 1

2 mω2q̂2 in the Schrödinger
representation, we have

http://dx.doi.org/10.1007/978-1-4419-8276-6_6
http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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d

dt
〈q̂〉 = 1

m
〈 p̂〉, d

dt
〈 p̂〉 = −mω2〈q̂〉

which can be solved easily and in closed form independently of any moment.
Solutions agree exactly with the classical ones, as is well known from the Ehrenfest
theorem. Similarly, the second-order moments satisfy

d

dt
(�q)2 = 2

m
�(qp)

d

dt
�(qp) = −mω2(�q)2 + 1

m
(�p)2

d

dt
(�p)2 = −2mω2�(qp)

and can also be solved for in closed form without knowing any higher moment.
Second-order moments, moreover, are subject to the (generalized) uncertainty
relation

(�q)2(�p)2 −�(qp)2 ≥ �
2

4
.

The second-order equations allow one to discuss coherent and squeezed states in
simple terms. We have non-spreading solutions of constant second-order moments
provided that�(qp) = 0, �p = mω�q.All these solutions correspond to coherent
states following exactly the classical trajectory. They satisfy the uncertainty relation
if �q ≥ √

�/2mω. If the uncertainty relation is saturated, we obtain fluctuations
that are fixed uniquely to be those of the ground state. If we saturate the uncertainty
relation at all times, we have general dynamical coherent states. From the previous
equations, this implies fluctuations changing in time unless we have exactly the
harmonic oscillator ground state; such states are called squeezed states. See Fig. 13.1
for an illustration. In their most general form, squeezed states may also have non-
vanishing correlations if�(qp) 	= 0. For given fluctuations, however, the amount of
squeezing is bounded by the uncertainty relation |�(qp)| ≤ √

(�q)2(�p)2 − �2/4
even if it is not required to be saturated.

Dynamics is more involved for anharmonic systems, in which the equations of
motion for all infinitely many moments no longer decouple to finitely coupled sets of
linear equations. In this case, quantum back-reaction results and the precise behavior
of an evolving state, including its spreading and deformations from a Gaussian, is
important for knowing the time dependence of expectation values or other moments.
It is generated by the quantum Hamiltonian

HQ = 〈H(q̂, p̂)〉 = 〈H(q + (q̂ − q), p + ( p̂ − p))〉 (13.11)

= H(〈q̂〉, 〈 p̂〉)+
∑
a,b

1

a!b!
∂a+b H(〈q̂〉, 〈 p̂〉)
∂〈q̂〉a∂〈 p̂〉b

�(qa pb). (13.12)
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Fig. 13.1 Spreading of a
squeezed state compared to
an unsqueezed state. Plotted
are the time-dependent
q-expectation value and
q-fluctuations around it for
two different states, one
without correlations (solid)
and one with non-vanishing
correlations (dashed)
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The expansion in terms of the moments, just as a semiclassical �-expansion used for
the WKB approximation, or like the Feynman expansion, is in general not convergent
but asymptotic. The equations of motion ḟ = { f, HQ} it generates follow from the
Poisson bracket in the quantum phase space. Its relationship to commutators then
shows that HQ generates the correct flow for expectation values and moments based
on (13.9).

In canonical formulations, the Hamiltonian determines the dynamics together with the Pois-
son structure. One could therefore suspect that not only the Hamiltonian but also the Poisson
brackets receive quantum corrections. This suspicion is correct: The Poisson structure re-
ceives corrections by the presence of moments as new quantum degrees of freedom, enlarging
the classical phase space. However, by definition (13.1) there are no quantum corrections to
the basic variables as long as they form a closed algebra (belonging to a linear quantum sys-
tem). The Poisson brackets of expectation values of basic operators agree with the classical
Poisson brackets, without quantum corrections in this relation.

If one does not work with the full Poisson manifold of expectation values and all moments,
but rather embeds the classical phase space non-horizontally in the quantum phase space
seen as a fiber bundle over the classical phase space, quantum corrections to Poisson brackets
of expectation values do arise. For instance, in the following example we will see that under
certain conditions (more precisely, when an adiabatic approximation can be applied for the
moments) one can solve for the moments �(qa pb)(〈q̂〉, 〈 p̂〉) in terms of the expectation
values. These solutions then describe an embedding (q, p) �→ (q, p,�(qa pb)(q, p)) of
the classical phase space in the quantum phase space. If one pulls back the symplectic form
d〈q̂〉∧d〈 p̂〉+�a,b;c,d (�)d�(qa pb)∧d�(qc pd ) on the quantum phase space (with moment-
dependent coefficients encoding the Poisson structure (13.1) for moments), one may obtain
a quantum-corrected symplectic form

(1 + 2�a,b;c,d (�(q, p))(∂�(qa pb)/∂q)(∂�(qc pd )/∂p))dq ∧ dp.

(Such a correction does not arise in the following example because the moments solved for
in terms of expectation values depend only on 〈q̂〉, not on 〈 p̂〉.) Sometimes, corrections of
this form also arise when one begins the derivation of effective equations by an assumption
on, rather than derivation of, the dependence of moments on expectation values, as in [3].
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Thus, if quantum corrections to the symplectic or Poisson structure arise, they are a conse-
quence of a secondary step in solving effective equations or making assumptions about their
solutions. If moments are kept independent of expectation values, which is the most general
form of effective equations, no corrections to the Poisson brackets of expectation values
arise, while Poisson brackets between moments as they follow from commutators have no
classical analog whatsoever.

The infinitely-coupled dynamics of ordinary differential equations for moments is
equivalent to the partial differential equation given by the Schrödinger flow. Usually,
the Schrödinger equation is much more useful for solving the dynamics. But in cer-
tain regimes, equations for moments lend themselves more easily to approximation
schemes.

Example 13.5 (Anharmonic oscillator) With a cubic anharmonicity in the Hamil-
tonian

Ĥ = 1

2m
p̂2 + 1

2
mω2q̂2 + 1

3
λq̂3

we have equations of motion

d

dt
〈q̂〉 = 1

m
〈 p̂〉, d

dt
〈 p̂〉 = −mω2〈q̂〉 − λ〈q̂〉2 − λ(�q)2

with a non-linear coupling of expectation values and the q-fluctuation. To solve these
equations, we must know the behavior of �q, which is itself time dependent with a
rate of change

d

dt
(�q)2 = 2

m
Cqp (13.13)

given by the covariance, obeying

d

dt
Cqp = 1

m
Cqp + mω2(�q)2 + 6λ〈q̂〉(�q)2 + 3λ�(q3). (13.14)

Here, a higher moment �(q3) of third order couples. Proceeding this way in the
hope of finding a closed set of equations, one will have to include all infinitely many
moments.

For a general anharmonic system, we consider a classical Hamiltonian
H = 1

2m p2 + 1
2 mω2q2 +U (q). In this case, additional approximation schemes open

up which will allow us to compare results with other derivations based, for instance,
on effective actions. Using the parameters of the anharmonic system, we first in-
troduce dimensionless variables �̃(qb pa) := �

−(a+b)/2(mω)b/2−a/2�(qb pa). The
quantum Hamiltonian, including coupling terms between expectation values and
moments, can then be expanded in powers of �

1/2 :
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HQ(〈q̂〉, 〈 p̂〉,�(· · · )) = 1

2m
〈 p̂〉2+1

2
mω2〈q̂〉2+U (〈q̂〉)+�ω

2

(
(�̃q)2 + (�̃p)2

)

+
∑
n>2

1

n!
(

�

mω

)n/2
U (n)(〈q̂〉)�̃(qn). (13.15)

Here the dimensionless variables are useful to organize the formal expansion with
an explicit expansion parameter �. In general, such expansions can still be per-
formed if one assumes the moments to obey the semiclassical hierarchy�(qa pb) ∼
O(�(a+b)/2). With the dimensionless moments, we have �̃(qa pb) ∼ O(1) and all
orders of � are indeed shown explicitly in (13.15). From this expression, we see
the zero-point energy given just by the fluctuations, (�̃q)2 = (�̃p)2 = 1/2 for the
ground state, and quantum back-reaction from coupling terms between expectation
values and moments.

Equations of motion then follow in the usual Hamiltonian way as ḟ = { f, HQ}
for any phase-space function f, using the Poisson brackets as defined in (13.1)
together with linearity and the Leibniz rule. One can easily see that the resulting
equations agree with what we had earlier obtained by the background-state method
in Sect. 5.4.1, expanding the Hamiltonian operator directly but formally. For the
anharmonic oscillator, we have

〈 ˙̂q〉 = 〈 p̂〉
m

(13.16)

〈 ˙̂p〉 = −mω2〈q̂〉 − U ′(〈q̂〉)−
∑

n

1

n!
(

�

mω

)n/2

U (n+1)(〈q̂〉)�̃(qn) (13.17)

˙̃
�(qn−a pa) = −aω�̃(qn−a+1 pa−1)+ (n − a)ω�̃(qn−a−1 pa+1)

− a
U ′′(〈q̂〉)

mω
�̃(qn−a+1 pa−1)

+
√

�aU ′′′(〈q̂〉)
2(mω)

3
2

�̃(qn−a pa−1)�̃(q2)+ �aU
′′′′
(〈q̂〉)

3!(mω)2 �̃(qn−a pa−1)�̃(q3)

− a

2

(√
�U ′′′(〈q̂〉)
(mω)

3
2

�̃(qn−a+2 pa−1)+ �U
′′′′
(〈q̂〉)

3(mω)2
�̃(qn−a+3 pa−1)+ · · ·

)

+ a(a − 1)(a − 2)

24

(√
�U ′′′(〈q̂〉)
(mω)

3
2

�̃(qn−a pa−3)

+ �U
′′′′
(〈q̂〉)

(mω)2
�̃(qn−a+1 pa−3)+ · · ·

)
.

(13.18)

As expected, these are infinitely many coupled equations for infinitely many vari-
ables. (Incidentally, note that the expansion is in terms of

√
�, not of � as one might

have expected. Half-integer powers of � only drop out if all odd-order moments
vanish, which is the case for harmonic oscillator coherent states but not necessarily
in general.)

http://dx.doi.org/10.1007/978-1-4419-8276-6_5
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Solving these equations even approximately requires truncations that allow one
to disregard all but finitely many moments. The set of moments indeed has the
hierarchy of finite-dimensional spaces Pn defined as the subsets obtained by allow-
ing moments �(qa pb) only up to a finite order a + b ≤ n. Commutators do not
directly provide a closed Poisson bracket on these spaces; for instance, at third order
we have {�(q3),�(p3)} = 9(�(q2 p2) − (�q)2(�p)2) which includes a moment
of order four. (Only second-order moments have a closed Poisson algebra among
themselves.) But truncating not only the Hamiltonian but also the Poisson brackets
at a finite order n provides the dynamics on a closed Poisson manifold. That this
truncation also of the Poisson brackets is in fact required for a consistent approxi-
mation of equations of motion can be seen from the observation that it results in a
Hamiltonian flow corresponding exactly to the equations of motion truncated at the
same order n.

There is thus a consistent truncation procedure which in terms of dimensionless
moments disregards all terms beyond a certain order �

n/2. Here, the expansion is
a semiclassical one, but formally one can do similar truncations in other regimes.
To that end, we would replace each moment �(qa pb) with μ(a+b)/2�(qa pb) and
� with μ�, expand all equations up to terms of order μn/2 (irrespective of the
value of �). After setting μ = 1, we obtain the truncated equations.

In general, the truncation results in a higher-dimensional dynamical system in
which the expectation values are accompanied by some of the moments as true
quantum degrees of freedom. By the coupling terms among the equations, quantum
back-reaction is realized. Sometimes one can further reduce the system to one of
the classical dimension, involving only expectation values, such that quantum back-
reaction is realized in a simpler way, for instance by an effective potential. Such an
additional step requires solutions to some of the equations for moments in terms of
expectation values, which can then be inserted into the expectation-value equations.
For the anharmonic oscillator, this is possible by an adiabatic approximation for the
moments which indeed allows one to solve the moment equations without knowing
the behavior of expectation values, and then insert the solutions into the coupling
terms of expectation-value equations.

Performing an adiabatic approximation again makes use of a formal parameter
λ to arrange expansions, and in the end setting λ = 1. Now, a small value of the
parameter should mean that the time dependence of moments is only weak. We
thus rescale d/dt to λd/dt and expand �(qa pb) = ∑

e �e(qa pb)λe. After solving
the equations order by order in λ, we will finally set λ = 1. There is no claim
that the λ-expansion of �(· · · ) is a converging sum, and the procedure might seem
questionable. Instead, the expansion merely serves to organize different kinds of
time dependences of the moments. To n-th adiabatic order, comparing λ-coefficients
in the adiabatic expansion of the general Hamiltonian equation of motion leads to

{�n(q
a pb), HQ} = �̇n−1(q

a pb). (13.19)
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(Writing this equation as {�n(qa pb) − �n−1(qa pb), HQ} = 0 shows that at n-th
adiabatic order the highest-order term is assumed to provide a contribution of neg-
ligibly small time dependence to the expansion of moments.) Iterating (13.19)
over n, with the left-hand side computed as a Poisson bracket on phase space rather
than interpreted as a time derivative, this procedure provides algebraic equations to all
orders. We will see this explicitly when we apply these equations to the anharmonic
oscillator.

To first order in � and zeroth in λ, we have from (13.18) without the �-terms and
without the time derivative (which is at least of first order in λ) [4]

0 = (n − a)�̃0(q
n−a−1 pa+1)− a

(
1 + U ′′(〈q̂〉)

mω2

)
�̃0(q

n−a+1 pa−1). (13.20)

As a step-2 recurrence in a for �̃0(qn−a pa) starting with �̃0(qn), (13.20) must stop
at a = n since the sequence of n-th order moments is finite. Non-zero solutions of
this form can arise only if n = a is the last step in the recursion, which implies that
a must be even for even n and odd for odd n. For even n and a we have the general
solution

�̃0(q
n−a pa) =

(
n/2

a/2

)(
n

a

)−1 (
1 + U ′′(〈q̂〉)

mω2

)a/2

�̃0(q
n), (13.21)

and we will not need the odd-order solutions. To this order, �̃0(qn) remains free. To
first order in λ, we have

(n − a)�̃1(q
n−a−1 pa+1)− a

(
1 + U ′′(〈q̂〉)

mω2

)
�̃1(q

n−a+1 pa−1) = 1

ω

˙̃
�0(q

n−a pa)

which implies

∑
aeven

(
n/2

a/2

) (
1 + U ′′(〈q̂〉)

mω2

)(n−a)/2 ˙̃
�0(q

n−a pa) = 0

for consistency. This condition requires

�̃0(q
n) = Cn(1 + U ′′(〈q̂〉)/mω2)−n/4 (13.22)

with constants Cn . At this stage, we see that the zeroth-order adiabatic solutions are
not t-independent but implicitly depend on t via 〈q̂〉 if the potential is not quadratic.
The equation (13.20) we solved therefore cannot provide an exact solution to (13.18):
Higher orders in the adiabatic approximation correct for this error in the time depen-
dence; this reorganization of the t-dependence is the actual meaning of the formal
λ-expansion.

To obtain moments of the ground state for the harmonic limit U = 0, we must
have Cn = 2−nn!/(n/2)! (as well as �̃(qn−a pa) = 0 for a and n odd, which is why
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we do not need the solution of (13.20) for such values). The zeroth adiabatic order
for second-order moments is then fixed completely, and we obtain the first correction

ṗ = −mω2q − U ′(q)− �

2mω
U ′′′(q)(�̃0q)2 + · · ·

= −mω2q − U ′(q)− �

4mω

U ′′′(q)√
1 + U ′′(q)/mω2

+ · · ·

to the classical equations of motion. The last term shows the leading correction in the
effective force as compared to the classical force −U ′(q) from the effective potential
in HQ with the zero-point energy.

To second adiabatic order [4] we obtain additional corrections, which imply the
second-order equation of motion

(
m + �U ′′′(〈q̂〉)2

32m2ω5(1 + U ′′(〈q̂〉)/mω2)5/2

)
〈 ¨̂q〉

+ �〈 ˙̂q〉2 (
4mω2U ′′′(〈q̂〉)U ′′′′(〈q̂〉)(1 + U ′′(〈q̂〉)/mω2)− 5U ′′′(〈q̂〉)3)

128m3ω7(1 + U ′′(〈q̂〉)/mω2)7/2

+ mω2〈q̂〉 + U ′(〈q̂〉)+ �U ′′′(〈q̂〉)
4mω(1 + U ′′(〈q̂〉)/mω2)1/2

= 0.

for the position expectation value. There is a new velocity-dependent contribution
to the effective force at this order, and the classical mass has received a position-
dependent correction. One can verify that this equation results from an action

�eff [q(t)] =
∫

dt

(
1

2

(
m + �U ′′′(q)2

25m2
(
ω2 + m−1U ′′(q)

)5/2

)
q̇2 (13.23)

−1

2
mω2q2 − U (q)− �ω

2

√
1 + U ′′(q)

mω2

)
(13.24)

in agreement, to this order, with the low-energy effective action derived for instance
via path integration [5]. (Although the equations of motion coincide, the meaning
of q in the low-energy effective action is different from that of 〈q̂〉 in canonical
effective equations: q is related to off-diagonal matrix elements of q̂ [5] and not
even guaranteed to be real. Conceptually, the low-energy effective action is thus
problematic in a semiclassical context.)

13.1.6 General Properties

The examples of anharmonic systems illustrate that the solvable nature of the har-
monic oscillator, not surprisingly, is very special. Solvability does not just mean that
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one is lucky enough to find closed solutions for a wave function. We even have closed
solutions for all the moments (which would require additional integrations if derived
from a wave function) and the dynamical behavior of moments of any given order is
independent of the others. This strong harmonic sense of solvability is realized only
rarely, in explicitly treatable but most often unrealistic ideal models. In addition to
the harmonic oscillator in quantum mechanics, it can be found in the same form for
free quantum field theories—or in the harmonic cosmologies of Chap. 6.

In other systems, quantum corrections arise from the back-reaction of fluctua-
tions and higher moments. In the language of quantum field theory, these are loop
corrections. The scheme presented here also produces such terms, but it is more
encompassing: we obtain not only quantum-correction terms but compute state prop-
erties such as fluctuations along the way. Moments are not fixed completely, but their
dynamical behavior is solved for, starting from an initial state through the initial val-
ues required to be posed for the differential equations we have. In this way, if we
start with a harmonic oscillator ground state, we derive properties of the interacting
ground state in the anharmonic system. For instance, from (13.21) and (13.22) we
derive (�̃0q)2 = 1

2 (1+U ′′(〈q̂〉)/mω2)−1/2 and (�̃0 p)2 = 1
2 (1+U ′′(〈q̂〉)/mω2)1/2

in the anharmonic ground state, which still saturate the uncertainty relation to the
orders considered. This property is crucial for the general consistency of the scheme:
At times other than the initial time, state properties are not put in from the outset,
as it is sometimes suggested in other derivations based for instance on a geometrical
formulation of quantum mechanics [3]. Having to prescribe the state at different
times would require too much bias about the dynamical behavior especially if one
evolves toward high quantum regimes.

We have also seen, for instance in the application to harmonic cosmology, that the
equations shed much light on the availability and behavior of dynamical coherent
states, especially in combination with the uncertainty relation. Thus, not only the
interacting ground state is accessible, but a much larger class of states can be analyzed
by choosing different initial values.

In comparison with the low-energy effective action we notice several new features.
First, effective equations are state dependent; only when a specific state to expand
around is selected, even if this is done implicitly as in most derivations of effective
actions, do unique quantum-correction terms result. Not all regimes of interest clearly
distinguish a unique state to expand around, such as the vacuum state, and so more
freedom to parameterize state-dependent properties is present. The canonical proce-
dure allows this freedom; for instance we may decide not to fix C2 in the adiabatic
solutions, on which only a lower bound is then given by the uncertainty relation.
Secondly, general effective equations may not allow the application of an adiabatic
expansion, or some other approximation in addition to the semiclassical one. In the
example of anharmonic oscillators, it was the adiabaticity assumption that allowed us
to solve for the moments in terms of expectation values. When there is no substitute
for this assumption, moments remain a-priori undetermined and must be kept as addi-
tional independent variables. One is then dealing with a higher-dimensional effective
system with true quantum degrees of freedom. This enlargement of the dimension-
ality is reminiscent of higher-derivative effective actions which require additional

http://dx.doi.org/10.1007/978-1-4419-8276-6_6
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initial values to be posed for higher time derivatives of the fields. However, there
is no straightforward mapping between the degrees of freedom, and in fact not all
the freedom in perturbative higher-derivative effective actions is consistent [6]. The
degrees of freedom of higher-dimensional canonical effective systems, on the other
hand, are all consistent and have clear physical interpretations as the moments of a
state.

The procedure is manageable in explicit terms if a free system is available. For
canonical basic variables, this requires the Hamiltonian operator Ĥ to be quadratic.
More generally, however, there are additional options formulated by a linear system
with basic operators Ĵi forming a closed commutator algebra with the Hamiltonian:
[ Ĵi , Ĥ ] = ∑

j ai j Ĵ j + bi Ĥ . It is easy to see that such a linear algebra ensures
decoupling properties of the Ehrenfest equations (13.9), which then close for the
expectation values. Once a free system has been identified within a larger class
of models, perturbation theory can be used to test robustness and to derive more
general properties. An example for a linear system without a quadratic Hamiltonian
is harmonic cosmology.

Positivity of the Hamiltonian is another important aspect. It is guaranteed for the
harmonic oscillator, but it becomes an issue if systems need be reformulated to bring
them in the usual Hamiltonian form, for instance by deparameterizing a constrained
system. Especially if the system is relativistic, a square root must be taken and
combined with a judicious sign choice. We may for instance have a constraint of the
form p2

ϕ− H2 = 0 as in relativistic deparameterizable systems (Sect. 12.3.2). Taking
a square root pϕ = ±|H | means that the absolute value may destroy strict linearity,
as already discussed in the context of cosmology. As we will see in more detail in the
next section, quantum constraints can be dealt with just like quantum Hamiltonians,
by taking the expectation value as a function on the state space and expanding in the
moments. There are several differences compared to a non-relativistic system; for
instance, additional moments of pϕ may contribute to quantum constraints unlike in
the linearized deparameterized version. For now, we are interested only in the fact
that we will have to take a square root when solving for pϕ and bringing the system
to deparameterized form.

A sign ambiguity thus arises in solving for pϕ = ±|H | to obtain the two sectors
of positive-frequency and negative-frequency modes. No difference occurs between
classical and effective constraints from this perspective. But the nature of a linear
quantum system may be spoiled by the absolute value around H. Even if H is
quadratic in canonical variables, such as H = cp in the solvable model of Wheeler–
DeWitt cosmology, |H | is not strictly quadratic. However, on states supported only
on the positive or negative part of the spectrum of H, respectively, the absolute value
can be dropped and the system will be linear. If H is time-independent, the required
spectral property of states will be preserved and it is necessary to restrict only initial
values to the spectral property. This can easily be done without too strong restrictions
on the moments and the accessible states.

In a Hilbert-space representation, |ĉp| is usually a non-local operator if wave
functions such as ψ(c) or ψ(p) are used. However, this kind of non-locality is
representation dependent (and thus unphysical). An operator of this form would

http://dx.doi.org/10.1007/978-1-4419-8276-6_12
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certainly be local in a representation based on eigenstates of the operator ĉp. Since
effective equations are representation-independent, they are insensitive to this non-
locality problem.

13.2 Effective Constraints

As already indicated, a constraint operator gives rise to the quantum constraint
CQ = 〈Ĉ〉 = Cclass(q, p) + · · · on the state space since it must vanish when
the expectation value is taken in physical states. Quantum corrections to the classical
constraint surface thus arise. However, a single constraint on the quantum phase space
only removes two degrees of freedom (by constraining and factoring out a gauge,
provided the constraint is part of a first-class system). Corresponding quantum vari-
ables would remain unconstrained, leaving infinitely many spurious variables which
would never arise in a quantization of the classical reduced phase space.

Removing all degrees of freedem as appropriate requires additional constraints.
In fact, there are infinitely many ones

C f (q,p) := 〈 f (q̂, p̂)Ĉ〉
on the state space, which all have to vanish in physical states and which in general
are independent of CQ . Practically, one can usually work with polynomials f (q, p),
as we will also see in examples below. As with the truncations in the discussion of
effective dynamics, solutions of the constraints become feasible to any given order
in moments, where only finitely many C f have to be considered.

At this general level, several properties important for the consistency of the con-
strained system can be derived [7]. The system of constraints is first-class if the
ordering 〈 f (q̂, p̂)Ĉ〉 is indeed used as indicated in the definition. This means that
we are dealing with operator products not symmetric in general. Naive reorderings
either spoil the first-class nature, or lead to functions that are not constraints if the
constraint operator no longer stands at the very right or left of the operator prod-
uct. Alternatively, one may define quantum constraints via the generating functional
Cα = 〈ei�−1αi ·x̂ i

C(x̂ i )〉 (where (x̂ i )i=1,2 = (q̂, p̂)) for Weyl-ordered and thus sym-
metric constraints, which also provides a first-class system. This procedure does
include certain reorderings of our constraints above, obtained by all possible deriv-
atives of Cα by the components αi , and then setting α = 0. But practically it is not
always easy to derive the Weyl-ordered constraints and we will continue with the
non-symmetric constraints.

In fact, we do not require reality of kinematical quantum variables �(qa pb),

realized before constraints are solved. Usually the kinematical inner product has
to be changed to the physical one after the constraints are solved, and requiring
self-adjointness or reality before this step would not guarantee the correct reality
properties. Then there is no reason either to require constraint functions to be real, or
to come from symmetrically ordered operator products including the constraint. We



13.2 Effective Constraints 291

will impose reality conditions only after solving the constraints to ensure physical
normalization. In this way, physical observables are accessible without deriving the
full physical Hilbert space or a specific integral form of the physical inner product.
Also here, the procedure is very well amenable to perturbative techniques, which is
not the case for other constructions of physical Hilbert spaces.

Different gauge fixings of the constrained system can in some cases be seen to be
related to different kinematical Hilbert space structures. Results will thus be indepen-
dent of ambiguities that otherwise arise by choosing a particular kinematical Hilbert
space as one does in group averaging. Moreover, since Hilbert-space representations
are not referred to, no difference in the treatment arises between constraints with
zero in their discrete or continuous spectra.

13.2.1 Non-Relativistic Constraints

Non-relativistic constraints are characterized by a linear dependence on one momen-
tum variable which can be considered as an energy. In non-relativistic deparameter-
izable systems, this linear momentum is conjugate to a global time variable. From
the point of view of physical Hilbert spaces as well as effective constraints this case
is easier to deal with, and we discuss it first by way of examples.

Example 13.6 (Linear constraint) Let us take a constraint Ĉ = p̂. It immediately
implies 〈 p̂〉 = 0, while 〈q̂〉 is pure gauge. At second order of the moments, we have
(�p)2 = 0 fully constrained, while Cq = 〈q̂ p̂〉 = 0 implies the complex-valued
kinematical covariance

�(qp) = 1

2
〈q̂ p̂ + p̂q̂〉 − 〈q̂〉〈 p̂〉 = −1

2
i�.

At least one of the kinematical variables must thus take complex values, which
means that we indeed have to redefine our kinematical inner product for the physical
Hilbert space. Dealing with complex variables cannot always be avoided; it even has
an advantage: the uncertainty relation

(�q)2(�p)2 −�(qp)2 ≥ 1

4
�

2

remains respected even though one of the fluctuations,�p, vanishes. (The other one,
�q, is pure gauge.) With the uncertainty relation at one’s disposal, one can analyze
dynamical coherent states also for constrained systems.

Example 13.7 (Two-component linearly constrained system and physical observ-
ables [7]) We now assume a constraint Ĉ = p̂1 − p̂ which is still linear but defined
for a system with two independent pairs of degrees of freedom. We denote the kine-
matical quantum variables as

�(paqb pc
1qd

1 ) = 〈( p̂ − p)a(q̂ − q)b( p̂1 − p1)
c(q̂1 − q1)

d〉symm.
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As second-order constraints in addition to CQ = 〈 p̂1〉 − 〈 p̂〉 we have

Cq = − i�

2
−�(qp)+�(qp1), C p = �(pp1)− (�p)2

C p1 = (�p1)
2 −�(pp1), Cq1 = 1

2
i� −�(pq1)+�(q1 p1)

solved by 〈 p̂1〉 = 〈 p̂〉 and

�(qp1) ≈ 1

2
i� +�(qp), �(pp1) ≈ (�p)2

(�p1)
2 ≈ �(pp1) ≈ (�p)2, �(pq1) ≈ 1

2
i� +�(q1 p1).

To derive observables, we also need the gauge flows which, for instance for C p, are
of the form

δ�(qp) = �(pp1)− 2(�p)2 ≈ −(�p)2

δ(�q)2 = 2�(qp1)− 4�(qp) ≈ i� − 2�(qp)

δ�(q1 p1) = �(pp1) ≈ (�p)2

δ�(qq1) = �(q1 p1)+�(qp)− 2�(pq1) ≈ �(qp)−�(q1 p1)− i�

δ(�q1)
2 = �(pq1) ≈ i� + 2�(q1 p1).

It is easy to check that all gauge flows satisfy δ�(qp) = −δ�(q1 p1),

δ�(qq1) = − 1
2

(
δ(�q)2 + δ(�q1)

2
)
.Thus, the functions

(Dq)2 := (�q)2 + 2�(qq1)+ (�q1)
2 (13.25)

(D p)2 := (�p)2 (13.26)

D(qp) := �(qp)+�(q1 p1)+ 1

2
i� (13.27)

on the kinematical state space are gauge invariant. They also satisfy the correct
algebra

{(Dq)2,D(qp)} = 2(Dq)2 (13.28)

{(Dq)2, (D p)2} = 4D(qp) (13.29)

{(D(qp), (D p)2} = 2(D p)2 (13.30)

expected for second-order quantum variables on a reduced state space. For this, the
imaginary contribution in (13.27) is required, which need not be added just to make
D(qp) gauge-invariant. At this stage, all moments involving the pair (q1, p1) are
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either expressed in terms of (q, p)-moments by solving constraints, or subject to
gauge. (One could certainly as well choose to express the (q, p)-moments in terms
of the (q1, p1) ones.)

We finally impose reality conditions: D(qa pb) ∈ R. The observable moments
can then be seen as those computed in a physical Hilbert space. Expressed in
terms of kinematical quantum variables, this again requires an imaginary part
Im(�(qp)+�(q1 p1)) = − 1

2 i� for D(qp) := �(qp)+�(q1 p1)+ 1
2 i� to be real.

Since kinematical quantum variables must be complex to provide correct physical
reality (although they appear symmetrically ordered), we have an explicit example
in which the kinematical Hilbert-space structure must be changed when deriving the
physical Hilbert space. We can also see explicitly that different kinematical choices
are possible, such as �(qp) real or �(q1 p1) real. They imply different kinematical
reality conditions, all resulting in the same physical observables, and thus correspond
to different kinematical Hilbert space structures.

This simple example can be used to illustrate one aspect of the problem of time and
how it can be overcome by effective techniques; see also Sect. 13.2.3. In the preceding
example we could easily choose q as time instead of q1; the choice is simply a
question of gauge fixing of the effective constraints. If one were to implement the
constraints for physical states in a Hilbert space, on the other hand, the situation would
be more subtle. The constraint equations could certainly still be solved easily, and
physical inner products be constructed, for instance by group averaging. However,
the different choices of time are difficult to compare at the Hilbert-space level, where
no obvious mapping between the two deparameterized Hilbert spaces exists. In this
simple model one could easily postulate a natural mapping thanks to the symmetric
way in which q and q1 and their momenta appear. For general constrained systems,
however, no such mapping would be available, while effective constraints still provide
comparisons between different choices of time via the corresponding gauge fixings.

Explicit derivations as in the case of a linear constraint are more complicated when
constraints are non-linear since different orders of moments are mixed in expectation
values. But similar structures for solutions to constraints and observables remain
realized.

Example 13.8 (Free particle) A parameterized free particle has the constraint Ĉ =
p̂t + p̂2/2M, and thus CQ = 〈 p̂t 〉 + 〈 p̂〉2/2M + (�p)2/2M, Cq = �(qpt ) +
i�〈 p̂〉/2M + 〈 p̂〉�(qp)/M and so on [7]. Solving the constraints is more involved
than in the linear case, but the procedure is the same. Now, second-order observables
are P = 〈 p̂〉, Q = 〈q̂〉 − 〈t̂〉〈 p̂〉/M −�(pt)/M and

(D p)2 = (�p)2

D(qp) = �(qp)+�(tpt )− 〈t̂〉
M
(�p)2 + i�

2
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= (�q)2 − 2
〈 p̂〉
M
�(qt)+ 〈 p̂〉2

M2 (�t)2

− 2〈t̂〉
M

(
�(qp)+�(tpt )+ i�

2

)
+ 〈t̂〉2

M2 (�p)2

with explicit couplings between kinematical expectation values and moments. Also
here, second-order moments satisfy the correct algebra. For a free particle, we do not
expect quantum back-reaction in the kinematical quantities, even though physical
expectation values depend on some moments. The relationship can be understood
by deparameterizing: We invert our equations for the observables to obtain

〈q̂〉(〈t̂〉) = Q + 〈t̂〉
M

P + 1

M
�(pt)

≈ Q + 〈t̂〉
M

P − 1

〈 p̂〉
(
�(tpt )+ i�

2

)

= Q + 〈t̂〉
M

P − 1

P

(
D(qp)+ 〈t̂〉

M
(D p)2 −�(qp)

)

and now interpret the observable coefficients as integration constants. For the gauge
choice�(tpt ) = − 1

2 i� identical to what we used before, we have correct deparame-
terized solutions

〈q̂〉(〈t̂〉) = Q + 〈t̂〉
M

P, �(qp)(〈t̂〉) = D(qp)+ 〈t̂〉
M
(D p)2 (13.31)

in terms of initial values. These equations can also be interpreted as relational observ-
ables between the remaining degree of freedom and time. (The gauge choice used is
not unique, but is the only one good for all P. Moreover, it implies real �(qp),
but imaginary �(tpt ) as it is realized in the deparameterized, time-independent
kinematical Hilbert space. This gauge choice is the one corresponding to the usual
Schrödinger representation of the deparameterized system, whose solutions for 〈q̂〉(t)
and �(qp)(t) are the same as (13.31). Other gauge choices provide different depa-
rameterized relationships, and are more difficult to formulate in a Hilbert-space
setting.)

The presence of quantum variables such as the covariance opens up new possi-
bilities for internal times and deparameterization, compared to a classical system. In
fact, the squeezing of a state has often been brought in contact with entropy and the
second law of thermodynamics, implying monotonic behavior [8–14]. Thus, a quan-
tum variable such as�(qp)may provide a good internal time even in regions where
all classical variables would behave in an oscillatory manner [15, 16]. It would also
imply that a natural concept of time would in fact include a strong quantum compo-
nent, showing a possible quantum origin of time.



13.2 Effective Constraints 295

13.2.2 Relativistic Systems

Relativistic systems can be treated in much the same way as non-relativistic ones.
A major advantage of effective techniques in this context is the fact that square
roots need not be taken at the operator level (for which one would have to know the
complete spectral decomposition of the Hamiltonian) but simply for numbers such as
expectation values. We demonstrate these features using the previous Example 12.5
of the relativistic harmonic oscillator [17]. Up to second order in moments, the
effective constraints are

C = 〈 p̂ϕ〉2 − 〈 p̂〉2 − 〈q̂〉2 + (�pϕ)
2 − (�p)2 − (�q)2 (13.32)

Cϕ = 2〈 p̂ϕ〉�(ϕpϕ)+ i�〈 p̂ϕ〉 − 2〈 p̂〉�(ϕp)− 2〈q̂〉�(ϕq) (13.33)

C pϕ = 2〈 p̂ϕ〉(�pϕ)
2 − 2〈 p̂〉�(pϕ p)− 2〈q̂〉�(pϕq) (13.34)

Cq = 2〈 p̂ϕ〉�(pϕq)− 2〈 p̂〉�(qp)− i�〈 p̂〉 − 2〈q̂〉(�q)2 (13.35)

C p = 2〈 p̂ϕ〉�(pϕ p)− 2〈 p̂〉(�p)2 − 2〈q̂〉�(qp)+ i�〈q̂〉. (13.36)

Thus, some kinematical moments must be complex. Going through the solution
procedure for first-class constraints applied to this system [18], solving (13.32) for
〈 p̂ϕ〉 and eliminating all pϕ- and ϕ-moments using the other effective constraints,
one can see that the system is deparameterizable in ϕ with quantum Hamiltonian
〈 p̂ϕ〉 = ±HQ,

HQ =
√

〈 p̂〉2 + 〈q̂〉2

(
1 + 〈q̂〉2(�p)2 − 2〈q̂〉〈 p̂〉�(qp)+ 〈 p̂〉2(�q)2

2(〈 p̂〉2 + 〈q̂〉2)2

)
.

Reality is then imposed on Dirac observables 〈q̂〉(〈ϕ̂〉), 〈 p̂〉(〈ϕ̂〉), �(· · · )(〈ϕ̂〉)
obtained by solving the Hamiltonian equations.

13.2.3 Problem of Time

Dirac observables of the effective constrained system provide the observable infor-
mation just as one could compute it on the physical Hilbert space when a particular
representation is known. But now, in addition to the difficult task of computing a
complete set of obervables for the reduced phase space, we have a second option
which does not have an analog at the Hilbert-space level: we can treat the constrained
system by gauge fixing. An analysis of the constraints and the gauge flow they gen-
erate shows that one can fix the gauge (to second order in moments) by requiring the
moments (�ϕ)2, �(ϕq) and�(ϕp) to vanish when one decides to use 〈ϕ̂〉 as time.
Other moments involving time are then fixed by solving the constraints, such that no
ϕ-moments remain free. This outcome is just as expected if one were to choose ϕ
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as time from the outset and then quantize the system with ϕ as a parameter, not an
operator. Now, however, the procedure easily allows the use of 〈ϕ̂〉 as a local internal
time: one may use different gauge fixings to describe different parts of the phase
space, and one may easily transfer to a different choice of time by applying a gauge
transformation. Following [19], the gauge fixing that implements a specific choice
of time is called a Zeitgeist.

Once a Zeitgeist is specified, we gain access to properties of 〈ϕ̂〉, which are
interesting in the context of time even though this parameter is not an observable
on the reduced phase space. In particular, the value changes when a different time
is used; it depends on the Zeitgeist. As the following example illustrates, a general
consequence is that time is complex.

Example 13.9 (Time-dependent potential) We consider a constraint operator Ĉ =
p̂2
ϕ− p̂2 +V (ϕ̂) for a relativistic particle in an arbitrary ϕ-dependent potential V (ϕ).

The notation indicates that we are going to choose ϕ as internal time, but this choice
is not required from the outset. In particular, ϕ may not serve as global internal time
classically; there may be turning points where pϕ vanishes and ϕ fails to be a well-
defined parameter along solutions. The constraint operator gives rise to the effective
constraints

CQ = 〈 p̂ϕ〉2 − 〈 p̂〉2 + (�pϕ)
2 − (�p)2 + V (〈ϕ̂〉)+ 1

2
V ′′(〈ϕ̂〉)(�ϕ)2 (13.37)

Cϕ = 2〈 p̂ϕ〉�(ϕpϕ)+ i�〈 p̂ϕ〉 − 2p�(ϕp)+ V ′(〈ϕ̂〉)(�ϕ)2 (13.38)

C pϕ = 2〈 p̂ϕ〉(�pϕ)
2 − 2〈 p̂〉�(pϕ p)+ V ′(〈ϕ̂〉)

(
�(ϕpϕ)− 1

2
i�

)
(13.39)

to second order in the moments. We now implement 〈ϕ̂〉 as local internal time via
the Zeitgeist

(�ϕ)2 = �(ϕq) = �(ϕp) = 0. (13.40)

We see that �(ϕpϕ) = − 1
2 i� from Cϕ = 0, which then implies

(�pϕ)
2 = 〈 p̂〉2

〈 p̂ϕ〉2 (�p)2 + 1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉
because of C pϕ = 0. With this, we arrive at the expression

C = 〈 p̂ϕ〉2 − 〈 p̂〉2 + 〈 p̂〉2 − 〈 p̂ϕ〉2

〈 p̂ϕ〉2 (�p)2 + 1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉 + V (〈ϕ̂〉) (13.41)

for the constraint CQ = 〈Ĉ〉 on the space on which Cϕ and C pϕ are solved.

In (13.41), all terms except the last two are expected to be real-valued: 〈 p̂〉 and
�p are physical observables for the class of systems considered, and 〈 p̂ϕ〉 can be
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interpreted physically as the local energy value. When the constraint is satisfied, we
obtain the imaginary part of 〈ϕ̂〉 from

1

2
i
V ′(〈ϕ̂〉)�

〈 p̂ϕ〉 + V (〈ϕ̂〉) = 0. (13.42)

For semiclassical states, to which this approximation of effective constraints refers,
we Taylor expand the potential

V (〈ϕ̂〉) = V (Re〈ϕ̂〉+i Im〈ϕ̂〉) = V (Re〈ϕ̂〉)+i Im〈ϕ̂〉V ′(Re〈ϕ̂〉)+O((Im〈ϕ̂〉)2)
in the imaginary term, expected to be of the order �. To order �, the imaginary
contribution to C is given by

1

2
i
V ′(Re〈ϕ̂〉)�

〈 p̂ϕ〉 + iV ′(Re〈ϕ̂〉)Im〈ϕ̂〉 + O(�3/2) = 0.

Thus,

Im〈ϕ̂〉 = − �

2〈 p̂ϕ〉 . (13.43)

As a consistency result, one can check that changing the Zeitgeist by a gauge trans-
formation transfers the imaginary contribution from 〈ϕ̂〉 to the new variable used as
local internal time [20].

At this stage, one may note that the possibility of time as an operator has often
been considered in quantum mechanics, with the conclusion that it could not be self-
adjoint. Otherwise, it would generate unitary transformations changing the energy
by arbitrary amounts, in conflict with the expectation that energy should be bounded
from below for stability. A non-self-adjoint time operator would not be guaranteed to
have a real-valued expectation value, a consequence which seems in agreement with
what we have found here in explicit form. However, the result (13.43) is of a more
general nature: it applies whenever there is a time-dependent potential, irrespective of
whether it has a lower bound. Even if the potential is bounded neither from above nor
from below do our results hold, but arguments using the energy-translation generated
by time would no longer apply to tell us whether time could be real.

13.3 Applications of Effective Constraints in Quantum
Gravity and Cosmology

Canonical quantum gravity is plagued by several long-standing problems which
have not been resolved so far. While loop quantum gravity has introduced many new
ingredients in this field, it has barely been able to touch these difficult issues. Central
among them are the problem of time [21] and the anomaly problem, and they must
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both be solved before a consistent framework to derive physical predictions can be
obtained. Effective-constraint techniques allow one to address these problems in a
new way, and to solve them in semiclassical regimes where effective constraints can
be truncated and analyzed. This procedure does not eliminate the problems altogether,
but it considerably tames them for most practical purposes.

13.3.1 Problem of Time

The effective procedure to deal with non-deparameterizable constraints has several
advantages. Regarding the problem of time, local internal times and local relational
observables can be consistently implemented in quantum systems [19, 20]. Chang-
ing the internal time simply amounts to a gauge transformation; the equivalence of
different choices of time easily follows. As illustrated for instance by the fact that
the imaginary part of time is transferred when the time is changed, the procedure is
consistent. In particular, one can require that all physical observables be real even
in the presence of complex time. In fact, the complexity of time is crucial for the
consistency of the whole framework; requiring time expectation values to be real
would lead to contradictions with physical reality conditions. Complex time is thus
an important part of a consistent procedure to solve quantum constrained systems.

13.3.2 Anomaly Problem

Effective constraints are also useful to analyze the anomaly problem, as we have
already done for perturbation equations subject to inverse-triad corrections. For an
anomaly-free quantization of several constraints ĈI , effective constraints C f,I =
〈 f (q̂, p̂)ĈI 〉 satisfy a first-class system. But it is not always easy to quantize in
an anomaly-free way, such that constraint operators of a classical first-class system
would indeed be first-class. The first-class nature required for this is rather strong
since it is off-shell: it must be realized even off the solution space of the constraints
since anomaly-freedom would have to be checked before solving the constraints.
(The importance of properties of the off-shell algebra has been emphasized in [22].)

Effective techniques allow more direct ways of implementing anomaly-freedom:
One first formulates effective constraints for a possible quantization parameterized
by different choices (such as factor ordering or other ambiguities). At this stage no
inconsistency arises even if the corresponding constraint operators are not anomaly-
free; inconsistencies would result only when one tries to solve the constraints. Before
doing so, one can compute the Poisson algebra of the effective constraints and check
under which conditions, or if at all, it can be first-class. As always, this can be done
order by order and is much more feasible than a calculation of the full algebra of
operators. If an anomaly-free version exists, one can pick this first-class version of
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effective constraints for further calculations. This is the procedure we followed in
Sect. 10.3 for inverse-triad corrections in loop quantum gravity.

All this is more tractable than full quantum commutators, and yet it provides
consistent constraints incorporating quantum corrections. As a side product, it
shows how strongly kinematical quantization ambiguities are reduced by dynamical
consistency.
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Chapter 14
Outlook

Quantum cosmology can be seen as the executive arm of quantum gravity. It
provides the best chance for observations and tests of the whole theory, thereby
holding enormous power to decide about its ultimate fate. This power is often
undercut by the weakly built relationship with the legislative branch of constructing
the fundamental theory, making it easily evadable. Fortunately, the ties are being
strengthened by ongoing research, as is the observational judiciary. With a long-term
perspective, quantum cosmology and quantum gravity thus seem on a promising
and scientifically sustainable way.

The current phase, however, is a critical one. Quantum cosmology has to fight
with severe conceptual and technical problems which it inherits from full quantum
gravity. The hope always is that the reduced setting of quantum cosmology may show
solutions to such problems more easily, and that solutions can then slowly be extended
to the full setting. Unfortunately, too often quantum cosmology contents itself with
the shiny arraignment of special effects which do not have a large influence on the
whole system. A recent example is bouncing activities which have been reproduced
in various guises, without so far providing lessons for general implementations or
consistent perturbations around them. There is always a danger that comparatively
simple derivations in models are done for their own sake, without paying attention
to lessons learned and challenges confirmed by more complicated considerations
of how those models may lie in a full framework. Nevertheless, as perturbations
around homogeneous models are being brought under better control, one can hope
to enhance our understanding of specific candidates of full theories such as loop
quantum gravity—or possibly to rule them out by showing irreconcilable conflicts
between predictions and observations.
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280, 291, 293, 298
Recollapse, 89, 128, 265
Recurrence, 247
Reduced

dynamics, 185
representation, 177
symplectic structure, 35

Regulator
Relational observable, 294
Relativistic

harmonic oscillator, 271, 295
parameterized system, 270

Right-moving, 80, 270

S
Scalar, 145

component, 172, 173
free, massless, 59, 76, 99, 116
Hamiltonian, 52
mode, 198, 202, 227, 233
potential, 95

Scale factor, 7
Scaling, 8, 23, 75
Schwarz inequality, 277
Schwarzschild space-time, 157
Second-class constraint, 280
Self-adjoint, 9, 121, 173, 267, 276, 297

extension, 93
Semiclassicality, 20, 87, 278
Shift vector, 24
Signature change, 125
Singular difference equation
Singularity, 66, 73, 82, 104, 119, 138, 144,

157, 164, 182, 188, 192, 242, 250,
257, 265

naked, 182
null, 192
problem, 119
theorem, 119
time-like, 192

Slowly-varying field, 200
approximation, 210, 211

Smearing, 161
Solvable model, 77, 99, 122, 275
Space-time
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S (cont.)
gauge, 198
structure, 18, 198, 225, 232, 238, 240

Spherically symmetric, 167, 171, 187
connection, 167
gravity (D space-time dimensions), 184
triad, 167

Spin, 279
connection, 26, 35, 51, 141, 143, 159, 170,

198, 216
foam, 273

cosmology, 273
network, 31, 139, 173, 175

Spreading
Square-root Hamiltonian, 79
Squeezing, 19, 124, 281, 294
Stability, 144, 251, 253, 259
Stable coherent state, 110
State, 276

dynamics, 20
Static space-time, 158
Statistical properties
Stiff fluid, 81
Structure formation
Super

inflation, 239, 242
luminal, 237
position

Symmetric
model, 151, 175
ordering
principal fiber bundle, 168
sector, 133
state, 55, 149, 175, 266

Symmetry, 185
of fluctuations, 108, 111, 115, 128
reduction, 23, 33, 64, 133, 139, 149, 151,

178, 181, 183, 188, 202, 204
Symplectic form, 282

T
Tensor mode, 198, 236, 241
Tensor-to-scalar ratio, 237
Time, 123, 230

dependent Hamiltonian, 95, 191
evolution vector field, 228

operator, 297
reparameterization, 8

Topological charge, 35
Torsion, 140, 184
Totally symmetric ordering, 86
Transition matrix, 248
Tree-level approximation, 105, 122, 162, 251
Triad, 26, 35, 134, 135, 198

operator, 140
representation, 57, 33, 134, 143, 152

Truncation, 285
Tunneling, 125
Turning point, 13, 273, 296

U
Uncertainty relation, 19, 89, 93, 101, 110, 111,

121, 277, 281, 288, 291
Unification, 116
Unit sphere, 88
Unitarity

V
Vacuum, 116
Vector mode, 198, 233
Volume operator, 138, 140, 169, 201, 206
Von-Neumann stability, 253, 257

W
Wave

equation, 235, 236
function, 17
packet, 11, 80, 90, 109, 259

Wheeler–DeWitt
equation, 265
limit, 151
quantization

Wigner function
WKB approximation

Z
Zeitgeist, 296
Zero-point energy, 284
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